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LIMITED DEPENDENT
VARIABLES—TRUNCATION,
CENSORING, AND SAMPLE

SELECTION

Q

19.1 INTRODUCTION

This chapter is concerned with truncation and censoring. As we saw in Section 18.4.6,
these features complicate the analysis of data that might otherwise be amenable to
conventional estimation methods such as regression. “Truncation” effects arise when
one attempts to make inferences about a larger population from a sample that is drawn
from a distinct subpopulation. For example, studies of income based on incomes above
or below some poverty line may be of limited usefulness for inference about the whole
population. Truncation is essentially a characteristic of the distribution from which
the sample data are drawn. Censoring is a more common feature of recent studies. To
continue the example, suppose that instead of being unobserved, all incomes below the
poverty line are reported as if they were at the poverty line. The censoring of a range
of values of the variable of interest introduces a distortion into conventional statistical
results that is similar to that of truncation. Unlike truncation, however, censoring is
essentially a defect in the sample data. Presumably, if they were not censored, the data
would be a representative sample from the population of interest. We will also examine
a form of truncation called the sample selection problem. Although most empirical
work in this area involves censoring rather than truncation, we will study the simpler
model of truncation first. It provides most of the theoretical tools we need to analyze
models of censoring and sample selection.

The discussion will examine the general characteristics of truncation, censoring,
and sample selection, and then, in each case, develop a major area of application of the
principles. The stochastic frontier model [Aigner, Lovell, and Schmidt (1977), Fried,
Lovell, and Schmidt (2008)] is a leading application of results for truncated distributions
in empirical models. Censoring appears prominently in the analysis of labor supply and
in modeling of duration data. Finally, the sample selection model has appeared in all
areas of the social sciences and plays a significant role in the evaluation of treatment
effects and program evaluation.

19.2 TRUNCATION

In this section, we are concerned with inferring the characteristics of a full population
from a sample drawn from a restricted part of that population.

833
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19.2.1 TRUNCATED DISTRIBUTIONS

A truncated distribution is the part of an untruncated distribution that is above or below
some specified value. For instance, in Example 19.2, we are given a characteristic of the
distribution of incomes above $100,000. This subset is a part of the full distribution of
incomes which range from zero to (essentially) infinity.

THEOREM 19.1 Density of a Truncated Random Variable
If a continuous random variable x has pdf f (x) and a is a constant, then1

f (x | x > a) = f (x)

Prob(x > a)
.

The proof follows from the definition of conditional probability and amounts
merely to scaling the density so that it integrates to one over the range above a.
Note that the truncated distribution is a conditional distribution.

Most recent applications based on continuous random variables use the truncated
normal distribution. If x has a normal distribution with mean μ and standard deviation
σ, then

Prob(x > a) = 1 − �

(
a − μ

σ

)
= 1 − �(α),

where α = (a − μ)/σ and �(.) is the standard normal cdf. The density of the truncated
normal distribution is then

f (x | x > a) = f (x)

1 − �(α)
= (2πσ 2)−1/2e−(x−μ)2/(2σ 2)

1 − �(α)
=

1
σ

φ

(
x − μ

σ

)
1 − �(α)

,

where φ(.) is the standard normal pdf. The truncated standard normal distribution, with
μ = 0 and σ = 1, is illustrated for a = −0.5, 0, and 0.5 in Figure 19.1. Another truncated
distribution that has appeared in the recent literature, this one for a discrete random
variable, is the truncated at zero Poisson distribution,

Prob[Y = y | y > 0] = (e−λλy)/y!
Prob[Y > 0]

= (e−λλy)/y!
1 − Prob[Y = 0]

= (e−λλy)/y!
1 − e−λ

, λ > 0, y = 1, . . .

This distribution is used in models of uses of recreation and other kinds of facilities
where observations of zero uses are discarded.2

For convenience in what follows, we shall call a random variable whose distribution
is truncated a truncated random variable.

1The case of truncation from above instead of below is handled in an analogous fashion and does not require
any new results.
2See Shaw (1988). An application of this model appears in Section 18.4.6 and Example 18.8.
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FIGURE 19.1 Truncated Normal Distributions.

19.2.2 MOMENTS OF TRUNCATED DISTRIBUTIONS

We are usually interested in the mean and variance of the truncated random variable.
They would be obtained by the general formula:

E [x | x > a] =
∫ ∞

a
x f (x | x > a) dx

for the mean and likewise for the variance.

Example 19.1 Truncated Uniform Distribution
If x has a standard uniform distribution, denoted U (0, 1) , then

f ( x) = 1, 0 ≤ x ≤ 1.

The truncated at x = 1
3 distribution is also uniform:

f

(
x | x >

1
3

)
= f ( x)

Prob
(
x > 1

3

) = 1(
2
3

) = 3
2

,
1
3

≤ x ≤ 1.

The expected value is

E

[
x | x >

1
3

]
=

∫ 1

1/3

x

(
3
2

)
dx = 2

3
.

For a variable distributed uniformly between L and U , the variance is (U − L ) 2/12.
Thus,

Var
[
x | x >

1
3

]
= 1

27
.

The mean and variance of the untruncated distribution are 1
2 and 1

12 , respectively.
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Example 19.1 illustrates two results.

1. If the truncation is from below, then the mean of the truncated variable is greater
than the mean of the original one. If the truncation is from above, then the mean
of the truncated variable is smaller than the mean of the original one.

2. Truncation reduces the variance compared with the variance in the untruncated
distribution.

Henceforth, we shall use the terms truncated mean and truncated variance to refer to
the mean and variance of the random variable with a truncated distribution.

For the truncated normal distribution, we have the following theorem:3

THEOREM 19.2 Moments of the Truncated Normal Distribution
If x ∼ N[μ, σ 2] and a is a constant, then

E [x | truncation] = μ + σλ(α), (19-1)

Var[x | truncation] = σ 2[1 − δ(α)], (19-2)

where α = (a − μ)/σ, φ(α) is the standard normal density and

λ(α) = φ(α)/[1 − �(α)] if truncation is x > a, (19-3a)

λ(α) = −φ(α)/�(α) if truncation is x < a, (19-3b)

and

δ(α) = λ(α)[λ(α) − α]. (19-4)

An important result is

0 < δ(α) < 1 for all values of α,

which implies point 2 after Example 19.1. A result that we will use at several points below
is dφ(α)/dα = −αφ(α). The function λ(α) is called the inverse Mills ratio. The function
in (19-3a) is also called the hazard function for the standard normal distribution.

Example 19.2 A Truncated Lognormal Income Distribution
“The typical ‘upper affluent American’ . . . makes $142,000 per year . . . . The people surveyed
had household income of at least $100,000.”4 Would this statistic tell us anything about the
“typical American”? As it stands, it probably does not (popular impressions notwithstanding).
The 1987 article where this appeared went on to state, “If you’re in that category, pat yourself
on the back—only 2 percent of American households make the grade, according to the
survey.” Because the degree of truncation in the sample is 98 percent, the $142,000 was
probably quite far from the mean in the full population.

Suppose that incomes, x, in the population were lognormally distributed—see Sec-
tion B.4.4. Then the log of income, y, had a normal distribution with, say, mean μ and

3Details may be found in Johnson, Kotz, and Balakrishnan (1994, pp. 156–158). Proofs appear in Cameron
and Trivedi (2005).
4See New York Post (1987).
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standard deviation, σ . Suppose that the survey was large enough for us to treat the sam-
ple average as the true mean. Assuming so, we’ll deduce μ and σ and then determine the
population mean income.

Two useful numbers for this example are In 100 = 4.605 and In 142 = 4.956. The article
states that

Prob[x ≥ 100] = Prob[exp( y) ≥ 100] = 0.02,

or

Prob( y < 4.605) = 0.98.

This implies that

Prob[( y − μ)/σ < (4.605 − μ)/σ ] = 0.98.

Because �[(4.605 − μ)/σ ] = 0.98, we know that

�−1(0.98) = 2.054 = (4.605 − μ)/σ,

or

4.605 = μ + 2.054σ.

The article also states that

E [x | x > 100] = E [exp( y) | exp( y) > 100] = 142,

or

E [exp( y) | y > 4.645] = 142.

To proceed, we need another result for the lognormal distribution:

If y ∼ N[μ, σ 2], then E [exp( y) | y > a] = exp(μ + σ 2/2) × �(σ − (a − μ)/σ )
1 − �( (a − μ)/σ )

.

[See Johnson, Kotz and Balakrishnan (1995, p. 241).] For our application, we would equate
this expression to 142, and a to In 100 = 4.605. This provides a second equation. To estimate
the two parameters, we used the method of moments. We solved the minimization problem

Minimizeμ,σ [4.605 − (μ + 2.054σ ) ]2

+ [142�( (μ − 4.605)/σ )− exp(μ + σ 2/2)�(σ − (4.605 − μ)/σ ) ]2.

The two solutions are 2.89372 and 0.83314 for μ and σ , respectively. To obtain the mean
income, we now use the result that if y ∼ N[μ, σ 2] and x = exp( y) , then E [x] = exp(μ + σ 2/2) .
Inserting our values for μ and σ gives E [x] = $25,554. The 1987 Statistical Abstract of
the United States gives the mean of household incomes across all groups for the United
States as about $25,000. So, the estimate based on surprisingly little information would have
been relatively good. These meager data did, indeed, tell us something about the average
American.

19.2.3 THE TRUNCATED REGRESSION MODEL

In the model of the earlier examples, we now assume that

μi = x′
iβ

is the deterministic part of the classical regression model. Then

yi = x′
iβ + εi ,
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where

εi | xi ∼ N[0, σ 2],

so that

yi | xi ∼ N[x′
iβ, σ 2]. (19-5)

We are interested in the distribution of yi given that yi is greater than the truncation
point a. This is the result described in Theorem 19.2. It follows that

E [yi | yi > a] = x′
iβ + σ

φ[(a − x′
iβ)/σ ]

1 − �[(a − x′
iβ)/σ ]

. (19-6)

The conditional mean is therefore a nonlinear function of a, σ, x, and β.
The partial effects in this model in the subpopulation can be obtained by writing

E [yi | yi > a] = x′
iβ + σλ(αi ), (19-7)

where now αi = (a − x′
iβ)/σ . For convenience, let λi = λ(αi ) and δi = δ(αi ). Then

∂E [yi | yi > a]
∂xi

= β + σ(dλi/dαi )
∂αi

∂xi

= β + σ
(
λ2

i − αiλi
)
(−β/σ)

= β
(
1 − λ2

i + αiλi
)

= β(1 − δi ).

(19-8)

Note the appearance of the scale factor 1 − δi from the truncated variance. Because
(1 − δi ) is between zero and one, we conclude that for every element of xi , the marginal
effect is less than the corresponding coefficient. There is a similar attenuation of the
variance. In the subpopulation yi > a, the regression variance is not σ 2 but

Var[yi | yi > a] = σ 2(1 − δi ). (19-9)

Whether the partial effect in (19-7) or the coefficient β itself is of interest depends on the
intended inferences of the study. If the analysis is to be confined to the subpopulation,
then (19-7) is of interest. If the study is intended to extend to the entire population,
however, then it is the coefficients β that are actually of interest.

One’s first inclination might be to use ordinary least squares to estimate the param-
eters of this regression model. For the subpopulation from which the data are drawn,
we could write (19-6) in the form

yi | yi > a = E [yi | yi > a] + ui = x′
iβ + σλi + ui , (19-10)

where ui is yi minus its conditional expectation. By construction, ui has a zero mean,
but it is heteroscedastic:

Var[ui ] = σ 2(1 − λ2
i + λiαi

) = σ 2(1 − δi ),
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which is a function of xi . If we estimate (19-10) by ordinary least squares regression of
y on X, then we have omitted a variable, the nonlinear term λi . All the biases that arise
because of an omitted variable can be expected.5

Without some knowledge of the distribution of x, it is not possible to determine
how serious the bias is likely to be. A result obtained by Chung and Goldberger
(1984) is broadly suggestive. If E [x | y] in the full population is a linear function of
y, then plim b = βτ for some proportionality constant τ . This result is consistent with
the widely observed (albeit rather rough) proportionality relationship between least
squares estimates of this model and maximum likelihood estimates.6 The proportional-
ity result appears to be quite general. In applications, it is usually found that, compared
with consistent maximum likelihood estimates, the OLS estimates are biased toward
zero. (See Example 19.5.)

19.2.4 THE STOCHASTIC FRONTIER MODEL

A lengthy literature commencing with theoretical work by Knight (1933), Debreu
(1951), and Farrell (1957) and the pioneering empirical study by Aigner, Lovell, and
Schmidt (ALS, 1977) has been directed at models of production that specifically ac-
count for the textbook proposition that a production function is a theoretical ideal.7 If
y = f (x) defines a production relationship between inputs, x, and an output, y, then for
any given x, the observed value of y must be less than or equal to f (x). The implication
for an empirical regression model is that in a formulation such as y = h(x, β) + u, u
must be negative. Because the theoretical production function is an ideal—the frontier
of efficient production—any nonzero disturbance must be interpreted as the result of in-
efficiency. A strictly orthodox interpretation embedded in a Cobb–Douglas production
model might produce an empirical frontier production model such as

ln y = β1 +
∑

k

βk ln xk − u, u ≥ 0.

The gamma model described in Example 4.7 was an application. One-sided disturbances
such as this one present a particularly difficult estimation problem. The primary theoret-
ical problem is that any measurement error in ln y must be embedded in the disturbance.
The practical problem is that the entire estimated function becomes a slave to any single
errantly measured data point.

Aigner, Lovell, and Schmidt proposed instead a formulation within which observed
deviations from the production function could arise from two sources: (1) productive
inefficiency, as we have defined it earlier and that would necessarily be negative, and
(2) idiosyncratic effects that are specific to the firm and that could enter the model with
either sign. The end result was what they labeled the stochastic frontier:

ln y = β1 +
∑

k

βk ln xk − u + v, u ≥ 0, v ∼ N
[
0, σ 2

v

]
.

= β1 +
∑

k

βk ln xk + ε.

5See Heckman (1979) who formulates this as a “specification error.”
6See the appendix in Hausman and Wise (1977) and Greene (1983) as well.
7A survey by Greene (2008a) appears in Fried, Lovell, and Schmidt (2008). Kumbhakar and Lovell (2000) is
a comprehensive reference on the subject.
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The frontier for any particular firm is h(x, β)+v, hence the name stochastic frontier. The
inefficiency term is u, a random variable of particular interest in this setting. Because
the data are in log terms, u is a measure of the percentage by which the particular
observation fails to achieve the frontier, ideal production rate.

To complete the specification, they suggested two possible distributions for the in-
efficiency term: the absolute value of a normally distributed variable, which has the
truncated at zero distribution shown in Figure 19.1, and an exponentially distributed
variable. The density functions for these two compound variables are given by Aigner,
Lovell, and Schmidt; let ε = v − u, λ = σu/σv, σ = (σ 2

u + σ 2
v )1/2, and �(z) = the prob-

ability to the left of z in the standard normal distribution (see Section B.4.1). For the
“half-normal” model,

ln h(εi | β, λ, σ ) =
[
−ln σ +

(
1
2

)
ln

2
π

− 1
2

(
εi

σ

)2

+ ln �

(−εiλ

σ

)]
,

whereas for the exponential model

ln h(εi | β, θ, σv) =
[

ln θ + 1
2
θ2σ 2

v + θεi + ln �

(
− εi

σv

− θσv

)]
.

Both these distributions are asymmetric. We thus have a regression model with a
nonnormal distribution specified for the disturbance. The disturbance, ε, has a nonzero
mean as well; E [ε] = −σu(2/π)1/2 for the half-normal model and −1/θ for the expo-
nential model. Figure 19.2 illustrates the density for the half-normal model with σ = 1
and λ = 2. By writing β0 = β1 + E [ε] and ε∗ = ε− E [ε], we obtain a more conventional
formulation

ln y = β0 +
∑

k

βk ln xk + ε∗,

FIGURE 19.2 Density for the Disturbance in the Stochastic Frontier
Model.
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which does have a disturbance with a zero mean but an asymmetric, nonnormal distribu-
tion. The asymmetry of the distribution of ε∗ does not negate our basic results for least
squares in this classical regression model. This model satisfies the assumptions of the
Gauss–Markov theorem, so least squares is unbiased and consistent (save for the con-
stant term) and efficient among linear unbiased estimators. In this model, however, the
maximum likelihood estimator is not linear, and it is more efficient than least squares.

The log-likelihood function for the half normal model is given in ALS (1977):

ln L = −n ln σ + n
2

ln
2
π

− 1
2

n∑
i=1

(εi

σ

)2
+

n∑
i=1

ln �

(−εiλ

σ

)
. (19-11)

Maximization programs for this model are built into modern software packages such as
Stata, NLOGIT, and TSP. The log-likelihood is simple enough that it can also be readily
adapted to the generic optimization routines in, for example, MatLab or Gauss. Some
treatments in the literature use the parameterization employed by Battese and Coelli
(1992) and Coelli (1996), γ = σ 2

u /σ 2. This is a one-to-one transformation of λ; λ =
(γ /(1 − γ ))1/2, so which parameterization is employed is a matter of convenience; the
empirical results will be the same. The log-likelihood function for the exponential model
can be built up from the density given earlier. For the half-normal model, we would also
rely on the invariance of maximum likelihood estimators to recover estimates of the
structural variance parameters, σ 2

v = σ 2/(1 + λ2) and σ 2
u = σ 2λ2/(1 + λ2).8 (Note, the

variance of the truncated variable, ui , is notσ 2
u ; using (19-2), it reduces to (1−2/π)σ 2

u ].) In
addition, a structural parameter of interest is the proportion of the total variance of ε that
is due to the inefficiency term. For the half-normal model, Var[ε] = Var[u] + Var[v] =
(1 − 2/π)σ 2

u + σ 2
v whereas for the exponential model, the counterpart is 1/θ2 + σ 2

v .
Modeling in the stochastic frontier setting is rather unlike what we are accustomed

to up to this point, in that the disturbance, specifically ui , not the model parameters, is
the central focus of the analysis. The reason is that in this context, the disturbance, ui ,
rather than being the catchall for the unknown and unknowable factors omitted from
the equation, has a particular interpretation—it is the firm-specific inefficiency. Ideally,
we would like to estimate ui for each firm in the sample to compare them on the basis
of their productive efficiency. Unfortunately, the data do not permit a direct estimate,
because with estimates of β in hand, we are only able to compute a direct estimate of
εi = yi − x′

iβ. Jondrow et al. (1982), however, have derived a useful approximation that
is now the standard measure in these settings,

E[ui |εi ] = σλ

1 + λ2

[
φ(zi )

1 − �(zi )
− zi

]
, zi = εiλ

σ

for the half-normal model, and

E[ui |εi ] = zi + σv

φ(zi/σv)

�(zi/σv)
, zi = −(

εi + θσ 2
v

)
for the exponential model.These values can be computed using the maximum likelihood
estimates of the structural parameters in the model. In some cases in which researchers

8A vexing problem for estimation of the model is that if the ordinary least squares residuals are skewed in the
positive (wrong) direction (See Figure 19.2), OLS with λ̂ = 0 will be the MLE. OLS residuals with a positive
skew are apparently inconsistent with a model in which, in theory, they should have a negative skew. [See
Waldman (1982) for theoretical development of this result.]
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are interested in discovering best practice [e.g., WHO (2000), Tandon et al. (2000)], the
estimated values are sorted and the ranks of the individuals in the sample become of
interest.

Research in this area since the methodological developments beginning in the 1930s
and the building of the empirical foundations in 1977 and 1982 has proceeded in several
directions. Most theoretical treatments of “inefficiency” as envisioned here attribute it to
aspects of management of the firm. It remains to establish a firm theoretical connection
between the theory of firm behavior and the stochastic frontier model as a device for
measurement of inefficiency.

In the context of the model, many studies have developed alternative, more flexible
functional forms that (it is hoped) can provide a more realistic model for inefficiency.
Two that are relevant in this chapter are Stevenson’s (1980) truncated normal model
and the normal-gamma frontier. One intuitively appealing form of the truncated normal
model is

Ui ∼ N
[
μ + z′

iα, σ 2
u

]
,

ui = |Ui |.
The original normal–half-normal model results if μ equals zero and α equals zero. This
is a device by which the environmental variables noted in the next paragraph can enter
the model of inefficiency. A truncated normal model is presented in Example 19.3. The
half-normal, truncated normal, and exponential models all take the form of distribution
shown in Figure 19.1. The gamma model,

f (u) = [θ P/�(P)] exp(−θu)uP−1,

is a flexible model that presents the advantage that the distribution of inefficiency can
move away from zero. If P is greater than one, then the density at u = 0 equals zero
and the entire distribution moves away from the origin. The implication is that the
distribution of inefficiency among firms can move away from zero. The gamma model is
estimated by simulation methods—either Bayesian MCMC [Huang (2003) and Tsionas
(2002)] or maximum simulated likelihood [Greene (2003)]. Many other functional forms
have been proposed. [See Greene (2008) for a survey.]

There are usually elements in the environment in which the firm operates that
impact the firm’s output and/or costs but are not, themselves, outputs, inputs, or input
prices. In example 19.3, the costs of the Swiss railroads are affected by three variables;
track width, long tunnels, and curvature. It is not yet specified how such factors should be
incorporated into the model; four candidates are in the mean and variance of ui , directly
in the function, or in the variance of vi . [See Hadri, Guermat, and Whittaker (2003) and
Kumbhakar (1997c).] All of these can be found in the received studies. This aspect of
the model was prominent in the discussion of the famous World Health Organization
efficiency study of world health systems [WHO (2000), Tandon, Murray, Lauer, and
Evans (2000), and Greene (2004)]. In Example 19.3, we have placed the environmental
factors in the mean of the inefficiency distribution. This produces a rather extreme
set of results for the JLMS estimates of inefficiency—many railroads are estimated
to be extremely inefficient. An alternative formulation would be a “heteroscedastic”
model in which σu,i = σu exp(z′

iδ) or σv,i = σv exp(z′
iη), or both. We can see from the

JLMS formula that the term heteroscedastic is actually a bit misleading, since both
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standard deviations enter (now) λi , which is, in turn, a crucial parameter in the mean
of inefficiency.

How should inefficiency be modeled in panel data, such as in our example? It
might be tempting to treat it as a time-invariant “effect” [as in Schmidt and Sickles
(1984) and Pitt and Lee (1984) in two pioneering papers]. Greene (2004) argued that a
preferable approach would be to allow inefficiency to vary freely over time in a panel,
and to the extent that there is a common time-invariant effect in the model, that should
be treated as unobserved heterogeneity, not inefficiency. A string of studies, including
Battese and Coelli (1992, 1995), Cuesta (2000), Kumbhakar (1997a) Kumbhakar and
Orea (2004), and many others have proposed hybrid forms that treat the core random
part of inefficiency as a time-invariant firm-specific effect that is modified over time by
a deterministic, possibly firm-specific, function. The Battese-Coelli form,

uit = exp[−η(t − T)]|Ui | where Ui N
[
0, σ 2

u

]
,

has been used in a number of applications. Cuesta (2000) suggests allowing η to vary
across firms, producing a model that bears some relationship to a fixed-effects specifi-
cation. This thread of the literature is one of the most active ongoing pursuits.

Is it reasonable to use a possibly restrictive parametric approach to modeling in-
efficiency? Sickles (2005) and Kumbhakar, Simar, Park, and Tsionas (2007) are among
numerous studies that have explored less parametric approaches to efficiency analysis.
Proponents of data envelopment analysis [see, e.g., Simar and Wilson (2000, 2007)] have
developed methods that impose absolutely no parametric structure on the production
function. Among the costs of this high degree of flexibility is a difficulty to include envi-
ronmental effects anywhere in the analysis, and the uncomfortable implication that any
unmeasured heterogeneity of any sort is necessarily included in the measure of ineffi-
ciency. That is, data envelopment analysis returns to the deterministic frontier approach
where this section began.

Example 19.3 Stochastic Cost Frontier for Swiss Railroads
Farsi, Filippini, and Greene (2005) analyzed the cost efficiency of Swiss railroads. In order to
use the stochastic frontier approach to analyze costs of production, rather than production,
we rely on the fundamental duality of production and cost [see Samuelson (1938), Shephard
(1953), and Kumbhakar and Lovell (2000)]. An appropriate cost frontier model for a firm that
produces more than one output—the Swiss railroads carry both freight and passengers—will
appear as the following:

ln(C/PK ) = α +
K−1∑
k=1

βk ln( Pk/PK ) +
M∑

m=1

γm ln Qm + v + u.

The requirement that the cost function be homogeneous of degree one in the input prices
has been imposed by normalizing total cost, C, and the first K − 1 prices by the K th input
price. In this application, the three factors are labor, capital, and electricity—the third is
used as the numeraire in the cost function. Notice that the inefficiency term, u, enters the
cost function positively; actual cost is above the frontier cost. [The MLE is modified simply by
replacing εi with −εi in (19-11).] In analyzing costs of production, we recognize that there is an
additional source of inefficiency that is absent when we analyze production. On the production
side, inefficiency measures the difference between output and frontier output, which arises
because of technical inefficiency. By construction, if output fails to reach the efficient level
for the given input usage, then costs must be higher than frontier costs. However, costs can
be excessive even if the firm is technically efficient if it is “allocatively inefficient.” That is, the
firm can be technically efficient while not using inputs in the cost minimizing mix (equating



Greene-2140242 book November 27, 2010 18:36

844 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

the ratio of marginal products to the input price ratios). It follows that on the cost side, “u”
can contain both elements of inefficiency while on the production side, we would expect to
measure only technical inefficiency. [See Kumbhakar (1997b).]

The data for this study are an unbalanced panel of 50 railroads with Ti ranging from 1
to 13. (Thirty-seven of the firms are observed 13 times, 8 are observed 12 times, and the
remaining 5 are observed 10, 7, 7, 3, and 1 times.) The variables we will use here are

CT: Total costs adjusted for inflation (1,000 Swiss franc)
QP: Total passenger-output in passenger-kilometers
QF: Total goods-output in ton-kilometers
PL: Labor price adjusted for inflation (in Swiss Francs per person per year)
PK: Capital price with capital stock proxied by total number of seats
PE: Price of electricity (Swiss franc per kWh)

Logs of costs and prices (ln CT, ln PK, ln PL) are normalized by PE. We will also use these
environmental variables:

NARROW T: Dummy for the networks with narrow track (1 m wide) The usual
width is 1.435m.

TUNNEL: Dummy for networks that have tunnels with an average length
of more than 300 meters.

VIRAGE: Dummy for the networks whose minimum radius of curvature is
100 meters or less.

The full data set is given in Appendix Table F19.1. Several other variables not used here are
presented in the appendix table. In what follows, we will ignore the panel data aspect of the
data set. This would be a focal point of a more extensive study.

There have been dozens of models proposed for the inefficiency component of the
stochastic frontier model. Table 19.1 presents several different forms. The basic half-normal
model is given in the first column. The estimated cost function parameters across the different

TABLE 19.1 Estimated Stochastic Frontier Cost Functionsa

Model

Half Truncated
Variable Normal Normal Exponential Gamma Heterosced Heterogen

Constant −10.0799 −9.80624 −10.1838 −10.1944 −9.82189 −10.2891
ln QP 0.64220 0.62573 0.64403 0.64401 0.61976 0.63576
ln QF 0.06904 0.07708 0.06803 0.06810 0.07970 0.07526
ln PK 0.26005 0.26625 0.25883 0.25886 0.25464 0.25893
ln PL 0.53845 0.50474 0.56138 0.56047 0.53953 0.56036
Constant 0.44116 −2.48218b

Narrow 0.29881 2.16264b 0.14355
Virage −0.20738 −1.52964b −0.10483
Tunnel 0.01118 0.35748b −0.01914
σ 0.44240 0.38547 (0.34325) (0.34288) 0.45392c 0.40597
λ 1.27944 2.35055 0.91763
P 1.0000 1.22920
θ 13.2922 12.6915
σu (0.34857) (0.35471) (0.07523) (0.09685) 0.37480c 0.27448
σv (0.27244) (0.15090) 0.33490 0.33197 0.25606 0.29912
Mean E[u|ε] 0.27908 0.52858 0.075232 0.096616 0.29499 0.21926
ln L −210.495 −200.67 −211.42 −211.091 −201.731 −208.349

aEstimates in parentheses are derived from other MLEs.
bEstimates used in computation of σu.
cObtained by averaging λ = σu,i /σv over observations.
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FIGURE 19.3 Kernel Density Estimator for JLMS Estimates.

forms are broadly similar, as might be expected as (α, β) are consistently estimated in all
cases. There are fairly pronounced differences in the implications for the components of ε,
however.

There is an ambiguity in the model as to whether modifications to the distribution of ui will
affect the mean of the distribution, the variance, or both. The following results suggest that
it is both for these data. The gamma and exponential models appear to remove most of the
inefficiency from the data. Note that the estimates of σu are considerably smaller under these
specifications, and σv is correspondingly larger. The second to last row shows the sample
averages of the Jondrow estimators—this estimates Eε E [u|ε] = E [u]. There is substantial
difference across the specifications.

The estimates in the rightmost two columns illustrate two different placements of the mea-
sured heterogeneity: in the variance of ui and directly in the cost function. The log-likelihood
function appears to favor the first of these. However, the models are not nested and involve
the same number of parameters. We used the Vuong test (see Section 14.6.6), instead and
obtained a value of −2.65 in favor of the heteroscedasticity model. Figure 19.3 describes the
values of E [ui |εi ] estimated for the sample observations for the half-normal, heteroscedastic
and heterogeneous models. The smaller estimate of σu for the third of these is evident in the
figure, which suggests a somewhat tighter concentration of values than the other two.

19.3 CENSORED DATA

A very common problem in microeconomic data is censoring of the dependent variable.
When the dependent variable is censored, values in a certain range are all transformed
to (or reported as) a single value. Some examples that have appeared in the empirical
literature are as follows:9

1. Household purchases of durable goods [Tobin (1958)]
2. The number of extramarital affairs [Fair (1977, 1978)]

9More extensive listings may be found in Amemiya (1984) and Maddala (1983).
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3. The number of hours worked by a woman in the labor force [Quester and Greene
(1982)]

4. The number of arrests after release from prison [Witte (1980)]
5. Household expenditure on various commodity groups [Jarque (1987)]
6. Vacation expenditures [Melenberg and van Soest (1996)]

Each of these studies analyzes a dependent variable that is zero for a significant frac-
tion of the observations. Conventional regression methods fail to account for the
qualitative difference between limit (zero) observations and nonlimit (continuous)
observations.

19.3.1 THE CENSORED NORMAL DISTRIBUTION

The relevant distribution theory for a censored variable is similar to that for a truncated
one. Once again, we begin with the normal distribution, as much of the received work
has been based on an assumption of normality. We also assume that the censoring point
is zero, although this is only a convenient normalization. In a truncated distribution,
only the part of distribution above y = 0 is relevant to our computations. To make the
distribution integrate to one, we scale it up by the probability that an observation in
the untruncated population falls in the range that interests us. When data are censored,
the distribution that applies to the sample data is a mixture of discrete and continuous
distributions. Figure 19.4 illustrates the effects.

To analyze this distribution, we define a new random variable y transformed from
the original one, y∗, by

y = 0 if y∗ ≤ 0,

y = y∗ if y∗ > 0.

FIGURE 19.4 Partially Censored Distribution.

Capacity Seats demanded

Capacity Tickets sold
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The distribution that applies if y∗ ∼ N[μ, σ 2] is Prob(y = 0) = Prob(y∗ ≤ 0) =
�(−μ/σ) = 1 − �(μ/σ), and if y∗ > 0, then y has the density of y∗.

This distribution is a mixture of discrete and continuous parts. The total probability
is one, as required, but instead of scaling the second part, we simply assign the full
probability in the censored region to the censoring point, in this case, zero.

THEOREM 19.3 Moments of the Censored Normal Variable
If y∗ ∼ N[μ, σ 2] and y = a if y∗ ≤ a or else y = y∗, then

E [y] = �a + (1 − �)(μ + σλ),

and

Var[y] = σ 2(1 − �)[(1 − δ) + (α − λ)2�],

where

�[(a − μ)/σ ] = �(α) = Prob(y∗ ≤ a) = �, λ = φ/(1 − �),

and

δ = λ2 − λα.

Proof: For the mean,

E [y] = Prob(y = a) × E [y | y = a] + Prob(y > a) × E [y | y > a]

= Prob(y∗ ≤ a) × a + Prob(y∗ > a) × E [y∗ | y∗ > a]

= �a + (1 − �)(μ + σλ)

using Theorem 19.2. For the variance, we use a counterpart to the decomposition
in (B-69), that is, Var[y] = E [conditional variance] + Var[conditional mean],
and Theorem 19.2.

For the special case of a = 0, the mean simplifies to

E [y | a = 0] = �(μ/σ)(μ + σλ), where λ = φ(μ/σ)

�(μ/σ)
.

For censoring of the upper part of the distribution instead of the lower, it is only neces-
sary to reverse the role of � and 1 − � and redefine λ as in Theorem 19.2.

Example 19.4 Censored Random Variable
We are interested in the number of tickets demanded for events at a certain arena. Our only
measure is the number actually sold. Whenever an event sells out, however, we know that the
actual number demanded is larger than the number sold. The number of tickets demanded
is censored when it is transformed to obtain the number sold. Suppose that the arena in
question has 20,000 seats and, in a recent season, sold out 25 percent of the time. If the
average attendance, including sellouts, was 18,000, then what are the mean and standard
deviation of the demand for seats? According to Theorem 19.3, the 18,000 is an estimate of

E [sales] = 20,000(1 − �) + [μ + σλ]�.

Because this is censoring from above, rather than below, λ = −φ (α)/�(α) . The argu-
ment of �, φ, and λ is α = (20,000 − μ)/σ . If 25 percent of the events are sellouts, then
� = 0.75. Inverting the standard normal at 0.75 gives α = 0.675. In addition, if α = 0.675,
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then −φ (0.675)/0.75 = λ = − 0.424. This result provides two equations in μ and σ , (a)
18,000 = 0.25(20,000) + 0.75(μ − 0.424σ ) and (b) 0.675σ = 20,000 − μ. The solutions are
σ = 2426 and μ = 18,362.

For comparison, suppose that we were told that the mean of 18,000 applies only to the
events that were not sold out and that, on average, the arena sells out 25 percent of the
time. Now our estimates would be obtained from the equations (a) 18,000 = μ − 0.424σ and
(b) 0.675σ = 20,000 − μ. The solutions are σ = 1820 and μ = 18,772.

19.3.2 THE CENSORED REGRESSION (TOBIT) MODEL

The regression model based on the preceding discussion is referred to as the censored
regression model or the tobit model [in reference to Tobin (1958), where the model
was first proposed]. The regression is obtained by making the mean in the preceding
correspond to a classical regression model. The general formulation is usually given in
terms of an index function,

y∗
i = x′

iβ + εi ,

yi = 0 if y∗
i ≤ 0,

yi = y∗
i if y∗

i > 0.

There are potentially three conditional mean functions to consider, depending on the
purpose of the study. For the index variable, sometimes called the latent variable,
E [y∗

i | xi ] is x′
iβ. If the data are always censored, however, then this result will usu-

ally not be useful. Consistent with Theorem 19.3, for an observation randomly drawn
from the population, which may or may not be censored,

E [yi | xi ] = �

(
x′

iβ

σ

)
(x′

iβ + σλi ),

where

λi = φ[(0 − x′
iβ)/σ ]

1 − �[(0 − x′
iβ)/σ ]

= φ(x′
iβ/σ)

�(x′
iβ/σ)

. (19-12)

Finally, if we intend to confine our attention to uncensored observations, then the re-
sults for the truncated regression model apply. The limit observations should not be
discarded, however, because the truncated regression model is no more amenable to
least squares than the censored data model. It is an unresolved question which of these
functions should be used for computing predicted values from this model. Intuition
suggests that E [yi | xi ] is correct, but authors differ on this point. For the setting in
Example 19.4, for predicting the number of tickets sold, say, to plan for an upcoming
event, the censored mean is obviously the relevant quantity. On the other hand, if the
objective is to study the need for a new facility, then the mean of the latent variable y∗

i
would be more interesting.

There are differences in the partial effects as well. For the index variable,

∂E [y∗
i | xi ]

∂xi
= β.

But this result is not what will usually be of interest, because y∗
i is unobserved. For the

observed data, yi , the following general result will be useful:10

10See Greene (1999) for the general result and Rosett and Nelson (1975) and Nakamura and Nakamura
(1983) for applications based on the normal distribution.
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THEOREM 19.4 Partial Effects in the Censored Regression Model
In the censored regression model with latent regression y∗ = x′β+ε and observed
dependent variable, y = a if y∗ ≤ a, y = b if y∗ ≥ b, and y = y∗ otherwise,
where a and b are constants, let f (ε) and F(ε) denote the density and cdf of ε.
Assume that ε is a continuous random variable with mean 0 and variance σ 2, and
f (ε | x) = f (ε). Then

∂E [y | x]
∂x

= β × Prob[a < y∗ < b].

Proof: By definition,

E [y | x] = a Prob[y∗ ≤ a | x] + b Prob[y∗ ≥ b | x]

+ Prob[a < y∗ < b | x]E [y∗ | a < y∗ < b | x].

Let α j = ( j − x′β)/σ, Fj = F(α j ), f j = f (α j ), and j = a, b. Then

E [y | x] = aFa + b(1 − Fb) + (Fb − Fa)E [y∗ | a < y∗ < b, x].

Because y∗ = x′β + σ [(y∗ − β ′x)/σ ], the conditional mean may be written

E [y∗ | a < y∗ < b, x] = x′β + σ E
[

y∗ − x′β
σ

∣∣∣∣a − x′β
σ

<
y∗ − x′β

σ
<

b − x′β
σ

]

= x′β + σ

∫ αb

αa

(ε/σ ) f (ε/σ )

Fb − Fa
d
(

ε

σ

)
.

Collecting terms, we have

E [y | x] = aFa + b(1 − Fb) + (Fb − Fa)β
′x + σ

∫ αb

αa

(
ε

σ

)
f
(

ε

σ

)
d
(

ε

σ

)
.

Now, differentiate with respect to x. The only complication is the last term, for
which the differentiation is with respect to the limits of integration. We
use Leibnitz’s theorem and use the assumption that f (ε) does not involve x.
Thus,

∂E [y | x]
∂x

=
(−β

σ

)
a fa −

(−β

σ

)
bfb + (Fb − Fa)β + (x′β)( fb − fa)

(−β

σ

)

+ σ [αb fb − αa fa]
(−β

σ

)
.

After inserting the definitions of αa and αb, and collecting terms, we find all terms
sum to zero save for the desired result,

∂ E [y | x]
∂x

= (Fb − Fa)β = β × Prob[a < y∗
i < b].

MPS
Note
AU: We have received CE MSP in wrong sequence. Per our judgement page 19-21 s/b 19-20 and we kept complete Theorem 19.4 in one place. Plz check & suggest.
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Note that this general result includes censoring in either or both tails of the distribu-
tion, and it does not assume that ε is normally distributed. For the standard case with
censoring at zero and normally distributed disturbances, the result specializes to

∂E [yi | xi ]
∂xi

= β�

(
x′

iβ

σ

)
.

Although not a formal result, this does suggest a reason why, in general, least squares
estimates of the coefficients in a tobit model usually resemble the MLEs times the
proportion of nonlimit observations in the sample.

McDonald and Moffitt (1980) suggested a useful decomposition of ∂E [yi | xi ]/∂xi ,

∂E [yi | xi ]
∂xi

= β × {
�i [1 − λi (αi + λi )] + φi (αi + λi )

}
,

where αi = x′
iβ/σ , �i = �(αi ) and λi = φi/�i . Taking the two parts separately, this

result decomposes the slope vector into

∂ E [yi | xi ]
∂xi

= Prob[yi > 0]
∂ E [yi | xi , yi > 0]

∂xi
+ E [yi | xi , yi > 0]

∂ Prob[yi > 0]
∂xi

.

Thus, a change in xi has two effects: It affects the conditional mean of y∗
i in the positive

part of the distribution, and it affects the probability that the observation will fall in
that part of the distribution.

19.3.3 ESTIMATION

The tobit model has become so routine and been incorporated in so many computer
packages that despite formidable obstacles in years past, estimation is now essentially
on the level of ordinary linear regression. The log-likelihood for the censored regression
model is

ln L =
∑
yi >0

−1
2

[
log(2π) + ln σ 2 + (yi − x′

iβ)2

σ 2

]
+

∑
yi =0

ln
[

1 − �

(
x′

iβ

σ

)]
. (19-13)

The two parts correspond to the classical regression for the nonlimit observations and
the relevant probabilities for the limit observations, respectively. This likelihood is a
nonstandard type, because it is a mixture of discrete and continuous distributions. In
a seminal paper, Amemiya (1973) showed that despite the complications, proceeding
in the usual fashion to maximize ln L would produce an estimator with all the familiar
desirable properties attained by MLEs.

The log-likelihood function is fairly involved, but Olsen’s (1978) reparameterization
simplifies things considerably. With γ = β/σ and θ = 1/σ , the log-likelihood is

ln L =
∑
yi >0

−1
2

[ln(2π) − ln θ2 + (θyi − x′
iγ )2] +

∑
yi =0

ln[1 − �(x′
iγ )]. (19-14)

The results in this setting are now very similar to those for the truncated regression.
The Hessian is always negative definite, so Newton’s method is simple to use and
usually converges quickly. After convergence, the original parameters can be recov-
ered using σ = 1/θ and β = γ /θ . The asymptotic covariance matrix for these esti-
mates can be obtained from that for the estimates of [γ , θ ] using the delta method:
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TABLE 19.2 Tobit Estimates of an Hours Worked Equation

White Wives Black Wives

Coefficient Slope Coefficient Slope
Least

Squares
Scaled
OLS

Constant −1803.13 −2753.87
(−8.64) (−9.68)

Small kids −1324.84 −385.89 −824.19 −376.53 −352.63 −766.56
(−19.78) (−10.14)

Education −48.08 −14.00 22.59 10.32 11.47 24.93
difference (−4.77) (1.96)

Relative wage 312.07 90.90 286.39 130.93 123.95 269.46
(5.71) (3.32)

Second marriage 175.85 51.51 25.33 11.57 13.14 28.57
(3.47) (0.41)

Mean divorce 417.39 121.58 481.02 219.75 219.22 476.57
probability (6.52) (5.28)

High divorce 670.22 195.22 578.66 264.36 244.17 530.80
probability (8.40) (5.33)

σ 1559 618 1511 826
Sample size 7459 2798
Proportion working 0.29 0.46

Est. Asy. Var[β̂, σ̂ ] = Ĵ Asy. Var[γ̂ , θ̂ ]Ĵ′, where

J =
[
∂β/∂γ ′ ∂β/∂θ

∂σ/∂γ ′ ∂σ/∂θ

]
=

[
(1/θ)I (−1/θ2)γ

0′ (−1/θ2)

]
.

Researchers often compute ordinary least squares estimates despite their incon-
sistency. Almost without exception, it is found that the OLS estimates are smaller
in absolute value than the MLEs. A striking empirical regularity is that the maxi-
mum likelihood estimates can often be approximated by dividing the OLS estimates
by the proportion of nonlimit observations in the sample.11 The effect is illustrated
in the last two columns of Table 19.2. Another strategy is to discard the limit ob-
servations, but we now see that just trades the censoring problem for the truncation
problem.

Example 19.5 Estimated Tobit Equations for Hours Worked
In their study of the number of hours worked in a survey year by a large sample of wives,
Quester and Greene (1982) were interested in whether wives whose marriages were statisti-
cally more likely to dissolve hedged against that possibility by spending, on average, more
time working. They reported the tobit estimates given in Table 19.2. The last figure in the
table implies that a very large proportion of the women reported zero hours, so least squares
regression would be inappropriate.

The figures in parentheses are the ratio of the coefficient estimate to the estimated asymp-
totic standard error. The dependent variable is hours worked in the survey year. “Small kids”
is a dummy variable indicating whether there were children in the household. The “education
difference” and “relative wage” variables compare husband and wife on these two dimen-
sions. The wage rate used for wives was predicted using a previously estimated regression
model and is thus available for all individuals, whether working or not. “Second marriage” is a

11This concept is explored further in Greene (1980b), Goldberger (1981), and Chung and Goldberger (1984).
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dummy variable. Divorce probabilities were produced by a large microsimulation model pre-
sented in another study [Orcutt, Caldwell, and Wertheimer (1976)]. The variables used here
were dummy variables indicating “mean” if the predicted probability was between 0.01 and
0.03 and “high” if it was greater than 0.03. The “slopes” are the marginal effects described
earlier.

Note the marginal effects compared with the tobit coefficients. Likewise, the estimate of
σ is quite misleading as an estimate of the standard deviation of hours worked.

The effects of the divorce probability variables were as expected and were quite large. One
of the questions raised in connection with this study was whether the divorce probabilities
could reasonably be treated as independent variables. It might be that for these individuals,
the number of hours worked was a significant determinant of the probability.

19.3.4 TWO-PART MODELS AND CORNER SOLUTIONS

The tobit model contains a restriction that might be unreasonable in an economic setting.
Consider a behavioral outcome, y = charitable donation. Two implications of the tobit
model are that

Prob(y > 0 | x) = Prob(x′β + ε > 0 | x) = �(x′β/σ)

and [from (19-7)]

E[y | y > 0, x] = x′β + σφ(x′β/σ)/�(x′β/σ).

Differentiating both of these, we find from (17-11) and (19-8),

∂Prob(y > 0 | x)/∂x = [φ(x′β/σ)/σ ]β = a positive multiple of β,

∂ E[y | y > 0, x]/∂x = {[1 − δ(x′β/σ)]/σ }β = a positive multiple of β.

Thus, any variable that appears in the model affects the participation probability and the
intensity equation with the same sign. In the case suggested, for example, it is conceivable
that age might affect participation and intensity in different directions. Fin and Schmidt
(1984) suggest another application, loss due to fire in buildings; older buildings might be
more likely to have fires but, because of the greater value of newer buildings, the actual
damage might be greater in newer buildings. This fact would require the coefficient on
age to have different signs in the two functions, which is impossible in the tobit model
because they are the same coefficient.

In an early study in this literature, Cragg (1971) proposed a somewhat more general
model in which the probability of a limit observation is independent of the regression
model for the nonlimit data. One can imagine, for instance, the decision of whether or
not to purchase a car as being different from the decision of how much to spend on the
car, having decided to buy one.

A more general model that accommodates these objections is as follows:

1. Participation equation

Prob[y∗
i > 0] = �(x′

iγ ), di = 1 if y∗
i > 0,

Prob[y∗
i ≤ 0] = 1 − �(x′

iγ ), di = 0 if y∗
i ≤ 0.

(19-15)

2. Intensity equation for nonlimit observations

E[yi | di = 1] = x′
iβ + σλi ,
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according to Theorem 19.2. This two-part model is a combination of the truncated re-
gression model of Section 19.2 and the univariate probit model of Section 17.3, which
suggests a method of analyzing it. Note that it is precisely the same approach we con-
sidered in Section 18.4.8 and Example 18.12 where we used a hurdle model to model
doctor visits. The tobit model returns if γ = β/σ . The parameters of the regression (in-
tensity) equation can be estimated independently using the truncated regression model
of Section 19.2. An application is Melenberg and van Soest (1996).

Lin and Schmidt (1984) considered testing the restriction of the tobit model. Based
only on the tobit model, they devised a Lagrange multiplier statistic that, although a
bit cumbersome algebraically, can be computed without great difficulty. If one is able
to estimate the truncated regression model, the tobit model, and the probit model
separately, then there is a simpler way to test the hypothesis. The tobit log-likelihood
is the sum of the log-likelihoods for the truncated regression and probit models. To
show this result, add and subtract

∑
yi =1 ln �(x′

iβ) in (19-13). This produces the log-
likelihood for the truncated regression model (considered in the exercises) plus (17-20)
for the probit model. Therefore, a likelihood ratio statistic can be computed using

λ = −2[ln LT − (ln LP + ln LTR)],

where

LT = likelihood for the tobit model in (19-13), with the same coefficients

LP = likelihood for the probit model in (17-17), fit separately

LTR = likelihood for the truncated regression model, fit separately

The two-part model just considered extends the tobit model, but it stops a bit short
of the generality we might achieve. In the preceding hurdle model, we have assumed
that the same regressors appear in both equations. Although this produces a convenient
way to retreat to the tobit model as a parametric restriction, it couples the two decisions
perhaps unreasonably. In our example to follow, where we model extramarital affairs,
the decision whether or not to spend any time in an affair may well be an entirely
different decision from how much time to spend having once made that commitment.
The obvious way to proceed is to reformulate the hurdle model as

1. Participation equation

Prob[d∗
i > 0] = �(z′

iγ ), di = 1 if d∗
i > 0,

Prob[d∗
i ≤ 0] = 1 − �(z′

iγ ), di = 0 if d∗
i ≤ 0. (19-16)

2. Intensity equation for nonlimit observations

E[yi | di = 1] = x′
iβ + σλi .

This extension, however, omits an important element; it seems unlikely that the two
decisions would be uncorrelated; that is, the implicit disturbances in the equations should
be correlated. The combination of these produces what has been labeled a type-II tobit
model. [Amemiya (1985) identified five possible permutations of the model specification
and observation mechanism. The familiar tobit model is type I; this is type-II.] The full
model is
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1. Participation equation

d∗
i = z′

iγ + ui , ui ∼ N[0, 1]

di = 1 if d∗
i > 0, 0 otherwise.

2. Intensity equation

y∗
i = x′

iβ + εi , εi ∼ N[0, σ 2].

3. Observation mechanism

(a) y∗
i = 0 if di = 0 and yi = y∗

i if di = 1.

(b) yi = y∗
i if di = 1 and yi is unobserved if di = 0.

4. Endogeneity

(ui , εi ) ∼ bivariate normal with correlation ρ.

Mechanism (a) produces Amemiya’s type II model. (Amemiya blends these two in-
terpretations. In the statement of the model, he presents (a), but in the subsequent
discussion, assumes (b). The difference is substantive if xi is observed in case (b). Oth-
erwise, they are the same, and “yi = 0” is not actually meaningful. Amemiya notes,
“y∗

i = 0 merely signifies the event d∗
i ≤ 0.” If xi is observed when di = 0, then these ob-

servations will contribute to the likelihood for the full sample. If not, then they will not.
We will develop this idea later when we consider Heckman’s selection model [which is
case (b) without observed xi when di = 0].

There are two estimation strategies that can be used to fit the type II model. A two-
step method can proceed as follows: The probit model for di can be estimated using
maximum likelihood as shown in Section 17.3. For the second step, we make use of our
theorems on truncation (and Theorem 19.5 that will appear later) to write

E[yi | di = 1, xi , zi ] = x′
iβ + E[εi | di = 1, xi , zi ]

= x′
iβ + ρσ

φ(z′
iγ )

�(z′
iγ )

(19-17)

= x′
iβ + ρσλi .

Since we have estimated γ at step 1, we can compute λ̂i = φ(z′
i γ̂ )/�(z′

i γ̂ ) using the
first-step estimates, and we can estimate β and θ = (ρσ) by least squares regression of
yi on xi and λ̂i . It will be necessary to correct the asymptotic covariance matrix that
is computed for (β̂, θ̂ ). This is a template application of the Murphy and Topel (2002)
results that appear in Section 14.7. The second approach is full information maximum
likelihood, estimating all the parameters in both equations simultaneously. We will
return to the details of estimation of the type II tobit model in Section 19.5 where
we examine Heckman’s model of “sample selection” model (which is the type II tobit
model).

Many of the applications of the tobit model in the received literature are con-
structed not to accommodate censoring of the underlying data, but, rather, to model
the appearance of a large cluster of zeros. Cragg’s application is clearly related to this
phenomenon. Consider, for example, survey data on purchases of consumer durables,
firm expenditure on research and development, or consumer savings. In each case, the
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FIGURE 19.5 Hypothetical Spending Data.

observed data will consist of zero or some positive amount. Arguably, there are two
decisions at work in these scenarios: First, whether to engage in the activity or not, and
second, given that the answer to the first question is yes, how intensively to engage in
it—how much to spend, for example. This is precisely the motivation behind the hurdle
model. This specification has been labeled a “corner solution model”; see Wooldridge
(2002a, pp. 518–519).

In practical terms, the difference between the hurdle model and the tobit model
should be evident in the data. Often overlooked in tobit analyses is that the model
predicts not only a cluster of zeros (or limit observations), but also a grouping of obser-
vations near zero (or the limit point). For example, the tobit model is surely misspec-
ified for the sort of (hypothetical) spending data shown in Figure 19.5 for a sample of
1,000 observations. Neglecting for the moment the earlier point about the underlying
decision process, Figure 19.6 shows the characteristic appearance of a (substantively)
censored variable. The implication for the model builder is that an appropriate speci-
fication would consist of two equations, one for the “participation decision,” and one
for the distribution of the positive dependent variable. Formally, we might, continuing
the development of Cragg’s specification, model the first decision with a binary choice
(e.g., probit or logit model). The second equation is a model for y | y > 0, for which
the truncated regression model of Section 19.2.3 is a natural candidate. As we will
see, this is essentially the model behind the sample selection treatment developed in
Section 19.5.

Two practical issues frequently intervene at this point. First, one might well have
a model in mind for the intensity (regression) equation, but none for the participation
equation. This is the usual backdrop for the uses of the tobit model, which produces the
considerations in the previous section. The second issue concerns the appropriateness
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FIGURE 19.6 Hypothetical Censored Data.

of the truncation or censoring model to data such as those in Figure 19.6. If we consider
only the nonlimit observations in Figure 19.5, the underlying distribution does not
appear to be truncated at all. The truncated regression model in Section 19.2.3 fit to these
data will not depart significantly from ordinary least squares [because the underlying
probability in the denominator of (19-6) will equal one and the numerator will equal
zero]. But, this is not the case of a tobit model forced on these same data. Forcing
the model in (19-13) on data such as these will significantly distort the estimator—all
else equal, it will significantly attenuate the coefficients, the more so the larger is the
proportion of limit observations in the sample. Once again, this stands as a caveat for
the model builder. The tobit model is manifestly misspecified for data such as those in
Figure 19.5.

Example 19.6 Two-Part Model for Extramarital Affairs
In Example 18.9, we examined Fair’s (1977) Psychology Today survey data on extramarital
affairs. The 601 observations in the data set are mostly zero—451 of the 601. This feature
of the data motivated the author to use a tobit model to analyze these data. In our example,
we reconsidered the model, since the nonzero observations were a count, not a continuous
variable. Another data set in Fair’s study was the Redbook Magazine survey of 6,366 married
women. Once again, the outcome variable of interest was extramarital affairs. However, in
this instance, the outcome data were transformed to a measure of time spent, which, being
continuous, lends itself more naturally to the tobit model we are studying here. The variables
in the data set are as follows (excluding three unidentified and not used):

id = Identification number
C = Constant, value = 1
yrb = Constructed measure of time spent in extramarital affairs
v1 = Rating of the marriage, coded 1 to 4
v2 = Age, in years, aggregated
v3 = Number of years married
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TABLE 19.3 Estimated Censored Regression Models (t-ratios in parentheses)

Model

Linear Truncated Hurdle Hurdle
OLS Tobit Regression Probit Tobit/σ Participation Intensity

Constant 3.62346 7.83653 8.89449 2.21010 1.74189 1.56419 4.84602
(13.63) (10.98) (2.90) (12.60) (17.75) (5.87)

RateMarr −0.42053 −1.53071 −0.44303 −0.42874 −0.34024 −0.42582 −0.24603
(−14.79) (−20.85) (−1.45) (−23.40) (−23.61) (−.46)

Age −0.01457 −0.10514 −0.22394 −0.03542 −0.02337 −0.01903
(−1.59) (−4.24) (−1.83) (−5.87) (−.77)

YrsMarr −0.01599 0.12829 −0.94437 0.06563 0.02852 −0.16822
(−1.62) ( 4.86) (−7.27) (10.18) (−6.52)

NumKids −0.01705 −0.02777 −0.02280 −0.00394 −0.00617 0.14024 −0.28365
(−.57) (−0.36) (−0.06) (−0.21) (11.55) (−1.49)

Religious −0.24374 −0.94350 −0.50490 −0.22281 −0.20972 −0.21466 −0.05452
(−7.83) (−11.11) (−1.29) (−10.88) (−10.64) (−0.19)

Education −0.01743 −0.08598 −0.06406 −0.02373 −0.01911 0.00338
(−1.24) (−2.28) (−0.38) (−2.60) (0.09)

Wife Occ. 0.06577 0.31284 0.00805 0.09539 0.06954 0.01505
(2.10) (3.82) (0.02) (4.75) (0.19)

Hus. Occ. 0.00405 0.01421 −0.09946 0.00659 0.00316 −0.02911
(0.19) (0.26) (−0.41) (0.49) (−0.53)

σ 2.14351 4.49887 5.46846 3.43748
ln L R2 = 0.05479 −7804.38 −3463.71 −3469.58

v4 = Number of children, top coded at 5
v5 = Religiosity, 1 to 4, 1 = not, 4 = very
v6 = Education, coded 9, 12, 14, 16, 17, 20
v7 = Wife’s Occupation—Hollingshead scale
v8 = Husband’s occupation—Hollingshead scale

This is a cross section of 6,366 observations with 4,313 zeros and 2,053 positive values.
Table 19.3 presents estimates of various models for yrb. The leftmost column presents

the OLS estimates. The least squares estimator is inconsistent in this model. The empirical
regularity that the OLS estimator appears to be biased toward zero, the more so is the smaller
the proportion of limit observations. Here, the ratio, based on the tobit estimates in the second
column, appears to be about 4 or 5 to 1. Likewise, the OLS estimator of σ appears to be
greatly underestimated. This would be expected, as the OLS estimator is treating the limit
observations, which have no variation in the dependent variable, as if they were nonlimit
observations. The third set of results is the truncated regression estimator. In principle, the
truncated regression estimator is also consistent. However, it will be less efficient as it is
based on less information. In our example, this estimator seems to be quite erratic, again
compared to the tobit estimator. Note, for example, the coefficient on years married, which,
although it is “significant” in both cases, changes sign. The t ratio on Religiousness falls from
−11.11 to −1.29 in the truncation model. The probit estimator based on yrb > 0 appears
next. As a rough check on the corner solution aspect of our model, we would expect the
normalized tobit coefficients (β/σ ) to approximate the probit coefficients, which they appear
to. However, the likelihood ratio statistic for testing the internal consistency based on the
three estimated models is 2[7804.38 − 3463.71 − 3469.58] = 1742.18 with nine degrees of
freedom. The hypothesis of parameter constancy implied by the tobit model is rejected. The
last two sets of results are for a hurdle model in which the intensity equation is fit by the
two-step method.
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19.3.5 SOME ISSUES IN SPECIFICATION

Two issues that commonly arise in microeconomic data, heteroscedasticity and nonnor-
mality, have been analyzed at length in the tobit setting.12

19.3.5.a Heteroscedasticity

Maddala and Nelson (1975), Hurd (1979), Arabmazar and Schmidt (1982a,b), and
Brown and Moffitt (1982) all have varying degrees of pessimism regarding how in-
consistent the maximum likelihood estimator will be when heteroscedasticity occurs.
Not surprisingly, the degree of censoring is the primary determinant. Unfortunately, all
the analyses have been carried out in the setting of very specific models—for example,
involving only a single dummy variable or one with groupwise heteroscedasticity—so
the primary lesson is the very general conclusion that heteroscedasticity emerges as an
obviously serious problem.

One can approach the heteroscedasticity problem directly. Petersen and Waldman
(1981) present the computations needed to estimate a tobit model with heteroscedastic-
ity of several types. Replacing σ with σi in the log-likelihood function and including σ 2

i
in the summations produces the needed generality. Specification of a particular model
for σi provides the empirical model for estimation.

Example 19.7 Multiplicative Heteroscedasticity in the Tobit Model
Petersen and Waldman (1981) analyzed the volume of short interest in a cross section of
common stocks. The regressors included a measure of the market component of heteroge-
neous expectations as measured by the firm’s BETA coefficient; a company-specific measure
of heterogeneous expectations, NONMARKET; the NUMBER of analysts making earnings
forecasts for the company; the number of common shares to be issued for the acquisition
of another firm, MERGER; and a dummy variable for the existence of OPTIONs. They report
the results listed in Table 19.4 for a model in which the variance is assumed to be of the form
σ 2

i = exp(x′
i α) . The values in parentheses are the ratio of the coefficient to the estimated

asymptotic standard error.
The effect of heteroscedasticity on the estimates is extremely large. We do note, however,

a common misconception in the literature. The change in the coefficients is often misleading.
The marginal effects in the heteroscedasticity model will generally be very similar to those
computed from the model which assumes homoscedasticity. (The calculation is pursued in
the exercises.)

A test of the hypothesis that α = 0 (except for the constant term) can be based on the
likelihood ratio statistic. For these results, the statistic is −2[−547.3 − (−466.27) ] = 162.06.
This statistic has a limiting chi-squared distribution with five degrees of freedom. The sample
value exceeds the critical value in the table of 11.07, so the hypothesis can be rejected.

In the preceding example, we carried out a likelihood ratio test against the hypoth-
esis of homoscedasticity. It would be desirable to be able to carry out the test without
having to estimate the unrestricted model. A Lagrange multiplier test can be used for

12Two symposia that contain numerous results on these subjects are Blundell (1987) and Duncan (1986b).
An application that explores these two issues in detail is Melenberg and van Soest (1996). Developing speci-
fication tests for the tobit model has been a popular enterprise. A sampling of the received literature includes
Nelson (1981); Bera, Jarque, and Lee (1982); Chesher and Irish (1987); Chesher, Lancaster, and Irish (1985);
Gourieroux et al. (1984, 1987); Newey (1986); Rivers andVuong (1988); Horowitz and Neumann (1989); and
Pagan and Vella (1989). Newey (1985a,b) are useful references on the general subject of conditional moment
testing. More general treatments of specification testing are Godfrey (1988) and Ruud (1984).
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TABLE 19.4 Estimates of a Tobit Model (standard errors
in parentheses)

Homoscedastic Heteroscedastic

β β α

Constant −18.28 (5.10) −4.11 (3.28) −0.47 (0.60)
Beta 10.97 (3.61) 2.22 (2.00) 1.20 (1.81)
Nonmarket 0.65 (7.41) 0.12 (1.90) 0.08 (7.55)
Number 0.75 (5.74) 0.33 (4.50) 0.15 (4.58)
Merger 0.50 (5.90) 0.24 (3.00) 0.06 (4.17)
Option 2.56 (1.51) 2.96 (2.99) 0.83 (1.70)
ln L −547.30 −466.27
Sample size 200 200

that purpose. Consider the heteroscedastic tobit model in which we specify that

σ 2
i = σ 2[exp(w′

iα)]2. (19-18)

This model is a fairly general specification that includes many familiar ones as special
cases. The null hypothesis of homoscedasticity is α = 0. (We used this specification in the
probit model in Section 17.3.7 and in the linear regression model in Section 9.7.1) Using
the BHHH estimator of the Hessian as usual, we can produce a Lagrange multiplier
statistic as follows: Let zi = 1 if yi is positive and 0 otherwise,

ai = zi

(
εi

σ 2

)
+ (1 − zi )

(
(−1)λi

σ

)
,

bi = zi

((
ε2

i /σ
2 − 1

)
2σ 2

)
+ (1 − zi )

(
(x′

iβ)λi

2σ 3

)
, (19-19)

λi = φ(x′
iβ/σ)

1 − �(x′
iβ/σ)

.

The data vector is gi = [ai x′
i , bi , bi w′

i ]
′. The sums are taken over all observations, and

all functions involving unknown parameters (εi , φi , �i , x′
iβ, σ, λi ) are evaluated at the

restricted (homoscedastic) maximum likelihood estimates. Then,

LM = i′G[G′G]−1G′i = nR2 (19-20)

in the regression of a column of ones on the K + 1 + P derivatives of the log-likelihood
function for the model with multiplicative heteroscedasticity, evaluated at the estimates
from the restricted model. (If there were no limit observations, then it would reduce to
the Breusch–Pagan statistic discussed in Section 9.5.2.) Given the maximum likelihood
estimates of the tobit model coefficients, it is quite simple to compute. The statistic
has a limiting chi-squared distribution with degrees of freedom equal to the number of
variables in wi .

19.3.5.b Nonnormality

Nonnormality is an especially difficult problem in this setting. It has been shown that
if the underlying disturbances are not normally distributed, then the estimator based
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on (19-13) is inconsistent. Research is ongoing both on alternative estimators and on
methods for testing for this type of misspecification.13

One approach to the estimation is to use an alternative distribution. Kalbfleisch and
Prentice (2002) present a unifying treatment that includes several distributions such as
the exponential, lognormal, and Weibull. (Their primary focus is on survival analysis
in a medical statistics setting, which is an interesting convergence of the techniques in
very different disciplines.) Of course, assuming some other specific distribution does not
necessarily solve the problem and may make it worse. A preferable alternative would
be to devise an estimator that is robust to changes in the distribution. Powell’s (1981,
1984) least absolute deviations (LAD) estimator appears to offer some promise.14 The
main drawback to its use is its computational complexity. An extensive application of
the LAD estimator is Melenberg and van Soest (1996). Although estimation in the
nonnormal case is relatively difficult, testing for this failure of the model is worthwhile
to assess the estimates obtained by the conventional methods. Among the tests that
have been developed are Hausman tests, Lagrange multiplier tests [Bera and Jarque
(1981, 1982), Bera, Jarque, and Lee (1982)], and conditional moment tests [Nelson
(1981)].

19.3.6 PANEL DATA APPLICATIONS

Extension of the familiar panel data results to the tobit model parallel the probit model,
with the attendant problems. The random effects or random parameters models dis-
cussed in Chapter 17 can be adapted to the censored regression model using simulation
or quadrature. The same reservations with respect to the orthogonality of the effects and
the regressors will apply here, as will the applicability of the Mundlak (1978) correction
to accommodate it.

Most of the attention in the theoretical literature on panel data methods for the tobit
model has been focused on fixed effects. The departure point would be the maximum
likelihood estimator for the static fixed effects model,

y∗
it = αi + x′

itβ + εit, εit ∼ N[0, σ 2],

yit = Max(0, yit).

However, there are no firm theoretical results on the behavior of the MLE in this
model. Intuition might suggest, based on the findings for the binary probit model, that
the MLE would be biased in the same fashion, away from zero. Perhaps surprisingly, the
results in Greene (2004) persistently found that not to be the case in a variety of model
specifications. Rather, the incidental parameters, such as it is, manifests in a downward
bias in the estimator of σ , not an upward (or downward) bias in the MLE of β. However,
this is less surprising when the tobit estimator is juxtaposed with the MLE in the linear
regression model with fixed effects. In that model, the MLE is the within-groups (LSDV)
estimator which is unbiased and consistent. But, the ML estimator of the disturbance
variance in the linear regression model is e′

LSDVeLSDV/(nT ), which is biased downward

13See Duncan (1983, 1986b), Goldberger (1983), Pagan and Vella (1989), Lee (1996), and Fernandez (1986).
14See Duncan (1986a,b) for a symposium on the subject and Amemiya (1984). Additional references are
Newey, Powell, and Walker (1990); Lee (1996); and Robinson (1988).
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by a factor of (T −1)/T. [This is the result found in the original source on the incidental
parameters problem, Neyman and Scott (1948).] So, what evidence there is suggests
that unconditional estimation of the tobit model behaves essentially like that for the
linear regression model. That does not settle the problem, however; if the evidence is
correct, then it implies that although consistent estimation of β is possible, appropriate
statistical inference is not. The bias in the estimation of σ shows up in any estimator of
the asymptotic covariance of the MLE of β.

Unfortunately, there is no conditional estimator of β for the tobit (or truncated re-
gression) model. First differencing or taking group mean deviations does not preserve
the model. Because the latent variable is censored before observation, these transforma-
tions are not meaningful. Some progress has been made on theoretical, semiparametric
estimators for this model. See, for example, Honorè and Kyriazidou (2000) for a survey.
Much of the theoretical development has also been directed at dynamic models where
the benign result of the previous paragraph (such as it is) is lost once again. Arellano
(2001) contains some general results. Hahn and Kuersteiner (2004) have characterized
the bias of the MLE, and suggested methods of reducing the bias of the estimators in
dynamic binary choice and censored regression models.

19.4 MODELS FOR DURATION

The leading application of the censoring models we examined in Section 19.3 is models
for durations and events. We consider the time until some kind of transition as the
duration, and the transition, itself, as the event. The length of a spell of unemployment
(until rehire or exit from the market), the duration of a strike, the amount of time until
a patient ends a health-related spell in connection with a disease or operation, and the
length of time between origination and termination (via prepayment, default, or some
other mechanism) of a mortgage are all examples of durations and transitions. The
role that censoring plays in these scenarios is that in almost all cases in which we as
analysts study duration data, some or even many of the spells we observe do not end
in transitions. For example, in studying the lengths of unemployment spells, many of
the individuals in the sample may still be unemployed at the time the study ends—the
analyst observes (or believes) that the spell will end some time after the observation
window closes. These data on spell lengths are, by construction, censored. Models of
duration will generally account explicitly for censoring of the duration data.

This section is concerned with models of duration. In some aspects, the regression-
like models we have studied, such as the discrete choice models, are the appropriate
tools. As in the previous two chapters, however, the models are nonlinear, and the famil-
iar regression methods are not appropriate. Most of this analysis focuses on maximum
likelihood estimators. In modeling duration, although an underlying regression model
is, in fact, at work, it is generally not the conditional mean function that is of interest.
More likely, as we will explore next, the objects of estimation are certain probabilities
of events, for example in the conditional probability of a transition in a given interval
given that the spell has lasted up to the point of interest. These are known as “hazard
models”—the probability is labeled the hazard function—and are a central focus of this
type of analysis.
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19.4.1 MODELS FOR DURATION DATA15

Intuition might suggest that the longer a strike persists, the more likely it is that it will
end within, say, the next week. Or is it? It seems equally plausible to suggest that the
longer a strike has lasted, the more difficult must be the problems that led to it in the
first place, and hence the less likely it is that it will end in the next short time interval.
A similar kind of reasoning could be applied to spells of unemployment or the interval
between conceptions. In each of these cases, it is not only the duration of the event, per
se, that is interesting, but also the likelihood that the event will end in “the next period”
given that it has lasted as long as it has.

Analysis of the length of time until failure has interested engineers for decades.
For example, the models discussed in this section were applied to the durability of
electric and electronic components long before economists discovered their usefulness.
Likewise, the analysis of survival times—for example, the length of survival after the
onset of a disease or after an operation such as a heart transplant—has long been a
staple of biomedical research. Social scientists have recently applied the same body of
techniques to strike duration, length of unemployment spells, intervals between con-
ception, time until business failure, length of time between arrests, length of time from
purchase until a warranty claim is made, intervals between purchases, and so on.

This section will give a brief introduction to the econometric analysis of duration
data. As usual, we will restrict our attention to a few straightforward, relatively uncom-
plicated techniques and applications, primarily to introduce terms and concepts. The
reader can then wade into the literature to find the extensions and variations. We will
concentrate primarily on what are known as parametric models. These apply familiar
inference techniques and provide a convenient departure point. Alternative approaches
are considered at the end of the discussion.

19.4.2 DURATION DATA

The variable of interest in the analysis of duration is the length of time that elapses
from the beginning of some event either until its end or until the measurement is taken,
which may precede termination. Observations will typically consist of a cross section of
durations, t1, t2, . . . , tn. The process being observed may have begun at different points
in calendar time for the different individuals in the sample. For example, the strike
duration data examined in Example 19.8 are drawn from nine different years.

Censoring is a pervasive and usually unavoidable problem in the analysis of du-
ration data. The common cause is that the measurement is made while the process is
ongoing. An obvious example can be drawn from medical research. Consider analyzing
the survival times of heart transplant patients. Although the beginning times may be
known with precision, at the time of the measurement, observations on any individuals
who are still alive are necessarily censored. Likewise, samples of spells of unemployment
drawn from surveys will probably include some individuals who are still unemployed at
the time the survey is taken. For these individuals, duration, or survival, is at least the

15There are a large number of highly technical articles on this topic, but relatively few accessible sources for
the uninitiated. A particularly useful introductory survey is Kiefer (1988), upon which we have drawn heavily
for this section. Other useful sources are Kalbfleisch and Prentice (2002), Heckman and Singer (1984a),
Lancaster (1990), Florens, Fougere, and Mouchart (1996) and Cameron and Trivedi (2005, Chapters 17–19).
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observed ti , but not equal to it. Estimation must account for the censored nature of the
data for the same reasons as considered in Section 19.3. The consequences of ignoring
censoring in duration data are similar to those that arise in regression analysis.

In a conventional regression model that characterizes the conditional mean and
variance of a distribution, the regressors can be taken as fixed characteristics at the
point in time or for the individual for which the measurement is taken. When measuring
duration, the observation is implicitly on a process that has been under way for an
interval of time from zero to t. If the analysis is conditioned on a set of covariates (the
counterparts to regressors) xt , then the duration is implicitly a function of the entire
time path of the variable x(t), t = (0, t), which may have changed during the interval.
For example, the observed duration of employment in a job may be a function of the
individual’s rank in the firm. But their rank may have changed several times between
the time they were hired and when the observation was made. As such, observed rank
at the end of the job tenure is not necessarily a complete description of the individual’s
rank while they were employed. Likewise, marital status, family size, and amount of
education are all variables that can change during the duration of unemployment and
that one would like to account for in the duration model. The treatment of time-varying
covariates is a considerable complication.16

19.4.3 A REGRESSION-LIKE APPROACH: PARAMETRIC
MODELS OF DURATION

We will use the term spell as a catchall for the different duration variables we might
measure. Spell length is represented by the random variable T. A simple approach to
duration analysis would be to apply regression analysis to the sample of observed spells.
By this device, we could characterize the expected duration, perhaps conditioned on
a set of covariates whose values were measured at the end of the period. We could
also assume that conditioned on an x that has remained fixed from T = 0 to T = t, t
has a normal distribution, as we commonly do in regression. We could then characterize
the probability distribution of observed duration times. But, normality turns out not to
be particularly attractive in this setting for a number of reasons, not least of which is
that duration is positive by construction, while a normally distributed variable can take
negative values. (lognormality turns out to be a palatable alternative, but it is only one
among a long list of candidates.)

19.4.3.a Theoretical Background

Suppose that the random variable T has a continuous probability distribution f (t),
where t is a realization of T. The cumulative probability is

F(t) =
∫ t

0
f (s) ds = Prob(T ≤ t).

We will usually be more interested in the probability that the spell is of length at least
t, which is given by the survival function,

S(t) = 1 − F(t) = Prob(T ≥ t).

16See Petersen (1986) for one approach to this problem.
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Consider the question raised in the introduction: Given that the spell has lasted until
time t , what is the probability that it will end in the next short interval of time, say, �t?
It is

l(t, �t) = Prob(t ≤ T ≤ t + �t | T ≥ t).

A useful function for characterizing this aspect of the distribution is the hazard rate,

λ(t) = lim
�t→0

Prob(t ≤ T ≤ t + �t | T ≥ t)
�t

= lim
�t→0

F(t + �t) − F(t)
�t S(t)

= f (t)
S(t)

.

Roughly, the hazard rate is the rate at which spells are completed after duration t , given
that they last at least until t . As such, the hazard function gives an answer to our original
question.

The hazard function, the density, the CDF, and the survival function are all related.
The hazard function is

λ(t) = −d ln S(t)
dt

,

so

f (t) = S(t)λ(t).

Another useful function is the integrated hazard function

�(t) =
∫ t

0
λ(s) ds,

for which

S(t) = e−�(t),

so

�(t) = −ln S(t).

The integrated hazard function is generalized residual in this setting. [See Chesher and
Irish (1987) and Example 19.8.]

19.4.3.b Models of the Hazard Function

For present purposes, the hazard function is more interesting than the survival rate
or the density. Based on the previous results, one might consider modeling the hazard
function itself, rather than, say, modeling the survival function and then obtaining the
density and the hazard. For example, the base case for many analyses is a hazard rate
that does not vary over time. That is, λ(t) is a constant λ. This is characteristic of a
process that has no memory; the conditional probability of “failure” in a given short
interval is the same regardless of when the observation is made. Thus,

λ(t) = λ.

From the earlier definition, we obtain the simple differential equation,

−d ln S(t)
dt

= λ.

The solution is

ln S(t) = k − λt,
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or

S(t) = Ke−λt ,

where K is the constant of integration. The terminal condition that S(0) = 1 implies
that K = 1, and the solution is

S(t) = e−λt .

This solution is the exponential distribution, which has been used to model the time
until failure of electronic components. Estimation of λ is simple, because with an expo-
nential distribution, E [t] = 1/λ. The maximum likelihood estimator of λ would be the
reciprocal of the sample mean.

A natural extension might be to model the hazard rate as a linear function, λ(t) =
α + βt . Then �(t) = αt + 1

2βt2 and f (t) = λ(t)S(t) = λ(t) exp[−�(t)]. To avoid a
negative hazard function, one might depart from λ(t) = exp[g(t, θ)], where θ is a vector
of parameters to be estimated. With an observed sample of durations, estimation of
α and β is, at least in principle, a straightforward problem in maximum likelihood.
[Kennan (1985) used a similar approach.]

A distribution whose hazard function slopes upward is said to have positive duration
dependence. For such distributions, the likelihood of failure at time t , conditional upon
duration up to time t , is increasing in t . The opposite case is that of decreasing hazard
or negative duration dependence. Our question in the introduction about whether the
strike is more or less likely to end at time t given that it has lasted until time t can be
framed in terms of positive or negative duration dependence. The assumed distribution
has a considerable bearing on the answer. If one is unsure at the outset of the analysis
whether the data can be characterized by positive or negative duration dependence,
then it is counterproductive to assume a distribution that displays one characteristic
or the other over the entire range of t . Thus, the exponential distribution and our sug-
gested extension could be problematic. The literature contains a cornucopia of choices
for duration models: normal, inverse normal [inverse Gaussian; see Lancaster (1990)],
lognormal, F , gamma, Weibull (which is a popular choice), and many others.17 To il-
lustrate the differences, we will examine a few of the simpler ones. Table 19.5 lists the
hazard functions and survival functions for four commonly used distributions. Each in-
volves two parameters, a location parameter λ, and a scale parameter, p. [Note that in
the benchmark case of the exponential distribution, λ is the hazard function. In all other
cases, the hazard function is a function of λ, p, and, where there is duration dependence,
t as well. Different authors, for example, Kiefer (1988), use different parameterizations
of these models. We follow the convention of Kalbfleisch and Prentice (2002).]

All these are distributions for a nonnegative random variable. Their hazard func-
tions display very different behaviors, as can be seen in Figure 19.7. The hazard function
for the exponential distribution is constant, that for the Weibull is monotonically in-
creasing or decreasing depending on p, and the hazards for lognormal and loglogistic
distributions first increase and then decrease. Which among these or the many alterna-
tives is likely to be best in any application is uncertain.

17Three sources that contain numerous specifications are Kalbfleisch and Prentice (2002), Cox and Oakes
(1985), and Lancaster (1990).
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TABLE 19.5 Survival Distributions

Distribution Hazard Function, λ(t) Survival Function, S(t)

Exponential λ, S(t) = e−λt

Weibull λp(λt)p−1, S(t) = e−(λt)p

Lognormal f (t) = (p/t)φ[p ln(λt)] S(t) = �[−p ln(λt)]
[ln t is normally distributed with mean −ln λ and standard deviation 1/p.]

Loglogistic λ(t) = λp(λt)p−1/[1 + (λt)p], S(t) = 1/[1 + (λt)p]
[ln t has a logistic distribution with mean −ln λ and variance π2/(3p2).]
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FIGURE 19.7 Parametric Hazard Functions.

19.4.3.c Maximum Likelihood Estimation

The parameters λ and p of these models can be estimated by maximum likelihood.
For observed duration data, t1, t2, . . . , tn, the log-likelihood function can be formulated
and maximized in the ways we have become familiar with in earlier chapters. Censored
observations can be incorporated as in Section 19.3 for the tobit model. [See (19-13).]
As such,

ln L(θ) =
∑

uncensored
observations

ln f (t | θ) +
∑

censored
observations

ln S(t | θ),

where θ = (λ, p). For some distributions, it is convenient to formulate the log-likelihood
function in terms of f (t) = λ(t)S(t) so that

ln L =
∑

uncensored
observations

ln λ(t | θ) +
∑

all
observations

ln S(t | θ).
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Inference about the parameters can be done in the usual way. Either the BHHH estima-
tor or actual second derivatives can be used to estimate asymptotic standard errors for
the estimates. The transformation w = p(ln t + ln λ) for these distributions greatly facil-
itates maximum likelihood estimation. For example, for the Weibull model, by defining
w = p(ln t + ln λ), we obtain the very simple density f (w) = exp[w − exp(w)] and sur-
vival function S(w) = exp(− exp(w)).18 Therefore, by using ln t instead of t , we greatly
simplify the log-likelihood function. Details for these and several other distributions
may be found in Kalbfleisch and Prentice (2002, pp. 68–70). The Weibull distribution is
examined in detail in the next section.

19.4.3.d Exogenous Variables

One limitation of the models given earlier is that external factors are not given a role
in the survival distribution. The addition of “covariates” to duration models is fairly
straightforward, although the interpretation of the coefficients in the model is less so.
Consider, for example, the Weibull model. (The extension to other distributions will be
similar.) Let

λi = e−x′
i β,

where xi is a constant term and a set of variables that are assumed not to change from
time T = 0 until the “failure time,” T = ti . Making λi a function of a set of regressors
is equivalent to changing the units of measurement on the time axis. For this reason,
these models are sometimes called accelerated failure time models. Note as well that
in all the models listed (and generally), the regressors do not bear on the question of
duration dependence, which is a function of p.

Let σ = 1/p and let δi = 1 if the spell is completed and δi = 0 if it is censored. As
before, let

wi = p ln(λi ti ) = (ln ti − x′
iβ)

σ
,

and denote the density and survival functions f (wi ) and S(wi ). The observed random
variable is

ln ti = σwi + x′
iβ.

The Jacobian of the transformation from wi to ln ti is dwi/d ln ti = 1/σ , so the density
and survival functions for ln ti are

f (ln ti | xi , β, σ ) = 1
σ

f
(

ln ti − x′
iβ

σ

)
, and S(ln ti | xi , β, σ ) = S

(
ln ti − x′

iβ

σ

)
.

The log-likelihood for the observed data is

ln L(β, σ | data) =
n∑

i=1

[δi ln f (ln ti | xi , β, σ ) + (1 − δi ) ln S(ln ti | xi , β, σ )].

18The transformation is exp(w) = (λt)p so t = (1/λ)[exp(w)]1/p. The Jacobian of the transformation is
dt/dw = [exp(w)]1/p/(λp). The density in Table 19.5 is λp[exp(w)]−(1/p)−1[exp(− exp(w))]. Multiplying by
the Jacobian produces the result, f (w) = exp[w − exp(w)]. The survival function is the antiderivative,
[exp(− exp(w))].
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For the Weibull model, for example (see footnote 18),

f (wi ) = exp(wi − ewi ),

and

S(wi ) = exp(−ewi ).

Making the transformation to ln ti and collecting terms reduces the log-likelihood to

ln L(β, σ | data) =
∑

i

[
δi

(
ln ti − x′

iβ

σ
− ln σ

)
− exp

(
ln ti − x′

iβ

σ

)]
.

(Many other distributions, including the others in Table 19.5, simplify in the same way.
The exponential model is obtained by settingσ to one.) The derivatives can be equated to
zero using the methods described in Section E.3. The individual terms can also be used to
form the BHHH estimator of the asymptotic covariance matrix for the estimator.19 The
Hessian is also simple to derive, so Newton’s method could be used instead.20

Note that the hazard function generally depends on t , p, and x. The sign of an
estimated coefficient suggests the direction of the effect of the variable on the hazard
function when the hazard is monotonic. But in those cases, such as the loglogistic, in
which the hazard is nonmonotonic, even this may be ambiguous. The magnitudes of
the effects may also be difficult to interpret in terms of the hazard function. In a few
cases, we do get a regression-like interpretation. In the Weibull and exponential models,
E [t | xi ] = exp(x′

iβ)�[(1/p) + 1], whereas for the lognormal and loglogistic models,
E [ln t | xi ] = x′

iβ. In these cases, βk is the derivative (or a multiple of the derivative)
of this conditional mean. For some other distributions, the conditional median of t
is easily obtained. Numerous cases are discussed by Kiefer (1988), Kalbfleisch and
Prentice (2002), and Lancaster (1990).

19.4.3.e Heterogeneity

The problem of heterogeneity in duration models can be viewed essentially as the result
of an incomplete specification. Individual specific covariates are intended to incorpo-
rate observation specific effects. But if the model specification is incomplete and if
systematic individual differences in the distribution remain after the observed effects
are accounted for, then inference based on the improperly specified model is likely to
be problematic. We have already encountered several settings in which the possibility
of heterogeneity mandated a change in the model specification; the fixed and random
effects regression, logit, and probit models all incorporate observation-specific effects.
Indeed, all the failures of the linear regression model discussed in the preceding chap-
ters can be interpreted as a consequence of heterogeneity arising from an incomplete
specification.

There are a number of ways of extending duration models to account for het-
erogeneity. The strictly nonparametric approach of the Kaplan–Meier estimator (see
Section 19.4.4) is largely immune to the problem, but it is also rather limited in how

19Note that the log-likelihood function has the same form as that for the tobit model in Section 19.3.2. By
just reinterpreting the nonlimit observations in a tobit setting, we can, therefore, use this framework to apply
a wide range of distributions to the tobit model. [See Greene (1995a) and references given therein.]
20See Kalbfleisch and Prentice (2002) for numerous other examples.
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much information can be culled from it. One direct approach is to model heterogeneity
in the parametric model. Suppose that we posit a survival function conditioned on the
individual specific effect vi . We treat the survival function as S(ti |vi ). Then add to that
a model for the unobserved heterogeneity f (vi ). (Note that this is a counterpart to the
incorporation of a disturbance in a regression model and follows the same procedures
that we used in the Poisson model with random effects.) Then

S(t) = Ev[S(t | v)] =
∫

v

S(t | v) f (v) dv.

The gamma distribution is frequently used for this purpose.21 Consider, for example,
using this device to incorporate heterogeneity into the Weibull model we used earlier.
As is typical, we assume that v has a gamma distribution with mean 1 and variance
θ = 1/k. Then

f (v) = kk

�(k)
e−kvvk−1,

and

S(t | v) = e−(vλt)p
.

After a bit of manipulation, we obtain the unconditional distribution,

S(t) =
∫ ∞

0
S(t | v) f (v) dv = [1 + θ(λt)p]−1/θ .

The limiting value, with θ = 0, is the Weibull survival model, so θ = 0 corresponds to
Var[v] = 0, or no heterogeneity.22 The hazard function for this model is

λ(t) = λp(λt)p−1[S(t)]θ ,

which shows the relationship to the Weibull model.
This approach is common in parametric modeling of heterogeneity. In an impor-

tant paper on this subject, Heckman and Singer (1984b) argued that this approach
tends to overparameterize the survival distribution and can lead to rather serious er-
rors in inference. They gave some dramatic examples to make the point. They also
expressed some concern that researchers tend to choose the distribution of hetero-
geneity more on the basis of mathematical convenience than on any sensible economic
basis.

19.4.4 NONPARAMETRIC AND SEMIPARAMETRIC APPROACHES

The parametric models are attractive for their simplicity. But by imposing as much
structure on the data as they do, the models may distort the estimated hazard rates.
It may be that a more accurate representation can be obtained by imposing fewer
restrictions.

21See, for example, Hausman, Hall, and Griliches (1984), who use it to incorporate heterogeneity in the
Poisson regression model. The application is developed in Section 18.4.4.
22For the strike data analyzed in Figure 19.7, the maximum likelihood estimate of θ is 0.0004, which suggests
that at least in the context of the Weibull model, latent heterogeneity does not appear to be a feature of
these data.
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The Kaplan–Meier (1958) product limit estimator is a strictly empirical, nonpara-
metric approach to survival and hazard function estimation. Assume that the obser-
vations on duration are sorted in ascending order so that t1 ≤ t2 and so on and, for
now, that no observations are censored. Suppose as well that there are K distinct sur-
vival times in the data, denoted Tk; K will equal n unless there are ties. Let nk denote
the number of individuals whose observed duration is at least Tk. The set of individ-
uals whose duration is at least Tk is called the risk set at this duration. (We borrow,
once again, from biostatistics, where the risk set is those individuals still “at risk” at
time Tk). Thus, nk is the size of the risk set at time Tk. Let hk denote the number of ob-
served spells completed at time Tk. A strictly empirical estimate of the survivor function
would be

Ŝ(Tk) =
k∏

i=1

ni − hi

ni
= ni − hi

n1
.

The estimator of the hazard rate is

λ̂(Tk) = hk

nk
. (19-21)

Corrections are necessary for observations that are censored. Lawless (1982),
Kalbfleisch and Prentice (2002), Kiefer (1988), and Greene (1995a) give details. Susin
(2001) points out a fundamental ambiguity in this calculation (one which he argues ap-
pears in the 1958 source). The estimator in (19-21) is not a “rate” as such, as the width
of the time window is undefined, and could be very different at different points in the
chain of calculations. Because many intervals, particularly those late in the observation
period, might have zeros, the failure to acknowledge these intervals should impart an
upward bias to the estimator. His proposed alternative computes the counterpart to
(19-21) over a mesh of defined intervals as follows:

λ̂
(

Ib
a

) =
∑b

j=a h j∑b
j=a n j bj

,

where the interval is from t = a to t = b, h j is the number of failures in each period in
this interval, nj is the number of individuals at risk in that period and bj is the width of
the period. Thus, an interval (a, b) is likely to include several “periods.”

Cox’s (1972) approach to the proportional hazard model is another popular, semi-
parametric method of analyzing the effect of covariates on the hazard rate. The model
specifies that

λ(ti ) = exp(x′
iβ)λ0(ti )

The function λ0 is the “baseline” hazard, which is the individual heterogeneity. In princi-
ple, this hazard is a parameter for each observation that must be estimated. Cox’s partial
likelihood estimator provides a method of estimating β without requiring estimation of
λ0. The estimator is somewhat similar to Chamberlain’s estimator for the logit model
with panel data in that a conditioning operation is used to remove the heterogeneity.
(See Section 17.4.4.) Suppose that the sample contains K distinct exit times, T1, . . . , TK.
For any time Tk, the risk set, denoted Rk, is all individuals whose exit time is at least Tk.
The risk set is defined with respect to any moment in time T as the set of individuals who
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have not yet exited just prior to that time. For every individual i in risk set Rk, ti ≥ Tk.
The probability that an individual exits at time Tk given that exactly one individual exits
at this time (which is the counterpart to the conditioning in the binary logit model in
Chapter 17) is

Prob[ti = Tk | risk setk] = ex′
i β∑

j∈Rk
ex′

j β
.

Thus, the conditioning sweeps out the baseline hazard functions. For the simplest case
in which exactly one individual exits at each distinct exit time and there are no censored
observations, the partial log-likelihood is

ln L =
K∑

k=1

⎡
⎣x′

kβ − ln
∑
j∈Rk

ex′
j β

⎤
⎦ .

If mk individuals exit at time Tk, then the contribution to the log-likelihood is the sum
of the terms for each of these individuals.

The proportional hazard model is a common choice for modeling durations be-
cause it is a reasonable compromise between the Kaplan–Meier estimator and the pos-
sibly excessively structured parametric models. Hausman and Han (1990) and Meyer
(1988), among others, have devised other, “semiparametric” specifications for hazard
models.

Example 19.8 Survival Models for Strike Duration
The strike duration data given in Kennan (1985, pp. 14–16) have become a familiar standard
for the demonstration of hazard models. Appendix Table F19.2 lists the durations, in days, of
62 strikes that commenced in June of the years 1968 to 1976. Each involved at least 1,000
workers and began at the expiration or reopening of a contract. Kennan reported the actual
duration. In his survey, Kiefer (1985), using the same observations, censored the data at
80 days to demonstrate the effects of censoring. We have kept the data in their original form;
the interested reader is referred to Kiefer for further analysis of the censoring problem.23

Parameter estimates for the four duration models are given in Table 19.6. The estimate
of the median of the survival distribution is obtained by solving the equation S( t) = 0.5. For
example, for the Weibull model,

S( M) = 0.5 = exp[−(λM) P ],

or

M = [( ln 2) 1/p]/λ.

For the exponential model, p = 1. For the lognormal and loglogistic models, M = 1/λ. The
delta method is then used to estimate the standard error of this function of the parameter
estimates. (See Section 4.4.4.) All these distributions are skewed to the right. As such, E [t]
is greater than the median. For the exponential and Weibull models, E [t] = [1/λ]�[(1/p) +
1]; for the normal, E [t] = (1/λ) [exp(1/p2) ]1/2. The implied hazard functions are shown in
Figure 19.7.

The variable x reported with the strike duration data is a measure of unanticipated ag-
gregate industrial production net of seasonal and trend components. It is computed as the
residual in a regression of the log of industrial production in manufacturing on time, time
squared, and monthly dummy variables. With the industrial production variable included as

23Our statistical results are nearly the same as Kiefer’s despite the censoring.
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TABLE 19.6 Estimated Duration Models (estimated standard errors
in parentheses)

λ p Median Duration

Exponential 0.02344 (0.00298) 1.00000 (0.00000) 29.571 (3.522)
Weibull 0.02439 (0.00354) 0.92083 (0.11086) 27.543 (3.997)
Loglogistic 0.04153 (0.00707) 1.33148 (0.17201) 24.079 (4.102)
Lognormal 0.04514 (0.00806) 0.77206 (0.08865) 22.152 (3.954)

a covariate, the estimated Weibull model is

−ln λ = 3.7772 − 9.3515 x, p = 1.00288,

(0.1394) (2.973) (0.1217) ,

median strike length = 27.35(3.667) days, E [t] = 39.83 days.

Note that the Weibull model is now almost identical to the exponential model ( p = 1) .
Because the hazard conditioned on x is approximately equal to λi , it follows that the hazard
function is increasing in “unexpected” industrial production. A 1 percent increase in x leads
to a 9.35 percent increase in λ, which because p ≈ 1 translates into a 9.35 percent decrease
in the median strike length or about 2.6 days. (Note that M = ln 2/λ.)

The proportional hazard model does not have a constant term. (The baseline hazard is an
individual specific constant.) The estimate of β is −9.0726, with an estimated standard error
of 3.225. This is very similar to the estimate obtained for the Weibull model.

19.5 INCIDENTAL TRUNCATION AND
SAMPLE SELECTION

The topic of sample selection, or incidental truncation, has been the subject of an
enormous recent literature, both theoretical and applied.24 This analysis combines both
of the previous topics.

Example 19.9 Incidental Truncation
In the high-income survey discussed in Example 19.2, respondents were also included in the
survey if their net worth, not including their homes, was at least $500,000. Suppose that the
survey of incomes was based only on people whose net worth was at least $500,000. This
selection is a form of truncation, but not quite the same as in Section 19.2. This selection
criterion does not necessarily exclude individuals whose incomes at the time might be quite
low. Still, one would expect that, on average, individuals with a high net worth would have a
high income as well. Thus, the average income in this subpopulation would in all likelihood
also be misleading as an indication of the income of the typical American. The data in such
a survey would be nonrandomly selected or incidentally truncated.

Econometric studies of nonrandom sampling have analyzed the deleterious effects
of sample selection on the properties of conventional estimators such as least squares;
have produced a variety of alternative estimation techniques; and, in the process, have

24A large proportion of the analysis in this framework has been in the area of labor economics. See, for
example, Vella (1998), which is an extensive survey for practitioners. The results, however, have been applied
in many other fields, including, for example, long series of stock market returns by financial economists (“sur-
vivorship bias”) and medical treatment and response in long-term studies by clinical researchers (“attrition
bias”). Some studies that comment on methodological issues are Heckman (1990), Manski (1989, 1990, 1992),
and Newey, Powell, and Walker (1990).
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yielded a rich crop of empirical models. In some cases, the analysis has led to a reinter-
pretation of earlier results.

19.5.1 INCIDENTAL TRUNCATION IN A BIVARIATE DISTRIBUTION

Suppose that y and z have a bivariate distribution with correlation ρ. We are interested
in the distribution of y given that z exceeds a particular value. Intuition suggests that if
y and z are positively correlated, then the truncation of z should push the distribution
of y to the right. As before, we are interested in (1) the form of the incidentally trun-
cated distribution and (2) the mean and variance of the incidentally truncated random
variable. Because it has dominated the empirical literature, we will focus first on the
bivariate normal distribution.

The truncated joint density of y and z is

f (y, z | z > a) = f (y, z)
Prob(z > a)

.

To obtain the incidentally truncated marginal density for y, we would then integrate z
out of this expression. The moments of the incidentally truncated normal distribution
are given in Theorem 19.5.25

THEOREM 19.5 Moments of the Incidentally Truncated Bivariate
Normal Distribution

If y and z have a bivariate normal distribution with means μy and μz, standard
deviations σy and σz, and correlation ρ, then

E [y | z > a] = μy + ρσyλ(αz),

Var[y | z > a] = σ 2
y [1 − ρ2δ(αz)],

where

αz = (a − μz)/σz, λ(αz) = φ(αz)/[1 − �(αz)], and δ(αz) = λ(αz)[λ(αz) − αz].

Note that the expressions involving z are analogous to the moments of the truncated
distribution of x given in Theorem 19.2. If the truncation is z< a, then we make the
replacement λ(αz) = −φ(αz)/�(αz).

As expected, the truncated mean is pushed in the direction of the correlation if the
truncation is from below and in the opposite direction if it is from above. In addition,
the incidental truncation reduces the variance, because both δ(α) and ρ2 are between
zero and one.

19.5.2 REGRESSION IN A MODEL OF SELECTION

To motivate a regression model that corresponds to the results in Theorem 19.5, we
consider the following example.

25Much more general forms of the result that apply to multivariate distributions are given in Johnson and
Kotz (1974). See also Maddala (1983, pp. 266–267).
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Example 19.10 A Model of Labor Supply
A simple model of female labor supply that has been examined in many studies consists of
two equations:26

1. Wage equation. The difference between a person’s market wage, what she could com-
mand in the labor market, and her reservation wage, the wage rate necessary to make
her choose to participate in the labor market, is a function of characteristics such as age
and education as well as, for example, number of children and where a person lives.

2. Hours equation. The desired number of labor hours supplied depends on the wage, home
characteristics such as whether there are small children present, marital status, and so
on.

The problem of truncation surfaces when we consider that the second equation describes
desired hours, but an actual figure is observed only if the individual is working. (In most
such studies, only a participation equation, that is, whether hours are positive or zero, is
observable.) We infer from this that the market wage exceeds the reservation wage. Thus,
the hours variable in the second equation is incidentally truncated.

To put the preceding examples in a general framework, let the equation that deter-
mines the sample selection be

z∗
i = w′

iγ + ui ,

and let the equation of primary interest be

yi = x′
iβ + εi .

The sample rule is that yi is observed only when z∗
i is greater than zero. Suppose as

well that εi and ui have a bivariate normal distribution with zero means and correlation
ρ. Then we may insert these in Theorem 19.5 to obtain the model that applies to the
observations in our sample:

E [yi | yi is observed] = E [yi | z∗
i > 0]

= E [yi | ui > −w′
iγ ]

= x′
iβ + E [εi | ui > −w′

iγ ]

= x′
iβ + ρσελi (αu)

= x′
iβ + βλλi (αu),

where αu = −w′
iγ /σu and λ(αu) = φ(w′

iγ /σu)/�(w′
iγ /σu). So,

yi | z∗
i > 0 = E [yi | z∗

i > 0] + vi

= x′
iβ + βλλi (αu) + vi .

Least squares regression using the observed data—for instance, OLS regression of hours
on its determinants, using only data for women who are working—produces inconsistent
estimates of β. Once again, we can view the problem as an omitted variable. Least
squares regression of y on x and λ would be a consistent estimator, but if λ is omitted,
then the specification error of an omitted variable is committed. Finally, note that the
second part of Theorem 19.5 implies that even if λi were observed, then least squares
would be inefficient. The disturbance vi is heteroscedastic.

26See, for example, Heckman (1976). This strand of literature begins with an exchange by Gronau (1974) and
Lewis (1974).
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The marginal effect of the regressors on yi in the observed sample consists of two
components. There is the direct effect on the mean of yi , which is β. In addition, for a
particular independent variable, if it appears in the probability that z∗

i is positive, then
it will influence yi through its presence in λi . The full effect of changes in a regressor
that appears in both xi and wi on y is

∂ E [yi | z∗
i > 0]

∂xik
= βk − γk

(
ρσε

σu

)
δi (αu),

where27

δi = λ2
i − αiλi .

Suppose that ρ is positive and E [yi ] is greater when z∗
i is positive than when it is negative.

Because 0 < δi < 1, the additional term serves to reduce the marginal effect. The change
in the probability affects the mean of yi in that the mean in the group z∗

i > 0 is higher.
The second term in the derivative compensates for this effect, leaving only the marginal
effect of a change given that z∗

i > 0 to begin with. Consider Example 19.12, and suppose
that education affects both the probability of migration and the income in either state.
If we suppose that the income of migrants is higher than that of otherwise identical
people who do not migrate, then the marginal effect of education has two parts, one
due to its influence in increasing the probability of the individual’s entering a higher-
income group and one due to its influence on income within the group. As such, the
coefficient on education in the regression overstates the marginal effect of the education
of migrants and understates it for nonmigrants. The sizes of the various parts depend
on the setting. It is quite possible that the magnitude, sign, and statistical significance of
the effect might all be different from those of the estimate of β, a point that appears
frequently to be overlooked in empirical studies.

In most cases, the selection variable z∗ is not observed. Rather, we observe only
its sign. To consider our two examples, we typically observe only whether a woman is
working or not working or whether an individual migrated or not. We can infer the sign
of z∗, but not its magnitude, from such information. Because there is no information on
the scale of z∗, the disturbance variance in the selection equation cannot be estimated.
(We encountered this problem in Chapter 17 in connection with the probit model.)
Thus, we reformulate the model as follows:

selection mechanism: z∗
i = w′

iγ + ui , zi = 1 if z∗
i > 0 and 0 otherwise;

Prob(zi = 1 | wi ) = �(w′
iγ ); and

Prob(zi = 0 | wi ) = 1 − �(w′
iγ ).

regression model: yi = x′
iβ + εi observed only if zi = 1,

(ui , εi ) ∼ bivariate normal [0, 0, 1, σε, ρ].

(19-22)

Suppose that, as in many of these studies, zi and wi are observed for a random sample
of individuals but yi is observed only when zi = 1. This model is precisely the one we

27We have reversed the sign of αu in (Theorem 19.5) because a = 0, and α = w′γ /σM is somewhat more
convenient. Also, as such, ∂λ/∂α = −δ.
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examined earlier, with

E [yi | zi = 1, xi , wi ] = x′
iβ + ρσελ(w′

iγ ).

19.5.3 TWO-STEP AND MAXIMUM LIKELIHOOD ESTIMATION

The parameters of the sample selection model can be estimated by maximum like-
lihood.28 However, Heckman’s (1979) two-step estimation procedure is usually used
instead. Heckman’s method is as follows:29

1. Estimate the probit equation by maximum likelihood to obtain estimates of γ .
For each observation in the selected sample, compute λ̂i = φ(w′

i γ̂ )/�(w′
i γ̂ ) and

δ̂i = λ̂i (λ̂i + w′
i γ̂ ).

2. Estimate β and βλ = ρσε by least squares regression of y on x and λ̂.

It is possible also to construct consistent estimators of the individual parameters ρ

and σε. At each observation, the true conditional variance of the disturbance would be

σ 2
i = σ 2

ε (1 − ρ2δi ).

The average conditional variance for the sample would converge to

plim
1
n

n∑
i=1

σ 2
i = σ 2

ε (1 − ρ2δ̄),

which is what is estimated by the least squares residual variance e′e/n. For the square
of the coefficient on λ, we have

plim b2
λ = ρ2σ 2

ε ,

whereas based on the probit results we have

plim
1
n

n∑
i=1

δ̂i = δ̄.

We can then obtain a consistent estimator of σ 2
ε using

σ̂ 2
ε = 1

n
e′e + ˆ̄δb2

λ.

Finally, an estimator of ρ2 is

ρ̂2 = b2
λ

σ̂ 2
ε

, (19-23)

which provides a complete set of estimators of the model’s parameters.30

To test hypotheses, an estimate of the asymptotic covariance matrix of [b′, bλ] is
needed. We have two problems to contend with. First, we can see in Theorem 19.5 that

28See Greene (1995a).
29Perhaps in a mimicry of the “tobit” estimator described earlier, this procedure has come to be known as
the “Heckit” estimator.
30Note that ρ̂2 is not a sample correlation and, as such, is not limited to [0, 1]. See Greene (1981) for discussion.
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the disturbance term in

(yi | zi = 1, xi , wi ) = x′
iβ + ρσελi + vi (19-24)

is heteroscedastic;

Var[vi | zi = 1, xi , wi ] = σ 2
ε (1 − ρ2δi ).

Second, there are unknown parameters in λi . Suppose that we assume for the moment
that λi and δi are known (i.e., we do not have to estimate γ ). For convenience, let
x∗

i = [xi , λi ], and let b∗ be the least squares coefficient vector in the regression of y on
x∗ in the selected data. Then, using the appropriate form of the variance of ordinary
least squares in a heteroscedastic model from Chapter 9, we would have to estimate

Var[b∗] = σ 2
ε [X′

∗X∗]−1

[
n∑

i=1

(1 − ρ2δi )x∗
i x∗′

i

]
[X′

∗X∗]−1

= σ 2
ε [X′

∗X∗]−1[X′
∗(I − ρ2)X∗][X′

∗X∗]−1,

where I − ρ2 is a diagonal matrix with (1 − ρ2δi ) on the diagonal. Without any other
complications, this result could be computed fairly easily using X, the sample estimates
of σ 2

ε and ρ2, and the assumed known values of λi and δi .
The parameters in γ do have to be estimated using the probit equation. Rewrite

(19-24) as

(yi | zi = 1, xi , wi ) = x′
iβ + βλλ̂i + vi − βλ(λ̂i − λi ).

In this form, we see that in the preceding expression we have ignored both an additional
source of variation in the compound disturbance and correlation across observations;
the same estimate of γ is used to compute λ̂i for every observation. Heckman has
shown that the earlier covariance matrix can be appropriately corrected by adding a
term inside the brackets,

Q = ρ̂2(X′
∗̂W)Est. Asy. Var[γ̂ ](W′̂X∗) = ρ̂2F̂V̂F̂ ′,

where V̂ = Est. Asy. Var[γ̂ ], the estimator of the asymptotic covariance of the probit
coefficients. Any of the estimators in (17-22) to (17-24) may be used to compute V̂. The
complete expression is31

Est. Asy. Var[b, bλ] = σ̂ 2
ε [X′

∗X∗]−1[X′
∗(I − ρ̂2̂)X∗ + Q][X′

∗X∗]−1.

The sample selection model can also be estimated by maximum likelihood. The full
log-likelihood function for the data is built up from

Prob(selection) × density | selection for observations with zi = 1,

and

Prob(nonselection) for observations with zi = 0.

31This matrix formulation is derived in Greene (1981). Note that the Murphy and Topel (1985) results for
two-step estimators given in Theorem 14.8 would apply here as well. Asymptotically, this method would give
the same answer. The Heckman formulation has become standard in the literature.
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Combining the parts produces the full log-likelihood function,

ln L =
∑
z=1

ln

[
exp

(−(1/2)ε2
i /σ

2
ε

)
σε

√
2π

�

(
ρεi/σε + w′

iγ√
1 − ρ2

)]
+

∑
z=0

[1 − ln �(w′
iγ )],

where εi = yi −x′
iβ. Note, the FIML estimator with its assumption of bivariate normality

is not less robust than the two-step estimator. because the latter also requires bivariate
normality to form the conditional mean for the regression.

Two virtues of the FIML estimator will be the greater efficiency brought by using
the likelihood function rather than the method of moments and, second, the estimation
of ρ subject to the constraint −1 < ρ < 1. (This is typically done by reparameterizing
the model in terms of the monotonic inverse hyperbolic tangent, τ = (1/2) ln [(1 +
ρ)/(1 − ρ)] = atanh(ρ). The transformed parameter, τ , is unrestricted. The inverse
transformation is ρ = [exp(2τ) − 1]/[exp(2τ) + 1] which is bounded between zero
and one.) One possible drawback (it might be argued) could be the complexity of
the likelihood function that would make estimation more difficult than the two-step
estimator. However, the MLE for the selection model appears as a built-in procedure
in modern software such as Stata and NLOGIT, and it is straightforward to implement
in Gauss and MatLab, so this might be a moot point. Surprisingly, the MLE is by far less
common than the two-step estimator in the received applications. The estimation of ρ

is the difficult part of the estimaton process (this is often the case). It is quite common
for the method of moments estimator and the FIML estimator to be very different—
our application in Example 19.11 is a case. Perhaps surprisingly so, the moment-based
estimator of ρ in (19-23) is not bounded by zero and one. [See Greene (1981).] This
would seem to recommend the MLE.

The fully parametric bivariate normality assumption of the model has been viewed
as a potential drawback. However, relatively little progress has been made on devising
informative semi- and nonparametric estimators—see, for one example, Gallant and
Nychka (1987). The obstacle here is that, ultimately, the model hangs on a parame-
terization of the correlation of the unobservables in the two equations. So, method of
moment estimators or kernel-based estimators must still incorporate this feature of a
bivariate distribution. Some results have been obtained using the method of copula
functions. [See Smith (2003, 2005) and Trivedi and Zimmer (2007).]

Example 19.11 Female Labor Supply
Examples 17.1 and 17.8 proposed a labor force participation model for a sample of 753
married women in a sample analyzed by Mroz (1987). The data set contains wage and hours
information for the 428 women who participated in the formal market (LFP=1). Following
Mroz, we suppose that for these 428 individuals, the offered wage exceeded the reservation
wage and, moreover, the unobserved effects in the two wage equations are correlated. As
such, a wage equation based on the market data should account for the sample selection
problem. We specify a simple wage model:

Wage = β1 + β2 Exper + β3 Exper 2 + β4 Education + β5 City + ε

where Exper is labor market experience and City is a dummy variable indicating that the
individual lived in a large urban area. Maximum likelihood, Heckman two-step, and ordinary
least squares estimates of the wage equation are shown in Table 19.7. The maximum likeli-
hood estimates are FIML estimates—the labor force participation equation is reestimated at
the same time. Only the parameters of the wage equation are shown next. Note as well that
the two-step estimator estimates the single coefficient on λi and the structural parameters σ
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TABLE 19.7 Estimated Selection Corrected Wage Equation

Two-Step Maximum Likelihood Least Squares

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

β1 −0.971 (2.06) −1.963 (1.684) −2.56 (0.929)
β2 0.021 (0.0625) 0.0279 (0.0756) 0.0325 (0.0616)
β3 0.000137 (0.00188) −0.0001 (0.00234) −0.000260 (0.00184)
β4 0.417 (0.100) 0.457 (0.0964) 0.481 (0.0669)
β5 0.444 (0.316) 0.447 (0.427) (0.449) 0.318
(ρσ ) −1.098 (1.266)
ρ −0.343 −0.132 (0.224) 0.000
σ 3.200 3.108 (0.0837) 3.111

and ρ are deduced by the method of moments. The maximum likelihood estimator computes
estimates of these parameters directly. [Details on maximum likelihood estimation may be
found in Maddala (1983).]

The differences between the two-step and maximum likelihood estimates in Table 19.7 are
surprisingly large. The difference is even more striking in the marginal effects. The effect for
education is estimated as 0.417 + 0.0641 for the two-step estimators and 0.480 in total for
the maximum likelihood estimates. For the kids variable, the marginal effect is −.293 for the
two-step estimates and only −.11003 for the MLEs. Surprisingly, the direct test for a selection
effect in the maximum likelihood estimates, a nonzero ρ, fails to reject the hypothesis that ρ
equals zero.

In some settings, the selection process is a nonrandom sorting of individuals into
two or more groups. The mover-stayer model in the next example is a familiar case.

Example 19.12 A Mover-Stayer Model for Migration
The model of migration analyzed by Nakosteen and Zimmer (1980) fits into the framework
described in this section. The equations of the model are

net benefit of moving: M∗
i = w′

i γ + ui ,

income if moves: I i 1 = x′
i 1β1 + εi 1,

income if stays: I i 0 = x′
i 0β0 + εi 0.

One component of the net benefit is the market wage individuals could achieve if they move,
compared with what they could obtain if they stay. Therefore, among the determinants of
the net benefit are factors that also affect the income received in either place. An analysis
of income in a sample of migrants must account for the incidental truncation of the mover’s
income on a positive net benefit. Likewise, the income of the stayer is incidentally truncated
on a nonpositive net benefit. The model implies an income after moving for all observations,
but we observe it only for those who actually do move. Nakosteen and Zimmer (1980) applied
the selectivity model to a sample of 9,223 individuals with data for two years (1971 and 1973)
sampled from the Social Security Administration’s Continuous Work History Sample. Over
the period, 1,078 individuals migrated and the remaining 8,145 did not. The independent
variables in the migration equation were as follows:

SE = self-employment dummy variable; 1 if yes

�EMP = rate of growth of state employment

�PCI = growth of state per capita income

x = age, race (nonwhite= 1), sex (female= 1)

�SIC = 1 if individual changes industry
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TABLE 19.8 Estimated Earnings Equations

Migrant Nonmigrant
Migration Earnings Earnings

Constant −1.509 9.041 8.593
SE −0.708 (−5.72) −4.104 (−9.54) −4.161 (−57.71)
�EMP −1.488 (−2.60) — —
�PCI 1.455 (3.14) — —
Age −0.008 (−5.29) — —
Race −0.065 (−1.17) — —
Sex −0.082 (−2.14) — —
�SIC 0.948 (24.15) −0.790 (−2.24) −0.927 (−9.35)
λ — 0.212 (0.50) 0.863 (2.84)

The earnings equations included �SIC and SE. The authors reported the results given in
Table 19.8. The figures in parentheses are asymptotic t ratios.

19.5.4 SAMPLE SELECTION IN NONLINEAR MODELS

The preceding analysis has focused on an extension of the linear regression (or the
estimation of simple averages of the data). The method of analysis changes in nonlinear
models. To begin, it is not necessarily obvious what the impact of the sample selection
is on the response variable, or how it can be accommodated in a model. Consider the
model analyzed by Boyes, Hoffman, and Lowe (1989):

yi1 = 1 if individual i defaults on a loan, 0 otherwise,

yi2 = 1 if the individual is granted a loan, 0 otherwise.

Wynand and van Praag (1981) also used this framework to analyze consumer insurance
purchases in the first application of the selection methodology in a nonlinear model.
Greene (1992) applied the same model to y1 = default on credit card loans, in which yi2

denotes whether an application for the card was accepted or not. [Mohanty (2002) also
used this model to analyze teen employment in California.] For a given individual, y1 is
not observed unless yi2 = 1. Following the lead of the linear regression case in Section
19.5.3, a natural approach might seem to be to fit the second (selection) equation using a
univariate probit model, compute the inverse Mills ratio, λi , and add it to the first equa-
tion as an additional “control” variable to accommodate the selection effect. [This is
the approach used by Wynand and van Praag (1981) and Greene (1994).] The problems
with this control function approach are, first, it is unclear what in the model is being
“controlled” and, second, assuming the first model is correct, the appropriate model
conditioned on the sample selection is unlikely to contain an inverse Mills ratio any-
where in it. [See Terza (2010) for discussion.] That result is specific to the linear model,
where it arises as E[εi | selection]. What would seem to be the apparent counterpart for
this probit model,

Prob(yi1 = 1 | selection on yi2 = 1) = �(x′
i1 β1 + θλi ),

is not, in fact, the appropriate conditional mean, or probability. For this particular ap-
plication, the appropriate conditional probability (extending the bivariate probit model
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of Section 17.5) would be

Prob[yi1 = 1 | yi2 = 1] = �2(x′
i1β1, x′

i2β2, ρ)

�(x′
i2β2)

.

We would use this result to build up the likelihood function for the three observed out-
comes, as follows: The three types of observations in the sample, with their unconditional
probabilities, are

yi2 = 0: Prob(yi2 = 0 | xi1, xi2) = 1 − �(x′
i2β2),

yi1 = 0, yi2 = 1: Prob(yi1 = 0, yi2 = 1| xi1, xi2) = �2(−x′
i1β1, x′

i2β2, −ρ),

yi1 = 1, yi2 = 1: Prob(yi1 = 1, yi2 = 1| xi1, xi2) = �2(x′
i1β1, x′

i2β2, ρ).

(19-25)

The log-likelihood function is based on these probabilities.32 An application appears in
Section 17.5.6.

Example 19.13 Doctor Visits and Insurance
Continuing our analysis of the utilization of the German health care system, we observe that
the data set contains an indicator of whether the individual subscribes to the “Public” health
insurance or not. Roughly 87 percent of the observations in the sample do. We might ask
whether the selection on public insurance reveals any substantive difference in visits to the
physician. We estimated a logit specification for this model in Example 17.4. Using (19-25)
as the framework, we define yi 2 to be presence of insurance and yi 1 to be the binary variable
defined to equal 1 if the individual makes at least one visit to the doctor in the survey year.

The estimation results are given in Table 19.9. Based on these results, there does appear
to be a very strong relationship. The coefficients do change somewhat in the conditional
model. A Wald test for the presence of the selection effect against the null hypothesis that ρ
equals zero produces a test statistic of (−7.188)2 = 51.667, which is larger than the critical
value of 3.84. Thus, the hypothesis is rejected. A likelihood ratio statistic is computed as
the difference between the log-likelihood for the full model and the sum of the two separate
log-likelihoods for the independent probit models when ρ equals zero. The result is

λLR = 2[−23969.58 − (−15536.39 + (−8471.508) ) = 77.796

The hypothesis is rejected once again. Partial effects were computed using the results in
Section 17.5.3.

The large correlation coefficient can be misleading. The estimated −0.9299 does not
state that the presence of insurance makes it much less likely to go to the doctor. This is
the correlation among the unobserved factors in each equation. The factors that make it
more likely to purchase insurance make it less likely to use a physician. To obtain a simple
correlation between the two variables, we might use the tetrachoric correlation defined in
Example 17.18. This would be computed by fitting a bivariate probit model for the two binary
variables without any other variables. The estimated value is 0.120.

More general cases are typically much less straightforward. Greene (2005, 2006,
2010) and Terza (1998, 2010) present sample selection models for nonlinear specifica-
tions based on the underlying logic of the Heckman model in Section 19.5.3, that the
influence of the incidental truncation acts on the unobservable variables in the model.
(That is the source of the “selection bias” in conventional estimators.) The modeling
extension introduces the unobservables into the model in a natural fashion that parallels
the regression model. Terza (2010) presents a survey of the general results.

32Extensions of the bivariate probit model to other types of censoring are discussed in Poirier (1980) and
Abowd and Farber (1982).
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TABLE 19.9 Estimated Probit Equations for Doctor Visits

Independent: No Selection Sample Selection Model

Standard Partial Standard Partial
Variable Estimate Error Effect Estimate Error Effect

Constant 0.05588 0.06564 −9.4366 0.06760
Age 0.01331 0.0008399 0.004971 0.01284 0.0008131 0.005042
Income −0.1034 0.05089 −0.03860 −0.1030 0.04582 −0.04060
Kids −0.1349 0.01947 −0.05059 −0.1264 0.01790 −0.04979
Education −0.01920 0.004254 −0.007170 0.03660 0.004744 0.002703
Married 0.03586 0.02172 0.01343 0.03564 0.02016 0.01404
ln L −15536.39
Constant 3.3585 0.06959 3.2699 0.06916
Age 0.0001868 0.0009744 −0.0002679 0.001036
Education −0.1854 0.003941 −0.1807 0.003936
Female 0.1150 0.02186 0.0000a 0.2230 0.02101 0.01446a

ln L −8471.508
ρ 0.0000 0.0000 −0.9299 0.1294
ln L −24007.90 −23969.58

aIndirect effect from second equation.

The generic model will take the form

1. Probit selection equation:

z∗
i = w′

iα + ui in which ui ∼ N[0, 1], (19-26)

zi = 1 if z∗
i > 0, 0 otherwise.

2. Nonlinear index function model with unobserved heterogeneity and sample selec-
tion:

μi | εi = x′
iβ + σεi , εi ∼ N[0, 1],

yi | xi , εi ∼ density g(yi | xi , εi ) = f (yi | x′
iβ + σεi ), (19-27)

yi , xi are observed only when zi = 1,

[ui , εi ] ∼ N[(0, 1), (1, ρ, 1)].

For example, in a Poisson regression model, the conditional mean function becomes
E(yi | xi ) = λi = exp(x′

iβ + σεi ) = exp(μi ). (We used this specification of the model
in Chapter 18 to introduce random effects in the Poisson regression model for panel
data.)

The log-likelihood function for the full model is the joint density for the observed
data. When zi equals one, (yi , xi , zi , wi ) are all observed. To obtain the joint density
p(yi , zi = 1 | xi , wi ), we proceed as follows:

p(yi , zi = 1 | xi , wi ) =
∫ ∞

−∞
p(yi , zi = 1 | xi , wi , εi ) f (εi )dεi .

Conditioned on εi , zi and yi are independent. Therefore, the joint density is the product,

p(yi , zi = 1 | xi , wi , εi ) = f (yi | x′
iβ + σεi )Prob(zi = 1 | wi , εi ).
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The first part, f (yi | x′
iβ + σεi ) is the conditional index function model in (19-27). By

joint normality, f (ui | εi ) = N[ρεi , (1 − ρ2)], so ui | εi = ρεi + (ui − ρεi ) = ρεi + vi

where E[vi ] = 0 and Var[vi ] = (1 − ρ2). Therefore,

Prob(zi = 1 | wi , εi ) = �

(
w′

iα + ρεi√
1 − ρ2

)
.

Combining terms and using the earlier approach, the unconditional joint density is

p(yi , zi = 1 | xi , wi ) =
∫ ∞

−∞
f (yi | x′

iβ + σεi )�

(
w′

iα + ρεi√
1 − ρ2

)
exp

(−ε2
i

/
2
)

√
2π

dεi . (19-28)

The other part of the likelihood function for the observations with zi = 0 will be

Prob(zi = 0 | wi ) =
∫ ∞

−∞
Prob(zi = 0 | wi , εi ) f (εi )dεi .

=
∫ ∞

−∞

[
1 − �

(
w′

iα + ρεi√
1 − ρ2

)]
f (εi )dεi (19-29)

=
∫ ∞

−∞
�

(
−(w′

iα + ρεi )√
1 − ρ2

)
exp

(−ε2
i

/
2
)

√
2π

dεi .

For convenience, we can use the invariance principle to reparameterize the likelihood
function in terms of γ = α/

√
1 − ρ2 and τ = ρ/

√
1 − ρ2. Combining all the preceding

terms, the log-likelihood function to be maximized is

ln L =
n∑

i=1

ln
∫ ∞

−∞
[(1−zi )+zi f (yi | x′

iβ+σεi )]�[(2zi −1)(w′
iγ +τεi )]φ(εi )dεi . (19-30)

This can be maximized with respect to (β, σ, γ , τ ) using quadrature or simulation. When
done, ρ can be recovered from ρ = τ /(1 + τ 2)1/2 and α = (1 − ρ2)1/2γ . All that differs
from one model to another is the specification of f (yi | x′

iβ+σεi ). This is the specification
used in Terza (1998) and Terza and Kenkel (2001). (In these two papers, the authors
also analyzed E[yi | zi = 1]. This estimator was based on nonlinear least squares, but as
earlier, it is necessary to integrate the unobserved heterogeneity out of the conditional
mean function.) Greene (2010) applies the method to a stochastic frontier model.

19.5.5 PANEL DATA APPLICATIONS OF SAMPLE
SELECTION MODELS

The development of methods for extending sample selection models to panel data
settings parallels the literature on cross-section methods. It begins with Hausman and
Wise (1979) who devised a maximum likelihood estimator for a two-period model with
attrition—the “selection equation” was a formal model for attrition from the sample.
Subsequent research has drawn the analogy between attrition and sample selection in
a variety of applications, such as Keane et al. (1988) and Verbeek and Nijman (1992),
and produced theoretical developments including Wooldridge (2002a, b).

The direct extension of panel data methods to sample selection brings several new
issues for the modeler. An immediate question arises concerning the nature of the
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selection itself. Although much of the theoretical literature [e.g., Kyriazidou (1997,
2001)] treats the panel as if the selection mechanism is run anew in every period, in
practice, the selection process often comes in two very different forms. First, selection
may take the form of selection of the entire group of observations into the panel data
set. Thus, the selection mechanism operates once, perhaps even before the observation
window opens. Consider the entry (or not) of eligible candidates for a job training
program. In this case, it is not appropriate to build the model to allow entry, exit, and
then reentry. Second, for most applications, selection comes in the form of attrition or
retention. Once an observation is “deselected,” it does not return. Leading examples
would include “survivorship” in time-series–cross-section models of firm performance
and attrition in medical trials and in panel data applications involving large national
survey data bases, such as Contoyannis et al. (2004). Each of these cases suggests the
utility of a more structured approach to the selection mechanism.

19.5.5.a Common Effects in Sample Selection Models

A formal “effects” treatment for sample selection was first suggested in complete form
by Verbeek (1990), who formulated a random effects model for the probit equation and
a fixed effects approach for the main regression. Zabel (1992) criticized the specification
for its asymmetry in the treatment of the effects in the two equations. He also argued that
the likelihood function that neglected correlation between the effects and regressors in
the probit model would render the FIML estimator inconsistent. His proposal involved
fixed effects in both equations. Recognizing the difficulty of fitting such a model, he
then proposed using the Mundlak correction. The full model is

y∗
it = ηi + x′

itβ + εit, ηi = x̄′
iπ + τwi , wi ∼ N[0, 1],

d∗
it = θi + z′

itα + uit, θi = z̄′
iδ + ωvi , vi ∼ N[0, 1], (19-31)

(εit, uit) ∼ N2[(0, 0), (σ 2, 1, ρσ )].

The “selectivity” in the model is carried through the correlation between εit and uit. The
resulting log-likelihood is built up from the contribution of individual i ,

Li =
∫ ∞

−∞

∏
dit=0

�[−z′
itα − z̄′

iδ − ωvi ]φ(vi )dvi

×
∫ ∞

−∞

∫ ∞

−∞

∏
dit=1

�

[
z′

itα + z̄′
iδ + ωvi + (ρ/σ)εit√

1 − ρ2

]

× 1
σ

φ
(εit

σ

)
φ2(vi , wi )dvi dwi , (19-32)

εit = yit − x′
itβ − x̄′

iπ − τwi .

The log-likelihood is then ln L = ∑
i ln Li .

The log-likelihood requires integration in two dimensions for any selected obser-
vations. Vella (1998) suggested two-step procedures to avoid the integration. However,
the bivariate normal integration is actually the product of two univariate normals, be-
cause in the preceding specification, vi and wi are assumed to be uncorrelated. As such,
the likelihood function in (19-32) can be readily evaluated using familiar simulation
or quadrature techniques. [See Sections 14.9.6.c and 15.6. Vella and Verbeek (1999)
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suggest this in a footnote, but do not pursue it.] To show this, note that the first line
in the log-likelihood is of the form Ev[

∏
d=0 �(. . .)] and the second line is of the form

Ew[Ev[�(. . .)φ(. . .)/σ ]]. Either of these expectations can be satisfactorily approximated
with the average of a sufficient number of draws from the standard normal populations
that generate wi and vi . The term in the simulated likelihood that follows this prescrip-
tion is

LS
i = 1

R

R∑
r=1

∏
dit=0

�[−z′
itα − z̄′

iδ − ωvi,r ]

× 1
R

R∑
r=1

∏
dit=1

�

[
z′

itα + z̄′
iδ + ωvi,r + (ρ/σ)εit,r√

1 − ρ2

]
1
σ

φ
(εit,r

σ

)
, (19-33)

εit,r = yit − x′
itβ − x̄′

iπ − τwi,r .

Maximization of this log-likelihood with respect to (β,σ,ρ,α,δ,π ,τ,ω) by conventional
gradient methods is quite feasible. Indeed, this formulation provides a means by which
the likely correlation between vi and wi can be accommodated in the model. Suppose
that wi and vi are bivariate standard normal with correlation ρvw . We can project wi on
vi and write

wi = ρvwvi + (
1 − ρ2

vw

)1/2
hi ,

where hi has a standard normal distribution. To allow the correlation, we now simply
substitute this expression for wi in the simulated (or original) log-likelihood and add
ρvw to the list of parameters to be estimated. The simulation is still over independent
normal variates, vi and hi .

Notwithstanding the preceding derivation, much of the recent attention has focused
on simpler two-step estimators. Building on Ridder and Wansbeek (1990) and Verbeek
and Nijman (1992) [see Vella (1998) for numerous additional references], Vella and
Verbeek (1999) purpose a two-step methodology that involves a random effects frame-
work similar to the one in (19-31). As they note, there is some loss in efficiency by not
using the FIML estimator. But, with the sample sizes typical in contemporary panel
data sets, that efficiency loss may not be large. As they note, their two-step template
encompasses a variety of models including the tobit model examined in the preceding
sections and the mover-stayer model noted earlier.

The Vella and Verbeek model requires some fairly intricate maximum likelihood
procedures. Wooldridge (1995) proposes an estimator that, with a few probably—but
not necessarily—innocent assumptions, can be based on straightforward applications
of conventional, everyday methods. We depart from a fixed effects specification,

y∗
it = ηi + x′

itβ + εit,

d∗
it = θi + z′

itα + uit,

(εit, uit) ∼ N2[(0, 0), (σ 2, 1, ρσ )].

Under the mean independence assumption E[εit | ηi , θi , zi1, . . . , zit,vi1, . . . , vit, di1, . . . ,

dit] = ρuit, it will follow that

E[yit | xi1, . . . , xiT, ηi , θi , zi1, . . . , zit, vi1, . . . , vit, di1, . . . , dit] = ηi + x′
itβ + ρuit.



Greene-2140242 book November 27, 2010 18:36

886 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

This suggests an approach to estimating the model parameters; however, it requires
computation of uit. That would require estimation of θi , which cannot be done, at least
not consistently—and that precludes simple estimation of uit. To escape the dilemma,
Wooldridge (2002c) suggests Chamberlain’s approach to the fixed effects model,

θi = f0 + z′
i1f1 + z′

i2f2 + · · · + z′
itfT + hi .

With this substitution,

d∗
it = z′

itα + f0 + z′
i1f1 + z′

i2f2 + · · · + z′
itfT + hi + uit

= z′
itα + f0 + z′

i1f1 + z′
i2f2 + · · · + z′

itfT + wit,

where wit is independent of zit, t = 1, . . . , T. This now implies that

E[yit | xi1, . . . , xit, ηi , θi , zi1, . . . , zit, vi1, . . . , vit, di1, . . . , dit] = ηi + x′
itβ + ρ(wit − hi )

= (ηi − ρhi ) + x′
itβ + ρwit.

To complete the estimation procedure, we now compute T cross-sectional probit mod-
els (reestimating f0, f1, . . . each time) and compute λ̂it from each one. The resulting
equation,

yit = ai + x′
itβ + ρλ̂it + vit,

now forms the basis for estimation of β and ρ by using a conventional fixed effects linear
regression with the observed data.

19.5.5.b Attrition

The recent literature or sample selection contains numerous analyses of two-period
models, such as Kyriazidou (1997, 2001). They generally focus on non- and semipara-
metric analyses. An early parametric contribution of Hausman and Wise (1979) is also
a two-period model of attrition, which would seem to characterize many of the stud-
ies suggested in the current literature. The model formulation is a two-period random
effects specification:

yi1 = x′
i1β + εi1 + ui (first period regression),

yi2 = x′
i2β + εi2 + ui (second period regression).

Attrition is likely in the second period (to begin the study, the individual must have
been observed in the first period). The authors suggest that the probability that an
observation is made in the second period varies with the value of yi2 as well as some
other variables,

z∗
i2 = δyi2 + x′

i2θ + w′
i2α + vi2.

Attrition occurs if z∗
i2 ≤ 0, which produces a probit model,

zi2 = 1
(
z∗

i2 > 0
)

(attrition indicator observed in period 2).

An observation is made in the second period if zi2 = 1, which makes this an early
version of the familiar sample selection model. The reduced form of the observation
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equation is

z∗
i2 = x′

i2(δβ + θ) + w′
i2α + δεi2 + vi2

= x′
i2π + w′

i2α + hi2

= r′
i2γ + hi2.

The variables in the probit equation are all those in the second period regression plus
any additional ones dictated by the application. The estimable parameters in this model
are β, γ , σ 2 = Var[εit + ui ], and two correlation coefficients,

ρ12 = Corr[εi1 + ui , εi2 + ui ] = Var[ui ]/σ 2,

and

ρ23 = Corr[hi2, εi2 + ui ].

All disturbances are assumed to be normally distributed. (Readers are referred to the
paper for motivation and details on this specification.)

The authors propose a full information maximum likelihood estimator. Estimation
can be simplified somewhat by using two steps. The parameters of the probit model can
be estimated first by maximum likelihood. Then the remaining parameters are estimated
by maximum likelihood, conditionally on these first-step estimates. The Murphy and
Topel adjustment is made after the second step. [See Greene (2007a).]

The Hausman and Wise model covers the case of two periods in which there is
a formal mechanism in the model for retention in the second period. It is unclear
how the procedure could be extended to a multiple-period application such as that in
Contoyannis et al. (2004), which involved a panel data set with eight waves. In addition,
in that study, the variables in the main equations were counts of hospital visits and phys-
ican visits, which complicates the use of linear regression. A workable solution to the
problem of attrition in a multiperiod panel is the inverse probability weighted estimator
[Wooldridge (2002a, 2006b) and Rotnitzky and Robins (2005).] In the Contoyannis ap-
plication, there are eight waves in the panel. Attrition is taken to be “ignorable” so that
the unobservables in the attrition equation and in the main equation(s) of interest are
uncorrelated. (Note that Hausman and Wise do not make this assumption.) This enables
Contoyannis et al. to fit a “retention” probit equation for each observation present at
wave 1, for waves 2–8, using characteristics observed at the entry to the panel. (This
defines, then, “selection (retention) on observables.”) Defining dit to be the indicator
for presence (dit = 1) or absence (dit = 0) of observation i in wave t , it will follow that
the sequence of observations will begin at 1 and either stay at 1 or change to 0 for the
remaining waves. Let p̂it denote the predicted probability from the probit estimator at
wave t . Then, their full log-likelihood is constructed as

ln L =
n∑

i=1

T∑
t=1

dit

p̂it
ln Lit.

Wooldridge (2002b) presents the underlying theory for the properties of this weighted
maximum likelihood estimator. [Further details on the use of the inverse probability
weighted estimator in the Contoyannis et al. (2004) study appear in Jones, Koolman,
and Rice (2006) and in Section 17.4.9.]
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19.6 EVALUATING TREATMENT EFFECTS

The leading recent application of models of selection and endogeneity is the evaluation
of “treatment effects.” The central focus is on analysis of the effect of participation
in a treatment, T, on an outcome variable, y—examples include job training programs
[LaLonde (1986), Business Week (2009; Example 19.14)] and education [e.g., test scores,
Angrist and Lavy (1999), Van der Klaauw (2002)]. Wooldridge and Imbens (2009, pp.
22–23) cite a number of labor market applications. Recent more narrow examples in-
clude Munkin and Trivedi’s (2007) analysis of the effect of dental insurance and Jones
and Rice’s (2010) survey that notes a variety of techniques and applications in health
economics.

Example 19.14 German Labor Market Interventions
“Germany long had the highest ratio of unfilled jobs to unemployed people in Europe. Then, in
2003, Berlin launched the so-called Hartz reforms, ending generous unemployment benefits
that went on indefinitely. Now payouts for most recipients drop sharply after a year, spurring
people to look for work. From 12.7% in 2005, unemployment fell to 7.1% last November.
Even now, after a year of recession, Germany’s jobless rate has risen to just 8.6%.

At the same time, lawmakers introduced various programs intended to make it easier for
people to learn new skills. One initiative instructed the Federal Labor Agency, which had tra-
ditionally pushed the long-term unemployed into government-funded make-work positions,
to cooperate more closely with private employers to create jobs. That program last year paid
Dutch staffing agency Randstad to teach 15,000 Germans information technology, business
English, and other skills. And at a Daimler truck factory in Wörth, 55 miles west of Stuttgart,
several dozen short-term employees at risk of being laid off got government help to continue
working for the company as mechanic trainees.

Under a second initiative, Berlin pays part of the wages of workers hired from the ranks
of the jobless. Such payments make employers more willing to take on the costs of training
new workers. That extra training, in turn, helps those workers keep their jobs after the aid
expires, a study by the government-funded Institute for Employment Research found. Café
Nenninger in the city of Kassel, for instance, used the program to train an unemployed single
mother. Co-owner Verena Nenninger says she was willing to take a chance on her in part
because the government picked up about a third of her salary the first year. ‘It was very
helpful, because you never know what’s going to happen,’ Nenninger says” [Business Week
(2009)].

Empirical measurement of treatment effects, such as the impact of going to college
or participating in a job training program, presents a large variety of econometric com-
plications. The natural, ultimate objective of an analysis of a “treatment” or intervention
would be the “effect of treatment on the treated.” For example, what is the effect of a
college education on the lifetime income of someone who goes to college? Measuring
this effect econometrically encounters at least two compelling computations:

Endogeneity of the treatment: The analyst risks attributing to the treatment causal
effects that should be attributed to factors that motivate both the treatment and the
outcome. In our example, the individual who goes to college might well have succeeded
(more) in life than their counterpart who did not go to college even if they (themselves)
did not attend college.

Missing counterfactual: The preceding thought experiment is not actually the effect
we wish to measure. In order to measure the impact of college attendance on lifetime
earnings in a pure sense, we would have to run an individual’s lifetime twice, once with
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college attendance and once without. Any individual is observed in only one of the two
states, so the pure measurement is impossible.

Accommodating these two problems forms the focal point of this enormous and
still growing literature. Rubin’s causal model (1974, 1978) provides a useful framework
for the analysis. Every individual in a population has a potential outcome, y and can be
exposed to the treatment, C. We will denote by Ci the indicator whether or not the in-
dividual receives the treatment. Thus, the potential outcomes are yi | (Ci = 1) = yi1 and
yi | (Ci = 0) = yi0. The average treatment effect, averaged across the entire population is

ATE = E[yi1 − yi0].

The compelling complication is that the individual will exist in only one of the two states,
so it is not possible to estimate ATE without further assumptions. More specifically, what
the researcher would prefer see is the average treatment effect on the treated,

ATET = E[yi1 − yi0 | Ci = 1]

and note that the second term is the missing counterfactual.
One of the major themes of the recent research is to devise robust methods of

estimation that do not rely heavily on fragile assumptions such as identification by
functional form (e.g., relying on bivariate normality) and identification by exclusion
restrictions (e.g., relying on basic instrumental variable estimators). This is a challenging
exercise—we have relied heavily on these assumptions in most of the work in this
book up to this point. For purposes of the general specification, we will denote by x
the exogenous information that will be brought to bear on this estimation problem.
The vector x may (usually will) be a set of variables that will appear in a regression
model, but it is useful to think more generally than that and consider x rather to be an
information set. Certain minimal assumptions are necessary to make any headway at
all. The following appear at different points in the analysis.

Conditional independence: Receiving the treatment, Ci , does not depend on the
outcome variable once the effect of x on the outcome is accounted for. If assignment to
the treatment group is completely random, then we would omit the effect of x in this
assumption. This assumption is extended for regression approaches with the conditional
mean assumption: E[yi0 | xi , Ci = 1] = E[yi0 | xi , Ci = 0] = E[yi0 | x]. This states that
the outcome in the untreated state does not affect the participation.

Distribution of potential outcomes: The model that is used for the outcomes is the
same for treated and nontreated, f (y | x, T = 1) = f (y | x, T = 0). In a regression
context, this would mean that the same regression applies in both states and that the
disturbance is uncorrelated with T, or that T is exogenous. This is a very strong as-
sumption that we will relax later. For the present, it removes one of the complica-
tions noted previously, so a step in the model-building exercise will be to relax this
assumption.

Overlap assumption: For any value of x, 0 < Prob(Ci = 1 | x) < 1. The strict inequal-
ity in this assumption means that for any x, the population will contain a mix of treated
and nontreated individuals. The usefulness of the overlap assumption is that with it, we
can expect to find, for any treated individual, an individual who looks like them but is
not treated. This assumption will be useful for regression approaches.
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The following sections will describe three major parts of the research agenda on
treatment effects: regression analysis with control functions in Section 19.6.1, propensity
score matching in Section 19.6.2, and regression discontinuity design in Section 19.6.3. A
fourth area, instrumental variable estimation, was developed in Chapter 8. As noted, this
is a huge and rapidly growing literature. For example, Imbens and Wooldridge’s (2009)
survey paper runs 85 pages and includes nearly 300 references, most of them since 2000.
Our purpose here is to provide some of the vocabulary and a superficial introduction
to methods. The survey papers by Imbens and Wooldridge (2009) and Jones and Rice
(2010) provide greater detail. The conference volume by Millment, Smith, and Vytlacil
(2008) contains many theoretical contributions and empirical applications.33 A Journal
of Business and Economic Statistics symposium [Angrist (2001)] raised many of the
important questions on whether and how it is possible to measure treatment effects.

19.6.1 REGRESSION ANALYSIS OF TREATMENT EFFECTS

The basic model of selectivity outlined earlier has been extended in an impressive variety
of directions. An interesting application that has found wide use is the measurement of
treatment effects and program effectiveness.

An earnings equation that accounts for the value of a college education is

earningsi = x′
iβ + δCi + εi ,

where Ci is a dummy variable indicating whether or not the individual attended college.
The same format has been used in any number of other analyses of programs, experi-
ments, and treatments. The question is: Does δ measure the value of a college education
(assuming that the rest of the regression model is correctly specified)? The answer is
no if the typical individual who chooses to go to college would have relatively high
earnings whether or not he or she went to college. The problem is one of self-selection.
If our observation is correct, then least squares estimates of δ will actually overestimate
the treatment effect. The same observation applies to estimates of the treatment effects
in other settings in which the individuals themselves decide whether or not they will
receive the treatment.

To put this in a more familiar context, suppose that we model program participation
(e.g., whether or not the individual goes to college) as

C∗
i = w′

iγ + ui ,

Ci = 1 if C∗
i > 0, 0 otherwise.

We also suppose that, consistent with our previous conjecture, ui and εi are correlated.
Coupled with our earnings equation, we find that

E [yi | Ci = 1, xi , wi ] = x′
iβ + δ + E [εi | Ci = 1, xi , wi ]

= x′
iβ + δ + ρσελ(−w′

iγ )
(19-34)

once again. [See (19-24).] Evidently, a viable strategy for estimating this model is to use
the two-step estimator discussed earlier. The net result will be a different estimate of δ

33In the initial essay in the volume, Goldberger (2008) reproduces Goldberger (1972) in which the author
explores the endogeneity issue in detail with specific reference to the Head Start program of the 1960s.
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that will account for the self-selected nature of program participation. For nonpartici-
pants, the counterpart to (19-34) is

E [yi | Ci = 0, xi , wi ] = x′
iβ + ρσε

[ −φ(w′
iγ )

1 − �(w′
iγ )

]
. (19-35)

The difference in expected earnings between participants and nonparticipants is, then,

E [yi | Ci = 1, xi , wi ] − E [yi | Ci = 0, xi , wi ] = δ + ρσε

[
φi

�i (1 − �i )

]
. (19-36)

If the selectivity correction λi is omitted from the least squares regression, then this
difference is what is estimated by the least squares coefficient on the treatment dummy
variable. But because (by assumption) all terms are positive, we see that least squares
overestimates the treatment effect. Note, finally, that simply estimating separate equa-
tions for participants and nonparticipants does not solve the problem. In fact, doing
so would be equivalent to estimating the two regressions of Example 19.12 by least
squares, which, as we have seen, would lead to inconsistent estimates of both sets of
parameters.

To describe the problem created by selection on the unobservables, we will drop
the independence assumptions. The model with endogenous participation and different
outcome equations would be

C∗
i = w′

iγ + ui , Ci = 1 if C∗
i > 0 and 0 otherwise,

yi0 = x′
iβ0 + εi0,

yi1 = x′
iβ1 + εi1.

It is useful to combine the second and third equations in

yi j = Ci (x′
iβ1 + εi1) + (1 − Ci )(x′

iβ0 + εi0), j = 0, 1.

We assume joint normality for the three disturbances;⎛
⎝ui

εi0

εi1

⎞
⎠ ∼ N

⎡
⎣

⎛
⎝0

0
0

⎞
⎠ ,

⎛
⎝ 1 ρ0θ0 ρ1θ1

ρ0θ0 θ2
0 θ01

ρ1θ1 θ01 θ2
1

⎞
⎠

⎤
⎦ .

The variance in the participation equation is normalized to one for a binary outcome,
as described earlier (Section 17.2). Endogeneity of the participation is implied by the
nonzero values of the correlations ρ0 and ρ1. The familiar problem of the missing coun-
terfactual appears here in our inability to estimate θ01. The data will never contain
information on both states simultaneously, so it will be impossible to estimate a co-
variance of yi0 and yi1 (conditioned on xi or otherwise). Thus, the parameter θ01 is not
identified (estimable)—we normalize it to zero. The parameters of this model after the
two normalizations can be estimated by two-step least squares as suggested in Section
19.XX, or by full information maximum likelihood. The average treatment effect on
the treated would be

ATET = E[yi1 | Ci = 1, xi , wi ] − E[yi0 | Ci = 1, xi , wi ]

= x′
i (β1 − β0) + (ρ1θ1 − ρ0θ0)

φ
(
w′

iγ
)

�
(
w′

iγ
) .



Greene-2140242 book November 27, 2010 18:36

892 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

[See (19-34).] If the treatment assignment is completely random, then ρ1 = ρ0 = 0, and
we are left with the first term. But, of course, it is the nonrandomness of the treatment
assignment that brought us to this point. Finally, if the two coefficient vectors differ only
in their constant terms, β0,0 and β1,0, then we are left with the same δ that appears in
(19-36)—the ATET would be β0,1 + Ci (β1,0 − β0,0).

There are many variations of this model in the empirical literature. They have been
applied to the analysis of education,34 the Head Start program,35 and a host of other
settings.36 This strand of literature is particularly important because the use of dummy
variable models to analyze treatment effects and program participation has a long
history in empirical economics. This analysis has called into question the interpretation
of a number of received studies.

19.6.1.a The Normality Assumption

Some research has cast some skepticism on the selection model based on the normal
distribution. [See Goldberger (1983) for an early salvo in this literature.] Among the
findings are that the parameter estimates are surprisingly sensitive to the distributional
assumption that underlies the model. Of course, this fact in itself does not invalidate the
normality assumption, but it does call its generality into question. On the other hand,
the received evidence is convincing that sample selection, in the abstract, raises serious
problems, distributional questions aside. The literature—for example, Duncan (1986b),
Manski (1989, 1990), and Heckman (1990)—has suggested some promising approaches
based on robust and nonparametric estimators. These approaches obviously have the
virtue of greater generality. Unfortunately, the cost is that they generally are quite
limited in the breadth of the models they can accommodate. That is, one might gain
the robustness of a nonparametric estimator at the cost of being unable to make use of
the rich set of accompanying variables usually present in the panels to which selectivity
models are often applied. For example, the nonparametric bounds approach of Manski
(1990) is defined for two regressors. Other methods [e.g., Duncan (1986b)] allow more
elaborate specifications.

Recent research includes specific attempts to move away from the normality as-
sumption.37 An example is Martins (2001), building on Newey (1991), which takes the
core specification as given in (19-22) as the platform but constructs an alternative to the
assumption of bivariate normality. Martins’s specification modifies the Heckman model
by employing an equation of the form

E [yi | zi = 1, xi , wi ] = x′
iβ + μ(w′

iγ )

where the latter “selectivity correction” is not the inverse Mills ratio, but some other
result from a different model. The correction term is estimated using the Klein and
Spady model discussed in Section 23.6.1. This is labeled a “semiparametric” approach.
Whether the conditional mean in the selected sample should even remain a linear index
function remains to be settled. Not surprisingly, Martins’s results, based on two-step

34Willis and Rosen (1979).
35Goldberger (1972, 2008).
36A useful summary of the issues is Barnow, Cain, and Goldberger (1981). See, also, Imbens and Wooldridge
(2009).
37Again, Angrist (2001) is an important contribution to this literature.
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least squares differ only slightly from the conventional results based on normality. This
approach is arguably only a fairly small step away from the tight parameterization of the
Heckman model. Other non- and semiparametric specifications, for example, Honorè
and Kyriazidou (1997, 2000) represent more substantial departures from the normal
model, but are much less operational.38 The upshot is that the issue remains unsettled.
For better or worse, the empirical literature on the subject continues to be dominated
by Heckman’s original model built around the joint normal distribution.

19.6.1.b Estimating the Effect of Treatment on the Treated

Consider a regression approach to analyzing treatment effects in a two-period setting,

yit = θt + x′
itβ + γ Ci + ui + εit, t = 0, 1,

where Ci is the treatment dummy variable and ui is the unobserved individual effect.
The setting is the pre- and posttreatment analysis of the sort considered in this section,
where we examine the impact of a job training program on post training earnings.
Because there are two periods, a natural approach to the analysis is to examine the
changes,

�yi = (θ1 − θ0) + γ�Ci + (�xit)
′β + �εit

where �Ci = 1 for the treated and 0 for the nontreated individuals, and the first differ-
ences eliminate the unobserved individual effects. In the absence of controls (regressors,
xit), or assuming that the controls are unchanged, the estimator of the effect of the treat-
ment will be

γ̂ = �y | (�Ci = 1) − �y | (Ci = 0),

which is the difference in differences estimator. This simplifies the problem considerably
but has several shortcomings. Most important, by using the simple differences, we have
lost our ability to discern what induced the change, whether it was the program or
something else, presumably in xit.

Even without the normality assumption, the preceding regression approach is more
tightly structured than many are comfortable with. A considerable amount of research
has focused on what assumptions are needed to reach that model and whether they are
likely to be appropriate in a given setting.39 The overall objective of the analysis of the
preceding two sections is to evaluate the effect of a treatment, Ci , on the individual
treated. The implicit counterfactual is an observation on what the “response” (depen-
dent variable) of the treated individual would have been had they not been treated.
But, of course, an individual will be in one state or the other, not both. Denote by y0

the random variable that is the outcome variable in the absence of the treatment and
by y1 the outcome when the treatment has taken place. The average treatment effect,

38This particular work considers selection in a “panel” (mainly two periods). But, the panel data setting for
sample selection models is more involved than a cross-section analysis. In a panel data set, the “selection” is
likely to be a decision at the beginning of Period 1 to be in the data set for all subsequent periods. As such,
something more intricate than the model we have considered here is called for.
39A sampling of the more important parts of the literature on this issue includes Heckman (1992, 1997),
Imbens and Angrist (1994), Manski (1996), and Wooldridge (2002a, Chapter 18).

Bill
Sticky Note
comma

Bill
Line

Bill
Line

Bill
Line

Bill
Line

Bill
Line

Bill
Line

Bill
Line

Bill
Line

Bill
Line

Bill
Line

Bill
Line

Bill
Line

Bill
Sticky Note
add brackets



Greene-2140242 book November 27, 2010 18:36

894 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

averaged over the entire population is

ATE = E[y1 − y0].

This is the impact of the treatment on an individual drawn at random from the entire
population. However, the desired quantity is not necessarily the ATE, but the average
treatment effect on the treated, which would be

ATE |T = E[y1 − y0 | C = 1].

The difficulty of measuring this is, once again, the counterfactual, E[y0 | C = 1]. Whether
these two measures will be the same is at the center of the much of the discussion
on this subject. If treatment is completely randomly assigned, then E[yj | C = 1] =
E[yj | C = 0] = E[yj | C = j], j = 0, 1. This means that with completely random
treatment assignment

ATE = E[y1 | C = 1] − E[y0 | C = 0].

To put this in our example, if college attendance were completely randomly distributed
throughout the population, then the impact of college attendance on income (neglecting
other covariates at this point) could be measured simply by averaging the incomes of
college attendees and subtracting the average income of nonattendees. The preceding
theory might work for the treatment “having brown eyes,” but it is unlikely to work
for college attendance. Not only is the college attendance treatment not randomly
distributed, but the treatment “assignment” is surely related to expectations about y1

versus y0, and, at a minimum, y0 itself. (College is expensive.) More generally, the
researcher faces the difficulty in calculating treatment effects that assignment to the
treatment might not be exogenous.

The control function approach that we used in (19-34)–(19-36) is used to account
for the endogeneity of the treatment assignment in the regression context. The very
specific assumptions of the bivariate normal distribution of the unobservables some-
what simplifies the estimation, because they make explicit what control function (λi )

is appropriate to use in the regression. As Wooldridge (2002a, p. 622) points out, how-
ever, the binary variable in the treatment effects regression represents simply an en-
dogenous variable in a linear equation, amenable to instrumental variable estimation
(assuming suitable instruments are available). Barnow, Cain, and Goldberger (1981)
proposed a two-stage least squares estimator, with instrumental variable equal to the
predicted probability from the probit treatment assignment model. This is slightly less
parametric than (19-36) because, in principle, its validity does not rely on joint nor-
mality of the disturbances. [Wooldridge (2002a, pp. 621–633) discusses the underlying
assumptions.

19.6.2 PROPENSITY SCORE MATCHING

If the treatment assignment is “completely ignorable,” then, as noted, estimation of
the treatment effects is greatly simplified. Suppose, as well, that there are observable
variables that influence both the outcome and the treatment assignment. Suppose it
is possible to obtain pairs of individuals matched by a common xi , one with Ci = 0,
the other with Ci = 1. If done with a sufficient number of pairs so as to average
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over the population of xi ’s, then a matching estimator, the average value of (yi | Ci =
1) − (yi | Ci = 0), would estimate E[y1 − y0], which is what we seek. Of course, it
is optimistic to hope to find a large sample of such matched pairs, both because the
sample overall is finite and because there may be many regressors, and the “cells” in
the distribution of xi are likely to be thinly populated. This will be worse when the
regressors are continuous, for example, with a “family income” variable. Rosenbaum
and Rubin (1983) and others40 suggested, instead, matching on the propensity score,
F(xi ) = Prob(Ci = 1 | xi ). Individuals with similar propensity scores are paired and
the average treatment effect is then estimated by the differences in outcomes. Various
strategies are suggested by the authors for obtaining the necessary subsamples and for
verifying the conditions under which the procedures will be valid. [See, e.g., Becker and
Ichino (2002) and Greene (2007c).]

Example 19.15 Treatment Effects on Earnings
LaLonde (1986) analyzed the results of a labor market experiment, The National Supported
Work Demonstration, in which a group of disadvantaged workers lacking basic job skills were
given work experience and counseling in a sheltered environment. Qualified applicants were
assigned to training positions randomly. The treatment group received the benefits of the
program. Those in the control group “were left to fend for themselves.” [The demonstration
was run in numerous cities in the mid-1970s. See LaLonde (1986, pp. 605–609) for details
on the NSW experiments.] The training period was 1976–1977; the outcome of interest for
the sample examined here was posttraining 1978 earnings. LaLonde reports a large variety
of estimates of the treatment effect, for different subgroups and using different estimation
methods. Nonparametric estimates for the group in our sample are roughly $900 for the
income increment in the posttraining year. (See LaLonde, p. 609.) Similar results are reported
from a two-step regression-based estimator similar to (19-34) to (19-36). (See LaLonde’s
footnote to Table 6, p. 616.)

LaLonde’s data are fairly well traveled, having been used in replications and extensions
in, for example, Dehejia and Wahba (1999), Becker and Ichino (2002), and Greene (2007b, c).
We have reestimated the matching estimates reported in Becker and Ichino. The data in the
file used there (and here) contain 2,490 control observations and 185 treatment observations
on the following variables:

t = treatment dummy variable
age = age in years

educ = education in years
marr = dummy variable for married

black = dummy variable for black
hisp = dummy variable for Hispanic

nodegree = dummy for no degree (not used)
re74 = real earnings in 1974
re75 = real earnings in 1975
re78 = real earnings in 1978

40Other important references in this literature are Becker and Ichino (1999), Dehejia and Wahba (1999),
LaLonde (1986), Heckman, Ichimura, and Todd (1997, 1998), Heckman, Ichimura, Smith, and Todd (1998),
Heckman, LaLonde, and Smith (1999), Heckman, Tobias, and Vytlacil (2003), and Heckman and Vytlacil
(2000).
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Transformed variables added to the equation are

age2 = age squared

educ2 = educ squared

re742 = re74 squared

re752 = re75 squared
blacku74 = black times 1(r e74 = 0)

We also scaled all earnings variables by 10,000 before beginning the analysis. (See Appendix
Table F19.3. The data are downloaded from the website http://www.nber.org/%7Erdehejia/
nswdata.html. The two specific subsamples are in http://www.nber.org/%7Erdehejia//psid
controls.txt and http://www.nber.org/%7Erdehejia/nswre74 treated.txt.) (We note that
Becker and Ichino report they were unable to replicate Dehejia and Wahba’s results, al-
though they could come reasonably close. We, in turn, were not able to replicate either set
of results, though we, likewise, obtained quite similar results.)

The analysis proceeded as follows: A logit model in which the included variables were a
constant, age, age2, education, education2, marr, black, hisp, re74, re75, re742, re752, and
black74 was computed for the treatment assignment. The fitted probabilities are used for the
propensity scores. By means of an iterative search, the range of propensity scores was parti-
tioned into eight regions within which, by a simple F test, the mean scores of the treatments
and controls were not statistically different. The partitioning is shown in Table 19.10. The
1,347 observations are all the treated observations and the 1,162 control observations are
those whose propensity scores fell within the range of the scores for the treated observations.

Within each interval, each treated observation is paired with a small number of the nearest
control observations. We found the average difference between treated observation and
control to equal $1,574.35. Becker and Ichino reported $1,537.94.

As an experiment, we refit the propensity score equation using a probit model, retaining
the fitted probabilities. We then used the two-step estimator described earlier to fit (19-34)
and (19-35) using the entire sample. The estimates of δ, ρ, and σ were −1.01437, 0.35519,
1.38426). Using the results from the probit model, we averaged the result in (19-36) for the
entire sample, obtaining an estimated treatment effect of $1,476.30.

TABLE 19.10 Empirical Distribution of Propensity Scores

Percent Lower Upper

0–5 0.000591 0.000783 Sample size = 1,347
5–10 0.000787 0.001061 Average score = 0.137238

10–15 0.001065 0.001377 Std. Dev score = 0.274079
15–20 0.001378 0.001748
20–25 0.001760 0.002321 Lower Upper # Obs
25–30 0.002340 0.002956 1 0.000591 0.098016 1041
30–35 0.002974 0.004057 2 0.098016 0.195440 63
35–40 0.004059 0.005272 3 0.195440 0.390289 65
40–45 0.005278 0.007486 4 0.390289 0.585138 36
45–50 0.007557 0.010451 5 0.585138 0.779986 32
50–55 0.010563 0.014643 6 0.779986 0.877411 17
55–60 0.014686 0.022462 7 0.877411 0.926123 7
60–65 0.022621 0.035060 8 0.926123 0.974835 86
65–70 0.035075 0.051415
70–75 0.051415 0.076188
75–80 0.076376 0.134189
80–85 0.134238 0.320638
85–90 0.321233 0.616002
90–95 0.624407 0.949418
95–100 0.949418 0.974835
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19.6.3 REGRESSION DISCONTINUITY

There are many situations in which there is no possibility of randomized assignment
of treatments. Examples include student outcomes and policy interventions in schools.
Angrist and Lavy (1999), for example, studied the effect of class sizes on test scores.
Van der Klaauw studied financial aid offers that were tied to SAT scores and grade
point averages. In these cases, the natural experiment approach advocated by Angrist
and Pischke (2009) is an appealing way to proceed, when it is feasible. The regression
discontinuity design presents an alternative strategy. The conditions under which the
approach can be effective are when (1) the outcome, y, is a continuous variable; (2) the
outcome varies smoothly with an assignment variable, A, and (3) treatment is “sharply”
assigned based on the value of A, specifically C = 1(A > A∗) where A∗ is a fixed
threshold or cutoff value. [A “fuzzy design is based on Prob(C = 1 | A) = F(A). The
identification problems with fuzzy design are much more complicated than with sharp
design. Readers are referred to Van der Klaauw (2002) for further discussion of fuzzy
design.] We assume, then, that

y = f (A, C) + ε.

Suppose, for example, the outcome variable is a test score, and that an administrative
treatment such as a special education program is funded based on the poverty rates of
certain communities. The ideal conditions for a regression discontinuity design based on
these assumptions is shown in Figure 19.8. The logic of the calculation is that the points
near the threshold value, which have “essentially” the same stimulus value, constitute
a nearly random sample of observations which are segmented by the treatment.

The method requires that E[ε | A, C] = E[ε | A]—the assignment variable—be ex-
ogenous to the experiment. The result in Figure 19.8 is consistent with

y = f (A) + αC + ε,

FIGURE 19.8 Regression Discontinuity.
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where α will be the treatment effect to be estimated. The specification of f (A) can
be problematic; assuming a linear function when something more general will bias the
estimate of α. For this reason, nonparametric methods, such as the LOWESS regression
(see Section 12.3.5) might be attractive. This is likely to enable the analyst to make fuller
use of the observations that are more distant from the cutoff point. [See Van der Klaaus
(2002).] Identification of the treatment effect begins with the assumption that f (A) is
continuous at A∗, so that

lim
A↑A∗ f (A) = lim

A↓A∗ f (A) = f (A∗).

Then

lim
A↓A∗ E[y | A] − lim

A↑A∗ E[y | A] = f (A∗) + α + lim
A↓A∗ E[ε | A] − f (A∗) − lim

A↑A∗ E[ε | A]

= α.

With this in place, the treatment effect can be estimated by the difference of the average
outcomes for those individuals “close” to the threshold value, A∗. Details on regression
discontinuity design are provided by Trochim (1984, 2000) and Van der Klaauw (2002).

19.7 SUMMARY AND CONCLUSIONS

This chapter has examined settings in which, in principle, the linear regression model of
Chapter 2 would apply, but the data generating mechanism produces a nonlinear form:
truncation, censoring, and sample selection or endogenous sampling. For each case, we
develop the basic theory of the effect and then use the results in a major area of research
in econometrics.

In the truncated regression model, the range of the dependent variable is restricted
substantively. Certainly all economic data are restricted in this way—aggregate income
data cannot be negative, for example. But when data are truncated so that plausible
values of the dependent variable are precluded, for example, when zero values for ex-
penditure are discarded, the data that remain are analyzed with models that explicitly
account for the truncation. The stochastic frontier model is based on a composite dis-
turbance in which one part follows the assumptions of the familiar regression model
while the second component is built on a platform of the truncated regression.

When data are censored, values of the dependent variable that could in principle be
observed are masked. Ranges of values of the true variable being studied are observed
as a single value. The basic problem this presents for model building is that in such
a case, we observe variation of the independent variables without the corresponding
variation in the dependent variable that might be expected. Consistent estimation,
and useful interpretation of estimation results are based on maximum likelihood or
some other technique that explicitly accounts for the censoring mechanism. The most
common case of censoring in observed data arises in the context of duration analysis,
or survival functions (which borrows a term from medical statistics where this style
of model building originated). It is useful to think of duration, or survival data, as
the measurement of time between transitions or changes of state. We examined three
modeling approaches that correspond to the description in Chapter 12; nonparametric
(survival tables), semiparametric (the proportional hazard models), and parametric
(various forms such as the Weibull model).
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Finally, the issue of sample selection arises when the observed data are not drawn
randomly from the population of interest. Failure to account for this nonrandom sam-
pling produces a model that describes only the nonrandom subsample, not the larger
population. In each case, we examined the model specification and estimation tech-
niques which are appropriate for these variations of the regression model. Maximum
likelihood is usually the method of choice, but for the third case, a two-step estimator
has become more common. The leading contemporary application of selection meth-
ods and endogenous sampling is in the measure of treatment effects. We considered
three approaches to analysis of treatment effects; regression methods, propensity score
matching, and regression discontinuity.

Key Terms and Concepts

• Accelerated failure time
model

• Attenuation
• Average treatment effect
• Average treatment effect on

the treated
• Censored regression model
• Censored variable
• Censoring
• Conditional mean

assumption
• Conditional moment test
• Control function
• Corner solution model
• Data envelopment analysis
• Degree of truncation
• Delta method
• Difference in differences
• Duration model
• Exponential
• Exponential model
• Fuzzy design
• Generalized residual
• Hazard function
• Hazard rate
• Heterogeneity
• Heteroscedasticity

• Hurdle model
• Incidental truncation
• Instrumetal variable

estimation
• Integrated hazard function
• Inverse probability

weighted estimator
• Inverse Mills ratio
• Lagrange multiplier test
• Matching estimator
• Mean independence

assumption
• Missing counterfactual
• Negative duration

dependence
• Olsen’s reparameterization
• Parametric
• Parametric model
• Partial likelihood
• Positive duration

dependence
• Product limit estimator
• Propensity score
• Proportional hazard
• Regression discontinuity

design
• Risk set

• Rubin causal model
• Sample selection
• Selection on observables
• Selection on unobservables
• Semiparametric estimator
• Semiparametric model
• Specification error
• Stochastic frontier model
• Survival function
• Time-varying covariate
• Tobit model
• Treatment effect
• Truncated distribution
• Truncated mean
• Truncated normal

distribution
• Truncated random variable
• Truncated standard normal

distribution
• Truncated variance
• Truncation
• Two-step estimation
• Type II tobit model
• Weibull model
• Weibull survival model

Exercises

1. The following 20 observations are drawn from a censored normal distribution:

3.8396 7.2040 0.00000 0.00000 4.4132 8.0230
5.7971 7.0828 0.00000 0.80260 13.0670 4.3211
0.00000 8.6801 5.4571 0.00000 8.1021 0.00000
1.2526 5.6016
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The applicable model is

y∗
i = μ + εi ,

yi = y∗
i if μ + εi > 0, 0 otherwise,

εi ∼ N[0, σ 2].

Exercises 1 through 4 in this section are based on the preceding information. The
OLS estimator of μ in the context of this tobit model is simply the sample mean.
Compute the mean of all 20 observations. Would you expect this estimator to over-
or underestimate μ? If we consider only the nonzero observations, then the trun-
cated regression model applies. The sample mean of the nonlimit observations
is the least squares estimator in this context. Compute it and then comment on
whether this sample mean should be an overestimate or an underestimate of the true
mean.

2. We now consider the tobit model that applies to the full data set.
a. Formulate the log-likelihood for this very simple tobit model.
b. Reformulate the log-likelihood in terms of θ = 1/σ and γ = μ/σ . Then derive

the necessary conditions for maximizing the log-likelihood with respect to θ

and γ .
c. Discuss how you would obtain the values of θ and γ to solve the problem in

part b.
d. Compute the maximum likelihood estimates of μ and σ .

3. Using only the nonlimit observations, repeat Exercise 2 in the context of the trun-
cated regression model. Estimate μ and σ by using the method of moments esti-
mator outlined in Example 19.2. Compare your results with those in the previous
exercises.

4. Continuing to use the data in Exercise 1, consider once again only the nonzero
observations. Suppose that the sampling mechanism is as follows: y∗ and another
normally distributed random variable z have population correlation 0.7. The two
variables, y∗ and z, are sampled jointly. When z is greater than zero, y is re-
ported. When z is less than zero, both z and y are discarded. Exactly 35 draws
were required to obtain the preceding sample. Estimate μ and σ. (Hint: Use Theo-
rem 19.5.)

5. Derive the partial effects for the tobit model with heteroscedasticity that is de-
scribed in Section 19.3.5.a.

6. Prove that the Hessian for the tobit model in (19-14) is negative definite after
Olsen’s transformation is applied to the parameters.

Applications

1. We examined Ray Fair’s famous analysis (Journal of Political Economy, 1978) of a
Psychology Today survey on extramarital affairs in Example 18.9 using a Poisson
regression model. Although the dependent variable used in that study was a count,
Fair (1978) used the tobit model as the platform for his study. You can reproduce
the tobit estimates in Fair’s paper easily with any software package that contains
a tobit estimator—most do. The data appear in Appendix Table F18.1. Reproduce
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Fair’s least squares and tobit estimates. Compute the partial effects for the model
and interpret all results.

2. Fair’s original study also included but did not analyze a second data set that was
a similar survey conducted by Redbook magazine. The data are reproduced in
Appendix Table F17.2. (Our thanks to Ray Fair for providing these data.) This
sample contains observations on 6,366 women and the following variables:

id = an identification number

C = constant, value = 1

yrb = a constructed measure of time spent in extramarital affairs

v1 = a rating of the marriage, coded 1 to 4

v2 = age, in years, aggregated

v3 = number of years married

v4 = number of children, top coded at 5

v5 = religiosity, 1 to 4, 1 = not, 4 = very

v6 = education, coded 9, 12, 14, 16, 17, 20

v7 = occupation

v8 = husband’s occupation

Three other variables were not used. Details on the variables in the model are
given in Fair’s (1978) Journal of Political Economy paper. Using these data, con-
duct a parallel study to the Psychology Today study that was done in Fair (1978).
Are the results consistent? Report all results, including partial effects and relevant
diagnostic statistics.

3. Continuing the analysis of the previous application, note that these data conform
precisely to the description of “corner solutions” in Section 19.3.4. The dependent
variable is not censored in the fashion usually assumed for a tobit model. To inves-
tigate whether the dependent variable is determined by a two-part decision process
(yes/no and, if yes, how much), specify and estimate a two-equation model in which
the first equation analyzes the binary decision A = 1 if yrb > 0 and 0 otherwise
and the second equation analyzes yrb | yrb > 0. What is the appropriate model?
What do you find? Report all results. (Note: If you analyze the second dependent
variable using the truncated regression, you should remove some extreme obser-
vations from your sample. The truncated regression estimator refuses to converge
with the full data set but works nicely for the example if you omit observations with
yrb > 5.)

4. StochasticFrontier Model. Section 10.5.1 presents estimates of a Cobb–Douglas
cost function using Nerlove’s 1955 data on the U.S. electric power industry. Chris-
tensen and Greene’s 1976 update of this study used 1970 data for this industry. The
Christensen and Greene data are given in Appendix Table F4.3. These data have
provided a standard test data set for estimating different forms of production and
cost functions, including the stochastic frontier model discussed in Section 19.2.4. It
has been suggested that one explanation for the apparent finding of economies of
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scale in these data is that the smaller firms were inefficient for other reasons. The
stochastic frontier might allow one to disentangle these effects. Use these data to
fit a frontier cost function which includes a quadratic term in log output in addi-
tion to the linear term and the factor prices. Then examine the estimated Jondrow
et al. residuals to see if they do indeed vary negatively with output, as suggested.
(This will require either some programming on your part or specialized software.
The stochastic frontier model is provided as an option in Stata, TSP, and LIMDEP.
Or, the likelihood function can be programmed fairly easily for RATS, MatLab, or
GAUSS. (Note: For a cost frontier as opposed to a production frontier, it is nec-
essary to reverse the sign on the argument in the � function that appears in the
log-likelihood.)




