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This first assignment will help you get started using NLOGIT with some familiar estimation and 
analysis computations.  This assignment is based on the German health care data discussed in 
class. They are an unbalanced panel of 7,293 households farms observed in 1 to 7 years.  For 
present purposes, however, we will treat them as a cross section of 27,326 observations. 
 

Load the project file healthcare.lpj 
 
1.  First, let’s take a look at the data.  Use 
 
 DSTAT ; rhs = * $ 
 
To get some descriptive statistics for the variables in the data set.   The analysis below will focus 
on the income variable.  We are going to use log(income) as the dependent variable in the 
regressions.  The following describes this variable and examines whether it appears to be 
normally distributed by comparing it to a random sample of draws from the normal distribution 
with the same mean and standard deviation. 
  

CREATE ; loginc=log(income)  
CALC ; xbar=xbr(loginc);sdv=sdv(loginc)$ 
CREATE ; normal=rnn(xbar,sdv)$$ 
KERNEL ;rhs=loginc,normal$ 

 
For convenience, we define a couple of namelists with 
 
 NAMELIST ;  demogrfc = age, female, married $ 
 NAMELIST ;  years = year1984, year1985,year1986,year1987,year1988,year1991 $ 
 
(We have omitted year1994, so year1994 is the base year.)   
 
2.   To start, we are going to do some linear regression modeling using the variable income as the 
dependent variable.  We will fit a simple least squares regression with 
 
 REGRESS ; lhs = loginc ; rhs = one, demogrfc, years $ 
 CALC ; rsq0 = rsqrd $ 
 
Does education help to explain the variation in income?  Add educ to the regression and test the 
hypothesis that the coefficient on education equals zero using an F test. 
 
 REGRESS ; lhs = loginc ; rhs = one, demogrfc, years, educ $ 
 CALC ; rsq1 = rsqrd $ 
 CALC ; list ; fstat = ((rsq1 – rsq0)/1) / ((1-rsq1)/(n-kreg) $ 
 
What did you find?  Note, the results contain two statistics for carrying out this test, the F statistic 
and a t statistic reported with the regression results.  What are the results? 
 



3.  Least absolute deviations (LAD) is an alternative to least squares.  It works well in small 
samples, but provides little or no benefit in large samples.  This exercise will demonstrate two 
aspects of estimation using LAD.  (1)  In a given sample, the LAD estimator is unique.  But, the  
standard errors must be computed using bootstrapping.  You must specify the number of 
bootstrap replications.  Use ;NBT=the number, for example  ;NBT = 50.  We will use LAD on a 
subsample of the data.  (If you try to use all 27,326 observations, the program will give an error 
message.) 
 
 SAMPLE ; 1 - 100 $  (use the first 100 observations) 
 REGRESS ; lhs = loginc ; rhs = one,demogrfc $ 
 REGRESS ; lhs = loginc ; rhs = one,demogrfc ; alg=LAD ; nbt=25 $ 
 
Do the results differ much from OLS?  (2) Since the LAD estimator of the standard errors is 
based on bootstrapping, a random number generator is used to generate the replications.  
Unfortunately, this means that if you run the regression again, you will get a different answer.   
 
 REGRESS ; lhs = loginc ; rhs = one,demogrfc ; alg=LAD ; nbt=25 $ 
 
Try it.  Just submit the second REGRESS command again, and compare the two sets of results.  
The solution to this problem is to reset the seed of the random number generator to a specific 
value (any specific value) before using the bootstrap estimator.   Use 
 
 CALC ; ran ( the value you choose) $ (use a 5 digit odd number) 
 
Now compute the regression.  Finally, execute the CALC command again and redo the regression. 
 
4.  These data are a panel. There is probably correlation across observations, which may mean 
that although least squares is consistent, the standard errors need correcting.  Do we see “cluster 
effects in the standard errors?  Try this 
 
 SAMPLE ;all $ 
 REGRESS ; lhs = loginc ; rhs = one,demogrfc,years ; cluster=id $ 
 
5.  Hypothesis tests.  We want to test for the presence of ‘time’ effects in the regression model.  
There are several ways to do this 
 
a.  (Easiest)  There is a built in function.  Recall that years is the set of dummy variables, 
collected in a namelist.  We can do the following Wald test using our robust covariance matrix: 
 
 REGRESS ; lhs = loginc ; rhs = one,demogrfc,years ; cluster=id  ; test: years = 0 $ 
 
b. (More transparent) We can use matrix algebra.  The REGRESS command provides the 
coefficients (matrix B) and covariance matrix (VARB) for us to use in matrix algebra and other 
commands.  For example, in the regression command, the years variables are the 5th to 10th 
variables.  We can use 
 

MATRIX ; by=b(5:10) ; vy=varb(5:10,5:10) $ 
MATRIX ; list ; wld = by'<vy>by $ 

 
c.  Test the hypothesis that the three coefficients in demogrfc all equal zero.  What do you find?   
There is a yet easier way to do this: 
 

REGRESS ; lhs = income ; rhs = one,demogrfc,years; cluster=id ; test : demogrfc$ 



 
d.  This arrangement can also be used to set up constraints and test individual hypotheses. 
 REGRESS ; lhs = loginc ; rhs = one,demogrfc,years ; cls: married = 0 $ 
 
6.  Partial Effects.  Consider the nonlinear regression model 
 
 Loginc = β1 + β2Age + β3Educ + β4Female +  

          β5Age*Educ + β6Age2 + β7Age*Female + β8Educ*Female + ε 
 
What are the partial effects of Age and Educ on Loginc?  Differentiating, we get 
 
 ∂Loginc/∂Age = β2 + β5Educ + 2β6Age + β7Female 
 
 ∂Loginc/∂Educ = β3 + β5Age + β8Female. 
 
What is the male – female income differential? 
 
 (Loginc|Female=1) – (Loginc|Female=0) = β4 + β7Age + β8Educ. 
 
How can you compute these and obtain standard errors for them?  There are built in functions.  
First fit the regression with the interaction terms made explicit. 
 
 REGRESS ; Lhs = loginc ; rhs = one,age, educ, female, age*educ, 
     age^2, age*female, educ*female $ 
 
(a) Effect of age computed for education fixed at 12,14,16,18,20 and averaged over sample 
observations. 
 
 PARTIAL ; effects: age | educ = 12,14,16,18,20 $ 
 
(b) Effect of education computed for ages of 25, 28, 31, …, 64.  Plot of the falues with confidence 
intervals. 
 
 PARTIAL ; effects: educ & age = 25(3)64 ; plot(ci) $ 
 
(3) Effect for female, for three levels of education, age 25 to 64 at each education level.  Plots of 
three sets of values. 
 
      SIMULATE; scenario: female | educ = 12,16,20 & age = 25(5)64 ; plot $ 
 
7.  Finally, we will examine the residuals from a regression are nearly normally distributed. (This 
test is often applied to vectors of least squares residuals.)  We can use a chi-squared sort of 
statistic to ‘test’ for nonormality.  The test is based on the third and 4th moments of the variable – 
they should be 0 and 3, respectively.  The test statistic is 
 
 C  = N × [ (m3/s3)2 / 6   +   (m4/s4 – 3)2/24] 
 
where N is the sample size, su is the standard deviation of the residuals and m3 and m4 are the 
third and fourth sample moments.  (We can’t use the name ‘s’ because like ‘B’ and ‘VARB’ it is 
a program reserved name.)  After obtaining the residuals as above, you can compute the parts 
with the following, which is the Bowman and Shenton test – when applied to regression residuals, 
it is usually attributed to Bera and Jarque. 



 
 REGRESS ; Lhs = loginc ; Rhs = one,demogrfc,years ; Res=e ; quietly $ 

 CREATE ; v2 = e^2 ; v3 = v2*e ; v4 = v3*e $ 
 CALC      ; sv = sqr (xbr (v2)) ;  m3 = xbr(v3) ; m4 = xbr (v4) $ 
 CALC      ; List ; Chisq = N *( ( m3/sv^3)^2 / 6  +  ((m4/sv^4) – 3)^2 /24 )  $ 
 
An alternative approach sometimes used is the Kolmogorov-Smirnov test.  The K-S test compares 
the empirical cdf of the data to that of the normal distribution with the same mean and variance. 
 
 CALC ; List ; kst(e) $ 
 
Both tests strongly reject normality.  Maybe a look at the data will help to explain the finding. 
 
 KERNEL ; Rhs = e $ 
 
It looks rather ‘normal.’  It is the long tail at the left that is the culprit. 
 
8.  These data are an interesting panel.  We can explore the familiar approaches to modeling panel 
data.  We start with the conventional estimators. (SETPANEL identifies the configuration of the 
data so the program can handle balanced or unbalanced panels conveniently.) 
 
      SAMPLE ; all $ 
      SETPANEL ; group = id ; pds = ti $ 
      REGRESS  ; Lhs = income ; Rhs = one,age,educ,female,female*age  
               ; panel ; Fixed effects $ 
      REGRESS  ; Lhs = income ; Rhs = one,age,educ,female,female*age  
               ; panel ; Random effects $ 
 
9.  It’s a minor point for our purposes, but there is an intriguing alternative method of computing 
the fixed effects estimator.  A linear regression of the dependent variable, the levels of the time 
varying variables and the group means of those variables produces the desired coefficients.  We 
note, however, that this does not produce the right standard errors – it uses the wrong degrees of 
freedom and the sum of squared residuals is much smaller than estimated by LSDV. 
 
      NAMELIST ; x=one,age,educ,hsat$ 
      CREATE   ; ageb  = group mean(age,pds=ti)$ 
      CREATE   ; educb = group mean(educ,pds=ti)$ 
      CREATE   ; hsatb = group mean(hsat,pds=ti)$ 
      REGR     ; lhs = income ; rhs = age,educ,hsat ; Panel ; fixed effects $ 
      REGR     ; lhs = income ; rhs = age,educ,hsat,ageb,educb,hsatb $ 
 



10.  A hierarchical model.  The fixed and random effects models are an interesting place to begin 
the modeling of heterogeneity.  A next step is a random parameters, or hierarchical model.  (They 
are not quite synonymous.)  Here, we fit a model of the form 
 
Income = β1 + β2Age +  β3i Educ + β4Hsat + β5Working + εit. 
   β3i  =  γ1 + γ2Femalei + wi. 
 
So, the coefficient on Education is randomly distributed around a mean that shifts depending on 
whether the respondent is male or female.  The model is estimated by maximum simulated 
likelihood. 
 
     REGRESS  ; Lhs = income ; Rhs = one,age,educ,hsat,working 
               ; Panel ; RPM=female ; Pts=10 ; Halton  
               ; Fcn = educ(n) ; Parameters $ 
      CREATE   ; b_educ = beta_i(_stratum)$ 
      CREATE   ; t=prd(id)$ 
      KERNEL   ; if[t=1] ; rhs=b_educ ; group=female$ 
 
You might try different specifications of this RP model. 
 
 
 
 


