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1. FIXED AND RANDOM EFFECTS IN LINEAR PANEL DATA MODELS
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1.1 LINEAR PANEL DATA MODELS

Panel data are doubly indexed by individual and time:

yi,t, i = 1, ..., n, t = 1, ..., T

Pooling cross-sectional and time series information allows to

i) avoid bias from unobservable individual heterogeneity

ii) distinguish common parameters from individual specific effects and time
specific effects

iii) study the dynamics at the micro-level

iv) ...

Econometric analysis of panel data started with Mundlak (1961), (1978), Hoch
(1962), Balestra, Nerlove (1966)

Patrick Gagliardini (USI) A Short Review on Panel Data Econometrics June 2015 4 / 78



Two linear specifications that are extreme approaches to address
unobservable individual heterogeneity:

i) Full homogeneity: Pooled regression

yi,t = α+ x′i,tβ + εi,t

ii) Full heterogeneity: A system of equations

yi,t = αi + x′i,tβi + εi,t

The linear panel data literature has mostly focused on the intermediate
specification:

yi,t = αi + x′i,tβ + εi,t

where β is a common parameter and the αi are the individual effects
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The individual effects vary across individuals but are constant over time; they
capture (parsimoniously) the specificities of individual behaviours

We distinguish two approaches:

i) Fixed effects: The αi, for i = 1, ..., n, are unknown constants (to be
included among the - nuisance - parameters)

ii) Random effects: The αi, for i = 1, ..., n, are unobservable random
variables (to be incorporated in the error terms)

Fixed and random effects yield different model interpretations and different
estimators
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1.2 FIXED EFFECTS

i) The model:
yi,t = αi + x′i,t

1×K

β + εi,t

where:

A.1: The errors εi,t are i.i.d. across individuals and time dates, with E[εi,t] = 0
and V[εi,t] = σ2, for all i and t

A.2: The regressor xi,t is independent of the error term εj,s, for all i, j and t, s

Compact form:
yi

T×1
= STαi + Xi

T×K
β + εi

where yi = (yi,1, ..., yi,T)
′ and ST = (1, ..., 1)′ is a T-dimensional vector of ones,

and
y

nT×1
= (In ⊗ ST)︸ ︷︷ ︸

≡D

α+ X
nT×K

β + ε ≡ Wγ + ε (1)

where y = (y′1, ..., y
′
n)

′, α = (α1, ..., αn)
′, γ = (α′, β′)′ and W = [D X]
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Equation (1) written explicitly:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1,1
...

y1,T

y2,1
...

y2,T
...
...

yn,1
...

yn,T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

= y

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1

1
...
1

. . .
. . .

1
...
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

= D

⎛⎜⎜⎜⎜⎜⎜⎝
α1

α2
...
...
αn

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

= α

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′1,1
...

x′1,T
x′2,1

...
x′2,T

...

...
x′n,1

...
x′n,T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

= X

β +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1,1
...

ε1,T

ε2,1
...

ε2,T
...
...

εn,1
...

εn,T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

= ε
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ii) Least Squares Dummy Variables (LSDV) estimator: OLS on model (1)

By partitioned regression we get

β̂ = (X′MDX)−1X′MDy =

(∑
i

X′
i MTXi

)−1∑
i

X′
i MTyi (2)

where

MD = InT − D(D′D)−1D′ = In ⊗ MT , MT = IT − 1
T

STS′
T

Interpretation of LSDV estimator: bring data in difference from time means

yi,t − ȳi· = (xi,t − x̄i·)′β + εi,t − ε̄i· (3)

where ȳi· ≡ 1
T

∑
t

yi,t and x̄i· ≡ 1
T

∑
t

xi,t, and apply pooled OLS to get

β̂ =

[∑
i

∑
t

(xi,t − x̄i·)(xi,t − x̄i·)′
]−1∑

i

∑
t

(xi,t − x̄i·)(yi,t − ȳi·) (4)

The estimators of the fixed effects are α̂i = ȳi· − x̄′i·β̂
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iii) Finite-sample properties of the LSDV estimator: follow from standard
results on OLS

From A.1 and A.2 the regressors are strictly exogenous and the errors are
spherical:

E[ε|X] = 0, V[ε|X] = σ2InT

A.3: The matrix W = [D X] has full column rank

For A.3 to be satisfied it is necessary that the regressors X do not include
time-invariant variables!

Under A.1, A.2 and A.3 the LSDV estimator β̂ is BLUE with variance

V[β̂|X] = σ2(X′MDX)−1 = σ2

[∑
i

∑
t

(xi,t − x̄i·)(xi,t − x̄i·)′
]−1

Unbiased estimator of σ2 based on the residuals ε̂i,t = yi,t − α̂i − x′i,tβ̂:

σ̂2 =
1

n(T − 1)− K

∑
i

∑
t

ε̂2
i,t
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iv) Large sample properties of the LSDV estimator: depend on the
asymptotic scheme

a) n → ∞ and T fixed

b) n fixed and T → ∞

c) n, T → ∞ jointly

Consider asymptotic scheme a). Under standard regularity conditions:

plim
n→∞

1
n

∑
i

X′
i MTXi ≡ Q positive definite,

plim
n→∞

1
n

∑
i

X′
i MTεi = E[X′

i MTεi] = 0 (from A.1 and A.2),

1√
n

∑
i

X′
i MTεi

d→ N
(
0, σ2Q

)
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Then, by writing:

β̂ − β =

(
1
n

∑
i

X′
i MTXi

)−1
1
n

∑
i

X′
i MTεi

and:
√

n
(
β̂ − β

)
=

(
1
n

∑
i

X′
i MTXi

)−1
1√
n

∑
i

X′
i MTεi

we deduce that the LSDV estimator is consistent and asymptotically normal:

√
n
(
β̂ − β

)
d→ N

(
0, σ2Q−1

)
when n → ∞ and T is fixed

Asymptotically valid standard errors and confidence intervals from

̂AsVar(β̂) = σ̂2

[∑
i

∑
t

(xi,t − x̄i·)(xi,t − x̄i·)′
]−1

(without assuming normality of the errors!)
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v) Individual and time fixed effects

The model can be extended to include both individual and time fixed effects:

yi,t = c + αi + ft + x′i,tβ + εi,t

where, to avoid the dummy variables trap, we exclude the effects for one
individual and one time date (e.g. α1 = f1 = 0) and include the constant c

The transformation that eliminates both individual and time effects is:

yi,t − ȳi· − ȳ·t + ȳ·· = (xi,t − x̄i· − x̄·t + x̄··)′β + εi,t − ε̄i· − ε̄·t + ε̄·· (5)

where ȳ·t =
1
n

∑
i

yi,t and ȳ·· =
1

nT

∑
i

∑
t

yi,t (see [MAS], Chapter 3)

The LSDV estimator of β is obtained by pooled OLS regression on (5)
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1.3 RANDOM EFFECTS

i) The model:
yi,t = α+ x′i,tβ + εi,t ≡ z′i,tγ + εi,t

with the error component structure:

εi,t = ui + vi,t

where:

A.1: The individual specific errors ui are i.i.d. across individuals with
E[ui] = 0 and V[ui] = σ2

u , for all i

A.2: The errors vi,t are i.i.d. across individuals and time dates with E[vi,t] = 0
and V[vi,t] = σ2

v , for all i and t

A.3: The errors ui and vj,t are independent, for all i, j and t

A.4: The regressor xi,t is independent of the errors uj and vj,s, for all i, j and t, s
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Compact form: for individual i

yi
T×1

= STα+ Xiβ + εi ≡ Ziγ + εi,

with

E[εi] = 0, V[εi] = σ2
v IT+σ2

uSTS′
T =

⎛⎜⎜⎜⎝
σ2

v + σ2
u σ2

u · · · σ2
u

σ2
u σ2

v + σ2
u σ2

u
...

. . .
σ2

u · · · σ2
u σ2

v + σ2
u

⎞⎟⎟⎟⎠ ≡ Ω,

and for the full sample

y
nT×1

= SnTα+ Xβ + ε ≡ Zγ + ε (6)

with
E[ε] = 0, V[ε] = In ⊗ Ω ≡ V
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ii) Random effects estimator: GLS estimator on model (6)

γ̂ = (Z′V−1Z)−1Z′V−1y =

(∑
i

Z′
iΩ

−1Zi

)−1∑
i

Z′
iΩ

−1yi (7)

where V−1 = In ⊗ Ω−1

To invert Ω we use its spectral decomposition

Ω = σ2
v IT+(Tσ2

u)
1
T

STS′
T = σ2

v (IT− 1
T

STS′
T)+(Tσ2

u+σ2
v )

1
T

STS′
T = λ1MT+λ2(IT−MT)

where λ1 ≡ σ2
v and λ2 ≡ Tσ2

u + σ2
v

Thus:
Ω−1 = λ−1

1 MT + λ−1
2 (IT − MT)

(use that MT is idempotent) and

V−1 = λ−1
1 In ⊗ MT + λ−1

2 In ⊗ (IT − MT) = λ−1
1 MD + λ−1

2 (InT − MD)
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iii) Interpretation: Within and between (co-)variation

By partitioned GLS regression, the random effects estimator of parameter
subvector β is

β̂ = (X′MVX)−1X′MVy

where
MV = V−1 − V−1SnT(S

′
nTV−1SnT)

−1S′
nTV−1

By using V−1SnT = λ−1
2 SnT we can write

MV = λ−1
1 MD + λ−1

2 MB

where

MD = In ⊗ (IT − 1
T

STS′
T)

MB = In ⊗ 1
T

STS′
T − 1

nT
SnTS′

nT
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Then:
β̂ =

(
λ−1

1 X′MDX + λ−1
2 X′MBX

)−1 (
λ−1

1 X′MDy + λ−1
2 X′MBy

)
(8)

where

X′MDX =
∑

i

∑
t

(xi,t − x̄i·)(xi,t − x̄i·)′, X′MDy =
∑

i

∑
t

(xi,t − x̄i·)(yi,t − ȳi·)

are the within variation and within covariation, and

1
T

X′MBX =
∑

i

(x̄i· − x̄··)(x̄i· − x̄··)′,
1
T

X′MBy =
∑

i

(x̄i· − x̄··)(ȳi· − ȳ··)

are the between variation and between covariation

Compare (8) with formula (2) of the LSDV estimator!

Patrick Gagliardini (USI) A Short Review on Panel Data Econometrics June 2015 18 / 78



0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

15

20

x

y

The blue solid lines are the within regressions and the red dashed line is the
between regression
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iv) Properties of the random effects estimator

The random effects estimator is BLUE under assumptions A.1-A.4, with
variance

V[γ̂|X] = (Z′V−1Z)−1

It is consistent and asymptotically normal under regularity conditions that
depend on the asymptotic scheme

These properties crucially depend on strict exogeneity of the regressors

E[εi|Xi] = 0 (9)

(implied by assumptions A.1-A.4)

Strict exogeneity (9) is a strong assumption and fails if the regressors xi,t

are correlated with the individual specific effects ui
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v) FGLS estimator

We need consistent estimators of σ2
u and σ2

v or, equivalently, of λ1 and λ2

We have:

E[ε′iMTεi] = tr (MTE[εiε
′
i]) = tr (MTΩ) = λ1tr(MT ) = λ1(T − 1)

and similarly E[ε′i(IT − MT)εi] = λ2tr(IT − MT) = λ2.

We deduce estimators based on the GLS residuals ε̂i = yi − Ziγ̂:

λ̂1 =
1

T − 1
1
n

∑
i

ε̂′iMT ε̂i =
1

n(T − 1)

∑
i

∑
t

(ε̂i,t − ¯̂εi·)2

λ̂2 =
1
n

∑
i

ε̂′i(IT − MT)ε̂i = T
1
n

∑
i

¯̂ε2
i·

These estimators are consistent when n → ∞ and T is fixed (and when
n, T → ∞ as well, but are biased in finite sample)

The FGLS estimator is defined as in (7) by replacing Ω−1 with
Ω̂−1 = λ̂−1

1 MT + λ̂−1
2 (IT − MT)
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The estimators λ̂1 and λ̂2 can be used to get estimators of the error variances
σ̂2

u and σ̂2
v by solving the equations λ̂1 = σ̂2

v and λ̂2 = Tσ̂2
u + σ̂2

v , namely:

σ̂2
v = λ̂1, σ̂2

u =
1
T

(
λ̂2 − λ̂1

)

A drawback of estimator σ̂2
u is that it can provide a negative estimated

variance of the individual random effect

Gourieroux, Holly, Monfort (1981, 1982) provide an estimator of σ2
u that

ensure positivity
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1.4 FIXED EFFECTS OR RANDOM EFFECTS?

A delicate question!

The choice depends on the characteristics of the sample, the interpretation of
the individual effects, the purpose of the model, etc. For instance:

If the sample contains all the individuals of the underlying population (e.g.
the 26 Swiss Cantons), the fixed effects specification appears more
natural

If we are interested in the coefficient of a time-invariant explanatory
variable, the fixed effects estimator cannot be used
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If the model is used to predict the behaviour of an individual with given
observable characteristics and average unobservable characteristics

E[g(yi,t)|xi,t],

the individual effect has to be integrated out and a random effects
specification can be used:

E[g(yi,t)|xi,t] =

∫
E[g(yi,t)|xi,t, ui]h(ui)dui

where h is the pdf of the individual effect

...
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In many economic applications, the sampling scheme is such that the
individual effects can be considered as genuinely random

Then, it is customary to distinguish:

i) Fixed effects approach: no assumptions on distributional properties of
the individual effects, in particular on the link with explanatory variables

ii) Random effects approach: explicit modeling of the distribution of the
individual effects and their link with regressors
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Main issue concerns the exogeneity of the regressors w.r.t the individual
effects

If strict exogeneity holds (E[εi|Xi] = 0), the random effects estimator is
BLUE and is more efficient than the fixed effects LSDV estimator

If strict exogeneity does not hold (E[εi|Xi] �= 0), the random effects
estimator is biased and inconsistent

The LSDV estimator of the coefficients of the time-varying regressors x̃i,t

β̂LSDW = (X̃′MDX̃)−1X̃′MDy = β +

(
1
n

∑
i

X̃′
i MTX̃i

)−1
1
n

∑
i

X̃′
i MTvi (10)

is unbiased and consistent as long as:

E[vi|Xi] = 0 (11)

independently whether the individual effect ui is correlated with xi,t or not!
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A specification test for the null hypothesis of strict exogeneity of the
regressors:

H0 : E[εi|Xi] = 0

can be based on the difference

β̂LSDV − β̂RE

between the LSDV estimator β̂LSDV and the random effects estimator β̂RE of
the coefficients of the time-varying explanatory variables (Hausman (1978))

Since the random effects estimator β̂RE is efficient under the null hypothesis
H0 of strict exogeneity, we have V[β̂LSDV − β̂RE] = V[β̂LSDV ]− V[β̂RE]

The Hausman test statistic

ξH = (β̂LSDV − β̂RE)
′
(

V̂[β̂LSDV ]− V̂[β̂RE]
)−1

(β̂LSDV − β̂RE)

is distributed asymptotically as χ2
m under H0, where m is the number of

time-varying explanatory variables
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2. IV ESTIMATION OF LINEAR DYNAMIC PANEL DATA MODELS
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2.1 INCONSISTENCY OF THE LSDV ESTIMATOR IN LINEAR DYNAMIC
PANELS

i) The dynamic linear panel data model:

yi,t = αyi,t−1 + ui + vi,t

where:

A.1: The errors vi,t are i.i.d. across individuals and time dates with E[vi,t] = 0
and V[vi,t] = σ2

v , for all i and t

A.2: The ui are individual fixed effects

A.3: The initial observations yi,0 are i.i.d. across individuals and independent
of the errors vi,t, for all i and t ≥ 1

Compact form: for individual i

yi
T×1

= αyi,−1
T×1

+ ui ST
T×1

+ vi
T×1

where yi,−1 ≡ (yi,0, yi,1, ..., yi,T−1)
′
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The regressor yi,−1 is not strictly exogenous and E[vi|yi,−1] �= 0, hence
condition (11) (with Xi = yi,−1) is not satisfied!

ii) The Nickel bias (Nickel (1981))

The LSDV estimator of parameter α is

α̂ =

∑
i

y′i,−1MTyi∑
i

y′i,−1MTyi,−1

= α+

1
n

∑
i

y′i,−1MTvi

1
n

∑
i

y′i,−1MTyi,−1
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It is possible to show that, when |α| �= 1:

E[y′i,−1MTvi] =
∑

t

E[(yi,t−1 − ȳi,−1)(vi,t − v̄i,.)] = −σ2
v hT(α)

and:

E[y′i,−1MTyi,−1] =
σ2

v (T − 1)
1 − α2

(
1 − 2αhT(α)

T − 1

)
where:

hT(α) ≡ 1
1 − α

[
1 − 1

T

(
1 − αT

1 − α

)]
(see [ARE], Chapter 6)

Then, the asymptotic bias of the LSDV estimator

plim
n→∞

α̂− α = − 1
T − 1

(1 − α2)hT(α)

1 − 2αhT (α)
T−1

= O(1/T)

is non-zero (negative) for fixed T
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2.2 INSTRUMENTAL VARIABLE (IV) ESTIMATION

i) The orthogonality restrictions

Write the model in first-differences to eliminate the individual effects

Δyi,t = αΔyi,t−1 +Δvi,t, t = 2, ..., T

where Δyi,t = yi,t − yi,t−1 and Δvi,t = vi,t − vi,t−1

We have a set of m = T(T − 1)/2 orthogonality restrictions for each individual

E[yt−2
i (Δyi,t − αΔyi,t−1)] = 0, t = 2, ..., T

where yt−2
i ≡ (yi,0, yi,1, ..., yi,t−2)

′
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The orthogonality restrictions can be written as:

E[Z′
i (Δyi − αΔyi,−1)] = 0

where Δyi = (Δyi,2, ...,Δyi,T)
′, Δyi,−1 = (Δyi,1, ...,Δyi,T−1)

′ and Zi is the
(T − 1)× m matrix such that

Zi =

⎛⎜⎜⎜⎝
yi,0 0 0 · · · 0 · · · 0
0 yi,0 yi,1 0 · · · 0
...

. . .
...

0 0 0 · · · yi,0 · · · yi,T−2

⎞⎟⎟⎟⎠
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ii) The GMM (IV) estimator:

α̂GMM = arg min
α

(Δy − αΔy−1)
′ZΩ̂Z′(Δy − αΔy−1)

= (Δy′−1ZΩ̂Z′Δy−1)
−1Δy′−1ZΩ̂Z′Δy

where Z′Δy ≡
∑

i

Z′
iΔyi and Ω̂ is a positive definite m × m weighting matrix

(see [ARE])

iii) The optimal weighting matrix: is Ω = V−1, where

V = E[Z′
i (Δyi − αΔyi,−1)(Δyi − αΔyi,−1)

′Zi] = E[Z′
iΔviΔv′iZi]
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iv) The two-step efficient GMM estimator: uses the weighting matrix
Ω̂ = V̂−1 where

V̂ =
1
n

∑
i

Z′
i Δ̂viΔ̂vi

′
Zi

with Δ̂vi = Δyi − α̃Δyi,−1 and α̃ is a consistent first-step GMM estimator of α

The two-step efficient GMM estimator is asymptotically normal (see [ARE]):

√
n (α̂GMM − α)

d→ N(0,Σ)

when n → ∞ and T is fixed, where

Σ =
(
E[Δy′i,−1Zi]V

−1E[Z′
iΔyi,−1]

)−1

Asymptotically valid standard errors and confidence intervals from

̂AsVar(α̂GMM) =
1
n
Σ̂ =

⎡⎣(∑
i

Δy′i,−1Zi

)(∑
i

Z′
i Δ̂viΔ̂vi

′
Zi

)−1(∑
i

Z′
iΔyi,−1

)⎤⎦−1
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2.3 PANEL MODELS WITH BOTH STRICTLY EXOGENOUS AND LAGGED
DEPENDENT VARIABLES

Consider the model

yi,t = αyi,t−1 + x′i,tβ + ui + vi,t

= w′
i,tγ + ui + vi,t

where wi,t = (yi,t−1, x′i,t)
′ and γ = (α, β′)′

⇐⇒ yi = αyi,−1 + Xiβ + uiST + vi = Wiγ + uiST + vi

We add to assumptions A.1-A.3

A.4: The regressor xi,t and the idiosyncratic error vj,s are independent, for any
i, j, t and s (which implies strict exogeneity E[vi|Xi] = 0)
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Write the model in first-differences to eliminate the individual effects

Δyi,t = αΔyi,t−1 +Δx′i,tβ +Δvi,t

We have the orthogonality restrictions

E[zi,t(Δyi,t − αΔyi,t−1 −Δx′i,tβ)] = 0, t = 2, ..., T, (12)

where the vector of instruments is:

- zi,t = (yi,t−2,Δx′i,t)
′ in Anderson, Hsiao (1981, 1982)

- zi,t = (yi,0, yi,1, ..., yi,t−2,Δx′i,t)
′ in Holtz-Eakin, Newey, Rosen (1988),

Arellano, Bond (1991)
(may include also lags or leads of Δxi,t)
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The Arellano-Bond (1991) GMM estimator:

γ̂GMM =
(
ΔW ′ZV̂−1Z′ΔW

)−1
ΔW ′ZV̂−1Z′Δy

where ΔW ′Z ≡
∑

i

ΔW ′
i Zi and Z′Δy ≡

∑
i

Z′
iΔyi, with ΔWi = (Δyi,−1,ΔXi)

and

Zi =

⎛⎜⎜⎜⎝
yi,0 Δxi,2 0 0 0 · · · 0 · · · 0 0
0 0 yi,0 yi,1 Δxi,3 · · · 0 · · · 0 0
...

...
. . .

...
0 0 0 0 0 · · · yi,0 · · · yi,T−2 Δxi,T

⎞⎟⎟⎟⎠
the optimal weighting matrix V̂−1 is such that V̂ =

1
n

∑
i

Z′
i Δ̂viΔ̂v

′
iZi, with

Δ̂vi = Δyi − α̃Δyi,−1 −ΔXiβ̃ and (α̃, β̃′)′ is a first-step GMM estimator
obtained with an identity weighting matrix
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Remark 1: When the errors vi,t are serially correlated, in general

E[yi,s(Δyi,t − αΔyi,t−1 −Δx′i,tβ)] �= 0

⇒ The lagged endogenous variables up to t − 2 cannot be used as
instruments for Δyi,t−1!

However, the strictly exogenous regressors can still be used as instruments to
get the orthogonality restrictions

E[Δxi,s(Δyi,t − αΔyi,t−1 −Δx′i,tβ)] = 0, s = 1, ..., T, t = 2, ..., T

Remark 2: If we only assume that xi,s and vi,t are uncorrelated for s ≤ t, the
orthogonality restrictions are:

E[Δxi,s(Δyi,t − αΔyi,t−1 −Δx′i,tβ)] = 0, s = 1, ..., t − 1, t = 2, ..., T
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Remark 3: When instruments z∗i are available, which are uncorrelated with
the individual effects, the set of orthogonality restrictions (12) can be
extended to include moment restrictions in level

E[z∗i (ȳi· − αȳi,−1 − x̄′i·β] = 0

⇒ Arellano, Bover (1995) GMM estimator
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Remark 4: Blundell, Bond (1998) suggest the use of additional moment
restrictions that are very informative when individual histories are persistent
(α close to 1)

Consider the equations:

E[Δyi,t−1εi,t] = 0, t = 3, 4, ..., T, (13)

where εi,t = ui + vi,t, and for t = 2:

E[Δyi,1εi,2] = 0 (14)

Equation (13) is valid under assumptions A.1-A.4, equation (14) is valid under
assumptions A.1-A.4 if in addition Cov(yi,0 − ui

1 − α
, ui) = 0

Equations (13) and (14) imply moment conditions with instruments in
difference for data in level:

E[Δyi,t−1(yi,t − αyi,t−1 − x′i,tβ)] = 0, t = 2, 3, ..., T
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Remark 5: a) The number of orthogonality restrictions can be rather large
even for a short panel and grows with sample size as O(T2)

For instance, with T = 5 periods and K = 5 regressors, in Arellano, Bond
(1991) we have T(T − 1)/2 + K(T − 1) = 30 orthogonality restrictions!

b) Some instruments might be “weak”, i.e. weakly correlated with the
explanatory variables

a) & b) cause poor finite-sample performance of standard GMM inference
procedures; see e.g. Newey, Windmeijer (2009) for the use of modified GMM
estimators
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3. NONLINEAR PANEL DATA MODELS
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3.1 DISCRETE CHOICE MODELS WITH RANDOM EFFECTS

i) Random utility model

Consider panel data for a binary variable, for instance transportation mode

yi,t =

{
0, private (car, motorcycle, ...)
1, public (train, bus, ...)

How to model this discrete choice?

Unobservable random utilities from the two alternatives

U0,it = 0, (by normalization)

U1,it = x′i,tβ + εi,t

The observed choice is

yi,t =

{
1, if U1,it ≥ U0,it = 0
0, otherwise
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Assume the error component structure

εi,t = ui + vi,t

where individual effects ui ∼ IIN(0, σ2
u) and shocks vi,t ∼ IIN(0, σ2

v ) are
independent of each other and of regressors xi,t

Identification constraint: By using εi,t ∼ N(0, σ2
u + σ2

v )

P [yi,t = 1|xi,t] = P
[
εi,t ≥ −x′i,tβ|xi,t

]
= Φ

(
x′i,tβ√
σ2

u + σ2
v

)

⇒ parameters are identifiable up to a scale and we can set σ2
v = 1

Probability of alternative yi,t = 1 given observable characteristics and
individual effect:

P [yi,t = 1|xi,t, ui] = P
[
vi,t ≥ −x′i,tβ − ui|xi,t, ui

]
= Φ

(
x′i,tβ + ui)
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ii) General specification

yi,t = 1
{

x′i,tβ + ui + vi,t ≥ 0
}

A.1: The idiosyncractic errors vi,t are i.i.d. across i and t, independent from
regressors xi = (x′i,1, ..., x

′
i,T)

′, and −vi,t has c.d.f. F

Probability of alternative yi,t = 1 given observable characteristics and
individual effects:

P [yi,t = 1|xi, ui] = P[−vi,t ≤ x′i,tβ + ui|xi, ui] = F
(
x′i,tβ + ui)

Probit model when F(v) = Φ(v) and logit model when F(v) =
1

1 + e−v

A.2: The random individual effects ui are assumed independent of the
regressors xi (strict exogeneity) and of errors vi, are i.i.d. across
individuals and distributed according to a p.d.f. h(ui; δ) indexed by
unknown parameter δ

Parameters of interest are β and δ
Patrick Gagliardini (USI) A Short Review on Panel Data Econometrics June 2015 47 / 78



iii) The likelihood function

The pdf of observation yi,t given xi = (x′i,1, x
′
i,2, ..., x

′
i,T)

′ and the random effect ui

f (yi,t|xi, ui;β) = F
(
x′i,tβ + ui

)yi,t
[1 − F

(
x′i,tβ + ui

)
]1−yi,t

By the independence of the individual observations over time conditional on
regressors xi and random effect ui, the pdf of vector yi = (yi,1, yi,2, ..., yi,T)

′

given xi and ui is

f (yi|xi, ui;β) =
T∏

t=1

F
(
x′i,tβ + ui

)yi,t
[1 − F

(
x′i,tβ + ui

)
]1−yi,t (15)

We integrate out the random effects and get the pdf of yi given xi

f (yi|xi;β, δ) =

∫ (
T∏

t=1

F
(
x′i,tβ + ui

)yi,t
[1 − F

(
x′i,tβ + ui

)
]1−yi,t

)
h(ui; δ)dui
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By the independence across individuals, the pdf of vector y = (y′1, y
′
2, ..., y

′
n)

′

given x = (x′1, x
′
2, ..., x

′
n)

′ is

f (y|x;β, δ) =
n∏

i=1

∫ (
T∏

t=1

F
(
x′i,tβ + ui

)yi,t
[1 − F

(
x′i,tβ + ui

)
]1−yi,t

)
h(ui; δ)dui

We get the log-likelihood function:

Ln,T(β, δ) = log f (y|x;β; δ)

=

n∑
i=1

log
∫ (

T∏
t=1

F
(
x′i,tβ + ui

)yi,t
[1 − F

(
x′i,tβ + ui

)
]1−yi,t

)
h(ui; δ)dui

Patrick Gagliardini (USI) A Short Review on Panel Data Econometrics June 2015 49 / 78



iv) The Maximum Likelihood (ML) estimator: is defined by

(β̂′, δ̂′)′ = arg max
β,δ

Ln,T(β, δ)

The ML estimators β̂ and δ̂ are root-n consistent and asymptotically normal
when n → ∞ and T is fixed:

√
n[(β̂′, δ̂′)′ − (β′, δ′)′] d→ N(0, I−1),

where I is the Fisher information matrix:

I = E

[
−∂2 log f (yi|xi;β, δ)

∂(β′, δ′)′∂(β′, δ′)

]
.
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v) Numerical computation of the ML estimator

Evaluation of the likelihood function for given parameter values requires
numerical computation of the n one-dimensional integrals∫ (

T∏
t=1

F
(
x′i,tβ + ui

)yi,t
[1 − F

(
x′i,tβ + ui

)
]1−yi,t

)
h(ui; δ)dui

for i = 1, ..., n

Such a numerical approximation is required at each step of the iterative
optimization algorithm used to get the ML estimates

In a probit model with Gaussian distributed random effects, the integral w.r.t.

the Gaussian pdf h(ui;σ
2
u) =

1
σu

φ

(
ui

σu

)
can be well approximated by

Gaussian quadrature (Butler, Moffitt (1982))

For more complicated distributions of the random effects, an alternative is to
approximate the integral by Monte-Carlo simulation, which gives a
Simulated Maximum Likelihood (SML) estimator (see Gourieroux, Monfort
(1993))
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3.2 DISCRETE CHOICE MODELS WITH FIXED EFFECTS

i) The model
yi,t = 1

{
x′i,tβ + ui + vi,t ≥ 0

}
with assumption A.1 of Section 3.1 ii)

The conditional probability of alternative yi,t = 1 is given by:

P[yi,t = 1|xi, ui] = F(x′i,tβ + ui)

where F is the c.d.f. of −vi,t

On the contrary of Section 3.1, here the individual effect ui is not necessarily
independent of the regressor xi, i.e. we don’t impose assumption A.2

We treat the individual effects ui, for i = 1, ..., n, as parameters to estimate

By taking the log in (15) and summing over i, the log-likelihood function is:

LnT(β, u1, ..., un) =
∑

i

∑
t

{
yi,t log F(x′i,tβ + ui) + (1 − yi,t) log[1 − F(x′i,tβ + ui)]

}
(16)

Patrick Gagliardini (USI) A Short Review on Panel Data Econometrics June 2015 52 / 78



ii) Inconsistency of the ML estimator and incidental parameters problem

It turns out that the ML estimator of parameter β obtained by maximizing the
log-likelihood function (16) is inconsistent for n → ∞ and T fixed!

We illustrate this fact in a “simple” example: F(v) = 1/(1 + e−v) (logit), T = 2
periods, xi,1 = 0 and xi,2 = 1 for all i (see [HSI], Section 7.3.1)

The log-likelihood function (16) becomes:

LnT(β, u1, ..., un) =
∑

i

[
yi,1ui − log(1 + eui) + yi,2(β + ui)− log(1 + eβ+ui)

]
By maximizing the log-likelihood w.r.t. the ui for given β, and plugging in LnT

the optimal values ûi(β), we get the concentrated log-likelihood of β:

Lc
nT(β) =

∑
i

1{yi,1 + yi,2 = 1}
[
βyi,2 − β

2
− log(1 + e−β/2)− log(1 + eβ/2)

]
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By maximizing this concentrated log-likelihood w.r.t. β, we get the ML
estimator β̂ML of parameter β

β̂ML = 2 log

(
π̂

1 − π̂

)
, π̂ =

∑
i 1{yi,1 = 0, yi,2 = 1}∑

i 1{yi,1 + yi,2 = 1}

The Law of Large Numbers (LLN) implies that

plim
n→∞

π̂ =
P(yi,1 = 0, yi,2 = 1)
P(yi,1 + yi,2 = 1)

=
1

1 + e−β

We deduce that the ML estimator of β is such that

plim
n→∞

β̂ML = 2β

that is, the ML estimator is inconsistent!
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The inconsistency of β̂ML is a manifestation of a more general fact called the
incidental parameters problem (Neyman, Scott (1948))

The ML estimator of a parameter can be inconsistent when the number of
parameters in the likelihood function grows with the sample size

The individual fixed effects are incidental parameters!

In linear panel models, the incidental parameter problem does not cause
inconsistency of the ML estimator of the common parameter (i.e. the LSDV
estimator)

In nonlinear panel models, fixed-T inconsistency of the fixed-effects ML
estimator due to the incidental parameter problem is pervasive!

Patrick Gagliardini (USI) A Short Review on Panel Data Econometrics June 2015 55 / 78



iii) The Conditional ML estimator in the panel logit model

For the logit specification, i.e. F(v) = 1/(1 + e−v), a consistent estimator of β
is obtained by maximizing a conditional likelihood function given a
well-chosen sufficient statistic (Chamberlain (1980))

Let us first consider the case T = 2 to get the intuition

For individual i, let us condition on the event yi,1 + yi,2 = 1. Then:

P[yi,2 = 1|xi, yi,1 + yi,2 = 1] =
P[yi,1 = 0, yi,2 = 1|xi]

P[yi,1 = 0, yi,2 = 1|xi] + P[yi,1 = 1, yi,2 = 0|xi]

=
ex′i,2β

ex′i,1β + ex′i,2β
= F(Δx′i,2β)

with Δxi,2 = xi,2 − xi,1, is independent of ui!

Parameter β can be consistently estimated by running a logit regression on
the subsample of individuals with yi,1 + yi,2 = 1
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Extension to T > 2: The p.d.f. of yi = (yi,1, ..., yi,T)
′ conditional on

xi = (x′i,1, ..., x
′
i,T)

′ and
∑

t

yi,t is

f

(
yi|xi,

∑
t

yi,t

)
∝ exp

(∑
t yi,tx′i,tβ

)∑
d∈Bi

exp
(∑

t dtx′i,tβ
)

where Bi denotes the set of vectors d = (d1, ..., dT) ∈ {0, 1}T such that∑
t

dt =
∑

t

yi,t

The Conditional Maximum Likelihood (CML) estimator:

β̂CML = arg max
β

∑
i

log

(
exp

(∑
t yi,tx′i,tβ

)∑
d∈Bi

exp
(∑

t dtx′i,tβ
))

is consistent when n → ∞ and T is fixed
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iv) Fixed effects estimators with other error distributions

For the fixed effects probit model, a consistent CML estimator is not available

The Manski (1987) maximum score estimator is a semi-parametric
estimator that can be used with a generic distribution of the idiosyncratic error
terms

β̂ = arg max
β

∑
i

∑
s<t

sign(yit − yis)sign ((xit − xis)
′β)

The intuition is to get the β such that the association

yit > yis ⇔ x′itβ > x′isβ

is maximized across pairs of dates t > s
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3.3 SAMPLE SELECTION IN PANEL DATA

i) Unbalanced panels

The panel is unbalanced if the data of some individuals at some dates are
not observed

Unobservability may be due to exit from the sample, non-response /
non-participation, rotation of individuals in the sample, attrition, etc

The underlying model is a linear regression with individual specific effects

y∗1,it = x′i,tβ + ui + vi,t

the observability indicator is

y2,it =

{
1, if y∗1,it is observed
0, otherwise

and we define y1,it ≡ y∗1,ity2,it

Available data are y1,it, y2,it, xi,t
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ii) The missing-at-random assumption

When does partial unobservability create a bias? When not?

Consider the LSDV estimator computed with the available observations

β̂ =

[∑
i

∑
t

y2,it(xi,t − x̄i,·)(xi,t − x̄i,·)′
]−1∑

i

∑
t

y2,it(xi,t − x̄i,·)(y1,it − ȳ1,i·)

= β +

[
1
n

∑
i

∑
t

y2,it(xi,t − x̄i,·)(xi,t − x̄i,·)′
]−1

1
n

∑
i

∑
t

y2,it(xi,t − x̄i,·)(vi,t − v̄i,·)

where x̄i,· ≡ 1
Ti

∑
t

y2,itxi,t, ȳ1,i· ≡ 1
Ti

∑
t

y2,ity1,it and Ti ≡
∑

t

y2,it

The LSDV estimator is unbiased, and consistent for n → ∞ and T fixed, if:

E[vi|Xi, y2,i] = 0 (17)

Condition (17) is satisfied if E[vi|Xi] = 0 (see (11)) and the mixing-at-random
assumption holds: y2,i and vi are independent, conditional on Xi
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iii) Sample selection

Sample selection bias: When individuals elect to drop in/out of the sample,
condition (17) is typically not satisfied and the LSDV estimator is inconsistent!

Type 2 Tobit panel model: The selection/observability mechanism is
modeled via a discrete choice

y∗1,it = x′i,tβ + ui + vi,t

y2,it = 1
{

z′i,tγ + ηi + wi,t ≥ 0
}

y1,it = y∗1,ity2,it

where ηi is the individual specific effect in the selection equation

The econometrician observes y1,it, y2,it, xi,t
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iv) Random effects estimator

Model the joint distribution of the individual random effects, idiosyncratic error
terms and regressors

A.1: (ui, ηi) is jointly distributed according to a p.d.f. h(ui, ηi; δ) with unknown
parameter δ, e.g. a bivariate Gaussian

A.2: (vi,t,wi,t)
′ are i.i.d. across time dates with Gaussian distribution

N

([
0
0

]
,

[
σ2

v ρσv

ρσv 1

])
A.3: (ui, ηi), (vi,wi), Xi and Zi are mutually independent and i.i.d. across

individuals

Assumption A.3 implies strict exogeneity of the regressors!

Let us construct the likelihood function. From standard Tobit 2 model:

f (y1,it, y2,it|Xi, Zi, ui, ηi) =
[
1 − Φ(z′i,tγ + ηi)

]1−y2,it

·
⎡⎣ 1
σv

φ

(
y1,it − x′i,tβ − ui

σv

)
Φ

⎛⎝ z′i,tγ + ηi + ρ
y1,it−x′i,tβ−ui

σv√
1 − ρ2

⎞⎠⎤⎦y2,it
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By aggregating over time and integrating out the individual effects we get:

f (y1,i, y2,i|Xi, Zi) =

∫ ∏
t

([
1 − Φ(z′i,tγ + ηi)

]1−y2,it

⎡⎣ 1
σv

φ

(
y1,it − x′i,tβ − ui

σv

)
Φ

⎛⎝ z′i,tγ + ηi + ρ
y1,it−x′i,tβ−ui

σv√
1 − ρ2

⎞⎠⎤⎦y2,it
⎞⎠ h(ui, ηi; δ)duidηi

We get the log-likelihood function:

LnT(β, γ, δ, σ
2
v ) =

∑
i

log

{∫ ∏
t

([
1 − Φ(z′i,tγ + ηi)

]1−y2,it

⎡⎣ 1
σv

φ

(
y1,it − x′i,tβ − ui

σv

)
Φ

⎛⎝ z′i,tγ + ηi + ρ
y1,it−x′i,tβ−ui

σv√
1 − ρ2

⎞⎠⎤⎦y2,it
⎞⎠ h(ui, ηi; δ)duidηi

⎫⎬⎭
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The random effects ML estimator:

(β̂, γ̂, δ̂, σ̂2
v ) = arg max

(β,γ,δ,σ2
v)

LnT(β, γ, δ, σ
2
v )

is root-n consistent and asymptotically normal when n → ∞ and T is fixed

The evaluation of the log-likelihood for given parameter values requires the
numerical computation of the bivariate integral w.r.t. the individual random
effects

Patrick Gagliardini (USI) A Short Review on Panel Data Econometrics June 2015 64 / 78



v) Heckman-type approach for panel sample selection model
(Wooldridge (1995))

Relax some of the distributional assumptions used for random effects
estimation and implement a two-step procedure à la Heckman

B.1: E[ui|Xi, Zi, ηi,wi] = x′iπ + θηi and E[vit|Xi, Zi, ηi,wi] = ρwit

B.2: ηi ∼ N(0, σ2
η) and wi,t ∼ N(0, 1) are independent, and independent of Xi, Zi

Assumption B.1 allows for correlation between individual effect ui and
regressor xi. In practice xi = x̄i,·

From assumption B.1 and the Law of Iterated Expectation, we have:

E[y1,it|Xi, Zi, y2,it = 1] = x′i,tβ + E [E(ui + vi,t|Xi, Zi, ηi,wi, y2,it = 1)|Xi, Zi, y2,it = 1]

= x′i,tβ + x′iπ + θE[ηi|Xi, Zi, ηi + wi,t > −z′i,tγ]
+ρE[wit|Xi, Zi, ηi + wi,t > −z′i,tγ]
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From assumption B.2 we get:

E[ηi|Xi, Zi, ηi + wi,t > −z′i,tγ] =
σ2
η

1 + σ2
η

E[ηi + wi,t|Xi, Zi, ηi + wi,t > −z′i,tγ]

=
σ2
η

1 + σ2
η

λ

⎛⎝− 1√
1 + σ2

η

z′i,tγ

⎞⎠
where λ(v) =

φ(v)
1 − Φ(v)

is the inverse Mill’s ratio

Similarly

E[wit|Xi, Zi, ηi + wi,t > −z′i,tγ] =
1

1 + σ2
η

λ

⎛⎝− 1√
1 + σ2

η

z′i,tγ

⎞⎠

We get:

E[y1,it|Xi, Zi, y2,it = 1] = x′i,tβ + x′iπ +
θσ2

η + ρ

1 + σ2
η

λ

⎛⎝− 1√
1 + σ2

η

z′i,tγ

⎞⎠
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Parameter β can be estimated by a two-step procedure:

1. Estimate parameters γ and σ2
η in the selection equation by probit random

effects approach. Construct estimates of the inverse Mill’s ratios

λ̂i,t = λ

⎛⎝− 1√
1 + σ̂2

η

z′i,tγ̂

⎞⎠
2. Regress y1,it on xi,t, xi and λ̂i,t by pooled OLS on the selected sample with

y2,it = 1

The estimator of β is root-n consistent and asymptotically normal when
n → ∞ and T is fixed

Correct standard errors are derived in Wooldridge (1995)
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vi) Fixed effects estimator (Kyriazidou (1997))

A mild “stationarity” assumption on the idiosyncratic error terms

C.1: For any two dates t �= s, vectors (vi,t,wi,t, vi,s,wi,s) and (vi,s,wi,s, vi,t,wi,t)
are identically distributed conditionally on ξi ≡ (xi,t, zi,t, xi,s, zi,s, ui, ηi)

Under C.1, for any two dates t �= s and an individual i such that z′i,tγ = z′i,sγ

λ̃i,t ≡ E[vi,t|wi,t > −z′i,tγ − ηi,wi,s > −z′i,sγ − ηi, ξi]

= E[vi,s|wi,s > −z′i,tγ − ηi,wi,t > −z′i,sγ − ηi, ξi]

= E[vi,s|wi,s > −z′i,sγ − ηi,wi,t > −z′i,tγ − ηi, ξi] = λ̃i,s

⇒ Considering two dates t �= s for which data of individual i are observed and
z′i,tγ = z′i,sγ, first-differenting eliminates both the fixed effect and the sample
selection effect!
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A two-step estimation procedure:

1. Get an estimator γ̂ of the parameter in the selection equation by a fixed
effects methodology

2. The fixed effects estimator of parameter β is:

β̂ =

[∑
i

∑
t>s

y2,ity2,is(xi,t − xi,s)(xi,t − xi,s)
′K
(
(xi,t − xi,s)

′γ̂
hn

)]−1

·
[∑

i

∑
t>s

y2,ity2,is(xi,t − xi,s)(y1,it − y1,is)K

(
(xi,t − xi,s)

′γ̂
hn

)]

where K is a kernel and hn > 0 is a bandwidth that shrinks to zero as n
increases

The estimator β̂ is consistent and asymptotically normal when n → ∞ and T is
fixed, with non-parametric convergence rate

√
nhn

The low convergence rate of this estimator is the cost for the weak
assumptions imposed on the error terms
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3.4 OUTLOOK

Random effects and fixed effects estimators have been developed for a
variety of nonlinear panel models

Random effects: See e.g. Gourieroux, Monfort (1993), Keane (1994),
Hajivassiliou, McFadden (1998)

General applicability of the method based on the ML principle
Computational difficulty due to the integral w.r.t. the random effects
distribution appearing in the likelihood function
Requires (sometimes quite restrictive) assumptions on the link between
random effects and explanatory variables

Fixed effects: See Table 1 and the review in [AHO]

Conceptual difficulty from the incidental parameters problem, insights
behind the estimators are often model-specific
Allows for general links between individual effects and explanatory
variables
Some fixed effects estimators have sub-parametric convergence rates
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Table 1: Some fixed effects estimators for nonlinear panel models

Discrete choice
Logit, multinomial logit CML, Chamberlain (1980)
Semi-parametric Maximum score, Manski (1987)

Tobit models
Censored regression (Type 1) Honore (1992)
Selection model (Type 2) Kyriazidou (1997)
Type 3 Honore, Kyriazidou (2000a)

Dynamic models
Dynamic logit Honore, Kyriazidou (2000b)
Dynamic censored regression Honore, Hu (2004)
Dynamic sample selection Kyriazidou (2001)
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Recently, much research considering the fixed-T inconsistency of the fixed
effects ML estimator from the view point of a large-T bias expansion:

E[β̂] = β +
1
T

B + O

(
1
T2

)

Bias adjusted estimators are obtained by eliminating the bias at order
O(1/T), e.g. by analytical methods:

β̂adj = β̂ − 1
T

B̂

or by jackknife (see e.g. Hahn, Kuersteiner (2002), Hahn, Newey (2004),
Dhaene, Jochmans, Thuysbaert (2006), Arellano, Bonhomme (2009),
Fernandez-Val (2009))

While fixed-T consistency in not achieved, bias reduction can substantially
improve the small-T properties of the fixed effects ML estimator. Moreover,
the methodology has general applicability
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