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Summary Finite-sample properties of non-parametric regression for binary dependent
variables are analyzed. Non parametric regression is generally considered as highly variable
in small samples when the number of regressors is large. In binary choice models,
however, it may be more reliable since its variance is bounded. The precision in estimating
conditional means as well as marginal effects is investigated in settings with many explanatory
variables (14 regressors) and small sample sizes (250 or 500 observations). The Klein–Spady
estimator, Nadaraya–Watson regression and local linear regression often perform poorly in the
simulations. Local likelihood logit regression, on the other hand, is 25 to 55% more precise
than parametric regression in the Monte Carlo simulations. In an application to female labour
supply, local logit finds heterogeneity in the effects of children on employment that is not
detected by parametric or semiparametric estimation. (The semiparametric estimator actually
leads to rather similar results as the parametric estimator.)

Keywords: Binary choice, Local parametric regression, Local model, Heterogeneous
response, Heterogeneous treatment effect.

1. INTRODUCTION

In this paper, non-parametric regression for binary dependent variables in finite-samples is
analyzed. Binary choice models are of great importance in many economic applications, but
non-parametric regression has received relatively little attention so far. Let Y ∈ {0, 1} be a binary
outcome variable and X a vector of covariates. Often we are interested in estimating the conditional
mean E[Y |X = x] and/or the marginal effects E[Y |X = x + �x] − E[Y |X = x].

Usually, parametric regression models such as maximum likelihood probit or logit are used,
which however entail restrictive functional form assumptions. Semiparametric binary choice
estimators, such as the Klein and Spady (1993) estimator, relax these restrictions, but still imply
assumptions that can be restrictive in empirical applications. The single index restriction, in
particular, effectively reduces the heterogeneity in the X characteristics to a single dimension. With
the recent emergence of the treatment evaluation literature, however, heterogeneity of treatment
effects often has become of interest in itself (see e.g. Heckman et al. 1997). For example, in the
analysis of the effects of children on female labour supply, the marginal effect of an additional
child on the employment probability is likely to depend also on other characteristics. Whereas the
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effect is usually negative for most women, it might also be positive for some because of increased
financial needs (e.g. housing) due to a larger family (particularly if the children are older). If
women react differently on the number of children, policy instruments such as subsidized child
care, all-day schooling or tax incentives should be targeted more precisely; particularly if the
subpopulation of women who increase their labour supply in response to an additional child
can be identified and distinguished from those women who reduce their labour supply. Such
heterogeneity in the effects on the employment probability can be of substantial interest in many
applications, and the estimation model should be sufficiently flexible to not restrict such kind of
effect heterogeneity from the outset.1

Fully non-parametric regression allows for this flexibility, but is rarely used for the estimation
of binary choice applications. A reason might be that the prototypical application of non-
parametric regression, which is local linear regression on a low dimensional vector of covariates,
is not so well suited for binary choice models. On the one hand, linear probability models often
perform poorly in binary choice settings compared to non-linear models such as probit or logit (see
e.g. Hyslop 1999). Local non-linear estimation, such as local likelihood logit, might therefore
be better suited for binary dependent variables than local linear regression. In addition, local
likelihood logit encompasses the parametric logit model for a bandwidth value of infinity.

On the other hand, in many empirical applications one often wants to include a rather large
number of covariates.2 Nonparametric regression in higher dimensions, however, is regarded
as highly unreliable due to not only the curse of dimensionality but also small sample variance
problems. For example, Seifert and Gasser (1996) show that local linear regression has a very high
variance when the data are sparse or clustered.3 Although the curse of dimensionality does not
disappear with binary dependent variables, the finite-sample variance problems are ameliorated
because of the boundedness of Y .

The purpose of this paper is to examine the finite-sample performance of local likelihood logit
for binary dependent variables with many regressors (relative to the number of observations), of
which some are continuous and some are discrete. Local likelihood logit is compared to parametric
logit regression, the Klein and Spady (1993) estimator and to local linear and Nadaraya–Watson
regression. Whereas Klein–Spady, Nadaraya–Watson and local linear regression perform rather
poorly in the Monte Carlo simulations, local logit is often more precise than parametric logit. Even
when the logit model is globally true, local likelihood logit does not perform much worse than
parametric logit, because in these cases larger bandwidth values are chosen by the cross-validation
bandwidth selector. Precision gains are largest for the estimation of the conditional expectations
P(Y = 1|X ), and somewhat smaller for the estimation of marginal effects.

Local likelihood logit is then applied to analyze the dependence of Portuguese women’s labour
supply on the number of children. While the parametric logit and the semiparametric Klein–
Spady estimator lead to rather similar estimates, local likelihood logit unveils heterogeneity in
the marginal effects of children that is unnoticed by the parametric logit estimator. Although the
Klein–Spady estimator also detects some heterogeneity in the effects, it seems to be an artefact

1 Further examples where effect heterogeneity is of interest include the returns to schooling or the effects of training
programmes, which can be used for designing optimal treatment rules, (see Manski 2000, 2004).

2 For identifying causal effects, usually all covariates that affect the outcome variable and the treatment variable have
to be included, which are often rather many, (see Rubin 1974; Holland 1986 Pearl 2000).

3 Because the denominator of the estimator can be arbitrarily close to zero. This happens often even at bandwidth
values that are only slightly below the optimal value. Due to this, the unconditional finite-sample variance of local linear
regression is infinite and the conditional variance is unbounded.
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of its larger variability.4 In Section 2, the local logit estimator is introduced. Section 3 provides
the simulation study. Section 4 analyzes female labour supply, and Section 5 concludes.

2. NONPARAMETRIC REGRESSION FOR BINARY DEPENDENT VARIABLES

Let Y ∈ {0, 1} be a binary outcome variable and X ∈ �Q+1 a vector of covariates, where
for convenience of notation it is supposed that the last element of X is a constant. We are
interested in estimating the conditional mean E[Y |X = x] and the marginal effects E[Y |X =
x + �x] − E[Y |X = x] for particular changes �x in the covariates. For continuous regressors
the marginal effect is often defined as ∂ E[Y |X = x]/∂x q .5 The standard approach proceeds by
specifying a parametric model, for example, a probit or logit model, estimating the coefficients by
maximum likelihood and computing the conditional means and marginal effects. The disadvantage
of parametric estimation is its reliance on functional form assumptions, which lead to inconsistent
estimates if the model is not correctly specified.

Several semiparametric estimators have been suggested to relax these assumptions. A single
index restriction is often invoked which assumes that the conditional mean can be specified as
E[Y |X = x] = m(x ′θ ) with m an unknown function and θ an unknown coefficient vector. A
number of

√
n consistent estimators of θ have been developed, including iterative methods such

as Han (1987), Ichimura (1993), Klein and Spady (1993) and Sherman (1993) and non-iterative
methods such as the average derivative estimators of Härdle and Stoker (1989), Powell et al.
(1989), Stoker (1991) and Horowitz and Härdle (1996). Although θ can often be estimated at√

n-rate, the function m(x′θ ) is non-parametric, and estimation of E[Y|X] and marginal effects
will be at a lower rate. The single index specification permits estimation at the univariate rate and
thereby avoids the curse of dimensionality.

Although less restrictive than the parametric models, the single index specification still implies
that all individuals can be aligned on a single dimension and restricts interactions between the
regressors, which is less appealing for many econometric applications where heterogeneity in
responses (for example, treatment effects) is often considered as being important. For example,
if Y is female labour supply and one covariate in X represents the number of children, the single
index restriction imposes that the labour supply response of, for example, one versus zero children
is identical for all women for whom the linear combination x′θ has the same value, even if they
have very different characteristics. For these women, also the effect of five versus two children is
supposed to be the same. In particular, the single-index restriction implies that any cross-effects
are independent of other characteristics. Hence, although the marginal effects ∂ E[Y |X = x]/∂x 1

can vary with x, the ratio of two marginal effects ∂ E[Y |X=x]/∂x1

∂ E[Y |X=x]/∂x2
= θ1

θ2
is not permitted to depend on

x. This is like a treatment–effect–homogeneity assumption and supposes that, for example, the
labour supply response to the number of children is identical to the labour supply response to a
change in marginal tax rates (multiplied by the constant θ 1/θ 2) for every woman.

4 Gozalo and Linton (2000) apply least-squares local probit estimation to transport mode choice and find that parametric
probit regression misses some important regressor interaction effects, which are detected by local probit. This is also found
in the analysis of Portuguese female labour supply, where the estimated effects are examined instead of the coefficients,
since the latter are of no direct interest. I also examine the performance of the Klein–Spady estimator, which also misses
the structure.

5 However, whereas E[Y |X = x + �x] − E[Y |X = x] is bounded, ∂ E[Y |X = x]/∂x q may not be.
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Many of the other well-known semiparametric approaches also restrict interactions and
response heterogeneity in that ∂ E[Y |X=x]/∂x1

∂ E[Y |X=x]/∂x2
is not permitted to depend on any other covariates

than x1 and x2. This includes the generalized additive model (GAM), the partial linear model and
the generalized partial linear model.6,7

Nonparametric regression is more flexible. Although it is subject to the curse of dimensionality
and does not achieve

√
n convergence, it may still perform well in finite samples.8 Local

polynomial regression is the most popular class of estimators, (see e.g. Fan and Gijbels 1996).
Apart from Nadaraya–Watson (=local constant) regression, however, local polynomial regression
is not particularly suited for binary choice models as it does not incorporate the restriction that
E[Y |X ] ∈ [0, 1]. An immediate solution is to cap the estimates at 0 and at 1, which however
makes the objective function non-differentiable and also implies that estimated marginal effects
may be exactly zero at many x values.

Instead of local polynomials, other local models may be more appropriate. Let g(x , θ x ) be
a known function with unknown coefficient vector θ x . The conditional mean function can be
modelled locally as

E[Y |X = x] = g(x, θx ). (1)

In contrast to the parametric and semiparametric models, the coefficient vector θ x is allowed to
vary arbitrarily with x. Local parametric modelling includes Nadaraya–Watson (local constant)
kernel regression with g(x , θ x ) = θ x and local linear regression with g(x , θ x ) = x ′θ x . For binary
choice models, the logit specification

E[Y |X = x]
.= 1

1 + e−x ′θx
(2)

6 The generalized additive model (GAM) assumes that m(x) with dim(x) = K can be written as a sum of unknown
non-parametric functions of each component of x with a known link function G, e.g. the logit link,

G (E[Y |X = x]) = α + m1(x1) + m2(x2) + · · · + mK (xK ),

where the functions mk are unknown, (see Hastie and Tibshirani 1990). The partial linear model separates the components
of x into two sets x S1 and x S2 and assumes that x S1 enters linearly whereas x S2 can enter non-parametrically through an
unknown function m:

E[Y |X = x] = xS1 β + m(xS2 )

(see e.g. Robinson 1998). The generalized partial linear model extends this model with a known link function

G (E[Y |X = x]) = xS1 β + m(xS2 ).

In the last two models, usually the set x S2 contains only one regressor, which thus eliminates response heterogeneity. If
x S2 contains several regressors often a generalized partial linear index model is used:

G (E[Y |X = x]) = xS1 β + m(x ′
S2

θ ).

(see e.g. Pagan and Ullah 1999; Härdle et al. 2004, Fan and Gijbels 1996).
7 More flexible are semiparametric models with multiple indices: E[Y |X = x] = α + ∑q

l=1ml (x ′θl ), which includes
projection pursuit (Friedman and Stuetzle 1981) and neural networks (White 1989; Kuan and White 1994).

8 In addition, the non-parametric regression estimates are often used as plug in estimates in some semiparametric
estimation problem of the type discussed in Newey (1994) and Chen et al. (2003). Examples are partial means, average
treatment effects or average derivative estimators, (see e.g. Blundell and Powell 2004; Frölich 2004, 2005, 2006; Hahn
1998; Heckman et al. 1998; Hirano et al. 2003; Imbens 2004). Here,

√
n-consistency can be achieved despite the low

precision in the non-parametric plug-in estimator, and the approaches with semiparametric structure mentioned above
become less attractive.
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is convenient, since it imposes the range restriction and is differentiable.9 If the logit form is closer
to the true regression curve than a constant or linear specification, a non-parametric estimator
incorporating this local model will be less biased than kernel or local linear regression. Local
logit encompasses the global logit model (where θ x does not vary with x) and if the global logit
model were indeed correct, local logit estimation would be unbiased.

Several approaches to estimate θ̂x have been suggested. Local non-linear least-squares
regression Gozalo and Linton (2000) estimates θ̂x from a sample of n i.i.d. observations {(Y i ,
X i )}n

i=1 as

θ̂x = arg min
θx

n∑
i=1

(Yi − g(Xi , θx ))2 K H (Xi − x), (3)

where K H (X i − x) is a kernel function and H a vector of bandwidth values.
More general is local likelihood estimation which estimates θ̂x as

θ̂x = arg max
θx

n∑
i=1

ln L (Yi , g(Xi , θx )) K H (Xi − x), (4)

where ln L(Y i , g(X i , θ x )) is the log-likelihood contribution of observation (Y i , X i ). For H
converging to infinity, the local neighbourhood widens and the local estimator would converge to
the global parametric estimator.

Local likelihood estimation includes local least squares as a special case when the likelihood
function for normal errors is used. Local likelihood estimation has been introduced by Tibshirani
and Hastie (1987), and its properties have been analyzed in Fan et al. (1995), Fan and Gijbels
(1996), Fan et al. (1998) and Eguchi et al. (2003), among others.10 Local likelihood estimation
has been used for density and hazard estimation,11 but only very rarely has it been applied to
estimating regression functions for binary dependent variables. Tibshirani and Hastie (1987) and
Fan et al. (1995) consider exemplary biometric applications of local likelihood logit, but only
for one-dimensional X. Fan et al. (1998) present a brief simulation study and observed good
performance of the local likelihood logit estimator, again only for one-dimensional X. For higher-
dimensional X, Tibshirani and Hastie (1987) suggest non-parametric additive modelling for the
regressors X, which, however, restricts interactions of the regressors.12 Only in the context of
local least squares, an example for non-parametric regression with a binary dependent variable
Y and unrestricted interactions among the regressors X has been illustrated in Gozalo and Linton
(2000).

9 Fan et al. (1995) and Fan et al. (1998) also consider higher, order expansions in the logit domain, e.g. with a quadratic
term: E[Y |X = x]

.= 1
1+e−αx −x ′βx −x ′γx x , where x does not contain a constant. A rather general result for local modelling

with local polynomials entering through a link function is that odd order polynomials lead to simpler asymptotic bias
expressions and with a bias of same order in the interior as in boundary regions, (see e.g. Fan et al. 1995; Carroll et al. 1998).
This argument thus favours a linear or cubic expansion over a quadratic expansion. However, if x is higher dimensional,
estimation with quadratic or even cubic terms could be difficult, since the number of coefficients proliferate quickly with
dim(x) and local multicollinearity may occur more frequently.

10 See also Carroll et al. (1998) who proposed local estimating equations.
11 See e.g. Copas (1995), Hjort and Jones (1996), Loader (1996), Staniswalis (1989), Fan and Gijbels (1996), Eguchi

and Copas (1998), Bebchuk and Betensky (2001) and Park et al. (2002).
12 Blundell and Powell (2004) mentioned local likelihood probit estimation as one possible plug-in estimator for the

average structural function.
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Compared to local least-squares regression, the local likelihood logit estimator has the
advantage of nesting the efficient estimator when the logit specification is true. In this case, the
parametric maximum likelihood logit estimator is efficient, and for bandwidth values converging
to infinity the local likelihood logit estimator converges to the parametric logit estimator. For
normal errors, i.e. when assuming that ε i is normally distributed in Y i = μ(X i ) + ε i , local non-
linear least-squares regression and local likelihood estimation are identical. But the assumption
of normal errors is often not appropriate for binary dependent variables and is likely to lead to
efficiency losses compared to a more sensible specification such as Y i = 1(μ(X i ) + ε i > 0),
which leads to the local likelihood logit estimator for logistic ε i . In addition, the local likelihood
logit estimator is globally concave and usually converged much faster to the solution than local
non-linear least squares.13

2.1. Local likelihood logit estimation

The local likelihood logit estimator is Ê[Y |X = x] = 1
1+e−x ′ θ̂x

,14 where

θ̂x = arg max
θx

n∑
i=1

(
Yi ln

(
1

1 + e−Xi
′θx

)
+ (1 − Yi ) ln

(
1

1 + eXi
′θx

))
K H (Xi − x). (5)

In many empirical applications, X may contain continuous as well as discrete variables.
In principle, discrete variables could be accommodated by forming separate cells for each
combination of the values of the discrete regressors and conducting separate regressions within
each cell. However, more precise estimates can be obtained by smoothing also over the
discrete regressors. Discrete regressors can easily be incorporated in the local model g(·). For
including discrete regressors also in the distance metric of the kernel function K (X i − x),
Racine and Li (2004) suggested a hybrid product kernel that coalesces continuous and discrete
regressors. They distinguish three types of regressors: continuous, discrete with natural ordering
(number of children) and discrete without natural ordering (bus, train, car). Suppose that the
variables in X are arranged such that the first q1 regressors are continuous, the regressors
q 1 + 1, . . . , q 2 are discrete with natural ordering and the remaining Q − q 2 regressors
are discrete without natural ordering. Then the kernel weights K (X i − x) are computed

13 As an alternative to local models, it is often suggested to include a sufficient number of interaction terms in a global
parametric model. Although this might be a convenient approach in practice, some problems should be noted. If the
number of covariates is large, the number of interaction terms can quickly exceed the number of observations. Even if all
Q covariates are binary, 2Q different interaction terms can be formed. The estimates of such ‘saturated models’ can be very
imprecise because no smoothing over the covariates takes place, see e.g. Racine and Li (2004). In binary choice models
estimated by maximum likelihood, several of the interaction terms might predict the outcome perfectly, thus leading to
numerical problems and undefined estimates. Although fully interacted models are often problematic in practice, a careful
data-driven procedure to select from the many possible interaction terms might lead to similar results as a non-parametric
approach. This, however, is beyond the scope of this paper.

14 With g(x , θ x ) as the local model, the conditional mean is estimated as Ê[Y |X = x] = g(x, θ̂x ). Marginal effects can be
estimated either by estimating two conditional means Ê[Y |X = x + �x] − Ê[Y |X = x] = g(x + �x, θ̂x+�x ) − g(x, θ̂x )
or from within the model as g(x + �x, θ̂x ) − g(x, θ̂x ).
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as

Kh,δ,λ(Xi − x) =
q1∏

q=1

κ

(
Xq,i − xq

h

) q2∏
q=q1+1

δ|Xq,i −xq |
Q∏

q=q2+1

λ1(Xq,i �=xq), (6)

where X q,i and x q denote the qth element of X i and x, respectively. 1(·) is the indicator
function. κ is a symmetric univariate kernel function. h, δ and λ are bandwidth parameters
with 0 ≤ δ, λ ≤ 1. This kernel function K h,δ,λ(X i − x) measures the distance between X i

and x through three components: The first term is the standard product kernel for continuous
regressors. The second term measures the distance between the ordered discrete regressors and
assigns geometrically declining weights. The third term measures the mismatch between the
unordered discrete regressors. δ controls the amount of smoothing for the ordered and λ for the
unordered discrete regressors. The larger δ and/or λ the more smoothing takes place with respect
to the discrete regressors. If δ and λ are both 1, the discrete regressors would not affect the kernel
weights and the non-parametric estimator would ‘smooth globally’ over the discrete regressors.
On the other hand, if δ and λ are both zero, smoothing would proceed only within each of the
cells defined by the discrete regressors but not between them.

Principally, instead of using only three bandwidth values h, δ, λ for all regressors, a
different bandwidth could be employed for each regressor. This would substantially increase the
computational burden for bandwidth selection and might lead to additional noise due to estimating
these bandwidth parameters. Alternatively, groups of similar regressors could be formed, with each
group assigned a separate bandwidth parameter. Particularly if the ranges assumed by the ordered
discrete variables vary considerably, those variables that take on many different values should be
separated from those with only few values. Moreover, the continuous regressors should be scaled
to same mean and same standard deviation to adjust for different scopes and measurement scales
and to improve numerical stability.

2.2. Bandwidth choice

A large number of alternative bandwidth selection methods for non-parametric regression have
been developed. For many plug-in methods, experience with their small sample behaviour
for higher-dimensional x is limited, though. In addition, with local parametric regression, the
appropriate choice of the bandwidth parameters h, δ and λ depends also on how well the specified
function g resembles the true conditional mean function. If the parametric hyperplane encompasses
the true conditional mean function, the optimal bandwidth values would be (h, δ, λ) = (∞, 1, 1),
corresponding to (global) parametric regression. Otherwise the bandwidths should converge to
zero with increasing sample size.15

15 Eguchi et al. (2003) analyze optimal bandwidth choice for local likelihood estimation under small h asymptotics
and large h asymptotics. If the local model is in an α-neighbourhood of the true conditional expectation function, the
optimal bandwidth tends to infinity as n increases to infinity. If the local model is far from the true conditional expectation
function, the optimal bandwidth tends to zero as n increases. For some intermediate cases, the optimal bandwidth may be
constant. They argue that standard plug-in methods for bandwidth choice, which are based on small h asymptotics, are
not appropriate if it is a priori unknown how far the local model is from the true expectation function. On the other hand,
they conjecture that cross-validation and bootstrap methods should be consistent in both situations, i.e. when the optimal
bandwidth tends to infinity and when it tends to zero.
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Bandwidth choice by cross-validation permits this ambiguity, i.e. if it is not a priori known
how well the local parametric model fits the data. Cross-validation selects the bandwidths to
minimize out-of-sample prediction error. For minimizing squared prediction error, the bandwidths
are chosen to minimize the least-squares criterion CV LS

CVLS =
n∑

i=1

(Yi − g(Xi , θ̂−Xi |h,δ,λ))2, (7)

where θ̂−Xi |h,δ,λ is the leave-one-out coefficients estimate for the estimation of E[Y |X = X i ] that
is obtained from the data sample without observation i. The sum of squared errors indicates how
well the estimator is able to predict E[Y|X] for the sample distribution of X.

In the context of local likelihood estimation, Staniswalis (1989) suggested a different cross-
validation criterion based on maximizing the leave-one-out fitted likelihood function

CVM L (h, λ) =
n∑

i=1

Yi ln g(Xi , θ̂−Xi |h,δ,λ) + (1 − Yi ) ln(1 − g(Xi , θ̂−Xi |h,δ,λ)). (8)

2.3. Inference and confidence intervals

Fan and Gijbels (1996), Fan et al. (1998) and Carroll et al. (1998)16 discuss estimation of bias
and variance of the local likelihood estimator. A consistent estimator of the local variance of θ̂x

can be obtained as( ∑
�i�̄i Xi X ′

i Ki

)−1( ∑
(Yi − �i )

2 Xi X ′
i K 2

i

)( ∑
�i�̄i Xi X ′

i Ki

)−1

where �(u) = 1
1+e−u is the logit function and �i = �(X ′

i θ̂x ) and �̄i = 1 − �i and �x = �(x ′θ̂x )
and �̄x = 1 − �x .17 For a small sample size, Carroll et al. (1998) and Galindo et al. (2001)
propose a degrees of freedom correction.

The variance approximation for Ê[Y |X = x] can then be obtained by the delta method
as

Var
(
Ê [Y |X = x]

) ≈ �2
x�̄

2
x · x ′V̂ar(θ̂x )x .

Similarly, the variance of the marginal effects could be obtained by applying the delta method
to

∂ E [Y |X = x]

∂x
= �(x ′θ̂x )�̄(x ′θ̂x ) θ̂x

16 Carroll et al. (1998) analyzed local estimating equations (which contains local likelihood as a special case where the
score of the likelihood function gives the moment conditions) and derived consistent estimators for the variance, which
correspond to the following expressions.

17 Fan et al. (1998) and Carroll et al. (1998) propose modified versions of the variance estimator. Fan et al. (1998)
replaces (Y i − �i )2 in the above expression by �x �̄x , whereas Carroll et al. (1998) replace (Y i − �i )2 by �i �̄i . Both
modifications should lead to similar results if the smoothing window is small.
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to obtain

Var

(
∂ Ê [Y |X = x]

∂x

)
≈ �2

x�̄
2
x (I + (�̄x − �x )θ̂x x ′)V̂ar(θ̂x )(I + (�̄x − �x )x θ̂ ′

x ).

For obtaining confidence intervals also local bias has to be taken into account. Various
methods to estimate the bias have been proposed, e.g. plug-in procedures using the asymptotic
formulae for the bias and empirical procedures as suggested in Ruppert (1997) and Fan
et al. (1998). The empirical approaches are usually based on higher order polynomials in the
logit link function, and there seems to be only limited experience with these methods for
higher dimensional X. With an estimate of the local bias, pointwise confidence intervals can
be constructed as described in Fan et al. (1998), exploiting the asymptotic normality of the
estimate.

To avoid estimation of the local bias, undersmoothing through the choice of a smaller band-
width value would reduce the magnitude of the bias at the expense of a larger variance. With
sufficient undersmoothing, the bias might become negligible compared to the variance such that
confidence intervals can be based on estimated variance only. However, this undersmoothing
clearly sacrifices precision. A more satisfying solution would be based on bootstrap confidence
intervals as derived in Galindo et al. (2001).

2.4. Local multicollinearity

Compared to conventional Nadaraya–Watson regression with unbounded kernel, a well-defined
maximizer of the local likelihood may not always exist or may be susceptible to numerical
problems when the smoothing window is small. First, it may happen that all observations in the
local smoothing window are zeros or ones. Second, perfect prediction in the local smoothing
window may result in coefficient estimates converging to infinity. Third, collinearity of the
regressors in the local smoothing window can render the estimates undefined. These problems
have not been addressed in the literature so far, but could be quite important in finite samples.
Obviously such problems should be of less concern when using a kernel with unbounded support,
such as the Gaussian, compared to a compact kernel, such as the Epanechnikov. Nevertheless, even
with the Gaussian kernel near-multicollinearity and perfect prediction can lead to very imprecise
or undefined estimates.

The first problem could easily be solved by simply defining the estimate as one or zero if
all observations in the smoothing window are one or zero.18 In this case, marginal effects can
no longer be computed directly from the local parametric model but require estimation of the
conditional expectation function at x and x + �x .

To overcome the other two problems, there are essentially two approaches: locally increasing
bandwidths or dropping regressors. Locally dropping regressors that cause collinearity reduces the

18 Fan et al. (1998) suggested to use only bandwidth values that are sufficiently large such that all local smoothing
windows contain zeros as well as ones. This, however, would not be the best solution if the true conditional expectation
function E[Y |X = x] were indeed zero or one for some values of x, i.e. where the local logit model would be misspecified.
Defining the estimate as zero or one is more in line with linear smoothers, which estimate the conditional expectation
function as some weighted average of the observed Y in the smoothing window.
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complexity of the local model,19 whereas increasing the bandwidth values reduces the localization
of the model. Different versions of the local likelihood logit estimator have been examined in the
simulations and led to largely similar results. Overall local likelihood logit with Gaussian kernel
and increasing bandwidths in case of collinearity gave the best results in the Monte Carlo. (More
details are discussed in the supplementary appendix.)

3. FINITE SAMPLE PROPERTIES

In this section, the finite sample behaviour of local likelihood logit, local constant, local linear
and Klein–Spady regression is analyzed for various simulation designs with 14 covariates
(4 continuous, 10 binary) and samples of size 250 and 500, respectively. Hence, relative to the
number of observations, the estimation problem can be considered as rather high-dimensional,
since even the binary variables alone generate 1024 different cells. The out-of-sample prediction
performance is examined for the conditional mean E[Y|X] and for the marginal effects. Samples
{(Y i , X i )}n

i=1 of size n are drawn as well as validation samples {X j}n
j=1. From the sample {(Y i ,

X i )}n
i=1 the conditional mean E[Y |X = X j ] is predicted at all locations X j and compared to the

true conditional mean E[Y |X = X j ].20 The marginal effects are estimated for all 14 variables
separately. For a binary variable, the effect of a change from 0 to 1 is estimated. For a continuous
variable, the effect of an increase by 1 is estimated.21

The four continuous variables Xc
1, Xc

2, Xc
3, Xc

4 are drawn from different χ2 distributions,
and the 10 binary variables Xb

1, . . . , Xb
10 are Bernoulli distributed. Four different designs are

considered, which differ in the dependence structure among the covariates. In designs 1 and 2, the
continuous variables are uncorrelated, while they are correlated in designs 3 and 4. The binary
variables are uncorrelated in designs 1 and 3 but correlated in designs 2 and 4.

X-design 1: The continuous variables Xc
1, Xc

2, Xc
3, Xc

4 are independent and are distributed χ2 with
1, 2, 3 and 4 degrees of freedom, respectively. The binary variables Xb

1, . . . , Xb
10 are distributed

Bernoulli(p = 0.5). All variables are independent of each other.

X-design 2: The continuous variables are distributed independently as in X-design 1. The binary
variables are dependent: Xb

1 ∼ Bernoulli(0.5) and Xb
k ∼ Bernoulli(p = 0.3 + 0.4X̄ b

k−1), where
X̄ b

k−1 = 1
k−1

∑k−1
l=1 Xb

l is the mean of the realized values of the ‘preceding’ binary variables. Thus,

19 If all regressors except the constant are dropped, the estimator reduces to the Nadaraya–Watson estimator.
20 The data sample {(Y i , X i )}n

i=1 and the validation sample {X j}n
j=1 are drawn from the same population. The main

interest is often not in estimating the conditional mean and marginal effects at the locations of the data but at some other
location x0, provided x0 is in the support of X i . In the analysis of discrimination, we might be interested in predicting
the wages of women if they had the distribution of the human capital characteristics X that is observed among men. In a
treatment evaluation context, we might be interested in predicting the earnings after participation in a training programme
for individuals who did not participate, by controlling for differences in the characteristics X. For such analyses we need
the support of X to be identical in both subpopulations, or more precisely, that the support of X in the validation sample
is a subset of the support of X in the data sample.

21 More precisely, the marginal effect is estimated as Ê[Y |X = Ẍ j ] − Ê[Y |X = Ẋ j ], where Ẍ j and Ẋ j differ from
X j only in the component corresponding to the variable for which the effect will be estimated. For the effect of a binary
variable, the corresponding element is set to 1 in Ẍ j and to 0 in Ẋ j . For a continuous variable, Ẋ j equals X j and the
corresponding element in Ẍ j is increased by one.
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if all preceding variables are one, the probability that the next variable also takes the value one is
0.7. The correlation among the binary variables lies between 0.1 and 0.4.

X-design 3: The binary variables are independent Bernoulli(0.5) variables as in X-design 1. The
continuous variables are positively correlated. Xc

1 is distributed χ2
(1), Xc

2 is generated as Xc
1 plus

an independent χ2
(1), Xc

3 is generated as Xc
2 plus an independent χ2

(1), and Xc
4 is generated as Xc

3

plus an independent χ2
(1). The implied correlation among the continuous variables lies between

0.5 and 0.9.

X-design 4: The continuous variables and the binary variables are dependent and generated as in
X-design 3 and X-design 2, respectively.

The Y observations are generated according to one of the five Y-designs:

Y-design 1: Linear index model without interaction or higher-order terms

Y = 1

(
−8 − Xc

1 + 2Xc
2 − 3Xc

3 + 4Xc
4 + 2

10∑
k=1

Xb
k (−1)k + noise > 0

)
.

Y-design 2: Linear index model with squared and interaction terms

Y = 1 if Y ∗ ≥ 0, where

Y ∗ = 8 − Xc2
1 + Xc2

2 − X2
3 + Xc2

4 + 3Xc
1 − 5Xc

2 + 7Xc
3 − 9Xc

4

+ 2
10∑
j=1

Xb
k (−1)k − Xc

1 Xb
1 + Xc

2 Xb
2 − Xc

3 Xb
3 + Xc

4 Xb
4 + noise

Y-design 3: Linear index model with interaction terms

Y = 1 if Y ∗ ≥ 0, where

Y ∗ = −8 − Xc
1 + 2Xc

2 − 3Xc
3 + 4Xc

4 + 2
10∑

k=1

Xb
k (−1)k

− 3Xc
1 Xb

1 Xb
2 + 3Xc

2 Xb
3 Xb

4 − 3Xc
3 Xb

6 Xb
7 + 3Xc

4 Xb
8 Xb

9 + noise.

Y-design 4: Nonlinear model with lower and upper threshold

Y = 1 if 8 ≤ Y ∗ < 15, where

Y ∗ = 2
√∣∣10 − Xc

1 − Xc
2 + Xc

3 + Xc
4

∣∣ − 0.3
(
Xc

1 + Xc
2

) 4∑
k=1

Xb
k + 0.2

(
Xc

3 + Xc
4

) 10∑
k=5

Xb
k + noise

Y-design 5: Index model with two-regimes

Y = 1
(
Y ∗

1 ≥ 0
)

if
10∑

k=1

k Xb
k is below its mean, and

Y = 1
(
Y ∗

2 ≥ 0
)

otherwise, where

Y ∗
1 = −4 − Xc

1 + Xc
2 − Xc

3 + Xc
4 − Xc

1 Xb
1 + Xc

2 Xb
2 − Xc

3 Xb
3 + Xc

4 Xb
4 + noise

Y ∗
2 = − 4 + (−Xc

1 + Xc
2 − Xc

3 + Xc
4

)2 + 4
(−Xc

1 Xb
1 + Xc

2 Xb
2 − Xc

3 Xb
3 + Xc

4 Xb
4

) + noise.
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The first three Y-designs correspond to the latent index threshold passing model familiar
from utility maximization theory: An individual chooses a certain option (purchasing a good,
participating in the labour force) if her idiosyncratic latent utility exceeds a certain threshold
(opportunity cost, reservation wage). In Y-design 1, the latent index is a linear combination of the
regressors, as it is, for instance, modelled in a logit, probit or single-index model. In Y-design 2,
square and interaction terms enter the latent index. Interaction terms with the binary regressors
are also included in Y-design 3. Y-design 4 represents a situation where a certain option is only
chosen if a latent index is neither too large nor too small. As an example, consider the relationship
between wages and the decision to work overtime. Overtime work will be attractive neither at very
low wages nor at very high wages due to the income (wealth) effect. Y-design 5 models different
behavioural rules for two different subpopulations. According to their binary regressors, each
individual belongs either to subpopulation one or to subpopulation two, and each subpopulation
faces a different outcome relationship. Such segregation might for instance be generated by
administrative regimes which induce different incentives among eligible and non-eligible groups,
for example, affirmative action programmes, preferential tax treatments, exemptions from social
security or pension contributions, etc.

Four different designs for the noise are considered: In the first variant, noise is drawn from
a logistic distribution, a symmetric distribution with relatively little mass in the tails. This
implies that for Y-design 1 and logistic noise, the global logit model is correctly specified
and the parametric logit estimator, which is used as the benchmark estimator, is consistent and
efficient. In the second variant, referred to as heteroskedastic noise, the noise is drawn from

a t2 distribution and multiplied by 0.14
√∑

Xc
k

∑
Xb

k . This leads to a heteroskedastic error

with substantial probability mass in the tails.22 In the third variant, called bimodal, the noise
is drawn from a mixture of two normals N(2, 1) and N(−2, 1) leading to a symmetric bimodal
distribution. In the fourth variant, called asymmetric, the noise is drawn from the asymmetric
χ2

(3) distribution. These four variants thus capture various features of the noise distribution.23

Except for the logistic noise in Y-design 1, the global parametric logit estimator is always
misspecified.

3.1. Implementation of the estimators

All estimators use as regressors Xc
1, . . . , Xc

4, Xb
1, . . . , Xb

10 and a constant, but no interaction or
higher-order terms. The benchmark parametric logit is estimated by maximum likelihood.24

The semiparametric Klein–Spady estimator is implemented as in Gerfin (1996) with m(·)
estimated by one-dimensional kernel regression and the bandwidth selected by generalized cross-
validation. To be more specific, for a given bandwidth value h, the Klein–Spady estimator
maximizes the quasi-log-Likelihood function:

β̂h = arg max
β

Q(β, h) =
∑

i

Yi ln m̂i + (1 − Yi ) ln(1 − m̂i )

22 The variance of the t2 distribution is infinite.
23 The mean of Y depends on the Y-design, X-design and the noise and varies between 0.43 and 0.56.
24 If the parametric logit did not converge, e.g. collinearity or perfect prediction, a new sample is drawn.
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where

m̂i =
∑

l Ylφ
(

X ′
lβ−X ′

i β

h·std(X ′β)

)
∑

lφ
(

X ′
lβ−X ′

i β

h·std(X ′β)

)
where std(X′β) is the standard deviation of X′β in the sample. For a given bandwidth value h, the
estimates β̂h are obtained by Newton–Raphson iteration (with step size 0.2). Since the coefficients
β are identified only up to scale, the first coefficient is normalized as one. The bandwidth is chosen
that minimizes the generalized cross-validation criterion

GCV (h) =
∑

i (Yi − m̂i )2(∑
i (1 − ξi )

)2

where

ξi = φ(0)∑
lφ

(
X ′

l β̂h−X ′
i β̂h

h·std(X ′β̂h )

)
is the kernel weight accorded to observation i in the estimation of m̂i . The GCV(h) is computed for
30 different values of h ∈ {0.02, 0.04, . . . , 0.60} and the bandwidth corresponding to the minimum
is chosen. With this estimated bandwidth ĥ, the coefficients β̂ĥ are estimated and estimates of the
conditional mean at a value x are obtained as

Ê[Y |X = x] =
∑

l Ylφ
(

X ′
l β̂ĥ−x ′β̂ĥ

ĥ·std(X ′β̂ĥ )

)
∑

l φ
(

X ′
l β̂ĥ−x ′β̂ĥ

ĥ·std(X ′β̂ĥ )

) .

For the non-parametric Nadaraya–Watson, local linear and local logit estimators, the
bandwidths are chosen either according to the least-squares criterion CV LS (7) or according
to the likelihood criterion CV ML (8).25 The kernel weights K (X i − x) for given bandwidth values
h, λ are computed in all estimators as

Kh,λ(Xi − x) =
10∏

k=1

λ1(Xb
k,i �=xb

k )
4∏

k=1

κ

(
Xc

k,i − xc
k

h

)
, (9)

where κ is either the Epanechnikov kernel κ(u) = 3
4 (1 − u2)1[−1,1](u) or the Gaussian kernel.

For local linear and local logit regression, the 14 regressors (plus a constant) enter not only in
the kernel function K (X i − x) but also in the local specification g(x , θ x ). To improve numerical
accuracy and to ensure that all continuous regressors are of similar magnitude, the continuous
variables are scaled to the same standard deviation prior to estimation. The estimated marginal
effects refer to the unscaled variables, though.

Local linear regression specifies the conditional expectation function locally as

E[Y |X = x]
.= x ′θx , (10)

25 From a grid of 20 × 20 gridpoints: (h, λ) ∈ {1, 1.2, . . . , 1.218, ∞} × {0.05, 0.10, 0.15, . . . , 1} for n = 250 and (h,
λ) ∈ {1.2−6, 1.2−5, . . . , 1.212, ∞} × {0.05, 0.10, 0.15, . . . , 1} for n = 500.
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where a constant is included among the regressors x. For given bandwidth values E[Y |X = x] is
estimated by the first element of the weighted least-squares estimate θ̂x , with

θ̂x = (
X′

x Wx Xx
)−1

X′
x Wx Yx ,

Xx =

⎛⎜⎜⎝
1

(
Xc

1,1 − xc
1

) · · · (
Xb

10,1 − xb
10

)
...

...
. . .

...

1
(
Xc

1,n − xc
1

) · · · (
Xb

10,n − xb
10

)
⎞⎟⎟⎠ and Yx =

⎛⎜⎜⎝
Y1

...

Yn

⎞⎟⎟⎠ and Wx = diag (K H (Xi − x))

(11)

(see Fan and Gijbels 1996; Ruppert and Wand 1994; Seifert and Gasser 1996). Since the local
linear estimates may lie outside the interval [0, 1], they are capped at zero and at one.

The local constant (Nadaraya Watson) estimator is a special case of local linear regression
with all slope coefficients in (10) constrained to zero:

Ê[Y |X = x] =
∑

Yi K H (Xi − x)∑
K H (Xi − x)

.

3.2. Simulation results

The out-of-sample prediction performance for the conditional mean E[Y}X] and for the marginal
effects is assessed by their simulated mean absolute error (MAE), median absolute error (MdAE),
mean squared error (MSE) and median squared error (MdSE). For each of the 80 different
designs,26 data samples and validation samples are drawn repeatedly27 from the same population,
and for all observations of the validation sample the conditional means and marginal effects are
estimated on the basis of the observations in the data sample, as described above. Since the Monte
Carlo study comprehends a large number of different designs and variants of the estimators, only
the most salient results are summarized in the following. A supplementary appendix, available
from the author’s webpage, contains all the detailed simulation results for all 80 designs.

The performance is measured relative to the benchmark parametric logit estimator, and all
results will be given in percent.28 Among these four performance measures, generally the relative
performance of local logit is worst with respect to MSE and best with respect to MdSE. The relative
performance with respect to the other two measures is usually between these two. Therefore, in
the following, only the results for the MSE and the MdSE are given. (The results for the mean
and median absolute error can be found in the supplementary appendix.)

First, the relative performance of the various estimators in those designs where the parametric
logit model is correctly specified is examined in Table 1. These are the four X-designs with
Y-design 1 and logistic noise, and Table 1 gives the average over these four designs for sample
size 250 and 500, respectively. The first two rows of Table 1 contain the results for estimating the
conditional mean E[Y|X]. Klein–Spady, Nadaraya–Watson and local linear regression perform

26 Four X-designs, five Y-designs and four noise variants.
27 One hundred replications for each design.
28 Hence, numbers below 100 indicate an improvement over parametric logit regression, whereas numbers above indicate

a worse performance.
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Table 1. Average prediction performance when global logit is correct.

Klein–Spady Nadaraya–Watson Local linear Local logit CV LS Local logit CV ML
Sample

size MSE MdSE MSE MdSE MSE MdSE MSE MdSE MSE MdSE

Prediction performance for conditional mean

250 218.6 295.1 477.6 13198 263.7 13934 115.6 109.4 108.3 106.0

500 250.8 426.7 880.1 23446 478.5 26390 113.6 110.4 110.4 109.1

Prediction performance for marginal effects of continuous regressors

250 782.5 560.1 598.4 2548.3 224.0 2249.6 118.4 112.2 108.3 106.1

500 993.7 894.3 1512.0 5416.9 575.1 5077.2 116.2 110.6 111.6 109.7

Prediction performance for marginal effects of binary regressors

250 556.5 488.9 230.4 707.0 145.7 1932.1 114.5 111.3 107.1 106.8

500 666.5 780.5 482.9 1355.1 279.9 3845.2 113.5 110.2 109.4 108.5

Note: All figures relative to parametric logit. For Nadaraya Watson and local linear regression, the bandwidth is chosen
by CV LS. For local logit, results for bandwidth choice by CV LS and by CV ML are given. Average over the four X-designs
with Y-design 1 and logistic noise.

quite poorly with an MSE of about two to nine times the MSE of the parametric logit estimator. The
relative performance worsens when the sample size increases, since the parametric logit estimator
converges at a faster rate. In contrast, the relative precision of the local logit estimator does not
change with the sample size and its MSE is only about 10 to 15% larger than for parametric logit.
This behaviour can be explained by the very large bandwidths selected by cross-validation, which
even increase when the sample size is increased. (Results not shown.) The CV ML cross validation
criterion leads here to better results than the conventional least-squares cross validation criterion
CV LS.

Table 2 provides the relative performance results averaged over all 80 designs. With the
parametric logit now misspecified in almost all of the designs, the relative performance of all
estimators improves compared to Table 1, and it also improves with the sample size for Klein–
Spady and the local logit estimator. (For NW and local linear, the relative performance worsens
with sample size with respect to MAE and MSE, but improves with respect to median absolute
error.) Nevertheless, Klein–Spady, NW and local linear are still usually worse than parametric
logit,29 whereas local logit seems to be more precise than parametric logit.

For local logit, the CV LS criterion for bandwidth choice leads to best results with respect
to MAE, MdAE and MdSE. The precision gains vis-a-vis parametric logit are about 25% and
55% in terms of MSE and MdSE, respectively, for sample size n = 500. For estimating marginal
effects, local logit is still more precise than parametric logit, but the gains in precision are smaller.
Choosing the bandwidth by the CV ML criterion, on the other hand, often leads to a smaller MSE
and also to a more robust estimator that depends less on the particular design properties, as
discussed in the following.

29 With respect to median absolute error, Klein–Spady is about 5% more precise than parametric logit but only for
estimating the conditional mean. Otherwise, Klein–Spady is worse than parametric logit.
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Table 2. Average prediction performance over all designs.

Klein–Spady Nadaraya Watson Local linear Local logit CV LS Local logit CV ML
Sample

size MSE MdSE MSE MdSE MSE MdSE MSE MdSE MSE MdSE

Prediction performance for conditional mean

250 128.4 104.1 202.8 >10000 132.8 >10000 85.5 53.7 84.7 61.6

500 118.0 104.6 273.4 >10000 175.0 >10000 75.3 45.5 75.7 51.8

Prediction performance for marginal effects of continuous regressors

250 254.0 287.4 201.3 >10000 129.0 >10000 93.1 77.5 91.7 81.6

500 204.6 257.5 284.6 >10000 165.7 >10000 86.1 69.8 86.0 77.1

Prediction performance for marginal effects of binary regressors

250 227.8 212.9 134.7 >10000 112.4 >10000 103.9 74.0 99.4 80.1

500 186.0 192.8 172.3 2057 132.9 >10000 99.1 63.9 94.4 70.6

Note: All figures relative to parametric logit. For Nadaraya Watson and local linear regression, the bandwidth is chosen
by CV LS. For local logit, results for bandwidth choice by CV LS and by CV ML are given. Average over all 80 designs.

Figure 1. Distribution of relative MSE over the 80 designs. MSE relative to parametric logit. Distribution of
the relative MSE over the 80 different designs. Results for Klein–Spady (left-hand side), Nadaraya Watson
(middle) and local linear regression (right-hand side). The first box-plot gives the relative MSE for predicting
the conditional mean E[Y|X], the second box-plot for the marginal effects of the four continuous regressors
and the third box-plot for the marginal effects of the 10 binary regressors. The boxes represent the median
and the 25 and 75 percentiles and extend to the 5 and 95 percentiles.

The previous tables examined only averages over the 80 different designs. This may be a
useful summary statistic, but does not contain any information about the design dependence of
the estimator’s performance. Some estimators may obtain similar results in all designs, whereas
others may be poor in some designs but better in others. Figures 1 and 2 demonstrate how much
the relative performance varies across the designs. For each of the 80 different designs, the relative
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Figure 2. Distribution of relative MSE over the 80 designs. MSE relative to parametric logit. Distribution
of the relative MSE over the 80 different designs. Results for local logit with CV LS bandwidth choice (left-
hand side) and with CV ML bandwidth choice (right-hand side). The first box-plot gives the relative MSE for
predicting the conditional mean E[Y|X], the second box-plot for the marginal effects of the four continuous
regressors and the third box-plot for the marginal effects of the 10 binary regressors. The boxes represent
the median and the 25 and 75 percentiles and extend to the 5 and 95 percentiles.

MSE in estimating the conditional mean function has been simulated30 and the first box-plot in
each graph shows the distribution of these 80 values. The boxes represent the median and the 25
and 75 percentiles and extend to the 5 and 95 percentiles. Results are capped at 4000. The second
box-plot refers to the performance in estimating marginal effects for the continuous covariates,
and is based on 320 different values (80 designs × 4 continuous variables). Finally, the third
box-plot refers to the performance in estimating marginal effects for the binary covariates, and
is based on 800 different values (80 designs x 10 dummy variables). (Figure B2 in the appendix
also shows the results for MdSE.)

Figures 1 and 2 document the favourable results for the local logit estimator in this Monte
Carlo study. Not only is local logit more precise than parametric logit in the majority of the designs
(i.e. the median is below 100), but it also seems to be more robust to design properties than the
other estimators, in that its interquartile range and the 5–95 spread are smaller. (Notice that the

30 These values are shown in Tables B3 to B10 in the supplementary appendix.
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scaling of the ordinate varies between the estimators, e.g. the maximum value is close to 700 for
the Klein–Spady estimator but much smaller for local logit.)

The Klein–Spady estimator performs clearly worse than parametric logit in the majority of the
designs, particularly when estimating marginal effects. Its behaviour improves with the sample
size, but at n = 500 it is still worse than parametric logit.31

For Nadaraya–Watson the results are even worse, with a very large relative MSE in a number
of designs and a spread increasing with sample size. In terms of MdSE, the Nadaraya–Watson
estimator performs very poorly.32 The results are less extreme for the marginal effects, but still
very large. Hence, in terms of median prediction performance, Nadaraya–Watson can be very
unreliable.

These findings are similar for local linear regression. With respect to MSE, local linear
regression behaves better than Nadaraya–Watson, and its MSE varies less with the simulation
design. For predicting the conditional mean, it is slightly more precise than parametric logit, and
for the marginal effects it performs better than Klein–Spady. In terms of MdSE, however, it can
often be very imprecise. The finding that local linear regression performs extremely badly with
respect to MdSE but less badly in terms of MSE indicates that local linear regression produces
disproportionately many small errors. This could be related to the non-differentiability of the local
model, which caps the estimates at 0 and 1. This produces rather many extreme predictions of
0 and 1, whereas in the true data generating processes E[Y |X ] ∈ {0, 1} occurs with probability
zero.

The results for local logit are shown in Figure 2. In the majority of the designs, local logit
is more precise than parametric logit, particularly for the conditional mean function. Comparing
bandwidth selection by CV LS or by CV ML, it seems that CV ML leads to a smaller spread over the
designs. Particularly for n = 250, the interquartile range is smaller with CV ML than CV LS. This
holds with respect to MSE as well as MdSE. Although the ranking of CV LS and CV ML with respect
to the average performance over the 80 designs is ambiguous (see Table A2, the CV ML criterion
led on average to a higher MAE, MdAE and MdSE but a smaller MSE), the CV ML criterion
clearly reduced the variance in the performance over the 80 designs: the standard deviation over
the 80 designs is smaller for all the four performance measures MAE, MdAE, MSE and MdSE.
Although the differences are not very large, this seems to indicate that the CV ML criterion makes
the local logit estimator more robust to the particular design properties.33

4. HETEROGENEOUS FEMALE LABOUR SUPPLY

The previous section indicated that local likelihood logit can work well even in higher-dimensional
settings. In this section, local logit is applied to analyze female labour supply. Determinants of
female labour supply have since long been of interest to economists, arguing about the need for
subsidized child care or all-day schooling. As confirmed by many studies, female labour force

31 These findings hold with respect to MSE as well as MdSE, but with a much larger spread for MdSE. In some designs,
the relative MdSE is very large whereas it is very small in others.

32 In more than 20 of the 80 designs the predictions of E[Y}X] are more than 40 times less precise than for parametric
logit. (The results are capped at 4000) At the median of the 80 designs, the MdSE is larger than 400. These findings are
similar, but somewhat less extreme, with respect to median absolute error.

33 It should be kept in mind that precision is measured relative to the parametric logit estimator.

C© Royal Economic Society 2006



Non-parametric regression for binary dependent variables 529

participation generally decreases with the number of children and particularly if these children are
young. For policy considerations, however, it would be relevant to know whether all women adjust
their labour supply in the same way as a reaction on family size or whether some sub-populations
react differently. Particularly, for some women, labour supply might be inelastic to family size,
whereas for others it might even increase as a reaction on an additional child, e.g. because of
increased financial needs. If women’s reaction on family size is heterogeneous, the provision of
child care subsidies, tax incentives, etc. should be targeted more precisely than if it were largely
homogeneous. Therefore, in the analysis of female labour supply, not only should mean effects
be estimated but their distribution should also be estimated.

To assess heterogeneity in women’s response to family size, the labour force participation of
married Portuguese women is analyzed by a reduced form labour supply model. The data are taken
from Martins (2001) and consist of 2339 women of whom 60% had been working in 1991. Five
explanatory variables are available: age, years of education, husband’s monthly wage, number of
children below the age of 4 and number of children 4 to 18 years old. Tables A1 and A2 in the
Appendix contain descriptive statistics.

For each woman her employment probability P(Y = 1|X i ) given her characteristics X i is
estimated, where Y denotes employment status (1 employed, 0 non-employed). In addition, the
marginal effects of the characteristics X i on employment are estimated, in particular the effects of
the number of children. The effect of an additional child on the employment probability depends
on all characteristics X i and thus differs from woman to woman.34

The employment probabilities P(Y = 1|X i ) and the marginal effects are estimated by
parametric logit, local logit and Klein–Spady. A bandwidth of 0.1 times the standard deviation
of the index xβ was selected for the Klein Spady estimator, and for scale normalization the first
coefficient is fixed. For the local logit estimator, all five variables (plus a constant) enter in the local
model and in the kernel weighting. The local logit specification is economically appealing as it
incorporates monotonicity, decreasing marginal effects and non-saturation. From a simple utility-
maximizing labour supply model, the labour supply should usually decrease with the number of
children but the effect of an additional child should diminish (e.g. due to returns to scale in child
rearing and home production). Nevertheless, the marginal effect should not fall to zero. These
implications of the simple model are not incorporated in the local constant or the capped local
linear model.

For the kernel weighting, the five regressors are split into two groups: age, education and
husband’s wage income are treated as continuous variables. The optimal bandwidth for each of
these three variables is supposed to be proportional to its standard deviation. By imposing the
restrictions that hage = h Std(age), heducation = h Std(education) and hwage = h Std(wage), it suffices
to estimate a single bandwidth h, while at the same time ensuring that the local neighbourhoods
are larger for regressors that display more variation. In the actual implementation of the estimator,
this restriction is accommodated by scaling the continuous regressors to mean zero and variance
one. The second group of regressors consists of the number of children 0–3 years and 4–18 years
old. These two variables are treated as ordered discrete. The same bandwidth value is used for

34 Note that the estimated effects of children can be interpreted as causal only if the number of children is exogenous
given the other characteristics. If some confounding variables that affect both the number of children and the inclination
to work are missing, the estimated employment effects are a mixture of the proper causal effect and a selection effect,
(see Heckman 1990; Manski 1993). This would change the interpretation of the estimated effects but not the comparison
of the different estimators’ ability in detecting heterogeneous effects.
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Table 3. Logit and Klein–Spady estimated coefficients.

Estimated coefficients Logit Klein–Spady

Dependent variable: Employment

Constant 1.34

Age in years −0.03∗∗∗ −0.05

Education in years 0.24∗∗∗ 0.28∗∗∗

Husband’s log wage −0.10 −0.08

Children 0 to 3 years old −0.39∗∗∗ −0.36∗∗∗

Children 4 to 18 years old −0.13∗∗∗ −0.17∗∗∗

Note: Coefficients significant at the 1, 5 or 10% level are marked by ∗∗∗,∗∗ or ∗, respectively. The Klein–Spady coefficients
are divided by −20 to ease comparison with the logit estimates. The first coefficient of the Klein–Spady estimator was
normalized to one.

both variables because it is a priori unclear whether a family having an additional older child is
more different than a family having an additional younger child. Since both variables enter also
in the local model, their coefficients can accommodate the differences in the effects of younger
versus older children. Alternatively, two different bandwidth parameters for the children variables
could have been included in the cross-validation bandwidth search, but this would have increased
computation time considerably. The two bandwidths h, δ were chosen by cross-validation as (h,
δ) = (3.21, 0.35).35

The coefficient estimates of the parametric logit and the semiparametric Klein Spady estimator
are given in Table 3. The logit coefficients indicate that the probability of employment reduces
somewhat with age but increases significantly with educational attainment. Husband’s income
seems to be of minor relevance, whereas children and particularly small children strongly reduce
employment. The Klein–Spady estimates display a similar pattern, but the difference between
younger and older children is smaller.

Figure 3 shows the estimated employment probabilities of logit versus Klein Spady (left-
side) and logit versus local logit (right-hand side). The comparison of the Klein–Spady to the
logit estimates displays a wavelike pattern (that even persists with larger bandwidth values; not
shown). On the other hand, the local logit estimates are, apart from very few outliers, similar to
the logit estimates, perhaps because of the rather large bandwidth value h = 3.21.

To analyze heterogeneity in the response to an additional child, marginal effects are estimated
for all 2339 observations. For the continuous variables (age, education, husband’s wage), the
effect of a 5% increase is estimated.36 For the estimation of the children effects, different family
compositions are considered and compared to the base category zero children. Table 4 shows
the marginal effects (in %-points) estimated by parametric logit, Klein–Spady and local logit,
respectively. The marginal effects were estimated for all 2339 observations, and the rows labelled
‘mean’ provide the average over the 2339 observations, while Q0.05, Q0.25, Q0.75 and Q0.95 refer
to their 5, 25, 75 and 95 percentiles (with respect to the 2339 observations). On average, all
three estimators predict similar marginal effects for the continuous variables, e.g. an increase in
educational attainment increases the employment probability by 1.6 %-points. For the effects of

35 From a grid of 20 × 20 gridpoints: (h, δ)∈{0.3, 0.3 · 1.2, . . ., 0.3 · 1.218, ∞} × {0.05, 0.10, 0.15, . . ., 1}
36 More precisely, the effect of a 2.5% increase compared to a 2.5% decrease in the continuous variable.
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Figure 3. Estimated employment probabilities logit vs. Klein–Spady and logit vs. local logit Abscissa:
Estimated employment probability corresponding to logit model. Ordinate: Estimated employment
probability corresponding to Klein–Spady (left-hand side) or local logit (right-hand side); 2339 observations.

children, on the other hand, parametric logit produces larger estimates than Klein–Spady and
local logit. Compared to no children, having an older child reduces employment probability by
2.6 %-points, whereas a younger child reduces employment by 7.9 %-points. Relative to no
children, two children reduce the employment likelihood by 5.3 to 16 %-points and three children
by 8 to 24 %-points, depending on their age structure. Local logit and Klein–Spady regression
estimate the effect of two children to only about 4 to 11 %-points.

More interesting, however, is the distribution of these marginal effects in the population,
given by the quantiles in Table 4. The effects estimated by parametric logit are not spread out
very much. For example, the effect of an older child is more negative than −3.2 for a quarter
of the population, whereas it is less negative than −2.2 for the quarter of the population with
the weakest reaction on a child. It is also apparent that for the parametric logit estimator the
estimated effects are always positive or always negative and never change sign in the population,
e.g. the employment effects of children are negative for all women. This pattern is due to the
globally monotone logit specification and exemplifies how parametric regression may overlook
heterogeneity in the effects.

This is different with the semi- and non-parametric estimators. According to local logit, an
older child reduces employment by more than 2.5 %-points for a quarter of the population but it
increases employment by at least 2.7 %-points for an other quarter of the population. For 5% of
all women, the increase in the employment probability is even larger than 5.6 %-points. Although
for larger family sizes the employment effects become more negative, still at least 5% of the
population exhibits positive effects even for two children. (For the Klein–Spady estimator this
holds even for three children.) Thus, for a part of the population, having one (or two) children
does not reduce labour force participation and might even increase it.

A graphical summary of these marginal effects in form of box-plots, which cover 95% of their
distribution mass (2.5 to 97.5 percentile), is provided in Figure 4. The left-hand gives the results
according to parametric logit, the middle picture for local logit and the right-hand for Klein–
Spady. Besides positive employment effects of children for parts of the population, particularly
for one child, it can also be seen from Figure 4 and Table 4 that the Klein–Spady estimates are
generally the most variable. Their interquartile ranges and their standard deviations (not shown in
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Figure 4. Distribution of marginal effects in the population Distribution of estimated marginal effects
according to parametric logit (left-hand side), local logit (middle) and Klein–Spady (right-hand side). 0–1
denotes the effect of zero young and one older children relative to the base category of no children. 2–1
denotes the effect of two younger and one older children. Effects correspond to Table 4. The boxes represent
the median and the 25 and 75 percentiles (see Q0.25 and Q0.75 in Table 4) and extend to the 2.5 and 97.5
percentiles. Estimated effects below the 2.5 or above the 97.5 percentile are marked by circles.

Table 4) are usually larger than for the effects estimated by local logit or logit. This could either
imply that the Klein–Spady estimates are most noisy or imply that effect heterogeneity is even
more pronounced.

To examine whether the apparent effect heterogeneity detected by the local logit and Klein–
Spady estimators is genuine or merely spurious due to a larger variance of these estimators, it is
revealing to contrast in a first step the characteristics of the women that display positive effects
to those with negative effects. This is done in Table 5, where the upper part is based on the local
logit estimates, whereas the lower part refers to the Klein–Spady estimates. The columns labelled
as + give the average characteristics of those women for whom the respective effect of children is
positive, whereas the columns labelled as − give the characteristics of the women with a negative
effect on employment. The first columns refer to the effect of one child versus no children. The
following columns refer to the effect of two versus zero children, and finally, the effect of three
versus zero children is considered.

According to local logit, the employment effect of one older child is estimated to be positive
for 1239 observations and negative for the remaining 1100 observations. These 1239 women with
a positive effect are on average 36 years old, with 8.6 years of education and a husbands’ log
wage income of 11. In contrast, the 1100 women exhibiting a negative effect are on average 41.2
years old, with 5.7 years of education and a husband’s log wage of 11.4. When comparing (along
the rows) the women with positive to those with negative effects, a striking pattern with respect to
education is found for the local logit estimator. Women whose employment probability increases
with children are always substantially higher educated than women with decreasing employment
probability. For age and husband’s wage income, no such regularities can be found. These two
variables seem not to be distinguishing characteristics between women with positive and those
with negative effects of children.

For the Klein–Spady estimates given in the lower part of Table 5, on the other hand, no such
regular patterns can be found. Although education appears to be slightly higher among women
with positive effects, this pattern is not stable and the differences are small. The women with
positive effects seem not to be systematically different from those with negative effects. The
heterogeneity in the effects of children on labour supply detected by the semiparametric Klein–
Spady estimator seems to be largely spurious and generated by its larger variance. In contrast, the

C© Royal Economic Society 2006



534 Markus Frölich
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Figure 5. Employment effect of one child conditional on educational level. Change in employment
probability (in %-points) due to one older child (dashed line) or one younger child (solid line), relative
to no children, according to parametric logit (left-hand side), local logit (middle) and Klein Spady (right-
hand side), for different educational levels. Effects for educational levels with less than 20 observations not
displayed.

Figure 6. Employment effect of one child conditional on age.

heterogeneity detected by local logit seems to represent an authentic pattern in that the reaction
to children varies with the educational level.37

This finding is corroborated by Figures 5 and 6, which examine the correlation between the
effects of children and education (or age, respectively). Figure 5 plots the estimated employment
effect of one older child (dashed line) and of one younger child (solid line) for different educational
levels.38 The left-hand picture corresponds to logit, the middle picture to local logit and the right-
hand picture to the Klein–Spady estimates. Figure 6 plots the relationship for age. In Figure 5,
the local logit estimates (middle picture) show a strongly positive relationship between education
and the employment effect of a child. The effect turns positive at about 7 years of education
with respect to an older child and about 12 years of education with respect to a younger child. A
somewhat similar relationship emerges for the parametric logit estimator (left-hand picture), but
the pattern is less stringent and the effects never become positive. For the Klein–Spady estimator
(right-hand picture), the relationship is more noisy and the effects seem first to decrease and then
to increase with higher educational levels, turning positive at very low and very high educational
levels. This pattern, however, seems to be purely spurious and due to the large variability of

37 The correlation between the effects estimated by local logit and by Klein–Spady is about 0.1.
38 This is the average of the estimated effects among those of the 2339 women who have the corresponding educational

level. Average effects for educational levels with less than 20 observations are not displayed.
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the Klein–Spady estimator. This becomes apparent from the relationship between the effect of a
child and age, shown in Figure 6. In this figure, the Klein–Spady estimates exhibit a very erratic
behaviour, whereas the local logit estimates display a weak downward trend for an older and a
weak upward trend for a younger child. The parametric logit effects are invariant to the age level.

Taken together, both local logit and Klein–Spady estimated employment effects of children
that are negative for some women but positive for others. However, whereas local logit discerns
a regular pattern between educational attainment and the effects of children on labour force
participation, the heterogeneity in the Klein–Spady estimates appears to reflect only its higher
variability. These conclusions remain unchanged even with different bandwidth choices, (h, δ) =
(1.5, 0.7) or (1.5, 0.3) for local logit and h = 0.2 or 0.3 for Klein–Spady.

5. CONCLUSIONS

Defying conventional wisdom, it seems that non-parametric regression can work well even with
many regressors if the dependent variable is binary. In the Monte Carlo simulations, local logit
regression was about 25 to 55% more precise than parametric logit with respect to mean squared
error and median squared error, respectively, with only 250 to 500 observations. In addition, local
logit was not much worse than parametric logit in situations where the logit model was correct.

Klein–Spady, Nadaraya–Watson and local linear regression, on the other hand, performed
often worse than parametric logit. The weak results of local linear versus local logit regression
parallels similar findings for parametric binary choice models, where linear probability models
often perform worse than logit or probit models, (see e.g. Hyslop 1999). The local logit
specification incorporates several properties that may be appealing in many economic applications
(such as decreasing marginal effects and non-saturation). Since in higher-dimensional non-
parametric regression, often rather large bandwidth values are selected by cross-validation,
an appropriate choice of the local model becomes more relevant. This may explain the poor
performance of Nadaraya–Watson regression, which is based on a local constant model.

Local logit regression was then applied to analyze heterogeneity in the effects of children on
female labour supply. It was found that highly educated women do not reduce and might even
increase their labour force participation with one child (or two older children) compared to no
children. This might be due to better access to or higher acceptance of child care outside the home
(baby-sitters, boarding schools) among higher educated women, a different division of the child-
rearing burden within the family, or other social or psychological reasons. Hence, if economic
policy is concerned with facilitating and fostering female labour force participation it should be
directed at lower educated women. This heterogeneity in the effects of children was not detected
either by parametric logit nor by the semiparametric Klein–Spady estimator.
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Härdle, W. and T. Stoker (1989). Investigating smooth multiple regression by the method of average
derivatives. Journal of American Statistical Association 84, 986–95.

Hastie, T. and R. Tibshirani (1990). Generalized Additive Models. Chapman and Hall, London.
Heckman, J. (1990). Varieties of selection bias. American Economic Review, Papers and Proceedings 80,

313–18.
Heckman, J., H. Ichimura and P. Todd (1998). Matching as an econometric evaluation estimator. Review of

Economic Studies 65, 261–94.
Heckman, J., J. Smith and N. Clements (1997). Making the most out of programme evaluations and social

experiments: Accounting for heterogeneity in programme impacts. Review of Economic Studies 64, 487–
535.

Hirano, K., G. Imbens and G. Ridder (2003). Efficient estimation of average treatment effects using the
estimated propensity score. Econometrica 71, 1161–89.

Hjort, N. and M. Jones (1996). Locally parametric nonparametric density estimation. Annals of Statistics
24, 1619–47.

Holland, P. (1986). Statistics and causal inference. Journal of American Statistical Association 81, 945–
70.
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DATA APPENDIX: FEMALE LABOUR SUPPLY

The data contain observations on 2339 married Portuguese women whose spouses were employed in 1991.
Descriptive statistics and correlations of the available variables are given in Tables A1 and A2. About 60%
of all women were employed and their age ranges from 17 to 59 years. Educational attainment ranges from
0 to 18 years with an average education of 7.2 years. Their log hourly wage rate is observed only for the
1400 employed women and averages 5.8 for them (measured in Portuguese escudos). This variable is not
used in the reduced form approach. Husbands’ income is in all cases positive and recorded as log monthly
wage (in escudos). The number of children is subdivided into children up to 3 years old and older children
up to 18 years old. On average, each woman has 0.2 younger children and 1.4 older children. More details
are found in Martins (2001), from which the data are taken.

Table A1. Descriptive statistics of female labour supply.

Variable Mean Stddev. Min Max

Employment status 0.60 0.49 0 1

Age in years 38.4 9.4 17 59

Education in years 7.2 3.8 0 18

Wife’s log hourly wage 3.5 2.9 0 7.7

Husband’s log monthly wage 11.2 0.38 10.3 12.6

Children 0 to 3 years old 0.20 0.44 0 2

Children 4 to 18 years old 1.43 1.11 0 9

Note: 2339 married Portuguese women, of which 1400 employed. Wages measured in Portuguese escudos: log hourly
wages for wives, log monthly wages for husbands.
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Table A2. Correlation matrix.

Age Education Husb’ wage Children 0−3 Children 4–18

Employment status −0.16 0.36 0.09 0.03 −0.12

Age in years −0.14 0.07 −0.41 0.23

Education in years 0.31 0.08 −0.13

Husband’s wage −0.05 −0.02

Children 0 to 3 years old −0.24
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