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MODELS FOR PANEL DATA

Q

11.1 INTRODUCTION

Data sets that combine time series and cross sections are common in economics. The
published statistics of the OECD contain numerous series of economic aggregates ob-
served yearly for many countries. The Penn World Tables [CIC (2010)] is a data bank that
contains national income data on 188 countries for over 50 years. Recently constructed
longitudinal data sets contain observations on thousands of individuals or families, each
observed at several points in time. Other empirical studies have examined time-series
data on sets of firms, states, countries, or industries simultaneously. These data sets pro-
vide rich sources of information about the economy. The analysis of panel data allows
the model builder to learn about economic processes while accounting for both hetero-
geneity across individuals, firms, countries, and so on and for dynamic effects that are
not visible in cross sections. Modeling in this context often calls for complex stochastic
specifications. In this chapter, we will survey the most commonly used techniques for
time-series—cross section (e.g., cross country) and panel (e.g., longitudinal) data. The
methods considered here provide extensions to most of the models we have examined in
the preceding chapters. Section 11.2 describes the specific features of panel data. Most of
this analysis is focused on individual data, rather than cross-country aggregates. We will
examine some aspects of aggregate data modeling in Section 11.11. Sections 11.3, 11.4,
and 11.5 consider in turn the three main approaches to regression analysis with panel
data, pooled regression, the fixed effects model, and the random effects model. Section
11.6 considers robust estimation of covariance matrices for the panel data estimators,
including a general treatment of “cluster” effects. Sections 11.7–11.11 examine some
specific applications and extensions of panel data methods. Spatial autocorrelation is
discussed in Section 11.7. In Section 11.8, we consider sources of endogeneity in the
random effects model, including a model of the sort considered in Chapter 8 with an
endogenous right-hand-side variable and then two approaches to dynamic models. Sec-
tion 11.9 builds the fixed and random effects models into nonlinear regression models.
In Section 11.10, the random effects model is extended to the multiple equation systems
developed in Chapter 10. Finally, Section 11.11 examines random parameter models.
The random parameters approach is an extension of the fixed and random effects model
in which the heterogeneity that the FE and RE models build into the constant terms is
extended to other parameters as well.

Panel data methods are used throughout the remainder of this book. We will develop
several extensions of the fixed and random effects models in Chapter 14 on maximum
likelihood methods, and in Chapter 15 where we will continue the development of
random parameter models that is begun in Section 11.11. Chapter 14 will also present
methods for handling discrete distributions of random parameters under the heading of
latent class models. In Chapter 23, we will return to the models of nonstationary panel
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data that are suggested in Section 11.8.4. The fixed and random effects approaches will
be used throughout the applications of discrete and limited dependent variables models
in microeconometrics in Chapters 17, 18, and 19.

11.2 PANEL DATA MODELS

Many recent studies have analyzed panel, or longitudinal, data sets. Two very fa-
mous ones are the National Longitudinal Survey of Labor Market Experience (NLS,
http://www.bls.gov/nls/nlsdoc.htm) and the Michigan Panel Study of Income Dynam-
ics (PSID, http://psidonline.isr.umich.edu/). In these data sets, very large cross sections,
consisting of thousands of microunits, are followed through time, but the number of
periods is often quite small. The PSID, for example, is a study of roughly 6,000 fam-
ilies and 15,000 individuals who have been interviewed periodically from 1968 to the
present. An ongoing study in the United Kingdom is the British Household Panel
Survey (BHPS, http://www.iser.essex.ac.uk/ulsc/bhps/) which was begun in 1991 and is
now in its 18th wave. The survey follows several thousand households (currently over
5,000) for several years. Many very rich data sets have recently been developed in the
area of health care and health economics, including the German Socioeconomic Panel
(GSOEP, http://dpls.dacc.wisc.edu/apdu/GSOEP/gsoep cd data.html) and the Medi-
cal Expenditure Panel Survey (MEPS, http://www.meps.ahrq.gov/). Constructing long,
evenly spaced time series in contexts such as these would be prohibitively expensive,
but for the purposes for which these data are typically used, it is unnecessary. Time
effects are often viewed as “transitions” or discrete changes of state. The Current Pop-
ulation Survey (CPS, http://www.census.gov/cps/), for example, is a monthly survey of
about 50,000 households that interviews households monthly for four months, waits for
eight months, then reinterviews. This two-wave, rotating panel format allows analysis of
short-term changes as well as a more general analysis of the U.S. national labor market.
They are typically modeled as specific to the period in which they occur and are not
carried across periods within a cross-sectional unit.1 Panel data sets are more oriented
toward cross-section analyses; they are wide but typically short. Heterogeneity across
units is an integral part—indeed, often the central focus—of the analysis.

The analysis of panel or longitudinal data is the subject of one of the most active
and innovative bodies of literature in econometrics,2 partly because panel data provide
such a rich environment for the development of estimation techniques and theoretical
results. In more practical terms, however, researchers have been able to use time-series
cross-sectional data to examine issues that could not be studied in either cross-sectional
or time-series settings alone. Two examples are as follows.

1. In a widely cited study of labor supply, Ben-Porath (1973) observes that at a certain
point in time, in a cohort of women, 50 percent may appear to be working. It is

1Formal time-series modeling for panel data is briefly examined in Section 23.5.
2The panel data literature rivals the received research on unit roots and cointegration in econometrics in
its rate of growth. A compendium of the earliest literature is Maddala (1993). Book-length surveys on the
econometrics of panel data include Hsiao (2003), Dielman (1989), Matyas and Sevestre (1996), Raj and
Baltagi (1992), Nerlove (2002), Arellano (2003), and Baltagi (2001, 2005). There are also lengthy surveys
devoted to specific topics, such as limited dependent variable models [Hsiao, Lahiri, Lee, and Pesaran (1999)]
and semiparametric methods [Lee (1998)]. An extensive bibliography is given in Baltagi (2005).
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ambiguous whether this finding implies that, in this cohort, one-half of the women
on average will be working or that the same one-half will be working in every period.
These have very different implications for policy and for the interpretation of any
statistical results. Cross-sectional data alone will not shed any light on the question.

2. A long-standing problem in the analysis of production functions has been the in-
ability to separate economies of scale and technological change.3 Cross-sectional
data provide information only about the former, whereas time-series data muddle
the two effects, with no prospect of separation. It is common, for example, to as-
sume constant returns to scale so as to reveal the technical change.4 Of course, this
practice assumes away the problem. A panel of data on costs or output for a number
of firms each observed over several years can provide estimates of both the rate of
technological change (as time progresses) and economies of scale (for the sample
of different sized firms at each point in time).

Recent applications have allowed researchers to study the impact of health policy
changes [e.g., Riphahn et al.’s (2003) analysis of reforms in German public health in-
surance regulations] and more generally the dynamics of labor market behavior. In
principle, the methods of Chapters 6 and 21 can be applied to longitudinal data sets.
In the typical panel, however, there are a large number of cross-sectional units and
only a few periods. Thus, the time-series methods discussed there may be somewhat
problematic. Recent work has generally concentrated on models better suited to these
short and wide data sets. The techniques are focused on cross-sectional variation, or
heterogeneity. In this chapter, we shall examine in detail the most widely used models
and look briefly at some extensions.

11.2.1 GENERAL MODELING FRAMEWORK FOR ANALYZING
PANEL DATA

The fundamental advantage of a panel data set over a cross section is that it will allow
the researcher great flexibility in modeling differences in behavior across individuals.
The basic framework for this discussion is a regression model of the form

yit = x′
itβ + z′

iα + εit
(11-1)

= x′
itβ + ci + εit.

There are K regressors in xit, not including a constant term. The heterogeneity, or
individual effect is z′

iα where zi contains a constant term and a set of individual or group-
specific variables, which may be observed, such as race, sex, location, and so on, or
unobserved, such as family specific characteristics, individual heterogeneity in skill or

3The distinction between these two effects figured prominently in the policy question of whether it was
appropriate to break up the AT&T Corporation in the 1980s and, ultimately, to allow competition in the
provision of long-distance telephone service.
4In a classic study of this issue, Solow (1957) states: “From time series of �Q/Q, wK, �K/K, wL and �L/L
or their discrete year-to-year analogues, we could estimate �A/Aand thence A(t) itself. Actually an amusing
thing happens here. Nothing has been said so far about returns to scale. But if all factor inputs are classified
either as K or L, then the available figures always show wK and wL adding up to one. Since we have assumed
that factors are paid their marginal products, this amounts to assuming the hypothesis of Euler’s theorem.
The calculus being what it is, we might just as well assume the conclusion, namely, the F is homogeneous of
degree one.”
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preferences, and so on, all of which are taken to be constant over time t . As it stands,
this model is a classical regression model. If zi is observed for all individuals, then the
entire model can be treated as an ordinary linear model and fit by least squares. The
complications arise when ci is unobserved, which will be the case in most applications.
Consider, for example, analyses of the effect of education and experience on earnings
from which “ability” will always be a missing and unobservable variable. In health care
studies, for example, of usage of the health care system, “health” and “health care” will
be unobservable factors in the analysis.

The main objective of the analysis will be consistent and efficient estimation of the
partial effects,

β = ∂E[yit | xit]/∂xit.

Whether this is possible depends on the assumptions about the unobserved effects. We
begin with a strict exogeneity assumption for the independent variables,

E[εit | xi1, xi2, . . . , ] = 0.

That is, the current disturbance is uncorrelated with the independent variables in every
period, past, present, and future. The crucial aspect of the model concerns the hetero-
geneity. A particularly convenient assumption would be mean independence,

E[ci | xi1, xi2, . . .] = α.

If the missing variable(s) are uncorrelated with the included variables, then, as we shall
see, they may be included in the disturbance of the model. This is the assumption that
underlies the random effects model, as we will explore later. It is, however, a particularly
strong assumption—it would be unlikely in the labor market and health care examples
mentioned previously. The alternative would be

E[ci | xi1, xi2, . . . , ] = h(xi1, xi2, . . .)

= h(Xi ).

This formulation is more general, but at the same time, considerably more complicated,
the more so since it may require yet further assumptions about the nature of the function.

11.2.2 MODEL STRUCTURES

We will examine a variety of different models for panel data. Broadly, they can be
arranged as follows:
1. Pooled Regression: If zi contains only a constant term, then ordinary least squares
provides consistent and efficient estimates of the common α and the slope vector β.

2. Fixed Effects: If zi is unobserved, but correlated with xit, then the least squares
estimator of β is biased and inconsistent as a consequence of an omitted variable.
However, in this instance, the model

yit = x′
itβ + αi + εit,

where αi = z′
iα, embodies all the observable effects and specifies an estimable condi-

tional mean. This fixed effects approach takes αi to be a group-specific constant term
in the regression model. It should be noted that the term “fixed” as used here signifies
the correlation of ci and xit, not that ci is nonstochastic.
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3. Random Effects: If the unobserved individual heterogeneity, however formulated,
can be assumed to be uncorrelated with the included variables, then the model may be
formulated as

yit = x′
itβ + E [z′

iα] + {
z′

iα − E [z′
iα]

} + εit

= x′
itβ + α + ui + εit,

that is, as a linear regression model with a compound disturbance that may be con-
sistently, albeit inefficiently, estimated by least squares. This random effects approach
specifies that ui is a group-specific random element, similar to εit except that for each
group, there is but a single draw that enters the regression identically in each period.
Again, the crucial distinction between fixed and random effects is whether the unob-
served individual effect embodies elements that are correlated with the regressors in
the model, not whether these effects are stochastic or not. We will examine this basic
formulation, then consider an extension to a dynamic model.

4. Random Parameters: The random effects model can be viewed as a regression
model with a random constant term. With a sufficiently rich data set, we may extend
this idea to a model in which the other coefficients vary randomly across individuals as
well. The extension of the model might appear as

yit = x′
it(β + hi ) + (α + ui ) + εit,

where hi is a random vector that induces the variation of the parameters across individ-
uals. This random parameters model was proposed quite early in this literature, but has
only fairly recently enjoyed widespread attention in several fields. It represents a natural
extension in which researchers broaden the amount of heterogeneity across individu-
als while retaining some commonalities—the parameter vectors still share a common
mean. Some recent applications have extended this yet another step by allowing the
mean value of the parameter distribution to be person specific, as in

yit = x′
it(β + �zi + hi ) + (α + ui ) + εit,

where zi is a set of observable, person specific variables, and � is a matrix of parameters
to be estimated. As we will examine in chapter 17, this hierarchical model is extremely
versatile.

11.2.3 EXTENSIONS

The short list of model types provided earlier only begins to suggest the variety of ap-
plications of panel data methods in econometrics. We will begin in this chapter to study
some of the formulations and uses of linear models. The random and fixed effects mod-
els and random parameters models have also been widely used in models of censoring,
binary, and other discrete choices, and models for event counts. We will examine all
of these in the chapters to follow. In some cases, such as the models for count data in
Chapter 19 the extension of random and fixed effects models is straightforward, if some-
what more complicated computationally. In others, such as in binary choice models in
Chapter 17 and censoring models in Chapter 18, these panel data models have been
used, but not before overcoming some significant methodological and computational
obstacles.
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11.2.4 BALANCED AND UNBALANCED PANELS

By way of preface to the analysis to follow, we note an important aspect of panel data
analysis. As suggested by the preceding discussion, a “panel” data set will consist of
n sets of observations on individuals to be denoted i = 1, . . . , n. If each individual in
the data set is observed the same number of times, usually denoted T, the data set is
a balanced panel. An unbalanced panel data set is one in which individuals may be
observed different numbers of times. We will denote this Ti . A fixed panel is one in
which the same set of individuals is observed for the duration of the study. The data sets
we will examine in this chapter, while not all balanced, are fixed. A rotating panel is
one in which the cast of individuals changes from one period to the next. For example,
Gonzalez and Maloney (1999) examined self-employment decisions in Mexico using
the National Urban Employment Survey. This is a quarterly data set drawn from 1987
to 1993 in which individuals are interviewed five times. Each quarter, one-fifth of the
individuals is rotated out of the data set. We will not treat rotating panels in this text.
Some discussion and numerous references may be found in Baltagi (2005).

The development to follow is structured so that the distinction between balanced
and unbalanced panels will entail nothing more than a trivial change in notation—
where for convenience we write T suggesting a balanced panel, merely changing T to
Ti generalizes the results. We will note specifically when this is not the case, such as in
Breusch and Pagan’s (1980) LM statistic.

11.2.5 WELL-BEHAVED PANEL DATA

The asymptotic properties of the estimators in the classical regression model were
established in Section 4.4 under the following assumptions:

A.1. Linearity: yi = xi1β1 + xi2β2 + · · · + xi KβK + εi .

A.2. Full rank: The n × K sample data matrix, X has full column rank.
A.3. Exogeneity of the independent variables: E [εi | xj1, xj2, . . . , xj K] = 0, i, j =

1, . . . , n.
A.4. Homoscedasticity and nonautocorrelation.
A.5. Data generating mechanism-independent observations.

The following are the crucial results needed: For consistency of b, we need

plim(1/n)X′X = plim Q̄n = Q, a positive definite matrix,

plim(1/n)X′ε = plim w̄n = E [w̄n] = 0.

(For consistency of s2, we added a fairly weak assumption about the moments of the
disturbances.) To establish asymptotic normality, we required consistency and

√
n w̄n

d−→ N[0, σ 2Q].

With these in place, the desired characteristics are then established by the methods of
Sections 4.4.1 and 4.4.2.

Exceptions to the assumptions are likely to arise in a panel data set. The sample
will consist of multiple observations on each of many observational units. For example,
a study might consist of a set of observations made at different points in time on a large
number of families. In this case, the x’s will surely be correlated across observations, at
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least within observational units. They might even be the same for all the observations
on a single family.

The panel data set could be treated as follows. Assume for the moment that the
data consist of a fixed number of observations, say T, on a set of N families, so that the
total number of rows in X is n = NT. The matrix

Q̄n = 1
n

n∑
i=1

Qi

in which n is all the observations in the sample, could be viewed as

Q̄n = 1
N

∑
i

1
T

∑
observations
for family i

Qit = 1
N

N∑
i=1

Q̄i ,

where Q̄i = average Qit for family i. We might then view the set of observations on the
ith unit as if they were a single observation and apply our convergence arguments to the
number of families increasing without bound. The point is that the conditions that are
needed to establish convergence will apply with respect to the number of observational
units. The number of observations taken for each observation unit might be fixed and
could be quite small.

This chapter will contain relatively little development of the properties of estima-
tors as was done in Chapter 4. We will rely on earlier results in Chapters 4, 8, and 9 and
focus instead on a variety of models and specifications.

11.3 THE POOLED REGRESSION MODEL

We begin the analysis by assuming the simplest version of the model, the pooled model,

yit = α + x′
itβ + εit, i = 1, . . . , n, t = 1, . . . , Ti ,

E[εit | xi1, xi2, . . . , xiTi ] = 0,
(11-2)

Var[εit | xi1, xi2, . . . , xiTi ] = σ 2
ε ,

Cov[εit, ε js | xi1, xi2, . . . , xiTi ] = 0 if i �= j or t �= s.

(In the panel data context, this is also called the population averaged model under
the assumption that any latent heterogeneity has been averaged out.) In this form, if
the remaining assumptions of the classical model are met (zero conditional mean of εit,
homoscedasticity, independence across observations, i , and strict exogeneity of xit), then
no further analysis beyond the results of Chapter 4 is needed. Ordinary least squares
is the efficient estimator and inference can reliably proceed along the lines developed
in Chapter 5.

11.3.1 LEAST SQUARES ESTIMATION OF THE POOLED MODEL

The crux of the panel data analysis in this chapter is that the assumptions underlying
ordinary least squares estimation of the pooled model are unlikely to be met. The
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question, then, is what can be expected of the estimator when the heterogeneity does
differ across individuals? The fixed effects case is obvious. As we will examine later,
omitting (or ignoring) the heterogeneity when the fixed effects model is appropriate
renders the least squares estimator inconsistent—sometimes wildly so. In the random
effects case, in which the true model is

yit = ci + x′
itβ + εit,

where E[ci | Xi ] = α, we can write the model

yit = α + x′
itβ + εit + (ci − E[ci | Xi ])

= α + x′
itβ + εit + ui

= α + x′
itβ + wit.

In this form, we can see that the unobserved heterogeneity induces autocorrelation;
E[witwis] = σ 2

u when t �= s. As we explored in Chapter 9—we will revisit it in Chap-
ter 20—the ordinary least squares estimator in the generalized regression model may
be consistent, but the conventional estimator of its asymptotic variance is likely to
underestimate the true variance of the estimator.

11.3.2 ROBUST COVARIANCE MATRIX ESTIMATION

Suppose we consider the model more generally than this. Stack the Ti observations for
individual i in a single equation,

yi = Xiβ + wi ,

where β now includes the constant term. In this setting, there may be heteroscedasticity
across individuals. However, in a panel data set, the more substantive problem is cross-
observation correlation, or autocorrelation. In a longitudinal data set, the group of
observations may all pertain to the same individual, so any latent effects left out of
the model will carry across all periods. Suppose, then, we assume that the disturbance
vector consists of εit plus these omitted components. Then,

Var[wi | Xi ] = σ 2
εITi + �i

= �i .

The ordinary least squares estimator of β is

b = (X′X)−1X′y

=
[

n∑
i=1

X′
i Xi

]−1 n∑
i=1

X′
i yi

=
[

n∑
i=1

X′
i Xi

]−1 n∑
i=1

X′
i (Xiβ + wi )

= β +
[

n∑
i=1

X′
i Xi

]−1 n∑
i=1

X′
i wi .
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Consistency can be established along the lines developed in Chapter 4. The true
asymptotic covariance matrix would take the form we saw for the generalized regression
model in (9-10),

Asy. Var[b] = 1
n

plim

[
1
n

n∑
i=1

X′
i Xi

]−1

plim

[
1
n

n∑
i=1

X′
i wi w′

i Xi

]
plim

[
1
n

n∑
i=1

X′
i Xi

]−1

= 1
n

plim

[
1
n

n∑
i=1

X′
i Xi

]−1

plim

[
1
n

n∑
i=1

X′
i�i Xi

]
plim

[
1
n

n∑
i=1

X′
i Xi

]−1

.

This result provides the counterpart to (9-28). As before, the center matrix must be
estimated. In the same spirit as the White estimator, we can estimate this matrix with

Est. Asy. Var[b] = 1
n

[
1
n

n∑
i=1

X′
i Xi

]−1 [
1
n

n∑
i=1

X′
i ŵi ŵ′

i Xi

] [
1
n

n∑
i=1

X′
i Xi

]−1

, (11-3)

where ŵ′ is the vector of Ti residuals for individual i . In fact, the logic of the White
estimator does carry over to this estimator. Note, however, this is not quite the same as
(9-27). It is quite likely that the more important issue for appropriate estimation of the
asymptotic covariance matrix is the correlation across observations, not heteroscedas-
ticity. As such, it is quite likely that the White estimator in (9-27) is not the solution to
the inference problem here. Example 11.1 shows this effect at work.

Example 11.1 Wage Equation
Cornwell and Rupert (1988) analyzed the returns to schooling in a (balanced) panel of 595
observations on heads of households. The sample data are drawn from years 1976–1982
from the “Non-Survey of Economic Opportunity” from the Panel Study of Income Dynamics.
The estimating equation is

ln Wageit = β1 + β2 Expit + β3 Exp2
it + β4 Wksit + β5 Occit

+ β6 Indit + β7 Southit + β8 SMSAit + β9 MSi t

+ β10 Unionit + β11 Edi + β12 Femi + β13 Blki + εit

where the variables are

Exp = years of full time work experience, 0 if not,
Wks = weeks worked, 0 if not,
Occ = 1 if blue-collar occupation, 0 if not,
Ind = 1 if the individual works in a manufacturing industry, 0 if not,
South = 1 if the individual resides in the south, 0 if not,
SMSA = 1 if the individual resides in an SMSA, 0 if not,
MS = 1 if the individual is married, 0 if not,
Union = 1 if the individual wage is set by a union contract, 0 if not,
Ed = years of education,
Fem = 1 if the individual is female, 0 if not,
Blk = 1 if the individual is black, 0 if not.

Note that Ed, Fem, and Blk are time invariant. See Appendix Table F11.1 for the data source.
The main interest of the study, beyond comparing various estimation methods, is β11, the
return to education. Table 11.1 reports the least squares estimates based on the full sample

Bill
Line

Bill
Line
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TABLE 11.1 Wage Equation Estimated by OLS

Estimated OLS Standard Panel Robust White Hetero.
Coefficient Coefficient Error Standard Error Consistent Std. Error

β1: Constant 5.2511 0.07129 0.1233 0.07435
β2: Exp 0.04010 0.002159 0.004067 0.002158
β3: Exp2 −0.0006734 0.00004744 0.00009111 0.00004789
β4: Wks 0.004216 0.001081 0.001538 0.001143
β5: Occ −0.1400 0.01466 0.02718 0.01494
β6: Ind 0.04679 0.01179 0.02361 0.01199
β7: South −0.05564 0.01253 0.02610 0.01274
β8: SMSA 0.1517 0.01207 0.02405 0.01208
β9: MS 0.04845 0.02057 0.04085 0.02049
β10: Union 0.09263 0.01280 0.02362 0.01233
β11: Ed 0.05670 0.002613 0.005552 0.002726
β12: Fem −0.3678 0.02510 0.04547 0.02310
β13: Blk −0.1669 0.02204 0.04423 0.02075

of 4,165 observations. [The authors do not report OLS estimates. However, they do report
linear least squares estimates of the fixed effects model, which are simple least squares
using deviations from individual means. (See Section 11.4.) It was not possible to match
their reported results for these or any of their other reported results. Because our purpose
is to compare the various estimators to each other, we have not attempted to resolve the
discrepancy.] The conventional OLS standard errors are given in the second column of results.
The third column gives the robust standard errors computed using (11-3). For these data,
the computation is

Est. Asy. Var[b] =
[

595∑
i=1

X′
iXi

]−1 [
595∑
i=1

(
7∑

t=1

xiteit

)(
7∑

t=1

xiteit

)′][
595∑
i=1

X′
iXi

]−1

.

The robust standard errors are generally about twice the uncorrected ones. In contrast, the
White robust standard errors are almost the same as the uncorrected ones. This suggests
that for this model, ignoring the within group correlations does, indeed, substantially affect
the inferences one would draw.

11.3.3 CLUSTERING AND STRATIFICATION

Many recent studies have analyzed survey data sets, such as the Current Population Sur-
vey (CPS). Survey data are often drawn in “clusters,” partly to reduce costs. For example,
interviewers might visit all the families in a particular block. In other cases, effects that
resemble the common random effects in panel data treatments might arise naturally in
the sampling setting. Consider, for example, a study of student test scores across several
states. Common effects could arise at many levels in such a data set. Education cur-
riculum or funding policies in a state could cause a “state effect;” there could be school
district effects, school effects within districts, and even teacher effects within a particular
school. Each of these is likely to induce correlation across observations that resembles
the random (or fixed) effects we have identified. One might be reluctant to assume that
a tightly structured model such as the simple random effects specification is at work.
But, as we saw in Example 11.1, ignoring common effects can lead to serious inference
errors. The robust estimator suggested in Section 11.3.2 provides a useful approach.

For a two-level model, such as might arise in a sample of firms that are grouped
by industry, or students who share teachers in particular schools, a natural approach
to this “clustering” would be the robust common effects approach shown earlier. The
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resemblance of the now standard cluster estimator for a one-level model to the common
effects panel model considered earlier is more than coincidental. However, there is a
difference in the data generating mechanism in that in this setting, the individuals in
the group are generally observed once, and their association, that is, common effect, is
likely to be less clearly defined than in a panel such as the one analyzed in Example 11.1.
A refinement to (11-3) is often employed to account for small-sample effects when the
number of clusters is likely to be a significant proportion of a finite total, such as the
number of school districts in a state. A degrees of freedom correction as shown in (11-4)
is often employed for this purpose. The robust covariance matrix estimator would be

Est.Asy.Var[b]

=
⎡⎣ G∑

g=1

X′
gXg

⎤⎦−1⎡⎣ G
G − 1

G∑
g=1

( ng∑
i=1

xigŵig

)( ng∑
i=1

xigŵig

)′⎤⎦⎡⎣ G∑
g=1

X′
gXg

⎤⎦−1

=
⎡⎣ G∑

g=1

X′
gXg

⎤⎦−1⎡⎣ G
G − 1

G∑
g=1

(
X′

gŵg
) (

ŵ′
gXg

)⎤⎦⎡⎣ G∑
g=1

X′
gXg

⎤⎦−1

, (11-4)

where G is the number of clusters in the sample and each cluster consists of ng, g =
1, . . . , G observations. [Note that this matrix is simply G/G − 1) times the matrix in
(11-3).] A further correction (without obvious formal motivation) sometimes employed
is a “degrees of freedom correction,” �gng/[(�gng) − K].

Many further refinements for more complex samples—consider the test scores
example—have been suggested. For a detailed analysis, see Cameron and Trivedi (2005,
Chapter 24). Several aspects of the computation are discussed in Wooldridge (2003) as
well. An important question arises concerning the use of asymptotic distributional re-
sults in cases in which the number of clusters might be relatively small. Angrist and
Lavy (2002) find that the clustering correction after pooled OLS, as we have done in
Example 9.1, is not as helpful as might be hoped for (though our correction with 595
clusters each of size 7 would be “safe” by these standards). But, the difficulty might
arise, at least in part, from the use of OLS in the presence of the common effects. Kezde
(2001) and Bertrand, Dufflo, and Mullainathan (2002) find more encouraging results
when the correction is applied after estimation of the fixed effects regression. Yet an-
other complication arises when the groups are very large and the number of groups
is relatively small, for example, when the panel consists of many large samples from
a subset (or even all) of the U.S. states. Since the asymptotic theory we have used to
this point assumes the opposite, the results will be less reliable in this case. Donald and
Lang (2007) find that this case gravitates toward analysis of group means, rather than
the individual data. Wooldridge (2003) provides results that help explain this finding.
Finally, there is a natural question as to whether the correction is even called for if one
has used a random effects, generalized least squares procedure (see Section 11.5) to do
the estimation at the first step. If the data generating mechanism were strictly consistent
with the random effects model, the answer would clearly be negative. Under the view
that the random effects specification is only an approximation to the correlation across
observations in a cluster, then there would remain “residual correlation” that would be
accommodated by the correction in (11-4) (or some GLS counterpart). (This would call
the specific random effects correction in Section 11.5 into question, however.) A similar
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TABLE 11.2 Sale Price Equation

Estimated OLS Standard Corrected
Variable Coefficient Error Standard Error

Constant −9.7068 0.5661 0.6791
ln Area 1.3473 0.0822 0.1030
Signature 1.3614 0.1251 0.1281
ln Aspect Ratio −0.0225 0.1479 0.1661

argument would motivate the correction after fitting the fixed effects model as well. We
will pursue these possibilities in Section 11.6.4 after we develop the fixed and random
effects estimator in detail.

Example 11.2 Repeat Sales of Monet Paintings
We examined in Examples 4.5, 4.10, and 6.2 the relationship between the sale price and the
surface area of a sample of 430 sales of Monet paintings. In fact, these were not sales of 430
paintings. Many of them were repeat sales of the same painting at different points in time.
The sample actually contains 376 paintings. The numbers of sales per painting were one,
333; two, 34; three, 7; and four, 2. If the sale price of the painting is motivated at least partly
by intrinsic features of the painting, then this would motivate a correction of the least squares
standard errors as suggested in (11-4). Table 11.2 displays the OLS regression results with
the coventional and with the corrected standard errors. Even with the quite modest amount of
grouping in the data, the impact of the correction, in the expected direction of larger standard
errors, is evident.

11.3.4 ROBUST ESTIMATION USING GROUP MEANS

The pooled regression model can be estimated using the sample means of the data. The
implied regression model is obtained by premultiplying each group by (1/T)i′ where
i′ is a row vector of ones;

(1/T)i′yi = (1/T)i′Xiβ + (1/T)i′wi

or

ȳi. = x̄′
i.β + w̄i .

In the transformed linear regression, the disturbances continue to have zero conditional
means but heteroscedastic variances σ 2

i = (1/T2)i′�i i. With �i unspecified, this is a
heteroscedastic regression for which we would use the White estimator for appropriate
inference. Why might one want to use this estimator when the full data set is available?
If the classical assumptions are met, then it is straightforward to show that the asymp-
totic covariance matrix for the group means estimator is unambiguously larger, and the
answer would be that there is no benefit. But, failure of the classical assumptions is
what brought us to this point, and then the issue is less clear-cut. In the presence of un-
structured cluster effects the efficiency of least squares can be considerably diminished,
as we saw in the preceding example. The loss of information that occurs through the
averaging might be relatively small, though in principle, the disaggregated data should
still be better.

We emphasize, using group means does not solve the problem that is addressed by
the fixed effects estimator. Consider the general model,

yi = Xiβ + ci i + wi ,
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where as before, ci is the latent effect. If the mean independence assumption, E[ci | Xi ] =
α, is not met, then, the effect will be transmitted to the group means as well. In this case,
E[ci | Xi ] = h(Xi ). A common specification is Mundlak’s (1978),

E[ci | Xi ] = x̄′
i.γ .

(We will revisit this specification in Section 11.5.6.) Then,

yit = x′
itβ + ci + εit

= x′
itβ + x̄′

i.γ + [εit + ci − E[ci | Xi ]]

= x′
itβ + x̄′

i.γ + uit

where by construction, E[uit | Xi ] = 0. Taking means as before,

ȳi. = x̄′
i.β + x̄′

i.γ + ūi.

= x̄′
i.(β + γ ) + ūi..

The implication is that the group means estimator estimates not β, but β +γ . Averaging
the observations in the group collects the entire set of effects, observed and latent, in
the group means.

One consideration that remains, which, unfortunately, we cannot resolve analyti-
cally, is the possibility of measurement error. If the regressors are measured with error,
then, as we examined in Section 8.5, the least squares estimator is inconsistent and, as
a consequence, efficiency is a moot point. In the panel data setting, if the measurement
error is random, then using group means would work in the direction of averaging it
out—indeed, in this instance, assuming the benchmark case xitk = x∗

itk + uitk, one could
show that the group means estimator would be consistent as T → ∞ while the OLS
estimator would not.

Example 11.3 Robust Estimators of the Wage Equation
Table 11.3 shows the group means estimator of the wage equation shown in Example 11.1
with the original least squares estimates. In both cases, a robust estimator is used for the
covariance matrix of the estimator. It appears that similar results are obtained with the means.

11.3.5 ESTIMATION WITH FIRST DIFFERENCES

First differencing is another approach to estimation. Here, the intent would explicitly
be to transform latent heterogeneity out of the model. The base case would be

yit = ci + x′
itβ + εit,

which implies the first differences equation

�yit = �ci + (�xit)
′β + �εit,

or

�yit = (�xit)
′β + εit − εi,t−1

= (�xit)
′β + uit.
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TABLE 11.3 Wage Equation Estimated by OLS

OLS Estimated Panel Robust Group Means White Robust
Coefficient Coefficient Standard Error Estimates Standard Error

β1: Constant 5.2511 0.1233 5.1214 0.2078
β2: Exp 0.04010 0.004067 0.03190 0.004597
β3: Exp2 −0.0006734 0.00009111 −0.0005656 0.0001020
β4: Wks 0.004216 0.001538 0.009189 0.003578
β5: Occ −0.1400 0.02718 −0.1676 0.03338
β6: Ind 0.04679 0.02361 0.05792 0.02636
β7: South −0.05564 0.02610 −0.05705 0.02660
β8: SMSA 0.1517 0.02405 0.1758 0.02541
β9: MS 0.04845 0.04085 0.1148 0.04989
β10: Union 0.09263 0.02362 0.1091 0.02830
β11: Ed 0.05670 0.005552 0.05144 0.005862
β12: Fem −0.3678 0.04547 −0.3171 0.05105
β13: Blk −0.1669 0.04423 −0.1578 0.04352

The advantage of the first difference approach is that it removes the latent hetero-
geneity from the model whether the fixed or random effects model is appropriate. The
disadvantage is that the differencing also removes any time-invariant variables from the
model. In our example, we had three, Ed, Fem, and Blk. If the time-invariant variables
in the model are of no interest, then this is a robust approach that can estimate the
parameters of the time-varying variables consistently. Of course, this is not helpful for
the application in the example, because the impact of Ed on ln Wage was the primary
object of the analysis. Note, as well, that the differencing procedure trades the cross-
observation correlation in ci for a moving average (MA) disturbance, ui,t = εi,t − εi,t−1.
The new disturbance, ui,t is autocorrelated, though across only one period. Procedures
are available for using two-step feasible GLS for an MA disturbance (see Chapter 19).
Alternatively, this model is a natural candidate for OLS with the Newey–West robust
covariance estimator, since the right number of lags (one) is known. (See Section 20.5.2.)

As a general observation, with a variety of approaches available, the first difference
estimator does not have much to recommend it, save for one very important application.
Many studies involve two period “panels,” a before and after treatment. In these cases,
as often as not, the phenomenon of interest may well specifically be the change in the
outcome variable—the “treatment effect.” Consider the model

yit = ci + x′
itβ + θ Sit + εit,

where t = 1, 2 and Sit = 0 in period 1 and 1 in period 2; Sit indicates a “treatment” that
takes place between the two observations. The “treatment effect” would be

E[�yi | (�xi = 0)] = θ,

which is precisely the constant term in the first difference regression,

�yi = θ + (�xi )
′β + ui .

We will examine cases like these in detail in Section 18.5.
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11.3.6 THE WITHIN- AND BETWEEN-GROUPS ESTIMATORS

We can formulate the pooled regression model in three ways. First, the original formu-
lation is

yit = α + x′
itβ + εit. (11-5a)

In terms of the group means,

ȳi. = α + x̄′
i.β + ε̄i., (11-5b)

while in terms of deviations from the group means,

yit − ȳi. = (xit − x̄i.)
′β + εit − ε̄i.. (11-5c)

[We are assuming there are no time-invariant variables, such as Ed in Example 11.1, in
xit. These would become all zeros in (11-5c).] All three are classical regression models,
and in principle, all three could be estimated, at least consistently if not efficiently, by
ordinary least squares. [Note that (11-5b) defines only n observations, the group means.]
Consider then the matrices of sums of squares and cross products that would be used
in each case, where we focus only on estimation of β. In (11-5a), the moments would
accumulate variation about the overall means, ¯̄y and ¯̄x, and we would use the total sums
of squares and cross products,

Stotal
xx =

n∑
i=1

T∑
t=1

(xit − ¯̄x)(xit − ¯̄x)′ and Stotal
xy =

n∑
i=1

T∑
t=1

(xit − ¯̄x)(yit − ¯̄y). (11-6)

For (11-5c), because the data are in deviations already, the means of (yit − ȳi.) and
(xit − x̄i.) are zero. The moment matrices are within-groups (i.e., variation around group
means) sums of squares and cross products,

Swithin
xx =

n∑
i=1

T∑
t=1

(xit − x̄i.)(xit − x̄i.)
′ and Swithin

xy =
n∑

i=1

T∑
t=1

(xit − x̄i.)(yit − ȳi.).

Finally, for (11-5b), the mean of group means is the overall mean. The moment matrices
are the between-groups sums of squares and cross products—that is, the variation of
the group means around the overall means;

Sbetween
xx =

n∑
i=1

T(x̄i. − ¯̄x)(x̄i. − ¯̄x)′ and Sbetween
xy =

n∑
i=1

T(x̄i. − ¯̄x)(ȳi. − ¯̄y).

It is easy to verify that

Stotal
xx = Swithin

xx + Sbetween
xx and Stotal

xy = Swithin
xy + Sbetween

xy .

Therefore, there are three possible least squares estimators of β corresponding to
the decomposition. The least squares estimator is

btotal = [
Stotal

xx

]−1Stotal
xy = [

Swithin
xx + Sbetween

xx

]−1[Swithin
xy + Sbetween

xy

]
. (11-7)

The within-groups estimator is

bwithin = [
Swithin

xx

]−1Swithin
xy . (11-8)
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This is the dummy variable estimator developed in Section 11.4. An alternative estimator
would be the between-groups estimator,

bbetween = [
Sbetween

xx

]−1Sbetween
xy . (11-9)

This is the group means estimator. This least squares estimator of (11-5b) is based on
the n sets of groups means. (Note that we are assuming that n is at least as large as K.)
From the preceding expressions (and familiar previous results),

Swithin
xy = Swithin

xx bwithin and Sbetween
xy = Sbetween

xx bbetween.

Inserting these in (11-7), we see that the least squares estimator is a matrix weighted
average of the within- and between-groups estimators:

btotal = Fwithinbwithin + Fbetweenbbetween, (11-10)

where

Fwithin = [
Swithin

xx + Sbetween
xx

]−1Swithin
xx = I − Fbetween.

The form of this result resembles the Bayesian estimator in the classical model discussed
in Chapter 18. The resemblance is more than passing; it can be shown [see, e.g., Judge
et al. (1985)] that

Fwithin = {
[Asy. Var(bwithin)]−1 + [Asy. Var(bbetween)]−1}−1[Asy. Var(bwithin)]−1,

which is essentially the same mixing result we have for the Bayesian estimator. In the
weighted average, the estimator with the smaller variance receives the greater weight.

Example 11.4 Analysis of Covariance and the World Health
Organization Data

The decomposition of the total variation in Section 11.3.6 extends to the linear regression
model the familiar “analysis of variance,” or ANOVA, that is often used to decompose the
variation in a variable in a clustered or stratified sample, or in a panel data set. One of
the useful features of panel data analysis as we are doing here is the ability to analyze the
between-groups variation (heterogeneity) to learn about the main regression relationships
and the within-groups variation to learn about dynamic effects.

The World Health Organization data used in Example 6.10 is an unbalanced panel data
set—we used only one year of the data in Example 6.10. Of the 191 countries in the sample,
140 are observed in the full five years, one is observed four times, and 50 are observed
only once. The original WHO studies (2000a, 2000b) analyzed these data using the fixed
effects model developed in the next section. The estimator is that in (11-5c). It is easy to
see that groups with one observation will fall out of the computation, because if Ti = 1, then
the observation equals the group mean. These data have been used by many researchers
in similar panel data analyses. [See, e.g., Greene (2004c) and several references.] Gravelle
et al. (2002a) have strongly criticized these analyses, arguing that the WHO data are much
more like a cross section than a panel data set.

From Example 6.10, the model used by the researchers at WHO was

ln DALEit = αi + β1 ln Health Expenditureit + β2 ln Educationit + β3 ln2 Educationit + εit.

Additional models were estimated using WHO’s composite measure of health care attain-
ment, COMP. The analysis of variance for a variable xit is based on the decomposition

n∑
i =1

Ti∑
t=1

( xit − ¯̄x) 2 =
n∑

i =1

Ti∑
t=1

( xit − x̄i .) 2 +
n∑

t=1

Ti ( x̄i . − ¯̄x) 2.
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TABLE 11.4 Analysis of Variance for WHO Data on
Health Care Attainment

Variable Within-Groups Variation Between-Groups Variation

COMP 0.150% 99.850%
DALE 5.645% 94.355%
Expenditure 0.635% 99.365%
Education 0.178% 99.822%

Dividing both sides of the equation by the left-hand side produces the decomposition:

1 = Within-groups proportion + Between-groups proportion.

The first term on the right-hand side is the within-group variation that differentiates a panel
data set from a cross section (or simply multiple observations on the same variable). Table 11.4
lists the decomposition of the variation in the variables used in the WHO studies.

The results suggest the reasons for the authors’ concern about the data. For all but COMP,
virtually all the variation in the data is between groups—that is cross-sectional variation. As
the authors argue, these data are only slightly different from a cross section.

11.4 THE FIXED EFFECTS MODEL

The fixed effects model arises from the assumption that the omitted effects, ci , in the
general model,

yit = x′
itβ + ci + εit,

are correlated with the included variables. In a general form,

E[ci | Xi] = h(Xi ). (11-11)

Because the conditional mean is the same in every period, we can write the model as

yit = x′
itβ + h(Xi ) + εit + [ci − h(Xi )]

= x′
itβ + αi + εit + [ci − h(Xi )].

By construction, the bracketed term is uncorrelated with Xi , so we may absorb it in the
disturbance, and write the model as

yit = x′
itβ + αi + εit. (11-12)

A further assumption (usually unstated) is that Var[ci | Xi ] is constant. With this assump-
tion, (11-12) becomes a classical linear regression model. (We will reconsider the ho-
moscedasticity assumption shortly.) We emphasize, it is (11-11) that signifies the “fixed
effects” model, not that any variable is “fixed” in this context and random elsewhere.
The fixed effects formulation implies that differences across groups can be captured in
differences in the constant term.5 Each αi is treated as an unknown parameter to be
estimated.

5It is also possible to allow the slopes to vary across i , but this method introduces some new methodological
issues, as well as considerable complexity in the calculations. A study on the topic is Cornwell and Schmidt
(1984).
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Before proceeding, we note once again a major shortcoming of the fixed effects
approach. Any time-invariant variables in xit will mimic the individual specific constant
term. Consider the application of Examples 11.1 and 11.3. We could write the fixed
effects formulation as

ln Wageit = x′
itβ + [β10 Edi + β11 Femi + β12 Blki + ci ] + εit.

The fixed effects formulation of the model will absorb the last four terms in the regres-
sion in αi . The coefficients on the time-invariant variables cannot be estimated. This
lack of identification is the price of the robustness of the specification to unmeasured
correlation between the common effect and the exogenous variables.

11.4.1 LEAST SQUARES ESTIMATION

Let yi and Xi be the T observations for the ith unit, i be a T × 1 column of ones, and
let εi be the associated T × 1 vector of disturbances.6 Then,

yi = Xiβ + iαi + εi .

Collecting these terms gives⎡⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎦=

⎡⎢⎢⎢⎣
X1

X2
...

Xn

⎤⎥⎥⎥⎦β +

⎡⎢⎢⎢⎣
i 0 · · · 0
0 i · · · 0

...

0 0 · · · i

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

α1

α2
...

αn

⎤⎥⎥⎦+

⎡⎢⎢⎣
ε1

ε2
...

εn

⎤⎥⎥⎦
or

y = [X d1 d2, . . . , dn]
[
β

α

]
+ ε, (11-13)

where di is a dummy variable indicating the ith unit. Let the nT × n matrix D =
[d1, d2, . . . , dn]. Then, assembling all nT rows gives

y = Xβ + Dα + ε.

This model is usually referred to as the least squares dummy variable (LSDV) model
(although the “least squares” part of the name refers to the technique usually used to
estimate it, not to the model itself).

This model is a classical regression model, so no new results are needed to analyze it.
If n is small enough, then the model can be estimated by ordinary least squares with K
regressors in X and n columns in D, as a multiple regression with K + n parameters.
Of course, if n is thousands, as is typical, then this model is likely to exceed the storage
capacity of any computer. But, by using familiar results for a partitioned regression, we
can reduce the size of the computation.7 We write the least squares estimator of β as

b = [X′MDX]−1[X′MDy] = bwithin, (11-14)

6The assumption of a fixed group size, T, at this point is purely for convenience. As noted in Section 11.2.4,
the unbalanced case is a minor variation.
7See Theorem 3.3.
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where

MD = I − D(D′D)−1D′.

This amounts to a least squares regression using the transformed data X∗ = MDX and
y∗ = MDy. The structure of D is particularly convenient; its columns are orthogonal, so

MD =

⎡⎢⎢⎣
M0 0 0 · · · 0
0 M0 0 · · · 0

· · ·
0 0 0 · · · M0

⎤⎥⎥⎦.

Each matrix on the diagonal is

M0 = IT − 1
T

ii′. (11-15)

Premultiplying any T × 1 vector zi by M0 creates M0zi = zi − z̄i. (Note that the mean is
taken over only the T observations for unit i .) Therefore, the least squares regression of
MDy on MDX is equivalent to a regression of [yit − ȳi.] on [xit − x̄i.], where ȳi. and x̄i. are
the scalar and K × 1 vector of means of yit and xit over the T observations for group i .8

The dummy variable coefficients can be recovered from the other normal equation in
the partitioned regression:

D′Da + D′Xb = D′y

or

a = [D′D]−1D′(y − Xb).

This implies that for each i ,

ai = ȳi. − x̄′
i.b. (11-16)

The appropriate estimator of the asymptotic covariance matrix for b is

Est. Asy. Var[b] = s2[X′ MDX]−1 = s2[Swithin
xx

]−1
, (11-17)

which uses the second moment matrix with x’s now expressed as deviations from their
respective group means. The disturbance variance estimator is

s2 =
∑n

i=1

∑T
t=1 (yit − x′

itb − ai )
2

nT − n − K
= (MDy − MDXb)′(MDy − MDXb)

nT − n − K
. (11-18)

The i tth residual used in this computation is

eit = yit − x′
itb − ai = yit − x′

itb − (ȳi. − x̄′
i.b) = (yit − ȳi.) − (xit − x̄i.)

′b.

Thus, the numerator in s2 is exactly the sum of squared residuals using the least squares
slopes and the data in group mean deviation form. But, done in this fashion, one might
then use nT − K instead of nT − n − K for the denominator in computing s2, so a

8An interesting special case arises if T = 2. In the two-period case, you can show—we leave it as an exercise—
that this least squares regression is done with nT/2 first difference observations, by regressing observation
(yi2 − yi1) (and its negative) on (xi2 − xi1) (and its negative).
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correction would be necessary. For the individual effects,

Asy. Var[ai ] = σ 2
ε

T
+ x̄′

i.

{
Asy. Var[b]

}
x̄i., (11-19)

so a simple estimator based on s2 can be computed.

11.4.2 SMALL T ASYMPTOTICS

From (11-17), we find

Asy. Var[b] = σ 2
ε [X′MDX]−1

= σ 2
ε

n

[
1
n

n∑
i=1

X′
i M

0Xi

]−1

= σ 2
ε

n

[
1
n

n∑
i=1

T∑
t=1

(xit − x̄i.)(xit − x̄i.)
′
]−1

(11-20)

= σ 2
ε

n

[
T

1
n

n∑
i=1

1
T

T∑
t=1

(xit − x̄i.)(xit − x̄i.)
′
]−1

= σ 2
ε

n

[
TS̄xx,i

]−1
.

Since least squares is unbiased in this model, the question of (mean square) consistency
turns on the covariance matrix. Does the matrix above converge to zero? It is necessary
to be specific about what is meant by convergence. In this setting, increasing sample
size refers to increasing n, that is, increasing the number of groups. The group size,
T, is assumed fixed. The leading scalar clearly vanishes with increasing n. The matrix
in the square brackets is T times the average over the n groups of the within-groups
covariance matrices of the variables in Xi . So long as the data are well behaved, we can
assume that the bracketed matrix does not converge to a zero matrix (or a matrix with
zeros on the diagonal). On this basis, we can expect consistency of the least squares es-
timator. In practical terms, this requires within-groups variation of the data. Notice that
the result falls apart if there are time invariant variables in Xi , because then there are
zeros on the diagonals of the bracketed matrix. This result also suggests the nature of
the problem of the WHO data in Example 11.4 as analyzed by Gravelle et al. (2002).

Now, consider the result in (11-19) for the asymptotic variance of ai . Assume that
b is consistent, as shown previously. Then, with increasing n, the asymptotic variance
of ai declines to a lower bound of σ 2

ε /T which does not converge to zero. The constant
term estimators in the fixed effects model are not consistent estimators of αi . They
are not inconsistent because they gravitate toward the wrong parameter. They are so
because their asymptotic variances do not converge to zero, even as the sample size
grows. It is easy to see why this is the case. From (11-16), we see that each ai is estimated
using only T observations—assume n were infinite, so that β were known. Because T
is not assumed to be increasing, we have the surprising result. The constant terms are
inconsistent unless T → ∞, which is not part of the model.
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11.4.3 TESTING THE SIGNIFICANCE OF THE GROUP EFFECTS

The t ratio for ai can be used for a test of the hypothesis that αi equals zero. This
hypothesis about one specific group, however, is typically not useful for testing in this
regression context. If we are interested in differences across groups, then we can test the
hypothesis that the constant terms are all equal with an F test. Under the null hypothesis
of equality, the efficient estimator is pooled least squares. The F ratio used for this
test is

F(n − 1, nT − n − K) =
(

R2
LSDV − R2

Pooled

)/
(n − 1)(

1 − R2
LSDV

)/
(nT − n − K)

, (11-21)

where LSDV indicates the dummy variable model and Pooled indicates the pooled
or restricted model with only a single overall constant term. Alternatively, the model
may have been estimated with an overall constant and n − 1 dummy variables instead.
All other results (i.e., the least squares slopes, s2, R2) will be unchanged, but rather
than estimate αi , each dummy variable coefficient will now be an estimate of αi − α1

where group “1” is the omitted group. The F test that the coefficients on these n − 1
dummy variables are zero is identical to the one above. It is important to keep in mind,
however, that although the statistical results are the same, the interpretation of the
dummy variable coefficients in the two formulations is different.9

11.4.4 FIXED TIME AND GROUP EFFECTS

The least squares dummy variable approach can be extended to include a time-specific
effect as well. One way to formulate the extended model is simply to add the time
effect, as in

yit = x′
itβ + αi + δt + εit. (11-22)

This model is obtained from the preceding one by the inclusion of an additional
T − 1 dummy variables. (One of the time effects must be dropped to avoid perfect
collinearity—the group effects and time effects both sum to one.) If the number of
variables is too large to handle by ordinary regression, then this model can also be
estimated by using the partitioned regression.10 There is an asymmetry in this formu-
lation, however, since each of the group effects is a group-specific intercept, whereas
the time effects are contrasts—that is, comparisons to a base period (the one that is
excluded). A symmetric form of the model is

yit = x′
itβ + μ + αi + δt + εit, (11-23)

where a full n and T effects are included, but the restrictions∑
i

αi =
∑

t

δt = 0

9For a discussion of the differences, see Suits (1984).
10The matrix algebra and the theoretical development of two-way effects in panel data models are complex.
See, for example, Baltagi (2005). Fortunately, the practical application is much simpler. The number of periods
analyzed in most panel data sets is rarely more than a handful. Because modern computer programs uniformly
allow dozens (or even hundreds) of regressors, almost any application involving a second fixed effect can be
handled just by literally including the second effect as a set of actual dummy variables.
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are imposed. Least squares estimates of the slopes in this model are obtained by
regression of

y∗it = yit − ȳi. − ȳ.t + ¯̄y (11-24)

on

x∗it = xit − x̄i. − x̄.t + ¯̄x,

where the period-specific and overall means are

ȳ.t = 1
n

n∑
i=1

yit and ¯̄y = 1
nT

n∑
i=1

T∑
t=1

yit,

and likewise for x̄.t and ¯̄x. The overall constant and the dummy variable coefficients can
then be recovered from the normal equations as

μ̂ = m = ¯̄y − ¯̄x′b,

α̂i = ai = (ȳi. − ¯̄y) − (x̄i. − ¯̄x)′b, (11-25)

δ̂t = dt = (ȳ.t − ¯̄y) − (x̄.t − ¯̄x)′b.

The estimated asymptotic covariance matrix for b is computed using the sums of squares
and cross products of x∗it computed in (11-22) and

s2 =
∑n

i=1

∑T
t=1(yit − x′

itb − m − ai − dt )
2

nT − (n − 1) − (T − 1) − K − 1
(11-26)

If one of n or T is small and the other is large, then it may be simpler just to treat the
smaller set as an ordinary set of variables and apply the previous results to the one-
way fixed effects model defined by the larger set. Although more general, this model is
infrequently used in practice. There are two reasons. First, the cost in terms of degrees
of freedom is often not justified. Second, in those instances in which a model of the
timewise evolution of the disturbance is desired, a more general model than this simple
dummy variable formulation is usually used.

11.4.5 TIME-INVARIANT VARIABLES AND FIXED EFFECTS VECTOR
DECOMPOSITION

The presence of time-invariant variables (TIVs) in the common effects regression
presents a vexing problem for the model builder. The significant problem for the fixed
effects model (FEM) is that the estimator cannot accommodate TIVs. Thus, in the wage
equation in Example 11.5, we have omitted three variables of considerable interest
from the fixed effects model, Ed, Fem, and Blk. If we write the FEM with a set of
time-invariant variables in it as

y = Xβ + Zγ + Dα + ε,

with Z being the matrix of M TIVs, then the problem becomes one of multicollinear-
ity. Since the columns of matrix D are a complete set of n dummy variables, any
time-invariant variable in Z can be written as a linear combination of the columns
of D. Let the mth column of Z be the TIV, Z(m) = (zm1, zm1, . . . , zm2, zm2,

. . . , . . . , zmn, zmn, . . .)
′; each specific value, zmi , is repeated Ti times. Then Z(m) equals
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Dzm where zm is the n × 1 vector (zm1, zm2, . . . , zmn)
′. Collecting all M columns, we have

Z = DZn where Zn is the n × m matrix (z1, z2, . . . , zm).
if we attempt to compute the LSDV estimator of (β ′, γ ′)′ of (11-14) using the

transformed variables MD[X,Z], the columns of Z are transformed to deviations from
group means, which are columns of zeros, since Z is already the period means, and
the transformed data matrix becomes (MDX, 0)—since Z is already in the form of
group means, deviations from group means are zero. The LSDV regression cannot be
computed with TIVs. In theoretical terms, the problem is that γ is not identified. No
amount of data can disentangle γ from α. The model would be

y = Xβ + D(Znγ ) + Dα + ε = Xβ + D[Znγ + α] + ε.

In the fixed effects case, the identifying restriction is γ = 0. That is, in a fixed effects
model, the coefficients on TIVs are not identified in terms of the moments of the data
so their coefficients are fixed at zero, so as to identify α.

Plümper and Troeger (2007) have proposed a three-step procedure that they label
Fixed effects vector decomposition (FEVD) that suggests a solution to the problem of
estimating coefficients on TIVs in a fixed effects model and, at the same time, brings
noticeable gains in the efficiency of estimation of the parameters. The three steps are

Step 1: Linear regression of y on X and D to estimate α. That is, compute the LSDV
estimator of β in (11-14) and use (11-15) to compute estimates of the individual constant
terms.
Step 2: Linear regression of the n estimated constant terms, ai , i = 1, . . . , n, on a
constant term and Zn From this regression, we compute the n residuals, hn. We then
expand this vector to the full sample length using h = Dhn.
Step 3: Linear regression of y on [X,(i,Z),h], where i is an overall constant term, to
estimate (β, α0, γ , δ) in y = Xβ + α0 + Zγ + hδ + ε.

The suggestion produces some interesting algebraic results that will be instructive for
the analysis of this chapter. The surprising result that has apparently gone unnoticed
in dozens of recent applications of the technique, but not in several recent comments
including Breusch, Ward, Nguyen, and Kompas (2010), Chatelain and Ralf (2010), and
Greene (2010), is that step 3 simply reproduces the results in steps 1 and 2, but the
covariance matrix computed for the estimator of β at step 3 is not identical and is
unambiguously too small. It is instructive to work through a derivation in detail.

We will prove the following results:
FEVD.1 The estimated coefficients on X at step 3 are identical to those at step 1.
FEVD.2 The estimated coefficients on (i,Z) at step 3 are identical to those at step 2.
FEVD.3 The estimated coefficient on h at step 3 is equals 1.0.
FEVD.4 The sum of squared residuals in the regression at step 3 is identical to that at

step 1.
FEVD.5 The s2 computed at step 3 is less than that at step 1.
FEVD.6 The asymptotic covariance matrix computed for the estimator of β at step 3

is smaller than that at step 1 (even though the estimates are algebraically identical)
because of FEVD.5 and because the matrix used is smaller.

(Note there are much more compact proofs of these results. The following approaches
are used to demonstrate the tools we have developed in this and the preceding chapters.)

Bill
Line

Bill
Line
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Proofs of results: Write the results of the three least squares regressions as

(Step 1) y = XbLSDV + DaLSDV + eLSDV,

(Step 2) aLSDV = WncLSDV + hn where Wn = (in, Zn),

(Step 3) y = XbFEVD + WcFEVD + hdFEVD + eFEVD, where W = (i, Z).

Thus, W at step 3 includes the M time-invariant variables and an overall constant. To
begin, we will establish that eLSDV = eFEVD. Recall that Z = DZn and i = Din. where
in is an n × 1 column vector of ones. The residuals in (step 2 are hn = aLSDV − WncLSDV

and h = Dhn. Therefore, the result at step 3) is equivalent to

y = XbFEVD + DWncFEVD + D(aLSDV − WncLSDV)dFEVD + eFEVD.

Rearranging it slightly,

y = XbFEVD + DaLSDV + DWncFEVD − DWncLSDV(dFEVD) + eFEVD. (11-27)

The first two terms are the predictions from the linear regression of y on X and D and
the third and fourth terms simply add more linear combinations of the columns of D.
Since (X,D) has (we have assumed) full column rank, least squares regression (∗) must
provide the same fit as step 1. The residuals must be identical; that is eFEVD = eLSDV.
Now, premultiply (∗) by X′MD. Since MDD = 0 and MDeLSDV = eLSDV, we find

X′MDy = X′MDXbFEVD + X′eLSDV.

Since X′eLSDV = 0 (from step 1), we have bFEVD = (X′MDX)−1(X′MDy) = bLSDV which
proves FEVD.1.

To compute cFEVD, at step 3, we have at the solution (using bFEVD = bLSDV and
eFEVD = eLSDV)

y − XbLSDV = WcFEVD + hdFEVD + eLSDV.

Premultiply this expression by W′. From step 2, W′h = Wn
′D′Dhn = 0. This is true

because D′D is a diagonal matrix with Ti on the diagonals. Thus, each element in W′h
is Ti W(m)′hn = 0, where W(m) is the mth column of Wn. From step 3, W′eFEVD =
W′eLSDV = 0. Thus,

W′(y − XbLSDV) = W′WcFEVD

so

cFEVD = (W′W)−1W′(y − XbLSDV).

From step 1, y − XbLSDV = DaLSDV + eLSDV. Since W′eFEVD = W′eLSDV = 0, from
step 3,

cFEVD = (W′W)−1W′DaLSDV.

But, by premultiplying step 2 by D, we find DaLSDV = DWncLSDV + Dhn. It follows that
the solution is

cLSDV = (Wn
′D′DWn)

−1Wn
′D′DaLSDV + (Wn

′D′DWn)
−1Wn

′D′Dhn.

The second term is zero as shown earlier. The end result is cLSDV = cFEVD which is
FEVD.2.
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Once again using step 3, we now solve for dFEVD using what we already have. The
solution is in

y − XbLSDV − WcLSDV = hdFEVD + eLSDV.

But, y − XbLSDV = a + eLSDV = DaLSDV + eLSDV and WcLSDV = a − h = DaLSDV − h.
Inserting these,

DaLSDV + eLSDV − DaLSDV + h = hdFEVD + eLSDV

or

h + eLSDV = hdFEVD + eLSDV,

from which it follows that dFEVD = 1. This proves FEVD.3.
FEVD.4 has already been shown since eFEVD = eLSDV.. The R2’s in the two regres-

sions are the same as well, as R2
FEVD = 1 − (eFEVD

′eFEVD/y′M0y) = R2
LSDV since the

residual vectors are identical. [See (3-26).] But,

s2
FEVD = eFEVD

′eFEVD/(�Ti − K − M − 1 − 1) < s2
LSDV = eLSDV

′eLSDV/(�i Ti − K − n).

The difference is the degrees of freedom correction, which can be large. In our example
to follow, DFFEVD = 4165−9−3−1−1 = 4151 while DFLSDV = 4165−9−595 = 3561.
For the example, then, s2

FEVD/s2
LSDV = 0.85787. This establishes FEVD.5.

To establish FEVD.6, based on (11-17), we are going to compare

Est.Asy.Var[bFEVD] = s2
FEVD(X′MW,hX)−1

to

Est.Asy.Var[bLSDV] = s2
LSDV(X′MDX)−1.

We have already established that s2
LSDV > s2

FEVD. To compare the matrices, we will
compare their inverses, and show that the difference matrix

A = X′MW,hX − X′MDX

is positive definite. This will imply that the inverse matrix in Est.Asy.Var[bFEVD] is
smaller than that in Est.Asy.Var[bLSDV]. To show this, we note that R = (W, h) =
D(Wn, hn) is M + 2 linear combinations of the columns of D while D is all n columns
of D. For convenience, let R = (W, h). The residuals defined by MDX [see (3-15)]
are obtained by regressions of X on all n columns of D. They will be identical to the
residuals obtained by regression of X on any n linearly independent combinations of
the columns of D. For these, we will use [R,Q] where Q is orthogonal to R. Therefore
X′MDX = X′MR,QX. Expanding this, we have

A = X′X − X′R(R′R)−1R′X − X′X + X′ ( R Q
) [(

R′
Q′

) (
R Q

)]−1 (
R′
Q′

)
X.

The inverse matrix is simplified by R′Q = 0, so the bracketed matrix and its inverse are
block diagonal. Multiplying it out, we find

A = X′Q(Q′Q)−1Q′X = X′(I − MQ)X.

Bill
Line
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Since I − MQ is idempotent, A = X′(I − MQ)′(I − MQ)X = X*′X* is positive definite.
This establishes that the computed covariance matrix for bFEVD will always be strictly
smaller than that for bLSDV, which is FEVD.6.

This leaves what should appear to be a loose end in the analysis. How was it possible
to estimate γ (in step 2 or step 3) given that it is unidentified in the original model? The
answer is the crucial assumption previously noted at several points. From the original
specification Z is uncorrelated with ε. But, for the regression (in step 2) estimate a
nonzero γ , it must be further assumed that zi is uncorrelated with ui . This restricts the
original fixed effects model—it is a hybrid in which the time-varying variables are al-
lowed to be correlated with ui but the time-invariant variables are not. The authors note
this on page 6 and in their footnote 7 where they state, “If the time-invariant variables
are assumed to be orthogonal to the unobserved unit effects—i.e., if the assumption
underlying our estimator is correct—the estimator is consistent. If this assumption is
violated, the estimated coefficients for the time-invariant variables are biased. . . . Note
that the estimated coefficients of the time-varying variables remain unbiased even in
the presence of correlated unit effects. However, the assumption underlying a FE model
must be satisfied (no correlated time-varying variables may exist).” (Emphasis added—it
seems that “varying” should be “invariant”) There are other estimators that would con-
sistently be β and γ in this revised model, including the Hausman and Taylor estimator
discussed in Section 11.8.1 and instrumental variables estimators suggested by Breusch
et al. (2010) and by Chatelain and Ralf (2010).

The problem of primary interest in Plümper and Troeger was an intermediate case
somewhat different from what we have examined here. There are two directions of the
work. If only some of the elements of Z but not all of them, are correlated with ui ,
then we obtain the setting analysed by Hausman and Taylor that is examined in Section
11.8.1. Plümper and Troeger’s FEVD estimator will, in that instance, be an inconsistent
estimator that may have a smaller variance than the IV estimator proposed by Hausman
and Taylor. The second case the authors are interested in is when Z is not strictly time
invariant but is “slowly changing.” When there is very little within-groups variation,
for example, as shown for the World Health Organization data in Example 11.4, then,
once again, the estimator suggested here may have some advantages over instrumental
variables and other treatments. In that case, when there are no strictly time-invariant
variables in the model, then the analysis is governed by the random effects model
discussed in the next section.

Example 11.5 Fixed Effects Wage Equation
Table 11.5 presents the estimated wage equation with individual effects for the Cornwell
and Rupert data used in Examples 11.1 and 11.3. The model includes three time-invariant
variables, Ed, Fem, Blk, that must be dropped from the equation. As a consequence, the
fixed effects estimates computed here are not comparable to the results for the pooled
model already examined. For comparison, the least squares estimates with panel robust
standard errors are also presented. We have also added a set of time dummy variables to
the model. The F statistic for testing the significance of the individual effects based on the,
R2’s for the equations is

F [594, 3561] = (0.9072422 − 0.3154548)/594
(1 − 0.9072422)/(4165 − 9 − 595)

= 38.247

The critical value for the F table with 594 and 3561 degrees of freedom is 1.106, so the
evidence is strongly in favor of an individual-specific effect. As often happens, the fit of the
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model increases greatly when the individual effects are added. We have also added time
effects to the model. The model with time effects without the individual effects is in the
second column results. The F statistic for testing the significance of the time effects (in the
absence of the individual effects) is

F [6, 4149] = (0.4636788 − 0.3154548)/6
(1 − 0.4636788)/(4165 − 10 − 6)

= 191.11,

The critical value from the F table is 2.101, so the hypothesis that the time effects are zero
is also rejected. The last column of results shows the model with both time and individual
effects. For this model it is necessary to drop a second time effect because the experience
variable, Exp, is an individual specific time trend. The Exp variable can be expressed as

Expi ,t = Ei ,0 + ( t − 1) , t = 1, . . . , 7,

which can be expressed as a linear combination of the individual dummy variable and the
six time variables. For the last model, we have dropped the first and last of the time effects.
In this model, the F statistic for testing the significance of the time effects is

F [5, 3556] = (0.9080847 − 0.9072422)/5
(1 − 0.9080847)/(4165 − 9 − 5 − 5595)

= 6.519.

The time effects remain significant—the critical value is 2.217—but the test statistic is con-
siderably reduced. The time effects reveal a striking pattern. In the equation without the
individual effects, we find a steady increase in wages of 7–9 percent per year. But, when the
individual effects are added to the model, this progression disappears.

It might seem appropriate to compute the robust standard errors for the fixed effects
estimator as well as for the pooled estimator. However, in principle, that should be unnec-
essary. If the model is correct and completely specified, then the individual effects should
be capturing the omitted heterogeneity, and what remains is a classical, homoscedastic,
nonautocorrelated disturbance. This does suggest a rough indicator of the appropriateness
of the model specification. If the conventional asymptotic covariance matrix in (11-17) and
the robust estimator in (11-3), with Xi replaced with the data in group mean deviations form,
give very different estimates, one might question the model specification. [This is the logic
that underlies White’s (1982a) information matrix test (and the extensions by Newey (1985a)
and Tauchen (1985).] The robust standard errors are shown in parentheses under those for
the fixed effects estimates in the sixth column of Table 11.5. They are considerably higher
than the uncorrected standard errors—50 percent to 100 percent—which might suggest that
the fixed effects specification should be reconsidered.

The FEVD computations are shown in Table 11.5 as well. The third set of results, marked
“Individual Effects,” shows the step 1 and step 2 results. Note that these are computed
in two least squares regressions. The second step is indicated by the heavy box. The fit
measures are not shown for this intermediate step. The step 3 results are shown in the
last two columns of the table. As anticipated, the estimated coefficients match the first and
second step regressions. For bLSDV, the standard errors have fallen by a factor of 2 to 4. For
cLSDV, the estimators of γ , they have fallen by a factor of 7 to 10. In view of the previous
analytic results, the estimates in the last column of Table 11.5 would be viewed as overly
optimistic.

11.5 RANDOM EFFECTS

The fixed effects model allows the unobserved individual effects to be correlated with the
included variables. We then modeled the differences between units strictly as parametric
shifts of the regression function. This model might be viewed as applying only to the
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cross-sectional units in the study, not to additional ones outside the sample. For example,
an intercountry comparison may well include the full set of countries for which it is
reasonable to assume that the model is constant. If the individual effects are strictly
uncorrelated with the regressors, then it might be appropriate to model the individual
specific constant terms as randomly distributed across cross-sectional units. This view
would be appropriate if we believed that sampled cross-sectional units were drawn from
a large population. It would certainly be the case for the longitudinal data sets listed
in the introduction to this chapter.11 The payoff to this form is that it greatly reduces
the number of parameters to be estimated. The cost is the possibility of inconsistent
estimates, should the assumption turn out to be inappropriate.

Consider, then, a reformulation of the model

yit = x′
itβ + (α + ui ) + εit, (11-28)

where there are K regressors including a constant and now the single constant term is
the mean of the unobserved heterogeneity, E [z′

iα]. The component ui is the random
heterogeneity specific to the ith observation and is constant through time; recall from
Section 11.2.1, ui = {

z′
iα− E [z′

iα]
}

. For example, in an analysis of families, we can view
ui as the collection of factors, z′

iα, not in the regression that are specific to that family.
We continue to assume strict exogeneity:

E [εit | X] = E [ui | X] = 0,

E
[
ε2

it

∣∣ X
] = σ 2

ε ,

E
[
u2

i

∣∣ X
] = σ 2

u ,

E [εitu j | X] = 0 for all i, t, and j,

E [εitε js | X] = 0 if t �= s or i �= j,

E [ui u j | X] = 0 if i �= j.

(11-29)

As before, it is useful to view the formulation of the model in blocks of T observations
for group i, yi , Xi , ui i, and εi . For these T observations, let

ηit = εit + ui

and

ηi = [ηi1, ηi2, . . . , ηiT]′.

In view of this form of ηit, we have what is often called an error components model. For
this model,

E
[
η2

it

∣∣ X
] = σ 2

ε + σ 2
u ,

E [ηitηis | X] = σ 2
u , t �= s (11-30)

E [ηitη js | X] = 0 for all t and s if i �= j.

11This distinction is not hard and fast; it is purely heuristic. We shall return to this issue later. See Mundlak
(1978) for methodological discussion of the distinction between fixed and random effects.
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For the T observations for unit i , let � = E [ηiη
′
i | X]. Then

� =

⎡⎢⎢⎢⎣
σ 2

ε + σ 2
u σ 2

u σ 2
u · · · σ 2

u

σ 2
u σ 2

ε + σ 2
u σ 2

u · · · σ 2
u

· · ·
σ 2

u σ 2
u σ 2

u · · · σ 2
ε + σ 2

u

⎤⎥⎥⎥⎦= σ 2
ε IT + σ 2

u iT i′T, (11-31)

where iT is a T × 1 column vector of 1s. Because observations i and j are independent,
the disturbance covariance matrix for the full nT observations is

� =

⎡⎢⎢⎣
� 0 0 · · · 0
0 � 0 · · · 0

...

0 0 0 · · · �

⎤⎥⎥⎦= In ⊗ �. (11-32)

11.5.1 LEAST SQUARES ESTIMATION

The model defined by (11-28),

yit = α + xit′β + ui + εit,

with the strict exogeneity assumptions in (11-29) and the covariance matrix detailed in
(11-31) and (11-32) is a generalized regression model that fits into the framework we
developed in Chapter 9. The disturbances are autocorrelated in that observations are
correlated across time within a group, though not across groups. All the implications
of Section 9.2.1 would apply here. In particular, the parameters of the random effects
model can be estimated consistently, albeit not efficiently, by ordinary least squares
(OLS). An appropriate robust asymptotic covariance matrix for the OLS estimator
would be given by (11-3).

There are other consistent estimators available as well. By taking deviations from
group means, we obtain

yit − ȳi = (xit − x̄i )
′β + εit − ε̄i .

This implies that (assuming there are no time-invariant regressors in xit), the LSDV
estimator of (11-14) is a consistent estimator of β. (Note that alone among the four
estimators to be suggested here, the LSDV estimator is robust to whether the correct
specification is actually a random or a fixed model.) As is OLS, LSDV is inefficient
since, as we will show in Section 11.5.2, there is an efficient GLS estimator that is not
equal to bLSDV. The group means (between groups) regression model,

ȳi = α + x̄′
itβ + ui + ε̄i , i = 1, . . . , n,

provides a third method of consistently estimating the coefficients β. None of these is
the preferred estimator in this setting, since the GLS estimator will be more efficient
than any of them. However, as we saw in Chapters 9 and 10, many generalized regres-
sion models are estimated in two steps, with the first step being a robust least squares
regression that is used to produce a first round estimate of the variance parameters of
the model. That would be the case here as well. To suggest where this logic will lead in
Section 11.5.3, note that for the three cases noted, the mean squared residuals would
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produce the following consistent estimators of functions of the variances:

(Pooled) plim [epooled
′epooled/(nT)] = σ 2

u + σ 2
ε ,

(LSDV) plim [eLSDV
′eLSDV/(nT)] = σ 2

ε [1 − 1/T],
(Means) plim [emeans

′emeans/(nT)] = σ 2
u + σ 2

ε /T.

Any pair of these estimators would provide a two-equation method of moments
estimator of (σ 2

u , σ 2
ε ). With these in mind, we will now develop an efficient generalized

least squares estimator.

11.5.2 GENERALIZED LEAST SQUARES

The generalized least squares estimator of the slope parameters is

β̂ = (X′�−1X)−1X′�−1y =
(

n∑
i=1

X′
i�

−1Xi

)−1 (
n∑

i=1

X′
i�

−1yi

)
.

To compute this estimator as we did in Chapter 9 by transforming the data and using
ordinary least squares with the transformed data, we will require �−1/2 = [In ⊗ �]−1/2.
We need only find �−1/2, which is

�−1/2 = 1
σε

[
I − θ

T
iTi′T

]
,

where

θ = 1 − σε√
σ 2

ε + Tσ 2
u

.

The transformation of yi and Xi for GLS is therefore

�−1/2yi = 1
σε

⎡⎢⎢⎢⎣
yi1 − θ ȳi.

yi2 − θ ȳi.
...

yiT − θ ȳi.

⎤⎥⎥⎥⎦, (11-33)

and likewise for the rows of Xi .12 For the data set as a whole, then, generalized least
squares is computed by the regression of these partial deviations of yit on the same
transformations of xit. Note the similarity of this procedure to the computation in the
LSDV model, which uses θ = 1 in (11-15). (One could interpret θ as the effect that
would remain if σε were zero, because the only effect would then be ui . In this case,
the fixed and random effects models would be indistinguishable, so this result makes
sense.)

It can be shown that the GLS estimator is, like the pooled OLS estimator, a matrix
weighted average of the within- and between-units estimators:

β̂ = F̂withinbwithin + (I − F̂within)bbetween,13 (11-34)

12This transformation is a special case of the more general treatment in Nerlove (1971b).
13An alternative form of this expression, in which the weighting matrices are proportional to the covariance
matrices of the two estimators, is given by Judge et al. (1985).
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where now,

F̂within = [
Swithin

xx + λSbetween
xx

]−1Swithin
xx ,

λ = σ 2
ε

σ 2
ε + Tσ 2

u
= (1 − θ)2.

To the extent that λ differs from one, we see that the inefficiency of ordinary least
squares will follow from an inefficient weighting of the two estimators. Compared with
generalized least squares, ordinary least squares places too much weight on the between-
units variation. It includes it all in the variation in X, rather than apportioning some of
it to random variation across groups attributable to the variation in ui across units.

Unbalanced panels add a layer of difficulty in the random effects model. The first
problem can be seen in (11-32). The matrix � is no longer In ⊗ � because the diagonal
blocks in � are of different sizes. There is also groupwise heteroscedasticity in (11-33),
because the ith diagonal block in �−1/2 is

�
−1/2
i = ITi − θi

Ti
iTi i

′
Ti
, θi = 1 − σε√

σ 2
ε + Tiσ 2

u

.

In principle, estimation is still straightforward, because the source of the groupwise
heteroscedasticity is only the unequal group sizes. Thus, for GLS, or FGLS with es-
timated variance components, it is necessary only to use the group-specific θi in the
transformation in (11-33).

11.5.3 FEASIBLE GENERALIZED LEAST SQUARES
WHEN � IS UNKNOWN

If the variance components are known, generalized least squares can be computed as
shown earlier. Of course, this is unlikely, so as usual, we must first estimate the distur-
bance variances and then use an FGLS procedure. A heuristic approach to estimation
of the variance components is as follows:

yit = x′
itβ + α + εit + ui (11-35)

and

ȳi. = x̄′
i.β + α + ε̄i. + ui .

Therefore, taking deviations from the group means removes the heterogeneity:

yit − ȳi. = [xit − x̄i.]′β + [εit − ε̄i.]. (11-36)

Because

E

[
T∑

t=1

(εit − ε̄i.)
2

]
= (T − 1)σ 2

ε ,

if β were observed, then an unbiased estimator of σ 2
ε based on T observations in group

i would be

σ̂ 2
ε (i) =

∑T
t=1(εit − ε̄i.)

2

T − 1
. (11-37)
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Because β must be estimated—(11-33) implies that the LSDV estimator is consistent,
indeed, unbiased in general—we make the degrees of freedom correction and use the
LSDV residuals in

s2
e (i) =

∑T
t=1(eit − ēi.)

2

T − K − 1
. (11-38)

(Note that based on the LSDV estimates, ēi. is actually zero. We will carry it through
nonetheless to maintain the analogy to (11-34) where ε̄i. is not zero but is an estimator
of E[εi t ] = 0.) We have n such estimators, so we average them to obtain

s̄2
e = 1

n

n∑
i=1

s2
e (i) = 1

n

n∑
i=1

[∑T
t=1(eit − ēi.)

2

T − K − 1

]
=

∑n
i=1

∑T
t=1(eit − ēi.)

2

nT − nK − n
. (11-39)

The degrees of freedom correction in s̄2
e is excessive because it assumes that α and

β are reestimated for each i . The estimated parameters are the n means ȳi · and the K
slopes. Therefore, we propose the unbiased estimator14

σ̂ 2
ε = s2

LSDV =
∑n

i=1

∑T
t=1(eit − ēi.)

2

nT − n − K
. (11-40)

This is the variance estimator in the fixed effects model in (11-17), appropriately cor-
rected for degrees of freedom. It remains to estimate σ 2

u . Return to the original model
specification in (11-35). In spite of the correlation across observations, this is a classical
regression model in which the ordinary least squares slopes and variance estimators are
both consistent and, in most cases, unbiased. Therefore, using the ordinary least squares
residuals from the model with only a single overall constant, we have

plim s2
Pooled = plim

e′e
nT − K − 1

= σ 2
ε + σ 2

u . (11-41)

This provides the two estimators needed for the variance components; the second would
be σ̂ 2

u = s2
Pooled − s2

LSDV . A possible complication is that this second estimator could be
negative. But, recall that for feasible generalized least squares, we do not need an
unbiased estimator of the variance, only a consistent one. As such, we may drop the
degrees of freedom corrections in (11-40) and (11-41). If so, then the two variance
estimators must be nonnegative, since the sum of squares in the LSDV model cannot
be larger than that in the simple regression with only one constant term. Alternative
estimators have been proposed, all based on this principle of using two different sums of
squared residuals.15 This is a point on which modern software varies greatly. Generally,
programs begin with (11-40) and (11-41) to estimate the variance components. What
they do next when the estimate of σ 2

u is nonpositive is far from uniform. Dropping the
degrees of freedom correction is a frequently used strategy, but at least one widely
used program simply sets σ 2

u to zero, and others resort to different strategies based on,
for example, the group means estimator. The unfortunate implication for the unwary
is that different programs can systematically produce different results using the same

14A formal proof of this proposition may be found in Maddala (1971) or in Judge et al. (1985, p. 551).
15See, for example, Wallace and Hussain (1969), Maddala (1971), Fuller and Battese (1974), and Amemiya
(1971).
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model and the same data. The practitioner is strongly advised to consult the program
documentation for resolution.

There is a remaining complication. If there are any regressors that do not vary within
the groups, the LSDV estimator cannot be computed. For example, in a model of family
income or labor supply, one of the regressors might be a dummy variable for location,
family structure, or living arrangement. Any of these could be perfectly collinear with
the fixed effect for that family, which would prevent computation of the LSDV estimator.
In this case, it is still possible to estimate the random effects variance components. Let
[b, a] be any consistent estimator of [β, α] in (11-35), such as the ordinary least squares
estimator. Then, (11-41) provides a consistent estimator of mee = σ 2

ε + σ 2
u . The mean

squared residuals using a regression based only on the n group means in (11-35) provides
a consistent estimator of m∗∗ = σ 2

u + (σ 2
ε /T ), so we can use

σ̂ 2
ε = T

T − 1
(mee − m∗∗)

σ̂ 2
u = T

T − 1
m∗∗ − 1

T − 1
mee = ωm∗∗ + (1 − ω)mee,

where ω > 1. As before, this estimator can produce a negative estimate of σ 2
u that, once

again, calls the specification of the model into question. [Note, finally, that the residuals
in (11-40) and (11-41) could be based on the same coefficient vector.]

There is, perhaps surprisingly, a simpler way out of the dilemma posed by time-
invariant regressors. In (11-36), we find that the group mean deviations estimator still
provides a consistent estimator of σ 2

ε . The time-invariant variables fall out of the model
so it is not possible to estimate the full coefficient vector β. But, recall, estimation of β is
not the objective at this step, estimation of σ 2

ε is. Therefore, it follows that the residuals
from the group mean deviations (LSDV) estimator can still be used to estimate σ 2

ε .
By the same logic, the first differences could also be used. (See Section 11.3.5.) The
residual variance in the first difference regression would estimate 2σ 2

ε . These outcomes
are irrespective of whether there are time-invariant regressors in the model.

11.5.4 TESTING FOR RANDOM EFFECTS

Breusch and Pagan (1980) have devised a Lagrange multiplier test for the random
effects model based on the OLS residuals.16 For

H0: σ 2
u = 0 (or Corr[ηit, ηis] = 0),

H1: σ 2
u �= 0,

the test statistic is

LM = nT
2(T − 1)

⎡⎢⎣
∑n

i=1

[∑T
t=1 eit

]2

∑n
i=1

∑T
t=1 e2

it

− 1

⎤⎥⎦
2

= nT
2(T − 1)

[ ∑n
i=1(T ēi.)

2∑n
i=1

∑T
t=1 e2

it

− 1

]2

. (11-42)

16We have focused thus far strictly on generalized least squares and moments based consistent estimation
of the variance components. The LM test is based on maximum likelihood estimation, instead. See Maddala
(1971) and Balestra and Nerlove (1966, 2003) for this approach to estimation.
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Under the null hypothesis, the limiting distribution of LM is chi-squared with one degree
of freedom.

Example 11.6 Testing for Random Effects
We are interested in comparing the random and fixed effects estimators in the Cornwell
and Rupert wage equation. As we saw earlier, there are three time-invariant variables in
the equation: Ed, Fem, and Blk. As such, we cannot directly compare the two estimators.
The random effects model can provide separate estimates of the parameters on the time-
invariant variables while the fixed effects estimator cannot. For purposes of the illustration,
then, we will for the present time confine attention to the restricted common effects model,

ln Wageit = β1 Expit + β2 Exp2
it + β3 Wksit + β4 Occit + β5 Indit + β6 Southit

+ β7 SMSAit + β8 MSit + β9 Unionit + ci + εit.

The fixed and random effects models differ in the treatment of ci .
Least squares estimates of the parameters including a constant term appear in Table 11.6.

We then computed the group mean residuals for the seven observations for each individual.
The sum of squares of the means is 53.824384. The total sum of squared residuals for the
regression is 607.1265. With T and n equal to 7 and 595, respectively, (11-42) produces a
chi-squared statistic of 3881.34. This far exceeds the 95 percent critical value for the chi-
squared distribution with one degree of freedom, 3.84. At this point, we conclude that the
classical regression model with a single constant term is inappropriate for these data. The
result of the test is to reject the null hypothesis in favor of the random effects model. But, it
is best to reserve judgment on that, because there is another competing specification that
might induce these same results, the fixed effects model. We will examine this possibility in
the subsequent examples.

TABLE 11.6 Estimates of the Wage Equation

Pooled Least Squares Fixed Effects LSDV Random Effects FGLS

Variable Estimate Std.Errora Estimate Std.Error Estimate Std.Error Robust

Exp 0.0361 0.004533 0.1132 0.002471 0.08906 0.002280 0.01276
Exp2 −0.0006550 0.0001016 −0.0004184 0.0000546 −0.0007577 0.00005036 0.00031
Wks 0.004461 0.001728 0.0008359 0.0005997 0.001066 0.0005939 0.00331
Occ −0.3176 0.02726 −0.02148 0.01378 −0.1067 0.01269 0.05424
Ind 0.03213 0.02526 0.01921 0.01545 −0.01637 0.01391 0.05303
South −0.1137 0.02868 −0.001861 0.03430 −0.06899 0.02354 0.05984
SMSA 0.1586 0.02602 −0.04247 0.01943 −0.01530 0.01649 0.05421
MS 0.3203 0.03494 −0.02973 0.01898 −0.02398 0.01711 0.06989
Union 0.06975 0.02667 0.03278 0.01492 0.03597 0.01367 0.05653
Constant 5.8802 0.09673 5.3455 0.04361 0.19866

Mundlak: Group Means Mundlak: Time Varying

Exp −0.08574 0.005821 0.1132 0.002474
Exp2 −0.0001168 0.0001281 −0.0004184 0.00005467
Wks 0.008020 0.004006 0.0008359 0.0006004
Occ −0.3321 0.03363 −0.02148 0.01380
Ind 0.02677 0.03203 0.01921 0.01547
South −0.1064 0.04444 −0.001861 0.03434
SMSA 0.2239 0.03421 0.04247 0.01945
MS 0.4134 0.03984 −0.02972 0.01901
Union 0.05637 0.03549 0.03278 0.01494
Constant 5.7222 0.1906
aRobust standard errors
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With the variance estimators in hand, FGLS can be used to estimate the parameters
of the model. All of our earlier results for FGLS estimators apply here. In particular, all
that is needed for efficient estimation of the model parameters are consistent estimators
of the variance components, and there are several. [See Hsiao (2003), Baltagi (2005),
Nerlove (2002), Berzeg (1979), and Maddala and Mount (1973).]

Example 11.7 Estimates of the Random Effects Model
In the previous example, we found the total sum of squares for the least squares estima-
tor was 607.1265. The fixed effects (LSDV) estimates for this model appear in Table 11.5
(and 11.6), where the sum of squares given is 82.26732. Therefore, the moment estimators
of the parameters are

σ̂ 2
ε + σ̂ 2

u = 607.1265
4165 − 10

= 0.1461195.

and

σ̂ 2
ε = 82.26732

4165 − 595 − 9
= 0.0231023.

The implied estimator of σ 2
u is 0.12301719. (No problem of negative variance components

has emerged.) The estimate of θ for FGLS is

θ̂ = 1 −
√

0.0231023
0.0231023 + 7(0.12301719)

= 0.8383608.

FGLS estimates are computed by regressing the partial differences of ln Wageit on the partial
differences of the constant and the nine regressors, using this estimate of θ in (11-30). Esti-
mates of the parameters using the OLS, fixed effects and random effects estimators appear
in Table 11.6.

None of the desirable properties of the estimators in the random effects model rely
on T going to infinity.17 Indeed, T is likely to be quite small. The estimator of σ 2

ε is equal
to an average of n estimators, each based on the T observations for unit i . [See (11-39).]
Each component in this average is, in principle, consistent. That is, its variance is of
order 1/T or smaller. Because T is small, this variance may be relatively large. But,
each term provides some information about the parameter. The average over the n
cross-sectional units has a variance of order 1/(nT ), which will go to zero if n increases,
even if we regard T as fixed. The conclusion to draw is that nothing in this treatment
relies on T growing large. Although it can be shown that some consistency results will
follow for T increasing, the typical panel data set is based on data sets for which it does
not make sense to assume that T increases without bound or, in some cases, at all.18

As a general proposition, it is necessary to take some care in devising estimators whose
properties hinge on whether T is large or not. The widely used conventional ones we
have discussed here do not, but we have not exhausted the possibilities.

The random effects model was developed by Balestra and Nerlove (1966). Their
formulation included a time-specific component, κt , as well as the individual effect:

yit = α + β ′xit + εit + ui + κt .

17See Nickell (1981).
18In this connection, Chamberlain (1984) provided some innovative treatments of panel data that, in fact,
take T as given in the model and that base consistency results solely on n increasing. Some additional results
for dynamic models are given by Bhargava and Sargan (1983).
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The extended formulation is rather complicated analytically. In Balestra and Nerlove’s
study, it was made even more so by the presence of a lagged dependent variable. A full
set of results for this extended model, including a method for handling the lagged
dependent variable, has been developed.19 We will turn to this in Section 11.8.

11.5.5 HAUSMAN’S SPECIFICATION TEST FOR THE RANDOM
EFFECTS MODEL

At various points, we have made the distinction between fixed and random effects mod-
els. An inevitable question is, Which should be used? From a purely practical standpoint,
the dummy variable approach is costly in terms of degrees of freedom lost. On the other
hand, the fixed effects approach has one considerable virtue. There is little justification
for treating the individual effects as uncorrelated with the other regressors, as is assumed
in the random effects model. The random effects treatment, therefore, may suffer from
the inconsistency due to this correlation between the included variables and the random
effect.20

The specification test devised by Hausman (1978)21 is used to test for orthogonality
of the common effects and the regressors. The test is based on the idea that under the
hypothesis of no correlation, both OLS in the LSDV model and GLS are consistent, but
OLS is inefficient,22 whereas under the alternative, OLS is consistent, but GLS is not.
Therefore, under the null hypothesis, the two estimates should not differ systematically,
and a test can be based on the difference. The other essential ingredient for the test is
the covariance matrix of the difference vector, [b − β̂]:

Var[b − β̂] = Var[b] + Var[β̂] − Cov[b, β̂] − Cov[β̂, b]. (11-43)

Hausman’s essential result is that the covariance of an efficient estimator with its differ-
ence from an inefficient estimator is zero, which implies that

Cov[(b − β̂), β̂] = Cov[b, β̂] − Var[β̂] = 0

or that

Cov[b, β̂] = Var[β̂].

Inserting this result in (11-40) produces the required covariance matrix for the test,

Var[b − β̂] = Var[b] − Var[β̂] = �.

The chi-squared test is based on the Wald criterion:

W = χ2[K − 1] = [b − β̂]′�̂−1[b − β̂]. (11-44)

For �̂, we use the estimated covariance matrices of the slope estimator in the LSDV
model and the estimated covariance matrix in the random effects model, excluding the
constant term. Under the null hypothesis, W has a limiting chi-squared distribution with
K − 1 degrees of freedom.

19See Balestra and Nerlove (1966), Fomby, Hill, and Johnson (1984), Judge et al. (1985), Hsiao (1986),
Anderson and Hsiao (1982), Nerlove (1971a, 2002), and Baltagi (2005).
20See Hausman and Taylor (1981) and Chamberlain (1978).
21Related results are given by Baltagi (1986).
22Referring to the GLS matrix weighted average given earlier, we see that the efficient weight uses θ , whereas
OLS sets θ = 1.
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The Hausman test is a useful device for determining the preferred specification
of the common effects model. As developed here, it has one practical shortcoming.
The construction in (11-43) conforms to the theory of the test. However, it does not
guarantee that the difference of the two covariance matrices will be positive definite in a
finite sample. The implication is that nothing prevents the statistic from being negative
when it is computed according to (11-44). One can, in that event, conclude that the
random effects model is not rejected, since the similarity of the covariance matrices
is what is causing the problem, and under the alternative (fixed effects) hypothesis,
they would be significantly different. There are, however, several alternative methods
of computing the statistic for the Hausman test, some asymptotically equivalent and
others actually numerically identical. Baltagi (2005, pp. 65–73) provides an extensive
analysis. One particularly convenient form of the test finesses the practical problem
noted here. An asymptotically equivalent test statistic is given by

H′ = (β̂LSDV − β̂MEANS)
′
[
Asy.Var[β̂LSDV] + Asy.Var[β̂MEANS]

]−1
(β̂LSDV − β̂MEANS)

(11-45)

where β̂MEANS is the group means estimator discussed in Section 11.3.4. As noted, this
is one of several equivalent forms of the test. The advantage of this form is that the
covariance matrix will always be nonnegative definite.

Example 11.8 Hausman Test for Fixed versus Random Effects
Using the results of the preceding example, we retrieved the coefficient vector and estimated
asymptotic covariance matrix, bFE and VF E from the fixed effects results and the first nine
elements of β̂RE and VRE (excluding the constant term). The test statistic is

H = (bFE − β̂RE ) ′[VFE − VRE ]−1(bFE − β̂RE )

The value of the test statistic is 2,636.08. The critical value from the chi-squared table is
16.919 so the null hypothesis of the random effects model is rejected. We conclude that the
fixed effects model is the preferred specification for these data. This is an unfortunate turn of
events, as the main object of the study is the impact of education, which is a time-invariant
variable in this sample. Using (11-42) instead, we obtain a test statistic of 3,177.58. Of course,
this does not change the conclusion.

Imbens and Wooldridge (2007) have argued that in spite of the practical consid-
erations about the Hausman test in (11-44) and (11-45), the test should be based on
robust covariance matrices that do not depend on the assumption of the null hypothesis
(the random effects model). (I.e., “It makes no sense to report a fully robust variance
matrix for FE and RE but then to compute a Hausman test that maintains the full set
of RE assumptions.”) Their suggested approach amounts to the variable addition test
described in the next section, with a robust covariance matrix.

11.5.6 EXTENDING THE UNOBSERVED EFFECTS MODEL:
MUNDLAK’S APPROACH

Even with the Hausman test available, choosing between the fixed and random effects
specifications presents a bit of a dilemma. Both specifications have unattractive short-
comings. The fixed effects approach is robust to correlation between the omitted het-
erogeneity and the regressors, but it proliferates parameters and cannot accommodate
time-invariant regressors. The random effects model hinges on an unlikely assumption,
that the omitted heterogeneity is uncorrelated with the regressors. Several authors have
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suggested modifications of the random effects model that would at least partly overcome
its deficit. The failure of the random effects approach is that the mean independence
assumption, E[ci |Xi ] = 0, is untenable. Mundlak’s (1978) approach would suggest the
specification

E[ci | Xi ] = x̄′
i.γ .23

Substituting this in the random effects model, we obtain

yit = x′
itβ + ci + εit

= x′
itβ + x̄′

i.γ + εit + (ci − E[ci | Xi ]) (11-46)

= x′
itβ + x̄′

i.γ + εit + ui .

This preserves the specification of the random effects model, but (one hopes) deals
directly with the problem of correlation of the effects and the regressors. Note that the
additional terms in x̄′

i.γ will only include the time-varying variables—the time-invariant
variables are already group means. This additional set of estimates is shown in the lower
panel of Table 11.6 in Example 11.6.

Mundlak’s approach is frequently used as a compromise between the fixed and
random effects models. One side benefit of the specification is that it provides another
convenient approach to the Hausman test. As the model is formulated above, the differ-
ence between the “fixed effects” model and the “random effects” model is the nonzeroγ .
As such, a statistical test of the null hypothesis that γ equals zero should provide an
alternative approach to the two methods suggested earlier.

Example 11.9 Variable Addition Test for Fixed versus Random Effects
Using the results in Example 11.7, we recovered the subvector of the estimates in the lower
half of Table 11.6 corresponding to γ , and the corresponding submatrix of the full covariance
matrix. The test statistic is

H ′ = γ̂ ′[Est. Asy. Var( γ̂ ) ]−1γ̂

The value of the test statistic is 3193.69. The critical value from the chi-squared table for nine
degrees of freedom is 16.919, so the null hypothesis of the random effects model is rejected.
We conclude as before that the fixed effects estimator is the preferred specification for this
model.

11.5.7 EXTENDING THE RANDOM AND FIXED EFFECTS MODELS:
CHAMBERLAIN’S APPROACH

The linear unobserved effects model is

yit = ci + x′
itβ + εit. (11-47)

The random effects model assumes that E[ci | Xi ] = α, where the T rows of Xi are
x′

it. As we saw in Section 11.5.1, this model can be estimated consistently by ordinary
least squares. Regardless of how εit is modeled, there is autocorrelation induced by

23Other analyses, for example, Chamberlain (1982) and Wooldridge (2002a), interpret the linear function as
the projection of ci on the group means, rather than the conditional mean. The difference is that we need
not make any particular assumptions about the conditional mean function while there always exists a linear
projection. The conditional mean interpretation does impose an additional assumption on the model but
brings considerable simplification. Several authors have analyzed the extension of the model to projection
on the full set of individual observations rather than the means. The additional generality provides the bases
of several other estimators including minimum distance [Chamberlain (1982)], GMM [Arellano and Bover
(1995)], and constrained seemingly unrelated regressions and three-stage least squares [Wooldridge (2002a)].
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the common, unobserved ci , so the generalized regression model applies. The random
effects formulation is based on the assumption E[wi w′

i | Xi ] = σ 2
ε IT + σ 2

u ii′, where
wit = (εit + ui ). We developed the GLS and FGLS estimators for this formulation as
well as a strategy for robust estimation of the OLS covariance matrix. Among the im-
plications of the development of Section 11.5 is that this formulation of the disturbance
covariance matrix is more restrictive than necessary, given the information contained
in the data. The assumption that E[εiε

′
i | Xi ] = σ 2

ε IT assumes that the correlation across
periods is equal for all pairs of observations, and arises solely through the persistent ci .
In Section 10.2.6, we estimated the equivalent model with an unrestricted covariance
matrix, E[εiε

′
i | Xi ] = �. The implication is that the random effects treatment includes

two restrictive assumptions, mean independence, E[ci | Xi ] = α, and homoscedasticity,
E[εiε

′
i | Xi ] = σ 2

ε IT . [We do note, dropping the second assumption will cost us the iden-
tification of σ 2

u as an estimable parameter. This makes sense—if the correlation across
periods t and s can arise from either their common ui or from correlation of (εit, εis) then
there is no way for us separately to estimate a variance for ui apart from the covariances
of εit and εis .] It is useful to note, however, that the panel data model can be viewed
and formulated as a seemingly unrelated regressions model with common coefficients
in which each period constitutes an equation, Indeed, it is possible, albeit unnecessary,
to impose the restriction E[wi w′

i | Xi ] = σ 2
ε IT + σ 2

u ii′.
The mean independence assumption is the major shortcoming of the random effects

model. The central feature of the fixed effects model in Section 11.4 is the possibility that
E[ci | Xi ] is a nonconstant g(Xi ). As such, least squares regression of yit on xit produces
an inconsistent estimator of β. The dummy variable model considered in Section 11.4 is
the natural alternative. The fixed effects approach has the advantage of dispensing with
the unlikely assumption that ci and xit are uncorrelated. However, it has the shortcoming
of requiring estimation of the n “parameters,” αi .

Chamberlain (1982, 1984) and Mundlak (1978) suggested alternative approaches
that lie between these two. Their modifications of the fixed effects model augment it
with the projections of ci on all the rows of Xi (Chamberlain) or the group means
(Mundlak). (See Section 11.5.5.) Consider the first of these, and assume (as it requires)
a balanced panel of T observations per group. For purposes of this development, we
will assume T = 3. The generalization will be obvious at the conclusion. Then, the
projection suggested by Chamberlain is

ci = α + x′
i1γ 1 + x′

i2γ 2 + x′
i3γ 3 + ri (11-48)

where now, by construction, ri is orthogonal to xit.24 Insert (11-48) into (11-44) to obtain

yit = α + x′
i1γ 1 + x′

i2γ 2 + x′
i3γ 3 + x′

itβ + εit + ri .

24There are some fine points here that can only be resolved theoretically. If the projection in (11-48) is not the
conditional mean, then we have E[ri × xit] = 0, t = 1, . . . , T but not E[ri | Xi ] = 0. This does not affect the
asymptotic properties of the FGLS estimator to be developed here, although it does have implications, for
example, for unbiasedness. Consistency will hold regardless. The assumptions behind (11-48) do not include
that Var[ri | Xi ] is homoscedastic. It might not be. This could be investigated empirically. The implication here
concerns efficiency, not consistency. The FGLS estimator to be developed here would remain consistent, but
a GMM estimator would be more efficient—see Chapter 13. Moreover, without homoscedasticity, it is not
certain that the FGLS estimator suggested here is more efficient than OLS (with a robust covariance matrix
estimator). Our intent is to begin the investigation here. Further details can be found in Chamberlain (1984)
and, e.g., Im, Ahn, Schmidt, and Wooldridge (1999).
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Estimation of the 1 + 3K + K parameters of this model presents a number of compli-
cations. [We do note, this approach has the potential to (wildly) proliferate parameters.
For our quite small regional productivity model in Example 11.19, the original model
with six main coefficients plus the treatment of the constants becomes a model with
1 + 6 + 17(6) = 109 parameters to be estimated.]

If only the n observations for period 1 are used, then the parameter vector,

θ1 = α, (β + γ 1), γ 2, γ 3 = α, π1, γ 2, γ 3, (11-49)

can be estimated consistently, albeit inefficiently, by ordinary least squares. The
“model” is

yi1 = z′
i1θ1 + wi1, i = 1, . . . , n.

Collecting the n observations, we have

y1 = Z1θ1 + w1.

If, instead, only the n observations from period 2 or period 3 are used, then OLS
estimates, in turn,

θ2 = α, γ 1, (β + γ 2), γ 3 = α, γ 1, π2, γ 3,

or

θ3 = α, γ 1, γ 2, (β + γ 3) = α, γ 1, γ 2, π3.

It remains to reconcile the multiple estimates of the same parameter vectors. In terms
of the preceding layouts above, we have the following:

OLS Estimates: a1, p1, c2,1, c3,1, a2 c1,2, p2, c3,2, a3, c1,3, c2,3, p3;
Estimated Parameters: α, (β + γ 1), γ 2, γ 3, α, γ 1, (β + γ 2), γ 3, α, γ 1, γ 2, (β + γ 3);
Structural Parameters: α, β, γ 1, γ 2, γ 3.

(11-50)
Chamberlain suggested a minimum distance estimator (MDE). For this problem, the
MDE is essentially a weighted average of the several estimators of each part of the
parameter vector. We will examine the MDE for this application in more detail in
Chapter 13. (For another simpler application of minimum distance estimation that
shows the “weighting” procedure at work, see the reconciliation of four competing
estimators of a single parameter at the end of Example 11.20) There is an alternative
way to formulate the estimator that is a bit more transparent. For the first period,

y1 =

⎛⎜⎜⎜⎝
y1,1

y2,1
...

yn,1

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
1 x1,1 x1,1 x1,2 x1,3

1 x2,2 x2,1 x2,2 x2,3
...

...
...

...
...

1 xn,1 xn,1 xn,1 xn,1

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

α

β

γ 1

γ 2

γ 3

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
r1,1

r2,1
...

rn,1

⎞⎟⎟⎟⎠ = X̃1θ + r1. (11-51)

We treat this as the first equation in a T equation seemingly unrelated regressions
model. The second equation, for period 2, is the same (same coefficients), with the data
from the second period appearing in the blocks, then likewise for period 3 (and periods
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4, . . . , T in the general case). Stacking the data for the T equations (periods), we have⎛⎜⎜⎜⎝
y1

y2
...

yT

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
X̃1

X̃2
...

X̃T

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

α

β

γ 1
...

γ T

⎞⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
r1

r2
...

rT

⎞⎟⎟⎟⎠ = X̃θ + r, (11-52)

where E[X̃′r] = 0 and (by assumption), E[rr′ | X̃] = � ⊗ In. With the homoscedasticity
assumption for ri,t , this is precisely the application in Section 10.2.6. The parameters
can be estimated by FGLS as shown in Section 10.2.6.

Example 11.10 Hospital Costs
Carey (1997) examined hospital costs for a sample of 1,733 hospitals observed in five years,
1987–1991. The model estimated is

ln (TC/P) it = αi + βD DISit + βO OPVit + β3 ALSit + β4 CMit

+ β5 DIS2
it + β6 DIS3

it + β7 OPV2
it + β8 OPV3

it

+ β9 ALS2
it + β10 ALS3

it + β11 DISit × OPVit

+ β12 FAit + β13 HIit + β14 HTi + β15 LTi + β16 Largei

+ β17 Smalli + β18 NonProfiti + β19 Profiti

+ εit,

where

TC = total cost,
P = input price index,
DIS = discharges,
OPV = outpatient visits,
ALS = average length of stay,
CM = case mix index,
FA = fixed assets,
HI = Hirfindahl index of market concentration at county level,
HT = dummy for high teaching load hospital,
LT = dummy variable for low teaching load hospital,
Large = dummy variable for large urban area,
Small = dummy variable for small urban area,
Nonprofit = dummy variable for nonprofit hospital,
Profit = dummy variable for for profit hospital.

We have used subscripts “D” and “O” for the coefficients on DIS and OPV as these will be
isolated in the following discussion. The model employed in the study is that in (11-47) and
(11-48). Initial OLS estimates are obtained for the full cost function in each year. SUR esti-
mates are then obtained using a restricted version of the Chamberlain system. This second
step involved a hybrid model that modified (11-49) so that in each period the coefficient
vector was

θ t = [αt , βDt (γ ) , βOt (γ ) , β3t (γ ) , β4t (γ ) , β5t , . . . , β19t ]

where βDt (γ ) indicates that all five years of the variable (DISit) are included in the equation
and, likewise for βOt (γ ) (OPV) , β3t (γ ) (ALS) and β4t (γ ) (CM ) . This is equivalent to using

ci = α + �1991
t=1987(DIS, OPV, ALS, CM) ′

itγ t + r i

in (11-48).
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TABLE 11.7 Coefficient Estimates in SUR Model for Hospital Costs

Coefficient on Variable in the Equation

Equation DIS87 DIS88 DIS89 DIS90 DIS91

βD,87 + γD,87 γD,88 γD,89 γD,90 γD,91
SUR87 1.76 0.116 −0.0881 0.0570 −0.0617

γD,87 βD,88 + γD,88 γD,89 γD,90 γD,91
SUR88 0.254 1.61 −0.0934 0.0610 −0.0514

γD,87 γD,88 βD,89 + γD,89 γD,90 γD,91
SUR89 0.217 0.0846 1.51 0.0454 −0.0253

γD,87 γD,88 γD,89 βD,90 + γD,90 γD,91
SUR90 0.179 0.0822a 0.0295 1.57 0.0244

γD,87 γD,88 γD,89 γD,90 βD,91 + γD,91
SUR91 0.153 0.0363 −0.0422 0.0813 1.70

aThe value reported in the published paper is 8.22. The correct value is 0.0822. (Personal
communication from the author.)

The unrestricted SUR system estimated at the second step provides multiple estimates
of the various model parameters. For example, each of the five equations provides an esti-
mate of (β5, . . . , β19) . The author added one more layer to the model in allowing the coeffi-
cients on DISit and OPVit to vary over time. Therefore, the structural parameters of interest
are (βD1, . . . , βD5) , (γD1 . . . , γD5) (the coefficients on DIS) and (βO1, . . . , βO5) , (γO1 . . . , γO5) (the
coefficients on OPV). There are, altogether, 20 parameters of interest. The SUR estimates
produce, in each year (equation), parameters on DIS for the five years and on OPV for the
five years, so there is a total of 50 estimates. Reconciling all of them means imposing a total
of 30 restrictions. Table 11.7 shows the relationships for the time varying parameter on DISit
in the five-equation model. The numerical values reported by the author are shown follow-
ing the theoretical results. A similar table would apply for the coefficients on OPV, ALS, and
CM.(In the latter two, the β coefficient was not assumed to be time varying.) It can be seen
in the table, for example, that there are directly four different estimates of γD,87 in the second
to fifth equations, and likewise for each of the other parameters. Combining the entries in
Table 11.7 with the counterpart for the coefficients on OPV, we see 50 SUR/FGLS estimates
to be used to estimate 20 underlying parameters. The author used a minimum distance
approach to reconcile the different estimates. We will return to this example in Example 13.6,
where we will develop the MDE in more detail.

11.6 NONSPHERICAL DISTURBANCES
AND ROBUST COVARIANCE ESTIMATION

Because the models considered here are extensions of the classical regression model,
we can treat heteroscedasticity in the same way that we did in Chapter 9. That is, we
can compute the ordinary or feasible generalized least squares estimators and obtain
an appropriate robust covariance matrix estimator, or we can impose some structure on
the disturbance variances and use generalized least squares. In the panel data settings,
there is greater flexibility for the second of these without making strong assumptions
about the nature of the heteroscedasticity.

11.6.1 ROBUST ESTIMATION OF THE FIXED EFFECTS MODEL

As noted in Section 11.3.2, in a panel data set, the correlation across observations within
a group is likely to be a more substantial influence on the estimated covariance matrix of
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the least squares estimator than is heteroscedasticity. This is evident in the estimates in
Table 11.1. In the fixed (or random) effects model, the intent of explicitly including the
common effect in the model is to account for the source of this correlation. However,
accounting for the common effect in the model does not remove heteroscedasticity—it
centers the conditional mean properly. Here, we consider the straightforward extension
of White’s estimator to the fixed and random effects models.

In the fixed effects model, the full regressor matrix is Z = [X, D]. The White
heteroscedasticity consistent covariance matrix for OLS—that is, for the fixed effects
estimator—is the lower right block of the partitioned matrix

Est. Asy. Var[b, a] = (Z′Z)−1Z′E2Z(Z′Z)−1,

where E is a diagonal matrix of least squares (fixed effects estimator) residuals. This
computation promises to be formidable, but fortunately, it works out very simply. The
White estimator for the slopes is obtained just by using the data in group mean deviation
form [see (11-15) and (11-18)] in the familiar computation of S0 [see (9-26) and (9-27)].
Also, the disturbance variance estimator in (11-18) is the counterpart to the one in
(9-20), which we showed that after the appropriate scaling of � was a consistent estima-
tor of σ 2 = plim[1/(nT )]

∑n
i=1

∑T
t=1 σ 2

it . The implication is that we may still use (11-18)
to estimate the variances of the fixed effects.

A somewhat less general but useful simplification of this result can be obtained if we
assume that the disturbance variance is constant within the ith group. If E [ε2

it | Zi ] = σ 2
i ,

then, with a panel of data, σ 2
i is estimable by e′

i ei/T using the least squares residu-
als. The center matrix in Est. Asy. Var[b, a] may be replaced with

∑
i (e

′
i ei/T)Z′

i Zi .
Whether this estimator is preferable is unclear. If the groupwise model is correct, then
it and the White estimator will estimate the same matrix. On the other hand, if the
disturbance variances do vary within the groups, then this revised computation may be
inappropriate.

Arellano (1987) and Arellano and Bover (1995) have taken this analysis a step
further. If one takes the ith group as a whole, then we can treat the observations in

yi = Xiβ + αi iT + εi

as a generalized regression model with disturbance covariance matrix �i . We saw in
Section 11.3.2 that a model this general, with no structure on �, offered little hope for
estimation, robust or otherwise. But the problem is more manageable with a panel
data set where correlation across units can be assumed to be zero. As before, let
Xi∗ denote the data in group mean deviation form. The counterpart to X′�X
here is

X′
∗�X∗ =

n∑
i=1

(X′
i∗�i Xi∗).

By the same reasoning that we used to construct the White estimator in Chapter 9, we
can consider estimating �i with the sample of one, ei e′

i . As before, it is not consistent
estimation of the individual �i ’s that is at issue, but estimation of the sum. If n is large
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enough, then we could argue that

plim
1

nT
X′

∗�X∗ = plim
1

nT

n∑
i=1

X′
i∗�i X∗i

= plim
1
n

n∑
i=1

1
T

X′
∗i

ei e′
i X∗i (11-53)

= plim
1
n

n∑
i=1

(
1
T

T∑
t=1

T∑
s=1

eiteisx∗it x
′
∗is

)
.

This is the extension of (11-3) to the fixed effects case.

11.6.2 HETEROSCEDASTICITY IN THE RANDOM EFFECTS MODEL

Because the random effects model is a generalized regression model with a known
structure, OLS with a robust estimator of the asymptotic covariance matrix is not the
best use of the data. The GLS estimator is efficient whereas the OLS estimator is
not. If a perfectly general covariance structure is assumed, then one might simply use
Arellano’s estimator described in the preceding section with a single overall constant
term rather than a set of fixed effects. But, within the setting of the random effects
model, ηit = εit + ui , allowing the disturbance variance to vary across groups would
seem to be a useful extension.

A series of papers, notably Mazodier and Trognon (1978), Baltagi and Griffin (1988),
and the recent monograph by Baltagi (2005, pp. 77–79) suggest how one might allow
the group-specific component ui to be heteroscedastic. But, empirically, there is an
insurmountable problem with this approach. In the final analysis, all estimators of the
variance components must be based on sums of squared residuals, and, in particular,
an estimator of σ 2

ui would be estimated using a set of residuals from the distribution
of ui . However, the data contain only a single observation on ui repeated in each
observation in group i. So, the estimators presented, for example, in Baltagi (2001), use,
in effect, one residual in each case to estimate σ 2

ui . What appears to be a mean squared
residual is only (1/T )

∑T
t=1 û2

i = û2
i . The properties of this estimator are ambiguous,

but efficiency seems unlikely. The estimators do not converge to any population figure
as the sample size, even T, increases. [The counterpoint is made in Hsiao (2003, p. 56).]
Heteroscedasticity in the unique component, εit represents a more tractable modeling
possibility.

In Section 11.5.2, we introduced heteroscedasticity into estimation of the ran-
dom effects model by allowing the group sizes to vary. But the estimator there (and
its feasible counterpart in the next section) would be the same if, instead of θi =
1 − σε/(Tiσ

2
u + σ 2

ε )1/2, we were faced with

θi = 1 − σεi√
σ 2

εi + Tiσ 2
u

.

Therefore, for computing the appropriate feasible generalized least squares estimator,
once again we need only devise consistent estimators for the variance components and
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then apply the GLS transformation shown earlier. One possible way to proceed is as
follows: Because pooled OLS is still consistent, OLS provides a usable set of residuals.
Using the OLS residuals for the specific groups, we would have, for each group,

̂σ 2
εi + u2

i = e′
i ei

T
.

The residuals from the dummy variable model are purged of the individual specific
effect, ui , so σ 2

εi may be consistently (in T) estimated with

σ̂ 2
εi = elsdv′

i elsdv
i

T

where elsdv
it = yit − x′

itb
lsdv − ai . Combining terms, then,

σ̂ 2
u = 1

n

n∑
i=1

[(
eols′

i eols
i

T

)
−

(
elsdv′

i elsdv
i

T

)]
= 1

n

n∑
i=1

(̂
u2

i

)
.

We can now compute the FGLS estimator as before.

11.6.3 AUTOCORRELATION IN PANEL DATA MODELS

Serial correlation of regression disturbances will be considered in detail in Section 20.10.
Rather than defer the topic in connection to panel data to Chapter 20, we will briefly
note it here. As we saw in Section 11.3.2 and Example 11.1, “autocorrelation”—that
is, correlation across the observations in the groups in a panel—is likely to be a sub-
stantive feature of the model. Our treatment of the effect there, however, was meant to
accommodate autocorrelation in its broadest sense, that is, nonzero covariances across
observations in a group. The results there would apply equally to clustered observations,
as observed in Section 11.3.3. An important element of that specification was that with
clustered data, there might be no obvious structure to the autocorrelation. When the
panel data set consists explicitly of groups of time series, and especially if the time series
are relatively long as in Example 11.11, one might want to begin to invoke the more
detailed, structured time series models which are discussed in Chapter 20.

11.6.4 CLUSTER (AND PANEL) ROBUST COVARIANCE MATRICES
FOR FIXED AND RANDOM EFFECTS ESTIMATORS

As suggested earlier, in situations in which cluster corrections are appropriate, there
might be a residual correlation within groups that is not fully accounted for by a gener-
alized least squares estimator or a fixed effects model. A counterpart to (11-4) for the
fixed and random effects estimators is straightforward to construct based on results we
have already obtained.

For the fixed effects estimator, based on (11-14) and (11-20), we have

bLSDV =
⎡⎣ G∑

g=1

ng∑
i=1

(
�(1)xig

)(
�(1)xig

)′
⎤⎦−1⎡⎣ G∑

g=1

ng∑
i=1

(
�(1)xig

) (
�(1)yig

)⎤⎦ (11-54)

where �(1)xit = xit − (1)x̄i is the deviation of xit from one times the group mean vector.
The motivation for the “(1)” will be evident shortly. In the same fashion as (11-3), we
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will construct a robust covariance matrix estimator using

Est.Asy.Var[bLSDV] =

⎡⎣ G∑
g=1

ng∑
i=1

(
�(1)xig

) (
�(1)xig

)′
⎤⎦−1

×
⎡⎣ G∑

g=1

{ ng∑
i=1

(
�(1)xig

)
eig

}{ ng∑
i=1

(
�(1)xig

)
eig

}′⎤⎦×
⎡⎣ G∑

g=1

ng∑
i=1

(
�(1)xig

) (
�(1)xig

)′
⎤⎦−1

.

(11-55)

This estimator is equivalent to (11-3) based on the data in deviations from their cluster
means. (With a slight change in notation, it becomes a robust estimator for the covariance
matrix of the fixed effects estimator.) From (11-32) and (11-33), the GLS estimator of
β for the random effects model is

β̂GLS =
⎡⎣ G∑

g=1

X′
g�

−1
g Xg

⎤⎦−1⎡⎣ G∑
g=1

X′
g�

−1
g yg

⎤⎦
⎡⎣ G∑

g=1

ng∑
i=1

(
�(θg)xig

) (
�(θg)xig

)′
⎤⎦−1⎡⎣ G∑

g=1

ng∑
i=1

(
�(θg)xig

) (
�(θg)yig

)⎤⎦,

(11-56)
where θg = 1 −

(
σε/

√
σ 2

ε + ngσ 2
u

)
. It follows that the estimator of the asymptotic

covariance matrix would be

Est.Asy.Var[β̂GLS] =

⎡⎣ G∑
g=1

ng∑
i=1

(
�(θg)xig

) (
�(θg)xig

)′
⎤⎦−1

×
⎡⎣ G∑

g=1

{ ng∑
i=1

(
�(θg)xig

)
eig

}{ ng∑
i=1

(
�(θg)xig

)
eig

}′⎤⎦×⎡⎣ G∑
g=1

ng∑
i=1

(
�(θg)xig

) (
�(θg)xig

)′
⎤⎦−1

.

(11-57)

See, also, Cameron and Trivedi (2005, pp. 838–839).

Example 11.11 Robust Standard Errors for Fixed and Random Effects
Estimators

Table 11.8 presents the estimates of the fixed random effects models that appear in
Tables 11.5 and 11.6. The correction of the standard errors results in a fairly substantial
change in the estimates. The effect is especially promounced in the random effects case,
where the estimated standard errors increase by a factor of five or more.

11.7 SPATIAL AUTOCORRELATION

The nested random effects structure in Example 11.12 was motivated by an expectation
that effects of neighboring states would spill over into each other, creating a sort of
correlation across space, rather than across time as we have focused on thus far. The
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TABLE 11.8 Cluster Corrections for Fixed and Random Effects Estimators

Fixed Effects Random Effects

Variable Estimate Std.Error Robust Estimate Std.Error Robust

Constant 5.3455 0.04361 0.19866
Exp 0.1132 0.002471 0.00437 0.08906 0.002280 0.01276
Exp2 −0.00042 0.000055 0.000089 −0.0007577 0.00005036 0.00031
Wks 0.00084 0.000600 0.00094 0.001066 0.0005939 0.00331
Occ −0.02148 0.01378 0.02052 −0.1067 0.01269 0.05424
Ind 0.01921 0.01545 0.02450 −0.01637 0.01391 0.053003
South −0.00186 0.03430 0.09646 −0.06899 0.02354 0.05984
SMSA −0.04247 0.01942 0.03185 −0.01530 0.01649 0.05421
MS −0.02973 0.01898 0.02902 −0.02398 0.01711 0.06984
Union 0.03278 0.01492 0.02708 0.03597 0.01367 0.05653

effect should be common in cross-region studies, such as in agriculture, urban economics,
and regional science. Recent studies of the phenomenon include Case’s (1991) study
of expenditure patterns, Bell and Bockstael’s (2000) study of real estate prices, and
Baltagi and Li’s (2001) analysis of R&D spillovers. Models of spatial autocorrelation
[see Anselin (1988, 2001) for the canonical reference and Le Sage and Pace (2009) for
a recent survey], are constructed to formalize this notion.

A model with spatial autocorrelation can be formulated as follows: The regression
model takes the familiar panel structure,

yit = x′
itβ + εit + ui,i = 1, . . . , n; t = 1, . . . , T.

The common ui is the usual unit (e.g., country) effect. The correlation across space is
implied by the spatial autocorrelation structure

εit = λ

n∑
j=1

Wi jε j t + vt .

The scalar λ is the spatial autoregression coefficient. The elements Wi j are spatial (or
contiguity) weights that are assumed known. The elements that appear in the sum above
are a row of the spatial weight or contiguity matrix, W, so that for the n units, we have

εt = λWεt + vt , vt = vt i.

The structure of the model is embodied in the symmetric weight matrix, W. Consider
for an example counties or states arranged geographically on a grid or some linear
scale such as a line from one coast of the country to another. Typically Wi j will equal
one for i, j pairs that are neighbors and zero otherwise. Alternatively, Wi j may reflect
distances across space, so that Wi j decreases with increases in |i − j |. This would be
similar to a temporal autocorrelation matrix. Assuming that |λ| is less than one, and
that the elements of W are such that (I − λW) is nonsingular, we may write

εt = (In − λW)−1vt ,

so for the n observations at time t ,

yt = Xtβ + (In − λW)−1vt + u.

We further assume that ui and vi have zero means, variances σ 2
u and σ 2

v and are indepen-
dent across countries and of each other. It follows that a generalized regression model
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applies to the n observations at time t ;

E[yt | Xt ] = Xtβ,

Var[yt | Xt ] = (In − λW)−1[σ 2
v ii′](In − λW)−1 + σ 2

u In.

At this point, estimation could proceed along the lines of Chapter 9, save for the need
to estimate λ. There is no natural residual based estimator of λ. Recent treatments
of this model have added a normality assumption and employed maximum likelihood
methods. [The log likelihood function for this model and numerous references appear
in Baltagi (2005, p. 196). Extensive analysis of the estimation problem is given in Bell
and Bockstael (2000).]

A natural first step in the analysis is a test for spatial effects. The standard procedure
for a cross section is Moran’s (1950) I statistic, which would be computed for each set
of residuals, et , using

It = n
∑n

i=1

∑n
j=1 Wi j (eit − ēt )(e jt − ēt )(∑n

i=1

∑n
j=1 Wi, j

) ∑n
i=1(eit − ēt )2

. (11-58)

For a panel of T independent sets of observations, Ī = 1
T

∑T
t=1 It would use the full set

of information. A large sample approximation to the variance of the statistic under the
null hypothesis of no spatial autocorrelation is

V2 = 1
T

n2 ∑n
i=1

∑n
j=1 W 2

i j + 3
(∑n

i=1

∑n
j=1 Wi j

)2
− n

∑n
i=1

(∑n
j=1 Wi j

)2

(n2 − 1)
(∑n

i=1

∑n
j=1 Wi j

)2 . (11-59)

The statistic Ī/V will converge to standard normality under the null hypothesis and can
form the basis of the test. (The assumption of independence across time is likely to be
dubious at best, however.) Baltagi, Song, and Koh (2003) identify a variety of LM tests
based on the assumption of normality. Two that apply to cross section analysis [See Bell
and Bockstael (2000, p. 78)] are

LM(1) = (e′We/s2)2

tr(W′W + W2)

for spatial autocorrelation and

LM(2) = (e′Wy/s2)2

b′X′WMWXb/s2 + tr(W′W + W2)

for spatially lagged dependent variables, where e is the vector of OLS residuals, s2 =
e′e/n, and M = I − X(X′X)−1X′. [See Anselin and Hudak (1992).]

Anselin (1988) identifies several possible extensions of the spatial model to dynamic
regressions. A “pure space-recursive model” specifies that the autocorrelation pertains
to neighbors in the previous period:

yit = γ [Wyt−1]i + x′
itβ + εit.

A “time-space recursive model” specifies dependence that is purely autoregressive with
respect to neighbors in the previous period:

yit = ρyi,t−1 + γ [Wyt−1]i + x′
itβ + εit.
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A “time-space simultaneous” model specifies that the spatial dependence is with respect
to neighbors in the current period:

yit = ρyi,t−1 + [λWyt ]i + x′
itβ + εit.

Finally, a “time-space dynamic model” specifies that autoregression depends on neigh-
bors in both the current and last period:

yit = ρyi,t−1 + [λWyt ]i + γ [Wyt−1]i + x′
itβ + εit.

Example 11.12 Spatial Autocorrelation in Real Estate Sales
Bell and Bockstael analyzed the problem of modeling spatial autocorrelation in large samples.
This is likely to become an increasingly common problem with GIS (geographic information
system) data sets. The central problem is maximization of a likelihood function that involves a
sparse matrix, (I −λ W) . Direct approaches to the problem can encounter severe inaccuracies
in evaluation of the inverse and determinant. Kelejian and Prucha (1999) have developed a
moment-based estimator for λ that helps to alleviate the problem. Once the estimate of λ is in
hand, estimation of the spatial autocorrelation model is done by FGLS. The authors applied
the method to analysis of a cross section of 1,000 residential sales in Anne Arundel County,
Maryland, from 1993 to 1996. The parcels sold all involved houses built within one year prior
to the sale. GIS software was used to measure attributes of interest.

The model is

ln Price = α + β1 In Assessed value (LIV)
+ β2 In Lot size (LLT)
+ β3 In Distance in km to Washington, DC (LDC)
+ β4 In Distance in km to Baltimore (LBA)
+ β5% land surrounding parcel in publicly owned space (POPN)
+ β6% land surrounding parcel in natural privately owned space (PNAT)
+ β7% land surrounding parcel in intensively developed use (PDEV)
+ β8% land surrounding parcel in low density residential use (PLOW)
+ β9 Public sewer service (1 if existing or planned, 0 if not) (PSEW)
+ ε.

(Land surrounding the parcel is all parcels in the GIS data whose centroids are within
500 meters of the transacted parcel.) For the full model, the specification is

y = Xβ + ε,

ε = λWε + v.

The authors defined four contiguity matrices:

W1: Wij = 1/distance between i and j if distance < 600 meters, 0 otherwise,
W2: Wij = 1 if distance between i and j < 200 meters, 0 otherwise,
W3: Wij = 1 if distance between i and j < 400 meters, 0 otherwise,
W4: Wij = 1 if distance between i and j < 600 meters, 0 othewise.

All contiguity matrices were row-standardized. That is, elements in each row are scaled so
that the row sums to one. One of the objectives of the study was to examine the impact
of row standardization on the estimation. It is done to improve the numerical stability of the
optimization process. Because the estimates depend numerically on the normalization, it is
not completely innocent.

Test statistics for spatial autocorrelation based on the OLS residuals are shown in
Table 11.9. (These are taken from the authors’ Table 3.) The Moran statistics are distributed
as standard normal while the LM statistics are distributed as chi-squared with one degree
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TABLE 11.9 Test Statistics for Spatial
Autocorrelation

W1 W2 W3 W4

Moran’s I 7.89 9.67 13.66 6.88
LM(1) 49.95 84.93 156.48 36.46
LM(2) 7.40 17.22 2.33 7.42

TABLE 11.10 Estimated Spatial Regression Models

Spatial based Spatial based on
OLS FGLSa on W1 ML W1 Gen. Moments

Parameter Estimate Std.Err. Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.

α 4.7332 0.2047 4.7380 0.2048 5.1277 0.2204 5.0648 0.2169
β1 0.6926 0.0124 0.6924 0.0214 0.6537 0.0135 0.6638 0.0132
β2 0.0079 0.0052 0.0078 0.0052 0.0002 0.0052 0.0020 0.0053
β3 −0.1494 0.0195 −0.1501 0.0195 −0.1774 0.0245 −0.1691 0.0230
β4 −0.0453 0.0114 −0.0455 0.0114 −0.0169 0.0156 −0.0278 0.0143
β5 −0.0493 0.0408 −0.0484 0.0408 −0.0149 0.0414 −0.0269 0.0413
β6 0.0799 0.0177 0.0800 0.0177 0.0586 0.0213 0.0644 0.0204
β7 0.0677 0.0180 0.0680 0.0180 0.0253 0.0221 0.0394 0.0211
β8 −0.0166 0.0194 −0.0168 0.0194 −0.0374 0.0224 −0.0313 0.0215
β9 −0.1187 0.0173 −0.1192 0.0174 −0.0828 0.0180 −0.0939 0.0179
λ — — — — 0.4582 0.0454 0.3517 —

aThe author reports using a heteroscedasticity model σ 2
i × f (LIVi , LIV2

i ). The function f (.) is not identified.

of freedom. All but the LM(2) statistic for W3 are larger than the 99% critical value from the
respective table, so we would conclude that there is evidence of spatial autocorrelation. Es-
timates from some of the regressions are shown in Table 11.10. In the remaining results in
the study, the authors find that the outcomes are somewhat sensitive to the specification of
the spatial weight matrix, but not particularly so to the method of estimating λ.

Example 11.13 Spatial Lags in Health Expenditures
Moscone, Knapp, and Tosetti (2007) investigated the determinants of mental health expen-
diture over six years in 148 British local authorities using two forms of the spatial correlation
model to incorporate possible interaction among authorities as well as unobserved spatial
heterogeneity. The models estimated, in addition to pooled regression and a random effects
model, were as follows. The first is a model with spatial lags:

yt = γt i + ρWyt + Xtβ + u + εt ,

where u is a 148 × 1 vector of random effects and i is a 148 × 1 column of ones. For each
local authority,

yit = γt + ρ (w′
i yt ) + x′

itβ + ui + εit,

where w′
i is the ith row of the contiguity matrix, W. Contiguities were defined in W as one

if the locality shared a border or vertex and zero otherwise. (The authors also experimented
with other contiguity matrices based on “sociodemographic” differences.) The second model
estimated is of spatial error correlation

yt = γt i + Xtβ + u + εt ,

εt = λWεt + vt .
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For each local authority, this model implies

yit = γt + x′
itβ + ui + λ� j wi j ε j t + vit.

The authors use maximum likelihood to estimate the parameters of the model. To simplify
the computations, they note that the maximization can be done using a two-step procedure.
As we have seen in other applications, when � in a generalized regression model is known, the
appropriate estimator is GLS. For both of these models, with known spatial autocorrelation
parameter, a GLS transformation of the data produces a classical regression model. [See
(9-11).] The method used is to iterate back and forth between simple OLS estimation of γt , β
and σ 2

ε and maximization of the “concentrated log likelihood” function which, given the other
estimates, is a function of the spatial autocorrelation parameter, ρ or λ, and the variance of
the heterogeneity, σ 2

u .
The dependent variable in the models is the log of per capita mental health expenditures.

The covariates are the percentage of males and of people under 20 in the area, average
mortgage rates, numbers of unemployment claims, employment, average house price, me-
dian weekly wage, percent of single parent households, dummy variables for Labour party or
Liberal Democrat party authorities, and the density of population (“to control for supply-side
factors”). The estimated spatial autocorrelation coefficients for the two models are 0.1579
and 0.1220, both more than twice as large as the estimated standard error. Based on the
simple Wald tests, the hypothesis of no spatial correlation would be rejected. The log likeli-
hood values for the two spatial models were +206.3 and +202.8, compared to −211.1 for the
model with no spatial effects or region effects, so the results seem to favor the spatial models
based on a chi-squared test statistic (with one degree of freedom) of twice the difference.
However, there is an ambiguity in this result as the improved “fit” could be due to the region
effects rather than the spatial effects. A simple random effects model shows a log likelihood
value of +202.3, which bears this out. Measured against this value, the spatial lag model
seems the preferred specification, whereas the spatial autocorrelation model does not add
significantly to the log likelihood function compared to the basic random effects model.

11.8 ENDOGENEITY

Recent panel data applications have relied heavily on the methods of instrumental
variables. We will develop this methodology in detail in Chapter 13 where we consider
generalized method of moments (GMM) estimation. At this point, we can examine two
major building blocks in this set of methods, Hausman and Taylor’s (1981) estimator for
the random effects model and Bhargava and Sargan’s (1983) proposals for estimating a
dynamic panel data model. These two tools play a significant role in the GMM estimators
of dynamic panel models in Chapter 13.

11.8.1 HAUSMAN AND TAYLOR’S INSTRUMENTAL VARIABLES
ESTIMATOR

Recall the original specification of the linear model for panel data in (11-1):

yit = x′
itβ + z′

iα + εit. (11-60)

The random effects model is based on the assumption that the unobserved person-
specific effects, zi , are uncorrelated with the included variables, xit. This assumption is
a major shortcoming of the model. However, the random effects treatment does allow
the model to contain observed time-invariant characteristics, such as demographic char-
acteristics, while the fixed effects model does not—if present, they are simply absorbed
into the fixed effects. Hausman and Taylor’s (1981) estimator for the random effects
model suggests a way to overcome the first of these while accommodating the second.
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Their model is of the form:

yit = x′
1i tβ1 + x′

2i tβ2 + z′
1iα1 + z′

2iα2 + εit + ui

where β = (β ′
1, β

′
2)

′ and α = (α′
1, α

′
2)

′. In this formulation, all individual effects denoted
zi are observed. As before, unobserved individual effects that are contained in z′

iα in
(11-60) are contained in the person specific random term, ui . Hausman and Taylor define
four sets of observed variables in the model:

x1i t is K1 variables that are time varying and uncorrelated with ui ,
z1i is L1 variables that are time-invariant and uncorrelated with ui ,
x2i t is K2 variables that are time varying and are correlated with ui ,
z2i is L2 variables that are time-invariant and are correlated with ui .

The assumptions about the random terms in the model are

E [ui | x1i t , z1i ] = 0 though E [ui | x2i t , z2i ] �= 0,

Var[ui | x1i t , z1i , x2i t , z2i ] = σ 2
u ,

Cov[εit, ui | x1i t , z1i , x2i t , z2i ] = 0,

Var[εit + ui | x1i t , z1i , x2i t , z2i ] = σ 2 = σ 2
ε + σ 2

u ,

Corr[εit + ui , εis + ui | x1i t , z1i , x2i t , z2i ] = ρ = σ 2
u /σ 2.

Note the crucial assumption that one can distinguish sets of variables x1 and z1 that are
uncorrelated with ui from x2 and z2 which are not. The likely presence of x2 and z2 is what
complicates specification and estimation of the random effects model in the first place.

We note in passing that we can contrast the four assumptions with those made in
Plümper and Troeger’s (2007) FEVD formulation in Section 11.4.5 which, in the notation
of this formulation, would be that x1i t and x2i t are time varying and both freely correlated
with ui while z1i and z2i are time invariant and are both uncorrelated with ui . For
both formulations, (11-61) applies. The two approaches differ in the additional moment
conditions, E[variable × (ui +εit)] = 0, that are used to identify the parameters α1 and α2.

By construction, any OLS or GLS estimators of this model are inconsistent when
the model contains variables that are correlated with the random effects. Hausman and
Taylor have proposed an instrumental variables estimator that uses only the information
within the model (i.e., as already stated). The strategy for estimation is based on the
following logic: First, by taking deviations from group means, we find that

yit − ȳi. = (x1i t − x̄1i.)
′β1 + (x2i t − x̄2i.)

′β2 + εit − ε̄i., (11-61)

which implies that both parts of β can be consistently estimated by least squares, in
spite of the correlation between x2 and u. This is the familiar, fixed effects, least squares
dummy variable estimator—the transformation to deviations from group means re-
moves from the model the part of the disturbance that is correlated with x2i t . Now,
in the original model, Hausman and Taylor show that the group mean deviations can
be used as (K1 + K2) instrumental variables for estimation of (β, α). That is the im-
plication of (11-61). Because z1 is uncorrelated with the disturbances, it can likewise
serve as a set of L1 instrumental variables. That leaves a necessity for L2 instrumental
variables. The authors show that the group means for x1 can serve as these remaining
instruments, and the model will be identified so long as K1 is greater than or equal
to L2. For identification purposes, then, K1 must be at least as large as L2. As usual,
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feasible GLS is better than OLS, and available. Likewise, FGLS is an improvement over
simple instrumental variable estimation of the model, which is consistent but inefficient.

The authors propose the following set of steps for consistent and efficient estimation:

Step 1. Obtain the LSDV (fixed effects) estimator of β = (β ′
1, β

′
2)

′ based on x1 and x2.
The residual variance estimator from this step is a consistent estimator of σ 2

ε .

Step 2. Form the within-groups residuals, eit, from the LSDV regression at step 1.
Stack the group means of these residuals in a full-sample-length data vector. Thus,

e∗
it = ēi. = 1

T

T∑
t=1

(yit − x′
itbw), t = 1, . . . , T, i = 1, . . . , n. (The individual constant term, ai ,

is not included in e∗
it.) These group means are used as the dependent variable in an in-

strumental variable regression on z1 and z2 with instrumental variables z1 and x1. (Note
the identification requirement that K1, the number of variables in x1 be at least as large
as L2, the number of variables in z2.) The time-invariant variables are each repeated T
times in the data matrices in this regression. This provides a consistent estimator of α.

Step 3. The residual variance in the regression in step 2 is a consistent estimator of
σ ∗2 = σ 2

u + σ 2
ε /T. From this estimator and the estimator of σ 2

ε in step 1, we deduce an
estimator of σ 2

u = σ ∗2 − σ 2
ε /T. We then form the weight for feasible GLS in this model

by forming the estimate of

θ = 1 −
√

σ 2
ε

σ 2
ε + Tσ 2

u
.

Step 4. The final step is a weighted instrumental variable estimator. Let the full set of
variables in the model be

w′
it = (x′

1i t , x′
2i t , z′

1i , z′
2i ).

Collect these nT observations in the rows of data matrix W. The transformed variables
for GLS are, as before when we first fit the random effects model,

w∗′
it = w′

it − θ̂w̄′
i. and y∗

it = yit − θ̂ ȳi.

where θ̂ denotes the sample estimate of θ . The transformed data are collected in the
rows data matrix W∗ and in column vector y∗. Note in the case of the time-invariant
variables in wit, the group mean is the original variable, and the transformation just
multiplies the variable by 1 − θ̂ . The instrumental variables are

v′
it = [(x1i t − x̄1i.)

′, (x2i t − x̄2i.)
′, z′

1i x̄′
1i.].

These are stacked in the rows of the nT × (K1 + K2 + L1 + K1) matrix V. Note for the
third and fourth sets of instruments, the time-invariant variables and group means are
repeated for each member of the group. The instrumental variable estimator would be

(β̂ ′, α̂′)′IV = [(W∗′V)(V′V)−1(V′W∗)]−1[(W∗′V)(V′V)−1(V′y∗)].25 (11-62)

25Note that the FGLS random effects estimator would be (β̂ ′, α̂′)′RE = [W∗′W∗]−1W∗′y∗.
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The instrumental variable estimator is consistent if the data are not weighted, that is,
if W rather than W∗ is used in the computation. But, this is inefficient, in the same
way that OLS is consistent but inefficient in estimation of the simpler random effects
model.

Example 11.14 The Returns to Schooling
The economic returns to schooling have been a frequent topic of study by econometricians.
The PSID and NLS data sets have provided a rich source of panel data for this effort. In wage
(or log wage) equations, it is clear that the economic benefits of schooling are correlated
with latent, unmeasured characteristics of the individual such as innate ability, intelligence,
drive, or perseverance. As such, there is little question that simple random effects models
based on panel data will suffer from the effects noted earlier. The fixed effects model is the
obvious alternative, but these rich data sets contain many useful variables, such as race,
union membership, and marital status, which are generally time invariant. Worse yet, the
variable most of interest, years of schooling, is also time invariant. Hausman and Taylor
(1981) proposed the estimator described here as a solution to these problems. The authors
studied the effect of schooling on (the log of) wages using a random sample from the PSID of
750 men aged 25–55, observed in two years, 1968 and 1972. The two years were chosen so
as to minimize the effect of serial correlation apart from the persistent unmeasured individual
effects. The variables used in their model were as follows:

Experience = age—years of schooling—5,
Years of schooling,
Bad Health = a dummy variable indicating general health,
Race = a dummy variable indicating nonwhite (70 of 750 observations),
Union = a dummy variable indicating union membership,
Unemployed = a dummy variable indicating previous year’s unemployment.

The model also included a constant term and a period indicator. [The coding of the latter
is not given, but any two distinct values, including 0 for 1968 and 1 for 1972, would produce
identical results. (Why?)]

The primary focus of the study is the coefficient on schooling in the log wage equation.
Because schooling and, probably, Experience and Unemployed are correlated with the latent
effect, there is likely to be serious bias in conventional estimates of this equation. Table 11.11
reports some of their reported results. The OLS and random effects GLS results in the first
two columns provide the benchmark for the rest of the study. The schooling coefficient is
estimated at 0.0669, a value which the authors suspected was far too small. As we saw
earlier, even in the presence of correlation between measured and latent effects, in this
model, the LSDV estimator provides a consistent estimator of the coefficients on the time
varying variables. Therefore, we can use it in the Hausman specification test for correlation
between the included variables and the latent heterogeneity. The calculations are shown
in Section 11.5.4, result (11-42). Because there are three variables remaining in the LSDV
equation, the chi-squared statistic has three degrees of freedom. The reported value of 20.2
is far larger than the 95 percent critical value of 7.81, so the results suggest that the random
effects model is misspecified.

Hausman and Taylor proceeded to reestimate the log wage equation using their proposed
estimator. The fourth and fifth sets of results in Table 11.11 present the instrumental variable
estimates. The specification test given with the fourth set of results suggests that the proce-
dure has produced the desired result. The hypothesis of the modified random effects model
is now not rejected; the chi-squared value of 2.24 is much smaller than the critical value. The
schooling variable is treated as endogenous (correlated with ui ) in both cases. The difference
between the two is the treatment of Unemployed and Experience. In the preferred equation,
they are included in x2 rather than x1. The end result of the exercise is, again, the coeffi-
cient on schooling, which has risen from 0.0669 in the worst specification (OLS) to 0.2169
in the last one, a difference of over 200 percent. As the authors note, at the same time, the
measured effect of race nearly vanishes.
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TABLE 11.11 Estimated Log Wage Equations

Variables OLS GLS/RE LSDV HT/IV-GLS HT/IV-GLS

x1 Experience 0.0132 0.0133 0.0241 0.0217
(0.0011)a (0.0017) (0.0042) (0.0031)

Bad health −0.0843 −0.0300 −0.0388 −0.0278 −0.0388
(0.0412) (0.0363) (0.0460) (0.0307) (0.0348)

Unemployed −0.0015 −0.0402 −0.0560 −0.0559
Last Year (0.0267) (0.0207) (0.0295) (0.0246)
Time NRb NR NR NR NR

x2 Experience 0.0241
(0.0045)

Unemployed −0.0560
(0.0279)

z1 Race −0.0853 −0.0878 −0.0278 −0.0175
(0.0328) (0.0518) (0.0752) (0.0764)

Union 0.0450 0.0374 0.1227 0.2240
(0.0191) (0.0296) (0.0473) (0.2863)

Schooling 0.0669 0.0676
(0.0033) (0.0052)

Constant NR NR NR NR NR
z2 Schooling 0.1246 0.2169

(0.0434) (0.0979)
σε 0.321 0.192 0.160 0.190 0.629
ρ =

√
σ 2

u /(σ 2
u + σ 2

ε ) 0.632 0.661 0.817
Spec. Test [3] 20.2 2.24 0.00

aEstimated asymptotic standard errors are given in parentheses.
bNR indicates that the coefficient estimate was not reported in the study.

11.8.2 CONSISTENT ESTIMATION OF DYNAMIC PANEL DATA
MODELS: ANDERSON AND HSIAO’S IV ESTIMATOR

Consider a homogeneous dynamic panel data model,

yit = γ yi,t−1 + x′
itβ + ci + εit, (11-63)

where ci is, as in the preceding sections of this chapter, individual unmeasured hetero-
geneity, that may or may not be correlated with xit. We consider methods of estimation
for this model when T is fixed and relatively small, and n may be large and increasing.

Pooled OLS is obviously inconsistent. Rewrite (11-63) as

yit = γ yi,t−1 + x′
itβ + wit.

The disturbance in this pooled regression may be correlated with xit, but either way, it
is surely correlated with yi,t−1. By substitution,

Cov[yi,t−1, (ci + εit)] = σ 2
c + γ Cov[yi,t−2, (ci + εit)],

and so on. By repeated substitution, it can be seen that for |γ | < 1 and moderately
large T,

Cov[yi,t−1, (ci + εit)] ≈ σ 2
c /(1 − γ ). (11-64)
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[It is useful to obtain this result from a different direction. If the stochastic process that
is generating (yit, ci ) is stationary, then Cov[yi,t−1, ci ] = Cov[yi,t−2, ci ], from which we
would obtain (11-64) directly. The assumption |γ | < 1 would be required for stationarity.
We will return to this subject in Chapters 21 and 22.] Consequently, OLS and GLS
are inconsistent. The fixed effects approach does not solve the problem either. Taking
deviations from individual means, we have

yit − ȳi. = (xit − x̄i.)
′β + γ (yi,t−1 − ȳi.) + (εit − ε̄i.).

Anderson and Hsiao (1981, 1982) show that

Cov[(yit − ȳi.), (εit − ε̄i.)] ≈ −σ 2
ε

T(1 − γ )2

[
(T − 1) − Tγ + γ T

T

]
= −σ 2

ε

T(1 − γ )2

[
(1 − γ ) − 1 − γ T

T

]
.

This does converge to zero as T increases, but, again, we are considering cases in which
T is small or moderate, say 5 to 15, in which case, the bias in the OLS estimator could
be 15 percent to 60 percent. The implication is that the “within” transformation does
not produce a consistent estimator.

It is easy to see that taking first differences is likewise ineffective. The first differ-
ences of the observations are

yit − yi,t−1 = (xit − xi,t−1)
′β + γ (yi,t−1 − yi,t−2) + (εit − εi,t−1). (11-65)

As before, the correlation between the last regressor and the disturbance persists, so
OLS or GLS based on first differences would also be inconsistent. There is another
approach. Write the regression in differenced form as

�yit = �x′
itβ + γ�yi,t−1 + �εit

or, defining x∗
it = [�xit, �yi,t−1], ε∗

it = �εit and θ = [β ′, γ ]′

y∗
it = x∗

it
′θ + ε∗

it.

For the pooled sample, beginning with t = 3, write this as

y∗ = X∗θ + ε∗.

The least squares estimator based on the first differenced data is

θ̂ =
[

1
n(T − 3)

X∗′X∗
]−1 (

1
n(T − 3)

X∗′y∗
)

= θ +
[

1
n(T − 3)

X∗′X∗
]−1 (

1
n(T − 3)

X∗′ε∗
)

.

Assuming that the inverse matrix in brackets converges to a positive definite
matrix—that remains to be shown—the inconsistency in this estimator arises
because the vector in parentheses does not converge to zero. The last element is
plimn→∞[1/(n(T − 3))]�n

i=1�
T
t=3(yi,t−1 − yi,t−2)(εit − εi,t−1) which is not zero.

Suppose there were a variable z∗ such that plim [1/(n(T − 3))]z∗′ε∗ = 0 and
plim[1/(n(T − 3))]z∗′X∗ �= 0. Let Z = [�X, z∗]; z∗

it replaces �yi,t−1 in x∗
it. By this
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construction, it appears we have a consistent estimator. Consider

θ̂ IV = (Z′X∗)−1Z′y∗.

= (Z′X∗)−1Z′(X∗θ + ε∗)

= θ + (Z′X∗)−1Z′ε∗.

Then, after multiplying throughout by 1/(n(T − 3)) as before, we find

Plim θ̂ IV = θ + plim{[1/(n(T − 3))](Z′X∗)}−1 × 0,

which seems to solve the problem of consistent estimation.
The variable z∗ is an instrumental variable, and the estimator is an instrumental

variable estimator (hence the subscript on the preceding estimator). Finding suitable,
valid instruments, that is, variables that satisfy the necessary assumptions, for models in
which the right-hand variables are correlated with omitted factors is often challenging.
In this setting, there is a natural candidate—in fact, there are several. From (11-65), we
have at period t = 3

yi3 − yi2 = (xi3 − xi2)
′β + γ (yi2 − yi1) + (εi3 − εi2).

We could use yi1 as the needed variable, because it is not correlated εi3 −εi2. Continuing
in this fashion, we see that for t = 3, 4, . . . , T, yi,t−2 appears to satisfy our requirements.
Alternatively, beginning from period t = 4, we can see that zit = (yi,t−2 − yi,t−3) once
again satisfies our requirements. This is Anderson and Hsiao’s (1981) result for instru-
mental variable estimation of the dynamic panel data model. It now becomes a ques-
tion of which approach, levels (yi,t−2, t = 3, . . . , T), or differences (yi,t−2 − yi,t−3, t =
4, . . . , T) is a preferable approach. Arellano (1989) and Kiviet (1995) obtain results that
suggest that the estimator based on levels is more efficient.

11.8.3 EFFICIENT ESTIMATION OF DYNAMIC PANEL DATA
MODELS—THE ARELLANO/BOND ESTIMATORS

A leading contemporary application of the methods of this chapter is the dynamic panel
data model, which we now write

yit = x′
itβ + δyi,t−1 + ci + εit.

Several applications are described in Example 11.21. The basic assumptions of the model
are

1. Strict exogeneity: E[εit | Xi , ci ] = 0,
2. Homoscedasticity: E[ε2

it | Xi , ci ] = σ 2
ε ,

3. Nonautocorrelation: E[εitεis | Xi , ci ] = 0 if t �= s,
4. Uncorrelated observations: E[εitε js | Xi ,ci ,X j ,c j ] = 0 for i �= j and for all t and s,

where the rows of the T × K data matrix Xi are x′
it. We will not assume mean indepen-

dence. The “effects” may be fixed or random, so we allow

E[ci | Xi ] = g(Xi ).

(See Section 11.2.1.) We will also assume a fixed number of periods, T, for convenience.
The treatment here (and in the literature) can be modified to accommodate unbalanced
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panels, but it is a bit inconvenient. (It involves the placement of zeros at various places
in the data matrices defined below and, of course, changing the terminal indexes in
summations from 1 to T.)

The presence of the lagged dependent variable in this model presents a considerable
obstacle to estimation. Consider, first, the straightforward application of Assumption
A.I3 in Section 8.2. The compound disturbance in the model is (ci + εit). The correlation
between yi,t−1 and (ci + εi,t ) is obviously nonzero because yi,t−1 = x′

i,t−1β + δyi,t−2 +ci +
εi,t−1:

Cov[yi,t−1, (ci + εit)] = σ 2
c + δ Cov[yi,t−2, (ci + εit)].

If T is large and −1 < δ < 1, then this covariance will be approximately σ 2
c /(1 − δ). The

large T assumption is not going to be met in most cases. But, because δ will generally be
positive, we can expect that this covariance will be at least larger than σ 2

c . The implication
is that both (pooled) OLS and GLS in this model will be inconsistent. Unlike the case
for the static model (δ = 0), the fixed effects treatment does not solve the problem.
Taking group mean differences, we obtain

yi,t − ȳi. = (xi,t − x̄i.)
′β + δ(yi,t−1 − ȳi.) + (εi,t − ε̄i.).

As shown in Anderson and Hsiao (1981, 1982),

Cov[(yi,t−1 − ȳi.), (εi,t − ε̄i.)] ≈ −σ 2
ε

T 2

(T − 1) − Tδ + δT

(1 − δ)2
.

This result is O(1/T), which would generally be no problem if the asymptotics in our
model were with respect to increasing T. But, in this panel data model, T is assumed to
be fixed and relatively small. For conventional values of T, say 5 to 15, the proportional
bias in estimation of δ could be on the order of, say, 15 to 60 percent.

Neither OLS nor GLS are useful as estimators. There are, however, instrumental
variables available within the structure of the model. Anderson and Hsiao (1981, 1982)
proposed an approach based on first differences rather than differences from group
means,

yit − yi,t−1 = (xit − xi,t−1)
′β + δ(yi,t−1 − yi,t−2) + εit − εi,t−1.

For the first full observation,

yi3 − yi2 = (xi3 − xi2)
′β + δ(yi2 − yi1) + εi3 − εi2, (11-66)

the variable yi1 (assuming initial point t = 0 is where our data generating process begins)
satisfies the requirements, because εi1 is predetermined with respect to (εi3 − εi2). [That
is, if we used only the data from periods 1 to 3 constructed as in (11-66), then the
instrumental variables for (yi2 − yi1) would be zi(3) where zi(3) = (y1,1, y2,1, . . . , yn,1) for
the n observations.] For the next observation,

yi4 − yi3 = (xi4 − xi3)
′β + δ(yi3 − yi2) + εi4 − εi3,

variables yi2 and (yi2 − yi1) are both available.
Based on the preceding paragraph, one might begin to suspect that there is, in fact,

rather than a paucity of instruments, a large surplus. In this limited development, we have
a choice between differences and levels. Indeed, we could use both and, moreover, in any
period after the fourth, not only is yi2 available as an instrument, but so also is yi1, and so
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on. This is the essential observation behind the Arellano, Bover, and Bond (1991, 1995)
estimators, which are based on the very large number of candidates for instrumental
variables in this panel data model. To begin, with the model in first differences form, for
yi3−yi2, variable yi1 is available. For yi4−yi3, yi1 and yi2 are both available; for yi5−yi4, we
have yi1, yi2, and yi3, and so on. Consider, as well, that we have not used the exogenous
variables. With strictly exogenous regressors, not only are all lagged values of yis for s
previous to t − 1, but all values of xit are also available as instruments. For example, for
yi4 − yi3, the candidates are yi1, yi2 and (x′

i1, x′
i2, . . . , x′

iT) for all T periods. The number of
candidates for instruments is, in fact, potentially huge. [See Ahn and Schmidt (1995) for a
very detailed analysis.] If the exogenous variables are only predetermined, rather than
strictly exogenous, then only E[εit | xi,t , xi,t−1, . . . , xi1] = 0, and only vectors xis from
1 to t − 1 will be valid instruments in the differenced equation that contains εit − εi,t−1.
[See Baltagi and Levin (1986) for an application.] This is hardly a limitation, given that
in the end, for a moderate sized model, we may be considering potentially hundreds or
thousands of instrumental variables for estimation of what is usually a small handful of
parameters.

We now formulate the model in a more familiar form, so we can apply the instru-
mental variable estimator. In terms of the differenced data, the basic equation is

yit − yi,t−1 = (xit − xi,t−1)
′β + δ(yi,t−1 − yi,t−2) + εit − εi,t−1,

or

�yit = (�xit)
′β + δ(�yi,t−1) + �εit, (11-67)

where � is the first difference operator, �at = at − at−1 for any time-series variable (or
vector) at . (It should be noted that a constant term and any time-invariant variables in
xit will fall out of the first differences. We will recover these below after we develop the
estimator for β.) The parameters of the model to be estimated are θ = (β ′, δ)′ and σ 2

ε .
For convenience, write the model as

ỹit = x̃′
itθ + ε̃it

We are going to define an instrumental variable estimator along the lines of (8-9) and
(8-10). Because our data set is a panel, the counterpart to

Z′X̃ =
n∑

i=1

zi x̃′
i (11-68)

in the cross-section case would seem to be

Z′X̃ =
n∑

i=1

T∑
i=3

zitx̃′
it =

n∑
i=1

Z′
i X̃

′
i (11-69)

ỹi =

⎡⎢⎢⎢⎣
�yi3

�yi4
...

�yiTi

⎤⎥⎥⎥⎦ , X̃i =

⎡⎢⎢⎣
�x′

i3 �yi2

�x′
i4 �yi3

· · ·
�x′

iT �yi,T−1

⎤⎥⎥⎦ ,

where there are (T −2) observations (rows) and K+1 columns in X̃i . There is a compli-
cation, however, in that the number of instruments we have defined may vary by period,
so the matrix computation in (11-69) appears to sum matrices of different sizes.
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Consider an alternative approach. If we used only the first full observations defined
in (11-67), then the cross-section version would apply, and the set of instruments Z in
(11-68) with strictly exogenous variables would be the n × (1 + KT ) matrix

Z(3) =

⎡⎢⎢⎢⎣
y1,1, x′

1,1, x′
1,2, . . . x′

1,T

y2,1, x′
2,1, x′

2,2, . . . x′
2,T

...

yn,1, x′
n,1, x′

n,2, . . . x′
n,T

⎤⎥⎥⎥⎦ ,

and the instrumental variable estimator of (8-9) would be based on

X̃(3) =

⎡⎢⎢⎢⎣
x′

1,3 − x′
1,2 y1,4 − y1,3

x′
2,3 − x′

2,2 y2,4 − y2,3
...

...

x′
n,3 − x′

n,2 yn,4 − yn,3

⎤⎥⎥⎥⎦ and ỹ(3) =

⎡⎢⎢⎢⎣
y1,3 − y1,2

y2,3 − y2,2
...

yn,3 − yn,2

⎤⎥⎥⎥⎦ .

The subscript “(3)” indicates the first observation used for the left-hand side of the
equation. Neglecting the other observations, then, we could use these data to form the
IV estimator in (8-9), which we label for the moment θ̂ IV(3). Now, repeat the construction
using the next (fourth) observation as the first, and, again, using only a single year of
the panel. The data matrices are now

X̃(4) =

⎡⎢⎢⎢⎣
x′

1,4 − x′
1,3 y1,3 − y1,2

x′
2,4 − x′

2,3 y2,3 − y2,2
...

...

x′
n,4 − x′

n,3 yn,3 − yn,2

⎤⎥⎥⎥⎦ , ỹ(4) =

⎡⎢⎢⎢⎣
y1,4 − y1,3

y2,4 − y2,3
...

yn,4 − yn,3

⎤⎥⎥⎥⎦ , and

(11-70)

Z(4) =

⎡⎢⎢⎢⎣
y1,1, y1,2, x′

1,1, x′
1,2, . . . x′

1,T
y2,1, y2,2, x′

2,1, x′
2,2, . . . x′

2,T
...

yn,1, yn,2, x′
n,1, x′

n,2, . . . x′
n,T

⎤⎥⎥⎥⎦
and we have a second IV estimator, θ̂ IV(4), also based on n observations, but, now, 2 + KT
instruments. And so on.

We now need to reconcile the T − 2 estimators of θ that we have constructed,
θ̂ IV(3), θ̂ IV(4), . . . , θ̂ IV(T). We faced this problem in Section 11.5.8 where we examined
Chamberlain’s formulation of the fixed effects model. The minimum distance estimator
suggested there and used in Carey’s (1997) study of hospital costs in Example 11.10
provides a means of efficiently “averaging” the multiple estimators of the parameter
vector. We will (as promised) return to the MDE in Chapter 13. For the present, we con-
sider, instead, Arellano and Bond’s (1991) [and Arellano and Bover’s (1995)] approach
to this problem. We will collect the full set of estimators in a counterpart to (11-56)
and (11-57). First, combine the sets of instruments in a single matrix, Z, where for each
individual, we obtain the (T − 2)× Lmatrix Zi . The definition of the rows of Zi depend
on whether the regressors are assumed to be strictly exogenous or predetermined. For
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strictly exogenous variables,

Zi =

⎡⎢⎣yi,1, x′
i,1, x′

i,2, . . . x′
i,T 0 . . . 0

0 yi,1, yi,2, x′
i,1, x′

i,2, . . . x′
i,T . . . 0

. . . . . . . . . . . .

0 0 . . . yi,1, yi,2, . . . , yi,T−2, x′
i,1, x′

i,2, . . . x′
i,T

⎤⎥⎦,

(11-71a)

and L = ∑T−2
i=1 (i + TK) = (T − 2)(T − 1)/2 + (T − 2)TK. For only predetermined

variables, the matrix of instrumental variables is

Zi =

⎡⎢⎢⎣
yi,1, x′

i,1, x′
i,2 0 . . . 0

0 yi,1, yi,2, x′
i,1, x′

i,2, x′
i,3 . . . 0

. . . . . . . . . . . .

0 0 . . . yi,1, yi,2, . . . , yi,T−2, x′
i,1, x′

i,2, . . . x′
i,T−1

⎤⎥⎥⎦,

(11-71b)

and L = �T−2
i=1 (i(K +1)+ K) = [(T −2)(T −1)/2](1+ K)+ (T −2)K. This construction

does proliferate instruments (moment conditions, as we will see in Chapter 13). In the
application in Example 11.15, we have a small panel with only T = 7 periods, and we fit
a model with only K = 4 regressors in xit, plus the lagged dependent variable. The strict
exogeneity assumption produces a Zi matrix that is (5 × 135) for this case. With only
the assumption of predetermined xit, Zi collapses slightly to (5 × 95). For purposes of
the illustration, we have used only the two previous observations on xit. This further
reduces the matrix to

Zi =

⎡⎢⎢⎣
yi,1, x′

i,1, x′
i,2 0 . . . 0

0 yi,1, yi,2, xi,2, x′
i,3 . . . 0

. . . . . . . . . . . .

0 0 . . . yi,1, yi,2, . . . , yi,T−2, x′
i,T−2, x′

i,T−1

⎤⎥⎥⎦ ,

(11-71c)

which, with T = 7 and K = 4, will be (5 × 55). [Baltagi (2005, Chapter 8) presents
some alternative configurations of Zi that allow for mixtures of strictly exogenous and
predetermined variables.]

Now, we can compute the two-stage least squares estimator in (11-10) using our
definitions of the data matrices Zi , X̃i , and ỹi and (11-69). This will be

θ̂ IV =
⎡⎣(

n∑
i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i X̃i

)⎤⎦−1

×
⎡⎣(

n∑
i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i ỹi

)⎤⎦ . (11-72)

The natural estimator of the asymptotic covariance matrix for the estimator would be

Est. Asy. Var
[
θ̂ IV

] = σ̂ 2
�ε

⎡⎣(
n∑

i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i Xi

)⎤⎦−1

, (11-73)



Greene-2140242 book November 23, 2010 8:57

CHAPTER 11 ✦ Models for Panel Data 405

where

σ̂ 2
�ε =

∑n
i=1

∑T
t=3[(yit − yi,t−1) − (xit − xi,t−1)

′β̂ − δ̂(yi,t−1 − yi,t−2)]2

n(T − 2)
. (11-74)

However, this variance estimator is likely to understate the true asymptotic variance
because the observations are autocorrelated for one period. Because (yit − yi,t−1) =
x̃′

itθ + (εit − εi,t−1) = x̃′
itθ + vit,

Cov[vit, vi,t−1] = Cov[vit, vi,t+1] = −σ 2
ε .

Covariances at longer lags or leads are zero. In the differenced model, though the
disturbance covariance matrix is not σ 2

v I, it does take a particularly simple form.

Cov

⎛⎜⎜⎜⎜⎝
εi,3 − εi,2

εi,4 − εi,3

εi,5 − εi,4

· · ·
εi,T − εi,T−1

⎞⎟⎟⎟⎟⎠ = σ 2
ε

⎡⎢⎢⎢⎢⎣
2 −1 0 . . . 0

−1 2 −1 . . . 0
0 −1 2 . . . 0
. . . . . . −1 . . . −1
0 0 . . . −1 2

⎤⎥⎥⎥⎥⎦ = σ 2
ε �i . (11-75)

The implication is that the estimator in (11-74) estimates not σ 2
ε but 2σ 2

ε . However,
simply dividing the estimator by two does not produce the correct asymptotic co-
variance matrix because the observations themselves are autocorrelated. As such, the
matrix in (11-73) is inappropriate. (We encountered this issue in Theorem 9.1 and in
Sections 9.2.3, 9.4.3, and 11.3.2.) An appropriate correction can be based on the coun-
terpart to the White estimator that we developed in (11-3). For simplicity, let

Â =
⎡⎣(

n∑
i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i X̃i

)⎤⎦−1

.

Then, a robust covariance matrix that accounts for the autocorrelation would be

Â

⎡⎣(
n∑

i=1

X̃′
i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i v̂i v̂′

i Zi

) (
n∑

i=1

Z′
i Zi

)−1 (
n∑

i=1

Z′
i X̃i

)⎤⎦ Â.

(11-76)

[One could also replace the v̂i v̂′
i in (11-73) with σ̂ 2

ε �i in (11-72) because this is the known
expectation.]

It will be useful to digress briefly and examine the estimator in (11-72). The compu-
tations are less formidable than it might appear. Note that the rows of Zi in (11-71a,b,c)
are orthogonal. It follows that the matrix

F =
n∑

i=1

Z′
i Zi

in (11-72) is block-diagonal with T − 2 blocks. The specific blocks in F are

Ft =
n∑

i=1

zitz′
it

= Z′
(t)Z(t),
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for t = 3, . . . , T. Because the number of instruments is different in each period—see
(11-71)—these blocks are of different sizes, say, (Lt × Lt ). The same construction shows
that the matrix

∑n
i=1 X̃′

i Zi is actually a partitioned matrix of the form
n∑

i=1

X̃′
i Zi = [

X̃′
(3)Z(3) X̃′

(4)Z(4) . . . X̃′
(T )Z(T )

]
,

where, again, the matrices are of different sizes; there are T − 2 rows in each but the
number of columns differs. It follows that the inverse matrix, (

∑n
i=1 Z′

i Zi )
−1, is also

block-diagonal, and that the matrix quadratic form in (11-72) can be written(
n∑

i=1

X̃′
i Zi

) (
n∑

i=1

Z̃′
i Zi

)−1 (
n∑

i=1

Z′
i X̃i

)
=

T∑
t=3

(
X̃′

(t)Z(t)
) (

Z′
(t)Z(t)

)−1 (
Z′

(t)X̃(t)
)

=
T∑

t=3

(
ˆ̃X

′
(t)

ˆ̃X(t)

)

=
T∑

t=3

W(t),

[see (8-9) and the preceding result]. Continuing in this fashion, we find(
n∑

i=1

X̃′
i Zi

) (
n∑

i=1

Z̃′
i Zi

)−1 (
n∑

i=1

Z′
i ỹi

)
=

T∑
t=3

ˆ̃X
′
(t)y(t).

From (8-10), we can see that

ˆ̃X
′
(t)y(t) =

(
ˆ̃X

′
(t)

ˆ̃X(t)

)
θ̂ IV(t)

= W(t)θ̂ IV(t).

Combining the terms constructed thus far, we find that the estimator in (11-72) can be
written in the form

θ̂ IV =
(

T∑
t=3

W(t)

)−1 (
T∑

t=3

W(t)θ̂ IV(t)

)

=
T∑

t=3

R(t)θ̂ IV(t),

where

R(t) =
(

T∑
t=3

W(t)

)−1

W(t) and
T∑

t=3

R(t) = I.

In words, we find that, as might be expected, the Arellano and Bond estimator of
the parameter vector is a matrix weighted average of the T −2 period specific two-stage
least squares estimators, where the instruments used in each period may differ. Because
the estimator is an average of estimators, a question arises, is it an efficient average—
are the weights chosen to produce an efficient estimator? Perhaps not surprisingly, the
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answer for this θ̂ is no; there is a more efficient set of weights that can be constructed
for this model. We will assemble them when we examine the generalized method of
moments estimator in Chapter 13

There remains a loose end in the preceding. After (11-64), it was noted that this
treatment discards a constant term and any time-invariant variables that appear in the
model. The Hausman and Taylor (1981) approach developed in the preceding section
suggests a means by which the model could be completed to accommodate this possi-
bility. Expand the basic formulation to include the time-invariant effects, as

yit = x′
itβ + δyi,t−1 + α + f ′

i γ + ci + εit,

where fi is the set of time-invariant variables and γ is the parameter vector yet to
be estimated. This model is consistent with the entire preceding development, as the
component α + f ′

i γ would have fallen out of the differenced equation along with ci at
the first step at (11-63). Having developed a consistent estimator for θ = (β ′, δ)′, we
now turn to estimation of (α, γ ′)′. The residuals from the IV regression (11-72),

wit = x′
itβ̂ IV − δ̂IV yi,t−1

are pointwise consistent estimators of

ωit = α + f ′
i γ + ci + εit.

Thus, the group means of the residuals can form the basis of a second-step regression;

w̄i = α + f ′
i γ + ci + ε̄i + ηi (11-76)

where ηi = (w̄i . − ω̄i .) is the estimation error that converges to zero as θ̂ converges
to θ . The implication would seem to be that we can now linearly regress these group
mean residuals on a constant and the time-invariant variables fi to estimate α and γ .
The flaw in the strategy, however, is that the initial assumptions of the model do not
state that ci is uncorrelated with the other variables in the model, including the im-
plicit time invariant terms, fi . Therefore, least squares is not a usable estimator here
unless the random effects model is assumed, which we specifically sought to avoid at
the outset. As in Hausman and Taylor’s treatment, there is a workable strategy if it
can be assumed that there are some variables in the model, including possibly some
among the fi as well as others among xit that are uncorrelated with ci and εit. These
are the z1 and x1 in the Hausman and Taylor estimator (see step 2 in the develop-
ment of the preceding section). Assuming that these variables are available—this is
an identification assumption that must be added to the model—then we do have a us-
able instrumental variable estimator, using as instruments the constant term (1), any
variables in fi that are uncorrelated with the latent effects or the disturbances (call
this fi1), and the group means of any variables in xit that are also exogenous. There
must be enough of these to provide a sufficiently large set of instruments to fit all the
parameters in (11-76). This is, once again, the same identification we saw in step 2 of
the Hausman and Taylor estimator, K1, the number of exogenous variables in xit must
be at least as large as L2, which is the number of endogenous variables in fi . With all
this in place, we then have the instrumental variable estimator in which the dependent
variable is w̄i., the right-hand-side variables are (1, fi ), and the instrumental variables
are (1, fi1, x̄i1.).
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There is yet another direction that we might extend this estimation method. In
(11-75), we have implicitly allowed a more general covariance matrix to govern the
generation of the disturbances εit and computed a robust covariance matrix for the
simple IV estimator. We could take this a step further and look for a more efficient
estimator. As a library of recent studies has shown, panel data sets are rich in information
that allows the analyst to specify highly general models and to exploit the implied
relationships among the variables to construct much more efficient generalized method
of moments (GMM) estimators. [See, in particular, Arellano and Bover (1995) and
Blundell and Bond (1998).] We will return to this development in Chapter 13.

Example 11.15 Dynamic Labor Supply Equation
In Example 8.5, we used instrumental variables fit a labor supply equation,

Wksit = γ1 + γ2ln Wageit + γ3 Edi + γ4 Unionit + γ5 Femi + uit.

To illustrate the computations of this section, we will extend this model as follows:

Wksit = β1In Wageit + β2 Unionit + β3 Occit + β4 Expit + δ Wksi ,t−1

+ α + γ1 Edi + γ2 Femi + ci + εit.

(We have rearranged the variables and parameter names to conform to the notation in this
section.) We note, in theoretical terms, as suggested in the earlier example, it may not be
appropriate to treat ln Wageit as uncorrelated with εit or ci . However, we will be analyzing the
model in first differences. It may well be appropriate to treat changes in wages as exogenous.
That would depend on the theoretical underpinnings of the model. We will treat the variable
as predetermined here, and proceed. There are two time-invariant variables in the model,
Femi , which is clearly exogenous, and Edi , which might be endogenous. The identification
requirement for estimation of (α, γ1, γ2) is met by the presence of three exogenous variables,
Unionit, Occit, and Expit (K1 = 3 and L2 = 1).

The differenced equation analyzed at the first step is

�Wksit = β1�In Wageit + β2�Unionit + β3�Occit + β4�Expit + δ�Wksi ,t−1 + εit.

We estimated the parameters and the asymptotic covariance matrix according to (11-72) and
(11-76). For specification of the instrumental variables, we used the one previous observation
on xit, as shown in the text.26 Table 11.12 presents the computations with several other
inconsistent estimators.

The various estimates are quite far apart. In the absence of the common effects (and
autocorrelation of the disturbances), all five estimators shown would be consistent. Given
the very wide disparities, one might suspect that common effects are an important feature of
the data. The second standard errors given with the IV estimates are based on the uncorrected
matrix in (11-73) with σ̂ 2

�ε in (11-74) divided by two. We found the estimator to be quite volatile,
as can be seen in the table. The estimator is also very sensitive to the choice of instruments
that comprise Zi . Using (11-71a) instead of (11-71b) produces wild swings in the estimates
and, in fact, produces implausible results. One possible explanation in this particular example
is that the instrumental variables we are using are dummy variables that have relatively little
variation over time.

26This estimator and the GMM estimators in Chapter 13 are built into some contemporary computer programs,
including NLOGIT and Stata. Many researchers use Gauss programs that are distributed by M. Arellano,
http://www.cemfi.es/%7Earellano/#dpd, or program the calculations themselves using MatLab or R. We have
programmed the matrix computations directly for this application using the matrix package in NLOGIT.
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11.8.4 NONSTATIONARY DATA AND PANEL DATA MODELS

Some of the discussion thus far (and to follow) focuses on “small T” statistical results.
Panels are taken to contain a fixed and small T observations on a large n individual
units. Recent research using cross-country data sets such as the Penn World Tables
(http://pwt.econ.upenn.edu/php site/pwt index.php), which now include data on nearly
200 countries for well over 50 years, have begun to analyze panels with T sufficiently
large that the time-series properties of the data become an important consideration. In
particular, the recognition and accommodation of nonstationarity that is now a standard
part of single time-series analyses (as in Chapter 23) are now seen to be appropriate for
large scale cross-country studies, such as income growth studies based on the Penn World
Tables, cross-country studies of health care expenditure, and analyses of purchasing
power parity.

The analysis of long panels, such as in the growth and convergence literature, typi-
cally involves dynamic models, such as

yit = αi + γi yi,t−1 + x′
itβ i + εit. (11-77)

In single time-series analysis involving low-frequency macroeconomic flow data such as
income, consumption, investment, the current account deficit, and so on, it has long been
recognized that estimated regression relations can be distorted by nonstationarity in the
data. What appear to be persistent and strong regression relationships can be entirely
spurious and due to underlying characteristics of the time-series processes rather than
actual connections among the variables. Hypothesis tests about long-run effects will
be considerably distorted by unit roots in the data. It has become evident that the
same influences, with the same deletarious effects, will be found in long panel data
sets. The panel data application is further complicated by the possible heterogeneity
of the parameters. The coefficients of interest in many cross-country studies are the
lagged effects, such as γi in (11-77), and it is precisely here that the received results
on nonstationary data have revealed the problems of estimation and inference. Valid
tests for unit roots in panel data have been proposed in many studies. Three that are
frequently cited are Levin and Lin (1992), Im, Pesaran, and Shin (2003) and Maddala
and Wu (1999).

There have been numerous empirical applications of time series methods for non-
stationary data in panel data settings, including Frankel and Rose’s (1996) and Pedroni’s
(2001) studies of purchasing power parity, Fleissig and Strauss (1997) on real wage sta-
tionarity, Culver and Papell (1997) on inflation, Wu (2000) on the current account bal-
ance, McCoskey and Selden (1998) on health care expenditure, Sala-i-Martin (1996) on
growth and convergence, McCoskey and Kao (1999) on urbanization and production,
and Coakely et al. (1996) on savings an investment. An extensive enumeration appears
in Baltagi (2005, Chapter 12).

A subtle problem arises in obtaining results useful for characterizing the properties
of estimators of the model in (11-77). The asymptotic results based on large n and large
T are not necessarily obtainable simultaneously, and great care is needed in deriving
the asymptotic behavior of useful statistics. Phillips and Moon (1999, 2000) are standard
references on the subject.

We will return to the topic of nonstationary data in Chapter 23. This is an emerging
literature, most of which is well beyond the level of this text. We will rely on the several
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detailed received surveys, such as Bannerjee (1999), Smith (2000), and Baltagi and Kao
(2000) to fill in the details.

11.9 NONLINEAR REGRESSION WITH PANEL DATA

The extension of the panel data models to the nonlinear regression case is, perhaps
surprisingly, not at all straightforward. Thus far, to accommodate the nonlinear model,
we have generally applied familiar results to the linearized regression. This approach will
carry forward to the case of clustered data. (See Section 11.3.3) Unfortunately, this will
not work with the standard panel data methods. The nonlinear regression will be the
first of numerous panel data applications that we will consider in which the widsom of
the linear regression model cannot be extended to the more general framework.

11.9.1 A ROBUST COVARIANCE MATRIX FOR NONLINEAR
LEAST SQUARES

The counterpart to (11-3) or (11-4) would simply replace Xi with X̂0
i where the rows

are the pseudoregressors for cluster i as defined in (7-12) and “ˆ” indicates that it is
computed using the nonlinear least squares estimates of the parameters.

Example 11.16 Health Care Utilization
The recent literature in health economics includes many studies of health care utilization. A
common measure of the dependent variable of interest is a count of the number of encounters
with the health care system, either through visits to a physician or to a hospital. These
counts of occurrences are usually studied with the Poisson regression model described in
Section 19.2. The nonlinear regression model is

E [ yi | xi ] = exp(x′
i β) .

A recent study in this genre is “Incentive Effects in the Demand for Health Care: A Bivariate
Panel Count Data Estimation” by Riphahn, Wambach, and Million (2003). The authors were
interested in counts of physician visits and hospital visits. In this application, they were par-
ticularly interested in the impact that the presence of private insurance had on the utilization
counts of interest, that is, whether the data contain evidence of moral hazard.

The raw data are published on the Journal of Applied Econometrics data archive web site,
The URL for the data file is http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-
million/. The variables in the data file are listed in Appendix Table F7.1. The sample is an
unbalanced panel of 7,293 households, the German Socioeconomic Panel data set. The
number of observations varies from one to seven (1,525; 1,079; 825; 926; 1,311; 1,000; 887)
with a total number of observations of 27,326. We will use these data in several examples
here and later in the book.

The following model uses a simple specification for the count of number of visits to the
physican in the observation year,

xit = (1, ageit, educit, incomeit, kidsit)

Table 11.13 details the nonlinear least squares iterations and the results. The convergence
criterion for the iterations is e0′X0(X0′X0)X0′e0 < 10−10. Although this requires 11 iterations,
the function actually reaches the minimum in 7. The estimates of the asymptotic standard
errors are computed using the conventional method, s2( X̂0′X̂0)−1 and then by the cluster cor-
rection in (11-4). The corrected standard errors are considerably larger, as might be expected
given that these are a panel data set.
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TABLE 11.13 Nonlinear Least Squares Estimates of a
Utilization Equation

Begin NLSQ iterations. Linearized regression.
Iteration = 1; Sum of squares = 1014865.00; Gradient = 156281.794
Iteration = 2; Sum of squares = 8995221.17; Gradient = 8131951.67
Iteration = 3; Sum of squares = 1757006.18; Gradient = 897066.012
Iteration = 4; Sum of squares = 930876.806; Gradient = 73036.2457
Iteration = 5; Sum of squares = 860068.332; Gradient = 2430.80472
Iteration = 6; Sum of squares = 857614.333; Gradient = 12.8270683
Iteration = 7; Sum of squares = 857600.927; Gradient = 0.411851239E-01
Iteration = 8; Sum of squares = 857600.883; Gradient = 0.190628165E-03
Iteration = 9; Sum of squares = 857600.883; Gradient = 0.904650588E-06
Iteration = 10; Sum of squares = 857600.883; Gradient = 0.430441193E-08
Iteration = 11; Sum of squares = 857600.883; Gradient = 0.204875467E-10

Convergence achieved

Variable Estimate Standard Error Robust Standard Error

Constant 0.9801 0.08927 0.12522
Age 0.01873 0.001053 0.00142
Education −0.03613 0.005732 0.00780
Income −0.5911 0.07173 0.09702
Kids −0.1692 0.02642 0.03330

11.9.2 FIXED EFFECTS

The nonlinear panel data regression model would appear

yit = h(xit, β) + εit, t = 1, . . . , Ti , i = 1, . . . , n.

Consider a model with latent heterogeneity, ci . An ambiguity immediately emerges;
how should heterogeneity enter the model. Building on the linear model, an additive
term might seem natural, as in

yit = h(xit, β) + ci + εit, t = 1, . . . , Ti , i = 1, . . . , n. (11-78)

But we can see in the previous application that this is likely to be inappropriate. The
loglinear model of the previous section is constrained to ensure that E[yit | xit] is positive.
But an additive random term ci as in (11-78) could subvert this; unless the range of ci

is restricted, the conditional mean could be negative. The most common application of
nonlinear models is the index function model,

yit = h(x′
itβ + ci ) + εit.

This is the natural extension of the linear model, but only in the appearance of the con-
ditional mean. Neither the fixed effects nor the random effects model can be estimated
as they were in the linear case.

Consider the fixed effects model first. We would write this as

yit = h(x′
itβ + αi ) + εit,

where the parameters to be estimated are β and αi , i = 1, . . . , n. Transforming the
data to deviations from group means does not remove the fixed effects from the model.
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For example,

yit − ȳi. = h(x′
itβ + αi ) − 1

Ti

Ti∑
s=1

h(x′
isβ + αi ), (11-79)

which does not simplify things at all. Transforming the regressors to deviations is likewise
pointless. To estimate the parameters, it is necessary to minimize the sum of squares with
respect to all n+ K parameters simultaneously. Because the number of dummy variable
coefficients can be huge—the preceding example is based on a data set with 7,293
groups—this can be a difficult or impractical computation. A method of maximizing a
function (such as the negative of the sum of squares) that contains an unlimited number
of dummy variable coefficients is shown in Chapter 17. As we will examine later in
the book, the difficulty with nonlinear models that contain large numbers of dummy
variable coefficients is not necessarily the practical one of computing the estimates.
That is generally a solvable problem. The difficulty with such models is an intriguing
phenomenon known as the incidental parameters problem. In most (not all, as we shall
find) nonlinear panel data models that contain n dummy variable coefficients, such as the
one in (11-79), as a consequence of the fact that the number of parameters increases with
the number of individuals in the sample, the estimator of β is biased and inconsistent,
to a degree that is O(1/T ). Because T is only 7 or less in our application, this would
seem to be a case in point.

Example 11.17 Exponential Model with Fixed Effects
The exponential model of the preceding example is actually one of a small handful of known
special cases in which it is possible to “condition” out the dummy variables. Consider the
sum of squared residuals,

Sn = 1
2

n∑
i =1

Ti∑
t=1

[yit − exp(x′
itβ + αi ) ]2.

The first order condition for minimizing Sn with respect to αi is

∂Sn

∂αi
=

Ti∑
t=1

− [yit − exp(x′
itβ + αi ) ]exp(x′

itβ + αi ) = 0. (11-80)

Let γi = exp(αi ) . Then, an equivalent necessary condition would be

∂Sn

∂γi
=

Ti∑
t=1

− [yit − γi exp(x′
itβ) ][γi exp(x′

itβ) ] = 0,

or

γi

Ti∑
t=1

[yit exp(x′
itβ) ] = γ 2

i

Ti∑
t=1

[exp(x′
itβ) ]2.

Obviously, if we can solve the equation for γi , we can obtain αi = Inγi . The preceding equation
can, indeed, be solved for γi , at least conditionally. At the minimum of the sum of squares, it
will be true that

γ̂i =
∑Ti

t=1 yit exp(x′
itβ̂)∑Ti

t=1[exp(x′
itβ̂) ]2

. (11-81)

We can now insert (11-81) into (11-80) to eliminate αi. (This is a counterpart to taking devi-
ations from means in the linear case. As noted, this is possible only for a very few special
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models—this happens to be one of them. The process is also known as “concentrating out”
the parameters γi . Note that at the solution, γ̂i , is obtained as the slope in a regression without
a constant term of yit on ẑit = exp(x′

itβ̂) using Ti observations.) The result in (11-81) must hold
at the solution. Thus, (11-81) inserted in (11-80) restricts the search for β to those values that
satisfy the restrictions in (11-81). The resulting sum of squares function is now a function only
of the data and β, and can be minimized with respect to this vector of K parameters. With
the estimate of β in hand, αi can be estimated using the log of the result in (11-81) (which is
positive by construction).

The preceding example presents a mixed picture for the fixed effects model. In
nonlinear cases, two problems emerge that were not present earlier, the practical one of
actually computing the dummy variable parameters and the theoretical incidental pa-
rameters problem that we have yet to investigate, but which promises to be a significant
shortcoming of the fixed effects model. We also note we have focused on a particular
form of the model, the “single index” function, in which the conditional mean is a non-
linear function of a linear function. In more general cases, it may be unclear how the
unobserved heterogeneity should enter the regression function.

11.9.3 RANDOM EFFECTS

The random effects nonlinear model also presents complications both for specification
and for estimation. We might begin with a general model

yit = h(xit, β, ui ) + εit. (11-82)

The “random effects” assumption would be, as usual, mean independence,

E[ui | Xi ] = 0.

Unlike the linear model, the nonlinear regression cannot be consistently estimated by
(nonlinear) least squares. In practical terms, we can see why in (7-28)–(7-30). In the
linearized regression, the conditional mean at the expansion point β0 [see (7-28)] as
well as the pseudoregressors are both functions of the unobserved ui . This is true in the
general case (11-81) as well as the simpler case of a single index model,

yit = h(x′
itβ + ui ) + εit. (11-83)

Thus, it is not possible to compute the iterations for nonlinear least squares. As in the
fixed effects case, neither deviations from group means nor first differences solves the
problem. Ignoring the problem—that is, simply computing the nonlinear least squares
estimator without accounting for heterogeneity—does not produce a consistent estima-
tor, for the same reasons. In general, the benign effect of latent heterogeneity (random
effects) that we observe in the linear model only carries over to a very few nonlinear
models and, unfortunately, this is not one of them.

The problem of computing partial effects in a random effects model such as (11-83)
is that when E[yit|xit, ui ] is given by (11-83),

∂ E[yit|x′
itβ + ui ]

∂xit
= [h′(x′

itβ + ui )]β

is a function of the unobservable ui . Two ways to proceed from here are the fixed
effects approach of the previous section and a random effects approach. The fixed
effects approach is feasible but may be hindered by the incidental parameters problem

Bill
Line
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noted earlier. A random effects approach might be preferable, but comes at the price
of assuming that xit and ui are uncorrelated, which may be unreasonable. Papke and
Wooldridge (2008) examined several cases and proposed the Mundlak approach of
projecting ui on the group means of xit. The working specification of the model is then

E∗[yit|xit, x̄i , vi ] = h(x′
itβ + α + x̄′

iθ + vi ).

This leaves the practical problem of how to compute the estimates of the parameters
and how to compute the partial effects. Papke and Wooldridge (2008) suggest a useful
result if it can be assumed that vi is normally distributed with mean zero and variance
σ 2

v . In that case,

E[yit|xit, x̄] = Evi E[yit|xit, x̄, vi ] = h

(
x′

itβ + α + x̄′
iθ√

1 + σ 2
v

)
= h

(
x′

itβv + αv + x̄′
iθv

)
.

The implication is that nonlinear least squares regression will estimate the scaled coef-
ficients, after which the average partial effect can be estimated for a particular value of
the covariates, x0, with

�̂(x0) = 1
n

n∑
i=1

h′ (x′
0β̂v + α̂v + x̄′

i θ̂v

)
β̂v.

They applied the technique to a case of test pass rates, which are a fraction bounded by
zero and one. Loudermilk (2007) is another application with an extension to a dynamic
model.

11.10 SYSTEMS OF EQUATIONS

Extensions of the SUR model to panel data applications have been made in two direc-
tions. Several studies have layered the familiar random effects treatment of Section 11.5
on top of the generalized regression. An alternative treatment of the fixed and ran-
dom effects models as a form of seemingly unrelated regressions model suggested by
Chamberlain (1982, 1984) has provided some of the foundation of recent treatments of
dynamic panel data models, as in Sections 11.8.2 and 11.8.3.

Avery (1977) suggested a natural extension of the random effects model to multiple
equations,

yit,j = x′
it,jβ j + εit,j + ui,j,

where j indexes the equation, i indexes individuals, and t is the time index as before.
Each equation can be treated as a random effects model. In this instance, however, the ef-
ficient estimator when the equations are actually unrelated (that is, Cov[εi t,m, εi t,l | X] =
0 and Cov[ui,m, ui,l | X] = 0) is equation by equation GLS as developed in Section 11.5,
not OLS. That is, without the cross-equation correlation, each equation constitutes a
random effects model. The cross-equation correlation takes the form

E[εit,jεit,l | X] = σ jl

and

E[ui, j ui,l | X] = θ jl .
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Observations remain uncorrelated across individuals, (εi t, j , εrs,l) and (ui j , ur,l) when
i �= r . The “noise” terms, εi t, j are also uncorrelated across time for all individuals and
across individuals. Correlation over time arises through the influence of the common
effect, which produces persistent random effects for the given individual, both within
the equation and across equations through θ jl . Avery developed a two-step estimator
for the model. At the first step, as usual, estimates of the variance components are based
on OLS residuals. The second step is FGLS. Subsequent studies have added features to
the model. Magnus (1982) derived the log likelihood function for normally distributed
disturbances, the likelihood equations for the MLE, and a method of estimation. Verbon
(1980) added heteroscedasticity to the model.

There have also been a handful of applications, including Howrey and Varian’s
(1984) analysis of electricity pricing and the impact of time of day rates, Brown et al.’s
(1983) treatment of a form of the capital asset pricing model (CAPM), Sickles’s (1985)
analysis of airline costs, and Wan et al.’s (1992) development of a nonlinear panel data
SUR model for agricultural output.

Example 11.18 Demand for Electricity and Gas
Beierlein, Dunn, and McConnon (1981) proposed a dynamic panel data SUR model for de-
mand for electricity and natural gas in the northeastern United States. The central equation
of the model is

ln Qi t, j = β0 + β1 ln P natural gasi t, j + β2 ln P electricityi t, j + β3 ln P fuel oili t, j

+ β4 ln per capita incomei t, j + β5 ln Qi ,t−1, j + wi t, j

wi t, j = εi t, j + ui , j + vt, j

where

j = consuming sectors (natural gas, electricity) × (residential, comercial, industrial)

i = state (New England plus New York, New Jersey, Pennsylvania)

t = year, 1957, . . . ,1977.

Note that this model has both time and state random effects and a lagged dependent variable
in each equation.

11.11 PARAMETER HETEROGENEITY

The treatment so far has essentially treated the slope parameters of the model as fixed
constants, and the intercept as varying randomly from group to group. An equivalent
formulation of the pooled, fixed, and random effects model is

yit = (α + ui ) + x′
itβ + εit,

where ui is a person-specific random variable with conditional variance zero in the
pooled model, positive in the others, and conditional mean dependent on Xi in the fixed
effects model and constant in the random effects model. By any of these,
the heterogeneity in the model shows up as variation in the constant terms in the regres-
sion model. There is ample evidence in many studies—we will examine two later—that
suggests that the other parameters in the model also vary across individuals. In the
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dynamic model we consider in Section 11.11.3, cross-country variation in the slope pa-
rameter in a production function is the central focus of the analysis. This section will
consider several approaches to analyzing parameter heterogeneity in panel data models.

11.11.1 THE RANDOM COEFFICIENTS MODEL

Parameter heterogeneity across individuals or groups can be modeled as stochastic
variation.27 Suppose that we write

yi = Xiβ i + εi ,

E[εi | Xi ] = 0,

E[εiε
′
i | Xi ] = σ 2

ε IT,

(11-84)

where

β i = β + ui (11-85)

and

E[ui | Xi ] = 0,

E[ui u′
i | Xi ] = �.

(11-86)

(Note that if only the constant term in β is random in this fashion and the other param-
eters are fixed as before, then this reproduces the random effects model we studied in
Section 11.5.) Assume for now that there is no autocorrelation or cross-section corre-
lation in εi . We also assume for now that T > K, so that when desired, it is possible to
compute the linear regression of yi on Xi for each group. Thus, the β i that applies to a
particular cross-sectional unit is the outcome of a random process with mean vector β

and covariance matrix �.28 By inserting (11-85) into (11-84) and expanding the result,
we obtain a generalized regression model for each block of observations:

yi = Xiβ + (εi + Xi ui ),

so

�i i = E[(yi − Xiβ)(yi − Xiβ)′ | Xi ] = σ 2
ε IT + Xi�X′

i .

For the system as a whole, the disturbance covariance matrix is block diagonal, with
T ×T diagonal block �i i . We can write the GLS estimator as a matrix weighted average
of the group specific OLS estimators:

β̂ = (X′�−1X)−1X′�−1y =
n∑

i=1

Wi bi , (11-87)

27The most widely cited studies are Hildreth and Houck (1968), Swamy (1970, 1971, 1974), Hsiao (1975),
and Chow (1984). See also Breusch and Pagan (1979). Some recent discussions are Swamy and Tavlas (1995,
2001) and Hsiao (2003). The model bears some resemblance to the Bayesian approach of Chapter 18. But,
the similarity is only superficial. We are maintaining the classical approach to estimation throughout.
28Swamy and Tavlas (2001) label this the “first-generation random coefficients model” (RCM). We will
examine the “second generation” (the current generation) of random coefficients models in the next section.
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where

Wi =
[

n∑
i=1

(
� + σ 2

ε

(
X′

i Xi
)−1

)−1
]−1 (

� + σ 2
ε

(
X′

i Xi
)−1)−1

.

Empirical implementation of this model requires an estimator of �. One approach
[see, e.g., Swamy (1971)] is to use the empirical variance of the set of n least squares
estimates, bi minus the average value of s2

i (X′
i Xi )

−1:

G = [1/(n − 1)]
[
�i bi b′

i − nb̄ b̄′] − (1/N)�i Vi , (11-88)

where

b̄ = (1/n)�i bi

and

Vi = s2
i (X′

i Xi )
−1.

This matrix may not be positive definite, however, in which case [as Baltagi (2005)
suggests], one might drop the second term.

A chi-squared test of the random coefficients model against the alternative of the
classical regression (no randomness of the coefficients) can be based on

C = �i (bi − b∗)′V−1
i (bi − b∗),

where

b∗ =
[
�i V−1

i

]−1
�i V−1

i bi .

Under the null hypothesis of homogeneity, C has a limiting chi-squared distribution
with (n− 1)K degrees of freedom. The best linear unbiased individual predictors of the
group-specific coefficient vectors are matrix weighted averages of the GLS estimator,
β̂, and the group specific OLS estimates, bi ,29

β̂ i = Qi β̂ + [I − Qi ]bi ,

where (11-89)

Qi = [(
1/s2

i

)
X′

i Xi + G−1]−1G−1.

Example 11.19 Random Coefficients Model
In Example 10.1, we examined Munell’s production model for gross state product,

ln gspit = β1 + β2 ln pcit + β3 ln hwyit + β4 ln waterit

+ β5 ln utilit + β6 ln empit + β7 unempit + εit, i = 1, . . . , 48; t = 1, . . . , 17.

The panel consists of state level data for 17 years. The model in Example 10.1 (and Munnell’s)
provide no means for parameter heterogeneity save for the constant term. We have reesti-
mated the model using the Hildreth and Houck approach. The OLS and Feasible GLS are
given in Table 11.14. The chi-squared statistic for testing the null hypothesis of parameter
homogeneity is 25,556.26, with 7(47) = 329 degrees of freedom. The critical value from the
table is 372.299, so the hypothesis would be rejected.

Unlike the other cases we have examined in this chapter, the FGLS estimates are very
different from OLS in these estimates, in spite of the fact that both estimators are consistent
and the sample is fairly large. The underlying standard deviations are computed using G as

29See Hsiao (2003, pp. 144–149).
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TABLE 11.14 Estimated Random Coefficients Models

Least Squares Feasible GLS

Standard Standard Popn. Std.
Variable Estimate Error Estimate Error Deviation

Constant 1.9260 0.05250 1.6533 1.08331 7.0782

ln p c 0.3120 0.01109 0.09409 0.05152 0.3036

ln hwy 0.05888 0.01541 0.1050 0.1736 1.1112

ln water 0.1186 0.01236 0.07672 0.06743 0.4340

ln util 0.00856 0.01235 −0.01489 0.09886 0.6322

ln emp 0.5497 0.01554 0.9190 0.1044 0.6595

unemp −0.00727 0.001384 −0.004706 0.002067 0.01266

σε 0.08542 0.2129
ln L 853.1372

�0.246 �0.147 �0.049 0.049

6

4

2

0.147
b2

0.246 0.344 0.442

FIGURE 11.1 Estimates of Coefficient on Private Capital.

the covariance matrix. [For these data, subtracting the second matrix rendered G not positive
definite, so in the table, the standard deviations are based on the estimates using only the
first term in (11-88).] The increase in the standard errors is striking. This suggests that there is
considerable variation in the parameters across states. We have used (11-89) to compute the
estimates of the state specific coefficients. Figure 11.1 shows a histogram for the coefficient
on private capital. As suggested, there is a wide variation in the estimates.
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11.11.2 A HIERARCHICAL LINEAR MODEL

Many researchers have employed a two-step approach to estimate two-level models. In
a common form of the application, a panel data set is employed to estimate the model,

yit = x′
itβ i + εit, i = 1, . . . , n, t = 1, . . . , T,

β i,k = z′
iαk + ui,k, i = 1, . . . , n.

Assuming the panel is long enough, the first equation is estimated n times, once for
each individual i , and then the estimated coefficient on xitk in each regression forms
an observation for the second-step regression.30 (This is the approach we took in the
previous section; each ai is computed by a linear regression of yi −Xi bLSDV on a column
of ones.)

Example 11.20 Fannie Mae’s Pass Through
Fannie Mae is the popular name for the Federal National Mortgage Corporation. Fannie Mae is
the secondary provider for mortgage money for nearly all the small- and moderate-sized home
mortgages in the United States. Loans in the study described here are termed “small” if they
are for less than $100,000. A loan is termed a “conforming” in the language of the literature
on this market if (as of 2004), it was for no more than $333,700. A larger than conforming
loan is called a “jumbo” mortgage. Fannie Mae provides the capital for nearly all conforming
loans and no nonconforming loans. The question pursued in the study described here was
whether the clearly observable spread between the rates on jumbo loans and conforming
loans reflects the cost of raising the capital in the market. Fannie Mae is a “government
sponsored enterprice” (GSE). It was created by the U.S. Congress, but it is not an arm of the
government; it is a private corporation. In spite of, or perhaps because of this ambiguous
relationship to the government, apparently, capital markets believe that there is some benefit
to Fannie Mae in raising capital. Purchasers of the GSE’s debt securities seem to believe
that the debt is implicitly backed by the government— this in spite of the fact that Fannie
Mae explicitly states otherwise in its publications. This emerges as a “funding advantage”
(GFA) estimated by the authors of the study of about 17 basis points (hundredths of one
percent). In a study of the residential mortgage market, Passmore (2005) and Passmore,
Sherlund, and Burgess (2005) sought to determine whether this implicit subsidy to the GSE
was passed on to the mortgagees or was, instead, passed on to the stockholders. Their
approach utilitized a very large data set and a two-level, two-step estimation procedure.
The first step equation estimated was a mortgage rate equation using a sample of roughly
1 million closed mortgages. All were conventional 30-year fixed-rate loans closed between
April 1997 and May 2003. The dependent variable of interest is the rate on the mortgage,
RMit. The first level equation is

RMit = β1i + β2,i Jit + terms for “loan to value ratio,” “new home dummy variable,”
“small mortgage”

+ terms for “fees charged” and whether the mortgage was originated
by a mortgage company + εit.

The main variable of interest in this model is Jit, which is a dummy variable for whether the
loan is a jumbo mortgage. The “i” in this setting is a (state, time) pair for California, New
Jersey, Maryland, Virginia, and all other states, and months from April 1997 to May 2003.
There were 370 groups in total. The regression model was estimated for each group. At the
second step, the coefficient of interest is β2,i . On overall average, the spread between jumbo

30An extension of the model in which “ui” is heteroscedastic is developed at length in Saxonhouse (1976)
and revisited by Achen (2005).
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and conforming loans at the time was roughly 16 basis points. The second-level equation is

β2,i = α1 + α2GFAi

+ α3one-year treasury rate

+ α410-year treasure rate

+ α5credit risk

+ α6prepayment risk

+ measures of maturity mismatch risk

+ quarter and state fixed effects

+ mortgage market capacity

+ mortgage market development

+ ui .

The result ultimately of interest is the coefficient on GFA, α2, which is interpreted as the fraction
of the GSE funding advantage that is passed through to the mortgage holders. Four different
estimates of α2 were obtained, based on four different measures of corporate debt liquidity;
the estimated values were

(
α̂1

2, α̂2
2, α̂3

2, α̂4
2

) = (0.07, 0.31, 0.17, 0.10) . The four estimates were
averaged using a minimum distance estimator (MDE). Let �̂ denote the estimated 4 × 4
asymptotic covariance matrix for the estimators. Denote the distance vector

d = (
α̂1

2 − α2, α̂2
2 − α2, α̂3

2 − α2, α̂4
2 − α2

)′

The minimum distance estimator is the value for α2 that minimizes d′�̂
−1

d. For this study, �̂
is a diagonal matrix. It is straighforward to show that in this case, the MDE is

α̂2 =
4∑

j =1

α̂
j
2

(
1/ω̂ j

�4
m=11/ω̂m

)
.

The final answer is roughly 16 percent. By implication, then, the authors estimated that
84 percent of the GSE funding advantage was kept within the company or passed through
to stockholders.

11.11.3 PARAMETER HETEROGENEITY AND DYNAMIC
PANEL DATA MODELS

The analysis in this section has involved static models and relatively straightforward
estimation problems. We have seen as this section has progressed that parameter het-
erogeneity introduces a fair degree of complexity to the treatment. Dynamic effects
in the model, with or without heterogeneity, also raise complex new issues in estima-
tion and inference. There are numerous cases in which dynamic effects and parameter
heterogeneity coincide in panel data models. This section will explore a few of the spec-
ifications and some applications. The familiar estimation techniques (OLS, FGLS, etc.)
are not effective in these cases. The proposed solutions are developed in Chapter 8
where we present the technique of instrumental variables and in Chapter 13 where we
present the GMM estimator and its application to dynamic panel data models.

Example 11.21 Dynamic Panel Data Models
The antecedent of much of the current research on panel data is Balestra and Nerlove’s
(1966) study of the natural gas market. [See, also, Nerlove (2002, Chapter 2).] The model is a
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stock-flow description of the derived demand for fuel for gas using appliances. The central
equation is a model for total demand,

Git = G∗
it + (1 − r )Gi ,t−1,

where Git is current total demand. Current demand consists of new demand, G∗
it, that is

created by additions to the stock of appliances plus old demand which is a proportion of
the previous period’s demand, r being the depreciation rate for gas using appliances. New
demand is due to net increases in the stock of gas using appliances, which is modeled as

G∗
it = β0 + β1Priceit + β2�Popit + β3Popit + β4�Incomeit + β5Incomeit + εit,

where � is the first difference (change) operator, �Xt = Xt − Xt−1. The reduced form of the
model is a dynamic equation,

Git = β0 + β1Priceit + β2�Popit + β3Popit + β4�Incomeit + β5Incomeit + γ Gi ,t−1 + εit.

The authors analyzed a panel of 36 states over a six-year period (1957–1962). Both fixed
effects and random effects approaches were considered.

An equilibrium model for steady state growth has been used by numerous authors [e.g.,
Robertson and Symons (1992), Pesaran and Smith (1995), Lee, Pesaran, and Smith (1997),
Pesaran, Shin, and Smith (1999), Nerlove (2002) and Hsiao, Pesaran, and Tahmiscioglu (2002)]
for cross industry or country comparisons. Robertson and Symons modeled real wages in
13 OECD countries over the period 1958 to 1986 with a wage equation

Wit = αi + β1i kit + β2i �wedgeit + γi Wi ,t−1 + εit,

where Wit is the real product wage for country i in year t, kit is the capital-labor ratio, and
wedge is the “tax and import price wedge.”

Lee, Pesaran, and Smith (1997) compared income growth across countries with a steady-
state income growth model of the form

ln yit = αi + θi t + λi In yi ,t−1 + εit,

where θi = (1 − λi )δi , δi is the technological growth rate for country i and λi is the convergence
parameter. The rate of convergence to a steady state is 1 − λi .

Pesaran and Smith (1995) analyzed employment in a panel of 38 UK industries observed
over 29 years, 1956–1984. The main estimating equation was

ln eit = αi + β1i t + β2i ln yit + β3i ln yi ,t−1 + β4i ln ȳt + β5i ln ȳt−1

+ β6i ln wit + β7i ln wi ,t−1 + γ1i ln ei ,t−1 + γ2i ln ei ,t−2 + εit,

where yit is industry output, ȳt is total (not average) output, and wit is real wages.

In the growth models, a quantity of interest is the long-run multiplier or long-run
elasticity. Long-run effects are derived through the following conceptual experiment.
The essential feature of the models above is a dynamic equation of the form

yt = α + βxt + γ yt−1.

Suppose at time t , xt is fixed from that point forward at x̄. The value of yt at that time
will then be α + β x̄ + γ yt−1, given the previous value. If this process continues, and if
|γ | < 1, then eventually ys will reach an equilibrium at a value such that ys = ys−1 = ȳ.
If so, then ȳ = α + β x̄ + γ ȳ, from which we can deduce that ȳ = (α + x̄)/(1 − γ ).
The path to this equilibrium from time t into the future is governed by the adjustment
equation

ys − ȳ = (yt − ȳ)γ s−t , s ≥ t.
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The experiment, then, is to ask: What is the impact on the equilibrium of a change in the
input, x̄? The result is ∂ ȳ/∂ x̄ = β/(1−γ ). This is the long-run multiplier, or equilibrium
multiplier in the model. In the preceding Pesaran and Smith model, the inputs are in
logarithms, so the multipliers are long-run elasticities. For example, with two lags of
ln eit in Pesaran and Smith’s model, the long-run effects for wages are

φi = (β6i + β7i )/(1 − γ1i − γ2i ).

In this setting, in contrast to the preceding treatments, the number of units, n,
is generally taken to be fixed, though often it will be fairly large. The Penn World
Tables (http://pwt.econ.upenn.edu/php site/pwt index.php) that provide the database
for many of these analyses now contain information on almost 200 countries for well
over 50 years. Asymptotic results for the estimators are with respect to increasing T,
though we will consider in general, cases in which T is small. Surprisingly, increasing T
and n at the same time need not simplify the derivations. We will revisit this issue in the
next section.

The parameter of interest in many studies is the average long-run effect, say φ̄ =
(1/n)�iφi , in the Pesaran and Smith example. Because n is taken to be fixed, the “pa-
rameter” φ̄ is a definable object of estimation—that is, with n fixed, we can speak of
φ̄ as a parameter rather than as an estimator of a parameter. There are numerous ap-
proaches one might take. For estimation purposes, pooling, fixed effects, random effects,
group means, or separate regressions are all possibilities. (Unfortunately, nearly all are
inconsistent.) In addition, there is a choice to be made whether to compute the average
of long-run effects or compute the long-run effect from averages of the parameters.
The choice of the average of functions, φ̄ versus the function of averages,

φ̄∗ =
1
n

∑n
i=1(β̂6i + β̂7i )

1 − 1
n

∑n
i=1(γ̂1i + γ̂2i )

turns out to be of substance. For their UK industry study, Pesaran and Smith report
estimates of −0.33 for φ̄ and −0.45 for φ̄∗. (The authors do not express a preference for
one over the other.)

The development to this point is implicitly based on estimation of separate models
for each unit (country, industry, etc.). There are also a variety of other estimation strate-
gies one might consider. We will assume for the moment that the data series are station-
ary in the dimension of T. (See Chapter 23.) This is a transparently false assumption, as
revealed by a simple look at the trends in macroeconomic data, but maintaining it for
the moment allows us to proceed. We will reconsider it later.

We consider the generic, dynamic panel data model,

yit = αi + βi xit + γi yi,t−1 + εit. (11-90)

Assume that T is large enough that the individual regressions can be computed. In the
absence of autocorrelation in εit, it has been shown [e.g., Griliches (1961), Maddala and
Rao (1973)] that the OLS estimator of γi is biased downward, but consistent in T. Thus,
E[γ̂i − γi ] = θi/T for some θi . The implication for the individual estimator of the long-
run multiplier, φi = βi/(1 − γi ), is unclear in this case, however. The denominator is
overestimated. But it is not clear whether the estimator of βi is overestimated or under-
estimated. It is true that whatever bias there is O(1/T). For this application, T is fixed
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and possibly quite small. The end result is that it is unlikely that the individual estimator
of φi is unbiased, and by construction, it is inconsistent, because T cannot be assumed to
be increasing. If that is the case, then ˆ̄φ is likewise inconsistent for φ̄. We are averaging
n estimators, each of which has bias and variance that are O(1/T). The variance of the
mean is, therefore, O(1/nT) which goes to zero, but the bias remains O(1/T). It follows
that the average of the n means is not converging to φ̄; it is converging to the average
of whatever these biased estimators are estimating. The problem vanishes with large
T, but that is not relevant to the current context. However, in the Pesaran and Smith
study, T was 29, which is large enough that these effects are probably moderate. For
macroeconomic cross-country studies such as those based on the Penn World Tables,
the data series might be yet longer than this.

One might consider aggregating the data to improve the results. Smith and Pesaran
(1995) suggest an average based on country means. Averaging the observations over T
in (11-90) produces

ȳi. = αi + βi x̄i. + γi ȳ−1,i + ε̄i.. (11-91)

A linear regression using the n observations would be inconsistent for two reasons:
First, ε̄i. and ȳ−1,i must be correlated. Second, because of the parameter heterogeneity,
it is not clear without further assumptions what the OLS slopes estimate under the false
assumption that all coefficients are equal. But ȳi. and ȳ−1,i differ by only the first and
last obser-vations; ȳ−1,i = ȳi. − (yiT − yi0)/T = ȳi. − [�T(y)/T]. Inserting this in (11-89)
produces

ȳi. = αi + βi x̄i. + γi ȳi. − γi [�T(y)/T] + ε̄i.

= αi

1 − γi
+ βi

1 − γi
x̄i. − γi

1 − γi
[�T(y)/T] + ε̄i. (11-92)

= δi + φi x̄i. + τi [�T(y)/T] + ε̄i..

We still seek to estimate φ̄. The form in (11-92) does not solve the estimation problem,
since the regression suggested using the group means is still heterogeneous. If it could
be assumed that the individual long-run coefficients differ randomly from the averages
in the fashion of the random parameters model of the previous section, so δi = δ̄ + uδ,i

and likewise for the other parameters, then the model could be written

ȳi. = δ̄ + φ̄ x̄i. + τ̄ [�T(y)/T]i + ε̄i. + {uδ,i + uφ,i x̄i + uτ,i [�T(y)/T]i }
= δ̄ + φ̄ x̄i. + τ̄ [�T(y)/T]i + ε̄i + wi .

At this point, the equation appears to be a heteroscedastic regression amenable to least
squares estimation, but for one loose end. Consistency follows if the terms [�T(y)/T]i

and ε̄i are uncorrelated. Because the first is a rate of change and the second is in levels,
this should generally be the case. Another interpretation that serves the same purpose
is that the rates of change in [�T(y)/T]i should be uncorrelated with the levels in x̄i.,
in which case, the regression can be partitioned, and simple linear regression of the
country means of yit on the country means of xit and a constant produces consistent
estimates of φ̄ and δ̄.
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Alternatively, consider a time-series approach. We average the observation in
(11-90) across countries at each time period rather than across time within countries.
In this case, we have

ȳ.t = ᾱ + 1
n

n∑
i=1

βi xit + 1
n

n∑
i=1

γi yi,t−1 + 1
n

n∑
i=1

εit.

Let γ̄ = 1
n

∑n
i=1 γi so that γi = γ̄ + (γi − γ̄ ) and βi = β̄ + (βi − β̄). Then,

ȳ.t = ᾱ + β̄ x̄.t + γ̄ ȳ−1,t + [ε̄.t + (βi − β̄)x̄.t + (γi − γ̄ )ȳ−1,t ]

= ᾱ + β̄ x̄.t + γ̄ ȳ−1,t + ε̄.t + w.t .

Unfortunately, the regressor, γ̄ ȳ−1,t is surely correlated with w.t , so neither OLS or GLS
will provide a consistent estimator for this model. (One might consider an instrumental
variable estimator, however, there is no natural instrument available in the model as
constructed.) Another possibility is to pool the entire data set, possibly with random or
fixed effects for the constant terms. Because pooling, even with country-specific constant
terms, imposes homogeneity on the other parameters, the same problems we have just
observed persist.

Finally, returning to (11-90), one might treat it as a formal random parameters
model,

yit = αi + βi xit + γi yi,t−1 + εit,

αi = α + uα,i ,
(11-90′)

βi = β + uβ,i ,

γi = γ + uγ,i .

The assumptions needed to formulate the model in this fashion are those of the previous
section. As Pesaran and Smith (1995) observe, this model can be estimated using the
“Swamy (1971)” estimator, which is the matrix weighted average of the least squares
estimators discussed in Section 11.11.1. The estimator requires that T be large enough
to fit each country regression by least squares. That has been the case for the received
applications. Indeed, for the applications we have examined, both n and T are relatively
large. If not, then one could still use the mixed models approach developed in Chapter
17. A compromise that appears to work well for panels with moderate sized n and T
is the “mixed-fixed” model suggested in Hsiao (1986, 2003) and Weinhold (1999). The
dynamic model in (11-90) is formulated as a partial fixed effects model,

yit = αi dit + βi xit + γi dit yi,t−1 + εit,

βi = β + uβ,i ,

where dit is a dummy variable that equals one for country i in every period and zero
otherwise (i.e., the usual fixed effects approach). Note that dit also appears with yi,t−1.
As stated, the model has “fixed effects,” one random coefficient, and a total of 2n+1 co-
efficients to estimate, in addition to the two variance components, σ 2

ε and σ 2
u . The model

could be estimated inefficiently by using ordinary least squares—the random coefficient
induces heteroscedasticity (see Section 11.11.1)—by using the Hildreth–Houck–Swamy
approach, or with the mixed linear model approach developed in Chapter 17.
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Example 11.22 A Mixed Fixed Growth Model for Developing Countries
Weinhold (1996) and Nair–Reichert and Weinhold (2001) analyzed growth and development
in a panel of 24 developing countries observed for 25 years, 1971–1995. The model they
employed was a variant of the mixed-fixed model proposed by Hsiao (1986, 2003). In their
specification,

GGDPi ,t = αi dit + γi ditGGDPi ,t−1

+ β1i GGDIi ,t−1 + β2i GFDIi ,t−1 + β3i GEXPi ,t−1 + β4INFLi ,t−1 + εit,
where

GGDP = Growth rate of gross domestic product,
GGDI = Growth rate of gross domestic investment,
GFDI = Growth rate of foreign direct investment (inflows),

GEXP = Growth rate of exports of goods and services,
INFL = Inflation rate.

11.12 SUMMARY AND CONCLUSIONS

This chapter has shown a few of the extensions of the classical model that can be obtained
when panel data are available. In principle, any of the models we have examined before
this chapter and all those we will consider later, including the multiple equation models,
can be extended in the same way. The main advantage, as we noted at the outset, is that
with panel data, one can formally model dynamic effects and the heterogeneity across
groups that are typical in microeconomic data.

Key Terms and Concepts

• Adjustment equation
• Autocorrelation
• Arellano and Bond’s
• Balanced panel
• Between groups
• Cluster estimator
• Contiguity
• Contiguity matrix
• Contrasts
• Dynamic panel data model
• Equilibrium multiplier
• Error components model
• Estimator
• Feasible GLS
• First difference
• Fixed effects
• Fixed effects vector

decomposition
• Fixed panel
• Group means
• Group means estimator
• Hausman specification test
• Heterogeneity

• Hierarchical linear model
• Hierarchical model
• Hausman and Taylor’s
• Incidental parameters

problem
• Index function model
• Individual effect
• Instrumental variable
• Instrumental variable

estimator
• Lagrange multiplier test
• Least squares dummy

variable estimator
• Long run elasticity
• Long run multiplier
• Longitudinal data sets
• Matrix weighted average
• Maximum simulated

likelihood estimator
• Mean independence
• Measurement error
• Minimum distance estimator
• Mixed model

• Mundlak’s approach
• Nested random effects
• Panel data
• Parameter heterogeneity
• Partial effects
• Pooled model
• Pooled regression
• Population averaged model
• Projections
• Random coefficients model
• Random effects
• Random parameters
• Robust covariance matrix
• Rotating panel
• Simulated log-likelihood
• Simulation based estimation
• Small T asymptotics
• Spatial autocorrelation
• Spatial autoregression

coefficient
• Spatial error correlation
• Spatial lags
• Specification test
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• Strict exogeneity
• Time-invariant

• Two-step estimation
• Unbalanced panel

• Variable addition test
• Within groups

Exercises

1. The following is a panel of data on investment (y) and profit (x) for n = 3 firms
over T = 10 periods.

i = 1 i = 2 i = 3

t y x y x y x

1 13.32 12.85 20.30 22.93 8.85 8.65
2 26.30 25.69 17.47 17.96 19.60 16.55
3 2.62 5.48 9.31 9.16 3.87 1.47
4 14.94 13.79 18.01 18.73 24.19 24.91
5 15.80 15.41 7.63 11.31 3.99 5.01
6 12.20 12.59 19.84 21.15 5.73 8.34
7 14.93 16.64 13.76 16.13 26.68 22.70
8 29.82 26.45 10.00 11.61 11.49 8.36
9 20.32 19.64 19.51 19.55 18.49 15.44

10 4.77 5.43 18.32 17.06 20.84 17.87

a. Pool the data and compute the least squares regression coefficients of the model
yit = α + βxit + εit.

b. Estimate the fixed effects model of (11-13), and then test the hypothesis that the
constant term is the same for all three firms.

c. Estimate the random effects model of (11-29), and then carry out the Lagrange
multiplier test of the hypothesis that the classical model without the common
effect applies.

d. Carry out Hausman’s specification test for the random versus the fixed effect
model.

2. Suppose that the fixed effects model is formulated with an overall constant term and
n − 1 dummy variables (dropping, say, the last one). Investigate the effect that this
supposition has on the set of dummy variable coefficients and on the least squares
estimates of the slopes.

3. Unbalanced design for random effects. Suppose that the random effects model of
Section 9.5 is to be estimated with a panel in which the groups have different
numbers of observations. Let Ti be the number of observations in group i.
a. Show that the pooled least squares estimator is unbiased and consistent despite

this complication.
b. Show that the estimator in (11-40) based on the pooled least squares estimator of

β (or, for that matter, any consistent estimator ofβ) is a consistent estimator ofσ 2
ε .

4. What are the probability limits of (1/n)LM, where LM is defined in (11-42) under
the null hypothesis that σ 2

u = 0 and under the alternative that σ 2
u �= 0?

5. A two-way fixed effects model. Suppose that the fixed effects model is modified
to include a time-specific dummy variable as well as an individual-specific vari-
able. Then yit = αi + γt + x′

itβ + εit. At every observation, the individual- and
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time-specific dummy variables sum to 1, so there are some redundant coefficients.
The discussion in Section 11.4.4 shows that one way to remove the redundancy is
to include an overall constant and drop one of the time specific and one of the
time-dummy variables. The model is, thus,

yit = μ + (αi − α1) + (γt − γ1) + x′
itβ + εit.

(Note that the respective time- or individual-specific variable is zero when t or i
equals one.) Ordinary least squares estimates of β are then obtained by regression
of yit − ȳi. − ȳ.t + ¯̄y on xit − x̄i. − x̄.t + ¯̄x. Then (αi − α1) and (γt − γ1) are estimated
using the expressions in (9-23) while m= ¯̄y− ¯̄x ′b. Using the following data, estimate
the full set of coefficients for the least squares dummy variable model:

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

i = 1
y 21.7 10.9 33.5 22.0 17.6 16.1 19.0 18.1 14.9 23.2
x1 26.4 17.3 23.8 17.6 26.2 21.1 17.5 22.9 22.9 14.9
x2 5.79 2.60 8.36 5.50 5.26 1.03 3.11 4.87 3.79 7.24

i = 2
y 21.8 21.0 33.8 18.0 12.2 30.0 21.7 24.9 21.9 23.6
x1 19.6 22.8 27.8 14.0 11.4 16.0 28.8 16.8 11.8 18.6
x2 3.36 1.59 6.19 3.75 1.59 9.87 1.31 5.42 6.32 5.35

i = 3
y 25.2 41.9 31.3 27.8 13.2 27.9 33.3 20.5 16.7 20.7
x1 13.4 29.7 21.6 25.1 14.1 24.1 10.5 22.1 17.0 20.5
x2 9.57 9.62 6.61 7.24 1.64 5.99 9.00 1.75 1.74 1.82

i = 4
y 15.3 25.9 21.9 15.5 16.7 26.1 34.8 22.6 29.0 37.1
x1 14.2 18.0 29.9 14.1 18.4 20.1 27.6 27.4 28.5 28.6
x2 4.09 9.56 2.18 5.43 6.33 8.27 9.16 5.24 7.92 9.63

Test the hypotheses that (1) the “period” effects are all zero, (2) the “group” effects
are all zero, and (3) both period and group effects are zero. Use an F test in each case.

6. Two-way random effects model. We modify the random effects model by the addi-
tion of a time-specific disturbance. Thus,

yit = α + x′
itβ + εit + ui + vt ,

where

E [εit | X] = E [ui |X] = E [vt |X] = 0,

E [εitu j | X] = E [εitvs |X] = E [uivt |X] = 0 for all i, j, t, s

Var[εit | X] = σ 2
ε , Cov[εit, ε js |X] = 0 for all i, j, t, s

Var[ui | X] = σ 2
u , Cov[ui , u j |X] = 0 for all i, j

Var[vt | X] = σ 2
v , Cov[vt , vs |X] = 0 for all t, s.

Write out the full disturbance covariance matrix for a data set with n = 2 and T = 2.
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7. The model [
y1

y2

]
=

[
x1

x2

]
β +

[
ε1

ε2

]
satisfies the groupwise heteroscedastic regression model of Section 9.7.2 All vari-
ables have zero means. The following sample second-moment matrix is obtained
from a sample of 20 observations:

y1 y2 x1 x2

y1

y2

x1

x2

⎡⎢⎢⎣
20 6 4 3
6 10 3 6
4 3 5 2
3 6 2 10

⎤⎥⎥⎦ .

a. Compute the two separate OLS estimates of β, their sampling variances, the
estimates of σ 2

1 and σ 2
2 , and the R2’s in the two regressions.

b. Carry out the Lagrange multiplier test of the hypothesis that σ 2
1 = σ 2

2 .
c. Compute the two-step FGLS estimate of β and an estimate of its sampling vari-

ance. Test the hypothesis that β equals 1.
d. Carry out the Wald test of equal disturbance variances.
e. Compute the maximum likelihood estimates of β, σ 2

1 , and σ 2
2 by iterating the

FGLS estimates to convergence.
f. Carry out a likelihood ratio test of equal disturbance variances.

8. Suppose that in the groupwise heteroscedasticity model of Section 9.7.2, Xi is the
same for all i. What is the generalized least squares estimator of β? How would you
compute the estimator if it were necessary to estimate σ 2

i ?
9. The following table presents a hypothetical panel of data:

i = 1 i = 2 i = 3

t y x y x y x

1 30.27 24.31 38.71 28.35 37.03 21.16
2 35.59 28.47 29.74 27.38 43.82 26.76
3 17.90 23.74 11.29 12.74 37.12 22.21
4 44.90 25.44 26.17 21.08 24.34 19.02
5 37.58 20.80 5.85 14.02 26.15 18.64
6 23.15 10.55 29.01 20.43 26.01 18.97
7 30.53 18.40 30.38 28.13 29.64 21.35
8 39.90 25.40 36.03 21.78 30.25 21.34
9 20.44 13.57 37.90 25.65 25.41 15.86

10 36.85 25.60 33.90 11.66 26.04 13.28

a. Estimate the groupwise heteroscedastic model of Section 9.7.2. Include an esti-
mate of the asymptotic variance of the slope estimator. Use a two-step procedure,
basing the FGLS estimator at the second step on residuals from the pooled least
squares regression.

b. Carry out the Wald and Lagrange multiplier tests of the hypothesis that the
variances are all equal.
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Applications

As usual, the following applications below require econometric software. The com-
putations can be done with any modern software package, so no specific program is
recommended.

1. The data in Appendix Table F10.4 were used by Grunfeld (1958) and dozens of
researchers since, including Zellner (1962, 1963) and Zellner and Huang (1962), to
study different estimators for panel data and linear regression systems. [See Kleiber
(2010) and Zeileis.] The model is an investment equation

Iit = β1 + β2 Fit + β3Cit + εit, t = 1, . . . , 20, i = 1, . . . , 10,

where

Iit = real gross investment for firm i in year t ,

Fit = real value of the firm—shares outstanding,

Cit = real value of the capital stock.

For present purposes, this is a balanced panel data set.
a. Fit the pooled regression model.
b. Referring to the results in part a, is there evidence of within groups correlation?

Compute the robust standard errors for your pooled OLS estimator and compare
them to the conventional ones.

c. Compute the fixed effects estimator for these data, then, using an F test, test the
hypothesis that the constants for the 10 firms are all the same.

d. Use a Lagrange multiplier statistic to test for the presence of common effects in
the data.

e. Compute the one-way random effects estimator and report all estimation results.
Explain the difference between this specification and the one in part c.

f. Use a Hausman test to determine whether a fixed or random effects specification
is preferred for these data.

2. The data in Appendix Table F6.1 are an unbalanced panel on 25 U.S. airlines in the
pre-deregulation days of the 1970s and 1980s. The group sizes range from 2 to 15.
Data in the file are the following variables. (Variable names contained in the data
file are constructed to indicate the variable contents.)

Total cost,
Expenditures on Capital, Labor, Fuel, Materials, Property, and Equipment,
Price measures for the six inputs,
Quantity measures for the six inputs,
Output measured in revenue passenger miles, converted to an index number for
the airline,
Load factor = the average percentage capacity utilization of the airline’s fleet,
Stage = the average flight (stage) length in miles,
Points = the number of points served by the airline,
Year = the calendar year,
T = Year—1969,
TI = the number of observations for the airline, repeated for each year.
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Use these data to build a cost model for airline service. Allow for cross-airline
heterogeneity in the constants in the model. Use both random and fixed effects
specifications, and use available statistical tests to determine which is the preferred
model. An appropriate cost model to begin the analysis with would be

ln costit = αi +
6∑

k=1

βk ln Pricek,i t + γ ln Outputit + εit.

It is necessary to impose linear homogeneity in the input prices on the cost function,
which you would do by dividing five of the six prices and the total cost by the sixth
price (choose any one), then using ln(cost/P6) and ln(Pk/P6) in the regression. You
might also generalize the cost function by including a quadratic term in the log of
output in the function. A translog model would include the unique squares and
cross products of the input prices and products of log output with the logs of the
prices. The data include three additional factors that may influence costs, stage
length, load factor and number of points served. Include them in your model, and
use the appropriate test statistic to test whether they are, indeed, relevant to the
determination of (log) total cost.




