
Discrete Choice Modeling 
William Greene 

Stern School of Business, New York University 
 

Lab Session 2 Assignment 
 
Part 1.  Binary Choice Modeling 
 
This exercise will involve estimating and analyzing binary choice models.  We will analyze the 
panel probit, manufacturing innovation data.  The data set is PanelProbit.lpj.  To begin, load 
these data.  To save you some typing, most of the commands for this exercise are contained in the 
file LabAssignment-2.lim. 
 
1.  Cluster Estimator.

 

  This is a panel data set.  Do the standard errors of the probit estimator 
need ‘correction?’  This exercise computes the standard covariance matrix and the ‘cluster 
corrected’ covariance matrix and compares them.  Describe your findings. 

Sample ; All $ 
Namelist ; X = One,IMUM,FDIUM,SP,LogSALES $ 
Probit ; Lhs = IP ; Rhs = X $ 
Matrix ; Var0 = Varb $  (Uncorrected covariance matrix) 
Probit ; Lhs = IP ; Rhs = X ; Cluster = 5 $ 
Matrix ; VarPanel = Varb $ (Corrected covariance matrix) 
? PCTDIFF is the percentage difference between the standard errors 
Matrix ; SD0 = Diag(Var0)  ; Diff = Vecd(VarPanel) - Vecd(Var0)  
       ; List ; PctDiff = 100*<SD0>*Diff$ 
 
2.  Robust Covariance Matrix

 

.  You can also compute a ‘robust,’ sandwich style asymptotic 
covariance matrix.  This estimator would only be robust to heteroscedasticity – though we are 
unsure what that would mean in the probit setting. 

Probit ; Lhs = IP ; Rhs = X $ 
Matrix ; Var0 = Varb $  (Uncorrected covariance matrix) 
Probit  ; Lhs = IP  ; Rhs = X ;  RobustVC $ 
Matrix  ; VarHet = Varb $ 
Matrix ; SD0 = Diag(Var0)  ; Diff = Vecd(VarHet) - Vecd(Var0)  
       ; List ; PctDiff = 100*<SD0>*Diff$ - Init(5,1,100) $ 
 
3. Marginal Effect for a Quadratic.

 

 Marginal effects in the binary choice models are 
complicated functions of the parameters and the data.  They are more so when the index function 
contains complex functions of the data.  Suppose, for example, 

 P  =  Φ(β′x + α0logSales + α1logSales2). 
 
The marginal effect of logSales, which is the effect on the probability of a one percent change in 
sales is 
 
 ∂P/∂logSales = φ(β′x + α0logSales + α1logSales2) × (α0 + 2α1logSales) 
 
It is possible to program this computation into the WALD command.  But, it is easier to use the 
built in function to obtain the result. 
 
 



Create   ; LogS2  = LogSales^2 $ 
Namelist ; X2     = One,IMUM,FDIUM,SP,LogSALES,LogS2 $ 
Probit   ; Lhs    = IP ; Rhs = X2 ; Mar $ 
Wald     ; Start  = b ; Var = Varb 
         ; Labels = beta0,beta1,beta2,beta3,a0,a1 
         ; Fn1    = n01(beta0'X2)*(a0+2*a1*Logsales) ? partial wrt logsales 
         ; Fn2    = n01(beta0'X2)* beta2  ? partial wrt fdium 
         ; Average (computes average partial effects) $ 
? Easier way 
probit   ; Lhs = ip ; rhs = One,IMUM,FDIUM,SP,logsales,logsales^2$ 
partial  ; effects: logsales / fdium $ 
? Extension to look more closely at partial effects 
Partial  ; effects: logsales & fdium = .05(.05)1 ; plot(ci) $ 
 
4.  Heteroscedasticity

 

.  The following suggests how to incorporate heteroscedasticity in the 
binary logit (or probit – by changing the command) model: 

Logit ; Lhs = IP ; Rhs = X ; Het ; Hfn = RAWMTL; Marginal Effects $ 
           

(1)  Note the effect on the coefficients and how the marginal effects are decomposed. 
(2)  Repeat the computation with ;Hfn = LogSales. Note the effect on the estimates and 
significance levels.  The difference between the reported marginal effects and the results from the 
PARTIALS command is that the former is computed at the means of the data while the second is 
averaged over all observations.  To reproduce the results at the means, we add ;Means to the 
PARTIALS command. 
 
Namelist ; X = one,imum,fdium,sp,logsales $ 
Logit   ; Lhs = IP ; Rhs = X ; Het  
        ; Hfn = RAWMTL; Marginal Effects $ 
Partial ; Function= lgp((b1+b2*IMUM+b3*FDIUM+b4*SP+b5*LogSALES)/exp(c1*rawmtl)) 
        ; Labels  = b1,b2,b3,b4,b5,c1 
        ; parameters = b 
        ; covariance = varb 
        ; effects: rawmtl / logsales $ 
Logit   ; Lhs = IP ; Rhs = X ; Het  
        ; Hfn = LogSales; Marginal Effects $ 
Partial ; Function=lgp((b1+b2*IMUM+b3*FDIUM+b4*SP+b5*LogSALES) 
                       /exp(c1*LogSales)) 
        ; Labels   = b1,b2,b3,b4,b5,c1 
        ; parameters = b 
        ; covariance = varb 
        ; effects: logsales ; means$ 
 
5. Nonparametric and Semiparametric Estimation

 

.  There are numerous alternative estimators 
you can use for analyzing binary choices.  Interpretation of the results of these models requires 
some careful thought – but estimation is very straightforward.  Estimation of these is generally 
very computer intensive, so we use only a subset of the sample – one year of the data.  Compare 
the table of correct and incorrect predictions produced by PROBIT and MSCORE.  (The other 
estimators do not produce enough information to generate predictions for individual 
observations.) 

Namelist ; X0 = IMUM,FDIUM,SP,LogSALES $ 
Namelist ; X = One,X0 $ 
Reject ; New ; T > 1 $ (Use only first year of data) 
?  Fully Parametric 
PROBIT ; Lhs = IP ; Rhs = X $  
?  Semiparametric:  Maximum Score 
MSCORE ; Lhs = IP ; Rhs = X $ 



Semiparametric ; LHS = IP ; Rhs = X0 $ (Klein and Spady.) 
?  Nonparametric, Kernel density regression estimator 
?  Note, the nonparametric estimator can only have one RHS variable 
NPREG ; LHS = IP ; Rhs = LogSales $ 
 
6.  Creating a Plot of Probabilities

 

.  The following will demonstrate how to use NLOGIT to 
produce the plot shown in the class discussion. 

Reject     ; New ; T > 1 $ 
Probit     ; Lhs = IP ; Rhs = one,IMUM,FDIUM,SP,logsales $ 
Calc       ; Low = .5*Min(LogSales) ; High = 1.5*Max(LogSales)   
           ; inc = .05*(high-low) $$ 
Simulate   ; Scenario : logsales & logsales = Low(inc)high 
     ;plot(ci)  ;title=Simulation of Innovation Probabilities vs. Log Sales$ 
 
7.  Testing for Structural Change

 

.  It might be interesting to test whether underlying structural 
of the model has changed over the five year period of the data.  Consider the structure 

  Pit  =  F(βt′xit), i = 1,…,1270, t = 1,…,5 (1993 to 1997) 
 
which allows for different coefficient vectors in each year.  We are interested in testing the 
hypothesis 
  H0 : β1 = β2 = β3 = β4 = β5 
  H1:  not H0. 
 
In a linear regression context, this would be a ‘Chow’ test and would be tested with an F test.  
Since this is not a linear regression model, we can’t use the F test here.  The easiest way to do this 
test is with a likelihood ratio test.  The strategy is to fit the restricted model (pool the 5 years of 
data) and the unrestricted model (estimate the model separately for each year), and compare the 
log likelihoods.  The log likelihood for the unrestricted model is the sum of the five years.  Here 
is how you can automate this computation. The last part of the last CALC displays the 95% 
critical value from the chi-squared table. 
 
Sample ; All $ 
Namelist ; X = One,IMUM,FDIUM,SP,LogSALES $ 
Probit ; Lhs = IP ; Rhs = X ; quietly $  (We suppress the model results) 
Calc ; Logl0 = Logl ; Logl1 = 0 ; i = 0 $ 
Procedure 
Include ; New ; T = i $ 
Probit ; Lhs = IP ; Rhs = X ; Quietly $ 
Calc ; Logl1 = Logl1 + Logl $ 
EndProc $ 
Execute ; i = 1,5  $ 
Calc ; List ; Chisq = 2*(Logl1 - Logl0) ; Df = 4*Col(X) ; Ctb(.95,df) $ 
 
Carry out the test.  What do you conclude?  Should the null hypothesis be rejected?  Repeat the 
test using a logit model instead of a probit model.  Does the conclusion change?  Try the exercise 
again while adding the sector dummy variables to the model.  To do these, it is only necessary to 
change the model name from PROBIT to LOGIT, or the NAMELIST command by adding 
variables to it. 
 



8.  Hypothesis Tests:

 

  This exercise will illustrate the three methods of carrying out hypothesis 
tests. 

Reject   ; New ; T < 5 $ 
Namelist ; X = One,IMUM,FDIUM,LogSales $ 
Namelist ; Sectors = RawMtl,InvGood$ 
Probit   ; Lhs = IP ; Rhs = X $ 
Calc     ; Logl0 = LogL $ 
Probit   ; Lhs = IP ; Rhs = X ; Het ; Hfn = Sectors 
         ; Start = b,0,0 ; Maxit = 0 $ 
Probit   ; Lhs = IP ; Rhs = X,Sectors ; Parameters ; test: sectors = 0$ 
Calc     ; KX = Col(X) ; K1 = KX + 1 ; Kc = Col(Sectors); K = KX + KC$ 
Matrix   ; c = B(K1:K) ; vc = Varb(K1:K , K1:K) $ 
Matrix   ; List ; Wald = c'<vc>c  $ 
Calc     ; List ; Ctb(.95,2) $ 
Wald     ; start = b ; Var = Varb ; labels=KX_d,Kc_c   
              ; fn1 = c1 - 0 ; Fn2 = c2 - 0 $ 

     
The model is   yi* = β′xi + εi 

  ε  ~  N[0,σi
2],  σi  =  exp(γ′zi). 

  yi  =  1(yi*  >  0] 
 
The various testing procedures shown estimate γ and test whether γ = 0, in which case σi

2 = 1.  
Carry out the tests, and determine whether the null hypothesis, H0:γ = 0, should be rejected. 
 
9.  Simulation: 

 

Using the binary choice model simulator, examine how an increase in 
LOGSALES of 50% would affect the probability of innovation. 

Probit        ; Lhs = IP ; Rhs=one,logsales,imum,fdium $ 
BinaryChoice  ; Lhs = IP ; Rhs = one,logsales,imum,fdium  
                          ; model=probit  ; start=b  
                          ; scenario: logsales * = 1.5 ;plot : logsales $ 



Part 2.  Extensions of the Probit Model 
 
This exercise uses the data file panelprobit.lpj 
 
1.  Bivariate probit model
 

.  In this exercise, we will fit a bivariate probit model.  The model is 

  y1* = x1′β1 + ε1 
  y2* = x2′β2 + ε2 
  ε1,ε2 ~ N2[(0,0),(1,1,ρ)]. 
 
The model is fit by maximum likelihood.  You can use the following commands to treat the 1984 
and 1985 observations as a bivariate probit outcome: 
 
  Sample ; 1 - 1270$ 
  Namelist ; x84 = one,imum84,fdium84,prod84$ 
  Namelist ; x85 = one,imum85,fdium85,prod85$ 
  Bivariate; Lhs = ip84,ip85 ; Rh1 = x84; Rh2 = x85 $ 
 
Notice that if β1 = β2, that this becomes a two period random effects model.  You can constrain 
the slope parameters to be equal by using 
 
  Bivariate; Lhs = ip84,ip85 ; Rh1 = x84; Rh2 = x85  
    ; Rst = b1,b2,b3,b4,b1,b2,b3,b4,corr$ 
 
Do the results change substantially when the restriction is imposed?  Does the estimate of ρ 
change? The hypothesis of interest is H0:β1 = β2.  You can test this hypothesis using these models 
with a likelihood ratio test.  Compute twice the difference in the log likelihoods. 
 Recall that we fit a random effects model for all 5 periods in Exercise 3.  Go back to that 
exercise and examine the results you obtained.  Does the value of ρ change when the five years of 
data are used? 
 
2.  Multivariate probit model

 

.  We can fit the “panel probit model” as a multivariate probit 
model by extending the model above.  We will use a limited form, with three periods.  The 
following commands can be used.  Note, since this is a very slow estimator, we have used only 5 
simulation points and limited it to 10 iterations.  How do the results here compare to those in part 
3?  Is the correlation matrix what you would expect?  Do the coefficients vary across periods? 

  Namelist ; x86 = one,imum86,fdium86,prod86$ 
  Mprobit  ; lhs = ip84,ip85,ip86   
    ; eq1 = x84  
    ; eq2 = x85  
    ; eq3 = x86  
         ; Pts = 5 ; Maxit=10 $ 
 
  



This exercise uses the data file labor.lpj 
 
3.  We consider two standard applications of the probit model.  The first is Heckman’s classic 
model of sample selection, estimated by the two step least squares method proposed in the early 
paper in Econometrica.  When you fit the model, is there evidence of sample “selection?”  That 
is,  is the estimate of ρ sign ifican tly d ifferen t fro m zero .   Fo r the two  step method, this is 
determined by examine the coefficient on “lambda” in the second step least squares results.  
Later, it was established that this model could be fit by maximum likelihood.  The second 
estimator below uses MLE instead of two step least squares.  Do the results change much? 
 

?-------------------------------------------------------- 
? (3)  Sample selection Model 
?-------------------------------------------------------- 
Namelist ; XLFP = One,KL6,K618,WA,FAMINC $ 
Namelist ; XHRS = One,WA,WE,WW,HW$ 
Probit   ; Lhs  = LFP ; Rhs = XLFP ; Hold $ 
Select   ; Lhs  = WHrs ; Rhs = XHRS ; Marginal Effects$ 
Select   ; Lhs  = WHrs ; Rhs = XHRS ; Marginal Effects ; MLE$ 

 
4.  The next model considers the possibility of an endogenous variable on the right hand side of a 
probit equation.   
 
  y1* = x1′β1 + γy2 +  ε1,  y1  = 1[y1* > 0] 
  y2    = x2′β2 + ε2 
  ε1,ε2 ~ N2[(0,0),(1,1,ρ)]. 
 
This model is estimated using maximum likelihood and the “control function” approach.  In the 
labor supply model below, the husband’s weekly earnings are treated as endogenous in the wife’s 
labor force participation equation.  The hypothesis seems a bit dubious.  Do the results suggest 
that the husband’s earnings are endogenous? 
 

?------------------------------------------------------------------------------------ 
? (4) Endogenous right hand variable - husband's earnings  
?------------------------------------------------------------------------------------ 
Namelist ; Hwork = one,ha,he $ 
Create     ; Hearn = hhrs*hw $ 
Probit     ; Lhs = lfp,hhrs 
         ; Rhs = one,kl6,k618,wa,faminc,Hearn 
         ; Rh2 = Hwork $ 

 
The two specifications are rather sparse.  Are there other variables in the data set that might 
improve the specification?  Try fitting a fuller specification of the model. 
 



Part 3.  Binary Choice Modeling with Panel Data 
 
This assignment will extend the models of binary choice and ordered choice to panel data 
frameworks.  These exercises will use the health care data, healthcare.lpj 
Since these are a panel data set, we begin by identifying it as one  
 
SAMPLE ; All $ 
SETPANEL ; Group = id ; Pds = ti $ 
 
1.  Logit conditional and unconditional fixed effects estimation

 

.  For the binary logit model, 
the Chamberlain form of the fixed effects estimator is consistent while the unconditional (brute 
force) fixed effects estimator is inconsistent.  (This is the incidental parameters problem that 
arises when T is small. In our unbalanced panel here, the largest group size is 7, and most groups 
have less than that.  Thus, T is small here.)  Fit the logit model by the two approaches, and 
compare the results.  Are they very different?  To see if we can’t highlight the effect, let’s look at 
the standard case, with T = 2.  How different are the results now?  Remember, in the T=2 case, 
plim bMLE = 2β while plim bC = β.  Do the results seem to bear this out? 

SAMPLE ; All $ 
LOGIT ; Lhs = Doctor ; Rhs = hhninc,educ ; Panel $ (Conditional) 
LOGIT ; Lhs = Doctor ; Rhs = hhninc,educ ; Panel ; Fixed $ (Unconditional) 
REJECT ; ti > 2 $ 
LOGIT ; Lhs = Doctor ; Rhs = hhninc,educ ; Panel $ (Conditional) 
LOGIT ; Lhs = Doctor ; Rhs = hhninc,educ ; Panel ; Fixed $ (Unconditional) 
 
2.  Test for fixed effects

 

.  In order to test for the need for fixed effects in the logit model, we 
can’t use the likelihood ratio test because the unrestricted estimator is inconsistent.  We can use 
the Hausman test, instead.  This uses the chi-squared statistic 

  H  =  (bC – bR)′ [VC – VR]-1(bC – bR) 
 
where ‘C’ refers to the Chamberlain, conditional estimator and ‘U’ refers to the ‘restricted’ 
estimator which has only a single constant term.  Note that bR is the subvector of the restricted 
estimator that strips off the overall constant term – it keeps on ly the slope coefficients.  Using the 
model suggested in the commands below, carry out the test.  What is the result?  Do you reject 
the hypothesis? (What is the null hypothesis?)  Note, it is not guaranteed that the difference 
matrix in the statistic is positive definite.  To find out if it is, we will look at the characteristic 
roots.  They must all be positive.  Are they? 
 
Sample ; All $ 
Logit ; Lhs = Doctor ; Rhs = hhninc,educ,hhkids ; panel $ 
Matrix ; bfe = B ; Vfe = VARB $ 
Logit ; Lhs = Doctor ; Rhs = hhninc,educ,hhkids,one $ 
Matrix ; db = bfe - b(1:3) ; dV = Vfe - Varb(1:3,1:3) $ 
Matr;list;root(dv)$ 
Matrix ; List ; Hausman = db'<dv>db $ 
 
 
3.  Fixed and Random Effects

 

.  The fixed and random effects estimators are competing 
estimators for the panel model.  Each has its virtues and shortcomings.  (We use Hpt=8 to speed 
up the quadrature in the random effects model. Normally you would use the default of 64.) 

Sample ; All $ 
Probit ; lhs = hospital ; Rhs = hhninc,educ,hhkids,one ; random ; panel ; maxit = 10 ; Hpt=8$ 



Probit ; lhs = hospital  ; Rhs = hhninc,educ,hhkids,one ; Fixed ; panel $ 
 
4.  Mundlak’s approach

 

.  The disadvantage of the random effects estimator is that it requires an 
assumption that the individual effects are uncorrelated with the included variables.  If that 
assumption is not met, the estimator is inconsistent.  The fixed effects estimator is inconsistent 
when T is not large. Thus, both estimators have problems.  Chamberlain’s conditional estimator 
provides a way to estimate the logit fixed effects model consistently.  An approach often used in 
the random effects case is to add to the model the group means of the independent variables 
(those that vary over time, that is.)  We’ll try that approach here. 

Sample ; All $ 
Create ; incbar=GroupMean (hhninc, Pds=_Groupti)  $ 
Create ; educbar=GroupMean (educ, Pds=_Groupti)  $ 
Create ; kidsbar=GroupMean (hhkids, Pds=_Groupti)  $ 
Logit ; lhs = Doctor ; Rhs = hhninc,educ,hhkids ; pds = _groupti $ 
Logit ; lhs = Doctor ; Rhs = hhninc,educ,hhkids,incbar,educbar,kidsbar  

; Random ; panel  $ 
 
5.  Random effects probit models

 

.  The random effects probit model can be fit using the Butler 
and Moffitt method, using quadrature, or using simulation by treating it as a random parameter 
model.  Compute the estimator both ways and see how close the two estimators are.  Note, the 
Butler and Moffitt estimator reports RHO in the output – this equals the squared correlation 
between observations in a group.  The simulation estimator reports SIGMA, the standard 
deviation of the common individual effect.  To compare the two estimates of ρ, you must 
compute ρ* = σ2 / (1 + σ2) from the random parameters estimates.  What do you find?  Are the 
estimates of the other slopes nearly the same? 

?  This estimator is time consuming.  To speed things up, we use only 
?  a subset of the data and a small number of draws. 
Sample ; All $ 
Reject ; _Groupti < 7 $ 
Namelist ; X = hhninc,educ,hhkids,one $ 
Probit ; lhs = hospital ; Rhs = x ;  panel  ; maxit=10; random effects $ 
Probit ; ; lhs = hospital ; Rhs = x  ; pds = _groupti  ;maxit=10  

; RPM ; Fcn = One(n) ; Pts = 20 ; panel $ 
Calc   ; K1 = Col(X) + 1 $ 
Calc   ; List ; SRP = B(K1) ; RhoRP = SRP^2 / (1 + SRP^2) $ 
 
  



Part 4. Binary Choice Modeling with Panel Data and Heterogeneity 
 
This assignment will extend the models of binary choice to modeling heterogeneity in panel data 
frameworks.  These exercises will use the German manufacturing innovation data, panelprobit.lpj 
 
1. Random parameters models

 

  In the original study that used these data, the coefficients on 
IMUM and FDIUM were of particular interest.  In his followup studies, Greene treated these two 
parameters as randomly distributed across firms.  Here, you can partially replicate that study by 
reestimating the random parameters model.  Three models are fit: (1)  The two parameters are 
treated as independent normally distributed; (2)  The two parameters are allowed to be freely 
correlated;  (3)  The two random parameters are assumed to have a mean that varies by industry.  
In this case, we specify βk = β0k + δk1InvGood + βk2Consgood + βk3Food + σkvk.  We could also 
specify that the two parameters remain correlated. That is left for an exercise.  The final PROBIT 
command contains ; PARAMETERS.  This creates a matrix BETA_I that contains the firm 
specific conditional means of the random parameters.  You can double click this matrix to see the 
values.  The remaining commands manipulate this matrix to explore the distribution of parameter 
values across firms.  The kernel density estimator in the last command does this exercise for the 
coefficient on IMUM.  By changing BIMUM to BFDIUM in the KERNEL command, you can 
repeat the exercise for the coefficient on FDIUM. 

Sample ; All $ 
Probit ; Lhs = Ip ; Rhs = X ; RPM ; Fcn = imum(n),fdium(n) ; Pts = 25 ; Pds = 5 $ 
Probit ; Lhs = Ip ; Rhs = X ; RPM ; Correlated 
       ; Fcn = imum(n),fdium(n) ; Pts = 25 ; Pds = 5 $ 
Probit ; Lhs = Ip ; Rhs = X ; RPM = InvGood,ConsGood,Food 
       ; Fcn = imum(n),fdium(n) ; Pts = 25 ; Pds = 5 ; Parameters $ 
Create ; Bimum = 0 ; Bfdium = 0 $ 
Namelist ; Bi = Bimum,Bfdium $ 
Sample ; 1 - 1270 $ 
Create ; Bi = Beta_i $ 
Kernel ; Rhs = Bimum $ 

 
2.  Latent class model

 

.  In this exercise, we fit a three class latent class LOGIT model.  This is an 
alternative method of building heterogeneity into the panel data model.  In the third command, we 
produce a listing of the estimated conditional class probabilities, with a listing of the best guess as 
to which class each firm is in.  (The number of observations is reduced just for purpose of a 
compact example.)  You might try changing the specification of the equation, and examining how 
the results change.  To see what happens when the model is overspecified, change ;pts=2 to 
;pts=3 in the last command and refit the model. 

Sample ; All $ 
Logit  ; Lhs = IP ; Rhs = X ; LCM ; Pts = 3 ; Pds = 5  ; Parameters $ 
Logit  ; Lhs = IP ; Rhs = X ; LCM = InvGood,Consgood,Food  
                            ; Pts = 2 ; Pds = 5  ; Parameters $ 
Sample;1-500$ 
Logit  ; Lhs = IP ; Rhs = X ; LCM = InvGood,Consgood,Food  
                            ; Pts = 2 ; Pds = 5  ; Parameters ; List $                           

 


