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1.  Introduction 
 
Netflix (www.netflix.com) is an internet company that rents movies to subscribers. After a 
customer rents a movie, the next time they log on to the website, they are invited to rate the 
movie on a five point scale, where five is the highest, most favorable rating.   The ratings of the 
many thousands of  subscribers who rented  that movie are averaged to provide a 
recommendation to prospective viewers.  For example, as of April 5, 2009, the average rating of 
the 2007 movie National Treasure: Book of Secrets [2007] given by approximately 12,900 
visitors to the site was 3.8.  This rating process provides a natural application of the models and 
methods described in this survey.   
 The model described here is an ordered choice model. Ordered choice models are 
appropriate for a wide variety of settings in the social and biological sciences.  The essential 
ingredient is the mapping from an underlying, naturally ordered preference scale to a discrete 
ordered observed outcome, such as the rating scheme described above.  The model of ordered 
choice pioneered by Aitcheson and Silvey [1957] and Snell [1964] and articulated in its modern 
form by Zavoina and McElvey [1969] and McElvey and Zavoina [1971, 1975] and McCullagh 
[1980] has become a widely used tool in many fields.  The number of applications in the current 
literature is large and increasing rapidly.  A search of just the ‘ordered probit’ model identified 
applications on:  
 
 • academic grades (Butler et al. [1994], Li and Tobias [2006a]), 
 • bond ratings (Terza [1985]), 
 • Congressional voting on a Medicare bill (McElvey and Zavoina [1975]), 
 • credit ratings (Cheung [1996] , Metz and Cantor [2006]),  
 • driver injury severity in car accidents (Wang and Kockelman [2005], Eluru, Bhat and 
    Hensher [2008]),  
 • drug reactions (Fu et al.[2004]),  
 • duration (Han and Hausman [1990], Ridder [1990]), 
 • education (Machin and Vignoles [2005], Carneiro, Hansen and Heckman [2001, 2003], 

   Cameron and Heckman [1998], Cunha, Heckman and Navarro [2007], Johnson and 
   Albert [1999]), 

 • eye disease severity (Biswas and Das [2002]), 
 • financial failure of firms (Jones and Hensher [2004], Hensher and Jones [2007]), 
 • happiness (Winkelmann [2005], Zigante [2007]), 
 • health status (Greene [2008a], Riphahn, Wambach and Million [2003]),  
 • insect resistance to insecticide (Walker and Duncan [1967]), 
 • job classification in the military (Marcus and Greene [1983]),  
 • job training (Groot and van den Brink [2002a]), 
 • labor supply (Heckman and MaCurdy [1981]), 
 • life satisfaction (Clark et al. [2001], Wim and ven den Brink [2002, 2003b]), 
 • monetary policy (Eichengreen, Watson and Grossman [1985]), 
 • nursing labor supply (Brewer et al. [2008]), 
 • obesity (Greene, Harris, Hollingsworth and Maitra [2008]),  
 • perceptions of difficulty making left turns while driving (Zhang [2007]),  
 • pet ownership (Butler and Chatterjee [1997]),  
 • political efficacy (King et al. [2004]), 
 • pollution (Wang and Kockelman [2009a]), 
 • product quality (Prescott and Visscher [1977], Shaked and Sutton [1982]), 
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 • promotion and rank in nursing (Pudney and Shields [2000]),  
 • self assessed health (Greene, Harris and Hollingsworth [2012]), 
 • stock price movements (Tsay [2005]), 
 • tobacco use (Harris and Zhao [2007], Kasteridis, Munkin and Yen [2008]), 
 • toxicity in pregnant mice (Agresti [2002]), 
 • trip stops (Bhat [1997]), 
 • vehicle ownership (Bhat and Pulugurta [1998], Train [1986], Hensher, Smith, 
    Milthorpe and Bernard [1992]), 
 • work disability (Kapteyn et al. [2007]), 
 
and hundreds more. 
 This survey will lay out some of the central features of ordered choice models.  After 
developing the basic model, we describe some of the specification issues and model extensions 
that have appeared in recent studies.  There are numerous surveys of ordered choice modeling in 
the received literature.  This one draws heavily on Greene and Hensher [2010].  Some of the ideas 
developed in Sections 4 and 5 are extended in Greene, Harris, Hollingsworth and Weterings 
[2012].  Section 2 briefly discusses two foundational elements of the model, random utility 
models and the model for binary choices.  The main development of the ordered choice model is 
given in Section 3.  Sections 4 through 6 detail a number of specification issues, including 
individual heterogeneity, functional form and panel data modeling. 
 
2.  Binary Choice Model 
 
 The random utility model is one of two essential building blocks that form the foundation 
for modeling ordered choices.  The second fundamental pillar is the model for binary choices.  
The ordered choice model that will be the focus of the rest of this survey is an extension of a 
model used to analyze the situation of a choice between two alternatives – whether the individual 
takes an action or does not, or chooses one of two elemental alternatives, and so on.     
 
2.1  Random Utility Formulation of a Model for Binary Choice 
 

An application we will develop is based on a survey question in a large German panel 
data set, roughly, “on a scale from zero to ten, how satisfied are you with your health?”  The full 
data set consists of from one to seven observations – it is an unbalanced panel – on 7,293 
households for a total of 27,326 household year observations.  A histogram of the responses 
appears in Figure 3.2.  We might formulate a random utility/ordered choice model for the variable 
Ri =  “Health Satisfaction” as 

 
Ui*  =  β′xi + εi, 
Ri    =  0  if  -∞ <  Ui*  <  μ0, 
Ri    =  1  if  μ0  <  Ui*  <  μ1,    
… 
Ri    =  10  if  μ9  <  Ui*  <  +∞, 

 
where xi is a set of variables such as gender, income, age, and education that are thought to 
influence the response to the survey question.  (Note that at this point, we are pooling the panel 
data as if they were a cross section of n = 32,726 independent observations and denoting by i one 
of those observations.)  The average response in the full sample is 6.78  Consider a  
simple response variable, yi = “Healthy,” (i.e., better than average), defined by 
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 yi  =  1  if  Ri  >  7  and yi  =  0 otherwise. 
 
Then, in terms of the original variables, the model for yi is 
 
 yi  =  0 if Ri ∈ (0, 1, 2, 3, 4, 5, 6) and yi = 1 if Ri ∈ (7, 8, 9, 10). 
 
By adding the terms, we then find, for the two possible outcomes, 
 
 yi  =  0 if  Ui*  <  μ6,    
 yi  =  1 if  Ui*  >  μ6. 
 
Substituting for Ui*, we find 
 
 yi  =  1  if  β′xi + εi > μ6 
or yi  =  1  if  εi  >  μ6 -  β′xi      
and  yi  =  0 otherwise. 
 
We now assume that the first element of β′xi is a constant term, α, so that β′xi – μ6  equivalent to 
γ′xi where the first element of γ is a constant that is equal to α – μ6 and the rest of γ is the same as 
the rest of β.  Then, the binary outcome is determined by 
 
 yi  =  1  γ′xi + εi  >  0 
and  yi  =  0 otherwise.   
 
In general terms, we write the binary choice model in terms of the underlying utility as 
 
 yi*  =  γ′xi +  εi, 
 yi    =  1[yi*  >  0], 
 
where the function 1[condition] equals one if the condition is true and zero if it is false. 
 
2.2  Probability Models for Binary Choices 
 
 The observed outcome, yi, is determined by a latent regression, 
 
 yi*  =  γ′xi  + εi. 
 
The random variable yi takes two values, one and zero, with probabilities 
 
 Prob(yi = 1|xi)   =  Prob(yi* > 0|xi) 
   =  Prob(γ′xi + εi > 0) 
   =  Prob(εi > -γ′xi). 
 
The model is completed by the specification of a particular probability distribution for εi. In terms 
of building an internally consistent model, we require that the probabilities be between zero and 
one and that they increase when γ′xi increases.  In principle, any probability distribution defined 
over the entire real line will suffice.  The literature on binary choices is overwhelmingly 
dominated by two models, the standard normal distribution, which gives rise to the probit model, 
f(εi) = exp(-εi

2/2)/(2π)1/2 and the standard logistic distribution, f(εi) = exp(εi)/[1 + exp(εi)]2, which 
produces the logit model.  The normal distribution can be motivated by an appeal to the central 
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limit theorem and modeling human behavior as the sum of myriad underlying influences.  The 
logistic distribution has proved to be a useful mathematical form for modeling purposes for 
several decades.  These two are by far the most frequently used in applications.  Other 
distributions, such as the complementary log log and Gompertz distribution that are built into 
modern software such as Stata and NLOGIT are sometimes specified as well, though without 
obvious motivation.   
 The implication of the model specification is that yi|xi is a Bernoulli random variable with 
 
 Prob(yi = 1|xi)   =  Prob(yi* > 0|xi) 
   =  Prob(εi  >  - γ′xi) 

   =  
 

 
( )

i
i if d

∞

′−
ε ε∫ xγ

 

   =  1 – F(-γ′xi), 
 
where F(.) denotes the cumulative density function (CDF) or distribution function for εi.  The 
standard normal and standard logistic distributions are both symmetric distributions that have the 
property that F(γ′xi)  =  1 – F(-γ′xi).  This produces the convenient result  Prob(yi = 1|xi) = F(γ′xi). 
Standard notations for the normal and logistic distribution functions are Φ(γ′xi) and Λ(γ′xi), 
respectively.  The resulting probit model for a binary outcome is shown in Figure 2.1.  Note that 
since yi equals zero and one with probabilities F(-γ′xi) and F(γ′xi), E[yi|γ′xi] = F(γ′xi).  Thus, the 
function in Figure 2.1 is also the regression function of yi on γ′xi as well as E[yi|xi] 
 

 
Figure 2.1  Probit Model for Binary Choice 
 
3.  A Model for Ordered Choices  
 

The ordered probit model in its contemporary, regression based form was proposed by 
McElvey and Zavoina [1969, 1971, 1975] for the analysis of ordered, categorical, nonquantitative 
choices, outcomes and responses.  Their application concerned Congressional preferences on a 
Medicaid bill.  Familiar recent examples include bond ratings, discrete opinion surveys such as 
those on political questions, obesity measures, preferences in consumption, and satisfaction and 
health status surveys such as those analyzed by Boes and Winkelmann [2006a, 2006b] and other 
applications mentioned in the introduction.  The model is used to describe the data generating 
process for a random outcome that takes one of a set of discrete, ordered outcomes.   
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3.1  A Latent Regression Model for a Continuous Measure 
 
 The model platform is an underlying random utility model or latent regression model, 
 
 yi* = β′xi + εi, i = 1,...,n,  
 
in which the continuous latent utility or ‘measure,’ yi* is observed in discrete form through a 
censoring mechanism; 
 
 yi   =  0  if    µ-1  <  yi*  < µ0, 

 =  1  if    µ0   <  yi*   < µ1, 
 =  2  if    µ1   <   yi*  < µ2 
 =  ... 
 =  J  if   µJ-1  <  yi*   < µJ. 
 

Note, for purposes of this introduction, that we have assumed that neither coefficients, β, nor 
thresholds, µj, differ across individuals.  These strong assumptions will be reconsidered and 
relaxed as the analysis proceeds.  The vector xi is a set of K covariates that are assumed to be 
strictly independent of εi; β is a vector of K parameters that is the object of estimation and 
inference.  The n sample observations are labeled i = 1,...,n.   
 The model contains the unknown marginal utilities, β, as well as J+2 threshold 
parameters, µj, all to be estimated using a sample of n observations, indexed by i = 1,...,n.  The 
data consist of the covariates, xi and the observed discrete outcome, yi = 0,1,...,J.  The assumption 
of the properties of the “disturbance,” εi, completes the model specification.  The conventional 
assumptions are that εi is a continuous random disturbance with conventional cumulative 
distribution function (cdf), F(εi|xi) = F(εi) with support equal to the real line, and that the density, 
f(εi) = F ′(εi) is likewise defined over the real line.  The assumption of the distribution of εi 
includes independence from, or exogeneity of, xi. 
 
3.2  Ordered Choice as an Outcome of Utility Maximization 
 
 The appearance of the ordered choice model in the transportation literature falls 
somewhere between a latent regression approach and a more formal discrete choice 
interpretation. Bhat and Pulugurta [1998] discuss a model for ‘ownership propensity,’ 
 
 Ci  =  k if and only if ψk-1 < Ci* < ψk, k = 0,1,...,K, ψ-1 = −∞, ψK = +∞, 
 
where Ci* represents the latent auto ownership propensity of household i.  The observable 
counterpart to Ci* is Ci, typically the number of vehicles owned.1  Agyemand-Duah and Hall 
[1997] apply the model to numbers of trips. Bhat [1997] models the number of non-work 
commute stops with work travel mode choice.]  From here, the model can move in several 
possible directions:  A natural platform for the observed number of vehicles owned might seem to 
be the count data models (e.g., Poisson) detailed in, e.g., Cameron and Trivedi [1998, 2005] or 
even a choice model defined on a choice set of alternatives, 0,1,2,…2

 The Poisson model for Ci would not follow from a model of utility maximization, though 
it would, perhaps, adequately describe the data generating process.  However, a looser 

   

                                                 
1 See, e.g., Hensher, Smith, Milthorpe and Bernard [1992]. 
2 Hensher et al. [1992]. 
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interpretation of the vehicle ownership count as a reflection of the underlying preference intensity 
for ownership suggests an ordered choice model as a plausible alternative platform. Bhat and 
Pulugurta [1998] provide a utility maximization framework that produces an ordered choice 
model for the observed count.  Their model departs from a random utility framework that assigns 
separate utility values to different states, e.g., zero car ownership vs. some car ownership, less 
than or equal to one car owned vs. more than one, and so on (presumably up to the maximum 
observed in the sample).  A suitable set of assumptions about the ranking of utilities produces 
essentially an unordered choice model for the number of vehicles.  A further set of assumptions 
about the parameterization of the model makes it consistent with the latent regression model 
above.1

 One might question the strict ordering of the vehicle count.  For example, the vehicles 
might include different mixtures of cars, SUVs and trucks.  Though a somewhat fuzzy ordering 
might still seem natural, several authors have opted instead, to replace the ordered choice model 
with an unordered choice framework, the multinomial logit model and variants.

  A wide literature in this area includes applications by Kitamura [1987, 1988], Golub and 
van Wissen [1988], Kitamura and Bunch [1989], Golob [1990], Bhat and Koppelmann [1993], 
Bhat [1996], Agyemara-Duan and Hall [1997], Bhat and Pulugurta [1998] and Bhat, Carini and 
Misra [1999].   

2

While many applications appear on first consideration to have some ‘natural’ ordering, 
this is not necessarily the case when one recognizes that the ordering must have some meaning 
also in utility or satisfaction space (i.e., a naturally ordered underlying preference scale) if it 
assumed that the models are essentially driven by the behavioral rule of utility maximization. The 
number of cars owned is a good example: 0,1,2, >2  is a natural ordering in physical vehicle 
space, but it is not necessarily so in utility space. 

  Applications 
include Bhat and Pulugurta [1998], Mannering and Winsten [1985], Train [1986], Bunch and 
Kitamura [1990], Hensher, et al. [1992], Purvis [1994] and Agostino, Bhat and Pas [1996].  Groot 
and van den Brink [2003a] encounter the same issue in their analysis of job training sessions.  A 
count model for sessions seems natural, however the length and depth of sessions differs enough 
to suggest a simple count model will distort the underlying variable of interest, ‘training.’ 

 
3.3  The Observed Discrete Outcome 
 
 A typical social science application might begin from a measured outcome such as: 
 
 “Rate your feelings about the proposed legislation as 

0 Strongly oppose 
1 Mildly oppose 
2 Indifferent 
3 Mildly support 
4 Strongly support. 

 
The latent regression model would describe an underlying continuous, albeit unobservable, 
preference for the legislation as yi*.  The surveyed individual, even if they could, does not 
provide yi*, but rather, a censoring of yi* into five different ranges, one of which is closest to their 
own true preferences.   By the laws of probability, the probabilities associated with the observed 
outcomes are 
 
 Prob[yi = j | xi]  =  Prob[εi <  µj − β′xi]  −  Prob[εi <  µj-1 − β′xi], j = 0,1,...,J. 
                                                 
1 See Bhat and Pulugurta [1998, page 64]. 
2 See, again, Bhat and Pulugurta [1998] who suggest a different utility function for each observed level of 
vehicle ownership. 
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It is worth noting, as do many other discrete choice models, the ‘model’ describes probabilities of 
outcomes.  It does not directly describe the relationship between a yi and the covariates xi; there is 
no obvious regression relationship at work between the observed random variable and the 
covariates.  This calls into question the interpretation of β, an issue to which we will return at 
several points below.  Though yi is not described by a regression relationship with xi – i.e., yi is  
merely a label – one might consider examining the binary variables, 
 
 mij  =  1 if yi = j and 0 if not, 
or 
 Mij  =  1 if yi <  j and 0 if not, 
or 
 Mij'  =  1  if  yi > j and 0 if not. 
 
The second and third of these  as well as mi0 can be described by a simple binary choice (probit or 
logit) model, though these are usually not of interest.  However, in general, there is no obvious 
regression (conditional mean) relationship between the observed dependent variable(s), yi,  and xi. 

Several normalizations are needed to identify the model parameters.  First, in order to 
preserve the positive signs of all of the probabilities, we require µj > µj-1.  Second, if the support is 
to be the entire real line, then µ-1 = −∞ and µJ = +∞.  Since the data contain no unconditional 
information on scaling of the underlying variable – if yi* is scaled by any positive value, then 
scaling the unknown µj and β by the same value preserves the observed outcomes – an 
unconditional, free variance parameter, Var[εi] = σε

2, is not identified (estimable).  It is 
convenient to make the identifying restriction σε = a constant, σ .  The usual approach to this 
normalization is to assume that Var[εi|xi] = 1 in the probit case and π2/3 in the logit model – in 
either case to eliminate the free structural scaling parameter.  Finally, we will assume that xi 
contains a constant term, which, in turns, requires µ0 = 0.  (If, with the other normalizations, and 
with a constant term present, this normalization is not imposed, then adding a constant to µ0 and 
the same constant to the intercept term in β will leave the probability unchanged.)  
 
3.4  Probabilities and the Log Likelihood 
 
 With the full set of normalizations in place, the likelihood function for estimation of the 
model parameters is based on the implied probabilities, 
 
 Prob[yi = j | xi]  =  [F(µj − β′xi)  −  F(µj-1 − β′xi)]  > 0, j = 0,1,...,J. 
 
Figure 3.1 shows the probabilities for an ordered choice model with three outcomes, 
 
 Prob[yi = 0|xi]   =  F(0 − β′xi)  −  F(−∞ − β′xi)  =  F(−β′xi), 
 Prob[yi = 1|xi] =  F (μ1 − β′xi) − F(− β′xi), 
 Prob[yi = 2|xi]   =  F(+∞ − β′xi) − F(μ1 − β′xi)  =  1 − F(μ1 − β′xi). 
 
Estimation of the parameters is a straightforward problem in maximum likelihood estimation. 
(See, e.g., Pratt [1981] and Greene [2007a, 2008a].)  The log likelihood function is 
 
 logL  =  1 0 1log[ (  ) (  )]n J

i j ij j i j im F F= = −′ ′Σ Σ µ − − µ −x xβ β ,  
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where mij = 1 if yi = j and 0 otherwise.  Maximization is done subject to the constraints µ-1 = −∞, 
µ0 = 0 and µJ = +∞.  The remaining constraints, µj-1 < µj can, in principle, be imposed by a 
reparameterization in terms of some underlying structural parameters, such as  
 
 µj  =   µj-1 + exp(αj) 

     =     1 exp( )j
m m=Σ α ,  

 
however, this is typically unnecessary.  See, e.g., Fahrmeier and Tutz [2001].  Expressions for the 
derivatives of the log likelihood can be found in McElvey and Zavoina [1975], Maddala [1983], 
Long [1997], Stata [2008] and Econometric Software [2012].  The estimator of the asymptotic 
covariance matrix for the MLE is computed by familiar methods, using the Hessian, outer 
products of gradients, or in some applications, a ‘robust’ sandwich estimator. 
 

 
Figure 3.1  Underlying Probabilities for an Ordered Choice Model 
 
 The most recent literature (since 2005) includes several applications that use Bayesian 
methods to analyze ordered choices.  Being heavily parametric in nature, they have focused 
exclusively on the ordered probit model.1 Some commentary on Bayesian methods and 
methodology may be found in Koop and Tobias [2006].  Applications to the univariate ordered 
probit model include Kadam and Lenk [2008], Ando [2006], Zhang et al. [2007] and Tomoyuki 
and Akira [2006].  In the most basic cases, with diffuse priors, the “Bayesian” methods merely 
reproduce (with some sampling variability) the maximum likelihood estimator.2

 

 However, the 
MCMC methodology is often useful in settings which extend beyond the basic model, for 
example, applications to a bivariate ordered probit model (Biswas and Das [2002]), a model with 
autocorrelation (Czado et al. [2005] and Girard and Parent [2001]) and a model that contains a set 
of endogenous dummy variables in the latent regression (Munkin and Trivedi [2008].) 

3.5   Application of the Ordered Choice Model to Self Assessed Health 
       Status 
 
 Riphahn, Wambach and Million (RWM, 2003] analyzed individual data on health care 
utilization (doctor visits and hospital visits) using various models for counts.  The data set is an 
unbalanced panel of 7,293 German households observed from 1 to 7 times for a total of 27,326 
observations, extracted from the German Socioeconomic Panel (GSOEP).  (See RWM [2003] and 
Greene [2008a] for discussion of the data set in detail.)  Among the variables in this data set is 
HSAT, a self reported health assessment that is recorded with values 0,1,..,10 (so, J = 10).  
                                                 
1See Congdon [2005] for brief Bayesian treatment of an ordered logit model. 
2 In this connection, see Train [2003] and Wooldridge and Imbens [2009b] for discussion of the Bernstein – 
von Mises result. 
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Figure3.2 shows the distribution of outcomes for the full sample:  The figure reports the variable 
NewHSAT, not the original variable.  Forty of the 27,326 observations on HSAT in the original 
data were coded with noninteger values between 6.5 and 6.95.  We have changed these 40 
observations to 7s.  In order to construct a compact example that is sufficiently general to 
illustrate the technique, we will aggregate the categories shown as follows: (0-2)=0, (3-5)=1, (6-
8)=2, (9)=3, (10)=4. (One might expect collapsing the data in this fashion to sacrifice some 
information and, in turn, produce a less efficient estimator of the model parameters.  See Murad 
et al. [2003] for some analysis of this issue.)  Figure 3.3 shows the result, once again for the full 
sample, stratified by gender.  The families were observed in 1984-1988, 1991 and 1995.  For 
purposes of the application, to maintain as closely as possible the assumptions of the model, at 
this point, we have selected the most frequently observed year, 1988, for which there are a total of 
4,483 observations, 2,313 males and 2,170 females.  We will use the following variables in the 
regression part of the model, 
 
 x  = (constant, Age, Income, Education, Married, Kids). 
 
In the original data set, Income is HHNINC (household income) and Kids is HHKIDS (dummy 
variable for children present in the household).  Married and Kids are binary variables. 
 
 
 

 
Figure 3.2  Self Reported Health Satisfaction  
 
  



Modeling Ordered Choices 

 11  

 
 Figure 3.3  Health Satisfaction with Combined Categories 
 
3.5.1  The Estimated Ordered Probit (Logit) Model 
 
 Table 3.1 presents estimates of the ordered probit and logit models for the 1988 data set.  
The estimates for the probit model imply 
 
     y* = 1.97882 - .01806Age + .03556Educ + .25869Income - .03100Married + .06065Kids + ε. 
           
 y  =  0  if  y*  <  0 
 y  =  1  if  0   <  y*  < 1.14835 
 y  =  2  if  1.14835  <  y*  <  2.54781 
 y  =  3  if  2.54781  <  y*  < 3.05639 
 y  =  4  if  y*  >  3.05639. 
 
Figure 3.4 shows the implied model for a person of average age (43.44 years), education (11.418 
years) and income (0.3487) who is married (1) with children (1).  The figure shows the implied 
probability distribution in the population for individuals with these characteristics.  As we will 
examine in the next section, the force of the regression model is that the probabilities change as 
the characteristics (x) change.  In terms of the figure, changes in the characteristics induce 
changes in the placement of the partitions in the distribution and, in turn, in the probabilities of 
the outcomes. 
 

 
Figure 3.4  Estimated Ordered Probit Model 
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Table 3.1  Estimated Ordered Choice Models: Probit and Logit 
+---------------------------------------------------------------------+ 
|               Frequency        Cumulative  < =    Cumulative  > =   | 
|Outcome      Count    Percent   Count    Percent   Count    Percent  | 
|----------- ------- ---------  ------- ---------  ------- ---------  | 
|HEALTH=00       230    5.1305      230    5.1305     4483  100.0000  | 
|HEALTH=01      1113   24.8271     1343   29.9576     4253   94.8695  | 
|HEALTH=02      2226   49.6542     3569   79.6119     3140   70.0424  | 
|HEALTH=03       500   11.1532     4069   90.7651      914   20.3881  | 
|HEALTH=04       413    9.2349     4483  100.0000      414    9.2349  | 
+--------+--------------+----------------+--------+--------+----------+  
+--------+-------------------------------+------------------------------+---------+  
|        |      Ordered Logit            |     Ordered Probit           |         | 
|        |      LogL  = -5749.157        |     LogL  = -5752.985        |         | 
|        |      LogL0 = -5875.096        |     LogL0 = -5875.096        |         | 
|        |      Chisq =  251.8798        |     Chisq = 244.2238         |         | 
|        |  PseudoRsq =  .0214362        | PseudoRsq =  .0207847        |         | 
+--------+-------------------------------+------------------------------+   Mean  | 
|Variable|  Coef.   S.E.     t       P   |  Coef.   S.E.     t        P |   of X  | 
+--------+-------------------------------+------------------------------+---------+ 
|Constant|  3.5179  .2038   17.260  .0000| 1.9788  .1162   17.034  .0000|  1.0000 | 
|AGE     |  -.0321  .0029  -11.178  .0000| -.0181  .0016  -11.166  .0000| 43.4401 | 
|EDUC    |   .0645  .0125    5.174  .0000|  .0356  .0071    4.986  .0000| 11.4181 | 
|INCOME  |   .4263  .1865    2.286  .0223|  .2587  .1039    2.490  .0128|  .34874 | 
|MARRIED |  -.0645  .0746    -.865  .3868| -.0310  .0420    -.737  .4608|  .75217 | 
|KIDS    |   .1148  .0669    1.717  .0861|  .0606  .0382    1.586  .1127|  .37943 | 
|Mu(1)   |  2.1213  .0371   57.249  .0000| 1.1484  .0212   54.274  .0000|         | 
|Mu(2)   |  4.4346  .0390  113.645  .0000| 2.5478  .0216  117.856  .0000|         | 
|Mu(3)   |  5.3771  .0520  103.421  .0000| 3.0564  .0267  115.500  .0000|         | 
+--------+-------------------------------+------------------------------+---------+ 
 

3.5.2   Interpretation of the Model – Partial Effects and Scaled Coefficients 
 
 Interpretation of the coefficients in the ordered probit model is more complicated than in 
the ordinary regression setting.1

 

  The outcome variable, y, is merely a label for the ordered, non-
quantitative outcomes.  As such, there is no conditional mean function, E[y|x] to analyze.  In 
order to interpret the parameters, one typically refers to the probabilities themselves.  The partial 
effects in the ordered choice model are  

1
Prob( | )( ) ( ) ( )i

j i j i j i
i

y j f f−

∂ = ′ ′ = = µ − − µ − ∂
xx x x

x
δ β β β . 

Neither the sign nor the magnitude of the coefficient is informative about the result above, so the 
direct interpretation of the coefficients is fundamentally ambiguous.  A counterpart result for a 
dummy variable in the model would be obtained by using a difference of probabilities, rather than 
a derivative.2

 

  That is, suppose D is a dummy variable in the model (such as Married) and γ is the 
coefficient on D.  We would measure the effect of a change in D from 0 to 1 with all other 
variables held at the values of interest (perhaps their means) using 

 ∆j(D)  =  1 1( ) ( ) ( ) ( )j i j i j i j iF F F F− −′ ′ ′ ′   µ − + γ − µ − + γ − µ − − µ −   x x x xβ β β β . 
 
The partial effects are shown in Table 3.2.  Partial effects are computed using either the 
derivatives, or first differences for discrete variables; 
 

 1
Prob( | )( ) ( ) ( )i

j i j i j i
i

y j f f−

∂ = ′ ′ = = µ − − µ − ∂
xx x x

x
δ β β β , 

                                                 
1 See, e.g., Daykin and Moffatt [2002]. 
2 See Boes and Winkelmann [2006a] and Greene [2008a, Chapter E22]. 
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Table 3.2  Estimated Partial Effects for Ordered Choice Models 
+--------+--------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Model             | 
| Effects computed at means.  Effects for binary variables are          | 
| computed as differences of probabilities, other variables at means.   | 
+--------+------------------------------+-------------------------------+ 
|                       Probit          |               Logit           | 
|Outcome | Effect  dPy<=nn/dX dPy>=nn/dX|  Effect  dPy<=nn/dX dPy>=nn/dX| 
+--------+------------------------------+-------------------------------+ 
|        |            Continuous Variable AGE                           | 
|Y = 00  |  .00173     .00173    .00000 |  .00145     .00145     .00000 | 
|Y = 01  |  .00450     .00623   -.00173 |  .00521     .00666    -.00145 | 
|Y = 02  | -.00124     .00499   -.00623 | -.00166     .00500    -.00666 | 
|Y = 03  | -.00216     .00283   -.00499 | -.00250     .00250    -.00500 | 
|Y = 04  | -.00283     .00000   -.00283 | -.00250     .00000    -.00250 | 
+--------+------------------------------+-------------------------------+ 
|        |            Continuous Variable EDUC                          | 
|Y = 00  | -.00340    -.00340    .00000 | -.00291    -.00291     .00000 | 
|Y = 01  | -.00885    -.01225    .00340 | -.01046    -.01337     .00291 | 
|Y = 02  |  .00244    -.00982    .01225 |  .00333    -.01004     .01337 | 
|Y = 03  |  .00424    -.00557    .00982 |  .00502    -.00502     .01004 | 
|Y = 04  |  .00557     .00000    .00557 |  .00502     .00000     .00502 | 
+--------+------------------------------+-------------------------------+ 
|        |            Continuous Variable INCOME                        | 
|Y = 00  | -.02476    -.02476    .00000 | -.01922    -.01922     .00000 | 
|Y = 01  | -.06438    -.08914    .02476 | -.06908    -.08830     .01922 | 
|Y = 02  |  .01774    -.07141    .08914 |  .02197    -.06632     .08830 | 
|Y = 03  |  .03085    -.04055    .07141 |  .03315    -.03318     .06632 | 
|Y = 04  |  .04055     .00000    .04055 |  .03318     .00000     .03318 | 
+--------+------------------------------+-------------------------------+ 
|        |            Binary(0/1) Variable MARRIED                      | 
|Y = 00  |  .00293     .00293    .00000 |  .00287     .00287     .00000 | 
|Y = 01  |  .00771     .01064   -.00293 |  .01041     .01327    -.00287 | 
|Y = 02  | -.00202     .00861   -.01064 | -.00313     .01014    -.01327 | 
|Y = 03  | -.00370     .00491   -.00861 | -.00505     .00509    -.01014 | 
|Y = 04  | -.00491     .00000   -.00491 | -.00509     .00000    -.00509 | 
+--------+------------------------------+-------------------------------+ 
|        |            Binary(0/1) Variable KIDS                         | 
|Y = 00  | -.00574    -.00574    .00000 | -.00511    -.00511     .00000 | 
|Y = 01  | -.01508    -.02081    .00574 | -.01852    -.02363     .00511 | 
|Y = 02  |  .00397    -.01684    .02081 |  .00562    -.01801     .02363 | 
|Y = 03  |  .00724    -.00960    .01684 |  .00897    -.00904     .01801 | 
|Y = 04  |  .00960     .00000    .00960 |  .00904     .00000     .00904 | 
+--------+------------------------------+-------------------------------+ 

 
or ∆j(d,xi)  =  1 1( ) ( ) ( ) ( )j i j i j i j iF F F F− −′ ′ ′ ′   µ − + γ − µ − + γ − µ − − µ −   x x x xβ β β β . 
 
Since these are functions of the estimated parameters, they are subject to sampling variability and 
one might desire to obtain appropriate asymptotic covariance matrices and/or confidence 
intervals.  For this purpose, the partial effects are typically computed at the sample means.  The 
delta method is used to obtain the standard errors.  Let V denote the estimated asymptotic 

covariance matrix for the (K+J-2)×1 parameter vector ( )ˆ ˆ, ′′ ′β µ .  Then, the estimator of the 

asymptotic covariance matrix for each vector of partial effects is 
 

 Q  =  Ĉ V Ĉ ′,  where  
ˆ ˆ( ) ( )ˆ

ˆ ˆ
j j

 ∂ ∂
=  

′∂′∂  

x x
C

δ δ

µβ
. 

 
The appropriate row of Ĉ  is replaced with the derivatives of ∆j(d, x ) when the effect is being 
computed for a discrete variable. 
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 The implication of the preceding result is that the effect of a change in one of the 
variables in the model depends on all the model parameters, the data, and which probability (cell) 
is of interest.  It can be negative or positive.  To illustrate, we consider a change in the education 
variable on the implied probabilities in Figure 3.5.  Since the changes in a probability model are 
typically ‘marginal’ (small), we will exaggerate the effect a bit so that it will show up in a figure.  
Consider, then, the average individual shown in the top panel Figure 3.5, except now, with a 
Ph.D. (college plus four years of postgraduate work).  That is, 20 years of education, instead of 
the average 11.4 used earlier.  The effect of an additional 8.6 years of education is shown in the 
lower panel of Figure 3.5.  All five probabilities have changed.  The two at the right end of the 
distribution have increased while the three at the left have decreased.   
 The partial effects give the impacts on the specific probabilities per unit change in the 
stimulus or regressor.  For example, for continuous variable Educ, we find partial effects for the 
ordered probit model for the five cells of -.0034, -.00885, .00244, .00424, .00557, respectively, 
which give the expected change on the probabilities per additional year of education.  For the 
income variable, for the highest cell, the estimated partial effect is .04055. However, some care is 
needed in interpreting this in terms of a unit change. The income variable has a mean of 0.34874 
and a standard deviation of 0.1632.  A full unit change in income would put the average 
individual nearly six standard deviations above the mean.  Thus, for the marginal impact of 
income, one might want to measure a change in standard deviation units. Thus, an assessment of 
the impact of a change in income on the probability of the highest cell probability might be 
0.04055×0.1632 = 0.00662.  Precisely how this computation should be done will vary from one 
application to another. 
 

 
Figure 3.5  Partial Effect in Ordered Probit Model 
 
 Note in Table 3.1 there is a large difference in the coefficients obtained for the probit and 
logit models.  The logit coefficients are roughly 1.8 times as large (not uniformly).  This 
difference, which will always be observed, points up one of the risks in attempting to interpret 
directly the coefficients in the model.  This difference reflects an inherent scaling of the 
underlying variable and in the shape of the distributions.  The difference can be traced back (at 
least in part) to the different underlying variances in the two models. In the probit model, σε = 1; 
in the logit model σε = π/√3 = 1.81.  The models are roughly preserving the ratio β/σε  in the 
estimates.  The difference is greatly diminished in the partial effects reported in Table 3.2.  That 
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is the virtue of the scaling done to compute the partial effects.  The inherent characteristics of the 
model are essentially the same for the two functional forms. 
 
4 Specification Issues and Generalized Models 
 
 It is useful to distinguish between two directions of the contemporary development of the 
ordered choice model, functional form and heterogeneity.  Beginning with Terza [1985], a 
number of authors have focused on the fact that the model does not account adequately for 
individual heterogeneity that is likely to be present in micro- level data. This section will consider 
specification issues.  Heterogeneity is examined in Section 5. 
 
4.1  Accommodating Individual Heterogeneity 
 

For a subjective well being (SWB) application, the right hand side of the behavioral 
equation will include variables such as Income, Education, Marital Status, Children, Working 
Status, Health, and a host of other measurable and unmeasurable, and measured and unmeasured 
variables.  In individual level behavioral models, such as 
 
 SWBit  =  β′xit  +  εit, 
 
 
the relevant question is whether a zero mean, homoscedastic εit, can be expected to satisfactorily 
accommodate the likely amount of heterogeneity in the underlying data, and whether it is 
reasonable to assume that the same thresholds should apply to each individual. 
 Beginning with Terza [1985], analysts have questioned the adequacy of the ordered 
choice model from this perspective.  As shown below, many of the proposed extensions of the 
model, such as heteroscedasticity, parameter heterogeneity, etc., parallel developments in other 
modeling contexts (such as binary choice modeling and modeling counts such as number of 
doctor visits or hospital visits).  The regression based ordered choice model analyzed here does 
have a unique feature, that the thresholds are part of the behavioral specification.  This aspect of 
the specification has been considered as well. 
 
4.2  Threshold Models – A Generalized Ordered Probit Model 
 
 The model analyzed thus far assumes that the thresholds µj are the same for every 
individual in the sample.  Terza [1985], Pudney and Shields [2000], Boes and Winkelmann 
[2006a], Greene, Harris, Hollingsworth and Maitra [2008] and Greene and Hensher [2009], all 
present cases that suggest individual variation in the set of thresholds is a degree of heterogeneity 
that is likely to be present in the data, but is not accommodated in the model.  Terza’s [1985] 
generalization of the model is equivalent to 
 
 µij  =  µj  +  δ′zi.  
 
This is the special case of the ‘generalized’ model used in his application – his fully general case 
allows δ to differ across outcomes.  The model is reformulated later to assume that the zi in the 
equation for the thresholds is the same as the xi in the regression. For the moment, it is convenient 
to isolate the constant term from xi. In Terza’s application, in which there were three outcomes,  
 
 yi*  =    α + β′xi  +  εi, 
and 
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 yi    =   0  if yi*  <  0, 
  1  if  0  <  yi*  <  µ  +  δ′xi, 
  2  if  yi* >  µ +  δ′xi. 
 
There is an ambiguity in the model as specified.  In principle, the model for three outcomes has 
two thresholds, µ0 and µ1.  With a nonzero overall constant, it is always necessary to normalize 
the first, µ0= 0.  Therefore, the model implies the following probabilities: 
 
 Prob(y = 0|x)  =  Φ(-α - β′x)    =  1 - Φ(α0 + β0′x), 
 Prob(y = 1|x)  =  Φ(µ  +  δ′xi - α - β′x) - Φ(-α - β′x)   =  Φ(α0 + β0′x)  - Φ(α1 + β1′x) , 
 Prob(y = 2|x)  =  Φ(α + β′x - µ - δ′x)   =  Φ(α1 + β1′x), 
 
where α0 = α, β0 = β, α1 = α - µ, β1 = (β - δ).  This is precisely Williams’s [2006] “Generalized 
Ordered Probit Model.”  That is, at this juncture, Terza’s heterogeneous thresholds model and the 
“generalized ordered probit” model are indistinguishable.  For direct applications of Terza’s 
approach, see, e.g., Kerkhofs and Lindeboom [1995], Groot and van den Brink [1999] and 
Lindeboom and van Doorslayer [2003]. 
 Terza notes (on p. 6) that the model formulation does not impose an ordering on the 
threshold coefficients.  He suggests an inequality constrained maximization of the log likelihood, 
which is likely to be extremely difficult if there are many variables in x.  As a “less rigorous but 
apparently effective remedy,” he proposes to drop from the model variables in the threshold 
equations that are insignificant in the initial (unconstrained) model. 
 The analysis of this model continues with Pudney and Shields’s [2000] “Generalized 
Ordered Probit Model,” whose motivation, like Terza’s was to accommodate observable 
individual heterogeneity in the threshold parameters as well as in the mean of the regression.  
(Pudney and Shields studied an example in the context of job promotion in which the steps on the 
promotion ladder for nurses are somewhat individual specific.   In their setting, in contrast to 
Terza’s, at least some of the variables in the threshold equations are explicitly different from 
those in the regression.  Their model is parameterized as 
 
 Pr(yi = g|xi,qi,ti)  =  Φ[qi ′βg  -  xi(α + δg)] -  Φ[qi ′βg-1  -  xi(α + δg-1)]. 
 
The resulting equation is now a hybrid with outcome varying parameters in both thresholds and in 
the regression.  The test of threshold constancy is then carried out simply by testing (using an LM 
test) the null hypothesis that δg = 0 for all g.  (A normalization, δ0 = δm = 0,  is imposed at the 
outset.) 
 Two features of Pudney and Shields’ model to be noted are: First, the probabilities in 
their revised log likelihood [their equation (8)], are not constrained to be positive.  Second, the 
thresholds, qiβg, are not constrained to be ordered.  No restriction on βg will ensure that qi ′βg > qi 

′βg-1 for all data vectors qi.    
 The equivalence of the Terza and Williams models is only a mathematical means to the 
end of estimation of the model. The Pudney and Shields model, itself, has constant parameters in 
the regression model and outcome varying parameters in the thresholds, and clearly stands on the 
platform of the latent regression.  They do note, however, (using a more generic notation) a 
deeper problem of identification).  However it is originally formulated, the model implies that  
 
 Prob[yi <  j | xi,zi]  =  F(µj + δ′zi - β′xi) = F[µj - (δ*′zi + β′xi)], δ* = -δ. 
 
In their specification, they had a well defined distinction between the variables, zi that should 
appear only in the thresholds and xi that should appear in the regression.  More generally, it is less 
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than obvious whether the variables zi are actually in the threshold or in the mean of the 
regression. Either interpretation is consistent with the estimable model.   Pudney and Shields 
argue that the distinction is of no substantive consequence for their analysis.  The consequence is 
at the theoretical end, not in the implementation.  But, this entire development is necessitated by 
the linear specification of the thresholds.  Absent that, most of the preceding construction is of 
limited relevance.  
 
4.3  Random Parameters Models 
 

Formal modeling of heterogeneity in the parameters as representing a feature of the 
underlying data, appears in Greene [2002] (version 8.0), Bhat [1999], Bhat and Zhao [2002] and 
Boes and Winkelmann [2006]. These treatments suggest a full random parameters (RP) approach 
to the model. 
 Boes and Winkelmann’s [2006] treatment appears as follows: 
 
 βi  =  β  +  ui, 
 
where ui ~ N[0,Ω].  Inserting the expression for βi in the latent regression model, we obtain 
 
 yi*   =  βi′xi  +  εi 

  =  β′xi  +  εi  +  xi′ui. 
 
They propose treating this as a heteroscedastic model – Var[εi  +  xi′ui]  =  1 + xi′Ωxi – and 
maximizing the log likelihood directly over β, µ and Ω.  The observation mechanism is the same 
as earlier.  Greene [2002, 2007a, 2008a,b] analyzes the same model, but estimates the parameters 
by maximum simulated likelihood.  First, write the random parameters as  
 
 βi  =  β  + ∆zi  + LDwi,        (8.2) 
 
where wi has a multivariate standard normal distribution, and LD2L′  =  Ω.  The Cholesky matrix, 
L, is lower triangular with ones on the diagonal.  The below diagonal elements of L, λmn, produce 
the nonzero correlations across parameters.  The diagonal matrix, D, provides the scale factors, 
δm, i.e., the standard deviations of the random parameters. The end result is that L(Dwi) is a 
mixture, Lwi* of random variables, wim* which have variances δm

2.  This is a two level 
‘hierarchical’ model (in the more widely used sense).  The probability for an observation is 
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In order to maximize the log likelihood, we must first integrate out the elements of the 
unobserved wi.  Thus, the contribution to the unconditional log likelihood for observation i is 
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The log likelihood for the sample is then the sum over the observations.  Computing the integrals 
is an obstacle that must now be overcome.  It has been simplified considerably already by 
decomposing Ω explicitly in the log likelihood, so that F(wi) is the multivariate standard normal 
density.  The Stata routine, GLAMM [Rabe-Hesketh, Skrondal and Pickles [2005]) that is used for 
some discrete choice models does the computation using a form of Hermite quadrature. An 
alternative, generally substantially faster method of maximizing the log likelihood is maximum 
simulated likelihood.  The integration is replaced with a simulation over R draws from the 
multivariate standard normal population.  The simulated log likelihood is 
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The simulations are speeded up considerably by using Halton draws.1

 

  Partial effects and 
predicted probabilities must be simulated as well.  For the partial effects, 
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we use simulation to compute 
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A similar analysis provides an extension of the latent class model to ordered choice models.  The 
latent class ordered choice model is developed in detail in Greene and Hensher [2010]. 
 
 
5 Ordered Choice Modeling with Panel Data 
 
Development of models for panel data parallels that in other modeling settings.  The departure 
point is the familiar fixed and random effects approaches.  We then consider other types of 
applications including extensions of the random parameters and latent classes formulations,  
dynamic models and some special treatments that accommodate features peculiar to the ordered 
choice models. 
 
5.1  Ordered Choice Models with Fixed Effects 

                                                 
1 See Halton [1970] for the general principle, and Bhat [2001, 2003] and Train [2003] for applications in 
the estimation of ‘mixed logit models’) rather than random draws.  Further details on this method of 
estimation are also given in Greene [2007, 2008a]. 
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 An ordered choice model with fixed effects formulated in the most familiar fashion 
would be 
 
 Prob[yit = j | xi]  =  F(µj – αi – β′xit)  -  F(µj-1 – αi –  β′xit)  > 0, j = 0,1,...,J.  
 
At the outset, there are two problems that this model shares with other nonlinear fixed effects 
models.  First, regardless of how estimation and analysis are approached, time invariant variables 
are precluded.  Since social science applications typically include demographic variables such as 
gender and, for some at least, education level, that are time invariant, this is likely to be a 
significant obstacle. (Several of the variables in the GSOEP analyzed by Boes and Winkelmann 
[2006b] and others are time invariant.)  Second, there is no sufficient statistic available to 
condition the fixed effects out of the model.  That would imply that in order to estimate the model 
as stated, one must maximize the full log likelihood, 
 
 ( ) ( )( ){ }11 01

log log iTN J
ijt j i it j i ii jt

L m −= ==
 ′ ′= Φ µ −α −Φ µ −α ∑ ∑∏ x x− β − β . 

 
If the sample is small enough, one may simply insert the individual group dummy variables and 
treat the entire pooled sample as a cross section.  See, e.g., Mora [2006] for a cross-country 
application in banking that includes separate country dummy variables.  We are interested, 
instead, in the longitudinal data case in which this would not be feasible. The data set from which 
our sample used in the preceding examples is extracted comes from an unbalanced panel of 7,293 
households, observed from 1 to 7 times each.  The full ordered probit model with fixed effects, 
including the individual specific constants, can be estimated by unconditional maximum 
likelihood using the results in Greene [2004a,b and 2008a, Section 16.9.6.c]. The likelihood 
function is globally concave, so despite its superficial complexity, the estimation is 
straightforward.1

 The larger methodological problem with this approach would be at least the potential for 
the incidental parameters problem that has been widely documented for the binary choice case.  
[See, e.g., Lancaster [2000).]  That is the small T bias in the estimated parameters when the full 
MLE is applied in panel data.  For T = 2 in the binary logit model, it has been shown analytically 
[Abrevaya [1997]) that the full MLE converges to 2β. [See, as well, Hsiao [1986, 2003].)  No 
corresponding results have been obtained for larger T or for other models. In particular, no 
theoretical counterpart to the Hsiao [1986, 2003) and Abrevaya [1997] result on the small T bias 
(incidental parameters problem) of the MLE in the presence of fixed effects has been derived for 
the ordered probit model, even for T equal to 2. However, Monte Carlo results have strongly 
suggested that the small sample bias persists for larger T as well, though as might be expected, it 
diminishes with increasing T.  The Monte Carlo results in Greene [2004b] suggest that biases 
comparable to those in the binary choice models persist in the ordered probit model as well. The 
values given correspond to estimation of coefficients on a continuous variable (β) and a binary 
variable (δ) in the equation 

 

 Recent proposals for “bias reduction” estimators for binary choice models, including 
Fernandez-Val and Vella [2007], Fernandez-Val [2008], Carro [2007], Hahn and Newey [2004] 
and Hahn and Kuersteiner [2003] suggest some directions for further research.  However, no 
counterparts for the ordered choice models have yet been developed.  We would note, for this 
model, the estimation of β which is the focus of these estimators, is only a means to the end.  As 
seen earlier, in order to make meaningful statements about the implications of the model for 

                                                 
1 See Pratt [1981] and Burridge [1981]. 
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behavior, it will be necessary to compute probabilities and derivatives. These, in turn, will require 
estimation of the constants, or some surrogates.  The problem remains to be solved. 
 
5.2  Ordered Choice Models with Random Effects 
 
 Save for an ambiguity about the mixture of distributions in an ordered logit model, a 
random effects version of the ordered choice model is a straightforward extension of the binary 
choice case developed by Butler and Moffitt [1982].  An interesting application which appears to 
replicate, but not connect to Butler and Moffitt is Jansen [1990].  Jansen estimates the equivalent 
of the Butler and Moffitt model with an ordered probit model, using an iterated MLE with 
quadrature used between iterations.   
 The structure of the random effects ordered choice model is 
 
 yit*  =  β′xit  +  ui  +  εit, 
 yit    =  j  if  µj-1  <  yit*  <  µit, 
 εit    ~  f (.) with mean zero and constant variance 1 or π2/3  (probit or logit), 
 ui    ~  g (.) with mean zero and constant variance, σ2, independent of εit for all t. 
 
If we maintain the ordered probit form and assume as well that ui is normally distributed, then, at 
least superficially, we can see the implications for the estimator of ignoring the heterogeneity.  
Using the usual approach,  
 
 Prob(yit  =  j|xit)  =  Prob(β′xit  +  ui  +  εit < µj)  -  Prob(β′xit  +  ui  +  εit < µj-1) 
 

    =  1

2 2 2 21 1 1 1
j jit it−µ µ   ′ ′

Φ − −Φ −   
+ σ + σ + σ + σ   

x xβ β
 

 
    =  Φ(τj - γ′xit) - Φ(τj-1 - γ′xit). 
 
Unconditionally, then, the result is an ordered probit in the scaled threshold values and scaled 
coefficients.  Evidently, this is what is estimated if the data are pooled and the heterogeneity is 
ignored.1

 

    Wooldridge and Imbens [2009c] argue that since the partial effects are [φ(τj-1 - γ′xit) - 
φ(τj - γ′xit)]γ, the scaled version of the parameter is actually the object of estimation in any event. 

5.3  Spatial Autocorrelation 
 
 The treatment of spatially correlated discrete data presents several major complications.   
LeSage [1999, 2004] presents some of the methodological issues. A variety of received 
applications for binary choice include the geographic pattern of state lotteries (Coughlin, Garrett 
and Hernandez-Murillo [2004]), Children’s Health Insurance Programs (CHIPS) (Franzese and 
Hays [2007]) and HYV rice adoption (Holloway, Shankar and Rahman [2002]).  The extension to 
ordered choice models has begun to emerge as well, with applications including ozone 
concentration and land development (Wang and Kockelman [2008, 2009]) and trip generation 
(Roorda, Páez, Morency, Mercado, and Farber [2009]). 
 
  
                                                 
1 See Wooldridge [2002].  Note that a “robust” covariance matrix estimator does not redeem the estimator. 
It is still inconsistent. 
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6 Two Part and Sample Selection Models 
 
 Two part models describe situations in which the ordered choice is part of a two stage 
decision process.  In a typical situation, an individual decides whether or not to participate in an 
activity then, if so, decides how much.  The first decision is a binary choice.  The intensity 
outcome can be of several types – what interests us here is an ordered choice. In the example 
below, an individual decides whether or not to be a smoker. The intensity outcome is how much 
they smoke.  The sample selection model is one in which the participation “decision” relates to 
whether the data on the outcome variable will be observed, rather than whether the activity is 
undertaken.  This chapter will describe several types of two part and sample selection models 
  
6.1  Inflation Models 
 
 Harris and Zhao [2007] analyzed a sample of 28,813 Australian individuals’ responses to 
the question “How often do you now smoke cigarettes, pipes or other tobacco products?”  [Data 
are from the Australian National Drug Strategy Household Survey, NDSHS [2001].)  Responses 
were “zero, low, moderate, high,” coded 0,1,2,3.  The sample frequencies of the four responses 
were 0.75, 0.04, 0.14 and 0.07.  The spike at zero shows a considerable excess of zeros compared 
to what might be expected in an ordered choice model.  The authors reason that there are 
numerous explanations for a zero response: “genuine nonsmokers, recent quitters, infrequent 
smokers who are not currently smoking and potential smokers who might smoke when, say, the 
price falls.”  It is also possible that the zero response includes some individuals who prefer to 
identify themselves as nonsmokers.  The question is ambiguously worded, but arguably, the 
group of interest is the genuine nonsmokers.  This suggests a type of latent class arrangement in 
the population.  There are (arguably) two types of zeros, the one of interest, and another type 
generated by the appearance of the respondent in the latent class of people who respond zero 
when another response would actually be appropriate.  The end result is an inflation of the 
proportion of zero responses in the data.  A “Zero Inflation” model is proposed to accommodate 
this failure of the base case model.  In a recent application, Greene, Harris and Hollingsworth 
[2012]  have extended an ordered probit model of self assessed health (on a zero to four scale) to 
accommodate “2s and 3s inflation.” 
 
 
6.2  Sample Selection Models 
 
 The familiar sample selection model was extended to binary choice models by Wynand 
and van Praag [1981] and Boyes, Hoffman and Low [1989].  A variety of extensions have also 
been developed for ordered choice models, both as sample selection (regime) equations and as 
models for outcomes subject, themselves, to sample selectivity.  We consider these two cases and 
some related extensions. 
 The models of sample selectivity in this area are built as extensions of Heckman’s [1979] 
canonical model.  Estimation of the regression equation by least squares while ignoring the 
selection issue produces biased and inconsistent estimators of all the model parameters.  
Estimation of this model by two step methods is documented in a voluminous literature, including 
Heckman [1979] and Greene [2008a].  The two step method involves estimating α first in the 
participation equation using an ordinary probit model, then computing an estimate of λi, 

( ) ( )ˆ ˆ ˆ/i i i′ ′λ = φ Φx xβ β , for each individual in the selected sample.  At the second step, an estimate 

of (β,θ) is obtained by linear regression of yi on xi and ˆ
iλ .  Necessary corrections to the estimated 
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standard errors are described in Heckman [1979], Greene [1981,2008b], and, in general terms, in 
Murphy and Topel [2002].   
 Consider a model of educational attainment or performance in a training or vocational 
education program (e.g., low, median, high), with selection into the program as an observation 
mechanism.  [Boes [2007] examines a related case, that of a treatment, D that acts as an 
endogenous dummy variable in the ordered outcome model.]  In an ordered choice setting, the 
“second step” model is nonlinear.  The received literature contains many applications in which 
authors have “corrected for selectivity” by following the logic of the Heckman two step 
estimator, that is, by constructing λi = φ(α′wi)/Φ(α′wi) from an estimate of the probit selection 
equation and adding it to the outcome equation.1

 Essentially this model is applied in Popuri and Bhat [2003] to a sample of individuals 
who chose to telecommute (z = 1) or not (z = 0) then, for those who do telecommute, the number 
of days that they do. We note two aspects of this application that do depart subtly the sample 
selection application: (1) the application would more naturally fall into the category of a hurdle 
model composed of a participation equation and an activity equation given the decision to 
participate – in the latter, it is known that the activity level is positive.

  However, this is only appropriate in the linear 
model with normally distributed disturbances.  An explicit expression, which does not involve an 
inverse Mills ratio, for the case in which the unconditional regression is E[y|x,ε] = exp(β′x + ε) is 
given in Terza [1998].  A template for nonlinear single index function models subject to 
selectivity is developed in Terza [1998] and Greene [2006, 2008a, Sec. 24.5.7].  Applications 
specifically to the Poisson regression appear in several places, including Greene [1995, 2005].  
The general case typically involves estimation either using simulation or quadrature to eliminate 
an integral involving u in the conditional density for y.  Cases in which both variables are 
discrete, however, are somewhat simpler.  A near parallel to the model above is the bivariate 
probit model with selection developed by Boyes, Hoffman and Low [1989] in which the outcome 
equation above would be replaced with a second probit model.  [Wynand and van Praag [1981] 
proposed the bivariate probit/selection model, but used the two step approach rather than 
maximum likelihood.]  The log likelihood function for the bivariate probit model is given in 
Boyes et al. [1989] and Greene [2008a, p. 896].  A straightforward extension of the result 
provides the log likelihood for the ordered probit case.  

2  Thus, unlike the familiar 
choice case, the zero outcome is not possible here.  (2) The application would fit more 
appropriately into the sample selection or hurdle model frameworks for count data such as the 
Poisson model.3

 

  Bricka and Bhat [2006] is a similar application applied to a  sample of 
individuals who did (z=1) or did not (z = 0) underreport the number of trips in a travel based 
survey.  The activity equation is the number of trips underreported for those who did.  This study, 
like its predecessor could be framed in a hurdle model for counts, rather than an ordered choice 
model.   

7  Conclusions 
 
The preceding has developed the standard model for ordered choices as typically analyzed in 
social science applications (e.g., Johnson and Albert[199]).  (There is a parallel, but markedly 
different stream of  literature in biometrics discussed in some detail in Greene and Hensher 
[2010] and references noted.)  Several model extensions, such as outcomes inflation, and 
specification issues such as modeling heterogeneity are noted as well.   These are developed in 
greater detail in recent surveys such as Boes and Winkelmann [2006a], Greene and Hensher 

                                                 
1 See, e.g., Greene [1994].  Several other examples are provided in Greene [2008b]. 
2 See Cragg [1971] and Mullahy [1986]. 
3 See, again, Mullahy [1986], Terza [1994], Greene [1995] and Greene [2007a]. 
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[2010] and Daykin and Moffatt [2002].  Ongoing development, such as nonparametric and 
Bayesian approaches are noted with some pointers to recent literature is suggested in Greene and 
Hensher [2010]. 
 
References 
 
Abrevaya, J., 1997. “The Equivalence of Two Estimators of the Fixed Effects Logit Model,” Economics 

Letters, 55, pp. 41-43.  
Agostino, A., C. Bhat and E. Pas,  1996.  “A Random Effects Multinomial Probit Model of Car Ownership 

Choice,” Proceedings of the Third Workshop on Bayesian Statistics in Science and Technology, 
Cambridge University Press. 

Agresti, A., 2002. Categorical Data Analysis 2nd Ed., New York, John Wiley and Sons. 
Aguemang-Duah, K. and F. Hall,  1997.  “Spatial Transferability of an Ordered Response Model of Trip 

Generation,” Transport Research – Series A, 31, 5, 389-402. 
Aitcheson, J. and S. and Silvey, 1957. “The Generalization of Probit Analysis to the Case of Multiple 

Responses,” Biometrika, 44, pp. 131-140. 
Ando, T., 2006. “Bayesian credit rating analysis based on ordered probit regression model with functional 

predictor,” Proceeding of The Third IASTED International Conference on Financial Engineering 
and Applications, 69-76. 

Basu, D. and R. de Jong, 2006.  “Dynamic Multinomial Ordered Choice With An Application to the 
Estimation of Monetary Policy Rules,” Department of Economics, Ohio State University, 
Manuscript. 

Bhat, C., 1996. “A Generalized Multiple Durations Proportional Hazard Model with an Application to 
Activity Behavior During the Work-to-Home Commute,” Transportation Research Part B, 30, 
465-480. 

Bhat, C., 1997. “Work Travel Mode Choice and Number of Nonwork Commute Stops,” Transportation 
Research Part B, 31(1), 41-54. 

Bhat, C., 1999. “An Analysis of Evening Commute Stop-Making Behavior Using Repeated Choice 
Observations from a Multi-Day Survey,” Transportation Research Part B, 33(7), 495-510. 

Bhat, C., 2001. “Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed Multinomial 
Logit Model,” Transportation Research Part B, 35(7), 677-693. 

Bhat, C., 2003.  “Simulation Estimation of Mixed Discrete Choice Models Using Randomized and 
Scrambled Halton Sequences,” Transportation Research Part B, 37(9), 837-855.  

Bhat, C., J. Carini and R. Misra, 1999. “Modeling the Generation and Organization of Household Activity 
Stops. Transportation Research Record, 1676, 153-161. 

Bhat, C. and F. Koppelman, 1993. An Endogenous Switching Simultaneous Equation System of 
Employment, Income and Car Ownership, Transportation Research A, 27, 447-459. 

Bhat, C. and V. Pulugurta, 1998.  “A Comparison of Two Alternative Behavioral Mechanisms for Car 
Ownership Decisions,” Transportation Research Part B, 32(1), 61-75. 

Bhat, C. and H. Zhao, 2002. “The Spatial Analysis of Activity Stop Generation,” Transportation Research 
Part B, 36(6), 557-575. 

Biswas and Das, 2002. “A Bayesian Analysis of Bivariate Ordinal Data: Wisconsin Epidemiologic Study 
of Diabetic Retinopathy Revisited, Statistics in Medicine, 21, 4, pp. 549-559. 

Boes, S., 2007. “Nonparametric Analysis of Treatment Effects in Ordered Response Models,” University of 
Zurich, Socioeconomic Institute, Working Paper 0709. 

Boes, S. and R. Winkelmann, 2004. “Income and Happiness: New Results from Generalized Threshold and 
Sequential Models,” IZA Discussion Paper No. 1175, SOI Working Paper 0407, IZA 

Boes, S. and R. Winkelmann, 2006a. “Ordered Response Models,” Allgemeines Statistisches Archiv, 90, 1, 
pp. 165-180. 

Boes, S. and R. Winkelmann, 2006b.  “The Effect of Income on Positive and Negative Subjective Well-
Being,” University of Zurich, Socioeconomic Institute, Manuscript, IZA Discussion Paper 
Number 1175. 

Boyes, W., D. Hoffman and S. Low, 1989. “An Econometric Analysis of the Bank Credit Scoring 
Problem,” Journal of Econometrics, 40, pp. 3-14. 



Modeling Ordered Choices 

 24  

Brant, R., 1990.  “Assessing Proportionality in the Proportional Odds Model for Ordered Logistic 
Regression,” Biometrics, 46, pp. 1171-1178. 

Brewer, C., C. Kovner, W. Greene, Y. Cheng, 2008. “Predictors of RNs' Intent to Work and Work 
Decisions One Year Later in a U.S. National Sample,” The International Journal of Nursing 

Bricka, S., and C. Bhat, 2006. “A Comparative Analysis of GPS-Based and Travel Survey-based  Data,”. 
Transportation Research Record, 1972, 9-20.  

Bunch, D. and R. Kitamura ,1990.  Multinomial Probit Estimation Revisited: Testing Estimable Model 
Specifications, Maximum Likelihood Algorithms and Probit Integral Approximations for Car 
Ownership, Institute for Transportation Studies Technical Report, University of California, Davis. 

Burridge, J., 1981.  “A Note On Maximum Likelihood Estimation of Regression Models Using Grouped 
Data,” Journal of the Royal Statistical Society, Series B, 43, pp. 41-45. 

Butler, J., T. Finegan and J. Siegfried, 1994.  “Does More Calculus Improve Student Learning in 
Intermediate Micro and Macro Economic Theory?” American Economic Review, 84, 2, pp. 206-
210. 

Butler, J. and P. Chatterjee, 1997. “Tests of the Specification of Univariate and Bivariate Ordered Probit,” 
Review of Economics and Statistics, 79, pp. 343-347.    

Butler, J. and R. Moffitt, 1982.  “A Computationally Efficient Quadrature Procedure for the One Factor 
Multinomial Probit Model,” Econometrica, 50, pp. 761-764. 

Cameron, S. and J. Heckman, 1998. “Life Cycle Schooling and Dynamic Selection Bias: Models and 
Evidence for Five Cohorts of American Males,” Journal of Political Economy, 106, pp. 262–333. 

Carneiro, P., K. Hansen and J. Heckman, 2001. “Removing the Veil of Ignorance in Assessing the 
Distributional Impacts of Social Policies,” Swedish Economic Policy Review, 8, pp. 273-301. 

Carneiro, P., K. Hansen and J. Heckman, 2003. “Estimating Distributions of Treatment Effects with an 
Application to Schooling and Measurement of the Effects of Uncertainty on College Choice,” 
International Economic Review, 44, pp. 361-422. 

Carro,  J., 2007.  “Estimating Dynamic Panel Data Discrete Choice Models with Fixed Effects,” Journal of 
Econometrics, 140, pp. 503-528. 

Cheung, S., 1996.  “Provincial Credit Rating in Canada: An Ordered Probit Analysis,”  Bank of Canada, 
Working Paper 96-6.  (http://www.bankofcanada.ca/en/res/wp/1996/wp96-6.pdf) 

Clark, A.,  Y. Georgellis and P. Sanfey, 2001. “Scarring: The Psychological Impact of Past 
Unemployment,” Economica, 68, pp. 221-241. et al. 2001 

Congden, P., 2005. Bayesian Models for Categorical Data, John Wiley and Sons, New York. 
Coughlin, C., T. Garrett and R. Hernandez-Murillo, 2004. “Spatial Probit and the Geographic Patterns of 

State Lotteries,” Federal Reserve Bank of St. Louis, Working Paper 2003-042b. 
Cragg, J., 1971. Some Statistical Models for Limited Dependent Variables with Application to the Demand 

for Durable Goods, Econometrica, 39, 829-844. 
Cunha, F., J. Heckman and S. Navarro, 2007. “The Identification & Economic Content of Ordered Choice 

Models with Stochastic Thresholds,” University College Dublin, Gery Institute, Discussion Paper 
WP/26/2007. 

Daykin, A. and P. Moffatt , 2002.  “Analyzing Ordered Responses: A Review of the Ordered Probit 
Model,” Understanding Statistics, I, 3, pp. 157-166. 

Eluru, N., C. Bhat and D. Hensher, 2008.  “A Mixed Generalized Ordered Response Model for Examining 
Pedestrian and Bicyclist Injury Severity Levels in Traffic Crashes,” Accident Analysis and 
Prevention, 40, 3, pp. 1033-1054.. 

Econometric Software, 2007. NLOGIT: Version 4.0, Plainview, New York. 
Fernández-Val, I. and F. Vella, 2007. "Bias Corrections for Two-Step Fixed Effects Panel Data 

Estimators," IZA Working Papers Number 2690. 
Franzese, R. and J. Hays, 2007. “The Spatial Probit Model of Interdependent Binary Outcomes: Estimation, 

Interpretation and Presentation,” polmeth.wustl.edu/retrieve.php?id=715, last visited 4.7/09. 
Fu, A., M, Gordon, G. Liu  B. Dale and R. Christensen, 2004. “Inappropriate Medication Use and Health 

Outcomes in the Elderly” Journal of the American Geriatrics Society, 52, 11, pp. 1934–1939.  
Genberg, H. and S. Gerlach, 2004.  “Estimating Central Bank Reaction Functions with Ordered Probit: A 

Note” Graduate Institute of International Studies, Geneva, Manuscript. 
Girard, P. and E. Parent, 2001.  “Bayesian Analysis of Autocorrelated Ordered Categorical Data for 

Industrial Quality Monitoring,” Technometrics, 43, 2, pp. 180-191. 



Modeling Ordered Choices 

 25  

Golob, T. and L. van Wissen, 1998. A Joint Household Travel Distance Generation and Car Ownership 
Model, Working Paper WP-88-15, Institute of Transportation Studies, University of California, 
Irvine. 

Golob, T., 1990. The Dynamics of Household Travel time Expenditures and Car Ownership Decisions, 
Transportation Research A, 24, 443-465. 

Greene. W., 1981.  “Sample Selection Bias As a Specification Error: Comment,” Econometrica, 49, pp. 
795-798. 

Greene, W., 1994. “Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial 
Regression Models,” Working Paper 94-10, Department of Economics, Stern School of Business, 
New York University. 

Greene, W., 1995. "Sample Selection in the Poisson Regression Model,"  Department of Economics,  Stern 
School of Business,  New York University, Working paper #95-06, 1995. 

Greene, W., 2002. LIMDEP Version 8.0, Reference Guide, Plainview, NY, Econometric Software. 
Greene, W., 2004a. “Fixed Effects and Bias Due To The Incidental Parameters Problem in the Tobit 

Model,” Econometric Reviews, 23, 2, pp. 125-147.  
Greene, W., 2004b. "The Behavior of the Fixed Effects Estimator in Nonlinear Models," The Econometrics 

Journal , 7, 1, pp. 98-119. 
Greene, W.,  2005.  “Functional form and Heterogeneity in Models for Count Data,” Foundations and Trends 

in Econometrics, 1, 2, pp. 113-218. 
Greene, W., 2007.  LIMDEP Version 9.0: Reference Guide, Plainview, New York, Econometric Software, 

Inc. 
Greene, W., 2008a.  Econometric Analysis, 6th Edition, Englewood Cliffs, Prentice Hall. 
Greene, W., 2008b. “A Stochastic Frontier Model with Correction for Selection,“ Department of 

Economics, Stern School of Business, New York University, Working Paper EC-08-09. 
Greene, W., M. Harris, B. Hollingsworth, P. Maitra,  2008.  “A Bivariate Latent Class Correlated 

Generalized Ordered Probit Model with an Application to Modeling Observed Obesity Levels,” 
Department of Economics, Stern School of Business, New York University, Working Paper 08-
18. 

Greene, W. and D. Hensher, 2009. “Ordered Choices and Heterogeneity in Attribute Processing,” Journal 
of Transport Economics and Policy, forthcoming.. 

Greene, W., M. Harris, B. Hollingsworth and T. Weterings, 2012. “Heterogeneity in Ordered Choice  
 Models: A Review with Applications to Self-Assessed Health,” forthcoming, Journal of Economic 

 Surveys.  
Groot, W. and H. van den Brink, 2002. “Sympathy and the Value of Health,” Social Indicators Research, 

61, 1, pp. 97-120. 
Groot, W. and H. van den Brink, 2003. “Match Specific Gains to Marriage: A Random Effects Ordered 

Response Model,” Quality and Quantity, 37, pp. 317-325. 
Hahn, J. and W. Newey, 2004. “Jackknife and Analytical Bias Reduction for Nonlinear Panel Models,” 

Econometrica, 72, 4, pp. 1295-1319. 
Halton, J.H., 1970. A Retrospective and Prospective Survey of the Monte Carlo Method. SIAMReview, 12, 

1-63. 
Han, A. and J.A. Hausman, 1990. Flexible Parametric Estimation of Duration and Competing Risk Models, 

Journal of Applied Econometrics, 5, 1-28. 
Hahn, J. and G. Kuersteiner, 2003. “Bias Reduction for Dynamic Nonlinear Panel Data Models with Fixed 

Effects,” Department of Economics, UCLA, Manuscript. 
Harris, M. and X. Zhao, 2007.  “Modeling Tobacco Consumption with a Zero Inflated Ordered Probit 

Model,” Journal of Econometrics, 141, pp. 1073-1099. 
Heckman, J., 1979.  “Sample Selection Bias as a Specification Error,” Econometrica, 47, pp. 153-161.  
Hensher, D. and Jones, S., 2007. Predicting Corporate Failure: Optimizing the Performance of the Mixed 

Logit Model, ABACUS, 43, 3, pp. 241-264. 
Hensher, D., N. Smith, N. Milthorpe and P. Barnard, 1992. “Dimensions of Automobile Demand: A 

longitudinal Study of Household Automobile Ownership and Use,” in Studies in Regional Science 
and Urban Economics, Elsevier Science Publishers, Amsterdam. 

Holloway, G., Shankar, B. and Rahman, S., 2002.  Bayesian Spatial Probit Estimation: A Primer and an 
Application to HYV Rice Adoption,” Agricultural Economics, 27, pp. 383-402. 

Hsiao, C., 1986.  Analysis of Panel Data, Cambridge, Cambridge University Press. 



Modeling Ordered Choices 

 26  

Hsiao, C., 2003.  Analysis of Panel Data, 2nd. Ed., Cambridge, Cambridge University Press. 
Jansen, J., 1990. “On the Statistical Analysis of Ordinal Data when Extravariation is Present,” Applied 

Statistics, 39, pp. 75-84. 
Johnson, V. and J. Albert, 1999, Ordinal Data Modeling, New York, Springer-Verlag. 
Jones, S. and D. Hensher, 2004.  “Predicting Firm Financial Distress: A Mixed Logit Model,” The 

Accounting Review (American Accounting Association), 79, pp. 1011-1038. 
Kadam, A and P. Lenk, 2008. "Bayesian Inference for Issuer Heterogeneity in Credit Ratings Migration" . 

Journal of Banking and Finance. (SSRN:ssrn.com/abstract=1084006) 
Kapteyn, A., J. Smith and A. van Soest, 2007. “Vignettes and Self-Reports of Work Disability in the 

United States and the Netherlands,” American Economic Review, 97, 1, pp. 461-473. 
Kasteridis, P., M Munkin, and S. Yen., 2008. "A Binary-Ordered Probit Model of Cigarette Demand." 

Applied Economics, 41. 
Kitamura, R., 1987.  A Panel Analysis of Household Car Ownership and Mobility, Infrastructure Planning 

and Management, Proceedings of the Japan Society of Civil Engineers, 383/IV-7, pp. 13-27. 
Kitamura, R., 1988.  “A Dynamic Model System of Household Car Ownership, Trip Generation and Modal 

Split, Model Development and Simulation Experiments,” In Proceedings of the 14th Australian 
Road Research Board Conference, Part 3, Australian Road Research Board, Vermint South, 
Victoria, Australia, pp. 96-111. 

Kitamura,R. and D. Bunch, 1989. “Heterogeneity and State Dependence in Household Car Ownership: A 
Panel Analysis Using Ordered-Response Probit Models with Error Components.” Research 
Report, UCD-TRG-RR-89-6, Transportation Research Group, University of California at Davis. 

Koop, G. and J. Tobias, 2006.  “Semiparametric Bayesian Inference in Smooth Coefficient Models,” 
Journal of Econometrics, 134, 1, pp. 283-315. 

Lambert, D., 1992. “Zero-inflated Poisson Regression With An Application To Defects In Manufacturing,” 
Technometrics, 34, 1, pp. 1-14. 

Lancaster, T., 2000.  “The Incidental Parameters Problem Since 1948,” Journal of Econometrics, 95, pp. 
391-413. 

LeSage, J., 1999. “Spatial Econometrics,” at www.rri.wvu.edu/WebBook/LeSage/spatial/spatial.htm. 
LeSage, J., 2004. “Lecture 5: Spatial Probit Models,” at www4.fe.uc.pt/spatial/doc/lecture5.pdf. 
Li, M. and J. Tobias, 2006a.  “Calculus Attainment and Grades Received in Intermediate Economic 

Theory,”  Journal of Applied Econometrics, 21,6, pp. 893-896. 
Lindeboom, M. and E. van Doorslayer, 2003. “Cut Point Shift and Index Shift in Self Reported Health,” 

Ecuity III Project Working Paper #2. 
Long, S. 1997.  Regression Models for Categorical and Limited Dependent Variables, Thousand Oaks, CA, 

Sage Publications. 
Machin, S. and A. Vignoles, 2005. What’s the Good of Education? The Economics of Education in the UK, 

Princeton, N.J., Princeton University Press. 
Maddala, J., 1983.  Limited Dependent and Qualitative Variables in Econometrics, Cambridge, Cambridge 

University Press. 
Mannering, F. and Winston, C., 1985.  “A Dynamic Analysis of Household Vehicle Ownership and 

Utilization,” Rand Journal of Economics, 16, 215-236. 
Marcus, A. and W. Greene, 1983.  “The Determinants of Rating Assignment and Performance,” Working 

Paper CRC528, Alexandria, VA, Center for Naval Analyses. 
McCullagh, P., 1980.  “Regression Models for Ordinal Data,” Journal of the Royal Statistical Society, 

Series B (Methodological), 42, pp. 109-142. 
McElvey, R. and W. Zavoina, 1971.  “An IBM Fortran IV Program to Perform N-Chotomus Multivariate 

Probit Analysis,” Behavioral Science, 16, 2, March, pp. 186-187. 
McElvey, R. and W. Zavoina, 1975.  “A Statistical Model for the Analysis of Ordered Level Dependent 

Variables,” Journal of Mathematical Sociology, 4, pp. 103-120. 
Metz, A. and R. Cantor, 2006, “Moody’s Credit Rating Prediction Model,” Moody’s, Inc., 
 http://www.moodys.com/cust/content/.../200600000425644.pdf. 
Mora, N., 2006., “Sovereign Credit Ratings: Guilty Beyond Reasonable Doubt?” Journal of Banking and 

Finance, 30, pp. 2041-2062. 
Mullahy, J., 1986. “Specification and Testing of Some Modified Count Data Models,” Journal of  

Econometrics, 33, pp. 341-365. 



Modeling Ordered Choices 

 27  

Mullahy, J., 1997.  “Heterogeneity, Excess Zeros and the Structure of Count Data Models,” Journal of 
Applied Econometrics, 12, pp. 337-350. 

Munkin, M. and P. Trivedi, 2008.  “Bayesian Analysis of the Ordered Probit Model with Endogenous 
Selection,” Journal of Econometrics, 143, pp. 334-348. 

Murphy, K. and R. Topel, 2002. “Estimation and Inference in Two Stem Econometric Models,” Journal of 
Business and Economic Statistics, 20, pp. 88-97 (reprinted from 2, pp. 370-379). 

NDSHS, 2001.  Computer Files for the Unit Record Data from the National Drug Strategy Household 
Surveys. 

Pratt, J., 1981.  “Concavity of the Log Likelihood,” Journal of the American Statistical Association, 76, pp. 
103-116. 

Prescott, E. and M. Visscher, 1977.  “Sequential Location among Firms with Foresight,” Bell Journal of 
Economics, 8, pp. 378–893. 

Pudney, S. and M. Shields, 2000.  “Gender, Race, Pay and Promotion in the British Nursing Profession: 
Estimation of a Generalized Ordered Probit Model,” Journal of Applied Econometrics, 15, pp. 
367-399. 

Purvis, L., 1994. Using Census Public Use Micro Data  Sample to Estimate Demographic and Automobile 
Ownership Models, Transportation Research Record, 1443, 21-30. 

Rabe-Hesketh, S., A. Skrondal, A. and A. Pickles, 2005. “Maximum Likelihood Estimation of Limited and 
Discrete Dependent Variable Models with Nested Random Effects,” Journal of Econometrics, 
128, pp. 301-323. 

Raudenbusch, S. and A. Bryk, 2002. Hierarchical Linear Models: Applications and Data Analysis 
Methods, Sage Publications, Thousand Oaks, CA. 

Ridder, G., 1990.  “The Non-parametric Identification of Generalized Accelerated Failure-Time Models,” 
Review of Economic Studies, 57 pp. 167–181. 

Riphahn, R., A. Wambach and A. Million, 2003.  “Incentive Effects on the Demand for Health Care: A 
Bivariate Panel Count Data Estimation,” Journal of Applied Econometrics, 18, 4, pp. 387-405. 

Roorda, M., Páez, A., Morency, C., Mercado, R. and Farber, S.. 2009. “Trip Generation of Vulnerable 
Populations in Three Canadian Cities: A Spatial Ordered Probit Approach,” Manuscript, School of 
Geography and Earth Sciences, McMaster University. 

Shaked, A. and J. Sutton, 1982. “Relaxing Price Competition through Product Differentiation,” Review of 
Economic Studies, 49, pp. 3–13. 

Snell, E., 1964.  “A Scaling Procedure for Ordered Categorical Data,” Biometrics, 20, pp. 592-607. 
Stata, 2008.  Stata, Version 8.0, College Station TX, Stata Corp. 
Terza, J., 1985.  “Ordered Probit: A Generalization,” Communications in Statistics – A. Theory and 

Methods, 14, pp. 1-11. 
Tomoyuki, F. and F. Akira, 2006.  “A Quantitative Analysis on Tourists’ Consumer Satisfaction Via the 

Bayesian Ordered Probit Model,” Journal of the City Planning Institute of Japan, 41, pp. 2-10. (In 
Japanese) 

Train, K., 1986. Qualitative Choice Analysis: Theory, Econometrics, and an Application to Automobile 
Demand, MIT Press 

Train, K., 2003.  Discrete Choice Methods with Simulation, Cambridge, Cambridge University Press. 
Tsay, R., 2005. Analysis of Financial Time Series, 2nd Ed., New York, John Wiley and Sons. 
Walker, S. and D. Duncan, 1967.  “Estimation of the Probability of an Event As a Function of Several 

Independent Variables,” Biometrika, 54, pp. 167-179. 
Wang, X., and K. Kockelman, 2008. “Application of the Dynamic Spatial Ordered Probit Model: Patterns 

of Land Development Change in Austin, Texas,” Manuscript, Department of Civil Engineering, 
University of Texas, Austin (forthcoming, Papers in Regional Science). 

Wang, X. and K. Kockelman, 2009. “Application of the Dynamic Spatial Ordered Probit Model: Patterns 
of Ozone Concentration in Austin, Texas.” Manuscript, Department of Civil Engineering, 
University of Texas, Austin. 

Winkelmann, R., 2005. "Subjective Well-being and the Family: Results from an Ordered Probit Model with 
Multiple Random Effects" Empirical Economics, 30, 3,  pp 749-761,  

Wooldridge, J., 2002b.  Econometric Analysis of Cross Section and Panel Data, Cambridge, MIT Press. 
Wooldridge, J. and G. Imbens, 2009a. “Lecture Notes 6, Summer 2007,” 
 http://www.nber.org/WNE/lect_6_controlfuncs.pdf. 



Modeling Ordered Choices 

 28  

Wynand, P. and B. van Praag, 1981.  “The Demand for Deductibles in Private Health Insurance: A Probit 
Model with Sample Selection,” Journal of Econometrics, 17, pp. 229-252. 

Zavoina, W. and R. McKelvey, 1969, “A Statistical Model for the Analysis of Legislative voting 
Behavior,” Presented at the meeting of the American Political Science Association. 

Zhang, Y, F. Liang and Y. Yuanchang, 2007.  “Crash Injury Severity Analysis Using a Bayesian Ordered 
Probit Model,” Transportation Research Board, Annual Meeting, Paper Number 07-2335. 

Zhang, J., 2007.  “Ordered Probit Modeling of User Perceptions of Protected Left-Turn Signals,” Journal 
of  Transportation Engineering., 133, 3, pp. 205-214.  

Zigante, V., 2007.  “Ever Rising Expectations – The Determinants of Subjective Welfare in Croatia,” 
School of Economics and Management, Lund University, Masters Thesis 
(www.essays.se/about/Ordered+Probit+Model/). 

 
 


	Cheung, S., 1996.  “Provincial Credit Rating in Canada: An Ordered Probit Analysis,”  Bank of Canada, Working Paper 96-6.  (http://www.bankofcanada.ca/en/res/wp/1996/wp96-6.pdf)
	Zhang, J., 2007.  “Ordered Probit Modeling of User Perceptions of Protected Left-Turn Signals,” Journal of  Transportation Engineering., 133, 3, pp. 205-214.


