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DISCRETE CHOICE

Q

17.1 INTRODUCTION

This is the first of three chapters that will survey models used in microeconometrics.
The analysis of individual choice that is the focus of this field is fundamentally about
modeling discrete outcomes such as purchase decisions, for example whether or not to
buy insurance, voting behavior, choice among a set of alternative brands, travel modes
or places to live, and responses to survey questions about the strength of preferences
or about self-assessed health or well-being. In these and any number of other cases,
the “dependent variable” is not a quantitative measure of some economic outcome,
but rather an indicator of whether or not some outcome occurred. It follows that the
regression methods we have used up to this point are largely inappropriate. We turn,
instead, to modeling probabilities and using econometric tools to make probabilistic
statements about the occurrence of these events. We will also examine models for
counts of occurrences. These are closer to familiar regression models, but are, once
again, about discrete outcomes of behavioral choices. As such, in this setting as well,
we will be modeling probabilities of events, rather than conditional mean functions.

The models that are analyzed in this and the next chapter are built on a platform of
preferences of decision makers. We take a random utility view of the choices that are
observed. The decision maker is faced with a situation or set of alternatives and reveals
something about their underlying preferences by the choice that he or she makes. The
choice(s) made will be affected by observable influences—this is, of course, the ultimate
objective of advertising—and by unobservable characteristics of the chooser. The blend
of these fundamental bases for individual choice is at the core of the broad range of
models that we will examine here.1

This chapter and Chapter 18 will describe four broad frameworks for analysis:

Binary Choice: The individual faces a pair of choices and makes that choice between
the two that provides the greater utility. Many such settings involve the choice between
taking an action and not taking that action, for example the decision whether or not to
purchase health insurance. In other cases, the decision might be between two distinctly
different choices, such as the decision whether to travel to and from work via public or
private transportation. In the binary choice case, the 0/1 outcome is merely a label for
“no/yes”—the numerical values are a mere convenience.

Multinomial Choice: The individual chooses among more than two choices, once
again, making the choice that provides the greatest utility. In the previous exam-
ple, private travel might involve a choice of being a driver or passenger while public

1See Greene and Hensher (2010, Chapter 4) for an historical perspective on this approach to model specifi-
cation.
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transport might involve a choice between bus and train. At one level, this is a minor
variation of the binary choice case—the latter is, of course, a special case of the former.
But, more elaborate models of multinomial choice allow a rich specification of con-
sumer preferences. In the multinomial case, the observed response is simply a label for
the selected choice; it might be a brand, the name of a place, or the type of travel mode.
Numerical assignments are not meaningful in this setting.

Ordered Choice: The individual reveals the strength of his or her preferences with
respect to a single outcome. Familiar cases involve survey questions about strength of
feelings about a particular commodity such as a movie, or self-assessments of social
outcomes such as health in general or self-assessed well-being. In the ordered choice
setting, opinions are given meaningful numeric values, usually 0, 1, . . . , J for some up-
per limit, J . For example, opinions might be labelled 0, 1, 2, 3, 4 to indicate the strength
of preferences, for example, for a product, a movie, a candidate or a piece of legisla-
tion. But, in this context, the numerical values are only a ranking, not a quantitative
measure. Thus a “1” is greater than a “0” in a qualitative sense, but not by one unit,
and the difference between a “2” and a “1” is not the same as that between a “1” and
a “0.”

In these three cases, although the numerical outcomes are merely labels of some
nonquantitative outcome, the analysis will nonetheless have a regresson-style motiva-
tion. Throughout, the models will be based on the idea that observed “covariates” are
relevant in explaining the observed choices. For example, in the binary outcome “did
or did not purchase health insurance,” a conditioning model suggests that covariates
such as age, income, and family situation will help to explain the choice. This chapter
will describe a range of models that have been developed around these considerations.
We will also be interested in a fourth application of discrete outcome models:

Event Counts: The observed outcome is a count of the number of occurrences. In
many cases, this is similar to the preceding three settings in that the “dependent variable”
measures an individual choice, such as the number of visits to the physician or the
hospital, the number of derogatory reports in one’s credit history, or the number of
visits to a particular recreation site. In other cases, the event count might be the outcome
of some natural process, such as incidence of a disease in a population or the number
of defects per unit of time in a production process. In this setting, we will be doing a
more familiar sort of regression modeling. However, the models will still be constructed
specifically to accommodate the discrete nature of the observed response variable.

We will consider these four cases in turn. The four broad areas have many elements
in common; however, there are also substantive differences between the particular
models and analysis techniques used in each. This chapter will develop the first topic,
models for binary choices. In each section, we will begin with an overview of applications
and then present the single basic model that is the centerpiece of the methodology,
and, finally, examine some recently developed extensions of the model. This chapter
contains a very lengthy discussion of models for binary choices. This analysis is as long
as it is because, first, the models discussed are used throughout microeconometrics—
the central model of binary choice in this area is as ubiquitous as linear regression.
Second, all the econometric issues and features that are encountered in the other areas
will appear in the analysis of binary choice, where we can examine them in a fairly
straightforward fashion.
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It will emerge that, at least in econometric terms, the models for multinomial and
ordered choice considered in Chapter 18 can be built from the two fundamental building
blocks, the model of random utility and the translation of that model into a description
of binary choices. There are relatively few new econometric issues that arise here. Chap-
ter 18 will be largely devoted to suggesting different approaches to modeling choices
among multiple alternatives and models for ordered choices. Once again, models of
preference scales, such as movie or product ratings, or self-assessments of health or well-
being, can be naturally built up from the fundamental model of random utility. Finally,
Chapter 18 will develop the well-known Poisson regression model for counts of events.
We will then extend the model to demonstrate some recent applications and innovations.

Chapters 17 and 18 are a lengthy but far from complete survey of topics in esti-
mating qualitative response (QR) models. None of these models can consistently be
estimated with linear regression methods. In most cases, the method of estimation is
maximum likelihood. Therefore, readers interested in the mechanics of estimation may
want to review the material in Appendices D and E before continuing. The various
properties of maximum likelihood estimators are discussed in Chapter 14. We shall
assume throughout these chapters that the necessary conditions behind the optimality
properties of maximum likelihood estimators are met and, therefore, we will not derive
or establish these properties specifically for the QR models. Detailed proofs for most of
these models can be found in surveys by Amemiya (1981), McFadden (1984), Maddala
(1983), and Dhrymes (1984). Additional commentary on some of the issues of interest
in the contemporary literature is given by Manski and McFadden (1981) and Maddala
and Flores-Lagunes (2001). Agresti (2002) and Cameron and Trivedi (2005) contain
numerous theoretical developments and applications. Greene (2008) and Hensher and
Greene (2010) provide, among many others, general surveys of discrete choice models
and methods.2

17.2 MODELS FOR BINARY OUTCOMES

For purposes of studying individual behavior, we will construct models that link the
decision or outcome to a set of factors, at least in the spirit of regression. Our approach
will be to analyze each of them in the general framework of probability models:

Prob(event j occurs) = Prob(Y = j) = F[relevant effects, parameters]. (17-1)

The study of qualitative choice focuses on appropriate specification, estimation, and
use of models for the probabilities of events, where in most cases, the “event” is an
individual’s choice among a set of two or more alternatives.

Example 17.1 Labor Force Participation Model
In Example 5.2 we estimated an earnings equation for the subsample of 428 married women
who participated in the formal labor market taken from a full sample of 753 observations.
The semilog earnings equation is of the form

ln earnings = β1 + β2 age + β3 age2 + β4 education + β5 kids + ε,

2There are dozens of book length surveys of discrete choice models. Two others that are heavily oriented to
application of the methods are Train (2003) and Hensher, Rose, and Greene (2005).
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where earnings is hourly wage times hours worked, education is measured in years of school-
ing, and kids is a binary variable which equals one if there are children under 18 in the house-
hold. What of the other 325 individuals? The underlying labor supply model described a
market in which labor force participation was the outcome of a market process whereby the
demanders of labor services were willing to offer a wage based on expected marginal product
and individuals themselves made a decision whether or not to accept the offer depending
on whether it exceeded their own reservation wage. The first of these depends on, among
other things, education, while the second (we assume) depends on such variables as age,
the presence of children in the household, other sources of income (husband’s), and marginal
tax rates on labor income. The sample we used to fit the earnings equation contains data
on all these other variables. The models considered in this chapter would be appropriate for
modeling the outcome y = 1 if in the labor force, and 0 if not.

Models for explaining a binary (0/1) dependent variable are typically motivated
in two contexts. The labor force participation model in Example 17.1 describes a pro-
cess of individual choice between two alternatives in which the choice is influenced by
observable effects (children, tax rates) and unobservable aspects of the preferences of
the individual. The relationship between voting behavior and income is another exam-
ple. In other cases, the binary choice model arises in a setting in which the nature of
the observed data dictate the special treatment of a binary dependent variable model.
In these cases, the analyst is essentially interested in a regression-like model of the
sort considered in Chapters 2 through 7. With data on the variable of interest and a
set of covariates, they are interested in specifying a relationship between the former
and the latter, more or less along the lines of the models we have already studied.
For example, in a model of the demand for tickets for sporting events, in which the
variable of interest is number of tickets, it could happen that the observation consists
only of whether the sports facility was filled to capacity (demand greater than or equal
to capacity so Y = 1) or not (Y = 0). It will generally turn out that the models and
techniques used in both cases are the same. Nonetheless, it is useful to examine both
of them.

17.2.1 RANDOM UTILITY MODELS FOR INDIVIDUAL CHOICE

An interpretation of data on individual choices is provided by the random utility model.
Let Ua and Ub represent an individual’s utility of two choices. For example, Ua might
be the utility of rental housing and Ub that of home ownership. The observed choice
between the two reveals which one provides the greater utility, but not the unobservable
utilities. Hence, the observed indicator equals 1 if Ua > Ub and 0 if Ua ≤ Ub. A common
formulation is the linear random utility model,

Ua = w′βa + za
′γ a + εa and Ub = w′βb + zb

′γ b + εb. (17-2)

In (17-2), the observable (measurable) vector of characteristics of the individual is
denoted w; this might include gender, age, income, and other demographics. The vectors
za and zb denote features (attributes) of the two choices that might be choice specific.
In a voting context, for example, the attributes might be indicators of the competing
candidates’ positions on important issues. The random terms, εa and εb represent the
stochastic elements that are specific to and known only by the individual, but not by the
observer (analyst). To continue our voting example, εa might represent an intangible,
general “preference” for candidate a.
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The completion of the model for the determination of the observed outcome
(choice) is the revelation of the ranking of the preferences by the choice the indi-
vidual makes. Thus, if we denote by Y = 1 the consumer’s choice of alternative a, we
infer from Y = 1 that Ua > Ub. Since the outcome is ultimately driven by the random
elements in the utility functions, we have

Prob[Y = 1|w, za, zb] = Prob[Ua > Ub]

= Prob[(w′βa + za
′γ a + εa) − (x′βb + zb

′γ b + εb) > 0 | w, za, zb]

= Prob[(w′(βa − βb) + za
′γ a − zb

′γ b + εa − εb) > 0 | w, za, zb]

= Prob[x′β + ε > 0 | x],

where x′β collects all the observable elements of the difference of the two utility func-
tions and ε denotes the difference between the two random elements.

Example 17.2 Structural Equations for a Binary Choice Model
Nakosteen and Zimmer (1980) analyzed a model of migration based on the following struc-
ture:3 For a given individual, the market wage that can be earned at the present location
is

y∗
p = w′

pβ p + εp.

Variables in the equation include age, sex, race, growth in employment, and growth in per
capita income. If the individual migrates to a new location, then his or her market wage would
be

y∗
m = w′

mβm + εm.

Migration entails costs that are related both to the individual and to the labor market:

C∗ = z′α + u.

Costs of moving are related to whether the individual is self-employed and whether that
person recently changed his or her industry of employment. They migrate if the benefit
y∗

m − y∗
p is greater than the cost, C. The net benefit of moving is

M∗ = y∗
m − y∗

p − C∗

= w′
mβm − w′

pβ p − z′α + (εm − εp − u)

= x′β + ε.

Because M∗ is unobservable, we cannot treat this equation as an ordinary regression. The
individual either moves or does not. After the fact, we observe only y∗

m if the individual has
moved or y∗

p if he or she has not. But we do observe that M = 1 for a move and M = 0 for
no move.

3A number of other studies have also used variants of this basic formulation. Some important examples are
Willis and Rosen (1979) and Robinson and Tomes (1982). The study by Tunali (1986) examined in Example
17.6 is another application. The now standard approach, in which “participation” equals one if wage offer
(x′

wβw + εw) minus reservation wage (x′
r βr + εr ) is positive, is also used in Fernandez and Rodriguez-Poo

(1997). Brock and Durlauf (2000) describe a number of models and situations involving individual behavior
that give rise to binary choice models.
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17.2.2 A LATENT REGRESSION MODEL

Discrete dependent-variable models are often cast in the form of index function models.
We view the outcome of a discrete choice as a reflection of an underlying regression.
As an often-cited example, consider the decision to make a large purchase. The theory
states that the consumer makes a marginal benefit/marginal cost calculation based on
the utilities achieved by making the purchase and by not making the purchase and by
using the money for something else. We model the difference between benefit and cost
as an unobserved variable y∗ such that

y∗ = x′β + ε.

Note that this is the result of the “net utility” calculation in the previous section and in
Example 17.2. We assume that ε has mean zero and has either a standardized logistic
with variance π2/3 or a standard normal distribution with variance one or some other
specific distribution with known variance. We do not observe the net benefit of the
purchase (i.e., net utility), only whether it is made or not. Therefore, our observation is

y = 1 if y∗ > 0,

y = 0 if y∗ ≤ 0. (17-3)

In this formulation, x′β is called the index function. The assumption of known variance
of ε is an innocent normalization. Suppose the variance of ε is scaled by an unrestricted
parameter σ 2. The latent regression will be y∗ = x′β + σε. But, (y∗/σ) = x′(β/σ) + ε

is the same model with the same data. The observed data will be unchanged; y is still
0 or 1, depending only on the sign of y∗ not on its scale. This means that there is no
information about σ in the sample data so σ cannot be estimated. The parameter vector
β in this model is only “identified up to scale.” The assumption of zero for the threshold
in (17-3) is likewise innocent if the model contains a constant term (and not if it does
not).4 Let a be the supposed nonzero threshold and α be the unknown constant term
and, for the present, x and β contain the rest of the index not including the constant
term. Then, the probability that y equals one is

Prob(y∗ > a | x) = Prob(α + x′β + ε > a | x) = Prob[(α − a) + x′β + ε > 0 | x].

Because α is unknown, the difference (α − a) remains an unknown parameter. The end
result is that if the model contains a constant term, it is unchanged by the choice of the
threshold in (17-3). The choice of zero is a normalization with no significance. With the
two normalizations, then,

Prob(y∗ > 0 | x) = Prob(ε > −x′β | x).

A remaining detail in the model is the choice of the specific distribution for ε. We will
consider several. The overwhelming majority of applications are based either on the
normal or the logistic distribution. If the distribution is symmetric, as are the normal
and logistic, then

Prob(y∗ > 0 | x) = Prob(ε < x′β | x) = F(x′β), (17-4)

4Unless there is some compelling reason, binomial probability models should not be estimated without
constant terms.
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where F(t) is the cdf of the random variable, ε. This provides an underlying structural
model for the probability.

17.2.3 FUNCTIONAL FORM AND REGRESSION

Consider the model of labor force participation suggested in Example 17.1. The respon-
dent either works or seeks work (Y = 1) or does not (Y = 0) in the period in which our
survey is taken. We believe that a set of factors, such as age, marital status, education,
and work history, gathered in a vector x, explain the decision, so that

Prob(Y = 1 | x) = F(x, β)

Prob(Y = 0 | x) = 1 − F(x, β). (17-5)

The set of parameters β reflects the impact of changes in x on the probability. For
example, among the factors that might interest us is the marginal effect of marital status
on the probability of labor force participation. The problem at this point is to devise a
suitable model for the right-hand side of the equation. One possibility is to retain the
familiar linear regression,

F(x, β) = x′β.

Because E[y | x] = 0[1−F(x, β)]+1[F(x, β)] = F(x, β), we can construct the regression
model,

y = E[y | x] + y − E[y | x]

= x′β + ε. (17-6)

The linear probability model has a number of shortcomings. A minor complication
arises because ε is heteroscedastic in a way that depends on β. Because x′β + ε must
equal 0 or 1, ε equals either −x′β or 1−x′β, with probabilities 1− F and F , respectively.
Thus, you can easily show that in this model,

Var[ε | x] = x′β(1 − x′β). (17-7)

We could manage this complication with an FGLS estimator in the fashion of Chap-
ter 9, though this only solves the estimation problem, not the theoretical one. A more
serious flaw is that without some ad hoc tinkering with the disturbances, we cannot be
assured that the predictions from this model will truly look like probabilities. We cannot
constrain x′β to the 0–1 interval. Such a model produces both nonsense probabilities
and negative variances. For these reasons, the linear probability model is becoming
less frequently used except as a basis for comparison to some other more appropriate
models.5

5The linear model is not beyond redemption. Aldrich and Nelson (1984) analyze the properties of the model
at length. Judge et al. (1985) and Fomby, Hill, and Johnson (1984) give interesting discussions of the ways we
may modify the model to force internal consistency. But the fixes are sample dependent, and the resulting
estimator, such as it is, may have no known sampling properties. Additional discussion of weighted least
squares appears in Amemiya (1977) and Mullahy (1990). Finally, its shortcomings notwithstanding, the linear
probability model is applied by Caudill (1988), Heckman, and MaCurdy (1985), and Heckman and Snyder
(1997). An exchange on the usefulness of the approach is Angrist (2001) and Moffitt (2001). See Angrist and
Pischke (2009) for some applications.
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FIGURE 17.1 Model for a Probability.

Our requirement, then, is a model that will produce predictions consistent with the
underlying theory in (17-4). For a given regressor vector, we would expect

lim
x′β→+∞

Prob(Y = 1 | x) = 1

lim
x′β→−∞

Prob(Y = 1 | x) = 0. (17-8)

See Figure 17.1. In principle, any proper, continuous probability distribution defined
over the real line will suffice. The normal distribution has been used in many analyses,
giving rise to the probit model,

Prob(Y = 1 | x) =
∫ x′β

−∞
φ(t)dt = �(x′β). (17-9)

The function �(t) is a commonly used notation for the standard normal distribution
function. Partly because of its mathematical convenience, the logistic distribution,

Prob(Y = 1 | x) = exp(x′β)

1 + exp(x′β)
= 	(x′β). (17-10)

has also been used in many applications. We shall use the notation 	(.) to indicate the
logistic cumulative distribution function. This model is called the logit model for reasons
we shall discuss in the next section. Both of these distributions have the familiar bell
shape of symmetric distributions. Other models which do not assume symmetry, such
as the Gumbel model,

Prob(Y = 1 | x) = exp[− exp(−x′β)],
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and complementary log log model,

Prob(Y = 1 | x) = 1 − exp[− exp(x′β)],

have also been employed. Still other distributions have been suggested,6 but the probit
and logit models are still the most common frameworks used in econometric applica-
tions.

The question of which distribution to use is a natural one. The logistic distribution is
similar to the normal except in the tails, which are considerably heavier. (It more closely
resembles a t distribution with seven degrees of freedom.) Therefore, for intermediate
values of x′β (say, between −1.2 and +1.2), the two distributions tend to give similar
probabilities. The logistic distribution tends to give larger probabilities to Y = 1 when
x′β is extremely small (and smaller probabilities to Y = 1 when x′β is very large)
than the normal distribution. It is difficult to provide practical generalities on this basis,
however, as they would require knowledge of β. We should expect different predictions
from the two models, however, if the sample contains (1) very few “responses” (Y’s
equal to 1) or very few “nonresponses” (Y’s equal to 0) and (2) very wide variation in
an important independent variable, particularly if (1) is also true. There are practical
reasons for favoring one or the other in some cases for mathematical convenience, but
it is difficult to justify the choice of one distribution or another on theoretical grounds.
Amemiya (1981) discusses a number of related issues, but as a general proposition, the
question is unresolved. In most applications, the choice between these two seems not to
make much difference. However, as seen in the following example, the symmetric and
asymmetric distributions can give substantively different results, and here, the guidance
on how to choose is unfortunately sparse.

The probability model is a regression:

E[y | x] = F(x′β).

Whatever distribution is used, it is important to note that the parameters of the model,
like those of any nonlinear regression model, are not necessarily the marginal effects
we are accustomed to analyzing. In general,

∂ E[y | x]
∂x

=
[

dF(x′β)

d(x′β)

]
× β = f (x′β) × β, (17-11)

where f (.) is the density function that corresponds to the cumulative distribution, F(.).
For the normal distribution, this result is

∂ E[y | x]
∂x

= φ(x′β) × β, (17-12)

where φ(t) is the standard normal density. For the logistic distribution,

d	(x′β)

d(x′β)
= exp(x′β)

[1 + exp(x′β)]2
= 	(x′β)[1 − 	(x′β)],

so, in the logit model,

∂ E[y | x]
∂x

= 	(x′β)[1 − 	(x′β)]β. (17-13)

6See, for example, Maddala (1983, pp. 27–32), Aldrich and Nelson (1984), and Greene (2001).
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It is obvious that these values will vary with the values of x. In interpreting the estimated
model, it will be useful to calculate this value at, say, the means of the regressors and,
where necessary, other pertinent values. For convenience, it is worth noting that the
same scale factor applies to all the slopes in the model.

For computing marginal effects, one can evaluate the expressions at the sample
means of the data or evaluate the marginal effects at every observation and use the sam-
ple average of the individual marginal effects—this produces the average partial effects.
In large samples these generally give roughly the same answer (see Section 17.3.2). But
that is not so in small- or moderate-sized samples. Current practice favors averaging
the individual marginal effects when it is possible to do so.

Another complication for computing marginal effects in a binary choice model
arises because x will often include dummy variables—for example, a labor force par-
ticipation equation will often contain a dummy variable for marital status. Because the
derivative is with respect to a small change, it is not appropriate to apply (15) for the
effect of a change in a dummy variable, or a change of state. The appropriate marginal
effect for a binary independent variable, say, d, would be

Marginal effect = Prob[Y = 1 | x̄(d), d = 1] − Prob[Y = 1 | x̄(d), d = 0], (17-14)

where x̄(d), denotes the means of all the other variables in the model. Simply taking the
derivative with respect to the binary variable as if it were continuous provides an approx-
imation that is often surprisingly accurate. In Example 17.3, for the binary variable PSI,
the difference in the two probabilities for the probit model is (0.5702 − 0.1057) = 0.4645,
whereas the derivative approximation reported in Table 17.1 is 0.468. Nonetheless, it
might be optimistic to rely on this outcome. We will revisit this computation in the
examples and discussion to follow.

17.3 ESTIMATION AND INFERENCE IN
BINARY CHOICE MODELS

With the exception of the linear probability model, estimation of binary choice models
is usually based on the method of maximum likelihood. Each observation is treated as
a single draw from a Bernoulli distribution (binomial with one draw). The model with
success probability F(x′β) and independent observations leads to the joint probability,
or likelihood function,

Prob(Y1 = y1, Y2 = y2, . . . , Yn = yn | X) =
∏
yi =0

[1 − F(x′
iβ)]

∏
yi =1

F(x′
iβ).

where X denotes [xi ]i=1,...,n. The likelihood function for a sample of n observations can
be conveniently written as

L(β | data) =
n∏

i=1

[F(x′
iβ)]yi [1 − F(x′

iβ)]1−yi . (17-15)
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Taking logs, we obtain

ln L =
n∑

i=1

{
yi ln F(x′

iβ) + (1 − yi ) ln[1 − F(x′
iβ)]

}
.7 (17-16)

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

[
yi fi

Fi
+ (1 − yi )

− fi

(1 − Fi )

]
xi = 0, (17-17)

where fi is the density, dFi/d(x′
iβ). [In (17-17) and later, we will use the subscript i to

indicate that the function has an argument x′
iβ.] The choice of a particular form for Fi

leads to the empirical model.
Unless we are using the linear probability model, the likelihood equations in (17-17)

will be nonlinear and require an iterative solution. All of the models we have seen thus
far are relatively straightforward to analyze. For the logit model, by inserting (17-7) and
(17-11) in (17-17), we get, after a bit of manipulation, the likelihood equations

∂ ln L
∂β

=
n∑

i=1

(yi − 	i )xi = 0. (17-18)

Note that if xi contains a constant term, the first-order conditions imply that the average
of the predicted probabilities must equal the proportion of ones in the sample.8 This
implication also bears some similarity to the least squares normal equations if we view
the term yi − 	i as a residual.9 For the normal distribution, the log-likelihood is

ln L =
∑
yi =0

ln[1 − �(x′
iβ)] +

∑
yi =1

ln �(x′
iβ). (17-19)

The first-order conditions for maximizing ln L are

∂ ln L
∂β

=
∑
yi =0

−φi

1 − �i
xi +

∑
yi =1

φi

�i
xi =

∑
yi =0

λ0i xi +
∑
yi =1

λ1i xi .

Using the device suggested in footnote 7, we can reduce this to

∂ log L
∂β

=
n∑

i=1

[
qiφ(qi x′

iβ)

�(qi x′
iβ)

]
xi =

n∑
i=1

λi xi = 0, (17-20)

where qi = 2yi − 1.
The actual second derivatives for the logit model are quite simple:

H = ∂2 ln L
∂β∂β ′ = −

∑
i

	i (1 − 	i )xi x′
i . (17-21)

7If the distribution is symmetric, as the normal and logistic are, then 1− F(x′β) = F(−x′β). There is a further
simplification. Let q = 2y − 1. Then ln L = �i ln F(qi x′

i β). See (17-21).
8The same result holds for the linear probability model. Although regularly observed in practice, the result
has not been verified for the probit model.
9This sort of construction arises in many models. The first derivative of the log-likelihood with respect to the
constant term produces the generalized residual in many settings. See, for example, Chesher, Lancaster, and
Irish (1985) and the equivalent result for the tobit model in Section 19.3.4.d.

Bill
Line



Greene-2140242 book November 25, 2010 22:10

692 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

The second derivatives do not involve the random variable yi , so Newton’s method
is also the method of scoring for the logit model. Note that the Hessian is always
negative definite, so the log-likelihood is globally concave. Newton’s method will usually
converge to the maximum of the log-likelihood in just a few iterations unless the data
are especially badly conditioned. The computation is slightly more involved for the
probit model. A useful simplification is obtained by using the variable λ(yi , β

′xi ) = λi

that is defined in (17-20). The second derivatives can be obtained using the result that
for any z, dφ(z)/dz = −zφ(z). Then, for the probit model,

H = ∂2 ln L
∂β∂β ′ =

n∑
i=1

−λi (λi + x′
iβ)xi x′

i . (17-22)

This matrix is also negative definite for all values of β. The proof is less obvious
than for the logit model.10 It suffices to note that the scalar part in the summation is
Var[ε | ε ≤ β ′x]−1 when y = 1 and Var[ε | ε ≥ −β ′x]−1 when y = 0. The unconditional
variance is one. Because truncation always reduces variance—see Theorem 18.2—in
both cases, the variance is between zero and one, so the value is negative.11

The asymptotic covariance matrix for the maximum likelihood estimator can be
estimated by using the inverse of the Hessian evaluated at the maximum likelihood
estimates. There are also two other estimators available. The Berndt, Hall, Hall, and
Hausman estimator [see (14-18) and Example 14.4] would be

B =
n∑

i=1

g2
i xi x′

i ,

where gi = (yi − �i ) for the logit model [see (17-18)] and gi = λi for the probit model
[see (17-20)]. The third estimator would be based on the expected value of the Hessian.
As we saw earlier, the Hessian for the logit model does not involve yi , so H = E [H].
But because λi is a function of yi [see (17-20)], this result is not true for the probit model.
Amemiya (1981) showed that for the probit model,

E
[
∂2 ln L
∂β ∂β ′

]
probit

=
n∑

i=1

λ0iλ1i xi x′
i . (17-23)

Once again, the scalar part of the expression is always negative [see (17-20) and note
that λ0i is always negative and λi1 is always positive]. The estimator of the asymptotic
covariance matrix for the maximum likelihood estimator is then the negative inverse
of whatever matrix is used to estimate the expected Hessian. Since the actual Hessian
is generally used for the iterations, this option is the usual choice. As we shall see later,
though, for certain hypothesis tests, the BHHH estimator is a more convenient choice.

17.3.1 ROBUST COVARIANCE MATRIX ESTIMATION

The probit maximum likelihood estimator is often labeled a quasi-maximum likeli-
hood estimator (QMLE) in view of the possibility that the normal probability model
might be misspecified. White’s (1982a) robust “sandwich” estimator for the asymptotic

10See, for example, Amemiya (1985, pp. 273–274) and Maddala (1983, p. 63).
11See Johnson and Kotz (1993) and Heckman (1979). We will make repeated use of this result in Chapter 19.
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covariance matrix of the QMLE (see Section 14.8 for discussion),

Est. Asy. Var[β̂] = [Ĥ]−1B̂[Ĥ]−1,

has been used in a number of recent studies based on the probit model [e.g., Fernan-
dez and Rodriguez-Poo (1997), Horowitz (1993), and Blundell, Laisney, and Lechner
(1993)]. If the probit model is correctly specified, then plim(1/n)B̂ = plim(1/n)(−Ĥ)

and either single matrix will suffice, so the robustness issue is moot (of course). On the
other hand, the probit (Q-) maximum likelihood estimator is not consistent in the pres-
ence of any form of heteroscedasticity, unmeasured heterogeneity, omitted variables
(even if they are orthogonal to the included ones), nonlinearity of the functional form
of the index, or an error in the distributional assumption [with some narrow excep-
tions as described by Ruud (1986)]. Thus, in almost any case, the sandwich estimator
provides an appropriate asymptotic covariance matrix for an estimator that is biased
in an unknown direction. [See Section 14.8 and Freedman (2006).] White raises this
issue explicitly, although it seems to receive little attention in the literature: “It is the
consistency of the QMLE for the parameters of interest in a wide range of situations
which insures its usefulness as the basis for robust estimation techniques” (1982a, p. 4).
His very useful result is that if the quasi-maximum likelihood estimator converges to
a probability limit, then the sandwich estimator can, under certain circumstances, be
used to estimate the asymptotic covariance matrix of that estimator. But there is no
guarantee that the QMLE will converge to anything interesting or useful. Simply com-
puting a robust covariance matrix for an otherwise inconsistent estimator does not give
it redemption. Consequently, the virtue of a robust covariance matrix in this setting is
unclear.

17.3.2 MARGINAL EFFECTS AND AVERAGE PARTIAL EFFECTS

The predicted probabilities, F(x′β̂) = F̂ and the estimated partial effects f (x′β̂) × β̂ =
f̂ β̂ are nonlinear functions of the parameter estimates. To compute standard errors, we
can use the linear approximation approach (delta method) discussed in Section 4.4.4.
For the predicted probabilities,

Asy. Var[F̂] = [∂ F̂/∂β̂]′V[∂ F̂/∂β̂],

where

V = Asy. Var[β̂].

The estimated asymptotic covariance matrix of β̂ can be any of the three described
earlier. Let z = x′β̂. Then the derivative vector is

[∂ F̂/∂β̂] = [dF̂/dz][∂z/∂β̂] = f̂ x.

Combining terms gives

Asy. Var[F̂] = f̂ 2x′ Vx,

which depends, of course, on the particular x vector used. This result is useful when a
marginal effect is computed for a dummy variable. In that case, the estimated effect is

F̂ = F̂ | (d = 1) − F̂ | (d = 0). (17-24)
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The asymptotic variance would be

Asy. Var[F̂] = [∂F̂/∂β̂]′V[∂F̂/∂β̂], (17-25)

where

[∂F̂/∂β̂] = f̂ 1

(
x̄(d)

1

)
− f̂ 0

(
x̄(d)

0

)
.

For the other marginal effects, let γ̂ = f̂ β̂. Then

Asy. Var[γ̂ ] =
[

∂ γ̂

∂β̂
′

]
V

[
∂ γ̂

∂β̂ ′

]′
.

The matrix of derivatives is

f̂

(
∂β̂

∂β̂
′

)
+ β̂

(
d f̂
dz

) (
∂z

∂β̂
′

)
= f̂ I +

(
d f̂
dz

)
β̂x′.

For the probit model, df/dz = −zφ, so

Asy. Var[γ̂ ] = φ2[I − (x′β)βx′]V[I − (x′β)βx′]′.

For the logit model, f̂ = 	̂(1 − 	̂), so

d f̂
dz

= (1 − 2	̂)

(
d	̂

dz

)
= (1 − 2	̂)	̂(1 − 	̂).

Collecting terms, we obtain

Asy. Var[γ̂ ] = [	(1 − 	)]2[I + (1 − 2	)βx′]V[I + (1 − 2	)xβ ′].

As before, the value obtained will depend on the x vector used.

Example 17.3 Probability Models
The data listed in Appendix Table F14.1 were taken from a study by Spector and Mazzeo
(1980), which examined whether a new method of teaching economics, the Personalized
System of Instruction (PSI), significantly influenced performance in later economics courses.
The “dependent variable” used in our application is GRADE, which indicates the whether
a student’s grade in an intermediate macroeconomics course was higher than that in the
principles course. The other variables are GPA, their grade point average; TUCE, the score
on a pretest that indicates entering knowledge of the material; and PSI, the binary variable
indicator of whether the student was exposed to the new teaching method. (Spector and
Mazzeo’s specific equation was somewhat different from the one estimated here.)

Table 17.1 presents four sets of parameter estimates. The slope parameters and deriva-
tives were computed for four probability models: linear, probit, logit, and complementary
log log. The last three sets of estimates are computed by maximizing the appropriate log-
likelihood function. Inference is discussed in the next section, so standard errors are not
presented here. The scale factor given in the last row is the density function evaluated at
the means of the variables. Also, note that the slope given for PSI is the derivative, not the
change in the function with PSI changed from zero to one with other variables held constant.

If one looked only at the coefficient estimates, then it would be natural to conclude that
the four models had produced radically different estimates. But a comparison of the columns
of slopes shows that this conclusion is clearly wrong. The models are very similar; in fact,
the logit and probit models results are nearly identical.

The data used in this example are only moderately unbalanced between 0s and 1s for
the dependent variable (21 and 11). As such, we might expect similar results for the probit



Greene-2140242 book November 25, 2010 22:10

CHAPTER 17 ✦ Discrete Choice 695

TABLE 17.1 Estimated Probability Models

Linear Logistic Probit Complementary log log

Variable Coefficient Slope Coefficient Slope Coefficient Slope Coefficient Slope

Constant −1.498 — −13.021 — −7.452 — −10.631 —
GPA 0.464 0.464 2.826 0.534 1.626 0.533 2.293 0.477
TUCE 0.010 0.010 0.095 0.018 0.052 0.017 0.041 0.009
PSI 0.379 0.379 2.379 0.450 1.426 0.468 1.562 0.325
f (x̄ ′β̂) 1.000 0.189 0.328 0.208

and logit models.12 One indicator is a comparison of the coefficients. In view of the different
variances of the distributions, one for the normal and π2/3 for the logistic, we might expect to
obtain comparable estimates by multiplying the probit coefficients by π/

√
3 ≈ 1.8. Amemiya

(1981) found, through trial and error, that scaling by 1.6 instead produced better results. This
proportionality result is frequently cited. The result in (17-11) may help to explain the finding.
The index x′β is not the random variable. The marginal effect in the probit model for, say, xk is
φ (x′β p)βpk, whereas that for the logit is 	(1−	)βl k. (The subscripts p and l are for probit and
logit.) Amemiya suggests that his approximation works best at the center of the distribution,
where F = 0.5, or x′β = 0 for either distribution. Suppose it is. Then φ (0) = 0.3989 and
	(0) [1 − 	(0) ] = 0.25. If the marginal effects are to be the same, then 0.3989 βpk = 0.25βl k,
or βl k = 1.6βpk, which is the regularity observed by Amemiya. Note, though, that as we
depart from the center of the distribution, the relationship will move away from 1.6. Because
the logistic density descends more slowly than the normal, for unbalanced samples such as
ours, the ratio of the logit coefficients to the probit coefficients will tend to be larger than 1.6.
The ratios for the ones in Table 17.1 are closer to 1.7 than 1.6.

The computation of the derivatives of the conditional mean function is useful when the vari-
able in question is continuous and often produces a reasonable approximation for a dummy
variable. Another way to analyze the effect of a dummy variable on the whole distribution is
to compute Prob(Y = 1) over the range of x′β (using the sample estimates) and with the two
values of the binary variable. Using the coefficients from the probit model in Table 17.1, we
have the following probabilities as a function of GPA, at the mean of TUCE:

PSI = 0: Prob(GRADE = 1) = �[−7.452 + 1.626GPA + 0.052(21.938) ],

PSI = 1: Prob(GRADE = 1) = �[−7.452 + 1.626GPA + 0.052(21.938) + 1.426].

Figure 17.2 shows these two functions plotted over the range of GPA observed in the sample,
2.0 to 4.0. The marginal effect of PSI is the difference between the two functions, which ranges
from only about 0.06 at GPA = 2 to about 0.50 at GPA of 3.5. This effect shows that the
probability that a student’s grade will increase after exposure to PSI is far greater for students
with high GPAs than for those with low GPAs. At the sample mean of GPA of 3.117, the effect
of PSI on the probability is 0.465. The simple derivative calculation of (17-9) is given in Table
17.1; the estimate is 0.468. But, of course, this calculation does not show the wide range of
differences displayed in Figure 17.2.

Table 17.2 presents the estimated coefficients and marginal effects for the probit and
logit models in Table 17.2. In both cases, the asymptotic covariance matrix is computed
from the negative inverse of the actual Hessian of the log-likelihood. The standard errors for
the estimated marginal effect of PSI are computed using (17-24) and (17-25) since PSI is a
binary variable. In comparison, the simple derivatives produce estimates and standard errors
of (0.449, 0.181) for the logit model and (0.464, 0.188) for the probit model. These differ only
slightly from the results given in the table.

12One might be tempted in this case to suggest an asymmetric distribution for the model, such as the Gumbel
distribution. However, the asymmetry in the model, to the extent that it is present at all, refers to the values
of ε, not to the observed sample of values of the dependent variable.
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FIGURE 17.2 Effect of PSI on Predicted Probabilities.

17.3.2.a Average Partial Effects

The preceding has emphasized computing the partial effects for the average individual in
the sample. Current practice has many applications based, instead, on “average partial
effects.” [See, e.g., Wooldridge (2002a).] The underlying logic is that the quantity of
interest is

APE = Ex

[
∂ E[y | x]

∂x

]
.

In practical terms, this suggests the computation

ÂPE = ¯̂γ = 1
n

n∑
i=1

f (x′
i β̂)β̂.

TABLE 17.2 Estimated Coefficients and Standard Errors (standard errors
in parentheses)

Logistic Probit

Variable Coefficient t Ratio Slope t Ratio Coefficient t Ratio Slope t Ratio

Constant −13.021 −2.641 — — −7.452 −2.931 — —
(4.931) (2.542)

GPA 2.826 2.238 0.534 2.252 1.626 2.343 0.533 2.294
(1.263) (0.237) (0.694) (0.232)

TUCE 0.095 0.672 0.018 0.685 0.052 0.617 0.017 0.626
(0.142) (0.026) (0.084) (0.027)

PSI 2.379 2.234 0.456 2.521 1.426 2.397 0.464 2.727
(1.065) (0.181) (0.595) (0.170)

log-likelihood −12.890 −12.819
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This does raise two questions. Because the computation is (marginally) more burden-
some than the simple marginal effects at the means, one might wonder whether this
produces a noticeably different answer. That will depend on the data. Save for small
sample variation, the difference in these two results is likely to be small. Let

γ̄k = APEk = 1
n

n∑
i=1

∂Pr(yi = 1 | xi )

∂xik
= 1

n

n∑
i=1

F ′(x′
iβ)βk = 1

n

n∑
i=1

γk(xi )

denote the computation of the average partial effect. We compute this at the MLE, β̂.
Now, expand this function in a second-order Taylor series around the point of sample
means, x̄, to obtain

γ̄k = 1
n

n∑
i=1

[
γk(x̄) +

k∑
m=1

∂γk(x̄)

∂ x̄m
(xim − x̄m)

+ 1
2

K∑
l=1

K∑
m=1

∂2γk(x̄)

∂ x̄l∂ x̄m
(xil − x̄l )(xim − x̄m)

]
+ �,

where � is the remaining higher-order terms. The first of the three terms is the marginal
effect computed at the sample means. The second term is zero by construction. That
leaves the remainder plus an average of a term that is a function of the variances and
covariances of the data and the curvature of the probability function at the means. Little
can be said to characterize these two terms in any particular sample, but one might guess
they are likely to be small. We will examine an application in Example 17.4.

Based on the sample of observations on the partial effects, a natural estimator of
the variance of the partial effects would seem to be

σ̂ 2
γ,k = 1

n − 1

n∑
i=1

(
γ̂k(xi ) − ¯̂γ k

)2 = 1
n − 1

n∑
i=1

(
P̂Ei,k − ÂPEk

)2
.

See, for example, Contoyannis et al. (2004, p. 498), who report that they computed the
“sample standard deviation of the partial effects.” Since ÂPEk = ¯̂γ k is the mean of a
sample, notwithstanding the following consideration, the preceding estimator should
be further divided by the sample size since we are computing the standard error of
the mean of a sample. This seems not to be the norm in the literature. This estimator
should not be viewed as an alternative to the delta method applied to the partial effects
evaluated at the means of the data, γ̂ (x̄). The delta method produces an estimator of
the asymptotic variance of an estimator of the population parameter, γ (μx), that is, of a
function of β̂. The asymptotic covariance matrix computed using the delta method for
γ̂ (x̄) would be Ĝ(x̄)V̂Ĝ′(x̄) where Ĝ(x̄) is the matrix of partial derivatives and V̂ is the
estimator of the asymptotic variance of β̂. This variance estimator converges to zero
because β̂ converges to β and x̄ converges to a vector of constants. The naive estimator
above does not converge to zero; it converges to the variance of the random variable
PEi,k.

The “asymptotic variance” of the partial effects estimator is intended to reflect
the variation of the parameter estimator, β̂, whereas the naive estimator generates the
variation from the heterogeneity of the sample data while holding the parameter fixed
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at β̂. For example, for a logit model,

γ̂k(xi ) = β̂k�
(
x′

i β̂
) [

1 − �
(
x′

i β̂
)] = β̂kδ̂i ,

and δ̂i is the same for all k. It follows that

σ̂ 2
γ,k = β̂

2
k

[
1

n − 1

n∑
i=1

(δ̂i − ¯̂δ)2

]
= β̂

2
ks2

δ̂
.

A surprising consequence is that if one computes t ratios for the average partial effects
using σ̂ 2

γ,k, the values will all equal the same 1/sδ̂ . This might signal that something is
amiss. (This is somewhat apparent in the Contoyannis et al. results on page 498; however,
not enough digits were reported to see the effect clearly.)

A search for applications that use the delta method to estimate standard errors for
average partial effects in nonlinear models yields hundreds of occurrences. However,
we could not locate any that document in detail the precise formulas used. (One author,
noting the complexity of computation, recommended bootstrapping instead.) A com-
plicated flaw with the sample variance estimator (notwithstanding all the preceding)
is that the naive estimator (whether scaled by 1/n or not) neglects the fact that all n
observations used to compute the estimated APE are correlated; they all use the same
estimator of β. The preceding estimator treats the estimates of PEi as if they were a
random sample. They would be if they were based on the true β. But the estimators
based on the same β̂ are not uncorrelated. The delta method will account for the asymp-
totic (co)variation of the terms in the sum of functions of β̂. To use the delta method
to estimate the asymptotic standard errors for the average partial effects, ÂPEk, we
should use

Est. Asy. Var
[

¯̂γ
] = 1

n2
Est. Asy. Var

[
n∑

i=1

γ̂ i

]

= 1
n2

n∑
i=1

n∑
j=1

Est. Asy. Cov
[
γ̂ i , γ̂ j

]
= 1

n2

n∑
i=1

n∑
j=1

Gi (β̂)V̂G′
j (β̂)

=
[

1
n

n∑
i=1

Gi (β̂)

]
V̂

⎡⎣1
n

n∑
j=1

G′
j (β̂)

⎤⎦ ,

where

Gi (β̂) = ∂ f
(
x′

i β̂
)
β̂

∂β̂
′ = f

(
x′

i β̂
)

I + f ′ (x′
i β̂

)
β̂x′

i .

This treats the APE as a point estimator of a population parameter—one that converges
in probability to what we assume is its population counterpart. But, it is conditioned on
the sample data; convergence is with respect to β̂. This looks like a formidable amount
of computation—Example 17.4 uses a sample of 27,326 observations, so it appears we
need a double sum of roughly 750 million terms. However, the computation is actually
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TABLE 17.3 Estimated Parameters and Partial Effects

Parameter Estimates Marginal Effects Average Partial Effects

Variable Estimate Std.Error Estimate Std.Error Estimate Std.Error Naive S.E.

Constant 0.25112 0.09114
Age 0.02071 0.00129 0.00497 0.00031 0.00471 0.00029 0.00043
Income −0.18592 0.07506 −0.04466 0.01803 −0.04229 0.01707 0.00386
Kids −0.22947 0.02954 −0.05512 0.00710 −0.05220 0.00669 0.00476
Education −0.04559 0.00565 −0.01095 0.00136 −0.01037 0.00128 0.00095
Married 0.08529 0.03329 0.02049 0.00800 0.01940 0.00757 0.00177

linear in n, not quadratic, because the same matrix is used in the center of each product.
The estimator of the asymptotic covariance matrix for the APE is simply

Est. Asy. Var
[

¯̂γ
] = ¯G

(
β̂
)
V̂Ḡ′ (β̂)

.

The appropriate covariance matrix is computed by making the same adjustment as
in the partial effects—the derivative matrices are averaged over the observations rather
than being computed at the means of the data.

Example 17.4 Average Partial Effects
We estimated a binary logit model for y = 1(DocVis > 0) using the German health care
utilization data examined in Example 7.6 (and several later examples). The model is

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit + β5 Educationit + β6 Marriedit) .

No account of the panel nature of the data set was taken for this exercise. The sample
contains 27,326 observations, which should be large enough to reveal the large sample
behavior of the computations. Table 17.3 presents the parameter estimates for the logit
probability model and both the marginal effects and the average partial effects, each with
standard errors computed using the results given earlier. (The partial effects for the two
dummy variables, Kids and Married, are computed using the approximation, rather than
using the discrete differences.) The results do suggest the similarity of the computations.
The values in parentheses in the last column are based on the naive estimator that ignores
the covariances and is not divided by the 1/n for the variance of the mean.

17.3.2.b Interaction Effects

Models with interaction effects, such as

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4Kidsit

+β5 Educationit + β6 Marriedit + β7 Ageit × Educationit),

have attracted considerable attention in recent applications of binary choice models.13

A practical issue concerns the computation of partial effects by standard computer
packages. Write the model as

Prob(DocVisit > 0) = 	(β1x1it + β2x2it + β3x3it + β4x4it + β5x5it + β6x6it + β7x7it).

Estimation of the model parameters is routine. Rote computation of partial effects using
(17-11) will produce

PE7 = ∂Prob(DocVis > 0)/∂x7 = β7	(x′β)[1 − 	(x′β)],

13See, for example, Ai and Norton (2004) and Greene (2010).
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which is what common computer packages will dutifully report. The problem is that
x7 = x2x5, and PE7 in the previous equation is not the partial effect for x7. Moreover,
the partial effects for x2 and x5 will also be misreported by the rote computation. To
revert back to our original specification,

∂Prob(DocVis > 0 | x)/∂ Age = 	(x′β)[1 − 	(x′β)](β2 + β7 Education),

∂Prob(DocVis > 0 | x)/∂ Education = 	(x′β)[1 − 	(x′β)](β5 + β7 Age),

and what is computed as “∂Prob(DocVis > 0 | x)/∂Age × Education” is meaningless.
The practical problem motivating Ai and Norton (2004) was that the computer package
does not know that x7 is x2x5, so it computes a partial effect for x7 as if it could vary
“partially” from the other variables. The (now) obvious solution is for the analyst to
force the correct computations of the relevant partial effects by whatever software they
are using, perhaps by programming the computations themselves.

The practical complication raises a theoretical question that is less clear cut. What
is the “interaction effect” in the model? In a linear model based on the preceding, we
would have

∂2 E[y | x]/∂x2∂x5 = β7

which is unambiguous. However, in this nonlinear binary choice model, the correct
result is

∂2 E[y | x]/∂x2∂x5 = 	(x′β)[1 − 	(x′β)]β7

+ 	(x′β)[1 − 	(x′β)][1 − 2	(x′β)](β2 + β7 Education)(β5 + β7 Age).

Not only is β7 not the interesting effect, but there is also a complicated additional term.
Loosely, we can associate the first term as a “direct” effect—note that it is the naive term
PE7 from earlier. The second part can be attributed to the fact that we are differentiating
a nonlinear model—essentially, the second part of the partial effect results from the
nonlinearity of the function. The existence of an “interaction effect” in this model is
inescapable—notice that the second part is nonzero (generally) even if β7 does equal
zero. Whether this is intended to represent an “interaction” in some economic sense is
unclear. In the absence of the product term in the model, probably not. We can see an
implication of this in Figure 17.1. At the point where x′β = 0, where the probability
equals one half, the probability function is linear. At that point, (1 − 2	) will equal
zero and the functional form effect will be zero as well. When x′β departs from zero,
the probability becomes nonlinear. (These same effects can be shown for the probit
model—at x′β = 0, the second derivative of the probit probability is −x′βφ(x′β) = 0.)

We developed an extensive application of interaction effects in a nonlinear model
in Example 7.6. In that application, using the same data for the numerical exercise, we
analyzed a nonlinear regression E[y | x] = exp(x′β). The results obtained in that study
were general, and will apply to the application here, where the nonlinear regression is
E[y | x] = 	(x′β) or �(x′β).

Example 17.5 Interaction Effect
We added the interaction term, Age × Education, to the model in Example 17.4. The model
is now

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit

+ β5 Educationit + β6 Marriedit + β7 Ageit × Educationit) .
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Estimation of the model produces an estimate of β7 of −0.00112. The naive average partial
effect for x7 is −0.000254. This is the first part in the earlier decomposition. The second,
functional form term (averaged over the sample observations) is 0.0000634, so the estimated
interaction effect, the sum of the two terms is −0.000191. The naive calculation errs by about
(−0.000254/ − 0.000191 − 1) × 100 percent = 33 percent.

17.3.3 MEASURING GOODNESS OF FIT

There have been many fit measures suggested for QR models.14 At a minimum, one
should report the maximized value of the log-likelihood function, ln L. Because the hy-
pothesis that all the slopes in the model are zero is often interesting, the log-likelihood
computed with only a constant term, ln L0 [see (17-29)], should also be reported. An ana-
log to the R2 in a conventional regression is McFadden’s (1974) likelihood ratio index,

LRI = 1 − ln L
ln L0

.

This measure has an intuitive appeal in that it is bounded by zero and one. (See Sec-
tion 14.6.5.) If all the slope coefficients are zero, then it equals zero. There is no way
to make LRI equal 1, although one can come close. If Fi is always one when y equals
one and zero when y equals zero, then ln L equals zero (the log of one) and LRI equals
one. It has been suggested that this finding is indicative of a “perfect fit” and that LRI
increases as the fit of the model improves. To a degree, this point is true. Unfortunately,
the values between zero and one have no natural interpretation. If F(x′

iβ) is a proper
pdf, then even with many regressors the model cannot fit perfectly unless x′

iβ goes to
+∞ or −∞. As a practical matter, it does happen. But when it does, it indicates a flaw
in the model, not a good fit. If the range of one of the independent variables contains
a value, say, x∗, such that the sign of (x − x∗) predicts y perfectly and vice versa, then
the model will become a perfect predictor. This result also holds in general if the sign
of x′β gives a perfect predictor for some vector β.15 For example, one might mistakenly
include as a regressor a dummy variable that is identical, or nearly so, to the dependent
variable. In this case, the maximization procedure will break down precisely because
x′β is diverging during the iterations. [See McKenzie (1998) for an application and
discussion.] Of course, this situation is not at all what we had in mind for a good fit.

Other fit measures have been suggested. Ben-Akiva and Lerman (1985) and Kay
and Little (1986) suggested a fit measure that is keyed to the prediction rule,

R2
BL = 1

n

n∑
i=1

[
yi F̂ i + (1 − yi )(1 − F̂ i )

]
,

which is the average probability of correct prediction by the prediction rule. The diffi-
culty in this computation is that in unbalanced samples, the less frequent outcome will
usually be predicted very badly by the standard procedure, and this measure does not
pick up that point. Cramer (1999) has suggested an alternative measure that directly

14See, for example, Cragg and Uhler (1970), Amemiya (1981), Maddala (1983), McFadden (1974), Ben-Akiva
and Lerman (1985), Kay and Little (1986), Veall and Zimmermann (1992), Zavoina and McKelvey (1975),
Efron (1978), and Cramer (1999). A survey of techniques appears in Windmeijer (1995).
15See McFadden (1984) and Amemiya (1985). If this condition holds, then gradient methods will find that β.
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measures this failure,

λ = (average F̂ | yi = 1) − (average F̂ | yi = 0)

= (average(1 − F̂) | yi = 0) − (average(1 − F̂) | yi = 1).

Cramer’s measure heavily penalizes the incorrect predictions, and because each propor-
tion is taken within the subsample, it is not unduly influenced by the large proportionate
size of the group of more frequent outcomes.

A useful summary of the predictive ability of the model is a 2 × 2 table of the hits
and misses of a prediction rule such as

ŷ = 1 if F̂ > F∗ and 0 otherwise. (17-26)

The usual threshold value is 0.5, on the basis that we should predict a one if the model
says a one is more likely than a zero. It is important not to place too much emphasis on
this measure of goodness of fit, however. Consider, for example, the naive predictor

ŷ = 1 if P > 0.5 and 0 otherwise, (17-27)

where P is the simple proportion of ones in the sample. This rule will always predict
correctly 100P percent of the observations, which means that the naive model does not
have zero fit. In fact, if the proportion of ones in the sample is very high, it is possible to
construct examples in which the second model will generate more correct predictions
than the first! Once again, this flaw is not in the model; it is a flaw in the fit measure.16

The important element to bear in mind is that the coefficients of the estimated model
are not chosen so as to maximize this (or any other) fit measure, as they are in the linear
regression model where b maximizes R2.

Another consideration is that 0.5, although the usual choice, may not be a very good
value to use for the threshold. If the sample is unbalanced—that is, has many more ones
than zeros, or vice versa—then by this prediction rule it might never predict a one (or
zero). To consider an example, suppose that in a sample of 10,000 observations, only
1,000 have Y = 1. We know that the average predicted probability in the sample will be
0.10. As such, it may require an extreme configuration of regressors even to produce
an F of 0.2, to say nothing of 0.5. In such a setting, the prediction rule may fail every
time to predict when Y = 1. The obvious adjustment is to reduce F∗. Of course, this
adjustment comes at a cost. If we reduce the threshold F∗ so as to predict y = 1 more
often, then we will increase the number of correct classifications of observations that
do have y = 1, but we will also increase the number of times that we incorrectly classify
as ones observations that have y = 0.17 In general, any prediction rule of the form in
(17-26) will make two types of errors: It will incorrectly classify zeros as ones and ones
as zeros. In practice, these errors need not be symmetric in the costs that result. For
example, in a credit scoring model [see Boyes, Hoffman, and Low (1989)], incorrectly
classifying an applicant as a bad risk is not the same as incorrectly classifying a bad
risk as a good one. Changing F∗ will always reduce the probability of one type of error

16See Amemiya (1981).
17The technique of discriminant analysis is used to build a procedure around this consideration. In this
setting, we consider not only the number of correct and incorrect classifications, but also the cost of each type
of misclassification.
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while increasing the probability of the other. There is no correct answer as to the best
value to choose. It depends on the setting and on the criterion function upon which the
prediction rule depends.

The likelihood ratio index and various modifications of it are obviously related
to the likelihood ratio statistic for testing the hypothesis that the coefficient vector is
zero. Cramer’ measure is oriented more toward the relationship between the fitted
probabilities and the actual values. It is usefully tied to the standard prediction rule
ŷ = 1[F̂ > 0.5]. Whether these it has have a close relationship to any type of fit in the
familiar sense is a question that needs to be studied. In some cases, it appears so. But the
maximum likelihood estimator, on which all the fit measures are based, is not chosen
so as to maximize a fitting criterion based on prediction of y as it is in the classical
regression (which maximizes R2). It is chosen to maximize the joint density of the
observed dependent variables. It remains an interesting question for research whether
fitting y well or obtaining good parameter estimates is a preferable estimation criterion.
Evidently, they need not be the same thing.

Example 17.6 Prediction with a Probit Model
Tunali (1986) estimated a probit model in a study of migration, subsequent remigration, and
earnings for a large sample of observations of male members of households in Turkey. Among
his results, he reports the summary shown here for a probit model: The estimated model is
highly significant, with a likelihood ratio test of the hypothesis that the coefficients (16 of them)
are zero based on a chi-squared value of 69 with 16 degrees of freedom.18 The model predicts
491 of 690, or 71.2 percent, of the observations correctly, although the likelihood ratio index
is only 0.083. A naive model, which always predicts that y = 0 because P < 0.5, predicts
487 of 690, or 70.6 percent, of the observations correctly. This result is hardly suggestive
of no fit. The maximum likelihood estimator produces several significant influences on the
probability but makes only four more correct predictions than the naive predictor.19

Predicted

D = 0 D = 1 Total

Actual D = 0 471 16 487
D = 1 183 20 203
Total 654 36 690

17.3.4 HYPOTHESIS TESTS

For testing hypotheses about the coefficients, the full menu of procedures is available.
The simplest method for a single restriction would be based on the usual t tests, using
the standard errors from the information matrix. Using the normal distribution of the
estimator, we would use the standard normal table rather than the t table for critical
points. For more involved restrictions, it is possible to use the Wald test. For a set of
restrictions Rβ = q, the statistic is

W = (Rβ̂ − q)′{R(Est. Asy. Var[β̂])R′}−1(Rβ̂ − q).

18This view actually understates slightly the significance of his model, because the preceding predictions are
based on a bivariate model. The likelihood ratio test fails to reject the hypothesis that a univariate model
applies, however.
19It is also noteworthy that nearly all the correct predictions of the maximum likelihood estimator are the
zeros. It hits only 10 percent of the ones in the sample.
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For example, for testing the hypothesis that a subset of the coefficients, say, the last M,
are zero, the Wald statistic uses R = [0 | IM] and q = 0. Collecting terms, we find that
the test statistic for this hypothesis is

W = β̂ ′
MV−1

M β̂M, (17-28)

where the subscript M indicates the subvector or submatrix corresponding to the M
variables and V is the estimated asymptotic covariance matrix of β̂.

Likelihood ratio and Lagrange multiplier statistics can also be computed. The like-
lihood ratio statistic is

LR = −2[ln L̂R − ln L̂U],

where L̂R and L̂U are the log-likelihood functions evaluated at the restricted and unre-
stricted estimates, respectively. A common test, which is similar to the F test that all the
slopes in a regression are zero, is the likelihood ratio test that all the slope coefficients in
the probit or logit model are zero. For this test, the constant term remains unrestricted.
In this case, the restricted log-likelihood is the same for both probit and logit models,

ln L0 = n[P ln P + (1 − P) ln(1 − P)], (17-29)

where P is the proportion of the observations that have dependent variable equal to 1.
It might be tempting to use the likelihood ratio test to choose between the probit

and logit models. But there is no restriction involved, and the test is not valid for this
purpose. To underscore the point, there is nothing in its construction to prevent the
chi-squared statistic for this “test” from being negative.

The Lagrange multiplier test statistic is LM = g′Vg, where g is the first derivatives
of the unrestricted model evaluated at the restricted parameter vector and V is any of
the three estimators of the asymptotic covariance matrix of the maximum likelihood es-
timator, once again computed using the restricted estimates. Davidson and MacKinnon
(1984) find evidence that E [H] is the best of the three estimators to use, which gives

LM =
(

n∑
i=1

gi xi

)′ [ n∑
i=1

E [−hi ]xi x′
i

]−1 (
n∑

i=1

gi xi

)
, (17-30)

where E [−hi ] is defined in (17-21) for the logit model and in (17-23) for the probit
model.

For the logit model, when the hypothesis is that all the slopes are zero,

LM = nR2,

where R2 is the uncentered coefficient of determination in the regression of (yi − ȳ) on
xi and ȳ is the proportion of 1s in the sample. An alternative formulation based on the
BHHH estimator, which we developed in Section 14.6.3 is also convenient. For any of
the models (probit, logit, Gumbel, etc.), the first derivative vector can be written as

∂ ln L
∂β

=
n∑

i=1

gi xi = X′Gi,
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where G(n × n) = diag[g1, g2, . . . , gn] and i is an n × 1 column of 1s. The BHHH esti-
mator of the Hessian is (X′G′GX), so the LM statistic based on this estimator is

LM = n
[

1
n

i′(GX)(X′G′GX)−1(X′G′)i
]

= nR2
i , (17-31)

where R2
i is the uncentered coefficient of determination in a regression of a column of

ones on the first derivatives of the logs of the individual probabilities.
All the statistics listed here are asymptotically equivalent and under the null hy-

pothesis of the restricted model have limiting chi-squared distributions with degrees of
freedom equal to the number of restrictions being tested. We consider some examples
in the next section.

Example 17.7 Testing for Structural Break in a Logit Model
The model in Example 17.4, based on Riphahn, Wambach, and Million (2003), is

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit

+ β5 Educationit + β6 Marriedit) .

In the original study, the authors split the sample on the basis of gender, and fit separate mod-
els for male and female headed households. We will use the preceding results to test for the
appropriateness of the sample splitting. This test of the pooling hypothesis is a counterpart
to the Chow test of structural change in the linear model developed in Section 6.4.1. Since
we are not using least squares (in a linear model), we use the likelihood based procedures
rather than an F test as we did earlier. Estimates of the three models are shown in Table 17.4.
The chi-squared statistic for the likelihood ratio test is

LR = −2[−17673.09788 − (−9541.77802 − 7855.96999) ] = 550.69744.

The 95 percent critical value for six degrees of freedom is 12.592. To carry out the Wald
test for this hyothesis there are two numerically identical ways to proceed. First, using the
estimates for Male and Female samples separately, we can compute a chi-squared statistic
to test the hypothesis that the difference of the two coefficients is zero. This would be

W = [β̂Male − β̂Female]′[Est. Asy. Var( β̂Male) + Est. Asy. Var( β̂Female) ]−1[β̂Male − β̂Female]

= 538.13629.

Another way to obtain the same result is to add to the pooled model the original 6 vari-
ables now multiplied by the Female dummy variable. We use the augmented X matrix

TABLE 17.4 Estimated Models for Pooling Hypothesis

Pooled Sample Male Female

Variable Estimate Std.Error Estimate Std.Error Estimate Std.Error

Constant 0.25112 0.09114 −0.20881 0.11475 0.44767 0.16016
Age 0.02071 0.00129 0.02375 0.00178 0.01331 0.00202
Income −0.18592 0.07506 −0.23059 0.10415 −0.17182 0.11225
Kids −0.22947 0.02954 −0.26149 0.04054 −0.27153 0.04539
Education −0.04559 0.00565 −0.04251 0.00737 −0.00170 0.00970
Married 0.08529 0.03329 0.17451 0.04833 0.03621 0.04864
ln L −17673.09788 −9541.77802 −7855.96999
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X∗ = [X, female × X]. The model with 12 variables is now estimated, and a test of the
pooling hypothesis is done by testing the joint hypothesis that the coefficients on these
6 additional variables are zero. The Lagrange multiplier test is carried out by using this aug-
mented model as well. To apply (17-31), the necessary derivatives are in (17-18). For the logit
model, the derivative matrix is simply G∗ = diag[yi − 	(x∗′

i β) ]. For the LM test, the vector
β that is used is the one for the restricted model. Thus, β̂

∗ = ( β̂
′
Pooled, 0, 0, 0, 0, 0, 0) ′. The

estimated probabilities that appear in G* are simply those obtained from the pooled model.
Then,

LM = i′G∗X∗ × [(X∗′G′∗) (G∗X) ]−1X∗′G∗′i = 548.17052.

The pooling hypothesis is rejected by all three procedures.

17.3.5 ENDOGENOUS RIGHT-HAND-SIDE VARIABLES IN BINARY
CHOICE MODELS

The analysis in Example 17.8 (Labor Supply Model) suggests that the presence of en-
dogenous right-hand-side variables in a binary choice model presents familiar problems
for estimation. The problem is made worse in nonlinear models because even if one has
an instrumental variable readily at hand, it may not be immediately clear what is to be
done with it. The instrumental variable estimator described in Chapter 8 is based on
moments of the data, variances, and covariances. In this binary choice setting, we are
not using any form of least squares to estimate the parameters, so the IV method would
appear not to apply. Generalized method of moments is a possibility.

y∗
i = x′

iβ + γ wi + εi ,

yi = 1(y∗
i > 0),

E[εi | wi ] = g(wi ) 
= 0.

Thus, wi is endogenous in this model. The maximum likelihood estimators considered
earlier will not consistently estimate (β, γ ). [Without an additional specification that
allows us to formalize Prob(yi = 1 | xi , wi ), we cannot state what the MLE will, in fact,
estimate.] Suppose that we have a “relevant” (see Section 8.2) instrumental variable, zi

such that

E[εi | zi , xi ] = 0,

E[wi zi ] 
= 0.

A natural instrumental variable estimator would be based on the “moment” condition

E
[(

y∗
i − x′

iβ − γ wi
) (

xi

zi

)]
= 0.

However, y∗
i is not observed, yi is. But the “residual,” yi − x′

iβ − γ wi , would have no
meaning even if the true parameters were known.20 One approach that was used in
Avery et al. (1983), Butler and Chatterjee (1997), and Bertschek and Lechner (1998) is
to assume that the instrumental variable is orthogonal to the residual [y−�(x′

iβ + γ wi )];

20One would proceed in precisely this fashion if the central specification were a linear probability model
(LPM) to begin with. See, for example, Eisenberg and Rowe (2006) or Angrist (2001) for an application and
some analysis of this case.
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that is,

E
[

[yi − �(x′
iβ + γ wi )]

(
xi

zi

)]
= 0.

This form of the moment equation, based on observables, can form the basis of a straight-
forward two-step GMM estimator. (See Chapter 13 for details.)

The GMM estimator is not less parametric than the full information maximum like-
lihood estimator described later because the probit model based on the normal distribu-
tion is still invoked to specify the moment equation.21 Nothing is gained in simplicity or
robustness of this approach to full information maximum likelihood estimation, which
we now consider. (As Bertschek and Lechner argue, however, the gains might come
in terms of practical implementation and computation time. The same considerations
motivated Avery et al.)

This maximum likelihood estimator requires a full specification of the model, in-
cluding the assumption that underlies the endogeneity of wi . This becomes essentially
a simultaneous equations model. The model equations are

y∗
i = x′

iβ + γ wi + εi ,yi = 1[y∗
i > 0],

wi = z′
iα + ui ,

(εi , ui ) ∼ N
[(

0
0

)
,

(
1 ρσu

ρσu σ 2
u

)]
.

(We are assuming that there is a vector of instrumental variables, zi .) Probit estimation
based on yi and (xi , wi ) will not consistently estimate (β, γ ) because of the correlation
between wi and εi induced by the correlation between ui and εi . Several methods
have been proposed for estimation of this model. One possibility is to use the partial
reduced form obtained by inserting the second equation in the first. This becomes a
probit model with probability Prob(yi = 1 | xi , zi ) = �(x′

iβ
∗ + z′

iα
∗). This will produce

consistent estimates of β∗ = β/(1 + γ 2σ 2
u + 2γ σuρ)1/2 and α∗ = γα/(1 + γ 2σ 2

u +
2γ σuρ)1/2 as the coefficients on xi and zi , respectively. (The procedure will estimate
a mixture of β∗ and α∗ for any variable that appears in both xi and zi .) In addition,
linear regression of wi on zi produces estimates of α and σ 2

u , but there is no method of
moments estimator of ρ or γ produced by this procedure, so this estimator is incomplete.
Newey (1987) suggested a “minimum chi-squared” estimator that does estimate all
parameters. A more direct, and actually simpler approach is full information maximum
likelihood.

The log-likelihood is built up from the joint density of yi and wi , which we write as
the product of the conditional and the marginal densities,

f (yi , wi ) = f (yi | wi ) f (wi ).

To derive the conditional distribution, we use results for the bivariate normal, and write

εi | ui = [
(ρσu)/σ

2
u

]
ui + vi ,

21This is precisely the platform that underlies the GLIM/GEE treatment of binary choice models in, for
example, the widely used programs SAS and Stata.
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where vi is normally distributed with Var[vi ] = (1 − ρ2). Inserting this in the first
equation, we have

y∗
i | wi = x′

iβ + γ wi + (ρ/σu)ui + vi .

Therefore,

Prob[yi = 1 | xi , wi ] = �

[
x′

iβ + γ wi + (ρ/σu)ui√
1 − ρ2

]
. (17-32)

Inserting the expression for ui = (wi − z′
iα), and using the normal density for the

marginal distribution of wi in the second equation, we obtain the log-likelihood function
for the sample,

ln L =
n∑

i=1

ln �

[
(2yi − 1)

(
x′

iβ + γ wi + (ρ/σu)(wi − z′
iα)√

1 − ρ2

)]
+ ln

[
1
σu

φ

(
wi − z′

iα

σu

)]
.

Example 17.8 Labor Supply Model
In Examples 5.2 and 17.1, we examined a labor suppy model for married women using
Mroz’s (1987) data on labor supply. The wife’s labor force participation equation suggested
in Example 17.1 is

Prob (LFPi = 1) = �
(
β1 + β2 Agei + β3 Age2

i + β4 Educationi + β5 Kidsi

)
.

A natural extension of this model would be to include the husband’s hours in the equation,

Prob
(
LFPi = 1) = �(β1 + β2 Agei + β3 Age2

i + β4 Educationi + β5 Kidsi + γ HHrsi

)
.

It would also be natural to assume that the husband’s hours would be correlated with the
determinants (observed and unobserved) of the wife’s labor force participation. The auxiliary
equation might be

HHrsi = α1 + α2 HAgei + α3 HEducationi + α4 Family Incomei + ui .

As before, we use the Mroz (1987) labor supply data described in Example 5.2. Table 17.5
reports the single-equation and maximum likelihood estimates of the parameters of the two
equations. Comparing the two sets of probit estimates, it appears that the (assumed) en-
dogeneity of the husband’s hours is not substantially affecting the estimates. There are two

TABLE 17.5 Estimated Labor Supply Model

Probit Regression Maximum Likelihood

Constant −3.86704 (1.41153) −5.08405 (1.43134)
Age 0.18681 (0.065901) 0.17108 (0.063321)
Age2 −0.00243 (0.000774) −0.00219 (0.0007629)
Education 0.11098 (0.021663) 0.09037 (0.029041)
Kids −0.42652 (0.13074) −0.40202 (0.12967)
Husband hours −0.000173 (0.0000797) 0.00055 (0.000482)
Constant 2325.38 (167.515) 2424.90 (158.152)
Husband age −6.71056 (2.73573) −7.3343 (2.57979)
Husband education 9.29051 (7.87278) 2.1465 (7.28048)
Family income 55.72534 (19.14917) 63.4669 (18.61712)
σu 588.2355 586.994
ρ 0.0000 −0.4221 (0.26931)
ln L −489.0766 −5868.432 −6357.093
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simple ways to test the hypothesis that ρ equals zero. The FIML estimator produces an
estimated asymptotic standard error with the estimate of ρ, so a Wald test can be carried
out. For the preceding results, the Wald statistic would be (−0.4221/0.26921)2 = 2.458. The
critical value from the chi-squared table for one degree of freedom would be 3.84, so we
would not reject the hypothesis. The second approach would use the likelihood ratio test.
Under the null hypothesis of exogeneity, the probit model and the regression equation can
be estimated independently. The log-likelihood for the full model would be the sum of the
two log-likelihoods, which would be −6357.508 based on the following results. Without the
restriction ρ = 0, the combined log likelihood is −6357.093. Twice the difference is 0.831,
which is also well under the 3.84 critical value, so on this basis as well, we would not reject
the null hypothesis that ρ = 0.

Blundell and Powell (2004) label the foregoing the control function approach to
accommodating the endogeneity. As noted, the estimator is fully parametric. They pro-
pose an alternative semiparametric approach that retains much of the functional form
specification, but works around the specific distributional assumptions. Adapting their
model to our earlier notation, their departure point is a general specification that pro-
duces, once again, a control function,

E[yi | xi , wi , ui ] = F(x′
iβ + γ wi , ui ).

Note that (17-32) satisfies the assumption; however, they reach this point without assum-
ing either joint or marginal normality. The authors propose a three-step, semiparametric
approach to estimating the structural parameters. In an application somewhat similar to
Example 17.8, they apply the technique to a labor force participation model for British
men in which a variable of interest is a dummy variable for education greater than 16
years, the endogenous variable in the participation equation, also of interest, is earned
income of the spouse, and an instrumental variable is a welfare benefit entitlement.
Their findings are rather more substantial than ours; they find that when the endogene-
ity of other family income is accommodated in the equation, the education coefficient
increases by 40 percent and remains significant, but the coefficient on other income
increases by more than tenfold.

In the control function model noted earlier, where E[yi | xi , wi , ui ] = F(x′
iβ + γ wi ,

ui ) and wi = zi
′α+ui , since the covariance of wi and ui is the issue, it might seem natural

to solve the problem by replacing wi with zi
′a where a is an estimator of α, or some

other prediction of wi based only on exogenous variables. The earlier development
shows that the appropriate approach is to add the estimated residual to the equation,
instead. The issue is explored in detail by Terza, Basu, and Rathouz (2008), who reach
the same conclusion in a general model.

The residual inclusion method also suggests a two-step approach. Rewrite the log-
likelihood function as

ln L =
n∑

i=1

ln � [(2yi − 1)(x′
iβ

∗ + γ ∗wi + τ ε̃i )] +
n∑

i=1

ln
[

1
σu

φ(ε̃i )

]
,

where β∗ = (1/
√

1 − ρ2)β, γ ∗ = (1/
√

1 − ρ2)γ, τ = (ρ/
√

1 − ρ2) and ε̃i =
(wi − z′

iα)/σu.
The parameters in the regression, α and σu, can be consistently estimated by a

linear regression of w on z. The scaled residual ẽi = (wi − z′
i a)/su can now be computed

and inserted into the log-likelihood. Note that the second term in the log-likelihood
involves parameters that have already been estimated at the first step. The second-step
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log-likelihood is, then,

ln L =
n∑

i=1

ln � [(2yi − 1)(x′
iβ

∗ + γ ∗wi + τ ẽi )] .

This can be maximized using the methods developed in Section 17.3. The estimator
of ρ can be recovered from ρ = τ /(1 + τ 2)1/2. Estimators of β and γ follow, and the
delta method can be used to construct standard errors. Since this is a two-step esti-
mator, the resulting estimator of the asymptotic covariance matrix would be further
adjusted using the Murphy and Topel (2002) results in Section 14.7. Bootstrapping the
entire apparatus (see Section 15.4) would be an alternative way to estimate an asymp-
totic covariance matrix. The original (one-step) log-likelihood is not very complicated,
and full information estimation is fairly straightforward. The preceding demonstrates
how the alternative two-step method would proceed and emphasizes once again, the
appropriateness of the “residual inclusion” method.

The case in which the endogenous variable in the main equation is, itself, a binary
variable occupies a large segment of the recent literature. Consider the model

T∗
i = z′

iα + ui , Ti = 1[w∗
i > 0],

y∗
i = x′

iβ + γ Ti + εi , yi = 1[y∗
i > 0],(

εi

ui

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
,

where Ti is a binary variable indicating some kind of program participation (e.g., gradu-
ating from high school or college, receiving some kind of job training, purchasing health
insurance, etc.). The model in this form (and several similar ones) is a “treatment effects”
model. The subject of treatment effects models is surveyed in many studies, including
Angrist (2001) and Angrist and Pischke (2009, 2010). The main object of estimation is γ

(at least superficially). In these settings, the observed outcome may be yi * (e.g., income
or hours) or yi (e.g., labor force participation). We have considered the first case in
Chapter 8, and will revisit it in Chapter 19. The case just examined is that in which yi

and T∗
i are the observed variables. The preceding analysis has suggested that problems

of endogeneity will intervene in all cases. We will examine this model in some detail in
Section 17.5.5 and in Chapter 19.

17.3.6 ENDOGENOUS CHOICE-BASED SAMPLING

In some studies [e.g., Boyes, Hoffman, and Low (1989), Greene (1992)], the mix of ones
and zeros in the observed sample of the dependent variable is deliberately skewed in
favor of one outcome or the other to achieve a more balanced sample than random
sampling would produce. The sampling is said to be choice based. In the studies noted,
the dependent variable measured the occurrence of loan default, which is a relatively
uncommon occurrence. To enrich the sample, observations with y = 1 (default) were
oversampled. Intuition should suggest (correctly) that the bias in the sample should
be transmitted to the parameter estimates, which will be estimated so as to mimic the
sample, not the population, which is known to be different. Manski and Lerman (1977)
derived the weighted endogenous sampling maximum likelihood (WESML) estima-
tor for this situation. The estimator requires that the true population proportions, ω1
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and ω0, be known. Let p1 and p0 be the sample proportions of ones and zeros. Then the
estimator is obtained by maximizing a weighted log-likelihood,

ln L =
n∑

i=1

wi ln F(qi x′
iβ),

where wi = yi (ω1/p1) + (1 − yi )(ω0/p0). Note that wi takes only two different values.
The derivatives and the Hessian are likewise weighted. A final correction is needed
after estimation; the appropriate estimator of the asymptotic covariance matrix is the
sandwich estimator discussed in Section 17.3.1, H−1BH−1 (with weighted B and H),
instead of B or H alone. (The weights are not squared in computing B.)22

Example 17.9 Credit Scoring
In Example 7.9, we examined the spending patterns of a sample of 10,499 cardholders for a
major credit card vendor. The sample of cardholders is a subsample of 13,444 applicants for
the credit card. Applications for credit cards, then (1992) and now are processed by a major
nationwide processor, Fair Isaacs, Inc. The algorithm used by the processors is proprietary.
However, conventional wisdom holds that a few variables are important in the process, such
as Age, Income, whether the applicant owns their home, whether they are self-employed, and
how long they have lived at their current address. The number of major and minor derogatory
reports (60-day and 30-day delinquencies) are very influential variables in credit scoring. The
probit model we will use to ‘model the model’ is

Prob(Cardholder = 1) = Prob(C = 1 | x)

= �(β1 + β2 Age + β3 Income + β4 OwnRent

+ β5 Months Living at Current Address

+ β6 Self-Employed

+β7 Number of major derogatory reports

+ β8 Number of minor derogatory reports.

In the data set, 78.1 percent of the applicants are cardholders. In the population, at that time,
the true proportion was roughly 23.2 percent, so the sample is substantially choice based
on this variable. The sample was deliberately skewed in favor of cardholders for purposes
of the original study [Greene (1992)]. The weights to be applied for the WESML estimator
are 0.232/0.781 = 0.297 for the observations with C = 1 and 0.768/0.219 = 3.507 for
observations with C = 0. Table 17.6 presents the unweighted and weighted estimates for this
application. The change in the estimates produced by the weighting is quite modest, save for
the constant term. The results are consistent with the conventional wisdom that Income and
OwnRent are two important variables in a credit application and self-employment receives a
substantial negative weight. But, as might be expected, the single most significant influence
on cardholder status is major derogatory reports. Since lenders are strongly focused on
default probability, past evidence of default behavior will be a major consideration.

17.3.7 SPECIFICATION ANALYSIS

In his survey of qualitative response models, Amemiya (1981) reports the following
widely cited approximations for the linear probability (LP) model: Over the range of

22WESML and the choice-based sampling estimator are not the free lunch they may appear to be. That which
the biased sampling does, the weighting undoes. It is common for the end result to be very large standard
errors, which might be viewed as unfortunate, insofar as the purpose of the biased sampling was to balance
the data precisely to avoid this problem.
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TABLE 17.6 Estimated Card Application Equation (t ratios in parentheses)

Unweighted Weighted

Variable Estimate Standard Error Estimate Standard Error

Constant 0.31783 0.05094 (6.24) −1.13089 0.04725 (−23.94)
Age 0.00184 0.00154 (1.20) 0.00156 0.00145 (1.07)
Income 0.00095 0.00025 (3.86) 0.00094 0.00024 (3.92)
OwnRent 0.18233 0.03061 (5.96) 0.23967 0.02968 (8.08)
CurrentAddress 0.02237 0.00120 (18.67) 0.02106 0.00109 (19.40)
SelfEmployed −0.43625 0.05585 (−7.81) −0.47650 0.05851 (−8.14)
Major Derogs −0.69912 0.01920 (−36.42) −0.64792 0.02525 (−25.66)
Minor Derogs −0.04126 0.01865 (−2.21) −0.04285 0.01778 (−2.41)

probabilities of 30 to 70 percent,

β̂LP ≈ 0.4βprobit for the slopes,

β̂LP ≈ 0.25β logit for the slopes.

Aside from confirming our intuition that least squares approximates the nonlinear
model and providing a quick comparison for the three models involved, the practi-
cal usefulness of the formula is somewhat limited. Still, it is a striking result.23 A series
of studies has focused on reasons why the least squares estimates should be proportional
to the probit and logit estimates. A related question concerns the problems associated
with assuming that a probit model applies when, in fact, a logit model is appropriate or
vice versa.24 The approximation would seem to suggest that with this type of misspeci-
fication, we would once again obtain a scaled version of the correct coefficient vector.
(Amemiya also reports the widely observed relationship β̂ logit ≈ 1.6β̂probit, which fol-
lows from the results for the linear probability model. This result is apparent in Table
17.1 where the ratios of the three slopes range from 1.6 to 1.9.)

In the linear regression model, we considered two important specification problems:
the effect of omitted variables and the effect of heteroscedasticity. In the classical model,
y = X1β1 + X2β2 + ε, when least squares estimates b1 are computed omitting X2,

E [b1] = β1 + [X′
1X1]−1X′

1X2β2.

Unless X1 and X2 are orthogonal or β2 = 0, b1 is biased. If we ignore heteroscedasticity,
then although the least squares estimator is still unbiased and consistent, it is inefficient
and the usual estimate of its sampling covariance matrix is inappropriate. Yatchew and
Griliches (1984) have examined these same issues in the setting of the probit and logit
models. Their general results are far more pessimistic. In the context of a binary choice
model, they find the following:

23This result does not imply that it is useful to report 2.5 times the linear probability estimates with the probit
estimates for comparability. The linear probability estimates are already in the form of marginal effects,
whereas the probit coefficients must be scaled downward. If the sample proportion happens to be close to
0.5, then the right scale factor will be roughly φ[�−1(0.5)] = 0.3989. But the density falls rapidly as P moves
away from 0.5.
24See Ruud (1986) and Gourieroux et al. (1987).
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1. If x2 is omitted from a model containing x1 and x2, (i.e. β2 
= 0) then

plim β̂1 = c1β1 + c2β2,

where c1 and c2 are complicated functions of the unknown parameters. The impli-
cation is that even if the omitted variable is uncorrelated with the included one, the
coefficient on the included variable will be inconsistent.

2. If the disturbances in the underlying regression are heteroscedastic, then the max-
imum likelihood estimators are inconsistent and the covariance matrix is inappro-
priate.

The second result is particularly troubling because the probit model is most often used
with microeconomic data, which are frequently heteroscedastic.

Any of the three methods of hypothesis testing discussed here can be used to analyze
these specification problems. The Lagrange multiplier test has the advantage that it can
be carried out using the estimates from the restricted model, which sometimes brings
a large saving in computational effort. This situation is especially true for the test for
heteroscedasticity.25

To reiterate, the Lagrange multiplier statistic is computed as follows. Let the null
hypothesis, H0, be a specification of the model, and let H1 be the alternative. For example,
H0 might specify that only variables x1 appear in the model, whereas H1 might specify
that x2 appears in the model as well. The statistic is

LM = g′
0V−1

0 g0,

where g0 is the vector of derivatives of the log-likelihood as specified by H1 but evaluated
at the maximum likelihood estimator of the parameters assuming that H0 is true, and
V−1

0 is any of the three consistent estimators of the asymptotic variance matrix of the
maximum likelihood estimator under H1, also computed using the maximum likelihood
estimators based on H0. The statistic is asymptotically distributed as chi-squared with
degrees of freedom equal to the number of restrictions.

17.3.7.a Omitted Variables

The hypothesis to be tested is

H0: y∗ = x′
1β1 + ε,

H1: y∗ = x′
1β1 + x′

2β2 + ε,
(17-33)

so the test is of the null hypothesis that β2 = 0. The Lagrange multiplier test would be
carried out as follows:

1. Estimate the model in H0 by maximum likelihood. The restricted coefficient vector
is [β̂1, 0].

2. Let x be the compound vector, [x1, x2].

The statistic is then computed according to (17-30) or (17-31). It is noteworthy that in
this case as in many others, the Lagrange multiplier is the coefficient of determination
in a regression. The likelihood ratio test is equally straightforward. Using the estimates
of the two models, the statistic is simply 2(ln L1 − ln L0).

25The results in this section are based on Davidson and MacKinnon (1984) and Engle (1984). A symposium
on the subject of specification tests in discrete choice models is Blundell (1987).
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17.3.7.b Heteroscedasticity

We use the general formulation analyzed by Harvey (1976) (see Section 14.9.2.a),26

Var[ε] = [exp(z′γ )]2.

This model can be applied equally to the probit and logit models. We will derive the
results specifically for the probit model; the logit model is essentially the same. Thus,

y∗ = x′β + ε,

Var[ε | x, z] = [exp(z′γ )]2. (17-34)

The presence of heteroscedasticity makes some care necessary in interpreting the
coefficients for a variable wk that could be in x or z or both,

∂ Prob(Y = 1 | x, z)
∂wk

= φ

[
x′β

exp(z′γ )

]
βk − (x′β)γk

exp(z′γ )
.

Only the first (second) term applies if wk appears only in x (z). This implies that the
simple coefficient may differ radically from the effect that is of interest in the estimated
model. This effect is clearly visible in the next example.

The log-likelihood is

ln L =
n∑

i=1

{
yi ln F

(
x′

iβ

exp(z′
iγ )

)
+ (1 − yi ) ln

[
1 − F

(
x′

iβ

exp(z′
iγ )

)]}
. (17-35)

To be able to estimate all the parameters, z cannot have a constant term. The derivatives
are

∂ ln L
∂β

=
n∑

i=1

[
fi (yi − Fi )

Fi (1 − Fi )

]
exp(−z′

iγ )xi ,

∂ ln L
∂γ

=
n∑

i=1

[
fi (yi − Fi )

Fi (1 − Fi )

]
exp(−z′

iγ )zi (−x′
iβ),

(17-36)

which implies a difficult log-likelihood to maximize. But if the model is estimated as-
suming that γ = 0, then we can easily test for homoscedasticity. Let

wi =
[

xi

(−x′
i β̂)zi

]
, (17-37)

computed at the maximum likelihood estimator, assuming that γ = 0. Then (17-30) or
(17-31) can be used as usual for the Lagrange multiplier statistic.

Davidson and MacKinnon carried out a Monte Carlo study to examine the true sizes
and power functions of these tests. As might be expected, the test for omitted variables
is relatively powerful. The test for heteroscedasticity may well pick up some other form
of misspecification, however, including perhaps the simple omission of z from the index
function, so its power may be problematic. It is perhaps not surprising that the same
problem arose earlier in our test for heteroscedasticity in the linear regression model.

26See Knapp and Seaks (1992) for an application. Other formulations are suggested by Fisher and Nagin
(1981), Hausman and Wise (1978), and Horowitz (1993).
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Example 17.10 Specification Tests in a Labor Force
Participation Model

Using the data described in Example 17.1, we fit a probit model for labor force participation
based on the specification

Prob[LFP = 1] = F (constant, age, age2, family income, education, kids) .

For these data, P = 428/753 = 0.568393. The restricted (all slopes equal zero, free constant
term) log-likelihood is 325× ln(325/753) +428× ln(428/753) = −514.8732. The unrestricted
log-likelihood for the probit model is −490.8478. The chi-squared statistic is, therefore,
48.05072. The critical value from the chi-squared distribution with five degrees of freedom is
11.07, so the joint hypothesis that the coefficients on age, age2, family income, and kids are
all zero is rejected.

Consider the alternative hypothesis, that the constant term and the coefficients on age,
age2, family income, and education are the same whether kids equals one or zero, against the
alternative that an altogether different equation applies for the two groups of women, those
with kids = 1 and those with kids = 0. To test this hypothesis, we would use a counterpart to
the Chow test of Section 6.4 and Example 6.9. The restricted model in this instance would
be based on the pooled data set of all 753 observations. The log-likelihood for the pooled
model—which has a constant term, age, age2, family income, and education is −496.8663.
The log-likelihoods for this model based on the 524 observations with kids = 1 and the 229
observations with kids = 0 are −347.87441 and −141.60501, respectively. The log-likelihood
for the unrestricted model with separate coefficient vectors is thus the sum, −489.47942.
The chi-squared statistic for testing the five restrictions of the pooled model is twice the
difference, LR = 2[−489.47942 − (−496.8663) ] = 14.7738. The 95 percent critical value
from the chi-squared distribution with 5 degrees of freedom is 11.07, so at this significance
level, the hypothesis that the constant terms and the coefficients on age, age2, family income,
and education are the same is rejected. (The 99 percent critical value is 15.09.)

Table 17.7 presents estimates of the probit model with a correction for heteroscedasticity
of the form

Var[εi ] = exp(γ1kids + γ2family income) .

The three tests for homoscedasticity give

LR = 2[−487.6356 − (−490.8478) ] = 6.424,

LM = 2.236 based on the BHHH estimator,

Wald = 6.533 (2 restrictions) .

The 95 percent critical value for two restrictions is 5.99, so the LM statistic conflicts with the
other two.

TABLE 17.7 Estimated Coefficients

Estimate (Std. Er) Marg. Effect* Estimate (St. Er.) Marg. Effect*

Constant β1 −4.157(1.402) −0.00837(0.0028) −6.030(2.498) −0.00825(.00649)
Age β2 0.185(0.0660) −0.0079(0.0027) 0.264(0.118) −0.0088(0.00251)
Age2 β3 −0.0024(0.00077) — −0.0036(0.0014) —
Income β4 0.0458(0.0421) 0.0180(0.0165) 0.424(0.222) 0.0552(0.0240)
Education β5 0.0982(0.0230) 0.0385(0.0090) 0.140(0.0519) 0.0289(0.00869)
Kids β6 −0.449(0.131) −0.171(0.0480) −0.879(0.303) −0.167(0.0779)
Kids γ1 0.000 — −0.141(0.324) —
Income γ2 0.000 — 0.313(0.123) —
ln L −490.8478 −487.6356
Correct Preds. 0s: 106, 1s: 357 0s: 115, 1s: 358

*Marginal effect and estimated standard error include both mean (β) and variance (γ ) effects.
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17.4 BINARY CHOICE MODELS FOR PANEL DATA

Qualitative response models have been a growth industry in econometrics. The recent
literature, particularly in the area of panel data analysis, has produced a number of new
techniques. The availability of high-quality panel data sets on microeconomic behavior
has maintained an interest in extending the models of Chapter 11 to binary (and other
discrete choice) models. In this section, we will survey a few results from this rapidly
growing literature.

The structural model for a possibly unbalanced panel of data would be written

y∗
it = x′

itβ + εit, i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
it > 0, and 0 otherwise, (17-38)

The second line of this definition is often written

yit = 1(x′
itβ + εit > 0)

to indicate a variable that equals one when the condition in parentheses is true and
zero when it is not. Ideally, we would like to specify that εit and εis are freely corre-
lated within a group, but uncorrelated across groups. But doing so will involve com-
puting joint probabilities from a Ti variate distribution, which is generally problem-
atic.27 (We will return to this issue later.) A more promising approach is an effects
model,

y∗
it = x′

itβ + vit + ui , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
it > 0, and 0 otherwise, (17-39)

where, as before (see Sections 11.4 and 11.5), ui is the unobserved, individual spe-
cific heterogeneity. Once again, we distinguish between “random” and “fixed” effects
models by the relationship between ui and xit. The assumption that ui is unrelated
to xit, so that the conditional distribution f (ui | xit) is not dependent on xit, produces
the random effects model. Note that this places a restriction on the distribution of the
heterogeneity.

If that distribution is unrestricted, so that ui and xit may be correlated, then we have
what is called the fixed effects model. The distinction does not relate to any intrinsic
characteristic of the effect itself.

As we shall see shortly, this is a modeling framework that is fraught with difficulties
and unconventional estimation problems. Among them are the following: Estimation
of the random effects model requires very strong assumptions about the heterogeneity;

27A “limited information” approach based on the GMM estimation method has been suggested by Avery,
Hansen, and Hotz (1983). With recent advances in simulation-based computation of multinormal integrals
(see Section 15.6.2.b), some work on such a panel data estimator has appeared in the literature. See, for
example, Geweke, Keane, and Runkle (1994, 1997). The GEE estimator of Diggle, Liang, and Zeger (1994)
[see also, Liang and Zeger (1986) and Stata (2006)] seems to be another possibility. However, in all these
cases, it must be remembered that the procedure specifies estimation of a correlation matrix for a Ti vector
of unobserved variables based on a dependent variable that takes only two values. We should not be too
optimistic about this if Ti is even moderately large.
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the fixed effects model encounters an incidental parameters problem that renders the
maximum likelihood estimator inconsistent.

17.4.1 THE POOLED ESTIMATOR

To begin, it is useful to consider the pooled estimator that results if we simply ignore
the heterogeneity, ui in (17-39) and fit the model as if the cross-section specification of
Section 17.2.2 applies. In this instance, the adage that “ignoring the heterogeneity does
not make it go away,” applies even more forcefully than in the linear regression case.

If the fixed effects model is appropriate, then all the preceding results for omitted
variables, including the Yatchew and Griliches result (1984) apply. The pooled MLE
that ignores fixed effects will be inconsistent—possibly wildly so. (Note that since the
estimator is ML, not least squares, converting the data to deviations from group means
is not a solution—converting the binary dependent variable to deviations will produce
a continuous variable with unknown properties.)

The random effects case is more benign. From (17-39), the marginal probability
implied by the model is

Prob(yit = 1 | xit) = Prob(vit + ui > −x′
itβ)

= F
[
x′

itβ/
(
1 + σ 2

u

)1/2]
= F(x′

itδ).

The implication is that based on the marginal distributions, we can consistently estimate
δ (but not β or σu separately) by pooled MLE. [This result is explored at length in
Wooldridge (2002).] This would be a “pseudo MLE” since the log-likelihood function is
not the true log-likelihood for the full set of observed data, but it is the correct product of
the marginal distributions for yit | xit. (This would be the binary choice case counterpart
to consistent estimation of β in a linear random effects model by pooled ordinary least
squares.) The implication, which is absent in the linear case is that ignoring the random
effects in a pooled model produces an attenuated (inconsistent—downward biased)
estimate of β; the scale factor that produces δ is 1/(1 + σ 2

u )1/2 which is between zero
and one. The implication for the partial effects is less clear. In the model specification,
the partial effect is

PE(xit, ui ) = ∂ E[yit | xit, ui ]/∂xit = β × f (x′
itβ + ui ),

which is not computable. The useful result would be

Eu[PE(xit, ui )] = βEu[ f (x′
itβ + ui )].

Wooldridge (2002a) shows that the end result, assuming normality of both vit and ui

is Eu[PE(xit, ui )] = δφ(x′
itδ). Thus far, surprisingly, it would seem that simply pooling

the data and using the simple MLE “works.” The estimated standard errors will be
incorrect, so a correction such as the cluster estimator shown in Section 14.8.4 would
be appropriate. Three considerations suggest that one might want to proceed to the full
MLE in spite of these results: (1) The pooled estimator will be inefficient compared
to the full MLE; (2) the pooled estimator does not produce an estimator of σu which
might be of interest in its own right; (3) the FIML estimator is available in contemporary
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software and is no more difficult to estimate then the pooled estimator. Note that the
pooled estimator is not justified (over the FIML approach) on robustness considera-
tions because the same normality and random effects assumptions that are needed to
obtain the FIML estimator will be needed to obtain the preceding results for the pooled
estimator.

17.4.2 RANDOM EFFECTS MODELS

A specification that has the same structure as the random effects model of Section 11.5
has been implemented by Butler and Moffitt (1982). We will sketch the derivation to
suggest how random effects can be handled in discrete and limited dependent variable
models such as this one. Full details on estimation and inference may be found in Butler
and Moffitt (1982) and Greene (1995a). We will then examine some extensions of the
Butler and Moffitt model.

The random effects model specifies

εit = vit + ui ,

where vit and ui are independent random variables with

E [vit | X] = 0; Cov[vit, v js | X] = Var[vit | X] = 1, if i = j and t = s; 0 otherwise,

E [ui | X] = 0; Cov[ui , u j | X] = Var[ui | X] = σ 2
u , if i = j; 0 otherwise,

Cov[vit, u j | X] = 0 for all i, t, j,

and X indicates all the exogenous data in the sample, xit for all i and t.28 Then,

E [εit | X] = 0,

Var[εit | X] = σ 2
v + σ 2

u = 1 + σ 2
u ,

and

Corr[εit, εis | X] = ρ = σ 2
u

1 + σ 2
u
.

The new free parameter is σ 2
u = ρ/(1 − ρ).

Recall that in the cross-section case, the marginal probability associated with an
observation is

P(yi | xi ) =
∫ Ui

Li

f (εi )dεi , (Li , Ui ) = (−∞, −x′
iβ) if yi = 0 and (−x′

iβ, +∞) if yi = 1.

This simplifies to �[(2yi − 1)x′
iβ] for the normal distribution and 	[(2yi − 1)x′

iβ]
for the logit model. In the fully general case with an unrestricted covariance matrix,
the contribution of group i to the likelihood would be the joint probability for all Ti

observations;

Li = P(yi1, . . . , yiTi | X) =
∫ UiTi

LiTi

. . .

∫ Ui1

Li1

f (εi1, εi2, . . . , εiTi )dεi1dεi2 . . . dεiTi . (17-40)

28See Wooldridge (1999) for discussion of this assumption.



Greene-2140242 book November 25, 2010 22:10

CHAPTER 17 ✦ Discrete Choice 719

The integration of the joint density, as it stands, is impractical in most cases. The special
nature of the random effects model allows a simplification, however. We can obtain
the joint density of the vit’s by integrating ui out of the joint density of (εi1, . . . , εiTi , ui )

which is

f (εi1, . . . , εiTi , ui ) = f (εi1, . . . , εiTi | ui ) f (ui ).

So,

f (εi1, εi2, . . . , εiTi ) =
∫ +∞

−∞
f (εi1, εi2, . . . , εiTi | ui ) f (ui ) dui .

The advantage of this form is that conditioned on ui , the εit’s are independent, so

f (εi1, εi2, . . . , εiTi ) =
∫ +∞

−∞

Ti∏
t=1

f (εit | ui ) f (ui ) dui .

Inserting this result in (17-40) produces

Li = P[yi1, . . . , yiTi | X] =
∫ UiTi

LiTi

. . .

∫ Ui1

Li1

∫ +∞

−∞

Ti∏
t=1

f (εit | ui ) f (ui ) dui dεi1 dεi2 . . . dεiTi .

This may not look like much simplification, but in fact, it is. Because the ranges of
integration are independent, we may change the order of integration;

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[∫ UiTi

LiTi

. . .

∫ Ui1

Li1

Ti∏
t=1

f (εit | ui ) dεi1 dεi2 . . . dεiTi

]
f (ui ) dui .

Conditioned on the common ui , the ε’s are independent, so the term in square brackets
is just the product of the individual probabilities. We can write this as

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[
Ti∏

t=1

(∫ Uit

Lit

f (εit | ui ) dεit

)]
f (ui ) dui . (17-41)

Now, consider the individual densities in the product. Conditioned on ui , these are the
now-familiar probabilities for the individual observations, computed now at x′

itβ + ui .
This produces a general model for random effects for the binary choice model. Collecting
all the terms, we have reduced it to

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[
Ti∏

t=1

Prob(Yit = yit | x′
itβ + ui )

]
f (ui ) dui . (17-42)

It remains to specify the distributions, but the important result thus far is that the
entire computation requires only one-dimensional integration. The inner probabilities
may be any of the models we have considered so far, such as probit, logit, Gumbel, and
so on. The intricate part that remains is to determine how to do the outer integration.
Butler and Moffitt’s method assuming that ui is normally distributed is detailed in
Section 14.9.6.c.

A number of authors have found the Butler and Moffitt formulation to be a satis-
factory compromise between a fully unrestricted model and the cross-sectional variant
that ignores the correlation altogether. An application that includes both group and
time effects is Tauchen, Witte, and Griesinger’s (1994) study of arrests and criminal
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behavior. The Butler and Moffitt approach has been criticized for the restriction of
equal correlation across periods. But it does have a compelling virtue that the model
can be efficiently estimated even with fairly large Ti using conventional computational
methods. [See Greene (2007b).]

A remaining problem with the Butler and Moffitt specification is its assumption of
normality. In general, other distributions are problematic because of the difficulty of
finding either a closed form for the integral or a satisfactory method of approximating the
integral. An alternative approach that allows some flexibility is the method of maximum
simulated likelihood (MSL), which was discussed in Section 15.6. The transformed
likelihood we derived in (17-42) is an expectation:

Li =
∫ +∞

−∞

[
Ti∏

t=1

Prob(Yit = yit | x′
itβ + ui )

]
f (ui ) dui

= Eui

[
Ti∏

t=1

Prob(Yit = yit | x′
itβ + ui )

]
.

This expectation can be approximated by simulation rather than quadrature. First, let θ

now denote the scale parameter in the distribution of ui . This would be σu for a normal
distribution, for example, or some other scaling for the logistic or uniform distribution.
Then, write the term in the likelihood function as

Li = Eui

[
Ti∏

t=1

F(yit, x′
itβ + θui )

]
= Eui [h(ui )].

The function is smooth, continuous, and continuously differentiable. If this expectation
is finite, then the conditions of the law of large numbers should apply, which would
mean that for a sample of observations ui1, . . . , ui R,

plim
1
R

R∑
r=1

h(uir ) = Eu[h(ui )].

This suggests, based on the results in Chapter 15, an alternative method of maximizing
the log-likelihood for the random effects model. A sample of person-specific draws from
the population ui can be generated with a random number generator. For the Butler
and Moffitt model with normally distributed ui , the simulated log-likelihood function is

ln LSimulated =
n∑

i=1

ln

{
1
R

R∑
r=1

[
Ti∏

t=1

F [2yik − 1(x′
itβ + σuuir )]

]}
. (17-43)

This function is maximized with respect β and σu. Note that in the preceding, as in the
quadrature approximated log-likelihood, the model can be based on a probit, logit, or
any other functional form desired.

We have examined two approaches to estimation of a probit model with random ef-
fects. GMM estimation is another possibility. Avery, Hansen, and Hotz (1983), Bertschek
and Lechner (1998), and Inkmann (2000) examine this approach; the latter two offer
some comparison with the quadrature and simulation-based estimators considered here.
(Our application in Example 17.23 will use the Bertschek and Lechner data.)
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Bill
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Bill
Line

Bill
Line
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17.4.3 FIXED EFFECTS MODELS

The fixed effects model is

y∗
it = αi dit + x′

itβ + εit, i = 1, . . . , n, t = 1, . . . , Ti ,
(17-44)

yit = 1 if y∗
it > 0, and 0 otherwise,

where dit is a dummy variable that takes the value one for individual i and zero otherwise.
For convenience, we have redefined xit to be the nonconstant variables in the model. The
parameters to be estimated are the K elements of β and the n individual constant terms.
Before we consider the several virtues and shortcomings of this model, we consider
the practical aspects of estimation of what are possibly a huge number of parameters,
(n + K) − n is not limited here, and could be in the thousands in a typical application.
The log-likelihood function for the fixed effects model is

ln L =
n∑

i=1

Ti∑
t=1

ln P(yit | αi + x′
itβ), (17-45)

where P(.) is the probability of the observed outcome, for example, �[qit(αi + x′
itβ)]

for the probit model or 	[qit(αi + x′
itβ)] for the logit model, where qit = 2yit − 1. What

follows can be extended to any index function model, but for the present, we’ll confine
our attention to symmetric distributions such as the normal and logistic, so that the
probability can be conveniently written as Prob(Yit = yit | xit) = P[qit(αi + x′

itβ)]. It will
be convenient to let zit = αi + x′

itβ so Prob(Yit = yit | xit) = P(qitzit).
In our previous application of this model, in the linear regression case, we found

that estimation of the parameters was made possible by a transformation of the data
to deviations from group means which eliminated the person specific constants from
the estimator. (See Section 11.4.1.) Save for the special case discussed later, that will
not be possible here, so that if one desires to estimate the parameters of this model, it
will be necessary actually to compute the possibly huge number of constant terms at
the same time. This has been widely viewed as a practical obstacle to estimation of this
model because of the need to invert a potentially large second derivatives matrix, but
this is a misconception. [See, e.g., Maddala (1987), p. 317.] The method for estimation
of nonlinear fixed effects models such as the probit and logit models is detailed in
Section 14.9.6.d.

The problems with the fixed effects estimator are statistical, not practical. The esti-
mator relies on Ti increasing for the constant terms to be consistent—in essence, each
αi is estimated with Ti observations. But, in this setting, not only is Ti fixed, it is likely
to be quite small. As such, the estimators of the constant terms are not consistent (not
because they converge to something other than what they are trying to estimate, but
because they do not converge at all). The estimator of β is a function of the estimators
of α, which means that the MLE of β is not consistent either. This is the incidental
parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).] There is, as
well, a small sample (small Ti ) bias in the estimators. How serious this bias is remains
a question in the literature. Two pieces of received wisdom are Hsiao’s (1986) results
for a binary logit model [with additional results in Abrevaya (1997)] and Heckman and
MaCurdy’s (1980) results for the probit model. Hsiao found that for Ti = 2, the bias in
the MLE of β is 100 percent, which is extremely pessimistic. Heckman and MaCurdy
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found in a Monte Carlo study that in samples of n = 100 and T = 8, the bias appeared
to be on the order of 10 percent, which is substantive, but certainly less severe than
Hsiao’s results suggest. No other theoretical results have been shown for other models,
although in very few cases, it can be shown that there is no incidental parameters prob-
lem. (The Poisson model mentioned in Chapter 14 is one of these special cases.) The
fixed effects approach does have some appeal in that it does not require an assump-
tion of orthogonality of the independent variables and the heterogeneity. An ongoing
pursuit in the literature is concerned with the severity of the tradeoff of this virtue
against the incidental parameters problem. Some commentary on this issue appears in
Arellano (2001). Results of our own investigation appear in Section 15.5.2 and Greene
(2004).

17.4.4 A CONDITIONAL FIXED EFFECTS ESTIMATOR

Why does the incidental parameters problem arise here and not in the linear regression
model?29 Recall that estimation in the regression model was based on the deviations
from group means, not the original data as it is here. The result we exploited there
was that although f (yit | Xi ) is a function of αi , f (yit | Xi , ȳi ) is not a function of αi ,
and we used the latter in estimation of β. In that setting, ȳi is a minimal sufficient
statistic for αi . Sufficient statistics are available for a few distributions that we will
examine, but not for the probit model. They are available for the logit model, as we now
examine.

A fixed effects binary logit model is

Prob(yit = 1 | xit) = eαi +x′
itβ

1 + eαi +x′
itβ

.

The unconditional likelihood for the nT independent observations is

L =
∏

i

∏
t

(Fit)
yit(1 − Fit)

1−yit .

Chamberlain (1980) [following Rasch (1960) and Andersen (1970)] observed that the
conditional likelihood function,

Lc =
n∏

i=1

Prob

(
Yi1 = yi1, Yi2 = yi2, . . . , YiTi = yiTi

∣∣∣∣∣
Ti∑

t=1

yit

)
,

is free of the incidental parameters, αi . The joint likelihood for each set of Ti observations
conditioned on the number of ones in the set is

Prob

(
Yi1 = yi1, Yi2 = yi2, . . . , YiTi = yiTi

∣∣∣∣∣
Ti∑

t=1

yit, data

)

=
exp

(∑Ti
t=1 yitx′

itβ
)

∑
�t dit=Si

exp
(∑Ti

t=1 ditx′
itβ

) . (17-46)

29The incidental parameters problem does show up in ML estimation of the FE linear model, where Neyman
and Scott (1948) discovered it, in estimation of σ 2

ε . The MLE of σ 2
ε is e′e/nT, which converges to [(T −

1)/T]σ 2
ε < σ 2

ε .
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The function in the denominator is summed over the set of all
(Ti

Si

)
different sequences

of Ti zeros and ones that have the same sum as Si = ∑Ti
t=1 yit.30

Consider the example of Ti = 2. The unconditional likelihood is

L =
∏

i

Prob(Yi1 = yi1)Prob(Yi2 = yi2).

For each pair of observations, we have these possibilities:

1. yi1 = 0 and yi2 = 0. Prob(0, 0 | sum = 0) = 1.
2. yi1 = 1 and yi2 = 1. Prob(1, 1 | sum = 2) = 1.

The ith term in Lc for either of these is just one, so they contribute nothing to the con-
ditional likelihood function.31 When we take logs, these terms (and these observations)
will drop out. But suppose that yi1 = 0 and yi2 = 1. Then

3. Prob(0, 1 | sum = 1) = Prob(0, 1 and sum = 1)

Prob(sum = 1)
= Prob(0, 1)

Prob(0, 1) + Prob(1, 0)
.

Therefore, for this pair of observations, the conditional probability is

1

1 + eαi +x′
i1β

eαi +x′
i2β

1 + eαi +x′
i2β

1

1 + eαi +x′
i1β

eαi +x′
i2β

1 + eαi +x′
i2β

+ eαi +x′
i1β

1 + eαi +x′
i1β

1

1 + eαi +x′
i2β

= ex′
i2β

ex′
i1β + ex′

i2β
.

By conditioning on the sum of the two observations, we have removed the heterogeneity.
Therefore, we can construct the conditional likelihood function as the product of these
terms for the pairs of observations for which the two observations are (0, 1). Pairs of
observations with one and zero are included analogously. The product of the terms such
as the preceding, for those observation sets for which the sum is not zero or Ti , constitutes
the conditional likelihood. Maximization of the resulting function is straightforward and
may be done by conventional methods.

As in the linear regression model, it is of some interest to test whether there is
indeed heterogeneity. With homogeneity (αi = α), there is no unusual problem, and
the model can be estimated, as usual, as a logit model. It is not possible to test the
hypothesis using the likelihood ratio test, however, because the two likelihoods are
not comparable. (The conditional likelihood is based on a restricted data set.) None
of the usual tests of restrictions can be used because the individual effects are never
actually estimated.32 Hausman’s (1978) specification test is a natural one to use here,

30The enumeration of all these computations stands to be quite a burden—see Arellano (2000, p. 47) or
Baltagi (2005, p. 235). In fact, using a recursion suggested by Krailo and Pike (1984), the computation even
with Ti up to 100 is routine.
31Recall that in the probit model when we encountered this situation, the individual constant term could not
be estimated and the group was removed from the sample. The same effect is at work here.
32This produces a difficulty for this estimator that is shared by the semiparametric estimators discussed in
the next section. Because the fixed effects are not estimated, it is not possible to compute probabilities or
marginal effects with these estimated coefficients, and it is a bit ambiguous what one can do with the results of
the computations. The brute force estimator that actually computes the individual effects might be preferable.
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however. Under the null hypothesis of homogeneity, both Chamberlain’s conditional
maximum likelihood estimator (CMLE) and the usual maximum likelihood estima-
tor are consistent, but Chamberlain’s is inefficient. (It fails to use the information that
αi = α, and it may not use all the data.) Under the alternative hypothesis, the un-
conditional maximum likelihood estimator is inconsistent,33 whereas Chamberlain’s
estimator is consistent and efficient. The Hausman test can be based on the chi-squared
statistic

χ2 = (β̂CML − β̂ML)′(Var[CML] − Var[ML])−1(β̂CML − β̂ML). (17-47)

The estimated covariance matrices are those computed for the two maximum likelihood
estimators. For the unconditional maximum likelihood estimator, the row and column
corresponding to the constant term are dropped. A large value will cast doubt on the
hypothesis of homogeneity. (There are K degrees of freedom for the test.) It is possible
that the covariance matrix for the maximum likelihood estimator will be larger than
that for the conditional maximum likelihood estimator. If so, then the difference matrix
in brackets is assumed to be a zero matrix, and the chi-squared statistic is therefore
zero.

Example 17.11 Binary Choice Models for Panel Data
In Example 17.3, we fit a pooled binary Iogit model y = 1(DocVis > 0) using the German
health care utilization data examined in appendix Table F7.1. The model is

Prob(DocVisit > 0) = 	(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit

+ β5 Educationit + β6 Marriedit) .

No account of the panel nature of the data set was taken in that exercise. The sample con-
tains a total of 27,326 observations on 7,293 families with Ti dispersed from one to seven.
Table 17.8 lists estimates of parameter estimates and estimated standard errors for pro-
bit and Iogit random and fixed effects models. There is a surprising amount of variation
across the estimators. The coefficients are in bold to facilitate reading the table. It is gen-
erally difficult to compare across the estimators. The three estimators would be expected
to produce very different estimates in any of the three specifications—recall, for example,
the pooled estimator is inconsistent in either the fixed or random effects cases. The Iogit
results include two fixed effects estimators. The line market “U” is the unconditional (in-
consistent) estimator. The one marked “C” is Chamberlain’s consistent estimator. Note for
all three fixed effects estimators, it is necessary to drop from the sample any groups that
have DocVisit equal to zero or one for every period. There were 3,046 such groups, which
is about 42 percent of the sample. We also computed the probit random effects model in
two ways, first by using the Butler and Moffitt method, then by using maximum simulated
likelihood estimation. In this case, the estimators are very similar, as might be expected.
The estimated correlation coefficient, ρ, is computed as σ 2

u /(σ 2
ε + σ 2

u ) . For the probit model,
σ 2

ε = 1. The MSL estimator computes su = 0.9088376, from which we obtained ρ. The
estimated partial effects for the models are shown in Table 17.9. The average of the fixed
effects constant terms is used to obtain a constant term for the fixed effects case. Once again
there is a considerable amount of variation across the different estimators. On average, the
fixed effects models tend to produce much larger values than the pooled or random effects
models.

33Hsiao (2003) derives the result explicitly for some particular cases.
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TABLE 17.9 Estimated Partial Effects for Panel Data Binary Choice Models

Model Age Income Kids Education Married

Logit, Pa 0.0048133 −0.043213 −0.053598 −0.010596 0.019936
Logit: RE,Qb 0.0064213 0.0035835 −0.035448 −0.010397 0.0041049
Logit: F,Uc 0.024871 −0.014477 −0.020991 −0.027711 −0.013609
Logit: F,Cd 0.0072991 −0.0043387 −0.0066967 −0.0078206 −0.0044842
Probit, Pa 0.0048374 −0.043883 −0.053414 −0.010597 0.019783
Probit RE.Qb 0.0056049 −0.0008836 −0.042792 −0.0093756 0.0045426
Probit:RE,Se 0.0071455 −0.0010582 −0.054655 −0.011917 0.0059878
Probit: F,Uc 0.023958 −0.013152 −0.018495 −0.027659 −0.012557

aPooled estimator
bButler and Moffitt estimator
cUnconditional fixed effects estimator
dConditional fixed effects estimator
eMaximum simulated likelihood estimator

Example 17.12 Fixed Effects Logit Models: Magazine Prices Revisited
The fixed effects model does have some appeal, but the incidental parameters problem is
a significant shortcoming of the unconditional probit and logit estimators. The conditional
MLE for the fixed effects logit model is a fairly common approach. A widely cited application
of the model is Cecchetti’s (1986) analysis of changes in newsstand prices of magazines.
Cecchetti’s model was

Prob(Price change in year i of magazine t) = 	(α j + x′
itβ) ,

where the variables in xit are (1) time since last price change, (2) inflation since last change,
(3) previous fixed price change, (4) current inflation, (5) industry sales growth, and (6) sales
volatility. The fixed effect in the model is indexed “ j ” rather than “i ” as it is defined as a three-
year interval for magazine i . Thus, a magazine that had been on the newstands for nine years
would have three constants, not just one. In addition to estimating several specifications of
the price change model, Cecchetti used the Hausman test in (17-47) to test for the existence
of the common effects. Some of Cecchetti’s results appear in Table 17.10.

Willis (2006) argued that Cecchetti’s estimates were inconsistent and the Hausman test is
invalid because right-hand-side variables (1), (2), and (6) are all functions of lagged dependent
variables. This state dependence invalidates the use of the sum of the observations for
the group as a sufficient statistic in the Chamberlain estimator and the Hausman tests. He
proposes, instead, a method suggested by Heckman and Singer (1984b) to incorporate the
unobserved heterogeneity in the unconditional likelihood function. The Heckman and Singer
model can be formulated as a latent class model (see Sections 14.10 and 17.4.7) in which
the classes are defined by different constant terms—the remaining parameters in the model

TABLE 17.10 Models for Magazine Price Changes (standard errors in
parentheses)

Unconditional Conditional Conditional Heckman
Pooled FE FE Cecchetti FE Willis and Singer

β1 −1.10 (0.03) −0.07 (0.03) 1.12 (3.66) 1.02 (0.28) −0.09 (0.04)
β2 6.93 (1.12) 8.83 (1.25) 11.57 (1.68) 19.20 (7.51) 8.23 (1.53)
β5 −0.36 (0.98) −1.14 (1.06) 5.85 (1.76) 7.60 (3.46) −0.13 (1.14)
Constant 1 −1.90 (0.14) −1.94 (0.20)
Constant 2 −29.15 (1.1e11)
ln L −500.45 −473.18 −82.91 −83.72 −499.65
Sample size 1026 1026 543 1026
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are constrained to be equal across classes. Willis fit the Heckman and Singer model with
two classes to a restricted version of Cecchetti’s model using variables (1), (2), and (5). The
results in Table 17.10 show some of the results from Willis’s Table I. (Willis reports that he
could not reproduce Cecchetti’s results—the ones in Cecchetti’s second column would be
the counterparts—because of some missing values. In fact, Willis’s estimates are quite far
from Cecchetti’s results, so it will be difficult to compare them. Both are reported here.)

The two “mass points” reported by Willis are shown in Table 17.10. He reports that these
two values (−1.94 and −29.15) correspond to class probabilities of 0.88 and 0.12, though it is
difficult to make the translation based on the reported values. He does note that the change
in the log-likelihood in going from one mass point (pooled logit model) to two is marginal,
only from −500.45 to −499.65. There is another anomaly in the results that is consistent
with this finding. The reported standard error for the second “mass point” is 1.1 × 1011, or
essentially +∞. The finding is consistent with overfitting the latent class model. The results
suggest that the better model is a one-class (pooled) model.

17.4.5 MUNDLAK’S APPROACH, VARIABLE ADDITION
AND BIAS REDUCTION

Thus far, both the fixed effects (FE) and the random effects (RE) specifications present
problems for modeling binary choice with panel data. The MLE of the FE model is
inconsistent even when the model is properly specified—this is the incidental parameters
problem. (And, like the linear model, the FE probit and logit models do not allow
time-invariant regressors.) The random effects specification requires a strong, often
unreasonable, assumption that the effects and the regressors are uncorrelated. Of the
two, the FE model is the more appealing, though with modern longitudinal data sets
with many demographics, the problem of time-invariant variables would seem to be
compelling. This would seem to recommend the conditional estimator in Section 17.4.4,
save for yet another complication. With no estimates of the constant terms, neither
probabilities nor partial effects can be computed with the results. We are left making
inferences about ratios of coefficient. Two approaches have been suggested for finding
a middle ground: Mundlak’s (1978) approach that involves projecting the effects on the
group means of the time-varying variables and recent developments such as Fernandez-
Val’s approach that involves correcting the bias in the FE MLE.

The Mundlak (1978) [and Chamberlain (1984) and Wooldridge, e.g., (2002a)] ap-
proach augments (17-44) as follows:

y∗
it = αi + x′

itβ + εit

Prob(yit = 1 | xit) = F(αi + x′
itβ)

αi = α + x̄′
iδ + ui ,

where we have used x̄i generically for the group means of the time varying variables in
xit. The reduced form of the model is

Prob(yit = 1 | xit) = F(α + x̄′
iδ + x′

itβ + ui ).

(Wooldridge and Chamberlain also suggest using all years of xit rather than the group
means. This raises a problem in unbalanced panels, however. We will ignore this pos-
sibility.) The projection of αi on x̄i produces a random effects formulation. As in the
linear model (see Section 11.5.6), it also suggests a means of testing for fixed vs. random
effects. Since δ = 0 produces the pure random effects model, a joint Wald test of the
null hypothesis that δ equals zero can be used.
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TABLE 17.11 Estimated Random Effects Models

Constant Age Income Kids Education Married

Random 0.03411 0.02014 −0.00318 −0.15379 −0.03369 0.01633
Effects (0.09635) (0.00132) (0.06667) (0.02704) (0.00629) (0.03135)
Augmented 0.37485 0.05035 −0.03057 −0.04202 −0.05449 −0.02645
Model (0.10501) (0.00357) (0.09318) (0.03751) (0.03307) (0.05180)

−0.03659 −0.35065 −0.22509 0.02387 0.14668
Means (0.00384) (0.13984) (0.05499) (0.03374) (0.06607)

Example 17.13 Panel Data Random Effects Estimators
Example 17.11 presents several estimators of panel data estimators for the probit and logit
models. Pooled, random effects and fixed effects estimates are given for the probit model

Prob(DocVisit > 0) = �(β1 + β2 Ageit + β3 Incomeit + β4 Kidsit

+β5 Educationit + β6 Marriedit) .

We continue that analysis here by considering Mundlak’s approach to the common effects
model. Table 17.11 presents the random effects model from earlier, and the augmented es-
timator that contains the group means of the variables, all of which are time varying. The
addition of the group means to the regression brings large changes to the estimates of
the parameters, which might suggest the appropriateness of the fixed effects model. A for-
mal test is carried by computing a Wald statistic for the null hypothesis that the last five
coefficients in the augmented model equal zero. The chi-squared statistic equals 113.282
with five degrees of freedom. The critical value from the chi-squared table for 95 percent
significance is 11.07, so the hypothesis that δ equals zero, that is, the hypothesis of the
random effects model (restrictions), is rejected. The two log likelihoods are −16273.96 for
the REM and −16222.06 for the augmented REM. The LR statistic would be twice the dif-
ference, or 103.8. This produces the same conclusion. The FEM appears to be the preferred
model.

A series of recent studies has sought to maintain the fixed effects specification while
correcting the bias due to the incidental parameters problem. There are two broad
approaches. Hahn and Kuersteiner (2004), Hahn and Newey (2005), and Fernandez-
Val (2009) have developed an approximate, “large T” result for plim(β̂FEMALE − β)

that produces a direct correction to the estimator, itself. Fernandez-Val (2009) develops
corrections for the estimated constant terms as well. Arellano and Hahn (2006, 2007)
propose a modification of the log-likelihood function with, in turn, different first-order
estimation equations, that produces an approximately unbiased estimator of β. In a
similar fashion to the second of these approaches, Carro (2007) modifies the first-order
conditions (estimating equations) from the original log-likelihood function, once again
to produce an approximately unbiased estimator of β. (In general, given the overall
approach of using a large T approximation, the payoff to these estimators is to reduce
the bias of the FEMALE from O(1/T) to O(1/T2), which is a considerable reduction.)
These estimators are not yet in widespread use. The received evidence suggests that
in the simple case we are considering here, the incidental parameters problem is a
secondary concern when T reaches say 10 or so. For some modern public use data
sets, such as the BHPS or GSOEP which are beyond their 15th wave, the incidental
parameters problem may not be too severe. However, most of the studies mentioned
above are concerned with dynamic models (see Section 17.4.6), where the problem is
possible more severe than in the static case. Research in this area is ongoing.
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17.4.6 DYNAMIC BINARY CHOICE MODELS

A random or fixed effects model that explicitly allows for lagged effects would be

yit = 1(x′
itβ + αi + γ yi,t−1 + εit > 0).

Lagged effects, or persistence, in a binary choice setting can arise from three sources,
serial correlation in εit, the heterogeneity, αi , or true state dependence through the
term γ yi,t−1. Chiappori (1998) [and see Arellano (2001)] suggests an application to
the French automobile insurance market in which the incentives built into the pricing
system are such that having an accident in one period should lower the probability of
having one in the next (state dependence), but, some drivers remain more likely to have
accidents than others in every period, which would reflect the heterogeneity instead.
State dependence is likely to be particularly important in the typical panel which has
only a few observations for each individual. Heckman (1981a) examined this issue at
length. Among his findings were that the somewhat muted small sample bias in fixed
effects models with T = 8 was made much worse when there was state dependence.
A related problem is that with a relatively short panel, the initial conditions, yi0, have
a crucial impact on the entire path of outcomes. Modeling dynamic effects and initial
conditions in binary choice models is more complex than in the linear model, and by
comparison there are relatively fewer firm results in the applied literature.34

The correlation between αi and yi,t−1 in the dynamic binary choice model makes
yi,t−1 endogenous. Thus, the estimators we have examined thus far will not be consis-
tent. Two familiar alternative approaches that have appeared in recent applications are
due to Heckman (1981) and Wooldridge (2005), both of which build on the random
effects specification. Heckman’s approach provides a separate equation for the initial
condition,

Prob(yi1 = 1 | xi1, zi , αi ) = �(x′
i1δ + z′

iτ + θαi )

Prob(yit = 1 | xit, yi,t−1, αi ) = �(x′
itβ + γ yi,t−1 + αi ), t = 2, . . . , Ti ,

where zi is a set of “instruments” observed at the first period that are not contained in
xit. The conditional log-likelihood is

ln L| α =
n∑

i=1

ln

{
� [(2yi1 − 1)(x′

i1δ + z′
iτ + θαi )]

Ti∏
t=2

� [(2yit − 1)(x′
i1β + γ yi,t−1 + αi )]

}

=
n∑

i=1

ln Li | αi .

We now adopt the random effects approach and further assume that αi is normally
distributed with mean zero and variance σ 2

α . The random effects log-likelihood function
can be maximized with respect to (δ, τ , θ, β, γ, σα) using either the Butler and Moffitt

34A survey of some of these results is given by Hsiao (2003). Most of Hsiao (2003) is devoted to the linear
regression model. A number of studies specifically focused on discrete choice models and panel data have
appeared recently, including Beck, Epstein, Jackman and O’Halloran (2001), Arellano (2001) and Greene
(2001). Vella and Verbeek (1998) provide an application to the joint determination of wages and union
membership. Other important references are aguirregabiria and Mira (2010), Carro (2007), and Fernandeg–
Val (2009). Stewart (2006) and Arulampalam and Stewart (2007) provide several results for practitioners.
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quadrature method or the maximum simulated likelihood method described in Section
17.4.2. Stewart and Arulampalam (2007) suggest a useful shortcut for formulating the
Heckman model. Let Dit = 1 in period 1 and 0 in every other period and let Cit = 1− Dit.
Then, the two parts may be combined in

ln L| α =
n∑

i=1

ln
Ti∏

t=1

{
�

[
(2yit − 1)

〈
Cit(x′

i1β + γ yi,t−1) + Dit(x′
itδ + z′

iτ ) + (1 + λDit)αi
〉]}

.

In this form, the model can be viewed as a random parameters (random constant term)
model in which there is heteroscedasticity in the random part of the constant term.

Wooldridge’s approach builds on the Mundlak device of the previous section. Start-
ing from the same point, he suggests a model for the random effect conditioned on the
initial value. Thus,

αi | yi1, zi ∼ N
[
α0 + ηyi1 + z′

iτ , σ 2
α

]
.

Assembling the parts, Wooldridge’s model is a bit simpler than Heckman’s;

Prob(yit = 1 | xit, yi1, ui )

= �[(2yit − 1)(α0 + x′
itβ + γ yi,t−1 + ηyi1 + z′

iτ + ui )], t = 2, . . . , Ti .

Much of the contemporary literature has focused on methods of avoiding the strong
parametric assumptions of the probit and logit models. Manski (1987) and Honore and
Kyriazidou (2000) show that Manski’s (1986) maximum score estimator can be applied to
the differences of unequal pairs of observations in a two-period panel with fixed effects.
However, the limitations of the maximum score estimator have motivated research on
other approaches. An extension of lagged effects to a parametric model is Chamberlain
(1985), Jones and Landwehr (1988), and Magnac (1997), who added state dependence to
Chamberlain’s fixed effects logit estimator. Unfortunately, once the identification issues
are settled, the model is only operational if there are no other exogenous variables in
it, which limits its usefulness for practical application. Lewbel (2000) has extended his
fixed effects estimator to dynamic models as well.

Dong and Lewbel (2010) have extended Lewbel’s “special regressor” method to
dynamic binary choice models and have devised an estimator based on an IV linear
regression. Honore and Kyriazidou (2000) have combined the logic of the conditional
logit model and Manski’s maximum score estimator. They specify

Prob(yi0 = 1 | xi , αi ) = p0(xi , αi ) where xi = (xi1, xi2, . . . , xiT),

Prob(yit = 1 | xi , αi , yi0, yi1, . . . , yi,t−1) = F(x′
itβ + αi + γ yi,t−1) t = 1, . . . , T.

The analysis assumes a single regressor and focuses on the case of T = 3. The resulting
estimator resembles Chamberlain’s but relies on observations for which xit = xi,t−1,
which rules out direct time effects as well as, for practical purposes, any continuous
variable. The restriction to a single regressor limits the generality of the technique as
well. The need for observations with equal values of xit is a considerable restriction, and
the authors propose a kernel density estimator for the difference, xit − xi,t−1, instead
which does relax that restriction a bit. The end result is an estimator that converges
(they conjecture) but to a nonnormal distribution and at a rate slower than n−1/3.

Semiparametric estimators for dynamic models at this point in the development are
still primarily of theoretical interest. Models that extend the parametric formulations to
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include state dependence have a much longer history, including Heckman (1978, 1981a,
1981b), Heckman and MaCurdy (1980), Jakubson (1988), Keane (1993), and Beck et al.
(2001) to name a few.35 In general, even without heterogeneity, dynamic models ul-
timately involve modeling the joint outcome (yi0, . . . , yiT), which necessitates some
treatment involving multivariate integration. Example 17.14 describes an application.
Stewart (2006) provides another.

Example 17.14 An Intertemporal Labor Force Participation Equation
Hyslop (1999) presents a model of the labor force participation of married women. The focus
of the study is the high degree of persistence in the participation decision. Data used in the
study were the years 1979–1985 of the Panel Study of Income Dynamics. A sample of 1,812
continuously married couples were studied. Exogenous variables that appeared in the model
were measures of permanent and transitory income and fertility captured in yearly counts of
the number of children from 0–2, 3–5, and 6–17 years old. Hyslop’s formulation, in general
terms, is

(initial condition) yi 0 = 1(x′
i 0β0 + vi 0 > 0) ,

(dynamic model) yit = 1(x′
itβ + γ yi ,t−1 + αi + vit > 0)

(heterogeneity correlated with participation) αi = z′
i δ + ηi ,

(stochastic specification)

ηi | Xi ∼ N
[
0, σ 2

η

]
,

vi 0 | Xi ∼ N
[
0, σ 2

0

]
,

wit | Xi ∼ N
[
0, σ 2

w

]
,

vit = ρvi ,t−1 + wit, σ 2
η + σ 2

w = 1.

Corr[vi 0, vit] = ρt , t = 1, . . . , T − 1.

The presence of the autocorrelation and state dependence in the model invalidate the simple
maximum likelihood procedures we examined earlier. The appropriate likelihood function is
constructed by formulating the probabilities as

Prob( yi 0, yi 1, . . .) = Prob( yi 0) × Prob( yi 1 | yi 0) × · · · × Prob( yi T | yi ,T−1) .

This still involves a T = 7 order normal integration, which is approximated in the study using
a simulator similar to the GHK simulator discussed in 15.6.2.b. Among Hyslop’s results are a
comparison of the model fit by the simulator for the multivariate normal probabilities with the
same model fit using the maximum simulated likelihood technique described in Section 15.6.

17.4.7 A SEMIPARAMETRIC MODEL FOR INDIVIDUAL
HETEROGENEITY

The panel data analysis considered thus far has focused on modeling heterogeneity
with the fixed and random effects specifications. Both assume that the heterogeneity is
continuously distributed among individuals. The random effects model is fully paramet-
ric, requiring a full specification of the likelihood for estimation. The fixed effects model

35Beck et al. (2001) is a bit different from the others mentioned in that in their study of “state failure,” they
observe a large sample of countries (147) observed over a fairly large number of years, 40. As such, they are
able to formulate their models in a way that makes the asymptotics with respect to T appropriate. They can
analyze the data essentially in a time-series framework. Sepanski (2000) is another application that combines
state dependence and the random coefficient specification of Akin, Guilkey, and Sickles (1979).



Greene-2140242 book November 25, 2010 22:10

732 PART IV ✦ Cross Sections, Panel Data, and Microeconometrics

is essentially semiparametric. It requires no specific distributional assumption, however,
it does require that the realizations of the latent heterogeneity be treated as parameters,
either estimated in the unconditional fixed effects estimator or conditioned out of the
likelihood function when possible. As noted in the preceding example, Heckman and
Singer’s (1984b) model provides a less stringent model specification based on a discrete
distribution of the latent heterogeneity. A straightforward method of implementing
their model is to cast it as a latent class model in which the classes are distinguished
by different constant terms and the associated probabilities. The class probabilities are
treated as parameters to be estimated with the model parameters.

Example 17.15 Semiparametric Models of Heterogeneity
We have extended the random effects and fixed effects logit models in Example 17.11 by
fitting the Heckman and Singer (1984b) model. Table 17.12 shows the specification search
and the results under different specifications. The first column of results shows the estimated
fixed effects model from Example 17.11. The conditional estimates are shown in parentheses.
Of the 7,293 groups in the sample, 3,056 are not used in estimation of the fixed effects models
because the sum of Doctorit is either 0 or Ti for the group. The mean and standard deviation
of the estimated underlying heterogeneity distribution are computed using the estimates of
αi for the remaining 4,237 groups. The remaining five columns in the table show the results
for different numbers of latent classes in the Heckman and Singer model. The listed constant
terms are the “mass points” of the underlying distributions. The associated class probabilities
are shown in parentheses under them. The mean and standard deviation are derived from the

TABLE 17.12 Estimated Heterogeneity Models

Number of Classes

Fixed Effect 1 2 3 4 5

β1 0.10475 0.020708 0.030325 0.033684 0.034083 0.034159
(0.084760)

β2 −0.060973 −0.18592 0.025550 −0.0058013 −0.0063516 −0.013627
(−0.050383)

β3 −0.088407 −0.22947 −0.24708 −0.26388 −0.26590 −0.26626
(−0.077764)

β4 −0.11671 −0.045588 −0.050924 −0.058022 −0.059751 −0.059176
(−0.090816)

β5 −0.057318 0.085293 0.042974 0.037944 0.029227 0.030699
(−0.52072)

α1 −2.62334 0.25111 0.91764 1.71669 1.94536 2.76670
(1.00000) (0.62681) (0.34838) (0.29309) (0.11633)

α2 −1.47800 −2.23491 −1.76371 1.18323
(0.37319) (0.18412) (0.21714) (0.26468)

α3 −0.28133 −0.036739 −1.96750
(0.46749) (0.46341) (0.19573)

α4 −4.03970 −0.25588
(0.026360) (0.40930)

α5 −6.48191
(0.013960)

Mean −2.62334 0.00000 0.023613 0.055059 0.063685 0.054705
Std. Dev. 3.13415 0.00000 1.158655 1.40723 1.48707 1.62143
ln L −9458.638 −17673.10 −16353.14 −16278.56 −16276.07 −16275.85

(−6299.02)
AIC 1.00349 1.29394 1.19748 1.19217 1.19213 1.19226
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2- to 5-point discrete distributions shown. It is noteworthy that the mean of the distribution
is relatively stable, but the standard deviation rises monotonically. The search for the best
model would be based on the AIC. As noted in Section 14.10, using a likelihood ratio test in
this context is dubious, as the number of degrees of freedom is ambiguous. Based on the
AIC, the four-class model is the preferred specification.

17.4.8 MODELING PARAMETER HETEROGENEITY

In Section 11.11, we examined specifications that extend the underlying heterogeneity
to all the parameters of the model. We have considered two approaches. The random
parameters, or mixed models discussed in Chapter 15 allow parameters to be distributed
continuously across individuals. The latent class model in Section 16.10 specifies a dis-
crete distribution instead. (The Heckman and Singer model in the previous section
applies this method to the constant term.) Most of the focus to this point, save for
Example 16.16, has been on linear models.

The random effects model can be cast as a model with a random constant term;

y∗
it = αi + x′

itβ + εit, i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
it > 0, and 0 otherwise,

where αi = α+σuui . This is simply a reinterpretation of the model we just analyzed. We
might, however, now extend this formulation to the full parameter vector. The resulting
structure is

y∗
it = x′

itβ i + εit, i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
it > 0, and 0 otherwise,

where β i = β + �ui where � is a nonnegative definite diagonal matrix—some of its
diagonal elements could be zero for nonrandom parameters. The method of estimation
is maximum simulated likelihood. The simulated log-likelihood is now

ln LSimulated =
n∑

i=1

ln

{
1
R

R∑
r=1

[
Ti∏

t=1

F[qit(x′
it(β + �uir ))]

]}
.

The simulation now involves R draws from the multivariate distribution of u. Because
the draws are uncorrelated—� is diagonal—this is essentially the same estimation prob-
lem as the random effects model considered previously. This model is estimated in
Example 17.16. Example 17.16 also presents a similar model that assumes that the
distribution of β i is discrete rather than continuous.

Example 17.16 Parameter Heterogeneity in a Binary Choice Model
We have extended the logit model for doctor visits from Example 17.15 to allow the param-
eters to vary randomly across individuals. The random parameters logit model is

Prob (Doctorit = 1) = 	(β1i + β2i Ageit + β3i Incomeit + β4i Kidsit + β5i Educit + β6i Marriedit) ,

where the two models for the parameter variation we have employed are:

Continuous: βki = βk + σkuki , uki ∼ N[0, 1], k = 1, . . . , 6, Cov[uki, umi] = 0,
Discrete: βki = β1

k with probability π1

β2
k with probability π2

β3
k with probability π3.
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TABLE 17.13 Estimated Heterogeneous Parameter Models

Pooled Random Parameters Latent Class

Variable Estimate: β Estimate: β Estimate: σ Estimate: β Estimate: β Estimate: β

Constant 0.25111 −0.034964 0.81651 0.96605 −0.18579 −1.52595
(0.091135) (0.075533) (0.016542) (0.43757) (0.23907) (0.43498)

Age 0.020709 0.026306 0.025330 0.049058 0.032248 0.019981
(0.0012852) (0.0011038) (0.0004226) (0.0069455) (0.0031462) (0.0062550)

Income −0.18592 −0.0043649 0.10737 −0.27917 −0.068633 0.45487
(0.075064) (0.062445) (0.038276) (0.37149) (0.16748) (0.31153)

Kids −0.22947 −0.17461 0.55520 −0.28385 −0.28336 −0.11708
(0.029537) (0.024522) (0.023866) (0.14279) (0.066404) (0.12363)

Education −0.045588 −0.040510 0.037915 −0.025301 −0.057335 −0.09385
(0.0056465) (0.0047520) (0.0013416) (0.027768) (0.012465) (0.027965)

Married 0.085293 0.014618 0.070696 −0.10875 0.025331 0.23571
(0.033286) (0.027417) (0.017362) (0.17228) (0.075929) (0.14369)

Class 1.00000 1.00000 0.34833 0.46181 0.18986
Prob. (0.00000) (0.00000) (0.038495) (0.028062) (0.022335)
ln L −17673.10 −16271.72 −16265.59

We have chosen a three-class latent class model for the illustration. In an application, one
might undertake a systematic search, such as in Example 17.15, to find a preferred speci-
fication. Table 17.13 presents the fixed parameter (pooled) logit model and the two random
parameters versions. (There are infinite variations on these specifications that one might
explore—See Chapter 15 for discussion—we have shown only the simplest to illustrate the
models.36

Figure 17.3 shows the implied distribution for the coefficient on age. For the continuous
distribution, we have simply plotted the normal density. For the discrete distribution, we first
obtained the mean (0.0358) and standard deviation (0.0107). Notice that the distribution is
tighter than the estimated continuous normal (mean, 0.026, standard deviation, 0.0253). To
suggest the variation of the parameter (purely for purpose of the display, because the distri-
bution is discrete), we placed the mass of the center interval, 0.462, between the midpoints of
the intervals between the center mass point and the two extremes. With a width of 0.0145 the
density is 0.461 / 0.0145 = 31.8. We used the same interval widths for the outer segments.
This range of variation covers about five standard deviations of the distribution.

17.4.9 NONRESPONSE, ATTRITION AND INVERSE PROBABILITY
WEIGHTING

Missing observations is a common problem in the analysis of panel data. Nicoletti and
Peracchi (2005) suggest several reasons that, for example, panels become unbalanced:

• Demographic events such as death
• Movement out of the scope of the survey, such as institutionalization or emigration

36We have arrived (once again) at a point where the question of replicability arises. Nonreplicability is an
ongoing challenge in empirical work in economics. (See, e.g., Example 17.12.) The problem is particularly
acute in analyses that involve simulation such as Monte Carlo studies and random parameter models. In the
interest of replicability, we note that the random parameter estimates in Table 17.14 were computed with
NLOGIT [Econometric Software (2007)] and are based on 50 Halton draws. We used the first six sequences
(prime numbers 2, 3, 5, 7, 11, 13) and discarded the first 10 draws in each sequence.
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• Refusal to respond at subsequent waves
• Absence of the person at the address
• Other types of noncontact

The GSOEP that we (from Riphahn, Wambach, and Million (2003)) have used in many
examples in this text is one such data set. Jones, Koolman, and Rice (2006) (JKR)
list several other applications, including the British Household Panel Survey (BHPS),
the European Community Household Panel (ECHP), and the Panel Study of Income
Dynamics (PSID).

If observations are missing completely at random (MCAR), then the problem of
nonresponse can be ignored, though for estimation of dynamic models, either the anal-
ysis will have to be restricted to observations with uninterrupted sequences of obser-
vations, or some very strong assumptions and interpolation methods will have to be
employed to fill the gaps. (See Section 4.7.4 for discussion of the terminology and issues
in handling missing data.) The problem for estimation arises when observations are
missing for reasons that are related to the outcome variable of interest. Nonresponse
bias and a related problem, attrition bias (individuals leave permanently during the
study) result when conventional estimators, such as least squares or the probit maxi-
mum likelihood estimator being used here, are applied to samples in which observations
are present or absent from the sample for reasons related to the outcome variable. It is
a form of sample selection bias, that we will examine further in Chapter 19.

Verbeek and Nijman (1992) have suggested a test for endogeneity of the sample
response pattern. (We will adopt JKR’s notation and terminology for this.) Let h denote
the outcome of interest and x denote the relevant set of covariates. Let R denote the
pattern of response. If nonresponse is (completely) random, then E[h | x, R] = E[h | x].
This suggests a variable addition test (neglecting other panel data effects); a pooled
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model that contains R in addition to x can provide the means for a simple test of
endogeneity. JKR (and Verbeek and Nijman) suggest using the number of waves at
which the individual is present as the measure of R. Thus, adding R to the pooled
model, we can use a simple t test for the hypothesis.

Devising an estimator given that (non)response is nonignorable requires a more
detailed understanding of the process generating the response pattern. The crucial
issue is whether the sample selection is based “on unobservables” or “on observables.”
Selection on unobservables results when, after conditioning on the relevant variables,
x and other information, z, the sampling mechanism is still nonrandom with respect to
the disturbances in the models. Selection on unobservables is at the heart of the sample
selectivity methodology pioneered by Heckman (1979) that we will study in Chapter 19.
(Some applications of the role of unobservables in biased estimation are discussed in
Chapter 8, where we examine sources of endogeneity in regression models.) If selection
is on observables and then conditioned on an appropriate specification involving the
observable information, (x,z), a consistent estimator of the model parameters will be
available by “purging” the estimator of the endogeneity of the sampling mechanism.

JKR adopt an inverse probability weighted (IPW) estimator devised by Robins,
Rotnitsky and Zhao (1995), Fitzgerald, Gottshalk, and Moffitt (1998), Moffitt, Fitzger-
ald and Gottshalk (1999), and Wooldridge (2002). The estimator is based on the general
MCAR assumption that P(R = 1 | h, x, z) = P(R = 1 | x, z). That is, the observable
covariates convey all the information that determines the response pattern—the prob-
ability of nonresponse does not vary systematically with the outcome variable once the
exogenous information is accounted for. Implementing this idea in an estimator would
require that x and z be observable when R = 0, that is, the exogenous data be avail-
able for the nonresponders. This will typically not be the case; in an unbalanced panel,
the entire observation is missing. Wooldridge (2002) proposed a somewhat stronger
assumption that makes estimation feasible: P(R = 1 | h, x, z) = P(R = 1 | z) where z is
a set of covariates available at wave 1 (entry to the study). To compute Wooldridge’s
IPW estimator, we will begin with the sample of all individuals who are present at wave
1 of the study. (In our Example 17.17, based on the GSOEP data, not all individuals
are present at the first wave.) At wave 1, (xi1, zi1) are observed for all individuals to be
studied; zi1 contains information on observables that are not included in the outcome
equation and that predict the response pattern at subsequent waves, including the re-
sponse variable at the first wave. At wave 1, then, P(Ri1 = 1 | xi1, zi1) = 1. Wooldridge
suggests using a probit model for P(Rit = 1 | xi1, zi1), t = 2, . . . , T for the remain-
ing waves to obtain predicted probabilities of response, p̂it. The IPW estimator then
maximizes the weighted log likelihood

ln LIPW =
n∑

i=1

T∑
t=1

Rit

p̂it
ln Lit.

Inference based on the weighted log-likelihood function can proceed as in Section 17.3.
A remaining detail concerns whether the use of the predicted probabilities in the
weighted log-likelihood function makes it necessary to correct the standard errors for
two-step estimation. The case here is not an application of the two-step estimators we
considered in Section 14.7, since the first step is not used to produce an estimated param-
eter vector in the second. Wooldridge (2002) shows that the standard errors computed
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without the adjustment are “conservative” in that they are larger than they would be
with the adjustment.

Example 17.17 Nonresponse in the GSOEP Sample
Of the 7,293 individuals in the GSOEP data that we have used in several earlier examples,
3,874 were present at wave 1 (1984) of the sample. The pattern of the number of waves
present by these 3,874 is shown in Figure 17.4. The waves are 1984–1988, 1991, and 1994.
A dynamic model would be based on the 1,600 of those present at wave 1 who were also
present for the next four waves. There is a substantial amount of nonresponse in these data.
Not all individuals exit the sample with the first nonresponse, however, so the resulting panel
remains unbalanced. The impression suggested by Figure 17.4 could be a bit misleading—
the nonresponse pattern is quite different from simple attrition. For example, of the 3,874
individuals who responded at wave 1, 364 did not respond at wave 2 but returned to the
sample at wave 3.

To employ the Verbeek and Nijman test, we used the entire sample of 27,326 household
years of data. The pooled probit model for DocVis > 0 produced the results at the left in
Table 17.14. A t (Wald) test of the hypothesis that the coefficient on number of waves present
is zero is strongly rejected, so we proceed to the inverse probability weighted estimator. For
computing the inverse probability weights, we used the following specification:

xi 1 = constant, age, income, educ, kids, married

zi 1 = female, handicapped dummy, percentage handicapped,
university, working, blue collar, white collar, public servant, yi 1

yi 1 = Doctor Visits > 0 in period 1.

This first-year data vector is used as the observed explanatory variables in probit models for
waves 2–7 for the 3,874 individuals who were present at wave 1. There are 3,874 observations
for each of these probit models, since all were observed at wave 1. Fitted probabilities for Rit
are computed for waves 2–7, while Ri 1 = 1. The sample means of these probabilities which
equals the proportion of the 3,874 who responded at each wave are 1.000, 0.730, 0.672,
0.626, 0.682, 0.568, and 0.386, respectively. Table 17.14 presents the estimated models for
several specifications In each case, it appears that the weighting brings some moderate
changes in the parameters and, uniformly, reductions in the standard errors.
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TABLE 17.14 Inverse Probability Weighted Estimators

Random Effects—
Pooled Model Mundlak Fixed Effects

Variable Endog. Test Unwtd. IPW Unwtd. IPW Unwtd. IPW

Constant 0.26411 0.03369 −0.02373 0.09838 0.13237
(0.05893) (0.07684) (0.06385) (0.16081) (0.17019)

Age 0.01369 0.01667 0.01831 0.05141 0.05656 0.06210 0.06841
(0.00080) (0.00107) (0.00088) (0.00422) (0.00388) (0.00506) (0.00465)

Income −0.12446 −0.17097 −0.22263 0.05794 0.01699 0.07880 0.03603
(0.04636) (0.05981) (0.04801) (0.11256) (0.10580) (0.12891) (0.12193)

Education −0.02925 −0.03614 −0.03513 −0.06456 −0.07058 −0.07752 −0.08574
(0.00351) (0.00449) (0.00365) (0.06104) (0.05792) (0.06582) (0.06149)

Kids −0.13130 −0.13077 −0.13277 −0.04961 −0.03427 −0.05776 −0.03546
(0.01828) (0.02303) (0.01950) (0.04500) (0.04356) (0.05296) (0.05166)

Married 0.06759 0.06237 0.07015 −0.06582 −0.09235 −0.07939 −0.11283
(0.02060) (0.02616) (0.02097) (0.06596) (0.06330) (0.08146) (0.07838)

Mean Age −0.03056 −0.03401
(0.00479) (0.00455)

Mean Income −0.66388 −0.78077
(0.18646) (0.18866)

Mean 0.02656 0.02899
Education (0.06160) (0.05848)

Mean Kids −0.17524 −0.20615
(0.07266) (0.07464)

Mean Married 0.22346 0.25763
(0.08719) (0.08433)

Number −0.02977
of Waves (0.00450)

ρ 0.46538 0.48616

17.5 BIVARIATE AND MULTIVARIATE PROBIT
MODELS

In Chapter 10, we analyzed a number of different multiple-equation extensions of the
classical and generalized regression model. A natural extension of the probit model
would be to allow more than one equation, with correlated disturbances, in the same
spirit as the seemingly unrelated regressions model. The general specification for a
two-equation model would be

y∗
1 = x′

1β1 + ε1, y1 = 1 if y∗
1 > 0, 0 otherwise,

y∗
2 = x′

2β2 + ε2, y2 = 1 if y∗
2 > 0, 0 otherwise,(

ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.

(17-48)

This bivariate probit model is interesting in its own right for modeling the joint
determination of two variables, such as doctor and hospital visits in the next example. It
also provides the framework for modeling in two common applications. In many cases,
a treatment effect, or endogenous influence, takes place in a binary choice context. The
bivariate probit model provides a specification for analyzing a case in which a probit
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model contains an endogenous binary variable in one of the equations. In Example
17.21, we will extend (17-48) to

W∗ = x′
1β1 + ε1, W = 1 if W∗ > 0, 0 otherwise,

y∗ = x′
2β2 + γ W + ε2, y = 1 if y∗ > 0, 0 otherwise, (17-49)(

ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.

This model extends the case in Section 17.3.5, where W∗, rather than W, appears on the
right-hand side of the second equation. In the example, W denotes whether a liberal
arts college supports a women’s studies program on the campus while y is a binary
indicator of whether the economics department provides a gender economics course.
A second common application, in which the first equation is an endogenous sampling
rule, is another variant of the bivariate probit model:

S∗ = x′
1β1 + ε1, S = 1 if S∗ > 0, 0 otherwise,

y∗ = x′
2β2 + ε2, y = 1 if y∗ > 0, 0 otherwise, (17-50)(

ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
,

(y, x2) observed only when S = 1.

In Example 17.22, we will study an application in which S is the result of a credit card
application (or any sort of loan application) while y2 is a binary indicator for whether
the individual defaults on the credit account (loan). This is a form of endogenous sam-
pling (in this instance, sampling on unobservables) that has some commonality with the
attrition problem that we encountered in Section 17.4.9.

At the end of this section, we will extend (17-48) to more than two equations. This
will allow direct treatment of multiple binary outcomes. It will also allow a more general
panel data model for T periods than is provided by the random effects specification.

17.5.1 MAXIMUM LIKELIHOOD ESTIMATION

The bivariate normal cdf is

Prob(X1 < x1, X2 < x2) =
∫ x2

−∞

∫ x1

−∞
φ2(z1, z2, ρ) dz1dz2,

which we denote �2(x1, x2, ρ). The density is37

φ2(x1, x2, ρ) = e−(1/2)(x2
1 +x2

2 −2ρx1x2)/(1−ρ2)

2π(1 − ρ2)1/2
.

To construct the log-likelihood, let qi1 = 2yi1 − 1 and qi2 = 2yi2 − 1. Thus, qij = 1 if
yij = 1 and −1 if yij = 0 for j = 1 and 2. Now let

zij = x′
ijβ j and wij = qijzij, j = 1, 2,

37See Section B.9.
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and

ρi∗ = qi1qi2ρ.

Note the notational convention. The subscript 2 is used to indicate the bivariate normal
distribution in the density φ2 and cdf �2. In all other cases, the subscript 2 indicates the
variables in the second equation. As before, φ(.) and �(.) without subscripts denote the
univariate standard normal density and cdf.

The probabilities that enter the likelihood function are

Prob(Y1 = yi1, Y2 = yi2 | x1, x2) = �2(wi1, wi2, ρi∗),

which accounts for all the necessary sign changes needed to compute probabilities for
y’s equal to zero and one. Thus,38

ln L =
n∑

i=1

ln �2(wi1, wi2, ρi∗).

The derivatives of the log-likelihood then reduce to

∂ ln L
∂β j

=
n∑

i=1

(
qijgij

�2

)
xij, j = 1, 2,

∂ ln L
∂ρ

=
n∑

i=1

qi1qi2φ2

�2
,

(17-51)

where

gi1 = φ(wi1)�

[
wi2 − ρi∗wi1√

1 − ρ2
i∗

]
(17-52)

and the subscripts 1 and 2 in gi1 are reversed to obtain gi2. Before considering the
Hessian, it is useful to note what becomes of the preceding if ρ = 0. For ∂ ln L/∂β1, if ρ =
ρi∗ = 0, then gi1 reduces to φ(wi1)�(wi2), φ2 is φ(wi1)φ(wi2), and �2 is �(wi1)�(wi2).
Inserting these results in (17-51) with qi1 and qi2 produces (17-21). Because both func-
tions in ∂ ln L/∂ρ factor into the product of the univariate functions, ∂ ln L/∂ρ reduces
to

∑n
i=1 λi1λi2, where λij, j = 1, 2, is defined in (17-20). (This result will reappear in the

LM statistic shown later.)
The maximum likelihood estimates are obtained by simultaneously setting the three

derivatives to zero. The second derivatives are relatively straightforward but tedious.
Some simplifications are useful. Let

δi = 1√
1 − ρ2

i∗
,

vi1 = δi (wi2 − ρi∗wi1), so gi1 = φ(wi1)�(vi1),

vi2 = δi (wi1 − ρi∗wi2), so gi2 = φ(wi2)�(vi2).

By multiplying it out, you can show that

δiφ(wi1)φ(vi1) = δiφ(wi2)φ(vi2) = φ2.

38To avoid further ambiguity, and for convenience, the observation subscript will be omitted from �2 =
�2(wi1, wi2, ρi∗ ) and from φ2 = φ2(wi1, wi2, ρi∗ ).
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Then

∂2 log L
∂β1∂β ′

1
=

n∑
i=1

xi1x′
i1

[−wi1gi1

�2
− ρi∗φ2

�2
− g2

i1

�2
2

]
,

∂2 log L
∂β1∂β ′

2
=

n∑
i=1

qi1qi2xi1x′
i2

[
φ2

�2
− gi1gi2

�2
2

]
,

∂2 log L
∂β1∂ρ

=
n∑

i=1

qi2xi1
φ2

�2

[
ρi∗δivi1 − wi1 − gi1

�2

]
,

∂2 log L
∂ρ2

=
n∑

i=1

φ2

�2

[
δ2

i ρi∗(1 − w′
i R

−1
i wi ) + δ2

i wi1wi2 − φ2

�2

]
,

(17-53)

where w′
i R

−1
i wi = δ2

i (w
2
i1 + w2

i2 − 2ρi∗wi1wi2). (For β2, change the subscripts in
∂2 ln L/∂β1∂β ′

1 and ∂2 ln L/∂β1∂ρ accordingly.) The complexity of the second deriva-
tives for this model makes it an excellent candidate for the Berndt et al. estimator of
the variance matrix of the maximum likelihood estimator.

Example 17.18 Tetrachoric Correlation
Returning once again to the health care application of Examples 17.4 and several others, we
now consider a second binary variable,

Hospitalit = 1 if HospVisit > 0 and 0 otherwise.

Our previous analyses have focused on

Doctorit = 1 if DocVisit > 0 and 0 otherwise.

A simple bivariate frequency count for these two variables is

Hospital

Doctor 0 1 Total

0 9,715 420 10,135
1 15,216 1,975 17,191
Total 24,931 2,395 27,326

Looking at the very large value in the lower-left cell, one might surmise that these two binary
variables (and the underlying phenomena that they represent) are negatively correlated. The
usual Pearson, product moment correlation would be inappropriate as a measure of this cor-
relation since it is used for continuous variables. Consider, instead, a bivariate probit “model,”

H ∗
it = μ1 + ε1,it, Hospitalit = 1( H ∗

it > 0) ,
D∗

it = μ2 + ε2,it, Doctorit = 1( D∗
it > 0) ,

where (ε1, ε2) have a bivariate normal distribution with means (0, 0), variances (1, 1) and cor-
relation ρ. This is the model in (17-48) without independent variables. In this representation,
the tetrachoric correlation, which is a correlation measure for a pair of binary variables,
is precisely the ρ in this model—it is the correlation that would be measured between the
underlying continuous variables if they could be observed. This suggests an interpretation
of the correlation coefficient in a bivariate probit model—as the conditional tetrachoric cor-
relation. It also suggests a method of easily estimating the tetrachoric correlation coefficient
using a program that is built into nearly all commercial software packages.

Applied to the hospital/doctor data defined earlier, we obtained an estimate of ρ of
0.31106, with an estimated asymptotic standard error of 0.01357. Apparently, our earlier
intuition was incorrect.
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17.5.2 TESTING FOR ZERO CORRELATION

The Lagrange multiplier statistic is a convenient device for testing for the absence
of correlation in this model. Under the null hypothesis that ρ equals zero, the model
consists of independent probit equations, which can be estimated separately. Moreover,
in the multivariate model, all the bivariate (or multivariate) densities and probabilities
factor into the products of the marginals if the correlations are zero, which makes
construction of the test statistic a simple matter of manipulating the results of the
independent probits. The Lagrange multiplier statistic for testing H0: ρ = 0 in a bivariate
probit model is39

LM =

[∑n
i=1 qi1qi2

φ(wi1)φ(wi2)

�(wi1)�(wi2)

]2

∑n
i=1

[φ(wi1)φ(wi2)]2

�(wi1)�(−wi1)�(wi2)�(−wi2)

.

As usual, the advantage of the LM statistic is that it obviates computing the bivariate
probit model. But the full unrestricted model is now fairly common in commercial soft-
ware, so that advantage is minor. The likelihood ratio or Wald test can often be used with
equal ease. To carry out the likelihood ratio test, we note first that if ρ equals zero, then
the bivariate probit model becomes two independent univariate probits models. The
log-likelihood in that case would simply be the sum of the two separate log-likelihoods.
The test statistic would be

λLR = 2[ln LBIVARIATE − (ln L1 + ln L2)].

This would converge to a chi-squared variable with one degree of freedom. The Wald
test is carried out by referring

λWALD =
[
ρ̂MLE/

√
Est. Asy. Var[ρ̂MLE]

]2

to the chi-squared distribution with one degree of freedom. For 95 percent significance,
the critical value is 3.84 (or one can refer the positive square root to the standard normal
critical value of 1.96). Example 17.19 demonstrates.

17.5.3 PARTIAL EFFECTS

There are several “marginal effects” one might want to evaluate in a bivariate probit
model.40 A natural first step would be the derivatives of Prob[y1 = 1, y2 = 1 | x1, x2].
These can be deduced from (17-49) by multiplying by �2, removing the sign carrier, qij

and differentiating with respect to x j rather than β j . The result is

∂�2(x′
1β1, x′

2β2, ρ)

∂x1
= φ(x′

1β1)�

(
x′

2β2 − ρx′
1β1√

1 − ρ2

)
β1.

Note, however, the bivariate probability, albeit possibly of interest in its own right, is not
a conditional mean function. As such, the preceding does not correspond to a regression
coefficient or a slope of a conditional expectation.

39This is derived in Kiefer (1982).
40See Greene (1996b) and Christofides et al. (1997, 2000).
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For convenience in evaluating the conditional mean and its partial effects, we will
define a vector x = x1 ∪ x2 and let x′

1β1 = x′γ 1. Thus, γ 1 contains all the nonzero
elements of β1 and possibly some zeros in the positions of variables in x that appear
only in the other equation; γ 2 is defined likewise. The bivariate probability is

Prob[y1 = 1, y2 = 1 | x] = �2[x′γ 1, x′γ 2, ρ].

Signs are changed appropriately if the probability of the zero outcome is desired in
either case. (See 17-48.) The marginal effects of changes in x on this probability are
given by

∂�2

∂x
= g1γ 1 + g2γ 2,

where g1 and g2 are defined in (17-50). The familiar univariate cases will arise if ρ =
0, and effects specific to one equation or the other will be produced by zeros in the
corresponding position in one or the other parameter vector. There are also some
conditional mean functions to consider. The unconditional mean functions are given by
the univariate probabilities:

E [yj | x] = �(x′γ j ), j = 1, 2,

so the analysis of (17-9) and (17-10) applies. One pair of conditional mean functions
that might be of interest are

E [y1 | y2 = 1, x] = Prob[y1 = 1 | y2 = 1, x] = Prob[y1 = 1, y2 = 1 | x]
Prob[y2 = 1 | x]

= �2(x′γ 1, x′γ 2, ρ)

�(x′γ 2)

and similarly for E [y2 | y1 = 1, x]. The marginal effects for this function are given by

∂ E [y1 | y2 = 1, x]
∂x

=
(

1
�(x′γ 2)

) [
g1γ 1 +

(
g2 − �2

φ(x′γ 2)

�(x′γ 2)

)
γ 2

]
.

Finally, one might construct the nonlinear conditional mean function

E [y1 | y2, x] = �2[x′γ 1, (2y2 − 1)x′γ 2, (2y2 − 1)ρ]
�[(2y2 − 1)x′γ 2]

.

The derivatives of this function are the same as those presented earlier, with sign changes
in several places if y2 = 0 is the argument.

Example 17.19 Bivariate Probit Model for Health Care Utilization
We have extended the bivariate probit model of the previous example by specifying a set of
independent variables,

x i = Constant, Femalei , Ageit, Incomeit, Kidsit, Educationit, Marriedit.

We have specified that the same exogenous variables appear in both equations. (There is no
requirement that different variables appear in the equations, nor that a variable be excluded
from each equation.) The correct analogy here is to the seemingly unrelated regressions
model, not to the linear simultaneous equations model. Unlike the SUR model of Chapter 10,
it is not the case here that having the same variables in the two equations implies that the
model can be fit equation by equation, one equation at a time. That result only applies to the
estimation of sets of linear regression equations.
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TABLE 17.15 Estimated Bivariate Probit Modela

Doctor Hospital

Model Estimates Partial Effects Model Estimates

Variable Univariate Bivariate Direct Indirect Total Univariate Bivariate

Constant −0.1243 −0.1243 −1.3328 −1.3385
(0.05815) (0.05814) (0.08320) (0.07957)

Female 0.3559 0.3551 0.09650 −0.00724 0.08926 0.1023 0.1050
(0.01602) (0.01604) (0.004957) (0.001515) (0.005127) (0.02195) (0.02174)

Age 0.01189 0.01188 0.003227 −0.00032 0.002909 0.004605 0.00461
(0.0007957) (0.000802) (0.000231) (0.000073) (0.000238) (0.001082) (0.001058)

Income −0.1324 −0.1337 −0.03632 −0.003064 −0.03939 0.03739 0.04441
(0.04655) (0.04628) (0.01260) (0.004105) (0.01254) (0.06329) (0.05946)

Kids −0.1521 −0.1523 −0.04140 0.001047 −0.04036 −0.01714 −0.01517
(0.01833) (0.01825) (0.005053) (0.001773) (0.005168) (0.02562) (0.02570)

Education −0.01497 −0.01484 −0.004033 0.001512 −0.002521 −0.02196 −0.02191
(0.003575) (0.003575) (0.000977) (0.00035) (0.0010) (0.005215) (0.005110)

Married 0.07352 0.07351 0.01998 0.003303 0.02328 −0.04824 −0.04789
(0.02064) (0.02063) (0.005626) (0.001917) (0.005735) (0.02788) (0.02777)

a Estimated correlation coefficient = 0.2981 (0.0139).

Table 17.15 contains the estimates of the parameters of the univariate and bivariate probit
models. The tests of the null hypothesis of zero correlation strongly reject the hypothesis
that ρ equals zero. The t statistic for ρ based on the full model is 0.2981 / 0.0139 = 21.446,
which is much larger than the critical value of 1.96. For the likelihood ratio test, we compute

λLR = 2{−25285.07 − [−17422.72 − (−8073.604) ]} = 422.508.

Once again, the hypothesis is rejected. (The Wald statistic is 21.4462 = 459.957.) The LM
statistic is 383.953. The coefficient estimates agree with expectations. The income coefficient
is statistically significant in the doctor equation, but not in the hospital equation, suggesting,
perhaps, that physican visits are at least to some extent discretionary while hospital visits
occur on an emergency basis that would be much less tied to income. The table also contains
the decomposition of the partial effects for E [y1 | y2 = 1]. The direct effect is [g1/�(x′γ2) ]γ 1
in the definition given earlier. The mean estimate of E [y1 | y2 = 1] is 0.821285. In the table in
Example 17.8, this would correspond to the raw proportion P( D = 1, H = 1) / P( H = 1) =
(1975 / 27326) / 2395 / 27326) = 0.8246.

17.5.4 A PANEL DATA MODEL FOR BIVARIATE BINARY RESPONSE

Extending multiple equation models to accommodate unobserved common effects in
panel data settings is straightforward in theory, but complicated in practice. For the
bivariate probit case, for example, the natural extension of (17-48) would be

y∗
1,it = x′

1,itβ1 + ε1,it + α1,i , y1,it = 1 if y∗
1,it > 0, 0 otherwise,

y∗
2,it = x′

2,itβ2 + ε2,it + α2,i , y2,it = 1 if y∗
2,it > 0, 0 otherwise,(

ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.

The complication will be in how to treat (α1, α2). A fixed effects treatment will require
estimation of two full sets of dummy coefficients, will likely encounter the incidental
parameters problem in double measure, and will be complicated in practical terms.
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As in all earlier cases, the fixed effects case also preempts any specification involving
time-invariant variables. It is also unclear in a fixed effects model, how any correlation
between α1 and α2 would be handled. It should be noted that strictly from a consistency
standpoint, these considerations are moot. The two equations can be estimated sepa-
rately, only with some loss of efficiency. The analogous situation would be the seemingly
unrelated regressions model in Chapter 10. A random effects treatment (perhaps ac-
commodated with Mundlak’s approach of adding the group means to the equations as
in Section 17.4.5) offers greater promise. If (α1, α2) = (u1,u2) are normally distributed
random effects, with(

u1,i

u2,i

∣∣X1,i , X2,i

)
∼ N

[(
0
0

)
,

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

)]
,

then the unconditional log likelihood for the bivariate probit model,

ln L =
n∑

i=1

ln
∫

u1,u2

Ti∏
t=1

�2(w1,it | u1,i , w2,it | u2,i , ρ
∗
it) f (u1,i , u2,i )du1,i du2,i ,

can be maximized using simulation or quadrature as we have done in previous appli-
cations. A possible variation on this specification would specify that the same common
effect enter both equations. In that instance, the integration would only be over a single
dimension. In this case, there would only be a single new parameter to estimate, σ 2, the
variance of the common random effect while ρ would equal one. A refinement on this
form of the model would allow the scaling to be different in the two equations by plac-
ing ui in the first equation and θui in the second. This would introduce the additional
scaling parameter, but ρ would still equal one. This is the formulation of a common
random effect used in Heckman’s formulation of the dynamic panel probit model in
the Section 17.4.6.

Example 17.20 Bivariate Random Effects Model for Doctor and
Hospital Visits

We will extend the pooled bivariate probit model presented in Example 17.19 by allowing a
general random effects formulation, with free correlation between the time-varying compo-
nents (ε1, ε2) and between the time-invariant effects, (u1, u2) . We used simulation to fit the
model. Table 17.16 presents the pooled and random effects estimates. The log-likelihood
functions for the pooled and random effects models are −25285.07 and −23769.67, respec-
tively. Two times the difference is 3030.76. This would be a chi squared with three degrees
of freedom (for the three free elements in the covariance matrix of u1 and u2) . The 95 percent
critical value is 7.81, so the pooling hypothesis would be rejected. The change in the corre-
lation coefficient from .2981 to .1501 suggests that we have decomposed the disturbance in
the model into a time-varying part and a time-invariant part. The latter seems to be the smaller
of the two. Although the time-invariant elements are more highly correlated, their variances
are only 0.22332 = 0.0499 and 0.63382 = 0.4017 compared to 1.0 for both ε1 and ε2.

17.5.5 ENDOGENOUS BINARY VARIABLE A RECURSIVE BIVARIATE
PROBIT MODEL

Section 17.3.5 examines a case in which there is an endogenous variable in a binary
choice (probit) model. The model is

W∗ = x′
1β1 + ε1,

y∗ = x′
2β2 + γ W∗ + ε2, y = 1 if y∗ > 0, 0 otherwise,(

ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.
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TABLE 17.16 Estimated Random Effects Bivariate Probit Model
Doctor Hospital

Pooled Random Effects Pooled Random Effects

Constant −0.1243 −0.2976 −1.3385 −1.5855
(0.05814) (0.09650) (0.07957) (0.10853)

Female 0.3551 0.4548 0.1050 0.1280
(0.01604) (0.02857) (0.02174) (0.02954)

Age 0.01188 0.01983 0.00461 0.00496
(0.000802) (0.00130) (0.001058) (0.00139)

Income −0.1337 −0.01059 0.04441 0.13358
(0.04628) (0.06488) (0.05946) (0.07728)

Kids −0.1523 −0.1544 −0.01517 0.02155
(0.01825) (0.02692) (0.02570) (0.03211)

Education −0.01484 −0.02573 −0.02191 −0.02444
(0.003575) (0.00612) (0.005110) (0.00675)

Married 0.07351 0.02876 −0.04789 −0.10504
(0.02063) (0.03167) (0.02777) (0.03547)

Corr(ε1, ε2) 0.2981 0.1501 0.2981 0.1501
Corr(u1, u2) 0.0000 0.5382 0.0000 0.5382
Std. Dev. u 0.0000 0.2233 0.0000 0.6338
Std. Dev. ε 1.0000 1.0000 1.0000 1.0000

The application examined there involved a labor force participation model that was
conditioned on an endogeous variable, the spouse’s hours of work. In many cases, the
endogenous variable in the equation is also binary. In the application we will examine
next, the presence of a gender economics course in the economics curriculum at liberal
arts colleges is conditioned on whether or not there is a women’s studies program on
the campus. The model in this case becomes

W∗ = x′
1β1 + ε1, W = 1 if W∗ > 0, 0 otherwise,

y∗ = x′
2β2 + γ W + ε2, y = 1 if y∗ > 0, 0 otherwise,(

ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
.

This model illustrates a number of interesting aspects of the bivariate probit model.
Note that this model is qualitatively different from the bivariate probit model in (17-48);
the first dependent variable, W, appears on the right-hand side of the second equation.41

This model is a recursive, simultaneous-equations model. Surprisingly, the endogenous
nature of one of the variables on the right-hand side of the second equation can be ig-
nored in formulating the log-likelihood. [The model appears in Maddala (1983, p. 123).]
We can establish this fact with the following (admittedly trivial) argument: The term that
enters the log-likelihood is P(y = 1, W = 1) = P(y = 1 | W = 1)P(W = 1). Given the
model as stated, the marginal probability for W is just �(x′

1β1), whereas the conditional
probability is �2(· · ·)/�(x′

1β1). The product returns the bivariate normal probability

41Eisenberg and Rowe (2006) is another application of this model. In their study, they analyzed the joint
(recursive) effect of W = veteran status on y, smoking behavior. The estimator they used was two-stage least
squares and GMM.
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we had earlier. The other three terms in the log-likelihood are derived similarly, which
produces (Maddala’s results with some sign changes):

P(y = 1, W = 1) = �(x′
2β2 + γ, x′

1β1, ρ),

P(y = 1, W = 0) = �(x′
2β2, −x′

1β1, −ρ),

P(y = 0, W = 1) = �[−(x′
2β2 + γ ), x′

1β1, −ρ),

P(y = 0, W = 0) = �(−x′
2β2, −x′

1β1, ρ).

These terms are exactly those of (17-48) that we obtain just by carrying W in the
second equation with no special attention to its endogenous nature. We can ignore the
simultaneity in this model and we cannot in the linear regression model because, in this
instance, we are maximizing the log-likelihood, whereas in the linear regression case,
we are manipulating certain sample moments that do not converge to the necessary
population parameters in the presence of simultaneity.

Example 17.21 Gender Economics Courses at Liberal Arts Colleges
Burnett (1997) proposed the following bivariate probit model for the presence of a gender
economics course in the curriculum of a liberal arts college:

Prob[G = 1, W = 1 | xG, xW ] = �2(x′
GβG + γ W, x′

WβW, ρ) .

The dependent variables in the model are

G = presence of a gender economics course
W = presence of a women’s studies program on the campus.

The independent variables in the model are

z1 = constant term
z2 = academic reputation of the college, coded 1 (best), 2, . . . to 141
z3 = size of the full-time economics faculty, a count
z4 = percentage of the economics faculty that are women, proportion (0 to 1)
z5 = religious affiliation of the college, 0 = no, 1 = yes
z6 = percentage of the college faculty that are women, proportion (0 to 1)

z7–z10 = regional dummy variables, South, Midwest, Northeast, West

The regressor vectors are

xG = z1, z2, z3, z4, z5 (gender economics course equation),

xW = z2, z5, z6, z7 − z10 (women’s studies program equation).

Maximum likelihood estimates of the parameters of Burnett’s model were computed by
Greene (1998) using her sample of 132 liberal arts colleges; 31 of the schools offer gender
economics, 58 have women’s studies, and 29 have both. (See Appendix Table F17.1.) The
estimated parameters are given in Table 17.17. Both bivariate probit and the single-equation
estimates are given. The estimate of ρ is only 0.1359, with a standard error of 1.2359. The Wald
statistic for the test of the hypothesis that ρ equals zero is (0.1359/1.2539)2 = 0.011753.
For a single restriction, the critical value from the chi-squared table is 3.84, so the hypothesis
cannot be rejected. The likelihood ratio statistic for the same hypothesis is 2[−85.6317 −
(−85.6458) ] = 0.0282, which leads to the same conclusion. The Lagrange multiplier statistic
is 0.003807, which is consistent. This result might seem counterintuitive, given the setting.
Surely “gender economics” and “women’s studies” are highly correlated, but this finding does
not contradict that proposition. The correlation coefficient measures the correlation between
the disturbances in the equations, the omitted factors. That is, ρ measures (roughly) the
correlation between the outcomes after the influence of the included factors is accounted
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TABLE 17.17 Estimates of a Recursive Simultaneous Bivariate Probit Model
(estimated standard errors in parentheses)

Single Equation Bivariate Probit

Variable Coefficient Standard Error Coefficient Standard Error

Gender Economics Equation
Constant −1.4176 (0.8768) −1.1911 (2.2155)
AcRep −0.01143 (0.003610) −0.01233 (0.007937)
WomStud 1.1095 (0.4699) 0.8835 (2.2603)
EconFac 0.06730 (0.05687) 0.06769 (0.06952)
PctWecon 2.5391 (0.8997) 2.5636 (1.0144)
Relig −0.3482 (0.4212) −0.3741 (0.5264)

Women’s Studies Equation
AcRep −0.01957 (0.004117) −0.01939 (0.005704)
PctWfac 1.9429 (0.9001) 1.8914 (0.8714)
Relig −0.4494 (0.3072) −0.4584 (0.3403)
South 1.3597 (0.5948) 1.3471 (0.6897)
West 2.3386 (0.6449) 2.3376 (0.8611)
North 1.8867 (0.5927) 1.9009 (0.8495)
Midwest 1.8248 (0.6595) 1.8070 (0.8952)

ρ 0.0000 (0.0000) 0.1359 (1.2539)
ln L −85.6458 −85.6317

for. Thus, the value 0.1359 measures the effect after the influence of women’s studies is
already accounted for. As discussed in the next paragraph, the proposition turns out to be
right. The single most important determinant (at least within this model) of whether a gender
economics course will be offered is indeed whether the college offers a women’s studies
program.

The marginal effects in this model are fairly involved, and as before, we can consider
several different types. Consider, for example, z2, academic reputation. There is a direct
effect produced by its presence in the gender economics course equation. But there is also
an indirect effect. Academic reputation enters the women’s studies equation and, therefore,
influences the probability that W equals one. Because W appears in the gender economics
course equation, this effect is transmitted back to y. The total effect of academic reputation
and, likewise, religious affiliation is the sum of these two parts. Consider first the gender
economics variable, y. The conditional mean is

E [G | xG, xW ] = Prob[W = 1]E [G | W = 1, xG, xW ]

+ Prob[W = 0]E [G | W = 0, xG, xW ]

= �2(x′
GβG + γ , x′

WβW, ρ) + �2(x′
GβG, −x′

WβW, −ρ) .

Derivatives can be computed using our earlier results. We are also interested in the effect
of religious affiliation. Because this variable is binary, simply differentiating the conditional
mean function may not produce an accurate result. Instead, we would compute the con-
ditional mean function with this variable set to one and then zero, and take the difference.
Finally, what is the effect of the presence of a women’s studies program on the probability
that the college will offer a gender economics course? To compute this effect, we would
compute

Prob[G = 1 | W = 1, xG, xW ] − Prob[G = 1 | W = 0, xG, xW ].
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TABLE 17.18 Marginal Effects in Gender Economics Model

Direct Indirect Total (Std. Error) (Type of Variable, Mean)

Gender Economics Equation
AcRep −0.002022 −0.001453 −0.003476 (0.001126) (Continuous, 119.242)
PctWecon +0.4491 +0.4491 (0.1568) (Continuous, 0.24787)
EconFac +0.01190 +0.1190 (0.01292) (Continuous, 6.74242)
Relig −0.06327 −0.02306 −0.08632 (0.08220) (Binary, 0.57576)
WomStud +0.1863 +0.1863 (0.0868) (Endogenous, 0.43939)
PctWfac +0.14434 +0.14434 (0.09051) (Continuous, 0.35772)

Women’s Studies Equation
AcRep −0.00780 −0.00780 (0.001654) (Continuous, 119.242)
PctWfac +0.77489 +0.77489 (0.3591) (Continuous, 0.35772)
Relig −0.17777 −0.17777 (0.11946) (Binary, 0.57576)

In all cases, standard errors for the estimated marginal effects can be computed using the
delta method or the method of Krinsky and Robb.

Table 17.18 presents the estimates of the marginal effects and some descriptive statistics
for the data. The calculations were simplified slightly by using the restricted model with ρ = 0.
Computations of the marginal effects still require the preceding decomposition, but they are
simplified by the result that if ρ equals zero, then the bivariate probabilities factor into the
products of the marginals. Numerically, the strongest effect appears to be exerted by the
representation of women on the faculty; its coefficient of +0.4491 is by far the largest. This
variable, however, cannot change by a full unit because it is a proportion. An increase of
1 percent in the presence of women on the faculty raises the probability by only +0.004,
which is comparable in scale to the effect of academic reputation. The effect of women on
the faculty is likewise fairly small, only 0.0013 per 1 percent change. As might have been
expected, the single most important influence is the presence of a women’s studies program,
which increases the likelihood of a gender economics course by a full 0.1863. Of course, the
raw data would have anticipated this result; of the 31 schools that offer a gender economics
course, 29 also have a women’s studies program and only two do not. Note finally that the
effect of religious affiliation (whatever it is) is mostly direct.

17.5.6 ENDOGENOUS SAMPLING IN A BINARY CHOICE MODEL

We have encountered several instances of nonrandom sampling in the binary choice
setting. In Section 17.3.6, we examined an application in credit scoring in which the
balance in the sample of responses of the outcome variable, C = 1 for acceptance of
an application and C = 0 for rejection, is different from the known proportions in the
population. The sample was specifically skewed in favor of observations with C = 1
to enrich the data set. A second type of nonrandom sampling arose in the analysis
of nonresponse/attrition in the GSOEP in Example 17.17. The data suggest that the
observed sample is not random with respect to individuals’ presence in the sample
at different waves of the panel. The first of these represents selection specifically on
an observable outcome—the observed dependent variable. We constructed a model
for the second of these that relied on an assumption of selection on a set of certain
observables—the variables that entered the probability weights. We will now examine
a third form of nonrandom sample selection, based crucially on the unobservables in
the two equations of a bivariate probit model.
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We return to the banking application of Example 17.9. In that application, we
examined a binary choice model,

Prob(Cardholder = 1) = Prob(C = 1 | x)

= �(β1 + β2 Age + β3 Income + β4 OwnRent

+β5 Months at Current Address

+β6 Self-Employed

+β7 Number of Major Derogatory Reports

+β8 Number of Minor Derogatory Reports).

From the point of view of the lender, cardholder status is not the interesting outcome in
the credit history, default is. The more interesting equation describes Prob(Default =
1 | z, C = 1). The natural approach, then, would be to construct a binary choice model
for the interesting default variable using the historical data for a sample of cardholders.
The problem with the approach is that the sample is not randomly drawn—applicants
are screened with an eye specifically toward whether or not they seem likely to default.
In this application, and in general, there are three economic agents, the credit scorer
(e.g., Fair Isaacs), the lender, and the borrower. Each of them has latent characteristics
in the equations that determine their behavior. It is these latent characteristics that
drive, in part, the application/scoring process and, ultimately, the consumer behavior.

A model that can accommodate these features is (17-50),

S∗ = x′
1β1 + ε1, S = 1 if S∗ > 0, 0 otherwise,

y∗ = x′
2β2 + ε2, y = 1 if y∗ > 0, 0 otherwise,(

ε1

ε2
|x1, x2

)
∼ N

[(
0
0

)
,

(
1 ρ

ρ 1

)]
,

(y, x2) observed only when S = 1,

which contains an observation rule, S = 1, and a behavioral outcome, y = 0 or 1. The
endogeneity of the sampling rule implies that

Prob(y = 1 | S = 1, x2) 
= �(x′
2β).

From properties of the bivariate normal distribution, the appropriate probability is

Prob(y = 1 | S = 1, x1, x2) = �

[
x′

2β2 + ρx′
1β1√

1 − ρ2

]
.

If ρ is not zero, then in using the simple univariate probit model, we are omitting from
our model any variables that are in x1 but not in x2, and in any case, the estimator is
inconsistent by a factor (1 − ρ2)−1/2. To underscore the source of the bias, if ρ equals
zero, the conditional probability returns to the model that would be estimated with the
selected sample. Thus, the bias arises because of the correlation of (i.e., the selection
on) the unobservables, ε1 and ε2. This model was employed by Wynand and van Praag
(1981) in the first application of Heckman’s (1979) sample selection model in a nonlinear
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setting, to insurance purchases, by Boyes, Hoffman, and Lowe (1989) in a study of
bank lending, by Greene (1992) to the credit card application begun in Example 17.9
and continued in Example 17.22, and hundreds of applications since. [Some discussion
appears in Maddala (1983) as well.]

Given that the forms of the probabilities are known, the appropriate log-likelihood
function for estimation of β1, β2 and ρ is easily obtained. The log-likelihood must be
constructed for the joint or the marginal probabilities, not the conditional ones. For
the “selected observations,” that is, (y = 0, S = 1) or (y = 1, S = 1), the relevant
probability is simply

Prob(y = 0 or 1 | S = 1) × Prob(S = 1) = �2[(2y − 1)x′
2β2, x′

1β1, (2y − 1)ρ]

For the observations with S = 0, the probability that enters the likelihood function is
simply Prob(S = 0 | x1) = �(−x′

1β1). Estimation is then based on a simpler form of the
bivariate probit log-likelihood that we examined in Section 17.5.1. Partial effects and
postestimation analysis would follow the analysis for the bivariate probit model. The
desired partial effects would differ by the application, whether one desires the partial
effects from the conditional, joint, or marginal probability would vary. The necessary
results are in Section 17.5.3.

Example 17.22 Cardholder Status and Default Behavior
In Example 17.9, we estimated a logit model for cardholder status,

Prob(Car dholder = 1) = Prob(C = 1 | x)

= �(β1 + β2Age + β3Income + β4OwnRent

+ β5 Current Address + β6SelfEmployed

+ β7 Major Derogatory Reports

+ β8 Minor Derogatory Reports) ,

using a sample of 13,444 applications for a credit card. The complication in that example
was that the sample was choice based. In the data set, 78.1 percent of the applicants are
cardholders. In the population, at that time, the true proportion was roughly 23.2 percent,
so the sample is substantially choice based on this variable. The sample was deliberately
skewed in favor of cardholders for purposes of the original study [Greene (1992)]. The weights
to be applied for the WESML estimator are 0.232/0.781 = 0.297 for the observations with
C = 1 and 0.768/0.219 = 3.507 for observations with C = 0. Of the 13,444 applicants in
the sample, 10,499 were accepted (given the credit cards). The “default rate” in the sample
is 996/10,499 or 9.48 percent. This is slightly less than the population rate at the time, 10.3
percent. For purposes of a less complicated numerical example, we will ignore the choice-
based sampling nature of the data set for the present. An orthodox treatment of both the
selection issue and the choice-based sampling treatment is left for the exercises [and pursued
in Greene (1992).]

We have formulated the cardholder equation so that it probably resembles the policy
of credit scorers, both then and now. A major derogatory report results when a credit ac-
count that is being monitored by the credit reporting agency is more than 60 days late in
payment. A minor derogatory report is generated when an account is 30 days delinquent.
Derogatory reports are a major contributor to credit decisions. Contemporary credit pro-
cessors such as Fair Isaacs place extremely heavy weight on the “credit score,” a single
variable that summarizes the credit history and credit-carrying capacity of an individual.
We did not have access to credit scores at the time of this study. The selection equation
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TABLE 17.19 Estimated Joint Cardholder and Default Probability Models

Endogenous Sample Model Uncorrelated Equations

Variable/Equation Estimate Standard Error Estimate Standard Error

Cardholder Equation
Constant 0.30516 0.04781 (6.38) 0.31783 0.04790 (6.63)
Age 0.00226 0.00145 (1.56) 0.00184 0.00146 (1.26)
Current Address 0.00091 0.00024 (3.80) 0.00095 0.00024 (3.94)
OwnRent 0.18758 0.03030 (6.19) 0.18233 0.03048 (5.98)
Income 0.02231 0.00093 (23.87) 0.02237 0.00093 (23.95)
SelfEmployed −0.43015 0.05357 ( −8.03) −0.43625 0.05413 (−8.06)
Major Derogatory −0.69598 0.01871 (−37.20) −0.69912 0.01839 (−38.01)
Minor Derogatory −0.04717 0.01825 (−2.58) −0.04126 0.01829 (−2.26)

Default Equation
Constant −0.96043 0.04728 (−20.32) −0.81528 0.04104 (−19.86)
Dependents 0.04995 0.01415 (3.53) 0.04993 0.01442 (3.46)
Income −0.01642 0.00122 (−13.41) −0.01837 0.00119 (−15.41)
Expend/Income −0.16918 0.14474 (−1.17) −0.14172 0.14913 (−0.95)
Correlation 0.41947 0.11762 (3.57) 0.000 0.00000 (0)
Log Likelihood −8660.90650 −8670.78831

was given earlier. The default equation is a behavioral model. There is no obvious stan-
dard for this part of the model. We have used three variables, Dependents, the number of
dependents in the household, Income, and Exp Income which equals the ratio of the aver-
age credit card expenditure in the 12 months after the credit card was issued to average
monthly income. Default status is measured for the first 12 months after the credit card was
issued.

Estimation results are presented in Table 17.19. These are broadly consistent with the
earlier results—the model with no correlation from Example 17.9 are repeated in Table 17.19.
There are two tests we can employ for endogeneity of the selection. The estimate of ρ is
0.41947 with a standard error of 0.11762. The t ratio for the test that ρ equals zero is 3.57,
by which we can reject the hypothesis. Alternatively, the likelihood ratio statistic based on
the values in Table 17.19 is 2(8670.78831 − 8660.90650) = 19.76362. This is larger than
the critical value of 3.84, so the hypothesis of zero correlation is rejected. The results are
as might be expected, with one counterintuitive result, that a larger credit burden, expendi-
ture to income ratio, appears to be associated with lower default probabilities, though not
significantly so.

17.5.7 A MULTIVARIATE PROBIT MODEL

In principle, a multivariate probit model would simply extend (17-48) to more than
two outcome variables just by adding equations. The resulting equation system, again
analogous to the seemingly unrelated regressions model, would be

y∗
m = x′

mβm + εm, ym = 1 if y∗
m > 0, 0 otherwise, m = 1, . . . , M,

E[εm | x1, . . . , xM] = 0,

Var[εm | x1, . . . , xM] = 1,

Cov[εj , εm | x1, . . . , xM] = ρ jm,

(ε1, . . . , εM) ∼ NM[0, R].
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The joint probabilities of the observed events, [yi1, yi2 . . . , yi M | xi1, xi2, . . . , xi M], i =
1, . . . , n that form the basis for the log-likelihood function are the M-variate normal
probabilities,

Li = �M(qi1x′
i1β1, . . . , qi Mx′

i MβM, R∗),
where

qim = 2yim − 1,

R∗
jm = qijqimρ jm.

The practical obstacle to this extension is the evaluation of the M-variate normal in-
tegrals and their derivatives. Some progress has been made on using quadrature for
trivariate integration (see Section 14.9.6.c), but existing results are not sufficient to al-
low accurate and efficient evaluation for more than two variables in a sample of even
moderate size. However, given the speed of modern computers, simulation-based in-
tegration using the GHK simulator or simulated likelihood methods (see Chapter 15)
do allow for estimation of relatively large models. We consider an application in Exam-
ple 17.23.42

The multivariate probit model in another form presents a useful extension of the
random effects probit model for panel data (Section 17.4.2). If the parameter vectors
in all equations are constrained to be equal, we obtain what Bertschek and Lechner
(1998) call the “panel probit model,”

y∗
it = x′

itβ + εit, yit = 1 if y∗
it > 0, 0 otherwise, i = 1, . . . , n, t = 1, . . . , T,

(εi1, . . . , εiT) ∼ N[0, R].

The Butler and Moffitt (1982) approach for this model (see Section 17.4.2) has proved
useful in many applications. But, their underlying assumption that Cov[εit, εis] = ρ is
a substantive restriction. By treating this structure as a multivariate probit model with
the restriction that the coefficient vector be the same in every period, one can obtain
a model with free correlations across periods.43 Hyslop (1999), Bertschek and Lechner
(1998), Greene (2004 and Example 17.16), and Cappellari and Jenkins (2006) are
applications.

Example 17.23 A Multivariate Probit Model for Product Innovations
Bertschek and Lechner applied the panel probit model to an analysis of the product innovation
activity of 1,270 German firms observed in five years, 1984–1988, in response to imports and
foreign direct investment. [See Bertschek (1995).] The probit model to be estimated is based

42Studies that propose improved methods of simulating probabilities include Pakes and Pollard (1989) and
especially Börsch-Supan and Hajivassiliou (1993), Geweke (1989), and Keane (1994). A symposium in the
November 1994 issue of Review of Economics and Statistics presents discussion of numerous issues in speci-
fication and estimation of models based on simulation of probabilities. Applications that employ simulation
techniques for evaluation of multivariate normal integrals are now fairly numerous. See, for example, Hyslop
(1999) (Example 17.15) which applies the technique to a panel data application with T = 7. Example 17.23
develops a five-variate application.
43By assuming the coefficient vectors are the same in all periods, we actually obviate the normalization that
the diagonal elements of R are all equal to one as well. The restriction identifies T − 1 relative variances
ρt t = σ 2

T/σ 2
T . This aspect is examined in Greene (2004).
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TABLE 17.20 Estimated Pooled Probit Model

Estimated Standard Errors Marginal Effects

Variable Estimate a SE(1)b SE(2)c SE(3)d SE(4)e Partial Std. Err. t ratio

Constant −1.960 0.239 0.377 0.230 0.373 — –— —
log Sales 0.177 0.0250 0.0375 0.0222 0.0358 0.0683f 0.0138 4.96
Rel Size 1.072 0.206 0.306 0.142 0.269 0.413f 0.103 4.01
Imports 1.134 0.153 0.246 0.151 0.243 0.437f 0.0938 4.66
FDI 2.853 0.467 0.679 0.402 0.642 1.099f 0.247 4.44
Prod. −2.341 1.114 1.300 0.715 1.115 −0.902f 0.429 −2.10
Raw Mtl −0.279 0.0966 0.133 0.0807 0.126 −0.110g 0.0503 −2.18
Inv Good 0.188 0.0404 0.0630 0.0392 0.0628 0.0723g 0.0241 3.00

aRecomputed. Only two digits were reported in the earlier paper.
bObtained from results in Bertschek and Lechner, Table 9.
cBased on the Avery et al. (1983) GMM estimator.
dSquare roots of the diagonals of the negative inverse of the Hessian
eBased on the cluster estimator.
fCoefficient scaled by the density evaluated at the sample means
gComputed as the difference in the fitted probability with the dummy variable equal to one, then zero.

on the latent regression

y∗
it = β1 +

8∑
k=2

xk,itβk + εit, yit = 1( y∗
it > 0) , i = 1, . . . , 1, 270, t = 1984, . . . , 1988,

where

yit = 1 if a product innovation was realized by firm i in year t, 0 otherwise
x2,it = Log of industry sales in DM
x3,it = Import share = ratio of industry imports to (industry sales plus imports)
x4,it = Relative firm size = ratio of employment in business unit to employment

in the industry (times 30)
x5,it = FDI share = Ratio of industry foreign direct investment to

(industry sales plus imports)
x6,it = Productivity = Ratio of industry value added to industry employment
x7,it = Raw materials sector = 1 if the firm is in this sector
x8,it = Investment goods sector = 1 if the firm is in this sector

The coefficients on import share (β3) and FDI share (β5) were of particular interest. The ob-
jectives of the study were the empirical investigation of innovation and the methodological
development of an estimator that could obviate computing the five-variate normal probabil-
ities necessary for a full maximum likelihood estimation of the model.

Table 17.20 presents the single-equation, pooled probit model estimates.44 Given the
structure of the model, the parameter vector could be estimated consistently with any single
period’s data, Hence, pooling the observations, which produces a mixture of the estimators,
will also be consistent. Given the panel data nature of the data set, however, the conventional
standard errors from the pooled estimator are dubious. Because the marginal distribution

44We are grateful to the authors of this study who have generously loaned us their data for our continued
analysis. The data are proprietary and cannot be made publicly available, unlike the other data sets used in
our examples.
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TABLE 17.21 Estimated Constrained Multivariate Probit Model (estimated
standard errors in parentheses)

Full Maximum Likelihood Random Effects
Coefficients Using GHK Simulator ρ = 0.578 (0.0189)

Constant −1.797∗∗ (0.341) −2.839 (0.534)
log Sales 0.154∗∗ (0.0334) 0.245 (0.0523)
Relative size 0.953∗∗ (0.160) 1.522 (0.259)
Imports 1.155∗∗ (0.228) 1.779 (0.360)
FDI 2.426∗∗ (0.573) 3.652 (0.870)
Productivity −1.578 (1.216) −2.307 (1.911)
Raw material −0.292∗∗ (0.130) −0.477 (0.202)
Investment goods 0.224∗∗ (0.0605) 0.331 (0.0952)
log-likelihood −3522.85 −3535.55

Estimated Correlations

1984, 1985 0.460∗∗ (0.0301)
1984, 1986 0.599∗∗ (0.0323)
1985, 1986 0.643∗∗ (0.0308)
1984, 1987 0.540∗∗ (0.0308)
1985, 1987 0.546∗∗ (0.0348)
1986, 1987 0.610∗∗ (0.0322)
1984, 1988 0.483∗∗ (0.0364)
1985, 1988 0.446∗∗ (0.0380)
1986, 1988 0.524∗∗ (0.0355)
1987, 1988 0.605∗∗ (0.0325)

∗Indicates significant at 95 percent level,
∗∗ indicates significant at 99 percent level based on a two-tailed test.

will produce a consistent estimator of the parameter vector, this is a case in which the
cluster estimator (see Section 14.8.4) provides an appropriate asymptotic covariance matrix.
Note that the standard errors in column SE(4) of the table are considerably higher than the
uncorrected ones in columns 1–3.

The pooled estimator is consistent, so the further development of the estimator is a matter
of (1) obtaining a more efficient estimator of β and (2) computing estimates of the cross-period
correlation coefficients. The FIML estimates of the model can be computed using the GHK
simulator.45 The FIML estimates and the random effects model using the Butler and Moffit
(1982) quadrature method are reported in Table 17.21. The correlations reported are based on
the FIML estimates. Also noteworthy in Table 17.21 is the divergence of the random effects
estimates from the FIML estimates. The log-likelihood function is −3535.55 for the random
effects model and −3522.85 for the unrestricted model. The chi-squared statistic for the nine
restrictions of the equicorrelation model is 25.4. The critical value from the chi-squared table
for nine degrees of freedom is 16.9 for 95 percent and 21.7 for 99 percent significance, so
the hypothesis of the random effects model would be rejected.

17.6 SUMMARY AND CONCLUSIONS

This chapter has surveyed a large range of techniques for modeling a binary choice
variable. The model for choice between two outcomes provides the framework for a

45The full computation required about one hour of computing time. Computation of the single-equation
(pooled) estimators required only about 1/100 of the time reported by the authors for the same models,
which suggests that the evolution of computing technology may play a significant role in advancing the FIML
estimators.
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large proportion of the analysis of microeconomic data. Thus, we have given a very
large amount of space to this model in its own right. In addition, many issues in model
specification and estimation that appear in more elaborate settings, such as those we
will examine in the next chapter, can be formulated as extensions of the binary choice
model of this chapter. Binary choice modeling provides a convenient point to study
endogeneity in a nonlinear model, issues of nonresponse in panel data sets, and general
problems of estimation and inference with longitudinal data. The binary probit model
in particular has provided the laboratory case for theoretical econometricians such as
those who have developed methods of bias reduction for the fixed effects estimator in
dynamic nonlinear models.

We began the analysis with the fundamental parametric probit and logit models
for binary choice. Estimation and inference issues such as the computation of ap-
propriate covariance matrices for estimators and partial effects are considered here.
We then examined familiar issues in modeling, including goodness of fit and speci-
fication issues such as the distributional assumption, heteroscedasticity and missing
variables. As in other modeling settings, endogeneity of some right-hand variables
presents a substantial complication in the estimation and use of nonlinear models
such as the probit model. We examined the problem of endogenous right-hand-side
variables, and in two applications, problems of endogenous sampling. The analysis of
binary choice with panel data provides a setting to examine a large range of issues
that reappear in other applications. We reconsidered the familiar pooled, fixed and
random effects estimator estimators, and found that much of the wisdom obtained in
the linear case does not carry over to the nonlinear case. The incidental parameters
problem, in particular, motivates a considerable amount of effort to reconstruct the
estimators of binary choice models. Finally, we considered some multivariate exten-
sions of the probit model. As before, the models are useful in their own right. Once
again, they also provide a convenient setting in which to examine broader issues, such as
more detailed models of endogeneity nonrandom sampling, and computation requiring
simulation.

Chapter 18 will continue the analysis of discrete choice models with three frame-
works: unordered multinomial choice, ordered choice, and models for count data. Most
of the estimation and specification issues we have examined in this chapter will reappear
in these settings.

Key Terms and Concepts

• Attributes
• Attrition bias
• Average partial effect
• Binary choice model
• Bivariate probit
• Butler and Moffitt method
• Characteristics
• Choice-based sampling
• Chow test
• Complementary log log

model

• Conditional likelihood
function

• Control function
• Event count
• Fixed effects model
• Generalized residual
• Goodness of fit

measure
• Gumbel model
• Heterogeneity
• Heteroscedasticity

• Incidental parameters
problem

• Index function model
• Initial conditions
• Interaction effect
• Inverse probability

weighted (IPW)
• Lagrange multiplier test
• Latent regression
• Likelihood equations
• Likelihood ratio test
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• Linear probability model
• Logit
• Marginal effects
• Maximum likelihood
• Maximum simulated

likelihood (MSL)
• Method of scoring
• Microeconometrics
• Minimal sufficient statistic
• Multinomial choice
• Multivariate probit model

• Nonresponse bias
• Ordered choice model
• Persistence
• Probit
• Quadrature
• Qualitative response (QR)
• Quasi-maximum likelihood

estimator (QMLE)
• Random effects model
• Random parameters logit

model

• Random utility model
• Recursive model
• Robust covariance

estimation
• Sample selection bias
• Selection on unobservables
• State dependence
• Tetrachoric correlation
• Unbalanced sample

Exercises

1. A binomial probability model is to be based on the following index function model:

y∗ = α + βd + ε,

y = 1, if y∗ > 0,

y = 0 otherwise.

The only regressor, d, is a dummy variable. The data consist of 100 observations
that have the following:

y

0 1
0 24 28

d
1 32 16

Obtain the maximum likelihood estimators of α and β, and estimate the asymptotic
standard errors of your estimates. Test the hypothesis that β equals zero by using a
Wald test (asymptotic t test) and a likelihood ratio test. Use the probit model and
then repeat, using the logit model. Do your results change? (Hint: Formulate the
log-likelihood in terms of α and δ = α + β.)

2. Suppose that a linear probability model is to be fit to a set of observations on a
dependent variable y that takes values zero and one, and a single regressor x that
varies continuously across observations. Obtain the exact expressions for the least
squares slope in the regression in terms of the mean(s) and variance of x, and
interpret the result.

3. Given the data set

y 1 0 0 1 1 0 0 1 1 1
x 9 2 5 4 6 7 3 5 2 6

,

estimate a probit model and test the hypothesis that x is not influential in determin-
ing the probability that y equals one.

4. Construct the Lagrange multiplier statistic for testing the hypothesis that all the
slopes (but not the constant term) equal zero in the binomial logit model. Prove
that the Lagrange multiplier statistic is nR2 in the regression of (yi = p) on the x’s,
where p is the sample proportion of 1’s.
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5. The following hypothetical data give the participation rates in a particular type of
recycling program and the number of trucks purchased for collection by 10 towns
in a small mid-Atlantic state:

Town 1 2 3 4 5 6 7 8 9 10

Trucks 160 250 170 365 210 206 203 305 270 340
Participation% 11 74 8 87 62 83 48 84 71 79

The town of Eleven is contemplating initiating a recycling program but wishes to
achieve a 95 percent rate of participation. Using a probit model for your analysis,
a. How many trucks would the town expect to have to purchase to achieve its goal?

(Hint: You can form the log-likelihood by replacing yi with the participation rate
(e.g., 0.11 for observation 1) and (1 − yi ) with 1—the rate in (17-22).

b. If trucks cost $20,000 each, then is a goal of 90 percent reachable within a budget
of $6.5 million? (That is, should they expect to reach the goal?)

c. According to your model, what is the marginal value of the 301st truck in terms
of the increase in the percentage participation?

6. A data set consists of n = n1 + n2 + n3 observations on y and x. For the first n1

observations, y = 1 and x = 1. For the next n2 observations, y = 0 and x = 1. For
the last n3 observations, y = 0 and x = 0. Prove that neither (17-18) nor (17-20)
has a solution.

7. Prove (17-30).
8. In the panel data models estimated in Section 17.4, neither the logit nor the probit

model provides a framework for applying a Hausman test to determine whether
fixed or random effects is preferred. Explain. (Hint: Unlike our application in the
linear model, the incidental parameters problem persists here.)

Applications

1. Appendix Table F17.1 provides Fair’s (1978) Redbook survey on extramarital af-
fairs. The data are described in Application 1 at the end of Chapter 18 and in
Appendix F. The variables in the data set are as follows:

id = an identification number
C = constant, value = 1

yrb = a constructed measure of time spent in extramarital affairs
v1 = a rating of the marriage, coded 1 to 4
v2 = age, in years, aggregated
v3 = number of years married
v4 = number of children, top coded at 5
v5 = religiosity, 1 to 4, 1 = not, 4 = very
v6 = education, coded 9, 12, 14, 16, 17, 20,

v7 = occupation
v8 = husband’s occupation

and three other variables that are not used. The sample contains a survey of 6,366
married women, conducted by Redbook magazine. For this exercise, we will analyze,
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first, the binary variable

A= 1 if yrb > 0, 0 otherwise.

The regressors of interest are v1 to v8; however, not necessarily all of them belong
in your model. Use these data to build a binary choice model for A. Report all
computed results for the model. Compute the marginal effects for the variables
you choose. Compare the results you obtain for a probit model to those for a logit
model. Are there any substantial differences in the results for the two models?




