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E1: Econometric Model Estimation 
 
E1.1 Introduction 
 
 The primary function carried out by LIMDEP is the estimation of econometric models.  The 
first part of the documentation, the Reference Guide describes how to use LIMDEP to read a data set, 
establish the current sample, compute transformations of variables, and carry out other functions that 
get your data ready to use for estimation purposes.  Several important tools, such as the matrix 
algebra program, scientific calculator and program editor are described there as well.  This second 
part, the Econometric Modeling Guide, will describe specific modeling frameworks and instructions 
to be used for fitting these models.  A large part of this documentation is devoted to descriptions of 
the models, themselves, including mathematical background.  However, the presentation is (of 
necessity) not complete, and users are urged to supplement this documentation with the necessary 
background material for the models they are using. 
 The organization of this manual is by estimation framework, not by model command.  We 
have found that users prefer that the program documentation be oriented toward the types of 
functions they want to perform, not to an alphabetical listing of commands. As such, you will find 
the arrangement of topics in this manual rather similar to the arrangement of topics in treatises in 
econometrics, such as Greene (2011).  We begin with descriptive statistics in Chapters E2-E4, 
various linear regression models in Chapters E5-E8, and so on.  To some degree, the complexity of 
the models deepens as this manual proceeds. 
 
E1.2 Econometric Models 
 
 This manual is devoted primarily to the methods by which you can use LIMDEP to fit 
equations to data, to test hypotheses about the relationships implied by that estimation process, and 
to use the models for simulation and computation of useful partial effects.  For purposes of 
documenting the program, we use the term ‘model estimation’ broadly, to encompass all those 
functions that involve manipulation of data to produce statistics to summarize the information the 
data contain.  Thus, this manual begins with several chapters about computing descriptive statistics, 
which one might not normally consider model building.  However, as data summaries, for program 
purposes, we consider these part of the model building functions in LIMDEP.   
 The definition of a ‘model’ in LIMDEP consists of the modeling framework, the statement 
of the variables in the model, and what role the variables will play in that model.  The remainder of 
this chapter will describe in general terms how to use this format to construct model estimation 
commands in LIMDEP.  
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E1.3 Model Commands 
 
 LIMDEP’s model commands all use the same format.  The essential parts are as follows: 
 
 Model name ; model variables specification 
   ; essential specifications for some models 
   ; optional specifications $ 
 

The ‘Model name’ designates the modeling framework.  In most cases, this defines a broad class of 
models, such as POISSON, which indicates that the command is for one of the twenty or so different 
models for count data, most of which are extensions of the basic Poisson regression model. 
 The ‘model variables specification’ generally defines the dependent and independent 
variables in a model.  In almost all cases, the model will include one or more dependent variables, 
denoted a Lhs, or ‘left hand side’ variable in LIMDEP’s command structure.  Independent variables 
usually appear on the Rhs, or ‘right hand side,’ of a model specification.  To continue our example, a 
Poisson model might be specified using 
 
 POISSON ; Lhs = patents ; Rhs = one,r_and_d $ 
 
which specifies one of the most well known applications of this model in economics.  (The variable 
‘one’ is the constant term.  We’ll return to this below.)  Some ‘model’ commands will have only one 
of these two specifications, such as  
 
 DSTAT ; Rhs = patents $ 
 
which requests descriptive statistics for the variable patents.  As can be seen here, we use the term 
‘model command’ broadly to indicate analysis of a set of data, whether for description or parameter 
estimation.  Other model commands might have only a Lhs variable, such as 
 
 SURVIVAL ; Lhs = failtime $ 
 
which requests a nonparametric (life table) analysis of a variable named failtime.  There are also 
many other types of variable specifications, such as 
 
   ; Inst = a set of variable names 
 
which will be used to specify the set of instrumental variables in the 2SLS or LIML command. 
 Most models can be specified with nothing more than the model name and the identification 
of the essential variables.  But, some models require additional specifications in order to be 
identified.  For example, the specific model you want may be a particular case of a broad class of 
models and in order to specify it, you must provide the ‘essential’ specifications.  For example, the 
basic command for survival modeling (with covariates to provide the ‘model’) would be 
 
 SURVIVAL ; Lhs = failtime ; Rhs = one,usehours $ 
 
This form of the command is for Cox’s proportional hazard model.  In order to fit a parametric 
model, such as the Weibull model, you would use 
 
 SURVIVAL ; Lhs = failtime ; Rhs = one,usehours   
   ; Model = Weibull $ 
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Note the last specification.  This is the only way to specify a Weibull model, so for this model, this 
specification is essential.  The Weibull model is requested as a type of survival model by this 
command.  Obviously, not all models have mandatory specifications – the examples above do not.  
But, many do.  The documentation in the chapters to follow will identify these. 
 Finally, all model frameworks have options which either extend the model itself or control 
how the model is estimated or how the estimation results are displayed.  For example, the following fits 
a linear regression model and requests a robust estimator of the covariance matrix of the estimates: 
 
 REGRESS ; Lhs = profit ; Rhs = one,sales 
   ; Heteroscedasticity consistent $ 
 
The latter specification does not change the model specification, it requests an additional 
computation, the White heteroscedasticity consistent estimator.  For another example, 
 
 REGRESS ; Lhs = profit ; Rhs = one,sales   
   ; Plot residuals $ 
 
fits a linear model and then plots the residuals.  If the latter specification is omitted, the residuals will 
not be plotted. 
 In writing commands, there is a shortcut you may use either to shorten your commands or, in 
other cases, to include documentation in your commands.  The form is as follows:  Certain 
specifications are simply ‘switches’ in commands.  Thus, in the two examples immediately above, 
the optional specifications merely request certain computations – the switch is ‘off’ until the 
specification turns it on.  In specifications such as these, only the first three or more characters are 
sufficient to make the switch unique.  Thus, the two examples above could be 
 
 REGRESS ; Lhs = profit ; Rhs = one,sales ; Het $ 
 REGRESS ; Lhs = profit ; Rhs = one,sales ; Plot $ 
 
This applies to all ‘switch – type’ specifications, whether essential or optional. 
 Other specifications provide information as part of the sentence.  In such a case, the 
provision will always be in the form 
 
   ; Specification = information 
For example, 
   ; Wts = weighting variable name 
 
will be used to specify a weighting variable for estimation.  When a specification provides information 
after an equals sign, then the string must be in exactly the form shown for that command – you may 
not include superfluous text in this case.  LIMDEP will always be looking for the equals sign in a 
specific place, and will issue a diagnostic when it does not find it.  Thus, for the example shown, 
 
   ; Wts variable = weighting variable 
 
will produce an error message. 
 Model commands for LIMDEP’s models may become very long and complicated mixtures 
of many specifications.  The language is fairly terse so as to be concise, but bear in mind that it is 
being used to specify several hundred different variations on over 50 broad model categories. 
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E1.4 The Command Builders 
 
 Nearly all of the documentation to follow, and most discussions, will assume that commands 
are being issued from a text editor (editing window), such as shown in the example below.  The 
command is issued, that is, actually carried out, by highlighting it in the editing window and 
submitting it with the GO button.  (See Chapter R2 for further discussion.) 
 

 
Figure E1.1  Desktop with Project and Editing Windows 

 
 An alternative method of submitting commands is to use the interactive dialog boxes, which, 
for reasons that will be evident shortly, we call the command builders.  Command builders for model 
commands are produced by selecting Model in the main menu above the toolbar.  This brings down 
the menu shown in Figure E1.2 which offers a number of groups of model frameworks. You may 
then select one of the groupings of models shown, to open a subsidiary menu of specific models.  An 
example for the binary choice models is shown in Figure E1.2.  You may then click a model name to 
open the command builder dialog box for that specific command.  An example for the PROBIT 
command is shown in Figure E1.3.  
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Figure E1.2  Model Choice from the Model Menu 

 

 
Figure E1.3  Main Page for Command Builder (PROBIT) 

 
NOTE:  The ‘?’ button at the lower left of the command builder dialog box is a link to a context 
sensitive Help file that contains a large amount of information about the command. 
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The Main tab (or page) in the command builder dialog box requests the variables part of the 
commands.  Note in Figure E1.3, we have selected the Lhs and Rhs variables that will appear in the 
probit model to be estimated. A few of the optional features will usually appear here as well, 
including, for example, a weighting variable.  Other optional specifications are provided on the other 
pages of the command builder window.  As can be seen in Figure E1.3, the probit model command 
builder has two additional pages.  Note, you must provide the essential variable parts of a command 
before you may enter the Options page.  The command builder will insist on this. 
 Once you have selected the model specification in the command builder window, click the 
Run to submit the command to LIMDEP for processing.  This produces two results:  First, the 
command is carried out, and the results appear in the output window, as would result in general when 
a model command is issued.  Second, as its name implies, the command builder ‘builds’ the model 
command, and places a copy of it in the output window with the results.  (See Figure E1.4.) 
 The first line of text above the output is the command generated by this selection in the 
window. You can copy these commands from the output window and paste them into the editing 
window, as we have done in our example in Figure E1.5.  You might find this useful if you wish to 
modify the model and reuse the command.  The editor will usually be more convenient.  Note, as 
well, that the command interpreter will ignore the leading ‘-->’ so there is no absolute need to edit 
these characters out of the editing window. 
 

 
Figure E1.4  Output Window 
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Figure E1.5  Detail from Editing Window 

 
NOTE:  The command builders are not complete.  Some options and model forms must be specified 
with commands formed in the text editor. The command builders are intended generally for 
development of the more basic forms of the models and for relatively uncomplicated models.  Not all 
optional features in all models are present in the command builder. Moreover, many of the model 
frameworks are not contained in the command builder menu. We anticipate that the command builders 
will be used by those who are becoming accustomed to using LIMDEP.  After a relatively short 
introductory period, you will probably find the text editor more convenient than the command builders. 
 
E1.5 Model Groups 
 

 The various model commands and modeling frameworks supported by LIMDEP and 
NLOGIT are discussed in the chapters to follow.  The following are the model names for the 
different classes of estimators.  Do note, some, such as HISTOGRAM and BURR are quite narrow, 
single purpose instructions, while others, such as POISSON, call for large classes of models that 
may (as in this case) contain a large number of different variants. 
 
Data Setup and Model Preparation 
 

NAMELIST defines lists of variables for model commands (and matrices). 
REVIEW  reviews model commands and create tables. 
SORT  sorts variables. 
SETPANEL establishes parameters for panel data analysis. 
IMPUTE  estimates imputation model for multiple imputation procedures. 

 
Descriptive Statistics 
 

CLASSIFY discriminant analysis – classification into latent groups. 
DSTAT  descriptive statistics. 
TABLES  descriptive statistics for stratified data.  
 

   Cross Section  
 
CROSSTAB cross tabulations for discrete data. 
HISTOGRAM histograms for discrete and continuous data. 
KERNEL  kernel density estimation of the density for a variable. 

 
   Time Series 
 

IDENTIFY  descriptive statistics (ACF, PACF) for time series data. 
SPECTRAL spectral analysis of a time series. 
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Plotting 
 

FPLOT  function plot for user specified function. 
MPLOT  scatter plot of matrices. 
PLOT  scatter or time plots of variables against each other. 
SPLOT  simultaneous scatter plots for several variables. 

 
Linear Regressions and Variants 
 
   Single Equation 
 

FRONTIER stochastic frontier models. 
HREG  heteroscedastic linear regression based on Harvey’s exponential model. 
QREG  quantile regression. 
REGRESS  linear regression models (also OLSQ and CRMODEL). 
TSCS  time series/cross section, covariance structure models. 
2SLS  two stage (instrumental variable) estimation of linear models. 
LIML  limited information maximum likelihood estimation. 
LOWESS  locally weighted nonparametric regression. 

 
   Multiple Linear Equation Models 
 

SURE  linear seemingly unrelated regression models. 
3SLS  three stage (IV, GLS) estimator for systems of linear equations. 

 
Sample Selection Models 
 

MATCH  propensity score matching to analyze treatment effects. 
SELECT  sample selection models with linear and tobit models. 
INCIDENTAL incidental truncation (selection) model. 
SWITCH  switching regression models. 

 
Nonlinear Regression, Optimization, Manipulation of Nonlinear Functions 
 

ARMAX  Box-Jenkins ARMA and dynamic linear equations. 
BOXCOX  regression based on the Box-Cox transformation of variables. 
NLSQ  nonlinear least squares for nonlinear regression models. 
NLSURE  nonlinear systems of equations, SURE or GMM estimation. 

 
Analysis of Nonlinear Functions 
 

FINTEGRATE   function integration for user specified nonlinear function. 
GMME  GMM estimation of model parameters. 
MAXIMIZE maximization of user specified functions. 
MINIMIZE user defined minimization command. 
WALD  standard errors and Wald tests for user specified nonlinear functions. 
SOLVE  finds roots of nonlinear functions. 
FUNCTION computes and displays function values. 
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Single Equation Models for Binary, Ordered and Multiple Discrete Choices 
 

ARCTANGENT arctangent model for binary choice. 
BINARY CHOICE simulation program for all binary choice estimators. 
BIVARIATE bivariate probit models, partial observability models. 
BURR  Burr model for binary choice. 
CLOGIT  multinomial logit model for discrete choice among multiple alternatives 
   (LIMDEP only – not used in NLOGIT). 
COMPLOG complementary log log model for binary choice. 
FRACRESP fractional response model for panel data. 
GOMPERTZ Gompertz model for binary choice. 
LOGIT  binary and multinomial choice models based on the logistic distribution. 
MLOGIT  multinomial logit model. 
MPROBIT  multivariate probit model. 
MSCORE  maximum score semiparametric estimation for binary dependent variable. 
NPREG  nonparametric regression models. 
ORDERED ordered probability models for ordered discrete choice. 
PROBIT  several forms of binary choice models. 
SEMIPAR  Klein and Spady semiparametric estimator for binary choice. 

 
Models for Count Data 

 
GAMMA  gamma model for count data. 
NEGBIN  negative binomial regression model. 
POISSON  models for count data. 

 
Models for Censored Variables 

 
BTOBIT  bivariate tobit models. 
GROUPED regression models for categorical censored data. 
MIMIC  multiple indicators and multiple causes for a latent variable. 
NTOBIT  nested tobit models. 
TOBIT  censored regression models. 

 
Models for Variables with Limited Range of Variation 

 
LOGLINEAR loglinear models, beta, gamma, Weibull, exponential, geometric, inverse 
   Gaussian, arctangent, binomial. 
LOGNORMAL   lognormal regression model. 
TRUNCATE truncated regression models. 

 
Models for Survival Times and Hazard Functions 
 

SURVIVAL survival (hazard function) models. 
 
Post Estimation Commands for Estimated Models 
 

PARTIAL EFFECTS analyzes average partial effects.  
DECOMPOSE Oaxaca-Blinder decompositions. 
SIMULATE simulation of outcome variables with estimated models. 
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E1.6 General Model Specifications 
 
 The preceding section listed the model commands that are used for estimation and data 
analysis.  The various specifications that accompany the command are used to specify the basic 
model and to add certain optional features or model variations.  Some of these are extremely general.  
For example, nearly every model command will contain a ; Lhs = variable(s) specification to 
identify the dependent variable(s).  In contrast, ; Cost is used only by the frontier model command to 
request a cost (as opposed to a production) stochastic frontier model.  Altogether, there are several 
hundred different specifications that attend the various model commands. The following list gives 
some of the most frequently used model specifications, in decreasing level of generality.  Specialized 
codes, such as ; Cost and ; DEA for the frontier models are omitted here, and are detailed in the 
particular chapters for the specific models. 
 
E1.6.1 Variable Specifications in Model Commands 
 
 These essential parts of model commands are described in Chapter R8. 
 

; Lhs  = names specifies model dependent variable(s). 
; Rhs  = names specifies model independent variable(s). 
; Rh1 = names provides first list of variables in two equation model. 
; Rh2 = names provides second list of variables in two equation model. 
; Inst = names provides list of instrumental variables. 
; Wts = name specifies a weighting variable; the optional parameter, [,Noscale] prevents 
  scaling to sum to sample size. 
; Hfn = names provides a list of variables for variance in heteroscedasticity model. 
; Hf1 = names,  ; Hf2 = names, ; Hfu = names, ; Hfe = names, ; Hfr = names are all used  
  to provide lists of variables that appear in variance (heteroscedastic) functions. 
; Eqn = names is used in the SURE/3SLS, multivariate probit models to provide the lists  
  of variables that appear in the set of equations.  The ‘n’ will be the number  
  of the equation, as in ; Eq1 = list of variables. 

 
NOTE: The variable one is a program created variable that always equals 1.0.  Use one to indicate a 
constant term in a model. 
 
E1.6.2 Controlling Output from Model Commands 
 
 These optional features are described in the Chapter R9. 
 

; Par  requests the program to keep ancillary parameters such as a correlation 
   coefficient in the main results vector b. 
; Partial Effects requests display of marginal effects (same as ; Marginal Effects). 
; OLS  requests display of least squares starting values when (and if) they are  
   computed. 
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; Clevel = value requests use of value for confidence level in confidence intervals in model 
   results tables. 

 ; Table = name requests the estimator to save model results to be combined later in output 
    tables. 

; Covariance Matrix requests display of the estimated asymptotic covariance matrix  
   (normally not shown), same as ; Printvc.  
; Matrix includes matrix forms as embedded objects in the output window. 
; Quietly requests that model output not be displayed for this command. 
 

E1.6.3 Robust Asymptotic Covariance Matrices 
 
 The clustering computation for robust covariance matrices is described in Sections R10.2 
and E17.5.  Choice based sampling is described at several points; a somewhat detailed discussion 
appears in Section E39.4.  Robust estimation also appears in the discussion of several models. 
General discussion appears in Section E17.5. 
 
 ; Choice requests the choice based sampling (sandwich with weighting) estimated 
    matrix. 
 ; Cluster = spec requests computation of the cluster form of corrected covariance estimator. 
 ; Stratum = spec is used with ; Cluster to specify a stratified, two level form of data 
     clustering. 
 ; Robust requests a ‘sandwich’ estimator or robust covariance matrix for TSCS 
    and several discrete choice models. 
 
E1.6.4 Optimization Controls for Nonlinear Optimization 
 
 These optional features are described in detail in Chapter R26. 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets the convergence value for convergence on the gradient. 
; Tlf [ = value] sets the convergence value for function convergence. 
; Tlb [ = value] sets the convergence value for convergence on change in parameters. 
; Tln = value sets the convergence tolerance for nonlinear least squares. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc. 
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Lpt = n sets the number of points to use for Laguerre quadrature.  
; Hpt = n sets the number of points to use for Hermite quadrature. 
; Set   keeps current setting of optimization parameters as permanent. 
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E1.6.5 Predictions and Residuals 
 
 Fitted values (predictions) and residuals are described in Section R12.2.   
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps the fitted values as a new (or replacement) variable in data set. 
; Res = name keeps the residuals as a new (or replacement) variable. 
; Prob = name saves the probabilities as a new (or replacement) variable for discrete 
  choice models such as probit or logit. 
; Fill  requests that missing values or values outside the estimating sample be 
  replaced by fitted values based on the estimated model. 

 
E1.6.6 Hypothesis Tests and Restrictions 
 
 These features are described in Chapter R13. 

 
; CML: spec defines a constrained maximum likelihood estimator. 
; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; Rst = list specifies equality and fixed value restrictions. 

 
E1.6.7 Setup for Panel Data Models 
 
 LIMDEP contains an extremely large menu of panel data estimators.  The set of controls 
listed below are used primarily with the nonlinear estimators for panel data. The data arrangement is 
described in Chapter R5 and in Section E15.2.  Models may also have a two way structure, in which 
there is a time specific effect.  Time effects are described in Sections E17.3 and E30.4.  The controls 
listed below are discussed in numerous chapters and summarized with the estimators in Chapter E30. 
 
Data Specification for Panel Data 
 
 SETPANEL is the general command used to set up a panel. 

; Pds = spec is the general specification for panel data, either a fixed number of periods  
  or a variable number given by the named variable. 
; Time = spec specifies the time dimension for two way fixed effects models. 
; Periods = t specifies a length of time (number of periods) for panel estimators. 
; Str = name specifies a stratification variable for DSTAT, REGRESS, SURVIVAL. 
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Panel Data Specifications in Nonlinear Modeling Frameworks 
 

; FEM  specifies a fixed effects model. 
; Fixed   when used, requests fixed effects.  This is used by only two models, 
  LOGIT and REGRESS. ; FEM is used more generally. In LOGIT,  

   ; Fixed and ; FEM request different estimators.  Elsewhere, ; Fixed and 
  ; FEM will be synonyms. 
; Random is the general request for random effects models. 
; RPM  indicates a random parameters model used throughout LIMDEP.  
  (Note, ; RPL is a random parameters counterpart – random parameters 
  logit model – that is used only in NLOGIT) 
; LCM  requests a latent class model.  It appears with ; Pts = number of  classes. 
; Halton is used with ; RPM and ; RPL to request Halton sequences. 
; Cor  is used with ; RPM and ; RPL to request correlated random parameters. 
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E2: Descriptive Statistics for Cross Section 
and Panel Data 

 
E2.1 Introduction 
 
 This chapter describes methods of obtaining univariate descriptive statistics for one or more 
variables in your data set.  Procedures are given for cross sections and for panel data.   
 

E2.2 Univariate Summary Statistics 
 
 The primary command for descriptive statistics is 
 
 DSTAT  ; Rhs = list of variables $  
 
This produces a table which lists for each variable, xk, k = 1,...,K, the basic statistics: 
 

 Sample mean = 
1

1 kN
k iki

x x
n =

= ∑ , 

 Standard deviation = ( )2

1

1
1

kN
k ik ki

k

s x x
N =

= −
− ∑ , 

 Maximum value, 

 Minimum value, 

 Number of valid (nonmissing) cases. 
 
Standard deviations are computed in two steps, computing the means first, then the sums of squared 
deviations (rather than in the less accurate one step using the mean square minus the square of the 
mean).   
 
E2.2.1 Weights  
 
 Weights may be used in computing all of the sums above by specifying  
 
   ; Wts = name of weighting variable 
 
Weights are always scaled so they sum to the current sample size.  Thus, for example, the weighted 
mean would be 
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and   zi  =  the weighting variable. 
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E2.2.2 Missing Observations in Descriptive Statistics 
 
 In all cases, weighted or otherwise, sums are based on the valid observations.  DSTAT 
automatically selects out the missing data.  Most other models (save for those in NLOGIT 5 and most 
of the panel data estimators) do not routinely do so unless you have the SKIP switch set.  (See 
Section R7.5.5.)  Each variable may have a different number of valid cases, so the table of results 
gives the number for each one.   
 
NOTE: The covariance and correlation matrices are based on the subset of observations for which 
there were no missing data for any variables.  Each row in the table of results will list the number of 
valid cases used for that particular variable.  Unfortunately, if different observations are missing for 
the various variables used in a covariance or correlation matrix, the union of the observations for 
which all variables are present can contain very few observations.  For better or worse, this union is 
the set of observations used in computing the matrices. 
 
 If your data contain missing values, the scaling described in the previous section is 
automatically adjusted for each variable.  Moments are scaled by the number of valid observations or 
sum of weights for that variable. 
 
E2.2.3 Display of Descriptive Statistics 
 
 The standard display of results for descriptive statistics is shown in the example below for 
the Longley data (Longley.dat) displayed in Figure E2.1 as they are ready to be read into LIMDEP.  
The Longley data as well as the other sample data sets are located in the Data Sets book of the Help 
file and also in the C:\LIMDEP10\Data Files folder created with program installation.   
 

 
Figure E2.1  Longley Data to Be Read from Text Editor 
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The command is  
 

DSTAT  ; Rhs = year,gnpdefl,gnp,armdforc,total,agr,nonagr $ 
 
Descriptive Statistics 
--------+---------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+---------------------------------------------------------------------- 
    YEAR|  1954.50      4.76095         1947         1962           16       0 
 GNPDEFL|  101.681     10.79155           83      116.900           16       0 
     GNP|  387698.      99394.9       234289       554894           16       0 
ARMDFORC|  2606.69      695.920         1456         3594           16       0 
   TOTAL|  65317.0      3511.97        60171        70551           16       0 
     AGR|  6636.75      930.816         5190         8256           16       0 
  NONAGR|  42819.6      2846.30        37922        46652           16       0 
--------+---------------------------------------------------------------------- 
 
If weights have been specified with ; Sts = variable, the title line of the table will declare the name 
of the weighting variable, for example ‘Descriptive Statistics (Weighted by POPULATN).’ 
 
E2.2.4 Command Builder Dialog Box 
 
 Select Model:Data Description/Descriptive Statistics to invoke the dialog boxes for this 
program. The Main page is shown in Figure E2.2. The various optional specifications available for 
the DSTAT command are provided on the Options page, as shown in Figure E2.3. 
 

 
Figure E2.2  Command Builder Main Page for DSTAT 
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Figure E2.3  Command Builder Options Page for DSTAT 

 
E2.3 Standard Error of the Mean 
 
 The sample mean reported in the standard table is purely descriptive.  When the sample 
mean is viewed as an estimator of a population mean, it is customary to report the ‘standard error,’ as 
well.  The estimate of the standard error of the mean is estimated with 
 

   
( )( ) x

x
k

s ks k
N

=  

 
where sx(k) is the standard deviation for xk and Nk is the sample size.  Request a display of the 
standard error of the mean with each variable by adding 
 
   ; Sem 
 
to the DSTAT command.  This will also produce a listing of a confidence interval, 
 
   *

1 /2( ) ( )k xCI k x z s k−α= ± , 
 
where *

1 /2z −α  is the critical value from the standard normal distribution.   We do not assume that data 
are drawn from a normal population, so the normal rather than the t distribution is used for the 
confidence interval.  If you wish to produce confidence intervals based on the t distribution with  
Nk – 1 degrees of freedom, rather than the normal, use 
 
   ; Sem (t). 
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(Note that if the sample size exceeds 50, the t and normal distributions will be indistinguishable.)  By 
default, the estimator produces a 95% confidence interval. You can change this with 
 
   ; Clevel = value. 
 
(See Section R9.1.1.)  Partial results from the earlier example appear below. 
 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+--------------------------------------------------------------------- 
    YEAR|  1954.50      4.76095         1947         1962           16       0 
        | SE(mean) =    1.19024   95% CI = [  1952.16718,1956.83282  ] 
 GNPDEFL|  101.681     10.79155           83      116.900           16       0 
        | SE(mean) =    2.69789   95% CI = [    96.39349,106.96901   ] 
  NONAGR|  42819.6      2846.30        37922        46652           16       0 
        | SE(mean) =  711.57410   95% CI = [ 41424.90289,44214.22211 ] 
--------+--------------------------------------------------------------------- 
 
E2.4 Clustered Data 
 
 When the sample mean is used as an estimator and the data are clustered as in a panel or 
sometimes in a stratified data set, then the standard error of the mean computed in the previous 
section will generally underestimate the true standard error of the estimator.  The ‘cluster’ estimator 
is often used to produce a more robust estimator of the standard error.   The alternative formulation 
used in this case is (after a bit of algebra) 
 

   ( )( )2

,1 1

1( ) cC Nc
x ik c kc i

k

s k x x
N = =

= −∑ ∑  

 
where C is the total number of clusters indexed c = 1,...,C, Nc is the number of observations in cluster c.  
(There are no corrections for degrees of freedom).  This calculation does not change the basic statistics; 
it modifies the computation of the standard error of the mean.  This computation is requested by adding  
 
   ; Cluster = specification 
 
to the DSTAT command.  (See Section R10.1 for details.)  If the data set is such that the full 
population sizes are known and not (assumed to be) infinite, then one may specify a ‘finite 
population correction’ with  
 
   ; FPC = the fixed number of clusters in the population from which  

 the sample is drawn. 
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When you specify a finite population correction, you provide the known value for the total number of 
clusters in the population.  The reported standard error of the mean is computed as the square root of 
 

           [ ] 1 ( )
* 1

c
x

C CCorrected Variance x s k
C C

  = −  −  
 

 
The finite population correction is (1 – C/C*).  The population number of clusters is assumed to be 
infinite if you do not specify ; FPC = C* for a particular value of C*. 
 The example below is based on the German health care data used in numerous applications 
throughout the documentation.  The data are from Riphahn, Wambach, and Million (2003). The raw 
data were downloaded from the journal’s data archive website, http://qed.econ.queensu.ca/jae/2003-
v18.4/riphahn-wambach-million, and are provided in the sample data file German-healthcare.dat. 
(The data files can be found in the resource folder created with installation: C:\LIMDEP10\Data 
Files.) The results show a comparison of the corrected and uncorrected estimates based on the health 
care panel data, which has 7,293 clusters ranging in size from one to seven. 
 

DSTAT ; Rhs = hhninc ; Sem $ 
 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+--------------------------------------------------------------------- 
  HHNINC|   .35208       .17691            0      3.06710        27326       0 
        | SE(mean) =     .00107   95% CI = [      .34999,.35418      ] 
--------+--------------------------------------------------------------------- 
 

DSTAT ; Rhs = hhninc ; Sem ; Cluster = id $ 
 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+--------------------------------------------------------------------- 
  HHNINC|   .35208       .17691            0      3.06710        27326       0 
        | SE(mean) =     .00186   95% CI = [      .34845,.35572      ] 
--------+--------------------------------------------------------------------- 
Clusters|  Cluster corrected std. deviations:    7293 clusters,       1 strata 
      ID|  Numbers of clusters and strata may vary if there are missing values 
--------+--------------------------------------------------------------------- 
 
 The computation above can also be done in the linear regression model; regression on only a 
constant computes the sample mean.  The commands 
 
 REGRESS ; Lhs = hhninc ; Rhs = one $ 
 
and REGRESS ; Lhs = hhninc ; Rhs = one ; Cluster = id $ 
 
produce the regression results below, which it can be seen replicate the computations in DSTAT. 
 
  

http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/�
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/�
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+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=HHNINC   Mean                 =         .35208 
             Standard deviation   =         .17691 
             Number of observs.   =          27326 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .35208***      .00186   189.72  .0000      .34845    .35572 
--------+-------------------------------------------------------------------- 
Constant|     .35208***      .00107   328.99  .0000      .34999    .35418 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E2.5 Skewness and Kurtosis 
 
 The third and fourth moments for the variables may be obtained with  
 
 DSTAT  ; Rhs = list of variables   
   ; All  $ 
 
This requests the skewness and kurtosis measures, 
 

 Sample skewness = 
3
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3 3
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 Sample kurtosis = 
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(This option may be combined with ; Sem described in the preceding section.)  Note that the higher 
moments are normalized by the standard deviations.  This produces the comparison to the values for 
the normal distribution of zero and three, respectively.  For the earlier example, we have 
 
 DSTAT  ; Rhs = year,gnpdefl,gnp,armdforc,total,agr,nonagr 
   ; All $ 
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Descriptive Statistics 
--------+---------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+---------------------------------------------------------------------- 
    YEAR|  1954.50      4.76095         1947         1962           16       0 
        | Skewness  .0000  Kurtosis=  1.6787 
 GNPDEFL|  101.681     10.79155           83      116.900           16       0 
        | Skewness -.1418  Kurtosis=  1.7117 
     GNP|  387698.      99394.9       234289       554894           16       0 
        | Skewness  .0245  Kurtosis=  1.7643 
ARMDFORC|  2606.69      695.920         1456         3594           16       0 
        | Skewness -.3917  Kurtosis=  1.9226 
   TOTAL|  65317.0      3511.97        60171        70551           16       0 
        | Skewness -.0913  Kurtosis=  1.5455 
     AGR|  6636.75      930.816         5190         8256           16       0 
        | Skewness  .2817  Kurtosis=  1.9502 
  NONAGR|  42819.6      2846.30        37922        46652           16       0 
        | Skewness -.4506  Kurtosis=  1.7654 
--------+---------------------------------------------------------------------- 
 
E2.6 Display Format 
 
 Three different formats are provided for display of descriptive statistics. 
 
E2.6.1 Fixed Width Format 
 
 The default output display shown in the earlier examples is in a floating point format with 
integers displayed for the minimum and maximum if the variable is an integer.  If your data contain 
extremely large or small values, you may prefer to change the display to scientific notation.  Add  
 
   ; Fixed  
 
to the command to request a fixed with decimal format.  For example, 
 

DSTAT  ; Rhs = year,gnpdefl,gnp,armdforc,total,agr,nonagr  
   ; Fixed $ 
 
produces the following: 
 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+--------------------------------------------------------------------- 
    YEAR|  .195450D+04  .476095D+01     1947         1962           16       0 
 GNPDEFL|  .101681D+03  .107916D+02       83      .116900D+03       16       0 
     GNP|  .387698D+06  .993949D+05   234289       554894           16       0 
ARMDFORC|  .260669D+04  .695920D+03     1456         3594           16       0 
   TOTAL|  .653170D+05  .351197D+04    60171        70551           16       0 
     AGR|  .663675D+04  .930816D+03     5190         8256           16       0 
  NONAGR|  .428196D+05  .284630D+04    37922        46652           16       0 
--------+--------------------------------------------------------------------- 
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E2.6.2 Matrix Output 
 
 The results of this procedure may be embedded in the output window in a matrix that can be 
exported to other programs such as Excel.  Add  
 
   ; Matrix 
 
to the DSTAT command to request this.  Figure E2.4 shows the result for the previous example.  
Double clicking the embedded object displays the matrix containing the results as shown in Figure 
E2.5. 
 

 
Figure E2.4  Descriptive Statistics with Results Matrix 

 

 
Figure E2.5  Embedded Descriptive Statistics Matrix 
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E2.7 Stratified Data 
 
 DSTAT allows a stratification variable to be used to provide descriptive statistics for 
subgroups in the sample.  A second command, TABLES, described in the next section, is provided 
to allow a convenient format for the results.   
 One full set of results is produced for each value of the stratification variable.  Use 
 

 DSTAT  ; Rhs = list of variables  
   ; Str = the stratification variable ... $ 
 

The variable must take values 1,2,... Up to 50 strata may be defined by the variable, which is 
assumed to be discrete.  If a continuous variable is given instead, too many strata (each with one 
observation) will result, and an error will follow.   
 To specify ranges of a continuous variable, use 
 

 CREATE  ; Copy = the stratification variable $ 
 RECODE  ; ... to create the discrete variable ... $ 
 DSTAT   ; ... ; Str = the recoded variable $ 
 

 The health care data provides an example.  The following produces descriptive statistics for 
several variables for men, women, and the full sample. 
 

CREATE ; gender = female + 1 $ 
DSTAT  ; Rhs = age,educ,hhninc,married  

; Str  = gender $ 
 
-------------------------------------------------------------------------- 
Descriptive Statistics for AGE 
Stratification is based on GENDER 
Subsample        |        Mean     Std.Dev.    Cases  Sum of wts  Missing 
-----------------+-------------------------------------------------------- 
GENDER      =  1 |   42.652812    11.270394    14243    14243.00        0 
GENDER      =  2 |   44.475961    11.319204    13083    13083.00        0 
Full Sample      |   43.525690    11.330248    27326    27326.00        0 
-----------------+-------------------------------------------------------- 
Descriptive Statistics for EDUC 
Stratification is based on GENDER 
-----------------+-------------------------------------------------------- 
Subsample        |        Mean     Std.Dev.    Cases  Sum of wts  Missing 
-----------------+-------------------------------------------------------- 
GENDER      =  1 |   11.728700     2.436490    14243    14243.00        0 
GENDER      =  2 |   10.876381     2.109105    13083    13083.00        0 
Full Sample      |   11.320631     2.324885    27326    27326.00        0 
-----------------+-------------------------------------------------------- 
Descriptive Statistics for HHNINC 
Stratification is based on GENDER 
-----------------+-------------------------------------------------------- 
Subsample        |        Mean     Std.Dev.    Cases  Sum of wts  Missing 
-----------------+-------------------------------------------------------- 
GENDER      =  1 |     .359054      .173564    14243    14243.00        0 
GENDER      =  2 |     .344495      .180179    13083    13083.00        0 
Full Sample      |     .352084      .176908    27326    27326.00        0 
-----------------+-------------------------------------------------------- 
Descriptive Statistics for MARRIED 
Stratification is based on GENDER 
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-----------------+-------------------------------------------------------- 
Subsample        |        Mean     Std.Dev.    Cases  Sum of wts  Missing 
-----------------+-------------------------------------------------------- 
GENDER      =  1 |     .765148      .423921    14243    14243.00        0 
GENDER      =  2 |     .751510      .432154    13083    13083.00        0 
Full Sample      |     .758618      .427929    27326    27326.00        0 
-----------------+-------------------------------------------------------- 
 

E2.8 Tables for Stratified Samples 
 
 The command for descriptive statistics for stratified data arranged in separate tables is 
 
 TABLES  ; Rhs = list of variables   
   ; Str = stratification  $ 
 
This procedure is used to compute means and standard deviations for a stratified sample. As shown 
below, it differs from the DSTAT command described above in the format of the tables that it 
produces.  You can use this procedure for stratified data in the same manner as described in the 
previous section.  The command can specify any of three types of sample partitioning: 
 

TABLES  ; Rhs = up to 10 variables 
; Pds = specification for groups in a panel data set  

or    ; Str = specification for strata as defined above  $ 
 
One of the two setups for a partitioned sample is used.  The ; Pds or ; Str sets up the sample 
specification as if it were a panel data set (which it could, but need not be).  The results will include 
for the full sample, then for each stratum or group in the sample, means, standard deviations, and 
sample sizes for each variable specified.  The data set may contain up to 10,000 strata and up to 10 
variables for this processor. 
 The data used in the preceding example are an unbalanced panel observed for seven years. 
To illustrate the TABLES command, we will produce a table for the seven years using the default 
format of the command. 
 
 TABLES ; Rhs = hhninc ; Str = year $ 
 
---------+----------------------------------------------------------------- 
         | Means and Standard Deviations for Clustered  or Stratified Data 
         | Variable  =  HHNINC       Weights for observations are 1.000000 
         | Full Sample =   27326 data rows. Valid rows =    27326 
         | Rows skipped (bad stratum or weight)        =        0 
         | Sum of weights for all valid observations   =    27326.000 
 Overall | Mean       Std Dev.   Sum of Weights   Sample  Missing    Total 
         |      .352       .177    27326.000       27326        0    27326 
 Stratum | There were    7 strata   found in the sample 
         | Mean       Std Dev.   Sum of Weights   Sample  Missing    Total 
---------+----------------------------------------------------------------- 
Stratum01|      .297       .148     3874.000        3874        0     3874 
Stratum02|      .309       .140     3794.000        3794        0     3794 
Stratum03|      .325       .165     3792.000        3792        0     3792 
Stratum04|      .349       .164     4483.000        4483        0     4483 
Stratum05|      .336       .158     3666.000        3666        0     3666 
Stratum06|      .407       .191     4340.000        4340        0     4340 
Stratum07|      .445       .217     3377.000        3377        0     3377 
---------+----------------------------------------------------------------- 
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The default names are stratum00 to stratum99 then strat0100 to strat9999.  If you have a 
relatively small number of strata, you may wish to provide names for them in the results.  You may 
provide names for the strata with the specification 
 

  ; Labels = labels for strata. 
 
If you provide fewer labels than there are strata, the names you provide are used for the first group of 
strata, and the default names are used for the remainder.  For the preceding example, we could use 
 
   TABLES ; Rhs = hhninc ; Str = year 

; Labels = 1984,1985,1986,1987,1998,1991,1994 $  
 
---------+----------------------------------------------------------------- 
         | Means and Standard Deviations for Clustered  or Stratified Data 
         | Variable  =  HHNINC      Weights for observations are 1.000000 
         | Full Sample =   27326 data rows. Valid rows =    27326 
         | Rows skipped (bad stratum or weight)        =        0 
         | Sum of weights for all valid observations   =    27326.000 
 Overall | Mean       Std Dev.   Sum of Weights   Sample  Missing    Total 
         |      .352       .177    27326.000       27326        0    27326 
 Stratum | There were    7 strata   found in the sample 
         | Mean       Std Dev.   Sum of Weights   Sample  Missing    Total 
---------+----------------------------------------------------------------- 
     1984|      .297       .148     3874.000        3874        0     3874 
     1985|      .309       .140     3794.000        3794        0     3794 
     1986|      .325       .165     3792.000        3792        0     3792 
     1987|      .349       .164     4483.000        4483        0     4483 
     1998|      .336       .158     3666.000        3666        0     3666 
     1991|      .407       .191     4340.000        4340        0     4340 
     1994|      .445       .217     3377.000        3377        0     3377 
---------+----------------------------------------------------------------- 
 

E2.8.1 Groups in the Sample 
 

The general form of model commands allows you to partition the sample during the 
processing.  See Section R8.7.3.  To use that feature here to produce separate analyses for male and 
female headed households, we could use. 
 

TABLES ; For[female = 0,1] ; Rhs = age  
; Str = year  
; Labels = 1984,1985,1986,1987,1988,1991,1994 $ 

 

The results are as follows: 
 
+-----------------------------------------------------+ 
| Setting up an iteration over the values of FEMALE   | 
| The model command will be executed for   2 values   | 
| of this variable.  In the current sample of   27326 | 
| observations, the following counts were found:      | 
| Subsample   Observations    Subsample  Observations | 
| FEMALE   =   0     14243    FEMALE  =   1     13083 | 
+-----------------------------------------------------+ 
| Actual subsamples may be smaller if missing values  | 
| are being bypassed.  Subsamples with 0 observations | 
| will be bypassed.                                   | 
+-----------------------------------------------------+ 
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******************************************************************* 
*       Subsample analyzed for this command is FEMALE   =       0 * 
****************************************************************** 
---------+----------------------------------------------------------------- 
         | Means and Standard Deviations for Clustered  or Stratified Data 
         | Variable  =  AGE         Weights for observations are 1.000000 
         | Full Sample =   14243 data rows. Valid rows =    14243 
         | Rows skipped (bad stratum or weight)        =        0 
         | Sum of weights for all valid observations   =    14243.000 
 Overall | Mean       Std Dev.   Sum of Weights   Sample  Missing    Total 
         |    42.653     11.270    14243.000       14243        0    14243 
 Stratum | There were    7 strata   found in the sample 
         | Mean       Std Dev.   Sum of Weights   Sample  Missing    Total 
---------+----------------------------------------------------------------- 
     1984|    42.992     11.060     2017.000        2017        0     2017 
     1985|    42.916     11.057     1978.000        1978        0     1978 
     1986|    43.014     11.120     1968.000        1968        0     1968 
     1987|    42.892     11.124     1911.000        1911        0     1911 
     1988|    42.729     11.297     2313.000        2313        0     2313 
     1991|    42.325     11.571     2244.000        2244        0     2244 
     1994|    41.653     11.583     1812.000        1812        0     1812 
---------+----------------------------------------------------------------- 
******************************************************************* 
*       Subsample analyzed for this command is FEMALE   =       1 * 
******************************************************************* 
---------+----------------------------------------------------------------- 
         | Means and Standard Deviations for Clustered  or Stratified Data 
         | Variable  =  AGE         Weights for observations are 1.000000 
         | Full Sample =   13083 data rows. Valid rows =    13083 
         | Rows skipped (bad stratum or weight)        =        0 
         | Sum of weights for all valid observations   =    13083.000 
 Overall | Mean       Std Dev.   Sum of Weights   Sample  Missing    Total 
         |    44.476     11.319    13083.000       13083        0    13083 
 Stratum | There were    7 strata   found in the sample 
         | Mean       Std Dev.   Sum of Weights   Sample  Missing    Total 
---------+----------------------------------------------------------------- 
     1984|    45.086     11.335     1857.000        1857        0     1857 
     1985|    44.814     11.202     1816.000        1816        0     1816 
     1986|    44.908     11.157     1824.000        1824        0     1824 
     1987|    44.198     11.232     2170.000        2170        0     2170 
     1988|    44.793     11.324     1755.000        1755        0     1755 
     1991|    43.828     11.450     2096.000        2096        0     2096 
     1994|    43.754     11.490     1565.000        1565        0     1565 
---------+----------------------------------------------------------------- 
 
E2.8.2 Weights 

 
The moments may be weighted with 

 
  ; Wts = any kind of weights 

 
Weights are handled the same as described earlier, but are now scaled appropriately for each stratum 
as well as by variable, again to account properly for missing observations.   
 



E2: Descriptive Statistics for Cross Section and Panel Data E-27 

E2.9 Sample Quantiles 
 
 You may obtain more detailed statistics about variables by requesting the sample quantiles. 
This feature produces sample order statistics and the deciles and quartiles of the sample of values for 
each variable.  The keyword in the command is 
 
   ; Quantiles 
 
NOTE:  The quantiles feature in DSTAT is limited to samples of 200,000 observations. 
 
For an example based on our earlier results: 
 
 DSTAT ; Rhs = age,hhninc  

; Quantiles $ 
 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+--------------------------------------------------------------------- 
     AGE| 43.52569     11.33025           25           64        27326       0 
  HHNINC|   .35208       .17691            0      3.06710        27326       0 
--------+--------------------------------------------------------------------- 
Quantiles 
--------------------------------------- 
Percentile     AGE          HHNINC 
--------------------------------------- 
Min.          25.000       .00000 
10th          28.000       .17845 
20th          32.000       .21354 
25th          34.000       .24000 
30th          36.000       .25000 
40th          39.000       .29987 
Med.          43.000       .32000 
60th          47.000       .36000 
70th          51.000       .40000 
75th          53.000       .43000 
80th          55.000       .46000 
90th          60.000       .55000 
Max.          64.000       3.0671 
--------------------------------------- 
Partition of Range Minimum to Maximum 
--------------------------------------- 
Range of X     AGE          HHNINC 
--------------------------------------- 
Minimum       25.000       .00000 
1st.Qrtl      34.750       .76678 
Midpoint      44.500       1.5336 
3rd.Qrtl      54.250       2.3003 
Maximum       64.000       3.0671 
--------------------------------------- 
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 In addition to the displayed output, a matrix object, Matrix:LastQntl, has been embedded in 
the output window.  A new matrix, lastqntl has also been placed in the matrix work area.  You can 
double click the object matrix to display it, as shown in Figure E2.6.  Using edit/copy and edit/paste, 
you can export the contents of this matrix to a spreadsheet program, such as Excel.  
 

 
 

 
Figure E2.6  Quantiles Embedded Matrix 

 
E2.9.1 Box and Whisker Plots 
 
 The box and whisker plot is a device used crudely to describe the location, range and 
skewness of a variable.  LIMDEP will place up to five such plots in a figure.  The function is 
requested simply by adding 
 
   ; Box Plots 
 
to the DSTAT command.  
 
NOTE:  Box and whisker plots can produce less than helpful, even absurd results when variables 
with very different scales are forced into the same figure. Figure E2.7 below suggests how the 
problem arises.  Users are cautioned about this problem. There is no practical fix, other than to be 
sure that variables that are placed in the same figure have similar locations and scales. 
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 Box and whisker plots are constructed (vertically in LIMDEP’s plots) for the variable x as 
follows: 
 

 
 
 x(.5)  =  the median of the sample values, 
 x(.25)  =  the 25th sample percentile of the sample values, 
 x(.75)  =  the 75th sample percentile of the sample values, 
 x(.75) – x(.25) =  the interquartile range of x = the IQR, 
 L  =  the smallest sample value larger than  x(.25) - 1.5×IQR, 
 U  =  the largest sample value smaller than x(.75) + 1.5×IQR, 
 OL  =  sample values less than L marked as ‘outliers,’ 
 OU  =  sample values greater than U marked as ‘outliers.’ 
 
 In the example below, box and whisker plots are produced for age and educ in the health 
care sample using 
 
 DSTAT ; Rhs = age,educ ; Box plots $ 
 

 
Figure E2.7  Box and Whisker Plots 
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E2.9.2 Related Procedures for Quantiles 
 
 There are four CALC functions provided for computing specific quantiles for a variable: 
Min(variable), Max(variable), Med(variable), and Qnt(quantile,variable).  For example, 
 
 CALC  ; List  
   ; Med(x) ; Qnt(0.50, x) $ 
 
will display the median of the sample of values on variable x (twice). 
 Two regression features based on quantiles are also available.  The median regression is 
estimated by least absolute deviations (LAD).  The LAD estimator is requested with 
 
 REGRESS ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Alg = LAD $ 
 
A more general program for quantile regressions is available with the QREG command, 
 
 QREG  ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Qnt = the specific quantile $ 
 
The LAD results are reproduced with ; Qnt = .5, but any other quantile may be specified instead. 
The LAD or median and quantile regressions are detailed in Section E9.3. 
 

E2.10 Analysis of Variance and Panel Data 
 
 LIMDEP contains a wide variety of routines for analysis of panel data.  Most of these are 
estimation programs for models that involve fixed or random effects specifications.  Listed below is 
a set of functions and routines that can be used to produce descriptive statistics for a panel.  In all 
cases, it is assumed that you have a stratification variable that takes values 1, 2, ..., G, where G is the 
number of groups of observations.  The number of observations in each group is Tg.  This is never 
required to be the same across groups. (See Section R5.3 for discussion of group indicators for panel 
data.) 
 
E2.10.1 Analysis of Variance 
 
 One way analysis of variance is computed by regression of the variable to be analyzed on a 
complete set of group dummy variables.  The command is 
 
 REGRESS ; Lhs = the variable 
   ; Rhs = one 
   ; Str = the stratification variable 
   ; Panel   $ 
 
If the number of observations is the same in every group, then you may dispense with the 
stratification variable and use 
 
   ; Pds = the fixed number of observations 
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There are no other optional specifications for this command.  The results produced are shown in the 
example below, where we analyze the income in the health care data set. 
 
 REGRESS ; Lhs = hhninc ; Rhs = one 
       ; Pds = _groutppi 

; Panel $  (We could use ; Str = id.) 
 
-------------------------------------------------------------------------- 
Analysis of Variance for         HHNINC 
Stratification Variable          _STRATUM 
Total Sample Size                                27326      Group Sizes 
Number of Groups                                  7293      Max =     1 
Number of groups with no data                        0      Min =     1 
Overall Sample Mean                           .3520836      Avg =   1.0 
Total Sample Minimum                          .0000000 
Total Sample Maximum                         3.0671000 
Sample Standard Deviation                     .1769083 
Total Sample Variance                         .0312965 
Source of Variation              Variation     Deg.Fr.      Mean Square 
Between Groups             .5757920920D+03        7292  .7896216292D-01 
Within  Groups             .2793856074D+03       20033  .1394626903D-01 
Total                      .8551776995D+03       27325  .3129653063D-01 
Residual S.D.              .1180943226D+00 
R-squared                      .6733011074 
F ratio                       5.6618843915     P value           .00000 
-------------------------------------------------------------------------- 
 
The preceding analysis of variance can also be obtained with 
  
 SETPANEL ; … to set up the panel $ 
 DSTAT ; Rhs = the variable ; Panel $ 
 
E2.10.2 Matrix Functions for Describing Panel Data 
 
 These functions are used to compute statistics for columns of data which are stratified.  For 
example, the variable income might contain time series of 10 yearly observations on average family 
income in each of the 50 states.  The number of observations would then be 500.  In order to use 
these commands, you must provide a stratification variable.  Stratification variables are described at 
length in Section R5.3. 
 Each of the functions listed below creates a matrix with number of rows equal to the largest 
value found for your stratification indicator.  For our example above, that would be 50 since there are 
50 states and our indicator would (presumably) take values 1,...,50.  However, these functions do not 
require that all values be present in the indicator.  For example, suppose our statewide data did not 
include states 14, 21-29, and 36.  Our indicator would take 39 distinct values, but the highest value 
would be 50.  The matrices created here would have 50 rows, but 11 rows in each one would contain 
zeros (not -999s).  For purposes of this discussion, we will call this maximum G, emphasizing that G 
is only the exact number of groups if your indicator takes all of the values 1,...,G.   
 
NOTE:  These functions automatically bypass missing data. If any variable shows -999, the observation 
is omitted from any sum. If the stratification indicator is missing, the entire group is bypassed. 
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 The results are limited to the maximum size of a matrix, 50,000 cells.  The commands produce 
different numbers of columns, so the number of groups which can be accommodated by these 
commands will differ somewhat.  Thus, MATRIX ; gs = Grps(i) $ could create a 4,500×5 matrix. 
This function creates a single column of length G. 
 
 Gsiz(indicator)            =  G×1 matrix of group sizes. 
 
These functions require a namelist or a list of K variables.  The matrices they create each have one 
column for each variable and G rows, one for each group. 
 
 Gxbr(list, indicator)    = G×K matrix of group means, 
 Gsdv(list, indicator)    = G×K matrix of group standard deviations, 
 Gmax(list, indicator)   = G×K matrix of group maxima, 
 Gmin(list, indicator)    = G×K matrix of group minima, 
 Gsum (list, weight, indicator)  = G×K matrix of sums, weighted by the weight variable. 
 
You must use a namelist in the Gsum(list, weight, indicator) function.  You may follow the namelist 
with the names of some variables which are also to be summed, but not to be multiplied by the 
weighting variable.  The following function requires a single variable and the indicator, and produces 
a five column matrix: 
 
 Grps(variable, indicator)   = G×5 matrix, 
  Column 1        = group sizes, 
  Column 2         = group means, 
  Column 3          = group standard deviations, 
  Column 4        = group maxima, 
  Column 5         = group minima. 
 
The Gxbr function can be used to compress a panel data set into a data set of group means that you 
can analyze with other statistical commands.  You would do so as follows: 
 
Step 1. Define the list of variables. 
 
  NAMELIST ; old = list of variables to be compacted  $ 
 
Step 2. Give the replacement list.  This step is not needed if the original data can be overwritten.  

 
  NAMELIST ; new = namelist for variables to be created $ 

 
Step 3. Set up the stratification indicator if it is not already in the data set. 
 
  CREATE ; i = whatever is appropriate $ 
 
Step 4. Get the matrix of means. 
 
  MATRIX ; means = Gxbr(old, i) $ 
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Step 5. Move group means into the data area, and pick up the number of rows. 
 
  CALC ; g = Row(means) $ 
  CREATE ; new =  means $ 
  SAMPLE ; 1 - g $ 
 
 If necessary, you might want to drop observations with empty cells.  You cannot do this by 
selecting on zero values for the group means, since 0.0 is a valid value for this variable.  But, you 
can do this by computing the group sizes with the Gsiz function.  For a small number of groups, you 
can look at the matrix directly to find the empty cells.  For a large number of cells, you can use the 
following after you have set up the sample as shown above: 
 
 MATRIX ; gsize =  Gsiz(indicator) $ 
 CREATE ; newg =  gsize $ 
 REJECT ; newg =  0 $ 
 
Another common operation is to create a variable which repeats the group means of that variable for 
each observation in a group.  You can easily to this with MATRIX, with 
 
 MATRIX ; grpmeans = Gxbr(variable, i) $ 
 CREATE ; means = grpmeans(i) $ 
 
There is also a CREATE command that does the same thing, 
 
 CREATE ; means = Group Mean(variable, Str = i ) $ 
 
E2.11 Discriminant Analysis 
 

 The command for carrying out a linear discriminant analysis is 
 

CLASSIFY  ; Lhs = class stratification variable = 0 for out of sample 
; Rhs = covariates $ 

 
This procedure carries out a ‘discriminant analysis’ for a set of observations on variables x1,...,xK. 
The sample is divided into G+1 groups of observations identified with known classification 1,...,G or 
classification unknown, the ‘G+1 group.’  The objective is to use the data with known classification 
to develop a rule which is then used to make a best guess as to the appropriate classification of the 
unclassified (class G+1) observations.  Analysis is carried out as follows:  For the data in the G 
groups, we have prior assignment probabilities 
 
   Π0  =  (π1,..., πG)0 

 
These represent the prior classification probabilities for each observation in the sample (i.e., given 
no information about the covariates is used).  Under most circumstances, πg will equal 1/G, 
indicating no specific prior information, though we allow for others if the user has specific values to 
provide.  If the group sizes are unequal and not randomly so, then the group proportions, Ng/N, may 
be a preferable prior.  Each observation also has an assignment to its specific group, yig which equals 
either ‘g’ or 0 if the assignment is unknown (and will be estimated here).   
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For the data in the G groups, we first compute mean vectors and covariance matrices, 
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For each observation i in group g, xig, the ‘distance measure’ (Mahalanobis distance) from the center 
of each group m is 
 

   1
| ( ) ' ( )ig m ig m m ig md −= − −x x S x x . 

 

The predicted assignment for all observations, including those without prior known classification, is 
the one with the smallest distance; 
 
   | | |ˆ  such that  for .ig m ig m ig jy m d d m j= < ≠  
 
(Note that for observations with known classification, the rule can predict incorrectly.) 
 When unequal prior probabilities are provided, a refinement of the prediction rule uses the 
ex post (posterior) probabilities: 
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π
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ˆ  

 

(The leading scalar K is used to make the probabilities sum to one.)  Then, the predicted 
classification is the one with the maximum posterior probability.  Note that since the computations 
require the inverses of the group specific covariance matrices, the entire procedure breaks down if 
this cannot be computed for any group. 
 This calculation is requested with the command 
 

CLASSIFY  ; Lhs = class stratification variable = 0 for out of sample 
; Rhs = covariates 

 
with optional specifications: 
 
   ; Wts = weighting variable, used as replications 
   ; Keep = variable to use for classification result 
   ; List = switch to request observation specific listing 
   ; Labels = list of labels for groups to use in displays 
 
The default calculation allows the covariance matrix to differ among the groups.  Use 
 
   ; Pooled  
 
to specify that the distance measures should based on the single full sample covariance matrix, S, 
rather than Sg for the specific groups.  You can also control the way the distance measure is 
computed, with 
   ; Var = identity 
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to ignore the covariance matrix, and use, simply, the distance of xig|m from the mean in group m.  In 
this case, 
   2

1

K
ig|m ig m ig m ig,k m,kk=

d = - - = x - x′ ∑x x x x( ) ( ) ( ) . 
 
You may, instead, just scale the variables without rotating them – in this instance, you would use 
only the diagonal elements of the covariance matrix.  Use 
 
   ; Var = diagonal 
 
to employ 
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Finally, the priors are formulated as follows:  If no prior probabilities are specified, then 
 
   πg

0 = 1/G (this is the default). 
 
If you specify simply 
 
   ; Priors 
 
then    πg

0  =  Ng / Σg Ng. 
 
Finally, you may specify your own group of priors with 
 
   ; Prior = a list of G values that must sum to one. 
 
 In the example below, there are four groups of 20 observations.  We specified that the firms 
in the last group were unidentified.  There are three variables analyzed, i,f,c.  The command is 
 
 CLASSIFY  ; Lhs = j ; Rhs = i,f,c ; List $ 
 
In the listing (which is abbreviated), a ‘*’ indicates a correctly predicted group identifier.  Otherwise, 
‘=P’ and ‘=A’ indicates the predicted and actual group, respectively.  The prior and posterior 
probabilities are listed as well. 
 
+-----------------------------------------------+ 
| Linear Discriminant Analysis                  | 
| Full sample number of observations   =     60 | 
| Sum of frequencies                   =     60 | 
| Number of Classes in the sample      =      3 | 
| Number of out of sample observations =     20 | 
| Sum of frequencies for out of sample =     20 | 
+-----------------------------------------------+ 
   Class  Sample  Sum of wts  Proportion  Prior P 
J=1           20          20       .3333    .3333 
J=2           20          20       .3333    .3333 
J=3           20          20       .3333    .3333 
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Analysis by observation             Posterior (6 - ... not shown) 
Indiv  Actual   Predicted   Prior    J=1    J=2      J=3 
-----  -------- --------- ------  -------- -------- -------- -------- -------- 
    1  J=1       J=1       .3333  .9991=*  .0000    .0009 
    2  J=1       J=1       .3333  .9996=*  .0000    .0004 
    3  J=1       J=1       .3333  .9967=*  .0000    .0033 
    4  J=1       J=1       .3333  .9993=*  .0000    .0007 
   ... 
   20  J=1       J=1       .3333  .9850=*  .0000    .0150 
   21  J=2       J=1       .3333  .7500=P  .0000=A  .2500 
   22  J=2       J=3       .3333  .4780    .0000=A  .5220=P 
   23  J=2       J=1       .3333  .9354=P  .0000=A  .0646 
   24  J=2       J=1       .3333  .9804=P  .0000=A  .0196 
   ...   
   40  J=2       J=1       .3333  .9852=P  .0000=A  .0148 
   41  J=3       J=1       .3333  .9127=P  .0000    .0873=A 
   42  J=3       J=1       .3333  .9928=P  .0000    .0072=A 
   43  J=3       J=1       .3333  .9969=P  .0000    .0031=A 
   44  J=3       J=1       .3333  .9908=P  .0000    .0092=A 
   ... 
   60  J=3       J=3       .3333  .4062    .0000    .5938=* 
   61  =>none<=  J=3       .0000  .0871    .0000    .9129=P 
   62  =>none<=  J=1       .0000  .5106=P  .0000    .4894 
   63  =>none<=  J=1       .0000  .6288=P  .0000    .3712 
   64  =>none<=  J=3       .0000  .0999    .0000    .9001=P 
   ... 
   76  =>none<=  J=3       .0000  .3261    .0000    .6739=P 
   80  =>none<=  J=3       .0000  .2765    .0000    .7235=P 
 
Classification Results.  Total Frequencies Based on Weights if Any 
              Actual                                                 Out of 
Predicted        J=1       J=2       J=3  =>none<=  Not Used Total   Sample 
      J=1        20.       15.       19.        5.        0.    59.      0. 
      J=2         0.        0.        0.        0.        0.     0.      0. 
      J=3         0.        5.        1.       15.        0.    21.      0. 
    Total        20.       20.       20.       20.        0.    80.      0. 
 
E2.12 Accuracy and the NIST Benchmarks 
 
 The National Institute of Standards and Technology (NIST) has compiled a set of      
accuracy benchmarks for statistical software, the Statistical Reference Datasets (StRD at 
http://www.itl.nist.gov/div898/strd/), which can be used for testing the accuracy of programs such as 
LIMDEP.  There are (as of this writing) five sets of problems: univariate summary statistics, analysis 
of variance, linear regression, nonlinear regression and Markov Chain Monte Carlo estimation.  The 
problems are designed to test different aspects of computation and present varying levels of 
difficulty. We will be presenting some of the test problems in this manual, primarily to verify the 
program accuracy, but also to demonstrate the variety of problems that they present.  McCullough 
(1999) presents a detailed analysis of the datasets with several programs, including LIMDEP, and 
suggests a routine method of measuring accuracy.  For the first three suites, as will be seen below, 
LIMDEP matches the NIST standard for all visible digits, so accuracy is not a consideration.  Some 
of McCullough’s analysis will be presented with the nonlinear least squares suite, where there is 
much more variation. 
 

http://www.itl.nist.gov/div898/strd/�
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E2.12.1 NIST Benchmarks for Univariate Statistics 
 
 In the examples below, the source level NIST problem statement is presented with the 
LIMDEP solution to the problem.  In some cases, only a few of the data observations are listed with 
the problem, so as to suggest their appearance.  Many of the NIST datasets are included  with the 
LIMDEP program, and can be found in the NIST Benchmarks book of the Help file and also in the 
C:\LIMDEP10\Command Files folder created with program installation. The full NIST datasets can 
be downloaded from the NIST website.  The following shows two of the datasets from the univariate 
summary statistics suite. The first, the Maryland lottery problem is rated ‘lower level of difficulty.’  
One of the problem sets in this suite, NumAcc4 (Numerical Accuracy #4) is rated ‘Higher Level of 
Difficulty.’  (This is the top of three levels in the suites.)  This problem involves 1,001 observations 
(actually 500 occurrences each of 1.00000001 and 1.00000003, and one of 1.00000002.  The 
certified values and LIMDEP’s results for this data set are shown below. 
 
Dataset Name:  Maryland Pick-3 Lottery 
Description:   This is an observed/”real world” data set 
               consisting of 218 Maryland Pick-3 Lottery values 
               from September 3, 1989 to April 14, 1990 (32 weeks). 
               One 3-digit random number (from 000 to 999) 
               is drawn per day, 7 days per week for most 
               weeks, but fewer days per week for some weeks. 
               We use these data here to test accuracy 
               in summary statistics calculations. 
Stat Category: Univariate: Summary Statistics 
Reference:     None 
Data:          “Real World” 
               1    Response          : y = 3-digit random number 
               0    Predictors 
               218  Observations 
Model:         Lower Level of Difficulty 
               2    Parameters        : mu, sigma 
               1    Response Variable : y 
               0    Predictor Variables 
               y    = mu + e 
                                                  Certified Values 
Sample Mean                                ybar:  518.958715596330 
Sample Standard Deviation (denom. = n-1)      s:  291.699727470969 
Sample Autocorrelation Coefficient (lag 1) r(1):  -0.120948622967393 
Number of Observations:                             218 
Data: Y 

 
READ   ; Nobs = 218 ; Nvar = 1 ; Names = y ; By Variables $ 
162 671 933 414 788 730 817  33 536 875 670 236 473 167 877 980 316 950 
456  92 517 557 956 954 104 178 794 278 147 773 437 435 502 610 582 780 
689 562 964 791  28  97 848 281 858 538 660 972 671 613 867 448 738 966 
139 636 847 659 754 243 122 455 195 968 793  59 730 361 574 522  97 762 
431 158 429 414  22 629 788 999 187 215 810 782  47  34 108 986  25 644  
829 630 315 567 919 331 207 412 242 607 668 944 749 168 864 442 533 805  
372  63 458 777 416 340 436 140 919 350 510 572 905 900  85 389 473 758  
444 169 625 692 140 897 672 288 312 860 724 226 884 508 976 741 476 417  
831  15 318 432 241 114 799 955 833 358 935 146 630 830 440 642 356 373  
271 715 367 393 190 669   8 861 108 795 269 590 326 866  64 523 862 840  
219 382 998   4 628 305 747 247  34 747 729 645 856 974  24 568 24  694  
608 480 410 729 947 293  53 930 223 203 677 227  62 455 387 318 562 242  
428 968 

DSTAT  ; Rhs = y ; AR1 $ 
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Maryland Lottery Results 
 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+--------------------------------------------------------------------- 
       Y|  518.959      291.700            4          999          218       0 
        |  Autocorrelation -.120948623 
--------+--------------------------------------------------------------------- 
 

NumAcc4 Results 
 
The NIST Certified True (exact values) are 
          10000000.2      .100000000 and  -.999 for the autocorrelation. 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+--------------------------------------------------------------------- 
       Y|   10000000.2   .100000001  .100000D+08  .100000D+08     1001       0 
        |   Autocorrelation -.998999999 
--------+--------------------------------------------------------------------- 
 

LIMDEP’s results agree with NIST to the visible digits in the results.  (The AR1 specification 
computes a first order autocorrelation coefficient.  This is discussed in Chapter E5.) 
 

E2.12.2 Accuracy in ANOVA Computations – The NIST Benchmarks 
 

 The listing below displays the analysis of variance for one of the 11 datasets in the 
NIST/StRD suite to be used for analysis of panel data.  Several additional datasets are included in the 
NIST Benchmarks book of the Help file and also in the C:\LIMDEP10\Command Files folder 
created with program installation.  
 

File Name:      NIST-ANOVA-atomic.lim 
Dataset Name:   Atomic Weight of Silver   (NIST-atomic.dat) 
File Format:    ASCII 
                Certified Values   (lines 41 to 47) 
                Data               (lines 61 to 108)  
Procedure:      Analysis of Variance 
Reference:      Powell, L.J., Murphy, T.J. and Gramlich, J.W. (1982). 
                “The Absolute Isotopic Abundance & Atomic Weight 
                of a Reference Sample of Silver”. 
                NBS Journal of Research, 87, pp. 9-19. 
Data:           1 Factor 
                2 Treatments 
                24 Replicates/Cell 
                48 Observations 
                7 Constant Leading Digits 
                Average Level of Difficulty 
                Observed Data 
Model:          3 Parameters (mu, tau_1, tau_2) 
                y_{ij} = mu + tau_i + epsilon_{ij} 
Certified Values: 
Source of                  Sums of               Mean                
Variation     df      Squares              Squares             F Statistic 
Between       1    3.63834187500000E-09 3.63834187500000E-09 1.59467335677930E+01 
Within       46    1.04951729166667E-08 2.28155932971014E-10 
                   Certified R-Squared 2.57426544538321E-01 
                   Certified Residual Standard Deviation     1.51048314446410E-05 
Data:  Instrument           AgWt 
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Read the data first.  The ‘By Variables’ form is convenient when the data set is a single variable. 
 
 READ   ; Nobs = 48 ; Nvar = 2 ; Names = i, y ; By Variables $ 

 
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2  
 2 2 2 2 2 2 2 2 2 2 2 2 2 
107.8681568 107.8681465 107.8681572 107.8681785 107.8681446 107.8681903 
107.8681526 107.8681494 107.8681616 107.8681587 107.8681519 107.8681486 
107.8681419 107.8681569 107.8681508 107.8681672 107.8681385 107.8681518 
107.8681662 107.8681424 107.8681360 107.8681333 107.8681610 107.8681477 
107.8681079 107.8681344 107.8681513 107.8681197 107.8681604 107.8681385 
107.8681642 107.8681365 107.8681151 107.8681082 107.8681517 107.8681448 
107.8681198 107.8681482 107.8681334 107.8681609 107.8681101 107.8681512 
107.8681469 107.8681360 107.8681254 107.8681261 107.8681450 107.8681368 
 

One way analysis of variance is computed by ‘regressing’ a variable on a constant term using the 
panel data format. 
 
 REGRESS  ; Lhs = y ; Rhs = one ; Str = i ; Panel $ 
 
-------------------------------------------------------------------------- 
Analysis of Variance for         Y 
Stratification Variable          _STRATUM 
Total Sample Size                                   48      Group Sizes 
Number of Groups                                     2      Max =    24 
Number of groups with no data                        0      Min =    24 
Overall Sample Mean                        107.8681451      Avg =  24.0 
Total Sample Minimum                       107.8681079 
Total Sample Maximum                       107.8681903 
Sample Standard Deviation                     .0000173 
Total Sample Variance                         .0000000 
Source of Variation              Variation     Deg.Fr.      Mean Square 
Between Groups             .3638341875D-08           1  .3638341875D-08 
Within  Groups             .1049517292D-07          46  .2281559330D-09 
Total                      .1413351479D-07          47  .3007130807D-09 
Residual S.D.              .1510483144D-04 
R-squared                      .2574265445 
F ratio                      15.9467335680     P value           .00001 
-------------------------------------------------------------------------- 
 
The LIMDEP results are accurate to the 10 digits displayed in the results. 
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E3: Histograms and Kernel Density Estimators 
 
E3.1 Introduction 
 
 This chapter describes methods of describing the empirical distribution of a variable.  The 
tools provided are: 
 

• Normal quantile plots to compare the empirical CDF to the normal distribution, 
• Histograms for continuous data to describe the distribution, 
• Histograms for discrete data to provide frequency counts and characterize the distribution, 
• Kernel density estimators, 
• Tests for normality based on moments (Bowman-Shenton) and on the CDF (Kolmogorov-

Smirnov). 
 
E3.2 Normal-Quantile Plots 
 
 A normal-quantile, or N-Q plot compares the within sample cumulative distribution of a 
variable to what would have been expected if the data were drawn from a normal population.  The 
calculations are as follows: 
 

1. Data on x1,...,xn  are sorted in ascending order into x(i). 
2. For i = 1,...,n, compute ci = (i - .5)/n, ti  =  Φ-1(ci), zi  =  skti  +  x k. 

 
Thus, zi is the counterpart to x(i) from the normal distribution with the same mean and standard 
deviation as the sample of xs.  We then plot x and z against z.  This produces a scatter plot plus a 
straight line (z vs. z).  The larger the deviation of the scatter from the line, the greater the departure 
from normality.  To obtain this additional output, add  
 
   ; Plot 
 
to the DSTAT command.  An example based on the income variable in the health care data used 
earlier is shown in Figure E3.1.  Income is highly skewed, so the large departure from normality in 
the left figure is to be expected.  Taking logs of income or wealth variables usually renders them 
normally distributed, or at least approximately so.   
 
 DSTAT   ; Rhs = hhninc, Log(hhninc) ; Plot $ 
 
The figure on the right suggests that the lower tail of the log of hhninc does not approximate 
normality very well.   
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Figure E3.1  Normal-Quantile Plots 

 
Figure E3.2 shows the appearance of an N-Q plot for a variable that is precisely normally distributed. 
 
 CREATE ; z = Rnn(0,1) $ 
 DSTAT ; Rhs = z ; Plot $ 
 

 
Figure E3.2  N-Q Plot for Normally Distributed Variable 
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E3.3 HISTOGRAM Command 
 
 The basic command for computing and plotting a histogram for a variable is 
 

HISTOGRAM ; Rhs = the variable $ 
 
A title for the figure may be provided by using 
 
    ; Title = ...< the desired title, up to 60 characters> ... 
 
To use the command builder for the HISTOGRAM command, select Data Description from the 
Model menu, then select Histogram.  The Main page of the HISTOGRAM command builder is 
shown in Figure E3.3.  
 

 
Figure E3.3  Main Page of Command Builder for HISTOGRAM 

 
The Options page of the command builder for HISTOGRAM  is shown in Figure E3.4. 
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Figure E3.4  Options Page of Command Builder for HISTOGRAM 

 
 LIMDEP computes histograms for continuous and discrete (count) data.  In the default figure 
for continuous data, the values are assigned to 40 equal width intervals over the range of the variable.  
(The number of and widths of the bins in the figure may be changed.)  The histogram for continuous 
data provides a descriptive device to illustrate the distribution of the variable.  (The kernel density 
estimator described in Section E3.6 may be better suited for this purpose.)  The default figure for 
discrete data is a frequency count.  Data are assumed to be coded 0,1,...,499.  Values less than zero or 
greater than 499 are treated as out of range.  A count of invalid observations is given with the output 
of the command.  The histogram can be accompanied by a table listing the relative and cumulated 
frequencies. 
 To illustrate the use of this feature, we use the health care data set. (See Section E2.4.)  The 
data, which will be used in several applications below, are an unbalanced panel of observations on 
health care utilization by 7,293 individuals.  The group sizes in the panel number as follows: Ti: 
1=1525, 2=1079, 3=825, 4=926, 5=1051, 6=1000, 7=887. There are altogether 27,326 observations. 
Some of the variables in the file are 
 
     hhninc   =  household nominal monthly net income in German marks / 10000. 
 hhkids  =  children under age 16 in the household = 1, otherwise = 0, 
      educ   =  years of schooling   
      married  =  marital status 
      female  =  1 for female, 0 for male 
      docvis  =  number of visits to the doctor 
      doctor    =  number of doctor visits > 0  
      hospvis  =  number of visits to the hospital 
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E3.4 Histograms for Continuous Data 
 
 A histogram for the continuous variable hhninc would appear as shown in Figure E3.5: 
 
 HISTOGRAM ; Rhs = hhninc $ 
 

 
Figure E3.5  Histogram for a Continuous Variable 

 
The displayed output from this command consists only of the figure containing the histogram.  You 
can request a listing of the bin boundaries and frequency counts by adding  
 
   ; List 
 
to the HISTOGRAM command.  The listing below would be produced for this histogram. 
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Histogram for HHNINC    NOBS =   27326, Too low:     0, Too high:     0 
Bin is defined as Lower <= X < Upper. 
Bin  Lower limit   Upper limit       Frequency     Cumulative Frequency 
======================================================================== 
  0         .000          .767        252 ( .0092)         252( .0092) 
  1         .767         1.534       1683 ( .0616)        1935( .0708) 
  2        1.534         2.300       4725 ( .1729)        6660( .2437) 
  3        2.300         3.067       6062 ( .2218)       12722( .4656) 
  4        3.067         3.834       5023 ( .1838)       17745( .6494) 
  5        3.834         4.601       4208 ( .1540)       21953( .8034) 
  6        4.601         5.367       2253 ( .0824)       24206( .8858) 
  7        5.367         6.134       1414 ( .0517)       25620( .9376) 
  8        6.134         6.901        554 ( .0203)       26174( .9578) 
  9        6.901         7.668        454 ( .0166)       26628( .9745) 
 10        7.668         8.435        264 ( .0097)       26892( .9841) 
 11        8.435         9.201        154 ( .0056)       27046( .9898) 
 12        9.201         9.968         37 ( .0014)       27083( .9911) 
 13        9.968        10.735        110 ( .0040)       27193( .9951) 
 14       10.735        11.502         26 ( .0010)       27219( .9961) 
 15       11.502        12.268         34 ( .0012)       27253( .9973) 
 16       12.268        13.035         15 ( .0005)       27268( .9979) 
 17       13.035        13.802          5 ( .0002)       27273( .9981) 
 18       13.802        14.569          9 ( .0003)       27282( .9984) 
 19       14.569        15.336         21 ( .0008)       27303( .9992) 
 20       15.336        16.102          2 ( .0001)       27305( .9992) 
 21       16.102        16.869          0 ( .0000)       27305( .9992) 
 22       16.869        17.636          1 ( .0000)       27306( .9993) 
 23       17.636        18.403          2 ( .0001)       27308( .9993) 
 24       18.403        19.169          0 ( .0000)       27308( .9993) 
 25       19.169        19.936          2 ( .0001)       27310( .9994) 
 26       19.936        20.703          8 ( .0003)       27318( .9997) 
 27       20.703        21.470          0 ( .0000)       27318( .9997) 
 28       21.470        22.236          0 ( .0000)       27318( .9997) 
 29       22.236        23.003          0 ( .0000)       27318( .9997) 
 30       23.003        23.770          0 ( .0000)       27318( .9997) 
 31       23.770        24.537          2 ( .0001)       27320( .9998) 
 32       24.537        25.304          1 ( .0000)       27321( .9998) 
 33       25.304        26.070          0 ( .0000)       27321( .9998) 
 34       26.070        26.837          0 ( .0000)       27321( .9998) 
 35       26.837        27.604          0 ( .0000)       27321( .9998) 
 36       27.604        28.371          0 ( .0000)       27321( .9998) 
 37       28.371        29.137          1 ( .0000)       27322( .9999) 
 38       29.137        29.904          0 ( .0000)       27322( .9999) 
 39       29.904        30.671          4 ( .0001)       27326(1.0000) 

 
E3.4.1 Fixed Number of Bins 
 
 You can select the number of bars to plot with 
 
   ; Int = k 
 
This can produce less than satisfactory results, however.  For the example above, we add 
 
   ; Int = 10 
 
to obtain the following:  



E3: Histograms and Kernel Density Estimators  E-46 

 
Figure E3.6  Histogram with Fixed Number of Bins 

 
The problem is that the skewness of the income distribution has placed many observations out in the 
right tail.  In order to accommodate them, LIMDEP has created several bins that have few 
observations in them.  Fixing the number of bins may also cause some observations of a discrete 
variable to be out of range if you have values that exceed K-1.  (The values for K intervals are 
0,1,...,K-1.)  For continuous variables, this specification requests that the range of the variable be 
divided into K equal length parts.   Obtaining a satisfactory representation of the distribution may 
take some experimentation.  For the preceding application, using 100 bins instead of 10 produces the 
results in Figure E3.7, which seems reasonable.   
 

 
Figure E3.7  Histogram for Household Income 
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E3.4.2 Trimming Data for Histograms 
 
 The figure is still being substantially influenced by the long thin tail of the distribution.  By 
trimming the extreme observations, the figure can sometimes be improved.  Figure E3.8 shows the 
result.  We have also added a title to the figure 
 

HISTOGRAM  ; If [hhninc <= 1.6] ; Rhs = hhninc  
 ; Int = 50 
 ; Title = Household Income (Trimmed: Less than 1.6) $ 

 

 
Figure E3.8  Histogram for Trimmed Data 

 
E3.4.3 Fixed Bin Limits 
 
 There are other ways to examine continuous data.  One way is to use RECODE to change 
your continuous variable into a discrete one.  Alternatively, you may provide a set of interval limits 
and request a count of the observations in the intervals you define.  The command would be 
 
  HISTOGRAM  ; Rhs = variable ; Limits = l0,l1,...,lk $ 
 
where the limits you give are the left boundaries of the intervals.  Thus, the number of limits you 
provide gives the number of intervals.  Intervals are defined as ‘greater than or equal to lower’ and 
‘less than upper.’  With this specification, the rightmost upper limit is +∞.  For example, still using 
our income data,  
 
 HISTOGRAM  ; Rhs = educ ; Limits = 8,10,12,14,16,18 $ 
 
defines six bins for the histogram, with the rightmost containing all values greater than or equal to 
18.  The result appears in Figure E3.9. 
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Figure E3.9  Histogram with Fixed Bin Limits 

 

If you wish to avoid having data discarded, provide a very large negative value (-1.D10) for the 
lowest limit – the highest interval is assumed to be open.  Otherwise, observations lower than the 
lowest value in the list are treated as out of range.   
 

E3.4.4 Fixed Number of Bins in a Range 
 

 To request K equal length intervals in the range lower to upper, use 
 
 HISTOGRAM  ; Rhs = variable ; Int = k ; Limits = lower,upper $ 
 
We’ll use this device to remove some of the long tail of the income distribution. 
 
 HISTOGRAM  ; Rhs = hhninc ;  Int = 20 ; Limits = 0, 1.2 $ 
 

 
Figure E3.10  Histogram with Fixed Number of Bins in a Specified Range 
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E3.4.5 Fixed Width Bins in a Range 
 
 To specify both the range of variation and the fixed width of the bins, use 
 
 HISTOGRAM ; Rhs = variable ; Limits = lower (width) upper $ 
 
For example,  
 
 HISTOGRAM ; Rhs = hhninc ; Limits = 0 (.05) 3 $ 
 
specifies bins [0,.05), [.05,.10), … [2.95,3.00]. 
 

 
Figure E3.11  Histogram with Fixed Width Bins in a Specified Range 

 
It is possible that the range given does not produce an even number of fixed width bins.  In this case, 
the rightmost bin is shortened to use the remaining range.  For example, in the preceding, if the .05 
were .07, then there would be a narrow bin at the right; the 43nd bin would be from 2.94 to 3.00 
 
E3.4.6 Fixed Interval Widths 
 
Alternatively, you can specify the width of the interval, and allow the program to determine the 
number.  Do so with 
 
 HISTOGRAM ; Rhs = variable ; Width = the desired value $ 
 
For example, the histogram for hhninc computed earlier could be obtained with 
 
 HISTOGRAM ; Rhs = hhninc ; Width = 0.05 $ 
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E3.4.7 Fixed Proportion of Observations in Each Bin 
 
NOTE:  If this specification results in more than 499 intervals, a diagnostic will result. 
 
Finally, you can use HISTOGRAM to search for the interval limits instead of the frequency counts. 
The command 
 
 HISTOGRAM ; Rhs = variable ; Bin = p $ 
 
where ‘p’ is a sample fraction (proportion), will obtain the interval boundaries such that each bin 
contains the specified proportion of the observations. 
 
NOTE:  If the specified proportion does not lead to an even set of bins, then an extra, smaller bin is 
created if the remaining proportion is more than p/2.  For example, if p is .22, there will be four bins 
with .22 and one at the right end with .12.  But, if the extra mass is less than p/2, it is simply added to 
the rightmost bin, as for p = .16, for which the sixth bin will contain .2 of the observations. 
 
E3.4.8 Comparison to a Normal Distribution 
 
 A common exercise is to compare the distribution of a sample to a normal distribution.  Add  
 
   ; Normal 
 
to the HISTOGRAM command to produce a normal density superimposed on the histogram.  The 
normal distribution plotted has the same mean and standard deviation of the data.  The normal 
density is plotted within the range of the data.  If the sample data are skewed or have extreme 
observations, this may result in a truncation of the normal distribution.  Figure E3.12 shows an 
example.  The data are trimmed to produce the figure.  The command is 
 

HISTOGRAM ; If [hhninc <= 1.6]  
   ; Rhs = hhninc  
   ; Int = 50 
   ; Title = Household Income (Trimmed: Less than 1.6) 
   ; Normal $ 
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Figure E3.12  Histogram with Normal Distribution 

 
E3.5 Histograms for Discrete Data 
 
 The data are first inspected to determine the type and the correct number of bars to plot for a 
discrete variable.  For a discrete variable, the plot can be exact.   Up to 500 bars may be displayed:  
For example, the count of doctor visits in the health care data appear as follows: 
 
 HISTOGRAM ; Rhs = docvis  
   ; Title = Number of Doctor Visits $ 
 

 
Figure E3.13  Histogram for a Discrete Variable 
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The long tail of the skewed distribution has rather distorted the figure.  The options described earlier 
can be used to modify the figure.  However, those options are assumed to be used for continuous 
data, which would distort the figure in another way.  A more straightforward way to deal with the 
preceding situation is to operate on the data directly.  For example, 
 
 HISTOGRAM ; If [docvis <= 25]  
   ; Rhs = docvis  
   ; Title = Number of Doctor Visits $ 
 
truncates the distribution, but produces a more satisfactory picture of the frequency count. 
 

 
Figure E3.14  Histogram for a Truncated Discrete Distribution 

 
E3.5.1 Bin Labels Scaled to Sample Proportions   
 
 Proportions instead of raw frequencies may be plotted by using 
 

  ; Proportions  
 
The plot is now sample proportions instead of raw frequencies.  This affects the labeling of the figure 
but not its appearance – it will now resemble the density for the variable being plotted.   For 
example, with this option, Figure E3.14 becomes E3.15.  Note, the sum of the relative proportions 
shown in the figure equals 1.0.  However, the bars are not scaled to make the areas sum to one. 
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Figure E3.15  Histogram with Relative Frequencies 

 

E3.5.2 Multiple Histograms   
 

 To plot up to four histograms in one figure, use 
 

HISTOGRAM ; Rhs = var1, var2 (up to 4) ; All  $  
 
An example is shown below in Figure E3.16.  Note that if ; All is omitted, a separate histogram is 
produced for each variable.  Multiple histograms are limited to 40 bins,  Figure E3.16 shows a 
histogram for the two count variables of interest in the health study. 
 

HISTOGRAM ; If [docvis <= 20 & hospvis <= 20] ; Rhs = docvis,hospvis ; All   
   ; Title = Histogram for Hospital Visits and Doctor Visits $  
 

 
Figure E3.16  Histogram for Two Variables 
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E3.5.3 Stratification   
 
 The specification 
 
   ; Group = stratification variable  
    (up to four groups instead of four variables) 

 
may be used to produce the same sort of multiple plot figure, where the separate histograms 
correspond to different groups.  The groups are assigned labels ‘name001,’ ‘name002’ etc.  You may 
provide your own labels with 
 
   ; Labels = labels for the groups 
 
The example in Figure E3.17 below is produced using 
 
 HISTOGRAM ; If [docvis <= 25] 
   ; Rhs = docvis  

; Group = female  
; Labels = female,male 
; Title = Hospital Visits Male vs. Female $ 

 

 
Figure E3.17  Histograms for Two Strata 
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E3.5.4 Labels for Bins 
 
Bins are generally labeled ‘1,’ ‘2,’ etc. as in the examples above.  You may provide your 

own labels for the bins with 
 
   ; Choices = labels for the bins, up to 15 bin labels 
 
The following example combines several of the features described above for a data set on mode 
choice.  (The group indicator, sex, was simulated for this example – it is not present in the original 
data set.)  The clogit data are used in Chapter E38 to illustrate multinomial choice models. 
 

CREATE  ; choice = Trn(-4,0) * mode $ 
REJECT  ; choice = 0 $ 
CREATE  ; sex = Rnu(0,1) > .55 $ 
HISTOGRAM ; Rhs = choice  

   ; Choices  = air,train,bus,car  
   ; Title = Mode Choice: Sydney-Melbourne Commute  
   ; Group = sex  
   ; Labels = male,female $ 
 

 
Figure E3.18  Histogram with Strata, Bin Labels and Title 
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E3.6 Kernel Density Estimation 
 
 The basic command for computing and plotting a kernel density estimate for a variable is 
 

KERNEL ; Rhs = the variable $ 
 
    A title for the figure may be provided by using 
 
   ; Title = ...< the desired title, up to 60 characters> ... 
 
The kernel density estimator is a device used to describe the distribution of a variable 
nonparametrically, that is, without any assumption of the underlying distribution.  The kernel density 
function for a single variable is computed using 
 

   f(zj)  =  
( )
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i
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∑ , j = 1,...,M. 

 
The function is computed for a specified set of values zj, j = 1,...,M.  Note that each value requires a 
sum over the full sample of n values.  The default value of M is 100.  The primary component of the 
computation is the kernel function, K[.], a weighting function that integrates to one. Eight 
alternatives are provided: 
 

1. Epanechnikov: K[z]   =  .75(1 - .2z2) / Sqr(5) if |z| < 5, 0 else, 
2. Normal:   K[z] =  φ(z) (normal density), -∞ < z < ∞ 
3. Logit:    K[z] =  Λ(z)[1-Λ(z)] (default) , -∞ < z < ∞ 
4. Uniform:  K[z] =  .5 if |z| < 1, 0 1 else, 
5. Beta:   Z[z] =  (1-z)(1+z)/24 if |z| < 1, 0 1 else, 
6. Cosine:   K[z] =  1 + cos(2πz) if |z| < .5, 0 else, 
7. Triangle:   K[z] =  1 - |z|, if |z| <  1, 0 else. 
8. Parzen:   K[z] =  4/3 - 8z2 + 8|z|3 if |z| < .5, 8(1-|z|)3 else. 

 
The other essential part of the computation is the smoothing (bandwidth) parameter, h.  Large values 
of h stabilize the function, but tend to flatten it and reduce the resolution (in the same manner as its 
discrete analog, the bin width in a histogram).  Small values of h produce greater detail, but also 
cause the estimator to become less stable. 
 The basic command is 
 
 KERNEL ; Rhs = the variable  $ 
 
With no other options specified, the routine uses the logit kernel function, and uses a data driven 
bandwidth equal to 
 

   h  =  .9Q/n0.2 where Q  =  min(std.dev., range/1.5) 
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 The command builder for this estimator may be found by selecting either Model:Data 
Description/Kernel Density or Model:Nonlinear Regression/Kernel. The dialog boxes are the 
same in both places. 
 

 
 

 
Figure E3.19  Command Builder for Kernel Density Estimator 
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For an example, we will compute the kernel density that is a smoothed counterpart to the histogram 
for income distribution in Figure E3.5.  The command is 
 
 KERNEL ; Rhs = hhninc $ 
 
The histogram is repeated to show the similarity.   

 

 
 

 
Figure E3.20  Kernel Density Estimator and Histogram for Incomes 
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The kernel density also produces some summary statistics, as shown below for the example in Figure  
E3.20. 
 
+---------------------------------------+ 
| Kernel Density Estimator for HHNINC   | 
| Observations       =         27326    | 
| Points plotted     =           100    | 
| Bandwidth          =       .020632    | 
| Statistics for abscissa values----    | 
| Mean               =       .352135    | 
| Standard Deviation =       .176857    | 
| Minimum            =       .001500    | 
| Maximum            =      3.067100    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =       .000000    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
 
The data used to plot the kernel estimator are also retained in a new matrix named kernel.  Figure 
E3.21 shows the results for the preceding plot: 
 

 
Figure E3.21  Matrix Results from KERNEL 
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E3.6.1 Options for Kernel Density Estimation 
 
 The weighting function for the kernel estimator is specified with 
 

; Kernel = one of the eight types of kernels listed earlier: 
 Epanechnikov, Normal,  Logistic, Cosine,  

     Uniform, Beta, Triangle, or Parzen. 
 
The bandwidth may be specified with 
 
   ; Smooth = the bandwidth parameter. 
 
The default number of points specified is 100, with zj = a partition of the range of the variable. You 
may specify the number of points, up to 1000 with 
 
   ; Pts = number of points to compute and plot 
 
More than a few hundred points is not helpful, since the resolution of a modern display will not 
exceed a width of 2,000 points.  The set of points zj is then (for any number of points),  
 

zj =  zL + j*[(zU - zL)/M], j = 1,...,M zL = min(x)-h to zU = max(x)+h. 
 
 Results of this procedure are a M×2 matrix named kernel in which the first column contains 
zj and the second column contains the values of f(zj) and plot of the second column against the first – 
this is the estimated density function. 
 You may fix the limits on the vertical axis of the figure with 
 

  ; Limits = high, low  
 
This overrides the default limits computed internally.  Note reversal of the usual order.  The 
alternative specification, 
 
   ; Limits = low, high 
 
is used to restrict the sample values of the variable used to compute the kernel density estimator to 
those in the range from low to high.  You can also fix the limits on the horizontal axis with 
 
   ; Endpoints = low, high  
 
Do note that this may conflict with the parameters being used to define the kernel estimator, 
however.  If the range of your data being analyzed is 0-10, for example, and you specify ; Endpoints 
= 0,5, the figure may be distorted.  The data are not adjusted to conform to the endpoints. 
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 Observation weights may be applied to the kernel estimator.  Weights of any sort, including 
complex survey weights, may be applied, so that the revised estimator is 
 

   f(zj)  =  
( )

11

1 ,  such that 1n j i ni
i ii

z xw K w
n h h ==

 −
  Σ =
  

∑ , j = 1,...,M. 

 
Note that the adjustment of the sum of the weights may be necessary if you specify that only a 
subsample of the current sample is to be used.  As such, when you specify  
 
 KERNEL  ; Rhs = the variable ; Wts = the weighting variable $ 
 
weights are automatically scaled, whether or not you have used use ,Noscale.  As such, you should 
not use ,Noscale with this computation.  (See Section R8.8.) 
 Finally, you may add a title to the figure with 
 
   ; Title = up to 60 characters.  
 
A somewhat neater version of Figure E3.20 which corresponds to Figure E3.8, is produced by 
 
 KERNEL ; If [hhninc <= 1.6]  
   ; Rhs = hhninc 
         ; Title = Income Distribution Truncated at 1.6 
         ; Endpoints = 0,1.6 $ 
 

 
Figure E3.22  Kernel Density Estimator for Truncated Distribution 

 



E3: Histograms and Kernel Density Estimators  E-62 

 
Figure E3.23  Kernel Density Estimator and Histogram for Incomes, with Trimming 

 
E3.6.2 Multiple Kernel Estimators 
 
 Multiple kernel estimates can be placed in the same figure by including up to four variables 
in the Rhs list in the KERNEL command.  In the example below, estimators of technical efficiency 
produced by two different stochastic frontier models are compared. (See Chapter E62.) 
 

NAMELIST  ; x = one,x1,x2,x3,x4 $ 
FRONTIER  ; Lhs = yit ; Rhs = x ; Techeff = e_hlfnrm $ 
FRONTIER  ; Lhs = yit ; Rhs = x ; Techeff = e_expon  

; Model = Exponential $ 
KERNEL    ; Rhs = e_hlfnrm,e_expon 

            ; Title = Estimates of Technical Efficiency $ 
 

 
Figure E3.24  Multiple Kernel Estimators 
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E3.6.3 Sample Strata 
 
 To compare subgroups within a sample, use 
 
 KERNEL ; Rhs = variable 
   ; Group = variable  $ 
 
The group variable partitions the sample in up to five subsamples.  In the figure below, the variable 
female is coded 0 for males and 1 for females, so it partitions the sample into two groups.  Labels for 
the groups may be provided as well with 
 
   ; Labels = list of labels 
 
The example below compares the responses of men and women to the health status question in the 
GSOEP data. 
 

SAMPLE ; 1-5000 $ 
KERNEL ; Rhs = hsat 

   ; Group = female 
   ; Labels = men,women 
   ; Title = Health Satisfaction: Male vs. Female $ 
 

 
Figure E3.25  Kernel Estimators for Subsamples 
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E3.6.4 Comparison to Normal 
 
 The kernel estimator can be used to examine departures from or similarity to a normal 
distribution.  To superimpose a normal distribution with the same mean and variance as the 
underlying variable in the kernel estimator, add 
 
   ; Normal 
 
to the KERNEL command.  This is a common exercise in the examination of least squares prior to 
stochastic frontier modeling.  The example below displays a kernel estimator and a normal density 
for the least squares residuals computed with the stochastic frontier models in Section E3.6.2. 
 

REGRESS  ; Lhs = yit ; Rhs = x ; Res = u $ 
KERNEL   ; Rhs = u ; Normal 

   ; Title = OLS Residuals with Evidence of Inefficiency $ 
 

 
Figure E3.26  Kernel Density Estimator with Normal Density 
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E3.7 Testing for Normality 
 
 Two tests are generally used to test the resemblance of the distribution of a sample to an 
underlying normal distribution, the Bowman and Shenton (1975) test based on the third and fourth 
sample moments and the Kolmogorov-Smirnov test based on the sample CDF. 
 
E3.7.1 Normality Test Based on Skewness and Kurtosis 
 
 The Bowman and Shenton chi squared statistic for testing against the null hypothesis of 
normality is 
   χ2[2]  =  N[(m3/s3)2 /6+  (m4/s4 - 3)2/24]. 
 
where m3 is the average cubed deviation from the mean (the sample skewness) and m4 is the average 
fourth power.  In the two cases, the moment is divided by the third or fourth power of the sample 
standard deviation, respectively.  There are several ways to compute this result: 
 For variables being analyzed with DSTAT, you can obtain this result by adding 
 
   ; Normality test 
 
to the DSTAT command.  This will change the displayed output to include the statistic and the ‘p 
value’ which is the probability that a chi squared variable with two degrees of freedom would exceed 
this value.  The 95% ‘critical value’ for chi squared[2] is 5.99, so based on this test, you would reject 
‘normality’ at a 95% significance level if your statistic exceeds 5.99.  For the least squares residuals 
used in the example in the previous section, we obtain 
 
 DSTAT ; Rhs = u ; Normality test $ 
 
--------+--------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+--------------------------------------------------------------------- 
       U| -.544414E-14   .14016     -.554019      .583301         1482       0 
        | Skewness   -.30  Kurtosis     3.80    Chisq=   61.42    Prob = .0000 
--------+--------------------------------------------------------------------- 
 
 There are dedicated CALC functions for this computation: 
 
  CALC ; Sku(variable) $ Computes m3. 
  CALC ; Krt(variable) $ Computes m4. 
  CALC ; Sdv(variable) $ Computes s. 
  CALC ; Rb1(variable) $ Computes m3/s3. 
  CALC ; Bt2(variable) $ Computes m4/s4 - 3. 
 
We can replicate the test result with 
 
 CALC  ; List ; 1482*Rb1(u)^2/6 ; 1482*Bt2(u)^2/24 $ 

 
[CALC] *Result*=     21.6501337 
[CALC] *Result*=     39.7657231 
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E3.7.2  Kolmogorov Smirnov Test of Normality 
 
 The Kolmogorov-Smirnov test is a nonparametric statistic used to test a distributional 
assumption.  For the implementation here, we use the normal distribution as the null hypothesis.  The 
statistic is computed as 

   
1

1max ( ) , ( )i ii N
i iD F x F x
N N≤ ≤

− = − − 
 

 

 
where F is the theoretical CDF being tested (normal).  For the specified test,  
 

CALC  ; Kst(variable) $ 
 
reports the Kolmogorov-Smirnov test statistic.  The null distribution is assumed to be the normal 
distribution.  The mean and standard deviation of the normal distribution are estimated from the data.  
The derivation of the behavior of the test statistic, and the critical values, actually assume that the 
mean and variance of the distribution are known, not estimated from the data.  So, the critical values 
given below should be viewed as approximate   If you do know the mean and standard deviation of 
the distribution, provide them as the second and third parameters in the function, as in 
 
 CALC  ; List ; Kst(variable, μ, σ) = Kolmogorov-Smirnov test against N[μ,σ2]. 
 
Critical values of the distribution of the test statistic are as follows: 
 

95% .294  .270  .240  .230  1.36/Sqr(N) 
Sample Size   20    25    30    35        Over 35 

99% .356  .320  .290  .270  1.63/Sqr(N) 
 
For the least squares residuals used in the preceding example, we obtained 
 
 CALC   ; List ; Kst(u) $ 
 
-------------------------------------- 
Kolmogorov-Smirnov test of F(U       ) 
vs. Normal[     .00000,      .14016^2] 
******* K-S test statistic =  .0743086 
******* 95% critical value =  .0353277 
******* 99% critical value =  .0423412 
Normality hyp. should     be rejected. 
-------------------------------------- 
[CALC] *Result*=       .0743086 
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E4: Covariance and Correlation  
 
E4.1 Introduction 
 
 This describes how to obtain covariances and various types of correlation coefficients.  
Scalar calculations of a single correlation for a pair of variables are given in Section E4.2.  
Covariance and correlation matrices are shown in Section E4.3.  Correlations for discrete variables 
are described in Section E4.4.  Section E4.5 shows how to compute and display cross tabulations 
 
E4.2 Covariance and Correlation for Two Variables 
 
 CALC can be used to obtain a single covariance or correlation coefficient: 
 
 CALC  ; [name =] Cov(variable 1, variable 2) $ 
or CALC  ; [name =] Cor(variable 1, variable 2) $ 
 
E4.2.1 Kendall’s Tau 
 
 Kendall’s tau is a nonparametric measure of the concordance of the ranks of two variables.  
It is computed as 
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The exact distribution is unknown and would depend on the underlying population. Under the null 
hypothesis that τ equals zero, the distribution of τ is approximately normal with mean zero and 
variance [(2N+5)/9]/[N(N+1)/2].  CALC may be used with 
 
 CALC  ; [name =] Ktr(variable 1, variable 2) $ 
 
E4.2.2 Rank Correlation 
 
 Spearman’s correlation for a pair of sets of ranks is computed as 
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Compute this with for two sets of ranks using 
 
 CALC  ; [name =] Rkc(variable 1, variable 2) $ 
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E4.3 Covariance and Correlation Matrices 
 

 Covariance and correlation matrices may be obtained as part of the output with DSTAT or 
separately using MATRIX. 
 

E4.3.1 Matrix Output from DSTAT 
 

 After the table of results is given, you may elect to display a covariance or correlation matrix 
(or both) for the variables.  The request is added to the command: 
 

   ; Output = 1 to obtain the covariance matrix, 
   ; Output = 2 to obtain the correlation matrix, 
   ; Output = 3 for both covariance and correlation matrices. 
The matrix displays, 
   ; Output = 1, 2, or 3,  
 

will display either the full matrix in the output if it is small enough, or an embedded object if the 
matrix is too large (larger than 5×5 for a covariance matrix, 7×7 for a correlation matrix).  The 
results for the data above are shown below. The table of statistics is the same, and is omitted.  
(Display of covariance matrices is difficult as the scale of the entries is the square of the data.  
Correlations can be displayed in much less cluttered format.)  In this example, the covariance matrix 
appears as an embedded object. 
 

DSTAT  ; Rhs = year,gnpdefl,gnp,armdforc,total,agr,nonagr 
; Output = 3 $ 

 … other results from DSTAT 
 

 
 

 
Figure E4.1  Covariance Matrix as Embedded Object from DSTAT 

 
--------+-------------------------------------------------------------- 
Cor.Mat.|    YEAR  GNPDEFL      GNP ARMDFORC    TOTAL      AGR   NONAGR 
--------+-------------------------------------------------------------- 
    YEAR| 1.00000   .99115   .99527   .41725   .97133  -.97511   .93718 
 GNPDEFL|  .99115  1.00000   .99159   .46474   .97090  -.98244   .94646 
     GNP|  .99527   .99159  1.00000   .44644   .98355  -.97724   .95573 
ARMDFORC|  .41725   .46474   .44644  1.00000   .45731  -.55771   .59909 
   TOTAL|  .97133   .97090   .98355   .45731  1.00000  -.94308   .98266 
     AGR| -.97511  -.98244  -.97724  -.55771  -.94308  1.00000  -.93877 
  NONAGR|  .93718   .94646   .95573   .59909   .98266  -.93877  1.00000 
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The embedded object (Matrix:COV.MAT) shown above is the covariance matrix created by this 
command.  This matrix, as displayed in the window is read only.  However, the matrix can be 
exported to a spreadsheet program such as Excel just by clicking the empty square in the upper left 
corner, then using edit/copy in LIMDEP and edit/paste into Excel.  The labeling and arrangement of 
the contents of the matrix will be preserved in a tab delimited format. 
 
E4.3.2 Correlation and Covariance Matrices with MATRIX 
 
 Correlation matrices are produced by the matrix functions 
 
 MATRIX      [; List ] ; [name = ] Xcor (namelist for X) $ 
 
which produces a correlation matrix for the variables in the namelist.  (Optional specifications are 
shown in square brackets.)  Cross correlations may be produced by using 
 
 MATRIX      [; List] ; [name =] Xcor(namelist for X, namelist for Y) $ 
 
The correlation matrix shown in the first form results if X and Y are the same namelist.  The 
observations may be weighted by using 
 
 MATRIX      [; List] ; [name =] Xcor(namelist for X, namelist for Y, weights) $ 
 
where weights is a variable that contains the weights.  The form Xcor(X,X,w) must be used to obtain 
a weighted correlation matrix.  Covariance matrices are obtained by changing Xcor to Xcov in the 
preceding. 
 A matrix of Kendall’s tau(x,y) for a set of variables is obtained with 
 
 MATRIX      [; List ] ; [name = ] Xtau (namelist for X) $ 
 
Weights are not supported for the matrix of τ(x,y) correlation coefficients. 
 
E4.4 Correlations for Discrete Variables 
 
 Correlations involving discrete variables are generally not computed using standard Pearson 
product moment correlation coefficients.  Two for strictly discrete variables based on censoring an 
underlying normal variable are the tetrachoric correlation for two binary variables and the polychoric 
correlation for two ordered categorical variables or a binary variable and a categorical variable.  The 
biserial correlation described in Section E4.4.3 is used for a binary variable and a continuous 
variable. 
 
E4.4.1 Tetrachoric Correlation for Binary Variables 
 
 The tetrachoric correlation between binary variables d1 and d2 is described as the correlation 
that would be observed if the two variables were normally distributed around fixed means with 
variance one.  Thus, 
 

    dj = 1(dj* > 0) | dj* ~ N[0,1], j = 1,2. 
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If we write this in full, we have the following bivariate model: 
 
   d1*  =  α1 + ε1, d1 = 1[d1* > 0] 
   d2*  =  α2 + ε2, d2 = 1[d2* > 0] 
   (ε1,ε2) ~ N2[(0,0),(1,ρ,1)] 
 
The correlation coefficient, ρ, is estimated by maximum likelihood.  The structure can be seen to 
define a bivariate probit model in which the two regressor vectors are simply a constant term.  The 
computation can be requested with 
 
  TCORRELATION ; Lhs = d1 ; Rh1 = d2 $ 
 
There are no other options for this model command.  Note that the command is identical to 
 
 BIVARIATE PROBIT ; Lhs = d1,d2 ; Rh1 = one ; Rh2 = one $ 
 
and you can apply other optional features to this command, such as ; List if you wish. 
 On computation, Olsson (1979) is among numerous sources that discuss maximum 
likelihood estimation of the tetrachoric correlation.  The quite simple approach of treating this as the 
most simple type of bivariate probit model in this fashion seems to have gone unnoticed in the 
received literature. 
 In the example below, we have computed the tetrachoric correlation for the two behavioral 
variables in the health care data, doctor = 1[docvis > 0] and hospital = 1[hospvis > 0].  We have used 
the 1991 wave of the data set.  The analysis begins with a descriptive cross tabulation.  Crosstabs are 
described in Section E4.5. 
 
 CROSSTAB  ; Lhs = doctor ; Rhs = hospital $ 
 
+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is DOCTOR   (Out of range 0-49:      0)             | 
|Number of Rows =  2      (DOCTOR   =  0 to  1)                   | 
|Col variable is HOSPITAL (Out of range 0-49:      0)             | 
|Number of Cols =  2      (HOSPITAL =  0 to  1)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[   1] =   49.13158   Prob value =  .00000            | 
|G-squared  [   1] =   54.56513   Prob value =  .00000            | 
+-----------------------------------------------------------------+ 
|               HOSPITAL                                          | 
+--------+--------------+------+                                  | 
|  DOCTOR|      0      1| Total|                                  | 
+--------+--------------+------+                                  | 
|       0|   1340     68|  1408|                                  | 
|       1|   2597    335|  2932|                                  | 
+--------+--------------+------+                                  | 
|   Total|   3937    403|  4340|                                  | 
+-----------------------------------------------------------------+ 
 

TCORRELATION ; Lhs = doctor ; Rhs = hospital $ 
 
Normal exit:   6 iterations. Status=0, F=    4049.098 
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----------------------------------------------------------------------------- 
FIML Estimation of Tetrachoric Correlation 
Dependent variable               DOCTOR,HOSPITAL 
Log likelihood function     -4049.09756 
Estimation based on N =   4340, K =   3 
--------+-------------------------------------------------------------------- 
  DOCTOR|                  Standard            Prob.      95% Confidence 
HOSPITAL|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Estimated alpha for P[DOCTOR  =1] = F(alpha) 
Constant|     .45536***      .01976    23.05  .0000      .41664    .49409 
        |Estimated alpha for P[HOSPITAL=1] = F(alpha) 
Constant|   -1.32336***      .02651   -49.92  .0000    -1.37532  -1.27141 
        |Tetrachoric Correlation between DOCTOR   and HOSPITAL 
RHO(1,2)|     .26548***      .03473     7.65  .0000      .19742    .33354 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

E4.4.2 Polychoric Correlation for Two Ordered Qualitative Variables 
 

 The polychoric correlation is computed similarly to the tetrachoric correlation. The statistic has 
been recommended to measure the concordance of different judges or raters. Suppose, for example, 
there are a pair of judges each asked to rate restaurants on a scale from 0 to 4. The statistic is intended to 
measure the correlation of their ratings. The underlying model is precisely that underlying the bivariate 
ordered probit model shown in Section E35.9.  For each individual (or utility function), we have 
 
   y1*  =  α1 + ε1, y1 = 0 if y1* < 0, 
     y1 = 1 if 0 < y1* < µ1, 
     y1 = 2 if µ1 < y1* < µ2, 
     … 
     y1 = J if µJ-1 < y1* < +∞. 
   y2*  =  α2 + ε2, y2 = 0 if y2* < 0, 
     y2 = 1 if 0 < y2* < λ1, 
     y2 = 2 if λ1 < y2* < λ2, 
     … 
     y2 = M if µM-1 < y2* < +∞. 
   (ε1,ε2) ~ N2[(0,0),(1,1,ρ)]. 
  
In this framework, then, ρ is the polychoric correlation.  Either variable may be binary.  If both are, 
then the tetrachoric correlation of the preceding section applies.  The maximum likelihood estimate 
of the coefficient is obtained by treating the preceding as a bivariate ordered probit model in which 
both equations have only a constant term.  The calculation is requested with 
 
 PCORRELATION ; Lhs = y1 ; Rhs = y2 $ 
 
In the example below, we have obtained the polychoric correlation between docvis (truncated at 5) 
and hospvis (truncated at 2).  Both variables are counts.  In this application, we are treating the 
counts as an indicator of underlying health in a particular dimension.  We begin with a descriptive 
cross tabulation. 
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 SAMPLE ; All $ 
REJECT ; year # 1991 | docvis > 5 | hospvis > 2 $ 
CROSSTAB  ; Lhs = docvis ; Rhs = hospvis $ 
 

+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is DOCVIS   (Out of range 0-49:      0)             | 
|Number of Rows =  6      (DOCVIS   =  0 to  5)                   | 
|Col variable is HOSPVIS  (Out of range 0-49:      0)             | 
|Number of Cols =  3      (HOSPVIS  =  0 to  2)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[  10] =   43.56260   Prob value =  .00000            | 
|G-squared  [  10] =   39.00465   Prob value =  .00003            | 
+-----------------------------------------------------------------+ 
|                HOSPVIS                                          | 
+--------+---------------------+------+                           | 
|  DOCVIS|      0      1      2| Total|                           | 
+--------+---------------------+------+                           | 
|       0|   1340     57      7|  1404|                           | 
|       1|    721     49      8|   778|                           | 
|       2|    596     42      4|   642|                           | 
|       3|    481     44      3|   528|                           | 
|       4|    189     19      5|   213|                           | 
|       5|    150     23      3|   176|                           | 
+--------+---------------------+------+                           | 
|   Total|   3477    234     30|  3741|                           | 
+-----------------------------------------------------------------+ 
 

PCORRELATION ; Lhs = docvis ; Rhs = hospvis $ 
 
Normal exit:  10 iterations. Status=0, F=    6942.729 
----------------------------------------------------------------------------- 
Polychoric Correlation for Ordered Variable 
DOCVIS   = 0, 1, ...,  5 
HOSPVIS  = 0, 1, ...,  2 
--------+-------------------------------------------------------------------- 
  DOCVIS|                  Standard            Prob.      95% Confidence 
 HOSPVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Mean inverse probability for DOCVIS 
Constant|     .31763***      .02087    15.22  .0000      .27672    .35855 
        |Mean inverse probability for HOSPVIS 
Constant|   -1.47189***      .03101   -47.46  .0000    -1.53267  -1.41111 
        |Polychoric Correlation for DOCVIS   and HOSPVIS 
RHO(1,2)|     .18523***      .03151     5.88  .0000      .12347    .24699 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E4.4.3 Biserial Correlation 
 

 The biserial correlation is sometimes used to assess the correlation between a continuous 
variable, x, and a binary variable, d.  (See Glass and Hopkins (1995).)  The computation is 
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assuming that the sample is large enough that a normal approximation to the t distribution is satisfactory 
(i.e., greater than about 100).  With a small sample, normally distributed, x and exogenous d, the t 
distribution is used and the degrees of freedom in the standard error are n-2.  The biserial correlation, an 
estimate of the standard error and an estimated confidence interval are obtained with 
 

 CALC  [; List] ; [name =] Bsr(x,d) $ 
 

In the example below, the coefficient is computed for income and the binary indicator for whether 
the individual has purchased public insurance. 
 

 CALC   ; List ; Bsr(income,public) $ 
 
--------------------------------------------- 
Biserial correlation of INCOME   and PUBLIC 
Estimated correlation coefficient = -.19415 
Estimated standard error for bsr  =  .00593 
Estimated 95%conf. interval=(-.2058,-.1825) 
--------------------------------------------- 
[CALC] *Result*=      -.1941491 
 

E4.5 Cross Tabulations 
 

 The command for crosstabs based on two variables is 
 

 CROSSTAB  ; Lhs = rows variable ; Rhs = columns variable $ 
 

 Use CROSSTAB to analyze a pair of discrete variables that are coded 0,1,... up to 49 (i.e., up 
to 2,500 possible outcomes).  The table may be anywhere from 2×2 to 50×50.  (Row and column sizes 
need not be the same.)  Observations which do not take these values are tabulated as ‘out of range.’ 
 This command assumes that your data are coded as integers, 0,1,... If you wish to analyze 
continuous variables, you must use the RECODE command (Section R4.7) to recode the continuous 
ranges to these values. 
 The categories are automatically labeled ‘NAME=0,’ ‘NAME=1,’..., etc. for the two variables.  
To provide your own labels and to specify the number of categories for the variables, add 
 

   ; Labels = list of labels for Lhs  /  list of labels for Rhs 
 

to the command.  Labels may contain up to eight characters. Separate labels in the lists with commas. 
Cross tabulations may be computed with unequally weighted observations.  The specification is 
 

  ; Wts = variable  
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as usual.  This scales the weights to sum to the sample size.  If the weights are replications that 
should not be scaled, use 
 

  ; Wts = variable,Noscale 
 

The command builder dialog boxes that you can use to construct the command for CROSSTAB are 
found by selecting Model:Data Description/Crosstab. The Main and Options pages are shown below. 
 

 
 

 
Figure E4.2  Command Builder for CROSSTAB 
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E4.5.1 Output 
 
 The CROSSTAB command will produce five types of tables.  The default is a simple cross 
frequency table.  Other options are 
 
   p =  predictions, using the independence model (see below), 
   r   =  table entries are row proportions, 
   c   =  table entries are column proportions, 
   t   =  table entries are total sample proportions. 
Use 
   ; Output =  any or all of p,r,c,t  to request the display. 
   ; Store =  any or all of p,r,c,t  to request keeping results as matrices. 
 
Matrix xtab, the basic frequency table, is kept automatically.  Other matrices that will be kept are 
 
   ptab if  ; Store = ...,p... 
   rtab  if  ; Store = ...,r... 
   ctab  if  ; Store = ...,c... 
   ttab  if  ; Store = ...,t... 
 
+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is MARRIED  (Out of range 0-49:      0)             | 
|Number of Rows =  2      (MARRIED  =  0 to  1)                   | 
|Col variable is PUBLIC   (Out of range 0-49:      0)             | 
|Number of Cols =  2      (PUBLIC   =  0 to  1)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[   1] =     .00108   Prob value =  .97379            | 
|G-squared  [   1] =     .00108   Prob value =  .97379            | 
+-----------------------------------------------------------------+ 
|                 PUBLIC                                          | 
+--------+--------------+------+                                  | 
| MARRIED| NOINSU PUBLIC| Total|                                  | 
+--------+--------------+------+                                  | 
|SINGLE  |    141    968|  1109|                                  | 
|MARRIED |    430   2942|  3372|                                  | 
+--------+--------------+------+                                  | 
|   Total|    571   3910|  4481|                                  | 
+-----------------------------------------------------------------+ 
 

--------+------------------------------------------ 
Predctns|       NOINSUR        PUBLIC         Total 
--------+------------------------------------------ 
  SINGLE|       141.316       967.684       1109.00 
 MARRIED|       429.684       2942.32       3372.00 
  SINGLE|       141.316       967.684       1109.00 
   Total|       571.000       3910.00       4481.00 
 

--------+------------------------------------------ 
TtlPrcnt|       NOINSUR        PUBLIC         Total 
--------+------------------------------------------ 
  SINGLE|      .0314662       .216023       .247489 
 MARRIED|      .0959607       .656550       .752511 
  SINGLE|      .0314662       .216023       .247489 
   Total|       .127427       .872573       1.00000 
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E4.5.2 Testing the Independence Assumption 
 
 Frequency counts are often used for analyzing the hypothesis of independence of two 
variables.  Suppose that the frequency table contains cell counts, nij, row sums, ni., and column sums, 
n.j, and that there are total of n observations.  The predicted cell frequencies are  
 
   Fij  =  n×(ni./n)×(n.j/n) =  ni.× n.j/n. 
 
Two statistics are computed for testing the independence hypothesis: 
 
   Chi squared =  ΣiΣj (Fij - nij)2 / nij 
   G squared =  ΣiΣj nijlog(Fij / nij). 
 
Both statistics are reported as zero if there are any cells with zero frequencies, since neither can be 
computed.  Both of these are distributed in large samples as chi squared with degrees of freedom 
 
   K  =  (number of rows - 1) × (columns - 1). 
 
In addition to the matrices given earlier, the following scalars are kept by this procedure: 
 
   gsqrd  will contain G squared. 
   csqrd  will contain chi squared. 
   degfrdm will contain the degrees of freedom, K. 
 
LIMDEP also reports the probability that the chi squared variable would be at least this large (the p 
value) for the two statistics. 
 
E4.5.3 Analyzing Frequency Data 
 
 If your data are already tabulated in the form of a frequency table, you can compute the 
independence tests, and predicted frequencies as follows: 
 
 MATRIX  ; nij  =  the table of frequencies $ 
 CROSSTAB ; Lhs  =  nij $ 
 
The command is different in that the ; Lhs specifies a matrix, not a variable, and there is no ; Rhs.  
This produces the same results as if the data were individual.  No note is made in the results that the 
data were already tabulated.  For example, 
 

MATRIX ; c = [44,52,11,14/12,99,88,21/22,42,86,19] $ 
CROSSTAB ; Lhs = c $ 

 
produces the following: 
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+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is C        (Out of range 0-49:      0)             | 
|Number of Rows =  3      (C        =  0 to  2)                   | 
|Col variable is C        (Out of range 0-49:      0)             | 
|Number of Cols =  4      (C        =  0 to  3)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[   6] =   96.82121   Prob value =  .00000            | 
|G-squared  [   6] =  101.97340   Prob value =  .00000            | 
+-----------------------------------------------------------------+ 
|                      C                                          | 
+--------+----------------------------+------+                    | 
|       C|      0      1      2      3| Total|                    | 
+--------+----------------------------+------+                    | 
|       0|     44     52     11     14|   121|                    | 
|       1|     12     99     88     21|   220|                    | 
|       2|     22     42     86     19|   169|                    | 
+--------+----------------------------+------+                    | 
|   Total|     78    193    185     54|   510|                    | 
+-----------------------------------------------------------------+ 
 
E4.5.4 An Application 
 
 The following example based on data about political ideology is given by Agresti (1984).  
The actual frequencies are 
 

           Political Ideology 
 Party Affiliation       Liberal     Moderate      Conservative     Total 
  Democrat      143              156            100             399 
  Independent      119              210           141      470 
  Republican           15             72          127            214 
  Total                  277          438           368         1083 
 
The commands are: 
 
 MATRIX     ; nij = [143,156,100 / 119,210,141 / 15,72,127] $   
 CROSSTAB ; Lhs = nij 
   ; Labels = democrat, indpndnt, repubcln  /   
                     liberal, moderate, consrvtv    
   ; Store = p,r,c,t $ 
 MATRIX ; List ; xtab ; ptab ; rtab ; ctab ; ttab $ 
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+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is NIJ      (Out of range 0-49:      0)             | 
|Number of Rows =  3      (NIJ      =  0 to  2)                   | 
|Col variable is NIJ      (Out of range 0-49:      0)             | 
|Number of Cols =  3      (NIJ      =  0 to  2)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[   4] =  102.04903   Prob value =  .00000            | 
|G-squared  [   4] =  105.66216   Prob value =  .00000            | 
+-----------------------------------------------------------------+ 
|                    NIJ                                          | 
+--------+---------------------+------+                           | 
|     NIJ| LIBERA MODERA CONSRV| Total|                           | 
+--------+---------------------+------+                           | 
|DEMOCRAT|    143    156    100|   399|                           | 
|INDPNDNT|    119    210    141|   470|                           | 
|REPUBCLN|     15     72    127|   214|                           | 
+--------+---------------------+------+                           | 
|   Total|    277    438    368|  1083|                           | 
+-----------------------------------------------------------------+ 
 
    XTAB|             1             2             3             4 
--------+--------------------------------------------------------- 
       1|       143.000       156.000       100.000       399.000 
       2|       119.000       210.000       141.000       470.000 
       3|       15.0000       72.0000       127.000       214.000 
       4|       277.000       438.000       368.000       1083.00 
    PTAB|             1             2             3             4 
--------+--------------------------------------------------------- 
       1|       102.053       161.368       135.579       399.000 
       2|       120.212       190.083       159.705       470.000 
       3|       54.7350       86.5485       72.7165       214.000 
       4|       277.000       438.000       368.000       1083.00 
    RTAB|             1             2             3             4 
--------+--------------------------------------------------------- 
       1|       .358396       .390977       .250627       1.00000 
       2|       .253191       .446809       .300000       1.00000 
       3|      .0700935       .336449       .593458       1.00000 
       4|       .255771       .404432       .339797       1.00000 
    CTAB|             1             2             3             4 
--------+--------------------------------------------------------- 
       1|       .516245       .356164       .271739       .368421 
       2|       .429603       .479452       .383152       .433980 
       3|      .0541516       .164384       .345109       .197599 
       4|       1.00000       1.00000       1.00000       1.00000 
    TTAB|             1             2             3             4 
--------+--------------------------------------------------------- 
       1|       .132041       .144044      .0923361       .368421 
       2|       .109880       .193906       .130194       .433980 
       3|      .0138504      .0664820       .117267       .197599 
       4|       .255771       .404432       .339797       1.00000 
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E5: Descriptive Statistics for Time Series Data 
 
E5.1 Introduction 
 
 This chapter will detail some of LIMDEP’s time series capabilities.  Although LIMDEP is 
primarily oriented to cross section and panel data analysis, some common applications in time series 
can be handled as well.  
 
E5.2 Box-Jenkins Time Series Identification 
 
 To produce a plot of the autocorrelations and partial autocorrelations for a time series 
variable, use the command 
 
 IDENTIFY ; Rhs = variable ; Pds = number of lags $ 
 
The number of lags is limited to one quarter of the sample size, and may not exceed 25.  It will be 
reset to the limit value if necessary.  The plot is accompanied by a tabulation of the Box-Pierce 
statistic at each lag for testing the hypothesis that the series is not autocorrelated.  (Examples are 
shown below.) 
 This procedure creates a scalar named nlag which contains the value you give in ; Pds = nlag 
and an nlag×2 matrix named acf_pacf which contains the results. 
 
E5.2.1 Command Builder 
 
 The command builder for this computation is accessed by selecting Model:Time 
Series/Identify/Spectral.  The dialog box for IDENTIFY requests only the variable (; Rhs), the 
number of lags (; Pds), and whether the Burg method is to be used for the partial autocorrelations      
(; Alg = Burg).  The Burg specification is the only option for this command.  See Figure E5.1. 
 
E5.2.2 Computations 
 
 Calculations for this procedure are as follows:  Data are z1, z2, ..., zT.  For lag length K+1, we 
assemble the following K variables: 
 
   d0  = zK+1, ... zT 

   d1  = zK, ... , zT-1 

   d2  = zK-1, ..., zT-2 

   ... 

   dK  = z1, ..., zT-K 
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Figure E5.1  Command Builder for Time Series Description 

 
Then, autocorrelations and other statistics are based on simple moments of these K+1 variables, each 
of which has exactly T-K observations.  All moments are based on centered data.  Under stationarity, 
the means should be asymptotically equivalent. 
 

1. Autocovariances: ci   =  sample covariance of [di,d0], i = 0,...,K, 
 
2. Autocorrelations: ri   =  sample correlation of [di,d0], 
 
3. Partial correlations: C   =  (K+1)×(K+1) covariance matrix of ds, 

    c   =  K×1 vector [c1,...,cK], 
    C(i)  =  leading i×i principal submatrix of C, i = 1,...,K, 
    c(i)  =  first i elements of c.  Then, 
    ri*   =  last element of [C(i)]-1c(i).. 
 
For example, the first partial autocorrelation is c1/c0 while the second is the second element in the vector 
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Finally, the Box-Pierce statistic at lag i is  BPi  =  (T-K) Σi ri.2.  Two summary statistics are presented 
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E5.2.3 The Burg Variant of the PACF  
 
 McCullough (1999) and others have argued that using the Yule-Walker equations, as we do 
in the preceding section, to compute the partial autocorrelation functions produces results that can be 
numerically unstable and prone to numerical errors.  Among the problems of the Yule-Walker 
approach is its reliance on inversion of the moment matrix.  This will be problematic in and of itself 
in a highly autocorrelated data set.  The Burg estimator is computed by a simple recursion, and is 
relatively more stable and less affected by numerical problems.  A few programs have begun to 
implement the method, but it remains relatively new.  The Burg method uses a fairly esoteric 
procedure documented further in McCullough.  For the vector 
 
   z  =  [z1, z2, ... , zT-1, zT] 
 
define the circular shift operation 
 
   c(z)  =  [zT, z1, z2, ... , zT-1] 
 
and the subvector extraction operation 
 
   ej,k(z)  =  [zj, zj+1, z2, ... , zk-1, zk]  =  elements j through k of z. 
 
The dot product of two vectors, x and z, which is usually denoted x′z is computed by the function 
 
   d(x, z)  = x′z 
 
The squared norm of a vector z is, therefore, d(z, z)  =  ||z||2.  Finally, define the augmented T+p 
vector padded with p zeros 
 

   
→
z (0)  =  [z1, z2, ... , zT-1, zT, 0, ..., 0] 

 

and   
←
z (0)  = c[

→
z (0)]  =  [0, z1, z2, ... , zT-1, zT, 0, ..., 0] 

 
where the latter is obtained by shifting one of the zeros from the right end to the left so that p-1 zeros 
remain at the right.  With all this in place, the Burg estimator of the partial autocorrelation 
coefficients is 
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→
z (i)  =  

→
z (i-1)  -  ri 

←
z (i-1) 

 

and    
←
z (i)  =   c [

←
z (i-1) - ri 

→
z (i-1)]. 
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 In spite of its seeming complexity, the Burg method is a relatively straightforward recursion 
which begins with r1 = the first autocorrelation.  The Burg method is requested by adding 
 
   ; Alg = Burg 
 
to the IDENTIFY command. 
 
TECHNICAL NOTE:  Here is the algorithm used internally for computing the Burg estimator. 
 
 1. Set  N  =  T + J, T = number of observations, J = number of partial autocorrelations. 
 
 2. Initialize zL = [z1,z2,...,0,0,...,0] = N elements, T of zt and J zeros. 
    Initialize zR = circular shift of zL = [0,z1,z2,...,0,0,...,0], 0, z, J-1 zeros. 
 
 3.   For i = 1,...,J in recursion, i starts at 1 
 

   a. Move T – i elements starting at i+1 from zR into vector dR, 
   b. Move T – i elements starting at i+1 from zL into vector dL, 

   c. ri  =  2 dR′dL / (dR′dR + dL′dL) (dot products involve T-i values), 
   d. Make dR = zR – ri zL, 
   e. Make dL = zL – ri zR, 
   f. Set first element of zL equal to Nth element of dL, 
   g. Move first N-1 elements from dL into zL starting at second position in zL, 
   h. Move N elements from dR into zR, 
   i. Increment i and return to a. 
 
E5.2.4 Application 
 
 The data listed in Table E5.1 apply to the U.S. gasoline market from 1953 to 2004.  (This 
data set was assembled from several sources by Professor Chris Bell, Department of Economics, 
University of North Carolina, Asheville.)  We will construct examples using this data set.  The data 
are provided in files named gas.lpj, gas.dat, and gas.csv.  We begin by computing the autocorrelations 
and partial autocorrelations for the gasoline price variable.  Relying on the canon of Box and 
Jenkins, we conclude from this figure that these data are clearly characterized by an AR(1) process.   
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Based on the Yule-Walker Equations: 
 
 IDENTIFY ; Rhs = gasp ; Pds = 10 $ 
 
Time series identification for GASP 
Box-Pierce Statistic =   229.6895      Box-Ljung Statistic  =   260.4700 
Degrees of freedom   =         10      Degrees of freedom   =         10 
Significance level   =      .0000      Significance level   =      .0000 
* => |coefficient| > 2/sqrt(N) or > 95% significant. 
PACF is computed using Yule-Walker equations. 
----+-------------------------------+-------+-------------------------------+ 
Lag |  Autocorrelation Function     |Box/Prc|    Partial Autocorrelations   | 
----+-------------------------------+-------+-------------------------------+ 
  1 | .907*|           |**********  | 42.82*| .907*|            |********** | 
  2 | .828*|           |*********   | 78.48*|-.211 |         ** |           | 
  3 | .781*|           |*********   |110.18*| .198 |            |**         | 
  4 | .721*|           |********    |137.20*|-.122 |          * |           | 
  5 | .643*|           |*******     |158.71*|-.139 |         ** |           | 
  6 | .597*|           |*******     |177.26*| .032 |            |*          | 
  7 | .567*|           |******      |193.99*| .093 |            |*          | 
  8 | .522*|           |******      |208.14*|-.027 |          * |           | 
  9 | .476*|           |*****       |219.91*| .006 |            |*          | 
 10 | .434*|           |*****       |229.69*|-.068 |          * |           | 
----+-------------------------------+-------+-------------------------------+ 

Based on the Burg Method:   
 
 IDENTIFY ; Rhs = gasp ; Pds = 10 ; Alg = Burg $ 
 
(Note that the first autocorrelation is adjusted to equal the first partial autocorrelation, not the 
reverse.) 
 
Time series identification for GASP 
Box-Pierce Statistic =   229.6895      Box-Ljung Statistic  =   260.4700 
Degrees of freedom   =         10      Degrees of freedom   =         10 
Significance level   =      .0000      Significance level   =      .0000 
* => |coefficient| > 2/sqrt(N) or > 95% significant. 
PACF and Rho(1) computed using method of Burg 
----+-------------------------------+-------+-------------------------------+ 
Lag |  Autocorrelation Function     |Box/Prc|    Partial Autocorrelations   | 
----+-------------------------------+-------+-------------------------------+ 
  1 | .972*|           |*********** | 49.16*| .972*|            |***********| 
  2 | .828*|           |*********   | 84.82*|-.313*|        *** |           | 
  3 | .781*|           |*********   |116.53*| .316*|            |***        | 
  4 | .721*|           |********    |143.54*|-.296*|        *** |           | 
  5 | .643*|           |*******     |165.05*|-.100 |          * |           | 
  6 | .597*|           |*******     |183.60*| .075 |            |*          | 
  7 | .567*|           |******      |200.33*| .099 |            |*          | 
  8 | .522*|           |******      |214.48*|-.057 |          * |           | 
  9 | .476*|           |*****       |226.25*| .076 |            |*          | 
 10 | .434*|           |*****       |236.03*|-.162 |         ** |           | 
----+-------------------------------+-------+-------------------------------+ 
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Year   GasQ  GasP GasCPIU PCInc PNC  PUC   PPT    PN   PD   PS    POP   
1953  25.415  16.668  21.2  8802  47.2  26.7  16.8  37.7  29.7  19.4 159565 
1954  26.223  17.029  21.8  8757  46.5  22.7  18.0  36.8  29.7  20.0 162391 
1955  28.505  17.210  22.1  9177  44.8  21.5  18.5  36.1  29.5  20.4 165275 
1956  30.229  17.729  22.8  9450  46.1  20.7  19.2  36.1  29.9  20.9 168221 
1957  31.393  18.497  23.8  9508  48.5  23.2  19.9  37.2  30.9  21.8 171274 
1958  32.884  18.316  23.5  9433  50.0  24.0  20.9  37.8  31.7  22.6 174141 
1959  34.573  18.576  23.7  9685  52.2  26.8  21.5  38.4  31.5  23.3 177130 
1960  35.757  19.112  24.4  9735  51.5  25.0  22.2  38.1  32.0  24.1 180760 
1961  36.126  18.924  24.1  9901  51.5  26.0  23.2  38.1  32.2  24.5 183742 
1962  37.658  19.043  24.3 10227  51.3  28.4  24.0  38.5  32.5  25.0 186590 
1963  38.815  18.997  24.2 10455  51.0  28.7  24.3  38.6  32.9  25.5 189300 
1964  40.940  18.873  24.1 11061  50.9  30.0  24.7  39.0  33.2  26.0 191927 
1965  42.874  19.587  25.1 11594  49.7  29.8  25.2  38.8  33.8  26.6 194347 
1966  45.549  20.038  25.6 12065  48.8  29.0  26.1  38.9  35.1  27.6 196599 
1967  47.029  20.700  26.4 12457  49.3  29.9  27.4  39.4  35.7  28.8 198752 
1968  50.304  21.005  26.8 12892  50.7  30.7  28.7  40.7  37.1  30.3 200745 
1969  53.686  21.696  27.7 13163  51.5  30.9  30.9  42.2  38.9  32.4 202736 
1970  57.009  21.890  27.9 13563  53.0  31.2  35.2  44.1  40.8  35.0 205089 
1971  59.770  22.050  28.1 14001  55.2  33.0  37.8  46.0  42.1  37.0 207692 
1972  62.206  22.336  28.4 14512  54.7  33.1  39.3  46.9  43.5  38.4 209924 
1973  65.440  24.473  31.2 15345  54.8  35.2  39.7  48.1  47.5  40.1 211939 
1974  62.217  33.059  42.2 15094  57.9  36.7  40.6  51.5  54.0  43.8 213898 
1975  64.070  35.278  45.1 15291  62.9  43.8  43.5  57.4  58.3  48.0 215981 
1976  66.633  36.777  47.0 15738  66.9  50.3  47.8  60.9  60.5  52.0 218086 
1977  68.675  38.907  49.7 16128  70.4  54.7  50.0  64.4  64.0  56.0 220289 
1978  70.258  40.597  51.8 16704  75.8  55.8  51.5  68.6  68.6  60.8 222629 
1979  69.315  54.406  70.2 16931  81.8  60.2  54.9  75.4  77.2  67.5 225106 
1980  65.358  75.509  97.5 16940  88.4  62.3  69.0  83.0  87.6  77.9 227726 
1981  66.349  84.018 108.5 17217  93.7  76.9  85.6  89.6  95.2  88.1 230008 
1982  67.176  79.768 102.8 17418  97.4  88.8  94.9  95.1  97.8  96.0 232218 
1983  68.676  77.160  99.4 17828  99.9  98.7  99.5  99.8  99.7  99.4 234333 
1984  70.833  76.005  97.8 19011 102.8 112.5 105.7 105.1 102.5 104.6 236394 
1985  72.225  76.619  98.6 19476 106.1 113.7 110.5 106.8 104.8 109.9 238506 
1986  75.734  60.175  77.0 19906 110.6 108.8 117.0 106.6 103.5 115.4 240683 
1987  77.762  62.488  80.1 20072 114.6 113.1 121.1 108.2 107.5 120.2 242843 
1988  79.810  63.017  80.8 20740 116.9 118.0 123.3 110.4 111.8 125.7 245061 
1989  81.515  68.837  88.5 21120 119.2 120.4 129.5 112.2 118.2 131.9 247387 
1990  80.750  78.385 101.0 21281 121.0 117.6 142.6 113.4 126.0 139.2 250181 
1991  79.862  77.338  99.2 21109 125.3 118.1 148.9 116.0 130.3 146.3 253530 
1992  83.093  77.040  99.0 21548 128.4 123.2 151.4 118.6 132.8 152.0 256922 
1993  85.204  76.257  97.7 21493 131.5 133.9 167.0 121.3 135.1 157.9 260282 
1994  86.338  76.614  98.2 21812 136.0 141.7 172.0 124.8 136.8 163.1 263455 
1995  87.935  77.826  99.8 22153 139.0 156.5 175.9 128.0 139.3 168.7 266588 
1996  89.888  82.596 105.9 22546 141.4 157.0 181.9 129.4 143.5 174.1 269714 
1997  92.666  82.579 105.8 23065 141.7 151.1 186.7 128.7 146.4 179.4 272958 
1998  96.941  71.874  91.6 24131 140.7 150.6 190.3 127.6 146.9 184.2 276154 
1999 100.351  78.207 100.1 24564 139.6 152.0 197.7 126.0 151.2 188.8 279328 
2000 100.000 100.000 128.6 25472 139.6 155.8 209.6 125.4 158.2 195.3 282429 
2001 101.481  96.289 124.0 25698 138.9 158.7 210.6 124.6 160.6 203.4 285366 
2002 102.871  90.405 116.0 26229 137.3 152.0 207.4 121.4 161.1 209.8 288217 
2003 103.587 105.154 135.1 26570 134.7 142.9 209.3 117.5 165.3 216.5 291073 
2004 103.245 123.901 159.7 27208 133.9 133.3 209.1 114.8 172.2 222.8 293951 

GasQ = quantity index of gasoline consumption PPT = price index for public transportation  
GasP = price index for gasoline   PN = aggregate price index for consumer nondurables 
GasCPIU = consumer price index    PD = aggregate price index for consumer durables 
PCInc = real per capita disposable income  PS = aggregate price index for consumer services 
PNC = price index for new cars   POP = population in thousands 
PUC = price index for used cars 

Table E5.1  Data on the U.S. Gasoline Market 
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Figure E5.2 shows the new matrix created by the second IDENTIFY command. 
 

 
Figure E5.2  Matrix Results from IDENTIFY Command 

 
E5.3 Spectral Density Estimation 
 
 The basic command for requesting a spectral density estimator is 
 
 SPECTRAL  ; Rhs = variable $  
 
The spectral density function or periodogram is used to decompose the variance of a time series.  
The underlying assumption is that the time series xt can be written as a weighted sum of underlying 
series, zt each varying at a different frequency.  The variation in xt is then decomposed into the 
contributions made at the different frequencies by each of these underlying series. (Hamilton (1994) 
is a good reference on time series analysis.  Chatfield (1996) is an alternative, somewhat less 
technical reference to consider.) 
 We compute the spectrum as follows:  (Again, see one of the aforementioned sources for 
background):  For frequencies ranging from 0 to π (the function is symmetric from π to 2π), the 
spectral density function is computed as the following function of the autocorrelations, rj: 
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The weighting function, wj is the ‘lag window.’  Lag windows are used to stabilize the function and 
to reduce the influence of unstable autocorrelations at longer lags.  In addition to the default window 
(none), wj = 1, you may use any of 
 

   Bartlett’s window: wj   =  
1
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−
T

j   =  Bj 

 

   Tukey’s window: wj   =  
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   Parzen’s window: wj   =  1 – 6Bj(1 – Bj)2  if j ≤ T/2 

                =  2Bj
2 if j > T/2 

 
A second method of stabilizing the estimated function is to truncate the lags in the summation.  Note, 
in the definition, L is the lag length, T-1, or 2 T if you elect to truncate the sum. 
 The general command 
 
 SPECTRAL ; Rhs = the variable 
   ; Window = Bartlett, Tukey, or Parzen (optional) 
   ; Truncate (also optional) $ 
 
requests these computations.  Output from the procedure consists of the plot of the periodogram and 
a matrix named freq_sdf which has two columns.  The first is the frequencies, and the second is the 
function values. 
 The command builder for SPECTRAL uses the same dialog box as IDENTIFY, as shown 
in Figure E5.3 
 
NOTE:  The default command in this command builder is IDENTIFY.  To produce the 
SPECTRAL command, you must check the box to the right of the grouping for the spectral density 
estimator.  (This is marked by the arrow in the figure.) 
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Figure E5.3  Command Builder for Spectral Density Estimation 

 
 For example, Figure E5.4 shows the spectral density estimator for the log of per capita 
income in the gasoline data. 
 
  CREATE ; logpcinc = Log(pcincome) $ 
  SPECTRAL ; Rhs = logpcinc $ 
 

 
Figure E5.4  Spectral Density Estimator for Log Per Capita Income 

 



E5: Descriptive Statistics for Time Series Data E-88 

E5.4 Phillips-Perron Test for a Unit Root 
 

Various devices have been presented for testing for unit roots in time series data.  Most 
familiar is the Dickey-Fuller (1979) test, which is carried out simply by referring familiar regression 
statistics to the appropriate table. (See the next section.)  Another in wide use is the Phillips-Perron 
(1988) test, which is carried out by subjecting the residuals from the regression 

 
  yt  =  α + ρyt-1 + εt 

 
to a prescribed test procedure.  The regression may be computed with additional regressors, a time 
trend, or without the constant term.  The cases in the Phillips-Perron derivation are: 
 
   Case 1:  No constant term 
   Case 2:  Constant term 
   Case 4:  Constant term and time trend. 
 
(Case 3 is not considered here. See Hamilton (1994) for details.) The procedure is based on two statistics, 
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The test statistics are referred to the Dickey-Fuller tables.  LIMDEP uses linear interpolation in a few 
critical values from the tables:  For each statistic, the internal values are for significance levels of 
.01, .05, and .10, and sample sizes 25, 20, 100, 250, 500 and ∞.  The T=25 value is used if the sample 
is under 25.  The value for ∞ is used if T is greater than 500.  The hypothesis of a unit root is rejected 
if the test statistics are less than the critical values given. 
 The Phillips-Perron test is requested by setting up the AR(1) regression, and adding 
 
   ; PPT ; Pds = L  
 
where L is the desired number of Newey-West lags for the computation. (Note the definition of a above.)  
 
NOTE:  The Newey-West autocorrelation consistent covariance matrix for the OLS estimator is not 
available when you request the Phillips-Perron test. 
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You can request this estimator in the command builder by setting up the regression as a linear model, 
then choosing the Phillips-Perron test instead of the Newey-West estimator.  (See the Options page 
of the REGRESSION command builder, which can be found by selecting Model:Linear 
Models/Regression.) 
 

 
 

 
Figure E5.5  Command Builder for Phillips-Perron Test for a Unit Root 
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 For the sample used in the previous example, we have applied the test to the log of per capita 
gasoline expenditure.  The command sequence is 
 
 SAMPLE ; All $ 

CREATE  ; logexp = Log(gasp*gasq) $ 
 CREATE ; logexp1 = logexp[-1] $ 
 SAMPLE ; 2-52 $ 
 REGRESS ; Lhs = logexp 
   ; Rhs = one,logexp1 
   ; PPT ; Pds = 10 $ 
 
The results are shown below.  Note that the statistic and the critical values are presented in a separate 
table, with no further action taken.  This procedure generates no additional retained values beyond 
those generated by the regression as usual.  The statistics are small and negative, suggesting that the 
hypothesis of a unit root should not be rejected. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGEXP   Mean                 =        7.87249 
             Standard deviation   =        1.03681 
             No. of observations  =             51  Degrees of freedom 
Regression   Sum of Squares       =        53.4018           1 
Residual     Sum of Squares       =        .347364          49 
Total        Sum of Squares       =        53.7491          50 
             Standard error of e  =         .08420 
Fit          R-squared            =         .99354  R-bar squared =   .99341 
Model test   F[  1,    49]        =     7532.98233  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       54.85893  Akaike I.C.   = -4.91078 
             Restricted (b=0)     =      -73.70467 
             Chi squared [  1]    =      257.12719  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGEXP|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .13434         .08993     1.49  .1416     -.04192    .31061 
 LOGEXP1|     .99135***      .01142    86.79  .0000      .96896   1.01374 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+---------------------------------------------------------------------+ 
| Phillips - Perron tests for unit root                               | 
| Sample size  =    51, Number of regressors =    2                   | 
| Sample statistics:        Z(tau) =     -.7386 |Z(rho) =     -.4939  | 
|                           ------[Z(tau)]------+------[Z(rho)]------ | 
| 3 cases (models)            99%    95%    90% | 99%    95%    90%   | 
| 1. y(t)=ry(t-1)+u(t)       -2.62  -1.95  -1.61|-12.90  -7.70  -5.50 | 
| 2. y(t)=a+ry(t-1)+u(t)     -3.58  -2.93  -2.60|-18.90 -13.30 -10.70 | 
| 4. y(t)=a+ry(t-1)+dt+u(t)  -4.25  -3.80  -3.18|-25.70 -19.80 -16.80 | 
+---------------------------------------------------------------------+ 
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E5.5 Augmented Dickey-Fuller Tests 
 
 The Adf function in CALC automates the Dickey-Fuller test for unit roots in time series 
data.  The syntax is 
 

CALC   ; Adf (variable, type, lags for augmentation) $ 
 
where    variable   is the single time series variable to be analyzed, 

type = 1, 2 or 3   for unit root, drift, trend, lags > 0, 
lags for augmentation  is the number of additional lagged values to include. 

 
Users are referred to any of the standard texts, e.g., Greene (2011, Chapter 21) for details. 
 The Phillips-Perron test for a unit root in per capita gasoline expenditure in the preceding 
section is recalculated here, using the Adf computation instead. 
 

CALC   ; Adf (logexp,1,3) $ 
 

+----------------------------------------------+ 
| Augmented Dickey Fuller Test for LOGEXP      | 
| Form: Random walk                            | 
| Number of lagged differences in model is   3 | 
| DF(tau) =    2.44635, DF(gamma) =     .40584 | 
| Critical values for    47 observations:      | 
| DF(tau)                                      | 
| 01 is  -2.62, .025 is  -2.25, .05 is  -1.95  | 
| DF(gamma)                                    | 
| 01 is -12.80, .025 is  -9.90, .05 is  -7.70  | 
+----------------------------------------------+ 

 
As before, the statistics are between zero and the critical values, indicating that the hypothesis of a 
unit root is not rejected. 
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E6: Scatter Diagrams and Plotting 
 
E6.1 Introduction 
 

 This chapter will describe commands for producing high resolution graphs.  This feature can 
be used for simple scatter diagrams, time series plots, and for plotting functions such as log 
likelihoods.  You can print the graphics on standard printers and create plotter files for export to 
word processing programs such as Microsoft Word.  Generalities about plotting and the following 
five commands are described in this chapter: 
 
 PLOT   is the standard scatter plotting function, 
 SPLOT  is for producing several scatter plots at the same time, 
 MPLOT  is for plotting the elements of matrices, 
 FPLOT  is for plotting functions of one variable, 
 CPLOT  is used for creating contour plots 
 

E6.2 Printing and Exporting Figures 
 

 The following procedures apply to the various plotting commands described in this chapter 
as well as to the other uses of graphics in LIMDEP, which include: KERNEL, HISTOGRAM, 
SPECTRAL, SIMULATE ; Plot, PARTIALS ; Plot, SURVIVAL, DSTAT ; Boxplots, DSTAT ; 
Quantiles ; Plot, REGRESS ; Cusums and EXECUTE ; Bootstrap. 
 LIMDEP uses the standard Windows interface between input and output devices.  When a plot 
appears in a window, you can use File:Print to send a copy to your printer (see Section E6.2.1). You can 
also save the graph as a Windows metafile (.wmf format) by using File:Save or File:Save As (see 
Section E6.2.2).  Finally, you can simply use Edit:Copy and Edit:Paste to transport the graphic figure 
into another software program (see Section E6.2.3).  For purposes of illustrating these functions, we will 
use Figure E6.1 which was generated by a PLOT command.  The figure shows LIMDEP’s base format 
for graphics.  Every graph generated is placed in its own scalable window, as shown in Figure E6.2, 
apart from the project, editing and output windows already open.  This window will remain open until 
you close it.  When you are finished reviewing the figure, you should close the window to avoid 
proliferating windows. You will be prompted to save the graph if you have not already done so. 
 

 
Figure E6.1  Time Series Plot Using the PLOT Command 
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Figure E6.2  LIMDEP Desktop with Graphics Window 

 
E6.2.1 Printing 
 
 LIMDEP prints graphs in landscape mode.  (You can change this to portrait mode by using 
Page Setup in the file menu.)  To print a graph, first make the plot window the active one by 
clicking the large banner at the top of the window (marked ‘Untitled Plot 8*’ in Figure E6.2 above).  
Then, to print without adjustment, select File:Print from the main menu.  If you wish to change the 
size and orientation of a graph, select File:Page Setup first.  Windows will handle the printer 
interface, as in other operations. 
 
TIP:  In LIMDEP, click the right mouse button inside the graphics window to open a menu with 
options to Copy, Save As, Page Setup, Print Preview and Print. 
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E6.2.2 Saving a Graph as a Graphics File 
 
 You may save any figure from a graphics window to disk in the Windows metafile (.wmf) 
format.  Select File:Save or File:Save As.  This file type is transportable to many other programs, 
including Microsoft Word and Excel.  For example, in Word, click the Insert menu and then select 
Picture, then From File to import your .wmf file into your Word document.  The Windows .wmf 
format includes codes that allow you to scale the figure to whatever size you desire. 
 
E6.2.3 Pasting a Graph into a Document or Spreadsheet 
 
 You can also put a copy of your graph in Word or Excel without first saving it as a .wmf file.  
Select Edit:Copy in LIMDEP, and then select Edit:Paste in your other software to paste the graph 
into your document or spreadsheet.  An example is shown in Figure E6.3.  We have used Edit:Copy 
in LIMDEP followed by Edit:Paste in Excel, first to transport the data from LIMDEP’s data editor, 
then to transport the scatter plot.  Once in Excel, the data and accompanying graphic can be viewed 
together and the graphic can be formatted.  In our example, the graphic was resized and a line box 
was added. The formats used for graphics by LIMDEP are standards that are used generally in other 
commercial packages. 
  

 
Figure E6.3  Excel Spreadsheet with LIMDEP Data and Graph Imported 
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E6.3 The PLOT Command 
 
 The command for producing a basic scatter (XY) plot of one or more variables against another 
variable is 
 
 PLOT  ; Lhs = variable on horizontal axis 
   ; Rhs = variables (up to five) on vertical axis  $ 
 
Note the reversal of LIMDEP’s usual convention.  This command puts the Lhs variable on the 
horizontal axis, whereas a regression might be expected to do the reverse. 
 You may add a title to the figure by including 
 
   ; Title = the title to be used 
 
The title is placed at the top of the figure.  The vertical axis of the plot is usually labeled with some 
variable name.  You can override this with 
 
   ; Yaxis = the label to be used, up to eight characters 
 
This will often be useful when you plot a function or more than one variable.   A longer descriptive 
label for the vertical axis can be provided with 
 
   ; Vaxis = the test string to be used, up to 60 characters 
 
 The command builder for PLOT may be found by selecting Model:Data Description/Plot 
Variables.  See Figures E6.4 and E6.5.  
 

 
Figure E6.4  Main Page of Command Builder for PLOT 
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Figure E6.5  Options Page of Command Builder for PLOT 

 
NOTE:  The figures displayed here are based on yearly data for the U.S. gasoline market:  The data 
are listed in Section E5.2.4 in Table E5.1. 
 
E6.3.1 Scatter Plot of One Variable Against Another 
 
 To produce a scatter plot of one variable (y) against another (x) variable, the PLOT 
command is given with only a single Rhs variable.  The command would be 
 
 PLOT  ;  Lhs = x  ; Rhs  =  y $ 
 
Figure E6.6 was produced with the commands listed. 
 
 CREATE  ; g = gasq/(100*pop/282429) $ 

PLOT  ; Lhs = g  
  ; Rhs = gasp 

   ; Title = Simple Plot of Gas against Price $  
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Figure E6.6  Simple Scatter Plot 

 
E6.3.2 Plotting a Simple Linear Regression 
 
 To add a regression line to a figure, add 
 
   ; Regression 
 
to the PLOT command.  By adding ; Regression to the preceding command, we obtain the plot in 
Figure E6.7. You can also obtain this by selecting Display linear regression line in the Options 
page of the command builder. (In previous versions of LIMDEP, the regression equation would 
replace the title in the figure.  In this version, the title appears as a header and the regression equation 
is placed in the legend at the right of the figure.) 
 

 
Figure E6.7  Scatter Plot with Linear Regression 
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E6.3.3 Time Series Plots 
 
 Time series plots, that is, plots of variables against the date can be obtained by using 
DATES and PERIOD to set up the dating, then omitting the ; Lhs part of the PLOT command. 
When you omit the ; Lhs part of the command, it is assumed that this is a time series plot, and the 
adjacent points are automatically connected. The figure is also automatically labeled with the dates. 
Figure E6.8 is a time series plot of the three macroeconomic price series for the data above.  Note the 
use of the ; Grid specification to improve the readability of the figure.  (See Section E6.3.6 for 
details on this specification.)   
 
NOTE:  If your data are not dated using DATES and PERIOD, i.e., they are undated, then if you 
omit the ; Lhs = variable in the PLOT command, the observations are plotted against the 
observation number, beginning with Observ.# = 1. 
 
The commands used for Figure E6.8 are 
 

DATES ; 1953 $ 
PERIOD ; 1953-2004$ 
PLOT  ; Rhs = pnc,puc,ppt 

; Title = Transportation Price Indices 
; Grid 
; Vaxis = Prices of New and Cars and Public Transport $ 

 

 
Figure E6.8  Time Series Plot for Several Variables 
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E6.3.4 Plotting Several Variables Against One Variable 
 
 To plot several variables against a single one, just include more than one Rhs variable in the 
command.  The command is 
 
 PLOT   ; Lhs = variable on horizontal axis  
   ; Rhs = up to five variables to be plotted  
   ; … other options, such as ; Grid and ; Fill $ 
 
(Note that the command builder dialog box allows you to specify multiple variables.)  A different 
line style is used for each variable if you use ; Fill. (The time series plot above is an example in 
which the Lhs variable is the automatically supplied date.)  A different type of point is constructed 
for each if you are using a cross section. Generally, PLOT with ; Fill (see the next section) creates a 
figure with one or more line plots, joining segments at the points, but suppressing any symbols for 
the points.  The symbols (dots, stars, etc.) may be retained with ; Symbols. The ; Regression 
command is ignored if more than one variable is being plotted.  An example is shown in Figure E6.9: 
 
 PLOT   ; Rhs = pn,pd,ps  
   ; Lhs = year 
   ; Title = Scatter Plot of Price Series  
   ; Yaxis  = Prices 
   ; Grid   
   ; Fill  
   ; Symbols $ 
 

 
Figure E6.9  Multiple Plots in the Same Figure 
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NOTE:  This is not a time series plot, in spite of the fact that year is the variable on the horizontal 
axis.  Although at this point, LIMDEP does know that these are time series data, it does not know 
that ‘year’ is a date variable; year is just another variable in the data set.  If you omit the ; Lhs = 
variable specification in the command, LIMDEP will label the x axis ‘YEAR,’ but this is not with 
respect to a variable in your data set; it is the date labeling that you gave in your DATES command. 
To see this at work, note that even if you did not have a variable named year in your data set, you 
could obtain a time series style plot with yearly observations, and labeled as such. 
 
 It might be useful in a figure to differentiate between certain variables by creating a line plot 
for some while plotting only the symbols for others.  Plotting fitted and actual values in a regression, 
as in Figure E6.7, would be a common application.  If the function being plotted is not a linear 
regression, or is some other function of a variable, you can create a scatter plot for some variables 
and a line plot for others by using 
 

 PLOT  ; Lhs = variable for horizontal axis 
   ; Rh1 = variables to be shown with symbols only 
   ; Rh2 = variables to be shown with a line plot 
   ; … any other options $ 
 

In the example shown in Figure E6.10, we have computed a semilog regression, then plotted the 
predicted and actual values for the retransformed data. 
 

REGRESS ; Lhs = Log(hhninc) ; Rhs = one,educ ; Keep = loginc_f $ 
CREATE ; inc_f = Exp(loginc_f) $ 
PLOT   ; Lhs = educ  

; Rh1 = hhninc  
; Rh2 = inc_f  
; Grid 
; Title = Predicted and Actual Income vs. Education 
; Yaxis = Income $ 

 

 
Figure E6.10  Simultaneous Scatter and Line Plots 
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E6.3.5 Combining Plots 
 
 You can combine up to five plots in the same field by using the command 
 
 PLOT  ; Lhs = variablex1, variablex2, … 
   ; Rhs = variabley1, variabley2, … 
   ; … any other options $ 
 
In this specification, each y variable is plotted against the corresponding x variable, all in the same 
plotting field.  The field is dimensioned to be large enough to accommodate all of the graphs in the 
single figure.  (Note that if your variables do not have similar scales, this can create a very 
unattractive figure.)  Figure E6.11 plots one of the aggregate price indexes against another and one 
of the micro- indices against another in the same figure. 
 

PLOT   ; Rhs = pn,ppt 
; Lhs = pd,puc 
; Fill  
; Title = Price Indexes 
; Vaxis = PN vs. PD and PPT vs. PUC $ 

 

 
Figure E6.11  Simultaneous Plots 

 

E6.3.6 Options for Scaling and Labeling the Figure 
 
Scaling 
 
 The limits for the vertical and horizontal axes are chosen automatically so that every point 
appears in the figure.  Boundaries are set by the ranges of the variables.  You can override these 
settings as follows: 
 
 To set the limits for the horizontal axis use ; Endpoints = lower value, upper value 
 To set the limits for the vertical axis use ; Limits = lower value, upper value 
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HINT:  If you plot variables of very different magnitudes in the same figure, or if your series has 
outliers in it, the scaling convention that seeks to include every point in the graph may severely 
distort your figure. 
 
NOTE:  If the endpoints or limits that you specify push any points out of the figure – x or y values 
are outside the limits – then the specifications are ignored, and the original default values are used. 
 
 For example, the top panel in Figure E6.12 is the same as Figure E6.6, produced by the 
command below without the specification of the endpoints and limits.  The lower panel shows the 
effect of expanding the limits 
 
 PLOT   ; Rhs = gasp  
   ; Lhs = g 
   ; Title = Gasoline Consumption vs. Price  
   ; Yaxis = Gas_Cons  
   ; Grid  
   ; Limits = 0,125 ?  Set the vertical axis limits 
   ; Endpoints = 0,1.2 $  Set the horizontal axis limits 
 

 
 

 
Figure E6.12  Scatter Plots with Rescaled Axes 
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 The following describe some devices for changing the appearance of the figure, and creating 
particular types of graphs.  Some of these have been used in the examples above.  More extensive 
applications appear below. 
 
Grids and Lines in the Plotting Field 
 
 It is sometimes helpful when plotting to put a grid in the figure.  This makes it easier to 
relate the points in the graph to the distances on the axes.  You may request a grid to be placed in the 
figure with 
   ; Grid   
 
This divides the screen into a grid of rectangles using dotted bars.  The option was used in several of 
the preceding examples.  You may also put horizontal and/or vertical lines in the figure at specific 
numerical benchmarks.  The syntax is 
 
   ; Spikes = up to five value(s) to put vertical lines at particular values 
   ; Bars   = up to five value(s) to put horizontal lines at particular values 
 
The vertical or horizontal line is drawn from axis to axis, the full width or height of the box.   Figure 
E6.13 uses these devices to focus on the means in a regression. 
 
Connecting Points in the Plotting Field 
 
 If you are plotting a function or a time series, it may also be useful to connect adjacent 
points.  To do so, add 
 

   ; Fill  
 
to the command.  One way you might use this device would be to draw a function by creating a set 
of equally spaced  values, then plotting the function of these values, connecting the points to create 
the continuous function. This device was used above in Figures E6.9 and E6.11. 
 For an example, the following fairly involved program plots the predicted values from a 
regression with the upper and lower confidence limits for the forecasts.  Lines are placed in the 
figure at the point of means.  The underlying computations are based on the bivariate regression 
 
   log gt  =  b1  +  b2  log pgt  +  et 
 
where gt is the gasoline consumption variable and pgt is the corresponding observation on the price 
variable, and b1 and b2 are the least squares constant and regression slope.  The prediction and 
associated confidence limits are 
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where s is the estimated standard error of the regression and t* is the appropriate critical value from 
the table of the t distribution.  The following does all of these computations and plots the forecast 
limits for 100 points which span the observed range of pg.  The end results are shown in Figure 
E6.13.  (The figure lacks the textbook butterfly shape because for these data, the forecast standard 
error is dominated by the term 1+1/n.) 
 Compute the regression using the sample data and collect statistics 
 
 SAMPLE ; 1-52 $ 
 CREATE ; logg = Log(g)  
   ; logpg = Log(gasp) $ 
 REGRESS ; Lhs = logg  
   ; Rhs = one,logpg $ 
 CALC  ; minlpg = Min(logpg)    
   ; maxlpg = Max(logpg)  
   ; delta =  (maxlpg - minlpg) / 100   
   ; meanlpg = Xbr(logpg)  
   ; vlpg = (n-1)*Var(logpg)  
   ; meanlg = Xbr(logg)  
   ; critcalt = Ttb(.95,degfrdm) $ 
 
Base the remaining computations on 100 generated points. 
 
 SAMPLE ; 1-100 $ 
 
First, create 100 equally spaced points in the range of pg. 
 
 CREATE  ; lpgt = minlpg + delta * Trn(0,1)  
 
Obtain forecast standard error and predicted values. 
 
   ; fitse = s * Sqr(1 + 1/nreg + (lpgt - meanlpg)^2/vlpg) 
   ; fitlg = b(1) + b(2) * lpgt 
 
Compute the confidence limits. 
 
   ; upper = fitlg + critcalt * fitse 
   ; lower = fitlg - critcalt * fitse $ 
 
Now, plot all three series, marking the means of the two variables. 
 
 PLOT  ; Lhs = lpgt 
   ; Rhs = fitlg,upper,lower 
   ; Fill  
   ; Bars = meanlg  
   ; Spikes = meanlpg 
   ; Yaxis = Fitted_LG 
              ; Title = Forecast Interval for Fitted LogG $ 
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Figure E6.13  Plot of a Forecast Interval 

 

 The foregoing could be automated in a procedure.  It might lack generality, however, as it is 
limited to simple bivariate regressions.  This result can be replicated with the automatic procedure 
provided by the SIMULATE command.  Figure E6.14 produces an interval estimate for the same 
regression.  The commands are   
 

 SAMPLE ; 1-52 $ 
 REGRESS  ; Lhs = logg  
   ; Rhs = one,logpg $ 
 SIMULATE  ; Scenario: & logpg = minlpg(delta)maxlpg  
   ; Plot(ci) $ 
 

The familiar butterfly effect can be seen in Figure E6.14.  Note, the difference between E6.13 and 
E6.14 is that in E6.13, we have produced a ‘forecast interval,’ using the textbook formula that includes 
the variation of the unobserved disturbance.  This is the source of the leading 1 under the square root.  
In Figure E6.14, we have simulated the dependent variable by computing a confidence interval for the 
fitted values in the regression, not a forecast interval.  The interval in Figure E6.14 is correspondingly 
narrower because the leading 1 in the computation of the standard error is not included. 
 

 
Figure E6.14  Prediction Interval Using SIMULATE 
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E6.3.7 Fenceposts Plot 
 

 A plot that displays vertical distances from the horizontal axis to the point in the field (it will 
resemble a row of fenceposts) is obtained by adding 
 

  ; Post  
 
to the PLOT command.  This form of the figure may take a couple experiments to obtain the desired 
result, as it is necessary to adjust the location of the horizontal axis.  The symbol (dot) that would 
normally appear in the figure absent the post can be included at the top (or bottom) of the post by adding 
 
   ; Symbol 
to the command. 
 The following example illustrates.  The data used in the plot are a panel of data on 48 states for 
17 years used in Munell (1990).  The data were downloaded from the website for Badi Baltagi’s text: 
http://www.wiley.com/legacy/wileychi/baltagi/supp/PRODUC.prn (Econometric Analysis of Panel 
Data (2005)).  Figure E6.15 displays the within group (state) residual variances based on a loglinear 
regression of log of public capital on a constant, the log of gross state product and the log of total 
employment. 
 

SAMPLE   ; 1-816 $ 
REGRESS  ; Lhs = Log(p_cap) ; Rhs = one,Log(gsp),Log(emp)  
  ; Res = e $ 
CREATE   ; Esq = e^2 $ 
CREATE   ; vstate = Group Mean(esq, Str = state) $ 
REJECT   ; YR < 1986 $ (Use only last year of the data) 
PLOT     ; Lhs = state ; Rhs = vstate  
  ; Post 
  ; Endpoints = 0,50 ; Limits = 0,.2 ; Grid 
  ; Title = Residual Variance by State $ 

 

 
Figure E6.15  Fencepost Plot of Residual Variances by State 

http://www.wiley.com/legacy/wileychi/baltagi/supp/PRODUC.prn�
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E6.3.8 Centipede Plot 
 
 When you send an Lhs variable and two Rhs variables to PLOT, you can produce a plot 
which puts the two values above the corresponding Lhs value and draws a vertical line between them 
with a dot in the center.  This is a particular type of plot that we label a centipede plot, because of its 
appearance which will be clear shortly.  The figure is requested with 
 
 PLOT   ; Lhs = one variable  
   ; Rhs = two variables  
   ; Centipede 
   ... (all other options for plot are the same) $ 
 
In the following example, we compute a regression for each of the 48 states in the panel data set used 
in the preceding example.  We then construct the 95% confidence limits for a confidence interval for 
the 48 estimated coefficients on the third variable.  The centipede plot shows how the confidence 
limits vary from state to state.  The horizontal bar at zero reveals which of the estimates are 
significantly different from zero – that is, those for which the confidence interval does not contain 
zero.  To make this convenient, we use a procedure to do the computations in a loop. 
 

SAMPLE   ; 1-816 $ 
MATRIX     ; bi = Init(48,1,0) ; si = Init(48,1,0)$ 
PROCEDURE 
INCLUDE  ; New ; State = i $ 
REGRESS  ; Lhs = Log(p_cap)  

; Rhs = one,Log(gsp),Log(emp)  
  ; Quietly $ 
MATRIX   ; bi(i) = b(3) $ 
CALC     ; sdi = Varb(3,3) ; sdi = Sqr(Sdi) $ 
MATRIX   ; si(i) = sdi $ 
ENDPROC $ 
EXECUTE  ; i = 1, 48 $ 
CALC     ; tstar = Ttb(.975,14)$ 
MATRIX   ; upper = bi + tstar*si ; lower = bi - tstar*si $ 
SAMPLE   ; 1-816 $ 
REJECT   ; Yr < 1986 $ 
CREATE   ; b_upper = upper(state) ; b_lower = lower(state) $ 
PLOT     ; Lhs = state  
  ; Rhs = b_lower,b_upper 
             ; Centipede  

; Endpoints = 0,48  
  ; Bars = 0 
  ; Vaxis = Confidence Limits 
             ; Title = Confidence Limits for Employment Elasticity by State $ 
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Figure E6.16  Centipede Plot of Confidence Intervals for b(logemployment) 

 
E6.3.9 A Program for Plotting Confidence Regions 
 
 In the example below, which is a general program, a confidence ellipse is drawn for two 
coefficient estimates.  The one dimensional confidence intervals are also drawn.  The computation is 
as follows:  The confidence ellipse is the set of points (β1,β2) for which 
 
   F = ½[(b1 - β1)2s22/D + (b2 - β2)2s11/D - 2(b1 - β1)(b2 - β2)s12/D]  =  F* 
 
where F* is the critical value from the appropriate F table; b1 and b2 are the parameter estimates; s11, 
s12, and s22 are estimated asymptotic (co)variances of b1 and b2; and D = s11s12(1-r12

2) is the 
determinant of the 2×2 covariance matrix.  The ellipse is defined over values of b1 and b2 for which 
the equality is met.  The procedure will do this computation for any model. 
 The program is used here to produce a confidence region for the price and income 
coefficients in an equation for the gasoline market examined earlier.  The commands used to produce 
the figure are 
 
 SAMPLE  ; 1-52 $ 
 CREATE  ; g = gasq/(100*pop/282429) ; logg = Log(g) $ 
 CREATE  ; loginc = Log(pcinc) ; logpg = Log(gasp) $ 
 REGRESS  ; Lhs = logg ; Rhs = one,logpg,loginc $ 
 EXECUTE ; Proc = confregn(2,3) $ 
 
Figure E6.17 below shows the results of the computation.  The procedure is listed below. 
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Figure E6.17  Confidence Region for Two Parameters 

 
 Compute confidence ellipse and confidence regions for two coefficients.  The program does 
not require the model to be a regression model.  It may be used with any model estimated by the 
program.  Theoretically, if the model is not a classical regression model, a large sample appeal to the 
Wald statistic and asymptotic normality of the estimates is needed.  Use the following three steps: 
  
Step 1. Store the procedure. 
Step 2. Estimate the model. 
Step 3. Execute the following procedure.   
 
No modification is necessary.  The plot will contain the confidence ellipse and individual confidence 
intervals for the selected parameters. The first coefficient is labeled b1 and the second is labeled b2.  
The procedure will do the plot for any pair of coefficients. 
 
 PROC = confregn ( coef1 , coef2 ) $ 
 
Gather the coefficients, variances, standard errors, t and F values.  Do the computations for the 
intervals.  CALC obtains the values for the range of b1 for the plot. 
 
 CALC  ; sb1b1 = Varb(coef1,coef1) ; sb1 = Sqr(sb1b1) ; c1 = b(coef1) 
   ; sb2b2 = Varb(coef2,coef2) ; sb2 = Sqr(sb2b2) ; c2 = b(coef2) 
   ; sb1b2 = Varb(coef1,coef2) ; q12 = sb1b2/sb1b1 
   ; u = Sqr(sb2b2 - sb1b2*q12) 
   ; fc = Ftb(.95,2,(n-kreg))    
   ; tc = Ttb(.95,(n-kreg))  
   ; max = Sqr(2*fc*sb1b1)  
   ; min = -max 
   ; db1 = (max - min)/100 $ 
 SAMPLE   ; 1-201 $ 
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Plot 201 points in an ellipse. The first 100 are the lower part, the second 100 are the upper part. Point 
201 equals point 1, so the ellipse is closed.  Compute b1-beta1 then b2-beta2 as a function of          
b1-beta1, then b1 and b2. 
 
 CREATE   ; If(_obsno <= 100) b1 = min+Trn(1,1)  * db1  
   ; If(_obsno >   100) b1 = max-(Trn(1,1)-100) * db1 
 
The first line contains a protection against taking the square root of a negative number. 
 
          ; q = u*Sqr(0 ! (2*fc - b1*b1/sb1b1)) 
           ; If(_obsno <= 100) b2 = c2 + b1 * q12 + q  
           ; If(_obsno >   100) b2 = c2 + b1 * q12 - q  
   ; b1 =  b1 + c1  
   ; If(_obsno = 201) b1 = b1[-200]  
   ; If(_obsno = 201) b2 = b2[-200] $ 
 
These are the one dimensional upper and lower confidence bounds for the two coefficients.  Top, 
bot, etc. make the box a little bigger. 
 
 CALC     ; ucb2 = c2 + tc*sb2 ; lcb2 = c2 - tc*sb2          
   ; ucb1 = c1 + tc*sb1 ; lcb1 = c1 - tc*sb1 
           ; top = 1.025 * Max(b2) ; bot = .975 * Min(b2) 
           ; lft = .975 * Min (b1) ; rt = 1.025 * Max(b1) $ 
 
Finally, plot the ellipse with the confidence limits and a bar and spike to show the original 
coefficients, themselves. 
 
 PLOT     ; Lhs = b1 ; Rhs = b2  
   ; Bars = ucb2,lcb2,c2 ; Spikes = ucb1,lcb1,c1 
           ; Limits = bot,top ; Endpoints = lft,rt ; Fill ; Nosort 
   ; Title = Confidence Region for Two Parameters $ 
 ENDPROC 
 
 The preceding program is written specifically for a linear regression model with normally 
distributed disturbances – it is based on the F statistic for the joint test of the significance of the two 
coefficients.  It can be made more general by setting it up for the Wald (chi squared) statistic that 
would rely on the asymptotic distribution.  The following lists the corresponding program, without 
the surrounding annotation.  It is executed the same as in the earlier program. 
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 PROC  = confregn ( coef1 , coef2 ) $ 
 CALC  ; sb1b1 = Varb(coef1,coef1) ; sb1 = Sqr(sb1b1) ; c1 = b(coef1) 
   ; sb2b2 = Varb(coef2,coef2) ; sb2 = Sqr(sb2b2) ; c2 = b(coef2) 
   ; sb1b2 = Varb(coef1,coef2) ; q12 = sb1b2/sb1b1 
   ; u = Sqr(sb2b2 - sb1b2*q12) 
   ; max = Sqr(5.99*sb1b1) ; min = -max ; db1 = (max - min)/100 $ 
 SAMPLE   ; 1-201 $ 
 CREATE   ; If(_obsno <= 100) b1 = min + Trn(1,1) * db1  
   ; If(_obsno >   100) b1 = max - (Trn(1,1)-100) * db1 
          ; q = u*Sqr( 0 ! (5.99 - b1*b1/sb1b1)) 
           ; If(_obsno <= 100) b2= c2 + b1 * q12 + q  
           ; If(_obsno >   100) b2= c2 + b1 * q12 - q  
   ; b1 = b1 + c1  
   ; If(_obsno = 201) b1 = b1[-200]  
   ; If(_obsno = 201) b2 = b2[-200] $ 
 CALC     ; ucb2 = c2 + 1.96*sb2 ; lcb2 = c2 - 1.96*sb2          
   ; ucb1 = c1 + 1.96*sb1 ; lcb1 = c1 - 1.96*sb1 
           ; top  = Max(b2) + .1*Abs(Max(b2))  
   ; bot = Min (b2) - .1*Abs(Min(b2)) 
           ; lft  = Min (b1) - .1*Abs(Min(b1))   
   ; rt  = Max(b1) + .1*Abs(Max(b1)) $ 
 PLOT     ; Lhs = b1 ; Rhs = b2  
   ; Bars = ucb2,lcb2,c2 ; Spikes = ucb1,lcb1,c1 
           ; Limits = bot,top ; Endpoints = lft,rt ; Fill ; Nosort 
   ; Title = Confidence Region for Two Parameters$ 
 ENDPROC 
 
E6.3.10 Sorting the Data Before Plotting 
 
 The PLOT command contains a switch ; Nosort which is used to request the plotting 
program not to sort the values of the variable on the horizontal axis (carrying all those for the vertical 
axis, of course) before plotting.  The sort is normally done when you use ; Fill to connect points so 
that the plot looks like a function and not a jumble of lines.  When you plot a time series, this sort is 
not necessary since dates are already sorted by construction.  But, it might be necessary if you are 
plotting a cross section of values.  The following experiment demonstrates:  The data on x are 
randomly drawn from the standard normal distribution, but y is a simple, deterministic quadratic 
function of x.  The results are shown in Figure E6.18.  The plot on the left shows the expected result.  
The plot on the right shows what happens if the data are not sorted. 
 
 SAMPLE ; 1-100 $ 
 CREATE ; x = Rnn(0,1) ; y = .3 * (x-1)^2 $ 
 PLOT  ; Lhs = x ; Rhs = y ; Fill $  Then, we add ; NoSort 
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           Data sorted before plotting as usual               Data not sorted before plotting 

Figure E6.18  The Effect of Sorting the Lhs Variable in PLOT ; Fill ... $ 
 
 This issue is relevant in our confidence region plot because of the way it is constructed.   The 
data on b1 are  
 
 b1(min), b1(min)+db1, b1(min)+2db1 ... b1(max), b1(max)-db1, b1(max)-2db1, ..., b1(min) 
 
so the series ascends from b1(min) to b1(max) in equal steps, then descends from b1(max) to b1(min) 
in equal steps.  This allows us to draw a figure that (if it were done slowly enough for you to watch 
it) would move the pen across the field from left to right (the lower half of the ellipse), then move 
back across the field from right to left (the upper half of the ellipse).  This is necessary because, in 
fact, the ellipse is not a function; the values the horizontal axis are not each associated with a single 
y.  If the confidence ellipse is plotted with the sort, Figure E6.19 results; intriguing, perhaps, but not 
what we had in mind. 
 

 
Figure E6.19  Function Plot with Inappropriate Sorting 
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E6.3.11 Plotting a Function 
 
 Frequently, a simple way to plot a function is to plot the function values at a set of equally 
spaced points and connect the dots in the figure.  The following produces Figure B.3 in Greene 
(2011, page 1023), where the density of the t distribution is plotted for several values of the degrees 
of freedom parameter:  The following plots the density of t for 2, 10, 40, and (essentially) infinite 
degrees of freedom. 
 

SAMPLE  ; 1-101 $             Plot and connect 100 segments 
CREATE  ; t = Trn(-4,.08) $ Values -4 to +4 in steps of .08 
 

This procedure obtains the value of the density over a grid of values contained in variable t, and puts 
them in a variable passed as fn. 
 

PROC = tdensity(fn,t,d) $ 
CREATE ; fn = Gma((d+1)/2)/Gma(d/2) / Sqr(d*pi) * (1+t*t/d)^(-(d+1)/2)$ 
ENDPROC $ 
 

Compute for 2, 10, 40, infinity (last is N(0,1)).  Then plot the four densities in the same figure. 
 

EXECUTE  ; Proc = tdensity(t2,t,2) $ 
EXECUTE  ; Proc = tdensity(t10,t,10) $ 
EXECUTE  ; Proc = tdensity(t40,t,40) $ 
CREATE   ; tinf = N01(t) $ 
PLOT     ; Lhs = t ; Rhs = t2,t10,t40,tinf ; Fill intervals ; Yaxis = Density 

           ; Title = t Densities with Different Degrees of Freedom $ 
 

 
Figure E6.20  Plot of t Density with Varying Degrees of Freedom 
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 An area under the function being plotted can be filled by using 
 

; Area = Left, Right 
 
in the command.  This has the effect of filling the figure from the left margin (negative infinity) to 
Left and from Right to the right margin (positive infinity).  The following familiar figure shows the 
upper and lower 2.5% critical regions for a t distribution with 40 degrees of freedom. 
 

SAMPLE  ; 1-1000 $ 
 CREATE  ; t = Trn(-4,.008) $ Values -4 to +4 in steps of .08 
 EXECUTE ; Proc = tdensity(t40,t,40)$ 
 CALC   ; t025 = Ttb(.025,40) ; t975 = -t025$ 

PLOT   ; Lhs = t ; Rhs = t40  
; Yaxis = density 
; Title = Upper and Lower 95% Critical Values for t[40] 
; Area = t025,t975 $ 

 

 
Figure E6.21  Critical Regions for the t[40] Distribution 

 
You can hide the left tail area by making Left low enough to be out of the picture, such as -5 

in the figure above and the right area by making Right large enough to be out of the picture (e.g., +5 
above).  In order to obtain a complete fill, the number of points plotted should be at least 500.   If the 
area has gaps, they will close when you resize the graph. 
 A function plot for a discrete variable with a small number of values will appear like the top 
panel of Figure E6.22 which plots a Poisson probability distribution.  Connections between the dots 
are meaningless (there is no function value for xp = 2.5).  Nonetheless, it is customary to accentuate 
the plot by including the connections.  For this sort of figure, use 
 
   ; Fill ; Symbols 
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The commands are: 
 
SAMPLE ; 1-10 $ 
CREATE  ; xp = Trn(0,1)$ 
CREATE  ; prob_xp = Exp(-2)*2^xp/Gma(xp+1) $ 
PLOT  ; Lhs = xp ; Rhs = prob_xp 

; Fill ; Symbols 
; Title = Poisson Probabilities with Lambda = 2 
; Grid 
; Vaxis = Poisson Probability $ 
 

 
 

 
Figure E6.22  Poisson Probabilities 
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E6.3.12 Stratified Scatter Plots 
 
 A scatter plot can be stratified by a stratification variable, so that the values associated with 
each stratum can be given a different symbol in the figure.  You may plot up to five strata in the 
same figure.  The command format is 
 
 PLOT  ; Lhs = variable on horizontal axis 
   ; Rhs = variable on vertical axis 
   ; Str = stratification variable which takes values 1, 2, ... up to 5 
   [ any other options – all available except ; Fill and ; Regression ] $ 
 
Figure E6.23 shows a plot of age vs. income stratified by marital status using the health care system 
data that we used in Section E3.3 (histograms).  In order to reduce the density of the plot, only a 
small subsample of observations is used 
 
 SAMPLE ; 1-500 $ 
 CREATE ; married = married + 1 $ 
 PLOT   ; Lhs = age  
   ; Rhs = hhninc  
   ; Str = married 
   ; Title = Income vs. Age for Married and Nonmarried $ 
 

Figure E6.23  Scatter Plot with Stratification 
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E6.4 Multiple Scatter Plots – The SPLOT Command 
 
 The command for computing and plotting several scatter diagrams simultaneously is 
 
 SPLOT  ; Rhs = list of from three to five variables $ 
 
This command requests a simultaneous plot of every variable in the list against every other variable. 
This can produce up to 4×5 = 20 plots at the same time. (Variables are not plotted against themselves.) 
The command builder is the same as the first page for PLOT and can be accessed by selecting 
Model:Data Description/Multiple Scatter Plots. There are no options or other specifications for this 
command.  An example in which we obtain simultaneous scatter plots for five of the price indices in 
the gasoline market data appears in Figure E6.24. 
 

SPLOT ; Rhs = pn,pd,ps,pnc,puc 
  ; Title = Aggregate and Transport Price Indexes $ 

 

 
Figure E6.24  Multiple Scatter Plots with SPLOT 

 
E6.5 Plotting Matrices – The MPLOT Command 
 
 The command for plotting the values in one matrix against those in another is 
 
 MPLOT  ; Lhs = matrix 1 ; Rhs = matrix 2 $ 
 
The plot is in the same fashion as a pair of variables.  All other options are the same as in the PLOT 
command.  The graph is produced by treating the corresponding elements of the two matrices as if 
they were observations on a pair of variables.  Only one Rhs matrix may be given.  All other options, 
such as ; Limits, ; Fill, etc. are the same as for PLOT.   We consider two examples below.  The 
command builder for MPLOT is the same as for PLOT.  It can be accessed by selecting 
Model:Data Description/Plot Matrix. 
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E6.5.1 Plotting Autocorrelation and Partial Autocorrelation Functions 
 

 The IDENTIFY command described in Chapter E5 produces character graphic plots of the 
autocorrelation and partial autocorrelation functions for a variable.  It also saves these results as a 
matrix, acf_pacf, so if you want to produce sharper figures, you can use MPLOT.  The program 
segment below shows how to obtain such a plot for the ACF and PACF for any time series.  (The 
character plot will actually be more informative since it also lists the test statistics.) 
 Get the ACF and PACF. 
 
 IDENTIFY  ; Rhs = the variable ; Pds = the value you choose $ 
 
(We used PD in the gasoline data for our example.)  Find out how many lags were used.  
 
 CALC  ; lags = Row(acf_pacf) $ 
 
Extract the two columns of the results matrix. 
 
 MATRIX ; acf = Part(acf_pacf,1,lags,1,1) ; pacf = Part(acf_pacf,1,lags,2,2) $ 
 
Use a trick to create a matrix containing 1,2,... 
 
 SAMPLE ; 1 - lags $ 
 CREATE ; t = Trn(1,1) $ 
 MATRIX ; k = t $ 
 
Now, plot the figures. 
 
 MPLOT ; Lhs = k ; Rhs = acf,pacf   
   ; Limits = -1,1 ; Bars = 0 ; Symbols  
   ; Title = ACF and PACF for Price Index for Durable Goods $ 
 

 
Figure E6.25  ACF and PACF for Durable Goods Price Index 
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E6.5.2 Examining an Estimation Criterion (Log Likelihood) Function 
 
 The next example involves a graphical analysis of a nonlinear least squares problem.  The 
example is taken from Greene (2011).  A generalized production function is written 
 
   logy + θy = β1 + β2logk + β3logl + ε. 
 
The log likelihood function for this model, concentrated over σ2 = Var[ε], is 
 
   logL = Σi [log(1 + θyi) - logyi] - (n/2)[1 + log(2π) + log(e′e/n)] 
 
where e′e is the sum of squared residuals in the least squares regression of logy+θy on the Rhs 
variables.  Conditioned on θ, the MLE is OLS, and we scan over θ to find the MLE.  The data are set 
up as follows:   
 
 IMPORT $ 
 

state,valueadd,capital,labor,estabs 
Alabama         126.148       3.804     31.551     68 
California     3201.486     185.446    452.844   1372 
Connecticut     690.670      39.712    124.074    154 
Florida          56.296       6.547     19.181    292 
Georgia         304.531      11.530     45.534     71 
Illinois        723.028      58.987     88.391    275 
Indiana         992.169     112.884    148.530    260 
Iowa             35.796       2.698      8.017     75 
Kansas          494.515      10.360     86.189     76 
Kentucky        124.948       5.213     12.000     31 
Louisiana        73.328       3.763     15.900    115 
Maine            29.467       1.967      6.470     81 
Maryland        415.262      17.546     69.342    129 
Massachusetts   241.530      15.347     39.416    172 
Michigan       4079.554     435.105    490.384    568 
Missouri        652.085      32.840     84.831    125 
New_Jersey      667.113      33.292     83.033    247 
New_York        940.430      72.974    190.094    461 
Ohio           1611.899     157.978    259.916    363 
Pennsylvania    617.579      34.324     98.152    233 
Texas           527.413      22.736    109.728    308 
Virginia        174.394       7.173     31.301     85 
Washington      636.948      30.807     87.963    179 
West_Virginia    22.700       1.543      4.063     15 
Wisconsin       349.711      22.001     52.818    142 

 
CREATE  ; y = valueadd/estabs    
  ; logy = Log(y) 

; logcaptl  = Log(capital/estabs)   
; loglabor = Log(labor/estabs) $ 
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The commands for producing trace of the log likelihood in Figure E6.26 are as follows: 
 
 CALC  ; i = 0$ 

MATRIX ; ti = Init(26,1,0) ; li = ti $ 
PROCEDURE 
CREATE  ; d = logy + t*y ; jacobian = Log(1+t*y) - logy $ 
REGRESS ; Quietly ; Lhs = d ; Rhs = one, logcaptl, loglabor $ 
CALC  ; loglik = Sum(jacobian) - n/2*(1+Log(2*pi)+Log(sumsqdev/n)) $ 
MATRIX ; {i = i+1} ; ti(i) = t ; li(i) = loglik $ 
ENDPROCEDURE 
EXEC  ; Silent ; t = 0,1,.04 $ 
MPLOT ; Lhs = ti ; Rhs = li ; Fill ; Grid  
  ; Endpoints = 0,1  
  ; Vaxis = Log Likelihood 
  ; Title  = Log Likelihood for a Generalized Production Model $ 
 

 
Figure E6.26  Matrix Plot of a Log Likelihood Function 
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E6.6 Plotting Functions – The FPLOT Command 
 

 The command for plotting a function of one variable is 
 
 FPLOT  ; Fcn = function definition  
   ; ... several other mandatory specifications $ 
 
The full, general form of the command is 
 
 SAMPLE ; 1 $ 
 FPLOT     ; Fcn = the function definition of f(x| any other variables) 
        ; Labels = x ... any other variables  
   ; Plot (x)  
        ; Start = an interior point in the range of x 
        ; Pts = number of points to plot 
        ; Limits = lower,upper limit of range of x over which to plot  
   ; Endpoints = lower,upper limits for horizontal axis (optional) $ 
 
There are no other options for this plotting function.  The command has this structure because it is 
also used with the MINIMIZE command, described in Chapter E66.  The function definition may 
use any of the features described in Section E14.3 and Chapter E66 for functions for the MINIMIZE 
command.  The purpose of the ; Start = value part of the command is for you to provide a point at 
which LIMDEP can test the function definition that you have given to see if it is computable.  If it is, 
processing continues. The function may involve any number of parameters specified by the ; Labels 
specification.  The ; Plot(x) must specify one of the variables in the ; Labels list.   
 The SAMPLE ; 1 $ command is used to prevent needless computing. This command can be 
used to plot a function which is a sum of terms where the sum is taken over the current sample.  But, 
for a simple function such as the one examined in the example below, this summing operation would 
just compute and add the same function n times. 
 You may specify the desired limits on vertical axis with third and fourth values in the  
; Limits specification. The first and second give the range of variation on the horizontal axis for the 
variable being plotted.  They do not control the limits on the actual graph plotted.  Plot limits for the 
horizontal axis (only to control the display) are specified with ; Endpoints = lower,upper. These 
must widen the interval specified by ; Limits = lower,upper.  They may not narrow it at either end.  
Thus, for example, the command containing ; Limits = 0,1 ; Endpoints = -1,2 evaluates the function 
for the variable ranging from zero to one, then constructs a graph in which the horizontal axis 
contains a range from minus one to two.  There will be blank space in the graph from minus one to 
zero on the left of the plotted function, and from one to two on the right. 
 The command builder dialog box for the FPLOT command is found in the Model: 
Numerical Analysis/Plot Function option.  An illustration appears with the example below. 
 The following is the example in Section E4.3 of Greene (2011, page 1108), maximizing over 
ρ and β the function 
 

   F(ρ,β) = ρlogβ - logΓ(ρ) - 3β + ρ- 1. 
 

At the maximum, we must have ∂F/∂β = ρ/β - 3 = 0 which implies that at the solution, β = ρ/3.  
Considering only these points, then, the concentrated function to be maximized is 
 

   F*(ρ)  =  ρlog(ρ/3) - logΓ(ρ) - 1.    
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We do this graphically with 
 
 SAMPLE ; 1 $ 
 FPLOT   ; Fcn = r*Log(r/3) - Lgm(r) - 1  
   ; Labels = r  
   ; Plot(r) ; Start = 5   
   ; Pts = 100 ; Limits = 1,16 $ 
 
The command builder that will produce this command is shown in Figure E6.27. 
 

 
Figure E6.27  Command Builder for FPLOT 

 
The results in Figure E6.28 reveal that the maximum is near 5.2.  (The correct value is 5.23.) 
 

 
Figure E6.28  Function Plot of a Concentrated Log Likelihood 
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E6.7 Contour Plots – The CPLOT Command 
 
 CPLOT may be used to plot contours of a function in two dimensions.  The feature may be 
used to plot contours of a function 
 
   f(x1,x2 | x3,…) = c 
 
for values of c.  We have used it in the example below to plot the contours of a log likelihood 
function. For a probit model, the command format is 
 

CPLOT  ; Fcn = any function of at least two arguments 
; Labels = the labels in the function 
; Plot(x,y) = two of the variables identified by the labels 
; Pts = number of evaluation points 
; Start = the usual values 
; Limits = xlow,xhigh,ylow,yhigh 
; Title = desired title $ 

 
The function can be a log likelihood or any other function.  In Figure E6.29, we have plotted the 
function that was examined in the previous section, 
 
   F(ρ,β) = ρlogβ - logΓ(ρ) - 3β + ρ- 1. 
 
The commands are 
 

SAMPLE  ; 1 $ 
CPLOT  ; Fcn = ro*Log(beta) - Lgm(ro) - 3*beta + ro - 1 

; Labels = beta,ro 
; Plot(beta,ro)  
; Start = 2,5 
; Limits = .1,5,1,16 
; Pts = 150 
; Title = Contour Plot of Log Likelihood $ 

 
This procedure does a very large amount of computation and the plot takes a while to draw.  

The function is computed Pts2 times to produce the grid of values.  Then, the plot itself is quite 
involved.  The first example below involves a simple function of two parameters, but no data, so the 
sample is set to one observation at the outset.  Figure E6.29 takes about ten seconds to produce.  The 
second example below is computed for the log likelihood of a probit model in a sample of about 
4,000 observations and six parameters.  This procedure takes several minutes to complete.  Note, 
finally, contour plots are difficult to plot when the function has more than one model.  The 
implementation here will not perform well if the function has hills and valleys.  It is constructed to 
handle a unimodal function such as the straightforward log likelihood functions shown in the 
examples. 
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Figure E6.29  Contour Plots 

 
 The computations for a probit model are as follows:  The estimator maximizes the log 
likelihood over six parameters.  The contour plot examines the log likelihood function in the space of 
the coefficients on female and educ, which for convenience have been made the first and second 
parameters in the function. 
 

INCLUDE  ; New ; year = 1991 $ 
PROBIT  ; Lhs = doctor  

; Rhs = female,educ,one,age,married,hhninc $ 
CPLOT ; Fcn = Log(Phi((2*doctor-1)* 

(b1*female+b2*educ+b3+b4*age+b5*married+b6*hhninc))) 
; Start = b 
; Limits = .3,.5,-.03,.01 
; Pts = 25 
; Plot(b1,b2) 
; Labels = b1,b2,b3,b4,b5,b6 
; Title = Log Likelihood for Probit Model $ 
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Figure E6.30  Contour Plot for Probit Log Likelihood 
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E7: Linear Regression – Estimation 
 
E7.1 Introduction 
 
 This chapter will detail estimation of the single equation, linear regression model 
 
   yi  =  xi1β1  +  xi2β2  +  ...  +  xiKβK  +  εi 

    =  xi′β   +  εi, i = 1,...,n. 
 
The full set of observations is denoted for present purposes as 
 
   y  =   Xβ  +  ε. 
 
The initial stochastic assumptions are the most restrictive for the linear model: 
 
   E[εi| X ]   =  0  =  E[εi] ∀ i         (zero mean) 
   Var[εi | X]   =  Var[εi]  =  σ2, ∀ i    (homoscedastic) 
   Cov[εi , εj | X] =  Cov[εi , εj ]  =  0  ∀ i ,j  (nonautocorrelation). 
 
More general models are described in the chapters to follow.   
 

E7.2 Least Squares Regression Command 
 
 The basic command for the classical linear regression model is 
 
 REGRESS ; Lhs = dependent variable 
   ; Rhs = regressors $ 
 
A constant term is not automatically included in the Rhs.  If your model should contain a constant, 
you must include one among the Rhs variables.  (Unless the model specifically dictates that there 
should be no constant term (as in certain time series settings), you should always include it.) 
 
NOTE:  Remember that LIMDEP does not automatically include a constant term in the equation.  If 
you want one, be sure to include one among the Rhs variables.   
 
 The Rhs list may also include lagged variables, logs of variables, interaction terms, powers 
of variables, and so on.  This is discussed further in Section E7.5.  This command requests a linear 
ordinary least squares regression of the Lhs variable on the set of Rhs variables.  The standard output 
from the procedure is listed in the next section. 
 This is the basic regression model.  The limit on the number of parameters which may appear in 
the model is about 148 if you use no other specifications.  If you use any of the optional procedures 
listed below, reduce this maximum to 146 to allow for the additional space needed for the computations. 
 The Main page of the command builder for the basic regression model appears below.  This 
command builder is obtained by selecting Model:Linear Models/Regression. The minimum 
information provided from this dialog box is the Lhs and Rhs variables, as shown in Figure E7.1.  
Other options are discussed below. 
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Figure E7.1  Main Page of the Command Builder for REGRESS 

 

E7.3 Computing the Least Squares Coefficients 
 

 Least squares regression is based on the central estimation results 
 
   b =  (X′X)-1X′y,  
   e =  y - Xb 
 
and the subsequent results that are derived from these.  However, in order to maximize the accuracy of 
the computation, LIMDEP does not compute the least squares regression coefficients directly using the 
standard matrix algebra formula when it can be avoided.  Consider the general case, ignoring practical 
considerations for the moment.  The data matrix, X, can be written in its QR decomposition as 
 
   X  =  QR  
 
where Q is n×K, R is K×K, Q′Q = I and R is upper triangular.  Using the QR decomposition of X in 
order to compute the least squares coefficients, rather than using an inversion method to apply the 
matrix formula allows extremely accurate solutions.  (See the NIST benchmarks in Section E7.11.)  
Note, however, that using this method requires replication of the data matrix, so if X is very large, 
this may be impractical;  LIMDEP uses the QR method if n×K ≤ 33,000 and if n ≤ 6,000.  If either of 
these constraints is exceeded, LIMDEP computes the moment matrix and inverts it using the LU 
decomposition method.  This is an accurate inversion method, as good as or better than the common 
Cholesky method (which is used elsewhere in LIMDEP).  (This does not place a limit on the number 
of observations you can use.  If your data set has several million observations, you can still use all of 
LIMDEP’s estimation programs.) 
 Before attempting to compute a linear regression, LIMDEP makes one all out attempt to 
prevent you from using bad data to compute a linear model.  We search for the condition of more 
than one variable with no variation in the model – one such variable, the constant, is to be expected. 
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More than one means trouble.  The set of variables is examined.  If more than one variable shows a 
variance less than 10-20, we conclude that the regression is not estimable.  In this case, a diagnostic 
such as the following (produced by a query from a user) will appear: 
 
Variable MU1      always =     6.43751. No variation! 
Variable D_C1     always =    -2.35884. No variation! 
Regression cannot be computed. Collinearity 
 

NOTE: LIMDEP never decides to just drop a few variables for you and compute the regression 
using those that remain.  That decision is up to you, not the software.  If your data are perfectly 
collinear because variables are identical, or because you have variables that have no variation, 
LIMDEP stops the estimation at that point, with a diagnostic of the problem. 
 

E7.3.1 Results Produced by REGRESS 
 

 The linear regression produces a set of results such as the one below for the gasoline data 
used at several points in the earlier chapters:  The command and results are as follows: 
 

REGRESS ; Lhs = logg 
; Rhs = one, logpg,loginc,Log(pnc),Log(puc),Log(ppt) $ 

 

NOTE:  You can suppress all results in the command by including ; Quietly.  Why would you do 
this?  You might be interested in producing only the retrievable results, but not actually seeing the 
surrounding regression results.  For example, if you are computing a bootstrap estimator by 
computing the same regression for, say, 1,000 different random subsets of your sample, chances are, 
you are not interested in the visible results of the 1,000 regressions.  Rather, only the sample 
variance of the 1,000 vectors of coefficients is of interest. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.79379           5 
Residual     Sum of Squares       =        .107004          46 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .04823 
Fit          R-squared            =         .96311  R-bar squared =   .95910 
Model test   F[  5,    46]        =      240.20584  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       87.05475  Akaike I.C.   = -5.95537 
             Restricted (b=0)     =        1.25792  Bayes  I.C.   = -5.73022 
             Chi squared [  5]    =      171.59365  Prob C2 > C2* =   .00000 
Model was estimated on May 08, 2011 at 11:40:49 PM 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -11.5997***     1.48817    -7.79  .0000    -14.5165   -8.6829 
   LOGPG|    -.03438         .04202     -.82  .4174     -.11673    .04797 
  LOGINC|    1.31597***      .14198     9.27  .0000     1.03769   1.59425 
  logPNC|    -.11964         .20384     -.59  .5601     -.51916    .27989 
  logPUC|     .03754         .09814      .38  .7038     -.15481    .22990 
  logPPT|    -.21514*        .11656    -1.85  .0714     -.44359    .01331 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
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The statistics reported are as follows: 
 
 • The model framework – linear least squares regression 

 • The date and time when the estimates were computed 

 • Name of the dependent variable 

 • Mean of Lhs variable          y  =  (1/n)Σiyi, 

 • Standard deviation of Lhs variable     sy  =  { }1/2
2

1
[1 / ( 1)] ( )n

ii
n y y

=
− −∑  

 • Name of  the weighting variable if one was specified 
 • Number of observations    =  n, 

 • Number of parameters in regression  =  K, 
 • Degrees of freedom     =  n-K, 

 • Sum of squared residuals          e′e  =  2 2
1 1

ˆ( ) ( )n n
i i i ii i

y y y
= =

′− = −∑ ∑ x b  

 • Standard error of e          s =  /( )n K−e'e  

 • R2         R2  =  1  -  e′e/ 2
1
( )n

i ii
y

=
′−∑ x b  

 • Adjusted R2         2R  =  1 – (n-1)/(n-K)[1 – R2] 

 • F statistic F[K-1,n-K] =  [R2/(K-1)] / [(1-R2)/(n-K)] 

 • Prob value for F  ProbF =  Prob[F(K-1,n-k)] > observed F 

 • Log likelihood     logL =  -n/2[1 + log2π + log(e′e/n)] 

 • Restricted log likelihood     logL0 =  -n/2[1 + log2π + log( 2
ys  (n-1)/n)] 

 • Chi squared[K-1]          χ2 =  2(logL – logL0) 

 • Prob value for chi squared  Probχ2 =  Prob[χ2(K-1)] > observed chi squared 

 • Akaike Information Criterion     AIC =  (logL – K)/(n/2)  -  (1 + log2π) 

 • Bayes Information Criterion   =  log[e′e/n) + k log(n)/n 
 
In time series settings, the results will also contain 
 
 • Durbin-Watson       dw =  2 2

2 1 1( ) /T T
t t t t te e e= − =Σ − Σ  

 • Autocorrelation          r =  1 – dw/2. 
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 The R2 and related statistics are problematic if your regression does not contain a constant 
term.  For the linear model, LIMDEP will check your specification, and issue a warning in the 
output, as shown below.  In the results below, we have used the same REGRESS command, but 
omitted the constant term. 
 

REGRESS ; Lhs = logg 
; Rhs = logpg,loginc,Log(pnc),Log(puc),Log(ppt) $ 

 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             Number of observs.   =             52 
Model size   Parameters           =              5 
             Degrees of freedom   =             47 
Residuals    Sum of squares       =        .248331 
             Standard error of e  =         .07269 
Fit          R-squared            =         .91439 
             Adjusted R-squared   =         .90711 
Model test   F[  4,    47] (prob) =   125.5(.0000) 
Diagnostic   Log likelihood       =       65.16529 
             Restricted(b=0)      =        1.25792 
             Chi-sq [  4]  (prob) = 127.8(  .0000) 
Info criter. Akaike Info. Criter. =       -5.15193 
Not using OLS or no constant. Rsqrd & F may be < 0 
Model was estimated on May 08, 2011 at 11:44:44 PM 
----------------------------------------------------------------------------- 
 
Note that the analysis of variance computations are now omitted. 
 Some additional notes about the standard least squares computations:  (These are among our 
FAQs.) The log likelihood can be positive!  It will be if e′e/n ≤ 0.058549, and nothing in the model 
prevents this.  Log likelihoods are only guaranteed to be negative for discrete choice models.  If your 
model does not contain a constant term, then the restricted log likelihood that assumes only a constant 
term is meaningless in your model, and you should not use it as a basis for likelihood ratio tests. 
 Finally, the main table of regression results contains, for each Rhs variable in the regression: 
 

• Name of the variable, 

• Coefficient bk, 

• Standard error of coefficient estimate =  sek = the square root of the kth diagonal element of 
s2(X′X)-1 

• t ratio for the coefficient estimate tk = bk / sek 

• Significance level of each t ratio based on the t distribution with [n-K] degrees of  freedom = 
p value = Prob[t(n-K)] > observed tk 

• Confidence interval for coefficient.  The default confidence level is 95%. You can change 
this with ; Clevel = value, where value ranges from .05 to .99. 

 
Footnotes to the table will often document computations that are not obvious or might not be well 
known, such as how the RESET test is computed. (See Section E7.9.2.) 
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E7.3.2 Retrievable Results 
 
 The retrievable results which are saved automatically by the REGRESS command are 
 
 Matrices: b =  slope vector = (X′X)-1 X′y 
   varb =  estimated covariance matrix = [e′e/(n-K)](X′X) -1 
 
 Scalars: ssqrd  = e′e/(n-K) 
   rsqrd = R2 
   s = s 
   sumsqdev = sum of squared deviations, e′e 
   rho = autocorrelation coefficient, r 
   degfrdm = n-K 
   sy = sample standard deviation of Lhs variable 
   ybar = sample mean of Lhs variable 
   kreg = number of independent variables, K 
   nreg = number of observations used to compute the regression, n 
     Note, this may differ from the sample size if you have skipped 
     missing values. 
   logl = log likelihood 
   exitcode = 0.0 unless the data were collinear or OLS gives a perfect fit 
 
 Last Model: b_name   where the names are the Rhs variables.  
     (See WALD in Chapter R14.) 
 
 Last Function:  Conditional mean = b′x 
 
The results listed above are all replaced by each regression.  For example, after a REGRESS 
command is given, the names b and varb can be used in subsequent MATRIX and CALC 
commands for any computation.  For example, 
 
 NAMELIST  ; x = x1,x2,x3,x4,one $ 
 REGRESS ; Lhs = y ; Rhs = x $ 
 
produces a 5×1 vector b and a 5×5 matrix varb.  A subsequent MATRIX command might be 
 
 MATRIX ; c = b(1:4) ; vc = Varb(1:4,1:4) ; wald = c’<vc>c $ 
 
This computes a Wald statistic for testing the hypothesis that the first four elements of β are zero.  
The last function noted above is used by SIMULATE to compute predictions (see the end of Section 
E7.6), by PARTIALS to compute partial effects (see Section E7.5) and by DECOMPOSE for 
Oaxaca decompositions (see Chapter R12). 
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E7.3.3 Results that Can Be Computed with MATRIX and CALC 
 
 Many of the particular statistics listed above can be computed with the MATRIX and 
CALC commands without producing all of the visible regression results.  These functions can be 
used, for example, in computing regression results as parts of other kinds of programs. 
 Any of the regression results shown above can be reproduced with MATRIX.  Here are a 
few of the computations.  All depart from the definitions of the sample and regressor matrix: 
 
 SAMPLE ; ... or 
 INCLUDE  ; ... or 
 PERIOD  ; ... $ 
 NAMELIST ; x = one,... $ 
 CREATE ; y = ... the dependent variable $  Now, we have a common notation. 
 NAMELIST ; ny = y $ (Some functions require namelists, even if only one variable.) 
 
You can compute the following regression statistics with MATRIX and CALC: 
 

• Coefficients:   
 
MATRIX ; slopes = Xlsq(x, y) or  <x’x> * x’y 
 

• Sum of squares:  
 
MATRIX ; sumofsqs = y’y - y’x * <x’x> * x’y. 
MATRIX ; sumofsqs = Rcpm(x,ny)   
 

• Covariance matrix for least squares slopes: 
 

MATRIX ; vc = {1/(n-Col(x))} * Rcpm(x,ny) * <x’x>  $  (Uses CALC in { }.) 
 
 Other results can be computed with MATRIX as well, but since these are all scalars, it is 
likely to be easier to compute them with CALC, which also has several regression based statistics 
built into its functions.  The ‘x’ and ‘y’ in the functions below are the namelist and variable defined 
above.  For the statistics below to have their usual meaning, x should contain a constant term. 
 

Rsq(x,y)   =  R2 in regression of y on x,   1- 2
1

ˆ( )n
i ii

y y
=

−∑ / 2
1
( )n

ii
y y

=
−∑  

Tss(x,y)   =  total sum of squares,    2
1
( )n

ii
y y

=
−∑  

 Ess(x,y)   =  error, or residual sum of squares,  2
1

ˆ( )n
i ii

y y
=

−∑    

 Xss(x,y)  =  explained sum of squares,   2
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y y
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Ser(x,y)   =  standard error of regression,   ( )1/2
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1
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Lik(x,y)   =  log likelihood function,   2
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1
2 1 ln 2 n
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You can use any of these in subsequent commands.  For example, to replicate the F statistic for 
testing the hypothesis that all coefficients are zero, you could use 
 
 CALC  ; fstat = (n - Col(x)) * Xss(x,y) / Ess(x,y) / (Col(x) - 1) $ 
 
Of course, MATRIX, CALC, and CREATE commands may all be combined in programs that do 
any regression based computation you’d like. 
 
E7.3.4 Beta Coefficients 
 
 Researchers are sometimes interested in ‘beta coefficients’ instead of the original regression 
coefficients.  Beta coefficients are the linear regression coefficients that would result if data were 
standardized – centered around the mean then divided by the standard deviation – before computing 
the regression.  In principle, there is no need to compute this regression separately; these coefficients 
can be computed from the original regression results by multiplying each regression coefficient by 
the ratio of the standard deviation of the dependent variable to the standard deviation of the 
respective independent variable.  However, standardizing the data is a minor operation that produces 
the appropriate standard errors as well.  The following example demonstrates for a small model: 
 
 CREATE ; s_logg = Std(logg) ; s_logp = Std(logpg) ; s_loginc = Std(loginc) $ 
 REGRESS ; Lhs = s_logg ; Rhs = s_logp, s_loginc, one $ 
 
We include the redundant constant term so that the estimator will report the analysis of variance 
results. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=S_LOGG   Mean                 =         .00000 
             Standard deviation   =        1.00000 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        47.8899           2 
Residual     Sum of Squares       =        3.11011          49 
Total        Sum of Squares       =        51.0000          51 
             Standard error of e  =         .25194 
Fit          R-squared            =         .93902  R-bar squared =   .93653 
Model test   F[  2,    49]        =      377.25464  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =        -.55355  Akaike I.C.   = -2.70120 
             Restricted (b=0)     =      -73.27993  Bayes  I.C.   = -2.58863 
             Chi squared [  2]    =      145.45276  Prob C2 > C2* =   .00000 
Model was estimated on May 09, 2011 at 06:28:19 AM 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  S_LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
  S_LOGP|    -.48753***      .10787    -4.52  .0000     -.69894   -.27611 
S_LOGINC|    1.41654***      .10787    13.13  .0000     1.20512   1.62795 
Constant|        0.0         .03494      .00 1.0000 -.68476D-01  .68476D-01 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E7.4 Stepwise Regression 
 
 LIMDEP will compute a least squares regression by the ‘forward stepwise’ method.  The 
command is 
 
    REGRESS  ; Lhs = ...  
   ; Rhs = ... as usual  (one may be omitted) 
   ; Alg = stepwise  $ 
 
Stepwise regression can also be selected from the Options page of the REGRESS command builder 
as shown in Figure E7.7.  This command treats all variables in the Rhs list as candidates for entrance 
to or deletion from the equation.  The constant term is always inserted automatically, so you can omit 
one from the Rhs list. (This is one of only a small handful of cases in which a constant term is 
assumed for you.)  You can force a set of variables to be included in the equation with 
 
   ; Rh2 = list of variables 
 
With this specification included, the final equation will include all variables in the Rh2 list and those 
in the Rhs list which pass the tests for inclusion.  The limits on the total number of variables in the 
Rhs and Rh2 lists are 70 in each. 
 Other options available for this form of the command are the usual for the linear regression 
model, including ; List, ; Res = name, and ; Keep = name.  These are described in detail in the 
following sections.  The results which are saved by this command are exactly the same as those for 
the regression command described earlier 
 LIMDEP will pause between steps and ask you if you want to continue (take another step). 
You can suppress this dialogue and instruct the program to continue until all variables that satisfy the 
entry criterion have been entered by adding 
 
   ; Output = 5 
 
 The stepwise regression method (see Kennedy and Gentle (1980)) is as follows: With a 
given set of variables already in the equation, 
 
Step 1. Find the variable not yet entered which will raise R2 by the largest amount.  Enter it if the 

squared t ratio on that variable after it is entered exceeds the critical F ratio from the table for 
the appropriate degrees of freedom. 

 
Step 2. Next, among the set of variables already entered, including the one from Step 1, if one was 

entered, find the one which leads to the smallest reduction in R2 when it is deleted.  Delete it if 
its squared t ratio is less than the critical F ratio. 

 
After Steps 1 and 2, exit if any of the following criteria are met: 
 

• The same variable was entered then deleted. 
• All variables are entered. 
• No variable can enter or exit. 
• Fifty cycles are attempted. 
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 The diagnostic statistics presented at each step are the standard analysis of variance results.  
The Mallows Cp criterion is 
 
   Cp  =  e′e / s2  +  2(P+1) - T 
 
where e′e is based on the P included variables at the time and s2 is e′e/(n-K) with all variables 
included.  The limiting value, with all variables included is 2(P+1). 
 In the example below, we reestimated the gasoline consumption equation with all price 
variables.  The command forces the log of the gasoline price and the log of income to remain in the 
equation, and uses the stepwise method to select among the micro- and macroeconomic price 
indices.  (Note, this example illustrates the danger of relying on the mechanical selection of 
variables.  If ; Rh2 is not used to force the gasoline price to remain in the model, it does not appear 
in the final specification.) 
 

REGRESS  ; Lhs = logg  
; Rhs = logpnc,logpuc,logppt,logpn,logpd,logps  
; Rh2 = logpg,loginc 
; Alg = stepwise  
; Output = 5 $ 

 
+-------------------------------------------------------------------------+ 
| Stepwise Regression                                                     | 
| Dependent variable     = LOGG                                           | 
| Number of observations =       52                                       | 
| Number of regressors   =        8                                       | 
| Degrees of freedom     =       43                                       | 
| Predictor variables are:                                                | 
| LOGPNC   LOGPUC   LOGPPT   LOGPN    LOGPD    LOGPS    LOGPG    LOGINC   | 
+-------------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.80737           3 
Residual     Sum of Squares       =    .934290E-01          48 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .04412 
Fit          R-squared            =         .96779  R-bar squared =   .96578 
Model test   F[  3,    48]        =      480.77026  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       90.58193  Akaike I.C.   = -6.16795 
             Restricted (b=0)     =        1.25792  Bayes  I.C.   = -6.01786 
             Chi squared [  3]    =      178.64802  Prob C2 > C2* =   .00000 
Model was estimated on May 09, 2011 at 07:02:01 AM 
Mallows Cp statistic              =         39.011 
----------------------------------------------------------------------------- 
Analysis of Variance for the Current Regression 
Source       Deg.Fr.      Sum of squares      Mean Square      F 
Regression      3                2.80737           .93579 480.77 
Residual       48                 .09343           .00195 
Total          51                2.90080           .05688 
Variable entered this step = LOGPS   , Deleted = 
Note: First  2 variables are forced in. 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
   LOGPG|     .02995         .04145      .72  .4734     -.05128    .11119 
  LOGINC|    1.46684***      .09339    15.71  .0000     1.28380   1.64987 
   LOGPS|    -.36557***      .05583    -6.55  .0000     -.47499   -.25616 
Constant|   -13.0339***      .76701   -16.99  .0000    -14.5372  -11.5306 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
(Intermediate steps omitted) 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.83882           5 
Residual     Sum of Squares       =    .619739E-01          46 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .03671 
Fit          R-squared            =         .97864  R-bar squared =   .97631 
Model test   F[  5,    46]        =      421.42166  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      101.25461  Akaike I.C.   = -6.50152 
             Restricted (b=0)     =        1.25792  Bayes  I.C.   = -6.27637 
             Chi squared [  5]    =      199.99337  Prob C2 > C2* =   .00000 
Model was estimated on May 09, 2011 at 07:02:06 AM 
Mallows Cp statistic              =         14.430 
----------------------------------------------------------------------------- 
Analysis of Variance for the Current Regression 
Source       Deg.Fr.      Sum of squares      Mean Square      F 
Regression      5                2.83882           .56776 421.42 
Residual       46                 .06197           .00135 
Total          51                2.90080           .05688 
Variable entered this step =         , Deleted = 
Note: First  2 variables are forced in. 
**********> This is the final equation <********** 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
   LOGPG|    -.06744         .04067    -1.66  .1041     -.14716    .01227 
  LOGINC|    1.62664***      .09183    17.71  .0000     1.44664   1.80663 
   LOGPS|    -.51615***      .08632    -5.98  .0000     -.68533   -.34696 
   LOGPN|     .57218***      .12261     4.67  .0000      .33187    .81249 
  LOGPUC|    -.20629**       .08545    -2.41  .0198     -.37378   -.03881 
Constant|   -15.1666    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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E7.5 Interactions and Partial Effects 
 
 When the regression contains nonlinearities and interaction terms, such as logs of variables, 
squares or cross products of variables, the raw coefficients in the model do not reveal the actual 
relationship between the dependent variable   Consider the regression model 
 
 log(income)  =  β1 + β2 age + β3 age2 + β4 educ + β5 female + β6 educ×female + ε. 
 
In this regression model, the coefficients are semi-elasticities. However, none of them give the relevant 
effect of a variable on log(income). For example, the effect of age is not β2, it is β2 + 2β3age, the 
female differential is not β5, it is β5 + β6educ, and the impact of educ is not β4, it is β4 + β6 female.  
Each of these could be easily computed after the linear regression (with a hand calculator if necessary).   
However, if one wants to compute standard errors and/or confidence intervals for the coefficients, that 
is rather more complicated.  For example, the estimator of the standard error for the impact of age on 
log(income) is 
 
 Est.Std.Err(age effect)  =  [Var(b2) + 4age2Var(b3) + 4ageCov(b2,b4)]1/2, 
 
which is likely to be quite inconvenient.  The PARTIALS command is provided for this purpose, 
and fully automates the computation.   

Using PARTIALS to compute effects of nonlinearities is done in a second step after the 
regression.  The first step involves specifying the regression with the nonlinearities specified 
explicitly in the equation.  For the example, the following are two ways to compute the regression, 
where we use the health satisfaction data used in earlier examples for the illustration: 
 

SAMPLE  ; All $ 
INCLUDE  ; New ; year = 1991 $ 
CREATE  ; educ_fem = educ*female ; agesq = age*age $ 
CREATE  ; loginc = Log(hhninc) $ 
? First method 
REGRESS ; Lhs = loginc  

; Rhs = one,age,agesq,educ,female,educ_fem $ 
? Second method 
REGRESS ; Lhs = Log(hhninc)  

 ; Rhs = one,age,age*age,educ,female,educ*female $ 
 
The two methods of computing the regression give identical results save for a slight difference in 
labeling, as can be seen below. However, using the second method allows the PARTIALS command 
to detect that the model contains the nonlinearities and interaction terms and to compute the partial 
effects for you.  That is, the regression program has no way to know that a variable named agesq is 
the square of one named age that appears elsewhere in the list of variables in the model.  But, in the 
second specification, that relationship appears specifically. 
 
  



E7: Linear Regression – Estimation   E-138 

----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGINC   Mean                 =       -1.00062 
             Standard deviation   =         .46494 
             No. of observations  =           4340  Degrees of freedom 
Regression   Sum of Squares       =        119.784           5 
Residual     Sum of Squares       =        818.169        4334 
Total        Sum of Squares       =        937.953        4339 
             Standard error of e  =         .43449 
Fit          R-squared            =         .12771  R-bar squared =   .12670 
Model test   F[  5,  4334]        =      126.90421  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -2537.41550  Akaike I.C.   = -1.66580 
             Restricted (b=0)     =    -2833.90545  Bayes  I.C.   = -1.65698 
             Chi squared [  5]    =      592.97990  Prob C2 > C2* =   .00000 
First Method 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -3.28158***      .10929   -30.03  .0000    -3.49578  -3.06738 
     AGE|     .08189***      .00492    16.65  .0000      .07225    .09153 
   AGESQ|    -.00091***   .5578D-04   -16.38  .0000     -.00102   -.00080 
    EDUC|     .05087***      .00366    13.90  .0000      .04370    .05805 
  FEMALE|     .04460         .06630      .67  .5012     -.08536    .17455 
EDUC_FEM|    -.00656         .00568    -1.15  .2484     -.01770    .00458 
--------+-------------------------------------------------------------------- 
Second Method 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
logHHNIN|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -3.28158***      .10929   -30.03  .0000    -3.49578  -3.06738 
     AGE|     .08189***      .00492    16.65  .0000      .07225    .09153 
 AGE*AGE|    -.00091***   .5578D-04   -16.38  .0000     -.00102   -.00080 
    EDUC|     .05087***      .00366    13.90  .0000      .04370    .05805 
  FEMALE|     .04460         .06630      .67  .5012     -.08536    .17455 
        |Interaction EDUC*FEMALE 
Intrct03|    -.00656         .00568    -1.15  .2484     -.01770    .00458 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 After estimation, the PARTIALS command can be used as follows: 
 

 PARTIALS ; Effects: age / educ / female ; Summary $ 
 
--------------------------------------------------------------------- 
Partial Effects for Linear Regression Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00320     .00059    5.46      .00205      .00435 
      EDUC          .04770     .00286   16.68      .04210      .05331 
   *  FEMALE       -.03081     .01339    2.30     -.05706     -.00456 
--------------------------------------------------------------------- 
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The results shown provide the partial effect for each variable averaged over the sample observations.  
Note, in particular, how b5, the coefficient on female in the original regression, which equals +.045, is 
misleading regarding the female differential when the nonlinear effect of educ is taken into account. 

There are many optional features and specifications available for partial effects described in 
Chapter R11.  One possibility that shows clearly the implication of the quadratic specification in age, 
is to plot the partial effect of age at a range of values, as shown below. 

 
PARTIALS ; Effects: age  & age = 20(5)70 ; Plot(ci) $ 
 

 
Figure E7.2  Partial Effects for Quadratic Regression Model 

 
E7.6 Predictions and Residuals 
 
 To obtain a list of the residuals and fitted values from a linear regression model, add the 
specification 
   ; List 
 
to the command.  The residuals and predicted values may be kept in your data area by using the 
specifications 
   ; Res = name  to retain residuals 
and   ; Keep = name  to retain predictions 
 
 If you are not using the full sample or all of the rows of your data matrix, some of the cells 
in these columns will be marked as missing.  If you have data on the regressors but not the dependent 
variable, you can use  

   ; Fill 
 
to obtain predictions for the missing data.  Remember, though, that the prediction is -999 (missing) 
for any observation for which any of the xs are missing.  (You can use this procedure as an 
alternative to the multiple imputation method discussed in Chapter R20.) 
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 The command builder dialog box for these and several other options are on the Output page 
of the REGRESS command builder, as shown below in Figure E7.3. 
 

 
Figure E7.3  Command Builder for Regression Residuals and Predictions 

 
 The listing will also contain a 95% confidence interval for the forecast of the dependent 
variable. (See the example below.)  The confidence limits are not kept.  But, listed below are 
commands which can be used to obtain this result.  
 For the model estimated earlier with the gasoline, we now use ; List to obtain a list of fitted 
values. 
 

REGRESS  ; Lhs = logg 
; Rhs = one,logpnc,logpuc,logppt,logpn,logpd,logps,logpg,loginc 
; List $ 

 
(Regression results omitted) 
Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual     95% Forecast Interval 
  1953             -.7988548    -.7486919    -.0501629    -.8337218    -.6636619 
  1954             -.7851131    -.7433575    -.0417556    -.8232908    -.6634243 
  1955             -.7192742    -.6736580    -.0456163    -.7538397    -.5934763 
  1956             -.6782199    -.6102414    -.0679785    -.6876777    -.5328050 
  1957             -.6584227    -.6296708    -.0287519    -.7053592    -.5539823 
 (Rows 1958 - 2001 omitted) 
  2002              .0080191     .0124173    -.0043982    -.0664631     .0912976 
  2003              .0050948     .0035076     .0015871    -.0793875     .0864027 
  2004             -.0080513     .0256079    -.0336592    -.0606169     .1118326 
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 The following commands could be used for computing forecast standard errors. This routine 
uses the matrices b (the coefficients) and varb (estimated covariance matrix) kept by the regression 
and scalar ssqrd which is s-squared from the regression.  The forecast standard errors are the values 
computed by the Sqr function in the CREATE command. 
 
 NAMELIST ; x = the set of regressors $ 

REGRESS  ; Lhs = y ; Rhs = x ; Keep = yhat $ 
CALC  ; ct = Ttb(.975,degfrdm)  $ 

 CREATE  ; lowerbnd = yhat - ct * Sqr(ssqrd + Qfr(x,varb)) 
   ; upperbnd = yhat + ct * Sqr(ssqrd + Qfr(x,varb)) $ 
 

The built in simulator may also be used to obtain predictions and confidence intervals for 
predictions.   The command 

 
SIMULATE ; List $ 

 
immediately after the regression command produces the following results. 
 
--------------------------------------------------------------------- 
Model Simulation Analysis for Linear Regression Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Obs. =    1        -.74869     .02232  -33.55     -.79243     -.70495 
Obs. =    2        -.74336     .01707  -43.55     -.77681     -.70990 
Obs. =    3        -.67366     .01735  -38.82     -.70767     -.63965 
Obs. =    4        -.61024     .01395  -43.73     -.63759     -.58289 
Obs. =    5        -.62967     .01135  -55.46     -.65193     -.60742 
(Rows 6 - 49 omitted) 
Obs. =   50         .01242     .01582     .78     -.01859      .04342 
Obs. =   51         .00351     .02025     .17     -.03618      .04319 
Obs. =   52         .02561     .02342    1.09     -.02029      .07151 
Avrg. Function     -.25713     .00496   51.83     -.26685     -.24741 
 
Note that although the predictions are the same as those produced by the regression, the confidence 
intervals are narrower.  The reason is that SIMULATE produces a confidence interval for the 
simulated value of the dependent variable, not a forecast interval.  The forecast variance used by 
REGRESS ; List…$ equals Var[forecast]  =  s2 + x′[s2(X′X)-1]x while the variance for the simulated 
value omits the leading s2 term.  In general, the latter will be smaller than the former.  No generality 
is possible save that the larger is R2 the closer will be the two values. 
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E7.6.1 Plotting Residuals 
 
 A plot of the residuals from your regression can be requested by adding  
 
   ; Plot 
 
to the command.  Residuals are plotted against observation number (i.e., simply listed).  For 
example, the following would generate the residual plot for the preceding gasoline market example.  
  
 DATES  ; Undated $ 
 SAMPLE ; 1-52 $ 

REGRESS ; Lhs = logg 
; Rhs = one,logpg,loginc,logpnc,logpuc,logppt,logpn,logpd,logps  
; Plot $ 

 
You will get a time series style plot if the data have been identified as time series data with a 
DATES command.  The same plot preceded by 
 

DATES  ; 1953 $ 
PERIOD ; 1953-2004 $ 

 
appears as follows in the second panel of Figure E7.4.  
 If you would like to plot the residuals against another variable, change the preceding to 
 
   ; Plot(variable name) 
 
The variable can be any existing variables.  It need not have been used in the regression.  The 
residuals are sorted according to the variable you name and plotted against it. In the third panel, we 
used 
 

 REGRESS ; Lhs = logg 
; Rhs = one,logpnc,logpuc,logppt,logpn,logpd,logps,logpg,loginc 
; Plot(pnc) $ 
 

The plot will show the residuals graphed against either the observation number, the date for time 
series data, or the variable you specify using the ; Plot(variable) option described above.  
 

• If there are outliers in the data, this may severely cramp the figure, since the vertical axis is 
scaled so that every observation will appear. 
 

• The mean residual bar may not appear at zero because the residuals may not have zero 
mean. They will not if you do not have a constant term in your regression or if you are 
plotting two stage least squares residuals.  Since 0.0 will generally not be the midpoint 
between the high and low residual, the zero bar will not be in the center of your screen 
even when you do have a constant term in the model. 

 
You can plot up to 5,000 observations in the figure with this option.  
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Figure E7.4  Residual Plots 
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E7.6.2 Standardized Residuals and Regression Diagnostics 
 
 In the linear regression model, the variance of a least squares residual is not σ2, but 
 
   Var[ei] =  σ2[1 - xi′(X′X)-1xi]  =  σ2 ( 1 – hii). 
 
Belsley, Kuh, and Welsch (1980) suggest that the standardized residuals, 
 
   ui  =  ei / Est.Var[ei]1/2  

 
be plotted instead of the raw residuals as a more useful diagnostic tool.  Values of ui in excess of two 
indicate possible outliers.  You can plot the standardized residuals if the regression command 
includes 
   ; Plot ; Standardized 
 
To retain the standardized residuals, just use 
 
   ; Res = name ; Standardized 
 
NOTE:  These residuals have a mean and variance that will be close to 0.0 and 1.0, respectively.  
But, unlike the ordinary OLS residuals, they do not have a mean identically equal to 0.0 and they are 
only approximately orthogonal to the regressors.  In fact, Est.Var[ei] = s2 - o(1/n), so as the sample 
size increases, the standardized residuals will converge to the OLS residuals. 
 
The following is a plot of the standardized residuals.  This corresponds to the center frame in Figure 
E7.4.  Even with only 52 observations, save for the scale, the residuals are essentially the same. 
 

 
Figure E7.5  Standardized Residuals 

 
An additional quantity of interest is the ‘leverage’ value, 
 
   hii  =  xi′(X′X)-1xi. 
 
Note that Var[ei] = σ2(1 - hii).  Belsley et al. suggest values of hii greater than 2K/n signal points 
worthy of attention.  To obtain them, we require the ‘hat matrix,’ i.e., the projection matrix into the 
column space of X, 
 
   H  =  X(X′X)-1X′. 
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This is an n×n matrix, which will be quite unmanageable if n is large.  But, in fact, we only require 
the diagonal elements.  To do this computation for a particular data set, you can use 
 
 NAMELIST  ; x = ... variables in X $ 
 MATRIX    ; xxi = <x’x>  $ 
 CREATE    ; hii = Qfr(x,xxi)  $ 
 CALC  ; big = 2 * Col(x) / n $ 
 CREATE ; outlier = ( hii > big ) $ 
 
A list of the variable named outlier will flag the important observations with values of one. (Other 
observations get a zero.)  When we apply this to the regression immediately above, the diagnostic 
identifies three years, 1978-1980, as outliers. 
 As a further refinement, Belsley et al. suggest that for each residual, the coefficient vector, b, 
and the residual variance, s2, be reestimated without that observation.  In principle, this requires that 
the regression be recomputed for each observation.  But, there are some shortcuts which make the 
computation quite simple.  To describe this procedure, we require some regression algebra.  Let X be 
the n×K matrix of regressors.  The least squares estimator is b =  (X′X)-1X’y.  The standardized 
residuals were computed above 
 
   ui  =  ei / [s2(1 - hii)]1/2. 
 
This does not recompute s2 without the ith observation. Adding in Belsley et al.’s refinement takes a 
bit more work. First, they show that if the regression is recomputed without observation  ‘i,’ that the 
resulting slope estimator is 
 
   b(i)  =  b - (X′X)-1xi′ei / (1 - hii). 
 
Therefore, the residual vector from this regression (where, for the moment, we include the ith 
observation in the residual vector) is 
 

   e(i) =  y - Xb(i)  
    =  e + X(X′X)-1xi′ei / (1 - hii). 
 
Multiplying it out, and remembering that X′e = 0, we get the sum of squared residuals for the full 
sample based on b(i), 

   e(i)′e(i)  =  e′e  +  ei
2hii / (1 - hii)2. 

 
Now, we have to subtract out the square of the ith residual.  This is 
 
   yi - xi′b(i) =  ei[1 + hii/(1 - hii)] 
    =  ei / (1 - hii). 
 
Subtracting the square of this from e(i)′e(i) produces 
 
   e*(i)′e*(i)  =  e′e - ei

2/(1 - hii). 
 
This shows the ‘shortcut.’  The regression need not be recomputed.  Finally, the estimator of σ2 is 
 
   s2(i)  =  e*(i)′e*(i) / (n - K - 1). 
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Combining terms, we obtain the desired standardized residual  
 

   u(i)i  =  [ei/(1-hii)] / [(e′e - ei
2/(1-hii))/(n-K-1)]1/2  

 

A related computation is Belsley et al.’s ‘dfit’ which is an observation specific measure which attempts 
to capture the influence, or leverage effect as well as the effect of the residual, itself.  The calculation is 
 

   dfiti  = u(i)i × iih . 
 

The following commands will obtain these standardized residuals.  (The algebra is far more 
complicated than the actual computation.) 
 
 NAMELIST  ; ... define x  $ 
 CREATE ; ... define y $ 
 REGRESS   ; Lhs = y ; Rhs = x ; Res = ei $ 
 MATRIX ; xxi   =  <x’x> $ 
 CREATE    ; mii = (1 - Qfr(x,xxi))  
   ; uii  = ei/mii / Sqr((sumsqdev - ei*ei/mii) / (degfrdm - 1))  
   ; dfiti = uii * Sqr(1 - mii) $ 
 

E7.7 Multicollinearity 
 

 If there is a linear combination of the independent variables which produces a column of 
zeros – i.e., at least one column of X can be represented as a linear combination of other columns of 
X – then the least squares regression coefficient cannot be computed by inverting the moment 
matrix.  In this case, the minimizer of the sum of squared residuals is not unique.  As a general rule, 
LIMDEP does not proceed any further if it detects that your data are collinear.  (Some other 
programs will successively drop variables from the equation until a noncollinear set remains, as if to 
report that your desired model was inestimable, so the program found some other model that was.  
While users differ in their preference for this kind of program driven specification, LIMDEP adheres 
to a strict rule of always waiting for the user to specify the model to be estimated.)   
 In the case of linear regression, sometimes multicollinearity cannot be detected even when it 
is present.  Recall that in most cases, LIMDEP is not using X′X to compute the regression, so the 
presence of multicollinearity may not be obvious.  (Even when the moment matrix is being used, the 
assessment of multicollinearity is only to within some tolerance.)  Because the presence of internal 
rounding error may leave some variation in the representation of the raw data, data may be 
multicollinear in theory, but only approximately so and, therefore, not, internally.  The QR method 
can then become unstable, and report coefficients which appear nonsensical.  In some extreme cases, 
LIMDEP will report the condition number for X’X with a warning that the data are highly collinear. 
 
NOTE:  The condition number is the square root of the ratio of the largest to the smallest 
characteristic root of (1/n)X0′X0 in which the first column of X0 is a column of ones and the 
remaining columns are the original data not including the constant, in deviations from their means. 
 
 For example, the Filippelli data and example discussed in Section E7.11 are a notoriously 
collinear test data set.  Although estimation can still proceed, the following warning is produced by 
the least squares estimator for this problem: 
 
 REGRESS  ; Lhs = y ; Rhs = one,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 $ 
 WARNING: Badly conditioned X. Condition value =    .2999482D+10 
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E7.8 Variance Inflation Factors 
 
 Authors sometimes analyze multicollinearity in terms of the effect of the intercorrelation of 
the regressors on the variances of the least squares coefficient estimators.  The variance inflation 
factor is a measure of this effect; 
 

   VIFk  =  2
.1

1

kR−
 

 

where Rk.
2 is the R2 obtained when the kth regressor is regressed on the remaining variables.  The 

optimal value for this statistic is 1.0, which occurs when the R2 is zero, or this variable is orthogonal 
to the other variables.  Some fairly straightforward algebra reveals that, if the model contains a 
constant term – that is, one of the columns of X is a column of ones – then,  
 

   VIFk  =  ( )( )2

1

n
ik ki

x x
=

−∑  ×  (X′X)kk 
 
where (X′X)kk is the kth diagonal element of (X′X)-1. Thus, these auxiliary regressions need not be 
computed to obtain these factors.  The vector of variance inflation factors for the entire coefficient 
vector can be computed and displayed with the following matrix command: 
 
 NAMELIST ; x = ... the list of variables $ 
 MATRIX ; List ; xm0x = {n-1}*Xvcm(x)  
   ; vif = Diag(<x’x>) * Vecd(xm0x) $ 
 
 There is no consensus on what values of the variance inflation factor merit attention, or on 
what one should do with the results.  Some authors (Chatterjee and Price (1991)) suggest that values 
in excess of 10 are problematic.  Others suggest 30 or 40 as a benchmark value.  In any event, it is 
less than obvious what one should do upon finding a large value (or some other indicator of a 
‘multicollinearity problem’).  As noted earlier, LIMDEP leaves this up to the user. 
 The example below applies the preceding to gasoline data used in the preceding example in 
which X = [one,logpnc,logpuc,logppt,logpn,logpd,logps,logpg,loginc] 
 

     VIF|             1 
--------+-------------- 
       1|       .000000 
       2|       658.212 
       3|       189.992 
       4|       795.683 
       5|       313.746 
       6|       1593.98 
       7|       5152.04 
       8|       72.0155 
       9|       220.726 

 
Though the diagnostics seem to suggest a high degree of multicollinearity, the regression seems 
completely routine. 
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E7.9 Specification Analysis 
 
 Several devices are used to assess the adequacy of the model specification.  Four that are 
automated are the tests for heteroscedasticity, functional form, omitted variables and autocorrelation.  
Others can be programmed with the command language, mainly CREATE, CALC and MATRIX. 
 
E7.9.1 Breusch and Pagan Test for Heteroscedasticity 
 
 The Breusch and Pagan (B-P) test for heteroscedasticity is narrowly defined for the 
hypothesis of homoscedasticity in linear regression with normally distributed disturbances.  The full 
setup for the test is yi = β′xi + εi where εi ~N[0,g(σ2 + α′zi)], so that the hypothesis of 
homoscedasticity is equivalent to α = 0.  The variables in z may be the x in the original regression, or 
other variables that might appear in the model.  The test statistic, which has a limiting chi squared 
distribution with degrees of freedom equal to the number of elements in z, is computed as one half 
the regression sum of squares in the linear regression of wi = [ei

2/(e′e/n) – 1] on [z,1].  Let Z be the 
n×P matrix that has ith row [zi′,1].  Then, the statistic is, BP  =  ½ w′Z(Z′Z)-1Z′w.  Several decades 
of research have suggested that the test has power to detect heteroscedasticity if the normality 
assumption is weakened. 
 Request this test by adding 
 
   ; BPT   
or     ; BPT = list of variables in z. 
 
If the list is omitted, then the test is carried out assuming that z = x not including the constant term.  
The result of the test will be displayed with the regression results, as shown in the example below. 
 
 REGRESS ; Lhs = logg 

; Rhs = one,logpg,loginc,logpnc,logpuc,logppt,logpn,logpd,logps  
; BPT $  

 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.84577           8 
Residual     Sum of Squares       =    .550250E-01          43 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .03577 
Fit          R-squared            =         .98103  R-bar squared =   .97750 
Model test   F[  8,    43]        =      277.98326  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      104.34671  Akaike I.C.   = -6.50506 
             Restricted (b=0)     =        1.25792  Bayes  I.C.   = -6.16734 
             Chi squared [  8]    =      206.17758  Prob C2 > C2* =   .00000 
B-P test     Chi squared [  8]    =        8.73211  Prob C2 > C2* =   .36540 
Model was estimated on May 09, 2011 at 07:15:15 PM 
----------------------------------------------------------------------------- 
(Regression results omitted) 
----------------------------------------------------------------------------- 
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 The B-P test is also carried out automatically assuming that z = x when you request the 
heteroscedasticity robust covariance matrix described in Section E7.10.1. The command specification is 
 
   ; Heteroscedasticity (or ; Het) 
 
In this case, the regression results contain the test statistic as well as the results based on the robust 
covariance matrix. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             Number of observs.   =             52 
Model size   Parameters           =              9 
             Degrees of freedom   =             43 
Residuals    Sum of squares       =    .550250E-01 
             Standard error of e  =         .03577 
Fit          R-squared            =         .98103 
             Adjusted R-squared   =         .97750 
Model test   F[  8,    43] (prob) =   278.0(.0000) 
White heteroscedasticity robust covariance matrix. 
Br./Pagan LM Chi-sq [  8]  (prob) =   8.73 (.3654) 
Model was estimated on May 09, 2011 at 07:23:12 PM 
----------------------------------------------------------------------------- 
(Regression results omitted) 
----------------------------------------------------------------------------- 
 
E7.9.2 RESET Specification Test 
 
 The regression specification error test (RESET) (Ramsey, 1969) is a general specification 
test of the adequacy of the linear functional form in the model 
 
   yi = β′xi + εi. 
 
The test is carried out in various ways in the literature, all asymptotically equivalent to a linear 
regression of the regression residuals, ei on powers of the regression predictions, (b′xi)2, (b′xi)3, etc.  
The logic of the test is that if the regression is adequately specified by the linear functional form, 
then addition of the powers of b′xi should not provide additional explanatory power.  The test is 
carried out in a second step after the regression is computed by regressing the least squares residuals 
on a constant term and the second, third and fourth powers of the predicted values.  The test statistic 
is a Wald statistic based on the three coefficients in this second regression. 
 The RESET test is requested by adding 
 
   ; RESET 
 
to the REGRESS command.  Results of the test will appear in the diagnostic header for the 
regression model, as shown in the example below. 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.84577           8 
Residual     Sum of Squares       =    .550250E-01          43 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .03577 
Fit          R-squared            =         .98103  R-bar squared =   .97750 
Model test   F[  8,    43]        =      277.98326  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      104.34671  Akaike I.C.   = -6.50506 
             Restricted (b=0)     =        1.25792  Bayes  I.C.   = -6.16734 
             Chi squared [  8]    =      206.17758  Prob C2 > C2* =   .00000 
RESET test   Chi squared [  3]    =        2.69733  Prob C2 > C2* =   .44068 
----------------------------------------------------------------------------- 
(Regression results omitted) 
----------------------------------------------------------------------------- 
 
E7.9.3 Omitted Variables 
 
 A common application is examining the effect of including an additional variable in a 
regression after the regression is estimated without that variable.  You may provide an additional set 
of variables with the following specification: 
 
   ; Rh2 = other variable(s). 
 
The usual regression is computed for ‘y’ on the regressors.  Then, for each variable in the Rh2 list, 
the following are computed for that variable, if it alone were added to the regression: 
 

• What its coefficient would be 
• What the new R2 would be 
• How much R2 would increase 
• Partial R2  (squared correlation of y with this x, net of the effects of the other variables) 
• Partial F statistic 

 
The partial F statistic is the F ratio for the regression of y on this x, net of the included variables.  
This is the square of what would be the t ratio if this variable were included.  Do note, this is not a 
means of carrying out a joint test of whether the group of variables would contribute significantly to 
the fit of the model.  In order to carry out this test, you would use one of the procedures described in 
Section E8.2. 
 The following illustrates this analysis applied to the six price indexes used in the preceding 
examples: 
 

REGRESS ; Lhs = logg 
; Rhs = one,logpg,loginc 
; Rh2 = logpnc,logpuc,logppt,logpn,logpd,logps $ 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.72390           2 
Residual     Sum of Squares       =        .176898          49 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .06008 
Fit          R-squared            =         .93902  R-bar squared =   .93653 
Model test   F[  2,    49]        =      377.25464  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       73.98430  Akaike I.C.   = -5.56804 
             Restricted (b=0)     =        1.25792  Bayes  I.C.   = -5.45547 
             Chi squared [  2]    =      145.45276  Prob C2 > C2* =   .00000 
Model was estimated on May 09, 2011 at 08:16:15 AM 
Effects of additional variables on the regression below: ------------- 
Variable Coefficient  New R-sqrd  Chg.R-sqrd   Partial-Rsq   Partial F 
LOGPNC        -.3395       .9603       .0213         .3493      25.772 
LOGPUC        -.1947       .9553       .0163         .2670      17.485 
LOGPPT        -.2598       .9628       .0238         .3906      30.762 
LOGPN         -.1941       .9452       .0062         .1016       5.426 
LOGPD         -.4977       .9616       .0226         .3705      28.246 
LOGPS         -.3656       .9678       .0288         .4718      42.883 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -8.99007***      .58201   -15.45  .0000   -10.13078  -7.84936 
   LOGPG|    -.17124***      .03789    -4.52  .0000     -.24550   -.09698 
  LOGINC|     .96865***      .07376    13.13  .0000      .82408   1.11322 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Note that the six Rh2 variables are collinear with the constant, so the full regression cannot be 
computed.  But, the dummies could be added one at a time with no problem, as the results indicate. 
 

E7.9.4 The CUSUM Test of Model Stability 
 

 Brown, Durbin, and Evans’ (1972) CUSUM and CUSUM of squares tests are procedures for 
testing the stability of a model over time.  The procedure is requested in LIMDEP by adding 
 

   ; Cusum 
 

to the REGRESS command.  The procedure is based on the following:  Let 
 

   et  =  yt  -  xt′b(t-1) 
 

where b(t-1) is the least squares coefficient vector computed using all observations up to but not 
including [yt,xt].  The set of scaled residuals 
 

   wr  =  er / [1 + xr′(X(r-1)′X(r-1))-1xr]1/2 

 

are independent and, assuming normality of the original disturbances, normally distributed with 
mean zero and variance 
 

   σfr
2  =  σ2[1 + xr′(X(r-1)′X(r-1))-1xr]. 
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 The CUSUM test is based on the cumulated sum of residuals 
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The series of values are plotted against time.  Upper and lower confidence bounds are the lines 
connecting the points 
 
   Upper: K + a(T-K)1/2 to K + 3a(T-K)1/2 
   Lower: K - a(T-K)1/2 to K - 3a(T-K)1/2. 
 
The values of ‘a’ that correspond to various significance levels are given by the authors.  Those for 
95% and 99% significance are .948 and 1.143, respectively.  LIMDEP uses the 95% significance 
point.  The plot is obtained by plotting against  
 
   m  =  t-K  =  1,...,M  =  T-K 
 
the three series Wm, Upper  =  .948  +  1.896m, and Lower  =  -Upper.   
 The CUSUM of squares test is based on 
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The expected value of St is approximately (t-K)/(T-K).  The series of values are also plotted against 
time.  Upper and lower confidence limits are obtained by comparing St to E[St] ± c0, where c0 is a 
function of both (T-K) and the significance level.  We use an approximation to obtain c0 : 
 
   c0  ≈  .31  if L < 10 

   c0  ≈  .594017 - .142897log(L) + .00560574log2(L) + .000616272log3(L) 

   c0  ≈  .11  if L > 100 
 
where L = (T-K)/2 - 1.  This produces an R2 exceeding .9999 for the table of values provided by 
Harvey (1988). 
 The following example is the result of computing the CUSUM and CUSUM of squares tests 
as part of the basic regression computed above for the gasoline market data.  The usual regression 
results are given first, followed by a listing of the CUSUM and CUSUM of squares values.  Those 
outside the confidence limits are marked with an asterisk in the output. 
 
 DATE  ; 1953 $ 
 PERIOD ; 1953-2004 $ 

REGRESS ; Lhs = logg 
; Rhs = one,logpnc,logpuc,logppt,logpn,logpd,logps,logpg,loginc 
; Cusum $ 
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Period    Cusum   CusumSq  Period    Cusum   CusumSq  Period    Cusum   CusumSq 
1962       -.473   .0029   1963      -1.131   .0086   1964      -1.874   .0158 
1965      -1.945   .0159   1966      -1.697   .0167   1967      -2.000   .0179 
1968      -1.895   .0180   1969      -1.506   .0200   1970      -1.601   .0201 
1971      -2.034   .0226   1972      -2.313   .0236   1973      -2.542   .0243* 
1974      -2.968   .0266*  1975      -2.917   .0267*  1976      -2.956   .0267* 
1977      -3.661   .0332*  1978      -5.381   .0719*  1979      -6.071   .0781* 
1980      -7.542   .1064*  1981      -8.090   .1103*  1982      -9.087   .1233* 
1983      -9.500   .1255*  1984     -10.185   .1317*  1985     -11.901   .1702* 
1986     -16.213*  .4133   1987     -18.633*  .4899   1988     -20.898*  .5569 
1989     -22.908*  .6098   1990     -25.206*  .6789   1991     -26.971*  .7196 
1992     -28.035*  .7344   1993     -27.298*  .7415   1994     -27.037*  .7424 
1995     -26.764*  .7433   1996     -26.844*  .7434   1997     -27.496*  .7490 
1998     -28.795*  .7710   1999     -29.653*  .7807   2000     -32.126*  .8606 
2001     -34.075*  .9103   2002     -35.829*  .9505   2003     -36.844*  .9640 
2004     -38.504* 1.0000 
 

 
 

 
Figure E7.6  CUSUM and CUSUM of Squares Plots 
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E7.10 Robust Covariance Matrix Estimation 
 
 REGRESS will compute robust estimators for the covariance matrix of the least squares 
estimator for both heteroscedastic and autocorrelated disturbances.   Although OLS is generally quite 
robust, some researchers have advocated other estimators for finite sample purposes.  REGRESS 
can also be used to compute the least absolute deviations estimator. 
 Robust covariance matrix estimators are specified in the command line or selected from the 
Options page of the command builder, as shown below. 
 

 
Figure E7.7  Command Builder for Robust Regression 

 

E7.10.1 Heteroscedasticity – The White Estimator 
 

 For the heteroscedasticity corrected (White) estimator, use 
 
   ; Heteroscedasticity 
 
in the REGRESS command.  The White estimator is 
 

   Est.Var[b]  =  (X′X)-1 × '
1

2
ii

n
i ie xx∑ =

 × (X′X)-1 
 

Davidson and MacKinnon (1993) have recommended three alternative forms of the estimator which 
appear to perform well in small to moderate sized samples.  Use 
 
   ; Het ; Hc1  to change ei

2 to nei
2/(n-K) 

   ; Het ; Hc2  to change ei
2 to ei

2 / [1 - xi′(X′X)-1 xi] 
   ; Het ; Hc3  to change ei

2 to ei
2 / [1 - xi′ (X′X)-1 xi]2 
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 To illustrate, we will use the first five firms in the widely used Grunfeld data set. (There are 
ten firms in the whole data set.)  We will use these data in several examples to follow.  (These data 
are also found in http://pages.stern.nyu.edu/~wgreene/Text/Edition7/TableF10-4.txt – Table F10-4 in 
the website for Greene (2011).) The following results based on the Grunfeld data show the results of 
ordinary least squares and the four different heteroscedasticity robust covariance matrix estimators. 
 

REGRESS ; Lhs = i ; Rhs = one,f,c $ 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -63.6112***    22.37624    -2.84  .0055   -107.4678  -19.7546 
       F|     .11844***      .00948    12.49  .0000      .09985    .13703 
       C|     .25648***      .03894     6.59  .0000      .18015    .33281 
--------+-------------------------------------------------------------------- 

REGRESS ; Lhs = i ; Rhs = one,f,c ; Het $ 
--------+-------------------------------------------------------------------- 
Constant|   -63.6112***    21.62394    -2.94  .0041   -105.9933  -21.2290 
       F|     .11844***      .00734    16.13  .0000      .10404    .13283 
       C|     .25648***      .05318     4.82  .0000      .15225    .36070 
--------+-------------------------------------------------------------------- 

REGRESS ; Lhs = i ; Rhs = one,f,c ; Het ; Hc1 $ 
--------+-------------------------------------------------------------------- 
Constant|   -63.6112***    21.95579    -2.90  .0047   -106.6437  -20.5786 
       F|     .11844***      .00746    15.88  .0000      .10382    .13305 
       C|     .25648***      .05399     4.75  .0000      .15065    .36230 
--------+-------------------------------------------------------------------- 

REGRESS ; Lhs = i ; Rhs = one,f,c ; Het ; Hc2 $ 
--------+-------------------------------------------------------------------- 
Constant|   -63.6112***    23.93932    -2.66  .0092   -110.5314  -16.6910 
       F|     .11844***      .00766    15.45  .0000      .10341    .13346 
       C|     .25648***      .05950     4.31  .0000      .13985    .37310 
--------+-------------------------------------------------------------------- 

REGRESS ; Lhs = i ; Rhs = one,f,c ; Het ; Hc3 $ 
--------+-------------------------------------------------------------------- 
Constant|   -63.6112**     26.72238    -2.38  .0192   -115.9861  -11.2363 
       F|     .11844***      .00802    14.77  .0000      .10272    .13415 
       C|     .25648***      .06705     3.83  .0002      .12506    .38790 
--------+-------------------------------------------------------------------- 
 

E7.10.2 Autocorrelation – The Newey-West Estimator 
 

 The Newey-West robust estimator for the covariance matrix of the least squares estimator in 
the presence of autocorrelation is 
 

 Est.Var[b]  =  (X′X)-1 × '
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You (the analyst) must provide the value of L, the number of lags for which the estimator is 
computed.  Then, request this estimator by adding 
 

   ; Pds = ... the value for L 

http://pages.stern.nyu.edu/~wgreene/Text/Edition7/TableF10-4.txt�
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to the REGRESS command.  No finite sample improvement for this estimator has been devised, so 
there is no counterpart to the Davidson and MacKinnon variants for the heteroscedasticity estimator. 
 An application based on the preceding example for the gasoline market follows. 
 

REGRESS ; Lhs = logg  
; Rhs = one,logpg,logy,logpnc,logpuc,logppt,logpn,logpd,logps  
; Pds = 10 $ 

 
The uncorrected least squares results are shown below those based on the robust estimator. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             Number of observs.   =             52 
Model size   Parameters           =              9 
             Degrees of freedom   =             43 
Residuals    Sum of squares       =    .550250E-01 
             Standard error of e  =         .03577 
Fit          R-squared            =         .98103 
             Adjusted R-squared   =         .97750 
Model test   F[  8,    43] (prob) =   278.0(.0000) 
Robust VC    Newey-West, Periods  =             10 
Model was estimated on May 09, 2011 at 09:04:30 AM 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -18.1296***     3.04773    -5.95  .0000    -24.1031  -12.1562 
   LOGPG|     .04124         .10120      .41  .6857     -.15711    .23959 
  LOGINC|    1.91886***      .31175     6.16  .0000     1.30784   2.52988 
  LOGPNC|     .42763         .45241      .95  .3498     -.45909   1.31434 
  LOGPUC|    -.29824***      .09769    -3.05  .0039     -.48971   -.10678 
  LOGPPT|     .15858         .11311     1.40  .1681     -.06312    .38027 
   LOGPN|     .57537***      .19268     2.99  .0046      .19772    .95302 
   LOGPD|    -.28216         .32880     -.86  .3956     -.92661    .36228 
   LOGPS|    -.81314***      .28842    -2.82  .0072    -1.37843   -.24786 
--------+-------------------------------------------------------------------- 
Uncorrected Least Squares Results 
--------+-------------------------------------------------------------------- 
Constant|   -18.1296***     2.26108    -8.02  .0000    -22.5613  -13.6980 
   LOGPG|     .04124         .06261      .66  .5136     -.08146    .16394 
  LOGINC|    1.91886***      .21338     8.99  .0000     1.50065   2.33708 
  LOGPNC|     .42763         .29421     1.45  .1533     -.14901   1.00427 
  LOGPUC|    -.29824***      .09365    -3.18  .0027     -.48180   -.11469 
  LOGPPT|     .15858         .15996      .99  .3271     -.15495    .47210 
   LOGPN|     .57537***      .17445     3.30  .0020      .23346    .91729 
   LOGPD|    -.28216         .31248     -.90  .3716     -.89461    .33028 
   LOGPS|    -.81314*        .42566    -1.91  .0628    -1.64743    .02114 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E7.10.3 Clustering 
 
 An estimator which has become popular for data which are ‘clustered’ (loosely like a panel), 
and which accommodates some kinds of correlation within groups of observations is the cluster 
robust estimator, 

   Est.Asy.Var[ ]b   =  s2  (X′X)-1 × '
1 1 cc

C
cC

C gg∑ =−
 × s2 (X′X)-1 

 
where C is the number of clusters, nc is the number of observations in a particular cluster, ‘ic’ 
indicates observation i in cluster c, and 
 

   gc  =  21
xcn ic

ici

e
s=∑  

 
Note that gc is a derivative from the normal likelihood function.  (If there is one observation in each 
group, then this is the (n/(n-1)) times the White estimator.)  This is requested with 
 
   ; Cluster = specification. 
 
The specification is either the fixed group size, or the name of a variable which gives the group a 
particular identifier – i.e., a stratification variable, such as a group number, firm number, country 
identifier, etc.  The following applies to the Grunfeld data used earlier. 
 
 REGRESS  ; Lhs = i  

; Rhs = one,f,c  
; Cluster = firm $ 

 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of    100 observations contained      5 clusters defined by  | 
| variable FIRM     which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=I        Mean                 =      253.74220 
             Standard deviation   =      265.19714 
             No. of observations  =            100  Degrees of freedom 
Regression   Sum of Squares       =    .529952E+07           2 
Residual     Sum of Squares       =    .166310E+07          97 
Total        Sum of Squares       =    .696262E+07          99 
             Standard error of e  =      130.94025 
Fit          R-squared            =         .76114  R-bar squared =   .75621 
Model test   F[  2,    97]        =      154.54699  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     -627.84500  Akaike I.C.   =  9.77902 
             Restricted (b=0)     =     -699.43868  Bayes  I.C.   =  9.85718 
             Chi squared [  2]    =      143.18736  Prob C2 > C2* =   .00000 
B-P test     Chi squared [  2]    =       12.14252  Prob C2 > C2* =   .00231 
Model was estimated on May 09, 2011 at 09:11:45 AM 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -63.6112       56.07716    -1.13  .2594   -173.5204   46.2980 
       F|     .11844***      .01194     9.92  .0000      .09504    .14184 
       C|     .25648***      .09299     2.76  .0070      .07421    .43874 
--------+-------------------------------------------------------------------- 
These are the uncorrected results. 
--------+-------------------------------------------------------------------- 
Constant|   -63.6112***    22.37624    -2.84  .0055   -107.4678  -19.7546 
       F|     .11844***      .00948    12.49  .0000      .09985    .13703 
       C|     .25648***      .03894     6.59  .0000      .18015    .33281 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 An extension of this robust covariance matrix estimator allows for two level, stratified and 
clustered data sets.  Use 
 
   ; Stratum = the specification 
 
The specification provides either the fixed number of observations in a stratum or a variable that 
provides the identifier for strata in the data.  Specifics on the use of ; Stratum for complex survey 
data appear in Section R10.3. 
 
E7.11 Accuracy in Linear Regression – NIST Benchmarks 
 
 Continuing the analysis in Chapter E2, we now examine the accuracy of the linear regression 
routine in LIMDEP.  The NIST/StRD benchmarks are a suite of eleven data sets and linear regression 
problems designed to test the accuracy of linear regression programs. McCullough (1998) has analyzed 
various algorithms and programs with these data sets, and tabulated the highest accuracy he could 
achieve with three algorithms, Cholesky inversion, QR decomposition, and singular value 
decomposition (SVD).  QR, the method used in LIMDEP is the most accurate in nine of eleven runs.  
The following displays full results for a few of the NIST linear regression benchmarks.  The first, the 
Norris data, is a low level, fairly simple test.  The Longley set is a moderately difficult test, but is a de 
facto benchmark which no respectable commercial package should fail.  The Wampler (5) test is 
known to be one of the most difficult of the standard benchmarks.  The Filippelli data are the most 
difficult data; this regression is not computable with many packages, and, for example, does not solve 
at all, if one is using Cholesky or any other direct inversion method.  As shown below, LIMDEP 
achieves high accuracy on all of these problems, including the Filippelli problem.   
 The data sets are primarily structured to test two features of the solver, its ability to solve a 
problem when the data are highly collinear and its ability to handle a data set with widely differing 
orders of magnitude.  The Filippelli data are the most difficult of the first of these.  The Wampler 
data sets test the second.  Note that in spite of the huge condition numbers reported for some of these 
data matrices, the solutions all agree closely with the benchmarks. 
 Many of the NIST datasets and test programs are included with the LIMDEP program, and 
can be found in the C:\LIMDEP10\Command Files folder created with program installation and also 
in the NIST Benchmarks book of the Help file. (The initial statement of each problem is the verbatim 
text of the NIST/StRD posting on their website.) 
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File Name:     NIST-Regression-Norris11.lim 
Dataset Name:  Norris (NIST-Norris11.dat) 
Procedure:     Linear Least Squares Regression 
Reference:     Norris, J., NIST.   
               Calibration of Ozone Monitors. 
Data:          1 Response Variable (y) 
               1 Predictor Variable (x) 
               36 Observations 
               Lower Level of Difficulty 
               Observed Data 
Model:         Linear Class 
               2 Parameters (B0,B1) 
               y = B0 + B1*x + e 
               Certified Regression Statistics 
                                          Standard Deviation 
     Parameter          Estimate             of Estimate 
        B0        -0.262323073774029     0.232818234301152 
        B1         1.00211681802045      0.429796848199937E-03 
     Residual 
     Standard Deviation   0.884796396144373 
     R-Squared            0.999993745883712 
               Certified Analysis of Variance Table 
Source of Degrees of    Sums of             Mean   
Variation  Freedom      Squares            Squares           F Statistic 
Regression    1     4255954.13232369   4255954.13232369   5436385.54079785 
Residual     34     26.6173985294224   0.782864662630069 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =      419.80278 
             Standard deviation   =      348.71113 
             No. of observations  =             36  Degrees of freedom 
Regression   Sum of Squares       =    .425595E+07           1 
Residual     Sum of Squares       =        26.6174          34 
Total        Sum of Squares       =    .425598E+07          35 
             Standard error of e  =         .88480 
Fit          R-squared            =         .99999  R-bar squared =   .99999 
Model test   F[  1,    34]        =  5436385.54078  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      -45.64662  Akaike I.C.   =  -.19084 
             Restricted (b=0)     =     -261.32749  Bayes  I.C.   =  -.10287 
             Chi squared [  1]    =      431.36175  Prob C2 > C2* =   .00000 
Model was estimated on May 09, 2011 at 10:14:01 AM 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.26232         .23282    -1.13  .2677     -.71864    .19399 
       X|    1.00212***      .00043  2331.61  .0000     1.00127   1.00296 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

 MATRIX ; Peek ; b $ 
 

Display of all internal digits of matrix B 
B[0001] = -.26232307377404140D+00 
B[0002] = .10021168180204550D+01 
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File Name:     NIST-Regression-Wampler5.lim 
Dataset Name:  Wampler-5 (NIST-Wampler5.dat) 
Procedure:     Linear Least Squares Regression 
Reference:     Wampler, R. H. (1970). 
               A Report of the Accuracy of Some Widely-Used Least 
               Squares Computer Programs. 
               Journal of the American Statistical Association, 65, pp. 549-565. 
Data:          1 Response Variable (y) 
               1 Predictor Variable (x) 
               21 Observations 
               Higher Level of Difficulty 
               Generated Data 
Model:         Polynomial Class 
               6 Parameters (B0,B1,...,B5) 
               y = B0 + B1*x + B2*(x**2) + B3*(x**3)+ B4*(x**4) + B5*(x**5) 
               Certified Regression Statistics 
                                          Standard Deviation 
     Parameter          Estimate             of Estimate 
 
        B0        1.00000000000000         21523262.4678170 
        B1        1.00000000000000         23635517.3469681 
        B2        1.00000000000000         7793435.24331583 
        B3        1.00000000000000         1014755.07550350 
        B4        1.00000000000000         56456.6512170752 
        B5        1.00000000000000         1123.24854679312 
     Residual 
     Standard Deviation   23601450.2379268 
     R-Squared            0.224668921574940E-02 
               Certified Analysis of Variance Table 
Source of Degrees of    Sums of               Mean 
Variation  Freedom      Squares              Squares           F Statistic 
Regression    5    18814317208116.7      3762863441623.33 6.7552445824012241E-03 
Residual     15    0.835542680000000E+16 557028453333333. 
 
WARNING: Badly conditioned X. Condition value =    .4330261D+07 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =   623960.33333 
             Standard deviation   = 20462454.78579 
             No. of observations  =             21  Degrees of freedom 
Regression   Sum of Squares       =    .188143E+14           5 
Residual     Sum of Squares       =    .835543E+16          15 
Total        Sum of Squares       =    .837424E+16          20 
             Standard error of e  = 23601450.23793 
Fit          R-squared            =         .00225  R-bar squared =  -.33034 
Model test   F[  5,    15]        =         .00676  Prob F > F*   =   .99999 
Diagnostic   Log likelihood       =     -382.77794  Akaike I.C.   = 34.18859 
             Restricted (b=0)     =     -382.80156  Bayes  I.C.   = 34.48703 
             Chi squared [  5]    =         .04723  Prob C2 > C2* =   .99997 
Model was estimated on May 09, 2011 at 10:17:45 AM 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|        1.0      .2152D+08      .00 1.0000 -.42185D+08  .42185D+08 
      X1|    1.00000      .2364D+08      .00 1.0000 ***********  *********** 
      X2|        1.0      .7793D+07      .00 1.0000 -.15275D+08  .15275D+08 
      X3|    1.00000      .1015D+07      .00 1.0000 ***********  *********** 
      X4|        1.0       56456.65      .00 1.0000 -.11065D+06  .11065D+06 
      X5|    1.00000       1123.249      .00  .9993 -2200.52670  2202.52670 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

 MATRIX ; Peek ; b $ 
 

Display of all internal digits of matrix B 
B[0001] = .10000000890577210D+01 
B[0002] = .99999982105423900D+00 
B[0003] = .10000000650753040D+01 
B[0004] = .99999999135189290D+00 
B[0005] = .10000000004789460D+01 
B[0006] = .99999999999061120D+00 
 

File Name:     NIST-Regression-Filippelli.lim  
Dataset Name:  Filippelli (NIST-Filippelli.dat) 
Procedure:     Linear Least Squares Regression 
Reference:     Filippelli, A., NIST. 
Data:          1 Response Variable (y) 
               1 Predictor Variable (x) 
               82 Observations 
               Higher Level of Difficulty 
               Observed Data 
Model:         Polynomial Class 
               11 Parameters (B0,B1,...,B10) 
               y = B0 + B1*x + B2*(x**2) + ... + B9*(x**9) + B10*(x**10) + e 
               Certified Regression Statistics 
                                            Standard Deviation 
     Parameter         Estimate                of Estimate 
        B0        -1467.48961422980         298.084530995537 
        B1        -2772.17959193342         559.779865474950 
        B2        -2316.37108160893         466.477572127796 
        B3        -1127.97394098372         227.204274477751 
        B4        -354.478233703349         71.6478660875927 
        B5        -75.1242017393757         15.2897178747400 
        B6        -10.8753180355343         2.23691159816033 
        B7        -1.06221498588947         0.221624321934227 
        B8        -0.670191154593408E-01    0.142363763154724E-01 
        B9        -0.246781078275479E-02    0.535617408889821E-03 
        B10       -0.402962525080404E-04    0.896632837373868E-05 
 

     Residual 
     Standard Deviation   0.334801051324544E-02 
     R-Squared            0.996727416185620 
               Certified Analysis of Variance Table 
Source of Degrees of     Sums of                 Mean   
Variation  Freedom       Squares                Squares           F Statistic 
Regression   10     0.242391619837339     0.242391619837339E-01 2162.43954511489 
Residual     71     0.795851382172941E-03 0.112091743968020E-04 
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WARNING: Badly conditioned X. Condition value =    .2999482D+10 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =         .84958 
             Standard deviation   =         .05479 
             No. of observations  =             82  Degrees of freedom 
Regression   Sum of Squares       =        .242392          10 
Residual     Sum of Squares       =    .795851E-03          71 
Total        Sum of Squares       =        .243187          81 
             Standard error of e  =         .00335 
Fit          R-squared            =         .99673  R-bar squared =   .99627 
Model test   F[ 10,    71]        =     2162.43959  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      356.90255  Akaike I.C.   =-11.27452 
             Restricted (b=0)     =      122.29336  Bayes  I.C.   =-10.95167 
             Chi squared [ 10]    =      469.21839  Prob C2 > C2* =   .00000 
Model was estimated on May 09, 2011 at 10:21:47 AM 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1467.49***    298.0845    -4.92  .0000    -2051.72   -883.25 
      X1|   -2772.18***    559.7799    -4.95  .0000    -3869.33  -1675.03 
      X2|   -2316.37***    466.4776    -4.97  .0000    -3230.65  -1402.09 
      X3|   -1127.97***    227.2043    -4.96  .0000    -1573.29   -682.66 
      X4|   -354.478***    71.64787    -4.95  .0000    -494.905  -214.051 
      X5|   -75.1242***    15.28972    -4.91  .0000   -105.0915  -45.1569 
      X6|   -10.8753***     2.23691    -4.86  .0000    -15.2596   -6.4911 
      X7|   -1.06222***      .22162    -4.79  .0000    -1.49659   -.62784 
      X8|    -.06702***      .01424    -4.71  .0000     -.09492   -.03912 
      X9|    -.00247***      .00054    -4.61  .0000     -.00352   -.00142 
     X10|-.40296D-04***   .8966D-05    -4.49  .0000 -.57870D-04  -.22723D-04 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

 MATRIX ; Peek ; b $ 
 

Display of all internal digits of matrix B 
B[0001] =-.14674896451936570D+04 
B[0002] =-.27721796507612570D+04 
B[0003] =-.23163711311320980D+04 
B[0004] =-.11279739653118660D+04 
B[0005] =-.35447824142799430D+03 
B[0006] =-.75124203396297770D+02 
B[0007] =-.10875318278760100D+02 
B[0008] =-.10622150100252390D+01 
B[0009] =-.67019117009404680D-01 
B[0010] =-.24678108409567800D-02 
B[0011] =-.40296253478694550D-04 
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E8: Linear Regression – Hypothesis Tests and 
Restrictions 

 
E8.1 Introduction 
 
 This chapter will detail hypothesis testing and restricted estimation in the single equation, 
linear regression model 
 
   yi  =  xi1β1  +  xi2β2  +  ...  +  xiKβK  +  εi 

    =  xi′β  +  εi, i = 1,...,n. 
 
The full set of observations is denoted for present purposes as 
 
   y  =  Xβ  +  ε. 
 
The initial stochastic assumptions are the most restrictive for the linear model: 
 
   E[εi| X ]   =  0  =  E[εi] ∀ i      (zero mean) 

   Var[εi | X]   =  Var[εi]  =  σ2, ∀ i      (homoscedastic) 

   Cov[εi , εj | X] =  Cov[εi , εj ]  =  0  ∀ i ,j  (nonautocorrelation). 
 
Estimation of β and σ2 and computation of appropriate standard errors were detailed in Chapter E7.  
This chapter will present methods of testing hypotheses about coefficients and how to estimate the 
regression model subject to restrictions on the coefficients. 
  
E8.2 Hypothesis Tests in the Linear Regression Model 
 
 There are several built in procedures for inference.  In addition, the REGRESS and 
MATRIX commands can be used to test a variety of hypotheses.   For purposes of a running 
example, we will use the Christensen and Greene (1976) electricity data, which are in Table F4-4 in 
Greene (2011) – http://pages.stern.nyu.edu/~wgreene/Text/Edition7/TableF4-4.txt. The data are set 
up with 
 

IMPORT $ 
id     year     cost      q            pl            sl         pk         sk         pf           sf 
1      1970    .2130    8.0    6869.470   .3291   64.945   .4197   18.0000   .2512 
157 additional observations.  Only the first 123 are used in the study. 
SAMPLE  ; 1-123 $ 
CREATE  ; lnpk = Log(pk) ; lnpl = Log(pl) ; lnpf = Log(pf) $ 
CREATE  ; lncost = Log(cost) ; lnq = Log(q) ; lnqsq = lnq*lnq $ 
CREATE  ; lnpk_pf = Log(pk/pf) ; lnlp_pf = Log(pl/pf) ; lncostpf = Log(cost/pf)$ 

 

http://pages.stern.nyu.edu/~wgreene/Text/Edition7/TableF4-4.txt�
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E8.2.1 Testing Significance of Individual Coefficients 
 
 The standard regression results contain the results of hypothesis tests that individual 
coefficients are equal to zero.  The following results illustrate. 
 
 REGRESS  ; Lhs = lncost ; Rhs = one,lnpk,lnpl,lnpf,lnq $ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LNCOST   Mean                 =        3.00917 
             Standard deviation   =        1.56241 
             No. of observations  =            123  Degrees of freedom 
Regression   Sum of Squares       =        292.338           4 
Residual     Sum of Squares       =        5.47915         118 
Total        Sum of Squares       =        297.817         122 
             Standard error of e  =         .21548 
Fit          R-squared            =         .98160  R-bar squared =   .98098 
Model test   F[  4,   118]        =     1573.95986  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       16.81149  Akaike I.C.   = -3.02993 
             Restricted (b=0)     =     -228.91353  Bayes  I.C.   = -2.91562 
             Chi squared [  4]    =      491.45003  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LNCOST|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -8.06007***     1.30600    -6.17  .0000   -10.61979  -5.50035 
    LNPK|     .17131         .13498     1.27  .2069     -.09324    .43586 
    LNPL|     .12860         .13233      .97  .3331     -.13076    .38796 
    LNPF|     .70487***      .07506     9.39  .0000      .55776    .85197 
     LNQ|     .83024***      .01095    75.85  .0000      .80879    .85169 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The statistical significance (10%, 5%, 1%) is indicated in the table.  The test is based on the t 
statistic, the P value or whether the confidence interval contains zero.  All produce the same 
conclusion.  A test of whether a coefficient equals some particular nonzero value can, in principle, be 
carried out using the procedure in the next section.  However, the same significance test results just 
by assessing whether the confidence interval contains the indicated value.  For example, based on the 
results below, they hypothesis that β3 (the coefficient on lnpl) equals 0.5 would be rejected because 
the interval (-0.13076,0.38796) does not contain 0.5.  By the same construction, the hypothesis that 
β5 (the coefficient on lnq) equals 0.84 would not be rejected, as 0.84 is contained in 
(0.80879,0.85169). 
 
  



E8: Linear Regression – Hypothesis Tests and Restrictions   E-165 

E8.2.2 Linear Function of Coefficients 
 
 A test of a hypothesis based on a linear function of the coefficients is requested by adding 
 
   ; Test: value * name ± value * name ± … = value 
 
to the REGRESS command.  When value equals one it (and the *) may be omitted.  ‘Name’ is the 
name of a variable in the equation.  For example, a restriction on the model parameters that is 
normally imposed as part of the cost function model is that the log price coefficients sum to one.  We 
can test that as a hypothesis here with 
 
 REGRESS  ; Lhs = lncost ; Rhs = one,lnpk,lnpl,lnpf,lnq  

; Test: lnpk + lnpl + lnpf = 1 $ 
 
This produces the results below 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LNCOST   Mean                 =        3.00917 
             Standard deviation   =        1.56241 
             No. of observations  =            123  Degrees of freedom 
Regression   Sum of Squares       =        292.338           4 
Residual     Sum of Squares       =        5.47915         118 
Total        Sum of Squares       =        297.817         122 
             Standard error of e  =         .21548 
Fit          R-squared            =         .98160  R-bar squared =   .98098 
Model test   F[  4,   118]        =     1573.95986  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       16.81149  Akaike I.C.   = -3.02993 
             Restricted (b=0)     =     -228.91353  Bayes  I.C.   = -2.91562 
             Chi squared [  4]    =      491.45003  Prob C2 > C2* =   .00000 
Wald Test:   Chi-squared [  1]    =         .00061  Prob C2 > C2* =   .98025 
F Test:      F ratio [ 1, 118]    =         .00061  Prof F  > F*  =   .98030 
--------+-------------------------------------------------------------------- 
 
(The estimates are the same.)  The test statistic is reported in the diagnostic results above the 
estimates.  When the model is fit by least squares with no modifications to accommodate 
nonnormality or other violations of the standard assumptions (such as a robust covariance matrix), 
then two versions of the statistic are presented.  The standard F statistic for testing the J restrictions, 
 
   H0: Rβ =  q 
 

is   F[J,n-K] =  [Rb - q]′[s²R(X′X)-1R′]-1[Rb - q]/J   

       =  [(e*′e* - e′e)/J] / [e′e/(n-K)] 
 
Under the assumption of normality of disturbances, this is distributed as F[J,n-K] under the null 
hypothesis.  The critical value is taken from the standard F table.  When the denominator degrees of 
freedom are larger than 10,000, this critical value will be indistinguishable from 1/J times the 
counterpart from the chi squared, so in this case, only the Wald statistic is reported.  For a linear 
regression the Wald chi squared statistic is exactly J×F.  The critical value for the Wald statistic is 
based on large sample results whereas that for the F statistic is based on the actual sample size 
(degrees of freedom).  The result is that the P value for the Wald test will always be lower than that 
for the F value – the F statistic is more conservative. 



E8: Linear Regression – Hypothesis Tests and Restrictions   E-166 

NOTE:  This syntax for testing restrictions is new with Version 10 of LIMDEP.  Earlier versions 
would use ; Test: value * b(index) ± … ± value * b(index) = value.  The example above would be 
b(2) + b(3) + b(4) = 1.  The older syntax is still usable (and even necessary on occasion, as shown in 
the next section).  The syntax based on variable names rather than index positions will be more 
convenient, as the terms in the restriction are independent of the order or position of variables in the 
model specification. 
 
E8.2.3 Linear Function with Interaction Terms and Nonlinearities 
 
 A slight change in the command is needed if the model contains interaction terms or 
nonlinear functions of the variables.  For example, the model 
 
 REGRESS  ; Lhs = lncost ; Rhs = one,lnpk,lnpl,lnpf,lnq,lnq*lnq $ 
 
contains a quadratic term in log output.  To test a hypothesis about terms such as this, it is necessary 
to revert to the earlier form of restrictions. For example, to test the hypothesis that the coefficient on 
lnq*lnq equals zero, the syntax 
 
   ; Test: lnq*lnq = 0 
 
will not work; lnq*lnq is not the name of a variable, and lnq*lnq looks deceptively like, say, 2*lnq to 
the program.  The solution is to use the earlier format.  For this simple hypothesis, we must use 
 
   ; Test: b(6) = 0. 
 
It is permissible to mix the two forms.  For example, to test the two previous hypotheses at the same 
time, we would use 
 

   ; Test: lnpk + lnpl + lnpf = 1, b(6) = 0 
 
which produces 
 
----------------------------------------------------------------------------- 
... (Results omitted) 
 
Wald Test:   Chi-squared [  2]    =      145.56748  Prob C2 > C2* =   .00000 
F Test:      F ratio [ 2, 117]    =       72.78374  Prof F  > F*  =   .00000 
--------+-------------------------------------------------------------------- 
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E8.2.4 More Than One Linear Restriction 
 
 As shown in the example immediately above, when you have more than one restriction to 
test at the same time, you separate the restrictions with commas.  To carry out separate tests, each of 
which can involve more than one restriction, separate the hypotheses with a ‘|’ character.  For 
example, to test the two restrictions above as separate hypotheses, rather than as one joint 
hypothesis, we would use 
 
   ; Test:  lnpk + lnpl + lnpf = 1  |  b(6) = 0. 
 
The results would be as follows: 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LNCOST   Mean                 =        3.00917 
             Standard deviation   =        1.56241 
             No. of observations  =            123  Degrees of freedom 
Regression   Sum of Squares       =        295.375           5 
Residual     Sum of Squares       =        2.44152         117 
Total        Sum of Squares       =        297.817         122 
             Standard error of e  =         .14446 
Fit          R-squared            =         .99180  R-bar squared =   .99145 
Model test   F[  5,   117]        =     2830.93377  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       66.52372  Akaike I.C.   = -3.82200 
             Restricted (b=0)     =     -228.91353  Bayes  I.C.   = -3.68482 
             Chi squared [  5]    =      590.87450  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LNCOST|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -7.04431***      .87956    -8.01  .0000    -8.76821  -5.32041 
    LNPK|     .05419         .09100      .60  .5527     -.12418    .23255 
    LNPL|     .24309***      .08922     2.72  .0074      .06823    .41795 
    LNPF|     .66279***      .05044    13.14  .0000      .56394    .76164 
     LNQ|     .39105***      .03713    10.53  .0000      .31827    .46383 
 LNQ*LNQ|     .03123***      .00259    12.07  .0000      .02616    .03630 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Chi squared tests of linear restrictions. Degrees of freedom shown 
in [.]. Equals zero is implied if no specific value was given. 
 1. Restriction:LNPK+LNPL+LNPF=1 
    Chi squared[ 1] =         .095, P value =  .7575 
 2. Restriction:B(6)=0 
    Chi squared[ 1] =      145.566, P value =  .0000 
----------------------------------------------------------------------------- 
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E8.2.5 Testing Nonlinear Restrictions 
 
 Chapter R14 describes how to use the WALD command for testing and analyzing nonlinear 
restrictions and nonlinear functions of parameters.  The procedure described there applies to the 
linear regression model as well as the others, so we need not add new details here.   We demonstrate 
the use of the feature with a simple example. 
 Consider the equation based, once again, on the gasoline market data: 
 

   logg  =  β1  +  β2logpg + β3logy + β4logpnc + β5logpuc + β6logppt + ε. 
 

Consider the nonlinear hypothesis 
 

   H0:  β2/β4  +  β2/β5  =  0. 
 

The following could be used to test this (admittedly meaningless) hypothesis: 
 
 NAMELIST ; x = one,logpg,logy,logpnc,logpuc,logppt $ 
 REGRESS ; Lhs = logg ; Rhs = x $ 
 WALD  ; Fn1 = b_logpg / b_logpnc + b_logpg / b_logpuc $ 
 
Note that the restriction is implicitly ; Fn1 = … = 0.  The ‘= 0’ may be omitted.  Of course, if some 
other constant is needed, it must be included in the form ; Fn1 = … - value.  For example,  
 
   ; Fn1 = b_K + b_L + b_F - 1 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.79379           5 
Residual     Sum of Squares       =        .107004          46 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .04823 
Fit          R-squared            =         .96311  R-bar squared =   .95910 
Model test   F[  5,    46]        =      240.20584  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       87.05475  Akaike I.C.   = -5.95537 
             Restricted (b=0)     =        1.25792  Bayes  I.C.   = -5.73022 
             Chi squared [  5]    =      171.59365  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -11.5997***     1.48817    -7.79  .0000    -14.5165   -8.6829 
   LOGPG|    -.03438         .04202     -.82  .4174     -.11673    .04797 
  LOGINC|    1.31597***      .14198     9.27  .0000     1.03769   1.59425 
  LOGPNC|    -.11964         .20384     -.59  .5601     -.51916    .27989 
  LOGPUC|     .03754         .09814      .38  .7038     -.15481    .22990 
  LOGPPT|    -.21514*        .11656    -1.85  .0714     -.44359    .01331 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The chi squared statistic for carrying out the test is given in the information at the top of the results, 
as shown below. 
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----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =       .08431 
Prob. from Chi-squared[ 1] =       .77154 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|    -.62840        2.16422     -.29  .7715    -4.87019   3.61338 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Although the difference is large, the standard error is extremely large, and the Wald test fails to 
reject the hypothesis. 
 When necessary, you can use the more general form of the WALD command to provide the 
parameters, covariance matrix and labels for the test.  The preceding could also be obtained with 
 

WALD  ; Parameters = b  
; Covariance = varb  
; Labels = 6_b 
; Fn1 = b2/b4 + b2/b5 $ 

 
 If more than one nonlinear function is specified in the WALD command, the overall chi 
squared given is used to test whether all of the functions equal to zero at the same time.  The 
individual results given in the table can be used to test whether the individual functions equal zero.  
The following example proposes three ‘hypotheses’ 
 

WALD  ; Parameters = b  
; Covariance = varb  
; Labels = 6_b 
; Fn1 = b2/b4 + b2/b5  
; Fn2 = b3 
; Fn3 = b6 $ 

 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =    327.46324 
Prob. from Chi-squared[ 3] =       .00000 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|    -.62840        2.16422     -.29  .7715    -4.87019   3.61338 
 Fncn(2)|    1.31597***      .14198     9.27  .0000     1.03769   1.59425 
 Fncn(3)|    -.21514*        .11656    -1.85  .0649     -.44359    .01331 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The overall chi squared tests all three hypotheses at the same time.  The individual results would be 
used to test the restrictions individually. 
 
TIP:  If you are testing a hypothesis that a function equals something other than zero, just subtract 
that value from the function specification.  For example, ; Fn1 = b1 + b2 + b3 - 1 might be 
appropriate. 
 
E8.2.6 Tests of Structural Change 
 
 We consider again the regression of gasoline consumption on price, income and three related 
price indexes.  We are interested in testing the hypothesis that there is a structural break in 1974.  
The following does the standard Chow test.  The CALC command then does a likelihood ratio test 
of the same hypothesis.  Finally, we use a Wald test.  The Wald test differs from the Chow test in 
that it allows for the disturbance variance to change across the periods. 
 
 DATES ; 1953 $ 
 PERIOD ; 1953 - 2004 $ 
 CREATE ; d = Ind(1974,2004) ; dp = d*logpg   
   ; dy = d*logy ; dpnc = d*logpnc  
   ; dpuc = d*logpuc ; dppt = d*logppt $ 
 NAMELIST  ; x = one,logpg,logy,logpnc,logpuc,logppt    
   ; xd = d,dp,dy,dpnc,dpuc,dppt $ 
 REGRESS   ; Lhs = logg ; Rhs = x,xd 

       ; Test: d = 0, dp = 0, dy = 0, dpnc = 0, dpuc = 0, dppt = 0 $ 
 CALC      ; List ; c = 2* (Lik(x,xd,logg) - Lik(x,logg))  

 ; lrtest = 1 - Chi(c,(Col(xd))) $ 
 
The following shows the unconstrained and constrained regressions.   (A few lines are omitted from 
the results.)  Both the F and likelihood ratio statistics reject the null hypothesis of no structural 
change.  The world did change in 1973-1974. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.89363          11 
Residual     Sum of Squares       =    .716442E-02          40 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .01338 
Fit          R-squared            =         .99753  R-bar squared =   .99685 
Model test   F[ 11,    40]        =     1468.68819  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      157.35187  Akaike I.C.   = -8.42833 
             Restricted (b=0)     =        1.25792  Bayes  I.C.   = -7.97805 
             Chi squared [ 11]    =      312.18791  Prob C2 > C2* =   .00000 
Model was estimated on May 12, 2011 at 08:32:09 PM 
Wald Test:   Chi-squared [  6]    =      557.41682  Prob C2 > C2* =   .00000 
F Test:      F ratio [ 6,  40]    =       92.90280  Prof F  > F*  =   .00000 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -12.0786***     1.96984    -6.13  .0000    -15.9394   -8.2177 
   LOGPG|     .06832         .18643      .37  .7159     -.29707    .43371 
  LOGINC|     .98085***      .21124     4.64  .0000      .56683   1.39488 
  LOGPNC|     .70430***      .24651     2.86  .0068      .22114   1.18746 
  LOGPUC|    -.21467***      .07542    -2.85  .0069     -.36249   -.06685 
  LOGPPT|     .06275         .11682      .54  .5941     -.16622    .29172 
       D|    5.13886**      2.05052     2.51  .0164     1.11991   9.15780 
      DP|    -.17914         .18708     -.96  .3440     -.54581    .18753 
      DY|    -.23873         .21941    -1.09  .2831     -.66876    .19130 
    DPNC|    -.58783**       .25676    -2.29  .0274    -1.09106   -.08460 
    DPUC|     .22101**       .08504     2.60  .0130      .05433    .38769 
    DPPT|    -.19422         .12615    -1.54  .1315     -.44146    .05302 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
[CALC] C       =    140.5942491 
[CALC] LRTEST  =       .0000000 
Calculator: Computed   2 scalar results 
 
 This command set carries out the Wald test.  The last line lists the critical value for the chi 
squared distribution.  The table value is about 12 while the statistic is over 582, so again, the 
hypothesis is rejected.  Note that the earlier F statistic was 92.9.  The number of restrictions times F, 
6×92.9 = 557.4 should roughly equal the chi squared value (582.46), which it does. 
 

REGRESS ; If[year < 1974]    ; Quietly ; Lhs = logg ; Rhs = x $ 
MATRIX  ; b1 = b ; v1 = varb $ 
REGRESS ; If[year > = 1974] ; Quietly ; Lhs = logg ; Rhs = x $ 
MATRIX ; b2 = b ; v2 = varb $ 
MATRIX ; db = b1 - b2 ; vdb = v1 + v2 ; List ; Wald = db'<vdb>db $ 
CALC  ; List ; Ctb(.95,6) $ 
CALC  ; List ; Ctb(.95,6) $ 

 
    WALD|             1 
--------+-------------- 
       1|       582.461 
 [CALC] *Result*=     12.5915872 
 
 There is a convenient, automated method of carrying out the Chow test when the hypothesis 
involves dividing the sample into two subsamples.  The following carries out the same Wald test as 
shown above.  Post1973 is a dummy variable that partitions the sample.  (You might do this in a 
cross section, for example, to compare men and women, or two countries.)  The REGRESS 
command begins with a loop that computes the regression (or any model) three times, with the full 
sample and with the two subsamples.  The DECOMPOSE command then produces several results, 
including the chi squared statistic. 
 

CREATE  ; Post1973 = year > 1973 $ 
REGRESS  ; For [Post1973 = *,0,1] ; Quietly ; Lhs = logg ; Rhs = x $ 
DECOMPOSE $ 
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The following output results. (If ; Quietly is omitted from the REGRESS command, then a full set 
of results is displayed for each of the three iterations.) 
 
----------------------------------------------------- 
Setting up an iteration over the values of POST1973 
The model command will be executed for     2 values 
of this variable.  In the current sample of      52 
observations, the following counts were found: 
Subsample   Observations    Subsample  Observations 
POST1973 =   0        21    POST1973=   1        31 
POST1973 =****        52 
---------------------------------------------------- 
Actual subsamples may be smaller if missing values 
are being bypassed.  Subsamples with 0 observations 
will be bypassed. 
---------------------------------------------------- 
 
----------------------------------------------------------------- 
Subsample analyzed for this command is POST1973 =       0 
----------------------------------------------------------------- 
Subsample analyzed for this command is POST1973 =       1 
----------------------------------------------------------------- 
Full pooled sample is used for this iteration. 
----------------------------------------------------------------- 
Decomposition of Changes in Average Functions 
Model Used in Computations = Linear Regression Function 
------------------------------------------------------------------- 
               Sample is POST1973= 0         POST1973= 1     Sample 
Estimates Based on                (0)                 (1)      Size 
POST1973 = 0 (a)       -.492872 (a,0)       .551191 (a,1)        21 
POST1973 = 1 (b)       -.305223 (b,0)      -.097432 (b,1)        31 
Pooled   =** (*)       -.486167 (*,0)      -.101974 (*,1)        52 
------------------------------------------------------------------- 
Wald Test of Difference in the Two Coefficient Vectors 
Chi squared[  6] =  582.4610        , P Value =  .0000 
------------------------------------------------------------------- 
Total Change in Function    (a,0) - (b,1) =     -.395440 ( 100.00%) 
------------------------------------------------------------------- 
Oaxaca    | Due to data is  (a,0) - (a,1) =     -1.04406 ( 264.03%) 
Blinder   | Due to beta is  (a,1) - (b,1) =      .648623 (-164.03%) 
------------------------------------------------------------------- 
Daymont   | Due to data is  (b,0) - (b,1) =     -.207791 (  52.55%) 
Andrisani | Due to beta is  (a,0) - (b,0) =     -.187649 (  47.45%) 
------------------------------------------------------------------- 
Daymont   | Due to data is  (b,0) - (b,1) =     -.207791 (  52.55%) 
Andrisani | Due to beta is  (a,1) - (b,1) =      .648623 (-164.03%) 
(3 Fold)  | Due to function (a,0) - (b,0) - 
          |                 (a,1) - (b,1) =     -.836271 ( 211.48%) 
------------------------------------------------------------------- 
Ransom    | Due to data is  (*,0) - (*,1) =     -.384194 (  97.16%) 
Oaxaca    | Due to beta is  (a,0) - (*,0) +     -.011246 (   2.84%) 
Neumark   |                 (*,1) - (b,1) 
------------------------------------------------------------------- 
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E8.2.7 Homogeneity Test 
 

 The following command set can be used to test for homogeneity of a set of NG subsamples 
of the sample.  The initial NAMELIST command defines the variables in the regression equation.  
The CREATE command defines the dependent variable and the index variable that is used to 
partition the sample into NG groups.  The rest of the command set is generic and need not be 
changed.  The only displayed output is the test statistic and the critical value from the F table. 
 

? Define the set of Rhs variables in the regression model 
NAMELIST ; x = the relevant x vector $ 
CREATE   ; y = the dependent variable ; Group = the index 1,2,… $ 
? Lines below here are generic and do not need to be changed. 
SAMPLE  ; All $ 
CALC   ; ng = max(group) ; sspool = Ess(x,y) ; sssum = 0 ; nt = n $ 
PROC $ 
INCLUDE  ; New ; Group = i $ 
CALC   ; sssum = sssum + Ess(x,y) $ 
ENDPROC $ 
EXEC   ; i = 1,ng $ 
CALC   ; List ; f = ((sspool-sssum)/(kreg*(ng-1))) / (sssum/(nt-ng*kreg)) $ 
CALC   ; List ; Ftb(.95, (kreg*(ng-1)), (nt-ng*kreg)) $ 

 

Using the regression defined in the previous example, we defined the group variable by three periods, 
 

 CREATE ; Group = 1 + year > 1073 + year > 1985 $ 
 

The result of the test for this partitioning of the period 1953 to 2004 is  
 
 [CALC] F       =     72.7744898 
 [CALC] *Result*=      2.0500398 
 

Since the sample F statistic is greater than the critical value, the homogeneity hypothesis is rejected. 
 

E8.2.8 J Tests for Nonnested Hypotheses 
 

 We suppose that the dependent variable is y and there are two competing sets of regressors, 
X and Z, which are nonnested.  Which is the right one?  Davidson and MacKinnon propose a simple 
method of testing the hypothesis in the linear case.  We regress y on X and compute the fitted values, 
then regress y on Z and these fitted values.  If Z is the correct regressor vector, the coefficient on the 
fitted values should be close to zero by a conventional t test.  We then reverse the roles of X and Z 
and repeat (and hope the results are consistent).  The commands are: 
 

 NAMELIST  ; z = ...  $ 
 NAMELIST  ; x = ...  $ 
 REGRESS   ; Lhs = y ; Rhs = x ; Keep = yfx $ 
 

In this regression, we examine the coefficient on yfx. 
 
 REGRESS   ; Lhs = y ; Rhs = z, yfz $ 
 REGRESS   ; Lhs = y ; Rhs = z ; Keep = yfz $ 
 
In this regression, we examine the coefficient on yfz. 
 

 REGRESS   ; Lhs = y ; Rhs = x, yfz $ 
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E8.3 Restricted Least Squares  
 
 This section describes procedures for estimating the restricted regression model,   
 
   y  =  Xβ  +  e 

subject to  Rβ  ≥  q. 
 
R is a J×K matrix assumed to be of full row rank.  That is, we impose J linearly independent 
restrictions.  They may be equality restrictions, inequality restrictions, or a mix of the two. 
 
E8.3.1 Equality Restrictions 
 
 If X′X is nonsingular, the constrained ordinary least squares estimator is 
 
   bc =  b - [X′X]-1R′[R(X′X)-1R′]-1  [Rb-q] 

where   b  =  [X′X]-1X′y 
 
is the unrestricted least squares estimator.  The estimator of the variance of the constrained estimator is 
 
   Est.Var[bc] = s²[X′X]-1 - s²[X′X]-1R′[R(X′X)-1R′]-1R[X′X]-1. 

where   s2  =  (y - X bc)′ (y - X bc)/(n-K+J). 
 
 The syntax for imposing linear restrictions is the same as that for testing linear restrictions 
described in the previous section.  As before, there are two general forms available, depending on 
whether the regression involves only linear terms or explicit terms such as interactions, quadratics, or 
logs.  You may impose as many restrictions as you wish with this estimator; simply separate the 
restrictions with commas.   
 To continue the earlier example, consider the hybrid cost function in Section E8.2.3, 
 
   Logcost = β1 + β2logPk + β3logPl + β4logPf + γ1logq + γ2(logq)2 + ε. 
 
Linear homogeneity in the input prices requires β2 + β3 + β4 = 1.  The Cobb-Douglas cost function 
results if the restriction γ2 equals zero is imposed in addition to the linear homogeneity restriction.  
The restricted regression is obtained with 
 

REGRESS  ; Lhs = lncost 
; Rhs = one,lnpk,lnpl,lnpf,lnq,lnqsq 
; CLS: lnpk + lnpl + lnpf = 1, lnqsq = 0 $ 

 
In this case, both unrestricted and restricted regressions are reported.  In the second, the F statistic (or 
Wald statistic if a robust covariance matrix is used) for testing the restrictions is also reported. 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LNCOST   Mean                 =        3.00917 
             Standard deviation   =        1.56241 
             No. of observations  =            123  Degrees of freedom 
Regression   Sum of Squares       =        295.375           5 
Residual     Sum of Squares       =        2.44152         117 
Total        Sum of Squares       =        297.817         122 
             Standard error of e  =         .14446 
Fit          R-squared            =         .99180  R-bar squared =   .99145 
Model test   F[  5,   117]        =     2830.93377  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       66.52372  Akaike I.C.   = -3.82200 
             Restricted (b=0)     =     -228.91353  Bayes  I.C.   = -3.68482 
             Chi squared [  5]    =      590.87450  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LNCOST|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -7.04431***      .87956    -8.01  .0000    -8.76821  -5.32041 
    LNPK|     .05419         .09100      .60  .5527     -.12418    .23255 
    LNPL|     .24309***      .08922     2.72  .0074      .06823    .41795 
    LNPF|     .66279***      .05044    13.14  .0000      .56394    .76164 
     LNQ|     .39105***      .03713    10.53  .0000      .31827    .46383 
   LNQSQ|     .03123***      .00259    12.07  .0000      .02616    .03630 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Restricted   least squares regression ............ 
LHS=LNCOST   Mean                 =        3.00917 
             Standard deviation   =        1.56241 
             No. of observations  =            123  Degrees of freedom 
Regression   Sum of Squares       =        292.338           3 
Residual     Sum of Squares       =        5.47918         119 
Total        Sum of Squares       =        297.817         122 
             Standard error of e  =         .21458 
Fit          R-squared            =         .98160  R-bar squared =   .98114 
Model test   F[  3,   119]        =     2116.38681  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       16.81117  Akaike I.C.   = -3.04619 
             Restricted (b=0)     =     -228.91353  Bayes  I.C.   = -2.95474 
             Chi squared [  3]    =      491.44939  Prob C2 > C2* =   .00000 
Restrictions F[  2,   117]        =       72.78374  Prob F > F*   =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LNCOST|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -8.03028***      .50529   -15.89  .0000    -9.02064  -7.03993 
    LNPK|     .16885*        .09119     1.85  .0666     -.00987    .34758 
    LNPL|     .12647         .10020     1.26  .2094     -.06993    .32287 
    LNPF|     .70468***      .07434     9.48  .0000      .55898    .85038 
     LNQ|     .83029***      .01067    77.85  .0000      .80939    .85120 
   LNQSQ|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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E8.3.2 Equality Restrictions and Singularity 
 
 LIMDEP does not use precisely the preceding formulation internally.  The unrestricted 
estimator may not exist – X′X may be singular.  It may still be possible to obtain the restricted 
estimates, however.  The general result is that while the unrestricted model may involve too many 
parameters to estimate, the restrictions may eliminate enough parameters to leave an estimable 
model.  Instead of the formulas above, we solve the constrained first order conditions for least 
squares using the Lagrangean multiplier method.  That is, 
 
   Minimize(β,λ): ½(y - Xβ)′(y - Xβ) + λ′(Rβ - r). 
 
The first order conditions are 
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When X′X is nonsingular, this produces the formulas above.  (See Greene and Seaks (1991).)  But, 
even if X′X is singular, this equation system may have a solution.  The constrained least squares 
estimator, if it exists, is the solution to the preceding.  If X′X does have full rank, this equation 
system produces the usual constrained estimator.  If not, LIMDEP just proceeds to this solution.  If it 
exists, no warning is given about the unconstrained estimator – presumably it was of no interest 
anyway; LIMDEP simply produces the constrained estimator.  
 To illustrate how this works, consider the following obviously badly constructed example: 
 

CREATE ; extra = lnqsq $ 
REGRESS  ; Lhs = lncost 

; Rhs = one,lnpk,lnpl,lnpf,lnq,lnqsq,extra 
; CLS: lnpk + lnpl + lnpf = 1, lnqsq = 0, extra = 0 $ 

 
The variable extra is identical to lnqsq, so the unrestricted regression cannot be computed.  There is a 
textbook case of multicollinearity.  However, the restrictions include ‘extra = 0,’ so if the restrictions 
are actually imposed, the regression is fine.  The following are the results from this command.  The 
unrestricted regression cannot be computed, but the restricted one can.  In fact, it is identical to the 
one in Section E8.2.3. 
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----------------------------------------------------------------------------- 
Restricted   least squares regression ............ 
LHS=LNCOST   Mean                 =        3.00917 
             Standard deviation   =        1.56241 
             No. of observations  =            123  Degrees of freedom 
Regression   Sum of Squares       =        292.338           3 
Residual     Sum of Squares       =        5.47918         119 
Total        Sum of Squares       =        297.817         122 
             Standard error of e  =         .21458 
Fit          R-squared            =         .98160  R-bar squared =   .98114 
Model test   F[  3,   119]        =     2116.38681  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       16.81117  Akaike I.C.   = -3.04619 
             Restricted (b=0)     =     -228.91353  Bayes  I.C.   = -2.95474 
             Chi squared [  3]    =      491.44939  Prob C2 > C2* =   .00000 
Restrictions F[  3,   116]        =         .00000  Prob F > F*   =  1.00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LNCOST|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -8.03028***      .50529   -15.89  .0000    -9.02064  -7.03993 
    LNPK|     .16885*        .09119     1.85  .0666     -.00987    .34758 
    LNPL|     .12647         .10020     1.26  .2094     -.06993    .32287 
    LNPF|     .70468***      .07434     9.48  .0000      .55898    .85038 
     LNQ|     .83029***      .01067    77.85  .0000      .80939    .85120 
   LNQSQ|        0.0    .....(Fixed Parameter)..... 
   EXTRA|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
 The usual method of avoiding the dummy variable trap is to drop one of the dummy 
variables.  Consider, for example, the duration data used in Chapters E58-E60. We have the variables 
time, sex, and married.  For present purposes, consider a linear regression of time on a constant, 
married, and sex.  The dummy variable, sex would normally be coded 0/1, and the model would 
include a constant and this dummy variable.  The constant term would give the overall intercept, and 
the coefficient on sex would give the deviation of the group with sex = 1 (male in this case) from this 
constant.  Suppose, instead, we were to attempt to fit the regression 
 
   time  =  β1  +  β2male +  β3female  +  β4married  +  ε. 
 
This regression suffers from perfect multicollinearity; the second and third variables sum to the 
constant term.  Therefore, the unrestricted coefficient vector for this model cannot be estimated.  We 
add the constraint 
   β2  +  β3  =  0. 
 
This is just like the usual model, except that with this restriction, there is an average constant, and the 
two coefficients will give the difference of each of the two groups from the mean (in this case, a 
mean of only two items).  The following shows the result of estimating this model with LIMDEP.  
The unrestricted regression cannot be computed, but the restricted one can.  Notice that LIMDEP 
reports zero for the F test.  This is not a substantive restriction.  With the restriction, the model 
becomes just estimable. 



E8: Linear Regression – Hypothesis Tests and Restrictions   E-178 

The commands are: 
 
 READ  ; Nobs = 22  
   ; Nvar = 4  
   ; Names = time,status,sex,married  
   ; By Variables $ 

 

  11  3 19 32 2 14 8 21 16 5 2 8 14 18 18 21 10 1 9 23 19 7 
   1  1  0  1 1  1 1  1  0 1 1 1  1  1  1  1  0 1 0  1  1 1 
   0  0  1  0 1  0 1  1  1 0 0 1  1  0  1  1  0 0 1  1  0 1 
   1  1  2  2 1  1 1  1  2 2 2 1  1  1  2  1  2 2 1  1  2 1 

  

CREATE    ; male = sex ; female = 1 - male $ 
 REGRESS  ; Lhs = time  
   ; Rhs = one, male, female, married  
   ; CLS: male + female = 0 $ 
 
----------------------------------------------------------------------------- 
Restricted   least squares regression ............ 
LHS=TIME     Mean                 =       12.77273 
             Standard deviation   =        8.12364 
             No. of observations  =             22  Degrees of freedom 
Regression   Sum of Squares       =        58.1378           2 
Residual     Sum of Squares       =        1327.73          19 
Total        Sum of Squares       =        1385.86          21 
             Standard error of e  =        8.35944 
Fit          R-squared            =         .04195  R-bar squared =  -.05890 
Model test   F[  2,    19]        =         .41598  Prob F > F*   =   .66556 
Diagnostic   Log likelihood       =      -76.31863  Akaike I.C.   =  4.37291 
             Restricted (b=0)     =      -76.79005  Bayes  I.C.   =  4.52169 
             Chi squared [  2]    =         .94283  Prob C2 > C2* =   .62412 
Restrictions F[  1,    18]        =         .00000  Prob F > F*   =  1.00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    TIME|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    9.14247        5.80682     1.57  .1328    -2.23868  20.52363 
    MALE|    1.59946        1.91392      .84  .4143    -2.15175   5.35067 
  FEMALE|   -1.59946        1.91392     -.84  .4143    -5.35067   2.15175 
 MARRIED|    2.47312        3.87660      .64  .5315    -5.12488  10.07111 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 LIMDEP uses this method to fit the two way fixed effects model – see Section E17.3.  The 
regression model is 
   yit  =  µ  + αi + γt + β′xit  +  εit., i = 1,…,n,  t = 1,…,Ti. 
 
In order to compute the coefficients in this model, it is necessary to impose two restrictions, because 
both the individual effects and the time effects sum to one, the constant term.  To estimate this 
model, LIMDEP drops one of the time constants and imposes that the individual constants sum to 
zero.  (Because the number of periods can vary, it is necessary to create the time dummy variables 
and insert them into a one way fixed effects model.  The template method of using deviations from 
time means does not give the correct answer when the number of periods varies with i.) 
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E8.3.3 Inequality Restricted Least Squares 
 
 You may also impose inequality restrictions.  The model is specified as before, with the 
restrictions now specified as weak inequalities.  That is, 
 
   y  =  Xβ  +  e 
 
subject to   R11 β1 + R12 β2 + ... ≥  q1 (When Rjk = 1, it may be omitted. Also, the ≥ may be ≤.) 

   R21 β1 + R22 β2 + ... ≥  q2 
   ... 

   RJ1 β1 + RJ2 β2 + ... ≥  qJ 
 
This estimation is formulated as a classical quadratic programming problem.  That is, we 
 
   Minimize (wrt β) y′y – (2y′X)β + β′(X′X)β =  a + c′β + β′Hβ 
   Subject to the equality and inequality constraints. 
 
In order to specify estimation of a model subject to inequality constraints, you use the exact same 
formulation as if they were equality constraints, save for ‘<=’ for less than or equal to and ‘>=’ for 
greater than or equal to.  Also, you may have any mixture of equality constraints, >= and <= 
constraints in any model.  As in the case of the LAD estimator, there is no well defined result for the 
asymptotic covariance matrix of the inequality constrained estimator.  As before, we suggest using 
bootstrapping as a method of approximating the appropriate matrix.  Use 
 
   ; Nbt = ... number of bootstrap replications 
 
 To illustrate, we continue the sampling experiment computed at the beginning of this 
section.  The following creates data generated by a log quadratic production function 
 
   logy = β1 + β2logl + β3logk + β4log2l + β5log2k + β6logklogl + ε 
 
The regression model is fit subject to two constraints:  β2 + β3 = 1 and β4 + β5 + β6 ≤ 0.  The second 
constraint is actually binding in our results, as the final results have both constraints imposed as 
equalities.  Standard errors are estimated using 20 bootstrap replications. 
 

SAMPLE  ; 1-500 $ 
CALC  ; Ran(123457) $ 
CREATE ; l = Rnu(1,3) ; k = Rnu(.5,2)  
  ; ll = Log(l) ; lk = Log(k)  
  ; lk2 = lk*lk ; ll2 = ll*ll ; lkl = ll*lk  
  ; ly = 3 + .6*ll + .4*lk - .05*ll2 - .15*lk2 + .2*lkl + Rnn(0,4) $ 
REGRESS ; Lhs = ly ; Rhs = one,ll,lk,ll2,lk2,lkl 

   ; CLS: ll + lk = 1, ll2 + lk2 + lkl <= 0  
  ; Nbt = 20 $ 

 REGRESS ; Lhs = ly ; Rhs = one,ll,lk,ll2,lk2,lkl $ 
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----------------------------------------------------------------------------- 
Inequality restricted least squares............... 
Nonlinear    least squares regression ............ 
LHS=LY       Mean                 =        3.49470 
             Standard deviation   =        4.03680 
             Number of observs.   =            500 
Model size   Parameters           =              6 
             Degrees of freedom   =            494 
Residuals    Sum of squares       =        8110.93 
             Standard error of e  =        4.05202 
Fit          R-squared            =         .00254 
             Adjusted R-squared   =        -.00756 
Model test   F[  5,   494] (prob) =      .3(.9390) 
Diagnostic   Log likelihood       =    -1406.05910 
             Restricted(b=0)      =    -1406.69478 
             Chi-sq [  5]  (prob) =   1.3(  .9379) 
Info criter. Akaike Info. Criter. =        2.81036 
Not using OLS or no constant. Rsqrd & F may be < 0 
Note, with restrictions imposed,  Rsqd may be < 0. 
Model test   F[  1,   494] (prob) =    .15 (.6949) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LY|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Covariance matrix based on   20 replications. 
Constant|    3.15877***      .36403     8.68  .0000     2.44528   3.87226 
      LL|     .82931         .74919     1.11  .2683     -.63908   2.29770 
      LK|     .17069         .74919      .23  .8198    -1.29770   1.63908 
     LL2|    -.15093         .72644     -.21  .8354    -1.57473   1.27287 
     LK2|    -.70691        1.37953     -.51  .6084    -3.41074   1.99692 
     LKL|    -.44502        1.02906     -.43  .6654    -2.46194   1.57191 
--------+-------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LY       Mean                 =        3.49470 
             Standard deviation   =        4.03680 
             No. of observations  =            500  Degrees of freedom 
Regression   Sum of Squares       =        23.1777           5 
Residual     Sum of Squares       =        8108.40         494 
Total        Sum of Squares       =        8131.58         499 
             Standard error of e  =        4.05139 
Fit          R-squared            =         .00285  R-bar squared =  -.00724 
Model test   F[  5,   494]        =         .28242  Prob F > F*   =   .92274 
Diagnostic   Log likelihood       =    -1405.98117  Akaike I.C.   =  2.81005 
             Restricted (b=0)     =    -1406.69478  Bayes  I.C.   =  2.86062 
             Chi squared [  5]    =        1.42720  Prob C2 > C2* =   .92131 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LY|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    3.40854***      .76286     4.47  .0000     1.91336   4.90371 
      LL|    -.09423        2.56561     -.04  .9707    -5.12273   4.93428 
      LK|    -.05073        1.16722     -.04  .9653    -2.33845   2.23698 
     LL2|     .54116        2.06524      .26  .7934    -3.50664   4.58896 
     LK2|    -.70218        1.38386     -.51  .6121    -3.41449   2.01012 
     LKL|    -.15810        1.55538     -.10  .9191    -3.20659   2.89039 
--------+-------------------------------------------------------------------- 
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E9: Non- and Semiparametric Regression 
Models 

 
E9.1 Introduction 
 
 This chapter will detail estimation of a single equation, linear regression model 
 
   yi  =  β′xi  + εi, i = 1,...,n. 
 
The initial stochastic assumptions of the classical regression model depart from 
 
   E[yi| xi ] = β′xi. 
 
This chapter considers models that relax this assumption.  The least restrictive version is the 
nonparametric regression model, 
 
   yi  =  m(xi) + εi where E[εi | xi] = 0 
 
for a single variable xi.  This makes minimal assumptions about the relationship between yi and xi.  
The LOWESS method described in Section E9.5 is a graphical technique that is based on this 
principle. 
 A convenient extension of the nonparametric regression approach is the index function 
model 
   E[y|β′x  =  z]  =  Fβ(z). 
 
Finally, we describe a semiparametric approach.  The median regression is 
 
   Med[ yi | xi ] = β′xi. 
 
This is the least absolute deviations estimator.  The median is the 50th percentile.  Section E9.4 
describes an estimator in which any specified quantile may be analyzed – and all may differ; 
 
   pth quantile [ yi | xi ] = β′xi. 
 
Since the regression may differ at different quantiles, this draws the model closer to the 
nonparametric regression. 
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E9.2 Nonparametric (Kernel Density) Regression Estimation 
 
 The basic command for the nonparametric regression estimator is 
 
 NPREG ; Lhs = dependent variable  
   ; Rhs = regressor $ 
 
NPREG is used to fit a nonparametric regression function.  This estimator estimates a smooth, 
regression function,  
 

   E[y|x]  =  F(x) 
 
using the method of kernels.  A straightforward extension detailed in Section E9.2.2 is to a single 
index model, 
   E[y|β′x   =  z]  =   Fβ(z),  
 
for any parameter vector β (assumed known or at least given).  With an appropriate choice of x and 
β, and by rescaling the response, NPREG can estimate any sufficiently smooth univariate regression 
function with known bounded range.  NPREG takes as input sample data consisting of n 
observations (yi,xi) where xi is a K-vector of regressors, and yi is the dependent variable, and a 
parameter vector β. (β is omitted for the simple univariate model.) NPREG also requires a 
smoothing parameter, h, also called the bandwidth parameter.  The simplest nonparametric 
regression model between a y variable and a single x variable is obtained simply by specifying          
xi = that variable and β = 1.  We consider this case first, then turn to the index function model. 
 
E9.2.1 Nonparametric Regression on a Single Variable 
 
 To estimate the regression function 
 
   E[y|x]  =  F(x) 
 
for a single variable, x, use 
 
 NPREG ; Lhs = y variable 
   ; Rhs = x variable $ 
 
All aspects of the specification will be taken care of internally.  Output consists of a text description 
of the data followed by the plot of the estimated regression function. 
 To illustrate, we will use the gasoline market data employed in several previous examples.  
The first plot showing the nonparametric regression of logg on logpg shows the model at work, but 
also demonstrates that the problem of omitted variables impacts the nonparametric regression as 
well.  It is not robust to omitted variables. 
 
 NPREG  ; Lhs = logg ; Rhs = logpg $ 
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+---------------------------------------+ 
| Nonparametric Regression for LOGG     | 
| Observations       =            52    | 
| Points plotted     =            52    | 
| Bandwidth          =       .273055    | 
| Statistics for abscissa values----    | 
| Mean               =      3.729303    | 
| Standard Deviation =       .678991    | 
| Minimum            =      2.813491    | 
| Maximum            =      4.819483    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =       .017347    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
 

 
Figure E9.1  Nonparametric Regression 

 
E9.2.2 Estimating a Nonparametric Single Index Regression Function 
 
 To analyze a regression function of the form 
 
   E[y|β′x ]  =   Fβ(β′x),  
 
you must provide the values of the parameters as well as the data.  Note that the estimator is not 
estimating the parameters, it is analyzing the regression function based on the index function.  You 
may, of course, provide any parameters you wish.  One possibility might be to analyze your linear 
regression model to see if it is really linear.  Keep in mind, the results are only suggestive, as the 
parameters you would provide are already based on an assumption of linearity. 
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 We first compute zi = β′xi for each observation.  The sample standard deviation of the 
observations, s, is computed next.  Then, h, s, zi, and the kernel function, K[∙] are used to define a 
weighting function 

   wi(zj)  =  1 i jz z
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h h
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,  

 

then, the regression function is  
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The default kernel function used is the density for the standardized logistic.  Several alternatives are 
available.  These are discussed below. 
 The command for NPREG  for an index function model is 
 
 (Commands to obtain the parameter vector) 
 NPREG  ; Lhs = y variable   
   ; Rhs = ... regressors that correspond to the parameters  
   ; Parameters = parameter values $ 
 
(In earlier versions of LIMDEP,  ; Start = … would replace ; Parameters = … You may still use 
this syntax.)  Since the command does no estimation of its own, you must provide the parameter 
values if you are plotting a regression function with more than one independent variable.  Output 
from this estimator consists of a summary table and a plot of F(zj) against zj. 
 To illustrate the computations, we continue the analysis above, by analyzing 
 

   logg  =  β1 + β2logpg + β3logincome + ε 
 

The command sequence is 
 
 REGRESS ; Lhs = logg ; Rhs = one,logpg,logy $ 
 NPREG ; Lhs = logg ; Rhs = one,logpg,logy   
   ; Parameters = b $ 
 
(The least squares regression results are omitted.) 
 
+---------------------------------------+ 
| Nonparametric Regression for LOGG     | 
| Observations       =            52    | 
| Points plotted     =            52    | 
| Bandwidth          =       .094374    | 
| Statistics for abscissa values----    | 
| Mean               =      -.257129    | 
| Standard Deviation =       .231106    | 
| Minimum            =      -.682513    | 
| Maximum            =       .094240    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =       .005011    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
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Figure E9.2  Nonparametric Regression for Gasoline Consumption 

 
E9.2.3 Options for NPREG 
 
Kernel Functions 

 
The primary component of the computation is the kernel function, K[.].  Eight alternatives 

are provided: 
 

1. Epanechnikov: K[z]   =   .75(1 - .2z2) / Sqr(5) if |z| <= 5, 0 else, 
2. Normal:   K[z] =  φ(z) (normal density), 
3. Logit:    K[z] =  Λ(z)[1-Λ(z)] (default), 
4. Uniform:  K[z] =  .5 if |z| < 
5. Beta:   K[z] =  (1-z)(1+z)/24 if |z| < 1, 0 1 else, 

1, 0 1 else, 

6. Cosine:   K[z] =  1 + cos(2πz) if |z| < .5, 0 else, 
7. Triangle:   K[z] =  1 - |z|, if |z| < 1, 0 else, 
8. Parzen:   K[z] =  4/3 - 8z2 + 8|z|3 if |z| < .5, 8(1-|z|)3 else. 

 
You may specify the kernel function to be used with 
 
   ; Kernel = one of the eight types of kernels listed above,  
 
e.g.,    ; Kernel = normal 
 
The logit kernel function is used if you do not specify one. Epanechnikov is a popular alternative. 
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Bandwidth Parameter 
 
 The default value for the smoothing parameter,  
 
   h  =  .9Q/n0.2  
 
where    Q  =  min(std.dev of b′xi., data range/1.5) 
 
An alternative value is provided with 
 
   ; Smooth  =  value 
 
There is no definitive theory for choosing the right smoothing parameter, h.  Large values will cause 
the estimated function to flatten at the average value of yi.  Values close to zero will cause the 
function to pass through the points zi,yi and to become computationally unstable elsewhere.  Higher 
values will smooth the function, but will, in the process, degrade the fit of the function to the data.  
 The bandwidth parameter is a crucial element of the analysis.  For example, note that in the 
preceding example, the bandwidth parameter is about .094  Figure E9.3 shows the estimated 
regression functions for four values, .01, .06, .15 and .30.  The differences in the estimated function 
are clearly visible. 
 

Bandwidth = 0.01                                                 Bandwidth = 0.06 

 
Bandwidth = 0.15                                                 Bandwidth = 0.30 

Figure E9.3  Effect of Bandwidth on Kernel Regression 
 
  



E9: Non- and Semiparametric Regression Models   E-187 

Number of Points to Plot 
 
 The default number of points to be plotted is M = 100, or the sample size, n, if n ≤ 5000 and 
you do not specify M or the range.  Use     
 
   ; Pts = M 
 
to compute the function at M equally spaced points in the range defined as below by the sample 
values.  ; Limits and ; Pts may be given together to specify a grid in a particular range.  ; Pts may be 
any number up to the number of rows in the data area.  If the value you give exceeds the limit of 
rows, an error will occur and computation will cease. 
 
Range of Estimation 
 
 The next set of specifications dictates the points at which the regression function should be 
computed.  The default is to compute the function at the data points, of which there are n.  An 
alternative is 
   ; Limits = lower,upper 
  
to compute the function at M equally spaced points in the range [lower,upper].  The default is n 
equally spaced points with lower = the sample minimum of β′xi – h and upper = the maximum + h.  
 
Cross Validation Mean Square Prediction Error 
 
 The cross validation mean squared prediction error (CVMSPE) is a goodness of fit measure.  
Each observation, ‘i’ is excluded in turn from the sample.  Using the reduced sample, the regression 
function is reestimated at the point zi in order to provide a point prediction for yi.  The average 
squared prediction error defines the CVMSPE.  The calculation is defined by the point predictions,  
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The CVMSPE is more or less a counterpart to the sum of squares in regression, which suggests that 
one could compute a fit measure by using 
 
 CALC   ; List ; npregfit = 1 - cvmspe/((n-1)*Var(y)) $ 
 
The usual warning about fit measures in nonlinear regressions applies, however.  This number need 
not be positive. 
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E9.2.4 Output from NPREG 
 
 Results from NPREG consist of  
 

• The table shown in the earlier examples,  
• An M×2 matrix named kernel, whose first column is the sorted values of β′xi, and the second 

column is the estimated values from the regression function, 
• A scalar named cvmspe (described below), 
• The plot of the estimated function.   

 
Note that since M may not equal n, there is no necessary correspondence between the observations 
and the values in the matrix.  In addition to the stored result, a plot of the regression function, as 
shown earlier, is part of the usual output for this estimator as well.  You can request a listing of the 
ordinate values, zi, and the estimated values of the regression function by including 
 
   ; List 
 
in the command.  A more compact listing in a scrollable window can be obtained by double clicking 
the matrix kernel in the project window. (See Figure E9.4.) 
 You may provide a title for the figure with 
 
   ; Title = ... <the title for the figure> ... 
 
If your sample size is 5000 or less and you have not specified the number of points to plot or the 
range in which to plot, then NPREG will have used the actual data to generate the abscissas for the 
function.  In this case, the fitted function will correspond to the actual data, and you can keep the 
function values as predictions for the corresponding values of the Lhs variable. Use 
 
   ; Keep = name  to retain function values as predictions 

; Res =  name  to retain (actual – function value) as a set of residuals 
 
The full set of results from NPREG would appear like the following: 
 
+---------------------------------------+ 
| Nonparametric Regression for LOGG     | 
| Observations       =            52    | 
| Points plotted     =            52    | 
| Bandwidth          =       .200000    | 
| Statistics for abscissa values----    | 
| Mean               =      4.108115    | 
| Standard Deviation =       .400050    | 
| Minimum            =      3.390065    | 
| Maximum            =      4.704196    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =       .022038    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
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Figure E9.4.  Matrix Result from KERNEL 

 

 
Figure E9.5  Kernel Regression 
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E9.3 The Least Absolute Deviations Estimator 
 
 The basic command for the least absolute deviations estimator is 
 
 REGRESS ; Lhs = dependent variable ; Rhs = list of regressors 
   ; Alg = LAD $ 
 
The least squares estimator is robust to many variations in the specification.  For consistency, it 
requires only that the data be ‘well behaved’ and that the conditional mean function, E[y|x] be linear 
in x, β′x.  Still, some researchers have criticized the estimator for the fact that it may be unduly 
influenced by outlying observations in small samples.  The least absolute deviations (LAD) estimator 
has been advocated (see, e.g., Koenker and Bassett (1982) for discussion) as a preferable alternative.  
(LAD is a special case of the quantile regression estimator discussed in the next section.  The LAD 
estimator corresponds to the median regression estimator.) 
 The LAD estimator can be obtained by specifying the regression as usual, and adding 
 
   ; Alg = LAD 
 
to the REGRESS command.  The estimator is computed by solving the linear programming problem, 
 

   Min (wrt β) 
1

' xn
i ii

y
=

−∑ β  
 
 There is no definitive result for the asymptotic covariance matrix for the LAD estimator.  
Koenker and Bassett (1982) provide a candidate which may or may not prove useful. Their estimator is 
 
   Asy.Var[bLAD]  =  (X′X)-1 X′W2X (X′X)-1 
 
where W = Diag[.5 / f(0)] and f(0) is the true density of the disturbances evaluated at zero.  This 
requires knowledge of the true density, which is unspecified here.  However, one could use the kernel 
estimator described above to estimate it.  Once the set of residuals is in hand, one could use the 
estimator 
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One useful special case would be that of the normal distribution.  If the disturbances are distributed 
normally with zero mean and constant variance σ2, then the result specializes to 
 

   Asy.Var[bLAD|normal]  =  
2
π

σ2(X′X)-1, 

 
which is a simple multiple of the result for least squares.  It would also be simple to compute.  (Of 
course, if the disturbances are known to be normal, we should be using least squares.)  We might 
consider two approaches in this case, 
 

   Est.Asy.Var[bLAD|normal]  =  
2
π

n
ee' (X′X)-1 
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or, allowing for possible heteroscedasticity and using White’s robust estimator, 
 

   Est.Asy.Var[bLAD|normal]  =  
2
π  (X′X)-1 × '

1
2

tt
T
t te xx∑ =

 × (X′X)-1. 
 

Both of these are based on the normal distribution, which rather defeats the purpose, since one intent 
of the estimator is to relax distributional assumptions.  An alternative approach which moves in this 
direction is to use a bootstrap estimator.  The estimator would be 
 

  Est.Asy.Var[bLAD]  =  ( )( ), ,1

1 R
LAD r LAD LAD r LADrR =

′− −∑ b b b b  
 

where R is the number of repetitions, bLAD,r is the LAD estimator obtained at the rth repetition, and 
bLAD is the original LAD estimate.  Each repetition is computed using a random sample of n 
observations, drawn with replacement, from the original sample.  To obtain this estimator, add 
 
   ; Nbt  =  ... value for R ...  
 
to the REGRESS command. 

If you do not specify bootstrap samples, no estimate of the asymptotic covariance matrix is 
computed.  As shown below, the estimators based on the normal distribution are very simple to 
compute.  The following data limitations are imposed on the LAD estimator:   

 
• Number of observations up to 5,000  
• Number of coefficients including the constant term, up to 15 

 
(Both of these restrictions can be relaxed by using the QREG command described in the next section.) 
 In the following application, the LAD estimator is computed with 50 bootstrap replications 
using the gasoline market data.  The three estimators of the asymptotic covariance matrix are 
computed.  At the end of the results, the ordinary least squares estimator is computed, and its sum of 
absolute deviations is computed to compare to the LAD estimator.  (Some of the output is omitted, 
including the initial table of statistics for the OLS estimator.) 
 To define the data matrix, use 
 

NAMELIST ; x = one,logpg,loginc,logpnc,logpuc,logppt $ 
 
This is the LAD estimator with bootstraps: 
 

REGRESS ; Lhs = logg ; Rhs = x   
  ; Res = e 
  ; Alg = LAD   
  ; Nbt = 50 $ 
 

The covariance matrices are based on the normal distribution. V2 is the White estimator. 
 

CREATE ; abslad = Abs(e) $ 
MATRIX ; v1 = {pi/2 * e’e/n} * <x’x> 
  ; v2 = {pi/2} * <x’x> * Bhhh(x,e) * <x’x>  
  ; Stat(b,v1,x)  
  ; Stat(b,v2,x) $ 
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Compare the sums of absolute deviations and sum of squares to OLS. 
 

CALC  ; sumlad = Sum(abslad)  
  ; sumlad2 = e’e $ 
 

Compute the ordinary least squares regression. 
 

REGRESS ; Lhs = logg ; Rhs = x  
  ; Res = e $ 
CREATE ; absols = Abs(e) $ 
 

Compare the residual sums and sums of squares for the two estimators. 
 

CALC  ; List   
  ; sumols = Sum(absols)  
  ; sumlad  
  ; sumsqdev  
  ; sumlad2 $ 

 
----------------------------------------------------------------------------- 
Least absolute deviations estimator............... 
Nonlinear    least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             Number of observs.   =             52 
Model size   Parameters           =              6 
             Degrees of freedom   =             46 
Residuals    Sum of squares       =        .115843 
             Standard error of e  =         .05018 
Fit          R-squared            =         .96007 
             Adjusted R-squared   =         .95572 
Model test   F[  5,    46] (prob) =   221.2(.0000) 
Diagnostic   Log likelihood       =       84.99102 
             Restricted(b=0)      =        1.25792 
             Chi-sq [  5]  (prob) = 167.5(  .0000) 
Info criter. Akaike Info. Criter. =       -5.87599 
Not using OLS or no constant. Rsqrd & F may be < 0 
Sum of absolute deviations        =      1.7685530 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Covariance matrix based on   50 replications. 
Constant|   -12.0403***     2.14199    -5.62  .0000    -16.2385   -7.8420 
   LOGPG|    -.03933         .04735     -.83  .4062     -.13212    .05347 
  LOGINC|    1.34498***      .21206     6.34  .0000      .92935   1.76061 
  LOGPNC|     .00091         .28775      .00  .9975     -.56308    .56490 
  LOGPUC|    -.00616         .10190     -.06  .9518     -.20587    .19356 
  LOGPPT|    -.25389         .20172    -1.26  .2082     -.64925    .14147 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Number of observations in current sample =      52 
Number of parameters computed here       =       6 
Number of degrees of freedom             =      46 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -12.0403***     1.82527    -6.60  .0000    -15.6177   -8.4628 
   LOGPG|    -.03933         .05153     -.76  .4454     -.14033    .06168 
  LOGINC|    1.34498***      .17414     7.72  .0000     1.00366   1.68630 
  LOGPNC|     .00091         .25002      .00  .9971     -.48911    .49093 
  LOGPUC|    -.00616         .12037     -.05  .9592     -.24208    .22977 
  LOGPPT|    -.25389*        .14296    -1.78  .0757     -.53409    .02631 
--------+-------------------------------------------------------------------- 
Number of observations in current sample =      52 
Number of parameters computed here       =       6 
Number of degrees of freedom             =      46 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -12.0403***     1.28858    -9.34  .0000    -14.5658   -9.5147 
   LOGPG|    -.03933         .05061     -.78  .4372     -.13853    .05988 
  LOGINC|    1.34498***      .13029    10.32  .0000     1.08961   1.60035 
  LOGPNC|     .00091         .16857      .01  .9957     -.32948    .33130 
  LOGPUC|    -.00616         .15982     -.04  .9693     -.31940    .30709 
  LOGPPT|    -.25389**       .12255    -2.07  .0383     -.49409   -.01369 
--------+-------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.79379           5 
Residual     Sum of Squares       =        .107004          46 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .04823 
Fit          R-squared            =         .96311  R-bar squared =   .95910 
Model test   F[  5,    46]        =      240.20584  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       87.05475  Akaike I.C.   = -5.95537 
             Restricted (b=0)     =        1.25792  Bayes  I.C.   = -5.73022 
             Chi squared [  5]    =      171.59365  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -11.5997***     1.48817    -7.79  .0000    -14.5165   -8.6829 
   LOGPG|    -.03438         .04202     -.82  .4174     -.11673    .04797 
  LOGINC|    1.31597***      .14198     9.27  .0000     1.03769   1.59425 
  LOGPNC|    -.11964         .20384     -.59  .5601     -.51916    .27989 
  LOGPUC|     .03754         .09814      .38  .7038     -.15481    .22990 
  LOGPPT|    -.21514*        .11656    -1.85  .0714     -.44359    .01331 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
[CALC] SUMOLS  =      1.8911144 
[CALC] SUMLAD  =      1.7685530 
[CALC] SUMSQDEV=       .1070036 
[CALC] SUMLAD2 =       .1158431 
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E9.4 Quantile Regressions 
 
 The command for the quantile regression estimator is 
 
 QREG  ; Lhs = dependent variable ; Rhs = list of regressors 
   ; Qnt = desired quantile ( 0.0+ to 1.0- )  $ 
 
The quantile regression estimator fits a model of the form 
 
   Q(yi|xi,θ)  =  β′xi, 0 < θ < 1, 
 
where Q(yi|xi,θ) is the θth quantile of the distribution of yi|xi.  The default value is θ = .5, which 
implies the median (and will replicate the LAD estimator of the previous section). The estimator is 
the linear programming method – a discussion may be found in the various papers on Roger 
Koenker’s (University of Illinois) home page. 
 
 
 

 
 
 
 
Further discussion of the estimation method used here and useful computer code (which was 
modified for our implementation) may be found in Koenker and D’Orey (1987). 

The command for requesting the quantile regression estimator is 
 
 QREQ  ; Lhs = dependent variable 
   ; Rhs = independent variables $ 
 
With no other specifications, this sets θ = .5, and estimates the model by median regression, which is 
least absolute deviations.  (The usual limits on model size – about 150 parameters – millions of 
observations, apply.  But, if you have a huge sample, chances are this is not the estimator you should 
be using.) You can set a specific quantile with 
 
   ; Quantile = the desired value of θ 
 
(In previous versions of LIMDEP, ; Quantile would be replaced with ; Qnt.  You may still use the 
earlier syntax.)  You may specify several quantile regressions in the same command with 
 
   ; Quantile = the set of values. 
 
In the example below, we use ; Quantile = .3,.5,.7. Standard errors are computed using 
bootstrapping as described in the previous section.  You may request the number of bootstrap 
replications with 
   ; Nbt = desired number 

( )arg min θ i k ikk
i
ρ y x− β∑ ∑

β

0
( )

(1 ) else
u u

u
uθ

θ ≥
ρ =  − θ
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Other standard options for the linear model are available, including ; Res = name to keep the 
residuals, ; Keep = name for fitted values, and so on.  Hypothesis testing about the coefficients must 
be done with Wald statistics using matrices b and varb after estimation. 
 In the example below, we continue our examination of the U.S. gasoline market from 1953 
to 2004.  The model specification is the same as that in the previous section.  The quantile regression 
is fit for the .3, .5,  .7 quantiles – this is a typical form of application.  
 
----------------------------------------------------------------------------- 
Quantile Regression Model. Quantile =      .300000 
Linear Programming estimation method 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23619 
             Number of observs.   =             52 
             Minimum              =        -.79885 
             t= .30000 quantile   =        -.40304 
             Maximum              =         .01454 
Model size   Parameters           =              3 
             Degrees of freedom   =             49 
Residuals    Sum of squares       =         .21863 
             Standard error of e  =         .05886 
Fit          R-squared            =         .93789 
             PseudoR2=1-F(0)/F(b) =         .80631 
Not using OLS or no constant. Rsquared may be <= 0 
Functions F= Sum r(t)[y(i)-x(i)b] =        1.00341 
          F0=Sum r(t)[y(i)-Qy(t)] =        5.18051 
             r(t)[u]=t*u-u*[u<0].t=        .300000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -9.43402***     1.66693    -5.66  .0000   -12.70115  -6.16690 
  LOGINC|    1.01763***      .21236     4.79  .0000      .60141   1.43385 
   LOGPG|    -.18656*        .10690    -1.75  .0809     -.39608    .02296 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 

(Results for θ = .5 and .7 are omitted.) 
 

The following exercise compares the predictions from the three quantile regressions. 
 

QREG   ; Lhs = logg ; Rhs = one,logpg,loginc ; Quantile = .2 ; Keep = loggf2 $ 
QREG   ; Lhs = logg ; Rhs = one,logpg,loginc ; Quantile = .5 ; Keep = loggf5 $ 
QREG   ; Lhs = logg ; Rhs = one,logpg,loginc ; Quantile = .8 ; Keep = loggf8 $ 
PLOT   ; Lhs = loginc ; Rhs = loggf2,loggf5,loggf8 ; Fill ; Grid 

; Title = Predictions from Quantile Regressions 
; Vaxis = Predicted Log Consumption $ 
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Figure E9.6  Quantile Regressions 

 

E9.5 LOWESS 
 

 LOWESS (Locally Weighted Regression and Scatterplot Smoothing) is a nonparametric 
smoothing technique for examining the relationship between two variables graphically.  For the 
LOWESS regression of a y on a single x, the technique provides a graphical device for examining the 
relationship.  For example, continuing the gasoline market application, the following is the default 
results for LOWESS regression of log of consumption on log of income: 
 

 
Figure E9.7  LOWESS Smoothed Fit 

 

The technique is also used for a multiple regression, in which case, it produces a ‘local’ estimate of 
the parameter vector at each observation, using kernel methods.  For the regression of logg on 
(one,logpg,loginc), least squares produces the following:  
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        2.72390           2 
Residual     Sum of Squares       =        .176898          49 
Total        Sum of Squares       =        2.90080          51 
             Standard error of e  =         .06008 
Fit          R-squared            =         .93902  R-bar squared =   .93653 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -8.99007***      .58201   -15.45  .0000   -10.13078  -7.84936 
   LOGPG|    -.17124***      .03789    -4.52  .0000     -.24550   -.09698 
  LOGINC|     .96865***      .07376    13.13  .0000      .82408   1.11322 
--------+-------------------------------------------------------------------- 
 
The default results for LOWESS regression produce the following.  Various options are provided and 
post estimation analysis, including graphical methods are used to organize and interpret the findings. 
 
+-----------------------------------------------+ 
| Locally linear weighted regression estimation | 
| Sample size                52                 | 
| Model size                  3                 | 
| Band width            .500000                 | 
| LOESS Sum of Squared Residuals         .02289 | 
| OLS   Sum of Squared Residuals         .17690 | 
| Derivatives Matrix   LOCLBETA                 | 
+-----------------------------------------------+ 
 

 
Figure E9.8  Matrix Result from LOWESS 



E9: Non- and Semiparametric Regression Models   E-198 

E9.5.1 Graphical Smoothing with LOWESS 
 
 The command for describing a single variable is 
 
 LOWESS ; Lhs = dependent variable 
   ; Rhs = independent variable $ 
 
The optional specifications are 
 
   ; Alg = linear, quadratic or cubic 
 
(see the technical details below), 
 
   ; Bandwidth = the value 
 
and   ; Keep = name  to retain predictions 
   ; Res = name  to retain residuals 
 
The bandwidth is used to compute the kernel based estimator.  You can analyze up to five variables 
simultaneously by including them as a set of Lhs variables.   Figure E9.9 shows the relationship of 
three transport related price indices to the price of gasoline 
 
 LOWESS ; Lhs = pnc,puc,ppt ; Rhs = gasp $ 
 

 
Figure E9.9  LOWESS Fits 

 
The predictions and residuals are not computed when there is more than one Lhs variable. 
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 The bandwidth can be specified as a single value or as a sequence of values using 
 
   ; Bandwidth = lowest (increment) highest 
 
For example, the analysis below searches for the best fit using the nine values in .1(.1).9.  The best 
fit is found with the lowest value.  (That is to be expected).  A lower bandwidth, all else equal, will 
force the kernel estimator to track the data better.) 
 
Grid search over bandwidth for lowest sum of squares 
Bandwidth =  .10000, LOWESS sum of squares =   .102748E-01 
Bandwidth =  .20000, LOWESS sum of squares =   .156447E-01 
Bandwidth =  .30000, LOWESS sum of squares =   .309022E-01 
Bandwidth =  .40000, LOWESS sum of squares =   .441540E-01 
Bandwidth =  .50000, LOWESS sum of squares =   .542459E-01 
Bandwidth =  .60000, LOWESS sum of squares =   .615275E-01 
Bandwidth =  .70000, LOWESS sum of squares =   .747685E-01 
Bandwidth =  .80000, LOWESS sum of squares =   .916489E-01 
Bandwidth =  .90000, LOWESS sum of squares =   .125457 
 

 
Figure E9.10  Best LOWESS Fit 
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E9.5.2 Local Multiple Regression 
 
 The command for local multiple regression is 
 
 LOWESS ; Lhs = dependent variable 
   ; Rhs = list of more than one independent variables $ 
 
The options for this procedure are 
 
   ; Bandwidth = value or  lowest (increment) highest 
 
and   ; Keep = name  to retain predictions 
   ; Res = name  to retain residuals 
 
No graphical output is produced.  Results consist of the brief tabular summary of the computation 
and the matrix loclbeta which contains the n×K matrix of local derivatives of the function relating 
the dependent variable to the regressors. 
 We continue (conclude) the gasoline market application with 
 

LOWESS  ; Lhs = logg  
; Rhs = one,loginc,logpg,logpnc,logpuc,logppt 
; Bandwidth=.1(.1).9 $ 

 
Grid search over bandwidth for lowest sum of squares 
Bandwidth =  .10000, LOWESS sum of squares =   .522288E+36 
Bandwidth =  .20000, LOWESS sum of squares =   .481805E+19 
Bandwidth =  .30000, LOWESS sum of squares =   .294807E-02 
Bandwidth =  .40000, LOWESS sum of squares =   .348644E-02 
Bandwidth =  .50000, LOWESS sum of squares =   .512996E-02 
Bandwidth =  .60000, LOWESS sum of squares =   .944745E-02 
Bandwidth =  .70000, LOWESS sum of squares =   .124064E-01 
Bandwidth =  .80000, LOWESS sum of squares =   .193199E-01 
Bandwidth =  .90000, LOWESS sum of squares =   .236876E-01 
 
+-----------------------------------------------+ 
| Locally linear weighted regression estimation | 
| Sample size                52                 | 
| Model size                  6                 | 
| Band width            .300000                 | 
| LOESS Sum of Squared Residuals         .00295 | 
| OLS   Sum of Squared Residuals         .10700 | 
| Derivatives Matrix   LOCLBETA                 | 
+-----------------------------------------------+ 
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E9.5.3 Technical Details for LOWESS Computations 
 
 The calculations for LOWESS are presented in Cleveland (1979).   The computations differ 
slightly for the single variable case in Section E9.5.1 (Case 1) and the multiple regressor case in 
Section E9.5.2 (Case 2).  The flow of computations is as follows: 
 
1.    For each Lhs variable, the following iterations are computed: 
 

A. A set of weights, ∆i is initialized at 1.0 
 

For each observation i, the following are assembled: 
For each observation j, D(j|i)  =  the distance between xi and xj.   
This is either D(j|i) = |xi – xj| for case 1 or [(xi – xj)′(xi – xj)]1/2 for case 2. 

 

hi = the distance to the nearest neighbor to xi. 
The bandwidth is used to define the width of the interval for this nearest neighbor calculation. 
For each observation j, U(j|i) = D(j|i)/hi. 
Tricube weights W(j|i) = [1 - |U(j|i)|3]3 × ∆i. 

 
B. We now compute the weighted regression of y on either (1,x,x2,x3) in Case 1, or on x in Case 2, 

with weights W(j|i).  The cubic regression is the default in Case 1.  You may specify the linear 
or quadratic regression with ; Alg = linear or ; Alg = quadratic.  This produces coefficients 
b(i).  We store the prediction, ˆiy  and residual ei = yi – ˆiy . For case 2, we store b(i) in row i of 
loclbeta. 

 
C. Update ∆i.  Let vi = |yi - ˆiy |.  Mv = the median value of vi then Ui = ei/(6Mv).  ∆i is replaced with 

zero or (1 – Ui
2)2 if |Ui| < 1.  We return to Step A with the updated ∆i. Cleveland recommends 

iterating between Steps (A,B) and C.  We do a single iteration, then collect the results. 
 
2.  For case 1, the result of the computations is a plot of each ˆiy  and yi against xi.  For multiple Lhs 

variables, the plots are produced in the same figure. 
 
When more than one bandwidth is specified, the entire procedure is computed (silently) for each 
value, then the results are presented for the bandwidth that results in the lowest sum of squared 
LOWESS residuals. 
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E10: Heteroscedasticity and GARCH Models 
 
E10.1 Introduction 
 
 This chapter will detail the methods of testing for and estimating with heteroscedasticity in 
the linear regression model.  The underlying model is 
 
   yi   =  β′xi  +  εi , 

   E[εi | xi]   =  0, 

   Var[εi | xi] =  σ2ωi, i = 1,…,n. 
 
E10.2 Correcting the OLS Covariance Matrix 
 
 Heteroscedasticity in linear regression is modeled with different forms of 
 
 REGRESS  ; Lhs = dependent variable  
   ; Rhs = independent variables  
   ; Heteroscedasticity ; other specifications 
   ; Wts = weighting variable $  
 
Under the assumptions above, the ordinary least squares (OLS) estimator of β, 
 
   b = (X′X)-1X′y 
 
is consistent, and has covariance matrix 
 
   Var[b]  =  σ2(X′X)-1 X′ΩX(X′X)-1  =  Σ. 
 
where Ω = diag[ω1,…,ωn].  The usual estimator, 
 
   V  =  s2(X′X)-1 
 
may not be consistent if the variables in x⊗x are correlated with the observation specific variances, 
ωi. (See Greene (2011).)  White’s (1980) consistent estimator of  Σ is  
 
   SWHITE  =  Est.Var[b]  =  (X′X)-1 × '

1
2

ii
n
i ie xx∑ =

 × (X′X)-1. 
 
For the underlying theory of this estimator, see White (1980) or Greene (2011).  LIMDEP will 
produce this estimator as part of the REGRESS procedure if the command includes 
 
   ; Heteroscedasticity (or, just ; Het) 
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The usual set of OLS results is given, but with the revised, robust covariance matrix.  (Note, this 
does not change the coefficient estimates.  Also, it does not necessarily lead to larger (or smaller) 
estimated standard errors.) 
 Davidson and MacKinnon (1993) and Horn, Horn and Duncan (1975) have recommended 
three alternative forms of the White estimator which appear to perform well in small to moderate 
sized samples.  Use 
 

 ; Het ; Hc1  to use Est.Var[b]  =  (X′X)-1 × 
Kn

n
−

2
1

n
i i ii

e
=

′∑ x x  × (X′X)-1 

  

 ; Het ; Hc2  to use Est.Var[b]  =  (X′X)-1 × 
( )

2

1 11 ( )

n i
i ii

i i

e
= −

′
′ ′−

∑ x x
x X X x

 × (X′X)-1 

  

 ; Het ; Hc3  to use Est.Var[b]  =  (X′X)-1 × 
( )

2

21 11 ( )

n i
i ii

i i

e
= −

′
′ ′−

∑ x x
x X X x

 × (X′X)-1 

 
(They recommend HC3 as their preferred estimator.)   
 MacKinnon and White (1985) have recommended a modification of HC3.  Define 
 

   xi*  =  
( )11 ( )

i

i i

e
−′ ′− x X X x

× xi    and    
1

1*     *
=

= ∑ n
iin

x x  

 
Thus, each row (observation) of X is multiplied by ei / [1 - xi′(X′X)-1 xi].  The estimator is 
 

   Est.Var[b]  =  (X′X)-1 × [ ]1 * ' *   -  * * '−n n
n

X X x x  × (X′X)-1 

 
This estimator is not built in, but it can be computed as follows: 
 
 NAMELIST ; x = ... the list of variables, including one $ 
 REGRESS ; Lhs = ... ; Rhs = x ; Res = e $ 
 MAXRIX ; xxi = <x’x> $ 
 CREATE ; u = e / (1 - Qfr(x,xxi)) $ 
 MATRIX ; v = Bhhh(x,u) - 1/n * x’u * u’x 
   ; v = {(n-1)/n} * xxi * v * xxi ; Stat(b,v,x) $ 
 
 All results saved by these procedures are the same as usual with REGRESS (see Section 
E7.2) except: 
 

• varb is the revised estimate, 
• The log likelihood function, logl should be ignored. 
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 The following data are from an exercise on page 349 of Gujarati (1988). The original source 
is The Economic Report of the President, 1985.  Observations pertain to the manufacturing sector of 
the U.S. economy.   
  
  Year   Inventory   Sales      Year    Inventory    Sales 
  1950      31.1      18.6      1967       84.7       46.5 
  1951      39.3      21.7      1968       90.6       50.2 
  1952      41.1      22.5      1969       98.2       53.5 
  1953      43.9      24.8      1970      101.6       52.8 
  1954      41.6      23.3      1971      102.6       55.9 
  1955      45.1      16.5      1972      108.2       63.0 
  1956      50.6      27.7      1973      124.6       72.9 
  1957      51.9      28.7      1974      157.8       84.8 
  1958      50.2      27.2      1975      159.9       86.4 
  1959      52.9      30.3      1976      175.2       98.8 
  1960      53.8      30.9      1977      189.2      113.2 
  1961      54.9      30.9      1978      210.4      126.9 
  1962      58.2      33.4      1979      240.9      143.9 
  1963      60.0      35.0      1980      264.1      154.4 
  1964      63.4      37.3      1981      282.1      168.1 
  1965      68.2      41.0      1982      264.6      159.2 
  1966      78.0      44.9      1983      260.4      170.6 
 
Shown below are the results of applying the procedures listed above to the model 
 
   Inventory  =  β1  +  β2Sales  +  β3Sales 2  +  ε. 
 
The consistently larger diagonal elements of the robust estimators suggest that the OLS computations 
might be somewhat optimistic. 
 
 CREATE ; sales2 = sales^2 $ 
 NAMELIST ; x = one,sales,sales2 $ 
 REGRESS ; Lhs = invty ; Rhs = x ; Res = e $ 
 MATRIX ; xxi = <x’x> $ 
 REGRESS  ; Lhs = invty ; Rhs = x ; Het  $  
 REGRESS  ; Lhs = invty ; Rhs = x ; Het ; Hc1 $  
 REGRESS  ; Lhs = invty ; Rhs = x ; Het ; Hc2 $  
 REGRESS  ; Lhs = invty ; Rhs = x ; Het ; Hc3 $  
 CREATE ; u = e / (1 - Qfr(x,xxi)) $ 
 MATRIX ; v  = Bhhh(x,u) - 1/n * x’u * u’x 
   ; v  = {(n-1)/n} * xxi * v * xxi        
   ; Stat(b,v,x) $ 
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Uncorrected 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   INVTY|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -2.34517        3.40086     -.69  .4956    -9.01072   4.32039 
   SALES|    1.94812***      .10404    18.72  .0000     1.74420   2.15203 
  SALES2|    -.00182***      .00057    -3.22  .0030     -.00293   -.00071 
--------+-------------------------------------------------------------------- 
White 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   INVTY|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -2.34517        4.08316     -.57  .5699   -10.34800   5.65767 
   SALES|    1.94812***      .13420    14.52  .0000     1.68509   2.21115 
  SALES2|    -.00182**       .00081    -2.26  .0310     -.00340   -.00024 
--------+-------------------------------------------------------------------- 
White HC1 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   INVTY|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -2.34517        4.27617     -.55  .5873   -10.72630   6.03596 
   SALES|    1.94812***      .14054    13.86  .0000     1.67266   2.22358 
  SALES2|    -.00182**       .00084    -2.16  .0388     -.00348   -.00017 
--------+-------------------------------------------------------------------- 
White HC2 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   INVTY|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -2.34517        4.46150     -.53  .6029   -11.08955   6.39922 
   SALES|    1.94812***      .14877    13.10  .0000     1.65654   2.23970 
  SALES2|    -.00182*        .00091    -2.00  .0544     -.00361   -.00004 
--------+-------------------------------------------------------------------- 
White HC3 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   INVTY|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -2.34517        4.89932     -.48  .6355   -11.94766   7.25733 
   SALES|    1.94812***      .16593    11.74  .0000     1.62290   2.27333 
  SALES2|    -.00182*        .00104    -1.76  .0885     -.00385    .00021 
--------+-------------------------------------------------------------------- 
MacKinnon and White 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -2.34517        4.82659     -.49  .6270   -11.80510   7.11477 
   SALES|    1.94812***      .16346    11.92  .0000     1.62775   2.26849 
  SALES2|    -.00182*        .00102    -1.79  .0742     -.00382    .00018 
--------+-------------------------------------------------------------------- 
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E10.3 Estimating Models with Heteroscedasticity 
 
 There are many procedures for estimating heteroscedastic regression models.  We consider 
two that use weighted least squares here, then more elaborate models in the next two sections. 
 
E10.3.1 Weighted Least Squares 
 
 For the model in which ωi is either known or has been estimated already, the weighted least 
squares estimator is requested with 
 
 REGRESS ; Lhs = ... ; Rhs = ... ; Wts = weighting variable $ 
 
In computing weighted estimators, we use the formulas: 
 
 n  =  the current sample size, after skipping any missing observations, 

 wi  =  (n/ΣiWi)Wi    =   Scale × Wi  (note that Σiwi = n), 

 bw    =  [Σiwixixi′]-1[Σiwixiyi], 

 sw
2  =  Σiwi(yi - xi′bw)2, 

 Est.Var.[bw] =  [sw
2/(n-K)][ Σiwixixi′]-1, 

 
where Wi is your weighting variable.  Your original weighting variable is not modified (scaled) 
during this computation.  The scale factor is computed separately and carried through the 
computations. 
 
NOTE:  Apart from the scaling, your weighting variable is the reciprocal of the individual specific 
variance, not the standard deviation, and not the reciprocal of the standard deviation. This 
construction is used to maintain consistency with the other models in LIMDEP. 
 
For example, consider the common case, Var[εi]  =  σ2zi

2.  For this case, you would use 
 
 CREATE ; wt  =  1 / z ^ 2 $ 
 REGRESS ; Lhs = ... ; Rhs = ... ; Wts = wt $  
 
Weighted least squares is requested on the Main page of the regression command builder as shown 
in Figure E10.1. 
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Figure E10.1  Command Builder for Weighted Least Squares 

 
E10.3.2 Variance Proportional to the Square of the Mean 
 
 The case in which the variance is proportional to the square of the mean is simple to handle 
with linear regression.  The model is 
 
   yi  =  β′xi  +  εi,  Var[εi]  =  σ2[β′xi]2. 
 
This can be estimated iteratively as a weighted regression as follows: 
 
 REGRESS ; Lhs = y ; Rhs = x ; Keep = bx $ 
 CREATE ; w = 1 / bx ^ 2 $ 
 REGRESS ; Lhs = y ; Rhs = x ; Wts = w ; Keep = bx $ 
 
The second and third steps can be repeated until satisfactory convergence is achieved.  A convenient 
approach would be to put the three lines in a procedure, then use 
 
 EXECUTE ; Query $ 
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E10.3.3 Testing for Heteroscedasticity 
 
 There are several different tests for heteroscedasticity that one might use.  The tests due to 
Glejser (1965) involve regressions of squares, logs of squares or absolute values, or the absolute 
values themselves, of least squares residuals on a set of regressors.  For present purposes, this calls 
for no new techniques.  The special aspect of the procedure concerns using the appropriate 
covariance matrix to calculate the statistic.  Consider some examples: 
 

1. variance linear in z   Var[εi]  =  σ2[1 + α′zi], 

2. standard deviation linear in z Var[εi]  =  σ2[1 + α′zi]2, 

3. log of variance linear in z  Var[εi]  =  σ2exp[α′zi]. 
 
For these three cases, we would carry out the test by regression of the squares, absolute values, and 
logs of absolute values of the residuals on zi.  A joint test of the significance of the coefficients 
constitutes a test of homoscedasticity.  The second step regression is necessarily heteroscedastic, so 
we use the White estimator to compute the asymptotic covariance matrix.  The following can be 
used:  The first step is to obtain the coefficients that are in the variance functions. 
 
 NAMELIST ; x = ...   
   ; z = one, ... $ 
 REGRESS ; Lhs = y ; Rhs = x ; Res = e $ 
 
Use f = e^2, f = abs(e) and f = log(e^2) for the three functions above. 
 
 CREATE ; f = ... the appropriate function of e $ 
 REGRESS ; Lhs = f ; Rhs = z,one ; Het $ 
 
Now, in each case, carry out a test of the joint hypothesis that the coefficient vector not including the 
constant term is zero. 
 
 CALC  ; m = Col(z) $ 
 MATRIX ; a = b(1:m) ; va = varb(1:m,1:m) ; wald = a’ <va>a $ 
 CALC  ; Ctb(wald,m) ; 1 - Chi(wald,m) $ 
 
 The Goldfeld-Quandt test is simple to carry out when the heteroscedasticity can be identified 
as a monotonic function of a single variable, z.  If 
 
   Var[εi]  =  σ2[1 + f(zi)], 
 
then, the test statistic is  
 
   F[ n1-K , n2-K ]  =  [e1′e1/(n1-K)]  / [e2′e2/(n2-K)], 
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where group ‘1’ is associated with high values of zi and group ‘2’ is associated with low values of zi. 
The optimal way to split the sample, including how many observations to discard in the middle is 
unclear.  (See Greene (2011).)  With normally distributed disturbances, the statistic has an F 
distribution with n1-K and n2-K degrees of freedom.  If the calculated value comes out less than one, 
for convenience in using the tables, we can take the reciprocal and reverse the degrees of freedom. 
 To carry out the test, one need only decide what values to use for the cutoffs for zi, then 
 
 NAMELIST ; x = ... $ 
 REGRESS ; Lhs = ... ; Rhs = x ; Res = e $ 
 CREATE ; d1 = zi < lower value  ; e1 = d1*e  
   ; d2 = zi > upper value ; e2 = d2*e $ 
 CALC      ; df1 = d1’d1-kreg  ; dfn = df1 
   ; df2 = d2’d2-kreg  ; dfd = df2 
   ; f = (e1’e1/df1) / (e2’e2/df2) 
   ; If[f < 1] ; f = 1/f ; dfn = df2 ; dfd = df1 $ 
 CALC  ; List ; f ; 1 - Fds(f,dfn,dfd)  
   ; Ftb(.95,df1,df2) $ 
 
For the data used in the earlier example, we used sales as z and split the sample at sales = 50.  (The 
upper and lower values are 50 in the preceding routine.)  The results are shown below: 
 
 CREATE ; zi = sales $ 
 REGRESS ; Lhs = inventor ; Rhs = x ; Res = e $ 
 … 
 CALC  ; List ; f ; 1 - Fds(f,dfn,dfd)  
   ; Ftb(.95,df1,df2) $ 
 

F       =  .23324659539519980D+01 
Result  =  .59576135098001640D-01 
Result  =  .25331099831399990D+01 

 
Since the sample statistic, 2.33, is less than the critical value, 2.53, the hypothesis of 
homoscedasticity based on the high and low values of sales is not rejected. 
 The Breusch and Pagan (1980) Lagrange multiplier test is also a simple calculation.  The 
model is assumed to be of the form: 
 
   Var[εi]  =  σ2h(1 + α′zi). 
 
Different normalizations involving the explicit σ2 parameter produce the identical result.  The extra 
parameter is actually superfluous since if α = 0, then h(1) is the constant variance. As stated above, 
we would be assuming that h(1) = 1.   The LM statistic is then simply one half the explained sum of 
squares in the regression of 
 
   ui  =  ei 
 

/(e′e/n)  -  1 

on zi.  This statistic is always reported for the xs in the regression when you use the ; Het option on 
the REGRESS command.  It is also reported for the specified z vector when you use the HREG 
command described below.  The second regression in Section E10.2 above produces 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=INVTY    Mean                 =      111.74412 
             Standard deviation   =       78.44813 
             Number of observs.   =             34 
Model size   Parameters           =              3 
             Degrees of freedom   =             31 
Residuals    Sum of squares       =        1080.51 
             Standard error of e  =        5.90383 
Fit          R-squared            =         .99468 
             Adjusted R-squared   =         .99434 
Model test   F[  2,    31] (prob) =  2897.8(.0000) 
White heteroscedasticity robust covariance matrix. 
Br./Pagan LM Chi-sq [  2]  (prob) =  15.30 (.0005) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   INVTY|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -2.34517        4.08316     -.57  .5699   -10.34800   5.65767 
   SALES|    1.94812***      .13420    14.52  .0000     1.68509   2.21115 
  SALES2|    -.00182**       .00081    -2.26  .0310     -.00340   -.00024 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
For the more general case, the built in procedure is 
 
 REGRESS ; … ; BPT = list of variables $ 
 
For example, if we replace ; Het with ; BPT = sales in the preceding regression, we obtain 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=INVTY    Mean                 =      111.74412 
             Standard deviation   =       78.44813 
             No. of observations  =             34  Degrees of freedom 
Regression   Sum of Squares       =        202005.           2 
Residual     Sum of Squares       =        1080.51          31 
Total        Sum of Squares       =        203086.          33 
             Standard error of e  =        5.90383 
Fit          R-squared            =         .99468  R-bar squared =   .99434 
Model test   F[  2,    31]        =     2897.77082  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     -107.04403  Akaike I.C.   =  3.63530 
             Restricted (b=0)     =     -196.05929  Bayes  I.C.   =  3.76998 
             Chi squared [  2]    =      178.03052  Prob C2 > C2* =   .00000 
B-P test     Chi squared [  1]    =        2.86393  Prob C2 > C2* =   .09059 
--------+-------------------------------------------------------------------- 
 
(The regression coefficients are the same. The standard errors differ because this second command 
uses the original estimator, s2(X′X)-1 while the first one uses the White estimator.  Using ; BPT 
disables the ; Het option.) 
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 You can replicate the computations for the Breusch and Pagan test using the programming 
language.  For the general test, use 
 
 NAMELIST ; z = ... definition -- include one $ 
 REGRESS ; Lhs = y ; Rhs = ... ; Res = e $ 
 CREATE ; u = e*e / (sumsqdev/n) - 1 $ 
 CALC  ; List ; lmbp =  .5 * Xss(z,u)  ? LM statistic 
   ; 1 - Chi(lmbp, (Col(z)))  ? p value 
   ; Ctb(.95, (Col(z)))   $ critical value from table 
 
 A variant due to Koenker and Bassett (1982) which allows for nonnormality is even simpler.  Their 
‘studentized’ version produces the LM statistic as nR2 in the regression of the squared residuals on z 
and a constant term.  Thus, this statistic is obtained with 
 
 REGRESS ; Lhs  = y ; Rhs = ... ; Res = e $ 
 CREATE ; u = e*e  $ 
 CALC  ; List ; lmkb =  n * Rsq(z,one,u)  
   ; 1 - Chi(lmbp, (Col(z)))  
   ; Ctb(.95, (Col(z))) $ 
 
E10.4 Multiplicative Heteroscedasticity 
 
 In this section, we modify the regression model for a specific type of heteroscedasticity, 
 
   Var[εi]  =  exp(γ0 + γ1′zi1) =  exp(γ′zi). 
 
(This model is developed in Harvey (1976).)  We assume that the set of variables specified as zi 
contains a constant term, so that the variance can be written in the first form when necessary.  This is 
just for convenience.  The implication is that 
 
   Var[εi]  =  σ2exp(γ1′wi1)    and   γ0  =  logσ2. 
 
This is a general model which accommodates several kinds of heteroscedasticity.  For example, the 
model 
   Var[εi]  = σ2zi

γ 
 
is obtained by defining zi to be [1,logzi].   A model of groupwise heteroscedasticity for a panel of 
data with G groups, Var[εig]  =  σi

2, can be produced by defining zi to be a constant term and a set 
(minus the last one) of group specific dummy variables.  By this definition,  
 
   σG

2  =  exp(γ0), σi
2  =  exp(γg), g = 1,...,G-1. 

 
 The command for estimating a linear regression with this form of heteroscedasticity is 
 
 HREG  ; Lhs = dependent variable  
   ; Rhs = independent variables 
   ; Rh2 = variables in z – do not include one in this list  $ 
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It is not necessary to include a constant term in z since one is included automatically.  Results which 
are saved for later use are: 
 
 Matrices:  b   = estimate of β 
   varb = estimate of the asymptotic covariance matrix 
   gamma  = estimate of  γ  =  [σ,γ1],  (note, σ, not γ0; σ = exp(γ0/2) 
 

 Scalars: ssqrd   = exp(γ0) = estimate of σ2 
   s = estimate of σ 
   ybar = mean of Lhs variable 
   sy = standard deviation of Lhs variable 
   kreg   = number of xs 
   nreg = number of observations used 
   log  = log likelihood function 
 

 Last Model: b_x... 
   b_x... c_sigma c_z... if the command includes ; Par 
 
 Last Function: Conditional mean = b′x  
 
 The full asymptotic covariance matrix for the estimate of [β,γ] is given below.  This is a 
(K+M)×(K+M) block diagonal matrix.  If you include  
 
   ; Parameters 
 
in the HREG command, b and varb include both parts of the full parameter vector. 
 

NOTE:  The first element of the ‘C’ part of the saved parameter vector is σ
∧

, not γ
∧

0 . 
 
 The predictions for this model are the same as those for the linear regression model.  But, in 
order to construct the confidence interval for the prediction, LIMDEP uses the sample mean of the 
zs, rather than the individual values, when it computes the ‘σ2’ part of the forecast variance, which is 
σ2 + xi′VARBxi. 
 The method of scoring is always used for the iterations.  This model does not allow you to 
supply starting values or to control the convergence rules for the iterations.  The starting values used 
are b (OLS) for β, exp(1.2704)×s2 for γ0, and 0 for γ1.  You can specify the number of iterations with 
 
   ; Maxit  =  maximum 
 
NOTE:  There is no need to use ; Maxit = 0 to carry out an LM test of γ1 = 0.  The LM statistic is 
presented with the standard output in the OLS results. 
 
The convergence rule used is given below with the technical details. 
 
WARNING:  This estimator can become unstable particularly with badly scaled data. For example, 
it blows up in our example below if the full sample is used.  It will abort if this occurs. 
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E10.4.1 Results 
 
 HREG produces two sets of estimates.   Starting values for the slopes are obtained by 
ordinary least squares.  Consistent starting values for the variance parameters are obtained by 
regressing the logs of the squares of the least squares residuals on the variables in z.  A consistent 
estimate of the unconditional variance is obtained multiplying the constant term in this regression by 
1.2704.  These OLS estimates of β and the starting values for γ0 and γ1 are presented with appropriate 
covariance matrices.  Two statistics for testing the hypothesis of homoscedasticity, Lagrange 
multiplier and Wald, are also presented with the initial results.  Finally, the full set of maximum 
likelihood results is presented in the standard format. 
 Further details on this set of computations are given in Section E10.4.5.  Two applications 
are presented below. 
 
E10.4.2 Application 1 – Heteroscedastic Regression 
 
 To continue our example, we specify the multiplicative model for our inventory-sales data. 
One model is 
   Var[εi] =  σ2Salesγ 

so     z   =  [one,log(Sales)]. 
 
As noted earlier, the estimator diverges when the full sample is used.  This may be because the 
variance of the disturbance appears to grow dramatically at the end of the sample.  
 
 HREG   ; Lhs = invty ; Rhs = one,sales,sales2 ; Rh2 = Log(sales) $ 
 

HREG:Estimates diverging. Variances vanishing or exploding. 
 
With this failure, we respecify the variance function as  
 
   Var[εi] =  σ2exp(γ Sales) 
 
The maximum likelihood estimates are given below after the initial OLS estimates. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=INVTY    Mean                 =      111.74412 
             Standard deviation   =       78.44813 
             No. of observations  =             34  Degrees of freedom 
Regression   Sum of Squares       =        202005.           2 
Residual     Sum of Squares       =        1080.51          31 
Total        Sum of Squares       =        203086.          33 
             Standard error of e  =        5.90383 
Fit          R-squared            =         .99468  R-bar squared =   .99434 
Model test   F[  2,    31]        =     2897.77082  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     -107.04403  Akaike I.C.   =  3.63530 
             Restricted (b=0)     =     -196.05929  Bayes  I.C.   =  3.76998 
             Chi squared [  2]    =      178.03052  Prob C2 > C2* =   .00000 
B-P test     Chi squared [  1]    =        2.86393  Prob C2 > C2* =   .09059 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   INVTY|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -2.34517        3.45969     -.68  .4979    -9.12603   4.43570 
   SALES|    1.94812***      .13287    14.66  .0000     1.68769   2.20855 
  SALES2|    -.00182**       .00088    -2.08  .0378     -.00354   -.00010 
   Sigma|    1.86504***      .59924     3.11  .0019      .69056   3.03952 
   SALES|     .02443***      .00801     3.05  .0023      .00872    .04013 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Multiplicative Heteroscedastic Regr. Model 
Dependent variable                INVTY 
Log likelihood function      -104.50980 
Restricted log likelihood    -107.04403 
Chi squared [   1 d.f.]         5.06847 
Significance level               .02436 
McFadden Pseudo R-squared      .0236747 
Estimation based on N =     34, K =   5 
Inf.Cr.AIC  =  219.020 AIC/N =    6.442 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   INVTY|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Regression (mean) function 
Constant|    -.74529        2.85562     -.26  .7941    -6.34220   4.85161 
   SALES|    1.89012***      .09627    19.63  .0000     1.70142   2.07881 
  SALES2|    -.00149***      .00057    -2.63  .0086     -.00260   -.00038 
        |Variance function (log-linear) 
   Sigma|    3.84664***      .78681     4.89  .0000     2.30451   5.38876 
   SALES|     .00953*        .00510     1.87  .0618     -.00047    .01953 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E10.4.3 Application 2 – Groupwise Heteroscedasticity 
 
 The Grunfeld data used in several earlier examples lend themselves well to this estimator.  
(These are Table F10.4 in Greene (2011).The model is 
 
   Iit  =  β1 + β2Fit + β3 Cit  + εit,  εit  ~  N[0, σ2exp(γi)], γ1 = 0. 
 
The variance function is constructed by defining four firm specific dummy variables for the last four 
firms – the first is omitted.  Then, the command for the model is 
 

IMPORT ; File = “C:/…/Grunfeld.dat” $ 
CREATE  ; Expand(firm) = d1,d2,d3,d4,d5,d6,d7,d8,d9,d10 $ 
NAMELIST ; firms = d2,d3,d4,d5,d6,d7,d8,d9,d10 $ 
HREG  ; Lhs = i ; Rhs = one,f,c ; Rh2 = firms $ 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=I        Mean                 =      145.95825 
             Standard deviation   =      216.87530 
             No. of observations  =            200  Degrees of freedom 
Regression   Sum of Squares       =    .760409E+07           2 
Residual     Sum of Squares       =    .175585E+07         197 
Total        Sum of Squares       =    .935994E+07         199 
             Standard error of e  =       94.40840 
Fit          R-squared            =         .81241  R-bar squared =   .81050 
Model test   F[  2,   197]        =      426.57573  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -1191.80236  Akaike I.C.   =  9.11015 
             Restricted (b=0)     =    -1359.15096  Bayes  I.C.   =  9.15962 
             Chi squared [  2]    =      334.69719  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -42.7144***     8.37643    -5.10  .0000    -59.1319  -26.2969 
       F|     .11556***      .00740    15.61  .0000      .10105    .13007 
       C|     .23068***      .03370     6.85  .0000      .16463    .29673 
(Initial estimates of variance parameters omitted) 
----------------------------------------------------------------------------- 
Multiplicative Heteroscedastic Regr. Model 
Dependent variable                    I 
Log likelihood function      -956.68911 
Restricted log likelihood   -1191.80235 
Chi squared [   9 d.f.]       470.22648 
Significance level               .00000 
McFadden Pseudo R-squared      .1972754 
Estimation based on N =    200, K =  13 
Inf.Cr.AIC  = 1939.378 AIC/N =    9.697 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Regression (mean) function 
Constant|   -5.33753***      .52060   -10.25  .0000    -6.35789  -4.31718 
       F|     .11113***      .00415    26.77  .0000      .10300    .11927 
       C|     .09772***      .00555    17.60  .0000      .08683    .10860 
        |Variance function (log-linear) 
   Sigma|    202.972***    32.09269     6.32  .0000     140.071   265.873 
      D2|    -.06361         .44721     -.14  .8869     -.94014    .81291 
      D3|    -.55857         .44721    -1.25  .2117    -1.43509    .31795 
      D4|   -4.12473***      .44721    -9.22  .0000    -5.00125  -3.24820 
      D5|   -4.85631***      .44721   -10.86  .0000    -5.73283  -3.97979 
      D6|   -6.20559***      .44721   -13.88  .0000    -7.08211  -5.32906 
      D7|   -5.86779***      .44721   -13.12  .0000    -6.74432  -4.99127 
      D8|   -3.34115***      .44721    -7.47  .0000    -4.21767  -2.46463 
      D9|   -4.53059***      .44721   -10.13  .0000    -5.40712  -3.65407 
     D10|   -9.42288***      .44721   -21.07  .0000   -10.29940  -8.54635 
--------+-------------------------------------------------------------------- 
 

 The chi squared test in the final results rejects the hypothesis of homoscedasticity.  We can 
extract the firm specific variances from the saved results. Recall, the retained estimates are 
 

 Matrix:    gamma =  [σ = exp(γ0),  γ1,...,γM] 
Scalar:     s =  σ 



E10: Heteroscedasticity and GARCH Models   E-216 

Therefore, to extract the parts, we can use the following: 
 
 CALC ; v1 = s*s $ 
 MATRIX ; gamma1 = gamma(2:10) ? You would use different subscripts 
   ; v = v1*Expn(gamma1) 
   ; List ;  v = [v1/v]   $ Stacks variances in a vector 
 
       V|             1 
--------+-------------- 
       1|       41197.6 
       2|       38658.6 
       3|       23566.1 
       4|       666.080 
       5|       320.482 
       6|       83.1420 
       7|       116.553 
       8|       1458.24 
       9|       443.875 
      10|       3.33096 
 
E10.4.4 Restrictions 
 
 The HREG estimation program does not use LIMDEP’s built-in function optimization 
routines.  Therefore, restrictions on the regression parameters (β) can be tested using the ; Test:... 
specification as usual, but not imposed, by using the ; CML:... specification as with other maximum 
likelihood estimators.  You can estimate this model subject to linear restrictions, however, as 
follows:  For either group of parameters, linear restrictions can be built directly into the index 
function.  For example, to impose β2+β3=1, or β3 = 1 - β2, create y - x3 to use as the Lhs variable and 
replace (x2,x3) with x2-x3 (one variable) on the Rhs.  Similar constructions could be used to constrain 
the elements of γ1.  (You should not restrict σ2.)  It is also possible to impose fixed value restrictions 
on γ1, but the method of doing so is a bit indirect.  Suppose that the variance can be written as 
 
   Var[εi]  = σ2 ( )iifc w'exp 10 γ+   =  σ2 exp(c0fi) ( )iw'exp 1γ  
 
where c0 is a fixed, known coefficient and fi is a variable.  You can fit the model in this form by 
treating 1/exp(c0fi) as if it were a weight and this were just a problem in weighted least squares.  That 
is, 
 CREATE ; wt  =  1 / Exp(c0 * fi)  $ 
 HREG  ; Lhs = ... ; Rhs = ... ; Rh2 = ... ; Wts = wt $ 
 
The model estimation routine will sort this out internally and treat the variables in the two parts of 
the variance properly.  (Note that this would allow you to impose nonhomogeneous restrictions on 
the variance parameters.  For example, to impose γ2+γ3=1, the variance becomes 
 

   
2 23 3 2 3( )(1 )Var[ ] e e ei

w w ww w2 2 2 2 −γ + −γ γ= =ε σ σ   
 
so, you would use wt = 1/exp(w3) in the procedure described above.) 
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E10.4.5 Technical Details on Computation of the HREG Model 
 
 The computations for this model are derived in Harvey’s (1976) paper.  The interested reader 
is referred to that source for background. Additional analysis appears in Greene (2011).  We will 
sketch the computations here. 
 Starting values for the slopes are obtained by OLS, 
 
   b0  =  (X′X)-1X′y. 
 
Since Var[εi] equals exp(γ′zi), an estimate of γ is obtained by regressing the logs of the squared 
residuals on Z: 
   c0   =  (Z′Z)-1Z′u 
 
where   ui   =  log(ei

2 ). 
 
The constant term in this regression is inconsistent.  To make it consistent, it is necessary to add 
1.2704.  These results are presented in the initial output of least squares results.  The corrected 
covariance estimator, 

   V  =  (X′X)-1X′SX(X′X)-1 
 
is used for the OLS slopes.  This is computed using the consistent second round estimates of the 
variance parameters.  The estimate of γ is asymptotically uncorrelated with b0, and its asymptotic 
covariance matrix is 

   Q   =  4.9348(Z′Z)-1. 
 
This is also presented with the OLS results. 
 We enter iteration k with ck-1 and bk-1 in hand.  Compute weights and residuals 
 
   vi   =  exp(-ck-1′zi) 
 
   ei   =  yi  -  bk-1′xi. 
 
Then, we regress fi   =  (ei

2vi - 1) on Z  (vi is the estimate of ωi) 
 
to obtain  d   =  (Z′Z)-1Z′f. 
 
Convergence is based on d′d.  If d′d < 10-9, exit the iteration.  If not, 
 
   bk  =  [Σivixixi′]-1[Σivixiyi]  (this is GLS) 
 

and   ck   =  ck-1  +  d. 
 
At convergence, the asymptotic covariance matrix of bk is the inverse matrix above while the 
asymptotic covariance matrix of ck is  
 
   Asy.Var.[ck]  =  2(Z′Z)-1. 
 
The asymptotic covariance matrix of ck and bk is zero, so the full matrix is block diagonal. 
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A Program for the Multiplicative Heteroscedasticity Model 
 
 The preceding presents a straightforward application of the method of scoring.  For the 
interested reader, we present a LIMDEP program which does the same iterations.  The routine is 
specialized for the application above, but only the definitions of x, y, and z need be changed for a 
different application. 
 

SAMPLE ; 1-100     $ Use only the first five firms 
NAMELIST ; x = one,f,c   $ Variables in regression 
NAMELIST ; z = one,d2,d3,d4,d5  $ Variables in variance 
CREATE ; y = i     $ Generic name for Lhs 
REGRESS ; Lhs = y  

; Rhs = x  
; Res = e     $ Starting value for beta 

MATRIX  ; beta = b    $ Retrieve estimate of beta 
CREATE  ; logesq = Log(e^2)   $ Log of squared residuals 
REGRESS ; Lhs = logesq   

; Rhs = z    $ Starting value for gamma 
CALC  ; fix = b(1) + 1.2704  $ Constant term in gamma 
MATRIX ; cg = b ; cg(1) = fix   $ Correct bias in gamma(1) 
CALC  ; delta = 1                             $ Initialize for iterations 
PROCEDURE     ? This is just iterated FGLS 
CREATE ; vi = 1/Exp(cg’z)                ? 1 / variance 
  ; w = (y - x’beta)^2 * vi - 1   $ Derivatives wrt variance 
MATRIX ; dc = <z’z> * z’w   $ b from this regression is update 
CALC  ; List ; delta = dc’dc              $ Use to assess convergence 
MATRIX ; beta = <x’[vi]x>*x’[vi]y    $ GLS 
MATRIX ; cg = cg + dc                 $ Update variance parameters 
ENDPROCEDURE 
EXECUTE ; while delta > .00000001  $ Convergence criterion 
MATRIX ; vc = 2*<z’z>  

; vb = <x’[vi]x>   
; Stat(beta,vb,x) 
; Stat(cg,vc,z) $ 

 
Execution of the procedure with the Grunfeld data produces the results below. 
 
DELTA   =  .36328260374394480D+01 
DELTA   =  .15749871040670130D+01 
DELTA   =  .56041869652277020D+00 
DELTA   =  .11606002902370090D+01 
DELTA   =  .77354953496737570D-01 
(iterations 6 – 60 omitted) 
DELTA   =  .29262536724845500D-07 
DELTA   =  .10624133192229550D-07 
DELTA   =  .16080737781443860D-07 
DELTA   =  .58387642785196380D-08 
 
DELTA>.00000001 
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----------------------------------------------------------------------------- 
Number of observations in current sample =     100 
Number of parameters computed here       =       3 
Number of degrees of freedom             =      97 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    16.0973***     5.41199     2.97  .0029      5.4900   26.7046 
       F|     .10303***      .00809    12.74  .0000      .08718    .11888 
       C|     .04354***      .00968     4.50  .0000      .02457    .06250 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Number of observations in current sample =     100 
Number of parameters computed here       =       5 
Number of degrees of freedom             =      95 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    11.0692***      .31623    35.00  .0000     10.4494   11.6890 
      D2|    -.39363         .44721     -.88  .3788    -1.27015    .48289 
      D3|   -1.19920***      .44721    -2.68  .0073    -2.07572   -.32268 
      D4|   -4.15204***      .44721    -9.28  .0000    -5.02856  -3.27551 
      D5|   -6.57499***      .44721   -14.70  .0000    -7.45151  -5.69846 
--------+-------------------------------------------------------------------- 
 
E10.5 ARCH(m) and GARCH(m) Models 
 
 Engle’s (1982) original model of autoregressive conditional heteroscedasticity, ARCH(1),  
 

   yt  =  β′xt  +  εt 

   εt  =  vt[σ0 + α1εt

   vt  ~  N[0,1], 
-1

2]1/2  

 
has provided a foundation in the literature on volatility in financial markets.  The model has since 
been generalized in many directions.  The most straightforward extension is the ARCH(q) model, 
 

   Var[εt | εt-1, ..., εt-q]  =  σ0
2  +  ∑ = −

Q
q qtq1

2εα . 
 
An important variation on the ARCH theme is the generalized ARCH model, or GARCH(p,q) model, 
 

   Var[εt | εt-1, ..., εt-q]  =  σt
2  =  σ0

2  +  2
1

q
s t ss −=

α ε∑  +  2
1

p
r t rr −=

δ σ∑  
 
 The command for estimating a linear regression with ARCH or GARCH disturbances is 
 
 REGRESS ; Lhs = dependent variable  
   ; Rhs = independent variables 
   ; Model = GARCH(p,q)  $ 
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 Estimation of these models can be done by two step (or iterated) weighted least squares or 
by (approximate) maximum likelihood.  (With this variance specification, the model could not be 
based on the normal distribution save for some special cases, so the analysis is viewed as 
approximate.  See Bollerslev (1986) and Greene (2011) for discussion.)  Maximum likelihood has 
become the standard approach in recent years.  (See Fiorentini, Calzolari, and Panattoni (1996) and 
McCullough and Renfro (1999) for discussion and analysis.)  Finally, an interesting innovation by 
Engle, Lilien, and Robins (1987) is the ARCH(m), which we generalize here to the ‘GARCH in 
mean,’ or GARCH(m) model in which the variance appears in the conditional mean function: 
 
   yt =  β′xt  +  λσt

2 +  εt 

   Var[εt | εt-1, ..., εt-q] =  σt
2  =  σ0

2  +  2
1

q
s t ss −=

α ε∑  +  2
1

p
r t rr −=

δ σ∑  
 
The ARCH and GARCH models are discussed in Sections E10.5.1 and E10.5.2.  The GARCH(m) 
model is discussed in Section E10.5.3.  Finally, technical details on estimation are presented in 
Section E10.5.4. 
 The GARCH(p,q) model may be fit by maximum likelihood for any p and q by using 
 
 REGRESS ; Lhs = ... dependent variable 
   ; Rhs = ... independent variables (May be just the constant term, one) 
   ; Model = GARCH (p,q)  $  (You provide p and q) 
 
The ARCH model is specified by providing a value of 0 for p. 
 The command builder for this model appears on the Main page for the linear regression 
model:  Model:Linear Models/Regression. 
 

 
Figure E10.2  Command Builder for ARCH and GARCH Models 
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 Output for this estimator consists of the ordinary least squares regression used to obtain the 
starting values for the slope parameters followed by the maximum likelihood estimators of the 
models parameters.  Two additional statistics are included in the results: 
 
 Equilibrium variance =  σ 2  =  σ0

2 / (1 - α1 - ... - αq - δ1 - ... - δp) 
 
 Wald statistic for the hypothesis of GARCH(0,0)  = c′{Est.Asy.Var[c]}-1c  
 where c is the vector of estimates of the GARCH parameters. 
 
Standard results available for later analysis include:  
 
 Matrices:  b    =  estimates of  β 
   varb    =  estimated asymptotic covariance matrix (includes the variance 
           parameters if you include ; Parameters in the command) 
   variance  =  estimates, in order, σ0

2, δ1, ... δP, α1, ..., αQ, σ 2 
  
 Scalars:  ssqrd    =  e′e/T 
   rsqrd    =  1 - e′e / ( )∑ =

−
T
t t yy

1

2   (do not use this!) 

   s    =  ssqrd  
   rho    =  0.0 
   degfrdm   =  T - number of parameters in β 
   sy    =  standard deviation of y 
   ybar    =  mean of y 
   kreg    =  number of x variables 
   nreg    =  total number of observations 
   logl    =  log likelihood 
   exitcode   =  the usual 
  

Last Function: None 
 
 Fitted values and residuals are based on the regression part of the model, not the GARCH 
part.  As such, the confidence limits listed are conditional, and are based only on the equilibrium 
variance. They will be somewhat narrower than would be strictly appropriate if a full accounting of 
all estimated parameters were included.  Thus, use 
 
   ;  Keep = variable name to retain the regression values as predictions 
   ;  Res = variable name  to retain residuals, as usual. 
 
You may also obtain estimates of the conditional variances, 
 

   σt
2  =  σ0

2  +  ∑ = −
Q
q qtq1

2εα  +  ∑ = −
P
p ptp1

2σδ  

Use    
   ; Cvar = variable name to retain estimates of conditional variances. 
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E10.5.1 Example: ARCH(0,1) Model for Expected Inflation 
 
 We examine a model for expected inflation of the form 
 

   Pt
e  =  Pt-1

e  +  λ1(Pt - Pt-1
e)  +  λ2(Pt-1 - Pt-2

e)  +  εt. 
 

We examine the model in the context of the ARCH models.  The data are from the UK, so this more 
or less coincides with Engle’s analysis.  To simplify matters, we compute the lagged values initially, 
discard the incomplete observations, and treat the remainder as the full sample.   
 

 READ   ; Nobs = 54 ; Nvar = 2 ; Names = pa,pe ; By Variables $ 
 
.99 1.62 1.87 2.89 2.23 1.69 3.67 5.20 6.59 11.94 7.78 7.19 8.98 8.80 6.91 
4.20 5.04 4.92 5.33 5.94 8.11 7.88 6.63 2.76  2.70 3.14 2.53 2.55 2.76 4.55 
7.11 5.50 5.78 7.42 4.32 2.14 1.25 4.93 2.61  2.19 3.24 3.35 1.55 1.79 1.59 
2.49 1.88 1.28 1.83 3.46 1.69 1.36 1.95 3.11 
0.79 1.94 2.97 3.37 3.65 1.62 3.02 4.43 4.70  8.13 10.6 7.48 7.28 7.63 6.26 
6.76 5.86 6.09 6.23 6.94 7.86 8.73 7.04 6.16  4.02 3.89 3.69 4.14 3.95 4.82 
5.96 6.39 5.73 6.78 5.74 3.47 2.24 2.04 3.44  3.37 3.55 4.10 2.70 2.10 1.58 
2.14 2.56 1.62 1.78 3.33 2.91 1.76 2.26 2.70 
 

CREATE     ; pe1 = pe[-1] ; pe2 = pe[-2] ; pa1 = pa[-1] ; pa2 = pa[-2] 
             ; y = pe-pe1 ; x1 = pa-pe1 ; x2 = pa1-pe2 $ 

 NAMELIST ; x = x1,x2 $ 
 
For this exercise, ‘all observations’ is 3 to 54.  
 

SAMPLE ; 3-54 $ 
REGRESS ; Lhs = y ; Rhs = x ; Model = GARCH(0,1) $ 

 
The results of running this program follow.  They provide little evidence that the ARCH model is 
appropriate for these data. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =         .01462 
             Standard deviation   =        1.19653 
             No. of observations  =             52  Degrees of freedom 
Regression   Sum of Squares       =        46.6732           1 
Residual     Sum of Squares       =        26.3433          50 
Total        Sum of Squares       =        73.0165          51 
             Standard error of e  =         .72586 
Fit          R-squared            =         .63921  R-bar squared =   .63200 
Model test   F[  1,    50]        =       88.58650  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      -56.10402  Akaike I.C.   =  -.60311 
             Restricted (b=0)     =      -82.61029  Bayes  I.C.   =  -.52806 
             Chi squared [  1]    =       53.01253  Prob C2 > C2* =   .00000 
White heteroscedasticity consistent Asy.Cov matrix 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .41206***      .15797     2.61  .0091      .10244    .72167 
      X2|     .15189         .20488      .74  .4585     -.24967    .55344 
--------+-------------------------------------------------------------------- 
Normal exit:   8 iterations. Status=0, F=    55.61610 
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----------------------------------------------------------------------------- 
GARCH MODEL 
Dependent variable                    Y 
Log likelihood function       -55.61610 
Restricted log likelihood     -56.10402 
Chi squared [   1 d.f.]          .97584 
Significance level               .32323 
McFadden Pseudo R-squared      .0086967 
Estimation based on N =     52, K =   4 
Inf.Cr.AIC  =  119.232 AIC/N =    2.293 
GARCH Model, P = 0, Q = 1 
Wald statistic for GARCH =         .517 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Regression parameters 
      X1|     .40228***      .06270     6.42  .0000      .27939    .52517 
      X2|     .14229*        .08108     1.75  .0793     -.01662    .30120 
        |Unconditional Variance 
Alpha(0)|     .42588***      .11224     3.79  .0001      .20590    .64585 
        |Lagged Squared Disturbance Terms 
Alpha(1)|     .15219         .21167      .72  .4721     -.26267    .56704 
        |Equilibrium variance, a0/[1-D(1)-A(1)] 
EquilVar|     .50232**       .24966     2.01  .0442      .01300    .99165 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

E10.5.2 A Benchmark GARCH(1,1) Model for Exchange Rates 
 

 The Bollerslev and Ghysels (1986) model for the daily percentage nominal returns for the 
Deutschemark/Pound exchange rate (BG data) have become a de facto benchmark for calibrating software 
for estimating GARCH models They analyzed 1974 observations, and fit a GARCH (1,1) model, 
 

   yt  =  µ  +  εt,  Var[εt]  =  σt
2  =  σ0

2  +  α1εt-1
2  +  δ1σt-1

2. 
 

McCullough and Renfro (1999) provide the following benchmark values: 
 

   µ =  -0.00619041 
   σ0

2 =   0.0107613 
   α1 =   0.153134 
   δ1 =   0.805974 
 

They also discuss algorithms and the computation of asymptotic standard errors, which we turn to in 
the next section. 
 LIMDEP’s estimates based on the BG data are as follows: 
 

 REGRESS ; Lhs = y ; Rhs = one ; Model = GARCH(1,1)  $ 
 

The benchmarks are matched to all reported digits for the (1,1) model.  The literature provides 
virtually no guidance on model formulation.  For better or worse, specification searches appear to be 
largely ad hoc.  In fact, the log likelihood function for the GARCH model is extremely complicated, 
and iterations will often break down.  The second set of results given below show an example, where 
we attempt to fit a GARCH(2,2) model to the same BG data. 
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----------------------------------------------------------------------------- 
OLS Starting Values for GARCH Model............... 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =        -.01643 
             Standard deviation   =         .47024 
             Number of observs.   =           1974 
Model size   Parameters           =              1 
             Degrees of freedom   =           1973 
Residuals    Sum of squares       =        436.289 
             Standard error of e  =         .47024 
Fit          R-squared            =         .00000 
             Adjusted R-squared   =         .00000 
Model test   F[  1,  1973] (prob) =      .0(*****) 
Diagnostic   Log likelihood       =    -1311.09644 
             Restricted(b=0)      =    -1311.09644 
             Chi-sq [  1]  (prob) =    .0( 1.0000) 
Info criter. Akaike Info. Criter. =       -1.50850 
White heteroscedasticity consistent Asy.Cov matrix 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.01643         .05212     -.32  .7527     -.11859    .08574 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Normal exit:  14 iterations. Status=0, F=    1106.608 
 
----------------------------------------------------------------------------- 
GARCH MODEL 
Dependent variable                    Y 
Log likelihood function     -1106.60788 
Restricted log likelihood   -1311.09637 
Chi squared [   2 d.f.]       408.97699 
Significance level               .00000 
McFadden Pseudo R-squared      .1559676 
Estimation based on N =   1974, K =   4 
Inf.Cr.AIC  = 2221.216 AIC/N =    1.125 
GARCH Model, P = 1, Q = 1 
Wald statistic for GARCH =     3727.503 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Regression parameters 
Constant|    -.00619         .00873     -.71  .4783     -.02330    .01092 
        |Unconditional Variance 
Alpha(0)|     .01076***      .00312     3.45  .0006      .00464    .01688 
        |Lagged Variance Terms 
Delta(1)|     .80597***      .03015    26.73  .0000      .74688    .86507 
        |Lagged Squared Disturbance Terms 
Alpha(1)|     .15313***      .02732     5.60  .0000      .09958    .20668 
        |Equilibrium variance, a0/[1-D(1)-A(1)] 
EquilVar|     .26316         .59402      .44  .6577     -.90108   1.42741 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Evidently, the GARCH(2,2) model is overparameterized. The iterations have terminated abnormally.  
The log likelihood function for the (2,2) model is only slightly larger than for the (1,1) model in spite 
of the fact that the additional parameters are a fairly substantial expansion of the model. 
 
Warning   141: Iterations:current or start estimate of sigma is nonpositive 
Warning   141: Iterations:current or start estimate of sigma is nonpositive 
Warning   141: Iterations:current or start estimate of sigma is nonpositive 
Warning   141: Iterations:current or start estimate of sigma is nonpositive 
Line search at iteration 27 does not improve fn. Exiting optimization. 
 
----------------------------------------------------------------------------- 
GARCH MODEL 
Dependent variable                    Y 
Log likelihood function     -1104.17574 
Restricted log likelihood   -1311.09637 
Chi squared [   4 d.f.]       413.84126 
Significance level               .00000 
McFadden Pseudo R-squared      .1578226 
Estimation based on N =   1974, K =   6 
Inf.Cr.AIC  = 2220.351 AIC/N =    1.125 
GARCH Model, P = 2, Q = 2 
Wald statistic for GARCH =     6133.099 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Regression parameters 
Constant|-.14942D-04         .00894      .00  .9987 -.17533D-01  .17504D-01 
        |Unconditional Variance 
Alpha(0)|     .00709**       .00326     2.18  .0293      .00071    .01347 
        |Lagged Variance Terms 
Delta(1)|     .50193         .36318     1.38  .1670     -.20990   1.21375 
Delta(2)|     .34624         .31458     1.10  .2710     -.27032    .96280 
        |Lagged Squared Disturbance Terms 
Alpha(1)|     .17699***      .05464     3.24  .0012      .06989    .28409 
Alpha(2)|    -.05154         .06747     -.76  .4450     -.18379    .08071 
        |Equilibrium variance, a0/[1-D(1)-A(1)] 
EquilVar|     .26899       10.17952      .03  .9789   -19.68251  20.22048 
--------+-------------------------------------------------------------------- 
 

E10.5.3 The GARCH in Mean Model 
 

Engle, et al. (1987) found that it would be useful to relax the independence of the mean and 
the variance in the GARCH model.  The ‘GARCH in mean’ model, or GARCH(m) model is 
 
   yt  =  β′xt  +  λσt

2 +  εt 

   Var[εt | εt-1, ..., εt-q] =  σt
2  =  σ0

2  +  2
1

q
s t ss −=

α ε∑  +  2
1

p
r t rr −=

δ σ∑  

   εt | Ψt  ~  N[0,σt,2]. 
 
This model is requested with 
 
 REGRESS  ; Lhs = ... ; Rhs = ... 
   ; Model = GARCH(p,q,1)  
   ; ... any other optional specifications $ 
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In particular, the addition of the ‘1’ to the GARCH(p,q) specification triggers this specification. (It is 
possible to extend this model to additional lags in the variance, and to nonlinear functions in the 
variance term in the regression.  Whether or not this provides substantial value added to the 
specification remains to be verified.  LIMDEP is limited to this simple specification, however.)  Save 
for this change in the specification, the model is otherwise the same as the GARCH model. 
 The results below show the outcome of extending the BG model to a GARCH(1,1,1) model.  
The predicted values shown for the (1,1) and (1,1,1) models suggest that a somewhat better fit is 
obtained with the extension.  The GARCH(1,1) model is shown above.  The GARCH(m) (1,1,1) model 
is shown below.  The iterations for the GARCH(m) model did not actually reach a ‘clean’ convergence.  
The likelihood function has become flat at the point reported, and no further improvement could be 
produced.  Nonetheless, it does improve somewhat on the GARCH(1,1) model;  the log likelihood 
function has improved.  The prediction from the GARCH model is simply the mean, as there are no 
covariates.  So, for the GARCH model with no mean term, the predicted value equals the estimated 
mean, -.00619041.  The mean value of the Lhs variable is -.016427.  For the GARCH in mean model, 
we use the estimated unconditional variance to form the forecasted value, so for this model, 
 

   ˆty  =  ˆ ˆˆ     µ + λσ 2   

    =  .0057666  - .077164 







−− 1545375.803872.1
0109532.  

    =  -.00145552 
 

which is a bit of an improvement.  The log likelihood function has improved somewhat as well. 
 
Line search at iteration 13 does not improve fn. Exiting optimization. 
----------------------------------------------------------------------------- 
GARCH IN MEAN MODEL 
Dependent variable                    Y 
Log likelihood function     -1106.05926 
Restricted log likelihood   -1311.09637 
Chi squared [   3 d.f.]       410.07422 
Significance level               .00000 
McFadden Pseudo R-squared      .1563860 
Estimation based on N =   1974, K =   5 
Inf.Cr.AIC  = 2222.119 AIC/N =    1.126 
GARCH in mean model, P = 1, Q = 1 
Wald statistic for GARCH =    13229.183 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Regression parameters 
Constant|     .00577         .01441      .40  .6890     -.02247    .03401 
        | GARCH in Mean Term 
GRCHMean|    -.07716         .07169    -1.08  .2818     -.21768    .06336 
        | Unconditional Variance 
Alpha(0)|     .01095***      .00317     3.46  .0005      .00475    .01716 
        | Lagged Variance Terms 
Delta(1)|     .80387***      .03109    25.85  .0000      .74293    .86481 
        | Lagged Squared Disturbance Terms 
Alpha(1)|     .15454***      .02813     5.49  .0000      .09941    .20967 
        | Equilibrium variance, a0/[1-D(1)-A(1)] 
EquilVar|     .26336         .60122      .44  .6614     -.91501   1.44173 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
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E10.5.4 Technical Details on Estimation of the GARCH(m) Model 
 
 With normally distributed disturbances, the log likelihood function for the GARCH(m) model is 
 

   log L   =  
2

)2log(log
2
1

1 2

2
2 π























σ

ε
+σ

− ∑ =

TT
t

t

t
t   -   

 
where   εt =  yt  -  β′xt  -  λσt

2 
 

and   σt
2   =  σ0

2  +  2
1

q
s t ss −=

α ε∑  +  2
1

p
r t rr −=

δ σ∑ . 
 
To maximize the function, it is necessary to minimize the term in square brackets.  We do this with 
LIMDEP’s general optimization package.  Two aspects of this optimization make it more 
complicated than usual.  First, the variances must be computed recursively, and, since they are a 
difference equation, must be initialized at values that will affect the ultimate solution.  Second, as a 
consequence of the first factor, derivatives must be computed recursively as well.  We turn to these 
considerations first, then discuss how standard errors are computed for the estimates. 
 The tth term in the function to be maximized is 
 

   log Lt  =  
2

2
2log

t

t
t

σ

ε
+σ  

 
The involved part of the computation is the computation of the variances, σt

2, as each depends on the 
previous ones.  LIMDEP does its initializations as follows:  The computation involves p+q lagged 
values, as the pth lag of σt

2 itself involves q lags of εt.   Take first the case in which there is no ‘in 
mean’ term; λ = 0.  For this case, as McCullough and Renfro (1999) note, there are various 
approaches to initialization.  We initialize all presample values of both εt

2 and σt
2 at an estimate of 

the unconditional variance using the then current estimate of β; 
 

   s2  =  ( )2

1

1 ˆT
t tt

y
T =

′−∑ xβ . 

 
This begins the recursion and enables us to compute the function and its derivatives.  The derivatives 
must be computed recursively as well.  Extensive detail on the procedure may be found in Fiorentini, 
Calzolari, and Panattoni (FCP, 1996) and in Greene (2011).  An issue arises with respect to the 
derivatives of the initial values. LIMDEP accounts completely for these as well – once again, details 
appear in FCP. (LIMDEP uses analytic derivatives, not numerical approximations, for all 
computations in the GARCH(m) models.)   

The GARCH(m) model presents a substantial complication in this set of computations.  In 
order to compute the initial estimates of the variances, we need the estimates of the disturbances.  
But, the disturbances involve the variances.  In order to complete the loop, we extend the assumption 
used in the simpler case.  If the variances in all sample periods had stabilized at the same value, then, 
assuming that the presample disturbances take their conditional means, that variance would be 
 

σ 2  =  σ0
2 / (1 - δ1 - ... - δp - α1 - ... - αq).   
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(Of course, there seems  to be a bit of an inconsistency in assuming that the initial disturbances are 
zero and their squares equal the initial variances – we are setting each value to its expectation, not to 
a forecasted value.)  Therefore, for the GARCH in mean model, we initialize the variances and 
squared disturbances at the revised estimate 
 

   s2   =  ( )2
2

1

1 ˆ ˆ ˆ -  T
t tt

y
T =

′− λσ∑ xβ . 
 

where   
2∧

σ  =  
2
0

1 1

ˆ

1 ... ...p q

∧ ∧ ∧ ∧

σ

− δ − − δ − α − − α
 

 

One complication remains.  If the denominator of 2σ̂ is nonpositive, the function will be nonsensical, 
and problems will emerge in the function evaluation.  If this occurs, we revert to an alternative 

estimator; we recompute 
2∧

σ without the α terms.  If the denominator of this revised estimate is also 
nonpositive, the log likelihood function will be noncomputable.  Before reaching this point, the trial 
value of the parameter vector that produced this situation would have been rejected, and we would 
have reentered the iteration with another set of estimates.  Note, this is the situation which produces 
the diagnostic  
 
Warning   141: Iterations:current or start estimate of sigma is nonpositive 
 
which appears before our estimates of the GARCH(2,2) model earlier. 
 Asymptotic standard errors for the coefficient estimators are obtained via a hybrid form of 
the ‘sandwich’ (robust) covariance matrix estimator.  We compute the BHHH estimator first, 
 

   B   =  ∑ =

T
t tt1

'gg  
 

where gt is the vector of derivatives of logLt with respect to the full vector of parameters.  We then 
compute 

   H   =  -E 



∑ =

t
t t1

H  
 

where Ht is the second derivatives matrix of logLt with respect to the full vector of parameters.  The 
actual derivatives are extremely complicated.  However, the expectations have an extremely simple 
form.  (See Bollerslev (1986).)  Finally, the estimated asymptotic covariance matrix is computed as 
 
   Est.Asy.Var[ .] =  H-1 B H-1. 
 
McCullough and Renfro label this the Bollerslev and Wooldridge (1992) estimator, and provide the 
following benchmark values for the standard errors for the BG GARCH(1,1) model:  (.00873092, 
.00312364, .0273219, .0301509).  LIMDEP’s values for these are (.0087309247, .0031236375, 
.027321934, .030150886), which agree with all reported digits. 
 After estimation of the structural parameters,  
 

   σ 2  =  σ0
2 / (1 - α1 - ... - αQ - δ1 - ... - δP)  

 
is estimated.  The standard error is estimated using the delta method. 
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E11: Autocorrelation in the Linear Model 
 
E11.1 Introduction 
 
 This chapter will detail estimation of linear regression models with autocorrelated 
disturbances.  The models presented here are of autoregressive disturbances: 
  
   yt  =  β′xt  +  εt, 

   εt  =  ρ1εt-1  +  ρ2εt-2  +  ...  +  ρpεt-p  +  ut . 
  
Moving average disturbances, 
 
   εt  =  ut  +  λ1ut-1  +  λ2ut-2  +  ...  +  λqut-q , 
  
are presented in Chapter E12 under the subject of ARIMA and ARMAX models.  LIMDEP has a 
somewhat limited facility for handling mixed disturbances.  For the most part, mixed models can be 
handled by prior modification of the data (to set up the autoregressive part) and/or use of the 
ARIMA/ARMAX procedure. 
 Autocorrelation in the linear regression is modeled with different forms of 
 
 REGRESS  ; Lhs = dependent variable  
   ; Rhs = independent variables  
   ; AR1 and/or other specifications $  
 
E11.2 Correcting the OLS Covariance Matrix 
 
 Section E10.2 describes how to obtain a consistent covariance matrix for the OLS estimates 
in the presence of heteroscedasticity  (the ‘White estimator’).  Newey and West’s (1987) counterpart 
is consistent in the presence of generally unspecified autocorrelation.  The specification for 
requesting the Newey-West estimator as part of a regression is 
 
   ; Pds = L 
 
where ‘L’ is the number of periods for which lags are to be computed.  You can also access this on 
the Options page of the command builder by selecting Model:Linear Models/Regression. 
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Figure E11.1  Command Builder for Linear Models with Autocorrelation 

 
 The computations are listed as follows, where V is the final result: 
 
   V  =  White estimator  +   SRS, 

    S  =  (X′X)-1, 

    R  =  
i

i L

=

=∑ 1

    R(i)  =  

w(i,l)R(i), 

t i

t T

= +

=∑ 1
[xtxt-i′ + xt-ixt′]et et-i, 

    w(i,L)  =  1 - i/(L+1) is a scalar weight, 

and    et  =  the OLS residual for period t, t=1,...,T.  
 
The value ‘L’ is the number of periods used in computing R.  There is little theoretical guidance on 
the best choice of L.  If the model were a moving average, L is the maximum lag.  Of course, if it 
were known that an MA(L) model applied, this would be the wrong procedure to use in the first 
place.  For autoregressions and mixed processes, the picture is far less clear.  Readers are referred to 
Newey and West (1987), and for some background material, White (1981). 
 We will base this example and several to follow on the gasoline market data set used earlier 
in Chapters E7 and E8.  Results of fitting a multiple regression with an autocorrelation robust 
covariance matrix estimator with lags of five periods are shown below.  The accompanying residual 
plot strongly suggests the presence of autocorrelation.  The rather large increase in the estimated 
standard errors that occurs when the Newey-West correction is applied is to be expected. 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGG     Mean                 =        -.25713 
             Standard deviation   =         .23849 
             Number of observs.   =             52 
Model size   Parameters           =              3 
             Degrees of freedom   =             49 
Residuals    Sum of squares       =        .176898 
             Standard error of e  =         .06008 
Fit          R-squared            =         .93902 
             Adjusted R-squared   =         .93653 
Model test   F[  2,    49] (prob) =   377.3(.0000) 
Robust VC    Newey-West, Periods  =              5 
Model was estimated on May 17, 2011 at 10:58:54 AM 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -8.99007***     1.25617    -7.16  .0000   -11.45213  -6.52802 
   LOGPG|    -.17124**       .07992    -2.14  .0371     -.32789   -.01459 
  LOGINC|     .96865***      .15883     6.10  .0000      .65735   1.27994 
--------+-------------------------------------------------------------------- 
Uncorrected 
--------+-------------------------------------------------------------------- 
Constant|   -8.99007***      .58201   -15.45  .0000   -10.13078  -7.84936 
   LOGPG|    -.17124***      .03789    -4.52  .0000     -.24550   -.09698 
  LOGINC|     .96865***      .07376    13.13  .0000      .82408   1.11322 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

 
Figure E11.2  Autocorrelated Residuals 
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E11.3 Correcting for First Order Autocorrelation 
 
 There are numerous procedures for estimating a linear regression with first order 
autoregressive disturbances, 
 
    yt  =  β′xt  +  εt, 

    εt  =  ρεt-1 +  ut . 
 
The simplest form of the command is  
 
 REGRESS  ; Lhs = ... ; Rhs = ... ; AR1 
 
The command builder for the linear regression model may also be used.  Note in Figure E11.1 at the 
upper right of the dialog box, there is a button for Autocorrelation.  This dialog box is shown in 
Figure E11.3: 
 

 
Figure E11.3  Command Builder for Specifying Autocorrelation Estimator 

 
The default estimator is the iterative Prais-Winsten algorithm.  That is, the first observation is not 
discarded; the full GLS transformation is used.  This is a repeated two step estimator: 
 
Step 1. OLS regression of y on X.  Then, estimate ρ with 
 
   r  =  1 - ½ × Durbin-Watson statistic. 
 
Step 2. OLS regression of     
 
   y1* =  (1 - r2)1/2 y1 

   y
 

t*  =  yt  -  ryt-1, t = 2,...,T 

 on the same transformation of xt.   
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After Step 2, r is recomputed based on the GLS estimator, and the regression is repeated.  This 
iteration continues until the change in r from one iteration to the next is less than 0.0001. The 
covariance matrix for the slope estimators is the usual OLS estimator, s2(X*′X*)-1 based on the 
transformed data.  The asymptotic variance for r is estimated by (1 - r2)/(T-1). 
  Results and diagnostics are presented for both transformed and untransformed models.  The 
example below shows the specific results given. 
 
NOTE:  If no other specification is given, the estimator is allowed to iterate to convergence, which 
usually occurs after a small number of iterations.  The updated value of r at each iteration is 
computed from the Durbin-Watson statistic based on the most recent GLS coefficients estimates. 
Iterating these estimators to convergence does not produce a maximum likelihood estimator. 
 
The ordinary least squares regression results are the same as in the previous section and are omitted. 
 
----------------------------------------------------------------------------- 
AR(1) Model:     e(t) = rho * e(t-1) + u(t) 
Initial value of rho       =         .95624 
Maximum iterations         =            100 
Method = Prais - Winsten 
Iter=  1, SS=       .014, Log-L=    138.050 
Iter=  2, SS=       .014, Log-L=    138.346 
Iter=  3, SS=       .014, Log-L=    138.276 
Iter=  4, SS=       .014, Log-L=    138.227 
Final value of Rho    =             .986786 
Iter=  4, SS=       .014, Log-L=    138.227 
Durbin-Watson:   e(t) =             .026428 
Std. Deviation:  e(t) =             .104145 
Std. Deviation:  u(t) =             .016875 
Durbin-Watson:   u(t) =            1.317196 
Autocorrelation: u(t) =             .341402 
N[0,1] used for significance levels 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGG|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -8.25481***      .75044   -11.00  .0000    -9.72565  -6.78398 
   LOGPG|    -.12339***      .02281    -5.41  .0000     -.16809   -.07868 
  LOGINC|     .86578***      .07892    10.97  .0000      .71110   1.02046 
     RHO|     .98679***      .02269    43.49  .0000      .94232   1.03125 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 Other estimation procedures are requested by adding them to the ; AR1 request: 
 
   ; AR1 ; Alg = Corc  
 
requests the iterative Cochrane-Orcutt estimator.  The first observation is skipped, and the 
pseudo-difference defined above is applied to the remaining observations.  (We do not recommend 
this estimator, as it needlessly discards the information contained in the first observation, with no 
accompanying gain in speed, efficiency, or any statistical properties.)  Alternatively, 
 
   ; AR1 ; Alg = MLE  
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requests the maximum likelihood estimator of Beach and MacKinnon (1978).  In this model, the MLE 
is not GLS because in addition to the generalized sum of squares, the log likelihood function contains 
an extra term, the Jacobian for the first observation, ½log(1 - ρ2).  This term becomes de minimis as 
T→∞, so in a large sample, the MLE and the other GLS estimators should not differ substantially.   
 

TECHNICAL NOTE:  The maximum likelihood estimator uses the Beach and MacKinnon method.  
The iteration is as shown at the beginning of this section.  However, the recomputation of r is done 
differently, as follows:  Let D = (T-1) ∑ −

=

1
2

2T
t te .  Then, 

        a  =  
D

eeT T
t tt∑ = −−

− 2 1)2(
;  b  =  

D

eeTeT T
t t

T
t t ∑∑ =

−

=
−−−

2
21

1
22

1)1(
;  c  = 

D

eeT T
t tt∑ = −2 1

  

Now, p = b - a2/3, q = c - ab/3 + 2a3/27, and φ = arccos ( ) ( )[ ]ppq −2/27 .  Finally,  

.3/)3/3/cos(3/2 ap −π+φ−−=ρ
∧

  Iteration of the feasible GLS procedure with this formula for r 
at each step produces the maximum likelihood estimates. 
 
 To use a grid search for the autocorrelation coefficient, use 
 
   ; AR1 ; Alg = grid(lower, upper, step)  
 
This requests a simple grid search over the indicated range with a stepsize as given.  The method used 
for the grid search is the default Prais-Winsten estimator.  To request the Cochrane-Orcutt estimator, 
instead, use 
   ; AR1 ; Alg = grid(lower, upper, step, 1) 
 
(As before, the Cochrane-Orcutt estimator is inferior to the MLE or Prais-Winsten estimator.)  You 
can request a particular value for ρ by a simple request: 
 
   ; AR1 ; Rho =  specific value  
 
When you use this form of the model command, the output will still contain an estimated standard 
error for the estimate of ρ, as if it had been estimated.  The number of iterations allowed for the first 
three estimators can be controlled with the specification  
 
   ; Maxit = maximum 
 
 The results saved by this estimator are the same as for the model without autocorrelation.  
The estimate of ρ is saved, as before, in the scalar, rho.  Matrices b and varb contain the FGLS 
estimates for β.  The ; Parameters switch has no effect here.  Residuals, predictions, and the 
confidence interval are the same as in the model without autocorrelation; the only adjustment is to 
use the GLS estimates of the residual variance and the covariance matrix of the slopes.  The set of 
fitted values does not contain predictions of the residuals.  Thus, if you use ; Fill to extrapolate 
beyond the sample data, we do not use the BLU forecast, 
 

   y
∧

T+1  =  bgls′xT+1  +  reT. 
 

This can easily be constructed, if desired, with the CREATE command. 
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E11.4 Autocorrelation with a Lagged Dependent Variable 
 
 Hatanaka (1974) has derived an efficient estimator for this model which is asymptotically 
equivalent to maximum likelihood.  The procedure is as follows:  The model is 
 
   yt  =  β′xt  +  γyt-1  +  εt , 

   εt  =  ρεt-1  +  ut . 
 
Step 1. Use instrumental variables to estimate [β,γ].  Any consistent estimator will do.  A suitable 

instrumental variable for the lagged value of yt might be the lagged value of the prediction of 
yt from a regression on xt and xt-1. 

 
Step 2. Using the consistent estimates in Step 1, estimate ρ consistently by the autocorrelation of the 

residuals, et = yt - biv′xt - civyt-1.  That is, compute the residuals using actual values, not 
predictions. 

 
Step 3. Now, use the Cochrane-Orcutt transformation to do GLS based on the original data, but add 

an additional regressor to the model, et-1.  (The transformation is not applied to the lagged 
residual.) 

 
Step 4. The efficient estimate of ρ is the original estimate plus the slope on the lagged residual in the 

regression at Step 3.  The asymptotic covariance for this estimate is that provided for the 
slope in Step 3.  I.e., the GLS regression in Step 3 provides the full set of covariances. 

 
This procedure uses the 2SLS command, not REGRESS.  The command is 
 
 2SLS  ; Lhs = y  ;  Rhs = ...    
   ; Inst = full set of instruments ; AR1 ;  Hatanaka $ 
 
Note that the set of instruments includes: 
 

1. all exogenous variables in x on the Rhs, 
2. one if it is included in the Rhs, 
3. additional instrumental variables. 

 
For example 
 
 DATE   ; 1953$ 

PERIOD ; 1953-2004$ 
 CREATE ; glag = g[-1] $ 
 PERIOD ; 1954-2004 $ 
 2SLS  ; Lhs = g  
   ; Rhs = one,gasp,pcinc,glag,pnc,puc,ppt 
   ; Inst = one,gasp,pcinc,pnc,puc,ppt,pd,pn,ps,pop 
   ; AR1 ; Hatanaka $ 
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----------------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=G        Mean                 =         .80034 
             Standard deviation   =         .16477 
             Number of observs.   =             51 
Model size   Parameters           =              7 
             Degrees of freedom   =             44 
Residuals    Sum of squares       =    .842308E-02 
             Standard error of e  =         .01384 
Fit          R-squared            =         .99281 
             Adjusted R-squared   =         .99183 
Model test   F[  6,    44] (prob) =  1012.2(.0000) 
Diagnostic   Log likelihood       =      149.70356 
             Restricted(b=0)      =       20.10366 
             Chi-sq [  6]  (prob) = 259.2(  .0000) 
Info criter. Akaike Info. Criter. =       -8.43410 
Autocorrel   Durbin-Watson Stat.  =        1.80882 
             Rho = cor[e,e(-1)]   =         .09559 
Not using OLS or no constant. Rsqrd & F may be < 0 
Instrumental Variables: 
ONE       GASP      PCINC     PNC       PUC       PPT 
PD        PN        PS        POP 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       G|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .03643         .02380     1.53  .1258     -.01021    .08306 
    GASP|    -.00097***      .00022    -4.33  .0000     -.00141   -.00053 
   PCINC| .10512D-04*     .5502D-05     1.91  .0560 -.27102D-06  .21296D-04 
    GLAG|     .85475***      .08541    10.01  .0000      .68735   1.02216 
     PNC|    -.00090         .00060    -1.52  .1293     -.00207    .00026 
     PUC|     .00103***      .00040     2.61  .0091      .00026    .00181 
     PPT|    -.00045         .00031    -1.46  .1434     -.00106    .00015 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
AR(1) Model:     e(t) = rho * e(t-1) + u(t) 
Initial value of rho       =         .09559 
Maximum iterations         =            100 
Method = Prais - Winsten 
Hatanaka 2 step estimator 
Iter=  1, SS=       .008, Log-L=    151.546 
Final value of Rho    =             .682554 
Iter=  1, SS=       .008, Log-L=    151.546 
Durbin-Watson:   e(t) =            1.796876 
Std. Deviation:  e(t) =             .017963 
Std. Deviation:  u(t) =             .013128 
Durbin-Watson:   u(t) =            1.274928 
Autocorrelation: u(t) =             .362536 
N[0,1] used for significance levels 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       G|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .10495**       .04792     2.19  .0285      .01103    .19887 
    GASP|    -.00114***      .00030    -3.80  .0001     -.00173   -.00055 
   PCINC| .12255D-04      .7642D-05     1.60  .1088 -.27238D-05  .27234D-04 
    GLAG|     .72615***      .14447     5.03  .0000      .44299   1.00930 
     PNC|    -.00096         .00087    -1.11  .2664     -.00266    .00073 
     PUC|     .00106**       .00050     2.11  .0349      .00008    .00205 
     PPT|    -.00026         .00049     -.54  .5876     -.00122    .00069 
     RHO|     .68255***      .11367     6.00  .0000      .45976    .90535 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E11.5 Differencing and Higher Order Autocorrelation 
 
 LIMDEP does not have built-in estimators for other models of autoregressive disturbances.  
But, the Cochrane-Orcutt method is easily generalized.  Suppose the desired model is 
  
   εt  =  ρ1εt-1  +  ρ2ε t-2  +  ...  ρpεt-p  +  ut. 
  
If consistent estimates of ρ1,... are in hand, the counterpart to the Cochrane-Orcutt estimator will use 
least squares regression of 
 
   yt  -  r1yt-1  -  r2yt-2  -  ...  rpyt-p 
 
on the same transformation of the x vector.  The initial p observations are lost. 
 LIMDEP does have a simple procedure for using lagged values in this fashion.  The feature 
is available generally, but is likely to be most useful for estimating this model.  Suppose you wish to 
regress 
   yt*
  

 = yt - ρ1yt-1 - ρ2yt-2 - ... - ρpyt-p 

on the same transformation of x.  It is not necessary to compute the transformed variables.  Use 
  
 REGRESS ; (as usual) ; Dfr  =  r1, r2, ..., rp $  
  
The differences are used during estimation, but not retained during or after estimation.  As always, 
you may specify the set of values any way you like, i.e., as a matrix, set of values, etc. One is not 
differenced by this procedure, so if you specify a constant term in the regression, it will remain after 
the differences.  Of course, you might want to drop it at the outset, as 
  
   yt  =  α  +  β′xt  +  εt 
 
implies   yt - yt-1  =  β′(xt - xt-1)  +  εt - εt-1 
 
without a constant term. 
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 For example, if you wish to do the Cochrane-Orcutt transformation for an AR(1) model 
yourself, you could use the following: 
 
 SAMPLE   ; 1 - ... $  
 REGRESS  ; ... (as usual) ... $ (Saves rho)  
 SAMPLE   ; 2 - ... $  
 REGRESS  ; ... (same as above) ... ; Dfr = rho $  
 
 Any of the coefficients in the ; Dfr list may be 1.0.  As such, you can use this procedure to 
estimate equations in differences.  For examples, to regress yt - yt-1 on xt - xt-1, use  
 
   ; Dfr = 1  
 
To use second differences, ∆2yt = (yt -yt-1) - (yt-1 - yt-2)  include ; Dfr = 2,-1 in the command.  
 With this in hand, the following is a procedure you can use for a pth order autoregression 
model.  For our example, we use a fourth order model. 
 
 REGRESS ; Lhs  = ... ; Rhs = ...  
   ; Res  = e $   (Get OLS residuals)  
 SAMPLE   ; 5 - ... $  
 REGRESS  ; Lhs  = e  
   ; Rhs  = e[-1],e[-2],e[-3],e[-4],one $  
 MATRIX   ; r = b (1 : 4) $   (Strip off constant term) 
 REGRESS  ; ... as above...  
   ; Dfr = r $   (Does GLS instead of OLS) 
   
This method could also be used to estimate a model of fourth order autocorrelation for quarterly data.  
That is, one for which 
 
   εt  =  ρεt-4  +  ut. 
  
Suitable commands would be 
 
 REGRESS ; Lhs  = ...  
   ; Rhs = ...  
   ; Res = e $   (Get OLS residuals)  
 SAMPLE   ; 5 - ... $  
 REGRESS  ; Lhs = e  
   ; Rhs = e[-4], one $  
 REGRESS  ; ...as above...  
   ; Dfr = 0,0,0,b(1) $  
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E11.6 Testing for Autocorrelation 
 
 For testing against the hypothesis of autocorrelated disturbances, the Durbin-Watson statistic 
produced with the initial output provides a rough and ready test for a fairly small class of models.  
Godfrey (1978) has devised a more general test for the case of pth order autoregressive or moving 
average (or a mixture).  The formalities of the procedure can be found in the article.  In practical 
terms, the test statistic can be computed by regressing the least squares residuals on the original set 
of regressors and p lagged values of the residuals.  (See Greene (2011).)  To do this with LIMDEP, 
use the ; Res = name option to retain the residuals from the regression.  Then use REGRESS to 
compute the least squares regression, including the original regressors and the lagged residuals on 
the Rhs and the current residual on the Lhs without resetting the sample.  Then, 
 
   chi squared (p) = TR2  
 
is a chi squared statistic with p degrees of freedom.  The CALC command can be used to obtain the 
significance level for the test statistic.  The commands would be  
 
 NAMELIST ; x = one,... $ 
 CREATE ; e1 = 0 ;  e2 = 0 ; ... ep = 0 $ 
 REGRESS ; Lhs  = ... ; Rhs = x ; Res = e $ 
 SAMPLE ; Set sample to p+1 to T $ 
 CREATE ; e1 = e[-1] ; e2 = e[-2] ... ; ep = e[...] $ 
 SAMPLE ; All $ 
 REGRESS  ; Lhs  = e    
   ; Rhs  = x, e1,... $ 
 CALC      ; List 
   ; lmtest = n * rsqrd  
   ; List ; 1 - Chi(lmtest, (kreg-1)) $ 
  
The LM test requires that the initial values of the lagged residuals be filled with zeros and that these 
observations be included in the regression.  (An alternative computation is obtained by dropping the 
initial observations.  Authors differ on this – Godfrey, himself changes his prescription in a later 
article.)  The commands above which create the lagged residuals set them to zero initially because 
LIMDEP would otherwise fill the lagged values with the missing value code, -999. 
  Finally, the Box-Pierce Q-statistic may be used in a similar fashion to test for higher order 
autocorrelation.  To obtain this statistic for the OLS residuals, keep the residuals as described above, 
then use   
 
 IDENTIFY  ; Rhs = ... residuals ; Pds = L $  
 
to obtain the autocorrelations and the associated statistics.   You must supply the value for L. 
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E12: ARIMA, ARMAX and Distributed Lag 
Models 

 
E12.1 Introduction 
 
 This chapter will detail some of LIMDEP’s time series capabilities.  Although LIMDEP is 
primarily oriented to cross section and panel data analysis, many common applications in time series 
analysis, including autocorrelation, identification, spectral analysis, unit root tests and some 
distributed lag models can be handled as well.  (It would be possible, with some effort, to work with 
other time series techniques, such as unit roots, VARs, and cointegration tests.  Some of these, such 
as basic ADF and Phillips-Perron tests are presented in Chapter E5.)  This chapter will describe two 
estimation programs and some procedures constructed from the matrix and regression commands. 
Note as well that some other time series topics have been covered in earlier chapters, in particular, 
spectral analysis, time series identification and unit root tests in Chapter E5, GARCH models in 
Chapter E10 and autocorrelation in the linear regression model in Chapter E11. 
 
E12.2 Box-Jenkins ARIMA and ARMAX Models 
 
 The models estimated by this procedure are 
 
   yt  =  µ  +  β′xt  +  φ1yt-1 ... φpyt-p  +  εt  +  θ1εt-1  +  θqεt-q,  where yt  =  (1 - L)dYt  
 
and L is the lag operator.  I.e., yt is the original series differenced ‘d’ times, if this is desired.  More 
compactly 
 

   Φ(L) × [δ(L)d Yt]  =  µ  +  β′xt  +  Θ(L)εt, 
 
where Φ and Θ are polynomials in the lag operator and δ(L) = (1-L).  The nonstochastic part, β′xt is 
optional.  Without it, a pure ARIMA model results.  You may also specify no differences (d = 0), 
which will be most of the time.  If you leave out Φ(L) as well, (p = 0), a pure moving average 
regression results. Do note that this estimator requires that q, the order of the moving average part, 
be greater than zero.  If q = 0, you can just estimate the equation by least squares, so there is no need 
for the ARMAX estimator.  In this case, a diagnostic is issued and estimation is halted. 
 
E12.2.1 Model Command 
 
 The command for this model is 
 
 ARMAX   ; Lhs = dependent variable 
   ; Rhs = variables (optional) 
   ; Model = p,d,q $ (in exactly that order) 
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If you want to include a constant term in the model (µ), include one in the Rhs list. Note that if d is 
nonzero, a nonzero constant implies a nonstationary series.  You must provide all three values for 
p,d,q, even if they are zero.  Other options are 
 
   ; Res = name  to retain residuals 
    ; Keep = name  to retain fitted values 
    ; List  to display predicted values and residuals 
    ; Covariance Matrix to display the estimated asymptotic covariance matrix, 

   same as ; Printvc 
 
You can use the model to predict beyond the end of the sample by adding 
 
   ; Pds = number of periods to forecast 
 
If there are regressors (Rhs variables) in the model, you must have valid data available for the 
forecasts in the rows that immediately follow the last observation in the estimating sample.  If the 
model is a pure ARIMA model (no Rhs variables), you can forecast as many post sample periods as 
you like.  You may also plot the fitted and actual values, including any post sample predictions by 
including  
   ; Plot  
 
in the command. 
 You can check the adequacy of the model by using IDENTIFY and/or PLOT to examine 
the residuals.  To do so, be sure to include ; Res = name to retain the residuals after estimation. 
 For the identification step, (i.e., for determining the orders of the lag structures in the model) 
here is a practical hint:  If you are estimating a pure ARIMA model, use IDENTIFY on yt to 
determine the appropriate p and q.  If you are estimating a pure MA model, you need first to obtain a 
‘clean’ set of residuals for the identification step.  So, use ordinary least squares to obtain an estimate 
of [µ, β], and use IDENTIFY on the residuals from this least squares regression.  Assuming that an 
MA model is appropriate, the PACF from this step will reveal its order.  If you are estimating an 
ARMAX model, in order to obtain a consistent set of residuals, you can do the following:  Use 
instrumental variables to estimate [µ,β], and the φs simultaneously.  The independent variables will 
be one, the xs, then y[-1],...,y[-p].  The instruments will be one, the xs, then y[-q-1],...,y[-q-p].  For 
example, to estimate an ARMAX(1,0,1) (no differencing), your IV estimator is a 2SLS regression of 
y on one, the xs, and y[-1] with instruments one, the xs, and y[-2]. 
 The starting values for the iterations are generated internally by this estimator.  (See below.)  
The controls for nonlinear estimation, 
  
   ; Start = list 
   ; Tlj (j=b, f, g) [=value] 
 
are ignored by this program.  Convergence is described in the technical details in Section E12.2.4.  
You can set the maximum number of iterations with 
 
   ; Maxit = value 
 
if you wish.  The default is 25. 
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HINT:  This estimator normally converges in a small number of iterations.  If a large number of 
iterations is required, there is probably a problem with the model specification.  One problem that 
can impede convergence is overfitting, that is, making q too large. 
 
Finally, restrictions on coefficients can only be imposed on the elements of β by building them into 
the model.  The specification 
  
   ; Rst = list 
 
is ignored.  You can test restrictions on the coefficients by two methods.  First, 
 
   ; Test: ... 
 
can be used for Wald tests.  The coefficient vector is, in order (µ’s position will correspond to one, in 
the Rhs list) 
   γ  =  φ1,...,φp,µ,β1,...,βK,θ1,...,θq. 
 
Some of these may not be present in your model.  For purposes of testing hypotheses, these are 
b(1),...,b(M).  Since this is likely to be a bit cumbersome, using the WALD command with the Last 
Model results is likely to be much simpler (see Section R14.4).  The list of labels to use is given in 
the next section. 

 
E12.2.2 Model Output 
 
 The data listed below are a some of the quarterly macroeconomic data in Greene (2011, 
Table F5.2).  There are 204 quarterly observations, from 1950I to 2000IV.   The data are quarterly 
observations on a number of familiar variables including real GDP, real consumption, real 
investment, real government spending, real disposable income, the money stock, short term interest 
rate, unemployment rate, population, the rate of inflation and a real interest rate.  We will use these 
data in several examples below. 
 

 
Figure E12.1  Quarterly Macroeconomic Data 
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 The ARMAX model is an extension of the linear regression model that is completely 
specified by p, d, and q.  LIMDEP will estimate the full set of parameters by nonlinear least squares 
procedures.  Results will resemble the following: 
 

ARMAX  ; Lhs = realinvs ; Rhs = one,tbilrate 
; Model = 1,0,1 $ 

 
----------------------------------------------------------------------------- 
Model:y(t) = mu + bx + phi(1)y(t-1)...phi(p)y(t-p)) 
          + e(t) + theta(1)e(t-1)...theta(q)e(t-q)) 
      y(t) = [(1-L)^d]Y(t)  (differences)) 
Dependent variable                             REALINVS 
Raw data were differenced d =  0 times. 
Sum of squares at best estimates:         157812.826207 
Estimated standard deviation of e(t):         27.881949 
For diagnostic checking, use IDENTIFY with residuals. 
Number of iterations completed                        6 
Number of observations in the sample                204 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
REALINVS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  Phi(1)|    1.01824***      .00506   201.09  .0000     1.00832   1.02816 
      Mu|    3.39819        4.29008      .79  .4283    -5.01021  11.80659 
TBILRATE|   -1.41447**       .68390    -2.07  .0386    -2.75489   -.07406 
Theta(1)|     .08009         .07060     1.13  .2566     -.05828    .21847 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The parameter vector, b and covariance matrix, varb stored for later use correspond to 
 
   b  =  [φ1,...,φp,µ,β1,...,βK,θ1,...,θq.]. 
 
NOTE: If you provide one as one of your regressors, and it is not first in the list, the order of [µ,β] 
will correspond to your command, not the preceding. 
 
The retrievable results are: 
 

 Scalars: sumsqdev =  Σt ε
∧

t

2

 (the first p+q residuals are zero) 

  ssqrd   =  σ ε
∧ 2

  =  

2
2

1
1

T
T tt p qtt p q

T p q T p q

∧
∧

= + +
= + +

  ε  ε  −  
− − − − 

  

∑∑
 

  kreg   =  K 

  nreg   =  T - p - q 
 
 Last Model: phi1,...phip,mu,b_variables...,theta1,...thetaq, labels in order 
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The predictions are computed as  
 

   y
∧

t   =  m + f1yt-1 +  ...  + fpyt-p + b′xt + θ1et-1 + ... +θqet-q . 
 
I.e., these are static forecasts which assume the current disturbance is zero.  If the series has been 
differenced, the forecasts are integrated back to produce the forecasts of Yt, not yt. 
 
E12.2.3 Examples 
 
 We will fit two models to these data, one in raw form and one in logs.  In each case, we used 
a simple [1,0,1] specification.  For the first, 
 
 DATES ; 1950.1 $ 
 PERIOD ; 1950.1 - 1980.4 $ 
 ARMAX ; Lhs  = realgdp ; Rhs = one,m1 ; Res = e ; Model  = 1,0,1$ 
 IDENTIFY ; Rhs  = e ; Pds = 10 $ 
 PLOT  ; Rhs  = e ; Bars = 0  $  (Note, time series plot. No Lhs.) 
 
----------------------------------------------------------------------------- 
Model:y(t) = mu + bx + phi(1)y(t-1)...phi(p)y(t-p)) 
          + e(t) + theta(1)e(t-1)...theta(q)e(t-q)) 
      y(t) = [(1-L)^d]Y(t)  (differences)) 
Dependent variable                             REALGDP 
Raw data were differenced d =  0 times. 
Sum of squares at best estimates:         149310.903414 
Estimated standard deviation of e(t):         34.841208 
For diagnostic checking, use IDENTIFY with residuals. 
Number of iterations completed                       14 
Number of observations in the sample                124 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 REALGDP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  Phi(1)|     .99960***      .00839   119.17  .0000      .98316   1.01604 
      Mu|    18.3515**      8.74490     2.10  .0359      1.2118   35.4912 
      M1|     .05043         .10312      .49  .6248     -.15168    .25254 
Theta(1)|     .28164***      .08811     3.20  .0014      .10894    .45434 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Time series identification for E 
Box-Pierce Statistic =     7.1764      Box-Ljung Statistic  =     7.6471 
Degrees of freedom   =         10      Degrees of freedom   =         10 
Significance level   =      .7087      Significance level   =      .6633 
* => |coefficient| > 2/sqrt(N) or > 95% significant. 
PACF is computed using Yule-Walker equations. 
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----+-------------------------------+-------+-------------------------------+ 
Lag |  Autocorrelation Function     |Box/Prc|    Partial Autocorrelations   | 
----+-------------------------------+-------+-------------------------------+ 
  1 |-.014 |          *|            |   .02 |-.014 |          * |           | 
  2 | .126 |           |*           |  2.01 | .129 |            |*          | 
  3 |-.032 |          *|            |  2.13 |-.033 |          * |           | 
  4 | .028 |           |*           |  2.23 | .005 |            |*          | 
  5 |-.062 |          *|            |  2.70 |-.063 |          * |           | 
  6 |-.063 |          *|            |  3.19 |-.086 |          * |           | 
  7 |-.100 |          *|            |  4.42 |-.102 |          * |           | 
  8 |-.146 |         **|            |  7.06 |-.168 |         ** |           | 
  9 |-.016 |          *|            |  7.09 | .002 |            |*          | 
 10 | .026 |           |*           |  7.18 | .075 |            |*          | 
----+-------------------------------+-------+-------------------------------+ 
 

 
Figure E12.2  Residual Plot 

 
 PERIOD ; 1950.1 - 1997.4 $ 
 ARMAX ; Lhs = unemp ; Rhs = one,realgdp  
   ; Model = 1,0,1  ; Pds = 12 ; Plot ; List $ 
 
Maximum iterations. Exit status for parameter search = 2. 
  Error   806: Maximum iterations. Exit status for parameter search = 2. 
 
----------------------------------------------------------------------------- 
Model:y(t) = mu + bx + phi(1)y(t-1)...phi(p)y(t-p)) 
          + e(t) + theta(1)e(t-1)...theta(q)e(t-q)) 
      y(t) = [(1-L)^d]Y(t)  (differences)) 
Dependent variable                             UNEMP 
Raw data were differenced d =  0 times. 
Sum of squares at best estimates:             20.110865 
Estimated standard deviation of e(t):           .324488 
For diagnostic checking, use IDENTIFY with residuals. 
Number of iterations completed                      100 
Number of observations in the sample                192 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   UNEMP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  Phi(1)|     .91365***      .00686   133.19  .0000      .90021    .92710 
      Mu|     .39221***      .03470    11.30  .0000      .32419    .46022 
 REALGDP| .22347D-04***   .5073D-05     4.40  .0000  .12404D-04  .32290D-04 
Theta(1)|     .66658***      .05201    12.82  .0000      .56464    .76852 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 
Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual     95% Forecast Interval 
  1950.1           6.4000000    6.4000000      .000000      .000000      .000000 
  1950.2           5.6000000    6.2766500    -.6766500      .000000      .000000 
  1950.3           4.6000000    5.0961218    -.4961218      .000000      .000000 
  1950.4           4.2000000    4.3034963    -.1034963      .000000      .000000 
  1951.1           3.5000000    4.2001894    -.7001894      .000000      .000000 
  1951.2           3.1000000    3.1635643    -.0635643      .000000      .000000 
  1951.3           3.2000000    3.2232713    -.0232713      .000000      .000000 
  1951.4           3.4000000    3.3415732     .0584268      .000000      .000000 
  (observations omitted) 
* 1999.1          No data        5.3288      No data 
* 1999.2          No data        5.4569      No data 
* 1999.3          No data        5.5761      No data 
* 1999.4          No data        5.6891      No data 
* 2000.1          No data        5.7935      No data 
* 2000.2          No data        5.8917      No data 
* 2000.3          No data        5.9821      No data 
* 2000.4          No data        6.0657      No data 
 

 
Figure E12.3  Plot of Forecasted and Actual Values of Unemployment 
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E12.2.4 Technical Details 
 
 Estimates are computed by nonlinear least squares.  (References are Harvey (1988), Box and 
Jenkins (1984) and Greene (2011).)  The sum of squares is 
 
   S(µ,β,φ,θ)  =  S(γ)  =  Σtεt

2. 
 
The iterative process is as follows:  Given estimates γk in hand at entry to the kth iteration, 
 
   γk+1  =  γk  +  [Gk′Gk]-1Gkek  =  γk  +  δk. 
 
The (T-p-q)×M matrix of derivatives G is the time series of vectors of cross partials whose tth row is 
 
   gt′  =  ∂εt/∂γ′, 
 
and ek is the vector of estimates of εt based on γk.  We exit the iterations normally when δ′δ is less 
than 10-8 or abnormally either at maximum iterations, which you may set with 
 
   ; Maxit = the maximum 
 
or if the estimates (generally θ) diverge.  The sum of squares is not unimodal, so on the way to 
convergence, a local minimum may be encountered.  LIMDEP uses the parameter vector associated 
with the minimum sum of squares computed during the iterations. 
 Starting values are computed in two steps as follows: 
 
Step 1. [µ,β,φ] are estimated by the instrumental variable method described in Section E12.2.1.  The 

instruments for lagged ys are just deeper lagged ys, outside the range of the moving average 
part of the disturbance. 

 
Step 2. θ is initially estimated by a method suggested by Box and Jenkins.  Beginning with θ = 0, 

we compute a vector of autocovariances, c0 and [c1,...,cq], for the residuals from the 
instrumental variable estimator above.  Then, the iteration is: 

 
a. s2  =  c0 / (1 + θ′θ), 

b. For i = q,...,1  (counting backwards)  θi  =  ci/s2  - 
j

q i

=

−∑ 1
 θjθj+i, 

c. Check for convergence based on change from the last iteration.  Exit if more than 20 
iterations have been taken or if θ has exploded. Otherwise, return to Step a. 
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NOTE:  This method of estimating the moving average parameters is not guaranteed to be stable.  
The estimates can diverge.  For example, the following will produce the outcome: 
 

SAMPLE ; 1-125 $ 
CREATE ; w = Rnn(0,1) ; v = Rnn(0,1) $ 
ARMAX ; Lhs = w ; Rhs = one,v ; Model = 1,0,1$ 

 
ARMAX: Moving average terms are explosive. Exit iterations. 

 
The derivatives are computed as follows: 
  
   ∂εt/∂µ    =  1   +  θ1∂εt-1/∂µ   + ... + θq∂εt-q/∂µ, 

    ∂εt/∂βk  =  xtk +  θ1∂εt-1/∂βk  + ... + θq∂εt-q/∂βk , 

    ∂εt/∂φr  =  yt-r +  θ1∂εt-1/∂φr + ... + θq∂εt-q/∂φr , 

    ∂εt/∂θs  =  εt-s +  θ1∂εt-1/∂θs + ... + θq∂εt-q/∂θs . 
  
These are difference equations which we initialize at zero for q periods.  Collecting each set of 
derivatives in a matrix, we obtain the following convenient representation: 
 
   Gµ   =  [∂εt-s/∂µ]   (1×q), 

    Gβ   =  [∂εt-s/∂βk]  (k×q), 

    Gφ   =  [∂εt-s/∂φr]  (p×q), 

    Gθ   =  [∂εt-s/∂θs]  (q×q). 
  
Then,   ∂εt/∂µ  =  1 +  Gµθ, 

    ∂εt/∂β =  xt +  Gβθ, 

    ∂εt/∂φ =  ylags  +  Gφθ, 

    ∂εt/∂θ =  εlags  +  Gθθ. 
 
As noted, the derivatives are initialized at zero for the first q observations.  Thereafter, the difference 
equation is evaluated in seriatim, simply by right shifting the columns of the matrices and inserting 
the current value in the vacant first column in preparation for the next observation. 

 At exit from the iterations, the variance estimator  σ
∧

2 is the mean square of the estimated 
residuals minus the squared mean (since they do not have mean zero), 
 
   1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ  =   -  -  -  - ... - t t t lags t q t qy − −′ ′ε θ ε θ εx yβ φ  
 
with the series begun with q initial values of zero for the disturbances. 
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E12.3 The Geometric Lag Model 
 
 In the geometric distributed lag model, the moving average form is 
 
   yt  =  α + β(1-λ)[xt + λxt-1 + λ2xt-2 + ... ] + εt. 
  
A nonlinear least squares estimator can be computed based on the regression 
  
   yt  ≈  α + β(1-λ)xt* + λtµ0 

   yt  ≈  α + β(1-λ)xt* + µ0zt 
  
where µ0 is the ‘truncation remainder’ and 
 
   xt*  =  xt + λxt-1 + λ2xt-2 + ... + λt-1x1. 
 
Thus, we regress yt on a constant, xt*  and zt = λt. (See, for example, Greene (2011).)  This is a 
nonlinear regression because of λ.  With a known value of λ, the regression is linear in parameters α, 
β(1-λ) and µ0. We obtain the nonlinear least squares estimates by computing the linear model for 
different values of λ.  The one associated with the smallest sum of squares gives the nonlinear least 
squares estimator. 
 The procedure involves just setting up the artificial regressors for the value of λ, then 
computing the linear regression.  Each regression estimates  α, k = β(1-λ), and µ0 given the value of 
λ.  We collect the values of λ and the associated sums of squares in a vector, plot them, then go back 
and examine in detail the one which minimizes the sum of squares.  For computational purposes, the 
two artificial regressors can be obtained as follows: 
 
   x1*  =  x1 and z1 =  λ 

then   xt*  =  xt + λxt-1  and zt  =  λzt-1, t = 2,...,T. 
 
One might compute the regression for values of λ from .01 to .99 in steps of .01.  When the best 
value is located in this grid, we could repeat the exercise over a finer grid if more precision is 
desired.  The following lists a basic routine for computing the regression coefficients.  We then turn 
to computation of the asymptotic covariance matrix. 
 First set up initial value of the counter and estimation criterion.  Then, define the procedure 
to estimate the regression and keep the results.  We also retain the optimal value of lambda by using 
two CALC commands.  The procedure is defined generally so that you can pass any two variables 
you wish to it. 
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The commands are: 
 

 PROCEDURE = GeoLag(y,x) $ 
 MATRIX  ; ee = Init(99,1,0) ; l = ee $ 
 CALC    ; i =  1   
   ; eemin = 9999999   
   ; best = 0  
   ; lambda = .01 $ 
 DO WHILE ; 10 ; i  <  100  $ 
 CREATE   ; If(_obsno = 1) | z = lambda ; xstar = x $ 
 CREATE   ; If(_obsno > 1) | z = lambda * z[-1] 
   ; xstar = x + lambda * xstar[-1] $ 
 REGRESS  ; Lhs = y ; Rhs = one,z,xstar ; Quietly $ 
 MATRIX   ; ee(i) = sumsqdev ; l(i) = lambda 
          ; If[sumsqdev < eemin] best = lambda 
           ; eemin = sumsqdev $ 
 CALC     ; i = i + 1  
   ; lambda = lambda + .01 $ 
 ENDDO ; 10 $ 
 ENDPROCEDURE 
 
Execute the procedure and display the plot to show the results. 
 
 EXECUTE ; Proc = GeoLag(dep. var…, indep. var...) $ 
 MPLOT ; Lhs = l ; Rhs = ee  
   ; Fill ; Endpoints = 0,1 $ 
 
Notice the use of the scalars in the CREATE commands and as subscripts for the matrices. 
 We will apply this to the GDP and M1 data.  For this example, we use the first differences of 
the logs of GDP and M1, so an observation is lost. 
 
 PERIOD ; 1950.1 - 2000.4 $ 
 CREATE ; loggdp = Log(realgdp) ; logm1 = Log(m1) $ 
 CREATE ; dlgdp = loggdp - loggdp[-1]  
   ; dlm1 = logm1 - logm1[-1] $ 
 PERIOD ; 1950.2 - 2000.4 $ 
 EXECUTE ; Proc = GeoLag(dlgdp,dlm1) $ 
 MPLOT ; Lhs = l ; Rhs = ee  
   ; Fill ; Endpoints = 0,1  
   ; Grid 
   ; Title = Sum of Squares for Values of Lambda $ 
 
The result is contained in the figure below: 
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Figure E12.4  Plot of Sum of Squares 

 
 Assuming that we have found the optimal value of λ, we can now compute the appropriate 
asymptotic covariance matrix for the estimates.  Let s2 be the mean squared residual, 
 
   s2  =  (1/T)Σtet

2. 
 
Let W(λ) be the T×3 regressor matrix used in the regression.  Each row is wt(λ)  =  [1, xt*, λt].  
Denoting the nonlinear least squares estimates by a, k, m0, and l, we require the matrix 
 

   
1

0 2Est.Var[ , , , ] sa k m
−

 
 
 

W'W W'd
 =  

d'W d'd
   

 
where d is an extra column which accounts for the estimate of λ.  Each element in d is 
 
    dt   =  ∂[a + kxt*  + λtm0]/∂λ 

     =  tλt-1m0  +  k∂xt* 

     =  tλt-1m0  +  kδt. 

/∂λ 

 
We can compute δt by using the recursion 
 
   δ1  =  0, 

    δ2  =  x1, 

   δt   =  xt-1* + λδt-1  for t > 2.  
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(Because k is a function of β, a free parameter, we need not account for the presence of λ in k when 
we differentiate.)  The procedure could be modified as follows:  
 
 PROCEDURE = GeoLag(y,x) $ 
 
Set up the iterations using two column vectors, a counter, and the parameter. 
 
 MATRIX  ; ee = Init(99,1,0) ; l = ee $ 
 CALC    ; i = 1 ; eemin = 9999999 ; best = 0 ; lambda = .01 $ 
 
Execute the grid search. 
 
 DO WHILE ; 10 ; i  <  100  $ 
 CREATE   ; If(_obsno = 1) | z = lambda ; xstar = x $ 
 CREATE   ; If(_obsno > 1) | z = lambda * z[-1] 
   ; xstar = x + lambda * xstar[-1] $ 
 REGRESS  ; Lhs = y ; Rhs = one,z,xstar ; Quietly $ 
 MATRIX   ; ee(i) = sumsqdev ; l(i) = lambda 
          ; If[sumsqdev < eemin] best = lambda 
           ; eemin = sumsqdev $ 
 CALC     ; i = i + 1 ; lambda = lambda+.01 $ 
 ENDDO ; 10 $ 
 
The grid search kept the optimal value.  Now, compute the parts, run the regression, and get the 
covariance matrix. 
 
 CREATE   ; If(_obsno = 1) | z = best  ; xstar = x $ 
 CREATE   ; If(_obsno > 1) | z = best * z[-1] 
    ; xstar = x + best * xstar[-1] $ 
 REGRESS  ; Lhs = y ; Rhs = one,z,xstar $ 
 CREATE ; delta = 0 $ 
 CREATE ; If( _obsno = 1) delta = 0 $ 
 CREATE ; If( _obsno = 2) delta = x $ 
 CREATE ; If( _obsno > 2) delta = xstar[-1] + best * delta[-1]  
   ; t = Trn(1,1) 
    ; d = b(2) * delta + t * b(3) * lambda^(t-1) $ 
 NAMELIST ; xs = one,xstar,z,d $ 
 
Display the full set of results. 
 
 MATRIX  ; var = ssqrd * <xs’xs>  
   ; beta = [b/best] ;  Stat(beta,var,x) $ 
 ENDPROC 
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 We applied the preceding to the data given earlier, using the changes in the logarithms; 
 
PERIOD ; 1950.1 - 1980.4 $ 
CREATE ; dlgnp = loggnp - loggnp[-1]  
  ; dlm1  = logm1  - logm1[-1] $ 
PERIOD ; 1950.2 - 1980.4 $ 
EXECUTE ; Proc = GeoLag(dlgnp,dlm1) $ 
MPLOT ; Lhs = l ; Rhs = ee ; Fill ; Endpoints = 0,1 $ 

 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=DLGDP    Mean                 =         .00911 
             Standard deviation   =         .01145 
             No. of observations  =            123  Degrees of freedom 
Regression   Sum of Squares       =    .231095E-02           2 
Residual     Sum of Squares       =    .136724E-01         120 
Total        Sum of Squares       =    .159833E-01         122 
             Standard error of e  =         .01067 
Fit          R-squared            =         .14459  R-bar squared =   .13033 
Model test   F[  2,   120]        =       10.14140  Prob F > F*   =   .00009 
Diagnostic   Log likelihood       =      385.40111  Akaike I.C.   = -9.05578 
             Restricted (b=0)     =      375.79674  Bayes  I.C.   = -8.98719 
             Chi squared [  2]    =       19.20875  Prob C2 > C2* =   .00007 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   DLGDP|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .00315         .00193     1.63  .1060     -.00064    .00694 
       Z|     .06594***      .02031     3.25  .0015      .02613    .10574 
   XSTAR|     .27584***      .08367     3.30  .0013      .11185    .43983 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Number of observations in current sample =     123 
Number of parameters computed here       =       4 
Number of degrees of freedom             =     119 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  BETA_1|     .00315         .00213     1.48  .1391     -.00102    .00732 
  BETA_2|     .06594         .11218      .59  .5567     -.15394    .28581 
  BETA_3|     .27584***      .02124    12.99  .0000      .23421    .31747 
  BETA_4|     .47000***      .00014  3447.46  .0000      .46973    .47027 
--------+-------------------------------------------------------------------- 
 
HINT:  In even a moderate sample, λt and δt may degenerate to sequences of zeros, and LIMDEP 
will return diagnostics about over- or underflows.  The diagnostics can be ignored. 
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E12.4 Roots of Dynamic Equations 
 
 For the dynamic equation, 
 
   yt  =  γ1yt-1  +  γ2yt-2  +  ...  +  γpyt-p  +  any other terms, 
 
the characteristic equation is 
 
   1 - γ1z - γ2z2 - ... - γpzp  =  0. 
 
The difference equation is stable if all of the roots of this polynomial are outside the unit circle. 
(They may be complex.)  The roots of the equation are the reciprocals of the characteristic roots of 
the matrix 
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 =
 
 
  

A







    



  

 
If the root is a complex pair (a ± bi), the reciprocal is (a/M   b/Mi), where M = (a2 + b2)½, the 
modulus.  In the MATRIX command 
 
 MATRIX   ; Root(A)  $ 
  
if A is a row or column vector, LIMDEP assumes that A is the set of lag coefficients of a difference 
equation.  It then sets up the preceding matrix, computes the roots, and reports the reciprocals in the 
form of the complex pair.  You can then compute the modulus of the smallest one and resolve the 
stability question.  If A is not a vector, then LIMDEP assumes A is a symmetric matrix and reports 
the (real) characteristic roots. 
 For example:  Is the equation  yt = .7yt-1 - .5yt-2 + .3yt-3 + ε stable? 
 
 MATRIX   ; List ; A = [.7, -.5, .3]  ;  Root(A)  $ 
 
LIMDEP reports a 3×2 matrix, 
 
       A|             1             2             3 
--------+------------------------------------------ 
       1|       .700000      -.500000       .300000 
  Result|             1             2 
--------+---------------------------- 
       1|      .0586812       1.46563 
       2|      .0586812      -1.46563 
       3|       1.54930       .000000 
  
The smallest root is greater than one, so the answer is yes. 
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 A related computation is the stability of a dynamic system of linear equations.  Greene 
(2011) discusses this at length.  The computational aspect can be reduced to the following:  The 
dynamic equation system, of any lag length, can be reconstructed in the form 
 
   yt  =  qt  +  Ryt-1 . 
 
Stability of the system depends on the characteristic roots of R being less than 1.0 in absolute value. 
To obtain the characteristic roots of a nonsymmetric matrix, then check the modulus of the dominant 
root, use 
 

 MATRIX  ; z  = Cxrt(r) $ 
 CALC  ; List  
   ; bigroot = z(1,1)^2  +  z(1,2)^2 $  
  
The function Cxrt computes complex roots for nonsymmetric matrices.  The result is a K×2 matrix 
whose first column is the real parts and the second column is the imaginary parts of the roots.  K is 
the number of rows in the source matrix. 
 
WARNING: The eigenvalue problem for nonsymmetric matrices must be solved iteratively, if it can 
be solved at all. It may, in fact, be impossible, to find the roots.  If so, an error message is sent, 
instead of an answer. 
 
Example   
 

 The data in Figure E12.5 are the classic ‘Klein I’ data used to build and test simultaneous 
equations estimators.  (See Greene (2011, Chapter 10).) 
 

 
Figure E12.5  Klein I Data 
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For Klein’s Model I as estimated by two stage least squares, the relevant R matrix is 
 
     0.172 -0.051 -0.008 
   R    =  1.511  0.848  0.743 
    -0.287 -0.161  0.818 
 
The command  
 
 MATRIX  ; R = [.172, -.051, -.008 / 1.511, .848, .743 / -.287, -.161, .818] 
   ; List ; Cxrt(r) $ 
 
produces     
 
  Result|             1             2 
--------+---------------------------- 
       1|       .769242      -.349385 
       2|       .769242       .349385 
       3|       .299516       .000000 
 
which is the widely cited result.  The modulus of the first root is .8448, so the system is, as expected, 
stable. 
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E13: The Box-Cox Regression Model 
 
E13.1 Introduction 
 
 The Box-Cox transformation is q(γ)   =  (qγ - 1)/γ or log(q) if γ = 0.  The Box-Cox regression 
model is: 
   y(θ)   =  β′x(λ)   +  α′z  +  ε. 
  
This model allows different transformations for the Rhs and Lhs variables.  The vector z  contains 
any variables to which the transformation should not be applied, for example dummy variables, etc. 
Four forms of the model may be estimated: 
 
 Model 1:  transformation (λ) applied only to the Lhs variable, y, 
 Model 2:  transformation (λ) applied only to the Rhs variables, x, 
 Model 3:  same transformation (λ) for the Lhs, y, and Rhs, x, variables, 
 Model 4:  different transformations (θ) for the Lhs and (λ) for the Rhs variables. 
  
The estimator also allows heteroscedasticity: 
 
   Var(ε)  =  σ2[w2](λ) 

 
where w is any variable.  The same transformation that is applied to the right hand side is also 
applied to the weights. 
 The estimator is maximum likelihood.  If only a single value of λ and/or θ are specified, the 
estimator is least squares conditioned on that (those) values. Otherwise, you may specify a grid 
search over values of λ with a fixed θ or a full algorithmic search over λ and θ for the fully general 
model.  
 
E13.2 Model Commands 
 
 The essential command for the Box-Cox model is 
 
 BOXCOX  ; Lhs = dependent variable  
   ; Rhs = independent variables that are to be transformed  
   ; Lambda = the value of λ  $  
 
Specifications ; Lhs, ; Rhs, and ; Lambda are mandatory.  This basic form requests Model 1, 
transformation of the Lhs variable by the value of λ that you specify.  The standard errors of the 
estimates are estimated as if λ had been estimated by maximum likelihood. 
 Since the standard errors cannot be computed unless all transformed variables are strictly 
positive, the data are checked for this.  Also, if heteroscedasticity is specified, the variable ‘w’ must 
always be strictly greater than one, once again to prevent computing logs of negative numbers when 
computing standard errors and the log likelihood function. 
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E13.2.1 Specification of the Model 
 
 The four different variations are requested as follows: 
 
 Model 1:  As above.  ; Lambda = the specification of λ 
 
Model 1 specifies that only the Lhs variable is to be transformed.  For any of the other three models, 
the Rhs variables are to be transformed, so the following will be very important.  Add 
  
   ; Rh2 = list of any variables which are not transformed 
  
Of course, the constant term, one, is not transformed.  You may include one in either Rhs or Rh2, or 
neither if you prefer.  Note, as well that for Model 1, although you provide an Rhs list, all variables 
are actually of type Rh2.  This is taken care of internally, and you need not worry about the 
distinction.  For the other three forms of the model, you will use: 
 
 Model 2:   ; Lambda = specification ; Model = 2 
 Model 3:   ; Lambda = specification ; Model = 3 
 Model 4:   ; Lambda = specification ; Theta = value ; Model = 4 
  
In Models 1-3, there are various specifications of ; Lambda.  But, in Model 4, you always provide 
only a single value of θ. 
 
E13.2.2 Specification of the Estimation Method 
 
 You may specify that the model is to be estimated conditioned on the specific value(s) you 
specify for λ (and θ), or that a search for the optimal value(s) be undertaken.  For searching, you may 
choose a grid search or a full algorithmic function optimization procedure.  To compute estimates at 
a specific value for λ (and θ if Model 4), use: 
  
   ; Lambda = the value [; Theta = the value for Model 4] 
  
To specify a grid search over the range λ = lower to λ = upper, estimating the parameters at N values 
of λ including the endpoints use: 
 
   ; Lambda = lower,upper ; Pts = number of points [; Theta = value] 
  
θ is still fixed at the single value.  The estimates are those in the specified range associated with the 
highest value of the log likelihood function.  To do a full maximum likelihood estimation procedure 
for λ (and θ if Model 4), use: 
  
   ; Lambda = value [; Theta = value is optional]   
   ; MLE ; Model = 1,2,3 or 4 
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Note the inclusion of ; MLE.  In this case, you are providing the starting values for the 
transformation parameters.  The starting values for the other parameters are obtained by ordinary 
least squares involving transformed variables.  This can be used for any of the four models.  
 If your command specifies the MLE (; MLE), then you are using the general optimization 
program and the iteration control options are also available as listed below.  You may still provide a 
grid of values for λ.  If you do, and if the MLE happens to be in the grid you provide, ; MLE will 
just fine tune the estimates.  If the MLE is not in the grid, the grid search may have been a waste of 
time, but might still have improved the start value you provided. 
 
E13.2.3 Starting Values 
 
 The starting values for ML iterations are obtained by ordinary least squares.  If you have 
specified values for λ and/or θ, these are used for the transformation parameters.  Either the grid 
search or estimation at a specific value will provide new estimates of the β and α parameters.  The 
transformation parameters, themselves, that you provide are the starting values for MLE.  In any 
event, the ; Start = list of starting values specification is not used by this estimator. 
 
HINT: For some values of λ, the iterations will terminate with a message about a nonpositive 
variance.  The problem is that for very high or very low powers, a variable can become just a column 
of zeros or simply too large.  Rescaling the data may help. 
 
E13.2.4 The Asymptotic Covariance Matrix 
 
 As noted earlier, we use the analytic second derivatives matrix to compute the estimated 
asymptotic covariance matrix of the estimated parameters.  In the unusual case in which this is not 
positive definite, the Berndt, Hall, Hall, and Hausman estimator is used, instead.  Although it is 
inadvisable, you can obtain (perhaps for comparison purposes) an estimated covariance matrix which 
takes λ and/or θ as fixed value(s) rather than an estimated parameter(s).  The estimator is simply the 
conventional estimator from the least squares procedure.  Request this estimator with 
 
   ; Fixed 
 
The literature varies on the method of computation of the asymptotic covariance matrix.  Use of the 
BHHH estimator is common.  Spitzer (1984) argues (incorrectly, in fact, as he neglects to account 
for the variation of the variance estimator) that one should not use the BHHH estimator, and that the 
Hessian is the appropriate choice.  We use the Hessian.  You may, if you wish, dictate that the 
variation in the transformation parameter(s) be ignored, in which case the covariance matrix of the 
estimates is simply what is produced by least squares. 
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E13.2.5 Model Specifications 
 

This is the full list of general specifications for this nonlinear estimation program.  Specific 
elements of the model command are detailed in Section E13.3. 
 
Controlling Output from Model Commands 
 
 ; Par  keeps ancillary parameters in main results vector b. 
 ; Margin displays marginal effects. 

; Table = name saves model results to be combined later in output tables. 
 
Display Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc. 
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set  keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions.  
; Wald: spec defines a Wald test of linear restrictions, same as Test: spec. 

 ; Maxit = 0 ; Start = the restricted values  specifies the Lagrange multiplier test. 
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E13.3 Model Components 
 
 There are two additional specifications which modify the basic model. 
 
E13.3.1 Heteroscedasticity 
 
 To request the heteroscedastic form of the disturbance variance, use: 
 
   ; Wts = name of variable w 
  
This model is different from other ones in LIMDEP in that you do not provide the reciprocals of the 
variances.  The variable you give must be untransformed, since it will be transformed by this 
estimator.  In addition, this variable must be strictly greater than 1.0 for all observations. 
 
E13.3.2 Restrictions on Parameters 
 
 The preceding discussion shows, by implication, how to restrict λ and/or θ to specific values 
if you wish.  Restrictions on the slope parameters [β,α] cannot be imposed directly, except, of 
course, by building them into the model.  For example, to force βj = βk, the jth and kth regressors 
need only to appear in the form of their sum to impose the restriction. 
 
HINT:  The scaling of the parameters in this model depends crucially on the transformation 
parameters.  Thus, any nonhomogeneous restriction on the model parameters, e.g., βj+βk = 1, will be 
extremely problematic. 
 
 You can test restrictions, however, by the usual two methods.  The 
 
   ; Test: ... 
  
specification can be used to test linear restrictions on the parameters.  The parameter vector is 
exactly [β,α] in the order of your ; Rhs, then ; Rh2 lists.  The other method is to use the Last Model 
formulation with the WALD command.  The labels to use for this approach are given below with the 
listing of the saved results. 
 
E13.4 Output and Saved Results 
 
 After the display of intermediate output from the minimization routine (if you use ; MLE), 
this program displays the usual output for a regression model.  This includes the initial table of fit 
measures and diagnostic statistics and the coefficient estimates, standard errors, t ratios, etc.  The 
predicted values for this model are computed using: 
 
   yi  =  {θ [β′xi

(λ) + α′zi] + 1}1/θ 
 
Residuals are simply the difference between the actual value and the prediction.  The additional 
variables, ‘var1’ and ‘var2’ usually shown in the listing are not computed for this model. 
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 You may also display marginal effects for this model with 
 
   ; Partial Effects 
 
(In previous versions of LIMDEP and NLOGIT, the command was ; Marginal Effects.  This form is 
still supported, and has the same meaning in the current versions of LIMDEP and NLOGIT.) 
 For the Box-Cox model, the elasticities are  
 
   ∂logy/∂logx  =  β(xλ)/(yθ),  
 
so the marginal effects are  
 
   ∂y/∂x  =  (y/x)(∂logy/∂logx) =  β(xλ-1)/(yθ-1). 
 
Values kept for later use are: 
  
 Matrices: b   = slope coefficients 
   varb   = estimated asymptotic covariance matrix 
 

  If you include ; Par  in the command, the additional parameters 
  [λ,θ,σ2] are included in b and varb.  

 
   epsilon   = elasticities, ∂logy/∂logxk. This additional matrix contains 
     elasticities for all of the Rhs and Rh2 variables in the model.  
     These are computed at the sample means of all the exogenous 
     variables according to the result above.   
 

 Scalars: ssqrd  = σ
∧

2  =  e′e / n 
   s   = √ssqrd 
   rsqrd  = 1  -  (e′e/n)/sy

2  (not necessarily positive) 
   sumsqdev = e′e 
   rho   = 0 
   degfrdm   = n 
     nreg   = n 
   sy   = sample standard deviation of Lhs 
   ybar   = sample mean of Lhs 
   logl   = log likelihood function at best estimates 
   lmda  =  λ 
   theta  = θ or 1 if Model 2 or λ if Model 1 or 3 
 
 Last Model: b_variables  ; Rhs and ; Rh2 are combined. 
 
 Last Function:  None 
 
Note, no function is stored for the PARTIALS and SIMULATE programs.  However, partial effects 
and predictions are provided with the model command.  You can also use ; Function = … and 
provide your own specification of the Box-Cox model in either PARTIALS or SIMULATE. 
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E13.5 Application 
 
 To illustrate the Box-Cox model, we will use the macroeconomic data used in the 
application in Chapter E12.  (See Section E12.2.4 for discussion.)  We will fit several different forms 
of the Box-Cox model.  We emphasize, for these data, the calculations are purely illustrative, and are 
not intended to provide any evidence about the interest elasticity of the demand for money.  We 
precede estimation with: 
 
 DATES  ; 1950.1 $ 
 PERIOD  ; 1950.1 - 2000.4 $ 
 CREATE ; lm = Log(m1) ; loggdp = Log(realgdp) $ 
 NAMELIST ; x = one,tbilrate,loggdp $ 
 
The first model specifies the log of money on the Lhs and transformations on the Rhs only. 
 
 BOXCOX ; Lhs = lm ; Rhs = x 
   ; Model = 2 
   ; Lambda = -2,2  
   ; Pts = 50 
   ; List 
   ; Partial Effects $ 
 
The next model specifies transformation of both sides of the equation.   
 
 BOXCOX ; Lhs = m1 ; Rhs = one,tbilrate,realgdp 
   ; Model = 3   
   ; Lambda = -1,1   
   ; Pts = 100 $ 
 
We now allow the estimator to find the MLE.  The initial part of the search encounters some 
difficulties in optimizing the function, but after several iterations, the interior maximizer is found, 
actually near where the grid search located it in the previous command. 
 
 BOXCOX ; Lhs = m1 ; Rhs = one,tbilrate,realgdp 
   ; Model = 3  
   ; Lambda = -1,1   
   ; Pts = 100   
   ; MLE $ 
 
Finally, we attempt a full ML estimation of Model 4.  This is extremely sensitive to the starting 
values.  The following terminates after 500 iterations.  The values are similar to the estimates after 
100 iterations. 
 
 BOXCOX ; Lhs = m1 ; Rhs = one,tbilrate,realgdp 
   ; Model = 4  

; Lambda = 0.0  
; Theta = .35  
; MLE 

   ; Maxit = 500 $ 
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----------------------------------------------------------------------------- 
Box-Cox Nonlinear Regression Model................ 
Maximum likelihood estimator, Het.:W(i) = ONE 
LHS=LM       Mean                 =        5.79786 
             Standard deviation   =         .80557 
             Number of observs.   =            204 
Model size   Parameters           =              3 
             Degrees of freedom   =            201 
Residuals    Sum of squares       =        4.65159 
             Standard error of e  =         .15100 
Fit          R-squared            =         .96486 
             Adjusted R-squared   =         .96503 
Model test   F[  2,   201] (prob) =  2759.7(.0000) 
Diagnostic   Log likelihood       =       96.18952 
             Restricted(b=0)      =     -244.85556 
             Chi-sq [  2]  (prob) = 682.1(  .0000) 
Info criter. Akaike Info. Criter. =       -3.75150 
Not using OLS or no constant. Rsqrd & F may be < 0 
BxCx transformations: RHS= Lambda  , LHS= ONE 
Elasticities have been kept in matrix EPSILON 
Log-L acctg. for LHS transformation =     96.18851 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LM|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Variables transformed by LAMBDA =    -.44898 
TBILRATE|    -.59771***      .10567    -5.66  .0000     -.80483   -.39060 
  LOGGDP|    40.4062***    11.20460     3.61  .0003     18.4456   62.3669 
        |Variables that were not transformed 
Constant|   -48.7572***     8.87602    -5.49  .0000    -66.1539  -31.3606 
        |Variance and transformation parameters 
  Lambda|    -.44898***      .12986    -3.46  .0005     -.70350   -.19446 
Sigma-sq|     .02280***      .00226    10.10  .0000      .01838    .02723 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+------------------------------------------------------+ 
| Marginal Effects for Box-Cox                         | 
+----------+----------+----------+----------+----------+ 
| Variable | Mean     | Coeff.   | Slope    | Elast.   | 
+----------+----------+----------+----------+----------+ 
| TBILRATE |  5.22941 |  -.59771 |  -.05438 |  -.04934 | 
| LOGGDP   |  8.31231 | 40.40624 |  1.87841 |  2.70879 | 
+----------+----------+----------+----------+----------+ 
Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual     95% Forecast Interval 
  1950.1           4.7022969    4.4975736     .2047233      .000000      .000000 
  1950.2           4.7162642    4.5387079     .1775564      .000000      .000000 
  1950.3           4.7269452    4.5950364     .1319088      .000000      .000000 
  1950.4           4.7355842    4.5844282     .1511560      .000000      .000000 
 (Observations omitted) 
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----------------------------------------------------------------------------- 
Box-Cox Nonlinear Regression Model................ 
Maximum likelihood estimator, Het.:W(i) = ONE 
LHS=M1       Mean                 =      453.92147 
             Standard deviation   =      359.72633 
             Number of observs.   =            204 
Model size   Parameters           =              3 
             Degrees of freedom   =            201 
Residuals    Sum of squares       =    .539951E-01 
             Standard error of e  =         .01627 
Fit          R-squared            =        1.00000 
             Adjusted R-squared   =        1.00000 
Model test   F[  2,   201] (prob) =********(.0000) 
Diagnostic   Log likelihood       =      550.70874 
             Restricted(b=0)      =    -1489.57232 
             Chi-sq [  2]  (prob) =4080.6(  .0000) 
Info criter. Akaike Info. Criter. =       -8.20757 
Not using OLS or no constant. Rsqrd & F may be < 0 
BxCx transformations: RHS= Lambda  , LHS= Lambda 
Elasticities have been kept in matrix EPSILON 
Log-L acctg. for LHS transformation =  -1074.09734 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      M1|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Variables transformed by LAMBDA =    -.37374 
TBILRATE|    -.04533**       .02210    -2.05  .0402     -.08864   -.00203 
 REALGDP|    4.52905***     1.13338     4.00  .0001     2.30767   6.75044 
        |Variables that were not transformed 
Constant|   -9.16115***      .72330   -12.67  .0000   -10.57879  -7.74350 
        |Variance and transformation parameters 
  Lambda|    -.37374***      .10128    -3.69  .0002     -.57225   -.17522 
Sigma-sq|     .00026         .00031      .85  .3965     -.00035    .00088 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Warning   141: Iterations:current or start estimate of sigma is nonpositive 
(This warning is repeated 10 times) 
Normal exit:  27 iterations. Status=0, F=    1074.095 
 
----------------------------------------------------------------------------- 
Box-Cox Nonlinear Regression Model................ 
Maximum likelihood estimator, Het.:W(i) = ONE 
LHS=M1       Mean                 =      453.92147 
             Standard deviation   =      359.72633 
             Number of observs.   =            204 
Model size   Parameters           =              3 
             Degrees of freedom   =            201 
Residuals    Sum of squares       =    .497649E-01 
             Standard error of e  =         .01562 
Fit          R-squared            =        1.00000 
             Adjusted R-squared   =        1.00000 
Model test   F[  2,   201] (prob) =********(.0000) 
Diagnostic   Log likelihood       =      559.03023 
             Restricted(b=0)      =    -1489.57232 
             Chi-sq [  2]  (prob) =4097.2(  .0000) 
Info criter. Akaike Info. Criter. =       -8.28915 
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Not using OLS or no constant. Rsqrd & F may be < 0 
BxCx transformations: RHS= Lambda  , LHS= Lambda 
Elasticities have been kept in matrix EPSILON 
Log-L acctg. for LHS transformation =  -1074.09493 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      M1|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Variables transformed by LAMBDA =    -.38077 
TBILRATE|    -.04385**       .02140    -2.05  .0404     -.08579   -.00191 
 REALGDP|    4.60829***     1.15434     3.99  .0001     2.34582   6.87075 
        |Variables that were not transformed 
Constant|   -9.21038***      .74449   -12.37  .0000   -10.66955  -7.75120 
        |Variance and transformation parameters 
  Lambda|    -.38077***      .10135    -3.76  .0002     -.57941   -.18214 
Sigma-sq|     .00024         .00029      .85  .3965     -.00032    .00081 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Normal exit: 280 iterations. Status=0, F=    1101.852 
 
----------------------------------------------------------------------------- 
Box-Cox Nonlinear Regression Model................ 
Maximum likelihood estimator, Het.:W(i) = ONE 
LHS=M1       Mean                 =      453.92147 
             Standard deviation   =      359.72633 
             Number of observs.   =            204 
Model size   Parameters           =              3 
             Degrees of freedom   =            201 
Residuals    Sum of squares       =    .494601E-01 
             Standard error of e  =         .01557 
Fit          R-squared            =        1.00000 
             Adjusted R-squared   =        1.00000 
Model test   F[  2,   201] (prob) =********(.0000) 
Diagnostic   Log likelihood       =      559.65693 
             Restricted(b=0)      =    -1489.57232 
             Chi-sq [  2]  (prob) =4098.5(  .0000) 
Info criter. Akaike Info. Criter. =       -8.29530 
Not using OLS or no constant. Rsqrd & F may be < 0 
BxCx transformations: RHS= Lambda  , LHS= Theta 
Elasticities have been kept in matrix EPSILON 
Log-L acctg. for LHS transformation =  -1101.78924 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      M1|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Variables transformed by LAMBDA =    -.68116 
TBILRATE|    -.07275         .06217    -1.17  .2419     -.19461    .04910 
 REALGDP|    48.9134       40.03205     1.22  .2218    -29.5480  127.3748 
        |Variables that were not transformed 
Constant|   -69.2590       52.61522    -1.32  .1881   -172.3829   33.8650 
        |Variance and transformation parameters 
  Lambda|    -.68116***      .11088    -6.14  .0000     -.89848   -.46384 
   Theta|    -.40472***      .13817    -2.93  .0034     -.67552   -.13391 
Sigma-sq|     .00024         .00040      .60  .5487     -.00055    .00103 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Lastly, we do a grid search and find the value graphically. 
 

MATRIX ; loglik = Init(51,1,0) ; lamda = loglik $ 
CALC  ; i = 0 $ 
PROCEDURE 
CALC  ; i = i + 1 $ 
BOXCOX ; Quietly ; Lhs  =  lm ; Rhs = x ; Model = 2 
  ; Lambda = value $ 
MATRIX ; loglik(i) = logl ; lamda(i) = value $ 
ENDPROCEDURE 
EXECUTE ; Silent ; value = -1,1,.04 $  (51 points, .04 apart) 
MPLOT ; Lhs = lamda ; Rhs = loglik  
  ; Fill ; Endpoints = -1,1 
  ; Grid  
  ; Title = Log Likelihood for Box-Cox Model $ 
 

 
Figure E13.1  Plot of Log Likelihood for Box-Cox Model 

 
E13.6 Technical Details 
 
 Estimation of the Box-Cox model is done in one of two ways.  In the grid search procedure, 
the estimator is ordinary or weighted least squares.  The following is needed for computation of the 
asymptotic covariance matrix.  The maximum likelihood method is applied simply by treating the 
problem as an ordinary optimization problem.   
 The Box-Cox transformation of a variable x, for nonzero λ is: 
  
   x(λ)  =  (xλ - 1) / λ. 
  
This transformation obeys the following differential equation for i = 1,... 
  
   dix(λ)/dλi  =  [xλ (logx)i - i(di-1x(λ)/dλi-1)] / λ. 
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 The first term in the sequence is x(λ) when i=0.  If λ equals 0, the preceding are replaced by: 
  
   x(0)  =  logx 

and   dix(λ)/dλi
|λ=0  =  (logx)i+1 / (i+1). 

  
 For purposes of the discussion to follow, it is convenient to define a notation for the function 
and its first and second derivatives.  Thus, let 
  
   xλ  =  dx(λ)/dλ    and     xλλ  =  d2x(λ)/dλ2. 
 
The model is  y(θ)  =  Σkβkxk

(λ)  +  Σmαmzm  +  ε. 
  
The xs are the Rhs variables subject to the transformation, and the zs are the Rh2 variables that are 
not transformed.  The variance of ε is 
  
   Var[ε]  =  f  =  σ2[w2](λ). 
  
There are various restrictions on the general model which lead to the model estimated.  The case of 
homoscedasticity is imposed by deleting the ‘w’ term from the model, not by a simple parametric 
restriction.  (Setting w = 1 is insufficient, since 1(λ)  =  0, not 1.)  Other specifications are imposed by 
 
    Model 1:  θ  =  λ  and all regressors classified as Rh2. 
    Model 2:  θ  =  1. 
    Model 3:  θ  =  λ. 
   
 The log likelihood for the Box-Cox model is 
  
   LogL  =  (θ-1)Σilogyi  -  ½Σi[log2π + logfi  +  εi

2/fi]. 
  
 The first derivatives of the log likelihood are obtained as follows: 
  
Let    fi   =  σ2  or  σ2[w ](λ) whichever is appropriate.   
 
For a vector, xi, let xi

(λ) =  the vector of transformed variables, and  

   xiλ   =  [xi1λ, xi2λ,...,xiKλ]′. 

Thus,   εi   =  yi
(θ)  -  β′xi

(λ)  -  α′zi. 

So,   ∂logL/∂β =  Σi[εi/fi]xi
(λ), 

   ∂logL/∂α  =  Σi[εi/fi]zi, 

and   ∂logL/∂λ  =  Σi[εi/fi]β′xiλ. 
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If the disturbance is heteroscedastic, add    
 
   Σi {½(εi

2/fi  -  1)[wi
2]λ / [wi

2](λ)} to ∂logL/∂λ. 
 
If the model is Model 1, 3, or 4,  
 
   ∂logL/∂θ   =  Σi[-εi/fi]yiθ + logyi.   
 
If the model is Model 3, so that θ = λ, ∂logL/∂θ is added to ∂logL/∂λ.  It is omitted for Model 2.  
Finally, 

  ∂logL/∂σ2 =  Σi ½(εi
2/fi  -  1)/σ2. 

  
 The BHHH estimator of the asymptotic covariance matrix of the estimator is obtained by 
summing the outer products of the individual terms listed in the summations above.  The Hessian is 
obtained as follows:  Let 
 
   δi   =  β′xiλ,  

   γi   =  β′xiλλ, extending the vector notation defined above, 

    wiλ
2 =  (d[wi

2 ](λ)/dλ) / [wi
2](λ), 

   wiλλ
2 =  (d2[wi

2](λ)/dλ2) - (wiλ
2)2. 

  
The last two terms are zero if the disturbance is homoscedastic.  Denote second derivatives with 
subscripts; 
   ∂2logL/∂β∂β‘  =  Hββ. 
  
For convenience, combine x(λ) and z in vectors vi = [xi

(λ) , zi], viλ = [xiλ , 0], viλλ = [xiλλ , 0].  
Derivatives with respect to β below include the vector α defined above.  Then, the Hessian is 
  
   Hββ   =  Σi -(1/fi)vivi′, 

   Hβλ   =  Σi  (εi/fi)[viλ - w

   Hλλ   =  Σi  (εi/fi)(i - (δi/fi)(δi+2εiwiλ
2) +  ½[wiλλ

2(εi
2/fi - 1) - (εi/fi)(wiλ

2)2], 

iλ
2vi]  -  (δi/fi)vi, 

   Hβθ   =  Σi  (yiθ/fi)vi, 

   Hλθ   =  Σi  (yiθ/fi)[δi + wiλ
2εi], 

   Hθθ   =  Σi -(1/fi)[yiθθεi + (yiθ)2], 

   Hσβ   =  Σi -(εi/fi)vi/σ2, 

   Hσλ =  Σi -(εi/fi)δi/σ2, 

   Hσθ   =  Σi  (εi/fi)yiθ/σ2), 

   Hσσ  =  Σi  (½  -  εi
2/fi)/σ4). 
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The foregoing applies to Model 4.  If the model is Model 3, then terms involving θ are simply added 
to terms involving λ.  If the model is Model 2, terms involving θ are dropped.  The first of these can 
be accomplished as follows:  When θ = λ, 
  
   Hβλ  (new)   =  [Hβλ  +  Hβθ]  (old), 

   Hσλ  (new)   =  [Hσλ   +  Hσθ] (old), 

and   Hλλ  (new)   =  [Hλλ  +  Hθθ  +  2Hλθ] (old). 
 



E14: Nonlinear Least Squares   E-271 

E14: Nonlinear Least Squares 
 
E14.1 The Nonlinear Regression Model 
 
 This chapter details nonlinear least squares estimation of the general nonlinear regression 
model 
   yi  =  f(xi,β)  +  εi. 
  
The function f(•,•) may be any function that is continuous in the parameters.  Four estimation 
methods may be used: 
 

• nonlinear ordinary least squares estimation, 
• nonlinear weighted least squares estimation, 
• nonlinear two stage least squares (instrumental variables - IV) estimation, 
• GMM estimation. 

  
The first two are described here.  The IV estimation techniques are presented in Chapter E21.  
(Weights may be used with the latter two estimators as well.)  GMM estimation is presented in 
Chapters E21 and E23. 
 The essential command fitting nonlinear regression models with nonlinear least squares is 
 
 NLSQ   ; Lhs = dependent variable  
   ; Fcn = the definition of the nonlinear regression function  
   ; Labels = symbols to use for the parameters to be estimated 
   ; Start = the starting values for the iterations $  
 
 The basic command specifies nonlinear ordinary least squares.  That is, you would instruct 
LIMDEP to choose the β to 
 
   Minimize wrt β  ½Σi [yi - f(xi,β)]2  =  ½Σi εi

2. 
 
If the function you specify is linear, this will produce the ordinary least squares results. To request 
nonlinear weighted least squares, you will specify 
 
   ; Wts = weighting variable 
  
as usual.  The estimation criterion is then, 
  
   Minimize wrt β  ½Σi wi[yi - f(xi,β)]2  =  ½Σi wi εi

2. 
  
where wi is the weighting variable.  If this is a correction for heteroscedasticity, the weighting 
variable should be the reciprocal of the disturbance variance, not the standard deviation. 
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E14.2 Command for Nonlinear Regression 
 
 The essential command for this estimator provides four sets of information: 
  
 NLSQ  ; Lhs = dependent variable 
   ; Fcn = specification of f(•,•) 
   ; Labels = the labels for the model parameters 
   ; Start = starting values for the parameters $ 
 
This requests ordinary, unweighted, nonlinear least squares estimates.  To use weighted least 
squares, instead, add 
   ; Wts = weighting variable 
 
to the command.  Your function may contain up to 150 parameters to be estimated. 
 The Lhs, function and starting values are all mandatory.  This list of starting values provides 
the initial values for the iterations for the estimator, and also tells LIMDEP how many parameters are 
being estimated.  Thus, it is essential for you to be accurate in your specification of the starting 
values.  You may use any of the methods discussed elsewhere in this manual to provide the list of 
starting values.  These may appear in a vector or a matrix (read rowwise), a list of specific values, or 
in scalars that have been defined earlier.  For example, the following passes on a set of OLS slopes, 
the estimated standard deviation of the disturbance, and the value 1.0 as starting values for a model: 
  
 NAMELIST ; x = ... $ 
 REGRESS ; Lhs = y  
   ; Rhs = x ; ... $ 
 NLSQ   ; Lhs = ... 
   ; Fcn = ... 
   ; Start = b, ssqrd, 1.0 ; ...  
   ; Labels = ...  $ 
 
The number of parameters would be two plus the number of variables in the namelist. 
 The labels are optional.  If you do not provide labels for your parameters, they will be 
automatically named b1, b2, ..., bK, where K is the number of starting values you provide.  For 
example, the following specifies a linear regression model: 
 
 NLSQ  ; Lhs = logy 
   ; Fcn = b1 + b2*x2 + b3*x3 
   ; Start = 0,0,0 $ 
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Note that three parameters are defined by the starting value list.  You will usually wish to use your 
own labels.  To do so, use 
 
   ; Labels = a list of labels, one for each starting value. 
 
TIP:  See Section E14.3.5 for an extremely useful device for defining labels in the command.  You 
may also use the labels defined by a CLIST command.  See Section R6.6.   
 
TIP:  Be careful to make sure that the labels you choose are not the same as other items you have 
created, such as matrices or scalars.  In most cases, if you try to use a label that is already the name 
of a variable or a matrix or a scalar, LIMDEP will catch the error and issue an error message.  But, 
there are ways that you can accidently avoid this filter, and this will lead to unexpected (and 
unwanted) results. 
 
The preceding command could be changed to  
 
 NLSQ  ; Lhs = logy 
   ; Fcn = gamma0 + thetak*x2 + thetal*x3 
   ; Labels = gamma0,thetak,thetal 
   ; Start = 0,0,0 $ 
 
 LIMDEP will ensure that there is a correspondence between your labels and your starting 
values.  However, it is not possible for the program to ensure that you have used all of the parameters 
in your function specification.  If you define a parameter, but you do not use it in your function 
definition, then one of two things will occur.  Either the iterations will never converge and they will 
exit on maximum iterations, with one of the parameters not changing from its initial value, or what 
appears to be convergence will be reached, but the estimated covariance matrix of the estimated 
parameters will be singular, as it will contain a row and column of zeros corresponding to the unused 
parameter.  Here is an example.  Note that the defined model parameter c3 does not appear in the 
regression function. 
 
 NLSQ    ; Lhs = y 
   ; Fcn = c0+c1*x1+c2*x2 
     ; Start = 0,0,0,0 
     ; Labels = c0,c1,c2,c3  
    ; Output = 3 $ 
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Begin NLSQ iterations. Linearized regression. 
Moment matrix has become nonpositive definite. 
Switching to BFGS algorithm 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg   .1000D-05 chg.F   .0000D+00 max|dB|   .0000D+00 
Nodes for quadrature: Laguerre=40;Hermite=20. 
Replications for GHK simulator= 100 
Start values:   .00000D+00   .00000D+00   .00000D+00   .00000D+00 
1st derivs.     .13962D+01   .26612D+01  -.31547D+01   .00000D+00 
Parameters:     .00000D+00   .00000D+00   .00000D+00   .00000D+00 
Itr  1 F=  .5325D+02 gtHg=  .4357D+01 chg.F=  .5325D+02 max|db|=  .3155D+07 
1st derivs.    -.47552D+00   .17547D+00  -.62430D-01   .00000D+00 
Parameters:    -.20089D-01  -.38291D-01   .45391D-01   .00000D+00 
Itr  2 F=  .5311D+02 gtHg=  .5107D+00 chg.F=  .1366D+00 max|db|=  .2367D+02 
1st derivs.     .13412D-01   .25228D-01  -.31252D-01   .00000D+00 
Parameters:    -.15250D-01  -.40076D-01   .46027D-01   .00000D+00 
Itr  3 F=  .5311D+02 gtHg=  .4234D-01 chg.F=  .1327D-02 max|db|=  .8795D+00 
1st derivs.     .13412D-01   .25228D-01  -.31252D-01   .00000D+00 
Parameters:    -.15250D-01  -.40076D-01   .46027D-01   .00000D+00 
Itr  1 F=  .5311D+02 gtHg=  .4234D-01 chg.F=  .5311D+02 max|db|=  .8795D+00 
1st derivs.    -.45648D-02   .19336D-02  -.39819D-03   .00000D+00 
Parameters:    -.15443D-01  -.40439D-01   .46476D-01   .00000D+00 
Itr  2 F=  .5311D+02 gtHg=  .4973D-02 chg.F=  .1290D-04 max|db|=  .2836D+00 
1st derivs.     .31087D-05   .91316D-05   .87055D-05   .00000D+00 
Parameters:    -.15398D-01  -.40463D-01   .46485D-01   .00000D+00 
Itr  3 F=  .5311D+02 gtHg=  .1299D-04 chg.F=  .1271D-06 max|db|=  .2261D-03 
1st derivs.     .67446D-12   .86003D-11  -.18233D-10   .00000D+00 
Parameters:    -.15398D-01  -.40463D-01   .46485D-01   .00000D+00 
Itr  4 F=  .5311D+02 gtHg=  .2425D-11 chg.F=  .8811D-12 max|db|=  .5445D-11 
                        * Converged 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit from iterations. Exit status=0. 
Function=  .53247681205D+02, at entry,  .53109768475D+02 at exit 
Models - estimated variance matrix of estimates is singular 
Current estimated covariance matrix for slopes is singular. 
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E14.3 Specification of the Regression Function 
 
 NLSQ minimizes the sum of squared residuals.  Your function defines the Rhs of the 
regression for an observation.  The ; Fcn specification is written using the rules and operators of 
algebra (+, -, *, /, ^).  Parentheses may be used freely to force the order of evaluation of expressions.  
Use as many levels of parentheses as required.  Entities which may appear in the specification include: 
 

• variable names, 
• any existing scalars, 
• matrix elements, 
• your parameters, using your labels. 

 
Because there are a variety of named entities which can appear in the function, you should use the  
 
   ; Labels = list of labels 
  
part of the command to identify which of them are the parameters being estimated.  You must then 
use these labels in the function you specify.  Labels may be anything you like, up to eight characters.   
 
WARNING:  Use new names!  Do not use program names that are in use otherwise, such as s, rho, 
sigma, b, etc., or the names of existing scalars or matrices.  Such labels might be accepted when your 
command is translated, because you are free to use these entities in your function definition to supply 
specific values.  But, later, when LIMDEP scans your expression to see what you have specified, it 
checks all other tables first, and your label list last.  For example, if you use s as a label, and this 
command is the first model command that you have given, s will simply be taken as the as yet 
undefined result of a regression.  The actual value would, in fact, always be fixed at 0. 
 
  The operators are +, -, *, /, ^ (for raise to the power), and @ (for the Box-Cox 
transformation). The usual rules are observed; ^ and @ are computed first, then * and /, and finally + 
and -.  The CES production function provides an example.  The Lhs variable in the equation might 
be q, and the command could be 
 
  REGRESS ; Lhs = Log(q) ; Rhs = one,Log(k),Log(l) $ 
 CALC  ; dkl = b(2)/(b(2)+b(3)) ; sc = b(2)+b(3) $ 
 NLSQ   ; Lhs = q   
   ; Labels = gamma,delta,r,nu  
   ; Fcn = gamma * (delta*k^(-r) + (1-delta)*l^(-r)) ^ (-nu/r) 
   ; Start = b(1), dkl, 1.0, sc $ 
 
  Lastly, to use a subscripted matrix element, enclose the subscript in curled brackets, { }, not 
parentheses.  I.e., gamma(1,1)  will confuse the compiler, use gamma{1,1}.   
 
NOTE:  This construction, with curled brackets, is specific to the function definition part of the 
NLSQ, NLSUR, MAXIMIZE, and MINIMIZE commands.  Elsewhere, such as in CALC and 
CREATE, matrix subscripts are indicated with ordinary parentheses.  Curled brackets also have a 
different use in MATRIX, but are not used in CREATE or CALC. 
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E14.3.1 Parameterization and Reparameterization 
 
 We will revisit this issue at several points below.  In specifying a nonlinear optimization, it 
is often helpful to parameterize the model in such a way as to remove some of the nonlinearity. (This 
discussion applies generally to the several procedures in LIMDEP that use a user defined nonlinear 
optimization, and, more broadly, to optimization in general regardless of what software you might be 
using.)  Nonlinear functions can often be written in several ways.  For example: 
 
 NLSQ  ; Lhs = y 
   ; Labels = b0, b1, b2  
   ; Start = 0, 0, .5 
   ; Fcn = (b0 + b1*x)^(-1/b2)  $ 
 
is a valid specification of the nonlinear regression model.  However, with a particular data set, it is 
possible that the iterative procedure searching for the parameters could be unable to find a 
minimizer, and might break down.  This can happen for several reasons.  One strategy for dealing 
with the problem, and more generally, for facilitating estimation, is to remove unnecessary 
nonlinearities, such as the reciprocal of b2 that appears above.  Even the minus sign is superfluous. 
The same model could be fit, possibly with greater ease, by specifying it as 
 
 NLSQ  ; Lhs = y 
   ; Labels = b0, b1, b2  
   ; Start = 0, 0, -2.0  
   ; Fcn = (b0 + b1*x)^c2 $ 
 
Note that the -1/b2 has been replaced with the much simpler c2.  Also, the starting value has been 
changed accordingly, from 0.5 to -2.0 = -1/0.5.  If the parameter b2 were of particular interest, you 
could follow the NLSQ command with a 
 
 WALD  ; Fn1 = -1/b2  $ 
 
The other parts of the WALD command are automatic if it follows an optimization command. 
 The opportunities for simplification are sometimes subtle, but it helps to take them when 
they are available.  In the CES function example at the end of the preceding section, there are two 
superfluous nonlinearities:  The function can be specified using 
 
 CALC  ; sc = -sc $ 
 NLSQ   ; Lhs = q   
   ; Labels = gamma,delta,r,theta  
   ; Fcn = gamma * (delta*k^(-r) + (1-delta)*l^(-r)) ^ theta 
   ; Start = b(1), dkl, 1.0, sc $ 
 
In this example, the (-nu/r), which involves a multiplication and a reciprocal is replaced with the 
simpler parameter, theta.  In fact, theta equals -nu/r, but since nu is a free parameter that appears 
nowhere else in the function, we can treat -nu/r as this free parameter.  If nu, itself, is desired,  
 
 WALD  ; Fn1 = -r * theta $ 
 
would compute the estimate as well as an appropriate asymptotic standard error. 
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E14.3.2 Functions that May Appear in NLSQ Commands 
 
 The following functions may be used in the regression specification: 
 
 Abs(z)  = absolute value 
 Ac1(z)  = derivative of Ach(z) = (z2 – 1)-1/2 
 Ach(z)  = hyperbolic arc cos(z) = log(z + (z2 – 1)) 
 As1(z)  = derivative of Ash(z) = (1 + z2)-1/2 

 Ash(z)  = hyperbolic arc sin(z) = log(z + (1 + z2)1/2) 
 At1(z)  = derivative of Ath(z) = (1 – z2)-1  
 Ath(z)  = hyperbolic arc tan(z) = .5log((1 + z)/(1 – z)) 
 Atn(z)  =  arctangent 
 Bds(z,a,c)   =  incomplete beta function; (Bds(0,a,c) = 0,  Bds(1,a,c) = 1) 
 Bv1(z1,z2,ρ) =  bivariate normal CDF derivative wrt x1 
 Bv2(z1,z2,ρ) =  bivariate normal CDF derivative wrt x2 
 Bvd(z1,z2,ρ) =  bivariate normal density 
 Bvn(z1,z2,ρ)  =  bivariate normal CDF 
 Cos(z)  =  cosine 
 Exp(z)    =  exponent 
 Gma(z)   =  gamma 
 Hc1(z)  = derivative of Hcs(z) = Hsn(z) 
 Hcs(z)  = hyperbolic cos(z) = .5(exp(2z)+1)/exp(z) 
 Hs1(z)  = derivative of Hsn(z) = Hcs(z) 
 Hsn(z)  = hyperbolic sin(z) = .5(exp(2z)-1)/exp(z) 
 Ht1(z)  = derivative of Htn(z) = 1/Hcs2(z) 
 Htn(z)  = hyperbolic tan(z) = Hsn(z)/Hcs(z) 
 Inp(z)  =  inverse of standard normal CDF 
 Lgd(z)    =  logit density  =  Lgp*(1-Lgp) 
 Lgm(z)   =  log of gamma  
 Lgt(z)    =  logit  =  log(z/(1-z)) 
 Lgp(z)    =  logit probability = 1/(1+Exp(-z)) = Prob(Z < z) 
 Lmm(z)  = -N01(z)/Phi(z) = E[z | z < 0] for z ~ N[0,1] 
 Lmp(z)  =  N01(z)/Phi(-z) = E[z | z > 0] for z ~ N[0,1] 
 Log(z)    =  natural logarithm 
 Max(z1,z2) =  maximum 
 Min(z1,z2) =  minimum 
 N01(z)   =  standard normal density 
 Phi(z)    =  standard normal CDF 
 Psi(z)    =  log derivative of Gma, Ψ = Γ′/Γ 
 Psp(z)    =  Ψ′ = Γ′′/Γ - Psi2 
 Sgn(z)  =  signum = -1 if z < 0, 0 if z = 0, +1 if z > 0 
 Sin(z)  =  trigonometric sine 
 Tvm(z)  =  1 - Lmm × (z + Lmm) = Var[z | z < 0] for z ~ N[0,1] 
 Tvp(z)    =  1 - Lmp × (z + Lmp) = Var[z | z < 0] for z ~ N[0,1] 
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The incomplete beta function is 
 

   Bds(z,a,c)  =  ( ) ( )
( )
a c
a c

Γ Γ
Γ + 0

 

 

z

∫
 

ta-1(1-t)b-1dt for 0 < z < 1. 

In the beta and bivariate normal functions, if any of the parameters separated by commas are 
expressions, it is necessary to enclose them in parentheses.  I.e., use Bvn((1+x’b),z,r), not 
Bvn(1+x’b,z,r).  The list may contain variables, labels, scalars, and expressions contained in 
parentheses.  Functions may be nested to any depth and expressions may appear as arguments in the 
functions, as in 
 

   ; Fcn = Log (Phi(a1 + a2 * (x/y)^2)). 
  
This would be a valid expression and would evaluate exactly as given. 
 
E14.3.3 Linear Functions and Dot Products 
 
 Many expressions in econometric models will involve dot products of parameters and 
variables.  For example, a model built as an extension of a probit model will likely involve an 
expression of the form Phi(b’x).  Dot products may appear in exactly this form in your function 
definitions.  Typically, the ‘x’ would be a namelist.  To use the parameter vector, use the first name 
in your labels list.  For example, in 
 
 NAMELIST ;  x = one,x1,z,p  $ 
 NLSQ  ; Labels = b0,b1,b2,b3  
   ; Fcn = ... Phi(b0’x)  ; ... $ 
  
the term b0’x is evaluated as b0×one + b1×x1 + b2×z + b3×p.  Once again, in a dot product, the sum 
is evaluated from left to right using your list of labels in the order in which they appear in                   
; Labels = list.  If the namelist and the labels list do not have the same number of elements, then the 
dot product is simply evaluated out to the shorter of the two lists.  In the example, if there were 
additional names in x, they would not change b0’x because starting at b0, there are only four 
parameters. 
 
NOTE:  This replaces the function Dot[.] used in earlier versions of LIMDEP.  The Dot[.] function 
is retained for backwards compatibility, though you will probably find it easier to use the more 
natural syntax.  Also, the operation described above does allow a bit more flexibility.  For 
completeness, we note the counterparts to the constructions described above are Dot[x] = b0’x and 
Dot[b3,second] = b3’second.  You may use either form. 
 
 Suppose you want to pick up just a few of the parameters in a dot product.  For example, 
suppose your parameters are ; Labels = b1,b2,b3,b4,b5,b6,b7 and as part of your function, you want 
b3*x14 + b4*xyz + b5*wvs. You could first define the namelist for the dot product function, with, 
say,   
 

 NAMELIST  ; second  = x14,xyz,wvs $   
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Then, to obtain that function, just begin the dot product with b3 instead of b1.  Thus, b3’second 
evaluates exactly to b3*x14 + b4*xyz + b5*wvs. 
 It is also possible to skip over parameters in dot products, by putting columns of zeros in 
your namelists.  This may be convenient in specifying your function, especially if it involves many 
parameters.  For example, using the list above, you could obtain b2×x14 + b5×xyz 
  
 CREATE ; zero = 0 $ 
 NAMELIST ; second = x14,zero,zero,xyz $ 
 NLSQ  ; ... b2’second ... 
  
 Dot products need not be only a mix of variables and parameters.  They may also include 
vectors (matrices) that do not appear elsewhere in the function, and they may be products of 
variables or parameters.  When you are specifying your functions, there are several ways you can 
shorten your commands by making use of the dot product notation, and using lists.  The following 
constructions can all be used in specifying your functions:  Let 
 
 a and d  denote the names of any vectors in your matrix work area, 
 x and y  denote the names of any namelists, 
 cj  be any of the labels in your ; Labels = ... specification. 
 
Then, any of the following can appear in your function 
 
 a’a =  inner product of the vector, 
 a’d =  dot product of two vectors, 
 a’x =  linear combination of variables, for each observation, 
 x’y =  sum of cross products of the variables, at each observation, 
 x’x =  sum of squares of observation on variables, 
 cj’a =  product of vector elements and parameters, 
 cj’x =  the familiar index function product of coefficients and variables. 
 
Products can be computed beginning with any of the parameters in the list.  For example, consider 
fitting a probit model by least squares (rather than maximum likelihood): 
 
 NLSQ  ; Lhs = y 
   ; Labels  = a1,a2,a3  
   ; Start = 0,0,0 
   ; Fcn = Log(Phi(2*(y-1)*(a1 + a2*x1 + a3*x2))) $ 
Alternatively, with 
 
 NAMELIST ; xa = one,x1,x2  ; xb = x1,x2 $ 
 

Then 
   ; Fcn = Log(Phi(2*(y-1) * a1’xa)) 
is the same as  
   ; Fcn = Log(Phi(2*(y-1) * (a1 + xb’a2))). 
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E14.3.4 Bilinear and Quadratic Forms 
 
 Bilinear and quadratic forms may also appear in function definitions.  Suppose that c and d 
indicate elements of the parameter vector, which point to specific parts of the vector, and z is a 
namelist and A is a matrix.  The following forms may appear in your function definition 
 
 (bilinear)   c’[z]d =  Σj cj dj zj,   
   c’[z]c =  Σj cj

2zj 
 (quadratic)  c’[A]c =  ΣjΣl cj cl Ajl 
 
E14.3.5 Automatically Generating a List of Labels 
 
 For large problems, you may use a shortcut for the labels definition, 
 
   ; Labels  = number_label 
 
produces ‘number’ sequentially numbered repetitions of the label.  For example, 5_b gives 
b1,b2,b3,b4,b5.  The number may be a literal value or a scalar.  With this device, you can make your 
model command independent of the size of the model, and you can accommodate a model of any 
size.  For example: 
 
 NAMELIST   ; xa =  ... (up to 150 names) 
   ; xb =  ... (up to 150 names) $ 
 CALC  ; ka  =  Col(xa)   
   ; kb =  Col(xb) $ 
 MATRIX ; ca  =  Init(ka,1,0.)   
   ; cb  =  Init(kb,1,0.0) $ 
 NLSQ  ; Lhs =  y 
   ; Start =  ca,cb,  
   ; Labels =  ka_ba , kb_bb 
   ; Fcn =  Index = ba1’xa  +  bb1’xb | 
                 ... the rest of the function $ 
 
This template could be used for a model of any size.  Only the namelists would have to be changed 
from one specification to another. 
 
E14.3.6 Lists of Labels 
 
 The label list may be the object of a CLIST command.  For example, 
 
 CLIST  ; probfn = pr0,pr1,pr2 $ 
 NLSQ  ; …  

; Labels = probfn $ 
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E14.4 Quadrature and Simulation 
 
 You can use the function optimization programs such as NLSQ to maximize or minimize 
functions that contain integrals of the form 
 

   F(β)  =  exp( ) ( , )−
−∞

∞

∫ v G v dv2 β   

 
by using Gauss-Hermite quadrature.  This is a very accurate approximation which is computed using 
 
   F(β)  ≈  w G zhh

H
h( , )β

=∑ 1
 

 
where H is the number of points for the quadrature, wh is the weight and zh is the node at point h of 
the quadrature.  You set the number of points, H for the quadrature.  The G(.) function is unrestricted 
– it can be any function that is allowable in NLSQ, NLSURE, MINIMIZE, or MAXIMIZE.  The 
variable of the integration, v, may or may not actually appear in the function.   (Exp(-v2) integrates to 
sqr(π), so if v does not appear in G(.,.), then F(β) will equal sqr(π)G(β).)  You can also include 
functions of the form 

   F(β)  =  exp( ) ( , )−
∞

∫ v G v dvβ
0

  

 
(notice that the exponent is exp(-v) rather than exp(-v2), and the range of integration is from 0 to +∞ 
rather than from -∞ to ∞.  Integrals of this form are accurately approximated using Gauss-Laguerre 
integration, rather than Gauss-Hermite integration.  Finally, you can include functions that include 
subfunctions that are expectations of the form 
 
   F(β)  =  Ev [F(β,v)]. 
 
where v is distributed as standard normal.  These can be approximated quite accurately by 
simulation, by using 

   F(β)  ≈  (1/R) ∑ =

R

r 1
F(β,vr)  

 
where vr is one of a sufficiently large R random draws from the standard normal distribution. 
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 To use one of these integrals in your regression function, you must set up the operation as 
follows: 
 
 NLSQ  ; Lhs  = dependent variable 

   ; Fcn  = name = Ntg(the function to be integrated) | the rest of the function, 
      which will probably involve ‘name’  

   ; Hrq = name of the variable over which integration is done  
     for Hermite integration 
  or ; Glq = name of the variable over which integration is done  
     for Gauss-Laguerre integration 
  or ; Sim = name of the variable over which summation is done  
     for integration by simulation 
   ; Start = parameter values, as usual 
   ; Labels = labels for parameters in the model, as usual   
   ; other options $ 
 
Note the ‘ | ’ at the end of the first line of the function definition.  The function is being defined 
recursively.  Recursive function definitions are described in the next section.  The following 
requirements apply: 
 

• You can have more than one integral in the final function, but each must be a named 
subfunction.  If you specify ‘Ntg(...)’ within a function definition, an error will occur during 
compilation claiming that you have an unidentified symbol. 

 
• Integrals should not be functions of other integrals.  The results will be unpredictable, and 

almost certainly incorrect.   
 
• You may have only one kind of integral in your function definition.  Each Hrq, Glq, or Sim 

which appears in a command overrides previous ones. 
 
To set the number of points for the approximation, you will use (as with other applications) 
 
   ; Hpt  =  number of points for Hermite quadrature 
   ; Lpt  =  number of points for Laguerre quadrature 
   ; Pts  =  number of points for simulations 
 
See Section R26.7 for discussion of the available values for these parameters. 
 
NOTE:  The seed for the random number generator is set to the same value each time a computation 
is done for a specific individual.  Thus, you can replicate a computation done earlier by setting the 
main seed for the program before estimation. 
 
 Two examples follow.  Note that this is not necessarily a ‘good model,’ and unless the data 
actually do satisfy the assumptions of the model, estimation will not produce very appealing results. 
(One would not normally fit a probit model by nonlinear least squares.)  The example is intended 
only to illustrate use of the tools. 
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Heterogeneity in a Probit Model   
 
 Consider a probit model in which there is normally distributed, unobserved individual 
heterogeneity, 
 

   y  =  0 or 1, 

   Prob[ y = 1 | v ]  =  Φ( β′x  +  θv)  where v is standard normally distributed. 
 
(A nonunitary standard deviation of v would be absorbed into the free parameter θ.)  The probability 
that enters the log likelihood is Prob[y = 1] = Ev [Prob[ y = 1 | v ]]. The expectation is exactly equal to 
 

   Prob [ y = 1 ]  =  2(1/ 2 )exp( / 2) ( )v v dv
∞

−∞
′π − Φ + θ∫ xβ   =  P(y). 

 
In the integral, let u = v/√2, so v = u√2.  Make the change of variable in the integral, to produce 
 

   Prob [ y = 1 ]  =  2(1/ )exp( ) ( 2)u u du
∞

−∞
′π − Φ + θ∫ xβ   =  P(y) 

 
This is now exactly in the form noted earlier for Hermite quadrature.  (It can be simplified a bit more 
by defining γ = 2 θ.)  The model could be estimated with the commands 
 
 NAMELIST ; x = ... list of variables $  
 PROBIT ; Lhs = y ; Rhs = x $ 
 CALC  ; kx = Col(x) $ 
 NLSQ  ; Lhs = y                     ? Note the separator for the subfunction. 
   ; Labels = kx_b, c 
   ; Start = b, 0 
   ; Fcn = Prob = Ntg(1/Sqr(pi) * Phi(b1’x + c*u))  |  Prob  
   ; Hrq = u  
   ; Hpt = 20 $ 
 
 A second way to approximate the expected value would be by simulation and averaging.  
That is, the probability can be approximated by averaging the probabilities obtained with a sample of 
random draws from the distribution of v.  The change in the preceding would be only to the method 
of integration.  The resulting NLSQ command would be 
 
 NLSQ  ; Lhs = y 
   ; Fcn = Prob = Ntg(1/Sqr(pi) * Phi(b1’x + t*Sqr(2)*u))  |  Prob  
   ; Start = b, 0 
   ; Labels = kx_b, t 
   ; Sim = u  
   ; Pts = 100 $ 
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E14.5 Recursive Functions 
 
 There are many settings in which certain parts of a regression function or a minimand 
involve constructions that appear more than once in a function.  For example, consider the nonlinear 
regression function 
 
   E[y|x] = β′x  +  σ × φ((L-β′x)/σ) / Φ((L-β′x)/σ) 
  
(this is the conditional mean function for a truncated regression model).  Based on the preceding, the 
function could be specified with 
 
 NAMELIST ; x = ... $ 
 NLSQ  ; Lhs = y 
   ; Start = the set of starting values 
   ; Labels = b0,b1,b2,...,sg 
   ; Fcn = b0’x + sg * N01((L-b0’x)/sg) / Phi((L-b0’x)/sg) $ 
  
The string (L-b0’x)/sg appears twice in the function definition.  (In some settings, this sort of 
construction could appear many times.)  You can build up such a function recursively by defining 
parts of it by name, then using the names of the parts later in the function.  For the example above, 
an alternative form would be 
 
   ; Fcn = dev = (L-b0’x)/sg     |       
    b0’X + sg*N01(dev)/Phi(dev) 
  
The general form of a recursive definition is 
  
   ; Fcn = name = string     |  
    ... next string can use name ...  |  
    ...     |  
    function 
  
Note that the ‘ | ’ character is used to separate the named strings from the parts that use them later. 
The last substring to be evaluated must produce the desired function.  You may define up to 49 
substrings in this fashion – the 50th would have to give the function, itself.  Also, subfunctions may 
use earlier subfunctions.  For examples,  
 
    ; Fcn = cx = c0+c1*x  |  
    e = y-cx  |  
    e^2 
or   ; Fcn = cx = c0+c1*x  |  
    e = y-cx  |  
    esq =  e^2 | 
    e^2 + esq^2  
 
NOTE:  Functions are interpreted from left to right, or top to bottom.  If you use a name which is 
defined after the function you are defining, an error will occur in which the name you are using does 
not appear to have been defined. 
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E14.6 Providing Analytic Derivatives 
 

 In computing nonlinear least squares estimates, LIMDEP uses numeric (synthetic) 
derivatives of the sum of squares.  You can provide your own derivatives for some or all of the 
parameters in the function as follows:  The regression function is f(β1,...,βK, anything else).  You can 
provide derivatives for the regression function (not the sum of squares).  Derivatives are specified in 
the same fashion as the subfunctions above, except that the name is the parameter label, preceded by 
an underscore.  For example, suppose we were estimating a probit model by nonlinear least squares. 
The conditional mean would be Φ(β′x), and the derivative vector is  φ(β′x) × x.  Use 
 
 NLSQ  ; ... ; Labels  = c0, c1 
   ; Fcn = cx = c0 + c1*x  | 
    fcx  = N01(cx) | 
     _c0 = fcx  | 
     _c1 = fcx *x  |     Phi(cx) $ 
 
The function definition above contains both a subfunction and analytic derivatives. You may provide 
derivatives for any of the parameters, or all of them.  Any derivatives that are not provided are 
evaluated numerically.  Regardless of the complexity of the function, there is no difference in the 
amount of time saved by giving explicit derivatives for one parameter as opposed to another.  Some 
time is saved if all derivatives are provided compared to just some of them. 
 

WARNING:  If the derivatives that you provide do not match the function, the optimization    
procedure will eventually break down, claiming to be unable to minimize the function. 
 

 To illustrate the use of analytic derivatives, we use one of the National Institute of Standards 
and Technology (NIST) benchmark problems for testing nonlinear regression programs.  This test 
problem may be found at http://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml.  The data are at 
the same site.  (See Section E14.13 for further details.)  The nonlinear regression model is 
 

 Hahn1  Function:  y  =  ε+
β+β+β+
β+β+β+β

3
7

2
65

3
4

2
321

1 xxx
xxx   (average level of difficulty) 

 
Description:   These data are the result of a NIST study involving 
               the thermal expansion of copper.  The response  
               variable is the coefficient of thermal expansion, and 
               the predictor variable is temperature in degrees kelvin. 
Reference:     Hahn, T., NIST (197?). Copper Thermal Expansion Study. 
Data:          1 Response  (y = coefficient of thermal expansion) 
               1 Predictor (x = temperature, degrees kelvin) 
               236 Observations 
Model:         Rational Class (cubic/cubic) 
               7 Parameters (b1 to b7) 
     Starting values                  Certified Values 
        Start 1     Start 2           Parameter     Standard Deviation 
  b1 =   10           1            1.0776351733E+00  1.7070154742E-01 
  b2 =   -1          -0.1         -1.2269296921E-01  1.2000289189E-02 
  b3 =    0.05        0.005        4.0863750610E-03  2.2508314937E-04 
  b4 =   -0.00001    -0.000001    -1.4262662514E-06  2.7578037666E-07 
  b5 =   -0.05       -0.005       -5.7609940901E-03  2.4712888219E-04 
  b6 =    0.001       0.0001       2.4053735503E-04  1.0449373768E-05 
  b7 =   -0.000001   -0.0000001   -1.2314450199E-07  1.3027335327E-08 

http://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml�
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Residual Sum of Squares:                    1.5324382854E+00  
Residual Standard Deviation:                8.1803852243E-02 
Degrees of Freedom:                               229 
Number of Observations:                           236 

 
Data on y are followed by data on x in the listing below. 
 
  0.591   1.547   2.902   2.894   4.703   6.307   7.030   7.898   9.470   9.484  10.072 
 10.163  11.615  12.005  12.478  12.982  12.970  13.926  14.452  14.404  15.190  15.550 
 15.528  15.499  16.131  16.438  16.387  16.549  16.872  16.830  16.926  16.907  16.966 
 17.060  17.122  17.311  17.355  17.668  17.767  17.803  17.765  17.768  17.736  17.858 
 17.877  17.912  18.046  18.085  18.291  18.357  18.426  18.584  18.610  18.870  18.795 
 19.111   0.367   0.796   0.892   1.903   2.150   3.697   5.870   6.421   7.422   9.944 
 11.023  11.870  12.786  14.067  13.974  14.462  14.464  15.381  15.483  15.590  16.075 
 16.347  16.181  16.915  17.003  16.978  17.756  17.808  17.868  18.481  18.486  19.090 
 16.062  16.337  16.345  16.388  17.159  17.116  17.164  17.123  17.979  17.974  18.007 
 17.993  18.523  18.669  18.617  19.371  19.330   0.080   0.248   1.089   1.418   2.278 
  3.624   4.574   5.556   7.267   7.695   9.136   9.959   9.957  11.600  13.138  13.564 
 13.871  13.994  14.947  15.473  15.379  15.455  15.908  16.114  17.071  17.135  17.282 
 17.368  17.483  17.764  18.185  18.271  18.236  18.237  18.523  18.627  18.665  19.086 
  0.214   0.943   1.429   2.241   2.951   3.782   4.757   5.602   7.169   8.920  10.055 
 12.035  12.861  13.436  14.167  14.755  15.168  15.651  15.746  16.216  16.445  16.965 
 17.121  17.206  17.250  17.339  17.793  18.123  18.490  18.566  18.645  18.706  18.924 
 19.100   0.375   0.471   1.504   2.204   2.813   4.765   9.835  10.040  11.946  12.596 
 13.303  13.922  14.440  14.951  15.627  15.639  15.814  16.315  16.334  16.430  16.423 
 17.024  17.009  17.165  17.134  17.349  17.576  17.848  18.090  18.276  18.404  18.519 
 19.133  19.074  19.239  19.280  19.101  19.398  19.252  19.890  20.007  19.929  19.268 
 19.324  20.049  20.107  20.062  20.065  19.286  19.972  20.088  20.743  20.830  20.935 
 21.035  20.930  21.074  21.085  20.935 
 24.410  34.820  44.090  45.070  54.980  65.510  70.530  75.700  89.570  91.140  96.400 
 97.190 114.260 120.250 127.080 133.550 133.610 158.670 172.740 171.310 202.140 220.550 
221.050 221.390 250.990 268.990 271.800 271.970 321.310 321.690 330.140 333.030 333.470 
340.770 345.650 373.110 373.790 411.820 419.510 421.590 422.020 422.470 422.610 441.750 
447.410 448.700 472.890 476.690 522.470 522.620 524.430 546.750 549.530 575.290 576.000 
625.550  20.150  28.780  29.570  37.410  39.120  50.240  61.380  66.250  73.420  95.520 
107.320 122.040 134.030 163.190 163.480 175.700 179.860 211.270 217.780 219.140 262.520 
268.010 268.620 336.250 337.230 339.330 427.380 428.580 432.680 528.990 531.080 628.340 
253.240 273.130 273.660 282.100 346.620 347.190 348.780 351.180 450.100 450.350 451.920 
455.560 552.220 553.560 555.740 652.590 656.200  14.130  20.410  31.300  33.840  39.700 
 48.830  54.500  60.410  72.770  75.250  86.840  94.880  96.400 117.370 139.080 147.730 
158.630 161.840 192.110 206.760 209.070 213.320 226.440 237.120 330.900 358.720 370.770 
372.720 396.240 416.590 484.020 495.470 514.780 515.650 519.470 544.470 560.110 620.770 
 18.970  28.930  33.910  40.030  44.660  49.870  55.160  60.900  72.080  85.150  97.060 
119.630 133.270 143.840 161.910 180.670 198.440 226.860 229.650 258.270 273.770 339.150 
350.130 362.750 371.030 393.320 448.530 473.780 511.120 524.700 548.750 551.640 574.020 
623.860  21.460  24.330  33.430  39.220  44.180  55.020  94.330  96.440 118.820 128.480 
141.940 156.920 171.650 190.000 223.260 223.880 231.500 265.050 269.440 271.780 273.460 
334.610 339.790 349.520 358.180 377.980 394.770 429.660 468.220 487.270 519.540 523.030 
612.990 638.590 641.360 622.050 631.500 663.970 646.900 748.290 749.210 750.140 647.040 
646.890 746.900 748.430 747.350 749.270 647.610 747.780 750.510 851.370 845.970 847.540 
849.930 851.610 849.750 850.980 848.230 
 
 The NIST problems are provided with two sets of starting values for the iterations, as seen in 
the example above.  The first set of values are always farther from the solution than the second, so 
estimation beginning with the first set is always ‘harder’ than with the second set.  In the following, 
we solve the problem from the first set of starting values.  (We chose this particular problem out of 
the 27 problems provided because LIMDEP is able to solve all but three, including this one, using 
the default settings without using analytic derivatives.) 
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 The direct approach is the ‘default’ solution: (the ; Output and ; Dfc options are described 
in Section E14.7.4.)  LIMDEP is not able to solve this problem with the direct solution. 
 

READ  ; Nobs = 236 ; Nvar = 2 ; Names = y,x ; By Variables $ 
(The data follow, exactly as shown above) 
CREATE ; x2 = x*x ; x3 = x2*x$ 
NLSQ  ; Lhs = y 

       ; Fcn = (b1+b2*x+b3*x2+b4*x3)/(1+b5*x+b6*x2+b7*x3) 
       ; Labels = b1,b2,b3,b4,b5,b6,b7 
       ; Output = 1 

; Dfc 
; Maxit = 500 

       ; Start = 10,-1,.05,-.00001,-.05,.001,-.000001$ 
 
After 500 iterations, this formulation exits at a point that is nowhere near the correct solution: 
 
Iteration=500; Sum of squares=  7.99101926    ; Gradient=  .106836976E-02 
Maximum iterations exceeded 
 
----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=Y        Mean                 =       14.21530 
             Standard deviation   =        5.76869 
             Number of observs.   =            236 
Model size   Parameters           =              7 
             Degrees of freedom   =            229 
Residuals    Sum of squares       =        7.99102 
             Standard error of e  =         .18680 
Fit          R-squared            =         .99898 
             Adjusted R-squared   =         .99895 
Model test   F[  6,   229] (prob) = 37313.0(.0000) 
Diagnostic   Log likelihood       =       64.62109 
             Restricted(b=0)      =     -747.94531 
             Chi-sq [  6]  (prob) =1625.1(  .0000) 
Info criter. Akaike Info. Criter. =       -3.32619 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|    10.3875***      .40345    25.75  .0000      9.5968   11.1783 
      B2|    -.92729***      .02498   -37.12  .0000     -.97626   -.87832 
      B3|     .02148***      .00041    52.11  .0000      .02067    .02229 
      B4|-.19842D-04***   .1451D-06  -136.72  .0000 -.20126D-04  -.19557D-04 
      B5|     .00600***      .00117     5.11  .0000      .00370    .00830 
      B6|     .00102***   .2402D-04    42.61  .0000      .00098    .00107 
      B7|-.10164D-05***   .2415D-10 ********  .0000 -.10164D-05  -.10163D-05 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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We now reformulate the problem with analytic derivatives.  Note that the derivatives for b6 and b7 
are formulated recursively, using their predecessors as if they were ordinary, predefined functions 
(which they are). 
 

NLSQ  ; Lhs = y 
; Fcn  = top = (b1+b2*x+b3*x2+b4*x3)  | 

                   bot = (1+b5*x+b6*x2+b7*x3)  | 
                   q     = 1/bot                 | 
                _b1 = q  | 
                _b2  = x*q  | 
                _b3  = x2*q  | 
                _b4  = x3*q  | 
                _b5  = -top * q * q * x  | 
                _b6  = _b5 * x  | 
                _b7  = _b6 * x  | 
                top * q   ?  This defines the regression function. 
       ; Labels = b1,b2,b3,b4,b5,b6,b7 
       ; Output = 1 

; Dfc 
       ; Start = 10,-1,.05,-.00001,-.05,.001,-.000001$ 
 
By changing the estimation to use analytic derivatives, we now obtain the NIST solution, after 98 
iterations: 
 
Begin NLSQ iterations. Linearized regression. 
Iteration=  1; Sum of squares=  3097556.53    ; Gradient=  3097518.97 
Iteration=  2; Sum of squares=  82100.0867    ; Gradient=  82037.2061 
Iteration=  3; Sum of squares=  8813.71742    ; Gradient=  8799.72594 
Iteration=  4; Sum of squares=  1142.50038    ; Gradient=  1139.39827 
Iteration=  5; Sum of squares=  25.2098528    ; Gradient=  21.9074256 
 
(Iterations 6 - 19 omitted) 
 
Iteration= 20; Sum of squares=  42.5269570    ; Gradient=  14.0951380 
Iteration= 21; Sum of squares=  41.4433864    ; Gradient=  12.9637663 
Moment matrix has become nonpositive definite. 
Switching to BFGS algorithm 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg   .1000D-05 chg.F   .0000D+00 max|dB|   .0000D+00 
Nodes for quadrature: Laguerre=40;Hermite=20. 
Replications for GHK simulator= 100 
 
(Initial iterations to improve starting values) 
 
Itr  1 F=  .1549D+07 gtHg=  .1625D+14 chg.F=  .1549D+07 max|db|=  .1625D+20 
Itr  2 F=  .2776D+05 gtHg=  .3355D+05 chg.F=  .1521D+07 max|db|=  .1036D+09 
Itr  3 F=  .3913D+04 gtHg=  .2232D+04 chg.F=  .2385D+05 max|db|=  .1598D+07 
Itr  4 F=  .3912D+04 gtHg=  .3306D+04 chg.F=  .1536D+01 max|db|=  .7356D+06 
Itr  5 F=  .3910D+04 gtHg=  .2138D+04 chg.F=  .1731D+01 max|db|=  .6182D+06 
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(Iterative gradient method search for function optimizers) 
 
Itr  1 F=  .3910D+04 gtHg=  .2138D+04 chg.F=  .3910D+04 max|db|=  .6182D+06 
Itr  2 F=  .3908D+04 gtHg=  .3304D+04 chg.F=  .1701D+01 max|db|=  .1416D+07 
Itr  3 F=  .2201D+04 gtHg=  .1220D+03 chg.F=  .1708D+04 max|db|=  .7837D+03 
Itr  4 F=  .2197D+04 gtHg=  .5820D+02 chg.F=  .3989D+01 max|db|=  .1619D+04 
Itr  5 F=  .1094D+04 gtHg=  .6585D+02 chg.F=  .1102D+04 max|db|=  .3680D+01 
 
(Iterations 6 - 96 omitted) 
 
Itr 97 F=  .7662D+00 gtHg=  .1386D-05 chg.F=  .4288D-10 max|db|=  .4059D-06 
Itr 98 F=  .7662D+00 gtHg=  .9207D-07 chg.F=  .1668D-11 max|db|=  .1557D-06 
                        * Converged 
Normal exit from iterations. Exit status=0. 
----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=Y        Mean                 =       14.21530 
             Standard deviation   =        5.76869 
             Number of observs.   =            236 
Model size   Parameters           =              7 
             Degrees of freedom   =            229 
Residuals    Sum of squares       =        1.53244 
             Standard error of e  =         .08180 
Fit          R-squared            =         .99980 
             Adjusted R-squared   =         .99980 
Model test   F[  6,   229] (prob) =194732.2(.0000) 
Diagnostic   Log likelihood       =      259.49316 
             Restricted(b=0)      =     -747.94531 
             Chi-sq [  6]  (prob) =2014.9(  .0000) 
Info criter. Akaike Info. Criter. =       -4.97765 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|    1.07764***      .17070     6.31  .0000      .74307   1.41220 
      B2|    -.12269***      .01200   -10.22  .0000     -.14621   -.09917 
      B3|     .00409***      .00023    18.15  .0000      .00365    .00453 
      B4|-.14263D-05***   .2758D-06    -5.17  .0000 -.19668D-05  -.88575D-06 
      B5|    -.00576***      .00025   -23.31  .0000     -.00625   -.00528 
      B6|     .00024***   .1045D-04    23.02  .0000      .00022    .00026 
      B7|-.12314D-06***   .1303D-07    -9.45  .0000 -.14868D-06  -.97611D-07 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E14.7 Options for Nonlinear Least Squares 
 
 The following lists the options available for the nonlinear least squares program.  
 
E14.7.1 Fixing Some of the Parameters 
 
 It is sometimes necessary to minimize the sum of squares while holding some of the 
parameters fixed at known values, for example for hypothesis testing.  To do so, you can simply 
specify the problem in the command exactly as if the parameters were not to be fixed.  Include the 
known values in the appropriate places in the list of starting values.  Then, add the specification 
 
    ; Fix = parm1,parm2,... 
  
where the names in the ; Fix = ... list will be some of those in your ; Labels list. For example, suppose 
you wanted to obtain a CES model with constant returns to scale.  This is done by setting nu at 1.0.  
 
 NLSQ   ; Lhs = Q 
            ; Labels = gamma,delta,r,nu  
   ; Start = 2.3, .3,  .1,  1.  
   ; Fix = nu 
            ; Fcn = gamma*(delta*k^(-r) + (1-delta)*l^(-r))^(-nu/r) $ 
  
If you have fixed the values of parameters, with the ; Fix option, these will be among the values 
placed in the matrix b when the model results are kept for later use. 
 You might want to compute the sum of squares function at a particular set of parameters. 
You can do this by specifying that all parameters are to be fixed at the starting values.  This is 
  
   ; Fix all 
  
(not ; Fix = all).  The full set of output will be produced, but no iterations will be done. Note that      
; Fix all is the same as ; Maxit = 0, except the latter also produces a Lagrange multiplier statistic. 
 
Standard Model Specifications for the Nonlinear Regression Model 
 

This is the full list of general specifications from Chapter E1.  See Chapter E1 and references 
noted there for further details on these specifications. 
 
Controlling Output from Model Commands 
 

; Table = name saves model results to be combined later in output tables. 
; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  
 

Robust Asymptotic Covariance Matrices 
 
 ; Cluster = spec cluster form of corrected covariance estimator. 
or  ; Robust requests a ‘sandwich’ estimator or robust covariance matrix for TSCS 
    and several discrete choice models. 
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Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 

 ; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4.  
 ; Lpt = n sets the number of points to use for Laguerre quadrature.  
 ; Hpt = n sets the number of points to use for Hermite quadrature. 
 ; Set   keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill   fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; CML: spec defines a constrained maximum likelihood estimator. 
; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions – same as ; Test: spec. 
; Rst = list specifies equality and fixed value restrictions. 
; Maxit = 0 ; Start = the restricted values sets up Lagrange multiplier test of restrictions. 

 ; Fix = list fixes the named parameters at the start values. 
 

E14.7.2 Setting the Algorithm 
 
 Six algorithms are available: Gauss-Marquardt (the default), Davidon-Fletcher-Powell, 
Newton’s method, Berndt, Hall, Hall, and Hausman, BFGS, and steepest descent.  Unless your 
problem is globally convex (which is unlikely) you will probably want to use the first of these, which 
is the default.  This is a very effective algorithm, which has been used in a wide variety of settings.  
Newton’s method may require somewhat less computing owing to the necessity of BFGS and DFP to 
do a line search at each iteration;  Newton’s method uses a step length on 1.0.  However, Newton’s 
method is very likely to overshoot and subsequently to diverge. Choose the algorithm with 
 
   ; Alg = Newton  or  BHHH  or  BFGS  or  DFP or  Steepest Descent 
Other options,    
   ; Output = setting 
   ; Tlb ; Tlf and ; Tlg 
   ; Maxit = maximum 

 ; Covariance Matrix (or ; Printvc)  
 
all operate as usual.  A setting that is specific to nonlinear least squares is  
 
   ; Tln = convergence tolerance for Gauss-Marquardt method 
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E14.7.3 Heteroscedasticity Robust Covariance Matrix 
 
 The asymptotic covariance matrix for the nonlinear least squares estimator is estimated with  
 

   Vnls =  ( ) 1
'' −00 XXee

n
  

 
where the ith row of X0 is the vector of derivatives of the regression function,  
 

   xi
0   =  ( , )

'
if∂

∂
x β
β

 

 
This is the counterpart to the usual calculation for linear least squares.  You may request a 
heteroscedasticity robust covariance matrix of the form of the White estimator by adding 
 
   ; Heteroscedasticity 
 
to the NLSQ command.  The matrix computed is 
 

   Vrobust  = ( ) 1
'

−00 XX   ( )( )0 0
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n
i i i ii

e e
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(There is no counterpart for the Newey-West autocorrelation consistent estimator.) 
 
E14.7.4 Degrees of Freedom Correction 
 
 In the expression above, the disturbance variance is estimated with the mean of the nonlinear 
least squares residuals, with no correction for degrees of freedom.  Some authors prefer to make this 
correction, which produces the estimator   
 

   s2  =  
Kn −
ee' .  

 
The program default is to use n rather than n-K in this computation.  The estimator is consistent 
either way, but is not unbiased in either case.  Computer programs differ in this computation, and 
users should check the documentation of other programs that they might be using if apparent 
inconsistencies arise.  You can request this computation with 
 

   ; Dfc (degrees of freedom correction) 
 
added to the NLSQ command.  (Note that this form is used in the NIST benchmark tests, so we have 
requested it in the illustration using the NIST problem.) 
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E14.8 Model Output and Retrievable Results 
 
 Output from NLSQ consists of a table of diagnostic statistics similar to that presented for the 
linear regression model and a standard table of results for the parameters.  The one produced by the 
preceding example is shown below. 
 
----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=Y        Mean                 =       14.21530 
             Standard deviation   =        5.76869 
             Number of observs.   =            236 
Model size   Parameters           =              7 
             Degrees of freedom   =            229 
Residuals    Sum of squares       =        1.53244 
             Standard error of e  =         .08180 
Fit          R-squared            =         .99980 
             Adjusted R-squared   =         .99980 
Model test   F[  6,   229] (prob) =194732.2(.0000) 
Diagnostic   Log likelihood       =      259.49316 
             Restricted(b=0)      =     -747.94531 
             Chi-sq [  6]  (prob) =2014.9(  .0000) 
Info criter. Akaike Info. Criter. =       -4.97765 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|    1.07764***      .17070     6.31  .0000      .74307   1.41220 
      B2|    -.12269***      .01200   -10.22  .0000     -.14621   -.09917 
      B3|     .00409***      .00023    18.15  .0000      .00365    .00453 
      B4|-.14263D-05***   .2758D-06    -5.17  .0000 -.19668D-05  -.88575D-06 
      B5|    -.00576***      .00025   -23.31  .0000     -.00625   -.00528 
      B6|     .00024***   .1045D-04    23.02  .0000      .00022    .00026 
      B7|-.12314D-06***   .1303D-07    -9.45  .0000 -.14868D-06  -.97611D-07 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
(Note that the R2 computed as above is not bounded by zero as it would be if this were a linear least 
squares computation.  Likewise, the F statistic, when it is produced – the one above is huge – should 
be ignored.)  The saved results are: 
 
 Matrices: b   =  the parameters 
   varb =  estimated asymptotic covariance matrix 
   gradient =  the vector of first derivatives 
  

If you have fixed parameters, varb will contain rows and columns of zeros.  
Unless you have fixed some or all of the parameters, limited the number of 
iterations to less than necessary to obtain convergence, or the optimization 
fails, gradient will be approximately zero (to within the limit of your 
convergence criterion). 
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 Scalars: s   =  √(1/n×sum of squared residuals,) 
        (The denominator is n - K if ; Dfc is specified.) 
   ssqrd  =  s squared 
   ybar   =  mean of Lhs variable 
   sy  =  standard deviation of Lhs variable 
   sumsqdev =  sum of squared residuals 
   rsqrd  =  1 - sumsqdev / ((n-1)×SY×SY) 
   rho   =  0.0 
   degfrdm  =  n - number of free (not fixed) parameters 
    kreg  =  total number of parameters 
     nreg  =  current sample size 
   logl  =  log likelihood = -(n/2)[1+log2π+log(e′e/n)] 
 
 Last Function: See Section E14.9 
 
The standard options, 

 
  ; List  to display predicted values 
  ; Keep = name  to retain for predictions, F(xi,β) 
  ; Res = name  to retain for residuals, y - F(xi,β) 
  ; Fill   to fill in values for unused observations 

  
all operate as usual.  If you use ; List, your listing will contain a list of the Lhs variable and the 
values of F(xi,β).  Under the heading ‘95% Confidence Interval’ will be two columns of zeros which 
can be ignored.  The values of F(xi,β) evaluated at the final estimates are the fitted values for this 
command.  
 For purposes of using WALD, the Last Model kept uses the labels in your ; Labels list.  To 
continue the earlier application, for example, to test the hypothesis that ρ equals 0 and ν equals 1 in 
the CES function, you could use 
  

NLSQ    ; Lhs = Q 
           ; Labels = gamma,delta,r,nu   
           ; Start = 2.3, .3,  .1,  1.  
           ; Fcn = gamma*(delta*K^(-r) + (1-delta)*L^(-r))^(-nu/r) $ 
WALD  ; Fn1 = r ; Fn2 = nu - 1 $ 
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E14.9 Partial Effects for Nonlinear Regressions 
 
 You can obtain partial effects for any function.  NLSQ does not save the function definition 
for computation of the partial effects or for a simulation.  However, your command editor contains 
the function definition that you need to obtain these.  NLSQ does save the parameter vector and the 
covariance matrix as the Last Function.  You can use these just by reconstructing the function in the 
PARTIALS or SIMULATE command and using the parameters and covariance from the estimation 
step. 
 Consider the earlier example, 
 

NLSQ  ; Lhs = y 
; Fcn = top = (b1+b2*x+b3*x2+b4*x3)  | 

                     bot = (1+b5*x+b6*x2+b7*x3)  | 
                     q  = 1/bot                  | 
   (derivatives omitted) 
                  top * q   ?  This defines the regression function. 
       ; Labels = b1,b2,b3,b4,b5,b6,b7 

; Dfc 
       ; Start = 10,-1,.05,-.00001,-.05,.001,-.000001$ 
 
We used a simplification to fit the function, substituting x2 = x2 for x*x and x3 = x3 for x*x*x in the 
optimization.  However, the regression is, ultimately, a function only of x.  To examine the behavior 
of the function after nonlinear least squares, we used the following: 
 

SIMULATE  ; Scenario: & x = 0(50)1000  
; Plot (ci) 
; Function = (b1+b2*x+b3*x*x+b4*x*x*x) /   

     (1 + b5*x+b6*x*x+b7*x*x*x)  
; Labels = b1,b2,b3,b4,b5,b6,b7 $ 

PARTIALS  ; Effects: x  & x = 0(50)1000  
; Plot 
; Function =  (b1+b2*x+b3*x*x+b4*x*x*x) /   

     (1 + b5*x+b6*x*x+b7*x*x*x)  
; Labels = b1,b2,b3,b4,b5,b6,b7 $ 

 
Note that we have replaced the shortcuts for the powers of x.  This was useful for the optimization, 
but not for the simulation which needs the actual functional form to get the right derivatives. The 
parameter values and covariance matrix have been stored when the results were reported.  The 
scenarios examine the values of x ranging from zero to 1,000 in steps of 50, which is roughly the 
range of x in the data.  The simulation produces a plot with a confidence interval. 
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--------------------------------------------------------------------- 
Model Simulation Analysis for User Specified Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avrg. Function    14.21530     .50208   28.31    13.23123    15.19936 
X       =   .00    1.07764     .17070    6.31      .74306     1.41221 
X       = 50.00    3.83746     .01635  234.66     3.80541     3.86951 
X       =100.00   10.43772     .01605  650.26    10.40626    10.46918 
X       =150.00   13.60074     .08362  162.66    13.43685    13.76463 
X       =200.00   15.15580    1.49077   10.17    12.23388    18.07772 
X       =250.00   16.06395     .75142   21.38    14.59116    17.53673 
X       =300.00   16.68267     .57523   29.00    15.55522    17.81013 
X       =350.00   17.15886     .57946   29.61    16.02312    18.29460 
X       =400.00   17.56087     .62862   27.94    16.32877    18.79298 
X       =450.00   17.92426     .70036   25.59    16.55155    19.29697 
X       =500.00   18.26942     .78809   23.18    16.72476    19.81408 
X       =550.00   18.60921     .88957   20.92    16.86564    20.35277 
X       =600.00   18.95252    1.00427   18.87    16.98415    20.92090 
X       =650.00   19.30615    1.13254   17.05    17.08637    21.52594 
X       =700.00   19.67581    1.27532   15.43    17.17617    22.17544 
X       =750.00   20.06672    1.43404   13.99    17.25599    22.87744 
X       =800.00   20.48407    1.61061   12.72    17.32728    23.64087 
X       =850.00   20.93336    1.80747   11.58    17.39072    24.47600 
X       =900.00   21.42062    2.02769   10.56    17.44635    25.39489 
X       =950.00   21.95278    2.27512    9.65    17.49355    26.41200 
X       =******   22.53797    2.55458    8.82    17.53099    27.54495 
 

 
Figure E14.1  Simulation of Nonlinear Regression 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for User Specified Function 
--------------------------------------------------------------------- 
Effects on function with respect to X 
Results are computed by average over sample observations 
Partial effects for continuous X        computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dX              Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function       .03999     .16168     .25     -.27690      .35688 
X       =   .00    -.11648     .01103   10.56     -.13810     -.09487 
X       = 50.00     .16072     .00101  159.70      .15874      .16269 
X       =100.00     .09177     .00036  258.36      .09108      .09247 
X       =150.00     .04226     .00379   11.16      .03484      .04968 
X       =200.00     .02284     .17518     .13     -.32051      .36619 
X       =250.00     .01457     .00962    1.51     -.00429      .03342 
X       =300.00     .01064     .00077   13.84      .00913      .01214 
X       =350.00     .00863     .00067   12.97      .00732      .00993 
X       =400.00     .00757     .00124    6.08      .00513      .01001 
X       =450.00     .00703     .00161    4.38      .00388      .01018 
X       =500.00     .00681     .00190    3.59      .00310      .01053 
X       =550.00     .00681     .00216    3.15      .00257      .01104 
X       =600.00     .00695     .00243    2.86      .00219      .01171 
X       =650.00     .00721     .00271    2.67      .00191      .01252 
X       =700.00     .00759     .00301    2.52      .00169      .01349 
X       =750.00     .00807     .00335    2.41      .00151      .01463 
X       =800.00     .00865     .00373    2.32      .00134      .01595 
X       =850.00     .00934     .00416    2.25      .00119      .01750 
X       =900.00     .01017     .00467    2.18      .00103      .01931 
X       =950.00     .01114     .00526    2.12      .00084      .02144 
X       =******     .01230     .00595    2.07      .00063      .02397 
 

Figure E14.2  Partial Effects in Nonlinear Regression 
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E14.10 Imposing Restrictions and Testing Hypotheses 
 
 Since you are fully specifying the function for NLSQ, there is no need for a method of 
imposing restrictions on the parameters.  For any that you desire, just build them into the function. If 
you wish to fix parameters at known values for the purpose of inference, use the ; Fix option 
described in Section E14.7.1.  After estimation, results can be retrieved for carrying out tests of 
restrictions on the parameters of the regression model.  There are several methods of testing 
hypotheses with the results of NLSQ.   
 The Lagrange multiplier test described in Section R13.5 can be used if the starting values are 
restricted estimates from some other specification.  Then, 
 
   ; Maxit = 0 
  
will produce a full set of results and the appropriate chi squared statistics. 
 With normally distributed disturbances, you can carry out likelihood ratio tests exactly as 
shown in Section R13.4.  The scalar logl will contain the appropriate value for each model that you 
estimate. 
 Wald tests can be carried out by using the Last Model construction.  See Section R13.3 for 
details. The labels to be used for the tests are those that appear in your ; Labels list.   
 A form of F test can be based on the sum of squared residuals.  The scalar sumsqdev contains 
the necessary statistic.  The procedure would be 
  
 NLSQ  ; ... unrestricted model $ 
 CALC  ; eeu = sumsqdev  
   ; ku = kreg  $ 
 NLSQ  ; ... restricted model $ 
 CALC  ; eer = sumsqdev 
   ; kr = kreg 
   ; List   
   ; dfn = ku - kr 
   ; dfd = n - ku 
   ; f = ((eer - eeu)/dfn) / (eeu/dfd)  
   ; prob = 1 - Fds(f,dfn,dfd)  $ 
 
The theory surrounding this statistic for testing hypotheses is not so definitive as that for the Wald 
test.  (See, e.g., Greene (2011) for discussion.) 
 The ; Test: ... restrictions option is also available for NLSQ, but it will be a bit 
cumbersome to use.  For purposes of this option if you wish to use it, the parameters in your ; Labels 
list are renamed, as usual, b(1),...,b(K).  It will be easier to use WALD to obtain the same results. 
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E14.11 An Application 
 
 To illustrate the nonlinear least squares computation, we use a small set of data based on the 
Poisson regression model.  This specification for a discrete random variable is 
 
   Prob[yi = j]  =  e -λi λi

 yi /yi!   where   λi  =  e β′xi . 
  
The conditional mean function is E[yi]  =  λi. 
  
 IMPORT $ 
 y,x1,x2,x3  
 
  1  -0.545   0.160   0.033 
  0   0.892   0.125   1.476 
  2   1.647   0.619  -0.262 
  2   1.749  -1.446   0.310 
  2   0.362  -0.589  -1.404 
  0   0.531  -0.606   0.777 
  2   0.003  -0.800  -0.897 
  0   0.260   0.597  -0.640 
  3   1.502  -0.309   0.112 
  0   0.613   0.273  -0.845 
  0  -1.028  -0.307  -1.170 
  2   0.155  -0.262  -0.534 
  1  -1.795  -2.051  -0.398 
  0  -1.007   1.974   0.189 
  1   0.596  -0.493  -1.369 

 
 NAMELIST  ; x = one,x1,x2,x3 $ 
 
We compute the linear regression twice, with REGRESS and with NLSQ 
 
 REGRESS   ; Lhs  = y  
   ; Rhs = x $ 
 NLSQ    ; Lhs  = y  
   ; Start = 0,0,0,0  
   ; Labels = b1,b2,b3,b4   
   ; Fcn = b1’x  
   ; Dfc $ 
 
The nonlinear regression is based on E[y|x] = exp(β′x) 
 
 NLSQ      ; Lhs = y  
   ; Start = 0,0,0,0  
   ; Labels = b1,b2,b3,b4   
   ; Fcn = Exp(b1’x)  
   ; Output = 4 
   ; Dfc $ 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =        1.06667 
             Standard deviation   =        1.03280 
             No. of observations  =             15  Degrees of freedom 
Regression   Sum of Squares       =        5.78935           3 
Residual     Sum of Squares       =        9.14398          11 
Total        Sum of Squares       =        14.9333          14 
             Standard error of e  =         .91174 
Fit          R-squared            =         .38768  R-bar squared =   .22068 
Model test   F[  3,    11]        =        2.32148  Prob F > F*   =   .13153 
Diagnostic   Log likelihood       =      -17.57192  Akaike I.C.   =   .03838 
             Restricted (b=0)     =      -21.25067  Bayes  I.C.   =   .22719 
             Chi squared [  3]    =        7.35750  Prob C2 > C2* =   .06134 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .75513**       .27109     2.79  .0177      .22381   1.28646 
      X1|     .50861*        .24599     2.07  .0630      .02648    .99074 
      X2|    -.37994         .26275    -1.45  .1761     -.89493    .13505 
      X3|    -.32196         .31345    -1.03  .3264     -.93632    .29240 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=Y        Mean                 =        1.06667 
             Standard deviation   =        1.03280 
             Number of observs.   =             15 
Model size   Parameters           =              4 
             Degrees of freedom   =             11 
Residuals    Sum of squares       =        9.14398 
             Standard error of e  =         .91174 
Fit          R-squared            =         .38768 
             Adjusted R-squared   =         .22068 
Model test   F[  3,    11] (prob) =     2.3(.1315) 
Diagnostic   Log likelihood       =      -17.57192 
             Restricted(b=0)      =      -21.25067 
             Chi-sq [  3]  (prob) =   7.4(  .0613) 
Info criter. Akaike Info. Criter. =         .03838 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
(Estimates identical to those given above are omitted.) 
----------------------------------------------------------------------------- 
Begin NLSQ iterations. Linearized regression. 
Iteration=  1; Sum of squares=  15.0000000    ; Gradient=  5.85601636 
Iteration=  2; Sum of squares=  9.46277971    ; Gradient=  .601416926 
Iteration=  3; Sum of squares=  8.86223571    ; Gradient=  .995192240E-02 
Iteration=  4; Sum of squares=  8.84925264    ; Gradient=  .153166021E-02 
Iteration=  5; Sum of squares=  8.84704954    ; Gradient=  .313593091E-03 
Iteration=  6; Sum of squares=  8.84659536    ; Gradient=  .646589430E-04 
Iteration=  7; Sum of squares=  8.84650149    ; Gradient=  .133647352E-04 
Iteration=  8; Sum of squares=  8.84648206    ; Gradient=  .276532978E-05 
Iteration=  9; Sum of squares=  8.84647804    ; Gradient=  .572424008E-06 
Convergence achieved 
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----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=Y        Mean                 =        1.06667 
             Standard deviation   =        1.03280 
             Number of observs.   =             15 
Model size   Parameters           =              4 
             Degrees of freedom   =             11 
Residuals    Sum of squares       =        8.84648 
             Standard error of e  =         .89679 
Fit          R-squared            =         .40760 
             Adjusted R-squared   =         .24604 
Model test   F[  3,    11] (prob) =     2.5(.1116) 
Diagnostic   Log likelihood       =      -17.32385 
             Restricted(b=0)      =      -21.25067 
             Chi-sq [  3]  (prob) =   7.9(  .0491) 
Info criter. Akaike Info. Criter. =         .00530 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|    -.42591         .47138     -.90  .3662    -1.34979    .49798 
      B2|     .58062*        .31447     1.85  .0648     -.03574   1.19697 
      B3|    -.30570         .27612    -1.11  .2682     -.84689    .23548 
      B4|    -.36097         .33212    -1.09  .2771    -1.01192    .28997 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E14.12 Technical Details 
 
 LIMDEP uses the Gauss-Marquardt method for nonlinear least squares.  The iteration is 
 

   b(k+1)  =  b(k)  +  ( ) 1
)()'(

−
kk 00 XX X0′(k)e0(k) 

 
where the matrix of pseudo-regressors from the linearized regression has ith row equal to the 
transpose of 
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and   ei
0(k) =  yi  -  f(xi,b(k)). 

 
Convergence is measured by the ‘gradient’ measure, 
 

   δ(k)   = e0(k) ′ ( ) 1
)()'(

−
kk 00 XX e0(k) 

 
The tolerance value is 1.D-20.  (Note the convergence assessment in the preceding example. 
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 This iterative procedure can break down for two reasons.  Since it is a Newton-like method 
without a controlled line search, it is possible for the estimated parameter vector to diverge, or to 
drift to a place in the parameter space where the regression function cannot be computed.  If this 
happens, the message  
 

Function is no longer computable. 
 
will appear in the output.  The second failure can occur when the current values of the parameters 
causes the second moment matrix to become nonpositive definite.  For example, a regression 
function that includes exp(b′x) might degenerate to a column of zeros for an extreme value of the 
parameters.  In this case, the message 
 
 Moment matrix has become nonpositive definite. 
 
will appear in your results.  In both of these cases, LIMDEP will make one more attempt to fit the 
model, using a different algorithm.  You will see the message 
 
 Switching to BFGS algorithm 
 Nonlinear Estimation of Model Parameter 
 Method=BFGS  ; Maximum iterations=100 
 Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB| .0000D+00 
 Nodes for quadrature: Laguerre=40;Hermite=20. 
 Replications for GHK simulator= 100 
 
followed by the standard output for nonlinear optimization.  At this point, LIMDEP will have 
abandoned the procedure used only for nonlinear least squares, and switched to minimizing the sum 
of squares as an ordinary optimization problem.  The starting values for this second attempt will be 
the ones initially used for the Gauss-Marquardt method.  This is what occurred in the NIST example 
Hahn1 in Section E14.6. 

All derivatives that you do not supply explicitly are obtained by numerical approximation, 
using a symmetric (two sided) rate of change.  The Hessian is approximated by the summed outer 
products of the first derivatives.  This is the BHHH estimator.  Thus, it is always nonnegative 
definite.  But, it can be singular in a particularly difficult problem.  If you request Newton’s method, 
the Hessian is computed using two sided approximations to the second derivatives.  For most 
problems, this will be sufficiently accurate.  But, this matrix is not guaranteed to be positive definite, 
so you may get a diagnostic for a singular Hessian when using this method.  If this happens, use one 
of the other methods. 
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E14.13 The NIST Accuracy Benchmarks 
 
 The National Institute of Standards and Technology (NIST) has published a suite of 27 
benchmark problems for testing nonlinear regression programs.  The NIST site contains statements 
of the problems and the datasets for their solutions, all of which can be downloaded from their 
website: http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml. McCullough (1999) has extensively 
documented the performance of several econometric software packages, including LIMDEP, in 
solving the NIST benchmarks.  Many of the NIST datasets and LIMDEP commands to carry out the 
tests are included with the LIMDEP program, and can be found in the last book of the Help file.  
Click Help, Help Topics, then double click The Nist Benchmarks book.  The NIST datasets and 
files may also be found in the C:\LIMDEP10\Command Files folder created with program 
installation.  All of the data and code needed to carry out the nonlinear least squares tests with 
LIMDEP are provided in both locations. 
 McCullough’s (1999) survey suggests how the tests results can be summarized.  As noted 
earlier, NIST provides two sets of starting values, a ‘difficult’ set (Start 1) and an easier set (Start 2) 
that is closer to the correct solution. McCullough provides a measure of the accuracy of the solutions 
using either set based on the number of correct digits produced, compared to the NIST certified 
solution.  He also suggests that some other benchmarks be used to evaluate software, namely 
comparisons of solutions using program default settings vs. user modifications of the defaults, such 
as changes in the algorithms, provision of derivatives, or changes in the convergence tolerances. 
 The listing below shows some program code and a summary of the solutions to these 
problems as implemented in LIMDEP.  A full listing of all the test runs would occupy an inordinate 
amount of space in this manual.  The following summarizes the results: 
 

• 26 of the 27 tests can be solved with LIMDEP to greater than nine digit accuracy.  The 
exception is the Hahn1 problem examined in detail above, which is solved to 6.8 digit 
accuracy.  22 of the 27 solutions are obtained to greater than 10 digit accuracy. 
 

• Of the 27 solutions obtained, all but five are reachable from Start 1. 
 

• Using the basic defaults and Start 1, 19 of the 27 problems are solvable.  The accuracy 
exceeds nine digits in 15 of these 19, exceeds six digits in three of the remaining four, and is 
at less than six digits in only one of these solutions. 

 
In every case in which a solution is obtained, that solution is improved by including the analytic 
derivatives in the command.  In general, this appears to be a good idea when it is feasible.  This is 
clear with the Hahn1 problem shown earlier, for which the solution is not attainable without 
supplying the derivatives.  The other modification which produces some benefit is to switch to the 
BFGS algorithm, then tighten the gradient convergence rule to, say, 1.D-12.  Finally, it is 
occasionally necessary to increase the maximum number of iterations.  Iterations in the hundreds are 
not uncommon. 
 
  

http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml�
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E14.13.1 Setting up the NIST Benchmarks 
 
 To illustrate the test procedure, we show the full setup for the Hahn1 problem examined in 
Section E14.6.  The data are presented there.  We now READ them as variables yh1 and xh1.  The 
parameters for the test are placed in a matrix arranged in the form 
 

Number of observations        Solutions 
Number of parameters   Start 1     Start 2   Slopes    Std errors 
 0    b1(0)_1     b1(0)_2  b1(*)     s1(*) 
 0    b2(0)_1     b2(0)_2  b2(*)     s2(*) 
 ...    ...         ... ...       ... 
Correct sum of squares   0           0        0         0 

     
MATRIX;Hahn1=[ 
236,     10,          1,           1.0776351733E+00, 1.7070154742E-01/ 
  7,     -1,         -0.1,        -1.2269296921E-01, 1.2000289189E-02/ 
  0,      0.05,       0.005,       4.0863750610E-03, 2.2508314937E-04/ 
  0,     -0.00001,   -0.000001,   -1.4262662514E-06, 2.7578037666E-07/ 
  0,     -0.05,      -0.005,      -5.7609940901E-03, 2.4712888219E-04/ 
  0,      0.001,      0.0001,      2.4053735503E-04, 1.0449373768E-05/ 
  0,     -0.000001,  -0.0000001,  -1.2314450199E-07, 1.3027335327E-08/ 
1.5324382854E+00, 0,  0,           0,                0              ]$ 

 
We use a procedure to prepare the data set and matrix elements for the execution: 
 

PROC = Setup(Problem) $ 
CALC   ; ndata = problem(1,1) 
         ; nparm = problem(2,1)  
         ; np1 = nparm+1$ 
MATRIX  ; start1 = Part(problem,1,nparm,2,2) 
         ; start2 = Part(problem,1,nparm,3,3)  
         ; trueb = Part(problem,1,nparm,4,4) 
         ; trues = Part(problem,1,nparm,5,5)  
         ; trueee = Part(problem,np1,np1,1,1) $ 
CALC    ; truess = trueee $ 
SAMPLE  ; 1 - nparm $ 
CREATE  ; truebeta = trueb $ 
CREATE  ; truese = trues $ 
SAMPLE  ; 1 - ndata $ 
ENDPROC 

 
The procedure sets up the specific NIST nonlinear least squares problems.  It sets the sample size 
and problem size and extracts from the setup matrix the two sets of starting values into matrices.  
The two sets of ‘true’ values are also placed in matrices, and copied into variables in preparation 
for the LRE (log relative error) score routine that is executed after estimation.  The procedure must 
be executed with 
 

EXEC   ; Proc = Setup(problem name) $ 
 
before the NLSQ commands can be carried out. 
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 The next step is to compute the nonlinear least squares estimates, first using the program 
default values and Start 1, second using whatever methods are available – what McCullough labels 
an ‘all out assault’ on the solution. 
 
Step 1. Set up the problem: 
 

EXECUTE  ; Proc = Setup(Hahn1) $ 
TITLE   ; Nonlinear Least Squares Estimation. Data set = Hahn1 $ 
CREATE ; xh12 = xh1*xh1 ; xh13 = xh12*xh1$ 

 
Step 2. Solution attempt using program defaults: 

 
NLSQ  ; Lhs = yh1 

; Fcn = (b1+b2*xh1+b3*xh12+b4*xh13) /   
                   (1+b5*xh1+b6*xh12+b7*xh13) 
       ; Labels = b1,b2,b3,b4,b5,b6,b7 
       ; Output = 0 ; Dfc ; Start = Start 1 $ 
 
After fitting the model, we use another procedure to ‘score’ the solution in terms of its agreement 
with the NIST certified solution: 
 
Maximum iterations exceeded 
----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=YH1      Mean                 =       14.21530 
             Standard deviation   =        5.76869 
             Number of observs.   =            236 
Model size   Parameters           =              7 
             Degrees of freedom   =            229 
Residuals    Sum of squares       =        7.91052 
             Standard error of e  =         .18586 
Fit          R-squared            =         .99899 
             Adjusted R-squared   =         .99896 
Model test   F[  6,   229] (prob) = 37693.1(.0000) 
Diagnostic   Log likelihood       =       65.81589 
             Restricted(b=0)      =     -747.94531 
             Chi-sq [  6]  (prob) =1627.5(  .0000) 
Info criter. Akaike Info. Criter. =       -3.33632 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|    10.2621***      .39880    25.73  .0000      9.4805   11.0438 
      B2|    -.91579***      .02468   -37.10  .0000     -.96416   -.86741 
      B3|     .02122***      .00041    52.11  .0000      .02042    .02202 
      B4|-.19559D-04***   .1436D-06  -136.22  .0000 -.19841D-04  -.19278D-04 
      B5|     .00575***      .00116     4.96  .0000      .00348    .00803 
      B6|     .00101***   .2373D-04    42.65  .0000      .00097    .00106 
      B7|-.10030D-05***   .8758D-10 ********  .0000 -.10032D-05  -.10028D-05 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This routine evaluates the quality of the solution to the NLSQ routine for each of the NIST 
problems. The computation is documented in McCullough (1999).  It effectively measures the 
number of correct digits in the solution.  The certified NIST values are given with 11 digits, so that is 
the maximum value.  LRE scores are computed for coefficient vectors and for standard errors. The 
overall score for a problem is then the minimum value in the vector of LREs.  No value is computed 
for the sum of squares, since it will be redundant.  A correct solution for the coefficient vector 
implies a correct solution for the sum of squares, and vice versa (unique solution at the true 
minimum). 

 
PROC = Score $ 
MATRIX ; betahat1 = b ; sehat1 = Diag(varb)  
        ; sehat1 = Esqr(sehat1) ; sehat1 = Vecd(sehat1) $ 
SAMPLE ; 1 - nparm $ 
CREATE ; betahat = betahat1 $ 
CREATE ; sehat = sehat1 $ 
CREATE ; If((betahat - truebeta)#0) 
            lrebeta = -Log(Abs(betahat - truebeta)/Abs(truebeta))/Log(10) 
        ; (Else) lrebeta = 11.0$ 
CREATE ; If(lrebeta > 11) lrebeta = 11 ; If(lrebeta < 0) lrebeta = 0 $ 
CREATE ; If((sehat-truese)#0) 

  lrese = -Log(Abs(sehat - truese)/ Abs(truese))/Log(10) 
        ; (Else) lrere = 11.0$ 
CREATE ; If(lrese > 11)lrese = 11 ; If(lrese < 0)lrese = 0 $ 
TYPE    ; Coefficient Estimates $ 
TYPE    ;      True              Estimated             LRE $ 
WRITE  ; truebeta, betahat, lrebeta ; Format = (3G20.11) $ 
CALC   ; List ; lreb = Min(lrebeta) $ 
TYPE    ; Estimated Standard Errors $ 
TYPE    ;      True              Estimated             LRE $ 
WRITE  ; truese, sehat, lrese ; Format = (3G20.11) $ 
CALC   ; List ; lres = Min(lrese)   $ 
CALC   ; If((sumsqdev - truess) #0 ) 
           lress = -Log(Abs(sumsqdev -truess) / Abs(truess))/Log(10) 
        ; (Else) lress = 11.0$ 
CALC   ; If(lress > 11)lress = 11 ; If(lress < 0)lress = 0 $ 
SAMPLE ; 1 $ 
CREATE ; Cert_ss = truess ; actualss = sumsqdev ; scoress = lress $ 
TYPE    ; Sum of Squared Deviations $ 
TYPE    ;      True              Estimated             LRE $ 
WRITE  ; cert_ss , actualss , scoress ; Format = (3G20.11) $ 
SAMPLE ; 1 - ndata $ 
ENDPROC 

 
After estimation, the routine is invoked with 

 
EXECUTE  ; Proc = Score $ 
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It displays the results below the model output.  Note that SCORE is wired to SETUP, and will only 
operate properly with respect to the immediately preceding SETUP and NLSQ commands. 

This procedure requires only EXECUTE ; Proc = SCORE $ to obtain the results. As noted 
earlier, this default solution ends up nowhere near the correct solution.  The SCORE routine 
provides the following results:  Note that the LRE score is essentially 0.  This is the number of 
correct digits, with 11.0 being a perfect score. 
 
Coefficient Estimates 
      True              Estimated             LRE 
    1.0776351733        10.262109935        .00000000000 
   -.12269296921       -.91578640611        .00000000000 
    .40863750610E-02    .21219532055E-01    .00000000000 
   -.14262662514E-05   -.19559299652E-04    .00000000000 
   -.57609940901E-02    .57544847240E-02    .00000000000 
    .24053735503E-03    .10120072962E-02    .00000000000 
   -.12314450199E-06   -.10030135584E-05    .00000000000 
    LREB    =  .00000000000000000D+00 
 Estimated Standard Errors 
      True              Estimated             LRE 
    .17070154742        .39880401139        .00000000000 
    .12000289189E-01    .24682520390E-01    .00000000000 
    .22508314937E-03    .40716767594E-03    .92069941905E-01 
    .27578037666E-06    .14358433722E-06    .31934491643 
    .24712888219E-03    .11599360500E-02    .00000000000 
    .10449373768E-04    .23726005203E-04    .00000000000 
    .13027335327E-07    .87579253224E-10    .29295025797E-02 
    LRES    =  .00000000000000000D+00 
 Sum of Squared Deviations 
      True              Estimated             LRE 
    1.5324382854        7.9105155265        .00000000000 
 
We then try to solve the problem using some options to improve the search, and reevaluate the score. 
 

NLSQ  ; Lhs = yh1 
; Fcn = top = (b1+b2*xh1+b3*xh12+b4*xh13) | 

               bot = (1+b5*xh1+b6*xh12+b7*xh13) | 
     q = 1/bot | 
     _b1 = q  |  
     _b2 = xh1*q  | 
     _b3 = xh12*q  | 
     _b4 = xh13*q  |  
     _b5 = -top * q * q * xh1 | 
     _b6 = _b5 * xh1  | 
      _b7 = _b6 * xh1  | 
               top * q  
   ; Labels = b1,b2,b3,b4,b5,b6,b7 
       ; Output = 0 ; Alg = bfgs ; Dfc ; Start = Start 1 $ 
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----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=YH1      Mean                 =       14.21530 
             Standard deviation   =        5.76869 
             Number of observs.   =            236 
Model size   Parameters           =              7 
             Degrees of freedom   =            229 
Residuals    Sum of squares       =        1.53244 
             Standard error of e  =         .08180 
Fit          R-squared            =         .99980 
             Adjusted R-squared   =         .99980 
Model test   F[  6,   229] (prob) =194732.2(.0000) 
Diagnostic   Log likelihood       =      259.49316 
             Restricted(b=0)      =     -747.94531 
             Chi-sq [  6]  (prob) =2014.9(  .0000) 
Info criter. Akaike Info. Criter. =       -4.97765 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|    1.07764***      .17070     6.31  .0000      .74307   1.41220 
      B2|    -.12269***      .01200   -10.22  .0000     -.14621   -.09917 
      B3|     .00409***      .00023    18.15  .0000      .00365    .00453 
      B4|-.14263D-05***   .2758D-06    -5.17  .0000 -.19668D-05  -.88575D-06 
      B5|    -.00576***      .00025   -23.31  .0000     -.00625   -.00528 
      B6|     .00024***   .1045D-04    23.02  .0000      .00022    .00026 
      B7|-.12314D-06***   .1303D-07    -9.45  .0000 -.14868D-06  -.97611D-07 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Coefficient Estimates 
      True              Estimated             LRE 
    1.0776351733        1.0776360397        6.0947662175 
   -.12269296921       -.12269298842        6.8052541456 
    .40863750610E-02    .40863750498E-02    8.5617610439 
   -.14262662514E-05   -.14262669557E-05    6.3064221751 
   -.57609940901E-02   -.57609949011E-02    6.8514956358 
    .24053735503E-03    .24053734756E-03    7.5081180728 
   -.12314450199E-06   -.12314452770E-06    6.6802617659 
[CALC] LREB    =      6.0947662 
 Estimated Standard Errors 
      True              Estimated             LRE 
    .17070154742        .17070153182        7.0389926603 
    .12000289189E-01    .12000287674E-01    6.8987668645 
    .22508314937E-03    .22508311606E-03    6.8297481252 
    .27578037666E-06    .27578034073E-06    6.8851424753 
    .24712888219E-03    .24712885330E-03    6.9322284075 
    .10449373768E-04    .10449372086E-04    6.7933913363 
    .13027335327E-07    .13027333567E-07    6.8694475538 
[CALC] LRES    =      6.7933913 
 Sum of Squared Deviations 
      True              Estimated             LRE 
    1.5324382854        1.5324382854        10.628709885 
 
This produces much greater agreement with the certified solutions. 
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E14.13.2 Application – Dan Wood 
 
 The Dan Wood problem is much easier to solve than Hahn1, as the following shows. 
 

DAN WOOD 
Model:         Miscellaneous Class 
               2 Parameters (b1 and b2) 
               y  = b1*x**b2  +  e 
               Lower Level of Difficulty 
                                   ----[ NIST Certified Solutions]--- 
        Start 1     Start 2           Parameter     Standard Deviation 
  b1 =   1           0.7           7.6886226176E-01  1.8281973860E-02 
  b2 =   5           4             3.8604055871E+00  5.1726610913E-02 
Residual Sum of Squares:                    4.3173084083E-03 
Residual Standard Deviation:                3.2853114039E-02 
Degrees of Freedom:                                4 
Number of Observations:                            6 
Data:  y              x 

2.138  1.309 
3.421  1.471 
3.597  1.49 
4.34  1.565 
4.882  1.611 
5.66  1.68 

 
MATRIX ; DanWood = [ 

     6, 1, 0.7, 7.6886226176E-01, 1.8281973860E-02/ 
  2, 5, 4, 3.8604055871E+00, 5.1726610913E-02/ 

                          4.3173084083E-03, 0, 0, 0, 0] $ 
EXECUTE  ; Proc = Setup(DanWood) $ 
TITLE  ; Nonlinear Least Squares Estimation. Data set = DanWood $ 
NLSQ  ; Lhs = ydw 

       ; Fcn = b1 * xdw^b2 
      ; Labels = b1,b2 

       ; Dfc ; Start = Start 1 ; Tln = 1.d-20 $ 
 
----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=YDW      Mean                 =        4.00633 
             Standard deviation   =        1.23398 
             Number of observs.   =              6 
Model size   Parameters           =              2 
             Degrees of freedom   =              4 
Residuals    Sum of squares       =    .431731E-02 
             Standard error of e  =         .03285 
Fit          R-squared            =         .99943 
             Adjusted R-squared   =         .99929 
Model test   F[  1,     4] (prob) =  7050.0(.0000) 
Diagnostic   Log likelihood       =       13.19702 
             Restricted(b=0)      =       -9.22815 
             Chi-sq [  1]  (prob) =  44.9(  .0000) 
Info criter. Akaike Info. Criter. =       -6.57022 
Not using OLS or no constant. Rsqrd & F may be < 0 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|     .76886***      .01828    42.06  .0000      .73303    .80469 
      B2|    3.86041***      .05173    74.63  .0000     3.75902   3.96179 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Coefficient Estimates 
      True              Estimated             LRE 
    .76886226176        .76886226185        9.9426221544 
    3.8604055871        3.8604055868        10.171162836 
[CALC] LREB    =      9.9426222 
 Estimated Standard Errors 
      True              Estimated             LRE 
    .18281973860E-01    .18281973717E-01    8.1071779144 
    .51726610913E-01    .51726610215E-01    7.8695705878 
[CALC] LRES    =      7.8695706 
 Sum of Squared Deviations 
      True              Estimated             LRE 
    .43173084083E-02    .43173084083E-02    11.000000000 
 
 NLSQ  ; Lhs = ydw 
   ; Fcn  = _b1 = xdw^b2  | 
             _b2 = b1 * _b1 * Log(xdw) | 
                   b1 * xdw^b2 
       ; Labels = b1,b2 
   ; Dfc ; Start = Start 1 ; Tln = 1.d-20 $ 
 
----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=YDW      Mean                 =        4.00633 
             Standard deviation   =        1.23398 
             Number of observs.   =              6 
Model size   Parameters           =              2 
             Degrees of freedom   =              4 
Residuals    Sum of squares       =    .431731E-02 
             Standard error of e  =         .03285 
Fit          R-squared            =         .99943 
             Adjusted R-squared   =         .99929 
Model test   F[  1,     4] (prob) =  7050.0(.0000) 
Diagnostic   Log likelihood       =       13.19702 
             Restricted(b=0)      =       -9.22815 
             Chi-sq [  1]  (prob) =  44.9(  .0000) 
Info criter. Akaike Info. Criter. =       -6.57022 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|     .76886***      .01828    42.06  .0000      .73303    .80469 
      B2|    3.86041***      .05173    74.63  .0000     3.75902   3.96179 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Coefficient Estimates 
      True              Estimated             LRE 
    .76886226176        .76886226176        11.000000000 
    3.8604055871        3.8604055871        11.000000000 
[CALC] LREB    =     11.0000000 
 Estimated Standard Errors 
      True              Estimated             LRE 
    .18281973860E-01    .18281973860E-01    11.000000000 
    .51726610913E-01    .51726610913E-01    11.000000000 
[CALC] LRES    =     11.0000000 
 Sum of Squared Deviations 
      True              Estimated             LRE 
    .43173084083E-02    .43173084083E-02    11.000000000 
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E15: Linear Models for Time Series/Cross 
Section Data 

 
E15.1 Introduction 
 
 The models described in this chapter are of a type based on balanced panels in which the 
regression specification accommodates the natural grouping in the data in a more structured (and less 
flexible) fashion than the panel data models to follow in Chapters E16-E19.  They are accessed with 
the command 
 
 TSCS   ; Lhs = dependent variable  
   ; Rhs = independent variables  
   ; Pds = number of observations per group  $  
 
for the first case, in which the panel structure of the data is built into the disturbance covariance 
matrix, and 
 
 REGRESS  ; Lhs = dependent variable  
   ; Rhs = independent variables  
   ; Pds = number of observations per group  
   ; RCM $  
 
for the second case in which the panel data aspect of the model appears in variation of the regression 
parameters. 
 The essential structure  of the first form of the model is 
 
   yit  =  β′xit  +  εit 
 
The groupwise covariance structures model considered in this chapter is 
 
   yit  =  β′xit  +  εit, Cov[εit,εjs]  =  σij×1(t = s). 
  
In this model, the regression function is assumed to be the same for all groups, and the structure of 
the model is built into the pattern of heteroscedasticity and contemporaneous correlation across 
groups.  This model also allows for first order autocorrelation of the form Corr[εit,εis] = ρi

|t-s|.    The 
second form of the model is 
 
   yit  =  βi′xit  +  εit 
 
where the variation in the parameter vector is built on a random parameter structure, 
 
   βi  =  β  +  wi, wi ~f(0,Γ). 
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E15.2 Panel Data Arrangement and Setup 
 
 Your data for this model are assumed to consist of variables: 
 
   yit, x1it, x2it, ..., xKit, Iit,  i=1,...,N, t = 1,...,T, 

   yit =  dependent variable, 
   xit =  set of independent variables, 
   K   =  number of regressors, including one, 
   N   =  number of groups, 
   T  =  fixed number of observations in group ‘i.’ 
 
The data set for all panel data models in LIMDEP will normally consist of multiple observations, 
denoted  t = 1,...,Ti, on each of i = 1,...,N observation units, or ‘groups.’  A typical data set would 
include observations on several persons or countries each observed at several points in time, Ti, for 
each country.  In the following, we use ‘t’ to symbolize ‘time’ purely for convenience.  The panel 
could consist of N cross sections observed at different locations or N time series drawn at different 
times, or, most commonly, a cross section of N time series, each of length Ti.  The estimation 
routines are structured to accommodate large values of N, such as in the national longitudinal data 
sets, with Ti being as large or small as dictated by the study but not directly relevant to the internal 
capacity of the estimator.  Data for the panel data estimators in LIMDEP are assumed to be arranged 
contiguously in the data set.  Logically, you will have  
 

   Nobs  =  ∑
=

N

i
iT

1
 

 
observations on your independent variables, arranged in a data matrix 
 

T1 observations for group 1 
T2 observations for group 2 
           … 
TN observations for group N 

 
and likewise for the data on y, the dependent variable.  When you first read the data into your 
program, you should treat them as a cross section with Nobs observations.  The partitioning of the 
data for panel data estimators is done at estimation time.  Chapter R5 contains further details on how 
to set up and use panel data sets. 
 
NOTE:  The estimators described in this chapter require a balanced panel.  Ti must be the same for 
all i.  These are the only panel data models in LIMDEP that have this restriction. 
 
 
  

X  =  
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E15.3 Groupwise Heteroscedasticity, Correlation and 
Autocorrelation 
 
 This chapter describes estimation of a form of panel data model in which data are (typically) 
observed for a relatively large number of periods and for a relatively small number of cross sectional 
units – the reverse of the more familiar panel arrangement.  Typical applications involve cross 
country studies, such as the 30 OECD countries, observed for a relatively large number of years.  
The model is 
   yit  =  β′xit  +  εit, i = 1,...,N,  t = 1,...,T. 
 
The subscript ‘i’ indexes groups, ‘t’ indexes periods.  The coefficient vector is assumed to be 
constant over time and for all groups.  The model allows for: 
 

• groupwise heteroscedasticity,   E[εit
2]  =  σii, 

• cross group correlation,   Cov[εit,εjt]  =  σij, 

• within group autocorrelation,  εit  =  ρiεi,t-1  +  uit. 
 
For the nonautocorrelated models, the estimator may be two step FGLS or iterated FGLS which 
produces a maximum likelihood estimator.  For the models with autocorrelation, the estimator may 
be three step GLS or iterated GLS, which though convergent, does not produce the MLE because of 
the Jacobian term. 
 The number of cross sectional units, N, is limited to 100.  The number of periods per group 
must be fixed at some T.  The full sample is limited to 200,000 observations for this estimator. 
 The TSCS model formulation provides three forms of the regression, labeled 
 
 S0 =  homoscedastic and uncorrelated across groups (linear regression), 
 S1 =  groupwise heteroscedastic, 
 S2 =  groupwise heteroscedastic and correlated across groups. 
 
The basic model command requests estimation and display of all three forms of the model.  There 
are also three forms of the autocorrelation model: 
 
 R0 =  no autocorrelation, 
 R1 =  common autocorrelation coefficient, ρ, 
 R2 =  group specific autocorrelation coefficient, ρi. 
 
With no further modification, this creates nine different variants of the model, S0,R0, S0,R1, etc. 
Results presented with this model will include a full set of results for all models, the three base cases, 
or the nine permutations if you specify ; AR1.  You may limit estimation to one of the specific 
models with the ; Model = Ss,Rd specification in the command, for example, ; Model = S1,R1.  All 
forms up to this model in the order, S0,R0, S1,R0, S2,R0, S0,R1, ... are estimated, but only the one 
you request is actually reported.  Estimation stops at that point, so any saved results are based on the 
model you specify.  Otherwise, the saved results are based on S2,R0 if you do not specify ; AR1 or 
S2,R2 if you do. 
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E15.3.1 Command and Options 
 
 The basic command for the ‘Time Series/Cross Section’ estimator is 
 
 TSCS  ; Lhs = ...   
   ; Rhs = ...   
   ; Pds =  number of periods $ 
 
You may use REGRESS ; TSCS instead of TSCS if you prefer.  These are synonyms.  Although 
this is a panel data estimator, its construction differs slightly from the ones in the preceding sections. 
 

• The panel must be balanced.  The construction of the disturbance covariance matrix, Σ 
requires this. 
 

• There is no stratification indicator.  The data set consists of N blocks of T observations. 
 
Options are 
   ; AR1   to request the models of autocorrelation 
   ; MLE   to request the iterative estimators (also for AR1) 
   ; Model = S0,R0 or S1,R0, etc. 
 
The ; Model = type specification allows you to stop estimation at, and save the results for a 
particular specification rather than estimating all forms of the model and saving the last one 
estimated.  The standard options available for TSCS also include: 
 
   ; Wts =    an optional weighting variable 
   ; Res = name  to retain residuals 
   ; List    to display fitted values, residuals, and forecast intervals 
   ; Keep = name to retain predictions 
   ; Output = 4  to list various covariance matrices 
   ; Labels =   a list of names for the groups 
 
Labels are used to label the rows and columns of residual covariance and correlation matrices.  They 
can also be used in the next specification, which is used to place some rows and columns of zeros in 
the disturbance covariance matrix; 
 
   ; Group =  the list labels or numbers of groups that are freely correlated. 
 
For the ; Group option, any group not included in the list is assumed to be uncorrelated with all 
groups in the list as well as all other groups not in the list.  If you have not used ; Labels, then use 
simple group numbers.  If you have used labels, then the list should use the labels you supply.  For 
example:  In the Grunfeld data, five of the ten groups (firms), GM, GE, Chrysler, U.S. Steel, and 
Westinghouse.   The following two specifications would be equivalent: 
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 TSCS  ; Lhs = i   
   ; Rhs = one,f,c   
   ; Pds = 20   
   ; Group = 1,3,4   
   ; Output = 4 $ 
and 
 TSCS  ; Lhs =  i   
   ; Rhs = one,f,c   
   ; Pds = 20 
   ; Labels = gm,ge,chrysler,us_steel,westnghs 
   ; Group = gm,chrysler,us_steel   
   ; Output = 4 $ 
 
The correlation matrix reported would be as follows for the second form – the first would use simple 
firm numbers 1-5 instead of the names: 
 
Matrix r(ei,ej) has  5 rows and  5 columns. 
         GM                 GE         CHRYSLER     US_STEEL     WESTNGHS 
        +------------------------------------------------------------------ 
GM      |    1.0000    .0000000D+00    -.3576       -.4907    .0000000D+00 
GE      | .0000000D+00    1.0000    .0000000D+00 .0000000D+00 .0000000D+00 
CHRYSLER|    -.3576    .0000000D+00    1.0000        .8837    .0000000D+00 
US_STEEL|    -.4907    .0000000D+00     .8837       1.0000    .0000000D+00 
WESTNGHS| .0000000D+00 .0000000D+00 .0000000D+00 .0000000D+00    1.0000 
 
NOTE:  The zero correlation assumption is forced on the estimator, so GLS is done with the zeros 
specified in the covariance matrix. 
 
E15.3.2 Results 
 
 The results from this model are extensive, as illustrated in the next section.  Results which 
are kept for later use, as well as the residuals and predictions are based on the last model estimated, 
which will be S2,R0 or S2,R2 or on the model indicated in the ; Model = type specification.  These 
are: 
 Matrices: b     = coefficient vector 
   varb = estimated asymptotic covariance matrix for B 
   sigma = N×N covariance matrix of nonautocorrelated disturbances 
   tscs_rho = N×1 vector of estimated autocorrelation coefficients. 
       The values of ρi in tscs_rho are always estimated, even  
        without ; AR1. 
 
 Scalars: rho     = average autocorrelation for the groups (see below), 
   kreg   = number of regressors 
    nreg   = number of periods (not total number of observations) 
 
 Last Model: b_variable  labels to use for Wald tests 
 
 Last Function: Conditional mean = b′x 
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In the general form for the TSCS model, the appropriate asymptotic covariance matrix for 
the ordinary least squares estimator would be 
 

Var[b]  =  (X′X)-1X′ΩX(X′X)-1 
 
where, since this is OLS, X would be the stack of X and Ω would be the block matrix, with ijth block 
equal to σijI.  Expanding this gives 
 

Var[b]  =  [ΣiXi′Xi]-1 × [ΣiΣj σij Xi′Xj] × [ΣiXi′Xi]-1 
 
A consistent estimator of this is easily obtained by just using sij = ei′ej/T for σij.  By default, the 
reported covariance matrix for the first (S0,R0) OLS estimates in this model is just s2(X′X)-1.  You 
can request the preceding alternative estimator by adding 
 

; PCSE (panel corrected standard errors) 
 
NOTE:  This correction (which originates with Beck and Katz (1995)) only applies to the standard 
errors computed for the OLS estimates (form S0,R0). 
 
The panel corrected standard errors estimator is a special case.  Panel corrected standard errors 
(PCSE) in TSCS allows more than 100 groups; there is no limit on the number of groups; the limit is 
only 200,000 observations in total.  The reason is that it is not necessary to compute the N×N matrix 
Σ for this calculation. The example below for the Grunfeld data (Greene, 2011, Table F10.4) 
illustrates the difference. 
 
 TSCS   ; Lhs = i ; Rhs = one,f,c ; Pds = 20 ; Model = S0,R0 $ 
 
----------------------------------------------------------------------------- 
Groupwise Regression Models 
Estimator =                  2 Step GLS 
Homoscedastic Regression            (S0) 
Nonautocorrelated disturbances      (R0) 
Pooled OLS residual variance (SS/nT)   8779.2524 
Test statistics for homoscedasticity: 
Deg.Fr. =    9 C*(.95) =  16.92 C*(.99) =  21.67 
Lagrange multiplier statistic      =    209.7588 
Wald                statistic      =  17051.7892 
Likelihood ratio    statistic      =    268.5190 
Log-likelihood function =           -1191.802360 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -42.7144***     9.44007    -4.52  .0000    -61.2166  -24.2122 
       F|     .11556***      .00579    19.95  .0000      .10421    .12691 
       C|     .23068***      .02528     9.12  .0000      .18112    .28023 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 TSCS   ; Lhs = i ; Rhs = one,f,c ; Pds = 20 ; Model = S0,R0 ; PCSE $ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=ONE      Mean                 =      145.95825 
             Standard deviation   =      216.87530 
             No. of observations  =            200  Degrees of freedom 
Regression   Sum of Squares       =    .760409E+07           2 
Residual     Sum of Squares       =    .175585E+07         197 
Total        Sum of Squares       =    .935994E+07         199 
             Standard error of e  =       94.40840 
Fit          R-squared            =         .81241  R-bar squared =   .81050 
Model test   F[  2,   197]        =      426.57573  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -1191.80236  Akaike I.C.   =  9.11015 
             Restricted (b=0)     =    -1359.15096  Bayes  I.C.   =  9.15962 
             Chi squared [  2]    =      334.69719  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -42.7144***     6.78096    -6.30  .0000    -56.0048  -29.4239 
       F|     .11556***      .00721    16.02  .0000      .10143    .12970 
       C|     .23068***      .02789     8.27  .0000      .17602    .28533 
--------+-------------------------------------------------------------------- 
 

 If you include ; MLE in your command, then the FGLS estimators will be iterated to 
convergence. This gives the maximum likelihood estimators for the R0 cases.  When there is 
autocorrelation, this is only approximately MLE.  The problem is the first observation and the 
Jacobian term in the log likelihood.  In any event, with MLE in the command, the results will contain 
an additional table, like the one shown below.  Note that the log likelihood for all nine cells is 
calculated correctly.  However, the R1 and R2 parameter estimates are not the true MLEs, as noted 
above.  Thus, one might want to be careful in using these for any kind of formal testing. Note, for 
example, that the value of logL shown for S2,R2 is less than that for S2,R1, whereas if the estimates 
were true MLEs, the reverse would be true. 
 
      Log-likelihood functions for estimated models 
    +--------------------+--------------------+--------------------+ 
    |         R0         |         R1         |         R2         | 
    | Log-L   Parameters | Log-L   Parameters | Log-L   Parameters | 
    +--------------------+--------------------+--------------------+ 
S0  |  -1191.802     4   |  -1116.263     5   |  -1119.031    14   | 
    +--------------------+--------------------+--------------------+ 
S1  |   -956.689    13   |   -889.176    14   |   -896.558    23   | 
    +--------------------+--------------------+--------------------+ 
S2  |   -798.888    58   |   -782.462    59   |   -800.379    68   | 
    +--------------------+--------------------+--------------------+ 
 

NOTE:  In the GLS estimator for TSCS, it is necessary to invert the NxN covariance matrix of the 
group specific residuals, S.  This matrix has rank less than or equal to the minimum of N and T.  
Since S is a sum of T rank one matrices, its rank cannot exceed T.  If T is less than N, S must be 
singular, and GLS cannot be computed. In words, if you have more periods than groups (e.g., 
countries), then GLS will not be possible.  The condition N > T is autodetected. When this condition 
is detected, a long warning is given, then the routine switches to PCSE with least squares, and halts 
the estimation.  The following illustrates.  The Grunfeld data set we are using contains ten firms.  In 
the regression below, we use all N = 10 firms, and the first T = 8 observations to trigger the warning.  
The ‘correction’ noted in the warning is the PCSE estimator. 
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+-----------------------------------------------------------+ 
| You have T =   8 periods and N =    10 groups. When N > T | 
| the NxN residual covariance matrix EtE/T has rank   T < N | 
| and cannot be inverted. The full GLS estimator cannot be  | 
| computed. The results below include only OLS with a cor-  | 
| rection to the estimated covariance matrix.               | 
+-----------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=ONE      Mean                 =      103.82050 
             Standard deviation   =      142.24309 
             No. of observations  =             80  Degrees of freedom 
Regression   Sum of Squares       =    .119178E+07           2 
Residual     Sum of Squares       =        406639.          77 
Total        Sum of Squares       =    .159841E+07          79 
             Standard error of e  =       72.67064 
Fit          R-squared            =         .74560  R-bar squared =   .73899 
Model test   F[  2,    77]        =      112.83574  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     -454.86123  Akaike I.C.   =  8.60865 
             Restricted (b=0)     =     -509.61493  Bayes  I.C.   =  8.69798 
             Chi squared [  2]    =      109.50740  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -13.4943**      6.11660    -2.21  .0274    -25.4826   -1.5060 
       F|     .09100***      .00651    13.98  .0000      .07825    .10376 
       C|     .18164***      .05254     3.46  .0005      .07866    .28462 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E15.3.3 Application 
 
 We continue the application developed in the previous sections.  The data and model are the 
same.  The command, which requests most of the available output, is the first one below.  In the 
second, we allow a different constant term for each firm (which makes this equivalent to a ‘fixed 
effects’ model).  The results from the regressions are largely the same as those shown in the earlier 
examples, and are not shown. The PLOT command displays the residuals from the two regressions. 
 
 INCLUDE ; New ; Firm <= 5 $ 
 CLIST  ; firms = gm,ge,chrysler,us_steel,wstnghse $ 
 CREATE ; Expand(firm) = d1,d2,d3,d4,d5 $ 
 TSCS  ; Lhs = i ; Rhs = one,f,c ; AR1   
   ; Pds = 20 ; Output = 4 ; Res = e  
   ; Labels = firms $ 
 TSCS  ; Lhs = i ; Rhs = d1,d2,d3,d4,d5, f, c ; AR1   
   ; Pds = 20 ; Labels = firms ; Res = e _i  $ 
 PLOT  ; Rhs = e,e_i ; Spikes = 20.5,40.5,60.5,80.5 ; Bars = 0  
   ; Title = Residuals for TSCS Regression 
    ; Vaxis = Residual $ 
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 The following figure is a plot of the residuals from the two regressions. The figure is 
particularly revealing.  Not only does it show quite clearly the groupwise heteroscedasticity induced 
by the model (same coefficient vector for all firms), but also the autocorrelation.  It is also clear that 
assuming the same coefficient vector applies to all firms induces quite a serious misspecification for 
the third and fifth firms.  Allowing the constant terms to differ by firm partly mitigates the effect, but 
even with this extension, this would still appear to be a badly specified model. 
 

 
Figure E15.1  TSCS Residuals 

 
E15.3.4 Technical Details 
 
 We use the same general procedure for all computations: 
 
Let    Σ    =  N×N period specific covariance matrix, [σij]. 
 
There are three cases:   
 
 S0:   Σ   =  σ2I, homoscedastic regression, 
 S1:   Σ   =  diag[σ11,σ22,...,σNN], groupwise heteroscedastic, 
 S2:   Σ   =  an N×N positive definite matrix, groupwise heteroscedastic   
             and cross group correlated. 
Let  ρ   =  N×1 vector of group specific autocorrelation coefficients. 
 
There are also three cases:  
 
 R0:   ρ =  0, nonautocorrelated, 
 R1:   ρ =  (ρ,ρ,...,ρ), common autocorrelation coefficient, 
 R2:   ρ =  (ρ1,ρ2,...,ρN). 
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Thus, there are nine models when all three contemporaneous covariance specifications (Σ) are 
crossed with the three autocorrelation specifications.  Our approach is to compute all of them as 
restrictions on the model (S2,R2).  The computations are as follows: 
 
Step 1. Ordinary, pooled least squares. 
 
 Substep 1. Use OLS residuals to estimate ρ.  The procedures are as follows: 
 

    R0:  Set ρi = 0. 
    R1:  The common ρ is estimated as (1/N)Σiri where ri is the group specific 
            residual autocorrelation. 
    R2:  Use ri as noted above. 
 

 Substep 2. With ρ in hand, first transform the data using the Prais-Winsten  
    transformation. 
 
Step 2. Compute OLS estimates using the data which have been transformed to remove the 

autocorrelation. Use the OLS residual sum of squares and cross products to compute 
 
    S = [sij]  =  ei′ej/(T-l),  where l=0 for R0 and l=1 for R1 and R2. 
 
Step 3. FGLS regression. 

    β
∧

 =  [X′(S-1⊗I)X]-1X′(S-1⊗I)y =  [ΣiΣjsijXi′Xj]-1[ΣiΣjsijXi′yj], 

 and   Est.Asy.Var[β
∧

]  =  [X′(S-1⊗I)X]-1. 
 
The different specifications are estimated by restricting Σ and/or ρ. 
 Three diagnostic statistics are computed for testing the hypothesis of the restrictions S0 on 
S1 and S1 on S2.  For testing homoscedasticity as a restriction on S1, 
 
 Wald  =  (T/2)Σ i [s2/sii - 1]2,   
 LM    =   (T/2)Σ i [sii/s2 - 1]2, and    
 LR    =  T(Nlogs2  -  Σilogsii) 
 
in which s2 is the pooled OLS residual variance.  All have limiting chi squared distributions with    
N-1 degrees of freedom under the hypothesis of homoscedasticity.  The LR statistic is computed 
using estimates from S0 and S1, while both Wald and  LM are based on S1.  (LM should, in fact, be 
based on S0, so this is an approximation.)  For testing groupwise heteroscedasticity as a restriction 
on S2, we compute 
 
 LM  =  TΣiΣj<i [sjj

2/(siisjj)]  (the squared cross group correlation), 
and LR  =  T(Σilogsii  -  log|S|). 
 
LM is computed using the final GLS estimates while LR is based on both S1 and S2. 
 No specific test is given for autocorrelation.  One can test the significance of the estimated 
correlations, themselves, by referring (T-1)r/(1 - r2) ≈ χ2[1] to the value 3.84, which is the 95% 
critical value from the chi squared distribution with one degree of freedom. 
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 As shown in the example above, the TSCS estimator produces a large amount of output. 
With ; AR1, there are nine regressions.  In addition, several different forms of Σ are shown: 
 

• For all estimators, the untransformed covariance matrix of the residuals for the model.  For 
the three specifications, these are: 

 
 S0:   Σ   = σ2I.  We display the estimate of σ2. 
 S1:   Σ   = a diagonal matrix. The diagonal matrix is displayed.  Note that, in fact, 
           ej i′ej/T will not equal zero, but the model assumes σij = zero. 

S2:   Σ   = a positive definite matrix.  We display the full matrix.  For this case,  
   we also display R = the matrix of cross sectional correlations. 

 
• For Models R1 and R2, the first display is the covariance matrix of the nonautocorrelated 

residuals.  These are the residuals that result from the Cochrane-Orcutt transformation.  
Then, we also display the derived covariance matrix of the autocorrelated residuals.  The 
computations are as follows:  The disturbances are εit = ρi εit + uit. The first matrix displayed 
is the estimate of Σ = Cov[uit,ujt].   This is followed by the estimate of 

 
  Σ**   = Cov[εit,εjt]  =  σij / [(1 - ρi)(1 - ρj)]. 
 
 These matrices are normally not displayed with the standard output.  To request them as
 part of the output, add  
 
   ; Output = 4 to the TSCS command. 
 
If you would prefer to see only a particular set of results for one of the nine models, use 
 
       ; Model = S0,R0 or S1,R0, etc., 
 
for any of the nine forms of the model.  Only that set of results will be displayed, and the final results 
saved as b, varb, etc. will be based on that model. 
 
Two Important Technical Points 
 
 The covariance matrix, S, for Model S2 (the full model) is based on the residuals computed 
from the results of Model S1, the groupwise heteroscedastic regression.  The standard textbook 
treatment of this model prescribes computing S using the results of OLS at the first step.  The former 
is appropriate both under the null of the classical model and the alternative of the full model, so in 
terms of the asymptotic properties of the estimator, it makes no difference.  But, the difference will 
be noticeable numerically in a finite sample.  To use the textbook variant, add 
 
   ; OLS 
 
to the TSCS command.  This requests the estimator of Σ based on the OLS residuals.  There is no 
wisdom on which is a preferable estimator.  In some limited experiments, we have found that the 
iterated FGLS estimator converged more readily using the default estimator rather than the OLS 
estimator, but we could find no theoretical basis on which to explain the finding. 
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 The second point relates to the computation of S in the S2 formulation of the model.  (This is 
one of our most frequently asked questions.)  Let et denote the column vector of N residuals for all N 
groups at a particular time, t.  For Model S2, S is computed using the formula 
 

   ∑
=

=
T

t
ttT 1
'1 eeS  

 

This N×N matrix has rank less than or equal to the minimum of N and T – it is a sum of T rank 1 
N×N matrices.  This means that if you have more countries than periods, it is not possible to invert S, 
so it is not possible to compute Model S2.  This is a general result having nothing to do with the 
software.  The example shown earlier at the end of Section E15.3.2 shows the program reaction to 
finding that your model has this problem. 
 
E15.4 Hildreth, Houck, and Swamy’s Random Coefficients 
Model 
 

 The Hildreth/Houck/Swamy variant of the random coefficients  model (RCM) is 
 
   yi   =  Xiβi  +  εi, i = 1,...,N groups, 

   E[εi | Xi]   =  0,  Var[εi | Xi]  =  σi
2I, 

   βi   =  β  +  vi,  

   E[vi | Xi] =  0,  Var[vi | Xi] =  Γ. 
 
(See Swamy (1971, 1974), Hsiao (1986), and Hildreth and Houck (1968).)  A linear regression 
model applies to each group.  The coefficient vector within the group is a random draw from a 
distribution with overall mean, β which we seek to estimate.  The reduced form of the model is 
 
   yi   =  Xiβ  +  (εi  +  Xivi) 

    =  Xiβ  +  wi , 

with   E[wi | Xi] =  0 

and   Var[wi | Xi] =  σ2I  +  XiΓXi′  =  Ai. 
 
This is a groupwise heteroscedastic and autocorrelated (correlation across observations within 
groups) regression model. 
 
E15.4.1 Command 
 

 This model is set up as a panel data regression model.  The command is 
 
 REGRESS ;  Lhs = ... ;  Rhs = ... 
   ;  Panel 
   ;  RCM   
   ;  Str = the stratification indicator   
  or  ;  Pds = group size $ 
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In the example of the previous section, the stratification indicator would be firm.  As part of the 
labeling of your output, your command may include 
 

  ; Labels = a set of alphanumeric labels for up to 500 groups. 
 
In this setting, there may be any number of groups, i = 1,...,N.  (The limit of 20,000 in earlier 
versions of LIMDEP no longer applies.)  The number of coefficients is limited to 150 as usual.  The 
panel may be unbalanced, with the number of observations in group i equal to Ti.  As before, there is 
no limit on Ti.  Once again, the stratification variable need not be the set of consecutive integers.  It 
can be any set of distinct values, so long as each i has a value.  (See Chapter R5 for discussion of 
setting up panel data for estimation.) 
 The estimation results will include only the feasible GLS (FGLS) estimates.  A deeper analysis 
involving display of results for each group, including the group specific prediction of βi, is requested 
with 
   ; Output = 4 
 
 The REGRESS command builder dialog boxes will construct the instruction for the random 
coefficients model.  The regression is set up as described in Section E16.2 for the panel data, linear 
regression model.  On the Options page, first select Panel data model, then in the Model type 
window, select Random Coefficients.  Next, click Settings to open the dialog box of options for 
the random coefficients model. 
 

• Other options for the classical model apply as usual, but ; AR1 is not available. 
• ; Res and ; Keep for residuals and predictions are based on the estimated overall mean, 
• Values saved include matrices b and varb as usual.  The variance weighted average of the 

OLS values is saved as a K×1 vector beta_hat.  If the number of groups+1 times K  is less 
than 50,000, then the individual predictions for βi are saved as columns in the matrix bt. 

 
The method of computing the individual predictions is given in Section E7.3.2.  
 
 The results saved are:  
 

 Scalars:  sumsqdev, ssqrd, s are based on the sum of squares from β̂ , 
   rsqrd 
   rho, logl   are returned as zero (not computed) 
   ybar, sy   are based on the full, pooled data set 
   kreg  = the number of Rhs variables 
   nreg  = the total number of observations, ΣiTi 
   degfrdm  = nreg - kreg 
   ngroup = the number of groups 
   exitcode  = zero unless data are collinear or a setup error occurs 
 

 Matrices: b = β̂ , the feasible GLS estimate of the mean β 

   varb = the estimated asymptotic covariance matrix for β̂  
   bt  = K×N matrix whose ith column is the estimate of βi 
   gamma  = the estimate of Γ 
   beta_hat = the variance matrix weighted average of the least squares vectors bi.  
     (Sets Γ = 0 in Wi in the expression in Section E15.4.3.) 
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 Last Model: b_variables 
  
 Last Function: Conditional mean function = β’x 
 

You may specify that the coefficients on certain variables are not random.  These 
coefficients will still be estimated by FGLS.  But, under this specification, there are rows and 
columns of zeros in Γ, the  covariance matrix for the slopes, for these coefficients.  Use the 
specification, 

  ; Rh2 = list of variables whose coefficients are not random.  
 
 You may also specify that there is only a single common σ2 instead of group specific 
disturbance variances, σi

2.  The estimate is the pooled OLS estimator, based on a single OLS vector 
of coefficients. A different estimate, s2* can also be requested.  This estimate is based on the sum of 
group specific sums of squares, based on group specific OLS coefficient vectors. This estimate will 
always be smaller than s2 based on a pooled OLS estimate.  Use 
 
   ; Alg = constant  to force a common σ2     
or   ; Alg = group   for the second estimator 
 
We note, this estimator requires that it be possible to compute a least squares estimator, bi, for each 
group.  This limits the applicability of this estimator.  The Grunfeld data used earlier, and below are 
a natural application.  The data are described in Section E7.10.1. 
 
E15.4.2 Application 
 
 Listed below are the results of applying the random coefficients program to the five firm 
Grunfeld data used for our earlier examples.  The command requests the preliminary OLS results     
(; All) and the individual predictions of the group specific coefficient vectors (; Output = 4).  After 
estimation, we compare the residuals from three sets of estimates.  The thick line in the figure tracks 
the GLS residuals from the model with a single coefficient vector.  The lighter dashed line shows the 
residuals from a least squares regression in which each firm is allowed to have a separate constant 
term.  The improvement in the fit is obvious. The lightest dashed line shows the residuals from the 
firm specific estimates derived in the next section.  As might be expected, these appear to produce 
the best fit of the three.  The commands used in the analysis are as follows: 
 
 SAMPLE    ; 1-200 $ 
 SETPANEL ; Group = firm ; Pds = ti $ 
 NAMELIST  ; x = one,f,c $ 
 
Compute the Hildreth and Houck random coefficients regression.  
 
 REGRESS   ; Lhs = i ; Rhs = x ; Panel ; RCM  
   ; All ; Output = 4 ; Res = e $ 
 CREATE   ; Expand(firm) = d1,d2,d3,d4,d5,d6,d7,d8,d9,d10 $ 

CREATE ; ef = 0 $ 
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Compute the least squares results with firm specific constant terms. 
 
 REGRESS ; Lhs = i ; Rhs = d*,f,c ; Res = e_firm $ 
 
Extract the individual vectors in bt and create the residuals using these. 
 

PROCEDURE $ 
 INCLUDE ; New ; firm = j $ 
 MATRIX  ; bf = bt(1:3,j:j) $ 
 CREATE  ; ef = i - x'bf $ 
 ENDPROC  $ 
 EXECUTE  ; j = 1,10 $  
 
Plot the three sets of residuals in the same figure. 
 
 SAMPLE  ; 1-200 $ 
 PLOT   ; Rhs = e,e_firm,ef  
   ; Spikes = 40.4,80.5,120.5,160.5 ; Bars = 0   
   ; Fill ; Symbols ; Endpoints = 0,200 
   ; Title = Residuals by Firm: FGLS and Dummy Variables 
   ; Yaxis = Residual $ 
 
+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| TI         Group sizes  FIRM         10     20     20      20.0 | 
+-----------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=I        Mean                 =      145.95825 
             Standard deviation   =      216.87530 
             No. of observations  =            200  Degrees of freedom 
Regression   Sum of Squares       =    .760409E+07           2 
Residual     Sum of Squares       =    .175585E+07         197 
Total        Sum of Squares       =    .935994E+07         199 
             Standard error of e  =       94.40840 
Fit          R-squared            =         .81241  R-bar squared =   .81050 
Model test   F[  2,   197]        =      426.57573  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -1191.80236  Akaike I.C.   =  9.11015 
             Restricted (b=0)     =    -1359.15096  Bayes  I.C.   =  9.15962 
             Chi squared [  2]    =      334.69719  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -42.7144***     9.51168    -4.49  .0000    -61.3569  -24.0718 
       F|     .11556***      .00584    19.80  .0000      .10412    .12700 
       C|     .23068***      .02548     9.05  .0000      .18075    .28061 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Random Coefficients Model 
Number of groups                 =        10 
Full sample statistics based on GLS: 
Mean of dependent variable       =  145.9582 
Std. Dev. of dependent variable  =  216.8753 
Residual standard deviation      =  105.5392 
R squared                        =     .7656 
Chi-squared for homogeneity test =    901.43 
Degrees of freedom               =        27 
Probability value for chi-squared=   .000000 
X means below are var. weighted OLS slopes. 
Heterosc. e(i,t). s(i) based on b(i,ols) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
CONSTANT|   -9.62929       17.03504     -.57  .5719   -43.01735  23.75878 
       F|     .08459***      .01996     4.24  .0000      .04547    .12370 
       C|     .19942***      .05265     3.79  .0002      .09622    .30262 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
        | Estimate of the underlying distribution of 
        | beta. Estimated mean is b(GLS). Estimated 
        | covar. matrix is sample estimate of Gamma. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
CONSTANT|   -9.62929       48.41739     -.20  .8424  -104.52563  85.26706 
       F|     .08459         .05584     1.51  .1298     -.02486    .19403 
       C|     .19942         .15647     1.27  .2025     -.10725    .50609 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Group specific coefficient estimates 
Prediction for group  1   GROUP001 
Number of Observations  =           20.0 
Group Mean of LHS       =      608.02000 
Group Std. Dev. of LHS  =      309.57463 
Fit Measures for the Estimators 
(When not OLS, Rsqrd = 1-ee/yy may be < 0!) 
Estimator    Sum of Squares    R-squared 
OLS           143205.877411      .921354 
GLS           737640.023023      .594902 
Prediction    150205.440285      .917510 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -55.4418       34.12527    -1.62  .1042   -122.3261   11.4425 
       F|     .09815*        .05504     1.78  .0746     -.00974    .20603 
       C|     .37225**       .15344     2.43  .0153      .07152    .67298 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
(Firms 2 – 9 omitted) 
----------------------------------------------------------------------------- 
Group specific coefficient estimates 
Prediction for group 10   GROUP010 
Number of Observations  =           20.0 
Group Mean of LHS       =        3.08450 
Group Std. Dev. of LHS  =        1.71866 
Fit Measures for the Estimators 
(When not OLS, Rsqrd = 1-ee/yy may be < 0!) 
Estimator    Sum of Squares    R-squared 
OLS               20.026732      .643158 
GLS              656.047378   -10.689645 
Prediction        20.790983      .629540 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.18988       48.39062      .00  .9969   -95.03376  94.65399 
       F|     .01396         .05169      .27  .7870     -.08735    .11528 
       C|     .38426***      .14453     2.66  .0078      .10099    .66753 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=I        Mean                 =      145.95825 
             Standard deviation   =      216.87530 
             Number of observs.   =            200 
Model size   Parameters           =             12 
             Degrees of freedom   =            188 
Residuals    Sum of squares       =        523478. 
             Standard error of e  =       52.76797 
Fit          R-squared            =         .94407 
             Adjusted R-squared   =         .94080 
Model test   F[ 11,   188] (prob) =   288.5(.0000) 
Diagnostic   Log likelihood       =    -1070.78103 
             Restricted(b=0)      =    -1359.15096 
             Chi-sq [ 11]  (prob) = 576.7(  .0000) 
Info criter. Akaike Info. Criter. =        7.98993 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
      D1|   -70.2967       49.70796    -1.41  .1590   -167.7225   27.1291 
      D2|    101.906***    24.93832     4.09  .0001      53.028   150.784 
      D3|   -235.572***    24.43162    -9.64  .0000    -283.457  -187.687 
      D4|   -27.8093**     14.07775    -1.98  .0497    -55.4012    -.2174 
      D5|   -114.617***    14.16543    -8.09  .0000    -142.381   -86.853 
      D6|   -23.1613*      12.66874    -1.83  .0691    -47.9916    1.6690 
      D7|   -66.5535***    12.84297    -5.18  .0000    -91.7252  -41.3817 
      D8|   -57.5457***    13.99315    -4.11  .0001    -84.9717  -30.1196 
      D9|   -87.2223***    12.89189    -6.77  .0000   -112.4899  -61.9546 
     D10|   -6.56784       11.82689     -.56  .5793   -29.74812  16.61244 
       F|     .11012***      .01186     9.29  .0000      .08689    .13336 
       C|     .31007***      .01735    17.87  .0000      .27605    .34408 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Figure E15.2  Residual Plot for Random Parameters Regression 

 
E15.4.3 Technical Details for the Random Coefficients Estimator 
 
Feasible Generalized Least Squares 
 
 The FGLS estimator in this model is computed as follows:   Let 
 
   Φi =  σi

2(Xi′Xi)-1. 
 
The FGLS estimator is 
 

   β̂  =  ΣiWibi, 

where   bi   =  (Xi′Xi)-1Xi′yi 

and   Wi  =  [Σi (Γ + Φi)-1]-1(Γ + Φi)-1. 
 
Note that ΣiWi  =  I.  Estimation is done in two steps, by estimating Γ first, then accumulating the 
matrix weighted average of the ordinary least squares coefficient vectors.  The following technique is 
suggested (by Swamy (1974)).  Let b  =  (1/N)Σ ibi.  Then, 
 
   Vi   =  si

2(Xi′Xi)-1, 

where   si
2   =  ei′ei/(Ti - K). 

Estimate Γ with  G   =  [1/(N-1)][Σ ibibi′ -  N b b ′] - (1/N)Σ iVi. 
 
Then, the remaining computations are straightforward.  A problem may arise in that G may not be 
positive definite if the second matrix is too large.  Several fixes have been suggested; the simplest is 
to omit the second matrix, which vanishes asymptotically anyway. 
 A chi squared test of the model against the alternative of the classical regression (no 
randomness of the coefficients) can be based on 
 
   χ2[(N-1)K]   =  Σi (bi  -  b*)′Vi

-1(bi  -  b*), 

where   b*   =  [ΣiVi
-1]-1ΣiVi

-1bi. 
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This is reported with the model output in the second frame of results.  From the application above, 
 
            | Chi-squared for homogeneity test =    655.50   | 
            | Degrees of freedom               =        12   | 
 
Predicting Group Specific Coefficient Vectors 
 
 The individual predictions of the group specific coefficient vectors are matrix weighted 
averages of the GLS estimator, β̂ , and the group specific OLS estimates, bi, 
 
   β̂ i   =  Qi β̂   +  [I - Qi]bi, 

where   Qi   =  [(1/si
2)Xi′Xi  +  G-1]-1G-1. 

 
(It can be shown that the weights in this average are proportional to the inverses of the asymptotic 
covariance matrices of the two parts.  If there is sufficient space (KN  < 50,000), these estimates are 
saved as the columns of the matrix bt.  LIMDEP will also report full statistical results for the 
individual group predictions of βi with standard errors.  This produces a full set of output for each 
group in the sample, which can be substantial.  Request this option with 
 

  ; Output = 4 
 
added to the REGRESS ; ... ; RCM $ command.  If you would like a separate report of the OLS 
results for the pooled sample, use 
 
       ; All  
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E16: Linear Regression Models for Panel Data 
 
E16.1 Introduction 
 
 Chapters E16-E23 document estimators for linear models using panel data.  This chapter will 
detail some basic elements of the framework.  The essential structure for most of the models is an 
‘effects’ model, 
   yit  =  αi  +  γt  +  β′xit  +  εit 
 
in which variation across groups (individuals) or time is captured in simple shifts of the regression 
function – i.e., changes in the intercepts.  Chapter E17 describes the fixed effects (FE) model.  The 
random effects (RE) models are detailed in Chapter E18.  Several variations on this structure can be 
analyzed with this estimator, including both one and two factor models, models of autocorrelation, 
and simultaneous equations models. Chapter E18 also presents some major extensions including 
multifactor random effects models. More general forms of random parameter models are 
documented in Chapter E19.  Chapters E20 and E21 show how to fit models with endogenous right 
hand side variables using two stage least squares in Chapter E22, and the Hausman and Taylor 
estimator for random effects and the Arellano, Bond and Bover estimator for dynamic panel data 
models in Chapter E23. 
 
E16.2 Commands for Panel Data Regressions 
 
 The commands for estimation of these models are variants of the basic structure 
 
 SETPANEL ; Group = group identifier variable  
   ; Pds = variable to use for counts $ 
Then, 
 REGRESS ; Lhs = y  
   ; Rhs = x ...  
   ; Panel       
   ; ... other options $ 
 
The SETPANEL command is a global setting that needs only to be invoked once before your 
various panel data analyses.  (See Chapter R5 for details.)  Earlier versions of LIMDEP used one of 
 
   ; Str  = the name of a stratification variable  
or   ; Pds = specification of the number of periods, variable or fixed 
 
in each model command to specify the panel data structure.  This construction may still be used in 
Version 10. 
 You may specify the REGRESS command using the command builder by selecting  
Model:Linear Models/Regression.  The Lhs variable and the single Rhs variable are specified on 
the Main page. 
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Figure E16.1  Main Page of Command Builder for REGRESS 

 
The panel data model, and either a stratification variable or a fixed number of periods (only one 
would be used) are specified on the Options page. 
 

 
Figure E16.2  Options Page of Command Builder for REGRESS 

 
HINT:  If you have a fixed number of periods, be sure to click the Fixed periods checkbox before 
you enter the number of periods in the editing window.  LIMDEP will allow you to enter the number 
of periods, but if you do not also click the checkbox, the panel data estimator will not be used. 
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E16.3 One Way Analysis of Variance 
 
 The simple one way analysis of variance for a variable is produced by the fixed effects 
regression model specified without covariates: 
 
   yit   =  α1d1it + α2d2it + ... + εit 

    =  αi + εit. 
 
The command for this computation is simply 
 
 REGRESS ; Lhs = the variable ; Rhs = one  ; Panel $ 
 
If you have not used SETPANEL first, you can use  
 
   ;  ... stratification, either ; Str = variable or ; Pds = T $ 
 
E16.3.1 Computations and Saved Results 
 
 For the one way analysis of variance, results are based on the following computations: 
 
 N   =  total number of groups 

 Ti   =  number of observations in group i 
 Nobs   =  ∑ =

N
i iT

1
 = total number of observations in the sample 

 iy    =  sample mean of observations in group i 

 y    =  



 ∑∑ ==

iT
t it

N
i

y
11

 / Nobs  =  overall sample mean 

 ( )
2

1=
−∑N

i ii
T y y  =  between groups sum of squares =  SSB 

 ( )
2

1 1= =
−∑ ∑ iN T

it ii t
y y  =  within groups sum of squares =  SSW 

 ( )
2

1 1= =
−∑ ∑ iN T

iti t
y y  =  total sum of squares =  SST  =  SSB + SSW 

 
Sums of squares are computed in deviation form to achieve the maximum accuracy.  Reported 
results are based on these statistics.  Results saved for later use are: 
 
 Scalars: ssqrd   =  regression variance =  SSW / (Nobs - N) 
   rsqrd  =  proportion explained =  SSB / SST 
   s =  square root of SSQRD 
   sumsqdev =  SSB 
   degfrdm  =  Nobs - N 
   ybar =  y  
   sy =  square root of SST / (Nobs - 1) 
   kreg =  N 
   nreg =  Nobs 



E16: Linear Regression Models for Panel Data   E-334 

E16.3.2 Applications 
 
 We illustrate the computation with two of the NIST benchmarks for software accuracy, one 
each for low, medium, and high level of difficulty.  See  Section E2.12 for discussion of this suite of 
test problems.  There are nine analyses of variance test problems.  The problem statements given 
below are verbatim from the NIST website. 
 
Dataset Name:   Atomic Weight of Silver   (agwt.dat) 
Procedure:      Analysis of Variance 
Reference:      Powell, L.J., Murphy, T.J. and Gramlich, J.W. (1982). 
                “The Absolute Isotopic Abundance & Atomic Weight 
                of a Reference Sample of Silver”. 
                NBS Journal of Research, 87, pp. 9-19. 
Data:           1 Factor 
                2 Treatments 
                24 Replicates/Cell 
                48 Observations 
                7 Constant Leading Digits 
                Average Level of Difficulty 
                Observed Data 
Model:          3 Parameters (mu, tau_1, tau_2) 
                y_{ij} = mu + tau_i + epsilon_{ij} 
Certified Values: 
Source of                  Sums of               Mean                
Variation          df      Squares              Squares             F Statistic 
Between Instrument  1 3.63834187500000E-09 3.63834187500000E-09 
1.59467335677930E+01 
Within Instrument  46 1.04951729166667E-08 2.28155932971014E-10 
                   Certified R-Squared 2.57426544538321E-01 
                   Certified Residual 
                   Standard Deviation  1.51048314446410E-05 
Data:  Instrument           AgWt 
Read ; Nobs=48 ; Nvar=1 ; Names=y ; ByVariables $ 
107.8681568 107.8681465 107.8681572 107.8681785 107.8681446 107.8681903 
107.8681526 107.8681494 107.8681616 107.8681587 107.8681519 107.8681486 
107.8681419 107.8681569 107.8681508 107.8681672 107.8681385 107.8681518 
107.8681662 107.8681424 107.8681360 107.8681333 107.8681610 107.8681477 
107.8681079 107.8681344 107.8681513 107.8681197 107.8681604 107.8681385 
107.8681642 107.8681365 107.8681151 107.8681082 107.8681517 107.8681448 
107.8681198 107.8681482 107.8681334 107.8681609 107.8681101 107.8681512 
107.8681469 107.8681360 107.8681254 107.8681261 107.8681450 107.8681368 
Regress ; Lhs=y ; Rhs=one ; Pds = 24 ; Panel$ 
 
-------------------------------------------------------------------------- 
Analysis of Variance for         Y 
Stratification Variable          _STRATUM 
Total Sample Size                                   48      Group Sizes 
Number of Groups                                     2      Max =    24 
Number of groups with no data                        0      Min =    24 
Overall Sample Mean                        107.8681451      Avg =  24.0 
Total Sample Minimum                       107.8681079 
Total Sample Maximum                       107.8681903 
Sample Standard Deviation                     .0000173 
Total Sample Variance                         .0000000 
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Source of Variation              Variation     Deg.Fr.      Mean Square 
Between Groups             .3638341875D-08           1  .3638341875D-08 
Within  Groups             .1049517292D-07          46  .2281559330D-09 
Total                      .1413351479D-07          47  .3007130807D-09 
Residual S.D.              .1510483144D-04 
R-squared                      .2574265445 
F ratio                      15.9467335680     P value           .00001 
-------------------------------------------------------------------------- 
 

Dataset Name:   Si_Resistivity     (NIST-si_resistivity.dat) 
Procedure:      Analysis of Variance 
Reference:      Ehrstein, James and Croarkin, M. Carroll. 
                Unpublished NIST dataset. 
Data:           1 Factor 
                5 Treatments 
                5  Replicates/Cell 
                25 Observations 
                3 Constant Leading Digits 
                Lower Level of Difficulty 
                Observed Data 
Model:          6 Parameters (mu,tau_1, ... , tau_5) 
                y_{ij} = mu + tau_i + epsilon_{ij} 
Certified Values: 
Source of                  Sums of               Mean                
Variation          df      Squares              Squares             F Statistic 
Between Instrument  4 5.11462616000000E-02 1.27865654000000E-02 
1.18046237440255E+00 
Within Instrument  20 2.16636560000000E-01 1.08318280000000E-02 
                   Certified R-Squared 1.90999039051129E-01 
                   Certified Residual 
                   Standard Deviation  1.04076068334656E-01 
Data:  Instrument   Resistance 
Read ; Nobs=25 ; Nvar=1 ; Names=y ; ByVariables$ 
196.3052  196.1240  196.1890  196.2569  196.3403   
196.3042  196.3825  196.1669  196.3257  196.0422   
196.1303  196.2005  196.2889  196.0343  196.1811 
196.2795  196.1748  196.1494  196.1485  195.9885 
196.2119  196.1051  196.1850  196.0052  196.2090 
Regress; Lhs=y ; Rhs=one ; Pds = 5 ;  Panel $ 
 
-------------------------------------------------------------------------- 
Analysis of Variance for         Y 
Stratification Variable          _STRATUM 
Total Sample Size                                   25      Group Sizes 
Number of Groups                                     5      Max =     5 
Number of groups with no data                        0      Min =     5 
Overall Sample Mean                        196.1891560      Avg =   5.0 
Total Sample Minimum                       195.9885000 
Total Sample Maximum                       196.3825000 
Sample Standard Deviation                     .1056296 
Total Sample Variance                         .0111576 
Source of Variation              Variation     Deg.Fr.      Mean Square 
Between Groups             .5114626160D-01           4  .1278656540D-01 
Within  Groups             .2166365600D+00          20  .1083182800D-01 
Total                      .2677828216D+00          24  .1115761757D-01 
Residual S.D.              .1040760683D+00 
R-squared                      .1909990391 
F ratio                       1.1804623744     P value           .34781 
-------------------------------------------------------------------------- 



E16: Linear Regression Models for Panel Data   E-336 

E16.4 The Group Means Estimator 
 
 The regression model in terms of group means is specified as 
 
    yit   =  αi  +  β′xit  +  εit 

so   iy  =  αi  +  β′ ix   + εi   
 
This is a possibly heteroscedastic regression, Var[ εi ] = σ2/Ti.  The coefficients are estimated by 
weighted least squares. 
 The group means estimator is computed as part of the computation of the random effects 
model.  Since it is only an intermediate result, it is discarded at the end of estimation.  If you wish to 
produce this as an estimator in its own right, use 
 
    ; Means 
  
in the command.  In this case, the group means estimator is the only estimator produced. 
 For our previous application, now using all 10 firms in the sample, we obtain the following: 
 

REGRESS  ; Lhs = i ; Rhs = one,f,c ; Panel ; Pds = 20 ; Means $ 
 
----------------------------------------------------------------------------- 
Group Means Regression............................ 
Ordinary     least squares regression ............ 
LHS=YBAR(i.) Mean                 =      145.95825 
             Standard deviation   =      198.82421 
WTS=NTi/Nobs Number of observs.   =             10 
Model size   Parameters           =              3 
             Degrees of freedom   =              7 
Residuals    Sum of squares       =        50603.2 
             Standard error of e  =       85.02366 
Fit          R-squared            =         .85777 
             Adjusted R-squared   =         .81713 
Model test   F[  2,     7] (prob) =    21.1(.0011) 
Diagnostic   Log likelihood       =      -56.83531 
             Restricted(b=0)      =      -66.58679 
             Chi-sq [  2]  (prob) =  19.5(  .0001) 
Info criter. Akaike Info. Criter. =        9.12918 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       F|     .13465***      .02875     4.68  .0000      .07831    .19099 
       C|     .03203         .19094      .17  .8668     -.34220    .40626 
Constant|   -8.52711       47.51531     -.18  .8576  -101.65541  84.60118 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 All of the standard results for regression models are saved by this estimator.  Among the 
scalars, however, the logl should be ignored.  Also, rho is not computed.   
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E16.5 The Pooled Regression 
 
 The pooled regression treats the panel as if it were a single cross section.  This can obviously 
be obtained with the REGRESS command discussed in Chapters E7 and E8.  You can use, instead, 
 
 REGRESS ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Panel 
   ; Robust ? This option requests the cluster correction 
   ; Pooled  $ 
 
to obtain additional output related to the panel.  The example below illustrates.  In addition to the 
standard regression results, this regression contains the univariate analysis of variance for the 
dependent variable and three specification tests for the model.  The test statistics are detailed in 
Section E16.6. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=I        Mean                 =      145.95825 
             Standard deviation   =      216.87530 
             No. of observations  =            200  Degrees of freedom 
Regression   Sum of Squares       =    .760409E+07           2 
Residual     Sum of Squares       =    .175585E+07         197 
Total        Sum of Squares       =    .935994E+07         199 
             Standard error of e  =       94.40840 
Fit          R-squared            =         .81241  R-bar squared =   .81050 
Model test   F[  2,   197]        =      426.57573  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -1191.80236  Akaike I.C.   =  9.11015 
             Restricted (b=0)     =    -1359.15096  Bayes  I.C.   =  9.15962 
             Chi squared [  2]    =      334.69719  Prob C2 > C2* =   .00000 
B-P test     Chi squared [  1]    =      798.16155  Prob C2 > C2* =   .00000 
[High values of  LM favor FEM/REM over base model] 
Baltagi-Li form of LM Statistic   =      798.16155  [= BP if balanced panel] 
Moulton/Randolph form:SLM N[0,1]  =      35.715641 
Robust cluster corrected covariance matrix used 
-------------------------------------------------- 
Panel Data Analysis of I                 [ONE way] 
               Unconditional ANOVA (No regressors) 
Source         Variation  Deg. Free.   Mean Square 
Between    7115591.65455          9.  790621.29495 
Residual   2244352.27433        190.   11812.38039 
Total      9359943.92889        199.   47034.89412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
       F|     .11556***      .01627     7.10  .0000      .08367    .14745 
       C|     .23068***      .08698     2.65  .0086      .06021    .40115 
Constant|   -42.7144**     20.90839    -2.04  .0424    -83.6941   -1.7347 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E16.6 Specification Test for the One Factor Panel Models 
 
 Breusch and Pagan’s Lagrange multiplier statistic, 
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is used to test the null hypothesis that there are no group effects in the random effects model.  
Arguably, a rejection of the null hypothesis is as likely to be due to the presence of fixed effects. The 
statistic is computed from the ordinary least squares residuals from a pooled regression. Large values 
of LM favor the effects model over the classical model with no common effects.  The Breusch and 
Pagan LM statistic is presented with the pooled regression results as shown in the preceding 
example.  This is a chi squared statistic with one degree of freedom. 
 Two alternative forms of the LM statistic are presented in the pooled regression results.  The 
Baltagi and Li (1990) version of LM is  
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This statistic is identical to the Breusch and Pagan statistic when the panel is balanced.  The authors 
argue that the small sample performance is better for unbalanced panels.  A second alternative is the 
Moulton and Randolph (1989) statistic, which is more involved:  It is computed as follows 
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The limiting distribution of MR is standard normal, so values in excess of 1.96 weigh against the 
base regression model.  The Baltagi and Li and the Moulton and Randolph statistics are presented in 
the results for the pooled regression. 
 
VERSION NOTE:  In earlier versions of LIMDEP, the Breusch and Pagan and the Baltagi and Li 
statistics were reported with the results for the random effects model.  They have been moved to the 
results for the pooled regression since they are computed and used with reference to the pooled model 
(and are more useful there) and, in addition, they can be computed and reported without actually 
computing the random effects estimator.  The Moulton and Randolph statistic is new with Version 10. 



E16: Linear Regression Models for Panel Data   E-339 

E16.7 One Way Fixed and Random Effects Models 
 
 The next two chapters consider formulation and estimation of one way common effects 
models, 
   yit  =  αi + β′xit + εit. 
 
The fixed effects model is 
 
   yit  = α1d1it + α2d2it + ... + β′xit + εit 

        = αi + β′xit + εit, 

where   E[εit|Xi] = 0, Var[εit|Xi] = σ2, Cov[εit,εjs|Xi,Xj] = 0 for all i,j, 

   Cov[αi,xit] ≠ 0. 
 
The efficient estimator for this model in the base case is least squares.  This model is documented in 
Chapter E17.  The random effects model is 
 
   yit = α + β′xit + εit + ui 

where   E[ui] = 0,  Var[ui] = σu
2  Cov[εit,ui] = 0. 

   Var[εit + ui]  =  σ2 = σε
2  + σu

2 . 
  
For a given i, the disturbances in different periods are correlated because of their common 
component, ui, 
   Corr[εit + ui,εis + ui] = ρ = σu

2 / σ2. 
  
The efficient estimator is generalized least squares.  This model is developed in Chapter E18.  
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E17: Fixed Effects Linear Regression 
 
E17.1 Introduction 
 
 This chapter will detail estimation of linear regression models with fixed effects.  The essential 
structure is, 
   yit  =  αi  +  γt  +  β′xit  +  εit 
 
in which variation across groups (individuals) or time is captured in simple shifts of the regression 
function – i.e., changes in the intercepts.   The user is referred to textbook treatments such as Greene 
(2011) or Wooldridge (2010) for background theory of the models. The two models estimated with 
this program are ‘one way’ or ‘one factor’ designs of the form 
 
   yit  =  αi  +  β′xit  +  εit 
 
where εit is a classical disturbance with E[εit|xit] = 0 and Var[εit|xit] = σε

2 and ‘two way’ or ‘two 
factor’ models as shown in the first equation above.   
 
E17.2 One Way Fixed Effects Model 
 
 In the fixed effects model (FEM), αi is a separate constant term for each unit.  Thus, the model 
may be written 
   yit  =  α1d1it  +  α2d2it  + ... + β′xit  +  εit 

     =  αi  +  β′xit  +  εit, 
 
where the αis are individual specific constants, and the djs are group specific dummy variables which 
equal one only when j = i.  The fixed effects model is an ordinary linear regression model.  The 
complication for the least squares procedure is that N may be very large so that the usual formulas 
for computing least squares coefficients are cumbersome (or impossible) to apply.  The model may 
be estimated in a simpler form by exploiting the algebra of least squares. 
 
E17.2.1 Command for One Factor Models 
 
 The one way FEM is a linear regression with N dummy variables (and no overall constant 
term).  To invoke this procedure, use the command the panel is set up with 
 
 SETPANEL ; Group = the group identifier ; Pds = variable to use for group counts $ 
Then,   
 REGRESS ; Lhs = y  
   ; Rhs = list of regressors 
   ; Panel    
   ; Fixed Effects $ 
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You need not include one among your regressors.  The constant is placed in the regression 
automatically when it is needed. You may also use: 
 
   ; Output = 2  
 
to list fixed effects in an output file.  This will also produce estimated standard errors for the fixed 
effects.  If the number of groups is large, the amount of output can be very large.    
 The basic command can be constructed using the REGRESS command builder shown  
earlier.  You can also use the command builder for many optional features.  Select Panel data 
model on the Options page to activate the Model type window and the Settings button.  Select your 
model type, then click Settings to open a dialog box of optional features for that type of model. 
Options for fixed and random effects models are listed in the same dialog box, as shown in Figure 
E17.1. 
 

 
Figure E17.1 Command Builder Options for Common Effects Models 

 
Standard options for residuals and fitted values, include the following.  All of 
 
   ; List      to display residuals and fitted values 
    ; Keep = name  to retain predictions 
    ; Res = name  to retain residuals 
    ; Var =   a submatrix of the parameter VC matrix 
    ; Fill      (missing observations) 
    ; Wts = weighting variable 
    ; Covariance Matrix (or ; Printvc) 
 
are available as usual.  If your stratification indicators are set up properly for out of sample 
observations, ; Fill will allow you to extrapolate outside the estimation sample. 
 
WARNING:  If you do not have a stratification indicator already in use, ; Fill will not work.  The 
_stratum variable is set up only for the estimation sample.  Thus, with ; Pds = T, you cannot 
extrapolate outside the sample. 
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E17.2.2 Program Output for One Way Fixed Effects Models 
 
 Two full sets of estimates are computed by this estimator: 
 

1. Pooled Regression: The fixed effects model above with all of the individual specific 
constants assumed equal is yit = α + β′xit + εit. This model is estimated by simple ordinary 
least squares. 

 
2. Least Squares Dummy Variable: The fixed effects model with individual specific 

constant terms is estimated by partitioned ordinary least squares. For the one factor 
models, we  formulate this model with N group specific constants and no overall constant. 

 
The second constitutes the results for the fixed effects estimator.  Define the four models: 
 
 Model   1    yit  =  α +             εit   (no group effects or xs), 
 Model   2    yit  =  αi +              εit (group dummies only), 
 Model   3    yit  =  α  +  β′xit  + εit  (regressors only), 
 Model   4    yit  =  αI +  β′xit  + εit (regressors and group effects). 
 
Output from this program, in the order in which it will appear, is as follows: 
 

1. Pooled linear regression of y on a single constant and the regressors, x1,...,xK.  These K 
variables do not include one.  This is Model 3 above.  Output consists of the standard results 
for least squares regression.  The diagnostic statistics in this regression output will also 
include the unconditional analysis of variance for the dependent variable.  This is the usual 
ANOVA for the groups, ignoring the regressors.  The output from this procedure could be 
used to test the hypothesis that the unconditional mean of y is the same in all groups.  (This 
test is done by the program.  See part 3 below.)  Results at this step also include the Breusch 
and Pagan test statistic for common effects and two alternatives.  See Section E16.6 and the 
application below for details. 

 
2. Ordinary least squares estimates of Model 4 above.  Output is the same as in part 1, the usual 

for a least squares regression.  The estimates of the dummy variable coefficients and the 
estimated standard errors are listed in the output file if requested with ; Output = 2.  (There 
may be hundreds or thousands of them!) 

 
3. Test statistics for the various classical models.  The table contains 

a. For Models 1-4, the log likelihood function, sum of squared residuals based on the 
least squares estimates, and R2. 

b. Chi squared statistics based on the likelihood functions and F statistics based on the 
sums of squares for testing the restrictions of: 

•  Model 1 as a restriction on Model 2 (no group effects on the mean of y), 
•  Model 1 as a restriction on Model 3 (no fit in the regression of y on xs), 
•  Model 1 as a restriction on Model 4 (no group effects or fit in regression), 
•  Model 2 as a restriction on Model 4 (group effects but no fit in regression), 
•  Model 3 as a restriction on Model 4 (fit in regression but no group effects). 
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The statistic, degrees of freedom, and prob value (probability that the statistic would 
be equaled or exceeded by the chi squared or F random variable) are given for each  
hypothesis. 

 
E17.2.3 Saved Results 
 
 The retrievable results are: 
  
 Matrices:  b and varb  
   alphafe   contains the estimates of the fixed effects, αi.   

This matrix is limited to 50,000 cells, so if your data have 
more than 20,000 groups, alphafe will contain the first 50,000 
fixed effects computed.   

  
 Scalars:  ssqrd  = s2 from least squares dummy variable (LSDV) 
   rsqrd  = R2 from LSDV 
   s  =  √s2 from LSDV 
   sumsqdev =  sum of squared residuals from LSDV 
   rho  =  estimated disturbance autocorrelation from whatever model  
     is fit last 
   degfrdm  =  ΣiTi  -  K 
   sy  =  standard deviation of Lhs variable 
   ybar  =  mean of Lhs variable 
   kreg  =  K 
   nreg  =  total number observations 
   logl  =  log likelihood from LSDV model 
   exitcode =  0.0 if the model was estimable 
   ngroup =  number of groups 
   nperiod =  number of periods. This will be 0.0 if you fit a one way model. 
 
 Last Model:  b_variable  constructed as usual 

 
 Last Function: Conditional mean = b’x 
 
Predicted values are based on the last model estimated, one or two way, fixed or random.  
Predictions are not listed when you use the group means estimator, but they can be computed with 
MATRIX.  Estimates of the variances or standard errors of the fixed effects are not kept.  But, a 
simple method of computing them is given below.  
 Note, the implication of not storing the constants (there could be thousands of them) is that 
because the model is linear, PARTIALS will give you the right answer for partial effects even when 
there are interactions or nonlinearities in the model.  However, SIMULATE will not give the correct 
predicted values – the appropriate function would be ai + b’xit.  Predictions using ; List and ; Keep 
and residuals requested with ; Res are computed correctly using ai as indicated. 
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E17.2.4 Application 
 
 The examples to follow are based on an application in Baltagi (2005) which describes 
Munnell’s (1990) study of statewide productivity.  The data were downloaded from the website for 
the text: http://www.wiley.com/legacy/wileychi/baltagi/supp/PRODUC.prn. The data are a balanced 
(17 years) panel of observations on the ‘lower’ 48 states.  Variables in the data set are 
 
 state   =  state ID (changed from the name in the original) 
 yr   =  year, 1970,...,1986 
 p_cap   =  public capital 
 hwy   =  highway capital 
 water   =  water utility capital 
 util   =  utility capital 
 pc   =  private capital 
 gsp   =  gross state product 
 emp   =  employment 
 unemp   =  unemployment rate 
 

 
Figure E17.2  Importing Munnell State Production Data 

 
We will fit the loglinear regression model 
 
   loggspit = αi + β1logp_capit + β2loghwyit + β3logwaterit + β4logutilit + β5logpcit + β6logempit + εit 
 

http://www.wiley.com/legacy/wileychi/baltagi/supp/PRODUC.prn�
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Estimates of the fixed effects model follow: 
 

 CREATE  ; loggsp = Log(gsp)   
   ; logkp = Log(p_cap)  
   ; loghwy = Log(hwy)   
   ; logh2o = Log(water) 
   ; logutil = Log(util)  
   ; logemp = Log(emp)$ 
 NAMELIST  ; x = logkp,loghwy,logh2o,logutil,logemp $ 
 CREATE ; stateid = Trn(17,0) $ 
 SETPANEL ; Group = stateid ; Pds = ti $ 
 REGRESS  ; Lhs = loggsp ; Rhs = x,one  
   ; Panel ; Fixed Effects ; Parameters ; Output = 2 $ 
 
+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| TI         Group sizes  STATEID      48     17     17      17.0 | 
+-----------------------------------------------------------------+ 
 

----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGGSP   Mean                 =       10.50885 
             Standard deviation   =        1.02113 
             No. of observations  =            816  Degrees of freedom 
Regression   Sum of Squares       =        838.219           5 
Residual     Sum of Squares       =        11.5898         810 
Total        Sum of Squares       =        849.809         815 
             Standard error of e  =         .11962 
Fit          R-squared            =         .98636  R-bar squared =   .98628 
Model test   F[  5,   810]        =    11716.51224  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      577.89764  Akaike I.C.   = -4.23959 
             Restricted (b=0)     =    -1174.41748  Bayes  I.C.   = -4.20500 
             Chi squared [  5]    =     3504.63025  Prob C2 > C2* =   .00000 
B-P test     Chi squared [  1]    =     4462.89033  Prob C2 > C2* =   .00000 
[High values of  LM favor FEM/REM over base model] 
Baltagi-Li form of LM Statistic   =     4462.89033  [= BP if balanced panel] 
Moulton/Randolph form:SLM N[0,1]  =      75.214155 
-------------------------------------------------- 
Panel Data Analysis of LOGGSP            [ONE way] 
               Unconditional ANOVA (No regressors) 
Source         Variation  Deg. Free.   Mean Square 
Between        830.86743         47.      17.67803 
Residual        18.94145        768.        .02466 
Total          849.80888        815.       1.04271 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .45392***      .15355     2.96  .0031      .15298    .75487 
  LOGHWY|     .08572         .08184     1.05  .2949     -.07468    .24612 
  LOGH2O|     .08663***      .02479     3.50  .0005      .03805    .13521 
 LOGUTIL|    -.18742***      .06580    -2.85  .0044     -.31639   -.05845 
  LOGEMP|     .61908***      .02281    27.14  .0000      .57437    .66380 
Constant|    2.01100***      .15245    13.19  .0000     1.71221   2.30979 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
LSDV         least squares with fixed effects .... 
LHS=LOGGSP   Mean                 =       10.50885 
             Standard deviation   =        1.02113 
             No. of observations  =            816  Degrees of freedom 
Regression   Sum of Squares       =        848.708          52 
Residual     Sum of Squares       =        1.10080         763 
Total        Sum of Squares       =        849.809         815 
             Standard error of e  =         .03798 
Fit          R-squared            =         .99870  R-bar squared =   .99862 
Model test   F[ 52,   763]        =    11312.81044  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     1538.36346  Akaike I.C.   = -6.47847 
             Restricted (b=0)     =    -1174.41748  Bayes  I.C.   = -6.17292 
             Chi squared [ 52]    =     5425.56189  Prob C2 > C2* =   .00000 
Estd. Autocorrelation of e(i,t)   =        .725563 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data       48 
             Smallest  17,     Largest          17 
             Average group size in panel     17.00 
Variances    Effects a(i)         Residuals e(i,t) 
              .022553                      .001443 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10400     5.44  .0000      .36240    .77007 
  LOGHWY|    -.23193***      .06325    -3.67  .0002     -.35590   -.10796 
  LOGH2O|     .05375***      .01871     2.87  .0041      .01707    .09043 
 LOGUTIL|    -.33878***      .04340    -7.81  .0000     -.42385   -.25372 
  LOGEMP|    1.00378***      .02010    49.94  .0000      .96439   1.04318 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
        Estimated Fixed Effects 
        Group       Coefficient       Standard Error       t-ratio 
            1           2.54918               .20118      12.67133 
            2           2.67049               .19329      13.81593 
            3           2.65383               .18995      13.97131 
            4           2.66292               .23066      11.54497 
            5           2.62603               .19259      13.63501 
 (Rows 6 – 47 omitted) 
           48           3.23311               .19324      16.73130 
 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Regression Model               | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood    Sum of Squares  R-squared | 
|(1)  Constant term only    -1174.41747         849.80888     .00000 | 
|(2)  Group effects only      377.47534          18.94145     .97771 | 
|(3)  X - variables only      577.89766          11.58975     .98636 | 
|(4)  X and group effects    1538.36348           1.10080     .99870 | 
+--------------------------------------------------------------------+ 
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+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.   Prob         F   num   denom  P value | 
|(2) vs (1)   3103.79     47  .0000    716.77    47     768   .00000 | 
|(3) vs (1)   3504.63      5  .0000  11716.51     5     810   .00000 | 
|(4) vs (1)   5425.56     52  .0000  11312.81    52     763   .00000 | 
|(4) vs (2)   2321.78      5  .0000   2473.18     5     763   .00000 | 
|(4) vs (3)   1920.93     47  .0000    154.69    47     763   .00000 | 
+--------------------------------------------------------------------+ 
 
 The individual effects are accessible as a matrix in the work area.  The following replicates 
the computations that underlie the listing after the LSDV results above.  The individual effects are 
computed as 
   i i LSDV ia y ′= − b x  
 
The appropriate estimator of the asymptotic variance of ai is 
 

 Est.Asy.Var[ai]  =  
22

2 1 2 1( )( ) ,  
( )

iT
i t it i LSDV it

i D D i
i i i

y as s s
T T n K

− = ′Σ Σ − −′ ′ ′ + =  Σ − −
b xx X M M X x . 

 
The matrix XMD′MDX is the moment matrix computed using deviations from group means; 
 

( )( )1 1
in T

it i it ii t= =
′′ ′ = − −∑ ∑D DX M M X x x x x . 

 
MATRIX  ; mti = Gsiz(stateid)  $  Computes Ti 
MATRIX ; xbr = Gxbr(x,stateid)  $  Obtains group means of x 
MATRIX ; varai = ssqrd*Diri(mti) + Qrow(xbr,varb) $ 
CLIST  ; statenm = _group_  $  State labels next to data matrix 
DISPLAY  ; Parameters = alphafe  

; Covariance = varai  ?  A vector of variances, not the whole matrix 
; Labels = statenm  $ 

 
This program produces the following results 
 
----------------------------------------------------------------------------- 
User Specified Model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 ALABAMA|    2.54918***      .20118    12.67  .0000     2.15488   2.94348 
 ARIZONA|    2.67049***      .19329    13.82  .0000     2.29165   3.04934 
 (Arkansas – West Virginia omitted) 
WISCONSI|    2.51680***      .20445    12.31  .0000     2.11608   2.91751 
 WYOMING|    3.23311***      .19324    16.73  .0000     2.85437   3.61185 
--------+-------------------------------------------------------------------- 
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E17.2.5 Robust Estimation of the Fixed Effects Covariance Matrix 
 
 Under the assumptions of the model made at the outset, the appropriate covariance matrix 
for the fixed effects coefficient is shown in the preceding example.  If it is believed that there is 
residual correlation across observations in the groups even with the individual effects included, one 
can compute a ‘cluster correction’ for the asymptotic covariance matrix.  The correction would be 
 

( ){ } ( ){ }1 ( ) ( ) ( ) ( ) 1
1

. . [ ] ( ) ( )

( ) 1                             = 
1 ( ) ( )

n i i i i
LS DV D i D ii

t i

t i

Est AsyVar b A

TnA
n T n K

− −
=

 ′′ ′=  
 

Σ −
− Σ − +

∑D D D DX'M M X M X e M X e X'M M X
 

 
This correction is requested by adding  
 
   ; Robust 
 
to the command.  Note, this is the ‘cluster estimator’ used elsewhere; we use ; Robust to distinguish 
it here because the calculations are already accommodating clustering.  The impact on the LSDV 
results is shown below.  The effect on the estimated standard errors is substantial.  (The other 
statistical results are the same.) 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10400     5.44  .0000      .36240    .77007 
  LOGHWY|    -.23193***      .06325    -3.67  .0002     -.35590   -.10796 
  LOGH2O|     .05375***      .01871     2.87  .0041      .01707    .09043 
 LOGUTIL|    -.33878***      .04340    -7.81  .0000     -.42385   -.25372 
  LOGEMP|    1.00378***      .02010    49.94  .0000      .96439   1.04318 
--------+-------------------------------------------------------------------- 
(Cluster corrected estimates) 
   LOGKP|     .56623**       .23126     2.45  .0143      .11297   1.01949 
  LOGHWY|    -.23193         .16730    -1.39  .1657     -.55984    .09598 
  LOGH2O|     .05375         .04468     1.20  .2290     -.03383    .14133 
 LOGUTIL|    -.33878***      .07115    -4.76  .0000     -.47823   -.19934 
  LOGEMP|    1.00378***      .05186    19.35  .0000      .90213   1.10544 
--------+-------------------------------------------------------------------- 
 
 When the REGRESS command contains ; Robust, the original pooled estimator and the 
subsequent random effects estimator, if it is computed, are also computed with this robust covariance 
matrix correction. 
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E17.2.6 Fixed Effects Models with Time Invariant Variables 
 
 The fixed effects model generally cannot be estimated when the data contain time invariant 
variables.  The reason is that the within groups transformation used to fit the coefficients,  
 
   regression of (yit - iy ) on (xit - ix ) with no constant term),  
 
produces a column of zeros for every time invariant variable.  This is a problem of perfect 
collinearity, since a time invariant variable is just a multiple of the individual specific dummy 
variable.  LIMDEP does not halt the regression when this condition is detected.  For reasons noted 
shortly, LIMDEP always uses a generalized inverse and computes the regression anyway.  However, 
the condition is noted.  When there are no time invariant variables, the G-inverse gives precisely the 
correct result.  When there are time invariant variables, there will be superfluous coefficients, but the 
results are still useable and clearly identified in the results.  An example will illustrate.  We first 
create a variable that contains no within state variation 
 
 CREATE ; lempbar = Group Mean(logemp, Pds = 17) $ 
 
+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| LEMPBAR    Group means  LOGEMP       48     17     17      17.0 | 
+-----------------------------------------------------------------+ 
 
The fixed effects model is recomputed with 
 
 REGRESS  ; Lhs = loggsp   
   ; Rhs = x,lempbar,one  
   ; Panel ; Fixed Effects $ 
 
----------------------------------------------------------------------------- 
LSDV         least squares with fixed effects .... 
LHS=LOGGSP   Mean                 =       10.50885 
             Standard deviation   =        1.02113 
             No. of observations  =            816  Degrees of freedom 
Regression   Sum of Squares       =        848.708          53 
Residual     Sum of Squares       =        1.10080         762 
Total        Sum of Squares       =        849.809         815 
             Standard error of e  =         .03801 
Fit          R-squared            =         .99870  R-bar squared =   .99861 
Model test   F[ 53,   762]        =    11084.81418  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     1538.36346  Akaike I.C.   = -6.47602 
             Restricted (b=0)     =    -1174.41748  Bayes  I.C.   = -6.16470 
             Chi squared [ 53]    =     5425.56189  Prob C2 > C2* =   .00000 
Estd. Autocorrelation of e(i,t)   =        .725563 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data       48 
             Smallest  17,     Largest          17 
             Average group size in panel     17.00 
Variances    Effects a(i)         Residuals e(i,t) 
              .133481                      .001445 
These  1 variables have no within group variation. 
LEMPBAR 
F.E. estimates are based on a generalized inverse. 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10407     5.44  .0000      .36226    .77020 
  LOGHWY|    -.23193***      .06329    -3.66  .0002     -.35598   -.10788 
  LOGH2O|     .05375***      .01873     2.87  .0041      .01704    .09045 
 LOGUTIL|    -.33878***      .04343    -7.80  .0000     -.42391   -.25366 
  LOGEMP|    1.00378***      .02011    49.90  .0000      .96436   1.04321 
 LEMPBAR|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 

+--------------------------------------------------------------------+ 
|             Test Statistics for the Regression Model               | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood    Sum of Squares  R-squared | 
|(1)  Constant term only    -1174.41747         849.80888     .00000 | 
|(2)  Group effects only      377.47534          18.94145     .97771 | 
|(3)  X - variables only      597.16828          11.05507     .98699 | 
|(4)  X and group effects    1538.36348           1.10080     .99870 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.   Prob         F   num   denom  P value | 
|(2) vs (1)   3103.79     47  .0000    716.77    47     768   .00000 | 
|(3) vs (1)   3543.17      6  .0000  10229.87     6     809   .00000 | 
|(4) vs (1)   5425.56     53  .0000  11084.81    53     762   .00000 | 
|(4) vs (2)   2321.78      6  .0000   2058.28     6     762   .00000 | 
|(4) vs (3)   1882.39     47  .0000    146.61    47     762   .00000 | 
+--------------------------------------------------------------------+ 
 

Note that there is an extensive warning about the time invariant variable(s).  However, the regression 
has been computed.  Most importantly, however, notice that the sum of squared residuals and the 
coefficients on the time varying variables in the two regressions are identical.  The coefficient on the 
time invariant variable is not useable.  The small difference in the standard errors in the second model 
is due to the loss of one degree of freedom (for each time invariant variable) in the second model. 
 This set of outcomes is noted here for two reasons:  You would normally not deliberately 
add a time invariant variable to a fixed effects model, as we did here. However, one might include 
one (such as gender or education) inadvertently. 
 

1. LIMDEP will warn you of this occurrence.  It does not halt estimation.  But, in this event, 
you should reconsider the specification of the model.  The reduced specification is not 
necessarily useful. 

 

2. Although fixed effects models cannot have time invariant variables, random effects models 
can. That is the reason for the computation.  If you request estimation of a random effects 
model, the sum of squared residuals for the fixed effects model is needed for estimation of 
the variance components.  The presence of the time invariant variables in the model does not 
prevent this computation.  This FE model is always computed, either explicitly if you 
request fixed effects, or in the background if you have requested random effects (or both 
fixed and random effects).  This method of doing the estimation allows estimation of all 
models to proceed even in the event of this complication. 
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NOTE:  The recent literature contains a thread of results on a ‘Fixed Effects Vector Decomposition’ 
(FEVD) estimator that claims to solve the ‘problem’ of time invariant variables in a fixed effects 
model.  (See Plumper and Troeger (2007, 2011) and Greene (2011) for discussion.)  The so called 
FEVD estimator is not a ‘solution’ to this multicollinearity problem.  It does reformulate the model 
so that it is essentially a random effects model.  FEVD is not provided as a separate estimator in 
LIMDEP.  It can be easily programmed.  We return to the computation in Chapter E18 on fitting the 
random effects model. 
 
E17.2.7 Restricted Least Squares 
 
 The (one or two way) fixed effects model can be fit with linear restrictions.  (This option 
does not apply to the random effects estimator.)  Use the standard specification, 
 
    ; CLS: ... linear restrictions ... 
 
The full set of results will be presented for the unrestricted estimates and the restricted estimates, 
with an F statistic for testing the hypothesis of the restrictions. 
 For the preceding application, the restriction of constant returns to scale – all slope 
coefficients sum to one – is a natural one.  It is imposed by adding 
 

 NAMELIST  ; x = logkp,loghwy,logh2o,logutil,logemp $ 
 REGRESS  ; Lhs = loggsp ; Rhs = x,one  
   ; Panel ; Fixed Effects  
   ; CLS: logkp + loghwy + logh2o + logutil + logemp = 1 $ 
 

to the REGRESS command.  (The initial estimated OLS and fixed effects results are omitted.) 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGGSP   Mean                 =       10.50885 
             Standard deviation   =        1.02113 
             No. of observations  =            816  Degrees of freedom 
Regression   Sum of Squares       =        848.696          51 
Residual     Sum of Squares       =        1.11300         764 
Total        Sum of Squares       =        849.809         815 
             Standard error of e  =         .03817 
Fit          R-squared            =         .99869  R-bar squared =   .99861 
Model test   F[ 51,   764]        =    11453.02586  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     1533.86733  Akaike I.C.   = -6.46990 
             Restricted (b=0)     =    -1174.41748  Bayes  I.C.   = -6.17011 
             Chi squared [ 51]    =     5416.56963  Prob C2 > C2* =   .00000 
F[ 1,   763] for constraint =    6.4352, P = .0114 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .61507***      .10220     6.02  .0000      .41476    .81538 
  LOGHWY|    -.32404***      .05179    -6.26  .0000     -.42555   -.22253 
  LOGH2O|     .05154***      .01869     2.76  .0058      .01490    .08818 
 LOGUTIL|    -.34469***      .04334    -7.95  .0000     -.42964   -.25975 
  LOGEMP|    1.00212***      .02009    49.88  .0000      .96274   1.04150 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 (Additional results for analysis of variance – which have changed – are omitted.) 
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NOTE: There is a side result which can occur with this computation.  The Hausman test requires the 
covariance matrix of the fixed effects estimator.  Normally, this will be larger than that for the REM. 
But, with restrictions applied to the FEM and not the REM, this need not be the case.  In this case (as 
occurs in this application), the Hausman statistic cannot be computed.  The Hausman statistic is 
described in Chapter E18 where the random effects estimator is documented. 
 
 The restrictions affect the estimated fixed effects as well.  Fortunately, the simplicity of the 
LSDV estimator remains even when the restrictions are imposed.  The fixed effects are still the 
group mean residuals, but now computed with the restricted least squares estimator.  This is all 
handled internally.  The fixed effects are adjusted for this result after the restrictions are imposed.   
 
E17.2.8 Technical Details on Estimation of One Way Fixed Effects 
Models 
 

 The calculations for the balanced design case are exactly those described in Wooldridge 
(2011) or Greene (2011).  Since these are fully documented, we will just sketch them here.  We will 
then turn to special considerations of the model when groups have unequal numbers of observations. 
The notations for group and overall means used below are the standard ones. We will refer back to 
the descriptions and the application in the preceding two sections at various points below. 
 
Computing the Fixed Effects Estimator 
 
 Model 1 is estimated simply as the grand mean of y, so the sum of squares is 

    TOTAL   =  ( )2

1
iT

iti t
y y

=
−∑ ∑ .          

 
R2 for this model is zero by definition.  The value of TOTAL appears in the ANOVA tables in the 
first set of output for the model. 
 Analysis of Model 2 is the familiar unconditional analysis of variance for y ignoring the 
regressors.  The coefficients would simply be the group means.  The total variation above may be 
decomposed into 
   WITHIN   =  ( )2

.it ii t
y y−∑ ∑   

    BETWEEN   =  ( )2
.i ii

T y y−∑    
 
Since   TOTAL   =  BETWEEN + WITHIN,  

we may define  Ro
2   = BETWEEN / TOTAL. 

 
Note that this analysis is equivalent to the regression of y on a constant term and a set of n-1 group 
dummy variables or, equivalently, just the N group dummy variables with no overall constant.  The 
values of WITHIN and this Ro

2 are given as the ‘Sum of Squares’ and ‘R-squared’ in the second row 
of the Test Statistics for the Classical Model, so BETWEEN may be deduced as Ro

2 times TOTAL. 
 Model 3 is the linear regression model. Estimation is by ordinary least squares regression of 
yit on a single constant and the set of xs. No new issues arise. For this model, the groupwise nature of 
the data set is ignored; the full set of observations is pooled. The analysis of variance for this model 
is the conventional one. The diagnostic statistics that precede the listing of the coefficient estimates 
contain the sums of squared residuals, mean and standard deviation of the Lhs variable, and so on. 
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 Model 4 is the full ‘dummy variable’ model.  Parameters are estimated as follows: 
 
   estimate β by regression of (yit - iy ) on (xit - ix ) (with no constant term),  

   estimate αi with ai  =   iy  - b′ ix   
 
These calculations follow from the algebra of least squares.  The estimated covariance matrix of b, 
sum of squared residuals, and estimator of σ2 from the first regression are all appropriate as they 
stand and need not be modified.  Estimates of the standard errors of ais are obtained by 
 

 Est.Asy.Var[ai]  =  
22

2 1 2 1( )( ) ,  
( )

iT
i t it i LSDV it

i D D i
i i i

y as s s
T T n K

− = ′Σ Σ − −′ ′ ′ + =  Σ − −
b xx X M M X x . 

 
None of the preceding relies on equal group sizes. If the group sizes are unequal, as Ti, then, the 
means are based on the respective group sizes. 
 As noted earlier, although the estimated fixed effects are retained as matrix alphafe, the 
estimates of the variances are not kept.  But, these are easy to obtain, and you can even recover the 
rest of the estimates if you have more than 50,000 groups.  If you have a large number of groups and 
regressors, you may have to do this in parts.  The program shown at the end of Section E17.2.4 can 
be applied to the entire sample or in separate parts of it. 
 
Restricted Least Squares 
 
 The regression model is yit = αi + β′xit + εit. We fit the model subject to the linear restrictions 
 
   Rb  -  q  = 0. 
 
Let y and X denote the full data matrices, and let D denote the full matrix of group dummy variables. 
Let y* and X* denote the matrix of data in deviations from the group means, 
 
   (X*,y*)  =  [I - D(D′D)-1D′](X,y). 
 
Since the slopes are obtained just by applying ordinary least squares, the restricted slope estimator is 
obtained by the familiar formula, 
 
   bc  =  b  - (X*′X*)-1R′[R(X*′X*)-1R′]-1(Rb - q).  
 
where b is the LSDV estimator.  We now seek the restricted estimator of the vector of fixed effects. 
Write the full coefficient vector as [α′,β′]′ and the estimates as c = [a′,b′]′.  Also, let Ro = [0,R], where 
the parts are J×N and J×K, and J is the number of restrictions.  The zero block results from the fact that 
no restrictions are being imposed on the fixed effects.  Thus, in terms of the full coefficient vector, we 
have R0c - q = 0.  Then, in terms of the full coefficient vector, in partitioned form, we have 
 

        [ ] [ ]
-11 1

  =   -         - c

c

− − ′ ′ ′ ′               ′ ′                ′ ′ ′ ′ ′ ′                

a a D D D X 0 D D D X 0 a
0 R 0 R q

b b X D X X R X D X X R b
. 
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Using the partitioned inverse formula (Greene (2011, eq. A-66)) produces the result for the fixed  
effects, 
 

         ac =  a + (D′D)-1D′X[X′X - X′D(D′D)-1D′X]-1(X*′X*)-1R′[R(X*′X*)-1R′]-1(Rb - q) 

  =  a + X ′(X*′X*)-1R′[R(X*′X*)-1R′]-1(Rb - q) 

  =  a + X ′(b - bc) 

but a = y - X ′b 

so ac = y - X ′bc 

  =  (1/Ti)Σt eit for each element, i = 1,...,N. 
 
Therefore, the restricted least squares estimators of the fixed effects are the group mean residuals 
using the restricted least squares estimators of the slopes. 
 
E17.3 Two Way Fixed and Random Effects Models 
 
 The panel data estimator also allows ‘two way’ fixed and random effects models.  The fixed 
effects model for a two way design is 
 
   yit  =  α0  +  αi  +  γt  +  β′xit  +  εit. 
  
Notice that this model has an overall constant as well as a ‘group’ effect for each group and a ‘time’ 
effect for each period.  The problem of multicollinearity – the time and group dummy variables both 
sum to one – is avoided by imposing the restrictions  Σiαi = Σtγt = 0.  (In an unbalanced panel, the 
sums are weighted by Ti/(ΣiTi) or Nt/(ΣtNt).)  A full set of estimates is produced for the two factor 
model in the same fashion as for the one factor model.  The random effects model for a two way 
design is 
   yit  =  α  +  β′xit  +  εit + ui + wt. 
 
The model is described in standard textbooks such as Judge, et. al. (1985) or Greene (2011). 
 In this model, neither the number of time periods observed for each group nor the number of 
individuals observed in each period need be fixed.  Your data can consist of simply a sample of 
observations indexed by both individual and time.  The data setup is exactly as described in Section 
R5.3.  To request the two factor model, you simply add the specification 
 
   ; Period = time variable 
  
to the usual command.  Unlike a group stratification variable, the time variable must use the integers 
1,2,...,Ti.  As noted earlier, it is not necessary for every group to have data in every period; there may 
be gaps.  But, if you do have a balanced panel, you can easily set up the time indicator with the Trn 
function in CREATE.  For example, in the data set we have been using for our application, there are 
17 observations for each state.  We could use 
 
 CREATE   ; time = Trn(-17,0) $ 
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(The variable yr-1969 in the data set would have the right values.)  If the sample is not balanced, in 
either dimension, it will be necessary to provide the time variable by some other means.   When you 
request the two factor model, the command will appear as 
 

 REGRESS   ; Lhs = ...   ; Rhs = ... ; Panel ; Period = time $ 
 
 The model is   

   yit  =  µ  +  αi  +  γt  + β′xit  +  εit. 
 
The textbook formula for two way fixed effects regression, least squares regression of 
( )it i ty y y y− − +  on the same transformation of xit does not work when the panel is unbalanced.  It 
is necessary to add the time dummy variables to a one way fixed effects model (as ordinary 
regressors).  We compute the fixed effects estimator of β by making this transformation.  The 
estimated covariance matrix and sum of squares from this least squares regression as computed in the 
usual manner are appropriate. 
 
NOTE: The two way fixed effects estimator must be computed by literally computing the dummy 
variables for the time effects.  You may have up to 1,000 periods in the data set.  You do not need to 
compute the dummy variables; this is done internally. 
 
E17.3.1 Program Output for Two Factor Models 
 

 This estimator produces the full set of output described earlier for the one factor model defined 
by the ; Pds setup and an additional set of results for the two factor model.  The additional results will be 
 

1. Full set of two factor fixed effects results.  Do note, in  accordance with the description 
above, this model, unlike the one way model, will contain an overall constant term.  This 
model is estimated by OLS including both the time and group dummy variables. 

 
2. Full table of estimates of fixed effects (if requested with ; Output = 2).  Note, as well, that 

the fixed effects produced for the groups will differ from the earlier results, since by design, 
the time dummy variables are not orthogonal to the group dummy variables. 

 
3. Test statistics for the two way fixed effects model. This consists of the log likelihood, sum of 

squared deviations, and R2s for five models: 
 

a. overall constant term only, no regressors, 
b. group dummies, no regressors, 
c. regressors and overall constant term, 
d. full one way fixed effects model, 
e. full two way fixed effects model. 

  
You should observe rising log likelihoods and R2s and falling sums of squares as you go 
down the table, but if your regressors do not have much explanatory power the reverse could  
happen between b and c. 
 

4. Full set of results for the two way random effects model including the LM statistic, Hausman 
statistic, estimates of the variance components, and the usual coefficient estimates with 
standard errors. 
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E17.3.2 Application 
 
 The following continues the earlier example with the two factor models. 
 
 CREATE ; t = Trn(-17,0)  $ 
 REGRESS ; Lhs = loggsp ; Rhs = x,one 
   ; Fixed Effects ; Period = t  ; Panel $ 
 
The first set of results is the same as shown earlier.  The results for the two factor models are shown below. 
 
----------------------------------------------------------------------------- 
LSDV         least squares with fixed effects .... 
LHS=LOGGSP   Mean                 =       10.50885 
             Standard deviation   =        1.02113 
             No. of observations  =            816  Degrees of freedom 
Regression   Sum of Squares       =        848.953          69 
Residual     Sum of Squares       =        .856334         746 
Total        Sum of Squares       =        849.809         815 
             Standard error of e  =         .03388 
Fit          R-squared            =         .99899  R-bar squared =   .99890 
Model test   F[ 69,   746]        =    10704.03809  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     1640.82592  Akaike I.C.   = -6.68794 
             Restricted (b=0)     =    -1174.41748  Bayes  I.C.   = -6.28438 
             Chi squared [ 69]    =     5630.48680  Prob C2 > C2* =   .00000 
Estd. Autocorrelation of e(i,t)   =        .751724 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data       48 
             Smallest  17,     Largest          17 
             Average group size in panel     17.00 
Panel: Prds: Empty      0,     Valid data       17 
             Smallest   0,     Largest          48 
             Average group size in panel     48.00 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .48498***      .09316     5.21  .0000      .30239    .66757 
  LOGHWY|    -.21822***      .05733    -3.81  .0001     -.33058   -.10586 
  LOGH2O|-.55828D-04         .01890      .00  .9976 -.37100D-01  .36988D-01 
 LOGUTIL|    -.28424***      .03918    -7.26  .0000     -.36103   -.20745 
  LOGEMP|     .92966***      .02114    43.97  .0000      .88822    .97111 
Constant|    3.75284***      .25710    14.60  .0000     3.24895   4.25674 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Group        Coefficient       Standard Error       t-ratio 
            1           -.08276               .00939      -8.81674 
 (Groups 2 – 47 omitted) 
           48            .36739               .04277       8.59006 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Period       Coefficient       Standard Error       t-ratio 
            1           -.04440               .00716      -6.20374 
 (Periods 2 – 16 omitted) 
           17            .05882               .00641       9.17373 
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+--------------------------------------------------------------------+ 
|             Test Statistics for the Regression Model               | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood    Sum of Squares  R-squared | 
|(1)  Constant term only    -1174.41747         849.80888     .00000 | 
|(2)  Group effects only      377.47534          18.94145     .97771 | 
|(3)  X - variables only      577.89766          11.58975     .98636 | 
|(4)  X and group effects    1538.36348           1.10080     .99870 | 
|(5)  X ind.&time effects    1640.27938            .85748     .99899 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.   Prob         F   num   denom  P value | 
|(2) vs (1)   3103.79     47  .0000    716.77    47     768   .00000 | 
|(3) vs (1)   3504.63      5  .0000  11716.51     5     810   .00000 | 
|(4) vs (1)   5425.56     52  .0000  11312.81    52     763   .00000 | 
|(4) vs (2)   2321.78      5  .0000   2473.18     5     763   .00000 | 
|(4) vs (3)   1920.93     47  .0000    154.69    47     763   .00000 | 
|(5) vs (4)    203.83     16  .0000     13.25    16     747   .00000 | 
|(5) vs (3)   2124.76     64  .0000    146.09    64     747   .00000 | 
+--------------------------------------------------------------------+ 
 
The LM statistic has been adjusted for the two types of effects – there is no Baltagi and Li 
counterpart for this.  The Hausman statistic is also recomputed. 
 
E17.4 Autocorrelation  
 
 The one factor fixed and random effects models may be estimated with an autocorrelated 
error structure.  The structural equations would be as follows: 
  
   yit   =  β′xit  +  αi  +  εit, 

   εit   =  ρεi,t-1  +  ηit. 
 
Estimation is done in two steps.  In the first, the model is estimated ignoring the autocorrelation just 
for the purpose of obtaining an estimate of ρ.  The second step is the generalized least squares 
procedure.  The following describes the commands needed to estimate this model.    
 Estimation is essentially the same for both the fixed and random effects models.  The first 
command is used to produce the estimate of ρ and is the basic model command.  The estimate is 
saved automatically in the calculator scalar, rho.  The second command will be the same as the first, 
with the addition of the specification 
 
   ; AR1 
You should also use  

; Fixed  or  ; Random 
 
to specify which type of model you wish to estimate.  If you omit both of these, as usual, both the 
fixed and random effects estimators will be computed, and the random effects model results will be 
saved. 
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 For example, 
  
 REGRESS  ; Lhs = y ; Rhs = xlist ; Panel ; Str = i ; Fixed $ 
 REGRESS  ; Lhs = y ; Rhs = xlist ; Panel ; Str = i ; Fixed ; AR1 $ 
 
will estimate the fixed effects model with the autocorrelated error structure.  Changing ; Fixed to       
; Random will estimate a random effects model.  This model may also be combined with the two 
stage least squares procedure described in the next section.  (It cannot be combined with the 
Hausman-Taylor or DPD estimators described later in this chapter.) 
 The value of ρ used when you specify ; AR1 is whatever value happens to be in the 
calculator scalar named rho.  This is one of the named scalars which automatically contains the 
residual autocorrelation after you compute a least squares or two stage least squares linear 
regression.  This is kept automatically by the first of the two regressions above.  If your command 
contains ; AR1, the value of rho is left unchanged by that regression.  Thus, you can use the same 
value of ρ in several regressions.  In addition, the value of rho need not be that produced by a fixed 
or random effects model.  If you precede your panel data model with any other regression, it will 
leave a value of ρ behind to be used by this model.  Alternatively, to set ρ, you can simply use the 
command 
 
  CALC   ; rho = desired value $ 
 
(This scalar is not ‘read-only,’ as this command demonstrates, even though it appears to be in the 
project window.) 
 
NOTE:  Estimation with autocorrelated disturbances does not require that there be the same number 
of observations in each group (as usual).  
 
 The output produced by the ; AR1 model will differ from the usual output only in the 
display of the value of rho in use at the beginning of the first page.  In addition, the output for the 
LSDV and FGLS estimators will contain estimates of the autocorrelation of the residuals.  But, this 
value will not replace the value of rho being used in the calculations.  Do note, however, that at 
every step, the entire analysis is based on transformed data (e.g., yit - ρyi,t-1).  As such, many 
statistics, such as group means, likelihood ratio statistics, analyses of variance, etc., will be 
meaningless.   
 In both random and fixed effects models, when ; AR1 is used, the full set of analyses is 
applied to the transformed data 
 
   zit  =  Zit  -  ρZi,t-1 
 
where Zit is either yit, xit, or the same transformation of the instruments.  This is the Cochrane-Orcutt 
transformation.  As such, the first observation in each group is lost.  (The ‘within’ transformation, 
i.e., forming deviations from group means, will not remove the heterogeneity if the Prais-Winsten 
transformation is used for the first observation.)  In the fixed effects model, the transformation 
produces 
   yit - ρyi,t-1 =  β′(xit - ρxi,t-1) +  αi(1-ρ)  +  ηit. 
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Thus, the same fixed effects model applies to the transformed data.  The same set of procedures as 
usual is used to obtain the estimates.  In the displayed output, the values of αi, not αi(1-ρ) are 
displayed and kept.  But, all other results, including the various variance parameters are based on the 
transformed data.  If predictions are computed, the correct values of the parameters are used to 
predict yit, not the partial differences.  The random effects model produces essentially the same set of 
complications with ; AR1.  The constant term, α, and the common effect, ui, are transformed to  α(1-
ρ) and ui(1-ρ) during estimation.  The constant term is adjusted back in the displayed output.  The 
variance terms estimated using the transformed data are σε

2(1-ρ)2 and σu
2(1-ρ)2.  The final results for 

the model show these estimates as well as the original parameters, σε
2 and σu

2.  An application is 
shown below. 
 The estimate of ρ from the earlier model, based on the one way fixed effects model, is 
0.725563.  Using this estimate of ρ, the AR1 model is as shown below.  The estimates computed 
without the autocorrelation correction are shown for both the OLS and LSDV results. 
 
Results based on AR(1) correction 
 
Estd. Autocorrelation of e(i,t)   =        .725563 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data       48 
             Smallest  16,     Largest          16 
             Average group size in panel     16.00 
Variances    Effects a(i)         Residuals e(i,t) 
              .001815                      .000448 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .19350         .17937     1.08  .2807     -.15806    .54505 
  LOGHWY|    -.19371*        .10929    -1.77  .0763     -.40791    .02049 
  LOGH2O|     .00928         .02874      .32  .7469     -.04706    .06561 
 LOGUTIL|    -.15953**       .07316    -2.18  .0292     -.30292   -.01614 
  LOGEMP|    1.14688***      .02486    46.14  .0000     1.09816   1.19560 
--------+-------------------------------------------------------------------- 
 
Original uncorrected results 
 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data       48 
             Smallest  17,     Largest          17 
             Average group size in panel     17.00 
Variances    Effects a(i)         Residuals e(i,t) 
              .022553                      .001443 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10400     5.44  .0000      .36240    .77007 
  LOGHWY|    -.23193***      .06325    -3.67  .0002     -.35590   -.10796 
  LOGH2O|     .05375***      .01871     2.87  .0041      .01707    .09043 
 LOGUTIL|    -.33878***      .04340    -7.81  .0000     -.42385   -.25372 
  LOGEMP|    1.00378***      .02010    49.94  .0000      .96439   1.04318 
--------+-------------------------------------------------------------------- 
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 The AR1 model for the fixed and random effects specifications is estimated by two step 
FGLS.  In the first step, an estimator of ρ is automatically produced by whatever panel data estimator 
has been used. This will be any of the fixed or random effects models with one or two way 
specifications.  The estimator is 
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The estimator of β is whatever the most recent one happens to be at the time the calculation is made.  
 

E17.5 Heteroscedasticity and Autocorrelation Robust 
Covariance Matrix 
 
 The cluster corrected robust variance estimator described in Section E17.2.5 accommodates 
correlation across observations within a group.  In principle, the estimator accommodates both 
‘autocorrelation,’ that is correlation across observations within the group, and heteroscedasticity, that 
is, different variances across groups.  There are also more narrowly structured robust variance matrix 
estimators, the White and Newey-West estimators, that accommodate each of these effects alone. 
 
E17.5.1 Heteroscedasticity 
 
 If the variances can be assumed to be the same for all observations in the ith group, then 
each group specific variance can be estimated by the group mean squared residual, and the result 
inserted directly into the textbook formulas for the variance of the OLS (LSDV) estimator.  In this 
case, Ω becomes a block diagonal matrix, in which the ith diagonal block is σi

2I.  (This resembles the 
time series/cross section model.)  In practical terms, we simply replace eit

2 with si
2 in the estimate of 

the asymptotic covariance matrix.  To request these estimators, add 
 
   ; Het or ; Het ; Hc1 or ; Het ; Hc2 or ; Het ; Hc3 
and   ; Het =  group 
 
respectively to the REGRESS command. 
 There is a counterpart to the White estimator for unspecified heteroscedasticity for the one 
way fixed effects model.  The model is 
 
   yit  =  αi  +  β′xit  +  εit. 
 
Suppose that every εit has a different variance, σit

2  In the fashion of White’s estimator for the linear 
model, the natural approach is simply to replace εit

2  with eit
2 in the preceding, and compute 

 

   Est.Asy.Var[blsdv]  =  [X*′X*]-1 X*′ Ω
∧

X* [X*′X*]-1 
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where ‘*’ denotes deviations from group means.  This produces the same results as if the White 
correction were applied to the OLS results in full model including both regressors and group dummy 
variables.  You may also specify the three variations of the White estimator suggested by Davidson 
and MacKinnon, 
 

 Hc1:  Est.Var[b]  =  (X*′X*)-1 × 
Kn

n
−

2
1

*n
i i ii

e
=

′∑ x *x  × (X*′X*)-1 

 

 Hc2:  Est.Var[b]  =  (X*′X*)-1 × 
( )

2

1 1
*

1 *( ' ) *

n i
i ii

i i

e
= −

′
′−

∑ x *x
x X* X* x

 × (X*′X*)-1 

 

 Hc3:  Est.Var[b]  =  (X*′X*)-1 × 
( )

2

21 1
*

1 *( ' ) *

n i
i ii

i i

e
= −

′
′−

∑ x *x
x X* X* x

 × (X*′X*)-1 

(In these expressions, ‘n’ indicates the full sample, which would be ΣiTi observations.)  
 
LSDV results, uncorrected 
 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data       48 
             Smallest  17,     Largest          17 
             Average group size in panel     17.00 
Variances    Effects a(i)         Residuals e(i,t) 
              .022553                      .001443 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10400     5.44  .0000      .36240    .77007 
  LOGHWY|    -.23193***      .06325    -3.67  .0002     -.35590   -.10796 
  LOGH2O|     .05375***      .01871     2.87  .0041      .01707    .09043 
 LOGUTIL|    -.33878***      .04340    -7.81  .0000     -.42385   -.25372 
  LOGEMP|    1.00378***      .02010    49.94  .0000      .96439   1.04318 
--------+-------------------------------------------------------------------- 
 
 Robust covariance matrix, unrestricted variances 
 
-------------------------------------------------- 
White/Hetero. corrected covariance matrix was used 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10884     5.20  .0000      .35291    .77956 
  LOGHWY|    -.23193***      .07033    -3.30  .0010     -.36978   -.09408 
  LOGH2O|     .05375***      .01928     2.79  .0053      .01596    .09154 
 LOGUTIL|    -.33878***      .04339    -7.81  .0000     -.42383   -.25373 
  LOGEMP|    1.00378***      .02546    39.42  .0000      .95388   1.05369 
--------+-------------------------------------------------------------------- 
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Robust covariance matrix, equal variances within groups 
 
-------------------------------------------------- 
White/Hetero. corrected covariance matrix was used 
Disturbance variances assumed equal within groups. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10937     5.18  .0000      .35187    .78060 
  LOGHWY|    -.23193***      .06528    -3.55  .0004     -.35988   -.10398 
  LOGH2O|     .05375***      .01927     2.79  .0053      .01598    .09152 
 LOGUTIL|    -.33878***      .04576    -7.40  .0000     -.42848   -.24909 
  LOGEMP|    1.00378***      .02077    48.32  .0000      .96307   1.04450 
--------+-------------------------------------------------------------------- 
 
E17.5.2 Autocorrelation 
 
 The asymptotic covariance matrix for the fixed effects estimator may also be estimated with 
a Newey-West style correction for autocorrelation.  Request this computation with 
 
   ; Lags = the number of lags, up to 10. 
 
Continuing the application from earlier, the Newey-West estimator of the covariance matrix for the 
LSDV coefficients produce the results below: 
 
(Uncorrected) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10400     5.44  .0000      .36240    .77007 
  LOGHWY|    -.23193***      .06325    -3.67  .0002     -.35590   -.10796 
  LOGH2O|     .05375***      .01871     2.87  .0041      .01707    .09043 
 LOGUTIL|    -.33878***      .04340    -7.81  .0000     -.42385   -.25372 
  LOGEMP|    1.00378***      .02010    49.94  .0000      .96439   1.04318 
--------+-------------------------------------------------------------------- 
Used Newey-West robust VC estimator with   5 lags. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .13441     4.21  .0000      .30280    .82966 
  LOGHWY|    -.23193***      .08687    -2.67  .0076     -.40219   -.06167 
  LOGH2O|     .05375**       .02440     2.20  .0276      .00594    .10156 
 LOGUTIL|    -.33878***      .05218    -6.49  .0000     -.44105   -.23652 
  LOGEMP|    1.00378***      .03190    31.46  .0000      .94126   1.06631 
--------+-------------------------------------------------------------------- 
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E18: Random Effects Linear Models for Panel 
Data 

 
E18.1 Introduction 
 
 This chapter will detail estimation of random effects linear models for panel data.  The 
essential structure for most of them is an ‘effects’ model, 
 
   yit  =  α + β′xit  +  εit + ui  +  wt   
 
in which variation across groups (individuals) or time is captured in simple shifts of the regression 
function – i.e., changes in the intercepts.  These models are the random effects (RE) models 
characterized by u and w being uncorrelated with x.  Under this assumption, the model can be 
estimated consistently by ordinary least squares.  The focus here is on developing efficient estimators 
or constructing appropriate robust covariance matrices for least squares.  Several variations on this 
structure can be analyzed with this estimator, including both one and two factor models, models of 
autocorrelation, and several involved, hierarchical models. 
 

E18.2 One Way Random Effects Model 
 
 The fundamental part of the random effects model is a one way common effects specification, 
 
   yit  =  α + β′xit + εit + ui 

 where   Cov(ui,xit)  =  0 for all t, 

   E[ui| xit]  =  0,  Var[ui| xit] = σu
2  Cov[εit,ui| xit] = 0. 

  
The random effects model is a generalized regression model.  It is homoscedastic, as all disturbances 
have variance 
    Var[εit + ui]  =  σ2 =  σε

2  + σu
2 . 

 
But, for a given i, the disturbances in different periods are correlated because of their common 
component, ui, 
   Corr[εit + ui,εis + ui]  =  ρ  =  σu

2 / σ2. 
 
The efficient estimator is generalized least squares.  LIMDEP provides a two step procedure and a 
maximum likelihood estimator under the additional assumption that ε is normally distributed.  The 
variance components are first estimated by using the residuals from ordinary least squares 
regressions.  Then, feasible GLS estimates are computed using the estimated variances.   
 An additional procedure is available to fit the model by maximum likelihood assuming 
normally distributed disturbances.  The resulting estimator has the same properties as the FGLS 
estimator, so this is not a basis to choose it.  But, two additional extensions of the model, exponential 
heteroscedasticity and nested random effects with unbalanced panels, are fairly easily handled by 
MLE, but are not feasible (logistically) using FGLS.  These specifications trade the possibly narrow 
assumption of normality for the increased flexibility of the broader models.  Obviously, the choice is 
up to the user in the context of a given application.  There is no test for the specification. 
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E18.2.1 Command 
 
 The commands for estimation of these models are variants of the basic structure 
 
 SETPANEL ; Group = identifier ; Pds = variable name 
 
Then,  REGRESS ; Lhs = y ; Rhs = x...  
   ; Panel 
   ; Random Effects 
   ; ... other options $ 
 
As always, you may use 
 
   ; Panel 
   ; Str = the name of a stratification variable  
  or ; Pds = specification of the number of periods, variable or fixed 
 
in the command to specify the panel instead. 
 The random effects model automatically includes a constant term, whether you have 
included one or not.  If you want the random effects model to be fit without a constant term, include 
 
   ; No constant 

 
A crucial element of the computation of the random effects model is the estimation of the 

variance components.  You may supply your own values for σε
2 and σu

2. The specification is 
 
   ; Var = s2e,s2u  for the one factor model   

  ; Var = s2e,s2u,s2w for the two factor model  
 
This overrides all other computations.  The values are checked for validity.  A nonpositive value 
forces estimation to halt at that point. 
 
NOTE:   If you omit the ; Random Effects part of the command, then LIMDEP reports full results 
for the pooled regression (as always) and the fixed effects (LSDV) regression in addition to the 
random effects results.  By including ; Random Effects, you will suppress the display of the LSDV 
results (though they are still computed internally). 
 
E18.2.2 Output 
 
 After display of any previous results, including ordinary least squares and the fixed effects 
estimator, a display such as the following will be presented, followed by the standard form table of 
coefficient estimates, standard errors, etc. The results in the table are as follows: 
 
 REGRESS  ; Lhs = loggsp   
   ; Rhs = x,one  
   ; Panel ; Random Effects $ 
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----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
Estimates:  Var[e]              =       .001443 
            Var[u]              =       .012866 
            Corr[v(i,t),v(i,s)] =       .899169 
            Sum of Squares            17.866362 
            R-squared                   .978976 
Fixed vs. Random Effects (Hausman)     =  35.24 
( 5 degrees of freedom, prob. value =  .000001) 
(High (low) values of H favor F.E.(R.E.) model). 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .61652***      .10156     6.07  .0000      .41747    .81558 
  LOGHWY|    -.25482***      .05782    -4.41  .0000     -.36814   -.14150 
  LOGH2O|     .05042***      .01838     2.74  .0061      .01439    .08644 
 LOGUTIL|    -.35501***      .04262    -8.33  .0000     -.43854   -.27147 
  LOGEMP|     .98293***      .01962    50.10  .0000      .94448   1.02138 
Constant|    2.66833***      .16389    16.28  .0000     2.34711   2.98956 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

1. Estimates of σε
2 and σu

2 based on the least squares dummy variable model residuals.  These 
are used to estimate the variance components. The technical details in Section E18.2.5 
describe the computations.  Since there are some potential problems that can arise, the 
sequence of steps taken in this part is documented in the trace file.  The application  shows an 
example.  This trace output may be quite lengthy, as several attempts may be made to fit the 
model with different variance components estimators. 

 
2. The estimate of ρ = σu

2 / (σε
2 + σu

2) based on whatever first round estimator has been used. 
 

3. The sum of squares is the sum of squared residuals based on the two step FGLS coefficient 
vector.   
 

4. An R2 measure is reported (by popular request)   
 

  R2 = 
2

1 1
2

1 1

ˆ( )1 - 
( )

i

i

TN
i t it RE it

TN
i t it

y
y y

= =

= =

′Σ Σ −
Σ Σ −

xβ
. 

 
Users are warned, this measure can be negative.  It is only guaranteed to be positive when 
OLS has been used to fit a model with a constant term.  There are other measures that could 
be computed, such as the squared correlation between the actual and fitted values, but 
neither these, nor the one above, are fit measures in the same sense as in the linear model.  It 
will always be less than the result for OLS (since OLS is LS). 

 
5. The Hausman specification test for fixed vs. random effects if presented at the end of these 

results.  See Section E18.2.3 for discussion. 
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NOTE:   In computing the random effects model, the second step FGLS estimator generally relies 
on the first step OLS and LSDV (fixed effects) sums of squares.  You may be suppressing the FE 
model, perhaps because of the presence of time invariant variables which preclude the FE model, but 
not the RE model.  In previous versions of LIMDEP, and in some other programs, this will force the 
estimator to rely on another device to estimate the variance components, typically a group means 
estimator.  In the current version of LIMDEP, the FE model is computed in the background, whether 
reported or not.  The sums of squares needed are obtainable even in the presence of time invariant 
variables.  Thus, you will get the same results for the RE model whether or not you have allowed 
LIMDEP to report the fixed effects results. 
 
The standard table of coefficient results follows.  The test statistic is denoted ‘z’ as the asymptotic 
normal distribution applies, rather than the finite sample t distribution. 
 
E18.2.3 Specification Tests for Random vs. Fixed Effects 
 

Hausman’s chi squared statistic for testing the REM against the FEM is 
 
   -1ˆ ˆ ˆ ˆ ˆ ˆ = ( - )  [ ( ) -  ( )] ( - )LSDV RE LSDV RE LSDV REH Est.Var Est.Var′β β β β β β     
 
The Hausman statistic for the specification test of fixed vs. random effects is also reported, as shown 
below: 
 

REGRESS ; Lhs = loggsp ; Rhs = x,one ; Panel $ 
 

----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
Estimates:  Var[e]              =       .001443 
            Var[u]              =       .012866 
            Corr[v(i,t),v(i,s)] =       .899169 
            Sum of Squares            17.866362 
            R-squared                   .978976 
----------------------------------------------- 
Fixed vs. Random Effects (Hausman)     =  35.24 
( 5 degrees of freedom, prob. value =  .000001) 
(High (low) values of H favor F.E.(R.E.) model). 
--------+-------------------------------------------------------------------- 
(Other results omitted) 
 
The prob value and degrees of freedom for the Hausman statistic are reported. 
 
HINT:  Large values of the Hausman statistic argue in favor of the fixed effects model over the 
random effects model.  Large values of the LM statistic argue in favor of one of the one factor 
models against the classical regression with no group specific effects. A large value of the LM 
statistic in the presence of a large Hausman statistic (as in our application) argues in favor of the 
fixed effects model. 
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NOTE:  Sometimes it is not possible to compute the Hausman statistic.  The difference matrix in the 
formula above may not be positive definite.  The theory does not guarantee this.  It is more likely to 
be so, but still not certain, if the same estimate of σε

2 is used for both cases.  As such, LIMDEP uses 
the FGLS estimator of this, however it has been obtained, for the computation.  Still, the matrix may 
fail to be positive definite.  (The program will issue an error message, 
 
 Error   425: REGR;PANEL. Could not invert VC matrix for Hausman test 
 
when this occurs.  In this case, a 0.00 is reported for the statistic and a diagnostic warning appears in 
the results.  Users are warned, some other programs attempt to bypass this issue by using some other 
matrix or some other device to force a positive statistic.  These ad hoc measures do not solve the 
problem – they merely mask it.  At worst, the appropriate zero value can be replaced by a value that 
appears to be ‘significant.’   The better strategy in such a case is to take the difference between the 
two estimators to be random variation, which would favor the random effects estimator.  The Wu 
variable addition test is also a useful alternative approach. 

 
 Wu’s (1973) variable addition test is an alternative approach to computing the Hausman test 
for random vs. fixed effects.  The test is carried out by adding the group means of the time varying 
variables to the random effects model then testing the joint hypothesis that the coefficients on the 
group means are all zero.  (See Baltagi (2008) for details.)  The test is not built in (since the program 
cannot tell from a variable list what variables are group means.  But, it is straightforward to layer 
onto the random effects estimator.  The following shows how to do so using our earlier example.  
The five group means are time invariant variables, which can be seen in the LSDV results.  The 
results shown for these variables should be ignored. 
 

CREATE  ; lpcbar  = Group Mean(logkp, Pds = 17) $ 
CREATE ; lhwybar = Group Mean(loghwy, Pds = 17) $ 
CREATE ; lh2obar  = Group Mean(logh2o, Pds = 17) $ 
CREATE ; lutilbar  = Group Mean(logutil, Pds = 17) $ 
CREATE ; lempbar = Group Mean(logemp, Pds = 17) $ 

 REGRESS  ; Lhs = loggsp   
   ; Rhs = x,lpcbar,lhwybar,lh2obar,lutilbar,lempbar  
   ; Panel  
   ; Test: lpcbar = 0, lhwybar = 0, lh2obar = 0, lutilbar = 0, lempbar = 0 $  
 
The ordinary least squares regression results and the LSDV least squares with fixed effects results 
are omitted. 
 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data       48 
             Smallest  17,     Largest          17 
             Average group size in panel     17.00 
Variances    Effects a(i)         Residuals e(i,t) 
              .280528                      .001452 
These  5 variables have no within group variation. 
LPCBAR   LHWYBAR  LH2OBAR  LUTILBAR LEMPBAR 
F.E. estimates are based on a generalized inverse. 
-------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10434     5.43  .0000      .36173    .77074 
  LOGHWY|    -.23193***      .06346    -3.65  .0003     -.35631   -.10755 
  LOGH2O|     .05375***      .01878     2.86  .0042      .01695    .09055 
 LOGUTIL|    -.33878***      .04354    -7.78  .0000     -.42413   -.25344 
  LOGEMP|    1.00378***      .02017    49.77  .0000      .96426   1.04331 
  LPCBAR|        0.0    .....(Fixed Parameter)..... 
 LHWYBAR|        0.0    .....(Fixed Parameter)..... 
 LH2OBAR|        0.0    .....(Fixed Parameter)..... 
LUTILBAR|        0.0    .....(Fixed Parameter)..... 
 LEMPBAR|        0.0    .....(Fixed Parameter)..... 
 --------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
(Results omitted) 
 
Error   425: REGR;PANEL. Could not invert VC matrix for Hausman test. 
 
----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
Estimates:  Var[e]              =       .001452 
            Var[u]              =       .011788 
            Corr[v(i,t),v(i,s)] =       .890317 
            Sum of Squares            10.658532 
            R-squared                   .987458 
----------------------------------------------- 
Wald test of  5 linear restrictions 
Chi-squared =      38.17, P value   =    .00000 
Test:      F ratio [ 5, 758]        =   7.63365  Prof F  > F*  =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .56623***      .10434     5.43  .0000      .36173    .77074 
  LOGHWY|    -.23193***      .06346    -3.65  .0003     -.35631   -.10755 
  LOGH2O|     .05375***      .01878     2.86  .0042      .01695    .09055 
 LOGUTIL|    -.33878***      .04354    -7.78  .0000     -.42413   -.25344 
  LOGEMP|    1.00378***      .02017    49.77  .0000      .96426   1.04331 
  LPCBAR|    -.42125         .67847     -.62  .5347    -1.75103    .90853 
 LHWYBAR|     .51236         .36396     1.41  .1592     -.20099   1.22572 
 LH2OBAR|     .06305         .10529      .60  .5493     -.14330    .26941 
LUTILBAR|     .30434         .29238     1.04  .2979     -.26872    .87740 
 LEMPBAR|    -.44919***      .09559    -4.70  .0000     -.63654   -.26184 
Constant|    2.15254***      .64061     3.36  .0008      .89698   3.40811 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E18.2.4 Saved Results 
 
 Results which are saved for later use are: 
 
 Matrices:  b and varb These will be the FGLS estimates of the random effects model.  
 
 Scalars:  ssqrd = s2 from least squares dummy variable (LSDV) estimator or from FGLS 
   rsqrd  = R2 from LSDV 
   s  = √s2 from LSDV 
   sumsqdev = sum of squared residuals from LSDV 
   rho  = estimated disturbance autocorrelation from whatever model is fit last 
   degfrdm  = ΣiTi  -  K 
   sy  = standard deviation of Lhs variable 
   ybar  = mean of Lhs variable 
   kreg  = K 
   nreg  =  total number observations 
   logl  =  log likelihood from LSDV model 
   ssqrdu  =  estimate of σu

2 from FGLS 
   ssqrde  =  estimate of σε

2 from FGLS 
   ssqrdw  =  estimate of σw

2  from GLS if two way random effects model is fit 
   exitcode =  0.0 if the model was estimable 
   ngroup =  number of groups 
   nperiod =  number of periods.  This will be 0.0 if you fit a one way model. 
 
 Last Model: b_variable  constructed as usual.   

   
 Last Function: Conditional mean for the linear regression = a + b’x 
 
Predicted values are based on the last model estimated, one or two way, fixed or random.  Since the 
constant term is included in the function, SIMULATE will give appropriate predictions.  
PARTIALS operates as usual.   
 
E18.2.5 Technical Details 
 
 The equal group sizes case is considered first.  Special considerations for the unbalanced 
panel case are considered next. The random effects model is a generalized regression model.  The 
specification has 
   yit   =  α  +  β′xit  + vit , 

   vit   =  εit  +  ui , 

   E[vit|X] =  0, 

   E[vit
2|X] =  σ2  =  σε

2 + σu
2, 

             E[vit vis|X] =  σu
2, 

and             E[vit vjs|X] =  0 ∀ t,s if i ≠ j. 
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Estimation by feasible GLS (FGLS) is done by regressing yit - θ iy  on (1 - θ) and (xit - θ ix ).  (1 - θ) 
is the constant term in this regression, where 
 
   θ   =  1  -  σε / σ2 
and   σ2

2 =  σε
2 + Tσu

2
 . 

 
Since the variances are unknown, they and θ must be estimated first.   This is done as follows: 
 

1. The residual variance from the LSDV estimator is a consistent estimator of σε
2; 

 
   2ˆ εσ  =  ΣiΣt eLSDV,it

2 / (NT - N - K), 
 

where eLSDV,it is the residual from the least squares dummy variable regression and ‘NT’ 
denotes the entire sample size, 

 
   eit  =  yit - ai – bLSDV′xit  =  (   -  ) - '(   -  ).it i LSDV it iy y b x x    
 

(The fixed effects estimator is always computed for this purpose, even if the results are not 
displayed.)   

 
2. The simple least squares estimator with no group effects can always be computed.  The 

residual variance estimator from this procedure would be 
 
   s2  =  ΣiΣt eOLS,it

2 / (NT - K - 1) 
 

This is a consistent estimator of σε
2 + σu

2, so a consistent estimator of σu
2 is 

 
   2ˆ uσ   =  s2  -  2ˆ εσ  
 

3. This second estimate need not be positive, because of the differing degrees of freedom.  In 
this event, a second attempt is made.  If the degrees of freedom correction is not made, then 
by construction, both variance estimators must be positive, and estimation proceeds.  The 
LSDV estimator must fit better than the model with only a single constant, so 

 
   2ˆ uσ   =  ΣiΣt eOLS,it

2 / NT  -  ΣiΣt eLSDV,it
2 / NT  

 
 must be positive, as will 2ˆ εσ   =  ΣiΣt eLSDV,it

2 / NT. 
 

4. If neither works – 2ˆ uσ  can be zero, though (at least in theory) not negative – then we try 
using the group means. (This should never happen, but we note this procedure to connect to 
the existing literature and to what is done in other software.  The capability remains in 
LIMDEP.)  In the REM, 

 
   iy    =  α + β′ ix  + ui + iε  
 so  yit - iy  =  β′(xit - ix ) + εit - iε . 
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Hence, the mean squared residual from this regression is a natural estimator of σε
2.  It can be 

shown that this one is unbiased.  Of course, it might be based on a small number of 
observations. To estimate σu

2, we note that for the group means, the regression is a classical 
regression with disturbance variance 
 

   Var[ui + iε .]  =  σu
2 + σε

2 /T. 
 

Therefore, if we regress the group means of y on a constant and the group means of x, the 
variance estimator in this regression is an unbiased estimator of  

 
   σ1

2  =  σu
2 + σε

2 /T. 
 

 Since we have an estimator of σε
2 in hand, we can use 

 
   2ˆ uσ   =  v*′v*/(N-K) - (1/T) 2ˆ εσ  
 where  vi*  =  iy  - bgroup means′ ix  
 

This is unbiased in the general case.  Unfortunately, this estimator may also not be positive. 
An alternative can be based on the direct least squares estimates of Model 3 (or, for that 
matter, any other consistent estimator of β).  Using the same calculation otherwise, we 
would just compute 

 
   s1

2  =  Σi ( iy  - bols′ ix )2/(N-K) 
 then  2ˆ uσ  =  s1

2 - (1/T) 2ˆ εσ  . 
 
 If need be, LIMDEP tries all of these estimators.  As noted, the second attempt, using the 
sums of squares without degrees of freedom corrections, will succeed in all but the most pathological 
cases.  Still, it is possible that none of the procedures will produce a positive estimate of σu

2.  In that 
instance, estimation is halted.  The search is reported in the trace file when you fit this model, along 
with the decisions made at each point as the program seeks a valid estimate.  The entry for the model 
fit in the previous section is as follows: 
 
Regress ; Lhs = loggsp ; Rhs = x,one 
;panel;pds=17;random effects$  
Estimating variance components for random effects model. 
FEM was computed. Using LSDV and OLS to get V[e] & V[u]. 
OLS & LSDV with d.f. provide both estimates > 0. 
Exit status for this model command is   .0. 

 
NOTE:  The finding of a nonpositive estimate of σu

2 is quite common, and many programs do not 
use the same search we do.  Notably, many do not use the second pass attempt (without degrees of 
freedom correction) that is used here.  This leaves the negative estimate as a persistent possibility.  
Users should be aware of what the software does in this instance. 
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Regress ; Lhs = loggsp ; Rhs = x,one ;panel;pds=17 ; mle; hfu=ubari   
Estimating variance components for random effects model. 
FEM was computed. Using LSDV and OLS to get V[e] & V[u]. 
OLS & LSDV with d.f. provide both estimates > 0. 
Entering iterative search for function optimizers. 
Begin main iterations for optimization. 
Maximum iterations reached. Exit iterations with status=1. 
Exit from iterative procedure.  501 iterations completed. 
Exit status appears above. 
Exit status for this model command is  1.0. 
 
Unequal Group Sizes 
 
 We consider the case of unequal group sizes.  In the group means regression, the disturbance 
will now have variance 
 
   Var[ui + Σiεit/Ti]  =  σ1i

2  =  σu
2+ σε

2/Ti. 
 
Therefore, the group means regression is heteroscedastic.  The unbiasedness result above does not 
hold any more.  However, it can be shown that the ordinary least squares variance estimator in a 
heteroscedastic regression is a consistent estimator of 
 
(*)   2 2

1 1 1  =  p lim(1 / ) N
i iN =σ Σ σ , 

 
assuming that the probability limit exists.  As will be useful later, the mean squared residual (using 

group means of y and x) based on any consistent slope estimator is a consistent estimator of  σ 1
2
. In 

this setting, we take the limit as applying to N increasing, not T or Ti.  T or Ti is taken as fixed in this 
model and may not increase at all beyond a very small number.  Consistency results depend on 
increasing N, not T or Ti.  So, the variance estimator in the group means regression is a consistent 
estimator of 
   2

1σ  =  σ u
2  + σε

2 plim(1/N)Σi(1/Ti) 

    =  σ u
2  + σε

2 plimQN* 

    =  σ u
2  + σε

2 Q* 
 
whatever that happens to be.  Some assumption about the group sizes is obviously necessary.  One 
possibility would be to assume that Ti is randomly distributed across individuals with E[Ti] = T. Note 
that if  Ti = T for all i, then  QN* = Q* = Q = 1/T.  Suppose it is assumed that QN* converges to some 
well defined Q*.  Then, in our sample, the statistic 
 
   Q  =  (1/N) (1/T1  +  1/T2  +  ...  +  1/TN) 
 
is a consistent estimator of Q*, and the estimator 

   su
2*  =  v*′v* / (N-K) - Qσ ε

∧
2 

 
is a consistent estimator as well.  (If the group sizes are equal, equation (*) above emerges.)  The 
degrees of freedom correction (N-K) instead of N is unnecessary, of course. We make it so the 
appropriate value will result in the equal sized groups case.   
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Heteroscedasticity in the Random Effects Model Due to Unequal Group Sizes 
 

 Estimation by FGLS is done by regressing    
 

   yit - θi iy   on  (1 - θ i)  and (xit - θ i ix ). 
 

(1 - θi is the constant term in this regression), where 
 

   θi   =  1  -  σε / σ2i 
and   σ2i

2 =  σε
2 + Ti σu

2
 . 

 

(Note that the weights are already unequal if the group sizes vary, regardless of the 
heteroscedasticity.)  Neglecting the heteroscedasticity and the unequal group sizes for the moment, 
the first step in the regression is computation of the variance components, which we do as follows: 
 

1. Using simple OLS, use eo′eo/NT to estimate σε
2 + σu

2. 
2. Using LSDV, use e′e/NT to estimate σε

2. 
3. Estimate σu

2 with eo′eo/NT  -  e’e/NT. 
 

Once again, ‘NT’ symbolizes the full sample size, (ΣiTi).  Under homoscedasticity, both estimators 
are consistent.   
 Suppose, now, that Ti differs across groups and, as well, that so does Var[εit].  We consider 
estimation of σu

2.  This estimator is, by construction 
 

   2
uσ

∧

 =   
1 1

1 1

N Ni oi oi i i i
N Ni i

i ii ii i

T T
T TT T= =

= =

      ′ ′               
∑ ∑

∑ ∑
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Note that this collects the sums of squares by groups, and multiplies and divides each contribution by 
the respective sample size.)  We can write this as 
 

   2
uσ

∧

 =   
2

1

N
uiii

w σ
∧

=∑  where wi = Ti / (ΣiTi). 
 

That is, it is an unequally weighted (unless Ti is fixed) average of N separate estimators of σu
2.   To 

what does this estimator converge?  The estimator can be written  
 

   2
uσ

∧

 =   
2

2 2
1 1

N N
,ii ,i u ii i

w w
∧

εε= =

∧ 
+  

 
∑ ∑    -    σ σ σ . 

 

Since each estimator within the brackets is based on the fixed and possibly small Ti observation, one 
cannot say that either is consistent.  But, as N grows, the average in this dimension will be consistent 
under some fairly benign assumptions that would make an average of estimators of σε,i

2 converge to 
some ‘average variance,’ 2

εσ .  If so, then the first of these will converge to 2
εσ  + σu

2 while the second 
will converge to 2

εσ .  (These are different estimators, but they should converge to the same thing.)  If 
so, then the difference converges to σu

2.  By this development, we use the original estimator of σu
2 for 

the FGLS estimator in this model.  We then compute the heteroscedastic random effects estimator by 
recomputing the estimator of σε

2 within each group.  The group specific estimator, whether defined by 
the original data groups or by a higher level stratification, is obtained by the mean squared LSDV 
residual for that particular group.  (This is the second term in square brackets in the earlier expression.) 
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E18.2.6 Robust Covariance Matrix 
 
 Since the random effects model is fit using two step GLS, it assumes a particular disturbance 
process.  As such, a ‘robust’ covariance matrix would seem counterproductive, or at least 
contradictory.  Nonetheless, just such an approach has been advocated in the recent literature.  By 
adding 
   ; Robust 
 
to the command, you can request LIMDEP to abandon the FGLS covariance matrix, and use the 
cluster estimator shown in Section E17.2.5.  For the random effects model, the estimator is 
 

( ){ } ( ){ }1 ( ) ( ) 1
1

. . [ ] ( ) ( )

( ) 1 ˆ                             = ,   
1 ( ) ( )
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FGLS i ii

t i
it it FGLS it

t i

Est AsyVar b A

TnA e y
n T n K

− −
=
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Σ − ′= −
− Σ − +

∑X'X X e X e X'X

xβ

 

 
Results applied to our earlier example are shown below.  The differences in the estimated standard 
errors are quite stark.  Under the logic that the FGLS estimator is consistent regardless of the true 
underlying structure (as is OLS), we might conclude that the one way random effect model is 
misspecified – though this is not a formal test of that proposition. 
 
----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
Estimates:  Var[e]              =       .001443 
            Var[u]              =       .012866 
            Corr[v(i,t),v(i,s)] =       .899169 
            Sum of Squares            17.866362 
            R-squared                   .978976 
Robust cluster corrected covariance matrix used 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .61652         .88256      .70  .4848    -1.11327   2.34631 
  LOGHWY|    -.25482         .42253     -.60  .5465    -1.08296    .57332 
  LOGH2O|     .05042         .10427      .48  .6287     -.15395    .25478 
 LOGUTIL|    -.35501         .38459     -.92  .3560    -1.10880    .39879 
  LOGEMP|     .98293***      .12082     8.14  .0000      .74612   1.21974 
Constant|    2.66833***      .88133     3.03  .0025      .94096   4.39571 
--------+-------------------------------------------------------------------- 
(Uncorrected Covariance Matrix) 
--------+-------------------------------------------------------------------- 
   LOGKP|     .61652***      .10156     6.07  .0000      .41747    .81558 
  LOGHWY|    -.25482***      .05782    -4.41  .0000     -.36814   -.14150 
  LOGH2O|     .05042***      .01838     2.74  .0061      .01439    .08644 
 LOGUTIL|    -.35501***      .04262    -8.33  .0000     -.43854   -.27147 
  LOGEMP|     .98293***      .01962    50.10  .0000      .94448   1.02138 
Constant|    2.66833***      .16389    16.28  .0000     2.34711   2.98956 
--------+-------------------------------------------------------------------- 
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E18.3 ML Estimation of One Way Random Effects Models 
 
 The one way random effects linear model with normally distributed disturbances can be fit 
using maximum likelihood rather than two step FGLS.  As always, the estimator allows unbalanced 
panels.  The estimator is requested simply by adding  
 
   ; MLE 
 
to the basic command for the random effects model. The request has no impact on the fixed effects 
estimator or on the FGLS estimator.  The full model is fit as usual, then an additional set of results 
are provided for the MLE. 
 Three other forms of random effects linear models can be fit by maximum likelihood.  After 
extending the basic model to an MLE, we describe a formal model for heteroscedastic disturbances.  
A further extension of the model provides for nested random effects up to three levels.  Finally, 
Section E18.8 presents a model with multiple way random effects that is estimated by simulation, 
rather than by FGLS. 
 
E18.3.1 Application 
 
 To illustrate the estimator, we recompute the estimates for the random effects model shown 
in Section E18.2.2 using the maximum likelihood estimator.  Results for this model are shown 
below. The FGLS estimates will always appear first.  The maximum likelihood estimates will follow.  
We note, the ML results include estimates of the slope functions and of θ = 1/σε

2 and τ = σu
2/σε

2.  
LIMDEP reparameterizes the log likelihood function for purpose of estimation.  The estimates of the 
two underlying variance parameters are derived from these, and appear in the box above the 
coefficient estimates.  Further details appear in the technical notes below. 
 
Normal exit:   6 iterations. Status=0, F=   -1380.630 
 
----------------------------------------------------------------------------- 
Random Effects Linear Regression Model 
Dependent variable               LOGGSP 
Log likelihood function      1380.62989 
Restricted log likelihood     577.89766 
Chi squared [   1 d.f.]      1605.46447 
Significance level               .00000 
McFadden Pseudo R-squared    -1.3890561 
Estimation based on N =    816, K =   8 
Inf.Cr.AIC  =-2745.260 AIC/N =   -3.364 
Variance of e(i,t) =            .001435 
Variance of u(i  ) =            .020935 
Corr[v(i,t),v(i,s)]=            .935835 
LR test is vs. null of no random effect 
Panel contained      48 nonempty groups 
-----------------------------------------------------------------------------  
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .60013***      .10227     5.87  .0000      .39969    .80056 
  LOGHWY|    -.24974***      .05918    -4.22  .0000     -.36573   -.13376 
  LOGH2O|     .05145***      .01846     2.79  .0053      .01527    .08763 
 LOGUTIL|    -.34962***      .04283    -8.16  .0000     -.43358   -.26567 
  LOGEMP|     .99069***      .01993    49.70  .0000      .95162   1.02976 
Constant|    2.67282***      .17388    15.37  .0000     2.33202   3.01362 
        |Reparameterized Variance Components for ML Search 
   1/s2e|    696.673***    35.59769    19.57  .0000     626.903   766.443 
 s2u/s2e|    14.5847***     3.14783     4.63  .0000      8.4151   20.7544 
--------+-------------------------------------------------------------------- 
(Two Step Feasible GLS Estimates) 
Estimates:  Var[e]              =       .001443 
            Var[u]              =       .012866 
--------+-------------------------------------------------------------------- 
   LOGKP|     .61652***      .10156     6.07  .0000      .41747    .81558 
  LOGHWY|    -.25482***      .05782    -4.41  .0000     -.36814   -.14150 
  LOGH2O|     .05042***      .01838     2.74  .0061      .01439    .08644 
 LOGUTIL|    -.35501***      .04262    -8.33  .0000     -.43854   -.27147 
  LOGEMP|     .98293***      .01962    50.10  .0000      .94448   1.02138 
Constant|    2.66833***      .16389    16.28  .0000     2.34711   2.98956 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E18.3.2 Technical Notes on ML Estimation of the Random Effects 
Model 
 
 The contribution of the ith individual to the log likelihood for the random effects model with 
normally distributed disturbances is 
 

  
2 2 1

 

-1
 

-1log ( , , )  = log 2 log | | ( - ) ( )
2
-1                           = log 2 log | |  
2

i u i i i i i i

i i i i i

L T

T

−
ε ′ σ σ π + + 

′ π + + 

y X y Xβ Ω β Ω β

Ω ε Ω ε

i -
 

where   Ω i  =  σε
2 ITi  +  σu

2 ii′ 
 
Note that the Ω i varies over i because it is Ti×Ti.  By expanding Ω i in the expression, and with some  
straightforward algebra, we obtain 
 

1

2 2
2 2

1 1 12 2 2

log      log

( )-1 1            [(log 2 log )  + log(1 )]   
2 2

N
i i

N N N i i
i i i i i i i

i u

L L

TT T
T

=

ε
ε = = =

ε ε

= Σ

 σ ε′= − π + σ Σ Σ + ρ − Σ − σ σ + σ 
ε ε

 

where                   ρ  =  σu
2 / (σε

2 + σu
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With some further transformations, 
 
   2 2 2  =  1 / ,  = / ,  1,  / ,u i i i iR T Q Rε εθ σ γ σ σ = γ + = γ  
 
the individual contribution to the log likelihood becomes 
 
   2

ilog   (1/ 2)[ ( ( ) ) log log log 2 ]i i i i i i i iL Q T R T T′= − θ − ε + + θ + πε ε . 
 
We maximize the log likelihood function using LIMDEP’s general optimization program – BFGS is  
the default algorithm.  The derivatives of the terms, which are summed over i to give the totals are 
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After estimation, we derive estimates of the underlying variances as σε

2 = 1/θ, σu
2 = γ/θ.  Estimated 

standard errors for these are not reported, but can be obtained easily using the delta method.  
Standard errors are reported for the estimates of θ and γ, though in general, one does not compute 
hypothesis tests about the variance parameters. 
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E18.4 Groupwise Heteroscedasticity in Random Effects  
 
 The random effects model can easily be extended to allow groupwise heteroscedasticity.  We 
consider two forms.  The model with the basic extension to groupwise heteroscedasticity is 
 
   yit  =  β′xit  +  ui  +  εit 

   E[ui| xit]  =  E[εit]  =  0 

           Cov[ui, εis| xit] =  0  for all i, s, t. 

   Var[ui| xit] =  σu
2 

   Var[εit| xit] =  σε i 
2 

 
Thus, the variance of the unique component of the compound disturbance is allowed to vary across 
groups.  (The variance of ui could, in principle as well, but such a model would be inestimable, as 
there is only a single observation from the distribution of ui in the sample.) This model is requested 
when you add 
   ; Het = group 
 
to the REGRESS command.  Note, this is not merely a correction to the asymptotic covariance 
matrix.  This computation produces a different set of weights and, therefore, a different set of 
estimates for the random effects model.  The following illustrates for the data we have used in 
several earlier examples.  The results based on homoscedasticity are shown first.  The box of 
diagnostic statistics is identical to this case, save for the indication of the model used.  Note, though, 
that the parameter estimates do change somewhat. 
 The number of groups in the sample may not exceed 50,000 when estimating this and the 
next model of heteroscedasticity. 
 
----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
Estimates:  Var[e]              =       .001443 
            Var[u]              =       .012866 
            Corr[v(i,t),v(i,s)] =       .899169 
            Sum of Squares            19.817672 
            R-squared                   .978932 
Fixed vs. Random Effects (Hausman)  =       .00 
[ 5 degrees of freedom, prob. value = 1.000000] 
[High (low) values of H favor F.E.(R.E.) model] 
Var[e] above is an average. Groupwise 
heteroscedasticity model was estimated. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .57918***      .10137     5.71  .0000      .38050    .77787 
  LOGHWY|    -.18700***      .05761    -3.25  .0012     -.29991   -.07409 
  LOGH2O|     .05890***      .01840     3.20  .0014      .02284    .09497 
 LOGUTIL|    -.35078***      .04253    -8.25  .0000     -.43414   -.26742 
  LOGEMP|     .96707***      .01961    49.33  .0000      .92864   1.00549 
Constant|    2.48380***      .16473    15.08  .0000     2.16094   2.80666 
--------+-------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
 (Two Step Feasible GLS Estimates) 
Estimates:  Var[e]              =       .001443 
            Var[u]              =       .012866 
--------+-------------------------------------------------------------------- 
   LOGKP|     .61652***      .10156     6.07  .0000      .41747    .81558 
  LOGHWY|    -.25482***      .05782    -4.41  .0000     -.36814   -.14150 
  LOGH2O|     .05042***      .01838     2.74  .0061      .01439    .08644 
 LOGUTIL|    -.35501***      .04262    -8.33  .0000     -.43854   -.27147 
  LOGEMP|     .98293***      .01962    50.10  .0000      .94448   1.02138 
Constant|    2.66833***      .16389    16.28  .0000     2.34711   2.98956 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 For the models with groupwise heteroscedasticity, the computation of the estimator is 
changed as follows:  In all cases, an estimator of 
 
   θi   =  1  -  σεi / σ2i 

where   σ2i
2 =  σεi

2 + Ti σu
2
 . 

 
is needed for each i.  We have to rely on some consistency results to have in hand an estimator of σu

2 
regardless of what happens next.  We use the one from the initial OLS and fixed effects regression.  
From the OLS regression, ignoring the degrees of freedom correction, which is now irrelevant, this 
would be 
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From the fixed effects regression, we would have a variance estimator of 2

εσ  which, assuming that it 
converges to something, would, by subtraction, still be providing the estimator of σu

2 that we need.  
In computing the FGLS estimator, computation of θi will require this estimate and the estimate of 
σε,i.  The latter is computed by computing the group specific sum of squared residuals based on the 
consistent estimator of β (this may be FE or OLS, or, for that matter, any consistent estimator of β), 
dividing by Ti or Tg for the stratification case, and subtracting the unchanging estimate of σu

2.  The 
estimation of θi is changed for each group. Note that in the unbalanced panel case with stratification, 
the heteroscedasticity arises from two sources.  Where σε,g differs by stratum, and Ti varies by group 
within the stratum, we will have to compute 
 
   θ i,g   =  1  -  σε,g / σ2 i,g 

where   σ2 i,g
2 =  σε,g

2 + Ti σu
2
 . 
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E18.4.1 A Model with Stratification and Grouping 
 
 Suppose that the groups in the data can be grouped at some higher level of stratification. For 
example, consider a panel in which city data are further grouped by state, so that there are several 
cities per state in the data.  The groupwise heteroscedasticity might then be structured as 
 
   Var[εi t] =  σj

2, j = 1,...,G,   G  <  N 

   Nj =  the number of groups contained in outer grouping j. 
 
To fit a model of this sort, use 
 
   ; Hfn = the grouping variable 
 
This is a simple change to the previous model in which the grouping variable supersedes the panel 
specification in the GLS computation.  To continue our example, suppose we arbitrarily group our 48 
states into eight groups of six states.  (The states are in alphabetical order in the data file, so this is a 
meaningless grouping just for purpose of this example.)  Results appear below. 
 
 CREATE  ; region = Trn((6*17), 0) $ 
 REGRESS  ; Lhs = loggsp ; Rhs = x ; Panel ; Random Effects  
  ; Hfn = region $ 
 
----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
Estimates:  Var[e]              =       .001443 
            Var[u]              =       .012866 
            Corr[v(i,t),v(i,s)] =       .899169 
            Sum of Squares            18.148294 
            R-squared                   .978645 
Fixed vs. Random Effects (Hausman)  =     34.61 
[ 5 degrees of freedom, prob. value =  .000002] 
[High (low) values of H favor F.E.(R.E.) model] 
Var[e] above is an average. Groupwise 
heteroscedasticity model was estimated. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .59098***      .10178     5.81  .0000      .39150    .79046 
  LOGHWY|    -.22999***      .05803    -3.96  .0001     -.34372   -.11626 
  LOGH2O|     .05220***      .01841     2.84  .0046      .01612    .08828 
 LOGUTIL|    -.34696***      .04271    -8.12  .0000     -.43068   -.26324 
  LOGEMP|     .98459***      .01967    50.05  .0000      .94603   1.02314 
Constant|    2.59972***      .16511    15.74  .0000     2.27610   2.92334 
--------+-------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
 (Groupwise Heteroscedastic) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .57918***      .10137     5.71  .0000      .38050    .77787 
  LOGHWY|    -.18700***      .05761    -3.25  .0012     -.29991   -.07409 
  LOGH2O|     .05890***      .01840     3.20  .0014      .02284    .09497 
 LOGUTIL|    -.35078***      .04253    -8.25  .0000     -.43414   -.26742 
  LOGEMP|     .96707***      .01961    49.33  .0000      .92864   1.00549 
Constant|    2.48380***      .16473    15.08  .0000     2.16094   2.80666 
--------+-------------------------------------------------------------------- 
(Two Step Feasible GLS Estimates) 
--------+-------------------------------------------------------------------- 
   LOGKP|     .61652***      .10156     6.07  .0000      .41747    .81558 
  LOGHWY|    -.25482***      .05782    -4.41  .0000     -.36814   -.14150 
  LOGH2O|     .05042***      .01838     2.74  .0061      .01439    .08644 
 LOGUTIL|    -.35501***      .04262    -8.33  .0000     -.43854   -.27147 
  LOGEMP|     .98293***      .01962    50.10  .0000      .94448   1.02138 
Constant|    2.66833***      .16389    16.28  .0000     2.34711   2.98956 
--------+-------------------------------------------------------------------- 
 

E18.4.2 Exponential Heteroscedasticity in Random Effects 
 

 The one way random effects linear model, 
 
   yit  =  β′xit + ui + εit 
 
is extended to allow specific Harvey (1976) style heteroscedasticity in either component.  The models 
are 
   Var[εit]  =  σε

2 [exp(δε′hi)]2 

   Var[ui]  =  σu
2 [exp(δu′zi)]2 

 
Note that the variables in these variance functions are assumed to be time invariant.  The program 
assumes this.  The estimator is full information maximum likelihood.  This model is estimated using 
the same FIML procedure as defined above.  In the reparameterized model, we now have 
 
   θi  =  θ ×  [exp(- δε′hi)]2 

and   γi  =  γ  ×  [exp(δu′zi)]2 × [exp(- δε′hi)]2 
 
modification of the derivatives is a straightforward application of the chain rule.  The Hessian is 
tedious, but, again, straightforward. 
 Request this estimator with 
 
 REGRESS ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Panel ; Pds = specification or ; Str = specification 
   ; MLE 
and either or both of 
   ; Hfe = variables in h, the variance of ε 
   ; Hfu = variables in z, the variance of u $ 
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To illustrate, we extend the model of the previous section by specifying 
 

Var[εit]  =  σε
2 exp(δε iunemp ) 

   Var[ui ]  =  σu
2 exp(δu iunemp ) 

 
The commands and model results follow: 
 
 CREATE ; ubari = Group Mean(unemp, Pds = 17) $ 
 REGRESS  ; Lhs = loggsp  
   ; Rhs = x,one  
   ; Panel ; MLE 
   ; Hfu = ubari ; Hfe = ubari $ 
 
----------------------------------------------------------------------------- 
Random Effects Linear Regression Model 
Dependent variable               LOGGSP 
Log likelihood function      1368.13859 
Restricted log likelihood     577.89766 
Chi squared [   1 d.f.]      1580.48186 
Significance level               .00000 
McFadden Pseudo R-squared    -1.3674410 
Estimation based on N =    816, K =   8 
Inf.Cr.AIC  =-2720.277 AIC/N =   -3.334 
Variance of e(i,t) =            .002487 
Variance of u(i  ) =            .261628 
Corr[v(i,t),v(i,s)]=            .990585 
LR test is vs. null of no random effect 
Panel contained      48 nonempty groups 
Exponential heteroscedasticity model for ui 
Exponential heteroscedasticity model for eit 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .50530***      .08033     6.29  .0000      .34785    .66275 
  LOGHWY|    -.18115***      .04492    -4.03  .0001     -.26919   -.09312 
  LOGH2O|     .04780***      .01145     4.17  .0000      .02536    .07024 
 LOGUTIL|    -.32485***      .03752    -8.66  .0000     -.39839   -.25130 
  LOGEMP|    1.01343***      .01427    71.04  .0000      .98547   1.04139 
Constant|    2.63598***      .09214    28.61  .0000     2.45539   2.81658 
        |Reparameterized Variance Components for ML Search 
   1/s2e|    402.139***    67.94438     5.92  .0000     268.970   535.307 
 s2u/s2e|    105.211       93.84949     1.12  .2623     -78.731   289.152 
        |Heteroscedasticity in unique term e(i,t) 
   UBARI|    -.05172***      .01170    -4.42  .0000     -.07465   -.02880 
        |Heteroscedasticity in common term u(t) 
   UBARI|    -.22236***      .06136    -3.62  .0003     -.34261   -.10210 
--------+-------------------------------------------------------------------- 
 

We note, the results above look reasonable enough.  However, a closer look suggests that this is a 
poorly specified model in spite of this.  The iterations ended with a diagnostic, 
 
Maximum of   500 iterations. Exit iterations with status=1. 
 
This suggests that one might want to look more closely at the specification. 
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E18.5 Autocorrelation 
 
 The model is 
 

   yit  =  α  +  β′xit  +  εit  +  ui, 

    εit  =  ρεi,t-1  +  ηit. 
 
Note that the autocorrelation is embodied in the unique component, εit.  It would not make sense in 
the context of this model to assume that ui is autocorrelated, as it is assumed to be time invariant. 
 The AR1 model for the random effects model is estimated by two step FGLS.  In the first 
step, an estimator of ρ is automatically produced by whatever panel data estimator has been used. 
This will be any of the fixed or random effects models with one or two way specifications.  The 
estimator based on any of the panel data models is 
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The estimator of β is whatever the most recent one happens to be at the time the calculation is made. 
The model fit above, now with a correction for first order autocorrelation, using the same estimate as 
before (0.725563), which is the value computed by the initial LSDV estimator – see the results in 
Section E17.2.4. 
 
----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
AR1 Model:  autocorrelation rho =       .725563 
Estimates:  Var[e]*(1-rho^2)    =       .000448 
            Var[u]*(1-rho^2)    =       .000908 
            Corr[v(i,t),v(i,s)] =       .669637 
            Sum of Squares          4438.689735 
            R-squared                   .975254 
Fixed vs. Random Effects (Hausman)  =     45.54 
[ 5 degrees of freedom, prob. value =  .000000] 
[High (low) values of H favor F.E.(R.E.) model] 
Original:   Var[e]              =       .000946 
            Var[u]              =       .001918 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .33833**       .17076     1.98  .0476      .00365    .67301 
  LOGHWY|    -.17402*        .09060    -1.92  .0548     -.35159    .00356 
  LOGH2O|    -.00693         .02748     -.25  .8009     -.06079    .04693 
 LOGUTIL|    -.23526***      .06962    -3.38  .0007     -.37171   -.09881 
  LOGEMP|    1.10054***      .02341    47.00  .0000     1.05465   1.14643 
Constant|    3.22127***      .24951    12.91  .0000     2.73225   3.71029 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E18.6 Two Way Random Effects Model 
 
 The panel data estimator also allows ‘two way’ random effects models.  The random effects 
model for a two way design is 
 
   yit  =  α  +  β′xit  +  εit + ui + wt. 
 
The model is described in standard textbooks such as Wooldridge (2010) or Greene (2011). 
 In this model, neither the number of time periods observed for each group nor the number of 
individuals observed in each period need be fixed.  Your data can consist of simply a sample of 
observations indexed by both individual and time.  The data setup is exactly as described in Section 
E17.3.  To request the two factor model, you simply add the specification 
 
   ; Period = time variable 
  
to the usual command.  Unlike a group stratification variable, the time variable must use the integers 
1,2,...,Ti.  As noted earlier, it is not necessary for every group to have data in every period; there may 
be gaps.  But, if you do have a balanced panel, you can easily set up the time indicator with the Trn 
function in CREATE.  For example, in the data set we have been using for our application, there are 
17 observations for each state.  We could use 
 
 CREATE   ; time = Trn(-17, 0) $ 
  
(The variable yr-1969 in the data set would have the right values.)  If the sample is not balanced, in 
either dimension, it will be necessary to provide the time variable by some other means.   When you 
request the two factor model, the command will appear as 
 
 REGRESS   ; Lhs = ... ; Rhs = ... ; Panel 
   ; Period = time $ 
 
E18.6.1 Program Output for Two Factor RE Models 
 
 This estimator produces the full set of output described earlier for the one factor model and 
an additional set of results for the two factor model.  The additional results will be 
 

1. Full set of two factor fixed effects results.  Do note, in  accordance with the description 
above, this model, unlike the one way model, will contain an overall constant term.  This 
model is estimated by OLS including both the time and group dummy variables.  If your 
command contains ; Random effects, the fixed effects results are not shown, though they 
are computed internally. 

 
2. Full table of estimates of fixed effects (if requested with ; Output = 2).  Note, as well, that 

the fixed effects produced for the groups will differ from the earlier results, since by design, 
the time dummy variables are not orthogonal to the group dummy variables. 
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3. Test statistics for the two way fixed effects model. This consists of the log likelihood, sum of 
squared deviations, and R2s for five models: 

 

a. overall constant term only, no regressors, 
b. group dummies, no regressors, 
c. regressors and overall constant term, 
d. full one way fixed effects model, 
e. full two way fixed effects model. 

 

You should observe rising log likelihoods and R2s and falling sums of squares as you go 
down the table, but if your regressors do not have much explanatory power the reverse could  
happen between b and c. 
 

5. Full set of results for the two way random effects model including the LM statistic, Hausman 
statistic, estimates of the variance components, and the usual coefficient estimates with 
standard errors. 

 

E18.6.2 Application 
 

 The following continues the earlier example with the two factor models. 
 

 CREATE ; t = year - 1979  $ 
 REGRESS ; Lhs = loggsp ; Rhs = x,one 
   ; Period = t  ; Panel $ 
 

The first set of results is the same as shown earlier. The results for the two factor models are shown below. 
 
----------------------------------------------------------------------------- 
Random Effects Model: v(i,t) = e(i,t)+u(i)+w(t) 
Estimates:  Var[e]              =       .001148 
            Var[u]              =       .011624 
            Corr[v(i,t),v(i,s)] =       .910126 
            Var[w]              =       .001536 
            Corr[v(i,t),v(j,t)] =       .572300 
            Sum of Squares            17.866362 
            R-squared                   .978976 
Lagrange Multiplier Test vs. Model (3) =4486.28 
[ 2 degrees of freedom, prob. value =  .000000] 
[High values of LM favor FEM/REM over CR model] 
Fixed vs. Random Effects (Hausman)  =     32.29 
[ 5 degrees of freedom, prob. value =  .000005] 
[High (low) values of H favor F.E.(R.E.) model] 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .48216***      .09189     5.25  .0000      .30206    .66227 
  LOGHWY|    -.15038***      .05375    -2.80  .0051     -.25573   -.04503 
  LOGH2O|     .01917         .01749     1.10  .2730     -.01510    .05344 
 LOGUTIL|    -.28462***      .03871    -7.35  .0000     -.36049   -.20875 
  LOGEMP|     .93432***      .01927    48.48  .0000      .89655    .97210 
Constant|    3.00101***      .16042    18.71  .0000     2.68659   3.31543 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 

The LM statistic has been adjusted for the two types of effects – there is no Baltagi and Li 
counterpart for this.  The Hausman statistic is also recomputed. 
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E18.6.3 Technical Details 
 
 The model is   
  
   yit  =  µ  +  αi  +  γt  + β′xit  +  εit. 
 
The random effects model is estimated as follows:  With estimates of the three variance components 
in hand, we compute the GLS estimator by computing the moments of the transformed variables 
 

   *
. . ..1 2 3  =   -   -   +  i tit it i t itz z z z zθ θ θ  

 
where zit is either the vector xit, including the constant, or yit, and 
 
   σ1i

2 =  σε
2 + Tiσu

2, 

   σ2t
2  =  σε

2 + Ntσw
2
 , 

   σ3it
2  =  σε

2 + Tiσu
2 + Ntσw

2
 . 

Then,   θ1i    =  1 - σε/σ1i , 

   θ2t    =  1 - σε/σ2t , 

and   θ3it   =  θ1i + θ2t - 1 + σε/σ3it. 
 
If N and T are fixed, these specialize to the familiar textbook formulas. 
 The LM statistic, which will now have two degrees of freedom, is the earlier one plus a term 
which looks the same as given in Section E16.6, but in which the roles of ‘i’ and ‘t’ are reversed.  
Note, once again, the modification necessary if the panel is unbalanced. 
 Finally, we note the different method of moments estimators for the variance components.  
Consider the balanced panel case first.  As before, the sums of squared residuals from OLS and the 
two way fixed effects estimators provide estimates of σε

2 + σu
2 + σw

2 and σε
2 respectively.  A third 

moment estimator is provided by the one way fixed effects estimator computed previously, in which 
the mean squared residual estimates σε

2 + σw
2(1 + 1/T) in the balanced panel case.  Call these 

estimators m0, mFE2 and mFE1, respectively.  Without degrees of freedom corrections, we know that 
m0 > mFE1 > mFE2.  The method of moments estimators are 
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The first two are guaranteed to be nonnegative.  The first obviously is.  The numerator of the second 
must be nonnegative because the sum of squared residuals falls when the time dummy variables are 
added to the equation.  The third estimator may be negative.  With a bit of manipulation, it can be 
written 2ˆ uσ = m0 – [T/(1+T)]mFE1 – [1/(1+T)]mFE2.  There is no assurance that this is positive.  These 
estimators can be replaced with degrees of freedom corrected estimators, and the attempt repeated.  
In the unbalanced panel case, the 1/T term is replaced with Q, defined below, the sample average of 
1/Ti.  This does not change the possible problem, however.  
 The initial estimators may produce a full set of positive estimates.  They do in our 
application above.  If not, LIMDEP undertakes a search among some possible candidates for valid 
estimates of the variance components. To begin, the group means estimators, if computed, provide 
another possibility.  For the one factor model, 
 
   sols

 2  estimates σε
2 + σu

2 

 
and the group means estimator,  
 
   smeans

2 estimates Qσε
2 + σu

2
 , 

where   Q =  (1/N)Σi(1/Ti).  
 
These two equations can be solved to provide alternative estimates of the variance components: 
 
   2ˆ εσ  =  (sols

 2   - smeans
2) / (1 - Q) 

and   2ˆ uσ  =  smeans
2 - Q 2ˆ εσ . 

 
In the two way random effects model, the moment equations and their solutions would be as  
follows: 
   sols

 2
   = 2ˆ εσ  + 2ˆ uσ  + 2ˆ wσ  (from the OLS regression), 

   sgroup means
2 = 2ˆ uσ  + Qu

2ˆ εσ   (from the group means regression), 

and   speriod means
2 = 2ˆ wσ  + Qw

2ˆ εσ  (from the period means regression), 

where   N   = the total number of individuals observed, 

   T      = the total number of periods observed, 

   Qu

and   Qw

  = (1/N)Σi(1/Ti) (or 1/T if the sample is balanced), 

Then,   

    = (1/T)Σt(1/Nt) (or 1/N if the sample is balanced). 
2ˆ εσ    = (sols

 2  - sgroup means
2 - speriod means

2)/(1 - Qu - Qw), 

   2ˆ uσ    = sgroup means
2 - Qu

2ˆ εσ  

   2ˆ wσ    = speriod means
2 - Qw

2ˆ εσ . 
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 The preceding may yet fail to produce a positive estimator for the variance of wt or ui.  If so, 
a last ditch estimator is used.  In the two way fixed effects model, we may take the estimates of the 
dummy variable coefficients as estimators of ui and wt.  If so, then the sample variances of ai and ct 
are used as estimators of σu

2and σw
2.  We should note, the need for a protracted search such as this 

might be taken as a suggestion that the data are not consistent with this model. 
 During estimation, a log is kept of the search for the estimates of the variance components.  
The following shows the entry for a model estimated with the Grunfeld data in which it takes several 
tries to find an estimator.  We have added the boldface annotation to the text from the trace file. 
 

REGR;Lhs=I;Rhs=F,C;Pds=20;Period=T;Panel$ 
Estimating variance components for random effects model.  
Random Effects Model: v(i,t) = e(i,t) + u(i)        
Q =       0.0500. (Note, in a balanced sample, Q=1/T) 
Uses sum of squared deviations (ybar(i) - b*xbar(i))^2/(N-K-1) 
2 Ests. of beta available are group means regression and OLS 
Tries group means and OLS. These are sums of squares. 
EE1 uses GROUP MEANS=  0.111911E+05, EE2 uses OLS=  0.277499E+05  
       Trying LSDV residual variance to estimate Var[e]. 
       Trying to estimate Var[u] with EE1 - Q * Var[e]           
First attempt is successful for the one factor model. 
Current estimates: Var[e]=  0.477729E+04, Var[u]=  0.109522E+05 
Now search for estimates for two way model. 
Estimating variance components for 2 way REM. 
Trying LSDV residual variance to estimate Var[e]. 
Variance estimate for unique term is OK. 
This estimate of Var[e]=   4917.47408 
Try Var[u]=EE1-Qu*Var[e], Var[w]=EE2-Qu*Var[e] 
Negative estimate for variance of w. 
Current estimates:Var[u]=  10945.19678 Var[w]=   -169.64266 
Attempting to use LSDV to fix nonpositive estimates 
Var. est. < 0. If Var[w]<0 use FIXED EFFECTS.  Found    4917.474 
Final estimate is based on the variance of the fixed effects. 
Estimated Var[u] using ai as ui 
Estimated Var[w] using ct as wt 
Reports the estimates actually used at this point. 
Current estimates:Var[u]=  13190.45414 Var[w]=    946.35364 

 
E18.7 Two and Three Way Nested Random Effects 
 
 The linear random effects model for panel data is extended to a three level nested structure,` 
 
   yijt  =  β′xijt  +  εijt  +  vij  +  ui 
 
This is not a ‘three way’ random effects model – the effects are strictly nested.  An example might be 
a regression of test scores by school which includes a school effect (ui), a teacher within school 
effect (vij) and the period or student of observation (εijt).  The model is fit by full information 
maximum likelihood.  (Note, the random parameters model with multiple effects described below 
allows for up to 10 levels in this same fashion.  The estimator there is maximum simulated 
likelihood.) 
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E18.7.1 Command 
 
 The command for this estimator is 
 
 REGRESS  ; Lhs = dependent variable  

; Rhs = independent variables 
   ; MLE 
   ; Stratum = identifier for broader grouping 
   ; Cluster = identifier for narrower grouping 
 

This is a random effects linear regression model, and thus provides the usual optional 
features, including residuals, fitted values, hypothesis tests, and so on.  A few options are 
unavailable, the linear restricted estimator, AR(1) correction and the White and Newey-West robust 
covariance matrices. 
 
E18.7.2 Results 
 
 Estimates produced by this program include an initial ordinary least squares regression with 
all statistics usually produced.  Since the command has specified a ; Cluster and ; Stratum 
correction, the OLS covariance matrix will be corrected for the clustering and stratification 
(appropriately so).  The application below shows this result.  The OLS results will be followed by the 
maximum likelihood estimates of the model parameters.  A reparameterized form of the model is 
estimated – see the technical details for discussion.  Results generated by this estimator are shown 
and annotated in the application below.  In addition to the fitted values and residuals that may be 
requested, the following results are saved:  
 

Matrices: b and varb  These include only the regression parameters, not the variance 
    parameters.   
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E18.7.3 Application 
 
 To continue our earlier application, we have arbitrarily divided our 48 states into 12 
‘regions’ with four states in each (actually just contiguously grouped sets of four states in the data set 
– just for purpose of a numerical illustration of the computation).  The commands used are 
 
 CREATE  ; region = Trn(68,0) $ 
 REGRESS  ; Lhs = loggsp  
   ; Rhs = x,one  
   ; MLE  
   ; Cluster = 17  
   ; Stratum = region $ 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of    816 observations contained     48 clusters defined by  | 
|     17 observations (fixed number) in each cluster.                 | 
| Sample of    816 observations contained     12 strata defined by    | 
| variable REGION   which identifies by a value a stratum ID.         | 
+---------------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGGSP   Mean                 =       10.50885 
             Standard deviation   =        1.02113 
             No. of observations  =            816  Degrees of freedom 
Regression   Sum of Squares       =        838.219           5 
Residual     Sum of Squares       =        11.5898         810 
Total        Sum of Squares       =        849.809         815 
             Standard error of e  =         .11962 
Fit          R-squared            =         .98636  R-bar squared =   .98628 
Model test   F[  5,   810]        =    11716.50948  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      577.89755  Akaike I.C.   = -4.23959 
             Restricted (b=0)     =    -1174.41748  Bayes  I.C.   = -4.20500 
             Chi squared [  5]    =     3504.63006  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .45392        1.39449      .33  .7448    -2.27922   3.18707 
  LOGHWY|     .08572         .77979      .11  .9125    -1.44264   1.61408 
  LOGH2O|     .08663         .19609      .44  .6586     -.29769    .47096 
 LOGUTIL|    -.18742         .59165     -.32  .7514    -1.34704    .97220 
  LOGEMP|     .61908***      .18018     3.44  .0006      .26594    .97223 
Constant|    2.01100*       1.12515     1.79  .0739     -.19425   4.21625 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Normal exit:  32 iterations. Status=0, F=   -1380.755 
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----------------------------------------------------------------------------- 
Nested Random Effects Linear Regression Model 
Total Sample of    816 Observations 
Number of Strata in Sample:      12 
Number of Clusters in Strata: 
Average   Std.Dev.  Minimum   Maximum 
    4.0        .00        4         4 
Number of Observations in Clusters 
   17.0        .00       17        17 
Variance Components Decomposition 
t = within cluster = period or observation, 
i = cluster within stratum, j = stratum 
Proportion is Var[.] / [Var(e)+Var(v)+Var(u)] 
Source      Variance      Std.Dev. Proportion 
e(t,i,j)        .001        .03789      .0642 
v(  i,j)        .020        .14001      .8772 
u(    j)        .001        .03617      .0585 
Log likelihood for nested model =  1380.75501 
Log likelihood for no effects   =   577.89756 
Chi-squared[2] = 1605.7149,  Prob =     .0000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .60205***      .10209     5.90  .0000      .40196    .80214 
  LOGHWY|    -.25292***      .05912    -4.28  .0000     -.36878   -.13705 
  LOGH2O|     .05138***      .01845     2.78  .0054      .01521    .08754 
 LOGUTIL|    -.34997***      .04278    -8.18  .0000     -.43383   -.26611 
  LOGEMP|     .99074***      .01974    50.18  .0000      .95204   1.02943 
Constant|    2.68569***      .17360    15.47  .0000     2.34543   3.02595 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E18.7.4 Technical Details 
 
 The analysis is based on Antweiler (2001).  Antweiler analyzes a four level model, though 
the recursive pattern of his results suggests it would not be difficult to extend it to five or more 
levels.  The LIMDEP adaptation restricts it to three levels.  (The random parameters model discussed 
later allows higher numbers of levels.)  These results are taken from the article:  The four level 
model is 
   yijkt  =  β′xijkt  +  εijkt  + wijk +  vij  +  ui. 
 
The group sizes in the nested structure are Mi, Nij and Tijk.  The total sample size is 
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The following are used to parameterize the log likelihood: 
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For the three level model, we set L = 1 and ρw  = 0.  We use the BFGS method with numerical 
derivatives to maximize this log likelihood. Antweiler suggests that the second derivatives needed 
for the estimator for the asymptotic covariance matrix of the maximum likelihood estimator are 
intractable – and proposes numerical derivatives.  However, by taking advantage of the results that 
for the generalized regression model, the expected Hessian of the log likelihood will be block 
diagonal, we do obtain a tractable form for the asymptotic covariance matrix of the slope estimator – 
it is the counterpart to the moment matrix that would be used for the GLS estimator: 
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We use this matrix, specialized to three levels, for estimating the asymptotic covariance matrix of the 
slope estimator.  As is usual in the linear regression case, we do not report asymptotic standard errors 
for the variance coefficients.  We note, for purposes of testing for the nesting structure, one can use 
the likelihood ratio test. 
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E18.8 Multilevel and Multiple Effects in the RP Model 
 

 The following applies to all random parameters models in LIMDEP – the entire class of 
models estimable with the ; RPM specification with only the exception of the two equation models, 
bivariate probit and sample selection.  In this section, we document the use of the model in the linear 
regression case. 
 The model is based on an index function 
 
   Indexit  =  β′xit 
 
such as the linear regression model, yit = Indexit + εit or the probit model, where yit = 1(Indexit+εit > 0).  
We add to this M = up to 10 ‘effects.’ 
 
   Indexit  =  β′xit  + cj1 ωj1,i + cj2 ωj2,i + ... cjM ωjM,i. 
 
The cjm are ones and zeros simply used to select the effects in the model.  The effects are up to 10 
normally distributed random terms associated with discrete group indicators such as strata, clusters, etc.  
Effects may appear singly or as products, and may be nested or simply be associated with any desired 
groupings of the data. The associated variables can be any desired discrete indicator that associates a 
unique value with a group.  Consider an example based on test scores.  Suppose we have nationwide 
data, arranged by region, state, county, district, school.  These are individual test scores observed in 
five decreasing levels of aggregation.  Then, in addition to the data on test scores (presumably 
individual students) and the covariates in x, we have variables with distinct codes for the five levels of 
aggregation – the only restriction is that codes must be integers from 1,2,...,9999.  The specification is 
 
   ; REM  =  name1, name2, ..., nameM 
 
For our example, this would thus be 
 
   ; REM = region,state,county,district,school 
 
This estimator does not require that these ‘effects’ be nested.  The effects can be defined at any level 
of aggregation, and could be a mixture of nested and nonnested groupings.  Suppose, for example, 
you also had indicators of grouping by type of program, which might be one of, say, 10, which varies 
all over the range of observations, without respect to the other five groupings listed. For another 
example, one might also have a party effect in that list, for whether the state in question had a 
Democratic, Republican, or Other Party governor at the time This could also be included. 
 Effects may also be main or secondary (products).  You can specify secondary effects by 
writing the effects as products, as in 
 
   ; REM = name1, name2, name3*name4,  
       name2*name3*name4, name1*name4 
 
You may define up to 10 effects or combinations of effects in total, using up to 10 basic effects.  To 
continue the example, you might specify an interaction between state and district with 
 
   ; REM = region,state,county,district,school,state*district 
 
The ; REM specification can be added to a random parameter model (RPM) or may appear by itself 
instead of  RPM ; Fcn = … 



E18: Random Effects Linear Models for Panel Data   E-394 

E18.8.1 Command  
 
 This estimator uses LIMDEP’s package of random parameter model estimators, and thus is 
in a different class of estimators from those we have considered in this manual up to this point. These 
models are discussed in greater generality in Chapter R24.  We will omit some of the detail in the 
specification here, as it is given in full in the broader chapter.  For this application (the linear model), 
the essential part of the command is 
 
 REGRESS ; Lhs = the dependent variable 
   ; Rhs = the independent variables 
   ; RPM 
   ; Pds = the correct specification for your panel (see below) 
   ; REM = the specification of your random effects $ 
 
Typically, the panel specification in ; Pds = ... would correspond to the structure of one of your 
effects variables.  But, this is not required.  Indeed, you could have ; Pds = 1.  But, if you are 
analyzing a panel, you should specify it as usual.  Note that the command does not contain ; Panel. 
This must be omitted from this command.  The effects are set up as described above.  There is one 
other specification that you should use.  The estimator for this model is maximum simulated 
likelihood (described in the technical notes below).  You may want to control the number of random 
draws used in the simulations.  This is an extremely computation intensive estimator.  The number of 
random draws is specified with 
 
   ; Pts = the desired number 
 
The default value is 100.  For generating final results in a study, you will probably use several 
hundred.  But, for exploratory work, as in our example below, you might want to choose a small 
value, such as 10 or 25. 
 
E18.8.2 Application 
 
 In Section E18.6, we fit a two way random effects model of the form 
 
   yit  =  α  +  β′xit  +  εit + ui + wt. 
 
For present purposes, we rewrite this as 
 
   yit  =  α  +  β′xit  +  σεεit + σuui + σvwt 
 
where now, all random effects have variance one.  This model is identical to the previous one.  The 
extension we consider here can be written 
 
   yit  =  α  +  β′xit  +  σεεit + σuui + σvwt + γ(σuui)( σvwt) 

   yit  =  α  +  β′xit  +  σεεit + σuui + σvwt + θuiwt. 
 
  



E18: Random Effects Linear Models for Panel Data   E-395 

That is, we add a product term which has a freely estimated additional ‘effect’ on the dependent 
variable.  The commands are 
 
 CALC  ; Ran(1234579) $ 
 CREATE ; t = yr - 1969 $ 
 REGRESS ; Lhs = loggsp 
   ; Rhs = x,one 
   ; Pds = 17 
   ; RPM 
   ; Pts = 50 
   ; REM = state,t,state*t $ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGGSP   Mean                 =       10.50885 
             Standard deviation   =        1.02113 
             No. of observations  =            816  Degrees of freedom 
Regression   Sum of Squares       =        838.219           5 
Residual     Sum of Squares       =        11.5898         810 
Total        Sum of Squares       =        849.809         815 
             Standard error of e  =         .11962 
Fit          R-squared            =         .98636  R-bar squared =   .98628 
Model test   F[  5,   810]        =    11716.50948  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      577.89755  Akaike I.C.   = -4.23959 
             Restricted (b=0)     =    -1174.41748  Bayes  I.C.   = -4.20500 
             Chi squared [  5]    =     3504.63006  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .45392***      .15355     2.96  .0031      .15298    .75487 
  LOGHWY|     .08572         .08184     1.05  .2949     -.07468    .24612 
  LOGH2O|     .08663***      .02479     3.50  .0005      .03805    .13521 
 LOGUTIL|    -.18742***      .06580    -2.85  .0044     -.31639   -.05845 
  LOGEMP|     .61908***      .02281    27.14  .0000      .57437    .66380 
Constant|    2.01100***      .15245    13.19  .0000     1.71221   2.30979 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Normal exit:  32 iterations. Status=0, F=   -1346.382 
 
----------------------------------------------------------------------------- 
Random Coefficients  LinearRg Model 
Dependent variable               LOGGSP 
Log likelihood function      1346.38369 
Restricted log likelihood        .00000 
Chi squared [   3 d.f.]      2692.76738 
Significance level               .00000 
Estimation based on N =    816, K =  10 
Inf.Cr.AIC  =-2672.767 AIC/N =   -3.275 
Sample is 17 pds and     48 individuals 
LINEAR regression model 
Simulation based on  50 random draws 
Model contained  3 random effects. 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
   LOGKP|     .82974***      .17833     4.65  .0000      .48021   1.17926 
  LOGHWY|    -.32864***      .09112    -3.61  .0003     -.50722   -.15005 
  LOGH2O|     .02490         .02877      .87  .3868     -.03149    .08128 
 LOGUTIL|    -.49038***      .07484    -6.55  .0000     -.63708   -.34369 
  LOGEMP|     .99220***      .02879    34.47  .0000      .93578   1.04863 
Constant|    2.70616***      .20479    13.21  .0000     2.30477   3.10755 
        |Standard Deviations of Random Effects 
R.E.(01)|     .18379***      .00175   105.06  .0000      .18036    .18722 
R.E.(02)|     .00077         .00154      .50  .6173     -.00224    .00378 
R.E.(03)|     .00479**       .00191     2.51  .0119      .00106    .00853 
        |Variance parameter given is sigma 
Std.Dev.|     .03899***      .00051    76.96  .0000      .03800    .03999 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+-------------------------------------------+--------------+ 
| Random effects in the model are based on  |Random Effect | 
| these expanded qualitative variables.     |     Variance | 
| R.E.(01) = STATEID                        |      .033779 | 
| R.E.(02) = T                              |      .000001 | 
| R.E.(03) = STATEID  T                     |      .000023 | 
+-------------------------------------------+--------------+ 
 
----------------------------------------------------------------------------- 
Random Effects Model: v(i,t) = e(i,t)+u(i)+w(t) 
Estimates:  Var[e]              =       .001148 
            Var[u]              =       .011624 
            Corr[v(i,t),v(i,s)] =       .910126 
            Var[w]              =       .001536 
            Corr[v(i,t),v(j,t)] =       .572300 
            Sum of Squares            17.866362 
            R-squared                   .978976 
(Some results omitted) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGGSP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LOGKP|     .48216***      .09189     5.25  .0000      .30206    .66227 
  LOGHWY|    -.15038***      .05375    -2.80  .0051     -.25573   -.04503 
  LOGH2O|     .01917         .01749     1.10  .2730     -.01510    .05344 
 LOGUTIL|    -.28462***      .03871    -7.35  .0000     -.36049   -.20875 
  LOGEMP|     .93432***      .01927    48.48  .0000      .89655    .97210 
Constant|    3.00101***      .16042    18.71  .0000     2.68659   3.31543 
--------+-------------------------------------------------------------------- 
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E18.8.3 Technical Details 
 
 Conditioned on the unobserved effects, the contribution of each observation to the log 
likelihood for the linear regression model is 
 
   logLi|ωi  =  -logσε - ½ log2π - ½ (εi / σε)2 
 
where ‘i’ is used generically to denote a single observation.  Conditioned on the effects, the 
observations are independent.  In the conditional form above, ωi is the set of up to 10 random effects.  
There are assumed to be Ti ‘observations’ for individual i.  The conditional likelihood is 
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where εit = yit - β′xit – all common effects.  The unconditional likelihood function is obtained by 
integrating out the common effects: 
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This integral is approximated by simulation.  The function that we maximize with respect to (β,σε,γ) 
is 
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Further details on the maximization appears in Chapter R24.  We note one important aspect of the 
simulation/integration.  Where the common effect is of the form σωui – that is, the subscript on the 
effect matches the index of the product operation, as in the familiar random effects model – then the 
preceding is exactly equivalent to that RE model.  In other cases, however, the effect may be varying 
over a different range than the index in the product.  Consider the time effects in our example.  There 
are 17 of them in each i, since each state is observed in each period.  Thus, for our example, 
 
   εit,r = yit - β′xit – γ1vi,r - γ2wit,r - γ3vi,rwit,r. 
 
That is, the integral over periods is recomputed for each i, while the integral over vi is only computed 
once.  Moreover, in principle, though wt is a ‘time’ effect, we are treating it as if it were a state 
specific time effect when we integrate it out. (There is a separate random variable wt for each period, 
however.) This means that although state observations are correlated across states because of the 
common time effect, we are treating them as uncorrelated by this procedure.  Thus, it must be 
considered approximate. 
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E19: Random Parameters Linear Models 
 
E19.1 Introduction 
 
 LIMDEP provides two approaches to fitting linear regression models with random 
parameters: 
 

• Mixed or random parameters models – parameters are distributed continuously 
• Latent class or finite mixture models – parameters have a discrete distribution 

 
The models are built around the structural equations 
 

   yit   =  α′wit  +  xit′βi  +  εi, i = 1,...,N, t = 1,…,Ti, 

   εit ~  N[0,σi
2] 

 
For the mixed model, the general form is 
 
   βI   =  β  +  ∆zi + Γvi, 

   E[vi|xi,zi]   =  0,  Var[vi|xi,zi]  =  I,  

   Var[βi| xi,zi] =  Σ = ΓΓ′, 

   σi
2   =  σ2 (constant). 

 
The familiar linear regression model, a random effects linear model, and a hierarchical linear model 
are all particular cases.  In the latent class model, 
 
   βi,σi

2    ∈  [(β1,σ1
2), (β2,σ2

2), …, (βj,σj
2), … (βJ,σJ

2)],  

   Prob[class=j|zi] =  πj(zi,θj), j = 1,…,J. 
 
Estimation of the random parameters (RP) model is described in this chapter.  The latent class model 
is documented in Chapter E20. 
 The randomness of the parameters is interpreted simply as latent heterogeneity.  The linear 
regression model with random coefficients is normally associated with panel data settings, but we 
allow this formulation with a cross section as well.  The model is identified in a cross section, though 
results are generally better when this is applied to a panel.   
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E19.2 Random Parameters Linear Models 
 

The structure of the basic model is 
 

   yit   =  α′wit  +  βi′xit   +  εit, i = 1,...,n, t = 1,…,Ti. 

   βi   =  β  +  Γvi. 
 

The conditional mean function is 
 
   E[yit| xit, βi]  =  α′wit  +  βi′xit, i = 1,...,n, t = 1,...,Ti. 
 
The model assumes that parameters are randomly distributed with possibly heterogeneous (across 
individuals) distribution, 
 

   E[βi| Xi]   =  β,  Xi = [x1,…,xTi] 

   Var[βi| Xi]   =  Σ = ΓΓ′. 
 

The full parameter vector is partitioned into a nonrandom part, α, which multiplies a set of K0 
regressors and the random part βi which multiples the remaining K1 of the total of K regressors.  The 
random coefficient vector, βi is assumed to be distributed with mean provided by the deterministic 
component, β and stochastic component, Γvi.  The random vector, vi, is assumed to have mean zero 
(with no loss of generality, given β) and covariance matrix equal to an identity matrix, I.  The 
coefficient matrix, Γ, provides the variances and cross parameter correlations in the distribution of βi.  
For estimation purposes, Γ is taken to be a free lower triangular matrix, so the covariance matrix of 
the random parameter vector is Σ = ΓΓ′.  The base case assumes that Γ is a diagonal matrix with 
diagonal element γk. 
 Estimation is based on the following approach:  (It is only sketched here. A fuller discussion of 
the method and the underlying theory is presented in Chapter R24.)  The reduced form of this model is 
 

   yit|βi  =  α′wit  +  β′xit  +  γ′[vi⊗xit]  +  εit 

     =  θ′hit(vi)  +  εit. 
 

We assume that εit is normally distributed with mean zero and variance σ2 and is uncorrelated with 
all other observations, εjs, j ≠ i.  Conditioned on realizations vi, that is, on the sample of draws, V = 
[v1,v2,...,vn], the maximum likelihood estimator of the set of structural parameters, θ, is the least 
squares estimator.  But, this is only conditional on a particular realization of the parameter vector.  In 
order to obtain the unconditional estimator, it would be necessary to take the expectation of this 
estimator, over the distribution of the random parameter vector.  This would be the integral of the 
conditional density over the range of βi (induced by vi).  Since this integral is unlikely to have a 
closed form in general, we use simulation to approximate the distribution, instead.  A total of R 
draws of βi are obtained for each i.  The results are averaged over the draws.  Thus, the full set of 
structural parameters is obtained by minimizing the sum of squares.  The procedure is iterated over 
the estimated disturbance variance, until convergence or a maximum of 20 iterations.   
 

NOTE:  If only the constant term is considered random – the model may specify that some 
parameters are nonrandom – then this model is equivalent to the random effects model presented in 
Chapter E18. 
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E19.3 Command for the Random Parameters Models 
 
 The basic command for the random parameters regression estimators is 
 
 REGRESS ; Lhs = dependent variable  
   ; Rhs = full list of independent variables 
   ; RPM 
   ; Fcn = random parameters specification  
   ; other specifications $ 
Use 
 SETPANEL ; … $ 
 
and ; Panel in the command to specify a panel.  If this is omitted, the data are assumed to be a cross 
section. 
 
NOTE:  For this model, your Rhs list should include a constant term. 
 
E19.3.1 Specifying Random Parameters 
 
 The ; Fcn = specification is used to define the random parameters.  It is constructed from 
the list of Rhs names as follows:  Suppose your model is specified by 
 
   ; Rhs = one,x1,x2,x3,x4 
 
This involves five coefficients.  Any or all of them may be random; any not specified as random are 
assumed to be nonrandom (i.e.,) constant.  For those that you wish to specify as random, use 
 
   ; Fcn = variable name (distribution),  
    variable name (distribution), ... 
 
Three distributions may be specified  All random variables have mean 0. 
 
   n = standard normal distribution, variance = 1, 
   t = triangular (tent shaped) distribution in [-1,+1], variance = 1/6, 
   u = standard uniform distribution [-1,1], variance = 1/3 
  or c = variance = 0.  (The parameter is not random.) 
 
For an example, to specify that the constant term and the coefficient on x1 are normally distributed 
with fixed mean and variance, use 
 
   ; Fcn = one(n), x1(n). 
 
This specifies that the first and second coefficients are random while the remainder are not.  The 
parameters estimated will be the mean and standard deviations of the distributions of these two 
parameters and the fixed values of the other three.   
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 Each random parameter is scaled as it enters the distribution, so the variance is only that of 
the random draw before multiplication.  For example, if you specify that a parameter is normally 
distributed, then that parameter is βk,i = βk + σkvi,k ~ N[β,σk

2].  For a variable with the triangular or 
uniform distribution, the variance of βk,i is σk

2/6 or σk
2/3, respectively.  (See Chapter R24 for 

discussion of this computation.  There are several additional specifications for random parameters 
discussed there as well.  Some are provided to reduce the amount of variation in the tails of the 
distribution of the parameters across individuals and to limit the range of variation.  (See Train 
(2009) for discussion.)   
 
E19.3.2 Constraining the Sign of a Parameter – Lognormal and 
Triangular 
 
 Two methods are provided for constraining the sign of a parameter. 
 

1. Lognormal distribution:  βi  =  exp(β + γvi)  =  exp(β)×[exp(vi)]γ. 
 

The parameter thus specified is constrained to be positive.  Use  
 
  ; Fcn = variable (l)  (type ‘el’ not ‘one’) 
 
The lognormal distribution is effective, but can cause problems in estimation.  If your theory 
specifies a positive parameter for all i, but the model is not well specified,  then the estimator 
may be improperly attempting to force the parameter to be positive.  The situation can be 
visualized by considering a model in which the simple least squares estimate of β is large 
and negative.  If you then try to force the parameter to be positive by specifying a lognormal 
distribution, the end result will be that the mean will gravitate toward -∞ and σ will tend 
toward zero.  The second complication with lognormal parameters is that the distribution has 
a long thick tail and can allow large a probability of implausible values even if they do have 
the right sign.  Given these two results, we find that the lognormal specification can be a 
difficult model to work with. 

  
2. One sided triangular distribution:  βi  =  β + βvi. 

 
This specification is obtained with 
 
  ; Fcn = variable (o). 
 
The distribution is produced by forcing equality of the mean parameter and the scaling 
parameter.  The result ranges between 0 and 2β, which is always positive if β is positive and 
always negative if β is negative.  This specification has the advantage that it will 
accommodate the underlying data and not force a sign on the coefficient. 
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E19.3.3 Correlated Random Parameters 
 
 The preceding defines an estimator for a model in which the covariance matrix of the 
random parameters is diagonal.  To extend it to a model in which the parameters are freely 
correlated, add 
   ; Correlation (or just ; Cor) 
 
to the command.  The uncorrelated case is characterized by the diagonal matrix, Γ, so that the full set 
of random parameters is 
 
   βk,i  =  βk  +  γkvk,i, k = 1,…,K1. 
 
In order to induce the correlation across parameters, the below diagonal elements of Γ are allowed to 
be nonzero.  In this case, we have 
 
   β1,i  =  β1  +  γ11v1,i,  

   β2,i  =  β2  +  γ21v1,i  +  γ22v2,i, 

   β3,i  =  β3  +  γ31v1,i  +  γ32v2,i + γ33v3,i, 
 
and so on.  The implied covariance and correlation matrices are reported with the final results of the 
model.  We note one caution with this specification.  If all random parameters are assumed to be 
normally distributed, the mixing of the distributions shown above will preserve the normality.  In all 
other cases, the mixed distribution will not retain the specification of the model.  For example, if you 
specify that parameter 1 is normally distributed and parameter 2 is uniformly distributed in your 
model specification, then parameter 1 will retain the specification, but parameter 2 will be distributed 
as the sum of a normal and a uniform random variable, which is complicated.  Thus, while free 
correlations are estimable, it must be understood that the mixed distributions that give rise to the 
correlations may not have the expected shapes. 
 
E19.3.4 Autocorrelation 
 
 The latent heterogeneity may evolve over time, rather than remain constant. To 
accommodate this, you may specify that 
 
   vikt  =  ρkvik,t-1  +  uikt 
 
that is, the familiar AR(1) kind of model.  For only a nonrandom constant term, this is similar to the 
autocorrelation setup for the random effects model, but note that a crucial difference here is that it is 
the common term that evolves over time (comparable to ui) rather than the unique term, εit.  The 
specification is 
   ; AR1 
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E19.4 Hierarchical Model – Heterogeneity in the Means 
 
We obtain a hierarchical model by allowing the mean of the parameters to vary with a set of 

covariates, 
   yit  =  βi′xit   +  εit, i = 1,...,n, t = 1,…,Ti.  

   βi  =  β  +  ∆zi  +  Γvi. 
 
(We are allowing some of the parameters to be nonrandom.  For convenience, the term α′wit is 
absorbed in βi′xit.)  The model assumes that parameters are randomly distributed with possibly 
heterogeneous (across individuals) distribution, 
 
   E[βi| zi]  =  β  +  ∆zi,   
 
This expanded formulation produces two useful special cases: 
 
   ∆   =  0  is the familiar random parameters model, as in Section E19.3. 
   Γ   =  0  produces a hierarchical model with some interaction terms. 
 
The implied form of the coefficients and the regression function are 
 
   E[βki] =  βk  +  Σm δkm zmi 

   yit|βi  =  β′xit  +  δ′[zi⊗xit]  +  γ′[vi⊗xit]  +  εit 

    =  θ′hit(vi)  +  εit 
 
where zm is a variable that is measured for each individual.  The command is be modified to 
 
   ; RPM = list of variables in z (must not include one). 
 
In a panel data set, these variables must be repeated for each observation in the group. They are 
assumed not to vary over time.  (Typically, they would be sociodemographic variables such as 
gender or education.) 
 A device is provided to allow the list of variables zi to differ across coefficients.  The general 
format is as follows:  The specification ; RPM = list of variables provides the full list of variables to 
be used.  For example, if ; RPM = z1,z2,z3,z4, then  
  
   ; Fcn = x1(n) 
 
specifies that the coefficient is β1i = β1 + δ11z1i + δ12z2i + δ13z3i + δ14z4i + γ1v1i.  To remove z2 and z3 
from this mean, use 
   ; Fcn = x1(n | # 1001). 
 
The vertical bar is followed by a # sign followed by a string of 0s and 1s to indicate exclude or 
include the respective zs from the mean of the coefficient.  This device can be used with any specific 
coefficient, or all of them.  Note that the number of digits after the # must exactly match the number 
of variables in the RPM list. 
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E19.5 Saved Results 
 
 Results saved automatically by this estimator are: 
 
 Matrices: b   = estimate of θ 
   varb   = asymptotic covariance matrix for estimate of θ. 
   gammarpm = maximum likelihood estimate of Γ 
   sdrpm = vector of estimated standard deviations from ΓΓ′ 
     computed as the square roots of the diagonals of ΓΓ′. 
 
 Scalars: kreg   = number of variables in Rhs 
   nreg   = number of observations 
   logl   = log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
 
There is no Last Function saved for the PARTIALS or SIMULATE command by the random 
parameters models, because of the need to simulate the parameters to do the computations.  Partial 
effects and predicted values are computed locally within the estimator, and can be requested with 
 
   ; Partial Effects 
and   ; Keep = variable and/or ; Res = variable. 
 
E19.6 Controlling the Simulation 
 
 There are three parameters of the simulations that you can change.  The number of points in 
the simulation is R.  Authors differ in the appropriate value.  Train recommends several hundred.  Bhat 
suggests 1,000 as an appropriate value.  The program default is 100.  You can choose the value with 
 
   ; Pts  =  number of draws, R 
 
The values of 25 or 50 that we set in our experiments are chosen purely to produce an example that 
you can replicate without spending an inordinate amount of waiting for the results. (Simulation based 
estimation is unavoidably a time intensive computation.) 
 In order to replicate a simulation based estimation, you must use the same random draws.  One 
implication of this is that if you give the identical model command twice in sequence, you will not get 
the identical set of results because the random draws in the sequences will be different.  To obtain the 
same results, you must reset the seed of the random number generator with a command such as 
 
 CALC   ; Ran(seed value) $ 
 
The specific value you use for the seed is not of consequence; any odd number will do.  (That value 
is modified internally to produce a seed for each individual in the sample. But, it remains that you 
can replicate a set of results by using the same global seed.) 
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 In this connection, we note a consideration which is crucial in this sort of estimation.  The 
random sequence used for the model estimation must be the same in order to obtain replicability.  In 
addition, during estimation of a particular model, the same set of random draws must be used for 
each person every time.  That is, the sequence vi1, vi2, ..., viR used for individual i must be the same 
every time it is used to calculate a probability, derivative, or likelihood function.  (If this is not the 
case, the likelihood function will be discontinuous in the parameters, and successful estimation 
becomes unlikely.)  One way to achieve this that has been suggested in the literature is to store the 
random numbers in advance, and simply draw from this reservoir of values as needed.  Because 
LIMDEP is able to use very large samples, this is not a practical solution, especially if the number of 
draws is large as well.  We achieve the same result by assigning to each individual, i, in the sample, 
their own random generator seed which is a unique function of the global random number seed, S, 
and their group number, i; 
 
   Seed(S,i)  =  S  +  123.0 × i, then minus 1.0 if the result is even. 
 
Since the global seed, S, is a positive odd number, this seed value is unique, at least within the 
several million observation range of LIMDEP. 
 The standard approach to simulation estimation is to use random draws from the specified 
distribution.  As suggested above, good performance in this connection requires very large numbers 
of draws.  The drawback to this approach is that with large samples and large models, this entails a 
huge amount of computation and can be very time consuming. Some authors have documented 
dramatic speed gains with no degradation in simulation performance through the use of a small 
number of Halton draws instead of a large number of random draws.  Halton sequences are discussed 
in Chapter R24.  Authors (e.g., Bhat (2001)) have found that a Halton sequence of draws with only 
one tenth the number of draws as a random sequence is equally effective.  (The efficiency does fall 
as the number of parameters rises, but large gains persist.)  To use this approach, add 
 
   ; Halton 
 
to your model command.   
 
E19.7 Other Options 
 
 Other optional features for the random parameters regression model are the usual, including 
 
   ; Keep = name  to retain predictions 
   ; Prob = name  to retain fitted probabilities 
   ; Res = name  to retain residuals 
   ; Covariance Matrix to display the estimated asymptotic covariance matrix, 
    same as ; Printvc 
   ; List to display predicted values 
   ; Table= name to retain the model results for constructing tables 
   ; Test: to test hypotheses about β. 
 
In spite of the fact that this is a linear regression model, the estimator is nonlinear.  The default (and 
best) algorithm for estimation is BFGS.  But, all other algorithms are available as are other settings 
for the optimization process: 
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   ; Alg = DFP, BFGS, Newton 
   ; Maxit = n  to set maximum iterations 
   ; Tlg [= value] to set tolerance for convergence on gradient 
   ; Tlb [= value] to set tolerance for convergence on change in parameters 
   ; Tlf [= value]  to set tolerance for convergence on change in log likelihood 
   ; Output = value to control output during iterations 
 
This estimator can accommodate restrictions, so 
 
   ; Rst = list   
and   ; CML: specification 
 
are both available.  Do note that forcing the ancillary parameter, in this case, the variance 
parameters, to equal a slope parameter will almost surely produce unsatisfactory results, and may 
impede or even prevent convergence of the iterations. 
 
E19.8 Individual Specific Estimates  
 
 Individual specific estimates of E[βi|datai] can be obtained by the method described in 
Chapter R24, by adding 
 
   ; Parameters  
 
to your command. This requests computation of matrices beta_i and sdbeta_i that contain the 
estimated means and standard deviations of the conditional distributions of βi.  Some discussion 
appears below in the applications.  
 

E19.9 Applications 
 
 We provide two illustrations to demonstrate the linear RP model. 
 
E19.9.1 Random Parameters Linear Regression Model 
 
 This application shows a straightforward application of the RP model in an unbalanced 
panel. There are three random parameters, which are assumed to be correlated.  The simulation uses 
Halton sequences rather than random draws, so there is no need to set the seed for the random 
number generator.   
 

SAMPLE ; All $ 
CREATE  ; income = hhninc $ 
REJECT  ; income = 0 $ 
CREATE  ; loginc = Log(income) $ 
SETPANEL  ; Group = id ; Pds = ti $ 
REGRESS  ; Lhs = loginc ; Rhs = one,age,age*age,educ,female 

; Panel 
; RPM ; Fcn = one(n),educ(n),female(n)  
; Correlated ; Halton ; Pts = 25  
; Parameters $ 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGINC   Mean                 =       -1.15746 
             Standard deviation   =         .49149 
             No. of observations  =          27322  Degrees of freedom 
Regression   Sum of Squares       =        718.053           4 
Residual     Sum of Squares       =        5881.56       27317 
Total        Sum of Squares       =        6599.61       27321 
             Standard error of e  =         .46401 
Fit          R-squared            =         .10880  R-bar squared =   .10867 
Model test   F[  4, 27317]        =      833.75219  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =   -17786.71322  Akaike I.C.   = -1.53550 
             Restricted (b=0)     =   -19360.30987  Bayes  I.C.   = -1.53400 
             Chi squared [  4]    =     3147.19331  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .07744***      .00211    36.64  .0000      .07330    .08159 
 AGE*AGE|    -.00087***   .2386D-04   -36.41  .0000     -.00092   -.00082 
Constant|   -3.35440***      .04689   -71.54  .0000    -3.44630  -3.26251 
    EDUC|     .05229***      .00125    41.98  .0000      .04985    .05473 
  FEMALE|    -.01690***      .00572    -2.95  .0032     -.02812   -.00568 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Random Coefficients  LinearRg Model 
Dependent variable               LOGINC 
Log likelihood function    -12047.25811 
Estimation based on N =  27322, K =  12 
Inf.Cr.AIC  =24118.516 AIC/N =     .883 
Unbalanced panel has   7293 individuals 
LINEAR regression model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Nonrandom parameters 
     AGE|     .06799***      .00120    56.86  .0000      .06564    .07033 
 AGE*AGE|    -.00067***   .1358D-04   -49.13  .0000     -.00069   -.00064 
        | Means for random parameters 
Constant|   -3.40320***      .02661  -127.91  .0000    -3.45535  -3.35106 
    EDUC|     .05824***      .00078    75.04  .0000      .05672    .05976 
  FEMALE|    -.05416***      .00355   -15.25  .0000     -.06111   -.04720 
        | Diagonal elements of Cholesky matrix 
Constant|     .50105***      .00862    58.11  .0000      .48415    .51795 
    EDUC|     .00471***      .00020    23.78  .0000      .00432    .00510 
  FEMALE|     .01135***      .00252     4.50  .0000      .00640    .01629 
        | Below diagonal elements of Cholesky matrix 
lEDU_ONE|     .01066***      .00071    15.09  .0000      .00928    .01204 
lFEM_ONE|     .07436***      .00335    22.21  .0000      .06780    .08092 
lFEM_EDU|     .04889***      .00324    15.09  .0000      .04254    .05524 
        | Variance parameter given is sigma 
Std.Dev.|     .30580***      .00078   390.99  .0000      .30427    .30733 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
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Implied covariance matrix of random parameters 
Var_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       .251053     .00534136      .0372579 
       2|     .00534136   .135804E-03     .00102286 
       3|      .0372579     .00102286     .00804854 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .501052 
       2|      .0116535 
       3|      .0897137 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000       .914770       .828851 
       2|       .914770       1.00000       .978367 
       3|       .828851       .978367       1.00000  
 

E19.9.2 Conditional Estimates of Means of Random Parameters 
 

 Data file dairy.dat contains six years of observations on 247 dairy farms in northern Spain, 
drawn from 1993-1998.  The raw data consist of the farm and year identification, plus measurements 
on one output, milk, and four inputs, cows, land, labor and feed.  Figure E19.1 displays several 
observations. 
 

 
Figure E19.1  Excel Display of Dairy Farm Data 
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 To illustrate the random parameters (RP) estimator, we will fit a Cobb-Douglas production 
function, 
   logyit = xit′βi  +  εit 

   βi   =  β  +  Γvi 
 
where xit = (1, log cowsit, log landit, log laborit, log feedit).  The data have been normalized so that the 
logs of the inputs sum to zero over the 1,482 observations.  In the first application, we assume Γ is 
diagonal.  To illustrate the difference across farms in the coefficients, we produce a centipede plot of 
the farm specific expected values of the coefficient on log feed. We also plot a kernel density 
estimator of the 247 observations on E[βfeed,i|datai].  The second set of results is for a model in which 
Γ is unrestricted, so the parameters are freely correlated. 
 First, compute the random parameters regression. 
 
 REGRESS  ; Lhs = yit 
   ; Rhs = one,x1,x2,x3,x4 
   ; RPM   
   ; Parameters 
   ; Fcn = one(n),x1(n),x2(n),x3(n),x4(n) 
   ; Pds = 6 ; Pts = 50 ; Halton $ 
 
We call the fifth coefficient b4, as it is the coefficient on x4 (feed). This picks up the estimates of 
E[βi4 | datai ] and the conditional standard deviations. 
 
 MATRIX  ; b4 = beta_i(1:247,5:5) 
   ; sb4 = sdbeta_i(1:247,5:5)  
 
This forms an interval of the conditional mean plus/minus two standard deviations. 
 
   ; lower = b4 - 2*sb4 ; upper = b4 + 2*sb4 $ 
 
Now prepare a centipede plot. 
 
 CREATE  ; i = Trn(1,1)$ 
 SAMPLE ; 1-247 $ 
 MATRIX  ; farmid = i $ 
 MPLOT  ; Lhs = farmid  
   ; Rhs = lower,upper  
   ; Centipede ; Endpoints = 0,250  
   ; Yaxis = BetaFeed 
   ; Title = Farm Specific E[b_feed|data] $ 
 
Display a kernel density estimator. 
 
 CREATE  ; b4i = b4 $ 
 KERNEL ; Rhs = b4i 

; Title = Kernel Density Estimator for Conditional Means of Beta(4) $ 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=YIT      Mean                 =       11.57749 
             Standard deviation   =         .64344 
             No. of observations  =           1482  Degrees of freedom 
Regression   Sum of Squares       =        584.056           4 
Residual     Sum of Squares       =        29.0957        1477 
Total        Sum of Squares       =        613.152        1481 
             Standard error of e  =         .14035 
Fit          R-squared            =         .95255  R-bar squared =   .95242 
Model test   F[  4,  1477]        =     7412.18528  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      809.67608  Akaike I.C.   = -3.92381 
             Restricted (b=0)     =    -1448.90834  Bayes  I.C.   = -3.90592 
             Chi squared [  4]    =     4517.16884  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    11.5775***      .00365  3175.52  .0000     11.5703   11.5846 
      X1|     .59518***      .01958    30.39  .0000      .55679    .63356 
      X2|     .02305**       .01122     2.05  .0400      .00105    .04505 
      X3|     .02319*        .01303     1.78  .0751     -.00235    .04873 
      X4|     .45176***      .01078    41.89  .0000      .43062    .47290 
--------+-------------------------------------------------------------------- 
Random Coefficients  LinearRg Model 
Dependent variable                  YIT 
Log likelihood function      1330.37176 
Restricted log likelihood        .00000 
Chi squared [   5 d.f.]      2660.74352 
Significance level               .00000 
Estimation based on N =   1482, K =  11 
Inf.Cr.AIC  =-2638.744 AIC/N =   -1.781 
Sample is  6 pds and    247 individuals 
LINEAR regression model 
Simulation based on  50 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Means for random parameters 
Constant|    11.5629***      .00201  5753.98  .0000     11.5590   11.5669 
      X1|     .66634***      .01067    62.45  .0000      .64543    .68725 
      X2|     .02700***      .00633     4.26  .0000      .01458    .03941 
      X3|     .02689***      .00720     3.74  .0002      .01278    .04100 
      X4|     .38640***      .00573    67.42  .0000      .37516    .39763 
        |Scale parameters for dists. of random parameters 
Constant|     .10443***      .00190    54.99  .0000      .10071    .10815 
      X1|     .01754***      .00420     4.18  .0000      .00931    .02578 
      X2|     .04048***      .00468     8.65  .0000      .03131    .04965 
      X3|     .03400***      .00590     5.76  .0000      .02243    .04557 
      X4|     .07652***      .00298    25.70  .0000      .07069    .08236 
        |Variance parameter given is sigma 
Std.Dev.|     .07750***      .00102    76.04  .0000      .07550    .07950 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 



E19: Random Parameters Linear Models   E-411 

 
 

 
Figure E19.2  Matrices Created by Random Parameters Regression 
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Figure E19.3  Distribution of Individual Specific Means 
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E19.10 The Parameter Vector and Starting Values 
 
 Starting values for the iterations are obtained by fitting the basic model without random 
parameters by least squares.  Other parameters are set to zero.  Thus, the initial results in the output 
for these models will be the simple linear regression model.  You may provide your own starting 
values for the parameters with 
 
   ; Start = ... the list of values for θ. 
 
The parameter vector is laid out as follows, in this order: 
 
   α1, ..., αK    are the K nonrandom parameters. 

   β1,...,βM    are the M means of the distributions of the random parameters. 

   σ1,σ2,...,σM   are the M scale parameters for the distributions of the random 
      Parameters. 
 
These are the essential parameters.  If you have specified that parameters are to be correlated, then 
the σs are followed by the below diagonal elements of Γ.  (The σs are the diagonal elements.)  If you 
have specified heterogeneity variables, z, then the preceding are followed by the rows of ∆.  The 
autocorrelation model adds yet another vector of parameters.  Consider an example:  The model 
specifies: 
   ; RPM = z1,z2 
   ; Rhs  = one,x1,x2,x3,x4  ? base parameters β1, β2, β3, β4, β5 
   ; Fcn = one(n),x2(n),x4(n) 
   ; Cor 
 
Then, after rearranging, the model becomes 
 
  Variable Parameter 
       x1  α1 

        x3    α2 

     one  β1  +  σ1vi1   +  δ11zi1  +  δ12zi2 

       x2  β2  +  σ2vi2  +  γ21vi1   +  δ11zi1  +  δ12zi2 

       x4  β3  +  σ3vi3  +  γ31vi1  +  γ32vi2 +  δ11zi1  +  δ12zi2 
 
and the parameter vector would be 
 
       θ  =  α1, α2, β1, β2, β3, σ1, σ2, σ3, γ21, γ31, γ32, δ11, δ12, δ21, δ22, δ31, δ32. 
 
You may use ; Rst and ; CML: to impose restrictions on the parameters.  Use the preceding as a 
guide to the arrangement of the parameter vector.  (We concede the complexity of this.  In point of 
fact, this is a complex model, unavoidably so.) 
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 The variances of the underlying random variables are 1 for the normal distribution, 1/3 for 
the uniform, and 1/6 for the tent distribution.  The σ parameters are only the standard deviations for 
the normal distribution.  For the other two distributions, σk is a scale parameter.  The standard 
deviation is obtained as σk/ 3  for the uniform distribution and σk/ 6  for the triangular distribution.  
When the parameters are correlated, the implied covariance matrix is adjusted accordingly.  The 
correlation matrix is unchanged by this.  All variance parameters are labeled ‘scale parameter’ in the 
model results. 
 
E19.11 Technical Details on the RP Model 
 
 The structure of the random parameters model is based on the conditional density 
 
 f[yit | xit, βi]  =  Normal with mean (βi′xit), i = 1,...,N, t = 1,...,Ti, and variance σ2. 
 
NOTE:  The force of the conditional normality assumption is only that the parameters are estimated 
by least squares.   
 
The model assumes that parameters are randomly distributed with possibly heterogeneous (across 
individuals) mean 
 

  E[βi| zi]   =  β  +  ∆zi, (the second term is optional – the mean may be 
     constant) 

   Var[βi| zi] =  Σ 

so that   βi  =  β  +  ∆zi  +  Γvi.  
 
As noted earlier, the heterogeneity term, ∆zi , is optional.  In addition, it may be assumed that some 
of the parameters are nonrandom.  It is convenient to analyze the model in this fully general form 
here.  One can easily accommodate nonrandom parameters just by placing rows of zeros in the 
appropriate places in ∆ and Γ.  The actual treatment is discussed in the preceding sections. 
 The log likelihood function is 
 
   log L  =  Σi  log Li 
 
where log Li is the contribution of the ith individual (group) to the total.  Conditioned on vi, the joint 
density for the ith group is 
 

   f[yi1,...,yiTi | xi1,..., zi,vi] =  
1
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Since vi is unobserved, it is necessary to obtain the unconditional log likelihood by taking the 
expectation of this over the distribution of vi.  For convenience, write the tth term in the density 
above as f(yit, βi′xit), so that 

   Li | vi =  
1
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it i it
t

f y
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(Note that this is a multivariate integral.)  Then, finally,  
 
   log L  =  

1
log .N
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L
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For convenience in what follows, let  θ  = (β, ∆,Γ) . The likelihood function is maximized by 
solving the likelihood equations: 
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Note that Γ is a lower triangular matrix; θ is understood to contain only the nonzero elements, 
moving rowwise through the matrix (one element in row one, two in row two, and so on).  
Estimation is done conditionally on an estimate of σ2.  This is described below. 
 The integration is done by Monte Carlo simulation.  In general, we use the approximation 
strategy: 

   Evi [Li | vi]   ≈  
1

1 | v ,R
irr

L
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where vir is a random draw from the distribution of vi.  See Brownstone and Train (1999), Train 
(1998), and Revelt and Train (1998) for discussion.  The approximation improves with increased R 
(this is under your control) and with increases in N, though the simulation variance which decreases 
with increases in R does not decrease with N. 
 Collecting terms, then, the log likelihood is computed with 
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where   βir  =  β  +  ∆zi  +  Γvir. 
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 The derivatives of the log likelihood function are approximated as well. 
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Collecting terms once again, we obtain the approximation, 
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 Note that Li and its derivatives are approximated separately.   The index is  
 
   wirt   =  βir′xit 
    =  β′xit  +  zi′∆′xit + vir′Γ′xit 
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In the vector at the end of the expression, the lower term is the result of the term xit′Γvir.  Since Γ is a 
lower triangular matrix, this term actually involves the K(K+1)/2 terms that are nonzero in the matrix 
Γ. 
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 The estimate of σ2 is obtained residually while the estimates of the other parameters are 
obtained by maximizing the likelihood.  The initial estimator of σ2 is the ordinary least squares 
estimator.  The likelihood function above is then maximized conditionally on this estimate of σ2. 
After convergence, σ2 is reestimated with 
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The parameters of the model are then reestimated using this estimate of σ2.  After convergence, σ2 is 
recomputed again and the iterations are entered a third time.  This process continues until σ2 
stabilizes, which will usually occur in only a few passes.  After this last estimation, σ2 is recomputed, 
and this is the value reported in the results. 
 The Hessian is fairly complicated, so we will only sketch the necessary components.  Let 
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Since each of the three parts is a function of θ, the Hessian will have three parts.  The end result is 
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The asymptotic covariance matrix may be estimated by the BHHH estimator, 
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or with the actual second derivatives. 
 The remaining detail concerns the random draws, vi, which are discussed in Chapter R24. 
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E20: Latent Class Linear Models 
 
E20.1 Introduction 
 
 LIMDEP provides two approaches to fitting linear regression models with random parameters: 
 

• Mixed, or random parameters model – parameters are distributed continuously; 
• Latent class, or finite mixture model – parameters have a discrete distribution. 

 
The models are built around the structural equations 
 
   yit   =  xit′βi  +  εit, i = 1,...,N, t = 1,…,Ti, 
   εit ~  N[0,σi

2] 
 

For the mixed, or random parameters model, 
 

   βi   =  β  +  ∆zi + Γvi, 
   E[vi|zi,xit]   =  0,  Var[vi]  =  I,  
   Var[βi|zi,xit]  =  Σ = ΓΓ′, 
   σi

2 =  σ2 (constant). 
 

In the latent class model 
 

   (βj,σj
2)    ∈ [(β1,σ1

2), (β2,σ2
2), …, (βJ,σJ

2)],  
   Prob[class=j|zi]  =  πj(zi,θj), j = 1,…,J. 
 
The models apply naturally to panel data but can be used (somewhat less effectively) with cross 
sections as well.  The mixed model is estimated by maximum simulated likelihood.  The latent class 
model is estimated by maximum likelihood.  The random parameters linear model is developed in 
Chapter E19.  This chapter documents how to fit a latent class linear model. 
 

E20.2 Latent Class Linear Regression Model 
 

A linear regression model for a panel of data, i = 1,...,N, t = 1,...,Ti  is specified in terms of 
the density, 

  f(yit | xit)   =  f(yit, β′xit)  =  φ(i,t). 
 
(We allow for the cross section case of Ti = 1.)  For this special case of the linear regression model, 
we assume that the underlying distribution is normal with mean β′xit and variance σ2.  Henceforth, 
we use the term ‘group’ to indicate the Ti observations on respondent i in periods t = 1,...,Ti. 
Unobserved heterogeneity in the distribution of yit is assumed to impact the density in the form of a 
random effect.  The continuous distribution of the heterogeneity such as discussed in the preceding 
chapter is approximated by using a finite number of ‘points of support.’  The distribution is 
approximated by estimating the location of the support points and the mass (probability) in each 
interval.  In implementation, it is convenient and useful to interpret this discrete approximation as 
producing a sorting of individuals (by heterogeneity) into J classes, j = 1,...,J.  (Since this is an 
approximation, J is chosen by the analyst.) 
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Thus, we modify the model for a latent sorting of yit into J ‘classes’  with a model which 
allows for heterogeneity as follows:  The  probability of observing yit given that regime j applies is 

 
  φ(i,t|j)  =  φ(yit| xit, j), 

 
where the normal density is now specific to the group.  The analyst does not observe directly which 
class, j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and 
Singer (1984) suggest a simple form of the class variation in which only the constant term varies 
across the classes.  This would produce the model 
 

  φ(i,t|j)  =  φ[yit, β′xit  +  δj], Prob[class = j]  =  Fj 
 
We formulate this approximation more generally as, 
 

  φ(i,t|j)  =  φ[yit, β′xit  +  δj′xit], Fj  =  exp(θj) / Σj exp(θj), with θJ  = 0. 
 
In this formulation, each group has its own parameter vector, βj′ =  β  +  δj,  though the variables that 
enter the mean are assumed to be the same.  (We show how to modify this assumption in Section 
E20.4.)  In sum, then, for this application, the model is 
 
   f(yit | class = j)  =  N[βj′xit, σj

2], Prob(class = j)  =  Fj  =  exp(θj) / Σj exp(θj). 
 
Thus, the within class model is the linear regression model with normally distributed disturbances.  
Thus far, it is assumed that the prior class probabilities are constants, πj.  In Section E20.5, we detail 
how to introduce covariates into the class probabilities. 
 
E20.3 Command for Latent Class Regression 
 

The estimation command for this model is 
 
 REGRESS ; Lhs = ... 

; Rhs = independent variables 
; LCM (for latent class model)   
; Panel  
; Pts = the number of classes  $ 

 
As noted, this model can be (and often is) applied to cross section data.  Thus, you may omit the         
; Panel in the command, in which case it is assumed that Ti = 1. The default number of support 
points is five.  But, this is fairly high.  You may set J to 2, 3, 4, 5, 6, 7, 8, or 9 with 
 
   ; Pts = the value you wish 
 
Other options and further details on the model appear in Chapter R25.  The latent class model 
provides estimates of the J class member parameter vectors for the model and the class probabilities. 
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  Estimates retained by this model include: 
 
 Matrices: b = full parameter vector, [β1′, β2′,... F1,...,FJ] 
   varb = full covariance matrix 
          Note that b and varb involve J×(K+1) estimates.   
 
   Three additional matrices are created, 
 
   b_class = a J×K matrix with each row equal to the corresponding βj 

   class_pr = a J×1 vector containing the estimated class probabilities 
   beta_i = individual conditional (posterior) expectations of βi 
 

Scalars: kreg = number of variables in Rhs list 
   nreg = total number of observations used for estimation 
   logl = maximized value of the log likelihood function 

  exitcode = exit status of the estimation procedure. 
 
 Last Function:  None 
 
E20.4 Restricted Models 
 
 There are several interesting special cases of the latent class linear regression – these will be 
extended to latent class models generally in the development of other models.  Restrictions can be 
imposed on the coefficients of the LC model, both within class and across classes.  The ; Rst = list 
specification is used for this purpose.  The parameters of the LC linear regression model, in the order 
in which they appear in the program, are 
 
   Θ  =  β1,σ1, β2,σ2, …, βJ,σJ, θ1,  θ2, …, θJ 
 
Depending on the model, βj may have 1, 2,  up to K elements.  Note that the variance parameter is σj, 
not σj

2.  The last J parameters are the structural parameters in the class probabilities.  There are J of 
these, though the last one equals zero.  The list of items in ; Rst = list provides either symbols or 
values for the elements in Θ.  Equality restrictions are imposed by using the same name.  Fixed 
values are imposed by placing the fixed value in the list.  For an example, consider a three class 
model with four regressors, so that the command is 
 
 REGRESS  ; LCM ; Lhs = y ; Rhs = one,x1,x2,x3,x4 ; Pts = 3 $ 
 
The unrestricted model would be specified (redundantly) by 
 

; Rst = a1,b11,b12,b13,b14,sg1, a2,b21,b22,b23,b24,sg2, a3,b31,b32,b33,b34,sg3, t1,t2,t3. 
 
(Note, we chose the symbols aj and bjk purely for convenience and clarity. You may use any 
symbols you like.)  This ; Rst specification does not impose any constraints. Suppose it were desired 
to force the coefficient on x4 to be the same in all three classes.  The list is changed to 
 

; Rst = a1,b11,b12,b13,b4,sg1, a2,b21,b22,b23,b4,sg2, a3,b31,b32,b33,b4,sg3, t1,t2,t3. 
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Note that b14, b24 and b34 have all been changed to b4.  Since the name is the same in all three sets 
of symbols, this will impose the constraint that the parameter is equal in all three places.    Second, 
suppose, in addition to the equality constraint on bj4, we wished to fix b11 at zero and b21 at one.  
We would use 
 
 ; Rst = a1,0,b12,b13,b4,sg1, a2,1,b22,b23,b4,sg2, a3,b31,b32,b33,b4,sg3, t1,t2,t3. 
 
You may impose any number of equality and fixed value constraints with this device.  Note, 
however, 
 

• Although you provide a place holder for σj, you should generally not constrain these 
parameters.  (It is allowed by the specification, but it will likely lead to very poor results.) 
 

• You must provide place holders for the θ parameters, but you should never constrain these.  
Note, as well that although the third will be constrained to equal zero, the program will do 
this.  You should treat this parameter as unconstrained. 

 
Heckman and Singer 
 
 Heckman and Singer’s specification is obtained by forcing all classes to have the same 
coefficients save for the constant terms.  By way of the preceding example, this is specified as 
follows: 
 

; Rst = a1,b1,b2,b3,b4,sg, a2,b1,b2,b3,b4,sg, a3,b1,b2,b3,b4,sg, t1,t2,t3. 
 
This produces a random effects regression in which the effect has a discrete distribution.  The 
implied random effects model is 
 
   yit|j   =  α  +  β′xit + εit + δj, j = 1,2,3 

   P(δ = δj) =  πj. 

   E[δ] =  0. 
 
More generally, the Heckman and Singer formulation is obtained by forcing all coefficients in the 
classes to be equal save for a class specific constant term. 
 
Exclusions 
 
 There are cases in which the analyst believes a priori that different models apply to the 
different classes.  We will examine a number of such cases in applications in later chapters.  One of 
these cases relates to the prior information (belief) that certain variables do not appear in the model 
in certain classes.  (Note that this implies that the classes are not completely latent.)  This type of 
specification can be obtained by imposing zero restrictions.  Zeros and other fixed values may be 
placed wherever it is desired in the list, though we emphasize once again, fixed value restrictions on 
the disturbance standard deviations generally produce undesirable results. 
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E20.5 Modeling Class Probabilities 
 
 The prior probabilities of class membership, π1, π2,…, πJ are estimated with the model 
parameters.  In order to impose the constraints πj > 0 and Σjπj = 1, the probabilities are parameterized 
with a multinomial logit form, 
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(The constraint on the last θ is imposed because only J-1 parameters are needed to specify the J 
probabilities.  The last probability is one minus the sum of the first J-1.) 
 The prior probabilities may be extended to depend on variables in the data set.  For example, 
in a typical application, the prior probabilities are often made a function of demographics such as age 
or gender.  The expanded model is 
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Variables zi are added to the model by specifying 
 
   ; LCM = the list of variables (must not include one) 
For example, 
   ; LCM = age,sex 
 
specifies a model in which age and sex enter the class probabilities.  An application appears in 
Section E20.7.   
 
E20.6 Posterior Class Probabilities and Predicting Class 
Membership 
 
 After estimation of the model parameters, a secondary exercise is estimation of the posterior 
probabilities, 
   Prob[class=j|{(yit,xit),t=1,…,Ti},zi], 
 
which we denote P(j|i).  To derive Pj(j|i), use Bayes theorem as follows: The probability that 
individual is a member of class j given the information in the sample about them is denoted P(j|i).  
The joint density of the class membership and the observed outcome is denoted P(i,j).  By definition, 
 

P(j|i) = P(i,j)/P(i).   
 

The joint density of the outcome and the class membership is the product of the conditional times the 
marginal, and the marginal has already been defined as the prior probability, πj; 
 

P(i,j) = P(i|j)πj.   
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P(i|j) is the density for individual i given they are in class j, which is the contribution of individual i 
to the likelihood function given class j, f(i|j) = Πtf(yit|j).  By definition, the marginal density is the 
sum of the joint densities, so that the unconditional density for individual i is 
 

P(i) = Σj P(i,j) = ΣjP(i|j)πj.   
 
Collecting terms, we find the posterior probabilities, 
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As noted earlier, the prior probabilities may involve covariates in πj(zi).  The marginal densities in 
the products are the normal densities with mean βj′xit and standard deviations σj.  Assembling all the 
parts, then, 
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The posterior probabilities will embody the model estimates and the sample information about the 
individual.  A natural next step is to use the posterior class probabilities to predict the class 
membership.  We predict (albeit imperfectly) that individual i is a member of class j if P(j|i) > P(m|i) 
for all other m – i.e., we predict the class with the highest posterior probability. 
 Posterior probabilities and the class predictions can be retained in the data set as follows:  
For the probabilities, it is necessary to create (or provide) a set of J existing variables, in a namelist, 
in the REGRESS command, using 
 
   ; Classp = the namelist. 
 
For an example, to extend the earlier example, we used 
 

CREATE  ; p1 = 0 ; p2 = 0 ; p3 = 0 $ 
NAMELIST ; cp = p1,p2,p3$ 

 REGRESS  ; Lhs = yit 
   ; Rhs = one,x1,x2,x3,x4 
   ; LCM  

; Pts = 3  
   ; Parameters 
   ; Pds = 6  

; Classp = cp $ 
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This produces new variables in the data area, as shown in Figure E20.1. 
 

 
Figure E20.1  Estimated Class Probabilities 

 
Note that the posterior probabilities will differ substantially from the priors.  In the model estimated 
above, the prior probabilities are 0.323, 0.185 and 0.492.  Second, note that the probabilities are 
repeated for each observation in the group in a panel. 
 Finally, you may request the class assignments to be saved as a variable by adding 
 
   ; Group = variable name 
 
to create the new variable.  The variable will contain the index of the class with the largest posterior 
probability.  The results in the last column in Figure E20.1 are obtained with 
 

; Group = class 
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E20.7 Applications 
 

 We examine two applications.  The first purely for illustration, considers the classic ‘mixture 
of normals’ application.  The second applies the methods to a regression model using the panel data 
on dairy farm production that was used in Chapter E19 for the mixed regression model. 
 

E20.7.1 Finite Mixture of Normals 
 

 The mixture of normals is simply a latent class application to the marginal distribution of a 
variable.  We treat it here by treating the marginal normal distribution as a regression model in which 
there are no regressors, only a constant term. The first result below is the base case.  The second 
specifies that the prior class probabilities depend on gender.  The very large increase in the log 
likelihood suggests that gender is, indeed, relevant in the class probabilities. 
 

REJECT  ; hhninc = 0 $ 
CREATE  ; loginc = log(hhninc) $ 
REGRESS ; Lhs = loginc ; Rhs = one ; Pts = 2 ;  LCM $ 
REGRESS ; Lhs = loginc ; Rhs = one ; Pts = 2 ;  LCM = female $  
 

----------------------------------------------------------------------------- 
Latent Class / Panel LinearRg Model 
Dependent variable               LOGINC 
Log likelihood function    -18604.87698 
Sample is  1 pds and  27322 individuals 
Model fit with  2 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGINC| Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Model parameters for latent class 1 
Constant|   -1.43704***      .02249   -63.90  .0000    -1.48112  -1.39297 
   Sigma|     .76606***      .00808    94.76  .0000      .75022    .78191 
        | Model parameters for latent class 2 
Constant|   -1.10721***      .00349  -317.55  .0000    -1.11404  -1.10037 
   Sigma|     .40362***      .00344   117.22  .0000      .39688    .41037 
        | Estimated prior probabilities for class membership 
Class1Pr|     .15235***      .00929    16.40  .0000      .13414    .17056 
Class2Pr|     .84765***      .00929    91.22  .0000      .82944    .86586 
--------+-------------------------------------------------------------------- 
Log likelihood function    -18545.67813 
--------+-------------------------------------------------------------------- 
        | Model parameters for latent class 1 
Constant|   -1.43965***      .02117   -67.99  .0000    -1.48115  -1.39814 
   Sigma|     .74502***      .00730   102.04  .0000      .73071    .75933 
        | Model parameters for latent class 2 
Constant|   -1.10150***      .00352  -313.15  .0000    -1.10839  -1.09461 
   Sigma|     .40057***      .00341   117.43  .0000      .39389    .40726 
        | Estimated prior probabilities for class membership 
   ONE_1|   -2.06919***      .08969   -23.07  .0000    -2.24498  -1.89340 
FEMALE_1|     .82416***      .07820    10.54  .0000      .67090    .97743 
   ONE_2|        0.0    .....(Fixed Parameter)..... 
FEMALE_2|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
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E20.7.2 Latent Class Linear Model 
 
 REGRESS  ; Lhs = yit 
   ; Rhs = one,x1,x2,x3,x4 
   ; LCM  

; Pts = 3  
   ; Parameters 
   ; Pds = 6  $ 
 
----------------------------------------------------------------------------- 
Latent Class / Panel LinearRg Model 
Log likelihood function      1243.78697 
Restricted log likelihood        .00000 
Chi squared [  15 d.f.]      2487.57394 
(Some results omitted) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    11.7014***      .00373  3140.56  .0000     11.6941   11.7087 
      X1|     .57307***      .01464    39.14  .0000      .54438    .60177 
      X2|     .08533***      .01076     7.93  .0000      .06425    .10642 
      X3|     .03306**       .01455     2.27  .0231      .00455    .06157 
      X4|     .42682***      .00666    64.06  .0000      .41376    .43988 
   Sigma|     .08729***      .00210    41.58  .0000      .08317    .09140 
        |Model parameters for latent class 2 
Constant|    11.3944***      .00740  1538.86  .0000     11.3799   11.4089 
      X1|     .78593***      .03271    24.03  .0000      .72182    .85005 
      X2|    -.06285***      .01633    -3.85  .0001     -.09486   -.03085 
      X3|     .06089**       .02829     2.15  .0314      .00544    .11635 
      X4|     .35185***      .01699    20.71  .0000      .31855    .38515 
   Sigma|     .11316***      .00350    32.32  .0000      .10630    .12003 
        |Model parameters for latent class 3 
Constant|    11.5622***      .00312  3706.84  .0000     11.5561   11.5683 
      X1|     .65425***      .01704    38.39  .0000      .62084    .68765 
      X2|     .05083***      .00909     5.59  .0000      .03302    .06863 
      X3|     .05779***      .00953     6.06  .0000      .03911    .07648 
      X4|     .40208***      .00913    44.05  .0000      .38419    .41997 
   Sigma|     .08492***      .00240    35.34  .0000      .08021    .08963 
        |Estimated prior probabilities for class membership 
Class1Pr|     .32285***      .03337     9.67  .0000      .25744    .38826 
Class2Pr|     .18473***      .02723     6.78  .0000      .13135    .23810 
Class3Pr|     .49243***      .03657    13.47  .0000      .42075    .56410 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The Heckman and Singer model is obtaining by a set of restrictions – all parameters are the same 
across classes save for the constant terms. 
 

REGRESS  ; Lhs = yit 
   ; Rhs = one,x1,x2,x3,x4 
   ; LCM  

; Pts = 3  
   ; Parameters 
   ; Pds = 6   

; Rst = a1, b1, b2, b3, b4, sg, 
                a2, b1, b2, b3, b4, sg, 
       a3, b1, b2, b3, b4, sg, 

    t1, t2, t3 $ 
 

----------------------------------------------------------------------------- 
Latent Class / Panel LinearRg Model 
Dependent variable                  YIT 
Log likelihood function      1217.07146 
(Some results omitted) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    11.7047***      .00393  2981.71  .0000     11.6970   11.7124 
      X1|     .64523***      .00998    64.63  .0000      .62566    .66479 
      X2|     .03432***      .00654     5.25  .0000      .02151    .04714 
      X3|     .05467***      .00868     6.30  .0000      .03765    .07168 
      X4|     .40610***      .00502    80.93  .0000      .39626    .41593 
   Sigma|     .09245***      .00131    70.81  .0000      .08989    .09500 
        |Model parameters for latent class 2 
Constant|    11.3728***      .00395  2878.66  .0000     11.3651   11.3806 
      X1|     .64523***      .00998    64.63  .0000      .62566    .66479 
      X2|     .03432***      .00654     5.25  .0000      .02151    .04714 
      X3|     .05467***      .00868     6.30  .0000      .03765    .07168 
      X4|     .40610***      .00502    80.93  .0000      .39626    .41593 
   Sigma|     .09245***      .00131    70.81  .0000      .08989    .09500 
        |Model parameters for latent class 3 
Constant|    11.5587***      .00297  3894.50  .0000     11.5529   11.5645 
      X1|     .64523***      .00998    64.63  .0000      .62566    .66479 
      X2|     .03432***      .00654     5.25  .0000      .02151    .04714 
      X3|     .05467***      .00868     6.30  .0000      .03765    .07168 
      X4|     .40610***      .00502    80.93  .0000      .39626    .41593 
   Sigma|     .09245***      .00131    70.81  .0000      .08989    .09500 
        |Estimated prior probabilities for class membership 
Class1Pr|     .31497***      .03404     9.25  .0000      .24825    .38169 
Class2Pr|     .14634***      .02459     5.95  .0000      .09813    .19454 
Class3Pr|     .53869***      .03574    15.07  .0000      .46865    .60874 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 This application imposes some zero restrictions on the model within the classes. 
 

REGRESS  ; Lhs = yit 
   ; Rhs = one,x1,x2,x3,x4 
   ; LCM  

; Pts = 3  
   ; Parameters 
   ; Pds = 6  

 ; Rst = a1, b11, b12, b13, 0, sg1, 
   a2, b21, b22, 0,     0, sg2, 
   a3, 0, b32, b33, b34, sg3, 
   t1,t2,t3 $ 

----------------------------------------------------------------------------- 
Latent Class / Panel LinearRg Model 
Log likelihood function       860.37424 
(Some results omitted) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    11.6030***      .00401  2893.08  .0000     11.5952   11.6109 
      X1|    1.17538***      .00967   121.52  .0000     1.15642   1.19433 
      X2|     .04902***      .01023     4.79  .0000      .02897    .06907 
      X3|     .10212***      .01469     6.95  .0000      .07333    .13091 
      X4|        0.0    .....(Fixed Parameter)..... 
   Sigma|     .11270***      .00369    30.57  .0000      .10548    .11993 
        |Model parameters for latent class 2 
Constant|    11.3406***      .00875  1296.45  .0000     11.3235   11.3578 
      X1|    1.27066***      .02381    53.36  .0000     1.22398   1.31733 
      X2|    -.00187         .02193     -.09  .9322     -.04484    .04111 
      X3|        0.0    .....(Fixed Parameter)..... 
      X4|        0.0    .....(Fixed Parameter)..... 
   Sigma|     .14905***      .00590    25.26  .0000      .13749    .16062 
        |Model parameters for latent class 3 
Constant|    11.6208***      .00318  3656.13  .0000     11.6146   11.6271 
      X1|        0.0    .....(Fixed Parameter)..... 
      X2|     .19726***      .01007    19.59  .0000      .17752    .21699 
      X3|     .14742***      .01130    13.05  .0000      .12527    .16957 
      X4|     .70111***      .00548   127.87  .0000      .69036    .71185 
   Sigma|     .11208***      .00257    43.65  .0000      .10705    .11711 
        |Estimated prior probabilities for class membership 
Class1Pr|     .37368***      .03523    10.61  .0000      .30462    .44273 
Class2Pr|     .18052***      .02705     6.67  .0000      .12750    .23354 
Class3Pr|     .44580***      .03701    12.04  .0000      .37326    .51835 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
  
  



E20: Latent Class Linear Models   E-429 

E20.8 Technical Details and the EM Algorithm 
 
 Details on estimation of the latent class model are provided in Chapter E26.  The estimates 
are computed by directly maximizing the log likelihood function.  For the latent class linear 
regression model, the log likelihood is 
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We note, the EM algorithm has gained some attention in the recent literature.  The algorithm 
provides a method of maximizing the log likelihood via the following iteration: 
 
Step 0. Enter with initial values of θj and (βj,σj). 

  
Step 1. Compute new estimates of the posterior probabilities derived in Section E20.6.  This 

provides a different n set of weights, P(j|i) for each of the j classes. 
 

Step 2. Using the weights, in each class separately, maximize the log likelihood function.  For the 
linear regression model, this means compute weighted least squares estimates of βj, followed 
by a weighted sum of squared residuals estimate of σj.  This step will involve J such 
weighted least squares regressions to produce the set of J vectors (bj,sj).  Note that given the 
weights that are constant within the groups, this regression pools the panel data. 
 

Step 3. Return to Step 1 or exit if the estimates have stopped changing. 
 
The EM algorithm, which is not used here, has advantages and disadvantages.  In its favor, it is very 
stable; each step goes uphill.  One disadvantage is that it usually takes many iterations – it is slow.  
In addition, unlike the direct MLE, the EM method does not produce an estimator of the covariance 
matrix.  That must be obtained ex post, after estimation is completed.  Contrary to impressions 
suggested elsewhere, EM is not a model; it is an algorithm.  It does not produce different results 
from direct maximization of the log likelihood.  For our purposes, a significant disadvantage is that 
the EM method does not allow the sort of restricted model construction developed in Section E20.4, 
for example, the Heckman and Singer model. 
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E21: Single Equation Instrumental Variables 
Estimation 

 
E21.1 Introduction 
 

 This chapter will present several IV estimators for linear and nonlinear single equation 
regression models.   The models considered are 
 

   g(yi)  =  f(xi,β,θ)  +  εi 
  
in which g(•) and f(•,•) are continuous functions and ε is a disturbance with zero mean.  The 
extension here is estimators that are consistent when Cov(x,ε) ≠ 0, so that linear and nonlinear least 
squares will be inconsistent.  This chapter is concerned with estimation of slope parameters, β, 
ancillary parameters, θ, and σ2, the variance of ε, in cases in which linear and nonlinear least squares 
are not useable because of the correlation between x and ε.  The essential estimation method is 
instrumental variables in several forms. 
 

E21.2 Two Stage Least Squares  
 

 The standard case is the linear equation with endogenous right hand side variables, 
 

   yi   =  β′xi  +  εi, 
   E[εi|xi] =  g(xi) ≠ 0, 
   Var[εi|xi] =  σ2. 
 
The 2SLS, or IV estimator is based on a set of instruments, zi which satisfy the two necessary 
conditions for an instrumental variable, 
 
   (orthogonality) E[ziεi]   =  0, 
   (relevance) E[xizi′]  ≠ 0. 
 

The 2SLS estimator is 
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The name of the estimator derives from the underlying result that the estimator can be computed by (1) 
regressing X on Z column by column and computing predicted values then (2) regressing y on the 
predicted values of X rather than the actual.  The estimator is an instrumental variable estimator in that  
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because of the idempotency of PZ = Z(Z′Z)-1Z′; thus, X̂ is the set of instrumental variables.  The 
method of instrumental variables is treated at length in standard texts such as Greene (2011) or 
Wooldridge (2010). 
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E21.2.1 Command 
 
    The essential command fitting linear models by instrumental variables is 
 
 2SLS   ; Lhs = dependent variable  
   ; Rhs = list of right hand side variables (all)  
   ; Inst =  list of all instrumental variables, including one  $  
 
The command for computing instrumental variables or two stage least squares estimates differs from 
that for ordinary least squares (REGRESS) in the list of instrumental variables. All options are the 
same as for the linear regression model – see Chapter E7 for details.  This includes the specifications 
of ; AR1 disturbances, ; Plot for residuals, etc.  Chapters E7, E8, E10 and E11 give full details on 
these options.  The list of instruments may include any variables existing in the data set. 
 
HINT:  If your equation (Rhs) includes a constant term, one, then you should also include one in the 
list of instrumental variables.  Indeed, it might be the case that Inst should include one even if the 
Rhs does not.  Note that the instrument list includes all exogenous variables that are in the Rhs list, 
plus the additional instrumental variables.  The order condition for identification (and estimation 
here) requires that there be at least one instrumental variable in the Inst list for each endogenous 
variable in the Rhs list. 

  
 Computations use the standard results for two stage least  squares.  (See, e.g., Greene 
(2011).)  There are no degrees of freedom corrections for variance estimators when this estimator is 
used.  All results are asymptotic, and degrees of freedom corrections do not produce unbiased 
estimators in this context.  Thus, 
 

   2σ̂ =  ( )2

1

1 ˆn
i ii

y
n =

′−∑ xβ . 

  
This is consistent with most published sources, but (curiously enough) inconsistent with most other 
commercially available computer programs.  It will show up as a proportional difference in all 
estimated standard errors.  If you would prefer that the degrees of freedom correction be made, add 
the specification 
   ; Dfc 
 
to your 2SLS command.  The estimator of the covariance matrix for the 2SLS estimator is 
 
   Est.Var ( )β̂ = 2σ̂ [X′Z(Z′Z)-1Z′X]-1. 
 

 The command builder is essentially the same as that for the linear regression with the 
addition of the instrumental variables list. It can be opened by selecting Model:Linear 
Models/2SLS. 
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Figure E21.1  Command Builder for Two Stage Least Squares 

 
E21.2.2 Model Output for the 2SLS Command 
 
 The output for the 2SLS command is identical to that for REGRESS.  The only indication 
that 2SLS, rather than OLS, was used in estimating the model will be a line at the top of the model 
results indicating that two stage least squares was used in the computations and a listing of the 
instrumental variables that will appear above the coefficient estimates.  All retrievable results and 
methods for testing hypotheses are likewise identical. 
 
E21.2.3 Robust Estimation of the 2SLS Covariance Matrix 
 
 The White and Newey-West robust estimators of the covariance matrix of the least squares 
estimator described in Sections E7.10.1 and E7.10.2 can also be obtained for 2SLS by requesting 
them in the same fashion.  All necessary corrections for the use of the instrumental variables are 
made in the computation.  The calculation is otherwise the same as described in Section E7.10.  The 
only difference here is that some of the columns of x are replaced by fitted values in the calculation. 
 
E21.2.4 Application 
 
 The data listed below are Klein’s data for estimation of his ‘Model I.’  These are used for 
testing simultaneous equations estimators and for demonstrating the techniques in most textbooks (in 
spite of the relative antiquity of the data).  The model that is estimated by 2SLS is 
 
 (Consumption)     ct   =   α0 +  α1pt +  α2pt-1 +  α3(wpt + wgt) +  ε1t, 
  (Investment)     it   =   β0   +  β1pt   +  β2pt-1 +  β3kt-1   +  ε2t, 
  (Private Wages)     wpt   =   γ0   +  γ1xt   +  γ2xt-1  +  γ3(year-1931) +  ε3t, 
  (Equilibrium Demand)    vt   =   ct   +  it    +  gt. 
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Figure E21.2  Data for Klein Model I 

 

The variables are: 
 

 c  =  consumption 
 p  =  private profits 
 wp  =  private wage bill 
 i  =  investment 
 klag =  lagged value of capital stock 
 x =  total demand 
 wg  =  government wage bill 
 g  =  government spending 
 t  =  indirect business taxes plus net exports 
 a  =  year - 1931 
 
Klein’s model is estimated using 
 
 READ   ; Nvar = 10  ; Nobs  = 22 

  ; Names = year,c,p,wp,i,klag,x,wg,g,t $ 
CREATE ; w = wp + wg ; a  = year - 1931 $ 
CREATE ; plag = p[-1] ; xlag = x[-1] $ 
SAMPLE ; 2-22 $ 
NAMELIST ; cons = one,p,plag,w 
        ; invs = one,p,plag,klag 
          ; wage = one,x,xlag,a 
          ; exog = one,g,t,wg,a,plag,klag,xlag $ 
2SLS  ; Lhs = c ; Rhs = cons ; Inst = exog $ 
2SLS  ; Lhs = i ; Rhs = invs ; Inst = exog $ 
2SLS  ; Lhs = wp ; Rhs = wage ; Inst = exog $  
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(Some of the results that are repeated or are superfluous are omitted.) 
----------------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=C        Mean                 =       53.99524 
             Standard deviation   =        6.86087 
             Number of observs.   =             21 
Model size   Parameters           =              4 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        17.7490 
             Standard error of e  =        1.02179 
Fit          R-squared            =         .97671 
Not using OLS or no constant. Rsqrd & F may be < 0 
Instrumental Variables: 
ONE       G         T         WG        A         PLAG 
KLAG      XLAG 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       C|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    16.5548***     1.32079    12.53  .0000     13.9661   19.1435 
       P|     .01730         .11805      .15  .8835     -.21407    .24867 
    PLAG|     .21623**       .10727     2.02  .0438      .00599    .42648 
       W|     .81018***      .04025    20.13  .0000      .73129    .88907 
--------+-------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=I        Mean                 =        1.26667 
             Standard deviation   =        3.55195 
Model size   Parameters           =              4 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        23.5141 
             Standard error of e  =        1.17609 
Fit          R-squared            =         .88488 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    20.2782***     7.54271     2.69  .0072      5.4948   35.0616 
       P|     .15022         .17323      .87  .3858     -.18930    .48974 
    PLAG|     .61594***      .16279     3.78  .0002      .29689    .93500 
    KLAG|    -.15779***      .03613    -4.37  .0000     -.22859   -.08698 
--------+-------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=WP       Mean                 =       36.36190 
             Standard deviation   =        6.30440 
Model size   Parameters           =              4 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        8.09926 
             Standard error of e  =         .69024 
Fit          R-squared            =         .98741 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      WP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.50030        1.14778     1.31  .1912     -.74931   3.74990 
       X|     .43886***      .03563    12.32  .0000      .36902    .50870 
    XLAG|     .14667***      .03884     3.78  .0002      .07056    .22279 
       A|     .13040***      .02914     4.47  .0000      .07328    .18751 
--------+-------------------------------------------------------------------- 
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E21.2.5 Specification Tests:  Hausman and Wu 
 
 Two specification tests for exogeneity have been developed for the linear model.  The 
Hausman test is based on a comparison of 2SLS to OLS.  The model is specified as 
 
   y = β1′x1 + β2′x2 + ε 
 
where x2 is K2 variables. The question is whether the covariance of x2 and ε is nonzero (that is, 
whether x2 is endogenous).  Two competing estimators are b(ols) and b(2sls).  The test is based on 
the difference, d = [b(2sls) - b(ols)].  Under the null hypothesis of exogeneity, plim d = 0; under the 
alternative it is not.  The Hausman (1978) test uses a Wald statistic to test the joint hypothesis that d 
equals zero.  For the covariance matrix, the theorem in Hausman prescribes the difference in the two 
covariance matrices, V(2sls) - V(ols).  A refinement needed to insure nonnegative definiteness of the 
matrix is to use instead of 2

2ˆ slsσ (X′X)-1 instead of 2
olss (X′X)-1  – this is a robust estimator of σ2.  The 

difference matrix then becomes 2σ̂  [(X′X)-1 - (X′PZX)-1].  A second complication is that this matrix 
is singular, so a generalized inverse matrix that uses only K2 of the dimensions is employed. 
 The Hausman test can be constructed as follows: 
 
 ? These three lines are specific to the application 
  
 NAMELIST ; x = the Rhs variables in the model $ 
 NAMELIST ; z = the full set of instruments, including exogenous elements of X $ 
 CREATE ; y = the dependent variable $ 
  
 ? These remaining lines carry out the test.  They are generic and need not be changed. 

 
2SLS  ; Quietly ; Lhs = y ; Rhs = x ; Inst = z $ 
MATRIX ; vh = varb - ssqrd*<x’x> ; dh = b - <x’x>*x’y $ 
MATRIX ; list ; hausman = dh'*ginv(vh)*dh $ 

 
The number of degrees of freedom for the Hausman test is the number of variables in x2. 
 Note the following about the Hausman test.   
 

1. The specification is a joint test against the exogeneity of the variables that appear in the x list 
that are not in the z list. 

 
2. Applying this test to individual variables in the lists is not a valid test of any hypothesis.  It is 

not possible for one element of the OLS estimator (that associated with a particular variable) 
to be inconsistent while the others are consistent.  If any of the variables in x are 
endogenous, the entire OLS estimator is inconsistent, not just specific elements.  By this 
construction, one could carry out the Hausman test for K2 > 1 variables by just using one of 
the elements of dh.  But, this would not test a different hypothesis; it would just waste the 
information contained in the other elements of dh. 

 
3. This test is not useable for nonlinear models.  It is specifically proposed for the linear model 

with possibly endogenous right hand side variables. 
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 We carried out the Hausman test for the consumption function in Klein’s Model I.  For the 
application, x is cons, z is exog and y is c.  The result of the test is 
 

HAUSMAN |             1 
--------+-------------- 
       1|       7.45221 

 

The critical chi squared for two degrees of freedom and 95% significance is 5.99.  We conclude on 
the basis of the test that at least one of p and w are endogenous in the consumption function. 
 The second test is the Wu test (also attributed to Durbin and Hausman and reiterated in 
Davidson and MacKinnon (1993)).  The Wu test is a simple variable addition test based on least 
squares.  The test can be carried out by the following steps:  
 
Step 1. For each possibly endogenous variable in the equation, compute the residuals from a 

regression of that variable on the full set of exogenous variables.  
 

Step 2. Add the residuals to the least squares regression.  The test is carried out by testing the joint 
hypothesis that the coefficients on the added residuals are zero.   

 
Mechanically, there is a much simpler way to carry out this test.  The relevant F statistic is computed as 
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where ssols is the sum of squares in the original least squares regression and ssaugmented is the sum of 
squares in the least squares regression to which the Kz elements of z that are not contained in x1 are 
added to the equation.  Note that the denominator degrees of freedom includes the additional K2 not 
Kz – the test is whether the K2 coefficients on the added residuals are zero.  Since this is based on 
OLS regressions, the F statistic is exactly 1/K2 times the chi squared statistic that would result if a 
Wald statistic were used instead. 

This test is automated.  The command is 
 
 REGRESS ; Lhs = y variable ; Rhs = x variables  

; Inst = z variables ; Wu test $ 
 
Include the full set of instruments in z – that includes x1 plus the additional instrumental variables 
that are not contained in x1.  These KZ variables are denoted z2.  LIMDEP will sort out internally 
what variables are contained in x1, x2 and z2 (the part of z that is not in x1).   

The following shows in detail how this would be applied to the consumption function.  
 
 REGRESS ; Lhs = c  

; Rhs = one, p, plag, w 
; Inst = one,g,t,wg,a,plag,klag,xlag 
; Wu test $ 

 
In this setup, x1 = (one,plag), x2 = (p,w), z2 = (g,t,wg,a,klag,xlag). Applying this test to the consumption 
function set up earlier, we would use 
 
 REGRESS ; Lhs = c ; Rhs = cons ; Inst = Exog ; Wu test $ 
 
The results are as follows: 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=C        Mean                 =       53.99524 
             Standard deviation   =        6.86087 
             No. of observations  =             21  Degrees of freedom 
Regression   Sum of Squares       =        923.550           3 
Residual     Sum of Squares       =        17.8794          17 
Total        Sum of Squares       =        941.430          20 
             Standard error of e  =        1.02554 
Fit          R-squared            =         .98101  R-bar squared =   .97766 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       C|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    16.2366***     1.30270    12.46  .0000     13.6834   18.7898 
       P|     .19293**       .09121     2.12  .0495      .01417    .37170 
    PLAG|     .08988         .09065      .99  .3353     -.08778    .26755 
       W|     .79622***      .03994    19.93  .0000      .71793    .87451 
--------+-------------------------------------------------------------------- 
+---------------------------------------------------------------------+ 
| Wu test for exogeneity of variables in RHS that are not listed in   | 
| INST, beginning with P       . F[ 2,     15] =      5.603. P value  | 
| for this F statistic is  .0000. (If < .05, reject exogeneity.)      | 
+---------------------------------------------------------------------+ 
 

Note that Wu and Hausman are not the same test.  Wu is an F test while Hausman is a Wald test, and 
they are based on different sums of squared residuals.  Thus, twice the Wu statistic in the preceding 
does not produce the Hausman statistic. 
 

E21.3 Autocorrelation with a Lagged Dependent Variable 
 

 If you are using 2SLS to estimate an equation with a lagged endogenous variable and 
autocorrelation, such as: 
 

   yt  =  β′xt + γyt-1 + εt, 
   εt  =  ρεt-1 + ut. 
 

you can use Hatanaka’s (1974) efficient estimator, which is asymptotically equivalent to maximum 
likelihood for normally distributed disturbances, ut.  The procedure is as follows: 
 

Step 1. Use instrumental variables to estimate [β,γ].  Any consistent estimator will do.  A suitable 
instrumental variable for the lagged value of yt might be the lagged value of the prediction of 
yt from a regression on xt and xt-1. 

 

Step 2. Using the consistent estimator in Step 1, estimate ρ consistently by the autocorrelation of the 
residuals, 

   et  =  yt  -  bIV′xt  -  cIVyt-1. 
 

 That is, compute the residuals using actual values, not predictions. 
 

Step 3. Now, use the Cochrane-Orcutt transformation to do GLS based on the original data, but add an 
additional regressor to the model, et-1. (The transformation is not applied to the lagged residual.) 

 

Step 4. The efficient estimator of ρ is the original estimator plus the slope on the lagged residual in 
the regression at Step 3.  The asymptotic covariance for this estimate is that provided for the 
slope in Step 3.  I.e., the GLS regression in Step 3 provides the full set of covariances. 
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This procedure uses the 2SLS command, not REGRESS.  The command is 
 
 2SLS  ; Lhs = y  ; Rhs = x ; Inst = full set of instruments  
   ; AR1 ; Hatanaka $ 
 
To use the 2SLS command builder, click the Autocorrelation button on the Options page to open a 
dialog box that offers Hatanaka’s estimator as an option.  (See Figure E21.3.) 
 

 
Figure E21.3  Command Builder for Hatanaka Estimator 

 
Note that the set of instruments includes: 
  

• all exogenous variables in x on the Rhs, 
• one if it is included in the Rhs, 
• additional instrumental variables. 

 
 For estimating a simultaneous equations model with first order autoregressive disturbances, 
the list of instruments should include the lagged values of all endogenous and exogenous variables in 
the reduced form.  (See Pindyck and Rubinfeld (1991) and Greene (2011).) 
 
For example, for a linear model that contains a constant, two regressors and a lagged dependent variable, 
 

CREATE ; ylag = y[-1]  
  ; x1lag = x1[-1]  
  ; x2lag = x2[-1] $ 
SAMPLE ; 3 - ... end of sample $ 
2SLS  ; Lhs  = y   
  ; Rhs = one,x1,x2,ylag 
  ; Inst = one,x1,x2,x1lag,x2lag  
  ; AR1 ; Hatanaka $ 

 
Note that we have also begun the sample period for this estimator at observation 3.  Since the lagged 
value of yt-1 is needed for the Cochrane-Orcutt transformation, two observations at the beginning of 
the sample will be incomplete. 



E21: Single Equation Instrumental Variables Estimation   E-439 

E21.4 Alternatives to 2SLS 
 
 Two estimators (other than OLS) are proposed as alternatives to 2SLS.  The limited 
information maximum likelihood (LIML) estimator based on assuming the disturbances are normally 
distributed may have better small sample properties than 2SLS and, unlike 2SLS, is invariant to 
normalization.  The same result is obtained regardless of which variable in a structural equation is 
labeled the ‘dependent’ variable.  Ackerberg and Devereux’s (2009) JIVE estimator is a jackknife 
estimator that is intended to remedy some of the small sample bias of 2SLS.  The ‘improved,’ IJIVE 
estimator, as suggested, is an extension. 
 
E21.4.1 LIML 
 
 The LIML estimator is derived at length in numerous sources such as Davidson and 
MacKinnon (2004) and Greene (2011).  We note only the mechanics of the computation here.  In the 
single equation in a system, which we write in terms of the full n observations as 
 
   Y =  Yγ  +  X0β  +  ε, 
 
where the set of endogenous variables is Y and the ‘included’ exogenous variables are X0.  (In the 
consumption function in our earlier example, y is c, Y is (p,w) and X0 is (1,plag).).  Consider the 
residuals in the linear regressions of Y0 = (y,Y) on X0, 
 
   E0  =  M0Y0  =  (I - X0(X0′X0)-1X0′)Y0. 
 
(The residuals are computed column by column then arranged next to each other in E0.)  Then, the 
covariance matrix estimator (mean squares and cross products) is 
 
   W0 =  (1/n)E0′E0. 
 
Now, repeat the computation using not X0, but X1, which is all of the exogenous variables in the 
system.  (In the consumption function example, X1 would be (one,g,t,wg,a,plag,klag,xlag).  Note that 
X1 contains X0 plus at least M additional variables, where M is the number of variables in Y. (This 
number would be M = 2 in the consumption function example.)  Then, based on this regression,  
 
   W1 = (1/n)E1′E1. 
 
Define λ = the smallest characteristic root of (W1)-1W0.  (The root is real even though the product 
matrix is asymmetric and greater than one if X1 contains X0 plus more than M additional variables.)   
Now, W0 and W1 are partitioned into wyy

0, wYy
0 and WYY

0 based on y and Y, and W1 likewise.  The 
components of the LIML estimator are computed as 
 

( )
( ) ( )

0 1 1 0 1

0 0 0 0

ˆ [ ]

ˆ ˆ

LIML y y

LIML LIML

−= − λ − λ

′ ′= −

YY YY Y YW W w w

X X X y Y

γ

β γ
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The asymptotic covariance matrix is estimated using the same matrix as 2SLS save for the 
computation of the residuals based on the LIML estimator, and replacing 1.0 with λ in the upper left 
block of the matrix.  (See equation (10-56) in Greene (2011, p. 329).) 
 By construction, λ > 1 if the number of instruments is greater than the number needed.  (In the 
consumption function example, there are two endogenous variables and eight instrumental variables.)  
Thus, the system is overidentified by four variables. A test of the overidentifying restrictions is based 
on 
   c = n(λ - 1). 
 

The limiting distribution of c is chi squared with degrees of freedom equal to the number of 
overidentifying restrictions – four in our example. 
 The LIML estimator is requested with 
 
 LIML  ; Lhs = y, variables in Y0  

; Rhs = variables in X0 
   ; Inst = variables in X, including X0 and at least M more $ 
 
The command is otherwise the same as 2SLS in the options, such as residuals, fitted values and 
hypothesis tests.  There is no ‘robust’ covariance matrix available, since the estimator is based on a 
specific assumption. 
 For the consumption function in our example, the estimator would be 
 
 LIML  ; Lhs = c,p,w  

; Rhs = one,plag 
; Inst = one,g,t,wg,a,plag,klag,xlag $ 

 
The results with a comparison to 2SLS are as follows: 
 
----------------------------------------------------------------------------- 
LmtdInfoMLE  for linear sim eqn model ............ 
LHS=C        Mean                 =       53.99524 
             Standard deviation   =        6.86087 
             Number of observs.   =             21 
Model size   Parameters           =              4 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        33.0967 
             Standard error of e  =        1.39530 
Spec.Test    Smallest root <W1>W0 =        1.49875 
             Chi sqd. test overID =       10.47366 
             No. of over ID insts.=              4 
             P value for chi-sqd. =         .03316 
Instrumental Variables: 
ONE       G         T         WG        A         PLAG 
KLAG      XLAG 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       C|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       P|    -.22251         .20175    -1.10  .2701     -.61793    .17291 
       W|     .82256***      .05538    14.85  .0000      .71402    .93110 
Constant|    17.1477***     1.84030     9.32  .0000     13.5407   20.7546 
    PLAG|     .39603**       .17360     2.28  .0225      .05578    .73627 
--------+-------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=C        Mean                 =       53.99524 
             Standard deviation   =        6.86087 
             Number of observs.   =             21 
Model size   Parameters           =              4 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        17.7490 
             Standard error of e  =        1.02179 
Fit          R-squared            =         .97671 
             Adjusted R-squared   =         .97260 
Model test   F[  3,    17] (prob) =   237.6(.0000) 
Diagnostic   Log likelihood       =      -28.03169 
             Restricted(b=0)      =      -69.72792 
             Chi-sq [  3]  (prob) =  83.4(  .0000) 
Info criter. Akaike Info. Criter. =         .21276 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       C|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    16.5548***     1.32079    12.53  .0000     13.9661   19.1435 
       P|     .01730         .11805      .15  .8835     -.21407    .24867 
    PLAG|     .21623**       .10727     2.02  .0438      .00599    .42648 
       W|     .81018***      .04025    20.13  .0000      .73129    .88907 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 

E21.4.2 JIVE Estimator 
 

 The jackknife instrumental variable estimator (JIVE), developed in Ackerberg and Devereux 
(2009) (based on Phillips and Hale (1977), Staiger and Stock (1997), Angrist, Imbens and Krueger 
(1999) and others, is a straightforward modification of 2SLS.  Write the 2SLS estimator as a true IV 
estimator, 
   b2SLS  =  ( ) 1ˆ ˆ−

′ ′X X X y  
 

where X = (X1,X2) and X2 is the set of K2 endogenous variables and X̂  is the set of predictions in the 
regressions of the columns of X on all of the instrumental variables, Z, which includes X1 and some 
additional variables.  In these regressions, the predictions are computed using the least squares 
coefficients in the linear regressions of each column of X on Z.  The matrix whose columns are the 
regression coefficients used for the predictions is P = (Z′Z)-1Z′X2. (The predictions of X1 are 
themselves, X1.) The JIVE estimator is constructed by using an observations specific set of least 
squares coefficients to compute each set of predictions.  That is, for row i of X̂ , to compute the 
predictions, instead of using the same matrix of coefficients, P, we compute P(i) by omitting 
observation i from the first step regression – hence the jackknife aspect of the computation.  
(Ackerberg and Devereux provide a ‘one pass’ computation that can obviate computing n regressions. 
However, with the sample sizes typically in use for this sort of computation, one would expect the time 
savings to be trivial.)  They also propose an ‘improved’ estimator, IJIVE, that is obtained by first 
partialling out X2 from X1, y, and the other instruments.  (Davidson and MacKinnon (2006 and others) 
are convinced that this estimator has no moments and stridently argue against its use.) 
 The estimator is obtained as a modification of 2SLS; 
 

 2SLS  ; … ; JIVE or IJIVE $ 
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The other features and options of 2SLS remain as earlier.  This computation only changes the 
computation of the coefficient vector and the covariance matrix. 
 The earlier example is extended here with 
 

 LIML  ; Lhs = c, p,w  ; Rhs = one,plag 
; Inst = one,g,t,wg,a,plag,klag,xlag  
; JIVE $ 

 
----------------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=C        Mean                 =       53.99524 
             Standard deviation   =        6.86087 
             Number of observs.   =             21 
Model size   Parameters           =              4 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        17.7490 
             Standard error of e  =        1.02179 
Fit          R-squared            =         .97671 
             Adjusted R-squared   =         .97260 
Model test   F[  3,    17] (prob) =   237.6(.0000) 
Diagnostic   Log likelihood       =      -28.03169 
             Restricted(b=0)      =      -69.72792 
             Chi-sq [  3]  (prob) =  83.4(  .0000) 
Info criter. Akaike Info. Criter. =         .21276 
Not using OLS or no constant. Rsqrd & F may be < 0 
Instrumental Variables: 
ONE       G         T         WG        A         PLAG 
KLAG      XLAG 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       C|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    16.5548***     1.32079    12.53  .0000     13.9661   19.1435 
       P|     .01730         .11805      .15  .8835     -.21407    .24867 
    PLAG|     .21623**       .10727     2.02  .0438      .00599    .42648 
       W|     .81018***      .04025    20.13  .0000      .73129    .88907 
--------+-------------------------------------------------------------------- 
Two stage    least squares regression ............ 
Residuals    Sum of squares       =        49.6921 
             Standard error of e  =        1.70970 
Fit          R-squared            =         .93480 
             Adjusted R-squared   =         .92329 
Model test   F[  3,    17] (prob) =    81.2(.0000) 
Diagnostic   Log likelihood       =      -38.84161 
             Restricted(b=0)      =      -69.72792 
             Chi-sq [  3]  (prob) =  61.8(  .0000) 
Info criter. Akaike Info. Criter. =        1.24228 
Instrumental Variables using JIVE (jackknife): 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       C|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    17.6126***     3.86726     4.55  .0000     10.0329   25.1923 
       P|    -.37527         .87666     -.43  .6686    -2.09348   1.34295 
    PLAG|     .51456         .67472      .76  .4457     -.80788   1.83699 
       W|     .82676***      .05334    15.50  .0000      .72221    .93130 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
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E21.5 Nonlinear IV Estimation 
 
 Estimation of the parameters of the nonlinear model yi = f(xi,β) + εi can be done by nonlinear 
least squares.  (See Amemiya (1987).)  If either xi is correlated with εi or the model is identified by 
the orthogonality conditions E[ziεi] = 0, where z is a set of instrumental variables, then an 
appropriate estimator is nonlinear instrumental variables.  
 The nonlinear IV estimator is requested with 
 
 NLSQ  ; Lhs = the dependent variable   
   ; Fcn = function specification 
   ; Labels = labels for parameters 
   ; Start = starting values 
   ; Inst = list of instrumental variables  $ 
 
The command and other options are exactly as described in Chapter E14.  The only new feature 
added here is the set of instrumental variables.  This is also a form of GMM estimator.  The GMM 
estimator is described in Section E21.6. 
 The nonlinear IV procedure involves a set of instrumental variables, z1, z2,..., zK.  Suppose 
these are combined in an n×K matrix Z.  Let the vector ε denote the n×1 column of residuals   
εi  =  yi - f(xi,β).   Then, the nonlinear least squares estimator described in Chapter E14 is found by 
solving the optimization problem 
 
   Minimize wrt β  ε(β)′ε(β). 
 
For the nonlinear instrumental variables estimation problem (NLIV), the estimation criterion is 
 
   Minimize wrt β  ε(β)′Z(Z′Z)-1Z′ε(β). 
 
This replicates two stage least squares for linear functions.  You may also combine nonlinear two 
stage least squares with weighted least squares.  In this case, we define a diagonal matrix W whose 
diagonal elements are the weights, wi.  The weighted nonlinear IV procedure (NLWIV) is 
 
   Minimize wrt β  ε(β)′WZ(Z′WZ)-1Z′Wε(β). 
  
To request the nonlinear instrumental variables estimation method, you will use 
  
   ; Inst = list of variables in Z 
 
in the NLSQ command.  Add 
 
   ; Wts = weighting variable 
 
for the nonlinear weighted instrumental variables estimator. 
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 The number of instruments you provide must be at least as large as the number of parameters 
that you estimate.  For purposes of this calculation, LIMDEP ignores the possibility of fixed 
parameters. Thus, if your model has six parameters, and you fix two of them, you must still provide 
at least six instrumental variables.  Although this may seem like a restriction, it is trivial to work 
around it, simply by fixing the values in the function definition, and not defining them as parameters 
in the model formulation. 
 The asymptotic covariance matrix estimated for the nonlinear instrumental variables 
estimator is       
   Est.Asy.Var.[b]  =  2σ̂ [G′Z(Z′Z)-1Z′G]-1  
 
 where the rows of G are the derivatives of f(xi,β) with respect to β and 
 

   2σ̂   =  (1/n)Σi[yi - f(β,xi)]2.   
 
(1/n is replaced with 1/(n - #parameters) if you select ; Dfc.) 
 To apply the method, we revisit the health care data used in several previous examples.  The 
model is 
   Income  =  exp(β0 + β1educ + β2age + β3healthsatisfaction) + ε. 
 
The model is estimated first by nonlinear least squares.  It is believed that health satisfaction (hsat) is 
endogenous.  Instruments to be used are marital status, public insurance, addon insurance and 
children in the household.  (One might question the endogeneity of the insurance purchases.)  The 
initial ordinary (nonlinear) least squares estimates are obtained first with 
 
 NLSQ  ; Lhs = hhninc 

; Fcn = Exp(b0+b1*educ+b2*age+b3*hsat) 
       ; Labels = b0,b1,b2,b3 
       ; Start = -1,0,0,0  $ 
 
The nonlinear IV estimator is invoked with 
 
 NLSQ  ; Lhs = hhninc 

; Fcn = Exp(b0+b1*educ+b2*age+b3*hsat) 
       ; Labels = b0,b1,b2,b3 
       ; Start = -1,0,0,0   

; Inst = one,educ,age,married,public,addon,hhkids $ 
 
We are interested in the partial effects of education on income. 
 

PARTIALS ; Function = Exp(b0+b1*educ+b2*age+b3*hsat) 
; Labels = b0,b1,b2,b3 
; Effects: educ & age = 25(5)60 ; Plot $ 

 
Results are as follows: 
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----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
LHS=HHNINC   Mean                 =         .44476 
             Standard deviation   =         .21659 
             Number of observs.   =           3377 
Model size   Parameters           =              4 
             Degrees of freedom   =           3373 
Residuals    Sum of squares       =        144.618 
             Standard error of e  =         .20694 
Fit          R-squared            =         .08682 
             Adjusted R-squared   =         .08709 
Model test   F[  3,  3373] (prob) =   106.9(.0000) 
Diagnostic   Log likelihood       =      528.11382 
             Restricted(b=0)      =      374.76923 
             Chi-sq [  3]  (prob) = 306.7(  .0000) 
Info criter. Akaike Info. Criter. =       -3.14828 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|   -1.71782***      .05743   -29.91  .0000    -1.83039  -1.60525 
      B1|     .05006***      .00284    17.63  .0000      .04450    .05563 
      B2|     .00402***      .00071     5.65  .0000      .00263    .00542 
      B3|     .02268***      .00385     5.90  .0000      .01514    .03021 
--------+-------------------------------------------------------------------- 
Instrumental Variables (NLIV)..................... 
Nonlinear    least squares regression ............ 
LHS= 
             Standard deviation   =         .21659 
             Number of observs.   =           3377 
Model size   Parameters           =              4 
             Degrees of freedom   =           3373 
Residuals    Sum of squares       =        435.938 
             Standard error of e  =         .35929 
Fit          R-squared            =       -1.75271 
             Adjusted R-squared   =       -1.75190 
Diagnostic   Log likelihood       =    -1334.98421 
             Restricted(b=0)      =      374.76923 
Info criter. Akaike Info. Criter. =       -2.04487 
Not using OLS or no constant. Rsqrd & F may be < 0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|   -4.70470***      .94574    -4.97  .0000    -6.55833  -2.85108 
      B1|     .02900***      .00654     4.43  .0000      .01617    .04182 
      B2|     .01589***      .00316     5.02  .0000      .00969    .02209 
      B3|     .38942***      .10804     3.60  .0003      .17767    .60117 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for User Specified Function 
--------------------------------------------------------------------- 
Effects on function with respect to EDUC 
Results are computed by average over sample observations 
Partial effects for continuous EDUC     computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dEDUC           Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function       .01291     .00291    4.44      .00722      .01861 
AGE     = 25.00     .00990     .00254    3.90      .00492      .01487 
AGE     = 30.00     .01072     .00263    4.07      .00555      .01588 
AGE     = 35.00     .01160     .00274    4.24      .00624      .01696 
AGE     = 40.00     .01256     .00284    4.42      .00699      .01814 
AGE     = 45.00     .01360     .00296    4.59      .00779      .01941 
AGE     = 50.00     .01472     .00309    4.76      .00866      .02079 
AGE     = 55.00     .01594     .00324    4.92      .00959      .02229 
AGE     = 60.00     .01726     .00341    5.07      .01058      .02394 
 

 
Figure E21.4  Partial Effects in Nonlinear Regression 

 
E21.6 NLSQ/GMM Estimation  
 
 LIMDEP can be used for formal GMM estimation of econometric models.  Although the 
methodology is common to all of them, we provide several approaches.  The nonlinear least squares 
estimator presented in the preceding section is based on the least squares criterion 
 
   M(β)  =  ε(β)′ε(β) 
 
which minimizes the simple sum of squares of a set of residuals.  As noted earlier, different 
weighting schemes and the use of instrumental variables extends this to more general GMM 
interpretations.  A somewhat more general estimator results from using instrumental variables, with 
 
   M(β)  =  ε(β)′Z(Z′Z)-1Z′ε(β). 
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The yet more general estimation criterion, 
 
   M(β)  =  ε(β)′Z(Z′ΩZ)-1Z′ε(β) 
 
allows for instrumental variables and a weighting matrix, Ω.  Depending on the choice of the 
weighting matrix, this will produce GMM estimators of various sorts.  Finally, consider the less 
structured GMM criterion: 
 
   q  =   ′m mΣ  
 

where   m =  ),(1
1∑ =

n
i iin

xm β  

 
based on a set of L ‘orthogonality conditions,’ 
 
   E[mi(β,xi)]  =  0. 
 
E21.6.1 GMM Estimation of Single Equation Nonlinear Models 
 
 LIMDEP’s NLSQ command can be used for obtaining GMM estimates of the parameters in an 
equation.  (Reference is made to Hansen (1982) or Pagan and Vella (1989) for details on the method.) 
The following will briefly present the relevant background, then give the command structure. 
 Let β be the vector of parameters being estimated.  The estimation criterion is 
 
   M(β)   =  ε(β)′Z(Z′ΩZ)-1Z′ε(β) 
  
where ε(β) is the column of residuals in the form 
 
   εi(β)   =  yi - f(xi,β), 
  
and Z′ΩZ is the expected value of       
 
   W  =  (1/n)Σiziεi

2zi′. 
 
This matrix must be estimated using the starting values provided for the estimator.  Each column of 
the matrix Z contains the observations derived from the orthogonality conditions 
 
   E[εi(β)zik] =  0 
 
 or, in a more compact vector notation, 
 
   E[ε(β)′zk] =  0 for the column, and 

   E[ε(β)′Z] =  0 for the entire set of variables. 
 
The matrix Z′ΩZ is the ‘optimal weighting matrix,’ such that 
 
   Z′ΩZ  =  E[(1/n)Z′ε(β)ε(β)′Z]. 
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After estimation, the estimated asymptotic covariance matrix for this estimator is given by 
 
   Est.Asy.Var.[b]  =  [G′Z(Z′ΩZ)-1Z′G]-1, 
 
where each row of G is ∂εi(β)/∂β′. 
 Note in (1/n)Z′ΩZ that if the disturbances in the model are uncorrelated and homoscedastic, 
the appropriate matrix to use would simply be Z′Z.  The scalar, σ2, would be irrelevant.  In this 
instance, GMM estimation reduces simply to nonlinear instrumental variables.  Thus, the criterion 
reduces precisely to that given earlier.  But, if the disturbances are heteroscedastic and/or 
autocorrelated, then the nonscalar matrix Ω presents a new difficulty. Consider, first, the case of 
heteroscedasticity.  In this case, estimation of Z′ΩZ is exactly analogous to computation of the 
White estimator for heteroscedastic disturbances in the classical regression case.  (See Chapter E10.)  
Given a set of consistent estimates for the elements of W, this is at least straightforward.  But, if the 
disturbances are autocorrelated as well, then there are nonzero off diagonal elements in Ω.  If a finite 
lag length can be specified (i.e., a truncated or finite moving average representation), then the 
Newey-West estimator (see Chapter E11) can be used, instead.  LIMDEP uses this approach.  The 
consistent estimator needed to compute the elements of W must be provided as the starting values 
for the estimator.  One approach would be to estimate the model ignoring the heteroscedasticity 
and/or autocorrelation just to get the consistent (albeit, inefficient) estimates to use as starting values. 
 The foregoing is applied with the NLSQ command.  The basic format would be: 
 
 NLSQ   ; Labels = list  
   ; Start = set of values 
            ; Fcn  = expression for the residual y(i) - f(.) 
           ; Inst = list of instruments, z(k) $ 
and   ; Pds  = 0  
 
to request the White estimator  
 
or   ; Pds = L (e.g., Pds = 5) 
 
to use the Newey-West estimator.  Note that to request the heteroscedasticity estimator, ; Pds = 0 
must be provided.  This is not the default.  The ; Pds specification requests the computation of a 
nonscalar W; the number of periods (zero or positive) dictates how the computation is to be done.  
Also, note that for GMM estimation, you are not providing the name of a Lhs variable. 
 In the NLSQ command, for GMM estimation, you specify the residual, not just the function, 
and you do not name the Lhs variable.  This is an important difference in the command.  For 
example,  to fit the function 
 
   f(xi,β)  =  Exp(β1 + β2x) 
 
use the following commands: 
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 For nonlinear least squares: 
 
   ; Lhs  = y  
   ; Fcn  = Exp(b1 + b2*x) 
 

For nonlinear instrumental variables: 
 
   ; Lhs = y  
   ; Fcn = Exp(b1 + b2 *x)  
   ; Inst = the list of IVs 
 

For GMM: 
   ; Fcn  = y - Exp(b1 + b2*x)   
   ; Inst = the list of IVs   
   ; Pds  = 0 or the number 
 
E21.6.2 Technical Note on Optimization 
 
 The NLSQ command maintains all the accounting information to ensure that the nonlinear 
optimization problem is analyzed as a regression.  You can also compute nonlinear least squares 
coefficients using the MINIMIZE command.  This will produce the same estimates, but it will not 
produce the same estimated asymptotic covariance matrix for the coefficients.  MINMIZE simply 
accumulates the estimated Hessian of the criterion function, but does not scale it to account for the 
disturbance variance.  Consider the example of a linear regression, using the Grunfeld data used 
earlier (Greene (2011, Table F10.4)): 
 
 REGRESS ; Lhs = i ; Rhs = one,f,c $ 
 NLSQ    ; Lhs = i ; Labels = b1,b2,b3 ; Start = 0,0,0 ; 
   ; Fcn = b1+b2*f+b3*c  
   ; Dfc $ 
 MINIMIZE ; Fcn = (i - b1 - b2*f - b3*c)^2 
   ; Labels = b1,b2,b3 ; Start = 0,0,0 $ 
 
All three produce the same coefficients, and the first two produce the same asymptotic covariance 
matrix.  In the first two cases, that covariance matrix is the conventional Est.Var[bLS]  =  s2(X′X)-1.  
But, for the third estimation problem, the estimated asymptotic covariance matrix is computed as 

   Est.Asy.Var[bMINIMIZE]  =  ( )( )
1

1
'22

−

= 



 −−∑n

i iiii ee  xx  

 
This matrix is the BHHH estimator for the function specified.  There is no definite relationship 
between the two matrices; it depends on the data.  For the way it is specified above, in large samples, 
the covariance matrix for the MINIMIZE command would resemble (1/4s4) times that from NLSQ, 
but that should not be used as any kind of rule of thumb. 
 The essential point in this result is that the MINIMIZE command does not directly specify 
that the problem is a least squares problem or a regression model.  From the point of view of the 
program, there is nothing to distinguish this from any other optimization problem. The NLSQ 
command requests not only a particular kind of optimization, but also a particular arrangement of 
and interpretation of the results. 



E21: Single Equation Instrumental Variables Estimation   E-450 

----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=I        Mean                 =      145.95825 
             Standard deviation   =      216.87530 
             No. of observations  =            200  Degrees of freedom 
Regression   Sum of Squares       =    .760409E+07           2 
Residual     Sum of Squares       =    .175585E+07         197 
Total        Sum of Squares       =    .935994E+07         199 
             Standard error of e  =       94.40840 
Fit          R-squared            =         .81241  R-bar squared =   .81050 
Model test   F[  2,   197]        =      426.57573  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -1191.80236  Akaike I.C.   =  9.11015 
             Restricted (b=0)     =    -1359.15096  Bayes  I.C.   =  9.15962 
             Chi squared [  2]    =      334.69719  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -42.7144***     9.51168    -4.49  .0000    -61.3569  -24.0718 
       F|     .11556***      .00584    19.80  .0000      .10412    .12700 
       C|     .23068***      .02548     9.05  .0000      .18075    .28061 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
User Defined Optimization......................... 
Nonlinear    least squares regression ............ 
(Results identical to OLS are omitted) 
--------+-------------------------------------------------------------------- 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit:   5 iterations. Status=0, F=    1755850. 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function   1755850.48409 
Restricted log likelihood        .00000 
Chi squared [   3 d.f.]   3511700.96818 
Significance level               .00000 
Estimation based on N =    200, K =   0 
Inf.Cr.AIC  =********* AIC/N = ******** 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|   -42.7144***      .00076 ********  .0000    -42.7159  -42.7129 
      B2|     .11556***   .3572D-06 ********  .0000      .11556    .11556 
      B3|     .23068***   .8903D-06 ********  .0000      .23068    .23068 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E21.7 General Specifications of the GMM Estimator 
 
 A somewhat more general form of the GMM estimation procedure departs from a set of 
‘orthogonality conditions,’ 
 
   E[mil (β,xi)]  =  0, l = 1,…,L 
 
where β is the vector of parameters to be estimated, xi is a set of variables that is assumed to be in the 
set of information that defines the ‘moment condition,’ and mil(.) is one of L expectations that the 
model specifies to equal zero.  The GMM estimator is obtained by finding the estimator, b, that 
makes the empirical moment, 
 

   
1

1 ( , )n
l il ii

m m
n =

= ∑ b x  

 
mimic the population expectation as closely as possible.   
 Note the following about the GMM estimator:   
 

• If there are L functionally independent conditions specified and K = L parameters to be 
estimated, it will generally be possible to find a b that makes the empirical moments match 
the population expectations. 

 
• If L > K, then it will generally not be possible to make the moments all equal zero, and 

instead, we will have to minimize some criterion which makes the moments ‘close’ to zero. 
This is the GMM estimation problem. 

 
• If L < K, then there are more parameters to be estimated than there are moment conditions 

specified, and, since they are functionally independent, the L moment conditions will not be 
sufficient to identify the parameters, and estimation will be impossible. 

 
E21.7.1 GMM Estimation 
 
 Collect the L moment specifications in the column vector 
 

   m =  
1

1 ( , )n
i iin =∑ m xβ  

 
The GMM estimator is the minimum distance estimator which minimizes the quadratic form 
 
   q  =  ′m  Σ m  
 
for some choice of positive definite matrix Σ.  Different choices of Σ will produce different 
estimators.  At this point, we turn to formulating the command for the GMM estimator.  A brief 
application will be shown next, then the remaining details of using the estimator will be given.  Some 
technical details will follow. 
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 The essential command structure for the GMM estimator is 
 
 GMME ; Fn1 = definition of the first moment condition 
   ; Fn2 = definition of the second moment condition 
   ; ... up to 50 orthogonality conditions 
   ; Labels  = the symbols used for the parameters, 
   ; Start = starting values for the optimization $ 
 
This basic command – note that Σ is not specified, requests minimization of the simple sum of squares. 
The default specification, therefore, is Σ = I.   The number of parameters may not exceed the number of 
functions. The function definitions can make use of all the tools discussed earlier for specifying 
nonlinear regressions. They may also specify instrumental variables, as shown in the examples below. 
 
Example 1:  
 
 Suppose y1...,yn are a sample of n independent observations from the gamma distribution, 
 

   f(y)  =  1

)(
−λ−

Γ
λ Py

P
ye

P
, y > 0, λ,P > 0. 

 
Then, the following expectations hold 
 
   E[y]   =  P/λ, 

   E[y2]   =  P(P+1)/λ2, 

   E[1/y] =  λ/(P-1), P > 1, 

   E[logy] =  Ψ(P) - logλ, 
 
where Ψ(P) is the Psi function, dlogΓ(P)/dP.  Any two moments could be used for estimation of the 
parameters.  To use the two which, it turns out, define the maximum likelihood estimator, consider 
the first and the fourth.  The command would be 
 
 GMME ; Fn1 =  y - p/lambda 
   ; Fn2 =  Log(y) - Psi(p) + Log(lambda) 
   ; Start =  ... the starting values 
   ; Labels = p,lambda  $ 
 
Example 2:  (From Ruud (2000)   
 
 Hansen and Singleton’s classic (1982) paper on consumption and asset pricing suggests the 
moment equations 
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for a set of instrumental variables ztj where t indexes periods, Ct is consumption, rt is return, and δ 
and γ are the parameters to be estimated.  Ruud suggests using the instrumental variables obtained by 
differentiating the function in brackets with respect to 1/(1+δ) and γ, which produces, 
 

        zt1  =  
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We could set this up for estimation as follows: 
 
 SAMPLE ; 1 - whatever is appropriate $ 
 CREATE  ; ct1 = c / c[-1]  
   ; lagct1 = cc1[-1] 
   ; If(_obsno > 2) loglag = Log(lagct1) 
   ; r1 = 1+r 
   ; lagr1 = r1[-1] $ 
 SAMPLE ; 3 - whatever is appropriate 
 GMME ; Labels = delta,gamma 
   ; Start = 0,0 
   ; Fn1 = (r/(1+delta) * ct1^(gamma-1) - 1) * lagr1 * ctl^(gamma-1) 
   ; Fn2 = (r/(1+delta) * ct1^(gamma-1) - 1) * lagr1 * ctl^(gamma-1) * loglag $ 
 
We note, this can be made simpler to specify and to estimate by slightly reparameterizing the 
function.  Let θ = 1/(1+δ) and τ = γ - 1.  Making the substitutions, we would obtain the same results 
with 
 

 GMME ; Labels = delta,gamma 
   ; Start = 0,0 
   ; Fn1 = (r1 * theta * ct1^tau - 1) * lagr1 * ctl^tau 
   ; Fn2 = (r1 * theta * ct1^tau - 1) * lagr1 * ctl^tau * loglag $ 
 WALD  ; Fn1 = 1/theta - 1 
   ; Fn2 = tau + 1  $  (We do this to see our original parameters.) 
 
E21.7.2 The Weighting Matrix 
 
 The GMM estimator defined above is consistent regardless of what positive definite matrix 
Σ is used in the minimization.  (Indeed, if the problem is ‘exactly identified,’ that is, if there are the 
same number of equations as parameters), then, as has been widely documented elsewhere, the 
identical solution will be obtained for all matrices Σ.  However, in terms of the efficiency of the 
estimator, not all choices are the same – in this discussion, we now consider only ‘overidentified’ 
problems, in which there are more equations than parameters.  You may specify any matrix you like 
to be used in the optimization by adding 
 
   ; Sigma = the name of the matrix 
 
to the command.  The name given must be that of a positive definite matrix with number of rows and 
columns equal to the number of moment equations. 
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E21.7.3 The Optimal Weighting Matrix 
 
 As noted, you may specify any matrix you wish for the weighting matrix in the criterion 
function.  For GMM estimation, the ‘optimal’ weighting matrix is 
 

   Σ*  =  {Var[m ]}-1 
 
This matrix can be estimated if one has in hand any consistent estimator of the model parameters. 
Thus, let b be that estimator.  Then, the estimator would be 
 
   S*  =  

1
(1/ )(1/ ) ( , ) ( , ) 'n

i i i ii
n n

=∑ m b x m b x  
 
A natural way to proceed, then, would be to use two steps: 
 
Step 1. Use the default Σ = I to obtain the initial consistent estimates of the parameters. 
 
Step 2. After computing S*, redo the estimation while specifying Σ to be the inverse of this estimate. 
 
 When you use the GMME command, LIMDEP automatically saves S* for you as a matrix 
named sigma.  So, to do the two steps, you would proceed as follows:  The first step in GMM obtains 
consistent estimates. The weighting matrix is I. 
 
 GMME ; Fn1 = definition of the first moment condition 
   ; Fn2 = definition of the second moment condition 
   ; ... up to 50 orthogonality conditions 
   ; Labels = the symbols used for the parameters, 
   ; Start = starting values for the optimization  $ 
 
Then, compute optimal weighting matrix as inverse of covariance matrix of moments 
 
 MATRIX ; optimalw = <sigma> $ 
 
The second step has the same estimation problem, now with the optimal weighting matrix. 
 
 GMME ; Fn1 = definition of the first moment condition 
   ; Fn2 = definition of the second moment condition 
   ; ... up to 50 orthogonality conditions 
   ; Labels = the symbols used for the parameters, 
   ; Start = starting values for the optimization   
   ; Sigma = optimalw $ 
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E21.7.4 Other Options  
 
 GMME is an optimization command that is largely the same as NLSQ and MINIMIZE.  
All other options that are available for the nonlinear optimization procedures, including output 
display and convergence are useable here as well.  Moreover, the full range of specification options 
are available for defining the moment equations; that is, all functions, using quadrature, linear, 
bilinear, and quadratic forms, use of namelists, and so on, may all be used as they are in other 
optimization problems. 
 
E21.7.5 Application 
 
 The following is Example 1 suggested earlier.  It is based on 20 observations on a random 
variable ‘y’ to which we fit a gamma distribution with parameters λ and P.  (See Example 13.5 in 
Greene (2011).)  The data are 
 
   y′  = 20.5, 31.5, 47.7, 26.2, 44.0, 8.28, 30.8, 17.2, 19.9, 9.96, 
     55.8, 25.2, 29.0, 85.5, 15.1, 28.5, 21.4, 17.7, 6.42, 84.9 
 
We first obtain the maximum likelihood estimates by maximizing the log likelihood function 
directly: 
 

MAXIMIZE  ; Fcn = p*Log(l) - Lgm(p) - l*y + (p-1)*Log(y) 
            ; Labels = l,p 
            ; Start = .1,2 $ 
 
The GMM estimator based on the first and fourth moments will replicate the maximum likelihood 
estimator.  
 

GMME ; Labels =  l,p 
; Start = .1,2 
; Fn1 =  p/l - y  ? (changed sign of this for convenience.) 
; Fn2 =  Log(y) - Psi(p) + Log(l) $ 

 
Note, however, that the asymptotic covariance matrix will differ – a finite sample difference 

– because of the different formulas used to do the computations.  It seems useful to pursue that 
difference here, as we can derive the results in full detail for this simple problem.  We use the BHHH 
estimator for the asymptotic covariance matrix for the MLE.  For the gamma model above, 

 
   ∂logL/∂λ  =  Σi (P/λ  -  y) 

   ∂logL/∂P  =  Σi (logλ - Ψ(P) + logy) 
 
Note that the first order conditions for the MLE are n m   =  0.  Let M be the 20×2 matrix whose ith 
row is the derivative shown above for the ith observation.  Then, the estimator of the asymptotic 
covariance matrix for the MLE is 
 
   Est.Asy.Var[MLE]  =  (M′M)-1. 
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For the GMM estimator, Σ = I while G turns out to be a sum of constants, so the n disappears; 
 

   G  =  












Ψ−λ
λλ−

)('/1
/1/ 2

P
P  

 
Inserting these in the formula for the asymptotic covariance matrix of the GMM estimator, we obtain 
after canceling 
 
   Est.Asy.Var[GMM]  =  (G′G)-1G′M′MG(G′G)-1 
 
As can be seen, this differs from the formula for the MLE.  Since G′G and (1/n)M′M converge to the 
same matrix, we see that the difference is due to finite sample variation. 
 Finally, we obtain the full GMM estimator, using all four moment equations, and two steps 
to obtain the efficient estimator at the second step. 
 
This is the maximum likelihood estimator. 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function        85.37567 
Restricted log likelihood        .00000 
Chi squared [   2 d.f.]       170.75134 
Significance level               .00000 
Estimation based on N =     20, K =   0 
Inf.Cr.AIC  = -170.751 AIC/N =   -8.538 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|     .07707***      .02708     2.85  .0044      .02400    .13014 
       P|    2.41060***      .87683     2.75  .0060      .69206   4.12915 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
This is the GMM estimator based on the same two moments as used by the maximum likelihood 
estimator.  Not surprisingly, the parameter estimates are the same. 
 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit:   5 iterations. Status=0, F=    .1203629E-14 
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----------------------------------------------------------------------------- 
User Defined Optimization 
Generalized Method of Moments Estimator 
Log likelihood function          .00000 
Restricted log likelihood        .00000 
Chi squared [   2 d.f.]          .00000 
Significance level              1.00000 
GMM Criterion function           .00000 
Degrees of freedom = #eqn-#parms =    0 
Significance level              1.00000 
Covariance matrix for moments kept as SIGMA 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|     .07707***      .02555     3.02  .0026      .02698    .12716 
       P|    2.41060***      .60848     3.96  .0001     1.21800   3.60321 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the GMM estimators based on all four moments. 
 

GMME ; Labels = l,p 
; Start = .1,2 
; Fn1 = y-p/l 
; Fn2 = 1 / y - l/(p-1) 
; Fn3 = y^2 - p*(p+1)/l^2 
; Fn4 = Log(y) - Psi(p) + Log(l) $ 

 
----------------------------------------------------------------------------- 
User Defined Optimization 
Generalized Method of Moments Estimator 
Log likelihood function          .00180 
Restricted log likelihood        .00000 
Chi squared [   2 d.f.]          .00361 
Significance level               .99820 
GMM Criterion function           .00180 
Degrees of freedom = #eqn-#parms =    2 
Significance level               .99910 
Covariance matrix for moments kept as SIGMA 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|     .06580***      .01890     3.48  .0005      .02876    .10284 
       P|    2.05830***      .50345     4.09  .0000     1.07156   3.04504 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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These are the second step, efficient GMM estimators based on the optimal weighting matrix. 
 

MATRIX  ; optimalw = <sigma>$ 
GMME ; Labels = l,p 

; Start = .1,2 
; Fn1 = y-p/l 
; Fn2 = 1/y - l/(p-1) 
; Fn3 = y^2 - p*(p+1)/l^2 
; Fn4 = Log(y) - Psi(p) + Log(l)  
; Sigma = optimalw $ 

 
----------------------------------------------------------------------------- 
User Defined Optimization 
Generalized Method of Moments Estimator 
Log likelihood function         1.97522 
Restricted log likelihood        .00000 
Chi squared [   2 d.f.]         3.95043 
Significance level               .13873 
GMM Criterion function          1.97522 
Degrees of freedom = #eqn-#parms =    2 
Significance level               .37247 
Covariance matrix for moments kept as SIGMA 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|     .12449***      .03403     3.66  .0003      .05780    .19118 
       P|    3.35894***      .64628     5.20  .0000     2.09225   4.62563 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 

 
E21.7.6 Technical Details for the GMM Estimator 
 
 The underlying theory for the GMM estimator is well documented in the current literature, 
including the current textbooks such as Greene (2011), Ruud (2000), and Hayashi (2000), so it will 
be omitted here, and only final results will be shown. 
 The estimation criterion used is 
 

   q  =  
2
1  ′m Σ m  

 
(The 1/2 is purely for convenience - it allows the 2 to disappear from the derivatives.)   
 
NOTE:  The output displayed by the program reports 2q, not q.  That is, your final results will report 
the value of the quadratic form, not one half times it. 
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 The first order conditions for minimizing q are 
 

   
β∂

∂q  =  G′ Σ m   =  0, 

where   G =  
'

∂
∂
m
β

 

 
There are L equations and K parameters and L > K.  Thus, G is an L×K matrix of partial derivatives.  
(Note, as well, that G is a sample mean.)  If there are K moment equations used to identify the K 
parameters, then assuming that Σ is positive definite and that the moment equations are functionally 
independent so that G has an inverse, then we can premultiply the first order condition by (G′ Σ)-1 
and obtain the simpler necessary condition, m  = 0.  The solution to this is independent of Σ, which 
establishes the earlier claim that Σ is irrelevant to the solution to an exactly identified problem. 
 The asymptotic covariance matrix is computed using the estimated parameters, and 
 
   Est.Var[b]  =  [G′ Σ G]-1 G′ Σ S* Σ G [G′ Σ G]-1 
 
where S* was defined earlier.  If you have specified the optimal weighting matrix, Σ = (S*)-1, then 
the estimated variance reduces to the familiar result, 
 
   Est.Var[b]  =  [G′ (S*)-1 G]-1 
 
 If the model is exactly identified, then q is minimized at zero.  (See the example above.)  If 
not, then q will be positive.  The theoretical result that 2q will have a limiting chi squared 
distribution with degrees of freedom equal to the number of overidentifying restrictions (equations 
minus parameters) can be used to test restrictions in this framework.  (The multiplier, 2, appears 
because in our formulation of the problem, we initially divided by 2.)  For two nested models, with 
q0 being the unrestricted one and q1 embodying the restrictions, 2(q1 - q0) can be used to test the 
restrictions – refer this statistic to the chi squared table with degrees of freedom equal to the number 
of restrictions. 
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E22: 2SLS for Panel Data 
 
E22.1 Introduction 
 
 This chapter will present estimation of linear models for panel data by two stage least 
squares and instrumental variables.  It combines the results in Chapters E16-18 (panel data models) 
and E21 (instrumental variables estimation). 
 
E22.2 Application 
 
 The data used in the application below were analyzed in Cornwell and Rupert (1988).       
(See Baltagi (2005), page 122 for further analysis.)  Unfortunately, the data are not available at       
the archive site for the journal. They were downloaded from the website for Baltagi’s text, 
http://www.wiley.com/legacy/wileychi/baltagi/supp/WAGES.xls. These data are a microeconomic 
panel data set of observations on 595 individuals for seven years.  Variables in the data set are: 
 
 exp  =  work experience 
 wks  =  weeks worked 
 occ  =  occupation, 1 if blue collar 
 ind  =  1 if manufacturing industry 
 south  =  1 if resides in south 
 smsa  =  1 if resides in a city (SMSA) 
 ms  =  1 if married 
 fem  =  1 if female 
 union  =  1 if wage set by union contract 
 ed  =  years of education 
 blk  =  1 if individual is black 
 lwage =  log of wage 
 
The model estimated below is 
 
   logwksit  =  β1 + β2lwageit + β3occit + β4femit + β5edit + εit + ui 
 
The instrumental variables used for the lwage variable are union membership and south, both 
dummy variables.   
 
  

http://www.wiley.com/legacy/wileychi/baltagi/supp/WAGES.xls�
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E22.3 2SLS Estimation with Fixed Effects 
 
 A basic estimator for a fixed effects model with one endogenous variable on the Rhs is 
obtained as follows:  
 
 SETPANEL ; Group = id variable ; Pds = count variable to create $ 
 REGRESS ; Lhs = endogenous variable  
   ; Rhs = all instruments  
   ; Panel  
   ; Keep = fittedy   
   ; Output = 5 $ 
 REGRESS ; Lhs = dependent variable 
   ; Rhs = endogenous variable, other variables 
   ; Panel    
   ; Inst = fittedy $ 
  
The list of instrumental variables includes only the predicted value for the one variable for which 
instruments are needed.  The command can be extended to models with more than one endogenous 
variable on the right hand side, as well by producing a fitted value for each one, including the more 
than one endogenous variables at the beginning of the Rhs list, and including the corresponding list 
of fitted values in the Inst list.  Note, the Rhs list should not include one. 
 The following computes the 2SLS estimates for the logwks equation in the application 
 

CREATE  ; i = Trn(7,0) $ 
SETPANEL  ; Group = i ; Pds = ti $ 

 REGRESS ; Lhs = lwage  
   ; Rhs = one,occ,fem,ed,union,south   
   ; Panel  

; Keep = fittedy  
; Output = 5 $ 

 REGRESS ; Lhs = logwks  
; Rhs = lwage, occ,fem,ed   

   ; Panel  
; Inst = fittedy $ 
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+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| TI         Group sizes  I           595      7      7       7.0 | 
+-----------------------------------------------------------------+ 
Command requests fitted values only. Output is suppressed 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LOGWKS   Mean                 =        3.83748 
             Standard deviation   =         .14796 
             No. of observations  =           4165  Degrees of freedom 
Regression   Sum of Squares       =        .727604           4 
Residual     Sum of Squares       =        90.4309        4160 
Total        Sum of Squares       =        91.1585        4164 
             Standard error of e  =         .14744 
Fit          R-squared            =         .00798  R-bar squared =   .00703 
Model test   F[  4,  4160]        =        8.36780  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     2065.85755  Akaike I.C.   = -3.82748 
             Restricted (b=0)     =     2049.16888  Bayes  I.C.   = -3.81988 
             Chi squared [  4]    =       33.37733  Prob C2 > C2* =   .00000 
B-P test     Chi squared [  1]    =      589.18552  Prob C2 > C2* =   .00000 
[High values of  LM favor FEM/REM over base model] 
Baltagi-Li form of LM Statistic   =      589.18552  [= BP if balanced panel] 
Moulton/Randolph form:SLM N[0,1]  =      24.578092 
-------------------------------------------------- 
Panel Data Analysis of LOGWKS            [ONE way] 
               Unconditional ANOVA (No regressors) 
Source         Variation  Deg. Free.   Mean Square 
Between         30.49694        594.        .05134 
Residual        60.66157       3570.        .01699 
Total           91.15850       4164.        .02189 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGWKS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LWAGE|     .02314***      .00736     3.14  .0017      .00871    .03756 
     OCC|    -.00487         .00596     -.82  .4137     -.01656    .00681 
     FEM|    -.02203***      .00813    -2.71  .0067     -.03796   -.00609 
      ED|    -.00161         .00110    -1.45  .1459     -.00377    .00056 
Constant|    3.70860***      .04822    76.91  .0000     3.61409   3.80311 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
LSDV         least squares with fixed effects .... 
LHS=LOGWKS   Mean                 =        3.83748 
             Standard deviation   =         .14796 
             No. of observations  =           4165  Degrees of freedom 
Regression   Sum of Squares       =        .708599         598 
Residual     Sum of Squares       =        90.4499        3566 
Total        Sum of Squares       =        91.1585        4164 
             Standard error of e  =         .15926 
Fit          R-squared            =         .00777  R-bar squared =  -.15862 
Model test   F[598,  3566]        =         .04672  Prob F > F*   =  1.00000 
Diagnostic   Log likelihood       =     2065.41994  Akaike I.C.   = -3.54204 
             Restricted (b=0)     =     2049.16888  Bayes  I.C.   = -2.63103 
             Chi squared [598]    =       32.50211  Prob C2 > C2* =  1.00000 
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-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data      595 
             Smallest   7,     Largest           7 
             Average group size in panel      7.00 
Variances    Effects a(i)         Residuals e(i,t) 
              8.756725                     .025365 
These  2 variables have no within group variation. 
FEM      ED 
F.E. estimates are based on a generalized inverse. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGWKS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   LWAGE|     .36781         .23562     1.56  .1185     -.09399    .82961 
     OCC|     .05496**       .02179     2.52  .0117      .01225    .09767 
     FEM|        0.0    .....(Fixed Parameter)..... 
      ED|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Regression Model               | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood    Sum of Squares  R-squared | 
|(1)  Constant term only     2049.16894          91.15850     .00000 | 
|(2)  Group effects only     2897.34924          60.66157     .33455 | 
|(3)  X - variables only     2065.85761          90.43090     .00798 | 
|(4)  X and group effects    2065.42000          90.44991     .00777 | 
+--------------------------------------------------------------------+ 
 

E22.4 IV Estimators for Panel Data 
 
 Two stage least squares for panel data estimators is extended to include random effects.  In 
the preceding section, it is shown how you may include predicted values of the regressors in the right 
hand side of the equation.  The estimator then adjusts the computation of variance estimators for the 
presence of the fitted value.  The extension described here adds a full two stage least squares 
treatment for other panel data models. The essential model is 
 
   yit  =  αi  +  β1′x1,it  +  β2′x2,it  +  εit. 
 
In the different specifications, αi may be a fixed effect, a random effect, or unspecified. (The chosen 
estimator is robust to either.)  Variables in x2,it are assumed to be correlated with εit.  A set of 
instrumental variables, zit is provided.  Five estimators are supported: conventional two stage least 
squares, fixed effects, first differences, random effects and group means.  The estimator is the linear 
estimator for these panel data settings, using instrumental variables rather than OLS, GLS, or FGLS.  
Let Xi denote the K1+K2 columns in the structural variables, and let Zi denote the K1+Kz instrumental 
variables – note, presumably, some of the variables in Zi are those in x1,it and there must be at least 
K2 additional instrumental variables in Zi so that the model is identified.  The matrices have Ti rows 
or observations. Then, the various estimators of β = (β1′,β2′)′ are 
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Two Stage Least Squares (2SLS)   
 

1

2  1 1
ˆ ˆ ˆN N

S i i ii ii i

−

= =
   ′ ′=
   ∑ ∑X X X yβ   

 

where iX̂ = Zi(Zi′Zi)-1Zi′X 
 
Fixed Effects (FE) 
 

1
0 0

  1 1
ˆ N N

FE i i i i i ii i

−

= =
   ′ ′=    ∑ ∑Z M X Z M yβ   

 
where Mi

0 is the Ti×Ti matrix that creates deviations from means. 
 
First Differences (FD) 
 

 
1

  1 1
ˆ ( )( ) ( )( )N N

FD i i i i i i i ii i

−

= =
   ′ ′ ′ ′=    ∑ ∑Z D D X Z D D yβ  

 
where Di is the (Ti-1)×Ti matrix that creates first differences.  The first observation is lost. 
 
Random Effects (RE) 
 

 
1

1 1
    1 1

ˆ ˆ ˆN N
RE i i i i i ii i

−
− −

= =
   ′ ′=    ∑ ∑Z X Z yβ Ω Ω   

 

where 1-
iΩ is the Ti×Ti matrix that creates partial deviations from means for the two step FGLS 

estimator.  The variance components are computed using the simple two stage least squares estimator 
and the fixed effects estimator. 
 
Group Means (MEANS) 
 

 
1

  1 1
ˆ ( )( ) ( )( )N N

MEANS i i i i i i i ii i

−

= =
   ′ ′ ′ ′=    ∑ ∑Z a a X Z a a yβ   

 
where ai is a 1×Ti vector with all elements equal to 1/Ti; it creates a group mean vector. 
 Some of these estimators (2SLS, RE, MEANS) are inconsistent under the fixed effects 
assumption. All are consistent under the random effects assumption, but some (2SLS, FE) are 
inefficient.  The fixed effects and first difference estimators are always consistent.  Also, the 
treatment of the constant term differs from one to the next.  The estimator will sort this out, as can be 
seen in the example below.  
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Commands 
 
 The command for this estimator is 
 
 2SLS   ; Lhs = dependent variable  
   ; Rhs = set of  independent variables  
   ; Inst = full list of instruments 
 
plus, for any of the panel data estimators, 
 
   ; Pds = the usual panel data setup, balanced or not 
   ; Panel 
 
and exactly one of the following 
 
   ; Fixed Effects 
   ; Random Effects 
   ; Differences to use first differences 
   ; Means to use group means $ 
 
Options ; Keep, ; Res and ; Covariance Matrix operate as usual.  With ; Fixed Effects, ; Par saves 
the alphafe matrix containing the estimated constant terms.  If the model contains time invariant 
variables, as in the example below, the fixed effects estimator uses generalized inverses.  This will be 
noted in the results.  But don’t expect good results. 

We fit the model by conventional 2SLS and then using the four estimators detailed above. 
 
 2SLS    ; Lhs = logwks  
   ; Rhs = one,lwage,occ,fem,ed 
   ; Inst = one,occ,fem,south,union,ed $ 
 2SLS    ; Lhs = logwks  
   ; Rhs = one,lwage,occ,fem,ed 
   ; Inst = one,occ,fem,south,union,ed  
   ; Panel ; Fixed effects $ 
 2SLS    ; Lhs = logwks  
   ; Rhs = one,lwage,occ,fem,ed 
   ; Inst = one,occ,fem,south,union,ed  
            ; Panel ; Random Effects $ 
 2SLS    ; Lhs = logwks  
   ; Rhs = one,lwage,occ,fem,ed 
   ; Inst = one,occ,fem,south,union,ed  
            ; Panel ; Differences $ 
 2SLS    ; Lhs = logwks  
   ; Rhs = one,lwage,occ,fem,ed 
   ; Inst = one,occ,fem,south,union,ed  
            ; Panel ; Means $ 
 
(Some superfluous results and results that are repeated in the outputs are omitted.) 
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----------------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=LOGWKS   Mean                 =        3.83748 
             Standard deviation   =         .14796 
             Number of observs.   =           4165 
Model size   Parameters           =              5 
             Degrees of freedom   =           4160 
Residuals    Sum of squares       =        126.324 
             Standard error of e  =         .17426 
Fit          R-squared            =        -.38742 
             Adjusted R-squared   =        -.38876 
Not using OLS or no constant. Rsqrd & F may be < 0 
Model was estimated on Jun 09, 2011 at 08:42:56 AM 
Instrumental Variables: 
ONE       OCC       FEM       SOUTH     UNION     ED 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGWKS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    5.19877***      .23141    22.47  .0000     4.74522   5.65233 
   LWAGE|    -.21748***      .03724    -5.84  .0000     -.29047   -.14448 
     OCC|    -.04186***      .00898    -4.66  .0000     -.05946   -.02425 
     FEM|    -.14102***      .02032    -6.94  .0000     -.18085   -.10118 
      ED|     .00996***      .00218     4.58  .0000      .00569    .01422 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Panel Data Instrumental Variables Estimator. LHS Variable =   LOGWKS 
Fixed effects (within) estimator y(i,t) = a(i) + x(i,t)b + e(i,t) 
Consistent for both FE and RE models, (in)efficient for FE (RE) model 
Mean of   LOGWKS =     3.83748   Std. Dev. of   LOGWKS =      .14794 
Estimated residual standard deviation    =      .12326 
Sum of squared deviations (y - fitted)^2 =    63.28094 
Correlation actual and fitted values     =      .30738 
(Note, this is not a proportion of variation explained.) 
Panel group sizes: Minimum =    7, Maximum =    7, Mean =      7.000 
Total sample size is     4165 observations in     595 groups. 
Model has time invariant variables FEM     , ED      ,         , ... 
FE model is unidentified. Using G2 inverse for RE and 1st differences 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGWKS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|        0.0    .....(Fixed Parameter)..... 
   LWAGE|    -.01978         .01230    -1.61  .1077     -.04389    .00432 
     OCC|    -.11347         .13234     -.86  .3912     -.37285    .14590 
     FEM|        0.0    .....(Fixed Parameter)..... 
      ED|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Panel Data Instrumental Variables Estimator. LHS Variable =   LOGWKS 
Random effects (fgls)  estimator y(i,t) = a + x(i,t)b + e(i,t) + u(i) 
Consistent and efficient for RE model, inconsistent for FE model 
Estimated residual standard deviation    =      .25308 
Sum of squared deviations (y - fitted)^2 =   266.77186 
Correlation actual and fitted values     =      .00286 
(Note, this is not a proportion of variation explained.) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGWKS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    3.28914        2.06493     1.59  .1112     -.75805   7.33633 
   LWAGE|    -.02477         .03759     -.66  .5100     -.09845    .04892 
     OCC|     .06559         .37324      .18  .8605     -.66594    .79712 
     FEM|    -.52323         .43400    -1.21  .2280    -1.37386    .32740 
      ED|     .05578         .13074      .43  .6696     -.20046    .31202 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Panel Data Instrumental Variables Estimator. LHS Variable =   LOGWKS 
First difference estimator for  Dy(i,t) = Dx(i,t)b + De(i,t) 
Consistent but inefficient for both FE and RE models 
Estimated residual standard deviation    =     2.21439 
Sum of squared deviations (y - fitted)^2 = 20423.21660 
Correlation actual and fitted values     =      .00519 
(Note, this is not a proportion of variation explained.) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGWKS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|        0.0    .....(Fixed Parameter)..... 
   LWAGE|     .24600         .99573      .25  .8049    -1.70560   2.19760 
     OCC|    -.02305         .56598     -.04  .9675    -1.13235   1.08626 
     FEM|        0.0    .....(Fixed Parameter)..... 
      ED|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Panel Data Instrumental Variables Estimator. LHS Variable =   LOGWKS 
Grp means (between) estimator ybar(i) = a + xbar(i)b + ebar(i) + u(i) 
Consistent only for RE model, not FE; inefficient for RE model 
Estimated residual standard deviation    =      .17856 
Sum of squared deviations (y - fitted)^2 =   132.79147 
Correlation actual and fitted values     =      .00176 
(Note, this is not a proportion of variation explained.) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  LOGWKS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    5.34743***      .23565    22.69  .0000     4.88557   5.80929 
   LWAGE|    -.23703***      .03766    -6.29  .0000     -.31085   -.16321 
     OCC|    -.05897***      .01028    -5.74  .0000     -.07912   -.03881 
     FEM|    -.15259***      .02070    -7.37  .0000     -.19317   -.11202 
      ED|     .00933***      .00218     4.29  .0000      .00507    .01360 
--------+-------------------------------------------------------------------- 
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E23: Hausman-Taylor and Arellano-Bond 
Estimators 

 
E23.1 Introduction 
 
 This chapter will detail estimation of several linear models for panel data.  The essential 
structure for most of them is an ‘effects’ model, 
 
   yit  =  αi  +  γt  +  β′xit  +  εit 
 
in which variation across groups (individuals) or time is captured in simple shifts of the regression 
function – i.e., changes in the intercepts.  These models are the fixed effects (FE) and random effects 
(RE) models.  Several variations on this structure can be analyzed with this estimator, including both 
one and two factor models, models of autocorrelation, and simultaneous equations models.  This 
chapter also presents some major extensions including multifactor random effects models, the 
Hausman and Taylor estimator for random effects and the Arellano, Bond and Bover estimator for 
dynamic panel data models. 
 
E23.2 The Hausman and Taylor Estimator for Random 
Effects 
 
 Hausman and Taylor’s (1981) estimator for the random effects model is provided to 
overcome one of the major shortcomings of the REM, the possible correlation between the 
independent variables and the random effects.  The following will sketch the technical aspects; the 
user is referred to their paper for full details. 
 The random effects model is formulated with the possibility that there may be time invariant 
independent variables.  We thus write it in this form: 
 
             yit  =  β1′x1it + β2′x2it + γ1′f1i + γ2′f2i + εit + ui, where β = (β1′,β2′)′ and γ = (γ1′,γ2′)′ 
 
where   E[ui] = 0,  Var[ui] = σu

2  Cov[εit,ui] = 0, 

    Var[εit + ui]  =  σ2 = σε
2  + σu

2,  

   Corr[εit + ui,εis + ui] = ρ = σu
2 / σ2. 

 
There are four sets of variables in the model,  
 
   Uncorrelated with ui Correlated with ui 

 Time varying x1it is KX1 variables x2it is KX2 variables 

 Time invariant f1i  is KF1  variables f2i  is KF2  variables 
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Note that as stated, the model already embodies an important assumption.  The formulation assumes 
that you can distinguish a set of variables x1 that is uncorrelated with ui.  In LIMDEP’s formulation 
of the model, any of the remaining three sets of variables are optional; your model may include any 
or all of these remaining three sets, but it must include set x1.  For identification purposes,  KX1 must 
be at least as large as KF2 (KF2 may be zero).   At the outset, we note that if your model contains 
neither x2 nor f2, then you should not use this estimator, as you can use the ordinary random effects 
estimator. 
 By construction, any OLS or GLS estimators of this model are inconsistent when KX2 or KF2 
are positive (that is, when the model contains variables that are correlated with the random effects).  
Hausman and Taylor have proposed an instrumental variables estimator that uses only the 
information within the model (i.e., as already stated).  The strategy for estimation is based on the 
following logic.  First, by taking deviations from group means, we find that 
 
   yit = β1′(x1it  - 1ix ) + β2′(x2it  -  2ix ) + εit  - iε  
 
which implies that β can be consistently estimated by least squares, in spite of the correlation 
between x2 and u.  This is the familiar, fixed effects, least squares dummy variable estimator.  Now, 
in the original model, Hausman and Taylor show that the group means can be used as (KX1+KX2) 
instrumental variables for estimation of (β,γ).  Since f1 is uncorrelated with the disturbances, it can 
likewise serve as a set of KZ1 instrumental variables.  That leaves a necessity for KF2 instrumental 
variables.  The authors show that the group means for x1 can serve as these remaining instruments, 
and the model will be identified so long as KX1 is greater than or equal to KF2.  As before, feasible 
GLS is better than OLS, and available.  Likewise, FGLS is an improvement over simple IV 
estimation of the model, which is consistent but inefficient. 
 The authors propose the following set of steps: 
 
Step 1. Use consistent but inefficient estimators of β and γ to estimate the variance components. 
 
Step 2. Use weighted FGLS with instrumental variables to take full advantage of the known 

information about the variances at a second step. 
 
The specific procedure is as follows: 
 
Step 1. Obtain the LSDV (fixed effects) estimator of β = (β1′,β2′)′ based on x1 and x2.  The residual 

variance estimator from this step is a consistent estimator of σε
2. 

 
Step 2. Form the within groups residuals from this regression at Step 1, eit.  Stack the group means 

of these residuals in a full sample length data vector.  Thus, eit* = ie , i = 1,...,Ti, i = 1,...,N.  
These group means are used as the dependent variable in a two stage least squares regression 
on f1 and f2 with instrumental variables f1 and x1.  (Note the identification requirement that 
KX1, the number of columns in x1 be at least as large as KF2, the number of columns in f2.)  
This provides a consistent estimator of γ. The residual variance in this regression is a 
consistent estimator of σ*2 = σu

2 + Qσε
2 where Q = plim(1/N)Σi(1/Ti).  (This is just 1/T in a 

balanced sample, but we do not require this.)  From this estimator and the estimator of σε
2 in 

Step 1, we deduce an estimator of σu
2. 
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Step 3. The final step is a weighted instrumental variable estimator.  The transformation of yit and 

(x1it,x2it,f1i,f2i) is 

   vit*  =  vit  -  (1 - θi) iv  where  θi  =  22

2

uiT σ+σ

σ

ε

ε  

where vit denotes any of the aforementioned variables and iv denotes a group mean.  Note in 
the case of the time invariant variables, the group mean is the original variable, and the 
transformation just multiplies the variable by θi.  The instrumental variables are x1it  - 1ix , x2it 

- 2ix , z1i and 1ix .  Note for the fourth set of instruments, the group mean is repeated for each 
member of the group. 
 

 In order to implement this estimator with LIMDEP, several steps are required, but the final, 
most complicated one has been completely automated.  The program below shows the set of steps.  
Most of the steps for this estimator use familiar parts of the program.  The final REGRESS command 
contains the important settings which specifically request the Hausman and Taylor estimator. 
 This is a program template for application of the Hausman and Taylor estimator for the 
random effects model. 
 

1. Define four sets of variables.  Note, any of x2, f1, or f2 may contain no variables.  In this case, 
in the CALC command, set the associated count to zero. Be sure to define the compound 
namelists appropriately as well.  If the model contains a constant term, include one in f1. 

 

CREATE or otherwise set up group ID.  We call this i $ 
SETPANEL ; Group = i ; Pds = ti $ 
NAMELIST  ; x1 = ... the set of variables  $ 
NAMELIST  ; x2 = ... the set of variables  $ 
NAMELIST  ; f1 = ... one, the set of variables $ 
NAMELIST  ; f2 = ... the set of variables  $  
NAMELIST ; x = x1,x2 ; f = f1,f2 ; exog = x1,f1 ; all = x1,x2,f1,f2 $ 
CREATE    ; y = the dependent variable $ 
CALC  ; kx1 = Col(x1) ; kx2 = Col(x2) ; kf1 = Col(f1) ; kf2 = Col(f2) $ 

 

2. Compute the LSDV estimator based only on [x1,x2] to produce β and σε
2. The panel 

specification may be by ; Pds = number or ; Str = variable. 
 

REGRESS  ; Lhs = y ; Rhs = x ; Fixed ; Panel  $ 
MATRIX  ; bw = b $ 
CALC  ; s2e = ssqrd$ 

 

3. Form within groups residuals, then get the group means, expanded to the full sample length.  
This is a special command created for this purpose.  Panel specification should now be the 
one created automatically by the regression above.  This command also creates the estimate 
of Q and calls it avg_ti.  See Step 4 below.  (It can be done with CREATE, but we need Q 
as well so we use the regression.) 

 

CREATE  ; dwit = y - x’bw $ 
CREATE  ; dwi = Group Mean(dwit, Pds = ti) $ 
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4. Regress these group means on [f1,f2] with instruments  [f1,x1] to estimate γ and σ*
2.  (This 

is just 2SLS.)   Then get the variance components estimator. 
 

2SLS  ; Lhs = dwi ; Rhs = f ; Inst = exog $ 
CALC  ; s2s = ssqrd ; s2u = s2s - avg_ti*s2e $ 

 
5. This is the Hausman and Taylor procedure which has been automated.  The model is set up 

as usual for the random effects model.  The ; Start specification requests the estimator. This 
must provide six values, exactly as shown below. 

 
REGRESS  ; Lhs = y ; Rhs = all ; Panel ; Random 
   ; Start = kx1,kx2,kf1,kf2,s2e,s2u $ 

 
 To illustrate the Hausman and Taylor estimator, we will fit a log wage equation using the 
Cornwell and Rupert data examined in the previous section.  The model is the one specified by 
Cornwell and Rupert, 
 
 logwage it   =    β1,1wks it    +  β1,2south it +  β1,3smsa it +  β1,4ms it 
   + β2,1exp it   +  β2,2expit

2    +  β2,3occ it     +  β2,4ind it   +  β2,5unionit 
   + γ1,1           +  γ1,2femi      +  γ1,4blki 
   + γ2,1edi       +  εit + ui 
 
We take weeks worked and union membership to be endogenous in the model.  The following 
commands adapt the Hausman and Taylor routine to this specification.  Results follow.  We note, 
this is precisely the model specified by Cornwell and Rupert, and these are their data. Our results 
resemble theirs, but are not close enough to ‘match’ within rounding error.  One possible explanation 
is that the estimator depends crucially on the two variance estimators, and there are numerous ways 
to estimate them.  Cornwell and Rupert do not document how they did this computation. 
 
? [Specific for this application] 
 
 CREATE ; i = Trn(7,0) $ 
 SETPANEL ; Group = i ; Pds = ti $ 
 NAMELIST  ; x1 = wks,south,smsa,ms $ 
 NAMELIST  ; x2 = exp,exp*exp,occ,ind,union $ 
 NAMELIST  ; f1 = one,fem,blk $ 
 NAMELIST  ; f2 = ed $ 
 NAMELIST ; x = x1,x2  
   ; f = f1,f2  
   ; exog = x1,f1  
   ; all = x1,x2,f1,f2 $ 
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? [Generic for estimation of Hausman and Taylor] 
 
 CREATE    ; y = lwage $ 
 CALC  ; kx1 = Col(x1) ; kx2 = Col(x2)  
   ; kf1 = Col(f1) ; kf2 = Col(f2) $ 
 REGRESS ; Lhs = y  
   ; Rhs = x  
   ; Fixed ; Panel $ 
 MATRIX ; bw = b $ 
 CALC  ; s2e = ssqrd $ 
 CREATE ; dwit =  y - x'bw $ 
 CREATE ; dwi = Group Mean(dwit, Pds = ti) $ 
 2SLS  ; Lhs = dwi ; Rhs = f ; Inst = exog $ 
 CALC  ; s2s = ssqrd ; s2u = s2s - avg_ti*s2e $ 
 REGRESS ; Lhs = y  
   ; Rhs = all   
   ; Panel  ;  Random  
   ; Start = kx1,kx2,kf1,kf2,s2e,s2u $ 
 
The results of all the procedures are shown below. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =        6.67635 
             Standard deviation   =         .46151 
             No. of observations  =           4165  Degrees of freedom 
Regression   Sum of Squares       =        279.778           9 
Residual     Sum of Squares       =        607.127        4155 
Total        Sum of Squares       =        886.905        4164 
             Standard error of e  =         .38226 
Fit          R-squared            =         .31545  R-bar squared =   .31397 
Model test   F[  9,  4155]        =      212.74706  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -1899.53722  Akaike I.C.   = -1.92093 
             Restricted (b=0)     =    -2688.80603  Bayes  I.C.   = -1.90572 
             Chi squared [  9]    =     1578.53762  Prob C2 > C2* =   .00000 
B-P test     Chi squared [  1]    =     3881.34495  Prob C2 > C2* =   .00000 
[High values of  LM favor FEM/REM over base model] 
Baltagi-Li form of LM Statistic   =     3881.34495  [= BP if balanced panel] 
Moulton/Randolph form:SLM N[0,1]  =      63.316479 
-------------------------------------------------- 
Panel Data Analysis of Y                 [ONE way] 
               Unconditional ANOVA (No regressors) 
Source         Variation  Deg. Free.   Mean Square 
Between        646.25374        594.       1.08797 
Residual       240.65119       3570.        .06741 
Total          886.90494       4164.        .21299 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     WKS|     .00446***      .00118     3.78  .0002      .00215    .00677 
   SOUTH|    -.11368***      .01345    -8.45  .0000     -.14004   -.08732 
    SMSA|     .15858***      .01303    12.17  .0000      .13305    .18411 
      MS|     .32033***      .01585    20.21  .0000      .28927    .35139 
     EXP|     .03611***      .00236    15.32  .0000      .03149    .04073 
 EXP*EXP|    -.00066***   .5186D-04   -12.63  .0000     -.00076   -.00055 
     OCC|    -.31762***      .01349   -23.54  .0000     -.34407   -.29117 
     IND|     .03213**       .01277     2.52  .0119      .00711    .05716 
   UNION|     .06975***      .01392     5.01  .0000      .04246    .09704 
Constant|    5.88024***      .06035    97.43  .0000     5.76194   5.99853 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
LSDV         least squares with fixed effects .... 
LHS=Y        Mean                 =        6.67635 
             Standard deviation   =         .46151 
             No. of observations  =           4165  Degrees of freedom 
Regression   Sum of Squares       =        804.638         603 
Residual     Sum of Squares       =        82.2673        3561 
Total        Sum of Squares       =        886.905        4164 
             Standard error of e  =         .15199 
Fit          R-squared            =         .90724  R-bar squared =   .89154 
Model test   F[603,  3561]        =       57.76006  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     2262.88725  Akaike I.C.   = -3.63446 
             Restricted (b=0)     =    -2688.80603  Bayes  I.C.   = -2.71585 
             Chi squared [603]    =     9903.38656  Prob C2 > C2* =   .00000 
Estd. Autocorrelation of e(i,t)   =        .146506 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data      595 
             Smallest   7,     Largest           7 
             Average group size in panel      7.00 
Variances    Effects a(i)         Residuals e(i,t) 
              1.068764                     .023102 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     WKS|     .00084         .00060     1.39  .1633     -.00034    .00201 
   SOUTH|    -.00186         .03430     -.05  .9567     -.06909    .06536 
    SMSA|    -.04247**       .01943    -2.19  .0288     -.08055   -.00439 
      MS|    -.02973         .01898    -1.57  .1174     -.06693    .00748 
     EXP|     .11321***      .00247    45.81  .0000      .10837    .11805 
 EXP*EXP|    -.00042***   .5459D-04    -7.66  .0000     -.00053   -.00031 
     OCC|    -.02148         .01378    -1.56  .1192     -.04849    .00554 
     IND|     .01921         .01545     1.24  .2136     -.01106    .04948 
   UNION|     .03278**       .01492     2.20  .0280      .00354    .06203 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+--------------------------------------------------------------------+ 
|             Test Statistics for the Regression Model               | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood    Sum of Squares  R-squared | 
|(1)  Constant term only    -2688.80597         886.90494     .00000 | 
|(2)  Group effects only       27.58464         240.65119     .72866 | 
|(3)  X - variables only    -1899.53716         607.12650     .31545 | 
|(4)  X and group effects    2262.88731          82.26732     .90724 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.   Prob         F   num   denom  P value | 
|(2) vs (1)   5432.78    594  .0000     16.14   594    3570   .00000 | 
|(3) vs (1)   1578.54      9  .0000    212.75     9    4155   .00000 | 
|(4) vs (1)   9903.39    603  .0000     57.76   603    3561   .00000 | 
|(4) vs (2)   4470.61      9  .0000    761.75     9    3561   .00000 | 
|(4) vs (3)   8324.85    594  .0000     38.25   594    3561   .00000 | 
+--------------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=DWI      Mean                 =        4.64877 
             Standard deviation   =        1.03307 
             Number of observs.   =           4165 
Model size   Parameters           =              4 
             Degrees of freedom   =           4161 
Residuals    Sum of squares       =        3703.87 
             Standard error of e  =         .94347 
Fit          R-squared            =         .16573 
             Adjusted R-squared   =         .16513 
Not using OLS or no constant. Rsqrd & F may be < 0 
Instrumental Variables: 
WKS       SOUTH     SMSA      MS        ONE       FEM 
BLK 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     DWI|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2.86187***      .31650     9.04  .0000     2.24155   3.48219 
     FEM|    -.12947***      .04759    -2.72  .0065     -.22274   -.03619 
     BLK|    -.27853***      .06643    -4.19  .0000     -.40872   -.14833 
      ED|     .14181***      .02447     5.80  .0000      .09385    .18977 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
Estimates:  Var[e]              =       .023102 
            Var[u]              =       .886838 
            Corr[v(i,t),v(i,s)] =       .974611 
            Sum of Squares              .000000 
            R-squared                   .000000 
Estimated using Hausman and Taylor IV estimator 
Variance components provided by ;START = values 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |X1 = time varying variables uncorrelated with u(i) 
     WKS|     .00091         .00060     1.52  .1290     -.00026    .00208 
   SOUTH|     .00716         .03255      .22  .8259     -.05663    .07095 
    SMSA|    -.04176**       .01940    -2.15  .0314     -.07979   -.00373 
      MS|    -.03636*        .01886    -1.93  .0539     -.07332    .00060 
        |X2 = time varying variables assumed correlated with u(i) 
     EXP|     .11297***      .00247    45.74  .0000      .10813    .11781 
 EXP*EXP|    -.00042***   .5459D-04    -7.68  .0000     -.00053   -.00031 
     OCC|    -.02139         .01378    -1.55  .1206     -.04841    .00562 
     IND|     .01884         .01544     1.22  .2224     -.01143    .04911 
   UNION|     .03035**       .01490     2.04  .0416      .00115    .05955 
        |F1 = time invariant variables uncorrelated with u(i) 
Constant|    2.88435***      .85189     3.39  .0007     1.21467   4.55402 
     FEM|    -.13687         .12714    -1.08  .2817     -.38605    .11232 
     BLK|    -.28182         .17643    -1.60  .1102     -.62762    .06397 
        |F2 = time invariant variables assumed correlated with u(i) 
      ED|     .14053**       .06580     2.14  .0327      .01156    .26950 
--------+-------------------------------------------------------------------- 
 
E23.3 Arellano, Bond, and Bover’s Estimator for Dynamic 
Panel Data Models 
 
 This estimator is for the dynamic random effects model 
 
   yit =  αyi,t-1  +  β1′x1it  +  β2′x2it  +  γ1′f1i  +  γ2′f2i  +  εit  +  ui 

    =  αyi,t-1  +  β′xit  + γ′fi  +  εit  +  ui 

    =  αyi,t-1  +  β′xit  + γ′fi  +  vit 

    =  δ′wit   +  vit. 
 
where the terms in the equation are the same as in the Hausman and Taylor (HT) model.  Subscripts 
‘1’ denote variables that are uncorrelated with ui while subscripts ‘2’ indicate variables that are 
correlated with ui.  This model differs by its inclusion of the lagged dependent variable.  In principle, 
one could include additional lags, but our formulation includes only one.  Note, also, that variables fi 
are time invariant.  If there is a constant term in the model, it is part of f1i. 
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E23.3.1 Technical Background 
 

Instrumental variables estimation of the model without the lagged dependent variable is 
discussed in the previous section on the HT estimator.  The Arellano et al. (ABB) estimator uses 
GMM instead.  The HT approach is consistent in this setting, but ABB show that efficiency gains are 
available by using a larger set of moment conditions.  In order to present the command structure for 
this estimator, it is necessary to lay out first some of the mathematical formulation of the ABB 
estimator.  Let 
 

   wit  =  [yi,t-1,  x1it′,  x2it′,   f1i′,  f2i′]′   

=  (1   +KX1 + KX2 + KF1 + KF2) × 1  =  K×1  vector 
 

and   Wi  =  

1

2

i

i

i

iT
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  =  the full set of Rhs data for group i, and yi  =  

1
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i

i
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y
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Note that Wi is, in principle, a Ti×K matrix.  However, owing to the lagged dependent variable, only 
Ti-1 observations are available.  To avoid a cumbersome, cluttered notation, we leave this distinction 
embedded in the notation for the moment.  Later, when necessary, we will make it explicit.  It will 
reappear in the formulation of the instrumental variables.  A total of Ti-1 observations will be 
available for constructing the IV estimators.  (Users with very short panels, i.e., two or three 
observations, are warned at this point that this estimator requires at least three periods of data to be 
useable, but four or more will be preferable.)   
 We now form the matrix of instrumental variables.  Readers are referred to Hausman and 
Taylor (1981), Arellano et al. (1991, 1995, 1998), Ahn and Schmidt (1995) and Amemiya and 
MaCurdy (1995) for discussion of the various possibilities.  We will form a matrix Zi consisting of 
Ti-1 rows constructed the same way for Ti-2 observations and a final row that will be different, as 
discussed below.  The matrix will be of the form 
 

   Zi  =  

1

2

i

i

i

′ ′ ′ 
 ′ ′ ′ 
 
 ′ ′ ′ 

z 0 0
0 z 0

0 0 m





   



. 

 
The instrumental variables contained in zit′ can include the following from within the model: 
 

(Z Type 0) xit   (i.e., current values of the time varying variables) 
(Z Type 1) xit and xi,t-1 (i.e., current and one lag of the time varying variables) 
(Z Type 2) xi1,...,xiTi  (i.e., all current, past and future values of the time varying variables) 
(Z Type 3)  xi1,...xi,t   (i.e., all current and past values of the time varying variables) 
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The time invariant variables that are uncorrelated with ui, that is f1i, are always appended at the end 
of the nonzero part of each row.  We should note, it may seem that including x2 in the instruments 
would be invalid.  However, we will be using deviations from group means. While the original 
variables are correlated with ui, by construction, the group mean deviations are not.  The issue of 
correlation between the transformed lagged yit and the deviations of εit is discussed in the papers 
cited.   
 The final row of Zi is important to the construction.  Two possibilities are provided: 
 

(M Type 1)  f1i′ and 1ix   (produces the Hausman and Taylor estimator) 

(M Type 2)  f1i′  and  x1i,1′, x1i,2′,..., x1i,Ti  (Amemiya and MaCurdy). 
 

Note that the m variables are exogenous time invariant variables, f1i, and the exogenous time varying 
variables, either condensed into the single group mean or in the raw form, with the full set of Ti 
observations. 
 As Ahn and Schmidt show, there are potentially huge numbers of additional orthogonality 
conditions in this model owing to the relationship between first differences and second moments. We 
do not consider those.  As it stands, the number of instrumental variables contained in Zi is 
potentially enormous even in a moderately sized model.  The matrix Zi could be huge.  Consider the 
Z Type 3 and M Type 2 forms in a model with 10 time varying right hand side variables and suppose 
Ti is 15.  Then, there are 15 rows and roughly 15×(10×15) or 2,250 columns.  (This makes one 
wonder about the practicality of the Ahn and Schmidt estimator which involves potentially thousands 
of instruments in a model containing only a handful of parameters. The order of the computation 
grows with the square of Ti.) 
 To construct the estimator, we will require a transformation matrix, Hi constructed as 
follows.  Let i denote a Ti × 1 column of ones.  Then,  
 
   Mi  =  I  -  (1/Ti)i i′ 
 
This is the matrix that creates deviations from means.   Let Mi1 denote the first Ti-1 rows of this 
matrix.  Then, finally, 

   Hi  =  
1

1 '

i

iT

 
 
 
  

M

i
 

 
Thus, Hi replaces the last row of Mi with a row with all elements equal to 1/Ti.  The effect is as 
follows:  if qi is Ti observations on a variable, then Hiqi produces qi* in which the first Ti-1 
observations are converted to deviations from group means and the last observation is the group 
mean. 
 Finally, for purposes of GMM estimation, consider three candidates for the covariance 
matrix of vi  =  (vi1,vi2,...,viTi) 
 

(Ω Type 1)  Ω =  σε
2I  (uncorrelated, misspecified by construction) 

(Ω Type 2)  Ω =  σε
2 I  +  σu

2i i′ (variance components, random effects) 

(Ω Type 3)  Ω =  E[vivi′]   (robust, unrestricted, E[εε′] = Σ  ≠ σ2 I) 
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We leave aside for the moment the problem of computing an estimator of Ω.  The ABB estimator of 
δ is a two step GMM estimator in which the two steps are defined by which form of Ω is used. In the 
first step, the consistent, but inefficient estimator based on Ω Type 1 is used to obtain an estimator of 
δ that enables estimation of the appropriate Ω.  At the second step, the more efficient estimator based 
on Ω Type 2 or 3 is used.  (Note, again, this is not going to be ‘fully’ efficient because there remain 
moment conditions based on first differences and higher moments that are not being used - see Ahn 
and Schmidt (1995).)    The ABB estimator is 
 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
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The estimator of the asymptotic covariance matrix for this estimator is the inverse matrix in square 
brackets.  The two step estimator is computed as follows: 
 
Step 1. Computation of δ̂  based on Ω = σε

2I.  (Note, σε
2 is not necessary.  It falls out of the matrix 

product.  After Step 1, a set of residuals iv̂  is computed.  Two estimators of Ω are now 
available.  You may provide specific values for σε

2 and σu
2.  If so, then Type 2 is computed.  

(In this case, the first step is actually superfluous, but results will be reported nonetheless.)  
Otherwise,  

 

1

1 N
i ii ii

'
N

∧ ∧ ∧

=
= ∑ H v v HΩ  

 
Step 2. Recompute the estimator using the new estimator of Ω. 
 
E23.3.2 Command 
 
 The command for this procedure is as follows:  Note that the entire estimator is self 
contained, unlike the HT estimator of the previous section.  Use 
 
 SETPANEL ; … $ 
 REGRESS ; Lhs =  dependent variable 
   ; Rhs =  variables in x1 then  
     variables in x2 then 
     variables in f1 (including one if needed) then 
     variables in f2 
   ; Start = kx1, kx2, kf1, kf2 
   ; Panel  

; DPD (for dynamic panel data)  $ 
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If your model contains a constant term, include it in the list for f1.  This procedure allows unbalanced 
panels, but it is quite intricate to do so.  The panel data specification, 
 

  ; Pds = count variable  
 
assumes each group starts with the first period. If this is not the case, use  
 

  ; Date = date variable, first - last   
for example,     

; Date = year, 1980 - 1987 
 
to specify starting and ending points in the sample.  All dates must fall in that interval.  This allows 
you to change starting dates for specific observation groups with balanced or unbalanced panels.  
Your date variable, year in the example above, will provide the dates for the specific observation.  
We would note, in spite of the additional flexibility this allows, you should not use this estimator 
with panels that have gaps in them.  The lagged values of the variables cannot be placed properly if 
the data set contains gaps.  Results will be unpredictable, and almost certainly unusable. 
 Some of the four sets of variables may not be present in your model.  You will indicate this 
by placing zeros in the ; Start list. Thus, for example, if you have no exogenous time invariant 
variables, you will set KF1 to zero.  (We note, like many of these, the setup is much more 
complicated than the command it requires.) 
 
NOTE:  The model is assumed to contain a lagged dependent variable.  Do not include this on your 
Rhs.  It will be added to your model.  If your model does not contain a lagged dependent variable, 
you should be using the HT estimator described in the previous section. 
 
With the command as given, the default settings for the different arrangements are 
 
 Instruments:   Z Type 1, present and a single lagged value 
   M  Type 1, Hausman and Taylor, group means, not the original data 
  
 Covariances: Ω  Type 3, computed after the first step 
 
You can change the first of these by using 
 
   ; Pattern  =  Z Type, M Type if desired 
 
where the specifications are in the following table: 
 
      M Type = last row of Zi 
  Z Type = instruments  1 = means 2 = all data 
  0 xt, f1         0       0, A 
  1 xt, xt-1, f1        1       1, A 
  2 xt, xt-1,...,x1, f1        P       P, A 
  3 xT, xT-1,...,x1, f1        A       A, A 
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For example, to use all previous values and the Amemiya/MaCurdy form of the last row of Zi, you 
would use 
   ; Pattern  =  P, A 
 
Note the following for this estimator:  
 

• Z Type 3 may only be used with a balanced panel with a fixed starting date. 
 
• This estimator has no handler for missing data. You must set up the sample without missing 

values before invoking the estimator. 
 
• You may use ; Model = kx1,kx2,kf1,kf2 instead of ; Start = kx1,kx2,kf1,kf2. This change 

in format is just for convenience. Both forms are retained to maintain compatibility with 
earlier versions. 

 
• Time dummy variables can be included in the model if desired – they must be created 

separately. However, they are likely to be problematic when constructing the instruments. 
They can proliferate. 

 
 This estimator generates huge numbers of moment conditions, particularly if you use the ‘A’ 
pattern – that is, ALL moment conditions in the sample.  For example, suppose that Ti = 10, KX1 = 3, 
KX2 = 1, KF1 = 2 (including one) and KF2 = 1, which does not seem like a large model.  Then, the 
number of moment conditions (columns in Zi) is 
  

KZ = 8 periods of lagged data after the one dropped initially × 
(8 groups of available exogenous variables × 4 variables in x1 and x2 + 2 variables in f1) + 
the number of variables in the last row, which might be KX1+KF1 = 5 for M Type 1 

  = 277 columns 
  
This does not seem like a large model, but it is.  The problem is that the number of columns 
proliferates with the square of the number of periods.  The Ahn and Schmidt (1995) approach would 
add roughly 10(10(9)/2 + 8) = 530 additional columns to Zi for a total approaching 900, for the 
purpose of estimating eight parameters!  A matrix with 900 columns might, in itself, present no 

obvious obstacle.  However, note that the center matrix in the computation of 
∧

δ  is square with this 
number of rows, so in order to compute the Ahn and Schmidt estimator, one would have to 
manipulate a 900×900 inverse matrix.  Ahn and Schmidt do not mention this practical burden.   

Arellano and Bond (1998) mention briefly the possibility that Zi may have many columns, 
and one might have to drop some of them (some ‘less informative instruments’). We begin this 
paring by dropping the Ahn and Schmidt estimator.  Then, Z Type 1 is used to produce a fairly small 
set of instruments.  Given that the model is already vastly overidentified, it seems that Type 1, a 
single lagged value of the exogenous variables, ought to be sufficient.  For the model size considered 
here, this would produce an order of 9(5+5) + 5 or 95 columns in Zi.  This is still very large, but 
manageable.  The end result of this discussion is that this estimator is practical only when Ti is 
relatively small, and best with small Ti and quite large N.  We recommend using only the default 
pattern, ‘1,’ that is, a single lagged value. 
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 Finally, if you wish to specify the Ω Type 2, GLS estimator, then you must provide values 
for σu

2 and σε
2, in that order, after KF2 in the ; Start specification (which will now contain six values 

instead of four.)  You might use a prior GLS estimator to estimate the variance components in your 
model.  The resulting command for the DPD estimator would be 
 
 REGRESS ; Lhs  = dependent variable  
   ; Rhs = all independent variables 
   ; Pds  = the value  
   ; Panel  
   ; DPD  

; Start = kx1,kx2,kf1,kf2,s2u,s2e $ 
 
 There are no other options for this model other than those already mentioned.  After 
estimation, you may use 
 
   ; List    to display fitted values 
   ; Keep = name to retain fitted values 
   ; Res  = name to retain residuals 
 
all as usual for regression estimators. 
 
E23.3.3 A Test Statistic for the Specification 
 
 Bhargava and Sargan (1983) propose a test statistic for the specification of the model.  This 
is computed as part of the results for the estimator. See the results below. The computation is 
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The statistic has a limiting chi squared distribution with degrees of freedom equal to the number of 
overidentifying restrictions (moment conditions).  As noted earlier, in these models, there are 
typically few parameters and very many moments, so that the degrees of freedom is likely to be quite 
large. 
 
E23.3.4 Technical Notes 
 
 The earlier result lays out the computation of the estimator and the asymptotic covariance 
matrix.  A detail to be added concerns the precise form of the matrices of instrumental variables.  
Your data for this estimator are assumed to consist of groups of Ti observations, 
 
   Datait =  yit,  x1it,  x2it, f1i, f2i, t = 1,...,Ti. 
 
That is, each data group contains Ti rows.  We assume that the first row contains known initial values 
for all variables, but since there is no yi0 in the data set, the model applies to observations two 
through Ti.  The general form of the model is 
 

yit  =  αyi,t-1  +  β0  +  β1′x1it  +  β2′x2it  +  γ1′f1i  +  γ2′f2i  +  εit  +  ui, t = 2,...,Ti. 
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 The matrices of instruments are assembled as follows:  (Note that any of x2it, f1i and f2i may 
not actually be present in your model.  First, define the vector placed in the last row. 
 
 mi′ =  [ 1 'xi   f1i′  ]   for M Type 1 (KM = KF1 + KX1) 

or  mi′ =  [x1i2, ..., x1iT(i)  f1i′] for M Type 2   (KM = KF1 + (Ti - 1)KX1) 
 
Type 1 uses the group mean, including only the observations used in the computation of the 
coefficients (i.e., dropping the first observation in each group) – this is (1 × KX1+KF1). Type 2 uses 
the original data that would be used to compute the group mean, so this vector has (Ti-1) × KX1+KF1 
elements. 
 The matrices of instrumental variables contain Ti - 1 rows, once again, assuming that the first 
row of data contains only initial values.  Rows 1 to Ti - 2 are built up from the data set, while the last 
row contains only mi′ and zeros.  The particular forms of these matrices are as follows, where we 
illustrate with a model in which Ti = 4.  This will be sufficiently general to extend to other cases.  
With Ti = 4, there are three observations to use for estimation in each group, as one is lost for the 
lagged dependent variable.  In the following, let xit′ denote [x1it’,x2it′], the full set of time varying 
right hand side variables.  Then,  
 
Z Type 0, current data only: 
 

 
1 1

2 1

i i

i i

i

′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ 

x f 0 0 0
0 0 x f 0
0 0 0 0 m

 

 
This matrix has number of columns equal to (Ti-2)×[(KX1+KX2) + KF1] + KM. 
 
Z Type 1, current and one period lagged data: 
 

1 2 1

2 3 1

i i i

i i i

i

′ ′ ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ ′ ′ 

x x f 0 0 0 0
0 0 0 x x f 0
0 0 0 0 0 0 m

 

 
This matrix has number of columns equal to (Ti-2)×[2(KX1+KX2) + KF1] + KM. 
 
Z Type 2, current past and future data: 
 

1 2 3 4 1

1 2 3 4 1

i i i i i

i i i i i

i

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ 
 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ 

x x x x f 0 0 0 0 0 0
0 0 0 0 0 x x x x f 0
0 0 0 0 0 0 0 0 0 0 m

 

 
This matrix has number of columns equal to (Ti-2)×[Ti(KX1+KX2) + KF1] + KM. 
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Z Type 3, current and lagged data: 
 

1 2 1

1 2 3 1

' ' ' ' '
' ' ' '
' ' ' ' ' ' '

i i i

i i i i

i

′ ′ ′ 
 ′ ′ ′ ′ 
 ′ 

x x f 0 0 0 0 0
0 0 0 x x x f 0
0 0 0 0 0 0 0 m

 

 
This matrix has number of columns equal to [Ti×(Ti-1)/2  -  1](KX1+KX2) + (Ti-2)KF1 + KM. 
 The matrix Wi consists of Ti - 1 rows of the right hand side data for the observations in 
group i. 
 
E23.3.5 An Application 
 
 To illustrate the Arellano, Bond and Bover estimator, we extend the Cornwell and Rupert 
log wage equation examined in the previous section.  The model is now 
 
 logwage it =   αlogwagei,t-1 

   + β1,1wks it   +  β1,2south it +  β1,3smsa it  +  β1,4ms it 

   + β2,1exp it +  β2,2expit
2 +  β2,3occ it   +  β2,4ind it   +  β2,5unionit 

   +  γ1,1  +  γ1,2femi  +  γ1,4blki 

   + γ2,1edi        +  εit + ui 
 
The commands used to specify the model are 
 
 CREATE ; i = Trn(7,0) $ 
 SETPANEL ; Group = i ; Pds = ti $ 
 NAMELIST  ; x1 = wks,south,smsa,ms $ 
 NAMELIST  ; x2 = exp,exp*exp,occ,ind,union $ 
 NAMELIST  ; f1 = one,fem,blk $ 
 NAMELIST  ; f2 = ed $ 
 NAMELIST ; x = x1,x2 $ 
 NAMELIST ; f  = f1,f2 $ 
 NAMELIST ; exog = x1,f1 $ 
 NAMELIST ; all = x1,x2,f1,f2 $ 
 CALC  ; kx1 = Col(x1) ; kx2 = Col(x2)  
   ; kf1 = Col(f1) ; kf2 = Col(f2) $ 
 REGRESS ; Lhs = lwage 
   ; Rhs = all 
   ; Start = kx1,kx2,kf1,kf2 
   ; Panel  
   ; DPD  
   ; List $ 
 



E23: Hausman-Taylor and Arellano-Bond Estimators  E-484 

Results are given for the first step IV and the second step GMM estimators.  The ; List request 
generates an extremely long list. We show only a few lines of this.  One would normally not use this 
option with a large sample such as this one.  Finally, the initial, one step instrumental variable 
estimates are shown last.  They would appear at the beginning of the displayed results when the 
program is used. 
 
----------------------------------------------------------------------------- 
Arellano/Bond/Bover IV Estimator for Dynamic 
Panel Data Models 
2nd step GMM/IV with robust VC 
Pattern requested for instrumental variables is: 
[f(1)] + current and one lag of [x(1),x(2)] 
Hausman and Taylor form for last row of Z matrix 
Bhargava/Sargan Spec. Test:  3515.00305 
Degrees of freedom =  98, Prob = .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   LWAGE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Exogenous variables uncorrelated with u(i) 
     WKS|     .00908***      .00040    22.97  .0000      .00831    .00986 
   SOUTH|     .11813***      .00902    13.09  .0000      .10045    .13582 
    SMSA|    -.13325***      .01438    -9.27  .0000     -.16144   -.10506 
      MS|    -.19757***      .01085   -18.22  .0000     -.21882   -.17631 
        |Exogenous variables may be correlated with u(i) 
     EXP|     .10674***      .00190    56.11  .0000      .10301    .11047 
 EXP*EXP|        0.0    .....(Fixed Parameter)..... 
     OCC|     .05345***      .01072     4.99  .0000      .03245    .07445 
     IND|    -.17999***      .01253   -14.36  .0000     -.20455   -.15543 
   UNION|     .13734***      .01067    12.87  .0000      .11643    .15825 
        |Time invariant variables uncorrelated with u(i) 
Constant|    8.44355***      .16780    50.32  .0000     8.11466   8.77244 
     FEM|   -1.19378    .....(Fixed Parameter)..... 
     BLK|    -.09318***      .02595    -3.59  .0003     -.14403   -.04233 
        |Time invariant variables correlated with u(i) 
      ED|     .68292***      .00869    78.57  .0000      .66589    .69996 
        |Lagged value of the dependent variable 
LWAGElag|   -1.88041    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Predicted values and residuals for a fitted dynamic panel model 
=============================================================== 
Individual  Period         Actual     Prediction       Residual 
         1       1       5.560680 [No data, T=0] [No data, T=0] 
         1       2       5.720310       4.634063       1.086247 
         1       3       5.996450       4.392103       1.604347 
         1       4       5.996450       4.310541       1.685909 
         1       5       6.061460       4.056660       2.004800 
         1       6       6.173790       3.816224       2.357566 
         1       7       6.244170       3.751004       2.493166 
         2       1       6.163310 [No data, T=0] [No data, T=0] 
         2       2       6.214610       8.671972      -2.457362 
         2       3       6.263400       8.469102      -2.205702 
         2       4       6.543910       8.232034      -1.688124 
         2       5       6.697030       8.130897      -1.433867 
         2       6       6.791220       8.017610      -1.226390 
         2       7       6.815640       7.916062      -1.100422 
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         3       1       5.652490 [No data, T=0] [No data, T=0] 
         3       2       6.436150       6.968390       -.532240 
         3       3       6.548220       6.744594       -.196374 
         3       4       6.602590       6.690278       -.087688 
         3       5       6.695800       6.589141        .106659 
         3       6       6.778780       6.609846        .168934 
         3       7       6.860660       6.517380        .343280 
 
These are the initial, one step instrumental variable estimates of the dynamic model. 
 
----------------------------------------------------------------------------- 
Arellano/Bond/Bover IV Estimator for Dynamic 
Panel Data Models 
One step GMM/IV estimator 
Pattern requested for instrumental variables is: 
[f(1)] + current and one lag of [x(1),x(2)] 
Hausman and Taylor form for last row of Z matrix 
Bhargava/Sargan Spec. Test:     5.08942 
Degrees of freedom =  98, Prob =1.00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   LWAGE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Exogenous variables uncorrelated with u(i) 
     WKS|     .00122         .00101     1.21  .2268     -.00076    .00320 
   SOUTH|    -.00390         .01981     -.20  .8442     -.04273    .03494 
    SMSA|     .01883         .04095      .46  .6457     -.06143    .09908 
      MS|    -.04553*        .02653    -1.72  .0861     -.09753    .00646 
        |Exogenous variables may be correlated with u(i) 
     EXP|     .00849*        .00456     1.86  .0630     -.00046    .01743 
 EXP*EXP|        0.0    .....(Fixed Parameter)..... 
     OCC|    -.04102         .02684    -1.53  .1264     -.09362    .01158 
     IND|     .04169         .03145     1.33  .1850     -.01995    .10333 
   UNION|    -.00958         .02745     -.35  .7272     -.06338    .04423 
        |Time invariant variables uncorrelated with u(i) 
Constant|     .91945*        .52122     1.76  .0777     -.10213   1.94102 
     FEM|    -.08323***      .02983    -2.79  .0053     -.14169   -.02477 
     BLK|    -.06278         .06108    -1.03  .3040     -.18249    .05693 
        |Time invariant variables correlated with u(i) 
      ED|     .00472         .03680      .13  .8979     -.06740    .07684 
        |Lagged value of the dependent variable 
LWAGElag|     .83916***      .04756    17.65  .0000      .74595    .93237 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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E24: Linear Systems of Regression Equations – 
SURE and 3SLS 

 
E24.1 Introduction 
 
 This chapter and Chapter E25 present methods of estimating the parameters of the regression 
system 
   y1 =  f1(x1,β)  +  ε1 

   y2 =  f2(x2,β)  +  ε2 
   ...  

   yM =  fM(xM,β)  +  εM 

or    y =  f(X,β)  +  ε,. 
 
We assume  E[ε|all x]   =  0   

and     E[εε′|all x]  =  Σ. 
 
As stated, the model is a possibly nonlinear system of seemingly unrelated regressions.  However, 
for some settings (e.g., the linear model of Section E24.4), the x vectors on the right hand sides of 
the equations may include endogenous variables, yj, from other equations.  That is, we also 
accommodate systems of simultaneous equations.  The linear models also allow autocorrelation of 
the disturbances.  Systems of nonlinear equations are shown in Chapter E25. 
 

E24.2 Linear SURE Models Estimated by GLS 
 
 The seemingly unrelated linear regression equations (SURE) model is: 
 
   y1  =  X1β1  +  ε1, 

   y2   =  X2β2  +  ε2, 

   … 

   yM   =  XMβM  +  εM. 
 
   E[εi|X1,...]  =  0, 

   E[εiεj′|X1,...] =  σijI. 
 
There are M, up to 20, equations.  There are n observations in total.  There must be the same number 
of observations for all equations. The disturbances across equations are allowed to be freely 
correlated.  The parameter vector obtained by stacking βm may have up to 150 parameters. 
 Collect the M disturbances for a particular observation in a column vector 
 
   εt  =  [εt1,εt2, ... εtM]′. 
 
The model specifies E[εt|X1,...]  =  0,  E[εt εt′ |X1,...]  =  Σ. 
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The estimator also allows for first order autocorrelation, 
 
   εi,t  =  ρi εi,t-1  +  ui,t. 
 
 There are two estimators for this model in LIMDEP.  The two step (or iterative) feasible GLS 
procedure (FGLS) uses Zellner’s technique.  The second is maximum likelihood, which is suitable for 
constrained, singular systems, such as translog demand systems.  This is presented in Section E24.3. 
 

E24.2.1 Command for SURE Estimation 
 

 The command for the GLS estimator for a system of regression equations is: 
 
 SURE  ; Lhs = y1, y2, ..., ym   (your list of Lhs variables) 
   ; Eq1 = list of Rhs variables for first equation 
   ; Eq2 = list of Rhs variables for second equation 
   ; ... 
   ; EqM = list of Rhs variables for Mth equation $ 
 
HINT:  This application is a convenient one for namelists.  Namelists will be particularly useful if 
all of the equations share a set of variables.  See Chapter R6 for details. 
 
HINT:  If all equations have the same set of Rhs variables and if there are no linear constraints 
imposed, then SURE is the same as equation by equation ordinary least squares.  If linear constraints 
are imposed, this is no longer true. 
 
E24.2.2 Options for the Generalized Least Squares Procedure 
 
 If no further specifications are given on the command, the procedure is allowed to iterate to 
convergence.  This is a globally concave problem for which convergence is guaranteed unless the 
data are very badly conditioned.  You can restrict the number of iterations with 
 
   ; Maxit  =  maximum iterations 
 
To use Zellner’s efficient two step estimator for the system, that is, using the OLS residuals to 
estimate Σ, use 
   ; Maxit = 0 
 

To obtain equation by equation OLS estimates, use 
 
   ; Maxit = 99 
 
 Linear constraints may be imposed on the coefficients in the same way as described for the 
single equation, linear regression model in Chapter E8.  The parameters of the equations are stacked 
as β = [β1′,β2′,...,βM′]′, then the constraints are imposed as if this were a single equation model.  For 
example, the following is a part of the model estimated in our example below: 
 

 SURE   ; Lhs = igm,ic  
   ; Eq1 = one,fgm,cgm   
   ; Eq2 = one,fc,cc 
   ; CLS:  b(4) - b(1) = 0, b(5) - b(2) = 0, b(6) - b(3) = 0 $ 
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The linear restriction imposes cross equation equality of the corresponding pairs of coefficients.  
(With this restriction imposed, the model is the TSCS model presented in Chapter E15.)  (The new 
specification of restrictions and hypothesis tests shown in Chapter E8, using the variable names, is 
not useable here because the program has no way to know which equation to use if a variable 
appears in more than one equation.)   
 With restrictions imposed, you will see two full sets of output.  The initial set, without the 
restrictions imposed, is presented in full.  Then, the restricted least squares estimates are presented. 
 
TECHNICAL NOTE:  The restricted GLS estimator is not the maximum likelihood estimator, even 
if it is allowed to iterate to convergence.  The RGLS estimator is computed using the restricted least 
squares formula, after the unrestricted estimates are obtained.  Therefore, the RGLS estimator is a 
function of the unrestricted estimator, not an iterative estimator in its own right. 
 
 Autocorrelation may be of two forms: 
 
   Model 1:  εi,t  =  ρi εi,t-1  +  ui,t (equation specific autocorrelation) 
   Model 2:  εi,t  =  ρεi,t-1  +  ui,t (common autocorrelation). 
 
Model 2 differs in that the same correlation coefficient is used for all equations.  For these 
estimators, simply add 
 
   ; Model = 1 
or   ; Model = 2 
 
to the command.  The autocorrelation coefficients are estimated by using ri  =  1 - DWi /2, where DWi 
is the Durbin-Watson statistic computed using the single equation, equation by equation ordinary 
least squares residuals.  If you specify ; Model = 2, the common estimate is the simple (unweighted) 
average of the M individual estimates. 
 The estimated Σ is a ‘weighting’ matrix which greatly influences the final results.  You can 
specify your own, rather than allowing LIMDEP to use the second step OLS residuals to form one.  
To specify a particular Σ matrix, use 
 
   ; Sigma = name of matrix    
   ; Maxit = 1 
 
The setting of the maximum iterations at 1 is needed to prevent LIMDEP from recomputing Σ at 
another iteration.  If necessary, you may also weight observations with 
 
   ; Wts  =  weighting variable 
 
 The estimated disturbance covariance matrix, S is not displayed in the final output unless 
you request it with 
   ; List 
 
Note that this is not the same as a request for a listing of the fitted values. 
 Because this is a multiple equation estimator, it does not produce a set of fitted values or 
residuals.  But, these are simple to obtain just by extracting the coefficients from the saved results 
and using CREATE with each parameter vector to create the linear function of the variables. 
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E24.2.3 Model Output for the GLS Estimator 
 
 Initial results include a trace of the log likelihood function for the iterations.  Then, for each 
equation, the usual sorts of regression results, including fit measures, coefficient estimates, etc. are 
given.  If the model is fit with a correction for autocorrelation, the diagnostic statistics include the 
autocorrelation coefficient estimated using the OLS residuals and the Durbin-Watson statistic and 
estimated autocorrelation for the corrected GLS residuals.  That is, the values displayed are for  
 
   û i,t  =  ei,t  -  riei,t-1. 
 
The other saved results for this estimator are: 
 
 Matrices: b   =  stacked coefficient vector, 
   varb   =  estimated asymptotic covariance matrix for B, 
   sigma   =  S, the final sample estimate of Σ. 
 

Scalars: logl   =  log likelihood   
     =  -(MT/2)[1 + log2π  +  log det(S)], 
   traceofs =  trace(S). 
 
In addition, this model creates a coefficient matrix named b_sure that is built up from the separate 
coefficient vectors, into a matrix whose each column corresponds to an equation.   
 Consider a small example using the Grunfeld data: 
 
   Iit  =  α1   +  α2Cit      + ε1t, 

   Fit  =  β1  +  β2Yeart  +  ε2t. 
 
 SAMPLE ; 1-200 $ 
 SURE  ; Lhs = i,f 
       ; Eq1 = one,c 
       ; Eq2 = one,year $ 
 
The estimates for the two equations using the 200 observations will be 
 
Criterion function for GLS is log-likelihood. 
Iteration    0, GLS           =   -2946.243 
Iteration    1, GLS           =   -2913.801 
Iteration    2, GLS           =   -2911.505 
Iteration    3, GLS           =   -2911.333 
Iteration    4, GLS           =   -2911.320 
Iteration    5, GLS           =   -2911.319 
Iteration    6, GLS           =   -2911.319 
Iteration    7, GLS           =   -2911.319 
Iteration    8, GLS           =   -2911.319 
GLS            has converged. 
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----------------------------------------------------------------------------- 
Estimates for equation: I......................... 
Generalized  least squares regression ............ 
LHS=I        Mean                 =      145.95825 
             Standard deviation   =      216.87530 
             Number of observs.   =            200 
Model size   Parameters           =              2 
             Degrees of freedom   =            198 
Residuals    Sum of squares       =    .626965E+07 
             Standard error of e  =      177.94630 
Fit          R-squared            =         .32340 
             Adjusted R-squared   =         .31998 
Model test   F[  1,   198] (prob) =    94.6(.0000) 
Diagnostic   Log likelihood       =    -1319.07904 
             Restricted(b=0)      =    -1359.15096 
             Chi-sq [  1]  (prob) =  80.1(  .0000) 
Info criter. Akaike Info. Criter. =       10.37291 
Not using OLS or no constant. Rsqrd & F may be < 0 
Log|W|      23.4374 Log-Likelihood  =   -2911.3194 
Durbin-Watson  .202 Autocorrelation =        .8989 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    81.8294***    14.28533     5.73  .0000     53.8307  109.8282 
       C|     .23234***      .02451     9.48  .0000      .18431    .28037 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Estimates for equation: F......................... 
Generalized  least squares regression ............ 
LHS=F        Mean                 =     1081.68110 
             Standard deviation   =     1314.46969 
             Number of observs.   =            200 
Model size   Parameters           =              2 
             Degrees of freedom   =            198 
Residuals    Sum of squares       =    .340175E+09 
             Standard error of e  =     1310.74576 
Fit          R-squared            =         .00066 
             Adjusted R-squared   =        -.00439 
Model test   F[  1,   198] (prob) =      .1(.7177) 
Diagnostic   Log likelihood       =    -1718.45298 
             Restricted(b=0)      =    -1719.52417 
             Chi-sq [  1]  (prob) =   2.1(  .1433) 
Info criter. Akaike Info. Criter. =       14.36665 
Not using OLS or no constant. Rsqrd & F may be < 0 
Log|W|      23.4374 Log-Likelihood  =   -2911.3194 
Durbin-Watson  .155 Autocorrelation =        .9227 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       F|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1168.17       18282.87     -.06  .9491   -37001.94  34665.60 
    YEAR|    1.15703        9.40223      .12  .9021   -17.27100  19.58507 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The additional matrix created, b_sure, will be as follows: 
 

 
Figure E24.1  Coefficient Matrix 

 
Note that although it is clear from the specification of the model, the matrix, itself, contains no 
internal information to identify which variable corresponds to each row.  The set of variables is 
constructed by moving through the equation lists, in order, and assembling the union of all of the sets 
of names in the order in which they occur in the stacked list. 
 The labels for the Last Model estimated are constructed from the equation specification.  
Each name is constructed as the first three characters from the name of the Lhs variable, then an 
underscore, then the first four characters of the Rhs variable.  In the example, 
  
 SURE   ; Lhs = igm,ic ; Eq1 = one,fgm,cgm ; Eq2 = one,fc,cc $ 
 
the set of labels would be [igm_one, igm_fgm, igm_cgm, ic_one, ic_fc, ic_cc].  (See Section R9.7.3 
for use of the Last Model.) 
 There are no residuals or fitted values produced internally.  But, you can retrieve these from 
the other results.  In most cases, this will involve some setup that is specific to the model at hand.  
 
E24.2.4 The Translog System 
 
 The translog function and some related models are estimated in various forms in the setting 
of multivariate regressions.  Normally, the restrictions in the model are cross equation equality 
restrictions not usually viewed as testable, but as part of the model.  Christensen and Greene’s (1976) 
homothetic translog cost function provides an example.  The model is: 
 
 log(c/pf) = α   +  βlogy + γ(logy)2/2 +  δk log(pk/pf)  +  δl log(pl/pf) 

                           +  θkk log(pk/pf)2/2  +  θll log(pl/pf)2/2 +  θkl log(pk/pf)log(pl/pf) +  εc, 

 sk   =   δk   +  θkk log(pk/pf)      +  θkl log(pl/pf)   +       εk, 

 sl   =   δl    +  θkl log(pk/pf)       +  θll log(pl/pf)   +       εl, 
  
where   c  =  cost,    
 y  =  output, 
 sk  =  cost share of capital,  
 sl  =  cost share of labor, 
 pk, pl, and pf  are the unit prices for capital, labor, and fuel, respectively. 



E24: Linear Systems of Regression Equations – SURE and 3SLS   E-492 

The restriction of linear homogeneity in the input prices is imposed by normalizing cost and the other 
prices by the price of fuel.  Using the obvious mnemonics for the variables in the model, and assuming 
that all variables are in log form, the commands for estimating a model such as this would be:  
 
 SURE   ; Lhs =  cost,sk,sl 
   ; Eq1 =  one,y,y2,lpkf,lplf,lpkf2,lpkl2,lpkfplf 
   ; Eq2 =  one,lpkf,lplf 
   ; Eq3 =  one,lpkf,lplf 
   ; CLS: b(9)   - b(4) = 0,   ?  δk   in 1st and 2nd equation 
     b(10) - b(6)  = 0,   ?  θkk  in 1st and 2nd equation 
     b(11) - b(8)  = 0,   ?  θkl  in 1st and 2nd equation 
     b(12) - b(5)  = 0,   ?  δl   in 1st and 3rd equation 
     b(13) - b(8)  = 0,   ?  θkl  in 1st and 3rd equation 
     b(14) - b(7)  = 0   $  θll  in 1st and 3rd equation 
 
 This imposes all of the necessary constraints across the second and third equations.  It is 
generally observed that very large gains in efficiency often follow when the cross equation 
restrictions are imposed.  This underscores the substantial collinearity in the unrestricted equation 
and raises the question of whether it can be estimated at all.  In practical terms, if the data in the 
unrestricted equations are so collinear that the model cannot be estimated, then the restricted 
estimates will not be computable either.  Ultimately, they are functions of the unrestricted estimates. 
But, for systems such as the translog model, this problem is circumvented by the estimator described 
in the next section. 
 As specified above, one is not guaranteed to obtain the same parameter estimates if a 
different variable is chosen as the numeraire.  This is normally handled by obtaining maximum 
likelihood estimates, rather than two step GLS estimates.  As noted earlier, using SURE in the 
fashion specified above does not produce maximum likelihood estimators, even with iteration.  The 
problem is easily solved using the direct maximum likelihood estimator described in Section E24.3. 
 
E24.2.5 Generalized Least Squares 
 
 In Chapter E15, a Time Series/Cross Section model was fit using 20 years of data for five 
firms.  The following continues that example by relaxing the constraint of equal parameter vectors 
across equations.  The model commands are as follows:  (We begin by transforming the first 100 
observations in the raw data set to the 20 observations used here.)  First, move the data up to the first 
20 rows of the data set. 
 

CREATE ; igm = i  ; fgm = f         ; cgm = c 
; ich  = i[+20] ; fch  = f[+20]  ; cch  = c[+20] 
; ige  = i[+40] ; fge  = f[+40]  ; cge  = c[+40] 
; iwe  = i[+60] ; fwe  = f[+40]  ; cwe  = c[+40] 
; ius  = i[+80] ; fus  = f[+40]  ; cus = c[+40] $ 

SAMPLE ; 1-20 $ 
 NAMELIST ; xgm = one,fgm,cgm ; xch = one,fch,cch 
    ; xge  = one,fge,cge ; xwe = one,fwe,cwe 
    ; xus  = one,fus,cus ; y = igm,ich,ige,iwe,ius $ 
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Fit the basic model by iterated FGLS. 
 
 SURE  ; Lhs = y  
   ; Eq1 = xgm ; Eq2 = xch ; Eq3 = xge ; Eq4 = xwe ; Eq5 = xus $ 
 
Estimate the model with autocorrelation, with separate coefficients for each equation. 
 
 SURE  ; Lhs = y  
   ; Eq1 = xgm ; Eq2 = xch ; Eq3 = xge ; Eq4 = xwe ; Eq5 = xus  
   ; Model = 1 $ 
 
Constrained FGLS imposes cross equation equality of coefficient vectors 
 
 SURE  ; Lhs = y  
   ; Eq1 = xgm ; Eq2 = xch ; Eq3 = xge ; Eq4 = xwe ; Eq5 = xus  
   ; CLS: b(4)-b(1) = 0, b(7)-b(1) = 0, b(10)-b(1) = 0, b(13)-B(1) = 0, 
     b(5)-b(2) = 0, b(8)-b(2) = 0, b(11)-b(2) = 0, b(14)-B(2) = 0, 
     b(6)-b(3) = 0, b(9)-b(3) = 0, b(12)-b(3) = 0, b(15)-B(3) = 0 $ 
 
 The listing below shows parts of the output from these commands.  In the first, the full set of 
results is shown for the set of equations.  For the autocorrelation model, the results which have 
changed are listed.  Finally, in the constrained model, only one coefficient vector is estimated, so 
only the diagnostic statistics are shown.  Some superfluous lines of results are omitted in each case.  
 
The first is the base case, iterated FGLS estimates. 
 
Criterion function for GLS is log-likelihood. 
Iteration    0, GLS           =   -473.1602 
Iteration    1, GLS           =   -469.5564 
Iteration    2, GLS           =   -469.4238 
Iteration    3, GLS           =   -469.4187 
Iteration    4, GLS           =   -469.4182 
Iteration    5, GLS           =   -469.4182 
Iteration    6, GLS           =   -469.4182 
Iteration    7, GLS           =   -469.4182 
GLS            has converged. 
 
----------------------------------------------------------------------------- 
Estimates for equation: IGM....................... 
Generalized  least squares regression ............ 
LHS=IGM      Mean                 =      608.02000 
             Standard deviation   =      309.57463 
             Number of observs.   =             20 
Model size   Parameters           =              3 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        122985. 
             Standard error of e  =       85.05539 
Fit          R-squared            =         .92054 
             Adjusted R-squared   =         .91119 
Model test   F[  2,    17] (prob) =    98.5(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Log|W|      32.7524 Log-Likelihood  =    -469.4182 
Durbin-Watson  .986 Autocorrelation =        .5072 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     IGM|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -179.671**     86.11059    -2.09  .0369    -348.445   -10.898 
     FGM|     .12491***      .02072     6.03  .0000      .08429    .16552 
     CGM|     .37993***      .03249    11.70  .0000      .31625    .44360 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Estimates for equation: ICH....................... 
Generalized  least squares regression ............ 
LHS=ICH      Mean                 =      410.47500 
             Standard deviation   =      125.39943 
             Number of observs.   =             20 
Model size   Parameters           =              3 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        139449. 
             Standard error of e  =       90.56989 
Fit          R-squared            =         .45090 
             Adjusted R-squared   =         .38630 
Model test   F[  2,    17] (prob) =     7.0(.0061) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Log|W|      32.7524 Log-Likelihood  =    -469.4182 
Durbin-Watson 1.100 Autocorrelation =        .4501 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     ICH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    60.4012       98.22032      .61  .5386   -132.1071  252.9095 
     FCH|     .11561**       .04749     2.43  .0149      .02253    .20869 
     CCH|     .41414***      .10911     3.80  .0001      .20029    .62800 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Estimates for equation: IGE....................... 
Generalized  least squares regression ............ 
LHS=IGE      Mean                 =      102.29000 
             Standard deviation   =       48.58450 
             Number of observs.   =             20 
Model size   Parameters           =              3 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        12073.6 
             Standard error of e  =       26.64977 
Fit          R-squared            =         .68329 
             Adjusted R-squared   =         .64602 
Model test   F[  2,    17] (prob) =    18.3(.0001) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Model was estimated on Jun 09, 2011 at 10:47:05 AM 
Log|W|      32.7524 Log-Likelihood  =    -469.4182 
Durbin-Watson  .947 Autocorrelation =        .5265 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     IGE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -23.1643       25.57100     -.91  .3650    -73.2826   26.9539 
     FGE|     .03825***      .01207     3.17  .0015      .01460    .06190 
     CGE|     .12797***      .02208     5.79  .0000      .08469    .17125 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Estimates for equation: IWE....................... 
Generalized  least squares regression ............ 
LHS=IWE      Mean                 =       86.12350 
             Standard deviation   =       42.72556 
             Number of observs.   =             20 
Model size   Parameters           =              3 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        4918.21 
             Standard error of e  =       17.00902 
Fit          R-squared            =         .83318 
             Adjusted R-squared   =         .81355 
Model test   F[  2,    17] (prob) =    42.5(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Model was estimated on Jun 09, 2011 at 10:47:05 AM 
Log|W|      32.7524 Log-Likelihood  =    -469.4182 
Durbin-Watson 1.479 Autocorrelation =        .2603 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     IWE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -34.5394*      18.24896    -1.89  .0584    -70.3067    1.2279 
     FWE|     .03521***      .00898     3.92  .0001      .01762    .05281 
     CWE|     .13070***      .01509     8.66  .0000      .10112    .16028 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Estimates for equation: IUS....................... 
Generalized  least squares regression ............ 
LHS=IUS      Mean                 =       61.80250 
             Standard deviation   =       15.16693 
             Number of observs.   =             20 
Model size   Parameters           =              3 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        1153.98 
             Standard error of e  =        8.23900 
Fit          R-squared            =         .68938 
             Adjusted R-squared   =         .65284 
Model test   F[  2,    17] (prob) =    18.9(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Log|W|      32.7524 Log-Likelihood  =    -469.4182 
Durbin-Watson 2.158 Autocorrelation =       -.0791 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     IUS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    18.1185**      8.00495     2.26  .0236      2.4290   33.8079 
     FUS|     .01513***      .00385     3.92  .0001      .00757    .02268 
     CUS|     .03579***      .00680     5.27  .0000      .02247    .04911 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Iteration    1, GLS           =   -461.9742 
Iteration    2, GLS           =   -461.9118 
Iteration    3, GLS           =   -461.9110 
Iteration    4, GLS           =   -461.9110 
Iteration    5, GLS           =   -461.9110 
GLS            has converged. 
 
----------------------------------------------------------------------------- 
Estimates for equation: IGM....................... 
Generalized  least squares regression ............ 
LHS=IGM      Mean                 =      608.02000 
             Standard deviation   =      309.57463 
             Number of observs.   =             20 
Model size   Parameters           =              3 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        81395.8 
             Standard error of e  =       69.19530 
Fit          R-squared            =         .94741 
             Adjusted R-squared   =         .94122 
Model test   F[  2,    17] (prob) =   153.1(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Log|W|      32.0017 Log-Likelihood  =    -461.9110 
Durbin-Watson 1.423 Autocorrelation =        .2886 
RHO used for AR(1) corrected FGLS  =       .531273 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     IGM|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -46.5149       79.64759     -.58  .5592   -202.6213  109.5915 
     FGM|     .09281***      .01701     5.46  .0000      .05947    .12616 
     CGM|     .40669***      .04276     9.51  .0000      .32288    .49049 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Criterion function for GLS is log-likelihood. 
Iteration    0, GLS           =   -473.1602 
Iteration    1, GLS           =   -469.5564 
Iteration    2, GLS           =   -469.4238 
Iteration    3, GLS           =   -469.4187 
Iteration    4, GLS           =   -469.4182 
Iteration    5, GLS           =   -469.4182 
Iteration    6, GLS           =   -469.4182 
Iteration    7, GLS           =   -469.4182 
GLS            has converged. 
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----------------------------------------------------------------------------- 
Estimates for equation: IGM....................... 
Generalized  least squares regression ............ 
LHS=IGM      Mean                 =      608.02000 
             Standard deviation   =      309.57463 
             Number of observs.   =             20 
Model size   Parameters           =              3 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =    .327447E+07 
             Standard error of e  =      438.88021 
Fit          R-squared            =       -1.11562 
             Adjusted R-squared   =       -1.36452 
Not using OLS or no constant. Rsqrd & F may be < 0 
Log|W|      40.8290 Log-Likelihood  =    -550.1839 
Durbin-Watson  .050 Autocorrelation =        .9752 
Wald test:Chi-squared[12]=2038.6522, Prob =  .0000 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     IGM|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -120.093***     5.89234   -20.38  .0000    -131.642  -108.544 
     FGM|     .07445***      .00288    25.82  .0000      .06880    .08010 
     CGM|     .05133***      .00541     9.48  .0000      .04072    .06195 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 The figure below plots the residuals equation by equation for the five equations.  This is a 
counterpart to the first 100 points in the figure at the end of Chapter E15.  As can be seen by 
comparing the two figures, the restriction of identical coefficients in the two equations brings a 
considerable change in the fit of some of the equations. 
 
 SAMPLE  ; 1-100 $ 
 CREATE  ; If (_obsno <= 20) 
       e = igm - b(1) - b(2)*fgm - b(3)*cgm $ 
 CREATE  ; If (_obsno > 20 & _obsno <= 40) 
     e = ich[-20] - b(4) - b(5)*fch[-20] - b(6)*cch[-20] $ 
 CREATE  ; If (_obsno > 40 & _obsno <= 60) 
     e = ige[-40] - b(7)  - b(8)*fge[-40] - b(9)*cge[-40] $ 
 CREATE  ; If (_obsno > 60 & _obsno <= 80) 
      e = iwe[-60] - b(10) - b(11)*fwe[-60] - b(12)*cwe[-60] $ 
 CREATE  ; If (_obsno > 80)                             
      e = ius[-80] - b(13) - b(14)*fus[-80] - b(15)*cus[-80] $ 
 CREATE  ; obs = Trn(1,1) $ 
 PLOT    ; Lhs = obs ; Rhs = e  
   ; Bars = 0 ; Spikes = 20.5,40.5,60.5,80.5 ; Fill ; Endpoints = 0,100 
   ; Title = Residuals from separate equations $ 
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Figure E24.2  Plot of Residuals from Separate Equations 

 
E24.2.6 Technical Details for Generalized Least Squares 
 
 The generalized least squares (GLS) approach to estimation is based on the ‘stacked’ system, 
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or   y =  Xβ  +  ε, 

where   E[ε] =  0 

and   E[εε′] =  Σ⊗I. 
 
The GLS estimator is  

   β
∧

  =  [X′(Σ-1⊗I)X]-1[X′(Σ-1⊗I)y]. 
  
 The feasible GLS (FGLS) estimator is obtained in two steps.  At the first, single equation 
ordinary least squares is used one equation at a time to compute bi.  Then, bi is used to obtain 
residuals ei, which are used to compute 
 
   sij  =  ei′ej / T. 
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FGLS is then computed using this estimator of Σ.  The estimated asymptotic covariance matrix is the 
estimate of the inverse matrix in brackets above.  If desired, the estimator can then be allowed to 
iterate to convergence.  Convergence is checked at the ith iteration using Max(|bk(i)/bk(i-1) - 1|) < 
1.d-9.  That is, the largest absolute percentage change in any parameter from one iteration to the next 
must be less than 1.d-9. 
 The GLS procedure is based exactly on the textbook formulas.  In computing the estimate of 
Σ, we do not make any corrections for degrees of freedom.  But, results given with the initial output 
from the regressions for each equation provide the values needed if you wish to make the correction 
later.  The model results do not include the correlation matrix for the residuals.  Since the covariance 
matrix is kept as sigma this can also be computed later.  The commands would be: 
 
 SURE  ; ... $ 
 MATRIX  ; se = Diag (sigma) ; se = Isqr(se) * sigma * Isqr(se) $ 
 
NOTE:  With no constraints imposed, this iterative SURE estimator converges to the maximum 
likelihood estimator.  This is not the case if there are constraints imposed.  We will return to this 
subject below. 
 
 In the autocorrelation model, the parameters are estimated twice.  In the first pass, the model is 
fit with no autocorrelation.  The autocorrelation coefficients are then estimated using rj = 1 - ½DWj.     
In the next pass, the models are fit using the Prais-Winsten transformation – the first observation is 
transformed by 21 jr− , not dropped, as it would be for the Cochrane-Orcutt estimator. 
 
E24.3 Maximum Likelihood Estimation of Constrained 
Linear Systems 
 
 The SURE command will produce feasible GLS estimates for the multivariate regression 
model.  It can also be allowed to iterate in order to produce maximum likelihood estimates.  This 
does the intended job if there are no restrictions on the parameters.  But, if you use the iterated GLS 
estimator, then impose linear restrictions, (as we did in the previous example) the restricted estimator 
will be a hybrid of the GLS and MLE, as LIMDEP will take the unconstrained MLE and apply the 
constrained GLS formula to it to get the constrained estimator.  Although the unconstrained 
estimator is MLE, this is not the way to get the constrained MLE.  If you have a restricted model, 
you can use one of the following procedures: 
 Use SURE’s FGLS procedure, with the restrictions, and limit the number of iterations to 
one.  This will obtain the constrained two step GLS estimator (see, e.g., Greene (2011) or Johnston 
and DiNardo (1997)).  But, if you are estimating a translog model or other singular system of 
demand equations in which you have dropped an equation to achieve nonsingularity, these estimates 
will not be invariant to which equation you drop.  Use the MLE procedure described below. 
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 The following is for models in which the constraints are equalities of the parameters across 
(or within) equations.  (See Greene (2011).)  (For other types, use constrained FGLS.)  Consider, for 
example, the following model: 
 

  1 2 3

1 1 2 3 4

2 3 1

3 4 1

                               Variable
Equation                          

          
                 

  

one x x x

y a a a a
y a b
y a c

                 

 
This model has eight parameters with two equalities.  We view the set of parameters as arranged in a 
‘parameter matrix,’ such as the one in the box above.  It has number of rows equal to the number of 
equations and number of columns equal to the total number of independent variables (including one) 
in the model.  The fact that not all variables appear in all equations shows up as empty cells (or 
zeros) in the matrix.  Note the arrangement which implies that each column of the parameter matrix 
applies to one of the independent variables, and each row corresponds to an equation, or dependent 
variable. 
 
E24.3.1 Command for ML Estimation of Constrained SURE Systems 
 
 To set up such a model, you must inform LIMDEP of the dimensions of the problem, what the 
nonzero values in the parameter matrix are and where they are. Your command does that as follows: 
 
 SURE   ; Lhs  = list of dependent variables 
   ; Rhs  = full list of independent variables 
   ; Labels  = the labels to use for the parameters 
   ; Pattern = the parameter matrix $  
 
Note the following aspects of this command: 
 

• Dimensions of the problem:  The number of rows in the parameter matrix equals the 
number of variables in your Lhs list.  The number of columns in the matrix equals the 
number of variables in your Rhs list.  

 
• The Labels are the names you want to use for the parameters in the model.  These may be 

any symbols with up to five characters.  (Anything over five is truncated.)  The one 
exception is that you may not use the ‘*’ character in a label. 

 
• The Pattern is simply a listing of the rows of the parameter matrix, with labels and zeros, 

moving rowwise through the matrix and separating values with commas.  As will be 
obvious from the examples, the best way to set this up is, literally, to lay out the matrix in 
the command. 

 
• You may use n*0, e.g., 10*0, where ‘n’ is from 2 to 50 to provide a string of zeros. 
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 The full command for the example above would be: 
 
 SURE   ; Lhs  =  y1,y2,y3   
   ; Rhs  =  one,x1,x2,x3 
   ; Pattern =  a1, a2, a3, a4,  
         a3, 0,  b1,  0, 
                 a4, 0,   0,  c1  
   ; Labels  =  a1, a2, a3, a4, b1, c1 $ 
 
 Note that the pattern matrix automatically (and visually) imposes any equality constraints on 
the parameters within or across equations.  For example, the fact that a3 is used in two places in the 
matrix ensures that this constraint will be imposed. 
 For laying out the parameter matrix, it will often help to arrange the Rhs list and Pattern list 
exactly above one another in correspondence.  For example, the command for the translog model 
given earlier, using the same variable names, would be 
  

SURE   ; Lhs    = cost,sk,sl  
  ; Labels = a, cy,   dk,   dl,        tkk,     tll,        tkl, cyy 
  ; Rhs     = one, lpkf,   lplf,    lpkf2,   lplf2,   lpkfplf, y,       y2 
  ; Pattern = a, dk,      dl,      tkk,      tll, tkl,         cy,     cyy 
              dk, tkk,    tkl,      5*0 
              dl,   tkl,      tll,       5*0  $ 

 
There are no other options for this model. 
 
E24.3.2 Model Output for the Maximum Likelihood Estimator 
 
 Model output for the constrained MLE consists of an initial trace of 
  

1. log likelihood function, 
2. log determinant of S, 
3. g′H-1g, where g = gradient and H = Hessian. 

  
We use the last of these as the convergence criterion.  This is a scale free measure, which is invariant to 
the sample size.  (See Chapter R9.)  Since the likelihood is globally concave, convergence will be fast 
and monotonic.  Moreover, the entire optimization is based on the moments of X and Y (sums of 
squares and cross products), so the amount of computation is independent of the sample size.  The one 
pass through the data to obtain the moment matrices will be the only significant amount of time spent. 
 Remaining output is a display of the pattern matrix and a list of the coefficient estimates, 
standard errors, and t ratios.  The final display is the maximum likelihood estimator of E.  Results 
kept by this estimator are the same as for the GLS estimator.  The coefficient vector kept is the 
unconstrained parameter vector, b and the estimated asymptotic covariance matrix, varb. As before, 
sigma is the estimate of the disturbance covariance matrix.  For example, in the first illustration 
above, the parameter matrix has eight nonzero cells, but only six free parameters.  The parameter 
vector, b, would be the six values [a1,a2,a3,a4,b1,c1].  Finally, the Last Model labels are the ones you 
provide in your ; Labels list.  A coefficient matrix, b_sur_ml is constructed from the estimated 
parameter vector in the same fashion as described earlier for the GLS estimator. 



E24: Linear Systems of Regression Equations – SURE and 3SLS   E-502 

E24.3.3 Application 
 
 The data below will be used to fit a translog cost/demand system.  The data are from Berndt 
and Wood (1975).  The authors estimated a model of production in the U.S. manufacturing sector for 
1947-1971.  The four factors are capital (K), labor (L), energy (E) and materials (M).  Quantities are 
denoted ‘Q’ while price indices are denoted ‘P.’  The output quantity is denoted ‘Y’ in the model 
below.  The reader is referred to Greene (2011) or Berndt and Wood (1975) for details on the 
translog model.  For convenience, denote by k, l, and e, the logs of the normalized prices, as in k  =  
log(PK/PM), and so on.  Let y denote lnY, c denote log(Total Cost/PM), and Si denote the cost 
shares.  The equations of the full model are: 
  
   c  =  α  + βk k + βl l + βe e + βy y + θyyy2 + δk ky + δl ly + δe ey 

    + γkk k2/2 + γkl kl + γke ke + γll l2/2 + γle le + γee e2/2 + εc, 

   Sk  =  βk +  γkk k + γkl l  +  γke e  +  δk y  +  εk, 

   Sl  =  βl  +  γkl k + γll l  +  γle e  +  δl y   +  εl, 

   Sk  =  βk +  γke k + γle l  +  γee e  +  δe y  +  εe. 
  
There are a total of 30 parameters in the model, but 15 constraints leave only 15 free parameters to 
be estimated. 
 
quantity    qk       ql        qe       qm      pk        pl       pe       pm   
196.205   9.3130  45.0961   7.75697  120.207  1.00000  1.00000  1.00000  1.00000 
182.829  10.6264  43.9693   7.20873  106.468  1.00270  1.15457  1.30259  1.05526 
191.077  11.5423  41.8166   7.91134  113.107  0.74371  1.15584  1.19663  1.06225 
217.532  11.9624  44.4985   8.40976  129.378  0.92497  1.23535  1.21442  1.12430 
235.289  12.2972  48.7602   9.16439  136.689  1.04877  1.33784  1.25180  1.21694 
244.086  13.0450  51.1402   9.22766  141.135  0.99744  1.37949  1.27919  1.19961 
269.111  13.6777  54.4577   9.97689  156.706  1.00654  1.43458  1.27505  1.19044 
247.312  14.2198  51.2944  10.07850  142.018  1.08757  1.45362  1.30357  1.20612 
277.789  14.7225  54.0984  10.39200  159.050  1.10315  1.51121  1.34277  1.23835 
281.382  15.1736  55.7854  10.95190  162.295  0.99607  1.58187  1.37155  1.29336 
282.153  16.0311  55.9122  11.82740  163.127  1.06321  1.64641  1.38010  1.30703 
262.425  16.8214  52.6973  11.22090  150.735  1.15619  1.67389  1.39338  1.32700 
291.418  16.9557  56.4288  11.95920  169.792  1.30758  1.73430  1.36756  1.30774 
296.644  16.9042  56.9827  12.16510  169.226  1.25413  1.78280  1.38025  1.33946 
297.000  17.1108  56.0163  12.34530  167.971  1.26329  1.81977  1.37631  1.34319 
320.884  17.2227  58.5997  12.85290  178.634  1.26525  1.88531  1.37689  1.34745 
337.855  17.4505  59.6128  13.67400  191.822  1.32294  1.93379  1.34737  1.33144 
359.146  17.8079  61.1658  13.70810  198.323  1.32798  2.00998  1.38969  1.35197 
389.238  18.4595  64.6947  14.09460  215.563  1.40659  2.05539  1.38635  1.37543 
417.185  19.6165  69.2726  14.93410  228.398  1.45100  2.13441  1.40102  1.41879 
425.702  21.2163  70.1610  15.81500  234.596  1.38618  2.20617  1.39197  1.42428 
451.210  22.4894  72.3024  16.21180  250.484  1.49901  2.33869  1.43389  1.43481 
466.830  23.5281  74.2756  17.05680  253.226  1.44957  2.46412  1.46481  1.53356 
446.710  24.7325  71.2039  18.57820  244.296  1.32465  2.60532  1.45907  1.54758 
457.986  25.6062  68.9305  17.90340  263.076  1.20178  2.76026  1.64689  1.54979 
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 The following results provide estimates of the full model first.  We then test the hypothesis 
of the cross equation restrictions in the share equations by estimating them as a system without the 
cost equation, and with and without the cross equation equality restrictions.  A likelihood ratio test is 
used to test the hypothesis (such as it is – without the assumption of the restrictions, the share 
equations have no theoretical basis). 
 
        CREATE   ; cost  = pk*qk + pl*ql + pe*qe + pm*qm 
       ; sk     = pk*qk/cost  
   ; sl = pl*ql/cost  
   ; se = pe*qe/cost  
       ; sm = pm*qm/cost  
       ; c  =  Log(cost/pm)  
   ; k =  Log(pk/pm) ; l = Log(pl/pm) ; e = Log(pe/pm) 
       ; kk =  .5*k*k ; ll = .5*l*l  
   ; ee  =  .5*e*e ; kl = k*l  ; ke = k*e ; le = l*e 
       ; y =  Log(quantity) ; yy = .5*y*y ; ky = k*y   
   ; ly =  l*y  ; ey = e*y $ 
        SURE  ; Lhs =  c,sk,sl,se 
       ; Labels  =  a,bk,bl,be,by,ckk,ckl,cke,cll,cle,cee,dky,dly,dey,byy 
       ; Rhs =  one,k,l,e,y,kk,kl,ke,ll,le,ee,ky,ly,ey,yy 
       ; Pattern =  a,bk,bl,be,by,ckk,ckl,cke,cll,cle,cee,dky,dly,dey,byy, 
                             bk,ckk,ckl,cke,dky,10*0,  
     bl,kl,cll,cle,dly,10*0, 
      be,cke,cle,cee,dey,10*0 $ 
        SURE  ; Lhs  =  sk,sl,se 
       ; Labels   =  bk,bl,be,ckk,ckl,cke,cll,cle,cee,dky,dly,dey 
       ; Rhs  = one,k,l,e,y 
       ; Pattern =  bk,ckk,ckl,cke,dky,   
     bl,ckl,cll,cle,dly,   
     be,cke,cle,cee,dey $ 
        CALC  ; lc  = logl $ 
        SURE  ; Lhs  =  sk,sl,se 
       ; Labels  =  bk,bl,be,ckk,ckl,cke,cll,cle,cee,dky,dly,dey,clk,cel,cek 
       ; Rhs  = one,k,l,e,y 
       ; Pattern =  bk,ckk,ckl,cke,dky, 
           bl,clk,cll,cle,dly,     ? no constraint clk = ckl 
           be,cek,cel,cee,dey  $ same: cek & cke, cel & cle 
        CALC  ; List ;   lu = logl  
   ; lrt = 2*(lu-lc) $ 
 
The first model is the full four equation model with all constraints. The second is the three share 
equations with constraints imposed. The third estimates the three share equations without 
restrictions. 
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----------------------------------------------------------------------------- 
Constrained MLE for Multivariate Regression Model 
First iter.  0 F=  215.3786 log|W|= -28.5818 g<H>g=  3.0083 
Last  iter.  7 F=  436.9910 log|W|= -46.3108 g<H>g=   .0000 
Number of observations used in estimation =    25 
Model specification is given in run log 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 SUR_MLE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       A|     .86117         .89696      .96  .3370     -.89684   2.61919 
      BK|     .15331***      .02558     5.99  .0000      .10316    .20345 
      BL|     .35495***      .07169     4.95  .0000      .21445    .49546 
      BE|     .16392***      .01730     9.48  .0000      .13002    .19783 
      BY|     .81925***      .31496     2.60  .0093      .20195   1.43655 
     CKK|     .03860***      .00529     7.30  .0000      .02823    .04897 
     CKL|     .02780***      .00820     3.39  .0007      .01174    .04387 
     CKE|    -.00575**       .00224    -2.57  .0101     -.01013   -.00137 
     CLL|     .10934***      .02479     4.41  .0000      .06075    .15794 
     CLE|     .03116***      .00530     5.88  .0000      .02078    .04154 
     CEE|     .00819*        .00475     1.72  .0849     -.00113    .01750 
     DKY|    -.01812***      .00482    -3.76  .0002     -.02757   -.00868 
     DLY|    -.01920         .01369    -1.40  .1609     -.04603    .00764 
     DEY|    -.02255***      .00325    -6.93  .0000     -.02893   -.01618 
     BYY|     .00037         .05521      .01  .9947     -.10785    .10858 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

   SIGMA|             1             2             3             4 
--------+-------------------------------------------------------- 
       1|   .121761E-03   .656679E-05  -.350106E-06   .171339E-05 
       2|   .656679E-05   .638215E-05   .356703E-05   .193327E-05 
       3|  -.350106E-06   .356703E-05   .226717E-04   .201951E-05 
       4|   .171339E-05   .193327E-05   .201951E-05   .114032E-05 
 

 
Figure E24.3  Coefficient Matrix for MLE 
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----------------------------------------------------------------------------- 
Constrained MLE for Multivariate Regression Model 
First iter.  0 F=  199.9708 log|W|= -24.5113 g<H>g=  2.6613 
Last  iter.  5 F=  359.0365 log|W|= -37.2365 g<H>g=   .0000 
Number of observations used in estimation =    25 
Model:    ONE   K     L     E     Y 
--------   ----- ----- ----- ----- ----- 
SK        BK    CKK   CKL   CKE   DKY 
SL        BL    CKL   CLL   CLE   DLY 
SE        BE    CKE   CLE   CEE   DEY 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 SUR_MLE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      BK|     .15241***      .02567     5.94  .0000      .10210    .20272 
      BL|     .35725***      .07185     4.97  .0000      .21642    .49808 
      BE|     .16386***      .01729     9.48  .0000      .12998    .19774 
     CKK|     .03713***      .00542     6.85  .0000      .02650    .04776 
     CKL|     .02798***      .00826     3.39  .0007      .01180    .04416 
     CKE|    -.00615***      .00226    -2.73  .0064     -.01057   -.00173 
     CLL|     .10992***      .02488     4.42  .0000      .06116    .15869 
     CLE|     .03126***      .00529     5.90  .0000      .02088    .04163 
     CEE|     .00808*        .00475     1.70  .0893     -.00124    .01739 
     DKY|    -.01800***      .00484    -3.72  .0002     -.02748   -.00852 
     DLY|    -.01962         .01373    -1.43  .1528     -.04653    .00728 
     DEY|    -.02255***      .00325    -6.94  .0000     -.02892   -.01618 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
   SIGMA|             1             2             3 
--------+------------------------------------------ 
       1|   .630167E-05   .338359E-05   .190080E-05 
       2|   .338359E-05   .226901E-04   .196970E-05 
       3|   .190080E-05   .196970E-05   .112857E-05 
 
----------------------------------------------------------------------------- 
Constrained MLE for Multivariate Regression Model 
First iter.  0 F=  199.9708 log|W|= -24.5113 g<H>g=  2.6646 
Last  iter.  2 F=  361.4197 log|W|= -37.4272 g<H>g=   .0000 
Number of observations used in estimation =    25 
Model:    ONE   K     L     E     Y 
--------   ----- ----- ----- ----- ----- 
SK        BK    CKK   CKL   CKE   DKY 
SL        BL    CLK   CLL   CLE   DLY 
SE        BE    CEK   CEL   CEE   DEY 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 SUR_MLE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      BK|     .22250***      .05134     4.33  .0000      .12188    .32312 
      BL|     .36031***      .09969     3.61  .0003      .16492    .55571 
      BE|     .18247***      .02237     8.15  .0000      .13861    .22632 
     CKK|     .03570***      .00516     6.92  .0000      .02560    .04581 
     CKL|     .05256***      .01534     3.43  .0006      .02249    .08262 
     CKE|    -.01076         .01567     -.69  .4924     -.04148    .01996 
     CLL|     .11574***      .02979     3.89  .0001      .05736    .17412 
     CLE|     .03379         .03044     1.11  .2669     -.02586    .09345 
     CEE|     .00701         .00683     1.03  .3050     -.00638    .02040 
     DKY|    -.03148***      .00964    -3.26  .0011     -.05037   -.01258 
     DLY|    -.02069         .01872    -1.11  .2691     -.05739    .01600 
     DEY|    -.02616***      .00420    -6.22  .0000     -.03439   -.01792 
     CLK|     .01513         .01001     1.51  .1309     -.00450    .03475 
     CEL|     .03805***      .00669     5.69  .0000      .02494    .05115 
     CEK|    -.00724***      .00225    -3.22  .0013     -.01165   -.00284 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
   SIGMA|             1             2             3 
--------+------------------------------------------ 
       1|   .557408E-05   .290208E-05   .168248E-05 
       2|   .290208E-05   .210204E-04   .174947E-05 
       3|   .168248E-05   .174947E-05   .105881E-05 
 
[CALC] LU      =    361.4196710 
[CALC] LRT     =      4.7664414 
Calculator: Computed   2 scalar results 
 
E24.3.4 Technical Details 
 
 The maximum likelihood estimator uses Newton’s method.  Let Y denote the n×M matrix of 
data on the M Lhs variables specified and let X denote the counterpart for the K Rhs variables.  All 
computations are based on moments of the data, so after a single pass through the data set to 
accumulate Y′Y, X′Y, and X′X, iterations are extremely rapid.  Let Π denote the K×M parameter 
matrix.  Π is the transpose of the matrix defined in the ; Pattern specification of the SURE 
command.  Let E denote the n×M matrix of disturbances.  Each row of E is the M disturbances for 
the M equations for the ith observation, εt.  Then, 
 
   Σ  =  [(1/ ) ]E n ′E E . 
The model is 
   Y  =  XΠ  +  E 
 
Let P denote any estimate of Π.  Then, the residuals are  
 
   U = Y - XP.   
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The sample estimate of Σ will always be   
 
   W  =  (1/n)U′U.  
 
The concentrated log likelihood function for this model is 
 
   logL*  =  a constant  -  ½ log det[(1/n)(Y-XΠ)′(Y-XΠ)] 

               =  a constant  -  ½ log det(Ω). 
 
Note that Ω is not equal to Σ, though E[Ω] equals Σ.  Finally, define the following matrices: 
 
   Sxx  =  (1/n)X′X,  Sxy  =  (1/n)X′Y,  and  Syy  =  (1/n)Y′Y. 
 
For the model being estimated, note that Π has a number of zeros in it, and many of the elements are 
equal to each other.  We will impose these constraints later. 
 
   ∂logL*/∂Π  =  (1/n)X′EΩ-1  =  G*. 
 
Defining π to be the column vector obtained by stacking the columns of Π, we have 
 
   ∂2logL*/∂π∂π′  =  Ω-1⊗Sxx  =  H*. 
 
Let   γ  =  vector of Q nonzero elements in π. 
  
In order to implement Newton’s method, we assemble a column vector from G* by extracting the 
elements corresponding to nonzero elements of Π.  Denote this vector g.  Likewise, extract the 
relevant elements from H* into a matrix H of much smaller dimension.  (Rows and columns of H* 
corresponding to zeros in Π are discarded.  To impose the equality constraints in Π, define β to be 
the unique, free parameters in the model.  Thus, there are, say, J elements in β.  There are, say, Q 
elements in γ, and Q ≥ J.  Several elements in γ may equal the same element of β.  Define the matrix 
K such that 
   Kij  =  1  if  γi  =  βj and 0 otherwise. 
 
Therefore, K has L rows and J columns.  Every row contains a single one and J-1 zeros.  Finally 
 
   ∂logL*/∂β   =  K′g    

and   ∂2logL*/∂β∂β′   =  K′HK. 
 
These give the necessary elements for the Newton iterations. 
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E24.4 Instrumental Variables (3SLS) Estimation of a Set of 
Linear Equations 
 
 The setup for three stage least squares (3SLS) is identical to that for the GLS (not the 
maximum likelihood) estimator for the SURE model as shown in Section E25.2.  The only change is 
the addition of a set of instrumental variables to the command.  The command is 
 
 3SLS  ; Lhs = y1,y2,...,ym 
       ; Eq1 = list of Rhs variables in first equation 
        ; Eq2 = list of Rhs variables in second equation 
        ... 
        ; EqM = list of Rhs variables in Mth equation (up to 20 equations) 
        ; Inst = complete list of exogenous variables $ 
 
The list of exogenous variables should include all of the exogenous variables appearing on the right 
hand sides of the equations of the model (only once in the list) and may include any other variables 
as well. 
 This estimator is obtained by first regressing all variables on the right hand side of each 
equation on all of the variables in the list of instruments and retaining the fitted values.  Any variable 
in an Eqn list which appears in the Inst list as well is reproduced exactly since in this event, this first 
stage regression produces a perfect fit with a coefficient of one on that variable and zeros for all the 
others.  Thereafter, the procedure is identical to the SURE procedure.  Note, the fitted variables are 
not actually created; only the necessary sample moments using the fitted values where appropriate 
are physically retained for the computations. 
 After estimation, the disturbance covariance matrix is estimated using the original variables, 
not the fitted ones. This procedure can be allowed to iterate by specifying  
 
   ; Maxit = maximum 
  
If you do not provide this, the default is one iteration.  To obtain Zellner’s three stage least squares 
estimator, use 
   ; Maxit = 0 
 
Do note, iterated 3SLS does not bring gains in efficiency and does not produce an MLE.  Moreover, 
iterated 3SLS frequently differs dramatically from 2SLS. 
 
Application to Klein’s Model I 
 
 We continue the example of Section E21.2 with 
 
 3SLS   ; Lhs = c,i,wp  
   ; Eq1 = cons ; Eq2 = invs ; Eq3 = wage  
   ; Inst = exog 
   ; Maxit = 0 $ 
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The iteration produces the trace: 
 
 Iteration    0, maximum |∆b/b|=    1.000000 
 Iteration    1, maximum |∆b/b|=    6.218180 
 
The model output is as follows: 
 
Criterion function is max(abs(%chg in b(i))). 
Iteration    0, 3SLS          =    1.000000 
Iteration    1, 3SLS          =    6.218180 
 
----------------------------------------------------------------------------- 
Estimates for equation: C......................... 
InstVar/GLS  least squares regression ............ 
LHS=C        Mean                 =       53.99524 
             Standard deviation   =        6.86087 
             Number of observs.   =             21 
Model size   Parameters           =              4 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        15.1599 
             Standard error of e  =         .94433 
Fit          R-squared            =         .98011 
             Adjusted R-squared   =         .97660 
Model test   F[  3,    17] (prob) =   279.2(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Durbin-Watson 1.425 Autocorrelation =        .2875 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       C|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    16.4408***     1.30455    12.60  .0000     13.8839   18.9977 
       P|     .12489         .10813     1.16  .2481     -.08704    .33682 
    PLAG|     .16314         .10044     1.62  .1043     -.03371    .36000 
       W|     .79008***      .03794    20.83  .0000      .71572    .86444 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Estimates for equation: I......................... 
InstVar/GLS  least squares regression ............ 
LHS=I        Mean                 =        1.26667 
             Standard deviation   =        3.55195 
             Number of observs.   =             21 
Model size   Parameters           =              4 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        35.5818 
             Standard error of e  =        1.44674 
Fit          R-squared            =         .82581 
             Adjusted R-squared   =         .79507 
Model test   F[  3,    17] (prob) =    26.9(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Durbin-Watson 1.996 Autocorrelation =        .0021 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       I|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    28.1778***     6.79377     4.15  .0000     14.8623   41.4934 
       P|    -.01308         .16190     -.08  .9356     -.33039    .30423 
    PLAG|     .75572***      .15293     4.94  .0000      .45598   1.05547 
    KLAG|    -.19485***      .03253    -5.99  .0000     -.25861   -.13109 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Estimates for equation: WP........................ 
InstVar/GLS  least squares regression ............ 
LHS=WP       Mean                 =       36.36190 
             Standard deviation   =        6.30440 
             Number of observs.   =             21 
Model size   Parameters           =              4 
             Degrees of freedom   =             17 
Residuals    Sum of squares       =        8.84045 
             Standard error of e  =         .72113 
Fit          R-squared            =         .98626 
             Adjusted R-squared   =         .98384 
Model test   F[  3,    17] (prob) =   406.8(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Durbin-Watson 2.155 Autocorrelation =       -.0775 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      WP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.79722        1.11585     1.61  .1073     -.38982   3.98425 
       X|     .40049***      .03181    12.59  .0000      .33814    .46285 
    XLAG|     .18129***      .03416     5.31  .0000      .11434    .24824 
       A|     .14967***      .02794     5.36  .0000      .09492    .20443 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E25: Nonlinear Systems of Regression 
Equations 

 
E25.1 Introduction 
 
 This chapters present methods of estimating the parameters of the regression system 
 
   y1  =  f1(x1,β)  +  ε1 

   y2   =  f2(x2,β)  +  ε2 

   ...  

   yM  =  fM(xM,β)  +  εM 

or    y   =  f(X,β)  +  ε,. 
 
We assume  E[ε|all x]  =  0  and  E[εε′|all x]  =  Σ. 
 
As stated, the model is a possibly nonlinear system of seemingly unrelated regressions.  However, 
for some settings, the x vectors on the right hand sides of the equations may include endogenous 
variables, yj, from other equations.  That is, we also accommodate systems of simultaneous 
equations.   
 The system may contain up to 50 equations and up to 150 unique parameters.  As defined, 
there is a single parameter vector, β, to be estimated, though subsets of parameters can appear in 
each equation, and this is just a notational convenience.  Estimates of the elements of Σ are also 
obtained. 
 The estimation procedures available for this model are: 
 

• Nonlinear OLS, equation by equation (NLOLS):  Σ  =  diag(σ1,...,σM) 
• Nonlinear equation by equation instrumental variables (NL2SLS) 
• Nonlinear GLS (NLSUR):  Σ = a full positive definite matrix 
• Nonlinear GLS with instrumental variables (NL3SLS) 
• Multiple equation GMM 

 
The cases in which Σ is diagonal and there are no cross equation restrictions or equalities will 
replicate the nonlinear least squares and nonlinear instrumental variables equations estimators 
described earlier.  The reasons that you might use this estimator in these cases are, first, estimating 
the equations jointly, even if uncorrelated, will be faster and, second, with this estimator, you can 
impose cross equation restrictions. 
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E25.2 Nonlinear Systems – The NLSUR  Command 
 
 The essential command for the nonlinear system shown above is 
 
 NLSUR ; Lhs  = ... the list of dependent variables 
   ; Fn1 = ... the first equation 
   ; Fn2 = ... the second equation 
   ... 
   ; FnM = ... the last equation (up to 20 equations) 
   ; Labels = ... a list of labels for the parameters 
   ; Start = ... the starting values for the iterations  $ 
 

This setup is for a full, unrestricted Σ, which is estimated as part of the estimation process.  The 
setup for the functions is exactly that shown in Section E14.3.  All of the elements, functions, etc., 
shown there apply fully to these equation definitions.  Note, as well that the parameters defined by 
the labels may appear anywhere in any equation, without restriction.  That is, there is no presumption 
that any particular parameter applies to or belongs in any specific equation.  Every equation is 
assumed to involve some or all of the parameters. 
 
NOTE:  The recursion feature and user supplied derivatives feature, both described in Section E14.5 
are not supported for the NLSUR command. 
  
 The command shown above specifies a set of Lhs variables.  The estimation criterion 
function will be based on the implied residuals, 
 
   ej  =  yj  -  Fnj 
  
(for example, the sums of squares).  You may, instead, use the functions to define the ‘residuals’ 
directly, and omit the Lhs definition.  This will be useful in specifying the GMM estimator, in which 
the orthogonality conditions may involve functions more complicated than a simple residual. For 
present purposes, then, let εj(β) denote the residual defined above if you have included a ; Lhs 
specification in your command.  Otherwise, εj(β) is Fnj(β).  Let ‘t’ index the T sample observations 
where needed.  Let  
  
   εt(β)  =  the column vector of M residuals for observation t. 

Let   Ej(β)  =  the column vector of T residuals for equation j. 
  
To specify the different estimation criteria, your command should appear as follows:  (Since the 
criteria are all quadratic, the multiplication of each by ½ removes an inconvenient 2 from the 
derivatives.  There is no other significance to this scaling.)  
 
NOTE:  Any of the following may include ; Wts = a weighting variable, in which case, all sums of 
observations are computed using this weighting variable. 
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E25.2.1 OLS Estimation, Equation by Equation (NLOLS)   
 
 Include ; Sigma = I in your command.  In this case, the estimation criterion is 
 
   F  =  ½ Σiεi′εi =  ½ ΣiΣmεim

2
 =  ½ ΣmEm(β)′Em(β). 

  
This is the sum of the sums of squares for each equation.  If there are no cross equation equalities 
(i.e., no parameter name appears in more than one equation), then this is the same as using NLSQ 
once for each equation.  If, in addition, all equations are linear, this will be the same as REGRESS, 
equation by equation. 
 
 NLSUR ; Lhs = ... the list of dependent variables 
   ; Fn1 = ... the first equation 
   ; Fn2 = ... the second equation 
   ... 
   ; FnM = ... the last equation (up to 20 equations) 
   ; Labels = ... a list of labels for the parameters 
   ; Start = ... the starting values for the iterations  
   ; Sigma = I  $ 
 
E25.2.2 Weighted Least Squares, Equation by Equation (NLWLS)   
 
 Include ; Sigma = D in your command for a ‘diagonal’ disturbance covariance matrix.  The 
estimation criterion is the weighted sum of squares, 
 
   F  =  ½ Σm(1/σm

2 )Em(β)′Em(β). 
  
This is a groupwise heteroscedastic regression model.  If there are no cross equation equalities, this 
will, once again, be the same as NLSQ equation by equation.  If, in addition, the equations are all 
linear, this will be the same as model (S1,R0) in the TSCS model. 
 
 NLSUR ; Lhs = ... the list of dependent variables 
   ; Fn1 = ... the first equation 
   ; Fn2 = ... the second equation 
   ... 
   ; FnM = ... the last equation (up to 20 equations) 
   ; Labels = ... a list of labels for the parameters 
   ; Start = ... the starting values for the iterations   
   ; Sigma =  D  $ 
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E25.2.3 IV Estimation, Equation by Equation (NL2SLS)   
 
 Include ; Sigma = I and ; Inst = list of instrumental variables in the command.  Then, 
 
   F  =  ½ ΣmEm(β)′Z(Z′Z)-1Z′Em(β). 
 
This is the sum of the 2SLS criteria for the M equations.  If there are no cross equation equalities, 
this will be the same as using NLSQ ; Inst = ... once for each equation.  If, in addition, all equations 
are linear, this is the same as 2SLS equation by equation. 
 
 NLSUR ; Lhs = ... the list of dependent variables 
   ; Fn1 = ... the first equation 
   ; Fn2 = ... the second equation 
   ... 
   ; FnM = ... the last equation (up to 20 equations) 
   ; Labels = ... a list of labels for the parameters 
   ; Start = ... the starting values for the iterations   
   ; Sigma = I  
   ; Inst = list of instrumental variables $ 
 
(There must be at least as many instrumental variables as there are parameters in the model.) 
 
E25.2.4 Weighted IV Estimation, Equation by Equation (WNL2SLS) 
 
 Include ; Sigma = D and ; Inst = list of instrumental variables in the command.  Then, 
 
   F  =  ½ Σm(1/σm

2 )Em(β)′Z(Z′Z)-1Z′Em(β). 
 
This is the sum of the 2SLS criteria for the M equations, each weighted by its own variance.  This is, 
once again, a groupwise heteroscedastic model.  If there are no cross equation equalities, this would 
be the same as using NLSQ ; Inst = ... once for each equation.  If all equations are linear, it is the 
same as 2SLS, equation by equation. 
 
 NLSUR ; Lhs = ... the list of dependent variables 
   ; Fn1 = ... the first equation 
   ; Fn2 = ... the second equation 
   ... 
   ; FnM = ... the last equation (up to 20 equations) 
   ; Labels = ... a list of labels for the parameters 
   ; Start = ... the starting values for the iterations   
   ; Sigma = D  
   ; Inst = list of instrumental variables $ 
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E25.2.5 Nonlinear GLS Estimation (NLSURE) 
 
 The command is the one shown at the beginning of this section. I.e., no specification of 
sigma. (This is the default model.)  The estimation criterion is 
 
   F  =  ½ ΣmΣnσmnEm(β)′En(β), 
  
where σij is the ijth element of Σ-1.  This is the nonlinear counterpart to the SURE estimator of 
Sections E24.2 and E24.3.  If all equations are linear and there are no constraints, this will be the 
same as the SURE estimator in Section E24.2. If there are cross equation equality constraints, it is 
the MLE of Section E24.3. 
 
 NLSUR ; Lhs = ... the list of dependent variables 
   ; Fn1 = ... the first equation 
   ; Fn2 = ... the second equation 
   ... 
   ; FnM = ... the last equation (up to 20 equations) 
   ; Labels = ... a list of labels for the parameters 
   ; Start = ... the starting values for the iterations $ 
 
(There must be at least as many instrumental variables as there are parameters in the model.) 
 
E25.2.6 Nonlinear IV Systems Estimation (NL3SLS)   
 
 Specify only ; Inst = list of instrumental variables but do not specify ; Sigma.  In this 
case, the estimation rule is 
 
   F  =  ½ ΣmΣnσmnEm(β)′Z(Z′Z)-1Z′En(β). 
 
This is the nonlinear counterpart to the 3SLS estimator described in Section E24.4. 
 
 NLSUR ; Lhs = ... the list of dependent variables 
   ; Fn1 = ... the first equation 
   ; Fn2 = ... the second equation 
   ... 
   ; FnM = ... the last equation (up to 20 equations) 
   ; Labels = ... a list of labels for the parameters 
   ; Start = ... the starting values for the iterations   
   ; Inst = list of instrumental variables $ 
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E25.2.7 GMM Estimation (GMM) 
 
 Include ; Inst = list of instrumental variables and ; Pds = number for weighting matrix 
in the command.  The number of periods is needed to compute the weighting matrix for GMM 
estimation.  The estimation criterion for GMM estimation is 
 
   F  =  ½ ΣmΣnEm(β)′Z(Z′ΩmnZ)-1Z′En(β) 
 
where   Ωmn  =  E[(1/T)Σtεtmεtnztzt′]. 
 
Note that the full Ω contains M2 blocks, none of which are assumed to be empty.  This matrix must 
be estimated using the starting values. 
 
 
 NLSUR ; Lhs = ... the list of dependent variables 
   ; Fn1 = ... the first equation 
   ; Fn2 = ... the second equation 
   ... 
   ; FnM = ... the last equation (up to 20 equations) 
   ; Labels = ... a list of labels for the parameters 
   ; Start = ... the starting values for the iterations   
   ; Inst = list of instrumental variables  
   ; Pds = number of periods for Newey-West (may be 0) $ 
 
E25.2.8 Weighting Observations in Equation Systems 
 
 You may, if you wish, superimpose a weighting scheme on all of the preceding with 
 
   ; Wts = weighting variable 
 
This is the usual weighting procedure, but there is no assumption that the weights are observation 
specific variances; they may just be replication factors, or any other form of weight that you wish to 
apply. In any event, weights are still scaled to sum to N unless you suppress this with                         
; Wts = ...,Noscale.  Note, however, that the way that weights will be applied depends on the 
estimation criterion.  In all cases, the weight is applied to the term in a sum.  Thus, in NLOLS, with  
; Wts in use, the criterion becomes ½ ΣiwiΣmεim

2, whereas in the various IV procedures, which are 
not simple sums of terms such as this, the weights are applied to the summations in the moment 
matrices.  To consider an example, let W denote a diagonal matrix with your weights on the 
diagonal.  In NL2SLS, the estimation criterion becomes 
 

F = ½ΣmEm(β)′WZ(Z′WZ)-1Z′WEm(β).   
 
(Of course, we do not actually create the diagonal matrix internally.)  The other estimators are 
constructed likewise. 
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E25.2.9 Model Specifications for the NLSUR Procedure 
 

This is the full list of general specifications that are applicable to this model estimator. 
 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 
 ; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 
 ; Alg = name requests a particular algorithm, BFGS is the default. 
 ; Maxit = n sets the maximum iterations. 
 ; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4 
 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 
 ; List   displays S in the output. 
 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions.  
; Wald: spec defines a Wald test of linear restrictions, same as Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 ; Fix = list  fixes the named parameters at the starting values. 
 
Note that with ; Maxit = 0, this is not necessarily an LM test at all, since the disturbances in these 
models are not assumed to be normally distributed, and, even if they were, the estimation criteria 
listed above are not the log likelihood functions in most cases.  As such, ; Maxit = 0 is best viewed 
as a useful descriptive device that allows you to examine your model for a fixed set of parameters.  
(Note, as well, that ; Maxit = 0 is the same as ; Fix All, but provides more useful information.) 
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E25.3 Output and Saved Results from NLSUR 
 
 The output from this procedure is largely the same as that from NLSQ.  The saved results 
are:  
 
 Matrices:  b =  the estimated parameter vector 
   varb =  asymptotic covariance matrix 
   sigma =  estimate of Σ 
  
 Scalars:  kreg =  the number of parameters in the model 
   nreg =  the number of observations 
   logl =  the value of the criterion function 
 
 Last Model:   The labels are those in your ; Labels list 
  
 Last Function: None 
 
 Results from the procedure will include the initial table reporting the procedure used, the 
number of iterations completed, and so on.  The ‘log likelihood’ reported is actually the minimized 
criterion function, not a true log likelihood.  This is followed by the table of estimates, estimated 
standard errors, and so on.  If you have specified a ; Lhs list, an additional table will give a listing of 
the Lhs variables, means and standard deviations, and sum of squared residuals and an R2 for each 
equation.   
 
NOTE: This R2 is not bounded in [0,1] because the fitting criterion is not linear ordinary least 
squares with a constant term.   
 
When you provide a set of Lhs variables for an NLSURE model, the diagnostic output will also 
include McElroy’s R2 measure for the system.  This is computed as 
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where Vy is the sample covariance matrix for the Lhs variables. 
 There are no residuals or fitted values from this procedure.  The parameters are retrievable, 
however, so you can construct these with CREATE. 
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E25.4 Application 
 
 To illustrate use of this estimator, we will estimate a system of linear equations.  The 
procedure does not differentiate between linear and nonlinear systems, so this illustrates the full 
procedure.   We have in hand the first 100 observations in the Grunfeld data used in Chapter E15. 
 

SAMPLE ; 1-100$ 
CREATE ; igm = i  ; fgm = f ; cgm = c 

; ich = i[+20] ; fch = f[+20] ; cch = c[+20] 
; ige = i[+40] ; fge = f[+40] ; cge = c[+40] 
; iwe = i[+60] ; few = f[+60] ; cwe = c[+60] 
; ius = i[+80] ; fus = f[+80] ; cus = c[+80] $ 

NAMELIST  ; xgm = one,fgm,cgm 
   ; xch = one,fch,cch 
   ; xge = one,fge,cge  
   ; xwe = one,fwe,cwe 
   ; xus = one,fus,cus 
   ; y = igm,ich,ige,iwe,ius $ 
 SAMPLE ; 1-20 $ 
 NLSUR ; Lhs = y  
   ; Fn1 = b0’xgm ; Fn2=b0’xch ; Fn3=b0’xge ; Fn4=b0’xwe ; Fn5=b0’xus 
   ; Start = 0,0,0 ; Labels = b0,b1,b2 ; Sigma = I $ 
 NLSUR ; Lhs  = y  
   ; Fn1 = b0’xgm ; Fn2=b0’xch ; Fn3=b0’xge ; Fn4=b0’xwe ; Fn5=b0’xus 
   ; Start = 0,0,0 ; Labels = b0,b1,b2 ; Sigma = D $ 
 NLSUR ; Lhs = y 
    ; Fn1 = b0’xgm ; Fn2=b0’xch ; Fn3=b0’xge ; Fn4=b0’xwe ; Fn5=b0’xus 
   ; Start = 0,0,0 ; Labels = b0,b1,b2 $ 
 
The equations are linear, with cross equation equality restrictions.  The three commands will 
reestimate models (S0,R0), (S1,R0), and (S2,R0), from Section E15.3, respectively.  Note that, as 
discussed in the next section, the estimated standard errors differ from those given previously. 
Moreover, in the more complex models, the parameter estimates differ slightly as well.  This is due, 
in part to the convergence rule used for NLSURE, which does not use the actual second derivatives 
and, thus, does not find the exact minimizer of the criterion, as TSCS does and, second, because 
NLSUR does not necessarily converge to exactly the same estimate of Σ. 
 The first set of results is equivalent to pooled least squares.  The OLS results are shown as 
well.  Note that although the parameter estimates are identical, the standard errors are noticeably 
different.  The reason for this difference is the method of computation of the covariance matrix in the 
NLSUR case.  The routine minimizes  
 

F  =  Σi e(β)′e(β)/2  =  (1/2)Σi Σm eim(β)2 

 
where each derivative vector is five (for this case, M in general) by one.   The covariance matrix used 
is then based on 

BHHH  =  {Σi Σm [eim(β)]2ximxim′}-1. 



E25: Nonlinear Systems of Regression Equations  E-520 

This matrix will be approximately equal to (1/σ2)(X′X)-1 under the assumption that the disturbances 
have the common variance σ2 and that they are independent of the pseudoregressors. Since it is 
known from the specification that you have specified I as the covariance matrix, this matrix is then 
scaled by the square of an estimator of this common variance; in this case that will be (σ2)2.  In large 
samples, this will give the same answer as the more familiar estimator.  But, in a finite sample, such 
as the one of 20 observations here, the results will differ noticeably. 
 Note, as well, the diagnostic about unusually fast convergence that appears with the output. 
The reason that this estimation converged so quickly is that the equations are linear.  The routine has 
not examined the equation specifications to discover this, so the warning is the routine one that 
shows up when a nonlinear optimization problem reaches convergence more quickly than expected. 
 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit:   5 iterations. Status=0, F=    831549.4 
 
----------------------------------------------------------------------------- 
Nonlinear minimization over  5 equations. 
Dependent variable             MultEqns 
Log likelihood function    831549.37585 
Estimation based on N =     20, K =   0 
Inf.Cr.AIC  =********* AIC/N = ******** 
Model estimated: Jun 20, 2011, 19:41:38 
Disturbances are uncorrelated 
Pooled variance is   16630.9875171 
Covariance matrix used is s-sqrd*I 
Number of iterations over S is     0 
Used equation by equation nonlinear OLS  . 
McElroy R-squared for the system =  .99995 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|   -63.6112       53.97581    -1.18  .2386   -169.4018   42.1795 
      B1|     .11844***      .01487     7.96  .0000      .08928    .14759 
      B2|     .25648***      .04073     6.30  .0000      .17666    .33630 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+----------------------------------------------------------------------+ 
| __ Equation   Mean of LHS   S.D. of LHS   R-squared   Sum of squares | 
|  1 IGM         608.020000    309.574628     .865383  .2451222113D+06 | 
|  2 ICH         410.475000    125.399429   -1.402341  .7177601842D+06 | 
|  3 IGE         102.290000     48.584499  -12.685050  .6137555637D+06 | 
|  4 IWE          86.123500     42.725555     .111538  .3081541124D+05 | 
|  5 IUS          61.802500     15.166932  -11.731514  .5564538125D+05 | 
| Note, R-squared can be negative if not using unconstrained OLS.      | 
+----------------------------------------------------------------------+ 
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 The second set of results is based on an assumption that the system is groupwise 
heteroscedastic.  In this case, the results differ from the results of the TSCS approach only in that 
there is a slight difference in the diagonal covariance matrix used in estimation.  Note, to make these 
comparable, the TSCS procedure must be iterated.  The results are shown below. 
 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit:   5 iterations. Status=0, F=    831549.4 
 
----------------------------------------------------------------------------- 
Nonlinear minimization over  5 equations. 
Dependent variable             MultEqns 
Log likelihood function        44.71621 
Estimation based on N =     20, K =   0 
Inf.Cr.AIC  =  -89.432 AIC/N =   -4.472 
Model estimated: Jun 20, 2011, 19:41:38 
Disturbances are uncorrelated 
Pooled variance is      12.8662025 
Covariance matrix used is Diagonal 
Number of iterations over S is     0 
Used equation by equation nonlinear OLS  . 
McElroy R-squared for the system =  .45187 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|   -38.0503*      22.03449    -1.73  .0842    -81.2371    5.1365 
      B1|     .12341***      .00574    21.52  .0000      .11217    .13465 
      B2|     .18989***      .02099     9.05  .0000      .14875    .23102 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+----------------------------------------------------------------------+ 
| __ Equation   Mean of LHS   S.D. of LHS   R-squared   Sum of squares | 
|  1 IGM         608.020000    309.574628     .786930  .3879781258D+06 | 
|  2 ICH         410.475000    125.399429   -1.105324  .6290188463D+06 | 
|  3 IGE         102.290000     48.584499  -13.745632  .6613212375D+06 | 
|  4 IWE          86.123500     42.725555     .671647  .1138859314D+05 | 
|  5 IUS          61.802500     15.166932   -6.198258  .3146128437D+05 | 
| Note, R-squared can be negative if not using unconstrained OLS.      | 
+----------------------------------------------------------------------+ 
 
 The final set of results corresponds to the fully general nonlinear seemingly unrelated 
regressions model. 
 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit:   5 iterations. Status=0, F=    831549.4 
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----------------------------------------------------------------------------- 
Nonlinear minimization over  5 equations. 
Dependent variable             MultEqns 
Log likelihood function        48.57176 
Estimation based on N =     20, K =   0 
Inf.Cr.AIC  =  -97.144 AIC/N =   -4.857 
Model estimated: Jun 20, 2011, 19:41:38 
Disturbances are   correlated 
Pooled variance is      17.2452502 
Covariance matrix used is (1/N)E'E 
Number of iterations over S is     0 
Used multiple    equation nonlinear GLS  . 
McElroy R-squared for the system =  .80507 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|   -54.1071***     5.21198   -10.38  .0000    -64.3224  -43.8918 
      B1|     .11149***      .00551    20.25  .0000      .10070    .12228 
      B2|     .25113***      .01259    19.95  .0000      .22645    .27580 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

+----------------------------------------------------------------------+ 
| __ Equation   Mean of LHS   S.D. of LHS   R-squared   Sum of squares | 
|  1 IGM         608.020000    309.574628     .853176  .2673502576D+06 | 
|  2 ICH         410.475000    125.399429   -1.540064  .7589083079D+06 | 
|  3 IGE         102.290000     48.584499  -11.661628  .5678565035D+06 | 
|  4 IWE          86.123500     42.725555     .273733  .2518984879D+05 | 
|  5 IUS          61.802500     15.166932  -12.587489  .5938657396D+05 | 
| Note, R-squared can be negative if not using unconstrained OLS.      | 
+----------------------------------------------------------------------+ 
 

E25.5 Technical Details 
 

 The various estimation criteria listed above will replicate other settings when certain 
restrictions are in place.  For example, NLOLS with no cross equation restrictions in place and linear 
equations is the same as TSCS.  In these cases, the estimator will usually produce the same parameter 
estimates, but may produce slightly, or in a small sample, noticeably different standard errors.  The 
reason is that the linear estimators (REGRESS, TSCS, 2SLS) use (in principle) the actual second 
derivatives matrices of their estimation criteria.  But, NLSUR always uses the outer products of the 
first derivatives to accumulate its estimate of the asymptotic covariance matrix.  These will normally be 
reasonably close to each other, but, as noted, in a finite sample, they can differ.   
 For estimation of the systems in which Σ is not σ2I, we use a straightforward two level 
iteration.  The procedure is as follows: 
 
Step 1. At entry, set Σ either to I or to the matrix you supply with ; Sigma = name. 
 

Step 2. Obtain the parameter estimates conditioned on this estimate of  Σ. 
 

Step 3. Use the parameter estimates to recompute Σ. 
 

Step 4. Assess convergence based on the log determinant of the estimated Σ.  If the change is less 
than 10-4, exit.  If there are more than 20 iterations on Σ, exit on maximum iterations.  Else, 
return to Step 2.  
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E26: Models for Binary Choice 
 
E26.1 Introduction 
 
 We define models in which the response variable being described is inherently discrete as 
qualitative response (QR) models.  This and the next several chapters will describe LIMDEP’s 
qualitative dependent variable model estimators.  The simplest of these are the binomial choice 
models, which are the subject of this chapter and Chapters E27-E29.  This will be followed by the 
progressively more intricate formulations such as bivariate and multivariate probit, multinomial 
logit, ordered choice and models for count data.  LIMDEP supports a large variety of models and 
extensions for the analysis of binary choice.  The parametric model formulations, probit, logit, 
extreme value (complementary log log) etc. are treated in Chapter E27.  Panel data models for binary 
choice appear in Chapters E30 and E31.  Semi- and nonparametric models appear in Chapter E32.   
 There are numerous references for practitioners using the binary choice modeling 
framework. Four which are widely used are Maddala (1983), Greene (2011), Long (1997) and 
DeMaris (2004).  Another recent source is for binary choice modeling is Greene and Hensher (2010, 
Chapters 1-4). 
 
E26.2 Modeling Binary Choice 
 
 A binomial response may be the outcome of a decision or the response to a question in a 
survey.  Consider, for example, survey data which indicate political party choice, mode of 
transportation, occupation, or choice of location. We model these in terms of probability 
distributions defined over the set of outcomes.  There are a number of interpretations of an 
underlying data generating process that produce the binary choice models we consider here.  All of 
them are consistent with the models that LIMDEP estimates, but the exact interpretation is a function 
of the modeling framework. 
 
E26.2.1 Underlying Processes 
 
 Consider a process with two possible outcomes indicated by a dependent variable, y, labeled 
for convenience, y = 0 and y = 1. We assume, as well, that there is a set of measurable covariates, x, 
which will be used to help explain the occurrence of one outcome or the other.  Most models of 
binary choice set up in this fashion will be based upon an index function, β′x, where β is a vector of 
parameters to be estimated.  The modeling of discrete, binary choice in these terms, is typically done 
in one of the following frameworks: 
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Random Utility Approach 
 
 The respondent derives utility  
 
   U0 = β0′x + ε0 from choice 0, and U1 = β1′x + ε1 from choice 1,  
 
in which ε0 and ε1 are the individual specific, random components of the individual’s utility that are 
unaccounted for by the measured covariates, x.  The choice of alternative 1 reveals that U1 > U0, or that  
 
   ε0 - ε1 <  β1′x - β0′x.   
 
Let ε = ε0 - ε1 and let β′x represent the difference on the right hand side of the inequality – x is the 
union of the two sets of covariates, and β is constructed from the two parameter vectors with zeros in 
the appropriate locations if necessary.  Then, the binary choice model applies to the probability that  
ε ≤ β′x, which is the familiar sort of model shown in the next paragraph.  This is a convenient way to 
view migration behavior and survey responses to questions about economic issues. 
 
Latent Regression Approach 
 
 A latent regression is specified as  
 
   y* = β′x + ε.   
 
The observed counterpart to y* is  
 
   y = 1 if and only if y* > 0.   
 
This is the basis for most of the binary choice models in econometrics, and is described in further 
detail below.  It is the same model as the reduced form in the previous paragraph.  Threshold models, 
such as labor supply and reservation wages lend themselves to this approach. 
 
Conditional Mean Function Approach 
 
 We assume that y is a binary variable, taking values 0 and 1, and formulate a priori that 
Prob[y=1] = F(β′x), where F is any function of the index that satisfies the axioms of probability, 
 
   0  < F(β′x)  <  1 
 
   F ′ (β′x)  >  0, 
 
   limz↓-∞  F(z)  =  0, limz↑+∞  F(z)  =  1. 
 
It follows that,  F(β′x)  =  0 × Prob[y = 0 | x]  +  1 × Prob[y = 1 | x] 
 
is the conditional mean function for the observed binary y.  This may be treated as a nonlinear 
regression or as a binary choice model amenable to maximum likelihood estimation.  This is a useful 
departure point for less parametric approaches to binary choice modeling. 
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E26.2.2 Modeling Approaches 
 
 This and the next several chapters document three approaches to formulating the binary 
choice models described above: 
 
Parametric Models – Probit, Logit, Extreme Value, Gompertz, Burr, Arctangent 
 
 Most of the material below (and the received literature) focuses on models in which the full 
functional form, including the probability distribution, are defined a priori.  Thus, the probit model 
which forms the basis of most of the results in econometrics, is based on a latent regression model in 
which the disturbances are assumed to have a normal distribution.  The logit model, in contrast, can be 
construed as a random utility model in which it is assumed that the random parts of the utility functions 
are distributed as independent extreme value.  The complementary log log model arises as the natural 
distribution in a setting of counts of occurrences (such as part failures or numbers of arrivals of 
messages at a receiving center) in which the analyst is interest in modeling not the number of 
occurrences, but whether none or any events have occurred.  The Burr distribution allows asymmetry 
in the logit framework.  Finally, the Arctangent model provides a flexible, interesting functional form. 
 
Semiparametric Models – Maximum Score, Semiparametric Analysis 
 
 A semiparametric approach to modeling the binary choice steps back one level from the 
previous model in that the specific distributional assumption is dropped, while the covariation (index 
function) nature of the model is retained.  Thus, the semiparametric approach analyzes the common 
characteristics of the observed data which would arise regardless of the specific distribution 
assumed. Thus, the semiparametric approach is essentially the conditional mean framework without 
the specific distribution assumed.  For the models that are supported in LIMDEP, MSCORE and 
Klein and Spady’s framework, it is assumed only that F(β′x) exists and is a smooth continuous 
function of its argument which satisfies the axioms of probability.  The semiparametric approach is 
more general (and more robust) than the parametric approach, but it provides the analyst far less 
flexibility in terms of the types of analysis of the data that may be performed.  In a general sense, the 
gain to formulating the parametric model is the additional precision with which statements about the 
data generating process may be made.  Hypothesis tests, model extensions, and analysis of, e.g., 
interactions such as marginal effects, are difficult or impossible in semiparametric settings. 
 
Nonparametric Analysis – NPREG 
 
 The nonparametric approach, as its name suggests, drops the formal modeling framework.  It 
is largely a bivariate modeling approach in which little more is assumed than that the probability that 
y equals one depends on some x.  (It can be extended to a latent regression, but this requires prior 
specification and estimation, at least up to scale, of a parameter vector.)  The nonparametric 
approach to analysis of discrete choice is done in LIMDEP with a kernel density (largely based on 
the computation of histograms) and with graphs of the implied relationship.  Nonparametric analysis 
is, by construction, the most general and robust of the techniques we consider, but, as a consequence, 
the least precise.  The statements that can be made about the underlying DGP in the nonparametric 
framework are, of necessity, very broad, and usually provide little more than a crude overall 
characterization of the relationship between a y and an x. 
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E26.2.3 The Linear Probability Model 
 
 One approach to modeling binary choice has been to ignore the special nature of the 
dependent variable, and use conventional least squares.  The resulting model, 
 
   Prob[yi = 1]  =  β′xi  +  εi 
 
has been called the linear probability model (LPM).  The LPM is known to have several problems, 
most importantly that the model cannot be made to satisfy the axioms of probably independently of 
the particular data set in use.  Some authors have documented approaches to forcing the LPM on the 
data, e.g., Fomby, et al., (1984), Long (1997) and Angrist and Pischke (2009).  These computations 
can easily be done with the other parts of LIMDEP, but will not be pursued here.  
 
E26.3 Grouped and Individual Data for Binary Choice Models 
 
 There are two types of data which may be analyzed.  We say that the data are individual if the 
measurement of the dependent variable is physically discrete, consisting of individual responses. The 
familiar case of the probit model with measured 0/1 responses is an example.  The data are grouped if 
the underlying model is discrete but the observed dependent variable is a proportion.  In the probit 
setting, this arises commonly in bioassay.  A number of respondents have the same values of the 
independent variables, and the observed dependent variable is the proportion of them with individual 
responses equal to one.  Voting proportions are a common application from political science. 
 All of the qualitative response models estimated by LIMDEP can be estimated with either 
individual or grouped data.  You do not have to inform the program which type you are using; if 
necessary, the data are inspected to determine which applies.  The differences arise only in the way 
starting values are computed and, occasionally, in the way the output should be interpreted.  Cases 
sometimes arise in which grouped data contain cells which are empty (proportion is zero) or full 
(proportion is one).  This does not affect maximum likelihood estimation and is handled internally in 
obtaining the starting values. No special attention has to be paid to these cells in assembling the data set. 
 
E26.4 Variance Normalization  
 
 In the latent regression formulation of the model, the observed data are generated by the 
underlying process 
 
   y  =  1  if and only if β′x + ε  >  0. 
 
The random variable, ε, is assumed to have a zero mean (which is a simple normalization if the 
model contains a constant term).  The variance is left unspecified.  The data contain no information 
about the variance of ε.  Let σ denote the standard deviation of ε.  The same model and data arise if 
the model is written as 
 
   y  =  1  if and only if  (β/σ)′x + ε/σ  >  0. 
 
which is equivalent to 
 
   y  =  1  if and only if γ′x + w  >  0. 
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where the variance of w equals one.  Since only the sign of y is observed, no information about 
overall scaling is contained in the data.  Therefore, the parameter σ is not estimable; it is assumed 
with no loss of generality to equal one.  (In some treatments (Horowitz (1993)), the constant term in 
β is assumed to equal one, instead, in which case, the ‘constant’ in the model is an estimator of 1/σ. 
This is simply an alternative normalization of the parameter vector, not a substantive change in the 
model.) 
 
E26.5 The Constant Term in Index Function Models 
 
 A question that sometimes arises is whether the binary choice model should contain a 
constant term.  The answer is yes, unless the underlying structure of your model specifically dictates 
that none be included.  There are a number of useful features of the parametric models that will be 
subverted if you do not include a constant term in your model: 

 
• Familiar fit measures will be distorted. Indeed, omitting the constant term can seriously 

degrade the fit of a model, and will never improve it. 
 

• Certain useful test statistics, such as the overall test for the joint significance of the 
coefficients, may be rendered noncomputable if you omit the constant term. 
 

• Some properties of the binary choice models, such as their ability to reproduce the average 
outcome (sample proportion) will be lost. 

 
Forcing the constant term to be zero is a linear restriction on the coefficient vector.  Like any other 
linear restriction, if imposed improperly, it will induce biases in the remaining coefficients.  
(Orthogonality with the other independent variables is not a salvation here.  Thus, putting variables 
in mean deviation form does not remove the constant term from the model as it would in the linear 
regression case.) 
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E27: Probit and Logit Models: Estimation 
 
E27.1 Introduction 
 

 We define models in which the response variable being described is inherently discrete as 
qualitative response (QR) models.  This and the next several chapters will describe LIMDEP’s 
qualitative dependent variable model estimators.  The simplest of these are the binomial choice 
models, which are the subject of this chapter and Chapters E28 and E29.  This will be followed by 
the progressively more intricate formulations such as bivariate and multivariate probit, multinomial 
logit, ordered choice and models for count data.   
 LIMDEP supports a large variety of models and extensions for the analysis of binary choice.  
The parametric model formulations, probit, logit, extreme value (complementary log log) etc. are 
treated in this chapter.  Several model extensions such as models with endogenous variables, and 
sample selection, are treated in Chapter E29.  Panel data models for binary choice appear in Chapters 
E30 and E31.  Semi- and nonparametric models are documented in Chapter E32. 
 

E27.2 Parametric Models for Binary Choice 
 

 LIMDEP supports six parametric functional forms for binary choice models.  The basic 
model commands for the six models are: 
 

 











PROBIT
LOGIT

ARCTANGENT
GOMPERTZ

COMPLOGLOG
BURR

  ; Lhs = dependent variable  ;  Rhs = regressors $ 

  
Data on the dependent variable may be either individual or proportions for all six cases.   
 
E27.2.1 Functional Forms for Parametric Models 
 

 Six specific parametric model formulations are provided as internal procedures in LIMDEP 
for binary choice models.  The probabilities and density functions are as follows: 
 
Probit 
 

 F = dtti

∫
β

∞− π

−x' 2

2
)2/exp(

  =  Φ(β′xi),      f = φ(β′xi) 

 
Logit 
 

 F = exp( )
1 exp( )

i

i

′
′+

x
x

β
β

  =  Λ(β′xi),     f = Λ(β′xi)[1 - Λ(β′xi)] 
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Arctangent 
 
 F = (2/π) arctan(exp(β′xi)),   f = (2/π){1/[1+(exp(β′xi))2]} 
 
Complementary log log 
 
 F = 1 - exp(- exp(β′xi))  =  C(β′xi),     f = exp(β′xi)[1 - C(β′xi)] 
 
Gompertz, or type 1 extreme value 
 
 F = exp(-exp(-β′xi))  = G(β′xi),   f = exp(-β′xi)G(β′xi) 
 
Burr or Scobit 
 

 F = exp( )
1 exp( )

i

i

γ
′ 

 ′+ 

x
x

β
β

 =  [Λ(β′xi)]
γ, γ > 0,  f = γ[Λ(β′xi)]

γ [1 - Λ(β′xi)] 

 
None of these is obviously best for any situation.  (The advantage of the probit model becomes 
overwhelming when the binary choice model is part of a more elaborate, possibly multiple equation 
structure.)  The complementary log log distribution does arise naturally from a complete censoring of 
the positive values of the Poisson regression model.  The first two listed above are symmetric while 
the latter four are not.  The Burr distribution is an extension of the logistic model.  The logistic 
model is the special case of  γ = 1.  Plots of the CDFs and PDFs appear below.  Since the shape of 
the Burr distribution depends on γ, we have chosen an intermediate value of 1.5 for purposes of 
illustration.  The program used to produce the figures is shown below as well. 

In the upper figure, the two symmetric distributions, probit and logit, cross at zero in the center 
of the figure.  The complementary log log is the higher one; it assigns a smaller probability to the right 
tail. As the figure at the right shows, the other asymmetric distributions assign higher probability to the 
right tail.  The same effects can be seen in the lower figures, which plot the densities. 

 
SAMPLE   ; 1-101 $ 
CREATE   ; z = Trn(-3,.06)       
  ; probit = Phi(z) ; logit  = Lgp(z) 
               ; cloglog = 1 - Exp(-Exp(z))    
  ; gompit = Exp(-Exp(-z)) 
                   ; burr = Logit ^ 1.5  
  ; arctan = 2/pi*atn(Exp(z))$ 
CREATE   ; dprobit =  N01(z)    
  ; dlogit  = logit*(1-logit) 

      ; dcloglog = Exp(z) * Exp(-Exp(z)) 
      ; dgompit = -Log(gompit)*gompit 
      ; dburr = 1.5*burr*(1-logit)  
 ; darctan = 2/pi*Exp(z)/(1+Exp(z)*Exp(z))$ 
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PLOT       ; Lhs = z            
  ; Rhs = probit,logit,cloglog,arctan,gompit 
               ; Endpoints = -3,3 ; Fill ; Bars = .5 ; Spikes = 0 
               ; Yaxis = CDF    
  ; Title = Probability Functions  $ 
PLOT       ; Lhs = z            
  ; Rhs = logit,cloglog,gompit,burr  
               ; Endpoints = -3,3 ; Fill ; Bars = .5 ; Spikes = 0 
               ; Yaxis = CDF    
  ; Title = Asymmetric Probability Functions vs. Logit $ 
PLOT        ; Lhs = z   
  ; Rhs = dprobit,dlogit,dcloglog,darctan,dgompit  
               ; Endpoints = -3,3 ; Fill ; Spikes = 0 
               ; Yaxis = PDF     
  ; Title = Density Functions $ 
PLOT        ; Lhs = z   
  ; Rhs = dlogit,dcloglog,dgompit,dburr  
               ; Endpoints = -3,3 ; Fill ; Spikes = 0 
               ; Yaxis = PDF     
  ; Title = Asymmetric Density Functions vs. Logit $ 
 

 

  
Figure E27.1  Densities and CDFs for Binary Choice Models 
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E27.2.2 Data Used in Estimation of Parametric Models 
 
The Dependent Variable – Individual or Proportions 
 
 Data on the dependent variable for these models may be individual or grouped.  The 
estimation program will check internally, and adjust accordingly where necessary.  The log 
likelihood function is the same for either case.  The only special consideration concerns the 
computation of the starting values for the iterations.  If you do not provide your own starting values, 
they are determined for the individual data case by simple least squares.  The OLS estimator is not 
useful in itself, but it does help to adjust the scale of the coefficient vector for the first iteration.  For 
the grouped data case, however, the initial values are determined by the minimum chi squared, 
weighted least squares computation. Since this will generally involve logarithms or other 
transformations which become noncomputable at zero or one, they are not computed for individual 
data. 
 
Problems with the Independent Variables 
 
 There is a special consideration for the independent variables in the binary choice model.  If 
a variable xk is such that the range of xk can be divided into two parts and within the two parts, the 
value of the dependent variable is always the same, then this variable becomes a perfect predictor for 
the model.  The estimator will break down, sometimes by iterating endlessly as the coefficient vector 
drifts to extreme values.  The following program illustrates the effect: The variable z is positive when 
y equals one and negative when it equals zero.  The estimator exited after 100 iterations, but appears 
actually to have converged normally – note the derivatives are extremely small. But, a probit model 
should take less than 10 iterations. Second, note that the log likelihood function is essentially zero, 
indicative of a perfect fit.  The coefficient on z is nonsensical, and the standard errors are essentially 
infinite.  All are indicators of a bad data set and/or model.  The extreme (perfect) values for the fit 
measures on the next page underscore the point. 
 

SAMPLE  ; 1-100 $ 
CALC  ; Ran(12345) $ 
CREATE  ; x = Rnn(0,1)  

; d = Rnu(0,1) > .5 $ 
CREATE  ; y = (-.5 + x + d + Rnn(0,1)) > 0 $ 
CREATE  ; If(y = 1)z =  Rnu(0,1)  

; If(y = 0)z = -Rnu(0,1) $ 
PROBIT  ; Lhs = y ; Rhs = one,x,z  

; Output = 4 ; Summarize $ 
 
Nonlinear Estimation of Model Parameters 
Method=NEWTON; Maximum iterations=100 
Convergence criteria:gtHg   .0000D+00 chg.F   .0000D+00 max|dB|   .1000D-05 
Nodes for quadrature: Laguerre=20;Hermite=64. 
Replications for GHK simulator= 100 
Start values:   .45710D+00   .95098D-01   .68943D+00 
1st derivs.     .30046D+02  -.22180D+02  -.27947D+02 
Parameters:     .45710D+00   .95098D-01   .68943D+00 
Itr  1 F=  .5148D+02 gtHg=  .7451D+01 chg.F=  .5148D+02 max|db|=  .2048D+01 
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1st derivs.     .75382D+01  -.74206D+01  -.87858D+01 
Parameters:     .62796D-01   .28522D+00   .21013D+01 
Itr  2 F=  .1817D+02 gtHg=  .3623D+01 chg.F=  .3331D+02 max|db|=  .2973D+01 
1st derivs.     .22778D+01  -.25169D+01  -.34737D+01 
Parameters:    -.12389D+00   .45652D+00   .32904D+01 
 (Iterations 3 - 98 omitted) 
Itr 99 F=  .2155D-11 gtHg=  .2231D-06 chg.F=  .3664D-13 max|db|=  .8482D-03 
1st derivs.    -.13675D-11  -.73224D-12  -.10213D-11 
Parameters:    -.98485D+00   .14753D+00   .14438D+03 
Itr100 F=  .2119D-11 gtHg=  .2204D-06 chg.F=  .3553D-13 max|db|=  .8477D-03 
Maximum of   100 iterations. Exit iterations with status=1. 
Function=  .51483973128D+02, at entry,  .20847767956D-11 at exit 
------------------------------------------------------------------------------ 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function          .00000 
Restricted log likelihood     -69.13461 
Chi squared [   2 d.f.]       138.26922 
Significance level               .00000 
McFadden Pseudo R-squared     1.0000000 
Estimation based on N =    100, K =   3 
Inf.Cr.AIC  =    6.000 AIC/N =     .060 
--------+--------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+--------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.98505       148462.2      .00 1.0000 ***********  *********** 
       X|     .14766       120032.6      .00 1.0000 ***********  *********** 
       Z|    144.424       345728.4      .00  .9997 -677470.698  677759.546 
--------+--------------------------------------------------------------------- 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Probit   model for variable Y          | 
+----------------------------------------+ 
|                 Y=0       Y=1     Total| 
| Proportions  .53000    .47000   1.00000| 
| Sample Size      53        47       100| 
+----------------------------------------+ 
| Log Likelihood Functions for BC Model  | 
|              P=0.50    P=N1/N   P=Model| 
| LogL =       -69.31    -69.13       .00| 
+----------------------------------------+ 
| Fit Measures based on Log Likelihood   | 
| McFadden = 1-(L/L0)          =  1.00000| 
| Estrella = 1-(L/L0)^(-2L0/n) =  1.00000| 
| R-squared (ML)               =   .74910| 
| Akaike Information Crit.     =   .06000| 
| Schwartz Information Crit.   =   .13816| 
+----------------------------------------+ 
| Fit Measures Based on Model Predictions| 
| Efron                        =  1.00000| 
| Ben Akiva and Lerman         =  1.00000| 
| Veall and Zimmerman          =  1.00000| 
| Cramer                       =  1.00000| 
+----------------------------------------+ 
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+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |     53 ( 53.0%)|      0 (   .0%)|     53 ( 53.0%)| 
|  1   |      0 (   .0%)|     47 ( 47.0%)|     47 ( 47.0%)| 
+------+----------------+----------------+----------------+ 
|Total |     53 ( 53.0%)|     47 ( 47.0%)|    100 (100.0%)| 
+------+----------------+----------------+----------------+ 
+---------------------------------------------------------+ 
|Crosstab for Binary Choice Model.  Predicted probability | 
|vs. actual outcome. Entry = Sum[Y(i,j)*Prob(i,m)] 0,1.   | 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|      Predicted Probability      |                | 
|Value |    Prob(y=0)        Prob(y=1)   | Total Actual   | 
+------+----------------+----------------+----------------+ 
| y=0  |     52 ( 52.0%)|      0 (   .0%)|     53 ( 52.0%)| 
| y=1  |      0 (   .0%)|     46 ( 46.0%)|     47 ( 46.0%)| 
+------+----------------+----------------+----------------+ 
|Total |     53 ( 52.0%)|     46 ( 46.0%)|    100 ( 98.0%)| 
+------+----------------+----------------+----------------+ 
 
 In general, for every Rhs variable, x, the minimum x for which y is one must be less than the 
maximum x for which y is zero, and the minimum x for which y is zero must be less than the 
maximum x for which y is one. If either condition fails, the estimator will break down.  This is a 
more subtle, and sometimes less obvious failure of the estimator.  Unfortunately, it does not lead to a 
singularity and the eventual appearance of collinearity in the Hessian.  You might observe what 
appears to be convergence of the estimator on a set of parameter estimates and standard errors which 
might look reasonable.  The main indication of this condition would be an excessive number of 
iterations – the probit model will usually reach convergence in only a handful of iterations – and a 
suspiciously large standard error is reported for the coefficient on the offending variable, as in the 
preceding example.  You can check for this condition with the command 
 
 CALC   ; Chk (names of independent variables to check,  
                 name of dependent variable) $ 
 
The offending variable in the previous example would be tagged by this check; 
 

CALC    ; Chk(x,z,y) $ 
 
  Error   462: 0/1 choice model is inestimable. Bad variable = Z 
  Error   463: Its values predict 1[Y       = 1] perfectly. 
 
This computation will issue warnings when the condition is found in any of the variables listed.  
(Some computer programs will check for this condition automatically, and drop the offending 
variable from the model.  In keeping with LIMDEP’s general approach to modeling, this program 
does not automatically make functional form decisions.  This is up to the analyst.) 
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Dummy Variables with Empty Cells 
 
 A problem similar to the one noted above arises when your model includes a dummy variable 
that has no observations in one of the other cells of the dependent variable. An example appears in 
Greene (1993, p. 673) in which the Lhs variable is always zero when the variable ‘Southwest’ is zero. 
Professor Terry Seaks has used this example to examine a number of econometrics programs.  He 
found that no program which did not specifically check for the failure – only one did – could detect the 
failure in some other way.  All iterated to apparent convergence, though with very different estimates 
of this coefficient and differing numbers of iterations because of their use of different convergence 
rules.  This form of incomplete matching of values likewise prevents estimation, though the effect is 
likely to be more subtle.  In this case, a likely outcome is that the iterations will fail to converge, though 
the parameter estimates will not necessarily become extreme.   
 Here is an example of this effect at work.  The probit model looks excellent in the full 
sample.  In the restricted sample, d never equals zero when y equals zero.  The estimator appears to 
have converged, the derivatives are zero, but the standard errors are huge: 
 

SAMPLE  ; 1-100 $ 
CALC  ; Ran(12345) $ 
CREATE  ; x = Rnn(0,1) ; d = Rnu(0,1) > .5 $ 
CREATE  ; y = (-.5 + x + d + Rnn(0,1)) > 0 $ 
PROBIT  ; Lhs = y ; Rhs = one,x,d $ 
REJECT  ; y = 0 & d = 0 $ 
PROBIT  ; Lhs = y ; Rhs = one,x,d $ 

 
Normal exit:   6 iterations. Status=0, F=    42.82216 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function       -42.82216 
Restricted log likelihood     -69.13461 
Chi squared [   2 d.f.]        52.62490 
Significance level               .00000 
McFadden Pseudo R-squared      .3805974 
Estimation based on N =    100, K =   3 
Inf.Cr.AIC  =   91.644 AIC/N =     .916 
Hosmer-Lemeshow chi-squared =   6.83600 
P-value=  .33628 with deg.fr. =       6 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.93918***      .23374    -4.02  .0001    -1.39729   -.48106 
       X|    1.17177***      .24254     4.83  .0000      .69639   1.64715 
       D|    1.53192***      .35304     4.34  .0000      .83997   2.22386 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function       -16.60262 
Restricted log likelihood     -32.85957 
Chi squared [   2 d.f.]        32.51388 
Significance level               .00000 
McFadden Pseudo R-squared      .4947400 
Estimation based on N =     61, K =   3 
Inf.Cr.AIC  =   39.205 AIC/N =     .643 
Hosmer-Lemeshow chi-squared =   4.91910 
P-value=  .08547 with deg.fr. =       2 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    14.0462       607774.4      .00 1.0000 ***********  *********** 
       X|    1.41264***      .39338     3.59  .0003      .64163   2.18365 
       D|   -13.3995       607774.4      .00 1.0000 ***********  *********** 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
You can check for this condition if you suspect it is present by using a crosstab.  The command is 
 
 CROSSTAB ; Lhs = dependent variable   
   ; Rhs = independent dummy variable  $ 
 
The 2×2 table produced should contain four nonempty cells.  If any cells contain zeros, as in the 
table below, then the model will be inestimable. 
 
+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is Y        (Out of range 0-49:      0)             | 
|Number of Rows =  2      (Y        =  0 to  1)                   | 
|Col variable is D        (Out of range 0-49:      0)             | 
|Number of Cols =  2      (D        =  0 to  1)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[   1] =    6.46052   Prob value =  .01103            | 
|G-squared  [   1] =    9.92032   Prob value =  .00163            | 
+-----------------------------------------------------------------+ 
|                      D                                          | 
+--------+--------------+------+                                  | 
|       Y|      0      1| Total|                                  | 
+--------+--------------+------+                                  | 
|       0|      0     14|    14|                                  | 
|       1|     16     31|    47|                                  | 
+--------+--------------+------+                                  | 
|   Total|     16     45|    61|                                  | 
+-----------------------------------------------------------------+ 
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Missing Values 
 
 Missing values in the current sample will always impede estimation.  In the case of the 
binary choice models, if your sample contains missing observations for the dependent variable, you 
will receive a warning about improper coding of the values of the Lhs variable.  This message will be 
given whenever values of the dependent variable appear to be neither binary (0/1) nor a proportion, 
strictly between 0 and 1. 
 
 Probit: Data on Y are badly coded. (<0,1> and <=0 or >= 1). 
 
 Missing values for the independent variables will also badly distort the estimates.  Since the 
program assumes you will be deciding what observations to use for estimation, and -999 (the missing 
value code) is a valid value, missing values on the right hand side of your model are not flagged as 
an error.   But, it is obvious that they can seriously affect the results.  The second model is computed 
without the missing values.  The true values of the coefficients are both one, which is reflected in the 
much more reasonable second set of results. 
 
 CALC    ; Ran(12345) $ 
 SAMPLE  ; 1-1000 $ 
 CREATE  ; x1 = Rnn(0,1) ; x2 = (Rnu(0,1) > .5) ; e=Rnn(0,1) $ 
 CREATE  ; y = (-.5 + x1 +x2 + e) > 0 $ 
 CREATE  ; If(_obsno > 900)x2 = -999 $ 
 PROBIT  ; Lhs = y ; Rhs = one,x1,x2 $ 

SKIP $ 
 PROBIT  ; Lhs = y ; Rhs = one,x1,x2 $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function      -524.80744 
Restricted log likelihood    -693.13918 
Chi squared [   2 d.f.]       336.66349 
Significance level               .00000 
McFadden Pseudo R-squared      .2428542 
Estimation based on N =   1000, K =   3 
Inf.Cr.AIC  = 1055.615 AIC/N =    1.056 
Hosmer-Lemeshow chi-squared =  10.15008 
P-value=  .25465 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .02186         .04709      .46  .6425     -.07043    .11414 
      X1|     .92513***      .05870    15.76  .0000      .81008   1.04018 
      X2|     .00018         .00015     1.23  .2176     -.00011    .00047 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------------------------------------------------------------- 
Deleted    100 observations with missing data. N is now    900 
--------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function      -416.47674 
Restricted log likelihood    -623.79691 
Chi squared [   2 d.f.]       414.64034 
Significance level               .00000 
McFadden Pseudo R-squared      .3323520 
Estimation based on N =    900, K =   3 
Inf.Cr.AIC  =  838.953 AIC/N =     .932 
Hosmer-Lemeshow chi-squared =    .56208 
P-value=  .99979 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.48950***      .07072    -6.92  .0000     -.62811   -.35090 
      X1|    1.03767***      .06903    15.03  .0000      .90238   1.17297 
      X2|    1.05649***      .10443    10.12  .0000      .85181   1.26117 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
You should use either SKIP or REJECT to remove the missing data from the sample.  (See Chapter 
R7 for details on skipping observations with missing values.) 
 
E27.3 Model Commands 
 
 The model commands for the six binary choice models listed above are largely the same: 
 

 











PROBIT
LOGIT

ARCTANGENT
GOMPERTZ

COMPLOGLOG
BURR

  ; Lhs = dependent variable  ;  Rhs = regressors $ 

 
Data on the dependent variable may be either individual or proportions for all six cases.  If the data 
are proportions, the dependent variable gives the proportion of ones.  The program deduces the 
proportion of zeros as one minus this value.  You need not make any special note of which. LIMDEP 
will inspect the data to determine which type of data you are using.  In either case, you provide only 
a single dependent variable.  As usual, you should include a constant term in the model unless your 
application specifically dictates otherwise. 
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 The command builder dialog boxes may also be used to construct these commands.  The 
probit, complementary log log, Gompertz and arctangent models are found in Models:Binary 
Choice/Probit.  The Lhs and Rhs variables are specified on the Main page of the dialog box.  Then, 
the Options page offers the various model choices shown in Figure E27.2. 
 

 
Figure E27.2  Command Builder Options Page for Probit and Other Models 

 
The probit model is the default – no menu selection is necessary.  The complementary log log, 
Gompertz and arctangent models are the last two options in this menu.  Note, the command builder 
generates a probit command of the form 
 
 PROBIT  ; Lhs = ... ; Rhs = ...  
 
and optionally,  ; Model = Comploglog     
 
or   ; Model = Gompertz  
 
or   ; Model = Arctangent $ 
 
which is equivalent to the separate commands shown above.  The logit model is specified in 
Models:Binary Choice/Logit.  The Burr model is a modification of the logit model and can be 
selected on the logit model Options page, as shown in Figure E27.3 – the check box is above the 
Optimization button.  
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Figure E27.3  Command Builder for Logit Model and Burr Models 

 
 All of the standard options for optimization are available.  These are discussed in Chapter 
R26.  To reiterate, these are as follows (and operate the same in all model settings): 
 
 ; Maxit = n   to set maximum iterations (may be 0 to compute LM statistics) 
 ; Start = list   to give starting values (see Section E27.12) 
 ; Tlf [ = value]   to control convergence on the function value 
 ; Tlb [ = value]     to control convergence on change in parameters 
 ; Tlg [ = value]   to control convergence on derivatives weighted by inverse Hessian 

; Alg = name  to request a particular algorithm, Newton, DFP, BFGS, etc.  
 ; Output = value to control the technical output in the displayed results 
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E27.4 Output 
 
 The binary choice models can produce a very large amount of optional output.   
Computation begins with some type of least squares estimation in order to obtain starting values. 
With ungrouped data, we simply use OLS of the binary variable on the regressors.   If requested, the 
usual regression results are given, including diagnostic statistics, e.g., sum of squared residuals, and 
the coefficient ‘estimates.’ The OLS estimates based on individual data are known to be inconsistent. 
They will be visibly different from the final maximum likelihood estimates. For the grouped data 
case, the estimates are GLS, minimum chi squared estimates, which are consistent and efficient. Full 
GLS results will be shown for this case. 
 
NOTE:  The OLS results will not normally be displayed in the output.  To request the display, use    
; OLS in any of the model commands. 
 
E27.4.1 Reported Estimates 
 
 Final estimates include: 
 

• logL   =  the log likelihood function at the maximum, 
 

• logL0  =  the log likelihood function assuming all slopes are zero.  If your Rhs variables do 
not include one, this statistic will be meaningless.  It is computed as 
 

   logL0  =  n[PlogP + (1-P)log(1-P)] 
 
where P is the sample proportion of ones. 
 

• McFadden’s pseudo R2 - 1 - logL/logL0. 
 

• The chi squared statistic for testing H0: β = 0 (not including the constant) and the 
significance level = probability that χ2 exceeds test value.  The statistic is 
 

   χ2  =  2(logL - logL0). 
 

• Akaike’s information criterion, -2(logL - K) and the normalized AIC,  =  -2(logL - K)/n. 
 

• The sample and model sizes, n and K. 
 

• Hosmer and Lemeshow’s fit statistic and associated chi squared and p value. (The Hosmer 
and Lemeshow statistic is documented in Section E27.8.) 
 

 The standard statistical results, including coefficient estimates, standard errors, t ratios, p 
values and confidence intervals appear next.  A complete listing is given below with an example.  
After the coefficient estimates are given, two additional sets of results can be requested, an analysis 
of the model fit and an analysis of the model predictions. 



E27: Probit and Logit Models: Estimation   E-541 

 We will illustrate with binary logit and probit estimates of a model for visits to the doctor 
using the German health care data described in Chapter E2.  The first model command is 
 

LOGIT  ; Lhs = doctor  
   ; Rhs = one,age,hhninc,hhkids,educ,married 
   ; OLS ; Summary 
   ; Output = IC $ (Display all variants of information criteria) 
 

Note that the command requests the optional listing of the OLS starting values and the additional fit 
and diagnostic results.  The results for this command are as follows.  With the exception of the table 
noted below, the same results (with different values, of course) will appear for all five parametric 
models.  Some additional optional computations and results will be discussed later. 
 
----------------------------------------------------------------------------- 
Binomial Logit Model for Binary Choice 
There are  2 outcomes for LHS variable DOCTOR 
These are the OLS estimates based on the 
binary variables for each outcome Y(i)=j. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .63280***      .05584    11.33  .0000      .52335    .74224 
     AGE|     .00387***      .00082     4.73  .0000      .00226    .00547 
  HHNINC|    -.08338**       .03967    -2.10  .0356     -.16114   -.00563 
  HHKIDS|    -.08456***      .01943    -4.35  .0000     -.12264   -.04647 
    EDUC|    -.00804**       .00355    -2.27  .0234     -.01500   -.00109 
 MARRIED|     .03209         .02131     1.51  .1321     -.00968    .07387 
--------+-------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function     -2121.43961 
Restricted log likelihood   -2169.26982 
Chi squared [   5 d.f.]        95.66041 
Significance level               .00000 
McFadden Pseudo R-squared      .0220490 
Estimation based on N =   3377, K =   6 
Inf.Cr.AIC  = 4254.879 AIC/N =    1.260 
FinSmplAIC  = 4254.904 FIC/N =    1.260 
Bayes IC    = 4291.628 BIC/N =    1.271 
HannanQuinn = 4268.018 HIC/N =    1.264 
Hosmer-Lemeshow chi-squared =  17.65094 
P-value=  .02400 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .52240**       .24887     2.10  .0358      .03463   1.01018 
     AGE|     .01834***      .00378     4.85  .0000      .01092    .02575 
  HHNINC|    -.38750**       .17760    -2.18  .0291     -.73559   -.03941 
  HHKIDS|    -.38161***      .08735    -4.37  .0000     -.55282   -.21040` 
    EDUC|    -.03581**       .01576    -2.27  .0230     -.06669   -.00493 
 MARRIED|     .14709         .09727     1.51  .1305     -.04357    .33774 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
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E27.4.2 Fit Measures 
 
 The model results are followed by a cross tabulation of the correct and incorrect predictions 
of the model using the rule 
 

   
∧
y  =  1  if  F(β

∧
‘xi )  >  .5, and 0 otherwise. 

 
For the models with symmetric distributions, probit and logit, the average predicted probability will 
equal the sample proportion.  If you have a quite unbalanced sample – high or low proportion of ones 
– the rule above is likely to result in only one value, zero or one, being predicted for the Lhs variable.  
You can choose a threshold different from .5 by using 
 
   ; Limit = the value you wish 
 
in your command. There is no direct counterpart to an R2 in regression.  Authors very commonly 
report the 

   Pseudo – R2 = log (model)1
log (constants only)

L
L

− . 

 
We emphasize, this is not a proportion of variation explained.  Moreover, as a fit measure, it has some 
peculiar features.  Note, for our example above, it is 1 - (-17673.10)/(-18019.55) = 0.01923, yet with 
the standard prediction rule, the estimated model predicts almost 63% of the outcomes correctly. 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Logit    model for variable DOCTOR     | 
+----------------------------------------+ 
|                 Y=0       Y=1     Total| 
| Proportions  .34202    .65798   1.00000| 
| Sample Size    1155      2222      3377| 
+----------------------------------------+ 
| Log Likelihood Functions for BC Model  | 
|              P=0.50    P=N1/N   P=Model| 
| LogL =     -2340.76  -2169.27  -2121.44| 
+----------------------------------------+ 
| Fit Measures based on Log Likelihood   | 
| McFadden = 1-(L/L0)          =   .02205| 
| Estrella = 1-(L/L0)^(-2L0/n) =   .02824| 
| R-squared (ML)               =   .02793| 
| Akaike Information Crit.     =  1.25996| 
| Schwartz Information Crit.   =  1.27084| 
+----------------------------------------+ 
| Fit Measures Based on Model Predictions| 
| Efron                        =   .02693| 
| Ben Akiva and Lerman         =   .56223| 
| Veall and Zimmerman          =   .04899| 
| Cramer                       =   .02735| 
+----------------------------------------+ 
 
The fit measures are documented in Section E27.8. 
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 The next set of results examines the success of the prediction rule 
 
   Predict yi = 1 if Pi  >  P* and 0 otherwise 
 
where P* is a defined threshold probability.  The default value of P* is 0.5, which makes the 
prediction rule equivalent to ‘Predict yi = 1 if the model says the predicted event yi = 1 | xi is more 
likely than the complement, yi = 0 | xi.’  You can change the threshold from 0.5 to some other value 
with 
   ; Limit = your P* 
 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |     21 (   .6%)|   1134 ( 33.6%)|   1155 ( 34.2%)| 
|  1   |     12 (   .4%)|   2210 ( 65.4%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |     33 (  1.0%)|   3344 ( 99.0%)|   3377 (100.0%)| 
+------+----------------+----------------+----------------+ 
+---------------------------------------------------------+ 
|Crosstab for Binary Choice Model.  Predicted probability | 
|vs. actual outcome. Entry = Sum[Y(i,j)*Prob(i,m)] 0,1.   | 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|      Predicted Probability      |                | 
|Value |    Prob(y=0)        Prob(y=1)   | Total Actual   | 
+------+----------------+----------------+----------------+ 
| y=0  |    415 ( 12.3%)|    739 ( 21.9%)|   1155 ( 34.2%)| 
| y=1  |    739 ( 21.9%)|   1482 ( 43.9%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |   1155 ( 34.2%)|   2221 ( 65.8%)|   3377 ( 99.9%)| 
+------+----------------+----------------+----------------+ 
 
This table computes a variety of conditional and marginal proportions based on the results using the 
defined prediction rule.  For examples, the 66.697% equals (1482/2222)100% while the 66.727% is 
(1482/2221)100%. 
 
----------------------------------------------------------------------- 
Analysis of Binary Choice Model Predictions Based on Threshold =  .5000 
----------------------------------------------------------------------- 
Prediction Success 
----------------------------------------------------------------------- 
Sensitivity = actual 1s correctly predicted                     66.697% 
Specificity = actual 0s correctly predicted                     35.931% 
Positive predictive value = predicted 1s that were actual 1s    66.727% 
Negative predictive value = predicted 0s that were actual 0s    35.931% 
Correct prediction = actual 1s and 0s correctly predicted       56.174% 
----------------------------------------------------------------------- 
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----------------------------------------------------------------------- 
Prediction Failure 
----------------------------------------------------------------------- 
False pos. for true neg. = actual 0s predicted as 1s            63.983% 
False neg. for true pos. = actual 1s predicted as 0s            33.258% 
False pos. for predicted pos. = predicted 1s actual 0s          33.273% 
False neg. for predicted neg. = predicted 0s actual 1s          63.983% 
False predictions = actual 1s and 0s incorrectly predicted      43.767% 
----------------------------------------------------------------------- 
 
E27.4.3 Covariance Matrix 
 
 The estimated asymptotic covariance matrix of the coefficient estimator is not automatically 
displayed – it might be huge.  You can request a display with 
 

  ; Covariance Matrix (or ; Printvc)  
 
If the matrix is not larger than 5×5, it will be displayed in full.  If it is larger, an embedded object that 
holds the matrix will show, instead.  By double clicking the object, you can display the matrix in a 
window.  An example appears in Figure E27.4 below. 
 

 
Figure E27.4  Embedded Matrix 
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E27.4.4 Retained Results and Generalized Residuals 
 
 The results saved by the binary choice models are: 
 
 Matrices: b   =  estimate of β (also contains γ for the Burr model) 
   varb   =  asymptotic covariance matrix 
 
 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Variables: logl_obs =  individual contribution to log likelihood 
   score_fn =  generalized residual. See Section E27.9. 
 
 Last Model: b_variables 
 
 Last Function: Prob(y = 1 | x) = F(b′x).  This varies with the model specification. 
 
 Models that are estimated using maximum likelihood automatically create a variable named 
logl_obs, that contains the contribution of each individual observation to the log likelihood for the 
sample.  Since the log likelihood is the sum of these terms, you could, in principle, recover the 
overall log likelihood after estimation with 
 
 CALC  ; List ; Sum(logl_obs) $ 
 
The variable can be used for certain hypothesis tests, such as the Vuong test for nonnested models.  
The following is an example (albeit, one that appears to have no real power) that applies the Vuong 
test to discern whether the logit or probit is a preferable model for a set of data: 
 
 LOGIT ; … $ 
 CREATE ; lilogit = logl_obs $ 
 PROBIT ; … $ 
 CREATE ; liprobit = logl_obs ; di = liprobit - lilogit $ 
 CALC  ; List ; vtest = Sqr(n) * Xbr(di) / Sdv(di) $ 
 
 The ‘generalized residuals’ in a parametric binary choice model are the derivatives of the log 
likelihood with respect to the constant term in the model.  These are sometimes used to check the 
specification of the model (see Chesher and Irish (1987)).  These are easy to compute for the models 
listed above – in each case, the generalized residual is the derivative of the log of the probability with 
respect to β′x.  This is computed internally as part of the iterations, and kept automatically in your 
data area in a variable named score_fn.  The formulas for the generalized residuals are provided in 
Section E27.12 with the technical details for the models.  For example, you can verify the 
convergence of the estimator to a maximum of the log likelihood with the instruction 
 
 CALC  ; List ; Sum(score_fn) $ 
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E27.5 Robust Covariance Matrix Estimation 
 
 The preceding describes a covariance estimator that accounts for a specific, observed aspect 
of the data.  The concept of the ‘robust’ covariance matrix is that it is meant to account for 
hypothetical, unobserved failures of the model assumptions.  The intent is to produce an asymptotic 
covariance matrix that is appropriate even if some of the assumptions of the model are not met.  (It is 
an important, but infrequently discussed issue whether the estimator, itself, remains consistent in the 
presence of these model failures – that is, whether the so called robust covariance matrix estimator is 
being computed for an inconsistent estimator.)  (Chapter R10 provides general discussion of robust 
covariance matrix estimation.) 
 
E27.5.1 The Sandwich Estimator 
 
 A robust covariance matrix estimator adjusts the estimated asymptotic covariance matrix for 
possible misspecification in the model which leaves the MLE consistent but the estimated asymptotic 
covariance matrix incorrectly computed.  One example would be a binary choice model with 
unspecified latent heterogeneity.  A frequent adjustment for this case is the ‘sandwich estimator,’ 
which is the choice based sampling estimator suggested above with weights equal to one. (This 
suggests how it could be computed.)  The desired matrix is 
 

Est.Asy.Var ˆ 
 β   =  

1 1
2 2

1 1 1

log log log log'ˆ ˆ ˆ ˆ ˆ ˆ
n n ni i i i
i i i

F F F F
− −

= = =

           ∂ ∂ ∂ ∂
           

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂                
∑ ∑ ∑

β β β β β β
 

 
Three ways to obtain this matrix are 
 
   ; Wts = one ; Choice based sampling 
or   ; Robust 
or   ; Cluster = 1 
 
The computation is identical in all cases.  (As noted below, the last of them will be slightly larger, as 
it will be multiplied by n/(n-1).) 
 
E27.5.2 Clustering 
 
 A related calculation is used when observations occur in groups which may be correlated.  
This is rather like a panel; one might use this approach in a random effects kind of setting in which 
observations have a common latent heterogeneity.  The parameter estimator is unchanged in this 
case, but an adjustment is made to the estimated asymptotic covariance matrix.  The calculation is 
done as follows: Suppose the n observations are assembled in G clusters of observations, in which 
the number of observations in the ith cluster is ni.  Thus, 
 

   
1

G
ii

n
=∑  =  n. 
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Let the observation specific gradients and Hessians be 
 

   gij  =  
log ijL∂

∂β
 

   Hij  =  
2 log

'
ijL∂

∂ ∂β β
. 

 
The uncorrected estimator of the asymptotic covariance matrix based on the Hessian is 
 

   VH =   -H-1  =  ( ) 1

1 1
iG n

iji j

−

= =
−∑ ∑ H  

 
Estimators for some models such as the Burr model will use the BHHH estimator, instead.  In 
general, 

   VB =  ( ) 1

1 1
iG n

ij iji j

−

= =
′∑ ∑ g g  

 
Let V be the estimator chosen.  Then, the corrected asymptotic covariance matrix is 
 

   Est.Asy.Var ˆ 
 β   =  ( )( )1 1 11

i iG n n
ij iji j j

G
G = = =

 ′
 −  
∑ ∑ ∑V g g  V  

 
Note that if there is exactly one observation per cluster, then this is G/(G-1) times the sandwich 
estimator discussed above.  Also, if you have fewer clusters than parameters, then this matrix is 
singular – it has rank equal to the minimum of G and K, the number of parameters. 
 This procedure is described in greater detail in Section E27.5.3.  To request the estimator, 
your command must include 
 
   ; Cluster = specification 
 
where the specification is either the fixed value if all the clusters are the same size, or the name of an 
identifying variable if the clusters vary in size.  Note, this is not the same as the variable in the Pds 
function that is used to specify a panel.  The cluster specification must be an identifying code that is 
specific to the cluster.  For example, our health care data used in our examples is an unbalanced 
panel.  The first variable is a family id, which we will use as follows 
 
   ; Cluster = id 
 
The results below demonstrate the effect of this estimator.  Three sets of estimates are given.  The 
first are the original logit estimates that ignore the cross observation correlations.  The second use the 
correction for clustering.  The third is a panel data estimator – the random effects estimator described 
in Chapter E30 – that explicitly accounts for the correlation across observations.  It is clear that the 
different treatments change the results noticeably.   
 
  



E27: Probit and Logit Models: Estimation   E-548 

Uncorrected covariance matrix 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.20205**       .09397    -2.15  .0315     -.38622   -.01787 
     AGE|     .01935***      .00130    14.90  .0000      .01681    .02190 
    EDUC|    -.02477***      .00578    -4.28  .0000     -.03611   -.01344 
 MARRIED|     .12023***      .03376     3.56  .0004      .05405    .18640 
  HHNINC|    -.21388***      .07580    -2.82  .0048     -.36245   -.06532 
  HHKIDS|    -.24879***      .02983    -8.34  .0000     -.30726   -.19032 
  FEMALE|     .58305***      .02620    22.26  .0000      .53171    .63439 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Cluster corrected covariance matrix 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.20205         .12997    -1.55  .1200     -.45678    .05269 
     AGE|     .01935***      .00176    11.00  .0000      .01590    .02280 
    EDUC|    -.02477***      .00811    -3.05  .0023     -.04067   -.00888 
 MARRIED|     .12023***      .04556     2.64  .0083      .03093    .20953 
  HHNINC|    -.21388**       .09276    -2.31  .0211     -.39568   -.03209 
  HHKIDS|    -.24879***      .03842    -6.48  .0000     -.32409   -.17349 
  FEMALE|     .58305***      .03744    15.57  .0000      .50967    .65644 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Random effects estimates 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.70495***      .18028    -3.91  .0001    -1.05830   -.35160 
     AGE|     .03656***      .00241    15.18  .0000      .03184    .04128 
    EDUC|    -.03703***      .01132    -3.27  .0011     -.05923   -.01484 
 MARRIED|     .05481         .05570      .98  .3251     -.05435    .16397 
  HHNINC|     .00772         .11698      .07  .9474     -.22156    .23700 
  HHKIDS|    -.23497***      .04727    -4.97  .0000     -.32763   -.14232 
  FEMALE|     .77202***      .05357    14.41  .0000      .66702    .87702 
     Rho|     .39909***      .00586    68.07  .0000      .38760    .41058 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E27.5.3 Stratification and Clustering  
 
 The clustering estimator is extended to include stratum level grouping, where a stratum 
includes one or more clusters, and weighting to allow finite population correction.  We suppose that 
there are a total of S strata in the sample.  Each stratum, ‘s,’ contains Cs clusters.  The number of 
observations in a cluster is Ncs.  Neglecting the weights for the moment, 
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where gics is the derivative of the contribution to the log likelihood of individual i in cluster c in 
stratum s.  The remaining detail in the preceding is the weighting factor, ws.  The stratum weight is 
computed as 
   ws  = fs × hs × d 
 
where    fs  = 1  or a finite population correction, 1 - Cs/Cs* where Cs* is the true 

number of clusters in stratum s, where Cs* > Cs. 
 

   hs = 1  or Cs/(Cs - 1) 

   d  = 1  or (N-1)/(N-K) where N is the total number of observations in the 
    entire sample and K is the number of parameters (rows in V). 

Use 
 ; Cluster  =  the number of observations in a cluster (fixed) or the name of a 
    stratification variable which gives the cluster an identification.  This 
    is the setup that is described above. 
 ; Stratum  =  the number of observations in a stratum (fixed) or the name of a  
    stratification variable which gives the stratum an identification 
 ; Wts     = the name of the usual weighting variable for model estimation if 
    weights are desired.  This defines wics.   
 ; FPC     = the name of a variable which gives the number of clusters in the 
    stratum.  This number will be the same for all observations in a 
    stratum – repeated for all clusters in the stratum.  If this number is 
    the same for all strata, then just give the number. 
 ; Huber     Use this switch to request hs.  If omitted, hs = 1 is used. 
 ; DFC        Use this switch to request the use of d given above.  If omitted, 
    d = 1 is used. 
 
Further details on this estimator may be found in Section E30.3 and Section R10.3. 
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E27.6 Analysis of Partial Effects 
 

 Partial effects in a binary choice model are 
 

   [ | ] ( ) ( )
( )

E y F dF
d

′ ′∂ ∂
= =

′∂ ∂
x x x

x x x
β β

β
β

 = F′(β′x)β  =  f(β′x)β. 

 

That is, the vector of marginal effects is a scalar multiple of the coefficient vector.  The scale factor, 
f(β′x),  is the density function, which is a function of x.  (The densities for the six binary choice models 
are listed in Section E27.2.1.)  This function can be computed at any data vector desired.  Average 
partial effects are computed by averaging the function over the sample observations.  The elasticity of 
the probability is 
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 When the variable in x that is changing in the computation is a dummy variable, the 
derivative approach to estimating the marginal effect is not appropriate.  An alternative which is 
closer to the desired computation for a dummy variable, that we denote z, is 
 

   ∆Fz   =  Prob[y = 1 | z = 1]  -  Prob[y = 1 | z = 0] 
  =  F(β′x + αz | z = 1)  - F(β′x + αz | z = 0) 
  =  F(β′x + α)  - F(β′x). 

 

LIMDEP examines the variables in the model and makes this adjustment automatically.   
There are two programs in LIMDEP for obtaining partial effects for the binary choice (and 

most other) models, the built in computation provided by the model command and the PARTIAL 
EFFECTS command.  Examples of both are shown below.   

The LOGIT, PROBIT, etc. commands provide a built in, basic computation for partial 
effects. You can request the computation to be done automatically by adding 
 

   ; Partial Effects (or ; Marginal Effects) 
 

to your command.  The results below are produced for logit model in the earlier example.  The 
standard errors for the partial effects are computed using the delta method.  See Section E27.12 for 
technical details on the computation.  The results reported are the average partial effects. 
 
--------+-------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00402***      .26013     4.92  .0000      .00242    .00562 
  HHNINC|    -.08666**      -.05857    -2.22  .0267     -.16331   -.01001 
  HHKIDS|    -.08524***     -.05021    -4.33  .0000     -.12382   -.04667   # 
    EDUC|    -.00779**      -.13620    -2.24  .0252     -.01461   -.00097 
 MARRIED|     .03279         .03534     1.52  .1288     -.00952    .07510   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
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The equivalent PARTIAL EFFECTS (or just PARTIALS) command, which would immediately 
follow the LOGIT command, would be 
 

PARTIAL EFFECTS  ; Effects: age / hhninc / hhkids / educ / married  
; Summary $ 

 
--------------------------------------------------------------------- 
Partial Effects for Probit Probability Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00402     .00082    4.92      .00242      .00562 
      HHNINC       -.08666     .03911    2.22     -.16331     -.01001 
   *  HHKIDS       -.08524     .01968    4.33     -.12382     -.04667 
      EDUC         -.00779     .00348    2.24     -.01461     -.00097 
   *  MARRIED       .03279     .02159    1.52     -.00952      .07510 
--------------------------------------------------------------------- 
 
The second method provides a variety of options for computing partial effects under various 
scenarios, plotting the effects, etc.  See Chapter R11 for further details. 
 
NOTE:  If your model contains nonlinear terms in the variables, such as age^2 or interaction terms 
such as age*female, then you must use the PARTIAL EFFECTS command to obtain partial effects.  
The built in routine in the command, ; Partial Effects, will not give the correct answers for variables 
that appear in nonlinear terms. 
 

E27.6.1 The Krinsky and Robb Method 
  

 An alternative to the delta method described above that is sometimes advocated is the 
Krinsky and Robb method.  By this device, we have our estimate of the model coefficients, b, and 
the estimated asymptotic covariance matrix, V.  The marginal effects are computed as a function of b 
and the vector of means of the sample data, x , say gk(b, x ) for the kth variable.  The Krinsky and 
Robb technique involves sampling R draws from the asymptotic normal distribution of the estimator, 
computing the function with these R draws, then computing the empirical variance.  This is not done 
automatically by the binary choice estimator, but you can easily do the computation using the 
WALD command.  For an example, we will use this method to compute the marginal effects for two 
variables in the logit model estimated earlier.  The program would be 
 
 NAMELIST  ; x = one,age,hhninc,hhkids,educ,married $ 
 LOGIT  ; Lhs = doctor ; Rhs = x ; Partial Effects $  
 MATRIX  ; xbar = Mean(x) $ 
 CALC   ; kx = Col(x) ; Ran(12345) $ 
 WALD  ; Start = b ; Var = varb ; Labels = kx_b 
   ; Fn1 = b2 * Lgd(b1'xbar) 
   ; Fn2 = b3 * Lgd(b1'xbar) 
   ; K&R ; Pts = 2000 $ 
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----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =     27.72506 
Prob. from Chi-squared[ 2] =       .00000 
Krinsky-Robb method used with 2000 draws 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|     .00409***      .00084     4.85  .0000      .00244    .00575 
 Fncn(2)|    -.08694**       .03913    -2.22  .0263     -.16363   -.01025 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 

--------------------------------------------------------------------- 
Partial Effects for Probit Probability Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00402     .00082    4.92      .00242      .00562 
      HHNINC       -.08666     .03911    2.22     -.16331     -.01001 
--------------------------------------------------------------------- 
 
There is a second sources of difference between the Krinsky and Robb estimates and the delta 
method results that follow:  The Krinsky and Robb procedure is based on the means of the data while 
the delta method averages the partial effects over the observations.  It is possible to perform the 
K&R iteration at every observation to reproduce the APE calculations by adding ; Average to the 
WALD command.  The results below illustrate. 
 
--------+-------------------------------------------------------------------- 
 Fncn(1)|     .00407***      .00085     4.80  .0000      .00241    .00573 
 Fncn(2)|    -.08673**       .03929    -2.21  .0273     -.16373   -.00973 
--------+-------------------------------------------------------------------- 
 
We do not recommend this as a general procedure, however.  It is enormously time consuming and 
does not produce a more accurate result. 
 
Estimating Marginal Effects by Strata 
 
 Marginal effects may be calculated for indicated subsets of the data by using 
 
   ; Margin = variable 
 
where ‘variable’ is the name of a variable coded 0,1,... which designates up to 10 subgroups of the 
data set, in addition to the full data set. For example, a common application would be 
 

   ; Margin = sex 
 
in which the variable sex is coded 0 for men and 1 for women (or vice versa).  The variable used in 
this computation need not appear in the model; it may be any variable in the data set.   
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For example, using our logit model above, we now compute marginal effects separately for 
men and women: 

 
 LOGIT  ; Lhs = doctor  
   ; Rhs = one,age,hhninc,hhkids,educ,married 
   ; Margin = female $ 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function     -2121.43961 
Restricted log likelihood   -2169.26982 
Chi squared [   5 d.f.]        95.66041 
Significance level               .00000 
McFadden Pseudo R-squared      .0220490 
Estimation based on N =   3377, K =   6 
Inf.Cr.AIC  = 4254.879 AIC/N =    1.260 
Hosmer-Lemeshow chi-squared =  17.65094 
P-value=  .02400 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .52240**       .24887     2.10  .0358      .03463   1.01018 
     AGE|     .01834***      .00378     4.85  .0000      .01092    .02575 
  HHNINC|    -.38750**       .17760    -2.18  .0291     -.73559   -.03941 
  HHKIDS|    -.38161***      .08735    -4.37  .0000     -.55282   -.21040 
    EDUC|    -.03581**       .01576    -2.27  .0230     -.06669   -.00493 
 MARRIED|     .14709         .09727     1.51  .1305     -.04357    .33774 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used are FEMALE=0 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00414***      .26343     4.84  .0000      .00247    .00582 
  HHNINC|    -.08756**      -.06038    -2.18  .0291     -.16619   -.00893 
  HHKIDS|    -.08714***     -.05161    -4.34  .0000     -.12645   -.04783   # 
    EDUC|    -.00809**      -.14612    -2.27  .0234     -.01509   -.00109 
 MARRIED|     .03351         .03549     1.50  .1334     -.01025    .07728   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used are FEMALE=1 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00404***      .26337     4.88  .0000      .00242    .00567 
  HHNINC|    -.08545**      -.05555    -2.18  .0290     -.16217   -.00873 
  HHKIDS|    -.08519***     -.04911    -4.33  .0000     -.12379   -.04659   # 
    EDUC|    -.00790**      -.13086    -2.28  .0225     -.01468   -.00111 
 MARRIED|     .03279         .03550     1.50  .1345     -.01015    .07573   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used are All Obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00410***      .26352     4.86  .0000      .00244    .00575 
  HHNINC|    -.08660**      -.05811    -2.18  .0291     -.16436   -.00884 
  HHKIDS|    -.08626***     -.05044    -4.34  .0000     -.12524   -.04727   # 
    EDUC|    -.00800**      -.13893    -2.27  .0230     -.01490   -.00110 
 MARRIED|     .03318         .03551     1.50  .1339     -.01021    .07658   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+-------------------------------------------+ 
| Marginal Effects for Logit                | 
+----------+----------+----------+----------+ 
| Variable | FEMALE=0 | FEMALE=1 | All Obs. | 
+----------+----------+----------+----------+ 
| AGE      |   .00414 |   .00404 |   .00410 | 
| HHNINC   |  -.08756 |  -.08545 |  -.08660 | 
| HHKIDS   |  -.08714 |  -.08519 |  -.08626 | 
| EDUC     |  -.00809 |  -.00790 |  -.00800 | 
| MARRIED  |   .03351 |   .03279 |   .03318 | 
+----------+----------+----------+----------+ 
 
 The computation using the built in estimator is done at the strata means of the data.  The 
computation can be done by averaging across observations using the PARTIAL EFFECTS 
command.  For example, the corresponding results for the income variable are obtained with 
 

PARTIAL EFFECTS  ; Effects: hhninc @ female=0,1$ 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to HHNINC 
Results are computed by average over sample observations 
Partial effects for continuous HHNINC   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dHHNINC         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Subsample for this iteration is FEMALE   =  0   Observations:    1812 
APE. Function      -.08585     .03925    2.19     -.16278     -.00892 
--------------------------------------------------------------------- 
Subsample for this iteration is FEMALE   =  1   Observations:    1565 
APE. Function      -.08355     .03820    2.19     -.15841     -.00868 
 
Examining the Effect of a Variable Over a Range of Values 
 
 Another useful device is a plot of the probability (conditional mean) over the range of a 
variable of interest either holding other variables at their means, or averaging over the sample values.  
The figure below does this for the income variable in the logit model for doctor visits.   The figure is 
plotted for hhkids = 1 and hhkids = 0 to show the two effects.  We see that the probability falls with 
increased income, and also for individuals in households in which there are children.   
 

SIMULATE  ; Scenario: & hhninc = 0(.05).5 | hhkids=0,1 ; plot$ 
 

 
Figure E27.5  Probabilities Varying with Income 
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E27.7 Simulation and Analysis of a Binary Choice Model   
 
 This section describes a procedure that is used with all of the parametric models described 
above.  It is used for two specific analyses.  This procedure allows you to analyze the predictions 
made by a binary choice when the variables in the model are changed.  It is similar to the ; Simulate 
feature in NLOGIT 5.  The analysis is provided in two parts: 
 

• Change specific variables in the model by a prescribed amount, and examine the changes in 
the model predictions. 
 

• Vary a particular variable over a range of values and examine the predicted probabilities 
when other variables are held fixed at their means. 

 
This program is available for the six parametric binary choice models: probit, logit, Gompertz, 
complementary log log, arctangent and Burr.  The probit and logit models may also be 
heteroscedastic. The routine is accessed as follows. First fit the model as usual. Then, use the 
identical model specification as shown below with the specifications indicated: 
 
 (MODEL)  ; Lhs = ... ; Rhs = ... $ 
 
Then 
 
     BINARY CHOICE ; Lhs = (the same) ; Rhs = (the same) ; ... (also the same) 
         ; Model = Probit, Logit, Gompertz, Comploglog or Burr 
         ; Start = B (from the preceding model) 
 
 (optional, the value to use for predicting Lhs = 1, default = .5) 
 
   ; Threshold = P* 
 
 (optional) ; Scenario: variable operation = value / 
     (variable operation = value) / ... (may be repeated) 
 
 (optional) ; Plot: variable (lower limit, upper limit) $ 
 
In the ; Plot specification, the limits part may be omitted, in which case the range of the variable is 
used.  This will replicate for the one variable the computation of the program in the preceding section. 
 The ; Scenario section computes all predicted probabilities for the model using the sample 
data and the estimated parameters.  Then, it recomputes the probabilities after changing the variables 
in the way specified in the scenarios.  (The actual data are not changed – the modification is done 
while the probabilities are computed.)  The scenarios are of the form 
 
   variable operation  = value 
 
such as   hhkids  + = 1  (effect of additional kids in the home) 
or   hhninc * = 1.1 (effect of a 10% increase in income) 
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You may provide multiple scenarios.  They are evaluated one at a time.  This is an extension of the 
computation of marginal effects. 
 In the example below, we extend the analysis of marginal effect in the logit model used 
above. The scenario examined is the impact of every individual having one more child in the 
household then having a 50% increase in income.  (Since hhkids is actually a dummy variable for the 
presence of kids in the home, increasing it by one is actually an ambiguous experiment.  We retain it 
for the sake of a simple numerical example.)  The plot shows the effect of income on the probability 
of visiting the doctor, according to the model. 
 
 NAMELIST ; x = one,age,educ,married,hhninc,hhkids $ 

LOGIT  ; Lhs = doctor ; Rhs = x $ 
BINARY  ; Lhs = doctor ; Rhs = x  
               ; Model = Logit ; Start = b 
               ; Scenario:  hhkids + = 1 / hhninc * = 1.5  $ 

 
The model output is omitted for brevity. 
 
+-------------------------------------------------------------+ 
|Scenario 1. Effect on aggregate proportions. Logit    Model  | 
|Threshold T* for computing Fit = 1[Prob > T*] is  .50000     | 
|Variable changing = HHKIDS  , Operation = +, value =   1.000 | 
+-------------------------------------------------------------+ 
|Outcome           Base case       Under Scenario   Change    | 
|      0        33 =    .98%       831 =   24.61%      798    | 
|      1      3344 =  99.02%      2546 =   75.39%     -798    | 
|  Total      3377 = 100.00%      3377 =  100.00%        0    | 
+-------------------------------------------------------------+ 
+-------------------------------------------------------------+ 
|Scenario 2. Effect on aggregate proportions. Logit    Model  | 
|Threshold T* for computing Fit = 1[Prob > T*] is  .50000     | 
|Variable changing = HHNINC  , Operation = *, value =   1.500 | 
+-------------------------------------------------------------+ 
|Outcome           Base case       Under Scenario   Change    | 
|      0        33 =    .98%       106 =    3.14%       73    | 
|      1      3344 =  99.02%      3271 =   96.86%      -73    | 
|  Total      3377 = 100.00%      3377 =  100.00%        0    | 
+-------------------------------------------------------------+ 
 
 The SIMULATE command used in the example provides a greater range of scenarios that 
one can examine to see the effects of changes in a variable on the overall prediction of the binary 
choice model.  The advantage of the BINARY command used here is that for straightforward 
scenarios, it can be used to provide useful tables such as the ones shown above. 
  
 
  



E27: Probit and Logit Models: Estimation   E-558 

E27.8 Measuring Fit in Binary Choice Models 
 

A description of the ability of the binary choice model to predict the dependent variable is 
given by a 2×2 table which gives the success rate of the prediction rule 
 

   Predict yi = 1 if fitted probability for yi = îP  > P*, and 0 otherwise. 
 

(This has been labeled a confusion matrix elsewhere in the literature.)  This is the table produced by 
the logit model above. 
 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |     21 (   .6%)|   1134 ( 33.6%)|   1155 ( 34.2%)| 
|  1   |     12 (   .4%)|   2210 ( 65.4%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |     33 (  1.0%)|   3344 ( 99.0%)|   3377 (100.0%)| 
+------+----------------+----------------+----------------+ 
 
The value of P* is reported with the table.  This will normally be 0.5.  But, if your sample is very 
unbalanced you may wish to change this with 
 
   ; Limit = the desired value 
 
In general, the better the model is, the larger will be the number of observations on the diagonals of 
this table.  For example, by adding 
 

   ; Limit = .6 
 
in the model command, we obtain the following results: 
 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .600000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |    379 ( 11.2%)|    776 ( 23.0%)|   1155 ( 34.2%)| 
|  1   |    555 ( 16.4%)|   1667 ( 49.4%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |    934 ( 27.7%)|   2443 ( 72.3%)|   3377 (100.0%)| 
+------+----------------+----------------+----------------+ 
 
This actually worsens the fit of the model, based on the simple count of correct predictions.  The 
change in the rule improves the ‘hit rate’ on the zeros, but at the cost of lowering the success at 
predicting the ones.  This does say something about this criterion for model fit. 
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Hosmer and Lemeshow Diagnostic Statistic 
 
 Hosmer and Lemeshow have proposed a diagnostic measure for the probit and logit models 
(they focus on the latter) that assesses the match between actual and predicted values.  To do the 
computation, we compute a fitted probability, Fi for each observation using the estimated model 
parameters.  We then sort the fitted values in ascending order, carrying the actual yi with them.  The 
data are then divided into 10 percentiles based on the fitted values, and means of the predicted and 
actual data are computed within each group.  The statistic is 
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(If the sample is not large, some groups at the high or low end may have insufficient variation to 
compute the denominator – the fitted values may all be very close to zero or one.  The resulting 
statistic has a limiting chi squared distribution with eight (or fewer) degrees of freedom.  Large 
values of the statistic suggest that the model is inappropriate.  The example for the health care data 
below suggests this case. 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function     -2121.43961 
Restricted log likelihood   -2169.26982 
Chi squared [   5 d.f.]        95.66041 
Significance level               .00000 
McFadden Pseudo R-squared      .0220490 
Estimation based on N =   3377, K =   6 
Inf.Cr.AIC  = 4254.879 AIC/N =    1.260 
Hosmer-Lemeshow chi-squared =  17.65094 
P-value=  .02400 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
 
Scalar Fit Measures for Binary Choice Models 
 
 Numerous other scalar fit measures have been proposed for binary choice models.  They 
share the flaw that none satisfactorily mimic the true measure of proportion of variation explained 
given by R2 in the linear regression context.  LIMDEP reports several of these in a table with each set 
of estimates: (We are unable to recommend any of these as optimal.  There is some discussion in 
Estrella (1998) which may be useful.  See, also, Greene and Hensher (2010, Chapter 4).) 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Logit    model for variable DOCTOR     | 
+----------------------------------------+ 
|                 Y=0       Y=1     Total| 
| Proportions  .34202    .65798   1.00000| 
| Sample Size    1155      2222      3377| 
+----------------------------------------+ 
| Log Likelihood Functions for BC Model  | 
|              P=0.50    P=N1/N   P=Model| 
| LogL =     -2340.76  -2169.27  -2121.44| 
+----------------------------------------+ 
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+----------------------------------------+ 
| Fit Measures based on Log Likelihood   | 
| McFadden = 1-(L/L0)          =   .02205| 
| Estrella = 1-(L/L0)^(-2L0/n) =   .02824| 
| R-squared (ML)               =   .02793| 
| Akaike Information Crit.     =  1.25996| 
| Schwartz Information Crit.   =  1.27084| 
+----------------------------------------+ 
| Fit Measures Based on Model Predictions| 
| Efron                        =   .02693| 
| Ben Akiva and Lerman         =   .56223| 
| Veall and Zimmerman          =   .04899| 
| Cramer                       =   .02735| 
+----------------------------------------+ 
 
The values in the table are computed as follows: 
 

K  =  number of coefficients in the model 
N  = sample size 

 P0  =  proportion of zeros in the sample 

 P1  =  1 - P0  =  y  

 Fi  =  Predicted probability that yi equals 1 | xi 

 îP   =  Predicted probability of observed yi  =  (1-yi)(1-Fi) + yiFi 

 L0  =  log likelihood with only a constant  =  n (P0 logP0  +  P1logP1) 

 L  =  log likelihood  =  
1
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Ben-Akiva  =  1
îi

P
n ∑  

Veall   =  [ ] 0( 1)/( McFadden) McFadden,   N/(2logL )δ − δ − δ =  

Cramer  =  Average value of îP |yi = 1  -  Average value of îP |yi = 0 
 
 You can obtain this same table of values for a binary variable y and any set of predicted 
probabilities contained in a variable with  

 
CALC   ; Fit (name of y variable, name of probabilities variable) $   
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This command always produces the output even if ; List is not specified, but it does not produce any 
other results. The result of the CALC command is zero. (When you use this, the information criteria 
are not computed, as the degrees of freedom is not known.) 
 
A Goodness of Fit Measure for the Probit Model Based on the Normal 
Distribution 
 
 This program computes a pseudo R squared for a probit model based on the formula given 
by Zavoina and McKelvey (1975) in their paper on the ordered probit model: 
 
   E[yi*|yi]  =  yfi  =  xi′β +  λi 

   λi   = (2yi – 1)φ( xi′β) / Φ[(2yi – 1) xi′β] 

   R2   = Var(yf) / [1 + Var(yf)] 
 
where λi is the inverse Mill’s ratio usually kept for SELECT.  After setting up the sample for the 
problem, the commands are 
 
 NAMELIST ; x = the Rhs variables for the probit model $ 
 PROBIT    ; Lhs = y ; Rhs = x ; Hold(IMR = lambda) $ 
 CREATE    ; yf = x’b + lambda $ 
 CALC      ; zm = Var(yf) / (1 + Var(yf)) $ 
 
ROC Plots for Binary Choice Models  
 
 ROC (receiver operating characteristic) plots provide a loose descriptive measure of fit in a 
binary choice model, and can be used to some extent to compare models.  You may obtain these for 
all parametric binary choice models: logit (with or without heteroscedasticity), probit (with or 
without heteroscedasticity), complementary log log, Gompertz and Burr.   The request is simply 
 
   ; ROC 
 
added to any binary choice model command.  An example appears below.  The curve is constructed 
by computing for the range of values of P* from zero to one, 
 
 Sensitivity(P*) = proportion of observations for which estimated and actual values 
    of yi are both equal to one when the estimated yi equals one if the 
    the predicted probability is greater than or equal to P*. 
and 
 Specificity(P*) = the proportion of values for which predicted and actual zeros match. 
 
The graph is constructed by plotting Sensitivity(P*) against 1 - Specificity(P*). The ‘fit measure’ is 
then computed as the area under the ROC curve.  A greater area implies a greater model fit.  (The 
field is a unit rectangle.)  A model with no fit has an area of 0.5.  The request for the ROC plot also 
produces a plot of the ability of the model to predict zeros and ones, again as a function of P*.  This 
figure is produced by plotting the Specificity(P*) and Sensitivity(P*) against P*.  An example based 
on the earlier logit model appears below. 
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Figure E27.6  Analysis of Model Fit 

 
E27.9 Saving Predictions and Residuals 
 
 Predictions for the binary choice models are created by adding 
 
   ; Keep = the name of the variable. 
 
Predictions are computed using the rule, 
 

Predict yi = 1 if fitted probability > P*, and 0 otherwise. 
 
Predictions retained with ; Keep = name are the samples of ones and zeros produced by the 
prediction rule above.  You may also keep the predicted probabilities, F( β̂ ′xi) with  
 
   ; Prob = name 
 
Residuals are requested with  
 
   ; Res = name 
 
They are the difference between actual and predicted values; residuals may be -1, 0, or 1.  These  
results may be displayed with the model results by adding 
 
   ; List 
 
to the model command.  The listing for probit model based on a small data set is shown below.  (Our 
health care data set contains over 27,000 observations.  We would not want to list a sample this 
large.)  We do note, these ‘residuals’ are unlikely to be useable in this form.  The generalized 
residuals for the model discussed below are likely to be more useable as a diagnostic tool. 
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Observation  Observed Y   Predicted Y   Residual      x(i)b    Prob[Y=1] 
        1    .00000        .00000          .0000      -2.0931      .0182 
        2    .00000        .00000          .0000      -1.6157      .0531 
        3    .00000        .00000          .0000       -.8782      .1899 
        4    .00000        .00000          .0000      -2.0842      .0186 
        5    1.0000        1.0000          .0000        .1372      .5546 
 (rows omitted) 
       21    .00000        .00000          .0000      -1.5388      .0619 
       22    1.0000        1.0000          .0000       1.3079      .9045 
       23    .00000        .00000          .0000       -.6032      .2732 
       24    .00000        1.0000        -1.0000       1.0256      .8475 
       25    1.0000        1.0000          .0000        .9709      .8342 
 
E27.10 Using Weights and Choice Based Sampling 
 
 The ; Wts option can always be used in the usual fashion for the probit and logit models.  
However, in the grouped data case, a somewhat different treatment may be desired.  The 
observations may consist of pi, xi and ni, where ni is the number of replications used to obtain pi.  The 
usual treatment assumes that pi is a sample of one from a distribution with variance pi(1-pi). But pi is 
more precise than this.  Its unconditional variance is pi(1-pi)/ni. Thus, the efficiency of the estimator 
of β is underestimated.  There is also an inherent heteroscedasticity which must be accounted for.  
The heteroscedasticity due to pi is built into the likelihood function.  But if your proportions are 
based on different numbers of observations, the variances will differ correspondingly.  This can be 
accounted for by including ni as a weighting variable.  Since the weighting procedure automatically 
scales the weights so that they sum to the sample size, which would be inappropriate here, it is 
necessary to modify the specification.  Use 
 
   ; Wts = variable, Noscale 
or just 
   ; Wts = variable, N 
  
to prevent the automatic scaling.  This produces a replication of the observations, which is what is 
needed for grouped data. 
 This usage often has the surprising side effect of producing implausibly small standard 
errors.  Consider, for example, using unscaled weights for statewide observations on election 
outcomes.  The implication of the Noscale parameter is that each proportion represents millions of 
observations.  Once again, this is an issue that must be considered on a case by case basis. 
 
Choice Based Sampling 
 
 In some individual data cases, the data are deliberately sampled so that one or the other 
outcome is overrepresented in the sample.  For example, suppose that in a binary response setting, 
the true proportion of ones in the population is .05 and the true proportion of zeros is .95. One might 
over sample the ones in order to learn more about the decision process.  However, some account 
must be taken of this fact in the estimation since it obviously will impart some biases.  The following 
assumes that these population proportions are known, which must be true to apply the technique.  
We use the assumed values to demonstrate the technique; other values would be substituted in the 
analogous manner. 
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 The general principle involved is as follows: Suppose that the sample is deliberately drawn 
so that it contains 50% ones and 50% zeros while it is known that the true proportions in the 
population are .05 and .95.  Then, the ones are overrepresented by a factor of .50/.05 = 10 while the 
zeros are underrepresented by a factor of .50/.95 = .5263.  To obtain the right ‘mix’ in the sample, it 
is necessary to scale down the ones by a factor of .05/.50 = .1 and scale up the zeros by a factor of  
.95/.50 = 1.9.  This can be handled simply by using a weighting variable during estimation to 
reweight the observations.  The precise method of doing so is discussed below.  (See, also, Manski 
and McFadden (1981).) 
 An additional change must be made in order to obtain the correct asymptotic covariance 
matrix for the estimates.  Let H be the Hessian of the (weighted) log likelihood, i.e., the usual 
estimator for the variance matrix of the estimates, and let G′G be the summed outer products of the 
first derivatives of the (weighted) log likelihood. (This is the inverse of the BHHH estimator.)  
Manski and McFadden (1981) show that the appropriate covariance matrix for the estimates is 
  
   V = (-H)-1 G′G (-H)-1. 
 
The computation of the weighted estimator and the corrected asymptotic covariance is handled 
automatically in LIMDEP by the following estimation programs: 
  

• univariate probit, logit, extreme value and Gompertz model, 
• bivariate probit model with and without sample selection, 
• binomial and multinomial logit models, 
• discrete choice (conditional logit).  

  
With the exception of the last of these, you request the estimator with 
 
   ; Wts = name of weighting variable  
   ; Choice Based 
  
The weighting variable can usually be created with a single command.  For example, the weighting 
variable suggested in the example used above would be specified as follows: 
  
 CREATE  ; wt = (.95/.50)*(y = 0)  +  (.05/.50)*(y = 1) $ 
 
 For models that do not appear in the list above, there is a general way to do this kind of 
computation.  How the weights are obtained will be specific to your application if you wish to do 
this.  To compute the counterpart to V above, you can do the following: 
 
 CREATE  ; wt = the desired weighting variable $ 
 Model name ; ... specification of the model 
   ; Wts = the weighting variable 
   ; Cluster = 1 $ 
 
Since the ‘cluster’ estimator computes a sandwich estimator, we need only ‘trick’ the program by 
specifying that each cluster contains one observation.  The observations in the parts will be weighted 
by the variable given, so this is exactly what is needed. 
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E27.11 Heteroscedasticity in Probit and Logit Models 
 
 The univariate choice model with multiplicative heteroscedasticity is 
 
   yi*  =  β′xi + εi, 

   yi  =  1 if yi* > 0 and yi = 0 if yi* ≤ 0, 

   εi  ~  Normal or Logistic with mean 0, and variance ∝ [exp(γ′wi)]
2  

 
(In the logistic case, the true variance is scaled by π2/3.) 
 
NOTE:  These heteroscedasticity models require individual data. 
 
 Request the model with heteroscedasticity with 
  
 PROBIT ; Lhs  = dependent variable   
       or LOGIT ; Rhs  = regressors in x 
   ; Rh2 = list of variables in w  
   ; Heteroscedasticity (or just ; Het) $ 
 
Other options and specifications for this model are the same as the basic model.  (See Section E10.3 
for discussion of variants of heteroscedasticity which can be accommodated with this model.)  Two 
general options that are likely to be useful are 
 
   ; Keep = name to retain predictions 
   ; Prob = name to retain fitted probabilities 
 
and the controls of the iterations and the amount of output. 
 
NOTE:  Do not include one in the Rh2 list.  A constant in γ is not identified. 
  
 This model differs from the basic model only in the presence of the variance term.  The 
output for this model is also the same, with the addition of the coefficients for the variance term. The 
initial OLS results are computed without any consideration of the heteroscedasticity, however. 
 Since the log likelihood for this model, unlike the basic model, is not globally concave, the 
default algorithm is BFGS, not Newton’s method.   
 For purposes of hypothesis testing and imposing restrictions, the parameter vector is 
 
   θ  =  [β1,...,βK,γ1,...,γL]. 
  
If you provide your own starting values, give the right number of values in exactly this order. 
 You can also use WALD and ; Test: to test hypotheses about the coefficient vector.  Finally, 
you can impose restrictions with  
 
   ; Rst = .... 
or   ; CML: restrictions... 
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NOTE:  In principle, you can impose equality restrictions across the elements of β and γ with            
; Rst = ..., (i.e., force an element in β to equal one in γ), but the results are unlikely to be satisfactory. 
Implicitly, the variables involved are of different scales, and this will place a rather stringent 
restriction on the model. 
 
Use 
   ; Robust  
or    ; Cluster = id variable or group size 
 
to request the sandwich style robust covariance matrix estimator or the cluster correction. 
 
NOTE:  There is no ‘robust’ covariance matrix for the logit or probit model that is robust to 
heteroscedasticity, in the form of the White estimator for the linear model.  In order to accommodate 
heteroscedasticity in a binary choice model, you must model it explicitly.. 
 
NOTE:  ; Maxit = 0 provides an easy way to test for heteroscedasticity with an LM test. 
  
 To test the hypothesis of homoscedasticity against the specification of this more general 
model, the following template can be used:  (The model may be LOGIT if desired.) 
  
 NAMELIST ; x = ... the Rhs of the probit model 
   ; w  = ... the Rh2 of the heteroscedasticity model $ 
 CALC  ; m = Col(w) $ 
 PROBIT ; Lhs = ...  
   ; Rhs = x $  
 PROBIT ; Lhs = ...  
   ; Rhs = x 
   ; Rh2 = w ; Het  
   ; Start = b, m_0  
   ; Maxit = 0 $ 
 
This produces an LM statistic and (superfluously) reproduces the restricted model. 
 The results that are saved automatically are the same as for the basic model, that is, b, varb, 
and the scalars.  In this case, b will contain the full set of estimates, with the slopes followed by the 
variance parameters, i.e., [b,c].  The Last Model labels for the WALD command are [b_variable, 
c_variable]. 
 We note, this model may be rather weakly identified by the observed data, unless they are 
plentiful and the model is sharply consistent with the data.  In fact, identification is not a problem, 
and the model is straightforward to estimate.  But, one could argue that the specification problem 
addressed by this model is one of functional form rather than heteroscedasticity.  That is, the model 
specification is arguably indistinguishable from one with a peculiar kind of conditional mean 
function, which, in turn, could be standing in for some other, perhaps reasonable, albeit nonlinear 
model.  In addition, it is common for the estimated standard errors that are computed for this model 
to be quite large, as a result of a kind of multicollinearity – the high correlation of the derivatives of 
the log likelihood. 
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Application 
 
 To illustrate the model, we have refit the specification of the previous section with a 
variance term of the form Var[ε] = [exp(γ1female + γ2working )]2.  Since both of these are binary 
variables, this is equivalent to a groupwise heteroscedasticity model.  The variances are 1.0, exp(2γ1), 
exp(2γ2) and exp(2γ1+2γ2) for the four groups.  We have fit the original model without 
heteroscedasticity first.  The second LOGIT command carries out the LM test of heteroscedasticity. 
The third command fits the full heteroscedasticity model. 
 
 INCLUDE ; New ; year = 1994 $ 
 NAMELIST ; x = one,age,educ,married,hhninc,hhkids,female $ 
 LOGIT  ; Lhs = doctor ; Rhs = x  
   ; Partial Effects $ 
 NAMELIST  ; w = female,working $ 
 CALC   ; m = Col(w) $ 
 LOGIT  ; Lhs = doctor ; Rhs = x 
   ; Heteroscedasticity ; Rh2 = w 
   ; Start = b,m_0  
   ; Maxit = 0 $ 
 LOGIT  ; Lhs  = doctor ; Rhs = x 
   ; Heteroscedasticity ; Rh2 = w  
   ; Partial Effects $ 
 PARTIALS ; Effects: female $ 
 
The model results have been rearranged in the listing below to highlight the differences in the 
models.  Also, for convenience, some of the results have been omitted. 
 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function     -2085.33796 
 
The LM statistic is included in the initial diagnostic statistics for the second model estimated. 
 
LM Stat. at start values        3.11867 
LM statistic kept as scalar    LMSTAT 
 
These are the results for the model with homoscedastic disturbances. 
 
Inf.Cr.AIC  = 4184.676 AIC/N =    1.239 
Restricted log likelihood   -2169.26982 
McFadden Pseudo R-squared      .0386913 
 
These are the coefficient estimates for the two models. 
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Homoscedastic disturbances 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .14726         .25460      .58  .5630     -.35173    .64626 
     AGE|     .01643***      .00384     4.28  .0000      .00891    .02395 
    EDUC|    -.01965         .01608    -1.22  .2219     -.05117    .01188 
 MARRIED|     .15536         .09904     1.57  .1167     -.03875    .34947 
  HHNINC|    -.39474**       .17993    -2.19  .0282     -.74739   -.04208 
  HHKIDS|    -.41534***      .08866    -4.68  .0000     -.58911   -.24157 
  FEMALE|     .64274***      .07643     8.41  .0000      .49295    .79253 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Heteroscedastic disturbances 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .12927         .30739      .42  .6741     -.47320    .73174 
     AGE|     .02036***      .00501     4.06  .0000      .01053    .03018 
    EDUC|    -.02913         .01984    -1.47  .1421     -.06803    .00976 
 MARRIED|     .19969         .12639     1.58  .1141     -.04803    .44742 
  HHNINC|    -.36965*        .22169    -1.67  .0954     -.80414    .06485 
  HHKIDS|    -.53029***      .12783    -4.15  .0000     -.78083   -.27974 
  FEMALE|    1.24685***      .45754     2.73  .0064      .35009   2.14361 
        |Disturbance Variance Terms 
  FEMALE|     .44128*        .25946     1.70  .0890     -.06725    .94982 
 WORKING|     .08459         .10082      .84  .4014     -.11300    .28219 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the marginal effects for the two models.  Note that the effects are also computed for the 
terms in the variance function.  The explanatory text indicates the treatment of variables that appear 
in both the linear part and the exponential part of the probability. 
 
+-------------------------------------------+ 
| Partial derivatives of probabilities with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Effects are the sum of the mean and var-  | 
| iance term for variables which appear in  | 
| both parts of the function.               | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]|Elasticity| 
+--------+--------------+----------------+--------+--------+----------+ 
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Homoscedastic disturbances 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00352***     -.00205     4.29  .0000      .00191    .00512 
    EDUC|    -.00421         .00058    -1.22  .2218     -.01096    .00254 
 MARRIED|     .03357        -.00031     1.56  .1194     -.00868    .07582   # 
  HHNINC|    -.08452**       .00044    -2.20  .0282     -.16000   -.00905 
  HHKIDS|    -.09058***      .00027    -4.65  .0000     -.12876   -.05240   # 
  FEMALE|     .13842***     -.00119     8.60  .0000      .10687    .16997   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Heteroscedastic disturbances 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effects are the sum of the mean and var- 
iance term for variables which appear in 
both parts of the function. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
     AGE|     .00337***      .20980     3.84  .0001      .00165    .00509 
    EDUC|    -.00482        -.08104    -1.47  .1404     -.01123    .00159 
 MARRIED|     .03306         .03424     1.59  .1119     -.00769    .07380 
  HHNINC|    -.06119        -.03975    -1.63  .1038     -.13492    .01254 
  HHKIDS|    -.08778***     -.04969    -4.45  .0000     -.12640   -.04916 
  FEMALE|     .20639***      .13969     5.09  .0000      .12687    .28592 
        |Disturbance Variance Terms 
  FEMALE|    -.07388        -.05000    -1.08  .2784     -.20747    .05972 
 WORKING|    -.01416        -.01493     -.71  .4801     -.05347    .02514 
        |Sum of terms for variables in both parts 
  FEMALE|     .13252***      .08969     3.52  .0004      .05875    .20629 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 The partial effects for the heteroscedasticity model are computed at the means of the 
variables.  It is possible to obtain average partial effects by using the PARTIAL EFFECTS program 
rather than the built in marginal effects routine.  The following shows the results for female, which 
appears in both parts of the model. 
 
 PARTIAL EFFECTS ; Effects: female $ 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for Heteros. Logit Prob.Function 
--------------------------------------------------------------------- 
Effects on function with respect to FEMALE 
Results are computed by average over sample observations 
Partial effects for binary var FEMALE   computed by first difference 
--------------------------------------------------------------------- 
df/dFEMALE         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function       .13430     .01653    8.12      .10190      .16669 
 
These are the summaries of the predictions of the two estimated models.  The performance of the 
two models in terms of the simple count of correct predictions is almost identical – the 
heteroscedasticity model correctly predicts three observations more than the homoscedasticity 
model.  The mix of correct predictions is very different, however. 
 
Homoscedastic disturbances 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |     82 (  2.4%)|   1073 ( 31.8%)|   1155 ( 34.2%)| 
|  1   |     85 (  2.5%)|   2137 ( 63.3%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |    167 (  4.9%)|   3210 ( 95.1%)|   3377 (100.0%)| 
+------+----------------+----------------+----------------+ 
 
Heteroscedastic disturbances 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |    131 (  3.9%)|   1024 ( 30.3%)|   1155 ( 34.2%)| 
|  1   |    139 (  4.1%)|   2083 ( 61.7%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |    270 (  8.0%)|   3107 ( 92.0%)|   3377 (100.0%)| 
+------+----------------+----------------+----------------+ 
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E27.12 Estimation Methods and Technical Details 
 
 This section will document the estimation methods used for fitting the binary choice models, 
and some options available for controlling these.  We also lay out some of the technical background 
for the models. 
 
E27.12.1 Maximum Likelihood Estimation 
 
 With only a few exceptions, the estimation technique used for fitting the binary choice 
models is maximum likelihood.  For the parametric models, let yi denote the observed individual 
outcome, and pi denote an observed proportion in the grouped data case.  The log likelihood 
functions for the two cases are 
 
   logL  =  Σi wi[(1 - yi)log(1 - Fi)  +  yi logFi] 
 
and   logL  =  Σi  wi[ni(1 - pi)log Fi  +  ni pi logFi] 
 
where ni is usually one, but may be the number of observations in the ‘group,’ wi is a general weight, 
which may always be applied in estimation, and Fi  = F(β′xi).  Estimates of the model parameters are 
obtained by maximizing the log likelihood.  In most cases, Newton’s method is the most effective 
algorithm, though all others provided by LIMDEP may be used. The probit, logit, Gompertz and 
complementary log log models have globally concave log likelihoods, and estimation is generally 
routine. Unless the data are very badly conditioned, all of the estimators should converge uniformly 
and quite rapidly; none present particularly difficult problems of computation.  The Burr model is 
typically more difficult to estimate because the log likelihood is not globally concave. 
 Asymptotic standard errors may be computed in a variety of ways.  In most cases, the 
estimated asymptotic covariance matrix will be the negative inverse of the actual Hessian.  For the 
models estimated by Newton’s method, the covariance matrix for the coefficients is estimated with 
the second derivatives of the log likelihood.  For the models computed with DFP, the summed outer 
products of the first derivatives of the log likelihood, the BHHH (Berndt, et al., (1974)), estimator is 
usually used instead.  The Burr model is an example in which Newton’s method is generally too 
crude without a line search. 
 The following results for binary choice models are widely known for the probit and logit 
models, but, it turns out, are completely general, and apply to the remainder as well.  Some minor 
modification is required for models which contain ancillary parameters, such as the Burr model and 
the heteroscedasticity model discussed below, but nonetheless, the results are general.  Also, the 
results below are extended to the grouped data case with only trivial modification.  Denote by zi the 
argument of Fi, β′xi, and denote by fi the derivative of Fi with respect to zi – fi will generally be the 
density function corresponding to CDF Fi.  Then, for the individual data case, 
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Expressions for fi for the various models estimated appear at the beginning of Section E26.2.  Since 
E[yi] = Fi, it follows obviously that the expected first derivative is zero, as would be required for a 
regular maximum likelihood problem.   
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 The multiplier of xi without the weight, wi, is the generalized residual noted in Section 
E27.4.4.  The specific forms of these terms are obtained as follows:  Define 
 
   qi  =  2yi – 1  =  -1 if yi equals 0, +1 if yi equals 1, 

   ai  =  β′xi, 

   ci  =  exp(ai),  

   di  = exp(-ai) 
 
Then, the generalized residuals are  
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The actual Hessian is 
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Computation of the Hessian for Newton’s method requires expressions for fi′.  For the five models, 
not including the Burr model – this is considered below – these are 
  
 Probit:  -ziφi 

 Logit:  Λi(1 - Λi)(1 - 2Λi) 

 Extreme Value: λi exp(-λi)(1 - λi), with λi = exp(β′xi) 

 Gompertz: λi exp(-λi)(λi - 1), with λi = exp(-β′xi). 

 Arctangent: (2/π)[λi
2/(1+λi

2)2](λi
2-2λi+1) 



E27: Probit and Logit Models: Estimation   E-573 

 The method of scoring can be used as well, by taking the expectation of the Hessian.  Since 
yi is the random variable of the expectation operator, and yi enters the Hessian linearly, the 
surprisingly simple result which emerges is that for all the models, 
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which is the widely cited result.  The third approach, for purposes of computing the BHHH estimator 
of the asymptotic covariance matrix is to use the outer product of gradients, or OPG estimator.  This 
would be based on the inverse of 
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Once again, this simplifies considerably.  By expanding the square and using the results that yi

 and 
(1-yi) both equal their squares, and yi (1-yi) = 0, the end result is simply 
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 As noted earlier, because of the extra parameter, γ, the Burr model does not fit into these 
neat simplifications.  For this model, only the first derivatives are used in estimation by the BFGS 
algorithm and in computing the asymptotic covariance matrix by the OPG method.  The first 
derivatives of the log likelihood for the Burr model are 
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The OPG estimator is formed directly by using the summed outer products. No simplification is 
possible.  The Hessian for this model is 
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The expected Hessian is considerably simpler as the first term has expectation zero.  Once again, yi 
enters linearly in the second.  Using its expectation, Λi

γ, the second term reduces the expression to 
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(Note that for the special case of γ = 1, this reduces to the familiar result for the logit model.) 
 Ancillary parameters such as the slopes in the heteroscedasticity models and γ in the Burr 
model are started at zero and one, respectively.  In general, where there is no natural data/model 
based starting value, we use a value which as a restriction produces a simpler model.  Thus, the 
choices noted for the heteroscedastic and the Burr models produce the homoscedastic models and the 
binary logit model. 
 
E27.12.2 Minimum Chi Squared Estimation with Grouped Data 
 
 In the grouped data cases, weighted least squares is an alternative estimation strategy.  The 
approach uses the inverse transformation of the probability function.  Let πi be the true value of Fi. Then, 
we write 
   F-1(πi)  =  β′xi  and F-1(pi)  =  β′xi  +  εi. 
 
Expand the former in a linear Taylor series to obtain  
 

   F-1(pi)  =  F-1(πi)  +  (pi - πi)
i
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d
dF

π
π− )(1
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The latter derivative is just the reciprocal of the density,(1/fi).  The variance of the right hand side is, 
therefore, Var[pi - πi]/(fi)2, which suggests a generalized least squares approach.  In each case,  Var[pi 
- πi] is πi(1 - πi)/ni, which in the context of our model gives, finally, 
 

   Var[F-1(pi)]  =  2
)1(

ii

ii
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 With grouped data, then, one might use an iterative strategy.  Given starting values for β, 
compute the weights implied by the variance function above, then compute weighted least squares 
regression of F-1(pi) on xi.  The iteration can be reentered if desired.  Once again, the Burr model 
does not lend itself to this approach, but for the other five, it is straightforward using the inverse 
transformations 
 
 Probit:  F-1(pi)   =   Φ-1(pi) (must be approximated) 
 Logit:  F-1(pi)   =   log[pi /(1- pi)] 
 Extreme Value: F-1(pi)   =  -log(log(1 - pi)) 
 Gompertz: F-1(pi)   =  -log(-log(pi) 
 Arctangent F-1(pi)   =  π/2 tan(pi) 
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Minimum chi squared estimators have the same properties as, but are numerically different from the 
maximum likelihood estimators. 
 
Starting Values 
 
 The precise set of values to be provided for ; Start varies from one model to another.  
Starting values may be provided for the model.  Those used by the program if you do not provide 
your own are as follows: 
 

• Individual data: Simple least squares regression of y on X 
• Grouped data:  The minimum chi squared, weighted least squares estimates. 

 
 The first round of these weighted least squares estimators, using pi as Fi in the weights, is 
computed to obtain the starting values for the MLEs for each of the four models mentioned.  The 
least squares results at the beginning of the output (when requested) will contain an indication that 
this has been the computation.  Iteration of the minimum chi squared estimator is not continued, as 
the starting values are simply used to continue the maximum likelihood estimation.  (Note, as well, 
that the MCS estimator has a problem not shared by the MLE.  If any of the proportions are zero or 
one, the weights will not be computable.  Authors have suggested various fixes; the most common is 
simply to use a small value such as 1/n or 1 - 1/n as appropriate. 
  
Standard Errors for Marginal Effects Based on the Delta Method 
 

Standard errors are computed using the delta method.  Let δ denote the marginal effects, and 
d denote the sample estimate.  The asymptotic covariance matrix is estimated with 
 

   Asy.Var[d]  =  G × Asy.Var[ ˆ 
 β  × G′ 

 
where G is the matrix of derivatives, 
 

   G  =  
'β

δ
∂
∂   = f(β′x)I  +  [df(β′x)/d(β′x)]βx′ 

 

evaluated at β̂ and the particular vector (the vector of sample means).  (In the Burr model, there is an 
extra column in G to account for the estimate of γ.)  For a dummy variable, the asymptotic standard 
error must be changed slightly.  This is accomplished simply by changing the appropriate row of G to 
 

   Gz  =  [f(β′x+ αz)] 
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′  - [f(β′x + αz)] '
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NOTE:  We are frequently asked about the hypothesis test that the marginal effects equal zero, and 
in particular, about the fairly common case in which a marginal effect is ‘insignificant’ when the 
corresponding coefficient is ‘significant.’  Our own assessment is that significance tests of the 
influence of a variable should be based on the coefficients, not the marginal effects.  The latter is a 
function – and a highly nonlinear one at that – of all the coefficients in the model, and the hypothesis 
that this function equals zero is not equivalent to the hypothesis that the coefficient is zero or that the 
variable in question is not a significant determinant of the outcome. 
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Average Partial Effects vs. Partial Effects at the Means 
 
 Some authors (e.g., Wooldridge (1999)) argue that one should compute marginal effects by 
averaging the individual estimates, rather than computing the partial effects once at the means of the 
variables.  Save for small sample variation, the difference in these two results is likely to be small, as 
suggested by the example below.   
 
--------------------------------------------------------------------- 
Partial Effects for Probit Probability Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00402     .00082    4.92      .00242      .00562 
      HHNINC       -.08666     .03911    2.22     -.16331     -.01001 
   *  HHKIDS       -.08524     .01968    4.33     -.12382     -.04667 
      EDUC         -.00779     .00348    2.24     -.01461     -.00097 
   *  MARRIED       .03279     .02159    1.52     -.00952      .07510 
--------------------------------------------------------------------- 
 
--------------------------------------------------------------------- 
Partial Effects for Probit Probability Function 
Partial Effects Computed at Data Means 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00410     .00084    4.87      .00245      .00574 
      HHNINC       -.08839     .03997    2.21     -.16673     -.01005 
      HHKIDS       -.08556     .01959    4.37     -.12396     -.04717 
      EDUC         -.00795     .00356    2.23     -.01492     -.00097 
      MARRIED       .03319     .02172    1.53     -.00937      .07576 
--------------------------------------------------------------------- 
 
The built in ; Partial Effects option for the binary choices uses the average partial effects in most 
cases, but partial effects at the means in a few cases such as the heteroscedastic models.  The 
PARTIAL EFECTS command computes average partial effects by default in all cases but provides 
an option for you to choose to evaluate the effects at the means, instead. 
 
E27.12.3 Binary Choice Models with Heteroscedasticity 
 
 The log likelihood function for the binary choice model with exponential heteroscedasticity 
is 
   logL  =  Σi log F(ai), F = Φ or Λ, 

where   ai   =  (2yi - 1)β′xi × exp(-γ′wi ). 
 
We are taking advantage of the symmetry of the probit and logit functions to simplify the function. 
Let   
   θ  =  the full parameter vector, [β′,γ′]′, in which γ may be 0. 
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The derivatives are as follows, where we use the notation aiθ for ∂ai/∂θ: 
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=  Σi [f(ai )/F(ai )]∂ai /∂θ   =  Σi gi aiθ. 

 
where   gi =  φ(ai)/Φ(ai) for the probit model  (fi  =  φ(ai)), 
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Using a similar subscripting notation for second derivatives, we have 
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and   aiββ′    =  0, 

   aiβγ′   =  (2yi - 1)exp(-γ′wi )xi(-wi′), 

   aiγγ′   =  (2yi - 1)(β′xi )exp(-γ′wi )wiwi′. 
 
 There are two sets of marginal effects in this model: 
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If any variables appear in both x and w, then the marginal effect of that variable on the conditional 
mean is the sum of the two parts. 
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E28: Tests and Restrictions in Models for 
Binary Choice 

 
E28.1 Introduction 
 
 We define models in which the response variable being described is inherently discrete as 
qualitative response (QR) models.  Chapters E26 and E27 presented the model formulation and 
estimation and analysis tools.  This chapter will detail some aspects of hypothesis testing.  Most of 
these results are generic, and will apply in other models as well.  The hypothesis tests are general 
restrictions on parameters.  Section E28.3 considers two broader specification tests.  Section E28.4  
documents how to impose restrictions on the maximum likelihood estimator. 
 
E28.2 Testing Hypotheses  
 
 The full set of options is available for testing hypotheses and imposing restrictions on the 
binary choice models.  In using these, the set of parameters is 
 
   β1, ..., βK  plus γ for the Burr model 
 
 In the parametric models, hypotheses can be done with the standard trinity of tests:  Wald, 
likelihood ratio and Lagrange Multiplier.  All three are particularly straightforward for the binary 
choice models. 
 
E28.2.1 Wald Tests 
 
 Wald tests are carried out in two ways, with the ; Test: specification in the model command 
and by using the WALD command after fitting the model.  The former is used for linear restrictions.  
The WALD command is more general and allows for tests of nonlinear restrictions on parameters.    
 The Wald statistic is computed using the estimates of an unrestricted model.  The hypothesis 
implies a set of restrictions 
 
   H0:  c(β)  =  0. 
 
(This may involve linear distance from a constant, such as 2β3 - 1.2 = 0.  The preceding formulation 
is used to achieve the full generality that LIMDEP allows.)  The Wald statistic is computed by the 
formula 

   W  =  ( ) ( ) ( ){ } ( ) ( )
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and β̂  is the vector of estimated parameters. 
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 You can request Wald tests of simple restrictions by including the request in the model 
command.  For example: 
 
 PROBIT ; Lhs = doctor   
   ; Rhs = one,age,educ,married,hhninc,hhkids   
   ; Test:  age + educ = 0,  
    married = 0 ,  
    hhninc + 2*hhkids = -.3  $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -17670.94233 
Restricted log likelihood  -18019.55173 
Chi squared [   5 d.f.]       697.21881 
Significance level               .00000 
McFadden Pseudo R-squared      .0193462 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =35353.885 AIC/N =    1.294 
Hosmer-Lemeshow chi-squared = 105.22799 
P-value=  .00000 with deg.fr. =       8 
Wald test of  3 linear restrictions 
Chi-squared =      26.06, P value   =    .00001 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .15500***      .05652     2.74  .0061      .04423    .26577 
     AGE|     .01283***      .00079    16.24  .0000      .01129    .01438 
    EDUC|    -.02812***      .00350    -8.03  .0000     -.03498   -.02125 
 MARRIED|     .05226**       .02046     2.55  .0106      .01216    .09237 
  HHNINC|    -.11643**       .04633    -2.51  .0120     -.20723   -.02563 
  HHKIDS|    -.14118***      .01822    -7.75  .0000     -.17689   -.10548 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Note that the results reported are for the unrestricted model, and the results of the Wald test are 
reported with the initial header information.  To fit the model subject to the restriction, we change     
; Test: in the command to ; CML: with the following results: 
 
 PROBIT ; Lhs =  doctor   
   ; Rhs =  one,age,educ,married,hhninc,hhkids   
   ; CML:  age + educ = 0,  
     married = 0 ,  
     hhninc + 2*hhkids = -.3  $ 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -2125.57999 
Restricted log likelihood   -2169.26982 
Chi squared [   2 d.f.]        87.37966 
Significance level               .00000 
McFadden Pseudo R-squared      .0201403 
Estimation based on N =   3377, K =   3 
Inf.Cr.AIC  = 4257.160 AIC/N =    1.261 
Linear constraints imposed            3 
Hosmer-Lemeshow chi-squared =  20.93392 
P-value=  .00733 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .04583         .06144      .75  .4557     -.07458    .16624 
     AGE|     .01427***      .00192     7.44  .0000      .01052    .01803 
    EDUC|    -.01427***      .00192    -7.44  .0000     -.01803   -.01052 
 MARRIED|        0.0    .....(Fixed Parameter)..... 
  HHNINC|    -.06304         .07079     -.89  .3731     -.20178    .07569 
  HHKIDS|    -.11848***      .03539    -3.35  .0008     -.18785   -.04911 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
When the restrictions are built into the estimator with CML, the information reported is only that the 
restrictions were imposed.  The results of the Wald or LR test cannot be reported because the 
unrestricted model is not computed.  
 
E28.2.2 Likelihood Ratio Tests 
 
 Use the log likelihood functions from both restricted and unrestricted models.  Log 
likelihood functions are saved automatically by the estimators.  Do keep in mind that these are 
overwritten each time – the scalar logl gets replaced by each model command.  Your general strategy 
for carrying out a likelihood ratio test would be 
 
 Model name  ; ... - specifies the unrestricted model 
 CALC  ; lu = logl $  Capture log likelihood function 
 Model name  ; ... - specifies the restricted model 
 CALC  ; lr = logl  
   ; List ; chisq = 2*(lu - lr )   
   ; 1 - Chi(chisq, degrees of freedom) $ 
 
You must supply the degrees of freedom.  If the result of the last line is less than your significance 
level – usually 0.05 – then, the null hypothesis of the restriction would be rejected.  Here are two 
examples:  We continue to examine the German health care data.  For purposes of these tests, just for 
the illustrations, we will switch to a probit model. 
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Simple Linear Restriction 
 

 The following tests the pair of linear restrictions suggested above.  Looking at the unrestricted 
results from earlier, the restrictions don’t look like they are going to pass.  The results bear this out.  
 
 SAMPLE ; All $ 

NAMELIST ; x = one,age,educ,married,hhninc,hhkids $ 
LOGIT  ; Lhs = doctor ; Rhs = x $ 

 CALC  ; lu = logl $ 
LOGIT  ; Lhs = doctor ; Rhs = x  
  ; Rst = b0, b1, b1, 0, b2, b3 $ 

 CALC  ; lr = logl    
   ; List ; chisq = 2*(lu - lr) ; 1 - Chi(chisq,2) $ 
 
[CALC] CHISQ   =    158.9035080 
[CALC] *Result*=       .0000000 
Calculator: Computed   3 scalar results 
 
Homogeneity Test   
 

 We are frequently asked about this.  The sample can be partitioned into a number of 
subgroups.  The question is whether it is valid to pool the subgroups.  Here is a general strategy that 
is the maximum likelihood counterpart to the Chow test for linear models:  Define a variable, say, 
group, that takes values 1,2,...,G, that partitions the sample.  This is a stratification variable. The test 
statistic for homogeneity is 
 
 χ2  =  2[(Σgroups log likelihood for the group)  -  log likelihood for the pooled sample] 
 
The degrees of freedom is G-1 times the number of coefficients in the model. 
 
Create the group variable.   
 
 SAMPLE   ; Pooled sample ... however defined ... $ 
 Model name ; ... ; Quiet $  Specify the appropriate model.  Suppress the output. 
 CALC  ; chisq = -2*logl ; df = -kreg $ 
 
Automate the model fitting estimation, and accumulate the statistic. 
 
 PROC 
    INCLUDE  ; New ; Group = i $ 
    Model name ; ... ; Quiet $  Specify the same model.  Suppress the output. 
    CALC ; chisq = chisq + 2*logl ; df = df + kreg $ 
 ENDPROC 
 
Determine the number of groups. 
 
 CALC  ; g = Max(group) $ 
 
Estimate the model once for each group. 
 
 EXEC  ; i = 1,g $ 
 CALC  ; List ; chisq ; df ; 1 - Chi(chisq,df)  $ 
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This procedure produces only the output of the last CALC command, which will display the test 
statistic, the degrees of freedom and the p value for the test. 
 To illustrate, we’ll test the hypothesis that the same probit model for doctor visits applies to 
both men and women.  This command suppresses all output save for the actual test of the hypothesis. 
 
 NAMELIST ; x = one,age,educ,married,hhninc,hhkids $ 

PROBIT  ; If [ female = 0] ; Lhs = doctor ; Rhs = x ; Quiet $ 
 CALC  ; l0 = logl $ 

PROBIT  ; If [ female = 1] ; Lhs = doctor ; Rhs = x ; Quiet $ 
 CALC  ; l1 = logl $ 

PROBIT  ; Lhs = doctor ; Rhs = x ; Quiet $ 
 CALC  ; l01 = logl ; List 
   ; chisq = -2*(l01 - l0 - l1) 
   ; df = 2*kreg ; pvalue = 1 - Chi(chisq,df) $ 
 
The results of the chi squared test strongly reject the homogeneity restriction. 
 
[CALC] CHISQ   =    549.3141072 
[CALC] DF      =     12.0000000 
[CALC] PVALUE  =       .0000000 
Calculator: Computed   4 scalar results 
 
E28.2.3 Lagrange Multiplier Tests 
 
 The third procedure available for testing hypotheses is the Lagrange Multiplier, or LM 
approach.  The Lagrange Multiplier statistic is computed as a Wald statistic for testing the hypothesis 
that the derivatives of the log likelihood are zero when evaluated at the restricted maximum 
likelihood estimator; 

   LM   =  ( ) ( ){ } ( )
1

ˆ ˆ ˆ' . .R R REst AsyVar
−

 
  

g g gβ β β  

where    ˆ
Rβ  =  MLE of the parameters of the model, with restrictions imposed 

   g ( )ˆ
Rβ  =  derivatives of log likelihood of full model, evaluated at ˆ

Rβ  

 
The estimated asymptotic covariance matrix of the gradient is any of the usual estimators of the 
asymptotic covariance matrix of the coefficient estimator, negative inverse of the actual or expected 
Hessian, or the BHHH estimator based on the first derivatives only. 
 Your strategy for carrying out LM tests with LIMDEP is as follows: 
 
Step 1. Obtain the restricted parameter vector.  This may involve an unrestricted parameter vector in 

some restricted model, padded with some zeros, or a similar arrangement. 
 
Step 2. Set up the full, unrestricted model as if it were to be estimated, but include in the command 
 
   ; Start  = restricted parameter vector 
   ; Maxit = 0  
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The rest of the procedure is automated for you.  The ; Maxit = 0 specification takes on a particular 
meaning when you also provide a set of starting values.  It implies that you wish to carry out an LM 
test using the starting values. 
 To demonstrate, we will carry out the test of the hypothesis 
 
   β_age + β_educ  =  0 
   β_married  =  0 
   β_hhninc + β_hhkids  =  - .3  
 
that we tested earlier with a Wald statistic, now with the LM test.  The commands would be as follows: 
 
 PROBIT ; Lhs = doctor   
   ; Rhs  = one,age,educ,married,hhninc,hhkids   
   ; CML: age+educ = 0, married = 0 , hhninc + 2*hhkids = -.3 $ 
 PROBIT ; Lhs  = doctor   
   ; Rhs  = one,age,educ,married,hhninc,hhkids   
   ; Maxit = 0 ; Start = b $ 
 
The results of the second model command provide the Lagrange multiplier statistic.  The value of 
26.06032 is the same as the Wald statistic computed earlier, 26.06. 
 
Maximum of     0 iterations. Exit iterations with status=1. 
Maxit = 0. Computing LM statistic at starting values. 
No iterations computed and no parameter update done. 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
LM Stat. at start values       26.06032 
LM statistic kept as scalar    LMSTAT 
Log likelihood function    -17683.96508 
Restricted log likelihood  -18019.55173 
Chi squared [   5 d.f.]       671.17331 
Significance level               .00000 
McFadden Pseudo R-squared      .0186235 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =35379.930 AIC/N =    1.295 
Model estimated: Jun 13, 2011, 19:40:02 
Hosmer-Lemeshow chi-squared = 132.57086 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.06593         .05655    -1.17  .2437     -.17678    .04491 
     AGE|     .01484***      .00079    18.76  .0000      .01329    .01639 
    EDUC|    -.01484***      .00351    -4.23  .0000     -.02171   -.00796 
 MARRIED|        0.0         .02049      .00 1.0000 -.40156D-01  .40156D-01 
  HHNINC|    -.09655**       .04636    -2.08  .0373     -.18741   -.00568 
  HHKIDS|    -.10173***      .01821    -5.59  .0000     -.13742   -.06603 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 To complete the trinity of tests, we can carry out the likelihood ratio test, which we could do 
as follows: 
 
 PROBIT ; Quiet ; Lhs = doctor   
   ; Rhs = one,age,educ,married,hhninc,hhkids   
   ; CML: b(2) + b(3) = 0, b(4) = 0, b(5) + b(6) = -.3 $ 
 CALC  ; lr = logl $ 
 PROBIT ; Quiet  ; Lhs = doctor   
   ; Rhs = one,age,educ,married,hhninc,hhkids $ 
 CALC  ; lu = logl ; List 
   ; lrstat = 2*(lu – lr) $ 
 
The result of the computation (which displays only the last statistic) is 
 
[CALC] LRSTAT  =     26.0455042 
Calculator: Computed   2 scalar results 
 
The value of 26.0455 differs only trivially from the other values.  This is actually not surprising, 
since they should all converge to the same statistic, and the sample in use here is very large. 
 
E28.3 Two Specification Tests 
 
 The following are two specialized tests for the probit model, one for testing which of two 
competing models appears to be appropriate, and one test against the hypothesis of normality that 
underlies the probit model. 
 
Ε28.3.1 A Test for Nonnested Probit Models 
 
 Davidson and MacKinnon (1993) present a test of the nonnested hypothesis that an 
alternative set of variables, zi, is the appropriate one for the structural equation of the probit model.  
 
   Testing y* = x′β + ε  vs.  y* = z′γ + u 
 

NAMELIST ; x  = the independent variables 
  ; z  = the competing list of independent variables $ 
CREATE ; y  = the dependent variable $ 
PROBIT ; Quiet ; Lhs = y ; Rhs = x $ 
CREATE ; xbeta = x’b; fx = N01(xbeta) ; px = Phi(xbeta) 
  ; v = Sqr(px*(1-px)) ; dev = (y - px) / v   
  ; xv = fx*xbeta / v $ 
PROBIT  ; Quiet ; Lhs = y ; Rhs = z $  
CREATE  ; pz = Phi(z’b) ; test = (px - pz) / v $ 
REGRESS ; Lhs = dev ; Rhs  = xv,test $ 
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The test is carried out by referring the t ratio on test to the t table.  A value larger than the critical 
value argues in favor of z as the correct specification.  For example, the following tests for which of 
two specifications of the right hand side of the probit model is preferred. 
 

NAMELIST ; x  = one,age,educ,married,hhninc,hhkids,self 
  ; z  = one,age,educ,married,hhninc,female,working $ 
CREATE ; y  = doctor $ 
 

The remaining commands are identical. 
 The essential regression results are as follows.  We also reversed the roles of x and z. 
Unfortunately, as often happens in specifications, the results are contradictory. 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     DEV|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      XV|     .04569**       .01985     2.30  .0214      .00678    .08459 
    TEST|    -.79517***      .03995   -19.90  .0000     -.87348   -.71687 
--------+-------------------------------------------------------------------- 
      XV|     .04668**       .02033     2.30  .0217      .00684    .08652 
    TEST|    -.26126***      .04273    -6.11  .0000     -.34500   -.17751 
 
The t ratio of -19.9 in the first regression argues in favor of z as the appropriate specification.  But, 
the also significant t ratio of -6.11 in the second argues in favor of x. 
 
E28.3.2 A Test for Normality in the Probit Model 
 

The second test is a Lagrange multiplier test against the null hypothesis of normality in the 
probit model.  (The test was developed in Bera, Jarque and Lee (1984).)  As usual in normality tests, 
the statistic is computed by comparing the third and fourth moments of an underlying variable to 
their expected value under normality.  The computations are as follows, where i indicates the ith 
observation: 
   ai  =  xi′β 

   φi  =  φ(ai) 

   Φi  =  Φ(ai) 

   di   =  φi (yi - Φi) / [Φi(1 - Φi)] 

   ci =  φi
2 / [Φi(1 - Φi)] 

   m3i =  -1/2(ai
2 – 1) 

   m4i =  1/4 (ai (ai
2 + 3)) 

   zi =  (xi′, m3i, m4i)′ 

Then,   ( ) ( ) ( )1

1 1 1

N N N
i i i i i i ii i i

LM d c d
−

= = =

′ ′= ∑ ∑ ∑z z z z     
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The commands below will carry out the test.  The chi squared reported by the last line has two 
degrees of freedom. 
 

NAMELIST  ; x  = one,... $ 
CREATE  ; y  = the dependent variable $ 
PROBIT  ; Lhs = y ; Rhs = x  $ 
CREATE  ; ai = b'x ; fi = Phi(ai) ; dfi = N01(ai)  
   ; di = (y-fi) * dfi  /(fi*(1-fi)) ; ci = dfi^2 /(fi*(1-fi))  
  ; m3i = -1/2*(ai^2-1) ; m4i =  1/4*(ai*(ai^2+3)) $ 
NAMELIST  ; z = x,m3i,m4i $ 
MATRIX  ; List ; LM = di’z * <z'[ci]z> * z'di $ 

 
We executed the routine for our probit model estimated earlier, with 
 

NAMELIST  ; x = one,age,educ,married,hhninc,hhkids,self $ 
CREATE  ; y = doctor $ 

 
The result of 93.12115 would lead to rejection of the hypothesis of normality; the 5% critical value 
for the chi squared variable with two degrees of freedom is 5.99. 
 
      LM|             1 
--------+-------------- 
       1|       93.1211 
 
E28.4 The WALD Command 
 
 The WALD command may be used for linear and nonlinear restrictions.  The model 
commands produce a set of names that can be used in WALD commands after estimation.  For the 
binary choice commands, these are b_variable.  The WALD command can be used with these names 
in specified restrictions, with no other information needed.  For example: 
 
 PROBIT ; Lhs = doctor   
   ; Rhs = one,age,educ,married,hhninc,hhkids  $ 
 WALD  ; Fn1 = b_age + b_educ - 0 
   ; Fn2 = b_married - 0 
   ; Fn3 = b_hhninc + b_hhkids + .3 $ 
 
(The latter restriction doesn’t make much sense, but we can test it anyway.)  The results of this pair 
of commands are shown below.  (The PROBIT command was shown earlier.) 
 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =     24.95162 
Prob. from Chi-squared[ 3] =       .00002 
Functions are computed at means of variables 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|    -.01528***      .00369    -4.14  .0000     -.02252   -.00805 
 Fncn(2)|     .05226**       .02046     2.55  .0106      .01216    .09237 
 Fncn(3)|     .04239         .05065      .84  .4027     -.05689    .14166 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 
You may follow a model command with as many WALD commands as you wish. 
 You can use WALD to obtain standard errors for linear or nonlinear functions of parameters.  
Just ignore the test statistics.  Also, WALD produces some useful output in addition to the displayed 
results.  The new matrix varwald will contain the estimated asymptotic covariance matrix for the set of 
functions.  The new vector waldfns will contain the values of the specified functions.  A third matrix, 
jacobian, will equal the derivative matrix, ∂c(β)/∂β′.  For the computations above, the three matrices are 
 

 
Figure E28.1  Matrix Results for the WALD Command 

 
Thus, the command 
 
 MATRIX ; w = waldfns’ <varwald> waldfns $ 
 
would recompute the Wald statistic. 
 
Matrix W        has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   24.95162 
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E28.5 Imposing Linear Restrictions 
 
Fixed Value and Equality Restrictions  
 
 Fixed value and equality restrictions are imposed with 
 
   ; Rst = the list of settings symbols for free parameters,  
     values for specific values 
For example,  
 
 NAMELIST ; x = one,age,educ,married,hhninc,hhkids $ 

LOGIT  ; Lhs  = doctor ; Rhs = x  
  ; Rst  = b0, b1, b1, 0, b2, b3 $ 

 
will force the second and third coefficients to be equal and the fourth to equal zero. 
 
Linear Restrictions  
 
 These are imposed with 
 
   ; CML:  the set of linear restrictions 
 
(See Section R13.6.2.)  This is a bit more general than the Rst function, but similar.  For example, to 
force the restriction that the coefficient on age plus that on educ equal twice that on hhninc, use 
 
   ; CML:  age + educ - 2*hhninc = 0 
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E29: Extended Binary Choice Models 
 
E29.1 Introduction 
 
 LIMDEP supports a large variety of models and extensions for the analysis of binary choice.  
This chapter documents sample selection models, models with endogenous right hand side variables 
and two step estimation of models that build on probit and logit models. 
 
E29.2 Sample Selection in Probit and Logit Models 
 
 The model of sample selection can be extended to the probit and logit binary choice models.  
In both cases, we depart from 
 
   Prob[yi = 1 |xi] = F(β′xi) 

where    F(t) = Φ(t) for the probit model and Λ(t) for the logit model, 

   zi*   = α′wi + ui, ui ~ N[0,1], zi = 1(zi* > 0) 

   yi, xi     observed only when zi = 1. 
 
In both cases, as stated, there is no obvious way that the selection mechanism impacts the binary 
choice model of interest.  We modify the models as follows:   
 For the probit model, 
 
   yi*  =  β′xi + εi, εi ~ N[0,1], yi = 1(yi* > 0) 
 
which is the structure underlying the probit model in any event, and 
 
   ui, εi  ~  BVN[(0,0),(1,ρ,1)]. 
 
This is precisely the structure underlying the bivariate probit model.  Thus, the probit model with 
selection is treated as a bivariate probit model.  Some modification of the model is required to 
accommodate the selection mechanism.  The full set of results is presented in Section E33.4.  The 
command is simply 
 
 BIVARIATE ; Lhs = y,z   
   ; Rh1 = variables in x 
   ; Rh2 = variables in w 
   ; Selection $ 
 
 For the logit model, a similar approach does not produce a convenient bivariate model.  The 
probability is changed to 

   Prob(yi = 1 | xi,εi) = exp( )
1 exp( )

i i

i i

′ + σε
′+ + σε

x
x

β
β

. 
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With the selection model for zi as stated above, the bivariate probability for yi and zi is a mixture of a 
logit and a probit model.  The log likelihood can be obtained, but it is not in closed form, and must 
be computed by approximation.  We do so with simulation.  The model and the background results 
are presented in Section E54.5.  The commands for the model are 
 
 PROBIT ; Lhs = z ; Rhs = variables in w ; Hold $ 
 LOGIT ; Lhs = y ; Rhs = variables in x  ; Selection $ 
 
The motivation for a probit selection mechanism into a logit model does seem ambiguous. 
 
E29.3 Endogenous Variable in a Probit Model 
 
 This estimator is for what is essentially a simultaneous equations model.  The model 
equations are 

   
1 2 1 1

2

2

* ,  1[ * 0] ,
 ,

0 1
( , ) ~ , .

0

y y y y
y u

u N

′= + α + ε = >
′= +

 ρσ   
ε     ρσ σ    

x
z

β
γ  

 
Probit estimation based on y1 and (x1,y2) will not consistently estimate (β,α) because of the 
correlation between y2 and ε induced by the correlation between u and ε.  Several methods have been 
proposed for estimation. One possibility is to use the partial reduced form obtained by inserting the 
second equation in the first. This will produce consistent estimates of β/(1+α2σ2+2ασρ)1/2 and 
αγ/(1+α2σ2+2ασρ)1/2.  Linear regression of y2 on z produces estimates of γ and σ2, but there is no 
method of moments estimator of ρ produced by this procedure, so this estimator is incomplete.  
Newey (1987) suggested a ‘minimum chi squared’ estimator that does estimate all parameters.  A 
more direct, and actually simpler approach is full information maximum likelihood.  Details on the 
estimation procedure appear below after the application. 
 To estimate this model, use the command 
 
 PROBIT ; Lhs  = y1, y2 
   ; Rh1 = independent variables in probit equation 
   ; Rh2 = independent variables in regression equation $ 
 
(Note, the probit must be the first equation.)  Other optional features relating to fitted values, 
marginal effects, etc. are the same as for the univariate probit command.  We note, marginal effects 
are computed using the univariate probit probabilities, 
 
   Prob[y1 = 1] ~  Φ[β′x + αy2]   
 
These will approximate the marginal effects obtained from the conditional model (which contain u). 
When averaged over the sample values, the effect of u will become asymptotically negligible.  
Predictions, etc. are kept with ; Keep = name, and so on.  Likewise, options for the optimization, 
such as maximum iterations, etc. are also the same as for the univariate probit model. 
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Retained Results 
 
 The results saved by this binary choice estimator are: 
 
 Matrices: b = estimate of (β,α,γ).  Using ; Par adds σ and ρ to b. 
   varb = asymptotic covariance matrix. 
  
 Scalars: kreg  = number of variables in Rhs 
   nreg  = number of observations 
   logl  = log likelihood function 
  
 Last Model: b_variable (includes α) and, c_variables. 
 
 Last Function: Φ(b′x + ay2) = Prob(y1 = 1 | x,y2). 
 
The Last Model names are used with WALD to simplify hypothesis tests.   The last function is the 
conditional mean function.  The extra complication of the estimator has been used to obtain a 
consistent estimator of β,α.  With that in hand, the interesting function is E[y1| x,y2]. 
 

NAMELIST  ; xdoctor = one,age,hsat,public,hhninc $ 
NAMELIST  ; xincome = one,age,age*age,educ,female,hhkids $ 
PROBIT  ; Lhs = doctor,hhninc 

; Rh1 = xdoctor 
; Rh2 = xincome $ 

 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for DOCTOR 
Dependent variable               DOCTOR 
Log likelihood function    -16634.88715 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33279.774 AIC/N =    1.218 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.05627***      .05508    19.18  .0000      .94831   1.16423 
     AGE|     .00895***      .00073    12.24  .0000      .00752    .01038 
    HSAT|    -.17520***      .00395   -44.31  .0000     -.18295   -.16745 
  PUBLIC|     .12985***      .02515     5.16  .0000      .08056    .17914 
  HHNINC|    -.01332         .04581     -.29  .7712     -.10310    .07645 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=HHNINC   Mean                 =         .35208 
             Standard deviation   =         .17691 
             No. of observations  =          27326  Degrees of freedom 
Regression   Sum of Squares       =        88.9621           5 
Residual     Sum of Squares       =        766.216       27320 
Total        Sum of Squares       =        855.178       27325 
             Standard error of e  =         .16747 
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Fit          R-squared            =         .10403  R-bar squared =   .10386 
Model test   F[  5, 27320]        =      634.40260  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    10059.42844  Akaike I.C.   = -3.57369 
             Restricted (b=0)     =     8558.60603  Bayes  I.C.   = -3.57189 
             Chi squared [  5]    =     3001.64483  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.40365***      .01704   -23.68  .0000     -.43705   -.37024 
     AGE|     .02555***      .00079    32.43  .0000      .02400    .02709 
 AGE*AGE|    -.00029***   .9008D-05   -31.68  .0000     -.00030   -.00027 
    EDUC|     .01989***      .00045    44.22  .0000      .01901    .02077 
  FEMALE|     .00122         .00207      .59  .5538     -.00283    .00527 
  HHKIDS|    -.01146***      .00231    -4.96  .0000     -.01599   -.00693 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

Initial iterations cannot improve function.Status=3 
  Error   805: Initial iterations cannot improve function.Status=3 
Function=  .61428384629D+04, at entry,  .61358027527D+04 at exit 
 

----------------------------------------------------------------------------- 
Probit with Endogenous RHS Variable 
Dependent variable               DOCTOR 
Log likelihood function     -6135.80156 
Restricted log likelihood  -16599.60800 
Chi squared [  11 d.f.]     20927.61288 
Significance level               .00000 
McFadden Pseudo R-squared      .6303647 
Estimation based on N =  27326, K =  13 
Inf.Cr.AIC  =12297.603 AIC/N =     .450 
--------+-------------------------------------------------------------------- 
  DOCTOR|                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Coefficients in Probit Equation for DOCTOR 
Constant|    1.05627***      .07626    13.85  .0000      .90681   1.20574 
     AGE|     .00895***      .00074    12.03  .0000      .00749    .01041 
    HSAT|    -.17520***      .00392   -44.72  .0000     -.18288   -.16752 
  PUBLIC|     .12985***      .02626     4.94  .0000      .07838    .18131 
  HHNINC|    -.01332         .14728     -.09  .9279     -.30200    .27535 
        |Coefficients in Linear Regression for HHNINC 
Constant|    -.40301***      .01712   -23.55  .0000     -.43656   -.36946 
     AGE|     .02551***      .00081    31.37  .0000      .02391    .02710 
 AGE*AGE|    -.00028***   .9377D-05   -30.39  .0000     -.00030   -.00027 
    EDUC|     .01986***      .00040    50.26  .0000      .01908    .02063 
  FEMALE|     .00122         .00207      .59  .5552     -.00284    .00528 
  HHKIDS|    -.01144***      .00226    -5.06  .0000     -.01587   -.00701 
        |Standard Deviation of Regression Disturbances 
Sigma(w)|     .16720***      .00026   639.64  .0000      .16669    .16772 
        |Correlation Between Probit and Regression Disturbances 
Rho(e,w)|     .02412         .02550      .95  .3442     -.02586    .07409 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Technical Details 
 
 The log likelihood is built up from the joint density of y1 and y2, which we write as the 
product of the conditional and the marginal densities, 
 
   f(y1,y2)  =  f(y1|y2) f(y2). 
 
To derive the conditional distribution, we use results for the bivariate normal, and write 
 
   ε|u  =  [(ρσ)/σ2] u  +  w,  
 
where w is normally distributed with Var[w] = (1 - ρ2).  Inserting this in the first equation, we have 
 
   y1*|y2  =  β′x + αy2  +  (ρ/σ)u  +  w. 

Therefore,  Prob[y1 = 1|y2]  =  2
2

( / )
1
y u ′ + α + ρ σ

Φ  
 − ρ 

xβ . 

 
Inserting the expression for u, and using the normal density for the marginal distribution of y2, we 
obtain the log likelihood function for the sample, 
 

 2 2 2
11 2

( / )( ) 1log log (2 1) log
1

N i i i i i i
ii

y y yL y
=

  ′ ′ ′ + α + ρ σ − −   = Φ − + φ    σ σ   − ρ    
∑ x z zβ γ γ  

 
 We use several devices to make estimation easier.  First, we use the Olsen transformation to 
reparameterize the log likelihood in 
 
   θ  =  1/σ 

   δ  =   (1/σ)γ. 
 
We ensure that θ is positive during estimation by estimating 
 
   η  =  logθ, so θ  =  exp(η). 
 
To force the correlation to remain in the (-1,+1) interval, we maximize the log likelihood with 
respect to 

   τ  =  
1log
1

 + ρ
 − ρ 

, so  exp( ) 1
exp( ) 1

τ −
ρ =

τ +
. 

 
  



E29: Extended Binary Choice Models   E-594 

The log likelihood is, then, 
 

 ( )2 2
1 21 2

( )log log (2 1) log
1

N i i i i
i i ii

y yL y y
=

  ′ ′+ α + ρ θ −  ′ = Φ − + θφ θ −    − ρ  
∑ x z zβ δ

δ . 

 
(The likelihood can actually be further simplified.  Since β is a free parameter vector, we can let βr 
equal β/(1 - ρ2)1/2 and αr equal α/(1 - ρ2)1/2.  Then, define ω = ρ/(1 - ρ2)1/2. The resulting log 
likelihood is 
 
 ( ) ( )1 2 2 21

log log (2 1) ( ) ( ) logN
i r i r i i i i ii

L y y y y
=

′ ′ ′= Φ  − + α + ω θ −  + θφ θ −    ∑ x z zβ δ δ . 
 
This simplifies the programming a bit, but does not actually improve the process of optimization.)  
The delta method is used after estimation to recover the estimates of the original parameters and 
estimators of their asymptotic variances. 
 
E29.4 Using MAXIMIZE to Estimate Other Parametric Models 
 
 The general formulation used earlier suggests a means of extending the binary choice model 
to distributions other than the ones listed in Section E27.2.  In particular, if the model is formulated 
as a single index regression: 
 
   yi  =  a binary outcome taking values 0 or 1 with 

   Prob[yi = 1]  =  F(β′xi), such that F′(β′xi) ≥ 0 and 0 < F(β′xi) < 1, 
 
then any proper probability distribution function will suffice.  This is simply a model, with no more 
or less justification than the logistic or normal distributions. 
 There are many possibilities that one might consider. The binary probability model is a 
particularly simple one to formulate, and LIMDEP’s MAXIMIZE routine is well suited to this type 
of problem.  A template that one might use for this approach would be as follows: 
 
 NAMELIST ; x  = the set of Rhs variables $ 
 CREATE ; y  = ... define the dependent variable $ 
 CALC  ; k  = Col(x) $ 
 MATRIX ; b0 = Init(k,1,0.0) $ 
 MAXIMIZE ; Start = b0  
   ; Labels = k_beta 
   ; Fcn = bx = beta1’x | 
        p = ... the definition of F(bx) | 
         y * Log(p) + (1-y)*Log(1-p) $ 
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E29.5 Two Step Estimation Using Binary Choice Models  
 
 The essential parts of a two procedure are 
 
Step 1. A model is estimated by least squares or maximum likelihood.  Denote the parameters 

estimated at this step as θ1.  For present purposes, this is the probit or logit model. 
 
Step 2. A second model is estimated in which a predicted value from the model in Step 1 appears on 

the right hand side of the equation.  Denote the full set of parameters estimated at this step as 
θ2. 

 
We assume that estimation at both steps is consistent – the modeler will have to verify this on a case 
by case basis.  The remaining computation is the correction of the estimated asymptotic covariance 
matrix for the estimator at Step 2 for the randomness of the estimator carried forward from Step 1.  
We base our results for this computation on the Murphy and Topel (1985) paper which presents a 
general method of doing the calculations.  (See Greene (2011) for additional discussion.)  There are 
like results for GMM estimation – see Newey (1984) – however, we restrict our attention to 
maximum likelihood estimation in LIMDEP. 
 The underlying result is as follows (again, from Greene (2011)):  Let V2 be the uncorrected 
covariance matrix computed at Step 2, using the parameter estimates obtained at Step 1 as if they 
were known, and V1 be the estimator of the asymptotic covariance matrix for the parameter estimates 
obtained at Step 1.  Both of these estimators are based on the respective log likelihood functions.  In 
addition, define 

   2 2
1

2 1

log logn i i
i

f f
=

  ∂ ∂
=   ′∂ ∂  

∑C
θ θ

   

and  

    2 1
1

2 1

log logn i i
i

f f
=

  ∂ ∂
=   ′∂ ∂  

∑R
θ θ

 

 
(Note the derivatives shown are the derivatives of individual terms in the two log likelihoods.  These 
appear at various points above for the probit and logit models.)  With these in hand, the corrected 
covariance matrix for the second step estimator is  
 
   V2*  =  V2 + V2[CV1C′ - RV1C′ - CV1R′]V2 
 
 A general case that has been automated in LIMDEP is a model of the form: 
 
 y1  =  a binary variable specified by a probit or logit formulation, 

 y2  =  a dependent variable whose conditional mean function is a function of E[y1]. 
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Models of this sort could in principle be estimated by full information maximum likelihood.  We 
consider two step estimation instead, which is often simpler.  Models for which the second step 
shown above is automated are the following: 
 

• Probit and probit with heteroscedasticity, 
• Truncated regression, 
• Tobit and tobit with heteroscedasticity, 
• Poisson and negative binomial regression, 
• Linear regression. 

 
For these models, the estimation procedure is the following two steps: 
  
 PROBIT  ; Lhs  = y1 ; Rhs = as usual  
 or LOGIT ; Prob = py        
   ; Hold  $ 

Model name ; Lhs  = y2  
  ; Rhs  = as usual,py   Note, py, not y1. 

   ; 2Step = py $ 
 
 In the example shown below, a probit model is estimated and the results are held for the 
second step.  At the second step, a Poisson regression model is estimated.  (Results for the probit 
model are omitted.)  The second set of estimates shown omit the Murphy and Topel correction. 
 
 NAMELIST ; x = one,age,educ,married,hhninc,hhkids $ 

PROBIT ; Lhs = doctor  ; Rhs = x ; Prob = pdoc ; Hold $ 
POISSON ; Lhs = hospvis ; Rhs = one,age,educ,married,pdoc   
  ; 2step = pdoc $ 
POISSON ; Lhs = hospvis ; Rhs = one,age,educ,married,pdoc  $ 

 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable              HOSPVIS 
Log likelihood function    -13352.51694 
Restricted log likelihood  -13433.21441 
Chi squared [   4 d.f.]       161.39493 
Significance level               .00000 
McFadden Pseudo R-squared      .0060073 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =26715.034 AIC/N =     .978 
Murphy/Topel 2Step VC matrix:P=    PDOC 
Model estimated: Jun 13, 2011, 21:22:28 
Chi- squared =148819.56673  RsqP= .0372 
G  - squared = 21457.91309  RsqD= .0075 
Overdispersion tests: g=mu(i)  :  4.164 
Overdispersion tests: g=mu(i)^2:  4.268 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 HOSPVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1.29249***      .41061    -3.15  .0016    -2.09728   -.48770 
     AGE|     .01115**       .00464     2.40  .0163      .00205    .02025 
    EDUC|    -.08171***      .01211    -6.74  .0000     -.10546   -.05797 
 MARRIED|    -.05946         .04328    -1.37  .1696     -.14429    .02538 
    PDOC|    -.35623         .76816     -.46  .6428    -1.86179   1.14933 
--------+-------------------------------------------------------------------- 
(Uncorrected) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 HOSPVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1.29249***      .38799    -3.33  .0009    -2.05293   -.53205 
     AGE|     .01115**       .00438     2.55  .0109      .00257    .01973 
    EDUC|    -.08171***      .01162    -7.03  .0000     -.10449   -.05893 
 MARRIED|    -.05946         .03874    -1.53  .1249     -.13539    .01648 
    PDOC|    -.35623         .72080     -.49  .6212    -1.76897   1.05651 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 The preceding includes a fairly large number of possible specifications, given all the 
different combinations.  (Any of the first step models may be used with any of the second step 
models.)  But, an essentially infinite number of possible different specifications remain.  If you wish 
to use this procedure, you may have to program the second step correction yourself to do so. 
LIMDEP’s various programming features should make this fairly easy.  To illustrate, we will present 
a moderately complicated case in detail.  For the example, we consider a multinomial logit model for 
a y2 which has three outcomes and a y1 determined by a probit model.  The model is 
 
   y1*  =  θ′z + ε1,  

   y1    =  1(y1* > 0),  

   E[y1]  =  Φ(θ′z), ε ~ N[0,σ2], Φ(.) = standard normal CDF, 

   Prob[y2 = j]  =  ej / (e0 + e1 + e2), j = 0, 1, 2, 

   e0  = 1 

   e1  =  exp[ β1′x + γ1Φ(θ′z) ] 

   e2  =  exp[ β2′x + γ2Φ(θ′z) ] 
 
At Step 1, θ is estimated by maximizing the log likelihood 
 

  log L1   =  )|,(log
1 11∑ =

n
i iii yf θz   =  ( )ii

n
i

q z 'log
1

θΦ∑ =
, where qi = 2y1i - 1. 
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After the first step is complete, the predictions, Φ(θ′z), are computed using the maximum likelihood 
estimates, then the log likelihood for the second model is maximized with respect to β1,γ1,β2,γ2 while 
treating the predictions as if they were observed data.  The second step log likelihood function is 

  log L2   =  ),,,|)'(,,(log 2211 122 γγΦ∑ =
ββθ

n
i iiii yf zx  

   =  2
21 0

log Prob [ ]n
ij ii j

d y j
= =

=∑ ∑ , where dij = 1 if y2i = j, j = 0,1,2 

 
 Each step produces its own estimated parameter vector and asymptotic covariance matrix.  
The matrices needed for the correction are: 
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(Derivatives for the multinomial logit log likelihood above appear later in this manual.) 
 This part of the routine is set up for the particular application.  The remainder is general, and 
need not be changed. 
 

NAMELIST  ; x  = … define the Rhs for the multinomial logit model 
  ; z  = … define the Rhs for the probit model 
CREATE ; y1 = … dependent variable in the probit model 
  ; y2 = … dependent variable in logit model 

 
Estimate the probit model.  The IMR = lambda is just for convenience.  It computes the q*N01/Phi 
in the first log likelihood.  Pick up other terms now. 
 

PROBIT  ; Lhs = y1 ; Rhs = z ; Prob = prob ; Hold(IMR = lambda) $ 
CREATE ; den1 = N01(b’z) $ 
MATRIX  ; v1 = varb $ 

 
Augment the Rhs of the logit model with the fitted probability from the probit model, then fit the 
logit model. 
 

NAMELIST  ; xp = x,prob ; xbrep = xp,xp$ 
LOGIT  ; Lhs = y2 ; Rhs = xp $ 
 

  



E29: Extended Binary Choice Models   E-599 

Get the subvectors of the logit parameter vector and the coefficients on the fitted probability. 
 

CALC  ; k = Col(xp) ; j21 = k+1 ; j22 = 2*k   
  ; gamma1 = b(k) ; gamma2 = b(j22) $ 
MATRIX ; b1 = b(1:k) ; b2 = b(j21:j22) $ 

 
Compute the scalars that appear in the summations in the construction of the C and R matrices.   
 

CREATE ; d0 = (y2 = 0) ; d1 = (y2 = 1) ; d2 = (y2 = 2) 
  ; e0 = 1 ; e1 = Exp(b1’xp) ; e2 = Exp(b2’xp)  
  ; p0 = e0 / (e0 + e1 + e2 ) ; p1 = e1 * p0 ; p2 = e2 * p0  
  ; u1 = (d1 – p1 ) ; u2 = (d2 – p2 ) 
  ; dc1 = u1 * (u1*gamma1 + u2*gamma2)*den1 
  ; dc2 = u2 * (u1*gamma1 + u2*gamma2)*den1 
  ; dr1 = u1 * lambda ; dr2 = u2 * lambda $ 

 
Note the matrix constructions. The namelist[variable]namelist format is specifically for computing 
matrices of the form of C and R in the expressions above. We compute both matrices in two parts, 
then stack the parts. 
 

MATRIX ; cm1 = xp’ [dc1] z ; cm2 = xp’ [dc2 ] z   
  ; rm1 = xp’ [dr1] z ; rm2 = xp’ [dr2 ] z   
  ; c = [cm1 / cm2] ; r = [rm1 / rm2] $ 

 
The last computation computes the corrected covariance matrix, then shows the results. 
 

MATRIX ; t = c * v1 * c’ – c * v1 * r’ – r * v1 * c’  
  ; v2 = varb + varb * t * varb   
  ; Stat(b,v2,xbrep) $ 

 
 To illustrate, we used the procedure with the following variable definitions:  The data set 
contains newhsat, which is a self assessment of health satisfaction ranked from zero to 10.  (The raw 
data contain the variable hsat.  Newhsat corrects some obvious coding errors.)  We created the 
variable lhsat which is zero for newhsat less than six, one for newhsat from six to eight and two 
otherwise. 

 
CREATE ; lhsat = 0 + ((newhsat=6)+(newhsat=7)+(newhsat=8))+2*(newhsat > 8) - 1 $ 
NAMELIST  ; x = one,age,educ,married,working,bluec,whitec,self 
  ; z = one,age,educ,married,hhninc,hhkids $ 
CREATE ; y1 = doctor ; y2 = lhsat $ 

 
Estimates produced by the procedure are shown below.  The intermediate output is omitted.  The 
first set of results is the uncorrected results of the LOGIT command.  The second use the Murphy 
and Topel correction to the asymptotic covariance matrix. 
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----------------------------------------------------------------------------- 
Multinomial Logit Model 
Dependent variable                   Y2 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    2.12189***      .34637     6.13  .0000     1.44302   2.80076 
     AGE|    -.00755*        .00394    -1.91  .0555     -.01528    .00018 
    EDUC|     .03653***      .01038     3.52  .0004      .01619    .05688 
 MARRIED|     .13272***      .03473     3.82  .0001      .06466    .20078 
 WORKING|     .34639***      .05318     6.51  .0000      .24216    .45062 
   BLUEC|    -.12961**       .05675    -2.28  .0224     -.24084   -.01838 
  WHITEC|     .06000         .05407     1.11  .2672     -.04598    .16598 
    SELF|    -.04926         .07452     -.66  .5086     -.19532    .09681 
    PROB|   -3.17753***      .64402    -4.93  .0000    -4.43978  -1.91527 
        |Characteristics in numerator of Prob[Y = 2] 
Constant|    2.59418***      .40842     6.35  .0000     1.79369   3.39467 
     AGE|    -.03235***      .00461    -7.02  .0000     -.04138   -.02332 
    EDUC|     .05585***      .01199     4.66  .0000      .03235    .07936 
 MARRIED|     .12444***      .04153     3.00  .0027      .04305    .20583 
 WORKING|     .38404***      .06193     6.20  .0000      .26266    .50542 
   BLUEC|    -.27785***      .06647    -4.18  .0000     -.40813   -.14757 
  WHITEC|    -.07213         .06209    -1.16  .2453     -.19383    .04956 
    SELF|     .07701         .08528      .90  .3665     -.09014    .24417 
    PROB|   -3.73917***      .75481    -4.95  .0000    -5.21857  -2.25977 
--------+-------------------------------------------------------------------- 
(Corrected) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2.12189***      .38264     5.55  .0000     1.37193   2.87185 
     AGE|    -.00755*        .00429    -1.76  .0785     -.01596    .00086 
    EDUC|     .03653***      .01143     3.20  .0014      .01413    .05894 
 MARRIED|     .13272***      .03815     3.48  .0005      .05795    .20749 
 WORKING|     .34639***      .05329     6.50  .0000      .24195    .45084 
   BLUEC|    -.12961**       .05678    -2.28  .0224     -.24089   -.01833 
  WHITEC|     .06000         .05408     1.11  .2672     -.04600    .16599 
    SELF|    -.04926         .07453     -.66  .5087     -.19533    .09682 
    PROB|   -3.17753***      .70554    -4.50  .0000    -4.56035  -1.79470 
Constant|    2.59418***      .43099     6.02  .0000     1.74947   3.43890 
     AGE|    -.03235***      .00480    -6.73  .0000     -.04177   -.02293 
    EDUC|     .05585***      .01266     4.41  .0000      .03104    .08067 
 MARRIED|     .12444***      .04308     2.89  .0039      .04000    .20888 
 WORKING|     .38404***      .06198     6.20  .0000      .26256    .50551 
   BLUEC|    -.27785***      .06649    -4.18  .0000     -.40816   -.14754 
  WHITEC|    -.07213         .06208    -1.16  .2453     -.19382    .04955 
    SELF|     .07701         .08529      .90  .3666     -.09016    .24419 
    PROB|   -3.73917***      .79080    -4.73  .0000    -5.28911  -2.18923 
--------+-------------------------------------------------------------------- 
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E29.6 Other Models that Build on the Binary Choice Models 
 
 A variety of the other models that are estimated with LIMDEP are built upon the binary 
choice framework, particularly the probit model.  Some of the model extensions that may be of 
interest are: 
 

• Bivariate and multivariate extensions of the probit model.  These extend the latent regression 
model to a multivariate regression framework: 

 
   y1*  =  β1′x1  +  ε1,  y1  =  1 if y1*  >  0, 0 otherwise, 

   y2*  =  β2′x2  +  ε2,  y2  =  1 if y2*  >  0, 0 otherwise, 

   ... 

   yM*  =  βM′xM  +  εM, yM  =  1 if yM*  >  0, 0 otherwise, 
 

The disturbances in the equations are allowed to be freely correlated.  The bivariate probit 
model restricts this to two equations, but includes some useful extensions of the model. 
 

ο Bivariate probit with exponential heteroscedasticity 
ο Bivariate probit with sample selection:  (y1 ,x1) only observed when y2 = 1. 
ο Partial observability models:  Only y1y2 is observed.  (There are three variants.) 

 
The unrestricted multivariate probit (MVP) model stated above allows up to 20 equations.   
 

• Multinomial probit (MNP).  The MNP model is part of NLOGIT Version 5 and is not 
available in LIMDEP Version 10. The MNP model modifies the MVP model above by 
changing the observation mechanism.  The observed outcome is an indicator, j, which 
denotes which of the M yj*s is the maximum.  The interpretation is that the right hand sides 
of the regressions are the random utilities associated with M choices, and the individual 
chooses the one which gives greatest utility.  
 

• Sample selection models.  This is a group of models that build on a regression type of model, 
 
   f(Y*) = g(γ′z  +  u) where f(.) is the probability distribution of some  
     observed variable, which depends on a latent or observed 
     regression model 

   y* = β′x  +  ε,  y  =  1 if y*  >  0, 0 otherwise, 

   Y* and z are observed only when y = 1, ε and u are correlated. 
 

Examples include the bivariate probit model mentioned earlier, a regression model 
(Heckman’s model of sample selection), an ordered probability model, and a Poisson 
regression model for counts.  The models are presented in Chapter E54. 
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• Ordered probability models are forms of the probit and logit models in which there are more 
than two outcomes, coded 0,1,2,... The observed outcome occurs with probability drawn 
from the normal or logistic distribution, with the range of the latent variable divided into 
more than two parts.  The base form of the ordered probability model is 

 
   yi* = β′xi + εi,  εi ~ standard normal or standard logistic, 

   yi   = 0 if yi*  ≤ µ0, 

           1 if µ0 < yi*    ≤ µ1, 

          2 if µ1 < yi*     ≤ µ2, 

        ... 

          J if  yi*    > µJ-1. 
  

The observed counterpart to yi*  is yi.  Note that the probit model that has been discussed in 
this chapter is the special case when J = 1. 
 

• Zero inflation models for count data.  The models for count data specify that 
 
   Prob[yi = j]  =  g(γ′zi), j = 0,1,... 
 

The zero inflation models extend this framework to include the possibility that observations 
of zero may arise from two regimes.  In regime 1, y always equals zero.  In regime 2, y 
follows the distribution above.  The determination of which regime applies is modeled as the 
outcome of a binary choice, 

 
   Prob[regime 1]  = F(β′x),  Prob[regime 2]  =  1 - F(β′x). 
 

The zero inflation models for count data are discussed in Section E43.6. 
 

• Split population models.  Parametric models of duration are based on data which are 
‘complete,’ – a transition takes place and ‘censored’ – the transition has not taken place at 
the time of observation, and it is assumed that it will take place eventually.  The split 
population models relax this assumption by extending the duration model with a binary 
choice equation that models the censoring process. The implication is that some observations 
which are observed as censored might be reasonably treated as if they would never actually 
experience the transition.  See Section E61.5 for this development. 
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E30: Fixed and Random Effects Models for 
Binary Choice 

 
E30.1 Introduction 
 
 The parametric models discussed in Chapters E27-E29 are extended to panel data formats. 
Four specific parametric model formulations are provided as internal procedures in LIMDEP for 
these binary choice models.  These are the same ones described earlier, less the Burr distribution 
which is not included in this set.  Four classes of models are supported: 
 

• Fixed effects:     Prob[yit = 1]  =  F(β′xit  +  αi),  
    αi may be correlated with xit, 

 
• Random effects: Prob[yit = 1]  =  Prob[β′xit + εit + ui > 0], 

    ui is uncorrelated with xit, 
 
• Random parameters: Prob[yit = 1]  =  F(βi′xit),   

    βi | i  ~  h(β|i) with mean vector β and covariance matrix Σ 
 
• Latent class:  Prob[yit = 1|class j]  =  F(βj′xit),  

    Prob[class = j]  =  Fj(θ) 
 
The last two models provide various extensions of the basic form shown above. 
 
NOTE:  None of these panel data models require balanced panels.  The group sizes may always 
vary. 
 
NOTE:  None of these panel data models are provided for the Burr (scobit) model. 
 
All formulations are treated the same for the five models, probit, logit, extreme value, Gompertz and 
arctangent. 
 
NOTE:  The random effects estimator requires individual data. The fixed effects estimator allows 
grouped data. 
 
The third and fourth arise naturally in a panel data setting, but in fact, can be used in cross section 
frameworks as well.  The fixed and random effects estimators require panel data.  The fixed and 
random effects models are described in this chapter.  Random parameters and latent class models are 
documented in Chapter E31. 
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 The probabilities and density functions supported here are as follows: 
 
Probit 

 F = dtti

∫
β

∞− π

−x' 2
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)2/exp(

  =  Φ(β′xi),     f = φ(β′xi) 

 
Logit 
 F = exp( )

1 exp( )
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′
′+

x
x

β
β

  =  Λ(β′xi),    f =  Λ(β′xi)[1 - Λ(β′xi)] 

 
Complementary log log 
 
 F = 1 - exp(-exp(β′xi))  =  C(β′xi),    f = exp(β′xi)[1 - C(β′xi)] 
 
Gompertz, or type 1 extreme value 
 
 F = exp(-exp(-β′xi))  = G(β′xi),  f = exp(-β′xi)G(β′xi) 
 
Arctangent 
 
 F = 2/π arctan(exp(β′xi)),  f = 2/π [1/(1 + exp2(β′xi)) ] 
 
 The applications in this chapter are based on the German health care data used throughout 
the documentation (See Section E2.4).  The data are an unbalanced panel of observations on health 
care utilization by 7,293 individuals.  The group sizes in the panel number as follows: Ti: 1=1525, 
2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987. There are altogether 27,326 observations.  The 
variables in the file that are used here are 
 
      doctor   =  1 if number of doctor visits > 0, 0 otherwise, 
     hhninc  =  household nominal monthly net income in German marks / 10000, 
 hhkids =  1 if children under age 16 in the household, 0 otherwise, 
      educ  =  years of schooling, 
      married  =  marital status, 
      female =  1 for female, 0 for male, 
      docvis =  number of visits to the doctor, 
      hospvis =  number of visits to the hospital, 
 newhsat =  self assessed health satisfaction, coded 0,1,...,10. 
 
(The data on health satisfaction in the raw data file, in variable hsat, contained some obvious coding 
errors.  Our corrected data are in newhsat.) 
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E30.2 Commands 
 
 The essential model command for the models described in this chapter are  
 

           
  









PROBIT
LOGIT

COMPLOG
GOMPERTZ

ARCTANGENT

 

 
As always, panels may be balanced or unbalanced.  The panel is indicated with 
 
 SETPANEL ; Group = group identifier  

; Pds = count variable to be created $ 
Thereafter, 
   ; Panel 
 
in the model command is sufficient to specify the panel setting.  In circumstances where you have set 
up the count variable yourself, you may also use the explicit declaration in the command: 
 
   ; Pds = the fixed number of periods if the panel is balanced 
   ; Pds = a variable which, within a group, repeats the number  
      of observations in the group 
 
One or the other of these two specifications is required for the fixed and random effects estimators. 
 
NOTE: For these estimators, you should not attempt to manage missing data.  Just leave 
observations with missing values in the sample. LIMDEP will automatically bypass the missing 
values. Do not use SKIP, as it will undermine the setting of ; Pds = specification. 
 
The estimator produces and saves the coefficient estimator, b and covariance matrix, varb, as usual.  
Unless requested, the estimated fixed effects coefficients are not retained.  (They are not reported 
regardless.)  To save the vector of fixed effects estimates, α in a matrix named alphafe, add 
 
   ; Parameters 
 
to the command.  The fixed effects estimators allow up to 100,000 groups.  However, only up to 
50,000 estimated constant terms may be saved in alphafe. 
 
  

; Lhs  = dependent variable 
; Rhs  = independent variables - not including one 
; Panel 
; ...  specification of the panel data model  $ 
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 The Options pages of the Model:Binary Choice/Probit and Model:Binary Choice/ Logit 
provide command builders for the panel data models.  The probit, complementary log log, arctangent 
and extreme value models are all in the PROBIT command builder.   
 

                  

 
Figure E30.1  Command Builder for Panel Data Binary Logit Models 
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E30.3 Clustering, Stratification and Robust Covariance 
Matrices 
 

 The robust estimator based on sample clustering and stratification is available for the 
parametric binary choice models.  Full details appear in Chapter R10 for the general case and Section 
E27.5.2 for the parametric binary choice models of interest here. The option for clustering is offered 
in the command builders for most of the nonlinear model and binary choice routines in the Model 
Estimates submenu.  This will differ a bit from model to model.  The one for the probit model is 
shown below in Figure E30.2.  The Model Estimates dialog box is selected at the bottom of the 
Output page, then the clustering is specified in the next dialog box. 
 

 
Figure E30.2  Command Builder for a Probit Model 

 

This sampling setup may be used with any of the binary choice estimators.  Do note, however, you 
should not use it with panel data models.  The so called ‘clustering’ corrections are already built into 
the panel data estimators.  (This is unlike the linear regression case, in which some authors argue that 
the correction should be used even when fixed or random effects models are estimated.) 
  To illustrate, the following shows the setup for the panel data set described in the preceding 
section.  We have also artificially reduced the sample to 1,015 observations, 29 groups of 35 
individuals, all of whom were observed seven times. The information below would appear with a 
model command that used this configuration of the data to construct a robust covariance matrix. 
 
 SAMPLE  ; 1-5000 $ 
 REJECT  ; _groupti < 7 $ 
 NAMELIST  ; x = age,educ,hhninc,hhkids,married $ 
 PROBIT ; Lhs = doctor ; Rhs = one,x 
   ; Cluster = 7  
   ; Stratum = 35  
   ; Describe $ 
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These results appear before any results of the probit command. They are produced by the ; Describe 
specification in the command. 
 
======================================================================== 
 Summary of Sample Configuration for Two Level Stratified Data 
======================================================================== 
 Stratum #   Stratum    Number Groups          Group Sizes 
            Size (obs)  Sample   FPC.       1       2       3 ...   Mean 
==========  ==========  =============  ================================= 
         1          35       5 1.0000       7       7       7 ...    7.0 
         2          35       5 1.0000       7       7       7 ...    7.0 
        (Rows 3 – 28 omitted) 
        29          35       5 1.0000       7       7       7 ...    7.0 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of   1015 observations contained    145 clusters defined by  | 
|      7 observations (fixed number) in each cluster.                 | 
| Sample of   1015 observations contained     29 strata defined by    | 
|     35 observations (fixed number) in each stratum.                 | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function      -621.15030 
Restricted log likelihood    -634.14416 
Chi squared [   5 d.f.]        25.98772 
Significance level               .00009 
McFadden Pseudo R-squared      .0204904 
Estimation based on N =   1015, K =   6 
Inf.Cr.AIC  = 1254.301 AIC/N =    1.236 
Hosmer-Lemeshow chi-squared =  18.58245 
P-value=  .01726 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .71039        2.41718      .29  .7688    -4.02720   5.44797 
     AGE|     .00659         .03221      .20  .8378     -.05655    .06973 
    EDUC|    -.05898         .14043     -.42  .6745     -.33421    .21625 
  HHNINC|    -.13753        1.25599     -.11  .9128    -2.59921   2.32416 
  HHKIDS|    -.11452         .56015     -.20  .8380    -1.21240    .98336 
 MARRIED|     .29025         .82535      .35  .7251    -1.32741   1.90791 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E30.4 One and Two Way Fixed Effects Models 
 
 The fixed effects models are estimated by unconditional maximum likelihood.  The 
command for requesting the model is 
 

            
  









PROBIT
LOGIT

COMPLOG
GOMPERTZ

ARCTANGENT
 

 
NOTE:  Your Rhs list should not include a constant term, as the fixed effects model fits a complete 
set of constants for the set of groups.  If you do include one in your Rhs list, it is automatically 
removed prior to beginning estimation. 
 
 The fixed effects model assumes a group specific effect: 
 
   Prob[yit  =  1]  =  F(β′xit  +  αi) 
 
where αi is the parameter to be estimated.  You may also fit a two way fixed effects model 
 
   Prob[yit  =  1]  =  F(β′xit  +  αi  +  γt) 
 
where γt is an additional, time (period) specific effect.  The time specific effect is requested by 
adding 
   ; Time 
 
to the command if the panel is balanced, and  
 
   ; Time = variable name 
 
if the panel is unbalanced.  For the unbalanced panel, we assume that overall, the sample  
observation period is  
 

   t  = 1,2,..., T 
 
and that the ‘Time’ variable gives for the specific group, the particular values of t that apply to the 
observations.  Thus, suppose your overall sample is five periods.  The first group is three 
observations, periods 1, 2, 4, while the second group is four observations, 2, 3, 4, 5.  Then, your 
panel specification would be 
 
   ; Pds = Ti,  for example, where Ti = (3, 3, 3), (4, 4, 4, 4) 
and   ; Time = Pd,  for example, where Pd = (1, 2, 4), (2, 3, 4, 5). 
 
NOTE:  See the discussion in Section E30.4.2 that describes how this model is estimated.  It places 
an important restriction on the two way fixed effects model. 

; Lhs = dependent variable 
; Rhs = independent variables - not including one 
; Panel 
; Fixed Effects or ; FEM  $ 
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Standard Model Specifications for the Fixed Effects Binary Choice Models  
 

This is the full list of general specifications supported for this model. 
 
Controlling Output from Model Commands 
 
 ; Par  keeps ancillary parameter matrix alphafe containing fixed effects. 

; Margin displays marginal effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 
 ; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 
 ; Maxit = n sets the maximum iterations. 

; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Prob = name saves probabilities as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 

 
; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 

 ; Maxit = 0 ; Start = the restricted values  specifies Lagrange multiplier test. 
 
 Starting values for the iterations are obtained by fitting the basic model without fixed effects.  
Thus, the initial results in the output for these models will be the binary choice models discussed in 
the preceding chapters.  You will see a constant term in these results even though you have not 
included one in your commands.  This is used to get starting value for the fixed effects. Iterations 
begin with the restricted model that forces all the fixed effects to equal the constant term in the 
restricted model.  You may provide your own starting values for the slope parameters with 
 
   ; Start = ... the list of values for β.   
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Do not include a set of constants. You may also provide a starting value which will be used identically 
for all the fixed effects by including one extra value at the end of your list of starting values. 
 Results that are kept for this model are 
 
 Matrices: b   =  estimate of β 
   varb   =  asymptotic covariance matrix for estimate of β. 
   alphafe =  estimated fixed effects if the command contains ; Parameters 
 
 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
  
The upper limit on the number of groups is 100,000.  Technical details on the method of estimation 
appear in Section E30.4.2.   Partial effects are computed locally with ; Partial Effects in the 
command.  The post estimation PARTIAL EFFECTS command does not have the set of constant 
terms, some of which are infinite, so the probabilities cannot be computed. 
 
E30.4.1 Application 
 
 The gender and kids present dummy variables are time invariant and are omitted from the 
model. Nonlinear models are like linear models in that time invariant variables will prevent 
estimation.  This is not due to the ‘within’ transformation producing columns of zeros.  The within 
transformation of the data is not used for nonlinear models.  A similar effect does arise in the 
derivatives of the log likelihood, however, which will halt estimation because of a singular Hessian. 
 The results of fitting models with no fixed effects, with the person specific effects and with 
both person and time effects are listed below.  The results are partially reordered to enable 
comparison of the results, and some of the results from the pooled estimator are omitted. 
 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 NAMELIST  ; x = age,educ,hhninc,newhsat $ 
 PROBIT  ; Lhs = doctor ; Rhs = x,one  
   ; Partial Effects $ 
 PROBIT  ; Lhs = doctor ; Rhs = x 
   ; FEM  

; Panel 
   ; Parameters  
   ; Partial Effects $ 
 PROBIT  ; Lhs = doctor ; Rhs = x 
   ; FEM  

; Panel 
   ; Time Effects  
   ; Parameters 
   ; Partial Effects $ 



E30: Fixed and Random Effects Models for Binary Choice   E-612 

These are the results for the pooled data without fixed effects. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -16639.23971 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2760.62404 
Significance level               .00000 
McFadden Pseudo R-squared      .0766008 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33288.479 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  20.51061 
P-value=  .00857 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .00856***      .00074    11.57  .0000      .00711    .01001 
    EDUC|    -.01540***      .00358    -4.30  .0000     -.02241   -.00838 
  HHNINC|    -.00668         .04657     -.14  .8859     -.09795    .08458 
 NEWHSAT|    -.17499***      .00396   -44.21  .0000     -.18275   -.16723 
Constant|    1.35879***      .06243    21.77  .0000     1.23644   1.48114 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the estimates for the one way fixed effects model.   
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -9187.45120 
Estimation based on N =  27326, K =4251 
Inf.Cr.AIC  =26876.902 AIC/N =     .984 
Unbalanced panel has   7293 individuals 
Skipped 3046 groups with inestimable ai 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .04701***      .00438    10.74  .0000      .03844    .05559 
    EDUC|    -.07187*        .04111    -1.75  .0804     -.15244    .00870 
  HHNINC|     .04883         .10782      .45  .6506     -.16249    .26015 
 NEWHSAT|    -.18143***      .00805   -22.53  .0000     -.19721   -.16564 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Figure E30.3  Estimated Fixed Effects 

 
 Note that the results report that 3046 groups had inestimable fixed effects.  These are 
individuals for which the Lhs variable, doctor, was the same in every period, including 1525 groups 
with Ti = 1.  If there is no within group variation in the dependent variable for a group, then the fixed 
effect for that group cannot be estimated, and the group must be dropped from the sample.  The          
; Parameters specification requests that the estimates of αi be kept in a matrix, alphafe.  Groups for 
which αi is not estimated are filled with the value -1.E20 if yit is always zero and +1.E20 if yit is 
always one, as shown above. 
 The log likelihood function has increased from -16,639.24 to -9187.45 in computing the fixed 
effects model.  The chi squared statistic is twice the difference, or 14,903.57.  This would far exceed 
the critical value for 95% significance, so at least at first take, it would seem that the hypothesis of no 
fixed effects should be rejected.  There are two reasons why this test would be invalid.  First, because 
of the incidental parameters issue, the fixed effects estimator is inconsistent.  As such, the statistic just 
computed does not have precisely a chi squared distribution, even in large samples.  Second, the fixed 
effects estimator is based on a reduced sample.  If the test were valid otherwise, it would have to be 
based on the same data set.  This can be accomplished by using the commands 
 
 CREATE  ; meandr = Group Mean(doctor, Str = id) $ 
 REJECT  ; meandr < .1 | meandr > .9 $ 
 PROBIT ; Lhs = doctor ; Rhs = one,x $ 
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(The mean value must be greater than zero and less than one. For groups of seven, it can be as high as 
6/7 = .86.) Using the reduced sample, the log likelihood for the pooled sample would be -10,852.71.  
The chi squared is 11,573.31 which is still extremely large.  But, again, the statistic does not have the 
large sample chi squared distribution that allows a formal test.  It is a rough guide to the results, but not 
precise as a formal rule for building the model. 
 In order to compute marginal effects, it is necessary to compute the index function, which 
does require an αi.  The mean of the estimated values is used for the computation.  The results for the 
pooled data are shown for comparison below the fixed effects results. 
 
These are the partial effects for the fixed effects model.  
 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]   with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Estimated E[y|means,mean alphai]=    .625 
Estimated scale factor for dE/dx=    .379 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01783***     1.22903     6.39  .0000      .01237    .02330 
    EDUC|    -.02726        -.49559    -1.40  .1628     -.06554    .01102 
  HHNINC|     .01852         .01048      .45  .6542     -.06253    .09957 
 NEWHSAT|    -.06882***     -.77347    -5.96  .0000     -.09144   -.04619 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the partial effects for the pooled model. 
 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00297***      .20554    11.66  .0000      .00247    .00347 
    EDUC|    -.00534***     -.09618    -4.30  .0000     -.00778   -.00291 
  HHNINC|    -.00232        -.00130     -.14  .8859     -.03401    .02937 
 NEWHSAT|    -.06075***     -.65528   -49.40  .0000     -.06316   -.05834 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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These are the two way fixed effects estimates.  The time effects, which are usually few in number, 
are shown in the model results, unlike the group effects. 
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -9175.69958 
Estimation based on N =  27326, K =4257 
Inf.Cr.AIC  =26865.399 AIC/N =     .983 
Model estimated: Jun 15, 2011, 11:00:11 
Unbalanced panel has   7293 individuals 
Skipped 3046 groups with inestimable ai 
No. of period specific effects= 6 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .03869***      .01310     2.95  .0031      .01301    .06437 
    EDUC|    -.07985*        .04130    -1.93  .0532     -.16080    .00109 
  HHNINC|     .05329         .10807      .49  .6219     -.15852    .26510 
 NEWHSAT|    -.18090***      .00806   -22.44  .0000     -.19670   -.16510 
 Period1|    -.08649         .15610     -.55  .5795     -.39244    .21946 
 Period2|    -.00782         .13926     -.06  .9552     -.28076    .26513 
 Period3|     .08766         .12423      .71  .4804     -.15583    .33116 
 Period4|     .03048         .10907      .28  .7799     -.18330    .24425 
 Period5|    -.02437         .09372     -.26  .7948     -.20807    .15932 
 Period6|     .05075         .07761      .65  .5131     -.10136    .20287 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]   with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Estimated E[y|means,mean alphai]=    .625 
Estimated scale factor for dE/dx=    .379 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01467***     1.01123     4.35  .0000      .00806    .02129 
    EDUC|    -.03029        -.55056    -1.49  .1370     -.07021    .00964 
  HHNINC|     .02021         .01144      .48  .6289     -.06176    .10218 
 NEWHSAT|    -.06861***     -.77109    -4.34  .0000     -.09962   -.03761 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E30.4.2 Technical Details 
 
 The fixed effects model is fit essentially by ‘brute force.’  LIMDEP actually estimates the 
full K + N up to 100,150 coefficients by Newton’s method.  It is possible to fit the huge number of 
coefficients because we take advantage of the properties of the sparse second derivatives matrix of 
the log likelihood.  One of the implications, however, is that there is no covariance matrix computed 
for the fixed effects.  As such, it is not possible to do any kind of inference for individual fixed 
effects. 
 The two way fixed effects estimator is computed by actually creating the time specific 
dummy variables and adding them to the model – see the results above.  This means that the usual 
150 parameter limit on model size applies to the number of variables in the model plus the number of 
periods (minus one). 
 Marginal effects in the fixed effects model are computed at the means of the data and with 
the sample average of the fixed effects estimates as the constant term. 
 The unconditional log likelihood is maximized by using Newton’s method.  A full 
discussion of the method is given in Chapter R23.  A short sketch of the result is given here, for the 
logit model.  (The results for the other binary choice models are similar.  For the models that have 
asymmetric probability functions, complementary log log, Gompertz and arctangent, the expressions 
below become more complicated as the zeros and ones are treated separately as required.)  The log 
likelihood is 
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Assemble the full set of first derivatives in a (K+N)×1 vector, g and the full set of second derivatives 
in a (K+N)×(K+N) matrix, H.  The iteration for Newton’s method is 
 
   γs+1 =  γs  -  Hs

-1gs 

    =  γs + ds, 



E30: Fixed and Random Effects Models for Binary Choice   E-617 

where γ denotes the full (K+N)×1 parameter vector, (β′,α1,α2,...,αN)′ and s indexes iterations.  This 
iteration then, computes a change vector, ds as the product of the matrix and vector of derivatives. In 
principle, the matrix H is huge, which makes this computation unwieldy.  However, the lower right 
N×N submatrix of H (the very large part) is a diagonal matrix – see above. Therefore, it is not 
necessary actually to compute the entire matrix. The change vector can be computed as a sum of K×1 
vectors which are themselves functions only of  the scalar diagonal parts of the submatrix and the 
K×K submatrix at the upper left, all of which is very easily done and requires no more computer 
memory than a conventional estimator, say least squares for a regression. 
 There is an important qualification to be made in the preceding.  Consider the first order 
condition for the ith group specific constant term: 
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Now, suppose for group i, yit is always one.  Then, inserting the probability and expanding, this first 
order condition becomes 
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In order for this condition to be met, each probability in the last term must equal 1.0, which means, if 
the data and parameters are finite, αi must go to +∞.  Thus, if every outcome in a group is one, the 
constant term is not estimable in any binary choice model.  The same result occurs if every yit in a 
group equals zero.  Thus, such groups must be dropped from the sample.  (See the example above.) 
 We use Newton’s method for the computations, so the actual Hessian is available for 
estimation of the asymptotic covariance matrix of the estimators.  Let Hβα′ denote the K×N submatrix 
of H obtained as [hβ1, hβ2, ..., hβN] and let Hαα′ denote the N×N diagonal lower right submatrix of H 
obtained as diag[hii].  Then, the estimator of the asymptotic covariance matrix for the MLE of β is 
the upper left submatrix of -H-1.  Using the partitioned inverse formula, this is 
 
   Asy.Var[b]  =  [-(Hββ′  -  Hβα′ (Hαα′)-1 Hαβ′)]-1 
 
The first matrix is given above.  By inserting the formulas given above, and exploiting the fact that 
Hαα′ is a diagonal matrix, we obtain the result 
 

   Hβα′ (Hαα′)-1 Hαβ′ =  
1

1 ( )( )N
i ii

iih=
′∑ h hβ β . 

 
This produces a sum of K×K matrices which is of the form of a moment matrix and which is easily 
computed.  Thus, the asymptotic covariance matrix for the estimated coefficient vector is easily 
obtained in spite of the size of the problem.  (In fact, for these binary choice models, the Hessian is 
actually in the form of a ‘within groups’ moment matrix for a panel.  This result is derived in Greene 
(2011). 
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 Two considerations remain.  First, it is not possible to compute the asymptotic covariance 
matrix for the fixed effects estimator (unless there are relatively few of them).  Using the partitioned 
inverse formula once again, we can show that the elements of Asy.Var[a] are contained in 
 
   Asy.Var[a]  =  [-(Hαα′  -  Hαβ‘(Hββ′)-1Hβα′)]-1. 
 
The ijth element of the matrix to be inverted is 
 
   (Hαα′  -  Hαβ‘(Hββ′)-1Hβα′)ij  =  1(i = j)hii  -  hβi ′(Hββ′)-1 hβj 
 
This is a full N×N matrix, and so the model size problem will apply – it is not feasible to manipulate 
this matrix.    
 Finally, note that in Asy.Var[b], the terms are of order NT minus a sum of N order T outer 
products.  Therefore, the end result is the inverse of an order NT matrix, which will converge to zero.  
What this establishes is that b does converge to a parameter in the sense that its asymptotic 
covariance matrix converges to zero.  However, it converges to a function that deviates from β to the 
extent that plim ai deviates from αi.  The asymptotic covariance matrix of the fixed effects estimators 
above is an N×N matrix that is the inverse of an order T matrix.  Since T is fixed and may be very 
small, the fixed effects estimators are not consistent. 
 
NOTE:  Full estimation of the fixed effects model in this fashion encounters the incidental parameters 
problem.  Some of the implications of this problem are discussed in Chapter R24. Also, a  particular 
group specific effect, αi cannot be estimated if yit takes the same value (1 or 0) in every period.  If the 
number of periods is small, this is likely to happen fairly often.  You will see an indication in the results 
of how many such groups had to be dropped from the estimation.  See the application above. 
 
 Little is known about the impact of the incidental parameters problem on ML estimators of 
binary choice models beyond the long established 100% bias of the logit estimator in the case of T = 2.  
The following table, extracted from Greene (2004a, pp. 98-119) is as extensive a study of the issue as is 
currently available.  It is based on Monte Carlo analysis of probit and logit models with a continuous 
variable coefficient, β, and a dummy variable coefficient, δ.  While Monte Carlo studies are never 
definitive, this should provide a moderately good guide to the extent of the problem for binary choice 
estimators.  The table entry estimates the ratio of the expected value of the estimator to the parameter it 
is estimating for several sample sizes. 

 
 
 
 
 
 
 
 
 
 
 

Table E30.1  Monte Carlo Simulations of Incidental Parameters Problem 

     Means of empirical sampling distributions, N = 1,000 individuals based on 200 replications.     
                             T = 2               T = 3             T = 5              T = 8             T = 10            T = 20   
     β      δ       β      δ      β     δ       β      δ      β     δ      β     δ  
 Logit Coef  2.020 2.027 1.698 1.668 1.379 1.323 1.217 1.156 1.161 1.135 1.069 1.062 
 Logit MEa 1.676 1.660 1.523 1.477 1.319 1.254 1.191 1.128 1.140 1.111 1.034 1.052 
 Probit Coef 2.083 1.938 1.821 1.777 1.589 1.407 1.328 1.243 1.247 1.169 1.108 1.068 
 Probit MEa 1.474 1.388 1.392 1.354 1.406 1.231 1.241 1.152 1.190 1.110 1.088 1.047  
 Ord Probit 2.328 2.605 1.592 1.806 1.305 1.415 1.166 1.220 1.131 1.158 1.058 1.068   
 a   Average ratio of estimated marginal effect to true marginal effect 
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E30.5 Conditional MLE of the Fixed Effects Logit Model 
 

 Two nonlinear models, the binomial logit and Poisson regression can be estimated by 
conditional maximum likelihood.  (The MLE of the linear model is the within estimator.  In 
principle, the exponential loglinear regression model also provides the needed sufficient statistics, 
but we have not seen this model employed in practice.)  This is a specialized approach that was 
devised to deal with the problem of large numbers of incidental parameters discussed in the 
preceding section. We consider the logit case here and the count models in Section E44.4.1.  (This 
model was studied, among others, by Chamberlain (1980).)  The log likelihood for the binomial logit 
model with fixed effects is 
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The first term, 2yit - 1, makes the sign negative for yit = 0 and positive for yit = 1, and Λ(.) is the 
logistic probability, Λ(z) = 1/[1 + exp(-z)].  Direct maximization of this log likelihood involves 
estimation of N+K parameters, where N is the number of groups.  As N may be extremely large, this 
is a potentially difficult estimation problem.  As we saw in the preceding section, direct estimation 
with up to 100,000 coefficients is feasible.  But, the method discussed here is not restricted – the 
number of groups is unlimited because the fixed effects coefficients are not estimated.  Rather, the 
fixed effects are conditioned out of the log likelihood.  The main appeal of this approach, however, is 
that whereas the brute force estimator of the preceding section is subject to the incidental parameters 
bias, the conditional estimator is not; it is consistent even for small T (even for T = 2). 
 The contribution to the likelihood function of the Ti observations for group i can be 
conditioned on the sum of the observed outcomes to produce the conditional log likelihood, 
 

   Lc =  1

1

exp[ ]

exp[ ]

i

i

i

T

it it
t

T

is isall arrangements of  T  outcomes with the same sum
s

y

y

=

=

′

′

∏

∑ ∏

x

x

β

β
 

 

    = 1

1

exp

exp

i

i

i

T
it itt

T
is isall arrangements of  T  outcomes with the same sum s

y

d
=

=

 ′
 

 ′
 

∑
∑ ∑

x

x

β

β
. 

 
This function can be maximized with respect to the slope parameters, β, with no need to estimate the 
fixed effects parameters.  The number of terms in the denominator of the probability may be 

exceedingly large, as it is the sum of T* terms where T* is equal to the binomial coefficient 








i

i

S
T

 and 

Si is the sum of the binary outcomes for the ith group.  This can be extremely large.  The computation 
of the denominator is accomplished by means of a recursion presented in Krailo and Pike (1984).   Let 
the denominator be denoted A(Ti,Si).  The authors show that for any T and S the function obeys the 
recursion 
   A(T,S)  =  A(T-1,S)  + exp(xiT′β)A(T-1,S-1) 

with initial conditions  A(T,s)  =  0  if  T < s  and A(T,0)  =  1. 
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This enables rapid computation of the denominator for Ti up to 200 which is the internal limit.  (If 
your model is this large, expect this computation to be quite time consuming.  Although 200 periods 
(or more) is technically feasible, the number of terms rises geometrically in Ti, and more than 20 or 
30 or so is likely to test the limits of the program (as well as your patience).  Note, as well that when 
the sum the observations is zero or Ti, the conditional probability is one, since there is only a single 
way that each of these can occur.  Thus, groups with sums of zero or Ti fall out of the computation.  
There is one exception.  If you are fitting a discrete choice model (see the discussion of CLOGIT in 
Chapter E38) with more than 100 choices, you can use this estimator for models with up to 200 
choices.  Note in this case, although Ti may be very large, Si will equal one, so the problem is simple. 
 Estimation of this model is done with Newton’s method.  When the data set is rich enough 
both in terms of variation in xit and in Si, convergence will be quick and simple. 
 
E30.5.1 Command 
 
 The command for estimation of the model by this method is 
 
 LOGIT ; Lhs  = dependent variable 
   ; Rhs  = dependent variables (do not include one) 
   ; Pds  = fixed number of periods or variable for group sizes $ 
 
NOTE:  You must omit the ; FEM from the logit command.  This is the default panel data estimator 
for the binary logit model.  Use ; Fixed Effects or ; FEM to request the unconditional estimator 
discussed in the previous section. 
 
 You may use weights with this estimator.  Presumably, these would reflect replications of 
the observations.  Be sure that the weighting variable takes the same value for all observations within 
a group.  The specification would be 
 
   ; Wts = variable, Noscale 
 
The Noscaling option should be used here if the weights are replication factors.  If not, then do be 
aware that the scaling will make the weights sum to the sample size, not the number of groups. 
 Results that are retained with this estimator are the usual ones from estimation: 
 
 Matrices: b   =  estimate of β 
   varb   =  asymptotic covariance matrix for estimate of β 
 
 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
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E30.5.2 Application 
 
 The following will fit the binary logit model using the two methods noted.  Bear in mind that 
with Ti < 7, the unconditional estimator is inconsistent and in fact likely to be substantially biased.  
The conditional estimator is consistent.  Based on the simulation results cited earlier, the second 
results should exceed the first by roughly 40%.  Marginal effects are shown as well.  Computation is 
discussed below. 
 
 NAMELIST ; x = age,educ,hhninc,newhsat $ 
 LOGIT  ; Lhs = doctor ; Rhs = x,one $ 
 LOGIT ; Lhs  = doctor ; Rhs = x 
   ; Panel $  (Chamberlain conditional estimator)  
 LOGIT ; Lhs  = doctor ; Rhs = x 
   ; Panel ; FEM $ (unconditional estimator)  
 
These are the pooled estimates. 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function    -16639.86860 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2759.36627 
Significance level               .00000 
McFadden Pseudo R-squared      .0765659 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33289.737 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  23.04975 
P-value=  .00330 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
     AGE|     .01366***      .00121    11.26  .0000      .01128    .01604 
    EDUC|    -.02604***      .00585    -4.45  .0000     -.03750   -.01458 
  HHNINC|    -.01231         .07670     -.16  .8725     -.16264    .13801 
 NEWHSAT|    -.29181***      .00681   -42.86  .0000     -.30515   -.27846 
Constant|    2.28922***      .10379    22.06  .0000     2.08580   2.49265 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

These are the conditional maximum likelihood estimates followed by the unconditional fixed effects 
estimates.  For these data, the unconditional estimates are closer to the conditional ones than might 
have been expected, but still noticeably higher as the received results would predict.  The suggested 
proportionality result also seems to be operating, but with an unbalanced panel, this would not 
necessarily occur, and should not be used as any kind of firm rule (save, perhaps for the case of Ti = 2). 
 
+--------------------------------------------------+ 
| Panel Data Binomial Logit Model                  | 
| Number of individuals          =    7293         | 
| Number of periods              =TI               | 
| Conditioning event is the sum of DOCTOR          | 
+--------------------------------------------------+ 
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----------------------------------------------------------------------------- 
Logit Model for Panel Data 
Dependent variable               DOCTOR 
Log likelihood function     -6092.58175 
Estimation based on N =  27326, K =   4 
Inf.Cr.AIC  =12193.164 AIC/N =     .446 
Hosmer-Lemeshow chi-squared = ********* 
P-value=  .00000 with deg.fr. =       8 
Fixed Effect Logit Model for Panel Data 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .06391***      .00659     9.70  .0000      .05100    .07683 
    EDUC|    -.09127         .05752    -1.59  .1126     -.20401    .02147 
  HHNINC|     .06121         .16058      .38  .7031     -.25352    .37594 
 NEWHSAT|    -.23717***      .01208   -19.63  .0000     -.26086   -.21349 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
--------+-------------------------------------------------------------------- 
FIXED EFFECTS Logit  Model 
Dependent variable               DOCTOR 
Log likelihood function     -9279.06752 
Estimation based on N =  27326, K =4251 
Inf.Cr.AIC  =27060.135 AIC/N =     .990 
Unbalanced panel has   7293 individuals 
Skipped 3046 groups with inestimable ai 
LOGIT (Logistic) probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .07925***      .00738    10.74  .0000      .06479    .09372 
    EDUC|    -.11803*        .06779    -1.74  .0817     -.25090    .01484 
  HHNINC|     .07814         .18102      .43  .6660     -.27665    .43294 
 NEWHSAT|    -.30367***      .01376   -22.07  .0000     -.33064   -.27670 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 

 When the panel is balanced, the estimator also produces a frequency count for the 
conditioning sums.  For example, if we restrict our sample to the individuals who are in the sample 
for all seven periods, the following table will also appear with the results.    
 
+--------------------------------------------------+ 
| Panel Data Binomial Logit Model                  | 
| Number of individuals          =     887         | 
| Number of periods              =       7         | 
| Conditioning event is the sum of DOCTOR          | 
| Distribution of sums over the  7 periods:        | 
| Sum        0     1     2     3     4     5     6 | 
| Number    48    73    82   100   115   116   151 | 
| Pct.    5.41  8.23  9.24 11.27 12.97 13.08 17.02 | 
| Sum        7     8     9    10    11    12    13 | 
| Number   202     0     0     0     0     0     0 | 
| Pct.   22.77   .00   .00   .00   .00   .00   .00 | 
+--------------------------------------------------+ 
 

This count would be meaningless in an unbalanced panel, so it is omitted. 



E30: Fixed and Random Effects Models for Binary Choice   E-623 

 How should you choose which estimator to use?  We should note that the two approaches  
will generally give different numerical answers. The conditional and unconditional log likelihoods 
are different.  In general, you should use the conditional estimator if T is not relatively large.  The 
conditional estimator is less efficient by construction, but consistency trumps efficiency at this level.  
In addition, if you have more than 50,000 groups, you must use the conditional estimator.  If, on the 
other hand, T is larger than, say, 10, and N is less than 50,000, then the unconditional estimator 
might be preferred.  The additional consideration discussed in the next section might also weigh in 
favor of the unconditional estimator. 
 

E30.5.3 Estimating the Individual Constant Terms 
 
 The conditional fixed effects estimator for the logit model specifically eliminates the fixed 
effects, so they are not directly estimated.  Without them, however, the parameter estimates are of 
relatively little use.  Fitted probabilities and marginal effects will both require some estimate of a 
constant term. You can request post estimation computation of the fixed effects by using the 
specification  
   ; Parameters 
 
This saves a matrix named alphafe in your matrix work area.  This will be a vector with number of 
elements equal to the number of groups, containing an ad hoc estimate of αi for the groups for which 
there is within group variation in yit. We note how this is done.  The logit model is 
 
   Prob[yit = 1|xit] = Λ(β′xit + αi) where Λ(z) = exp(z)/[1+exp(z)] 
 
After estimation of β, we treat the β′xit part of this as known, and let zit = β′xit. These are now just 
data.  As such, the log likelihood for group i would be 
 
   log Li = Σt log Λ[(2yit – 1)(zit + αi)] 
 
The likelihood equation for αi would be 
 
   Σt (yit – Pit) = 0 where Pit = Λ(zit + αi) 
 
The implicit solution for αi is given by  
 
   Σt yit  =  Σt wit / (ai + wit) where wit = exp(zit) and ai = exp(-αi).   
 
If yit is always zero or always one in every period, t, then there is no solution to maximizing this 
function.  The corresponding element of alphafe will be set equal to -1.d20 or +1.d20  But, if the yits 
differ, then the αi that equates the left and right hand sides can be found by a straightforward search. 
The remaining rows of alphafe will contain the individual specific solutions to these equations.  
(This is the method that Heckman and MaCurdy (1980) suggested for estimation of the fixed effects 
probit model.)   
 We emphasize, this is not the maximum likelihood estimator of αi because the conditional 
estimator of β is not the unconditional MLE.  Nor, in fact, is it consistent in N.  It is consistent in Ti, 
but that is not helpful here since Ti is fixed, and presumably small.  This estimator is a means to an 
end.  The estimated marginal effects can be based on this estimator – it will give a reasonable 
estimator of an overall average of the constant terms, which is all that is needed for the marginal 
effects.  Individual predicted probabilities remain ambiguous. 
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E30.5.4 A Hausman Test for Fixed Effects in the Logit Model 
 

 The fixed effects estimator is illustrated with the data used in the preceding examples:  Note 
that the first estimator is the pooled estimator.  Under the alternative hypothesis of fixed effects, it is 
inconsistent.  Under the null, it is consistent and efficient. The second estimator is the conditional MLE 
and the third one is the unconditional fixed effects estimator.  The unconditional fixed estimator cannot 
be used for formal testing because of the incidental parameters problem – it is inconsistent.  The pooled 
estimator and the conditional fixed effects estimator use different samples, so the likelihoods are not 
comparable.  Therefore, testing for the joint significance of the effects is problematic for the 
conditional estimator.  What one can do is use a Hausman test.  The test is constructed as follows: 
 

             H0:  There are no fixed effects; unconditional ML estimators are b0 and V0 

             H1:  There are fixed effects: conditional ML estimators are b1 and V1 
 

Under H0, b0 is consistent and efficient, while b1 is consistent but inefficient.  Under H1, b0 is 
inconsistent while b1 is consistent and efficient.  The Hausman statistic would therefore be 
 

H  =  (b1 - b0)′ [V1 - V0]-1(b1 - b0) 
 

The statistic can be constructed as follows: 
 

 NAMELIST ; x = the independent variables, not including one $ 
 LOGIT ; Lhs =  ... ; Rhs = x, one $ 
 CALC  ; k = Col(x) $ 
 MATRIX ; b0 = b(1:k) ; v0 = varb(1:k,1:k) $ 
 LOGIT ; Lhs = ... ; Rhs = x ; Pds = ... ; FEM $ 
 MATRIX ; b1 = b ; v1 = varb $ 
 MATRIX ; d = b1 - b0 ; List ; h = d’ * Nvsm(v1, -v0) * d $ 
 

We apply this to our innovation data by defining x = imprtshr,fdishare,logsales,relsize,prod and the 
dependent variable is innov.  The remaining commands are generic. 
 The three sets of parameter estimates were given earlier.  The Hausman statistic using the 
procedure suggested above is 
 

 SAMPLE ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 NAMELIST ; x = age,educ,hhninc,newhsat $ 
 LOGIT ; Lhs = doctor ; Rhs = x, one $ 
 CALC  ; k = Col(x) $ 
 MATRIX ; b0 = b(1:k) ; v0 = Varb(1:k,1:k) $ 
 LOGIT ; Lhs = doctor ; Rhs = x ; Panel $ 
 MATRIX ; b1 = b ; v1 = varb $ 
 MATRIX ; d = b1 - b0 ; List ; h = d' * Nvsm(v1, -v0) * d $ 
 

The final result of the MATRIX command is 
 
       H|             1 
--------+-------------- 
       1|       98.1550 
 

This statistic has four degrees of freedom.  The critical value from the chi squared table is 9.49, so 
based on this test, we would reject the null hypothesis of no fixed effects. 
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E30.6 Random Effects Models for Binary Choice  
 
 The five models we have developed here can also be fit with random effects instead of fixed 
effects.  The structure of the random effects model is 
 
   zit | ui  =  β′xit  +  εit  +  ui   
 
where ui is the unobserved heterogeneity for the ith individual, 
 
   ui  ~  N[0,σu

2], 
 
and  εit is the stochastic term in the model that provides the conditional distribution. 
 
   Prob[yit  =  1| xit, ui]  =  F(β′xit   +  ui), i = 1,...,N, t = 1,...,Ti. 
 
where F(.) is the distribution discussed earlier (normal, logistic, extreme value, Gompertz).  Note 
that the unobserved heterogeneity, ui is the same in every period.   The parameters of the model are 
fit by maximum likelihood.  As usual in binary choice models, the underlying variance, 
 
   σ2   =  σu

2  +  σε
2 

 
is not identified.  The reduced form parameter,  
 

   ρ   =  
22

2

u

u

σ+σ

σ

ε

,  

 
is estimated directly.  With the normalization that we used earlier, σε

2 = 1, we can determine  
 

   σu  =  
ρ−

ρ
1

.    

 
Further discussion of the estimation of the structural parameters appears at the end of this section. 
 The model command for this form of the model is 
 

          









PROBIT
LOGIT

COMPLOG
  GOMPERTZ
ARCTANGENT

   

 
NOTE:  For this model, your Rhs list should include a constant term, one. 
 

; Lhs  = dependent variable 
; Rhs = independent variables 
; Panel 
; Random Effects  $ 
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Standard Model Specifications for the Random Effects Binary Choice Models 
 

This is the full list of general specifications applicable to this model estimator.  See Chapter 
E1 and references noted there for further details on these specifications. 
 
Controlling Output from Model Commands 
 

; Par  keeps ancillary parameter ρ with main parameter β vector in b. 
; Margin displays marginal effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Hpt = n sets the number of points to use for Hermite quadrature 
 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Prob = name saves probabilities as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
 Marginal effects are computed by setting the heterogeneity term, ui to its expected value of 
zero.  Restrictions may be tested and imposed exactly as in the model with no heterogeneity.  Since 
restrictions can be imposed on all parameters, including ρ,  you can fix the value of ρ at any desired 
value.  Do note that forcing the ancillary parameter, in this case, ρ, to equal a slope parameter will 
almost surely produce unsatisfactory results, and may impede or even prevent convergence of the 
iterations. 
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 Starting values for the iterations are obtained by fitting the basic model without random 
effects.  Thus, the initial results in the output for these models will be the binary choice models 
discussed in the preceding sections. You may provide your own starting values for the parameters 
with 
   ; Start = ... the list of values for β, value for ρ  
 
There is no natural moment based estimator for ρ, so a relatively low guess is used as the starting 
value instead.  The starting value for ρ is approximately .2 (θ = [2ρ/(1-ρ)]1/2  ≈.29 – see the technical 
details below.  Maximum likelihood estimates are then computed and reported, along with the usual 
diagnostic statistics.  (An example appears below.) This model is fit by approximating the necessary 
integrals in the log likelihood function by Hermite quadrature.  An alternative approach to estimating 
the same model is by Monte Carlo simulation.  You can do exactly this by fitting the model as a 
random parameters model with only a random constant term.   
 Your data might not be consistent with the random effects model.  That is, there might be no 
discernible evidence of random effects in your data.  In this case, the estimate of ρ will turn out to be 
negligible.  If so, the estimation program issues a diagnostic and reverts back to the original, 
uncorrelated formulation and reports (again) the results for the basic model. 
 Results that are kept for this model are 
 
 Matrices: b   =  estimate of β 
   varb   =  asymptotic covariance matrix for estimate of β 
 
 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
   rho =  estimated value of ρ 
   varrho =  estimated asymptotic variance of estimator of ρ 
 
 Last Model: b_variables, ru 
 
 Last Function: Prob(y = 1|x,u=0)  (Note: None if you use ; RPM to fit the RE model.) 
 
The additional specification ; Par in the command requests that ρ be included in b and the additional 
row and column corresponding to ρ be included in varb.  If you have included ; Par, rho and varrho 
will also appear at the appropriate places in b and varb.   
 
NOTE:  The hypothesis of no group effects can be tested with a Wald test (simple t test) or with a 
likelihood ratio test.  The LM approach, using ; Maxit = 0 with a zero starting value for ρ does not 
work in this setting because with ρ = 0, the last row of the covariance matrix turns out to contain 
zeros. 
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E30.6.1 Application 
 
 The following study fits the probit model under four sets of assumptions.  The first uses the 
pooled estimator, then corrects the standard errors for the clustering in the data.  The second is the 
unconditional fixed effects estimator.  The third and fourth compute the random effects estimator, 
first by quadrature, using the Butler and Moffitt method and the second using maximum simulated 
likelihood with Halton draws.  The output is trimmed in each model to compare only the estimates 
and the marginal effects. 
 
 NAMELIST ; x = age,educ,hhninc,newhsat $ 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 PROBIT  ; Lhs  = doctor ; Rhs = x,one ; Partial Effects 
   ; Cluster = id $ 
 PROBIT ; Lhs  = doctor ; Rhs = x ; Partial Effects 
   ; Panel ; FEM $ 
 PROBIT ; Lhs  = doctor ; Rhs = x,one ; Partial Effects 
   ; Panel ; Random Effects $ 
 
The random parameters model described in Chapter E31 provides an alternative estimator for the 
random effects model based on maximum simulated likelihood rather than with Hermite quadrature.  
The general syntax is used below for a probit model to illustrate the method.   
 
 PROBIT ; Lhs  = doctor ; Rhs = x,one ; Partial Effects 
   ; Panel ; RPM ; Fcn = one(n) ; Pts = 25 ; Halton $ 
 CALC  ; List ; b(6)^2/(1+b(6)^2) $ 
 
These are the pooled estimates with corrected standard errors. 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -16639.23971 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2760.62404 
Significance level               .00000 
McFadden Pseudo R-squared      .0766008 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33288.479 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  20.51061 
P-value=  .00857 with deg.fr. =       8 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .00856***      .00098     8.76  .0000      .00664    .01047 
    EDUC|    -.01540***      .00499    -3.09  .0020     -.02517   -.00562 
  HHNINC|    -.00668         .05646     -.12  .9058     -.11735    .10398 
 NEWHSAT|    -.17499***      .00490   -35.72  .0000     -.18460   -.16539 
Constant|    1.35879***      .08475    16.03  .0000     1.19268   1.52491 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The unconditional fixed effects estimates appear next.  They differ greatly from the pooled estimates.  
It is worth noting that under the random effects assumption, neither the pooled nor these fixed effects 
estimates are consistent. 
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -9187.45120 
Estimation based on N =  27326, K =4251 
Inf.Cr.AIC  =26876.902 AIC/N =     .984 
Model estimated: Jun 15, 2011, 14:02:10 
Unbalanced panel has   7293 individuals 
Skipped 3046 groups with inestimable ai 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .04701***      .00438    10.74  .0000      .03844    .05559 
    EDUC|    -.07187*        .04111    -1.75  .0804     -.15244    .00870 
  HHNINC|     .04883         .10782      .45  .6506     -.16249    .26015 
 NEWHSAT|    -.18143***      .00805   -22.53  .0000     -.19721   -.16564 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the random effects estimates.  The variance of u and correlation parameter ρ are given 
explicitly in the results.  In the MSL random effects estimates that appear next, only the standard 
deviation of u is given.  Squaring the 1.37554428 gives 1.892122, which is nearly the same as the 
1.888060 given in the first results.  In order to compare the first estimates to the MSL estimates, it is 
necessary to divide the first by the estimate of 1+ρ.  Thus, the scaled coefficient on age in the first 
set of estimates would be 0.019322; that on educ would be -.027611, and so on. Thus, the two sets of 
estimates are quite similar. 
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----------------------------------------------------------------------------- 
Random Effects Binary Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -15614.50229 
Restricted log likelihood  -16639.23971 
Chi squared [   1 d.f.]      2049.47485 
Significance level               .00000 
McFadden Pseudo R-squared      .0615856 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =31241.005 AIC/N =    1.143 
Unbalanced panel has   7293 individuals 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01305***      .00119    10.97  .0000      .01072    .01538 
    EDUC|    -.01840***      .00594    -3.10  .0020     -.03005   -.00675 
  HHNINC|     .06299         .06387      .99  .3240     -.06218    .18817 
 NEWHSAT|    -.19418***      .00520   -37.32  .0000     -.20437   -.18398 
Constant|    1.42666***      .09644    14.79  .0000     1.23765   1.61567 
     Rho|     .39553***      .01045    37.84  .0000      .37504    .41601 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -15619.14356 
Restricted log likelihood  -16639.23971 
Chi squared [   1 d.f.]      2040.19230 
Significance level               .00000 
McFadden Pseudo R-squared      .0613067 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =31250.287 AIC/N =    1.144 
Model estimated: Jun 15, 2011, 14:04:01 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01288***      .00083    15.58  .0000      .01126    .01450 
    EDUC|    -.01823***      .00395    -4.61  .0000     -.02598   -.01048 
  HHNINC|     .06741         .05108     1.32  .1870     -.03271    .16752 
 NEWHSAT|    -.19383***      .00435   -44.58  .0000     -.20235   -.18531 
        |Means for random parameters 
Constant|    1.42554***      .06828    20.88  .0000     1.29172   1.55936 
        |Scale parameters for dists. of random parameters 
Constant|     .80930***      .01088    74.38  .0000      .78797    .83062 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 The random parameters approach provides an alternative way to estimate a random effects 
model.   A comparison of the two sets of results illustrates the general result that both are consistent 
estimators of the same parameters.  We note, however, the Hermite quadrature approach produces an 
estimator of ρ = σu

2/(1 + σu
2) while the RP approach produces an estimator of σu.  To check the 

consistency of the two approaches, we compute an estimate of ρ based on the RP results.  The result 
below demonstrates the near equivalence of the two approaches. 
 
CALC ; List ; b(6)^2/(1+b(6)^2)$ 
[CALC] *Result*=       .3957574 
 
These are the four sets of estimated partial effects. 
 
Pooled 
----------------------------------------------------------------------------- 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00297***      .20554     8.83  .0000      .00231    .00363 
    EDUC|    -.00534***     -.09618    -3.09  .0020     -.00874   -.00195 
  HHNINC|    -.00232        -.00130     -.12  .9058     -.04074    .03610 
 NEWHSAT|    -.06075***     -.65528   -39.87  .0000     -.06374   -.05777 
--------+-------------------------------------------------------------------- 
Unconditional Fixed Effects 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]    
Estimated E[y|means,mean alphai]=    .625 
Estimated scale factor for dE/dx=    .379 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01783***     1.22903     6.39  .0000      .01237    .02330 
    EDUC|    -.02726        -.49559    -1.40  .1628     -.06554    .01102 
  HHNINC|     .01852         .01048      .45  .6542     -.06253    .09957 
 NEWHSAT|    -.06882***     -.77347    -5.96  .0000     -.09144   -.04619 
--------+-------------------------------------------------------------------- 
Random Effects 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]   
Observations used for means are All Obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00376***      .25254    11.06  .0000      .00310    .00443 
    EDUC|    -.00531***     -.09261    -3.10  .0020     -.00866   -.00195 
  HHNINC|     .01817         .00986      .99  .3239     -.01793    .05426 
 NEWHSAT|    -.05600***     -.58577   -37.33  .0000     -.05894   -.05306 
--------+-------------------------------------------------------------------- 
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Random Constant Term 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Scale Factor for Marginal Effects   .3541 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00456***      .28882    11.14  .0000      .00376    .00536 
    EDUC|    -.00646***     -.10635    -5.06  .0000     -.00896   -.00396 
  HHNINC|     .02387         .01223     1.32  .1882     -.01168    .05942 
 NEWHSAT|    -.06864***     -.67771   -33.24  .0000     -.07269   -.06459 
--------+-------------------------------------------------------------------- 
 
E30.6.2 Technical Details for the Random Effects Models 
 
 The structure of the random effects model is 
 
   zit | ui  =  β′xit  +  εit  +  σuui   
 
where ui ~ N[0,1], and εit is the stochastic term in the model that provides the conditional 
distribution. 
   Prob[yit  =  1| xit, ui]  =  F(β′xit  +  σuui), i = 1,...,N, t = 1,...,Ti. 
 
where F(.) is the distribution discussed earlier (normal, logistic, extreme value, Gompertz, 
arctangent).  The parameter vector for the random effects model is 
 
   θ  =  [β1,...,βK, ρ]′.   
 
With the usual normalization, σε  =  1 and σu  = /(1 )ρ − ρ .  The log likelihood function is 
 
   log L  =  Σi  log Li 
 
where log Li is the contribution of the ith individual (group) to the total.  Conditioned on ui, the joint 
probability for the ith group is 
 

 Prob[Yi1 = yi1,...,YiTi = yiTi | xi1,...,ui]  =  [ ] [ ]( )
1

11
iT

itit
u iit u i

t

y yF uF u
=

−′− + σ′ + σ∏ itxx ββ  

 

where now, ui is normalized to unit variance.  Since ui is unobserved, it is necessary to obtain the 
unconditional log likelihood by taking the expectation of this over the distribution of ui.  For 
convenience, write the tth term in the probability above as G(yit, β′xit + γui), where γ = σu, so that 
 

   Li | ui  =  
1

( )
iT

it it i
t

G y u
=

′ + γ∏ x,β . 

Then,    Li  =  Eui [Li | ui]  =  
2

1

exp( / 2) ( , ) 
2

iT
i

it it i i
t

u P y u du
∞

−∞
=

− ′ + γ
π

∏∫ xβ  
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NOTE:  It can be seen in the likelihood function that it is necessary actually to compute the product 
of the probabilities for the group, not the sum of the logs.  For this reason, the number of 
observations in a group cannot be extremely large.  Since the probability is likely to be on the order 
of .25 or so, the product of 100 probabilities is on the order of 10-100.  This means that the end result 
is more rounding error than result.  In worse cases, the computation will ‘overflow’ – that is, exceed 
the computer’s capacity to compute the value.  For example, the correct result for the product of 100 
probabilities on the order of .01 cannot be computed in the accuracy of the computer, which is about 
10+/-380.  The diagnostic that this estimator produces mentions a ‘Bad counter...’  When the counter 
for group size exceeds 100, the estimator assumes that you have made some kind of error. 
 
Then, finally,   

   log L =  ∑ =

N
i iL

1
log  

 
The function is maximized by solving the likelihood equations: 
 

   ∑ =









γ

∂

∂
=









γ

∂

∂ N
i

iLL
1

loglog
ββ

        =  0. 

 
For convenience below, let θ denote the full parameter vector, [β,γ]′. 
 The integration is done with Hermite quadrature.  Make the change of variable to vi = ui/ 2 .  
Then, 

   log Li  =  2

1

1log exp( ) ( , ) 
iT

i it it i i
t

v P y v dv
∞

−∞
=

′− + δ
π

∏∫ xβ  

 
where δ = γ× 2  [so ρ = δ2/(2 + δ2)] and σu = [ρ/(1-ρ)]1/2].  The integral of the form 

∫
∞

∞−
− dvvgv )()exp( 2  is approximated by the Hermite quadrature, 

 

   ∫
∞

∞−
− dvvgv )()exp( 2   ≈  ∑ =

H
h hh zgw

1
)(  

 
where wh are the weights and zh are the abscissas for the approximation.  (See Section R23.3.1 Butler 
and Moffitt (1982) and Abramovitz and Stegun (1972) for further details.)  Collecting terms, then, 
the log likelihood is computed with 
 

   logL  ≈  
1 1

1

1log ( , )
iT

N H
h it it hi h

t

w P y z
= =

=

   ′ + δ  
π   

∑ ∑ ∏ xβ  
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 The derivatives of the log likelihood function are approximated as well, 
 

     ≈
∂

∂

θ

Llog 1 1
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1

1
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Note that Li and its derivatives are approximated separately.  The summation involves two separate 
integrals. We use a 20 point quadrature by default, but you can change the number of quadrature 
points by including ; Hpt = p in the command, where ‘p’ is the desired number of points, from 4 to 
96 (even).  In some cases, the accuracy of the computations will improve with the number of 
quadrature points.  However, the amount of computation will as well (linearly). 
 The variance, δ, appears linearly in the function along with β, so no complication is added 
by this additional parameter as the summation is done over the abscissas.  In each case, the term 
 

   P(yit, β′xit + γzh)  =  [ ] [ ]( )11it it
it hit h

y yF zF z −′− + γ′ + γ xx ββ  
 
so   log P(yit, β′xit + γzh)     =  yit logFit  +  (1 - yit)log (1 - Fit). 
 

Thus,   
log ( , ) 1 (.)

1
itit it h it it

it
hit it
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zF F
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= −   ∂ −   

xxβ
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The forms of the particular density functions, git(•), differs among the five models. The functional 
forms appear in Section E27.2.1. Using the functions defined there, the log derivatives, g(yit, β′xit + γui) 
are as follows: 

   Probit:  (2 1) ( )
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   Logit:  (2yit - 1){1  -  Λ[(2yit - 1)(β′xit + γui)]} 
 
   Comp. log log: exp(β′xit + γui)×{ yit[1-C(.)]/C(.) - (1 - yit)} 
 
   Gompertz: exp[-(β′xit + γui)]×{yit - (1 - yit)G(.)/[1-G(.)]} 
 

   Arctangent: 2
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The asymptotic covariance matrix is estimated by the BHHH estimator, 
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E31: Random Parameter Models for Binary 
Choice 

 
E31.1 Introduction 
 
 The parametric binary choice models discussed in Chapter E27 are extended to panel data 
formats as internal procedures.  Four classes of models are supported: 
 

• Fixed effects:     Prob[yit = 1]  =  F(β′xit  +  αi),  
    αi correlated with xit, 

 
• Random effects: Prob[yit = 1]  =  Prob[β′xit + εit + ui > 0], 

    ui uncorrelated with xit, 
 
• Random parameters: Prob[yit = 1]  =  F(βi′xit),   

    βi | i  ~  h(β|i) with mean vector β and covariance matrix Σ 
 
• Latent class:  Prob[yit = 1|class j]  =  F(βj′xit),  

    Prob[class = j]  =  Fj(θ) 
 
The first two were developed in Chapter E30.  This chapter documents the use of random parameters 
(mixed) and latent class models for binary choice. Technical details on estimation of random 
parameters are given in Chapter R24. Technical details for estimation of latent class models are 
given in Chapter R25. 
 
NOTE:  None of these panel data models require balanced panels.  The group sizes may always vary. 
 
The random parameters and latent class models do not require panel data.  You may fit them with a 
cross section.  If you omit ; Pds and ; Panel in these cases, the cross section case, Ti = 1, is assumed.  
(You can also specify ; Pds = 1.)  Note that this group of models (and all of the panel data models 
described in the rest of this manual) does not use the ; Str = variable specification for indicating the 
panel – that is only for REGRESS. 
 The probabilities and density functions supported here are as follows: 
 
Probit 
 

 F = dtti

∫
β

∞− π

−x' 2

2
)2/exp(

  =  Φ(β′xi),     f = φ(β′xi) 

 
Logit 
 

 F = exp( )
1 exp( )

i

i

′
′+

x
x

β
β

  =  Λ(β′xi),    f =  Λ(β′xi)[1 - Λ(β′xi)] 
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Complementary log log 
 
 F = 1 - exp(- exp(β′xi))  =  C(β′xi),    f = exp(β′xi)[1 - C(β′xi)] 
 
Gompertz, or type 1 extreme value 
 
 F = exp(-exp(-β′xi))  = G(β′xi)  f = exp(-β′xi)G(β′xi) 
 
Arctangent 
 
 F = 2/π arctan(exp(β′xi)),  f = 2/π [1/(1 + exp2(β′xi))  
 
E31.2 Binary Choice Models with Random Parameters 
 
 There is a growing literature on the random parameters modeling approach in transportation 
studies associated primarily with the discrete choice models described in the NLOGIT 5 Reference 
Guide.  We have extended the random parameters model to the binary choice models as well as 
many other models including the tobit and exponential regression models. Some of the relevant 
background literature includes Revelt and Train (1998), Train (1998), Brownstone and Train (1999), 
and Greene (2001a). (In that literature, the models are described under the heading ‘mixed logit’ 
models.  We will require a broader rubric for our purposes.)  The structure of the random parameters 
model is based on the conditional probability 
 
   Prob[yit  =  1| xit, βi]  =  F(βi′xit), i = 1,...,N, t = 1,...,Ti. 
 
where F(.) is the distribution discussed earlier (normal, logistic, extreme value, Gompertz).  The 
model assumes that parameters are randomly distributed with possibly heterogeneous (across 
individuals) 
   E[βi| zi]  =  β  +  ∆zi,   
 
(the second term is optional – the mean may be constant), 
 
   Var[βi| zi]  =  Σ. 
 
The model is operationalized by writing 
 
   βi  =  β  +  ∆zi  +  Γvi where vi ~ N[0,I]. 
 
As noted earlier, the heterogeneity term is optional.  In addition, it may be assumed that some of the 
parameters are nonrandom.  It is convenient to analyze the model in this fully general form here.  
One can easily accommodate nonrandom parameters just by placing rows of zeros in the appropriate 
places in ∆ and Γ.  The command structure for these models makes this simple to do. 
 
NOTE:  If there is no heterogeneity in the mean, and only the constant term is considered random – 
the model may specify that some parameters are nonrandom – then this model is equivalent to the 
random effects model of the preceding section. 
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E31.2.1 Command for the Random Parameters Models 
 
 The basic model command for this form of the model is 
 

            









PROBIT
LOGIT

COMPLOG
  GOMPERTZ
ARCTANGENT

 

 
NOTE:  For this model, your Rhs list should include a constant term. 
 
NOTE:  The ; Pds specification is optional.  You may fit these models with cross section data.   
 
Specifying Random Parameters 
 
 The ; Fcn = specification is used to define the random parameters.  It is constructed from 
the list of Rhs names as follows:  Suppose your model is specified by 
 
   ; Rhs = one, x1, x2, x3, x4 
 
This involves five coefficients.  Any or all of them may be random; any not specified as random are 
assumed to be constant.  For those that you wish to specify as random, use 
 
   ; Fcn = variable name (distribution),  
    variable name (distribution), ... 
 
Three distributions may be specified.  All random variables have mean 0. 
 
   n =  standard normal distribution, variance = 1, 
   t =  triangular (tent shaped) distribution in [-1,+1], variance = 1/6, 
   u =  standard uniform distribution [-1,1], variance = 1/3, 
   l =  lognormal distribution, variance = exp(.5), 
   o =  tent shaped distribution with one anchor at zero 
   g =  log gamma 
  or c =  variance = 0.  (The parameter is not random.) 
 
Each of these is scaled as it enters the distribution, so the variance is only that of the random draw 
before multiplication. The normal distribution is used most often, but there are several other 
possibilities. Numerous other formats for random parameters are described in Section R24.3.  Those 
results all apply to the binary choice models.  To specify that the constant term and the coefficient on 
x1 are each normally distributed with given mean and variance, use 
 
   ; Fcn = one(n), x1(n). 

; Lhs = dependent variable 
; Rhs  = independent variables 
; Panel or Pds = fixed periods or count variable 
; RPM 
; Fcn  = random parameters specification $ 
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This specifies that the first and second coefficients are random while the remainder are not.  The 
parameters estimated will be the mean and standard deviations of the distributions of these two 
parameters and the fixed values of the other three.   
 The results include estimates of the means and standard deviations of the distributions of the 
random parameters and the estimates of the nonrandom parameters.  The log likelihood shown in the 
results is conditioned on the random draws, so one might be cautious about using it to test 
hypotheses, for example, that the parameters are random at all by comparing it to the log likelihood 
from the basic model with all nonrandom coefficients.  The test becomes valid as R increases, but the 
50 used in our application is probably too few.  With several hundred draws, one could reliably use 
the simulated log likelihood for testing purposes. 
 
Correlated Random Parameters 
 
 The preceding defines an estimator for a model in which the covariance matrix of the 
random parameters is diagonal.  To extend it to a model in which the parameters are freely 
correlated, add 
   ; Correlation (or just ; Cor) 
 
to the command.  An example appears below.   
 
Heterogeneity in the Means 
 
 The preceding examples have specified that the mean of the random variable is fixed over 
individuals.  If there is measured heterogeneity in the means, in the form of 
 
   E[βki]  =  βk  +  Σm δkm zmi 
 
where zm is a variable that is measured for each individual, then the command may be modified to 
 
   ; RPM  =  list of variables in z 
 
In the data set, these variables must be repeated for each observation in the group.  In the application 
below, we have specified that the random parameters have different means for individuals depending 
on gender and marital status. 
 
Autocorrelation 
 
 You may change the character of the heterogeneity from a time invariant effect to an AR(1) 
process,  
   vkit  =  ρkvki,t-1  +  wkit.   
 
(See Section R24.3 for details.) 
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E31.2.2 Results from the Estimator and Applications 
 
 The results produced by this estimator begin with the familiar diagnostic statistics, likelihood 
function, information criteria, etc.  The coefficient estimates are possibly rearranged so that the 
nonrandom parameters appear first.  In the base case of a diagonal covariance matrix, the means of 
the random parameters appear next, followed in the same order by the estimated scale parameters.  
The example below illustrates.  For normally distributed parameters, these are the standard 
deviations.  For other distributions, these scale factors are multiplied by the relevant standard 
deviation to obtain the standard deviation of the parameter.  For example, if we had specified 
 
   ; Fcn = educ(u) 
 
in the model command, then the parameter on educ would be defined to have mean 1.697 and 
standard deviation .08084 times 1/sqr(6).  (The uniform draw is transformed to be U[-1,+1].) 
 
 SAMPLE ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 NAMELIST ; x = age,educ,hhninc,hsat $ 
 LOGIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Panel  
   ; RPM  

; Fcn = one(n),hhninc(n),hsat(n)  
; Pts = 25  
; Halton $ 

 
----------------------------------------------------------------------------- 
Logit    Regression Start Values for DOCTOR 
Dependent variable               DOCTOR 
Log likelihood function    -16639.59764 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33289.195 AIC/N =    1.218 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01366***      .00121    11.25  .0000      .01128    .01603 
    EDUC|    -.02603***      .00585    -4.45  .0000     -.03749   -.01457 
Constant|    2.28946***      .10379    22.06  .0000     2.08604   2.49288 
  HHNINC|    -.01221         .07670     -.16  .8735     -.16254    .13812 
    HSAT|    -.29185***      .00681   -42.87  .0000     -.30519   -.27850 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Random Coefficients  Logit    Model 
Dependent variable               DOCTOR 
Log likelihood function    -15617.53717 
Restricted log likelihood  -16639.59764 
Chi squared [   3 d.f.]      2044.12094 
Significance level               .00000 
McFadden Pseudo R-squared      .0614234 
Estimation based on N =  27326, K =   8 
Inf.Cr.AIC  =31251.074 AIC/N =    1.144 
Unbalanced panel has   7293 individuals 
LOGIT (Logistic) probability model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01541***      .00100    15.39  .0000      .01344    .01737 
    EDUC|    -.02538***      .00475    -5.34  .0000     -.03469   -.01607 
        |Means for random parameters 
Constant|    1.77433***      .08285    21.42  .0000     1.61195   1.93671 
  HHNINC|     .08517         .06181     1.38  .1682     -.03598    .20632 
    HSAT|    -.23532***      .00541   -43.50  .0000     -.24592   -.22471 
        |Scale parameters for dists. of random parameters 
Constant|    1.37499***      .01982    69.36  .0000     1.33614   1.41384 
  HHNINC|     .18336***      .03792     4.84  .0000      .10904    .25768 
    HSAT|     .00080         .00204      .39  .6960     -.00319    .00479 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point    .6436 
Scale Factor for Marginal Effects   .2294 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00353***      .23902    15.53  .0000      .00309    .00398 
    EDUC|    -.00582***     -.10241    -5.36  .0000     -.00795   -.00369 
  HHNINC|     .01954         .01069     1.38  .1686     -.00827    .04735 
    HSAT|    -.05398***     -.56914   -29.82  .0000     -.05753   -.05043 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 When the random parameters are specified to be correlated, the output is changed.  The 
parameter vector in this case is written 
 
   βi  =  β0  +  Γ vi 
 
where Γ is a lower triangular Cholesky matrix.  In this case, the nonrandom parameters and the 
means of the random parameters are reported as before.  The table then reports Γ in two parts.  The 
diagonal elements are reported first.  These would correspond to the case above.  The nonzero 
elements of Γ below the diagonal are reported next, rowwise.  In the example below, there are three 
random parameters, so there are 1 + 2 elements below the main diagonal of Γ in the reported results.  
The covariance matrix for the random parameters in this specification is 
 
   Var [ βi]  =  Ω  =  ΓAΓ′ 
 
where A is the known diagonal covariance matrix of vi.  For normally distributed parameters, A = I.  
This matrix is reported separately after the tabled coefficient estimates.  Finally, the square roots of 
the diagonal elements of the estimate of Ω are reported, followed by the correlation matrix derived 
from Ω.  The example below illustrates. 
 
 LOGIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Pds = _groupti  
   ; RPM  
   ; Fcn = one(n),hhninc(n),newhsat(n)  

; Correlated 
   ; Pts = 25  

; Halton $ 
 
----------------------------------------------------------------------------- 
Random Coefficients  Logit    Model 
Dependent variable               DOCTOR 
Log likelihood function    -15606.79747 
Restricted log likelihood  -16639.59764 
Chi squared [   6 d.f.]      2065.60035 
Significance level               .00000 
McFadden Pseudo R-squared      .0620688 
Estimation based on N =  27326, K =  11 
Inf.Cr.AIC  =31235.595 AIC/N =    1.143 
Unbalanced panel has   7293 individuals 
LOGIT (Logistic) probability model 
Simulation based on  25 Halton draws 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01471***      .00101    14.61  .0000      .01274    .01668 
    EDUC|    -.02740***      .00475    -5.77  .0000     -.03670   -.01810 
        |Means for random parameters 
Constant|    1.98083***      .08660    22.87  .0000     1.81111   2.15056 
  HHNINC|     .09438         .06586     1.43  .1518     -.03470    .22346 
    HSAT|    -.25657***      .00615   -41.74  .0000     -.26861   -.24452 
        |Diagonal elements of Cholesky matrix 
Constant|    1.90753***      .07911    24.11  .0000     1.75248   2.06257 
  HHNINC|     .91257***      .08028    11.37  .0000      .75522   1.06991 
    HSAT|     .01770***      .00203     8.74  .0000      .01373    .02167 
        |Below diagonal elements of Cholesky matrix 
lHHN_ONE|    -.00234         .10500     -.02  .9822     -.20813    .20344 
lHSA_ONE|    -.08124***      .00932    -8.71  .0000     -.09951   -.06297 
lHSA_HHN|     .09466***      .00433    21.88  .0000      .08617    .10314 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       3.63867    -.00447279      -.154960 
       2|    -.00447279       .832783      .0865698 
       3|      -.154960      .0865698      .0158724 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.90753 
       2|       .912570 
       3|       .125986 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000    -.00256946      -.644803 
       2|    -.00256946       1.00000       .752973 
       3|      -.644803       .752973       1.00000 
 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point    .6464 
Scale Factor for Marginal Effects   .2286 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00336***      .22640    14.71  .0000      .00291    .00381 
    EDUC|    -.00626***     -.10967    -5.78  .0000     -.00838   -.00414 
  HHNINC|     .02157         .01175     1.43  .1522     -.00796    .05110 
    HSAT|    -.05864***     -.61557   -27.65  .0000     -.06280   -.05448 
--------+-------------------------------------------------------------------- 
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 Finally, if  you specify that there is observable heterogeneity in the means of the parameters 
with 
   ; RPM = list of variables 
 
then the model changes to 
 
   βi  =  β0  +  ∆zi  +   Γ vi. 
 
The elements of ∆, rowwise, are reported after the decomposition of Γ.  The example below, which 
contains gender and marital status, illustrates.  Note that a compound name is created for the 
elements of ∆. 
 
 LOGIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Panel  
   ; RPM = female,married 
   ; Fcn = one(n),hhninc(n),hsat(n)   

; Correlated 
   ; Pts = 25  

; Halton $ 
 
----------------------------------------------------------------------------- 
Random Coefficients  Logit    Model 
Dependent variable               DOCTOR 
Log likelihood function    -15470.04441 
Restricted log likelihood  -16639.59764 
Chi squared [  12 d.f.]      2339.10646 
Significance level               .00000 
McFadden Pseudo R-squared      .0702874 
Estimation based on N =  27326, K =  17 
Inf.Cr.AIC  =30974.089 AIC/N =    1.134 
Model estimated: Jun 15, 2011, 18:43:49 
Unbalanced panel has   7293 individuals 
LOGIT (Logistic) probability model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01375***      .00104    13.24  .0000      .01171    .01578 
    EDUC|    -.00913*        .00488    -1.87  .0613     -.01870    .00043 
        |Means for random parameters 
Constant|    1.58591***      .12092    13.11  .0000     1.34890   1.82291 
  HHNINC|     .10102         .12817      .79  .4306     -.15018    .35223 
    HSAT|    -.25929***      .01173   -22.11  .0000     -.28228   -.23630 
        |Diagonal elements of Cholesky matrix 
Constant|    1.85093***      .07867    23.53  .0000     1.69674   2.00512 
  HHNINC|    1.17355***      .08054    14.57  .0000     1.01570   1.33140 
    HSAT|     .00147         .00202      .73  .4682     -.00250    .00543 
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        |Below diagonal elements of Cholesky matrix 
lHHN_ONE|     .15728         .10367     1.52  .1293     -.04592    .36047 
lHSA_ONE|    -.06741***      .00926    -7.28  .0000     -.08555   -.04926 
lHSA_HHN|     .07996***      .00426    18.78  .0000      .07161    .08831 
        |Heterogeneity in the means of random parameters 
cONE_FEM|     .26949***      .09017     2.99  .0028      .09276    .44622 
cONE_MAR|     .11320         .10064     1.12  .2607     -.08404    .31044 
cHHN_FEM|     .10364         .12514      .83  .4075     -.14162    .34891 
cHHN_MAR|    -.08432         .13820     -.61  .5418     -.35520    .18655 
cHSA_FEM|     .03242***      .01081     3.00  .0027      .01124    .05360 
cHSA_MAR|    -.01361         .01218    -1.12  .2638     -.03748    .01026 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       3.42595       .291109      -.124767 
       2|       .291109       1.40195      .0832340 
       3|      -.124767      .0832340      .0109393 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.85093 
       2|       1.18404 
       3|       .104591 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000       .132831      -.644484 
       2|       .132831       1.00000       .672107 
       3|      -.644484       .672107       1.00000 
 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point    .6687 
Scale Factor for Marginal Effects   .2215 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00305*        .19821     1.89  .0591     -.00012    .00621 
    EDUC|    -.00202        -.03425    -1.28  .1994     -.00511    .00107 
  HHNINC|     .02238         .01178      .38  .7014     -.09203    .13679 
    HSAT|    -.05744        -.58287     -.70  .4825     -.21776    .10288 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Results saved by this estimator are: 
 
 Matrices: b    =  estimate of θ 
   varb    =  asymptotic covariance matrix for estimate of θ. 
   gammaprm   =  the estimate of Γ 
   beta_i  =  individual specific parameters, if ; Par is requested 
   sdbeta_i =  individual specific parameter standard deviations if ; Par  
          is requested 
 

 Scalars: kreg    =  number of variables in Rhs 
   nreg    =  number of observations 
   logl    =  log likelihood function 
 

 Last Model: b_variables  
 

 Last Function: None 
 

 Simulation based estimation is time consuming.  The sample size here is fairly large (27,326 
observations).  We limited the simulation to 25 Halton draws.  The amount of computation rises 
linearly with the number of draws.  A typical application of the sort pursued here would use perhaps 
300 draws, or 12 times what we used.  Estimation of the last model required two minutes and 30 
seconds, so in full production, estimation of this model might take 30 minutes.  In general, you can 
get an idea about estimation times by starting with a small model and a small number of draws.  The 
amount of computation rises linearly with the number of draws – that is the main consumer.  It also 
rises linearly with the number of random parameters.  The time spent fitting the model will rise only 
slightly with the number of nonrandom numbers.  Finally, it will rise linearly with the number of 
observations.  Thus, a model with a doubled sample and twice as many draws will take four times as 
long to estimate as one with the original sample and number of draws. 
 When you include ; Par in the model command, two additional matrices are created, beta_i 
and sdbeta_i.  Extensive detail on the computation of these matrices is provided in Section R24.5.  
For the final specification described above, the results would be as shown in Figure E31.1. 
 

 
Figure E31.1  Estimated Conditional Parameter Means 
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E31.2.3 Controlling the Simulation 
 
 R is the number of points in the simulation.  Authors differ in the appropriate value.  Train 
recommends several hundred.  Bhat suggests 1,000 is an appropriate value.  The program default is 
100.  You can choose the value with 
 
   ; Pts = number of draws, R 
 
The value of 50 that we set in our experiments above was chosen purely to produce an example that 
you could replicate without spending an inordinate amount of waiting for the results. 
 The standard approach to simulation estimation is to use random draws from the specified 
distribution.  As suggested immediately above, good performance in this connection requires very 
large numbers of draws.  The drawback to this approach is that with large samples and large models, 
this entails a huge amount of computation and can be very time consuming.  Some authors have 
documented dramatic speed gains with no degradation in simulation performance through the use of 
a small number of Halton draws instead of a large number of random draws.  Halton sequences are 
discussed in Section R24.7.  Authors (e.g., Bhat (2001)) have found that a Halton sequence of draws 
with only one tenth the number of draws as a random sequence is equally effective.  To use this 
approach, add 
   ; Halton 
 
to your model command. 
 In order to replicate an estimation, you must use the same random draws.  One implication 
of this is that if you give the identical model command twice in sequence, you will not get the 
identical set of results because the random draws in the sequences will be different.  To obtain the 
same results, you must reset the seed of the random number generator with a command such as 
 
 CALC   ; Ran(seed value) $ 
 
(Note that we have used Ran(12345) before some of our earlier examples, precisely for this reason.  
The specific value you use for the seed is not of consequence; any odd number will do. 
 The random sequence used for the model estimation must be the same in order to obtain 
replicability.  In addition, during estimation of a particular model, the same set of random draws 
must be used for each person every time.  That is, the sequence vi1, vi2, ..., viR used for each 
individual must be same every time it is used to calculate a probability, derivative, or likelihood 
function.  (If this is not the case, the likelihood function will be discontinuous in the parameters, and 
successful estimation becomes unlikely.)  One way to achieve this which has been suggested in the 
literature is to store the random numbers in advance, and simply draw from this reservoir of values 
as needed.  Because LIMDEP is able to use very large samples, this is not a practical solution, 
especially if the number of draws is large as well.  We achieve the same result by assigning to each 
individual, i, in the sample, their own random generator seed which is a unique function of the global 
random number seed, S, and their group number, i; 
 
   Seed(S,i) =  S  +  123.0 × i, then minus 1.0 if the result is even. 
 
Since the global seed, S, is a positive odd number, this seed value is unique, at least within the 
several million observation range of LIMDEP.   
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E31.2.4 Other Options 
 
Standard Model Specifications for the Random Parameters Binary Choice 
Models  
 

This is the full list of general specifications applicable to this model estimator.   
 
Controlling Output from Model Commands 
 
 ; Par  keeps individual specific parameter estimates.  

; Margin displays marginal effects. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
  

; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Prob = name saves probabilities as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 

 
; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 

 ; Maxit = 0 ; Start = the restricted values  specifies Lagrange multiplier test 
 ; Rst = list imposes equality and fixed value restrictions 
 ; CML: spec imposes linear restrictions on parameters during estimation. 
 
 Marginal effects are computed by setting the heterogeneity terms to their expected value of 
zero. 
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E31.2.5 The Parameter Vector and Starting Values 
 

 Starting values for the iterations are obtained by fitting the basic model without random 
parameters.  Other parameters are set to zero.  Thus, the initial results in the output for these models 
will be the binary choice models discussed in the preceding sections. You may provide your own 
starting values for the parameters with 
 
   ; Start = ... the list of values for θ. 
 
The parameter vector is laid out as follows, in this order: 
 
 α1, ..., αK  are the K nonrandom parameters, 

 β1,...,βM  are the M means of the distributions of the random parameters, 

 σ1,σ2,...,σM are the M scale parameters for the distributions of the random parameters. 
 
These are the essential parameters.  If you have specified that parameters are to be correlated, then 
the σs are followed by the below diagonal elements of Γ.  (The σs are the diagonal elements.)  If you 
have specified heterogeneity variables, z, then the preceding are followed by the rows of ∆.  
Consider an example:  The model specifies: 
 
   ; RPM = z1,z2 
   ; Rhs = one,x1,x2,x3,x4   ? base parameters β1, β2, β3, β4, β5 
   ; Fcn  = one(n),x2(n),x4(n) 
   ; Cor 
 
Then, after rearranging, the model becomes 
 
        Variable  Parameter 
         x1  α1 
        x3    α2 
  one  β1  +  σ1vi1       +  δ11zi1  +  δ12zi2 
  x2  β2  +  σ2vi2   +  γ21vi1      +  δ11zi1  +  δ12zi2 
  x4  β3  +  σ3vi3   +  γ31vi1   +  γ32vi2    +  δ11zi1  +  δ12zi2 
 
and the parameter vector would be 
 
  θ  =  α1, α2, β1, β2, β3, σ1, σ2, σ3, γ21, γ31, γ32, δ11, δ12, δ21, δ22, δ31, δ32. 
 
You may use ; Rst and ; CML to impose restrictions on the parameters.  Use the preceding as a 
guide to the arrangement of the parameter vector.  We do note, using ; Rst to impose fixed value, 
such as zero restrictions, will generally work well.  Other kinds of restrictions, particularly across the 
parts of the parameter vector, will generally produce unfavorable results. 
 The variances of the underlying random variables are given earlier, 1 for the normal 
distribution, 1/3 for the uniform, and 1/6 for the tent distribution.  The σ parameters are only the 
standard deviations for the normal distribution.  For the other two distributions, σk is a scale 
parameter.  The standard deviation is obtained as σk/ 3  for the uniform distribution and σk/ 6  for 
the triangular distribution. When the parameters are correlated, the implied covariance  matrix is 
adjusted accordingly.  The correlation matrix is unchanged by this. 
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E31.2.6 A Dynamic Probit Model 
 
 We consider estimation of the dynamic (habit persistence) probit model 
 
   yit* =  α + β′xit  +  γyi,t-1  +  εit  +  σui, t = 0,...,Ti, i = 1,...,N 

   yit  =  1(yit* > 0). 
 
Simple estimation of the model by maximum likelihood is clearly inappropriate owing to the random 
effect.  ML random effects is likewise inconsistent because yi,t-1 will be correlated with the random 
effect.  Following Heckman (1981), a suggested formulation and procedure for estimation are as 
follows: Treat the initial condition as an equilibrium, in which 
 
   yi0* =  φ + δ′xi0  +  εi0  +  τui 

   yi0 =  1(yi0* > 0) 
 
and retain the preceding model for periods 1,...,Ti. Note that the same random effect, ui appears 
throughout, but the scaling parameter and the slope vector are different in the initial period.  The 
lagged value of yit does not appear in period 0.  This model can be estimated in this form with the 
random parameters estimator in LIMDEP.  Use the following procedure.  Set up the variables: 
 
   dit   =  1 in period 1, 0 in all other periods, 

   fit    =  1 - dit  =  1 in all periods except period 1, 

   xit   =  the set of regressors in the model, 0 in the first period, 

   xi0  =  the set of regressors in the model in period 0, 0 in all other periods, 

   yi,-1 =  yi,t-1 in periods 1,...,Ti, 0 in the first period. 
 
Then, the encompassing model is 
 
   yit* =  β′xit  + δ′xi0 +  φdit + αfit + γyi,-1  +  εit  +  σfitui  +  τditui, 

   yit  =  1(yit*  >  0), t = 0,1,...,Ti. 
 
The commands you might use to set up the data would follow these steps.  First, use CREATE to set 
up your group size count variable, _groupti. 
 
 CREATE  ; yit = the dependent variable  
   ; yit1 = yit[-1] ? Make sure that yit1 = 0 in the first period. 
   ; t = Trn(-ti,1)  or whatever means to set up 1,2,...Ti + 1  
   ; dit = (t=1) ; fit = (t > 1) $ 
 CREATE ; set up the xit and xi0 sets of variables $ 
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The estimation command is a random parameters probit model.  We make use of a special feature of 
the RPM that allows the random component of the random parameters to be shared by more than one 
parameter.  This is precisely what is needed to have both τui and σui appear in the equation without 
forcing τ = σ. 
 
 PROBIT ; Lhs = yit  
   ; Rhs = xit, xi0, yit1, dit, fit  
   ; Panel 
   ; RPM  
   ; Fcn = dit(n), fit(n)  

; Common 
   ; ... any other desired specifications for the estimation $ 
 
A refinement of this model assumes that ui  =  λ′zi + wi for a set of time invariant variables.  (See 
Hyslop (1999) and Greene (2011).  One possibility is the vector of group means of the variables xit.  
(Only the time varying variables would be included in these means.)  These can be created and 
included as additional Rhs variables.   
 
E31.3 Latent Class Models for Binary Choice 
 

The binary choice model for a panel of data, i = 1,...,N, t = 1,...,Ti  is 
 

  Prob[Yit = yit | xit]   =  F(yit,β′xit)  =  P(i,t), yit = 0 or 1. 
 
Henceforth, we use the term ‘group’ to indicate the Ti observations on respondent i in periods            
t = 1,...,Ti.  Unobserved heterogeneity in the distribution of yit is assumed to impact the density in the 
form of a random effect.  The continuous distribution of the heterogeneity is approximated by using 
a finite number of ‘points of support.’  The distribution is approximated by estimating the location of 
the support points and the mass (probability) in each interval.  In implementation, it is convenient 
and useful to interpret this discrete approximation as producing a sorting of individuals (by 
heterogeneity) into J classes, j = 1,...,J.  (Since this is an approximation, J is chosen by the analyst.) 

Thus, we modify the model for a latent sorting of yit into J ‘classes’  with a model which 
allows for heterogeneity as follows:  The probability of observing yit given that regime j applies is 
 

  P(i,t|j)  =  Prob[Yit = yit| xit, j] 
 
where the density is now specific to the group.  The analyst does not observe directly which class,  
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model 
 
   P(i,t|j)  =  F[yit, β′xit  +  δj], Prob[class = j]  =  Fj 
 
We formulate this approximation more generally as, 
 
   P(i,t|j)  =  F[yit, β′xit  +  δj′xit], Fj  =  exp(θj) / Σj exp(θj), with θJ  = 0. 
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In this formulation, each group has its own parameter vector, βj′ =  β  +  δj,  though the variables that 
enter the mean are assumed to be the same.  (This can be changed by imposing restrictions on the 
full parameter vector, as described below.)  This allows the Heckman and Singer formulation as a 
special case by imposing restrictions on the parameters.  You may also specify that the latent class 
probabilities depend on person specific characteristics, so that 
 
   θij  =  θj′zi, θJ  =  0. 
 
 The estimation command for this model is 
 

           









PROBIT
LOGIT

COMPLOG
  GOMPERTZ
ARCTANGENT

  

 
The default number of support points is five.  You may set J from two to nine classes with 
 
   ; Pts = the value 
Use 
   ; LCM = list of variables in zi 
 
to specify the multinomial logit form of the latent class probabilities.   
 
Standard Model Specifications for the Latent Class Binary Choice Models  
 

This is the full list of general specifications from Chapter E1.  Those marked by ‘*’ are not 
available or not applicable to this model estimator.  See Chapter E1 and references noted there for 
further details on these specifications. 
 
Controlling Output from Model Commands 
  

; Par  keeps individual specific parameter estimates.  
; Margin displays marginal effects. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
  

; Lhs = ... 
; Rhs = independent variables 
; LCM (for latent class model)   
; Panel  $ 
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Optimization Controls for Nonlinear Optimization 
  

; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Prob = name saves probabilities as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 

 ; Rst = list specifies equality and fixed value restrictions. 
 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
Some particular values computed for the latent class model are 
 
   ; Group = the index of the most likely latent class 
   ; Cprob = estimated posterior probability for the most likely latent class 
 
You can obtain a listing of these two results by using 
 
   ; List 
 
The posterior probabilities for each individual are saved by the following steps: 
 

1. Create a set of variables, pr1=0, pr2=0,… (using any names you wish) so that there is one 
variable for each class 

 
2. Create a namelist for these variables:  

 
 NAMELIST ; prgroup = pr1,pr2,… $ 

 
Again, use any name you wish. 

 
3. In the model command, include  

 
; Classp = the namelist name. 
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You can use the ; Rst = list option to structure the latent class model so that different 
variables appear in different classes.  Alternatively, you can use this to force the Heckman and 
Singer form of the model as follows, where we use a three class model as an example: 
 
 NAMELIST ; x = ... one, list of variables $ 
 CALC  ; k1 =  Col(x) - 1 $ 
 LOGIT ; Lhs = ... ; Rhs = x ; LCM ; Pts = 3 
   ; Rst = d1, k1_b, d2, k1_0, d3, k1_0, t1, t2, t3 $ 
 

Estimates retained by this model include 
 

Matrices:  b   = full parameter vector, [β1′, β2′,... F1,...,FJ] 
 varb = full covariance matrix 

    Note that b and varb involve J×(K+1) estimates.   
 
  Two additional matrices are created: 
 
  b_class = a J×K matrix with each row equal to the corresponding βj 

  class_pr = a J×1 vector containing the estimated class probabilities 
 

 If the command specifies ; Parameters, then the additional matrix created is: 
 
  beta_i = individual specific parameters 

 
Scalars: kreg = number of variables in Rhs list 

  nreg = total number of observations used for estimation 
  logl = maximized value of the log likelihood function 
  exitcode = exit status of the estimation procedure 
 
E31.3.1 Application 
 
 To illustrate the model, we will fit probit models with three latent classes as alternatives to 
the continuously varying random parameters models in the preceding section.  This model requires a 
fairly rich data set – it will routinely fail to find a maximum if the number of observations in a group 
is small.  In addition, it will break down if you attempt to fit too many classes.  (This point is 
addressed in Heckman and Singer.)   
 The model estimates include the estimates of the prior probabilities of group membership.  
As shown in Section R25.7.1, it is also possible to compute the posterior probabilities for the groups, 
conditioned on the data.  The ; List specification will request a listing of these.  The final illustration 
below shows this feature for a small subset of the data used above.  The models use the following 
commands:  The first is the pooled probit estimator.  The second is a basic, three class LCM.  The 
third models the latent class probabilities as functions of the gender and marital status dummy 
variables.  The final model command fits a comparable random parameters model.  We will compare 
the two estimated models. 
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 Fit the pooled probit model first, basic latent class, then latent class with the gender and 
marital status dummy variables in the class probabilities. 
 
 PROBIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Cluster = id $  
 MATRIX ; betapool = b’ $ 
 PROBIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Pds = _groupti  

; LCM  
; Pts = 3 $ 

 PROBIT ; Lhs = doctor ; Rhs = x,one  
; Partial Effects 

   ; Pds = _groupti 
       ; LCM = female,married  

; Pts = 3  
; Parameters $ 

 
Fit the random parameters probit model with heterogeneity in means. 
 
 PROBIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Pds = _groupti  
   ; RPM = female,married 
   ; Fcn = one(n),hhninc(n),newhsat(n)  

; Correlated 
   ; Pts = 25  

; Halton  
; Parameters $ 

 
These are the estimated parameters of the pooled probit model.  The cluster correction is shown with 
the pooled results. 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -16638.96591 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2761.17165 
Significance level               .00000 
McFadden Pseudo R-squared      .0766160 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33287.932 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  20.59314 
P-value=  .00831 with deg.fr. =       8 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .00855***      .00098     8.75  .0000      .00664    .01047 
    EDUC|    -.01539***      .00499    -3.08  .0020     -.02517   -.00561 
  HHNINC|    -.00663         .05646     -.12  .9066     -.11729    .10404 
    HSAT|    -.17502***      .00490   -35.72  .0000     -.18462   -.16542 
Constant|    1.35894***      .08475    16.03  .0000     1.19282   1.52505 
--------+-------------------------------------------------------------------- 
 
These are the estimates of the basic three class latent class model. 
 
----------------------------------------------------------------------------- 
Latent Class / Panel Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -15609.05992 
Restricted log likelihood  -16638.96591 
Chi squared [  13 d.f.]      2059.81198 
Significance level               .00000 
McFadden Pseudo R-squared      .0618972 
Estimation based on N =  27326, K =  17 
Inf.Cr.AIC  =31252.120 AIC/N =    1.144 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
     AGE|     .01388***      .00228     6.10  .0000      .00942    .01835 
    EDUC|    -.00381         .01146     -.33  .7399     -.02627    .01866 
  HHNINC|    -.07299         .15239     -.48  .6320     -.37166    .22569 
    HSAT|    -.20115***      .01709   -11.77  .0000     -.23466   -.16765 
Constant|    2.08411***      .23986     8.69  .0000     1.61399   2.55424 
        |Model parameters for latent class 2 
     AGE|     .01336***      .00183     7.29  .0000      .00977    .01696 
    EDUC|    -.01886**       .00815    -2.31  .0206     -.03483   -.00289 
  HHNINC|     .06824         .10660      .64  .5221     -.14069    .27717 
    HSAT|    -.20129***      .00994   -20.26  .0000     -.22076   -.18181 
Constant|    1.15407***      .17393     6.64  .0000      .81317   1.49498 
        |Model parameters for latent class 3 
     AGE|     .00547         .00464     1.18  .2390     -.00363    .01456 
    EDUC|    -.04318**       .01911    -2.26  .0239     -.08063   -.00572 
  HHNINC|     .30044         .21747     1.38  .1671     -.12579    .72668 
    HSAT|    -.14638***      .01965    -7.45  .0000     -.18489   -.10786 
Constant|     .24354         .31547      .77  .4401     -.37478    .86186 
        |Estimated prior probabilities for class membership 
Class1Pr|     .40689***      .04775     8.52  .0000      .31331    .50048 
Class2Pr|     .45729***      .03335    13.71  .0000      .39192    .52266 
Class3Pr|     .13581***      .02815     4.82  .0000      .08063    .19100 
--------+-------------------------------------------------------------------- 
 
  



E31: Random Parameter Models for Binary Choice   E-656 

The three class latent class model is extended to allow the prior class probabilities to differ by sex 
and marital status. 
 
----------------------------------------------------------------------------- 
Latent Class / Panel Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -15471.73843 
Restricted log likelihood  -16638.96591 
Chi squared [  19 d.f.]      2334.45496 
Significance level               .00000 
McFadden Pseudo R-squared      .0701502 
Estimation based on N =  27326, K =  21 
Inf.Cr.AIC  =30985.477 AIC/N =    1.134 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
     AGE|     .01225***      .00240     5.11  .0000      .00755    .01695 
    EDUC|     .01438         .01311     1.10  .2725     -.01130    .04007 
  HHNINC|    -.02303         .16581     -.14  .8895     -.34801    .30194 
    HSAT|    -.17738***      .01802    -9.84  .0000     -.21271   -.14205 
Constant|    1.76773***      .25126     7.04  .0000     1.27528   2.26018 
        |Model parameters for latent class 2 
     AGE|     .00185         .00409      .45  .6508     -.00616    .00986 
    EDUC|    -.03067**       .01439    -2.13  .0331     -.05888   -.00245 
  HHNINC|     .23788         .18111     1.31  .1890     -.11709    .59285 
    HSAT|    -.15169***      .01623    -9.35  .0000     -.18349   -.11989 
Constant|     .44044*        .26021     1.69  .0905     -.06957    .95045 
        |Model parameters for latent class 3 
     AGE|     .01401***      .00199     7.02  .0000      .01010    .01791 
    EDUC|    -.00399         .00847     -.47  .6372     -.02060    .01261 
  HHNINC|     .03018         .11424      .26  .7916     -.19372    .25408 
    HSAT|    -.21215***      .01178   -18.01  .0000     -.23524   -.18906 
Constant|    1.13165***      .18329     6.17  .0000      .77241   1.49088 
        |Estimated prior probabilities for class membership 
   ONE_1|    -.53375**       .21925    -2.43  .0149     -.96347   -.10403 
FEMALE_1|    1.18549***      .13400     8.85  .0000      .92284   1.44813 
MARRIE_1|    -.33518**       .16234    -2.06  .0390     -.65336   -.01700 
   ONE_2|    -.51961*        .26512    -1.96  .0500    -1.03924    .00002 
FEMALE_2|    -.31028*        .18197    -1.71  .0882     -.66694    .04638 
MARRIE_2|    -.42489**       .18253    -2.33  .0199     -.78265   -.06713 
   ONE_3|        0.0    .....(Fixed Parameter)..... 
FEMALE_3|        0.0    .....(Fixed Parameter)..... 
MARRIE_3|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 

+------------------------------------------------------------+ 
|  Prior class probabilities at data means for LCM variables | 
|   Class 1     Class 2     Class 3     Class 4     Class 5  | 
|    .36905      .17087      .46008      .00000      .00000  | 
+------------------------------------------------------------+ 
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Since the class probabilities now differ by observation, the program reports an average using 
the data means.  The earlier fixed prior class probabilities are shown below the averages for this 
model.  The extension brings only marginal changes in the averages, but this does not show the 
variances across the different demographic segments (female/male, married/single) which may be 
substantial. 
 These are the estimated ‘individual’ parameter vectors.   
 

 
Figure E31.2  Latent Class Parameter Estimates 

 
The random parameters model in which parameter means differ by sex and marital status and are 
correlated with each other is comparable to the full latent class model shown above. 
 
----------------------------------------------------------------------------- 
Random Coefficients  Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -15469.87914 
Restricted log likelihood  -16638.96591 
Chi squared [  12 d.f.]      2338.17354 
Significance level               .00000 
McFadden Pseudo R-squared      .0702620 
Estimation based on N =  27326, K =  17 
Inf.Cr.AIC  =30973.758 AIC/N =    1.133 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Simulation based on  25 Halton draws 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01161***      .00086    13.51  .0000      .00993    .01330 
    EDUC|    -.00704*        .00407    -1.73  .0833     -.01501    .00093 
        |Means for random parameters 
Constant|    1.29395***      .09898    13.07  .0000     1.09995   1.48795 
  HHNINC|     .08845         .10690      .83  .4080     -.12108    .29798 
    HSAT|    -.21458***      .00954   -22.50  .0000     -.23327   -.19589 
        |Diagonal elements of Cholesky matrix 
Constant|    1.04680***      .04364    23.98  .0000      .96126   1.13234 
  HHNINC|     .69686***      .04676    14.90  .0000      .60521    .78851 
    HSAT|     .00014         .00120      .12  .9049     -.00220    .00248 
        |Below diagonal elements of Cholesky matrix 
lHHN_ONE|     .10493*        .05843     1.80  .0725     -.00960    .21946 
lHSA_ONE|    -.03295***      .00517    -6.37  .0000     -.04309   -.02282 
lHSA_HHN|     .04592***      .00248    18.54  .0000      .04107    .05078 
        |Heterogeneity in the means of random parameters 
cONE_FEM|     .20456***      .07264     2.82  .0049      .06218    .34694 
cONE_MAR|     .07909         .08153      .97  .3320     -.08070    .23888 
cHHN_FEM|     .08596         .10341      .83  .4059     -.11672    .28863 
cHHN_MAR|    -.07299         .11495     -.63  .5254     -.29828    .15230 
cHSA_FEM|     .02966***      .00873     3.40  .0007      .01256    .04677 
cHSA_MAR|    -.00931         .00991     -.94  .3474     -.02873    .01011 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.09579       .109842     -.0344941 
       2|       .109842       .496629      .0285454 
       3|     -.0344941      .0285454     .00319490 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.04680 
       2|       .704719 
       3|      .0565235 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000       .148897      -.582977 
       2|       .148897       1.00000       .716624 
       3|      -.582977       .716624       1.00000 
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These are the estimated marginal effects from the three models estimated, the pooled probit model, 
the three class latent class model and a comparable random parameters model, respectively. 
 
Pooled 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00297***      .20548     8.83  .0000      .00231    .00363 
    EDUC|    -.00534***     -.09614    -3.09  .0020     -.00873   -.00195 
  HHNINC|    -.00230        -.00129     -.12  .9066     -.04072    .03612 
    HSAT|    -.06076***     -.65534   -39.87  .0000     -.06375   -.05777 
--------+-------------------------------------------------------------------- 
3 Class Latent Class 
--------+-------------------------------------------------------------------- 
     AGE|     .00446***      .28510     7.28  .0000      .00326    .00566 
    EDUC|    -.00572***     -.09511    -2.64  .0082     -.00997   -.00148 
  HHNINC|     .01510         .00780      .61  .5433     -.03360    .06381 
    HSAT|    -.06917***     -.68884   -19.60  .0000     -.07609   -.06225 
--------+-------------------------------------------------------------------- 
3 Class Heterogeneous Priors 
----------------------------------------------------------------------------- 
     AGE|     .00406***      .26197     7.00  .0000      .00292    .00520 
    EDUC|    -.00064        -.01069     -.27  .7838     -.00519    .00391 
  HHNINC|     .01657         .00865      .68  .4953     -.03106    .06420 
    HSAT|    -.06804***     -.68420   -20.83  .0000     -.07444   -.06164 
--------+-------------------------------------------------------------------- 
Random Parameters 
----------------------------------------------------------------------------- 
     AGE|     .00424***      .27768     3.18  .0015      .00162    .00685 
    EDUC|    -.00257        -.04379    -1.48  .1385     -.00597    .00083 
  HHNINC|     .03226         .01711      .55  .5814     -.08242    .14695 
    HSAT|    -.07827        -.79992    -1.22  .2216     -.20379    .04724 
--------+-------------------------------------------------------------------- 
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E32: Semiparametric and Nonparametric 
Models for Binary Choice 

 
E32.1 Introduction 
 

 This chapter will present three non- and semiparametric estimators for binary choice models. 
Familiar parametric estimators of binary response models, such as the probit and logit are based on 
the log likelihood criterion, 
 

   log L  =  )'|(log1
1 ii

n
i

yF
n

xβ∑ =
. 

 

The Cramer-Rao theory justifies this procedure on the basis of efficiency of the parameter estimates. 
But, it is to be noted that the criterion is not a function of the ability of the model to predict the 
response.  Moreover, in spite of the widely observed similarity of the predictions from the different 
models, the issue of which parametric family (normal, logistic, etc.) is most appropriate has never 
been settled, and there exist no formal tests to resolve the question in any given setting.  Various 
estimators have been suggested for the purpose of broadening the parametric family, so as to relax 
the restrictive nature of the model specification.  Two semiparametric estimators are presented in 
LIMDEP, Manski’s (1975, 1985) and Manski and Thompson’s (1985, 1987) maximum score 
(MSCORE) estimator and Klein and Spady’s (1993) kernel density estimator.   
 The MSCORE estimator is constructed specifically around the prediction criterion 
 

   Choose β to maximize S  =  Σi [yi*  × zi*], 

where    yi*

   z

 =  sign (-1/1) of the dependent variable  

 
i* =  the sign (-1/1) of β′xi. 

Thus, the MSCORE estimator seeks to maximize the number of correct predictions by our familiar 
prediction rule – predict yi = 1 when the estimated Prob[yi = 1] is greater than .5, assuming that the 
true, underlying probability function is symmetric.  In those settings, such as probit and logit, in 
which the density is symmetric, the sign of the argument is sufficient to define whether the 
probability is greater or less than .5.  For the asymmetric distributions, this is not the case, which  
suggests a limitation of the MSCORE approach.  The estimator does allow another degree of 
freedom in the choice of a quantile other than .5 for the prediction rule – see the definition below – 
but this is only a partial solution unless one has prior knowledge about the underlying density. 
 Klein and Spady’s semiparametric density estimator is based on the specification 
 
   Prob[yi = 1]  =  P(β′xi) 
 

where P is an unknown, continuous function of its argument with range [0,1].  The function P is not 
specified a priori; it is estimated with the parameters.  The probability function provides the location 
for the index that would otherwise be provided by a constant term.  The estimation criterion is 
 

   log L  =  
1

1 [ log ( ) (1 ) log(1 ( ))]n
i n i i n ii

y P y P
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where Pn is the estimator of P and is computed using a kernel density estimator. 
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 The third estimator is a nonparametric treatment of binary choice based on the index 
function estimated from a parametric model such as a logit model. 
 
E32.2 Maximum Score Estimation - MSCORE 
 
 Maximum score is a semiparametric approach to estimation which is based on a prediction 
rule.  The base case (quantile = ½) is 
 
   S   =  Σi [yi*  ×   zi* ], 
 
where yi* is the sign (-1/1) of the dependent variable and zi* is the counterpart for the fitted model;   
z

 

i* = the sign (-1/1) of β′xi.  Thus, this base case is formulated precisely upon the ability of the sign 
of the estimated index function to predict the sign of the dependent variable (which, in the binary 
response models, is all that we observe). Formally, MSCORE maximizes the sample score function 

   MaxβεB Snα(β) = (1/n)Σi[yi*   -  (1-2α)]Sgn(β′xi), 

 where   B  = {β ε RK : ║β║ = 1}. 
  
The sample data consist of n observations [yi* ,xi] where yi* is the binary response.  Input of yi is the 
usual binary variable taking values zero and one; yi* is obtained internally by converting zeros to 
minus ones.  The quantile, α, is between zero and one and is provided by the user. The vector xi is 
the usual set of K regressors, usually including a constant.  An equivalent problem is to maximize the 
normalized sample score function 
  
   SNα*(β) =  (1/n)[Snα(β) / Wn   +   1], 

where     Wn   =  (1/n)Σiwi 

and      wi  =  abs(yi* - (1-2α)).   
 
This may then be rewritten as 
 
   Snα*(β)  =  Σi wi*  × 1[yi*  = Sgn(β′xi)], 

where   wi*     =  wi / Wn. 
 
and  1[•] is the indicator function which equals 1 if the condition in the brackets is true and 0 
otherwise.  Thus, in the preceding, 1[•] equals 1 if the sign of the index function, β′xi, correctly 
predicts yi*.  The normalized sample score function is, thus, a weighted average of the prediction 
indicators.  If α = ½, then wi* equals 1/n, and the normalized score is the fraction of the observations 
for which the response variable is correctly predicted.  Maximum score estimation can therefore be 
interpreted as the problem of finding the parameters that maximize a weighted average number of 
correct predictions for the binary response. 
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 The following shows how to use the MSCORE command and gives technical details about 
the procedure.  An application is given with the development of NPREG, which is a companion 
program, in Section E32.4. 
 
E32.2.1 Command for MSCORE 
 
 The mandatory part of the command for invoking the maximum score estimator 
 
 MSCORE  ; Lhs = y ; Rhs = x list of independent variables $ 
 
The first element of x should be one.  The variable y is a binary dependent variable, coded 0/1. The 
following are the optional specifications for this command.  The default values given are used by 
LIMDEP if the option is not specified on the command. MSCORE is designed for relatively small 
problems.  The internal limits are 15 parameters and 10,000 observations. 
 
E32.2.2 Options Specific to the Maximum Score Estimator 
 
Quantile 
 
 The quantile defines the way the score function is computed.  The default of .5 dictates that 
the score is to be calculated as (1/n) times the number of correctly predicted signs of the response 
variable.  You may choose any value between 0 and 1 with 
 
   ; Qnt = quantile (default = .5; this is α). 
 
Number of Bootstrap Replications 
 
 Bootstrap estimates are computed as follows:  After computing the point estimate, 
MSCORE generates R bootstrap samples from the data by sampling n observations with 
replacement.  The entire point estimation procedure, including computation of starting values is 
repeated for each one.  Let b be the maximum score estimate, R be the number of bootstrap 
replications, and di be the ith bootstrap estimate.  The mean squared deviation matrix, 
 
   MSD = (1/R)Σi [(di - b)(di - b)′], 
 
is computed from the bootstrap estimates.  This is reported in the output as if it were the estimated 
covariance matrix of the estimates.  But, it must be noted that there is no theory to suggest that this is 
correct.  In purely practical terms, the deviations are from the point estimate, not the mean of the 
bootstrap estimates.  The results are merely suggestive. The use of ; Test: should also be done with 
this in mind.  Use  
   ; Nbt = number of bootstraps (default = 20) 
 
to set the number of bootstrap iterations. 
 
  



E32: Semiparametric and Nonparametric Models for Binary Choice  E-663 

Analysis of Ties 
 
 The specification for analysis of ties is  
 
   ; Ties to analyze ties (default = no) 
 
If the ; Ties option is chosen, MSCORE reports information about regions of the parameter space 
discovered during the endgame searches for which the sample score is tied with the score at the final 
estimates.  If a tie is found in a region, MSCORE records the endpoints of the interval, the current 
search direction, and some information which records each observation’s contribution to the sample 
score in the region.  It is possible to determine whether ties found on separate great circle searches 
represent disjoint regions or intersections of different great circles.  Since the region containing the 
final estimates is partially searched in each iteration, the tie checking procedure records extensive 
information about this region.  For each region, MSCORE reports the minimum and maximum 
angular direction from the final estimates.  These are labeled PSI-low and PSI-high.  The parameter 
values associated with these endpoints are also reported.   
 If tie regions are found that are far from the point estimate, it may be that the global 
maximum remains to be found.  If so, it may be useful to rerun the estimator using a starting value in 
the tied region.  The existence of many tie regions does not necessarily indicate an unreliable 
estimate.  Particularly in large samples, there may be a large number of disjoint regions in a small 
neighborhood of the global maximum. 
 
Number of Endgame Iterations 
 
 The number of endgame iterations is specified with     
 
   ; End = number endgame iterations (default = 5) 
 
A given set of great circle searches may miss a direction of increase in the score function. Moreover, 
even if the trial maximum is a true local maximum, it may not be a global maximum. For these reasons, 
upon finding a trial maximum, MSCORE conducts a user specified number of ‘endgame iterations.’  
These are simply additional iterations of the maximization algorithm.  The random search method is 
such that with enough of these, the entire parameter space would ultimately be searched with 
probability one.  If the endgame iterations provide no improvement in the score, the trial maximum is 
deemed the final estimate.  If an improvement is made during an endgame search, the current estimate 
is updated as usual and the search resumes.  The logic of the algorithm depends on the endgame 
searches to ensure that all regions of the parameter space are investigated with some probability. The 
density of the coverage is an increasing function of the number of endgame searches. 
 There are no formal rules for the number of endgame searches.  It should probably increase 
with K and (perhaps a little less certainly) with n.  But, because the step function more closely 
approximates a continuous population score function, it may be that fewer endgame searches will be 
needed as N increases. 
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Starting Values 
 
 Starting values are specified with 
 
   ; Start = starting values (default = none). 
 
If starting values are not provided by the user, they are computed as follows:  For each of the K 
parameters, we form a vector equal to the kth column of an identity matrix.  The sample score 
function is evaluated at this vector, and the kth parameter is set equal to this value.  At the 
conclusion, the starting vector is normalized to unit length.  If you do provide your own starting 
values, they will be normalized to unit length before the iterations are begun. 
 
Technical Output 
 
 Technical output is specified with  
 
   ; Output = 4 or 5 for output of trace of bootstraps to output file 
     (default = neither). 
 
This is used to control the amount of information about the bootstrap iterations that is produced.  
This can generate hundreds or thousands of lines of output, depending on the number of bootstrap 
estimates computed and the number of endgame searches requested.  This information is displayed 
on the screen, in order to trace the progress of execution.  In general, the output is not especially 
informative except in the aggregate.  That is, individual lines of this trace are likely to be quite 
similar.  The default is not to retain information about individual bootstraps or endgame searches in 
the file.  Use ; Output = 4 to request only the bootstrap iterations (one line of output per).  Use         
; Output = 5 to include, in addition, the corresponding information about the endgame searches. 
 
E32.2.3 General Options for MSCORE 
 
 The following general options used with the nonlinear estimators in LIMDEP are available 
for MSCORE: 
   ; Covariance Matrix:  to display MSE matrix (default = no), 
    same as ; Printvc 
   ; List  to display predicted values (default = no list) 
   ; Keep = name to retain predictions in name (default = no) 
   ; Res = name  to retain fitted values in name (default = no) 
   ; Test: spec  to specify restriction (default = none) 
   ; Maxit = n  to set maximum iterations (default = 50) 
  
Note the earlier caution about the MSD matrix when using the ; Test: option.  The ; Rst = ... and       
; CML: options for imposing restrictions are not available with this estimator. 
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E32.2.4 Output from MSCORE 
 
 Output from MSCORE consists of the following, in the order in which it will appear on 
your screen or your output file: 

 
1. The iteration summary for the primary estimation procedure (this is labeled bootstrap sample 

0’) and, if you have requested them, the bootstrap sample estimations.  With each one, we 
report the number of iterations, the number of completed ‘endgame iterations’ (see the 
discussion above), the maximum normalized score, and the change in the normalized score.  

 
2. Echo of input parameters in your command. 

 
3. The score function and normalized score function evaluated at three different points: 

 
a. naive, the first element of β is 1 or -1 and all other values are 0, 
b. the starting values, 
c. the final estimates. 
 

4. The deviations of the bootstrap estimates from the point estimates are summarized in the 
root mean square error and mean absolute angular deviation between them. 

 
5. The point estimates of the parameters. 

 
NOTE:  The estimates are presented in LIMDEP’s standard format for parameter estimates. 
If you have computed bootstrap estimates, the mean square deviation matrix (from the point 
estimate) is reported as if it were an estimate of the covariance matrix of the estimates.  This 
includes ‘standard errors,’ ‘t ratios,’ and ‘prob. values.’  These may, in fact, not be 
appropriate estimates of the asymptotic standard errors of these parameter estimates.  
Discussion appears in the references below. 
 
If you change the number of bootstrap estimates, you may observe large changes in these 
standard errors.  This is not to be interpreted as reflecting any changes in the precision of the 
estimates.  If anything, it reflects the unreliability of the bootstrap MSD matrix as an 
estimate of the asymptotic covariance matrix of the estimates.  It has been shown that the 
asymptotic distribution of the maximum score estimator is not normal.  (See Kim and 
Pollard (1990).)  Moreover, even under the best of circumstances, there is no guarantee that 
the bootstrap estimates or functions of them (such as t ratios), converge to anything useful. 

 
6. A cross tabulation of the predictions of the model vs. the actual values of the Lhs variable. 
 
7. If the model has more than two parameters, and you have requested analysis of the ties, the 

results of the endgame searches are reported last.  Records of ties are recorded in your output 
file if one is opened, but not displayed on your screen. 
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 The predicted values computed by MSCORE are the sign of b′xi, coded 0 or 1.  Residuals 
are yi  - ŷ i, which will be 1, 0, or -1.  The ; List specification also produces a listing of b′xi.  The last 
column of the listing, labeled Prob[y = 1] is the probabilities computed using the standard normal 
distribution.  Since the probit model has not been used to fit the model, these may be ignored. 
 Results which are saved by MSCORE are: 
 
 b   =  final estimates of parameters 
 varb =  mean squared deviation matrix for bootstrap estimates 
 score =  scalar, equal to the maximized value of the score function 
 
The Last Model labels are b_variable.  But, note once again, that the underlying theory needed to 
justify use of the Wald statistic does not apply here. 
 
E32.2.5 Technical Details 
 
 The score function maximized by MSCORE is a step function in contrast to the smooth 
criterion maximized by, e.g., LIMDEP’s probit estimator.  As such, the method used here is quite 
unlike the familiar gradient/search algorithms used for differentiable criteria. 
 Let βº be the current best estimate of β, and let there be K parameters.  MSCORE selects a set 
of K-1 orthogonal vectors, c1...cK-1 all orthogonal to βº.  The score function is then maximized on the 
great circle connecting βº and c1.  The maximum occurs on one or more intervals of positive length on 
the great circle.  If the score is increased relative to that for βº, the new best estimate becomes the 
midpoint of the interval. In case of a tie (recall, the score function is a step function), the interval with 
midpoint closest to the current estimate is chosen.  If there is no function improvement, the old estimate 
is retained.  MSCORE then repeats the process with the great circle connecting the new best estimate 
and c2.  The process is repeated until all K-1 directions have been searched.  This process constitutes an 
iteration.  Iterations are continued until no improvement of the function is achieved. 
 The basis vectors, c1...cK-1 are chosen as follows:  For each vector ck, K independent draws 
from a random number generator are used to produce a vector uniformly distributed on a K-
dimensional hypercube [-1,1]K.  The K-1 vectors so produced with βº are then orthogonalized using 
the Gram-Schmidt procedure.  (Excessively short vectors are discarded and replaced to insure 
numerical stability.)  The vectors are then normalized to unit length.  This method insures that all 
search directions from βº are generated with strictly positive probability, but the distribution of 
directions is not uniform because of the nonlinearity of the transformation.  There is an exception to 
this procedure if an iteration occurs following an iteration in which there was an improvement in the 
score on two or more of the great circle searches.  Let βº be the initial estimate and let β1 be the final 
estimate on the most recent iteration.  Then the great circle connecting these points is the first 
direction searched in the current iteration.  The remaining directions are searched at random. 
 We note an important aspect of this procedure.  Because the search direction is random and 
because the criterion is a step function, small changes in the random sample can lead to sizable 
changes in the parameter estimates.  In particular, we have found experimentally that consecutive 
runs of MSCORE with the same data produced noticeably different parameter estimates, though only 
occasionally any change in the score.  (In almost all cases, the score, itself, was unchanged.)  
LIMDEP imposes one degree of control on this.  The seed for the random number generator is 
always set to the same value upon entry to MSCORE.  As such, you will always get the same results 
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with a given data set and model specifications.  However, be aware that small changes, (e.g., in the 
number of observations or in the set of regressors) can bring noticeable changes in the parameter 
estimates.  Once again, ‘what counts’ is the score function, not the parameters. 
 When there are only two parameters, the parameter space is the unit circle, and there is only 
one great circle to search.  As such, the algorithm is guaranteed to find the global maximum in one 
iteration.  In problems of higher dimension, convergence cannot be assured in a finite number of 
iterations. 
 If bootstrap estimates are computed, we compute the angular deviation between them and 
the point estimates. (I.e., the angle between them, ArcCos[(dibi/(di′

 

di × bi′bi)1/2].) Since all parameter 
vectors have unit length, the angular deviation is also the great circle distance between the estimates 
along the unit hypersphere.  The root mean square angular deviation is the square root of the average 
squared deviation.  We also report the mean absolute value of the angular deviations.  The units for 
both are radians.  Discussion of this and other computational aspects of this estimator may be found 
in Manski and Thompson (1985).  

E32.2.6 Extensions 
 
 The MSCORE procedure may be used to compute Han’s (1987) Maximum Rank Correlation 
(MRC) estimator for binary response models.  The MRC estimator is defined to be the value of β 
that maximizes 
   R(β)  =  Σi,j (yi - yj) × Sgn(β′xi - β′xj). 
 
This can be computed by using MSCORE with quantile = .5 on a sample constructed from the 
original [yi,xi] as follows:  For each distinct (i,j) pair for which yi is not equal to yj, compute an 
observation m consisting of 
 
   dm = 1 if yi=1 and yj = 0, and 0 otherwise, 

   xm = xi - xj. 
 
This may require some processing outside of LIMDEP since this may generate a sample far larger 
than the original.  However, once constructed, the estimation is simple. 
 Han claims that the estimator is consistent and asymptotically normally distributed.  It 
requires somewhat more stringent assumptions than maximum score.  If they are met, the estimator 
may be more efficient than maximum score. 
 Manski (1987) analyzes the model 
  
   yi,t  =  β′xi,t + ci + ui,t,  t = 0,1, 
  
where ci is a random effect.  The observable indicator zi,t is defined in the usual way for binomial 
response models; zi,t = 1 if yi,t > 0, and 0 otherwise.  Under the assumptions stated in Manski’s paper, 
the model may be estimated by maximum score by using the reduced sample 
  
   zi   =  zi,1 - zi,0 

and   wi   =  xi,1 - xi,0. 
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E32.3 Klein and Spady’s Semiparametric Binary Choice Model 
 
 Klein and Spady’s semiparametric density estimator is based on the specification 
 
   Prob[yi = 1]  =  P(β′xi) 
 
where P is an unknown, continuous function of its argument with range [0,1].  The function P is not 
specified a priori; it is estimated with the parameters.  The probability function provides the location 
for the index that would otherwise be provided by a constant term.  The estimation criterion is 
 

   log L  =  
1

1 [ log ( ) (1 ) log(1 ( ))]n
i n i i n ii
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where Pn is the estimator of P and is computed using a kernel density estimator.  The probability 
function is estimated with a kernel estimator, 
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Two kernel functions are provided, the logistic function, Λ(z) and the standard normal CDF, Φ(z). 
 As in the other semiparametric estimators, the bandwidth parameter is a crucial input.  The 
program default is n-(1/6), which ranges from .3 to about .6 for n ranging from 30 to 1000.  You may 
provide an alternative value. 
 

E32.3.1 Command 
 
 The command for this estimator is 
 
  SEMIPARAMETRIC  
   ; Lhs = dependent, binary variable 
   ; Rhs = independent variables $ 
 
Do not include one on the Rhs list.  The function itself is playing the role of the constant.  Optional 
features include those specific to this model, 
 
   ; Smooth = desired value for h 
   ; Kernel = Normal – the logistic is standard 
 
and the general ones available with other estimators, 
 
   ; Partial Effects 
   ; Prob = name  to retain fitted probabilities 
   ; Keep = name  to retain predictions 
   ; Res  = name  to retain residuals 
   ; Covariance Matrix to display the estimated asymptotic covariance matrix, 
    same as ; Printvc. 
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The semiparametric log likelihood function is a continuous function of the parameters which is 
maximized using LIMDEP’s standard tools for optimization.  Thus, the options for controlling 
optimization are available, 
 
   ; Maxit  = n  to set maximum iterations 
   ; Output = 1, 2, 3 to control intermediate output 
   ; Alg  = name to select algorithm  
 
Restrictions may be imposed and tested with 
 
   ; Test: spec  to specify restriction (default = none) 
   ; Rst = list  to specify fixed value and equality restrictions 
   ; CML: spec  to specify other linear constraints 
 
E32.3.2 Output 
 
 Output from this estimator includes the usual table of statistical results for a nonlinear 
estimator.  Note that the estimator constrains the constant term to zero and also normalizes one of the 
slope coefficients to one for identification. This will be obvious in the results. Since probabilities 
which are a continuous function of the parameters are computed, you may also request marginal 
effects with 
   ; Partial Effects (or ; Marginal Effects) 
 
Marginal effects are computed using Pn(β′xi) and its derivatives (which are simple sums) computed 
at the sample means. 
 
Results Kept by the Semiparametric Estimator 
 
 The model results kept by this estimator are 
 
 Matrices:  b   =  final estimates of parameters 
 
   varb  =  mean squared deviation matrix for bootstrap estimates 
 Scalars:  logl  =  log likelihood 
   kreg  =  number of Rhs variables 
   nreg  =  number of observations used to fit the function 
   exitcode =  exit status for estimator 
 
 Last Model:  The labels are b_variable 
 
 Last Function: None 
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E32.3.3 Application 
 
 The Klein and Spady estimator is computed with the binary logit model.  We use only a 
small subset of the data, the observations that are observed only once.  The complete lack of 
agreement of the two models is striking, though not unexpected. 
 

 REJECT ; _groupti > 1 $ 
 SEMI  ; Lhs = doctor  
   ; Rhs = one,age,hhninc,hhkids,educ,married  
   ; Partial Effects $ 
 LOGIT ; Lhs = doctor  
   ; Rhs = one,age,hhninc,hhkids,educ,married  
   ; Partial Effects $ 
 
----------------------------------------------------------------------------- 
Semiparametric Binary Choice Model 
Dependent variable               DOCTOR 
Log likelihood function     -1001.96124 
Restricted log likelihood   -1004.77427 
Chi squared [   4 d.f.]         5.62607 
Significance level               .22887 
McFadden Pseudo R-squared      .0027997 
Estimation based on N =   1525, K =   4 
Inf.Cr.AIC  = 2011.922 AIC/N =    1.319 
Hosmer-Lemeshow chi-squared = ********* 
P-value=  .00000 with deg.fr. =       8 
Logistic kernel fn. Bandwidth =  .29475 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Odds Ratio        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Characteristics in numerator of Prob[Y = 1] 
     AGE|     .98652         .02284     -.59  .5577      .94176   1.03128 
  HHNINC|     .02962**       .04607    -2.26  .0236     -.06067    .11991 
  HHKIDS|    3.16366        4.50864      .81  .4190    -5.67311  12.00042 
    EDUC|     .96226         .11808     -.31  .7539      .73083   1.19368 
 MARRIED|    2.71828    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Odds ratio = exp(beta); z is computed for the original beta 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|    -.00025        -.01488     -.59  .5523     -.00107    .00057 
  HHNINC|    -.06479***     -.03782   -76.40  .0000     -.06645   -.06313 
  HHKIDS|     .02120         .01063      .26  .7984     -.14148    .18388 
    EDUC|    -.00071        -.01305     -.33  .7445     -.00497    .00355 
 MARRIED|     .01841    .....(Fixed Parameter)..... 
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----------------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function      -996.30681 
Restricted log likelihood   -1004.77427 
Chi squared [   5 d.f.]        16.93492 
Significance level               .00462 
McFadden Pseudo R-squared      .0084272 
Estimation based on N =   1525, K =   6 
Inf.Cr.AIC  = 2004.614 AIC/N =    1.315 
Hosmer-Lemeshow chi-squared =  10.56919 
P-value=  .22732 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .46605         .34260     1.36  .1737     -.20544   1.13754 
     AGE|     .00509         .00448     1.14  .2556     -.00369    .01387 
  HHNINC|    -.49045*        .26581    -1.85  .0650    -1.01142    .03052 
  HHKIDS|    -.36639***      .12639    -2.90  .0037     -.61410   -.11867 
    EDUC|     .00783         .02419      .32  .7461     -.03957    .05523 
 MARRIED|     .16046         .12452     1.29  .1975     -.08360    .40451 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00117        -.00127     1.14  .2554     -.00085    .00320 
  HHNINC|    -.11304*        .00087    -1.85  .0648     -.23301    .00694 
  HHKIDS|    -.08606***      .00019    -2.87  .0041     -.14476   -.02736   # 
    EDUC|     .00180        -.00053      .32  .7461     -.00912    .01273 
 MARRIED|     .03702        -.00057     1.29  .1971     -.01924    .09327   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E32.3.4 Technical Details 
 
 The log likelihood function, 
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is easily computed by simple summation for the value of h, β, and the specified kernel functions, 
 
   K(.) =  Λ(.) for the logistic model, with K′(.)  =  Λ(.)[1 - Λ(.)], or 

    =  Φ(.) for the normal distribution, with K′(.) = φ(.). 
 
Let the numerator and denominator of Pn(β′xi)  be denoted Fi0 and Fi1, respectively, and let Gi0 and 
Gi1 denote the numerator and denominator computed at K′(.) instead of K(.).  Then, let  
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Then, collecting all terms, the vector of derivatives of the log likelihood is 
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The estimator of the asymptotic covariance matrix is the BHHH estimator, 
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E32.4 Nonparametric Binary Choice Model 
 
 The kernel density estimator is a device used to describe the distribution of a variable 
nonparametrically, that is, without any assumption of the underlying distribution.  This section 
describes an extension to a simple regression function.  The kernel density function estimates any 
sufficiently smooth regression function, Fβ(z) = E[δ|β′x=z], using the method of kernels, for any 
parameter vector β.  δ must be a response variable with bounded range [0,1].  In the special case in 
which δ is a binary response taking values 0/1, NPREG estimates the probability of a positive 
response conditional on the linear index β′x.  With an appropriate choice of x and β, and by rescaling 
the response, this estimator can estimate any sufficiently smooth univariate regression function with 
known bounded range.  One simple approach is to assume that x is a single variable and β equals 1.0, 
in which case, the estimator describes E[yi|xi].  Alternatively, NPREG may be used with the 
estimated index function, β′xi, from any binary choice estimator.  The natural choice in this instance 
would be MSCORE, since MSCORE does not compute the probabilities (that is, the conditional 
mean).  In principle, the estimated index function could come from any estimator, but from a probit 
or other parametric model, this would be superfluous. 
 The regression function computed is  
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The function is computed for a specified set of values zj, j = 1,...,M.  Note that each value requires a 
sum over the full sample of n values.  The primary component of the computation is the kernel 
function, K[.].  Eight alternatives are provided: 
 

1. Epanechnikov: K[z]   =  .75(1 - .2z2) / Sqr(5) if |z| <= 5, 0 else, 
2. Normal:   K[z] =  φ(z) (normal density), 
3. Logit:    K[z] =  Λ(z)[1-Λ(z)] (default), 
4. Uniform:  K[z] =  .5 if |z| < 1, 0 1 else, 
5. Beta:   Z[z] =  (1-z)(1+z)/24 if |z| < 1, 0 1 else, 
6. Cosine:   K[z] =  1 + cos(2πz) if |z| < .5, 0 else, 
7. Triangle:   K[z] =  1 - |z|, if |z| <= 1, 0 else. 
8. Parzen:   K[z] =  4/3 - 8z2 + 8|z|3 if |z| <= .5, 8(1-|z|)3 else. 

 
The other essential part of the computation is the smoothing (bandwidth) parameter, h.  Large values 
of h stabilize the function, but tend to flatten it and reduce the resolution.  Small values of h produce 
greater detail, but also cause the estimator to become less stable. 
 The basic command is 
 
 NPREG ; Lhs = the dependent variable 

; Rhs = the variable $ 
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With no other options specified, the routine uses the logit kernel function, and uses a bandwidth 
equal to 
        h  =  .9Q/n0.2 where Q  =  min(std.dev., range/1.5) 
 
You may specify the kernel function to be used with 
 
   ; Kernel = one of the names of the eight types of kernels listed above 
 
The bandwidth may be specified with 
 
   ; Smooth = the bandwidth parameter 
 
 There is no theory for choosing the right smoothing parameter, λ.  Large values will cause 
the estimated function to flatten at the average value of yi.  Values close to zero will cause the 
function to pass through the points zi,yi and to become computationally unstable elsewhere.  A choice 
might be made on the basis of the CVMSPE.  (See Wong (1983) for discussion.)  A value that 
minimizes CVMSPE(λ) may work well in practice.  Since CVMSPE is a saved result, you could 
compute this for a number of values of λ then retrieve the set of values to find the optimal one. 

The default number of points specified is 100, with zj = a partition of the range of the 
variable.  You may specify the number of points, up to 200 with 
 
   ; Pts = number of points to compute and plot 
 
The range of values plotted is the equally spaced grid from min(x)-h to max(x)+h, with the number 
of points specified. 
 
E32.4.1 Output from NPREG 
 
 Output from KERNEL is a set of points for an estimated function, several descriptive 
statistics, and a plot of the estimated regression function.  The added specification 
 
   ; List  
 
displays the specific results, zi for the sample observations and the associated estimated regression 
functions.  These values are also placed in a two column matrix named kernel after estimation of the 
function. 
 The cross validation mean squared prediction error (CVMSPE) is a goodness of fit measure. 
Each observation, ‘i’ is excluded in turn from the sample.  Using the reduced sample, the regression 
function is reestimated at the point zi in order to provide a point prediction for yi.  The average 
squared prediction error defines the CVMSPE.  The calculation is defined by 
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Then,   CVMSPE(h)  =  (1/n) Σi [yi - Fi*(xi)]2. 
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E32.4.2 Application 
 
 The following estimates the parameters of a regression function using MSCORE, then uses 
NPREG to plot the regression function. 
 
 REJECT  ; _groupti > 1 $ 
 NAMELIST ; x = one,age,hhninc,hhkids,educ,married $  
 MSCORE  ; Lhs = doctor ; Rhs =x $ 
 CREATE ; xb = x'b$ 
 NPREG ; Lhs = doctor ; Rhs = xb $ 
 
----------------------------------------------------------------------------- 
Maximum Score Estimates of Linear Quantile 
Regression Model from Binary Response Data 
Quantile                .500      Number of Parameters =     6 
Observations input   =  1525      Maximum Iterations   =   500 
End Game Iterations  =   100      Bootstrap Estimates  =    20 
Check Ties?               No 
Save bootstraps?          No 
Start values from MSCORE (normalized) 
Normal exit after  100 iterations. 
Score functions:     Naive   At theta(0)      Maximum 
           Raw      .26033       .26033        .27738 
    Normalized      .63016       .63016        .63869 
Estimated MSEs from  20 bootstrap samples 
(Nonconvergence in   0 cases) 
Angular deviation (radians) of bootstraps from estimate 
Mean square =  1.027841             Mean absolute =   .979001 
Standard errors below are based on bootstrap mean squared 
deviations.  These and the t-ratios are only approximations. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .42253         .63272      .67  .5043     -.81758   1.66263 
     AGE|     .01146         .03120      .37  .7134     -.04969    .07261 
  HHNINC|    -.20766         .45880     -.45  .6508    -1.10689    .69157 
  HHKIDS|    -.82224         .65955    -1.25  .2125    -2.11494    .47045 
    EDUC|     .01446         .07191      .20  .8406     -.12648    .15541 
 MARRIED|     .31926         .35336      .90  .3663     -.37331   1.01183 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 

+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when beta*x is greater than one, zero otherwise.       | 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |     23 (  1.5%)|    541 ( 35.5%)|    564 ( 37.0%)| 
|  1   |     10 (   .7%)|    951 ( 62.4%)|    961 ( 63.0%)| 
+------+----------------+----------------+----------------+ 
|Total |     33 (  2.2%)|   1492 ( 97.8%)|   1525 (100.0%)| 
+------+----------------+----------------+----------------+ 
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+---------------------------------------------------------+ 
|Crosstab for Binary Choice Model.  Predicted probability | 
|vs. actual outcome. Entry = Sum[Y(i,j)*Prob(i,m)] 0,1.   | 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|      Predicted Probability      |                | 
|Value |    Prob(y=0)        Prob(y=1)   | Total Actual   | 
+------+----------------+----------------+----------------+ 
| y=0  |    564 ( 37.0%)|      0 (   .0%)|    564 ( 37.0%)| 
| y=1  |    961 ( 63.0%)|      0 (   .0%)|    961 ( 63.0%)| 
+------+----------------+----------------+----------------+ 
|Total |   1525 (100.0%)|      0 (   .0%)|   1525 (100.0%)| 
+------+----------------+----------------+----------------+ 
+---------------------------------------+ 
| Nonparametric Regression for DOCTOR   | 
| Observations       =          1525    | 
| Points plotted     =          1525    | 
| Bandwidth          =       .090121    | 
| Statistics for abscissa values----    | 
| Mean               =       .854823    | 
| Standard Deviation =       .433746    | 
| Minimum            =      -.167791    | 
| Maximum            =      1.662874    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =       .231635    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
 

 
Figure E32.1  Nonparametric Regression 
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E33: Bivariate and Multivariate Probit and 
Partial Observability Models 

 
E33.1 Introduction 

 

 The basic formulation of the models in this chapter is the bivariate probit model: 
 
   zi1  =  β1′xi1 + εi1,  yi1  =  1 if zi1 > 0, yi1  =  0 otherwise, 
   zi2  =  β2′xi2 + εi2,  yi2  =  1 if zi2 > 0, yi2  =  0 otherwise, 
   [εi1,εi2] ~ bivariate normal (BVN) [0,0,1,1,ρ], -1 < ρ < 1, 
   individual observations on y1 and y2 are available for all i. 
 
(This model is also available for grouped (proportions) data.  See Section E33.2.3.)  The model given 
above would be estimated using a complete sample on [y1, y2, x1, x2] where y1 and y2 are binary 
variables and xij are sets of regressors.  This chapter will describe estimation of this model and 
several variants: 
 

• The disturbances in one or both equations may be heteroscedastic. 
• The observation mechanism may be such that yi1 is not observed when yi2 equals zero. 
• The observation mechanism may be such that only the product of yi1 and yi2 is observed. 

That is, we only observe the compound outcomes ‘both variables equal one’ or ‘one or 
both equal zero.’ 

• The basic model is extended to as many as 20 equations as a multivariate probit model. 
 

NOTE:  It is not necessary for there to be different variables in the two (or more) equations.  The 
Rh1 and Rh2 lists may be identical if your model specifies that.  There is no issue of identifiability or 
of estimability of the model – the variable lists are unrestricted.  This is not a question of 
identification by functional form. The analogous case is the SUR model which is also identified even 
if the variables in the two equations are the same. 
 

• Some extensions to a simultaneous equations model are easily programmed. 
• The bivariate probit and partial observability models are extended to the random 

parameters modeling framework for panel data. 
 

E33.2 Estimating the Bivariate Probit Model 
 

 The two equations can each be estimated consistently by individual single equation probit 
methods (see Chapter E27).  However, this is inefficient and incomplete in that it ignores the 
correlation between the disturbances.  Moreover, the correlation coefficient itself might be of interest.  
The comparison is analogous to that between OLS and GLS in the multivariate regression model.  The 
model is estimated in LIMDEP using full information maximum likelihood.  The essential command is 
 
 BIVARIATE PROBIT ; Lhs  = y1,y2 
 (or just BIVARIATE)  ; Rh1  = right hand side for equation 1 
    ; Rh2  = right hand side for equation 2 $ 
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The command builder for this model is in Model:Binary Choice/Bivariate Probit. The two dependent 
variables and the right hand sides of the two equations are specified on the Main page.  You can also 
specify a model with heteroscedasticity in either or both equations on this page.  The Options page 
allows you to specify the model above (normal) or the sample selection or partial observability model. 
 

 
 

 
Figure E33.1  Command Builder for Bivariate Probit Models 
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E33.2.1 Options for the Bivariate Probit Model 
 

 Restrictions may be imposed both between and within equations by using 

   ; Rst = list of specifications... 
 

and   ; CML: linear restrictions 
 
You might, for example, force the coefficients in the two equations to be equal as follows: 
 
 NAMELIST  ; x = ... $ 
 CALC  ; k = Col(x) $ 
 BIVARIATE ; Lhs = y1,y2 ; Rh1 = x ; Rh2 = x ; Rst = k_b, k_b, r $ 
 
(The model is identified with the same variables in the two equations.) 
 
NOTE:  You should not use the name rho for ρ in your ; Rst specification;  rho is the reserved name 
for the scalar containing the most recently estimated value of ρ in whatever model estimated it.  If it 
has not been estimated recently, it is zero.  Either way, when ; Rst contains the name rho, this is 
equivalent to fixing ρ at the value then contained in the scalar rho.  That is, rho is a value, not a 
model parameter name such as b1.  On the contrary, however, you might wish specifically to use rho 
in your ; Rst specification.  For example, to trace the maximized log likelihood over values of ρ, you 
might base the study on a command set that includes 
 

 PROCEDURE 
 BIVARIATE  ; ....  ; Rst = ..., rho $ 
 ... 
 ENDPROC 
 EXECUTE ; rho = 0.0, .90, .10 $ 
 

This would estimate the bivariate probit model 10 times, with ρ fixed at 0, .1, .2, ..., .9.  Presumably, 
as part of the procedure, you would be capturing the values of logl and storing them for a later listing 
or perhaps a plot of the values against the values of rho. 
 
 If you use the constraints option, the parameter specification includes ρ.  As such, you can 
use this method to fix ρ to a particular value.  For another example, consider the application in 
Section E33.2.8.  This is a model for a voting choice and use of private schools: 
 
   vote =  f1(one,income,property_taxes) 
   private =  f2(one,income,years,teacher). 
 
Suppose it were desired to make the income coefficient the same in the two equations and, in a 
second model, fix rho at 0.4.  The commands could be 
 
 BIVARIATE ; Lhs  = tax,priv  
   ; Rh1  = one,inc,ptax ; Rh2 = one,inc,yrs,tch 
   ; Rst  = b10,bi,b12,b20,bi,b22,b23,r $ 
 

and BIVARIATE ; Lhs  = tax, priv  
   ; Rh1  = one,inc,ptax ; Rh2 = one,inc,yrs,tch 
                ; Rst  = b10,bi,b12,b20,bi,b22,b23,0.4 $ 
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Choice Based Sampling 
 
 Any of the bivariate probit models may be estimated with choice based sampling.  The feature 
is requested with 
   ; Wts = the appropriate weighting variable 
   ; Choice Based 
  
For this model, your weighting variable will take four values, for the four cells (0,0), (0,1), (1,0), and 
(1,1); 
   wij   =  population proportion / sample proportion, i,j = 0,1. 
 
The particular value corresponds to the outcome that actually occurs.  You must provide the values. 
You can obtain sample proportions you need if you do not already have them by computing a 
crosstab for the two Lhs variables: 
 
 CROSSTAB ; Lhs  = y1 ; Rhs = y2  $ 
 
The table proportions are exactly the proportions you will need.  To use this estimator, it is assumed 
that you know the population proportions. 
 
Robust Covariance Matrix with Correction for Clustering 
 
 The standard errors for all bivariate probit models may be corrected for clustering in the 
sample.  Full details on the computation are given in Chapter R10, so we give only the final result 
here.  Assume that the data set is partitioned into G clusters of related observations (like a panel).  
After estimation, let V be the estimated asymptotic covariance matrix which ignores the clustering.  
Let gij denote the first derivatives of the log likelihood with respect to all model parameters for 
observation (individual) i in cluster j.  Then, the corrected asymptotic covariance matrix is 
 

   Est.Asy.Var ˆ 
 β   =  ( )( )1 1 11

i iG n n
ij iji j j

G
G = = =

 ′ 
  −   
∑ ∑ ∑V g g  V  

 
You specify the clusters with 
 
 ; Cluster  =  either the fixed number of individuals in a group or the name of a variable 
    which identifies the group membership 
 
Any identifier which is common to all members in a cluster and different from other clusters may be 
used.  The controls for stratified and clustered data may be used as well.  These are as follows: 
 
 ; Cluster =  the number of observations in a cluster (fixed) or the name of a 
    stratification variable which gives the cluster an identification.  This 
    is the setup that is described above. 
 ; Stratum = the number of observations in a stratum (fixed) or the name of a  
    stratification variable which gives the stratum an identification 
 ; Wts    = the name of the usual weighting variable for model estimation if 
    weights are desired.  This defines wics.  This is the usual weighting 
    setup that has been used in all previous versions of LIMDEP. 



E33: Bivariate and Multivariate Probit and Partial Observability Models  E-681 

 ; FPC    = the name of a variable which gives the number of clusters in the 
    stratum.  This number will be the same for all observations in a 
    stratum – repeated for all clusters in the stratum.  If this number is 
    the same for all strata, then just give the number. 
 ; Huber   Use this switch to request hs.  If omitted, hs = 1 is used. 
 ; DFC        Use this switch to request the use of d given above.  If omitted, 
    d = 1 is used. 
 
Note, these corrections will generally lead to larger standard errors compared to the uncorrected 
results.   
 
Standard Model Specifications for the Bivariate Probit Model 
 

This is the full list of general options that are applicable to this model estimator. 
 
Controlling Output from Model Commands 
 

; OLS  reports initial ordinary least squares estimates of parameters 
; Margin displays marginal effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 

 
; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  
; Choice uses choice based sampling (sandwich with weighting) estimated matrix. 
; Cluster = spec requests computation of the cluster form of corrected covariance estimator. 

 
Optimization Controls for Nonlinear Optimization 
 
 ; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 
 ; Alg = name requests a particular algorithm (Newton is not available, avoid BHHH). 

; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values of y1 as a new (or replacement) variable in data set. 

 ; Res      keeps a fitted value for y2. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 ; Prob   keeps a fitted probability for observed joint y1, y2 outcome. 
 ; Density  keeps a fitted bivariate normal density for observed outcome. 
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Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
Fitted values for the bivariate probit model are treated a bit differently from other single equation 
models.  Note that the fitted value is the prediction for y1 while the ‘residual’ is the prediction for y2. 
Since this is a two equation model, there is no residual as such. 
 
E33.2.2 Starting values 
 
 You may provide starting values for β1 and β2.  (A starting value for ρ is optional, even if 
you give the values for β1 and β2.)  Since estimation of this model is a bit more difficult than the 
univariate probit model – the log likelihood is not globally concave because of ρ – a good set of 
starting values may be helpful. Since the single equation estimators are consistent, one way to 
proceed would be 
 
 NAMELIST ; x1 = the Rhs variables in equation 1 
   ; x2 = the Rhs variables in equation 2 $ 
 PROBIT   ; Lhs = y1 ; Rhs = x1 ... ; ... any other options $ 
 MATRIX ; b1 = b $ 
 PROBIT ; Lhs = y2 ; Rhs  = x2 ... ; ... any other options $ 
 MATRIX ; b2 = b $ 
 BIVARIATE  ; Lhs = y1,y2 ; Rh1 = x1 ; Rh2 = x2 ; Start = b1,b2 $ 
 
where y1 and y2 are the two binary variables, x1 and x2 are lists of variable names for the two 
regressor vectors, and b1 and b2 are the two column vectors of starting values in your matrix work 
area. There must be an exact correspondence between the values in b1 and b2 and the variables in x1 
and x2.   
 If a starting value for ρ is present, it must be last in your list of starting values.  If you do not 
provide starting values for β1 and β2, the OLS results of regressing y1 on x1 and y2 on x2 are used.  
The starting value for ρ is obtained as follows: The conditional mean function E[zi1|yi2 ,xi2] is 
 
    E[zi1|yi2 ,xi2] =  β2′xi2  +  ρλi2 

where   λi2  =  (2yi2-1)φ(β1′xi2) / Φ[(2yi2-1)β1′xi2]. 
  
Thus, if zi1 and β1 were observed, ρ could be estimated by a linear regression of zi1 on xi2 and λi2.  In 
order to approximate this result, we use yi1 for zi1 and the starting values for the parameters in this 
regression.  The resulting estimator is inconsistent, but generally closer to the final result than the 
obvious alternative, zero. 
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E33.2.3 Proportions Data 
 
 Like other discrete choice models, this one may be fit with proportions data.  Since this is a 
bivariate model, you must provide the full set of four proportions variables, in the order 
 
   ; Lhs = p00, p01, p10, p11. 
 
(You may use your own names).  Proportions must be strictly between zero and one, and the four 
variables must add to 1.0. 
 
NOTE:  When you fit the model using proportions data, there is no cross tabulation of fitted and 
actual values produced, and no fitted values or ‘residuals’ are computed. 
 
E33.2.4 Heteroscedasticity 
 
 All bivariate probit specifications, including the basic two equation model, the sample 
selection model (Section E33.4), and the Meng and Schmidt partial observability model (Section 
E33.7), may be fit with a multiplicative heteroscedasticity specification.  The model is the same as 
the univariate probit model (Section E27.11); 
   
   εi  ~  N{0, [exp( γi′zi)]2 }, i = 1 and/or 2. 
 
Either or both equations may be specified in this fashion.  Use 
 
   ; Hf1 = list of variables if you wish to modify the first equation 
   ; Hf2 = list of variables if you wish to modify the second equation 
 
NOTE:  Do not include one in either list.  The model will become inestimable. 
 
The model is unchanged otherwise, and the full set of options given earlier remains available.  To 
give starting values with this modification, supply the following values in the order given: 
 
   Θ  =  [β1,β2,γ1,γ2,ρ]. 
  
As before, all starting values are optional, and if you do provide the slopes, the starting value for ρ is 
still optional.  The internal starting values for the variance parameters are zero for both equations.  
(This produces the original homoscedastic model.) 
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E33.2.5 Specification Tests 
 

Wald, LM, and LR tests related to the slope parameters would follow the usual patterns 
discussed in previous chapters.  One might be interested in testing hypotheses about the correlation 
coefficient.  The Wald test for the hypothesis that ρ equals zero is part of the standard output for the 
model – see the results below which include a ‘t’ statistic for this hypothesis.  Likelihood ratio and 
LM tests can be carried out as shown below: 
 The following routine will test the specification of the bivariate probit model against the null 
hypothesis that two separate univariate probits apply.  The test of the hypothesis that ρ equals zero is 
sufficient for this.  The first group of commands computes and saves the univariate probit 
coefficients and log likelihoods. 
 
 NAMELIST ; x1 = ... Rhs for the first equation 

  ; x2 = ... Rhs for the second equation $ 
PROBIT ; Lhs = y1 ; Rhs = x1 $ 
MATRIX ; b1 = b $ 
CALC  ; l1 = logl $ 
PROBIT ; Lhs = y2 ; Rhs = x2 $ 
MATRIX ; b2 = b $ 
CALC  ; l2 = logl $ 

 
To carry out the likelihood ratio test, we now fit the bivariate model, which is the unrestricted one. 
The restricted model, with ρ = 0, is the two univariate models.  The restricted log likelihood is the 
sum of the two univariate values.  The CALC command carries out the test.  The BIVARIATE 
command also produces a t statistic in the displayed output for the hypothesis that ρ = 0.  To 
automate the test, we can also use the automatically retained values rho and varrho.  The second 
CALC command carries out this test. 
 

BIVARIATE ; Lhs = y1,y2 ; Rh1 = x1 ; Rh2 = x2 $ 
CALC  ; lrtest = 2*(l1 + l2 - logl) 
  ; pvalue = 1 - Chi(lrtest,1) $ 
CALC  ; waldtest = rho^2 / varrho 
  ; pvalue = 1 - Chi(waldtest,1) $ 

 
The Lagrange multiplier test is also simple to carry out using the built in procedure, as we have 
already estimated the restricted model.  The test is carried out with the model command that specifies 
the starting values from the restricted model and restricts the maximum iterations to zero. 
 
 NAMELIST ; x1 = ... Rhs for the first equation 

  ; x2 = ... Rhs for the second equation $ 
PROBIT ; Lhs = y1 ; Rhs = x1 $ 
MATRIX ; b1 = b $ 
PROBIT ; Lhs = y2 ; Rhs = x2 $ 
MATRIX ; b2 = b $ 
BIVARIATE ; Lhs = y1,y2 ; Rh1 = x1 ; Rh2 = x2 
  ; Start = b1,b2,0 ; Maxit = 0 $ 
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 You can test the heteroscedasticity assumption by any of the three classical tests as well.  
The LM test will be the simplest since it does not require estimation of the model with 
heteroscedasticity. You can carry out the LM test as follows: 
  
 NAMELIST ; x1 = ... ; x2   = ... ; z1  = ... ; z2  = ... $ 
 BIVARIATE ; Lhs = ...  ; Rh1 = x1 ; Rh2 = x2 $ 
 CALC  ; h1 = Col(z1) ; h2 = Col(z2)  
   ; k1 = Col(x1) ; k2 = Col(x2) ; k12 = k1+k2 $ 
 MATRIX ; b1_b2 = b(1:k12) $ 
 BIVARIATE ; Lhs = ... 
   ; Rh1 = x1 ; Rh2 = x2 ? specify the two probit equations 
   ; Hf1 = z1 ; Hf2 = z2  ? variables in the two variances 
   ; Start = b1_b2, h1_0, h2_0, rho 
   ; Maxit = 0 $ 
  
In this instance, the starting value for rho is the value that was estimated by the first model, which is 
retained as a scalar value. 
 
E33.2.6 Model Results for the Bivariate Probit Model 
 
 The initial output for the bivariate probit models consists of the ordinary least squares results 
if you request them with 
 
   ; OLS 
 
Final output includes the log likelihood value and the usual statistical results for the parameter 
estimates. 
 The last output, requested with 
 
   ; Summary 
 
 is a joint frequency table for four cells, with actual and predicted values shown.  The predicted 
outcome is the cell with the largest probability.  Cell probabilities are computed using 
   
  Pi00  =  1  -  Pi11  -  Pi10  -  Pi01   Pi01  =  Φ   [β2′xi2]  -  Pi11 

   Pi10  =  Φ   [β1′xi1]  -  Pi11  Pi11  =  Φ2 [β1′xi1, β2′xi1, ρ] 
 
A table which assesses the success of the model in predicting the two variables is presented as well. 
An example appears below.  The predictions and residuals are a bit different from the usual setup 
(because this is a two equation model): 
 
   ; Keep = name to retain the predicted y1 
   ; Res = name  to retain the predicted y2 
   ; Prob = name  to retain the probability for observed y1, y2 outcome 
   ; Density = fitted bivariate normal density for observed outcome 
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 Matrix results kept in the work areas automatically are b and varb.  An extra matrix named 
b_bprobt is also created.  This is a two column matrix that collects the coefficients in the two 
equations in a parameter matrix. The number of rows is the larger of the number of variables in x1 
and x2.  The coefficients are placed at the tops of the respective columns with the shorter column 
padded with zeros.   
 
NOTE:  There is no correspondence between the coefficients in any particular row of b_bprobt. For 
example, in the second row, the coefficient in the first column is that on the second variable in x1 
and the coefficient in the second column is that on the second variable in x2.  These may or may not 
be the same. 
 
 The results saved by the binary choice models are: 
 
 Matrices: b   =  estimate of (β1′,β2′,ρ)′  
   varb   =  asymptotic covariance matrix 
 
 Scalars: kreg   =  number of parameters in model 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Variables: logl_obs =  individual contribution to log likelihood 
 
 Last Model: b1_variables, b2_variables, c1_variables, c1_variables, r12 
 
 Last Function: Prob(y1 = 1,y2 = 1|x1,x2) = Φ2(b1′x1,b2′x2,r) 
 
The saved scalars are nreg, kreg, logl, rho, varrho.  The Last Model labels are b_variables and 
b2_variables.  If the heteroscedasticity specification is used, the additional coefficients are 
c1_variables and c2_variables.  To extract a vector that contains only the slopes, and not the 
correlation, use 
 
 MATRIX ; {kb = kreg-1} ; b1b2 = b(1:kb) $ 
 
To extract the two parameter vectors separately, after defining the namelists, you can use 
 
 MATRIX ; {k1 = Col(x1) ; k12 = k1+1 ; kb = kreg-1} 

; b1 = b(1:k1) ; b2 = b(k12:kb) $ 
 
You may use other names for the matrices.  (Note that the MATRIX commands contain embedded 
CALC commands contained in {}.)  If the model specifies heteroscedasticity, similar constructions 
can be used to extract the three or four parts of b. 
  



E33: Bivariate and Multivariate Probit and Partial Observability Models  E-687 

E33.2.7 Partial Effects 
 
 Because it is a two equation model, it is unclear what should be an appropriate ‘marginal 
effect’ in the bivariate probit model.  (This is one of our frequently asked questions, as users are 
often uncertain about what it is that they are looking for when they seek the ‘partial effects’ in the 
model – effect of what?  on what?)  The literature is not necessarily helpful in this regard.  The one 
published result in the econometrics literature, Christofides, Stengos and Swidinsky (1997), plus an 
error correction in a later issue, focuses on the joint probability of the two outcome variables 
equaling one – which is not a conditional mean.  The probability might be of interest.  It can be 
examined with the PARTIAL EFFECTS program.  An example appears in Section E33.2.8.   The 
marginal means in the model are the univariate probabilities that the two variables equal one. These 
are also not necessarily interesting, but, in any event, they can be computed using the univariate 
models. 

LIMDEP analyzes the conditional mean function 
 
   E[y1 | y2 = 1, x1, x2] = Prob[y1 = 1,y2 = 1| x1,x2,ρ) / Prob[y2 = 1|x1]. 
 
This is the function analyzed in the bivariate probit marginal effects processor.  The bivariate probit 
estimator in LIMDEP allows either or both of the latent regressions to be heteroscedastic.  The 
reported effects for this model include the decomposition of the marginal effect into all four terms, 
the regression part and the variance part, in each of the two latent models. 

The computations of the following marginal effects in the bivariate probit model are 
included as an option with the estimator. There are two models, the base case of y1,y2 a pair of 
correlated probit models, and y1|y2 = 1, the bivariate probit with sample selection.  (See Section E33.4 
below.)  The conditional mean computed for these two models would be identical, 
 
   E[y1|y2 = 1]  = Φ2 [w1, w2 , ρ ] / Φ( w2 ) 
 
where Φ2 is the bivariate normal CDF and Φ is the univariate normal CDF. This model allows 
multiplicative heteroscedasticity in either or both equations, so 
 

  w1  =  β1′x1 / exp(γ1′z1) 
 
and likewise for w2.  In the homoscedastic model, γ1 and/or γ2 is a zero vector.  Four full sets of 
marginal effects are reported, for x1, x2, z1, and z2.  Note that the last two may be zero.  The four 
vectors may also have variables in common.  For any variable which appears in more than one of the 
parts, the marginal effect is the sum of the individual terms.  A table is reported which displays these 
total effects for every variable which appears in the model, along with estimated standard errors and 
the usual statistical output. Formulas for the parts of these marginal effects are given below with the 
technical details.  For further details, see Greene (2011).  Commands and suggestions for how to do 
these computations are given in Section E33.2.8. 
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 Note that you can get marginal effects for y2|y1 just by respecifying the model with y1 and y2 
reversed (y2 now appears first) in the Lhs list of the command. You can also trick LIMDEP into 
giving you marginal effects for y1|y2 = 0 (instead of y2 = 1) by computing z1 = 1-y1 and z2 = 1-y2, and 
fitting the same bivariate probit model but with Lhs = z1,z2.  You must now reverse the signs of the 
marginal effects (and all slope coefficients) that are reported. 
 The example below was produced by a sampling experiment:  Note that the model specifies 
heteroscedasticity in the second equation though, in fact, there is none. 
 
 CALC  ; Ran(12345) $ 

SAMPLE   ; 1-500 $ 
 CREATE   ; u1 = Rnn(0,1)   ; u2 = u1 + Rnn(0,1)  

; z  = Rnu(.2,.4) ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) 
; x3 = Rnn(0,1)   ; y1 = (x1 + x2 + u1) > 0 ; y2 = (x1 + x3 + u2) > 0 $ 

 BIVARIATE    ; Lhs = y1,y2  
; Rh1 = one,x1,x2 ; Rh2 = one,x1,x3  
; Hf2 = z ; Partial Effects $ 

 
The first set of results is the model coefficients. 
 
----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable                 Y1Y2 
Log likelihood function      -416.31350 
Estimation based on N =    500, K =   8 
Inf.Cr.AIC  =  848.627 AIC/N =    1.697 
Disturbance model is multiplicative het. 
Var. Parms follow   6 slope estimates. 
For e(2),  1 estimates follow X3 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for Y1 
Constant|    -.04292         .07362     -.58  .5599     -.18721    .10137 
      X1|    1.09235***      .08571    12.74  .0000      .92435   1.26035 
      X2|    1.06802***      .08946    11.94  .0000      .89268   1.24337 
        |Index    equation for Y2 
Constant|     .01017         .06432      .16  .8744     -.11590    .13623 
      X1|     .82908**       .37815     2.19  .0283      .08792   1.57024 
      X3|     .70123**       .30512     2.30  .0215      .10321   1.29925 
        |Variance equation for Y2 
       Z|    -.05575        1.45449     -.04  .9694    -2.90651   2.79500 
        |Disturbance correlation 
RHO(1,2)|     .66721***      .07731     8.63  .0000      .51568    .81874 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This is the decomposition of the marginal effects for the four possible contributors to the effect. 
 
+------------------------------------------------------+ 
|              Partial Effects for Ey1|y2=1            | 
+----------+---------------------+---------------------+ 
|          | Regression Function |  Heteroscedasticity | 
|          +---------------------+---------------------+ 
|          |   Direct | Indirect |   Direct | Indirect | 
| Variable | Efct  x1 | Efct  x2 | Efct  h1 | Efct  h2 | 
+----------+----------+----------+----------+----------+ 
|       X1 |   .48383 |  -.17370 |   .00000 |   .00000 | 
|       X2 |   .47305 |   .00000 |   .00000 |   .00000 | 
|       X3 |   .00000 |  -.14691 |   .00000 |   .00000 | 
|        Z |   .00000 |   .00000 |   .00000 |   .00092 | 
+----------+----------+----------+----------+----------+ 
 
A table of the specific effects is produced for each contributor to the marginal effects.  This first 
table gives the total effects.  The values here are the row total in the table above. 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .661053 
Observations used for means are  All Obs. 
Total effects reported = direct+indirect. 
--------+-------------------------------------------------------------------- 
      Y1|     Partial      Standard            Prob.      95% Confidence 
      Y2|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .31013***      .04356     7.12  .0000      .22476    .39550 
      X2|     .47305***      .04338    10.91  .0000      .38804    .55807 
      X3|    -.14691***      .02853    -5.15  .0000     -.20283   -.09099 
       Z|     .00092         .02404      .04  .9694     -.04620    .04804 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The direct effects are the marginal effects of the variables (x1 and z1) that appear in the first equation. 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .435447 
Observations used for means are  All Obs. 
These  are the  direct marginal  effects. 
--------+-------------------------------------------------------------------- 
     TAX|     Partial      Standard            Prob.      95% Confidence 
    PRIV|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     INC|     .67814***      .24487     2.77  .0056      .19820   1.15807 
    PTAX|    -.83030**       .38146    -2.18  .0295    -1.57794   -.08266 
     YRS|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
The indirect effects are the effects of the variables that appear in the other (second) equation. 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .661053 
Observations used for means are  All Obs. 
These are the indirect  marginal effects. 
--------+-------------------------------------------------------------------- 
      Y1|     Partial      Standard            Prob.      95% Confidence 
E[y1|x,z|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|    -.17370***      .03250    -5.34  .0000     -.23740   -.11000 
      X2|        0.0    .....(Fixed Parameter)..... 
      X3|    -.14691***      .02853    -5.15  .0000     -.20283   -.09099 
       Z|     .00092         .02404      .04  .9694     -.04620    .04804 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
 The marginal effects processor in the bivariate probit model detects when a regressor is a 
dummy variable.  In this case, the marginal effect is computed using differences, not derivatives.  
The model results will contain a specific description.  To illustrate this computation, we revisit the 
German health care data.  A description appears in Chapter E2.  Here, we analyze the two health care 
utilization variables, doctor = 1(docvis > 0) and hospital = 1(hospvis > 0) in a bivariate probit model.  
The model command is 
 
 SAMPLE ; All $ 
 CREATE ; doctor = docvis > 0 ; hospital = hospvis > 0 $ 
 BIVARIATE ; Lhs  = doctor,hospital 
   ; Rh1 = one,age,educ,hhninc,hhkids 
   ; Rh2 = one,age,hhninc,hhkids 
   ; Partial Effects $ 
 
The variable hhkids is a binary variable for whether there are children in the household.  The 
estimation results are as follows.  This is similar to the preceding example.  The final table contains 
the result for the binary variable.  In fact, the explicit treatment of the binary variable results in very 
little change in the estimate. 
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----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable               DOCHOS 
Log likelihood function    -25552.65886 
Estimation based on N =  27326, K =  10 
Inf.Cr.AIC  =51125.318 AIC/N =    1.871 
--------+-------------------------------------------------------------------- 
  DOCTOR|                  Standard            Prob.      95% Confidence 
HOSPITAL|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for DOCTOR 
Constant|     .13653**       .05618     2.43  .0151      .02642    .24663 
     AGE|     .01353***      .00076    17.84  .0000      .01205    .01502 
    EDUC|    -.02675***      .00345    -7.75  .0000     -.03352   -.01998 
  HHNINC|    -.10245**       .04541    -2.26  .0241     -.19144   -.01345 
  HHKIDS|    -.12299***      .01670    -7.37  .0000     -.15571   -.09027 
        |Index    equation for HOSPITAL 
Constant|   -1.54988***      .05325   -29.10  .0000    -1.65426  -1.44551 
     AGE|     .00510***      .00100     5.08  .0000      .00313    .00707 
  HHNINC|    -.05514         .05510    -1.00  .3169     -.16314    .05285 
  HHKIDS|    -.02682         .02392    -1.12  .2622     -.07371    .02006 
        |Disturbance correlation 
RHO(1,2)|     .30251***      .01381    21.91  .0000      .27545    .32958 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------+ 
|  Partial Effects for Ey1|y2=1  | 
+----------+----------+----------+ 
|          |   Direct | Indirect | 
| Variable | Efct  x1 | Efct  x2 | 
+----------+----------+----------+ 
|      AGE |   .00367 |  -.00036 | 
|     EDUC |  -.00726 |   .00000 | 
|   HHNINC |  -.02779 |   .00385 | 
|   HHKIDS |  -.03336 |   .00187 | 
+----------+----------+----------+ 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .822131 
Observations used for means are  All Obs. 
Total effects reported = direct+indirect. 
--------+-------------------------------------------------------------------- 
  DOCTOR|     Partial      Standard            Prob.      95% Confidence 
HOSPITAL|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00332***      .00023    14.39  .0000      .00286    .00377 
    EDUC|    -.00726***      .00096    -7.58  .0000     -.00913   -.00538 
  HHNINC|    -.02394*        .01225    -1.95  .0507     -.04796    .00008 
  HHKIDS|    -.03149***      .00471    -6.69  .0000     -.04072   -.02226 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .822131 
Observations used for means are  All Obs. 
These  are the  direct marginal  effects. 
--------+-------------------------------------------------------------------- 
  DOCTOR|     Partial      Standard            Prob.      95% Confidence 
HOSPITAL|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00367***      .00022    16.44  .0000      .00323    .00411 
    EDUC|    -.00726***      .00096    -7.58  .0000     -.00913   -.00538 
  HHNINC|    -.02779**       .01232    -2.25  .0241     -.05195   -.00364 
  HHKIDS|    -.03336***      .00460    -7.26  .0000     -.04237   -.02436 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .822131 
Observations used for means are  All Obs. 
These are the indirect  marginal effects. 
--------+-------------------------------------------------------------------- 
  DOCTOR|     Partial      Standard            Prob.      95% Confidence 
E[y1|x,z|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|    -.00036***   .7075D-04    -5.03  .0000     -.00049   -.00022 
    EDUC|        0.0    .....(Fixed Parameter)..... 
  HHNINC|     .00385         .00385     1.00  .3167     -.00369    .01140 
  HHKIDS|     .00187         .00167     1.12  .2620     -.00140    .00515 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
+-----------------------------------------------------------+ 
| Analysis of dummy variables in the model. The effects are | 
| computed using E[y1|y2=1,d=1] - E[y1|y2=1,d=0] where d is | 
| the variable. Variances use the delta method.  The effect | 
| accounts for all appearances of the variable in the model.| 
+-----------------------------------------------------------+ 
|Variable      Effect   Standard error     t ratio          | 
+-----------------------------------------------------------+ 
 HHKIDS      -.031829     .004804           -6.625 
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E33.2.8 Application 
 
 The following are a subset of the variables and observations of a data set given by Pindyck 
and Rubinfeld (1991).  The variables in the data set are: 
  
 priv =  decision whether to have at least one child in private school. 
 yrs =  years lived in the community. 
 inc =  log of income.  Read in as a code, then recoded. 
 ptax =  log of property taxes paid.  Read in as a code, then recoded. 
 tax =  vote (0=no) on a property tax. 
  
The data were entered and transformed as follows: 
 
 READ   ; Nvar = 5 ; Nobs = 80 ; By Variables  
   ; Names = priv,yrs,inc,ptax,tax $ 

 

0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 
42 5 10 4 4 11 5 35 3 16 7 5 11 3 2 2 2 2 4 2 3 3 2 10 2 2 3 3 3 6 2 26 18 
4 6 12 49 6 18 5 6 20 1 3 5 2 5 18 20 14 3 17 20 3 2 5 35 10 8 12 7 3 25 5 
4 2 5 3 2 6 3 12 3 3 3 3 3 5 35 3 
4 6 5 6 6 7 6 4 7 5 7 4 4 4 6 5 3 1 7 5 6 6 6 5 6 5 8 5 5 5 5 4 6 4 5 5 3 
7 4 5 4 3 4 5 7 5 8 3 4 2 3 3 5 5 5 6 4 5 4 4 6 7 6 4 6 5 7 4 8 2 4 3 4 5 
5 6 5 5 2 7 
3 4 4 4 3 4 4 3 5 3 4 3 4 3 4 3 3 4 4 4 5 4 6 4 4 4 6 4 4 3 4 3 6 3 4 3 3 
5 4 4 1 4 2 3 4 4 5 3 1 2 6 3 4 4 4 4 4 5 4 4 3 3 3 3 4 5 3 4 6 1 4 2 3 4 
3 5 4 4 1 6 
1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 
1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 
1 1 1 1 1 0 

  

 RECODE ; inc 
        ; 1 = 8.294 ; 2 = 8.9227  ; 3 = 9.4335  ; 4 = 9.77 
  ; 5 = 10.021 ; 6 = 10.222  ; 7 = 10.463 ; 8 = 10.820 $ 

 RECODE ; ptax 
  ; 1 = 5.9915 ; 2 = 6.3969 ; 3 = 6.7452 ; 4 = 7.0475 
  ; 5 = 7.2793 ; 6 = 7.4955 $ 

 
A bivariate probit model using these data was estimated by Greene (1984).  The following is a 
version of that application.  We fit the model 
 
   vote      =  f1(income, property taxes), 
   private  =  f2(income, years, property taxes). 
 
In the first model, the coefficients are unrestricted.  In the second, the income coefficients in the two 
equations are forced to be equal. 
 

NAMELIST ; y = tax,priv 
  ; x1 = one,inc,ptax ; x2  = one,inc,yrs,ptax $ 
BIVARIATE ; Lhs = y ; Rh1 = x1 ; Rh2  = x2 ; OLS ; Summary  
  ; Partial Effects $ 
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----------------------------------------------------------------------------- 
OLS Starting Estimates for Bivariate Probit 
--------+-------------------------------------------------------------------- 
     TAX|                  Standard            Prob.      95% Confidence 
    PRIV|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.28967        1.30849     -.22  .8248    -2.85426   2.27492 
     INC|     .47407***      .14186     3.34  .0008      .19602    .75211 
    PTAX|    -.54751***      .18403    -2.98  .0029     -.90819   -.18682 
Constant|    -.56240        1.06063     -.53  .5959    -2.64120   1.51639 
     INC|     .08378         .10800      .78  .4379     -.12789    .29546 
     YRS|    -.00129         .00411     -.31  .7532     -.00935    .00677 
    PTAX|    -.01966         .13886     -.14  .8874     -.29181    .25249 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable               TAXPRI 
Log likelihood function       -74.32308 
Estimation based on N =     80, K =   8 
Inf.Cr.AIC  =  164.646 AIC/N =    2.058 
Model estimated: Jun 16, 2011, 07:58:43 
--------+-------------------------------------------------------------------- 
     TAX|                  Standard            Prob.      95% Confidence 
    PRIV|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for TAX 
Constant|   -2.04203        4.36803     -.47  .6401   -10.60321   6.51915 
     INC|    1.64616***      .59722     2.76  .0058      .47563   2.81670 
    PTAX|   -2.01554**       .91996    -2.19  .0285    -3.81863   -.21245 
        |Index    equation for PRIV 
Constant|   -3.86036        4.41911     -.87  .3824   -12.52166   4.80094 
     INC|     .35280         .80209      .44  .6600    -1.21926   1.92486 
     YRS|    -.01622         .04913     -.33  .7413     -.11252    .08008 
    PTAX|    -.09948        1.04226     -.10  .9240    -2.14227   1.94331 
        |Disturbance correlation 
RHO(1,2)|    -.32379         .29914    -1.08  .2791     -.91009    .26251 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

+-----------------------------------------------------+ 
| Joint Frequency Table for Bivariate Probit Model    | 
| Predicted cell is the one with highest probability  | 
+-----------------------------------------------------+ 
|                         PRIV                        | 
+-------------+---------------------------------------+ 
|  TAX        |       0            1         Total    | 
|-------------+-------------+------------+------------+ 
|         0   |        24   |        5   |       29   | 
|    Fitted   |   (    19)  |  (     0)  |  (    19)  | 
|-------------+-------------+------------+------------+ 
|         1   |        46   |        5   |       51   | 
|    Fitted   |   (    61)  |  (     0)  |  (    61)  | 
|-------------+-------------+------------+------------+ 
|     Total   |        70   |       10   |       80   | 
|    Fitted   |   (    80)  |  (     0)  |  (    80)  | 
|-------------+-------------+------------+------------+ 
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+--------------------------------------------------------+ 
| Bivariate Probit Predictions for TAX      and PRIV     | 
| Predicted cell (i,j) is cell with largest probability  | 
| Neither TAX      nor PRIV     predicted correctly      | 
|                             4 of      80 observations  | 
| Only    TAX      correctly predicted                   | 
|         TAX      = 0:       2 of      29 observations  | 
|         TAX      = 1:       4 of      51 observations  | 
| Only    PRIV     correctly predicted                   | 
|         PRIV     = 0:      18 of      70 observations  | 
|         PRIV     = 1:       4 of      10 observations  | 
| Both    TAX      and PRIV     correctly predicted      | 
|         TAX      = 0 PRIV     = 0:      11 of      24  | 
|         TAX      = 1 PRIV     = 0:      41 of      46  | 
|         TAX      = 0 PRIV     = 1:       0 of       5  | 
|         TAX      = 1 PRIV     = 1:       0 of       5  | 
+--------------------------------------------------------+ 
 
The partial effects are as follows: 
+--------------------------------+ 
|  Partial Effects for Ey1|y2=1  | 
+----------+----------+----------+ 
|          |   Direct | Indirect | 
| Variable | Efct  x1 | Efct  x2 | 
+----------+----------+----------+ 
|      INC |   .67814 |   .03880 | 
|     PTAX |  -.83030 |  -.01094 | 
|      YRS |   .00000 |  -.00178 | 
+----------+----------+----------+ 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .435447 
Observations used for means are  All Obs. 
Total effects reported = direct+indirect. 
--------+-------------------------------------------------------------------- 
     TAX|     Partial      Standard            Prob.      95% Confidence 
    PRIV|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     INC|     .71693***      .24000     2.99  .0028      .24654   1.18732 
    PTAX|    -.84124**       .37127    -2.27  .0235    -1.56892   -.11356 
     YRS|    -.00178         .00669     -.27  .7897     -.01489    .01132 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .435447 
Observations used for means are  All Obs. 
These  are the  direct marginal  effects. 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
     TAX|     Partial      Standard            Prob.      95% Confidence 
    PRIV|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     INC|     .67814***      .24487     2.77  .0056      .19820   1.15807 
    PTAX|    -.83030**       .38146    -2.18  .0295    -1.57794   -.08266 
     YRS|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .435447 
Observations used for means are  All Obs. 
These are the indirect  marginal effects. 
--------+-------------------------------------------------------------------- 
     TAX|     Partial      Standard            Prob.      95% Confidence 
E[y1|x,z|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     INC|     .03880         .07495      .52  .6047     -.10810    .18570 
    PTAX|    -.01094         .10889     -.10  .9200     -.22435    .20247 
     YRS|    -.00178         .00669     -.27  .7897     -.01489    .01132 
--------+-------------------------------------------------------------------- 
  

 The preceding examined the conditional mean function, Φ2(b1′x1,b2′x2,ρ)/Φ(b2′x2).  The 
PARTIAL EFFECTS (or just PARTIALS) command will produce effects for the joint probability 
instead.  The default computation is the average partial effect.  The following shows the computation 
at the data means for comparison. 
 
 PARTIALS ; Effects: ptax $ 
 PARTIALS ; Effects: ptax ; Means $ 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Bivariate Probit Prob. Function 
--------------------------------------------------------------------- 
Effects on function with respect to PTAX 
Results are computed by average over sample observations 
Partial effects for continuous PTAX     computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dPTAX           Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function      -.10264     .11275     .91     -.32363      .11834 
--> partials ; effects: ptax; means $ 
--------------------------------------------------------------------- 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for Bivariate Probit Prob. Function 
--------------------------------------------------------------------- 
Effects on function with respect to PTAX 
Results are computed at sample means of all variables 
Partial effects for continuous PTAX     computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dPTAX           Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
PE.Func(means)     -.10940     .11724     .93     -.33918      .12039 
 
The function in the PARTIALS command can be changed, for example, to analyze the same 
conditional mean function as above.  We would do this as follows: 
 

PARTIALS ; Effects: ptax 
; Function = bx1 = b1+b2*inc+b3*ptax | 

    bx2 = c1+c2*inc+c3*yrs+c4*ptax | 
    Bvn(bx1,bx2,ro)/Phi(bx2) 

; Labels = b1,b2,b3,c1,c2,c3,c4,ro  $ 
Adding  
   ; Means $ 
 
would then replicate the computations done with the ; Partial Effects specification in the model 
command.  The -.84124 and standard error of .37127 appear in the earlier table of total effects for the 
bivariate probit model. 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for User Specified Function 
--------------------------------------------------------------------- 
Effects on function with respect to PTAX 
Results are computed by average over sample observations 
Partial effects for continuous PTAX     computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dPTAX           Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function      -.72099     .26544    2.72    -1.24124     -.20074 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for User Specified Function 
--------------------------------------------------------------------- 
Effects on function with respect to PTAX 
Results are computed at sample means of all variables 
Partial effects for continuous PTAX     computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dPTAX           Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
PE.Func(means)     -.84124     .37127    2.27    -1.56892     -.11356 
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 The advantage of the latter computations is that the partial effect can be computed for a 
variety of values of the variable of interest.  For example, 

 
PARTIALS ; Effects: ptax & ptax = 6(.1)8 ; Plot(ci) 

; Function = bx1 = b1+b2*inc+b3*ptax | 
    bx2 = c1+c2*inc+c3*yrs+c4*ptax | 
    Bvn(bx1,bx2,ro)/Phi(bx2) 

; Labels = b1,b2,b3,c1,c2,c3,c4,ro $ 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for User Specified Function 
--------------------------------------------------------------------- 
Effects on function with respect to PTAX 
Results are computed by average over sample observations 
Partial effects for continuous PTAX     computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dPTAX           Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function      -.72099     .26544    2.72    -1.24124     -.20074 
PTAX    =  6.00    -.20817     .15743    1.32     -.51673      .10040 
PTAX    =  6.10    -.26309     .16808    1.57     -.59252      .06634 
PTAX    =  6.20    -.32621     .17380    1.88     -.66686      .01444 
PTAX    =  6.30    -.39555     .17715    2.23     -.74277     -.04834 
PTAX    =  6.40    -.46780     .18345    2.55     -.82737     -.10823 
PTAX    =  6.50    -.53839     .19785    2.72     -.92619     -.15060 
PTAX    =  6.60    -.60194     .22038    2.73    -1.03389     -.16998 
PTAX    =  6.70    -.65286     .24492    2.67    -1.13290     -.17281 
PTAX    =  6.80    -.68619     .26308    2.61    -1.20182     -.17056 
PTAX    =  6.90    -.69840     .26843    2.60    -1.22453     -.17227 
PTAX    =  7.00    -.68796     .25902    2.66    -1.19564     -.18029 
PTAX    =  7.10    -.65567     .23829    2.75    -1.12272     -.18863 
PTAX    =  7.20    -.60451     .21462    2.82    -1.02517     -.18384 
PTAX    =  7.30    -.53914     .19825    2.72     -.92772     -.15056 
PTAX    =  7.40    -.46519     .19459    2.39     -.84658     -.08379 
PTAX    =  7.50    -.38838     .19962    1.95     -.77964      .00287 
PTAX    =  7.60    -.31385     .20452    1.53     -.71471      .08701 
PTAX    =  7.70    -.24554     .20263    1.21     -.64268      .15161 
PTAX    =  7.80    -.18603     .19158     .97     -.56152      .18946 
PTAX    =  7.90    -.13653     .17234     .79     -.47432      .20126 
PTAX    =  8.00    -.09708     .14767     .66     -.38652      .19236 
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Figure E33.2  Partial Effects with Confidence Bounds 

 
BIVARIATE ; Lhs = y ; Rh1 = x1 ; Rh2 = x2 
  ; Rst = b01,bi,b21,b02,bi,b22,b23,r $ 

 
----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable               TAXPRI 
Log likelihood function       -75.50379 
Estimation based on N =     80, K =   7 
Inf.Cr.AIC  =  165.008 AIC/N =    2.063 
--------+-------------------------------------------------------------------- 
     TAX|                  Standard            Prob.      95% Confidence 
    PRIV|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for TAX 
Constant|     .14105        4.45802      .03  .9748    -8.59651   8.87860 
     INC|    1.08018***      .39721     2.72  .0065      .30167   1.85869 
    PTAX|   -1.51763**       .70085    -2.17  .0304    -2.89127   -.14398 
        |Index    equation for PRIV 
Constant|   -7.57707**      3.76951    -2.01  .0444   -14.96518   -.18897 
     INC|    1.08018***      .39721     2.72  .0065      .30167   1.85869 
     YRS|    -.01039         .03813     -.27  .7852     -.08512    .06434 
    PTAX|    -.62120         .65264     -.95  .3412    -1.90036    .65795 
        |Disturbance correlation 
RHO(1,2)|    -.31361         .28024    -1.12  .2631     -.86287    .23564 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E33.2.9 Technical Details 
 
 Let  
   qim  =  2yim  -  1, m = 1,2. 
 
The log likelihood function for the bivariate probit model is 
 
   log L  =  Σi log Φ2[qi1β1′xi1, qi2β2′xi2, qi1qi2ρ], 
 
where we use Φ2 to denote the bivariate standard normal CDF.  We will also use φ2[.,.,.] to denote 
the bivariate normal density function.  We use φ and Φ, without subscripts, to denote the univariate 
standard normal density and CDF, respectively.  For convenience in what follows, we will drop the 
observation subscript.  Let 
  
   zm   =  βm′xm, m = 1,2, 

    wm  =  qm zm, m = 1,2, 

   ρ*  =  q1q2 ρ (note that the sign is the same if y1 = y2), 

    g1   =  φ(w1)Φ[(w2 - ρ*w1)/(1 - ρ*
2)1/2 ], 

   g2 =  φ(w2)Φ[(w1 - ρ*w2)/(1 - ρ*
2)1/2]. 

 
Then,   ∂log L/∂βj  =  Σi (qj gj/Φ2)xj ,  j = 1,2 
 
and   ∂log L/∂ρ   =  Σi q1q2 φ2 /Φ2. 
 
NOTE:  A corollary to this result is the marginal effect for the conditional mean function.  Define x 
to be the union of x1 and x2, and define θ1 and θ2 conformably with zeros in the appropriate places so 
that z1 = θ1′x = β1′x1 and z2 = θ2′x = β2′x2.  Then, 
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These are the parts that appear in the tables in the earlier applications, with zeros placed 
appropriately. (The computation is similar, albeit much more tedious, for a model with 
heteroscedasticity.) 
 
 During estimation, we use a transformation of ρ to avoid problems resulting from invalid 
correlation coefficients in computing the log likelihood.  We define 
 
   τ =  log[(1 + ρ)/(1 - ρ)] 
 
Then,   ρ =  [exp(τ) - 1] / [exp(τ) + 1]. 
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The range of τ is unrestricted.  The model is viewed as a function of τ.  During any computation of 
the log likelihood or its derivatives, we compute ρ from τ, then use ρ.  Derivatives are then corrected 
to accommodate the transformation.  The end result for your estimation of the model is that you will 
not receive diagnostics about ρ going out of the allowable range, again, since τ is unrestricted.  Of 
course, it is possible for τ to become extremely large or small, which would imply that the model is 
gravitating toward the polar values of ρ.  This signals a problem with your model, such as when the 
two Lhs variables are too highly correlated, or if an independent variable in one equation is a perfect 
predictor of the Lhs variable in the other.  One point to note is that if your model command contains 
; Output = 3, the displayed output will show you the transient value of τ, not of ρ.  For example, in 
estimating the unrestricted model above, the technical output at the last iteration shows 
 
1st derivs.     .32279D-07   .33001D-06   .24128D-06   .29297D-07   .30245D-06 
   .77385D-07   .21848D-06  -.48524D-08 
Parameters:    -.20420D+01   .16462D+01  -.20155D+01  -.38604D+01   .35280D+00 
  -.16221D-01  -.99484D-01  -.67176D+00 
 
The last parameter in the list is τ, which appears above as the value -0.67176.  But, the model output 
shows 
 
RHO(1,2)|    -.32379         .29914    -1.08  .2791     -.91009    .26251 
 
The value given is [exp(-.67176) - 1]/[exp(-.67176) + 1] =  -.3237943. 
 Some of these results are produced as part of the output from your estimation.  But, you may 
wish to do these computations for other purposes.  The CALC and CREATE functions Bvn, Bvd, 
Bv1, and Bv2 are provided for this purpose.  To use these, you must first compute either the 
variables z1 and z2 or the scalars, we’ll call them c1 and c2, and obtain the value of ρ that you wish to 
use, which we’ll call r.  Then, use 
 
 NAMELIST ; z = z1,z2 $ 
 CREATE ; phi2 = Bvn(z,r) ? to compute the probability 
   ; f2 = Bvd(z,r)  ? to compute the density 
   ; g1 = Bv1(z,r)  ? to compute the g1 function 
   ; g2 = Bv2(z,r)  $ to compute the g2 function 
 
The same functions are available in CALC, except that in CALC, instead of the namelist with two 
names, you give both arguments.  Thus, 
 
 CALC  ; cphi2 = Bvn(z1,z2,r) ? to compute the probability 
   ; cf2 = Bvf(z1,z2,r) ? to compute the density 
   ; cg1 = Bv1(z1,z2,r) ? to compute the g1 function 
   ; cg2 = Bv2(z1,z2,r) $ to compute the g2 function 
 
computes these functions for the single values given.  Here are three applications.  In all cases, we 
precede the computations with 
 
 NAMELIST ; x1 =  ... Rhs for equation 1 
   ; x2 =  ... Rhs for equation 2 $ 
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Conditional Mean Predictions 
 
 BIVARIATE ; Lhs = y1 ; Rh1 = x1 ; Rh2 = x2 $ 
 CALC  ; k1 = Col(x1) ; k11 = k1+1 ; k12 = k1 + Col(x2) $ 
 MATRIX ; b1 = b(1,k1)  ; b2 = b(k11,k12) $ 
 CREATE ; z1  = b1’x1 ; z2 = b2’z2 $ 
 NAMELIST ; z = z1,z2 $ 
 CREATE ; ey1_y2 = Bvn(z,rho) / Phi(z2) $ 
 
Scale Factor for Marginal Effects, at the Means 
 
 BIVARIATE ; Lhs = y1 ; Rh1 = x1 ; Rh2 = x2 $ 
 CALC  ; k1 = Col(x1) ; k11 = k1+1 ;  k12 = k1 + Col(x2) $ 
 MATRIX ; b1 = b(1:k1) ; b2 = b(k11:k12) $ 
 CREATE ; z1 = b1’x1 ; z2 = b2’z2 $ 
 CALC  ; cz1 = Xbr(z1) ?  Scale factors for derivatives 
   ; cz2 = Xbr(z2) ?  of E[y1|y2=1] wrt x1 and x2 
   ; me1 =  Bv1(cz1,cz2,rh0) / Phi(cz2) 
   ; me2 = (Bv2(cz1,cz2,rho)  - 
                Bvn(cz1,cz2,rho) * N01(cz2) / Phi(cz2) ) / Phi(cz2) $ 
 
Lambda Variables for the Sample Selection Model 
 
 (This is another frequently asked question.)  Section E55.3.3 describes the following sample 
selection model: 
   (y1, y2)  determined by the bivariate probit model of this chapter 

   y =  δ′x  +  u 
 
Corr(u,ε1) = ρu1, Corr(u,ε2) = ρu2.  But, (y,x) are only observed when (y1 = 1, y2 = 1).  Estimation of 
this model is done by a two step extension of Heckman’s method for a single probit selection model.  
The linear regression is computed using the observed data, with regression of y on x, λ1 and λ2 where 
the two ‘lambda’ variables are, in fact,  g1/Φ2 and g2/Φ2 as defined above.  These variables are 
computed internally during estimation, but not retained anywhere accessible.  We are often asked 
how these can be computed and, moreover, can they be computed for the ‘nonselected’ observations.  
Using what is already done above, the computation is actually simple.  The full set of computations 
would be as follows:  (This is generic. Only the first command would be specific to any application.) 
 
 CREATE ; y1 = equation 1 Lhs variable ; y2 = equation 2 Lhs variable $ 
 BIVARIATE ; Lhs = y1, y2 ; Rh1 = x1 ; Rh2 = x2 $ 
 CREATE ; q1 = 2*y1 – 1 ; q2 = 2*y2 - 1 $ 
 CALC  ; k1 = Col(x1)  ; k21 = k1 + 1 ; kvar = Col(b) $ 
 MATRIX ; b1 = b(1:k1)  ; b2 = b(k21:kvar) $ 
 CREATE ; v1 = q1*x1’b1 ; v2 = q2 * x2’b2 ; rs  = q1*q2*rho $ 
 NAMELIST ; v = v1,v2 $ 
 CREATE ; lambda1 = q1*Bv1(v,rs) / Bvn(v,rs)   
   ; lambda2 = q2*Bv2(v,rs) / Bvn(v,rs) $ 
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Finally, let 
   δ   =  1 / (1 - ρ*

2)1/2 , 

    v1   =  δ(w2 - ρ*w1) so g1 = φ(w1)Φ(v1) 

and   v2   =  δ(w1 - ρ*w2) so g2 = φ(w2)Φ(v2). 
 
Then,   ∂2lnL/∂β1∂β1′ =  Σi (-1/Φ2)[w1g1 + ρ*φ2 + g1

2/Φ2]x1x1′ 
 
and likewise for β2.  The mixed derivatives are: 
 
   ∂2lnL/∂β1∂β2′  =  Σi (q1q2/Φ2)[φ2 - g1g2/Φ2]x1x2′, 
 
   ∂2lnL/∂β1∂ρ  =  Σi q2(φ2/Φ2)[ρ*δv1 - w1 - g1/Φ2]x1, 
 
and   ∂2lnL/∂ρ2  =  Σi (φ2/Φ2)[δ2ρ*(1-δ2(w1

2 + w2
2 - 2ρ*w1w2)) + δ2w1w2 - φ2/Φ2]. 

 
The derivatives for a model with heteroscedasticity can be easily obtained by modification of the 
preceding.  In the derivation above, gj = ∂Φ2(h1,h2,ρ)/∂hj, so by making the appropriate modification 
of hj, derivatives of the extended model can be obtained by differentiating hj. 
 The bivariate normal CDF is approximated with a 15 point Gauss-Laguerre quadrature.  The 
procedure used is as follows.  We compute the upper (not the lower) tail area bivariate integral 
thusly: 

   BVN ′ (x1, x2, ρ)  =  12212 ),,(
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Let   d1   =  0.0 if  x1 > 0.0, otherwise, d1 = 1, d3  =  1.0  -  2.0d1 
 
   d2   =  0.0 if  x2 > 0.0, otherwise, d2 = 1, d4  =  1.0  -  2.0d2 
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where   zh and wh  =  the nodes and weights for the quadrature, and 
 

   ah =  d4[ρ(x1 + d3zh) - x2] / 21 ρ−  
 
Then,   BVN ′ (x1, x2, ρ)  ≈  d3d4B  -  d1d2  +  d1Φ(-x2)  +  d2Φ(-x1). 
 
The complementary CDF, integrating from -∞ to the argument, is obtained just by sending -x1 and/or    
-x2 to this computation. 
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E33.3 Tetrachoric Correlation 
 
 The tetrachoric correlation is a measure of the correlation between two binary variables.  The 
familiar Pearson, product moment correlation is inappropriate as it is used for continuous variables.  
The tetrachoric correlation coefficient is equivalent to the correlation coefficient in the following 
bivariate probit model: 
 

 y1* = µ + ε1, y1 = 1(y1* > 0) 

 y2* = µ + ε2, y2 = 1(y2* > 0) 

 (ε1,ε2) ~ N2[(0,0),(1,1,ρ)] 
 
The applicable literature contains a number of approaches to estimation of this correlation 
coefficient, some a bit ad hoc.  We proceed directly to the implied maximum likelihood estimator. 
You can fit this ‘model’ with 
 
 BIVARIATE ; Lhs = y1,y2 ; Rh1 = one ; Rh2 = one $ 
 
The reported estimate of ρ is the desired estimate.  LIMDEP notices if your model does not contain 
any covariates in the equation, and notes in the output that the estimator is a tetrachoric correlation.  
The results below based on the German health care data show an example. 
 
----------------------------------------------------------------------------- 
FIML Estimation of Tetrachoric Correlation 
Dependent variable               DOCHOS 
Log likelihood function    -25898.27183 
Estimation based on N =  27326, K =   3 
Inf.Cr.AIC  =51802.544 AIC/N =    1.896 
--------+-------------------------------------------------------------------- 
  DOCTOR|                  Standard            Prob.      95% Confidence 
HOSPITAL|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Estimated alpha for P[DOCTOR  =1] = F(alpha) 
Constant|     .32949***      .00773    42.61  .0000      .31433    .34465 
        |Estimated alpha for P[HOSPITAL=1] = F(alpha) 
Constant|   -1.35540***      .01074  -126.15  .0000    -1.37646  -1.33434 
        |Tetrachoric Correlation between DOCTOR   and HOSPITAL 
RHO(1,2)|     .31106***      .01357    22.92  .0000      .28446    .33766 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The preceding suggests an interpretation for the bivariate probit model; the correlation coefficient 
reported is the conditional (on the independent variables) tetrachoric correlation. 
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 The computation in the preceding can be generalized to a set of M binary variables, y1,...,yM.  
The tetrachoric correlation matrix would be the M×M matrix, R, whose off diagonal elements are the 
ρmn coefficients described immediately above.  There are several ways to do this computation, again, 
as suggested by a literature that contains recipes.  Once again, the maximum likelihood estimator 
turns out to be a useful device. 
 A direct approach would involve expanding the latent model to 
 

 y1* = µ + ε1, y1 = 1(y1* > 0) 

 y2* = µ + ε2, y2 = 1(y2* > 0) 

 ... 

 yM* = µ + εM, yM = 1(yM* > 0) 

 (ε1,ε2,...,εM) ~ NM[0,R] 
 
The appropriate estimator would be LIMDEP’s multivariate probit estimator, MPROBIT, which can 
handle up to M = 20. The correlation matrix produced by this procedure is precisely the full 
information MLE of the tetrachoric correlation matrix.  However, for any M larger than two, this 
requires use of the GHK simulator to maximize the simulated log likelihood, and is extremely slow. 
The received estimators of this model estimate the correlations pairwise, as shown earlier.  For this 
purpose, the FIML estimator is unnecessary.  The matrix can be obtained using bivariate probit 
estimates. The following procedure would be useable: 
 

NAMELIST  ; y = y1,y2,...,ym $ 
CALC           ; m = Col(y) $ 
MATRIX      ; r = Iden(m) $ 
PROCEDURE $ 
DO FOR  ; 20 ; i = 2,m $ 
CALC      ; i1 = i - 1 $   
DO FOR  ; 10 ; j = 1,i1 $ 
BIVARIATE  ; Lhs = y:i, y:j ; Rh1 = one ; Rh2 = one $ 
MATRIX  ; r(i,j) = rho $ 
MATRIX  ; r(j,i) = rho $ 
ENDDO  ; 10 $ 
ENDDO ; 20 $ 
ENDPROC $ 
EXECUTE  ; Quietly $ 

 
A final note, the preceding approach is not fully efficient.  Each bivariate probit estimates (µm,µn) 
which means that µm is estimated more than once when m > 1.  A minimum distance estimator could 
be used to reconcile these after all the bivariate probit estimates are computed.  But, since the means 
are nuisance parameters in this model, this seems unlikely to prove worth the effort. 
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E33.4 Bivariate Probit Model with Sample Selection  
 
 In the bivariate probit setting, data on y1 might be observed only when y2 equals one.  For 
example, in modeling loan defaults with a sample of applicants, default will only occur among 
applicants who are granted loans.  Thus, in a bivariate probit model for the two outcomes, the 
observed default data are nonrandomly selected from the set of applicants.  The model is 
  
   zi1 = β′xi1 + εi1, yi1 = sgn(zi1), 

    zi2 = β′xi2 + εi2, yi2 = sgn(zi2), 

    εi1,εi2 ~ BVN(0,0,1,1,ρ), 

     (yi1,xi1) is observed only when yi2 = 1. 
 
This is a type of sample selectivity model. The estimator was proposed by Wynand and van Praag 
(1981). An extensive application which uses choice based sampling as well is Boyes, Hoffman, and 
Low (1989). (See also Greene (1992 and 2011).)  The sample selection model is obtained by adding 
 
   ; Selection  (or just ; Sel) 
  
to the BIVARIATE PROBIT command.  All other options and specifications are the same as 
before.  Except for the diagnostic table which indicates that this model has been chosen, the results 
for the selection model are the same as for the basic model. 
 
E33.4.1 Technical Details 
 
 The log likelihood for the bivariate probit model with selection is 
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The necessary first and second derivatives are given in Section E33.6. 
 
NOTE:  This is one of several sample selection models estimated by maximum likelihood with 
LIMDEP.  In this setting, there is no ‘lambda’ variable as there is in the regression model with 
sample selection (see Chapter E52).  Heckman’s (1979) selection correction variable applies to the 
linear regression model estimated with two step least squares, but not generally to models fit by 
maximum likelihood.  For testing for selection effects, the appropriate approach is to test the 
hypothesis of no effects, which results if ρ equals zero. 
 
NOTE:  You may code y1 as 0.0 for the nonselected (nonobserved) observations in this model.  The 
correct value to use (or ignore) is determined by the program during estimation. 
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Further details on this model, with an application and technical background appear in Section 
E33.2.9. 
 The following carries out a sampling experiment that conforms exactly to the assumptions of 
the model.  The lhs variables y1 and y2 are governed by a bivariate probit model with coefficient 
vectors β1 = β2 = (0,1,1) and ρ = .5.  However, y1s is missing when y2 equals zero, so the 
appropriate approach is the selection model.  As seen below, estimation proceeds routinely.  Partial 
effects and subsequent analysis would be the same as for the bivariate probit model prior to the 
selection.  The force of the revision of the estimator is to use an approach that produces consistent 
estimators of the model parameters.  It is not a fundamentally different model.  For comparison, the 
full sample results are shown as well. Not surprisingly, they are essentially the same. 
 

SAMPLE  ; 1-1000 $ 
CREATE  ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; x3 = Rnn(0,1) $ 
CREATE  ; u1 = Rnn(0,1) ; u2 = .5*(u1 + Rnn(0,1)) $ 
CREATE  ; y1 = (x1 + x3 + u1) > 0 ; y2 = (x2 + x3 + u2) > 0 $ 
BIVARIATE ; Lhs = y1,y2 ; Rh1=one,x1,x3 ; Rh2 = one,x2,x3 $ 
CREATE  ; y1s = y1 ; If(y2 = 0)y1s = -999 $ 
BIVARIATE  ; Lhs = y1s,y2 ; Rh1 = one,x1,x3 ; Rh2 = one,x2,x3 ; Selection $ 

 
----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable                Y1SY2 
Selection model based on Y2 
Selected sample:   481, Nonselected:   519 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for Y1 
Constant|    -.04304         .11125     -.39  .6989     -.26109    .17502 
      X1|    1.06002***      .11067     9.58  .0000      .84311   1.27694 
      X3|    1.05358***      .11942     8.82  .0000      .81953   1.28763 
        |Index    equation for Y2 
Constant|    -.04318         .05642     -.77  .4441     -.15375    .06740 
      X2|    1.43944***      .09268    15.53  .0000     1.25779   1.62108 
      X3|    1.35190***      .08580    15.76  .0000     1.18373   1.52007 
        |Disturbance correlation 
RHO(1,2)|     .57713***      .12950     4.46  .0000      .32332    .83095 
--------+-------------------------------------------------------------------- 
(Full Sample Results) 
--------+-------------------------------------------------------------------- 
        |Index    equation for Y1 
Constant|    -.01822         .05000     -.36  .7156     -.11622    .07978 
      X1|    1.05590***      .07082    14.91  .0000      .91709   1.19471 
      X3|     .96638***      .07133    13.55  .0000      .82656   1.10619 
        |Index    equation for Y2 
Constant|    -.04284         .05571     -.77  .4419     -.15203    .06635 
      X2|    1.41857***      .09039    15.69  .0000     1.24140   1.59573 
      X3|    1.34578***      .08422    15.98  .0000     1.18070   1.51085 
        |Disturbance correlation 
RHO(1,2)|     .54221***      .06755     8.03  .0000      .40981    .67460 
--------+-------------------------------------------------------------------- 
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E33.5 Simultaneity in the Binary Variables 
 
 A simultaneous equations sort of model would appear as 
 
   zi1  =  β1′xi1 + γ1yi2 +  εi1,  yi1  =  1 if zi1 > 0, yi1  =  0 otherwise, 

   zi2  =  β2′xi2 + γ1yi1 + εi2,  yi2  =  1 if zi2 > 0, yi2  =  0 otherwise, 

   [εi1,εi2] ~ bivariate normal (BVN) [0,0,1,1,ρ], -1 < ρ < 1, 

   individual observations on y1 and y2 are available for all i. 
 
It would follow from the construction that 
 
   Prob[y1 = 1,  y2 = 1]  =  Φ2 (β1′x1+  γ1y2,  β2′x2+  γ2y1, ρ] 
 
and likewise for the other cells, where y1 and y2 are two binary variables.  Unfortunately, the model 
as stated is not internally consistent, and is inestimable.  Ultimately, it is not identifiable.  As a 
practical matter, you can verify this by attempting to devise a way to simulate a sample of 
observations that conforms exactly to the assumptions of the model.  In this case, there is none 
because there is no linear reduced form for this model.  (The approach suggested by Maddala (1983) 
is not consistent.)  LIMDEP will detect this condition and decline to attempt to do the estimation.  
For example: 
 
      BIVARIATE PROBIT ; Lhs = y1,y2 ; Rh1 = one,x1,x3,y2 ; Rh2 = one,x2,x3,y1 $ 
 
produces a diagnostic, 
 
Error   809: Fully simultaneous BVP model is not identified 
 

NOTE:  Unlike the case in linear simultaneous equations models, nonidentifiability does not prevent 
‘estimation’ in this model.  (2SLS estimates cannot be computed when there are too few instrumental 
variables, which is the signature of nonidentifiability in a linear context.)  With the ‘fully 
simultaneous bivariate probit model,’ it is possible to maximize what purports to be a log likelihood 
function – numbers will be produced that might even look reasonable.  However, as noted, the model 
itself is nonsensical – it lacks internal coherency. 
 
 To illustrate the effect, the following program attempts to estimate a fully simultaneous 
bivariate probit model.  In the first version, the optimizer appears to find a solution, though the 
theoretical result is that the results are not meaningful.  In the second version, the coefficient on y1 in 
the second equation is constrained to equal zero.  This produces the generally useable recursive 
model described in the next section.  We use the built in MAXIMIZE command to construct our 
own log likelihood maximizer for this model, as LIMDEP will refuse it.  The optimization trace for 
the model is punctuated with error messages.  But, ultimately a set of ordinary looking results is 
produced.  The correlation coefficient of .99334 is suspiciously large, however.  (This application 
also demonstrates using MAXIMIZE to construct an estimator.  MAXIMIZE is described in 
Chapter E66.) 
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The commands are: 
 
NAMELIST ; y = tax, priv 

   ; x1 = one,inc,ptax ; x2  = one,inc,yrs,ptax $ 
CREATE  ; y1 = tax ; y2 = priv  

; q1 = 2*y1-1 ; q2 = 2*y2-1 ; q12 = q1*q2 $ 
PROBIT  ; Lhs = y1 ; Rhs = x1,y2 $ 
MATRIX  ; bc1 = b $ 
PROBIT  ; Lhs = y2 ; Rhs = x2,y1 $ 
MATRIX  ; bc2 = b $ 
MAXIMIZE  ; Labels = b11,b12,b13,c1,b21,b22,b23,b24,c2,ro 

; Start = bc1,bc2,0 
; Fcn = bx1 = q1*(b11'x1+c1*y2) | 

bx2 = q2*(b21'x2+c2*y1) | 
r12 = q12*ro | 
Log(Bvn(bx1,bx2,r12))  

; Output = 3 $ 
 
Itr 13 F=  .7412D+02 gtHg=  .3234D+01 chg.F=  .7508D-01 max|db|=  .6318D+01 
  Error   590: Obs.=     1 Cannot compute function: BadFnPrm 
Warning   137: Iterations: function not computable at crnt.trial estimates 
1st derivs.     .88960D+01   .88460D+02   .63332D+02  -.13309D+01  -.38917D+01 
  -.38549D+02  -.52808D+02  -.26737D+02  -.58411D+01  -.19929D+02 
Parameters:    -.47503D+01   .15252D+01  -.13869D+01  -.19755D+01  -.51988D+01 
   .13039D+01  -.72843D-01  -.10489D+01  -.22773D+01   .52288D+00 
Itr 14 F=  .7405D+02 gtHg=  .1469D+03 chg.F=  .7650D-01 max|db|=  .1246D+05 
  Error   590: Obs.=     1 Cannot compute function: BadFnPrm 
1st derivs.     .10269D+02   .10260D+03   .73035D+02  -.18254D+01  -.50748D+01 
  -.50777D+02  -.64088D+02  -.34603D+02  -.79427D+01  -.29606D+02 
Parameters:    -.66086D+01   .16254D+01  -.12459D+01  -.28014D+01  -.61176D+01 
   .13582D+01  -.98235D-01  -.90757D+00  -.30863D+01   .89237D+00 
Itr 15 F=  .7246D+02 gtHg=  .1505D+01 chg.F=  .1589D+01 max|db|=  .9591D+00 
1st derivs.     .56869D+01   .58117D+02   .40923D+02  -.29843D+01  -.30518D+01 
  -.31419D+02  -.53961D+02  -.19614D+02  -.66064D+01  -.28128D+02 
Parameters:    -.78376D+01   .18961D+01  -.14702D+01  -.27742D+01  -.67497D+01 
   .95559D+00  -.95663D-01  -.25752D+00  -.28599D+01   .87896D+00 
Itr 16 F=  .7166D+02 gtHg=  .2355D+00 chg.F=  .8009D+00 max|db|=  .9301D-01 
1st derivs.     .55771D+01   .57096D+02   .40217D+02  -.28408D+01  -.38132D+01 
  -.39006D+02  -.56699D+02  -.25002D+02  -.68968D+01  -.27174D+02 
Parameters:    -.78699D+01   .19107D+01  -.14889D+01  -.27437D+01  -.67786D+01 
   .96026D+00  -.93481D-01  -.26820D+00  -.28316D+01   .86761D+00 
Itr 17 F=  .7165D+02 gtHg=  .1715D+00 chg.F=  .1205D-01 max|db|=  .4563D-01 
  Error   590: Obs.=     1 Cannot compute function: BadFnPrm 
1st derivs.     .49681D+01   .50995D+02   .35963D+02  -.29773D+01  -.36462D+01 
  -.37220D+02  -.55215D+02  -.23852D+02  -.67399D+01  -.26763D+02 
Parameters:    -.78501D+01   .19252D+01  -.15148D+01  -.27175D+01  -.67916D+01 
   .97156D+00  -.91622D-01  -.28746D+00  -.27932D+01   .84912D+00 
Itr 18 F=  .7169D+02 gtHg=  .1660D+01 chg.F=  .4775D-01 max|db|=  .2396D+01 
  Error   590: Obs.=     1 Cannot compute function: BadFnPrm 
1st derivs.     .93073D+01   .94865D+02   .66198D+02  -.11718D+01  -.51859D+01 
  -.53983D+02  -.67518D+02  -.34423D+02  -.87711D+01  -.36230D+02 
Parameters:    -.80342D+01   .18018D+01  -.12967D+01  -.29355D+01  -.67084D+01 
   .92192D+00  -.10657D+00  -.18805D+00  -.31096D+01   .99177D+00 
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Itr 19 F=  .7112D+02 gtHg=  .3194D+00 chg.F=  .5769D+00 max|db|=  .4324D+00 
1st derivs.     .84502D+01   .86125D+02   .60156D+02  -.19133D+01  -.36120D+01 
  -.38132D+02  -.61097D+02  -.23430D+02  -.78864D+01  -.37154D+02 
Parameters:    -.79335D+01   .17807D+01  -.12790D+01  -.29658D+01  -.66513D+01 
   .95284D+00  -.10767D+00  -.23455D+00  -.31267D+01   .99334D+00 
Itr 20 F=  .7109D+02 gtHg=  .4565D+00 chg.F=  .3112D-01 max|db|=  .2227D+00 
Itr 20 F=  .7109D+02 gtHg=  .1353D+03 chg.F=  .8417D-03 max|db|=  .5675D+03 
Line search at iteration 20 does not improve fn. Exiting optimization. 
Function=  .73442696419D+02, at entry,  .71165594038D+02 at exit 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function        71.16559 
Restricted log likelihood        .00000 
Chi squared [  10 d.f.]       142.33119 
Significance level               .00000 
Estimation based on N =     80, K =   0 
Inf.Cr.AIC  = -142.331 AIC/N =   -1.779 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     B11|   -7.93350*       4.59041    -1.73  .0839   -16.93055   1.06355 
     B12|    1.78070***      .59633     2.99  .0028      .61193   2.94948 
     B13|   -1.27900         .89894    -1.42  .1548    -3.04089    .48290 
      C1|   -2.96584***      .68236    -4.35  .0000    -4.30323  -1.62845 
     B21|   -6.65132        6.27517    -1.06  .2892   -18.95042   5.64778 
     B22|     .95284         .76396     1.25  .2123     -.54449   2.45017 
     B23|    -.10767***      .04116    -2.62  .0089     -.18834   -.02700 
     B24|    -.23455         .83708     -.28  .7793    -1.87519   1.40609 
      C2|   -3.12667***      .65501    -4.77  .0000    -4.41046  -1.84289 
      RO|     .99334***      .10776     9.22  .0000      .78213   1.20454 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 We now attempt the same optimization, but force the coefficient on one of the endogenous 
variables to equal zero.  This identifies the model, and leads to a reasonable set of estimates.  No 
error or warning messages occur during the optimization. 
 

? Constrain coefficient on y1 in equation 2 to equal zero. 
 
MATRIX    ; bc2(5) = 0 $ 
MAXIMIZE  ; Labels = b11,b12,b13,c1,b21,b22,b23,b24,c2,ro 

; Start = bc1,bc2,0 
   ; Fcn = bx1 = q1*(b11'x1+c1*y2) | 
    bx2 = q2*(b21'x2+c2*y1) | 
    r12 = q12*ro | 
    Log(Bvn(bx1,bx2,r12))  
   ; Fix = c2    ? forces c2 to be fixed at the starting value 

; Output = 3 $ 
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Itr 23 F=  .7421D+02 gtHg=  .1049D-05 chg.F=  .4283D-09 max|db|=  .5631D-05 
Itr 23 F=  .7421D+02 gtHg=  .4083D-04 chg.F=  .1265D-11 max|db|=  .4575D-03 
1st derivs.     .41475D-06   .55241D-05   .46484D-05   .44285D-06  -.50979D-06 
  -.36037D-05   .10967D-06  -.30851D-05   .26917D-06 
Parameters:    -.68059D+00   .12277D+01  -.16316D+01   .98177D+00  -.28146D+01 
   .16264D+00  -.34840D-01   .46046D-01  -.83118D+00 
Itr 24 F=  .7421D+02 gtHg=  .9836D-06 chg.F=  .1307D-11 max|db|=  .5609D-05 
Itr 24 F=  .7421D+02 gtHg=  .8680D-05 chg.F=  .7105D-13 max|db|=  .6700D-04 
Line search at iteration 24 does not improve fn. Exiting optimization. 
Function=  .76322747822D+02, at entry,  .74211794755D+02 at exit 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function        74.21179 
Restricted log likelihood        .00000 
Chi squared [   9 d.f.]       148.42359 
Significance level               .00000 
Estimation based on N =     80, K =   0 
Inf.Cr.AIC  = -148.424 AIC/N =   -1.855 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     B11|    -.68059        4.05342     -.17  .8667    -8.62515   7.26396 
     B12|    1.22768         .81424     1.51  .1316     -.36820   2.82356 
     B13|   -1.63161         .99597    -1.64  .1014    -3.58368    .32047 
      C1|     .98177         .95912     1.02  .3060     -.89808   2.86162 
     B21|   -2.81455        5.51612     -.51  .6099   -13.62594   7.99684 
     B22|     .16264         .76312      .21  .8312    -1.33304   1.65832 
     B23|    -.03484         .04247     -.82  .4120     -.11808    .04840 
     B24|     .04605         .98275      .05  .9626    -1.88011   1.97220 
      C2|        0.0    .....(Fixed Parameter)..... 
      RO|    -.83118         .57072    -1.46  .1453    -1.94977    .28741 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
E33.6 Recursive Bivariate Probit Model 
 
 A slight modification of the model in the previous section is identified and used in many 
recent applications.  Consider the model for the probability of the event y1 = 0/1 and y2 = 0/1 
assuming γ2 = 0. 
 
   Prob[y1 = 1, y2 = 1 | x1 , x2 ]  =  Φ2 (β1′x1 + γ1,  β2′x2, ρ) 

   Prob[y1 = 1, y2 = 0 | x1 , x2 ]  =  Φ2 (β1′x1,        -β2′x2, -ρ) 

   Prob[y1 = 0, y2 = 1 | x1 , x2 ]  =  Φ2 (-β1′x1 + γ1, β2′x2, -ρ) 

   Prob[y1 = 0, y2 = 0 | x1 , x2 ]  =  Φ2 (-β1′x1,       -β2′x2, ρ) 
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This is a recursive simultaneous equations model.  Surprisingly enough, it can be estimated by full 
information maximum likelihood ignoring the simultaneity in the system; 
 
 BIVARIATE ; Lhs  =  y1, y2 
   ; Rh1 =  x1,y2 ; Rh2 = x2 $ 
 
(A proof of this result is suggested in Maddala (1983, p. 123) and pursued in Greene (1998).)  An 
application of the result to the gender economics study is given in Greene (1998).  Some extensions 
are presented in Greene (2003, 2011). 
 This model presents the same ambiguity in the conditional mean function and marginal 
effects that were noted earlier in the bivariate probit model.  The conditional mean for y1 is 
 
   E[y1 | y2 = 1, x1, x2]  =  Φ2 (β1′x1 +  γ1, β2′x2, ρ) / Φ(β2′x2) 
 
for which derivatives were given earlier.  Given the form of this result, we can identify direct and 
indirect effects in the conditional mean: 
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The unconditional mean function is 
 
  E[y1 | x1, x2] =  Φ(β2′x2) E[y1 | y2 = 1, x1, x2]  + [1-Φ(β2′x2)] E[y1 | y2 = 0, x1, x2] 

    =  Φ2 (β1′x1 +  γ1, β2′x2, ρ)  + Φ2 (β1′x1, -β2′x2, -ρ) 
 
Derivatives for marginal effects can be derived using the results given earlier.  Analysis appears in 
Greene (1998). The decomposition is done automatically when you specify a recursive bivariate 
probit model – one in which the second Lhs variable appears in the Rhs of the first equation. 
 The following demonstrates this by extending the model in Section E33.2.8.  Note the 
appearance of priv on the Rhs of the first equation, x1. 
 

NAMELIST ; y = tax, priv 
   ; x1 = one,inc,ptax,priv ; x2 = one,inc,yrs,ptax $ 

BIVARIATE ; Lhs = tax,priv ; Rh1 = x1 ; Rh2 = x2 ; Partial Effects $ 
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----------------------------------------------------------------------------- 
FIML - Recursive Bivariate Probit Model 
Dependent variable               PRITAX 
Log likelihood function       -74.21179 
Estimation based on N =     80, K =   9 
Inf.Cr.AIC  =  166.424 AIC/N =    2.080 
--------+-------------------------------------------------------------------- 
    PRIV|                  Standard            Prob.      95% Confidence 
     TAX|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for PRIV 
Constant|   -2.81454        5.51612     -.51  .6099   -13.62594   7.99687 
     INC|     .16264         .76312      .21  .8312    -1.33304   1.65832 
     YRS|    -.03484         .04247     -.82  .4120     -.11808    .04840 
    PTAX|     .04605         .98275      .05  .9626    -1.88011   1.97220 
        |Index    equation for TAX 
Constant|    -.68059        4.05341     -.17  .8667    -8.62513   7.26394 
     INC|    1.22768         .81424     1.51  .1316     -.36820   2.82356 
    PTAX|   -1.63160         .99598    -1.64  .1014    -3.58368    .32047 
    PRIV|     .98178         .95912     1.02  .3060     -.89807   2.86162 
        |Disturbance correlation 
RHO(1,2)|    -.83119         .57072    -1.46  .1453    -1.94977    .28740 
--------+-------------------------------------------------------------------- 
 
--------------------------------------------------------------- 
Decomposition of Partial Effects for Recursive Bivariate Probit 
Model is     PRIV = F(x1b1), TAX      = F(x2b2+c*PRIV    ) 
Conditional mean function is E[TAX     |x1,x2] = 
            Phi2(x1b1,x2b2+gamma,rho) + Phi2(-x1b1,x2b2,-rho) 
Partial effects for continuous variables are derivatives. 
Partial effects for dummy variables (*) are first differences. 
Direct effect is wrt x2, indirect is wrt x1, total is the sum. 
--------------------------------------------------------------- 
Variable   Direct Effect   Indirect Effect    Total Effect 
---------+---------------+-----------------+------------------- 
     INC |   .4787001        .0169062           .4956064 
    PTAX |  -.6362002        .0047864          -.6314138 
     YRS |   .0000000       -.0036217          -.0036217 
---------+----------------------------------------------------- 
 
The decomposition of the partial effects accounts for the direct and indirect influences.  Note that 
there is no partial effect given for priv because this variable is endogenous.  It does not vary 
‘partially.’ 
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E33.7 Bivariate Probit Models with Partial Observability 
 
 We consider a bivariate probit model in which, instead of observing both yi1 and yi2, we 
observe the product, yi = yi1yi2.  The situation arises when we observe the final outcome of two 
decision processes which lead to a single conclusion.  Basic references are Poirier (1980), Abowd 
and Farber (1982), and Meng and Schmidt (1985).  There are three variants available: 
 
Poirier  
 
 In the Poirier model, y1 and y2 are simultaneously determined, and ε1 and ε2 are correlated.  
Then, 
   Prob[y = 1]  = Φ2[β1′x1,β2′x2,ρ], 

   Prob[y = 0]  = 1 - Prob[y = 1]. 
 
As an example, Poirier cites the case of a joint decision made by two people each of whom has veto 
power. 
 
Abowd and Farber   
 
 In the Abowd and Farber model, y1 and y2 are determined sequentially, and ε1 and ε2 are 
uncorrelated.  The model is 
 
    Prob[y = 1]  = Prob[y1 = 1] Prob[y2 = 1] = Φ(β1′x1) Φ(β2′x2), 

   Prob[y = 0]  = 1 - Prob[y = 1]. 
 
The Abowd and Farber variant results from the Poirier model when ρ equals zero.  Abowd’s 
example is that of an individual who decides to enter a queue, then subsequently decides whether or 
not to accept an offer upon reaching his or her turn in the queue.  LIMDEP produces full information 
maximum likelihood estimates of all parameters in both of these models.   Since they have only a 
single dependent variable (the product, y1×y2 ), these partial observability models are estimated as 
probit models, not bivariate probit models.  The Poirier variant is requested simply by adding the 
second list of exogenous variables to the PROBIT command.  I.e., 
 
 PROBIT  ; Lhs = y  ; Rh1 = x1list ; Rh2 = x2list $ 
 
The Abowd and Farber variant is requested by adding 
 
   ; Selection 
 
to the Poirier variant. 
 Starting values for both of these models are the ordinary least squares estimates and ρ equal to 
zero for the Poirier variant.  As always, you may provide your own starting values if you like.  If so, 
you must provide a value of ρ for the Poirier variant.  In both models, the full set of parameters 
involves [β1,β2]. You may use ; Rst in the example at the end of Section E33.2.8, to impose both 
within and cross equation restrictions on the models.  For the listing of predictions and residuals,            
; Keep and ; Res, the same prediction rule as in the univariate probit model is used.  That is, for each 
observation, we compute Prob[y  = 1], then predict y = 1 if the probability is greater than .5. 
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Meng and Schmidt   
 
 In the Meng and Schmidt model, y1 and y2 are defined by separate probit models; 
 
   if y1 = 1, both y1 and y2 are observed, 

   if y1 = 0, then only y1×y2 is observed. 
 
The setup involves both Lhs variables, so it is estimated as a bivariate probit model.   
 
NOTE:  When y1 is zero, you should code y2 as zero also.   
 
 The command for the Meng and Schmidt model is 
 
 BIVARIATE ; Lhs  = y1,y2 
   ; Rh1  = Rhs for first equation   
   ; Rh2  = Rhs for second equation 
   ; Model = Partial $ 
 
All other options are the same as for other bivariate probit models. 
 
NOTE:  The Meng and Schmidt model is identical to the bivariate probit model with sample 
selection, with the two variables reversed. 
 
E33.7.1 Example 
 
 The following experiment will illustrate the computations in the partial observability models:  
The data are simulated, and correspond exactly to the assumptions of the models. 
 

CALC  ; Ran(12345) $ 
SAMPLE ; 1-500 $ 
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) 

; y1 = x1 + Rnn(0,1) ; y1 = y1 > 0 
; y2 = x2 + Rnn(0,1) ; y2 = y2 > 0 ; y2 = y2*y1 $ 

CREATE ; y = y1*y2 $ 
 

Estimate the Meng and Schmidt model. 
 
 BIVARIATE ; Lhs = y1,y2 ; Rh1 = one,x1 ; Rh2 = one,x2 ; Model = Partial $ 

 
Estimate the Poirier model. 
 

PROBIT ; Lhs = y ; Rh1 =one,x1 ; Rh2 = one,x2 ; Partial Effects $ 
 

Estimate the Abowd and Farber model. 
 

PROBIT ; Lhs = y ; Rh1 =one,x1 ; Rh2  = one,x2  
  ; Selection ; Partial Effects $ 
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Meng and Schmidt Model 
 
----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable                 Y1Y2 
Log likelihood function      -371.68472 
Estimation based on N =    500, K =   5 
Inf.Cr.AIC  =  753.369 AIC/N =    1.507 
Meng & Schmidt Partial Observability Model 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for Y1 
Constant|    -.03899         .06445     -.60  .5452     -.16532    .08733 
      X1|    1.00245***      .09074    11.05  .0000      .82460   1.18030 
        |Index    equation for Y2 
Constant|     .04903         .16503      .30  .7664     -.27442    .37247 
      X2|    1.05905***      .12965     8.17  .0000      .80494   1.31316 
        |Disturbance correlation 
RHO(1,2)|    -.15595         .22990     -.68  .4976     -.60655    .29465 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Poirier Model 
 
 Note, the appearance of an estimate of ρ indicates the Poirier model. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function      -207.51923 
Restricted log likelihood    -268.42420 
Chi squared [   4 d.f.]       121.80995 
Significance level               .00000 
McFadden Pseudo R-squared      .2268982 
Estimation based on N =    500, K =   5 
Inf.Cr.AIC  =  425.038 AIC/N =     .850 
Partial Observability Model 
Hosmer-Lemeshow chi-squared = ********* 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .13167         .33321      .40  .6927     -.52140    .78474 
      X1|     .99518***      .25503     3.90  .0001      .49532   1.49504 
Constant|    -.07516         .27003     -.28  .7808     -.60441    .45410 
      X2|     .90165***      .20472     4.40  .0000      .50041   1.30289 
Rho(1,2)|    -.24122         .41392     -.58  .5600    -1.05249    .57005 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
They are computed at the means of the Xs 
Observations used for means are All Obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
       Y|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .00708         .00123      .07  .9468     -.20067    .21482 
      X2|    -.00910         .00170     -.15  .8782     -.12558    .10737 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

Abowd and Farber Model 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function      -207.69977 
Restricted log likelihood    -268.42420 
Chi squared [   3 d.f.]       121.44886 
Significance level               .00000 
McFadden Pseudo R-squared      .2262256 
Estimation based on N =    500, K =   4 
Inf.Cr.AIC  =  423.400 AIC/N =     .847 
Model estimated: Jun 16, 2011, 10:29:40 
Partial Observability Model 
Hosmer-Lemeshow chi-squared = ********* 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .06042         .27377      .22  .8253     -.47615    .59699 
      X1|    1.05877***      .25029     4.23  .0000      .56821   1.54933 
Constant|    -.14912         .22029     -.68  .4985     -.58089    .28265 
      X2|     .93298***      .19656     4.75  .0000      .54774   1.31823 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
They are computed at the means of the Xs 
Observations used for means are All Obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
       Y|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .17887***      .02975     5.75  .0000      .11789    .23985 
      X2|     .19756***     -.03534     6.31  .0000      .13618    .25893 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E33.7.2 Technical Details 
 
 The log likelihood for Poirier’s variant of the partial observability model is 
 
   Log L   = Σy=1 log Φ2 (β1′x1,β2′x2,ρ)  

         + Σy=0 log [1-Φ2(β1′x1,β2′x2,ρ)]. 
  
The log likelihood for Abowd and Farber’s variant of the partial observability model is derived from 
Poirier’s by setting ρ = 0.  The bivariate CDF then factors into the product of two univariate CDFs.  
The derivatives of this function are given above in Section E33.2.9.  For the Poirier and 
Abowd/Farber models, the conditional mean function is 
 
   E[y | x1, x2 ] = Φ2 (β1′x1,β2′x2,ρ) 
 
Using the results from Section E33.2.9 once again, it follows that the marginal effects are 
 
   δ =  ∂E[y | x1, x2 ] / ∂x 

    =  g1 γ1 + g2 γ2  

where    x =  the union of x1 and x2 

   γm =  βm augmented with zeros to correspond to x 

   wm  =  γm′ x, m = 1,2 

   a1  =  (w2 - ρw1)/(1 - ρ2)1/2   

   a2  =  (w1 - ρw2)/(1 - ρ2)1/2 

   g1   =  φ(w1)Φ[(w2 - ρw1)/(1 - ρ2)1/2 ] = φ(w1)Φ(a1) 

   g2   =  φ(w2)Φ[(w1 - ρw2)/(1 - ρ2)1/2 ] = φ(w2)Φ(a2) 
 

The Abowd and Farber case is produced by setting ρ = 0.  To compute standard errors for the 
marginal effects, we use the delta method.  The necessary derivatives are as follows: We will require 
 
   φ′(w1) =  -w1φ(w1) and likewise for w2. 

Then,   1 1
1 1 1 1 2 2 22 2

1

( ) ( ) 1( ) ( ) ( ) ( )
1 1
w ag w a w a

 −ρφ φ∂ ′ ′ ′ = + φ Φ + + φ φ
 ∂ − ρ − ρ 

I x xδ
γ γ

γ
 

   ∂δ/∂ρ =  γ1 φ(w1)φ(a1)∂a1/∂ρ  +  γ2φ(w2)φ(a2)∂a2/∂ρ 

   ∂a1/∂ρ =  (ρa1/(1 - ρ2)1/2  – w1) / (1 - ρ2)1/2 
 
The remaining derivatives, ∂δ/∂γ2 and ∂a2/∂ρ are obtained by reversing subscripts in the preceding.
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 For the Meng and Schmidt model, the log likelihood is 
  
    Log L   = Σy=1,y2=1  log Φ2[β1′x1,β2′x2,ρ]   (both variables observed) 

              + Σy1=1,y2=0 log Φ2[β1′x1,-β2′x2,-ρ]   (both variables observed) 

         +  Σy1=0 log [1-Φ(β1′x1)]   (only y1 observed) 
  
(Note that save for a reversal of subscripts and a minor change in interpretation, the Meng and 
Schmidt log likelihood is the same as that for the bivariate probit with sample selection – in fact, the 
models are identical.)  The various first and second derivatives can be obtained from the terms given 
earlier.  Since there are two outcomes and no natural conditional mean function, marginal affects are 
not computed for the Meng and Schmidt model. 
 For all of these models, the BFGS method is used for estimation.  BHHH and Newton (based 
on the BHHH estimator of the Hessian) will probably perform very poorly.  We have also found that 
iteration with the Hessian as opposed to the BHHH estimator for the bivariate probit models 
performs, likewise, very poorly.  The choice based sampling estimator uses the Hessian in order to 
construct the adjusted covariance matrix. 
 
E33.8 Panel Data Bivariate Probit Models 
 
 The four bivariate probit models, bivariate probit, bivariate probit with selection, Poirier’s 
partial observability and Abowd’s partial observability model have all been extended to the random 
parameters form of the panel data models.  (The fixed effects and latent class models are not 
available.)  Use of the random parameters formulation is described in detail in Chapter R24.  We will 
only sketch the extension here.  The commands for the models are as follows, where [ ... ] indicates 
an optional part of the specification: 
 
 BIVARIATE  ; Lhs  = y1, y2   ? Bivariate probit 
   ; Rh1  = Rhs for equation 1 
   ; Rh2 = Rhs for equation 2 
   [ ; Selection ]    ? Partial observability 
 
or  PROBIT ; Lhs  = y   ? Probit model 
   ; Rh1  = Rhs for equation 1 
   ; Rh2 = Rhs for equation 2 ? Partial observability (Poirier) 
   [ ; Selection ]    ? Abowd and Farber 
 
Then,   ; RPM [ = list for heterogeneity in the mean ] 
   ; Pds = panel specification ? Optional if cross section 
   [ ; Pts = number of replications ] 
   [ ; Halton and other controls for the estimation ] 
   ; Fcn = designation of random parameters $ 
 
For the random parameters specification, use  
 
   ; name ( distribution ) distribution = n, u, t, l, c  for the first equation 
or    ; name [ distribution ] for the second equation. 
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Note that random parameters in the second equation are designated by square brackets rather than 
parentheses.  This is necessary because the same variables can appear in both equations.  Two other 
specifications should be useful 
 
   ; Cor  allows the random parameters to be correlated. 
   ; AR1 allows the random terms to evolve according to an AR(1) process 
    rather than be time invariant.   
 
 The two equation random parameters save the matrices b and varb and the scalar logl after 
estimation.  No other variables, partial effects, etc. are provided internally to the command.  But, you 
can use the estimation results directly in the SIMULATION, PARTIAL EFFECTS commands, 
and so on.  An example appears after the results of the simulation below. 
 
E33.8.1 Application 
 
 To demonstrate this model, we will fit a true random effects model for a bivariate probit 
outcome.  Each equation has its own random effect, and the two are correlated.  The model structure is 
 
   zit1  =  β1′xit1 + εit1  +  ui1,   yit1  =  1 if zit1 > 0, yit1  =  0 otherwise, 

   zit2  =  β2′xit2 + εit2  +   ui2,  yit2  =  1 if zit2 > 0, yit2  =  0 otherwise, 

   [εit1,εit2] ~  Bivariate normal (BVN) [0,0,1,1,ρ], -1 < ρ < 1, 

   [ui1,ui2] ~  Bivariate normal (BVN) [0,0,1,1,θ], -1 < θ < 1, 
 
Individual observations on y1 and y2 are available for all i.  Note, in the structure, the idiosyncratic  εitj 
creates the bivariate probit model, whereas the time invariant common effects, uij create the random 
effects (random constants) model.  Thus, there are two sources of correlation across the equations, the 
correlation between the unique disturbances, ρ, and the correlation between the time invariant 
disturbances, θ.  The data are generated artificially according to the assumptions of the model.  
 

CALC  ; Ran(12345) $ 
SAMPLE ; 1-200 $ 
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; x3 = Rnn(0,1) $ 
MATRIX ; u1i = Rndm(20) ; u2i = .5* Rndm(20) + .5* u1i $ 
CREATE ; i  = Trn(10,0) ; u1 = u1i(i) ; u2 = u2i(i) $ 
CREATE ; e1 = Rnn(0,1) ; e2 = .7*Rnn(0,1) + .3*e1 $ 
CREATE ; y1 = (x1+e1 + u1) > 0  
  ; y2 = (x2+x3+e2+u2) > 0  ; y12 = y1*y2 $ 
BIVARIATE ; Lhs = y1,y2 ; Rh1 = one,x1 ; Rh2 = one,x2,x3  

; RPM ; Pds = 10 ; Pts = 25 ; Cor ; Halton 
; Fcn = one(n), one[n] $   

PROBIT ; Lhs = y12 ; Rh1 = one,x1 ; Rh2 = one,x2,x3  
; RPM ; Pds = 10 ; Pts = 25 ; Cor ; Halton 
; Fcn = one(n), one[n] ; Selection $   

PROBIT ; Lhs = y12 ; Rh1 = one,x1 ; Rh2 = one,x2,x3  
; RPM ; Pds = 10 ; Pts = 25 ; Cor ; Halton 
; Fcn = one(n), one[n] $   
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Note that by construction, most of the cross equation correlation comes from the random effects, not 
the disturbances.  The second model is the Abowd/Farber version of the partial observability model. 
The Poirier model is not estimable for this setup.  It is easy to see why.  The correlations in the Poirier 
model are overspecified.  Indeed, with ; Cor for the random effects, the Poirier model specifies two 
separate sources of cross equation correlation.  This is a weakly identified model.  The implication can 
be seen in the results below, where the estimator failed to converge for the probit model, and at the exit, 
the estimate of ρ was nearly -1.0.  This is the signature of a weakly identified (or unidentified) model. 
 
These are the estimates of the Meng and Schmidt model. 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for Y1 
Dependent variable                   Y1 
Log likelihood function      -114.32973 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .65214***      .10287     6.34  .0000      .45052    .85375 
Constant|    -.12214         .09617    -1.27  .2041     -.31062    .06634 
--------+-------------------------------------------------------------------- 
Probit   Regression Start Values for Y2 
Dependent variable                   Y2 
Log likelihood function       -83.99189 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X2|     .96584***      .14838     6.51  .0000      .67503   1.25665 
      X3|    1.00421***      .14562     6.90  .0000      .71880   1.28961 
Constant|     .17104         .11176     1.53  .1259     -.04801    .39009 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  BivProbt Model 
Dependent variable                   Y1 
Log likelihood function      -163.43468 
Estimation based on N =    200, K =   9 
Inf.Cr.AIC  =  344.869 AIC/N =    1.724 
Sample is 10 pds and     20 individuals 
Bivariate Probit model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    X1_1|    1.08374***      .19408     5.58  .0000      .70335   1.46412 
    X2_2|    1.18264***      .22213     5.32  .0000      .74727   1.61800 
    X3_2|    1.18893***      .18946     6.28  .0000      .81758   1.56027 
        |Means for random parameters 
   ONE_1|    -.05021         .12427     -.40  .6862     -.29377    .19335 
   ONE_2|     .27827*        .15481     1.80  .0723     -.02514    .58169 
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        |Diagonal elements of Cholesky matrix 
   ONE_1|    1.08131***      .17778     6.08  .0000      .73288   1.42975 
   ONE_2|     .42491***      .15811     2.69  .0072      .11503    .73480 
        |Below diagonal elements of Cholesky matrix 
lONE_ONE|    -.45867**       .17845    -2.57  .0102     -.80842   -.10892 
        |Unconditional cross equation correlation 
lONE_ONE|    -.17471         .17798     -.98  .3263     -.52355    .17413 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|       1.16924      -.495965 
       2|      -.495965       .390927 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.08131 
       2|       .625242 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000      -.733586 
       2|      -.733586       1.00000 
 
These are the estimates of the Abowd and Farber model. 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for Y12 
Dependent variable                  Y12 
Log likelihood function      -103.81770 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .52842***      .10360     5.10  .0000      .32537    .73147 
Constant|    -.66498***      .10303    -6.45  .0000     -.86692   -.46304 
--------+-------------------------------------------------------------------- 
Probit   Regression Start Values for Y12 
Dependent variable                  Y12 
Log likelihood function      -102.69669 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X2|     .50336***      .11606     4.34  .0000      .27588    .73084 
      X3|     .38430***      .11126     3.45  .0006      .16622    .60237 
Constant|    -.64606***      .10368    -6.23  .0000     -.84927   -.44286 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Random Coefficients  PrshlObs Model 
Dependent variable                  Y12 
Log likelihood function       -72.83435 
Restricted log likelihood    -102.69669 
Chi squared [   3 d.f.]        59.72467 
Significance level               .00000 
McFadden Pseudo R-squared      .2907819 
Estimation based on N =    200, K =   8 
Inf.Cr.AIC  =  161.669 AIC/N =     .808 
Sample is 10 pds and     20 individuals 
Partial observability probit model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    X1_1|    1.09511***      .23019     4.76  .0000      .64394   1.54629 
    X2_2|    2.26279***      .79573     2.84  .0045      .70319   3.82239 
    X3_2|    1.90015***      .70892     2.68  .0074      .51070   3.28960 
        |Means for random parameters 
   ONE_1|     .09219         .22240      .41  .6785     -.34370    .52809 
   ONE_2|    -.06872         .36077     -.19  .8489     -.77581    .63837 
        |Diagonal elements of Cholesky matrix 
   ONE_1|     .59436**       .23215     2.56  .0105      .13935   1.04937 
   ONE_2|    1.98257***      .73799     2.69  .0072      .53614   3.42900 
        |Below diagonal elements of Cholesky matrix 
lONE_ONE|    -.91612**       .41168    -2.23  .0261    -1.72299   -.10925 
        |Unconditional cross equation correlation 
lONE_ONE|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|       .353265      -.544507 
       2|      -.544507       4.76987 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .594361 
       2|       2.18400 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000      -.419469 
       2|      -.419469       1.00000 
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These are the estimates of the Poirier model. 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for Y12 
Dependent variable                  Y12 
Log likelihood function      -103.81770 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .52842***      .10360     5.10  .0000      .32537    .73147 
Constant|    -.66498***      .10303    -6.45  .0000     -.86692   -.46304 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for Y12 
Dependent variable                  Y12 
Log likelihood function      -102.69669 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X2|     .50336***      .11606     4.34  .0000      .27588    .73084 
      X3|     .38430***      .11126     3.45  .0006      .16622    .60237 
Constant|    -.64606***      .10368    -6.23  .0000     -.84927   -.44286 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  PrshlObs Model 
Dependent variable                  Y12 
Log likelihood function       -70.16147 
Sample is 10 pds and     20 individuals 
Partial observability probit model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    X1_1|     .95923***      .21311     4.50  .0000      .54154   1.37692 
    X2_2|    1.02185***      .28212     3.62  .0003      .46890   1.57480 
    X3_2|     .77643***      .23096     3.36  .0008      .32376   1.22910 
        |Means for random parameters 
   ONE_1|     .41477         .32108     1.29  .1964     -.21454   1.04407 
   ONE_2|     .08625         .31520      .27  .7844     -.53153    .70402 
        |Diagonal elements of Cholesky matrix 
   ONE_1|     .42395         .28240     1.50  .1333     -.12955    .97744 
   ONE_2|     .98957***      .29127     3.40  .0007      .41869   1.56044 
        |Below diagonal elements of Cholesky matrix 
lONE_ONE|    -.62399**       .31020    -2.01  .0443    -1.23197   -.01601 
        |Unconditional cross equation correlation 
lONE_ONE|    -.99693***      .01079   -92.41  .0000    -1.01808   -.97579 
--------+-------------------------------------------------------------------- 
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Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|       .179731      -.264539 
       2|      -.264539       1.36861 
 

Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .423947 
       2|       1.16988 
 

Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000      -.533382 
       2|      -.533382       1.00000 
 
E33.8.2 Simulation and Partial Effects 
 
 This is the model estimated at the beginning of the previous section.  
 
   y1* = a1 + b11 x1 + u1 + e1 

   y2* = a2 + b22 x2 + b23 x3 + u2 + e2. 
 
The random effects, u1 and u2, are time invariant – the same value appears in each of the 10 periods 
of the data.  The model command is 
 

BIVARIATE ; Lhs = y1,y2  
; Rh1 = one,x1 ; Rh2 = one,x2,x3  
; RPM ; Pds = 10 ; Pts = 25 ; Cor ; Halton 
; Fcn = one(n), one[n] $ 

 
----------------------------------------------------------------------------- 
Random Coefficients  BivProbt Model 
Bivariate Probit model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    X1_1|    1.08374***      .19408     5.58  .0000      .70335   1.46412 
    X2_2|    1.18264***      .22213     5.32  .0000      .74727   1.61800 
    X3_2|    1.18893***      .18946     6.28  .0000      .81758   1.56027 
        |Means for random parameters 
   ONE_1|    -.05021         .12427     -.40  .6862     -.29377    .19335 
   ONE_2|     .27827*        .15481     1.80  .0723     -.02514    .58169 
        |Diagonal elements of Cholesky matrix 
   ONE_1|    1.08131***      .17778     6.08  .0000      .73288   1.42975 
   ONE_2|     .42491***      .15811     2.69  .0072      .11503    .73480 
        |Below diagonal elements of Cholesky matrix 
lONE_ONE|    -.45867**       .17845    -2.57  .0102     -.80842   -.10892 
        |Unconditional cross equation correlation 
lONE_ONE|    -.17471         .17798     -.98  .3263     -.52355    .17413 
--------+-------------------------------------------------------------------- 
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Figure E33.3  Matrix Results 

 
The estimator does not support predictions or partial effects.  But, we can use the template 
SIMULATE and PARTIAL EFFECTS programs to create our own by supplying our function and 
estimates..  We will use the model exactly as shown in the results, with labels  for the estimates in 
order of their appearance:  b11,b22,b23,a1,a2,c11,c22,c21,ro.  For purposes of the exercise, we will 
examine the bivariate normal probability P(y1=1,y2=1).  With all the parts in place, other functions, 
such as the conditional means, can be examined by making minor changes in the function definition.  
For example, in the program below, partial effects are obtained simply by changing the command to 
PARTIALS and changing ; Scenario: to ; Effects: x1. 
 
? Create time invariant random effects.  Used to create correlated u1 and u2 

 
MATRIX  ; mv1 = Rndm(20,1) ; mv2 = Rndm(20,1) $ 
CREATE  ; index = Trn(10,0) $ 
CREATE  ; v1 = mv1(index) ; v2 = mv2(index) $ 

 
? Simulate the joint probability and examine its behavior as x1 varies 

 
SIMULATE  ; Labels = b11,b22,b23,a1,a2,c11,c22,c21,ro 

    ; Parameters = b 
                ; Covariance = varb 

; Function = xb1 = a1+b11*x1+c11*v1 | 
    xb2 = a2+b22*x2+b23*x3+c21*v1+c22*v2 | 
    Bvn(xb1,xb2,ro) 

; Scenario: & x1 = -3(.2)3 ; Plot $ 
 
--------------------------------------------------------------------- 
Model Simulation Analysis for User Specified Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avrg. Function      .23829     .02576    9.25      .18780      .28878 
X1      = -3.00     .00645     .00464    1.39     -.00266      .01555 
X1      = -2.80     .00870     .00567    1.54     -.00240      .01981 
(rows omitted) 
X1      =  2.80     .51118     .03121   16.38      .45001      .57235 
X1      =  3.00     .51513     .03049   16.90      .45538      .57488 
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Figure E33.4  Simulation of Estimated Model 

 
E33.9 Simultaneous Equations Models 
 
 Sections E33.5 and E33.6 suggested some results for simultaneous equations models 
involving binary variables.  For present purposes, the important feature is the appearance of the 
actual binary outcomes in the structural equations.  A number of models have been developed that 
involve not the outcome variables, but the underlying, unobserved continuous utilities.  A familiar 
source for some of these is Maddala (1983, Chapter 8).  His structural model is 
 
  y1* =  γ1y2*  +  β1′x1  +  ε1,  y1  =  1(y1* > 0) in the probit formulations, 

  y2* =  γ2y1*  +  β2′x2 +  ε2,  y2  =  1(y2* > 0) in the probit formulations, 

  [ε1,ε2] ~  BVN[(0,0), σ1
2, σ2

2, ρ]  (ρ is the correlation, σj is a standard deviation). 
 
Maddala’s Section 8.8 lists numerous permutations of the model based on different censoring 
mechanisms, that is, whether yj* or yj is observed, or perhaps somewhere between, a censored 
version, yj

+ = yjyj*.  A crucial element of this model is that the underlying structure involves the 
latent, uncensored variables.  One might easily imagine that the observed data, rather than the latent 
variables appear in the model.  Consider Greene’s (1998) model (based on Burnett (1997)) of 
whether a liberal arts college offers a gender economics course.  Its structure has the form: 
 
  Prob[Women’s studies program] =  F1(β1′x1) 

  Prob[Gender economics course]   =  F2(β2′x2 + γWomen’s studies program). 
 
This is a simultaneous equations (albeit a recursive one), but with the crucial difference that the 
observed binary variable from the first equation, not the latent continuous variable, appears in the 
second equation. We reconsider this model below.  Estimation of the two formulations must be 
handled differently.  The second case was developed in Sections E33.5 and E33.6. 
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E33.9.1 Maddala’s Models 
 
 The fundamental aspect of Maddala’s models (which may or may not be appropriate in a 
given application) is that there exists a reduced form 
 
   y1* =  π1′x  +  v1,  

   y2* =  π2′x  +  v2, 

   [v1,v2] ~  BVN[(0,0), θ1
2, θ2

2, τ] (τ is the correlation, θj is a standard deviation), 
 
where x is the union of the variables in x1 and x2.  The observation mechanism that translates the 
latent variables into the observed ones thus operates on the reduced form as well as on the structure.  
This turns out to be a (very) large convenience.  We consider two of the models given in Maddala 
(1983).  The others can be handled similarly.  We note, most of Maddala’s formulations of these 
estimation problems, although correct, are probably more complicated than necessary. The 
manipulation of variance parameters that are unidentified, rather than normalization of them to one at 
the outset, unnecessarily complicates some of the analyses as well.  Also, in some cases, the 
Murphy-Topel result for correcting covariance matrices for two step estimators can be used to some 
advantage to simplify Maddala’s results.  (Interestingly, Maddala (1983) gives, on page 243 the basic 
result to generate Murphy and Topel’s (1985) formulas, but he does not take full advantage of it in 
his derivations.)  Also, it is important to note that given the way these models are formulated, all can 
be estimated by full information maximum likelihood.  Imposition of the overidentifying restrictions 
will complicate the development, which is a reasonable motivation for the two step methods 
considered here.  In these cases, the models are estimated using the method of moments and two step 
estimators sometimes using single equation MLE at the first step. 
 
E33.9.2 Model 3: y1* Observed Directly, y2* Observed as Binary y2 
 
 The steps in the estimation involve fitting the two equations of the reduced form, by least 
squares for the first equation and univariate probit for the second.  Fitted values for the latent 
variables from the two equations are then inserted into the structural forms.  The structures are then 
fit by least squares and maximum likelihood probit, respectively, and the asymptotic covariance 
matrices are corrected after estimation.   This LIMDEP routine estimates Maddala’s Model 3, page 
245. A few algebraic errors are corrected in what follows.  Also, Maddala carries σ2 around his 
derivation, but σ2 must equal one.  We just impose the normalization outright. The implied equation 
system is 
   y1* = γ1 y2* + β1′x1 + u1,  y1 = y1*, 

   y2* = γ2 y1* + β2′x2 + u2,  y2 = 1(y2* > 0). 
 
The first variable, y1* is directly observed, but only the sign of y2* is observed.  The variance of u1 is 
σ1

2 squared.  Since y2* is not observed, save for sign, σ2
2 squared is normalized to 1.0.  The 

correlation is ρ12.   
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In the following, x is the union of x1 and x2.  The reduced form for the structural system is 
 
   y1* = π1′x + v1, Var[v1] = θ1

2 = (σ1
2 + γ1

2 + 2ρ12γ1σ1) / (1 - γ1γ2)2 

   y2* = π2′x + v2, Var[v2] = θ2
2 = (  1  + γ2σ1

2 + 2ργ2 ) /  (1 - γ1γ2)2 
 
 We note before proceeding that there is a huge gap in Maddala’s derivation. The parameter 
ρ12 is crucial in the derivation, and Maddala offhandedly claims that σ12/σ2 is estimable. In fact, σ2 is 
not estimable – it must be normalized to 1.0.  That leaves σ12 which is the needed calculation, since 
ρ12 = σ12/σ1.  But, in his derivation, he never presents the estimator for σ12 and it is far from obvious 
where one should get it.  We see two possibilities: (1)  Since σ1, γ1 and θ1

2 are estimated in the OLS 
regression of the first reduced form, the value of ρ12 that equates the left and right hand sides can be 
used. (2) Since the variance in a probit equation must equal one, we can find the ρ12 that makes θ2

2 
equal one.  Both of these candidates are method of moments estimators that can produce nonsense 
estimates of ρ12.  Based on his specification, there is no other way out of this quandary. 
 Only this setup is needed for use of this program.  The remainder is generic.  This defines 
the exogenous variables in the structural equations.  For convenience, we also make copies of the 
two left hand side variables. 
  

NAMELIST   ; x1 = ... ; x2 = ... $ 
CREATE     ; y1 = ... ; y2 = ... $ 

 
The procedure will now be generic.  This can be called by name, supplying only the names of the left 
and right hand side variables. 
 

PROC = Model3(y1,y2,x1,x2) $ 
NAMELIST ; xm3 = OR(x1,x2) $ Forms the union of the two right hand sides. 

 
This is the first reduced form regression.  Regress y1 on x.  This estimates π1 and θ1

2.  The fitted 
values are π1′x.  Retrieve the reduced form variance, s2; this is the estimate of θ1

2. 
 

REGRESS ; Lhs = y1 ; Rhs = xm3 ; Keep = p1x $ 
CALC  ; t1sq = ssqrd $ 

 
The second reduced form is the probit equation to estimate π2. We use these to compute π2′x. 

 
PROBIT ; Lhs = y2 ; Rhs = xm3 $ 
CREATE  ; p2x = xm3’b $  
MATRIX     ; v0 = varb $ 
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The fitted values are used on the right hand sides of the structural equation estimators. Estimate the 
first structural equation by least squares regression of y1 on (π2′x) and x1. Pick up the estimates of γ1 
and σ1

2 and the full coefficient vector α1 = (γ1,β2).  Estimate the second structural equation by probit 
estimation of y2 on π1′x and x2.  Pick up the estimate of γ2 and α2 = (γ2,β2) 
 

NAMELIST   ; z1 = p2x,x1 ; z2 = p1x,x2 $ 
REGRESS ; Lhs = y1 ; Rhs = z1 $  First structural equation 
MATRIX    ; alpha1 = b ; vols = varb $ 
CALC  ; gamma1 = b(1) ; sigmasq1 = ssqrd ; sigma1 = s $ 
PROBIT     ; Lhs = y2 ; Rhs = z2 $  Second structural equation 
MATRIX     ; alpha2 = b ; vprobit = varb  $ 
CALC       ; gamma2 = b(1) $ 

 
Use the estimates of θ1, γ1, γ2, and σ1

2 to estimate ρ12.  We first compute the possibly problematic 
method of moments estimator of ρ12.  Then compute the two scalars used in the computation, c  = σ1

2 
- 2σ1γ1ρ12  and d = γ2

2σ1
2 - 2σ1γ2ρ12. 

  
           CALC  ; rho12 = ((1-gamma1*gamma2)^2*t1sq - gamma1^2 - sigmasq1) 
               / (2*gamma1*sigma1)  
             ; c = sigmasq1 - 2* sigma1*gamma1*rho12 

; d = gamma2^2 * sigmasq1 - 2*sigma1*gamma2*rho12 $ 
 
Now compute the adjusted asymptotic covariance matrices and correct the results.  He carries σ2 
through all the computations, but σ2 must equal one.  Finish the covariance matrices and show the 
results. 
 

MATRIX  ; z1z1i =<z1’z1> ; va1 = c*z1z1i  
     + {gamma1^2} * z1z1i * z1’XM3 * v0 * xm3’z1 * z1z1i 

          ; z2xvi = z2’xm3 * v0 * xm3’z2 ; z2xvi  = <z2xvi> 
          ; va2 = z2xvi + d*z2xvi * z2’xm3 * v0 * <xm3’xm3> * v0 * xm3’z2 * z2xvi 
          ; Stat(alpha1,va1,z1) ; Stat (alpha1,vols,z1)  
          ; Stat(alpha2,va2,z2) ; Stat(alpha2,vprobit,z2) $ 

ENDPROCEDURE $ 
 
To use the procedure, the command is where the arguments are the variables and namelists that you 
have defined earlier. 

 
EXECUTE  ; Proc = Model3(y1, y2, x1, x2) $ 
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E33.9.3 Model 6: Both y1* and y2* Observed as Binary y1 and y2 
 
 This model involves only the binary variables.  Neither structural variance is identified, so 
the only variance parameter the model produces is the correlation coefficient, ρ.  The setup for the 
two sets of variables in the system is the same as above in the Model 3 procedure. 
 

PROCEDURE  = Model6(y1,y2,x1,x2) $ 
NAMELIST ; xm6 = OR(x1,x2) $ 

 
Estimate the reduced form probits and save the coefficients 
 

PROBIT    ; Lhs = y1 ; Rhs = xm6 $  
MATRIX    ; pi1 = b ; v1 = varb $  
PROBIT    ; Lhs = y2 ; Rhs = xm6 $  
MATRIX    ; pi2 = b ; v2 = varb $  
CREATE    ; y1f = x’pi1 ; y2f = xm6’pi2 $ 

 
Estimate the structural probits using the fitted values from above. 
 
        NAMELIST  ; z1 = y2f,x1 ; z2 = y1f,x2 $  

PROBIT    ; Lhs = y1 ; Rhs = z1 $  
MATRIX    ; alpha1 = b ; vp1 = varb $  
PROBIT    ; Lhs = y2 ; Rhs = z2 $  
MATRIX    ; alpha2 = b ; vp2 = varb $  

 
Calculate the covariance matrices, first for α1 then, symmetrically, for α2 
 

CREATE    ; q1 = z1’alpha1 ; q2 = xm6’pi2 
                  ; a1 = Lmp(q1)/Phi(q1) ; a2 = Lmp(q2)/Phi(q2) 
                  ; capa1 = N01(q1) * a1   
         ; u1 = y1 - Phi(q1) ; u2 = y2 - Phi(q2) ; v = a1 * a2 * u1 * u2 $   

MATRIX    ; w1 = z1’[capa1]z1 ; w2 = v1 ; w3 = alpha1(1) * z1’[capa1]xm6 
; w4 = xm6’[v]z1 ; w324 = w3 * w2 * w4  ; w323 = w3 * w2 * w3’ 
; va1 = w1 - w324 - w324’ + w323 ; va1 = <w1> * va1 * <w1> $ 

CREATE    ; q3 = z2’alpha2 ; q4 = xm6’pi1    
; a3 = Lmp(q3)/Phi(q3) ; a4 = Lmp(q4)/Phi(q4)   
; capa3 = N01(q3) * a3   

    ; u3 = y2 - Phi(q3) ; u4 = y1 - Phi(q4) ; v = a3 * a4 * u3 * u4 $   
MATRIX    ; w1 = z2’[capa3]z2 ; w2 = v2 ; w3 = alpha2(1) * z2’[capa3]xm6 

    ; w4 = x ‘[v]z2  ; w324 = w3 * w2 * w4 ; w323 = w3 * w2 * w3’ 
; va2 =  w1 - w324 - w324’ + w323 ; va2 = <w1> * va2 * <w1> $  

MATRIX    ; Stat(alpha1,va1,z1) ; Stat(alpha1,vp1,z1) 
  ; Stat(alpha2,va2,z2) ; Stat(alpha2,vp2,z2) $   

 
To use the procedure, the command is where the arguments are the variables and namelists that you 
have defined earlier. 
 

EXECUTE  ; Proc = Model6(y1, y2, x1, x2) $ 
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E33.10 Multivariate Probit Model 
 

The multivariate probit model is the extension to M equations of the bivariate probit model 
 

  yim*   =  βm′xim+ εim, m = 1,…,M 

  yim    =  1 if yim* > 0, and 0 otherwise. 

  εim, m  =  1,...,M  ~ MVN [0,R] 
 
where R is the correlation matrix. Each individual equation is a standard probit model.  This 
generalizes the bivariate probit model for up to M = 20 equations. Specify the model with the same 
command structure as the SURE model, using the command MPROBIT, 
 
 MPROBIT  ; Lhs = y1,y2,...,ym (list of up to 20 variables) 

; Eq1 = list of Rhs variables in the first equation 
; Eq2 = list of Rhs variables in the second equation 
... 
; EqM = list of Rhs variables for Mth equation $ 

 
The data for this model must be individual, not proportions and not frequencies.  You may use 
 
        ; Wts = name 
 
as usual.  Other options specific for this model in addition to the standard output options are 
 

  ; Prob = name  
 
which requests the estimator to save the predicted probability for the observed joint outcome, and 
 

  ; Utility = name  
 
where ‘name’ is an existing namelist to save the estimated utilities, Xmβm.  Restrictions can be 
imposed with  
 
   ; Rst = list 
and   ; CML:  specification for constraints 
 
Note that either of these can be used to specify the correlation matrix.  The list for ; Rst includes the 
M(M-1)/2 below diagonal elements of R.  You can use this to force correlations to equal each other, 
or zero, or other values. 
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E33.10.1 Other Options 
 
Standard Model Specifications for the Multivariate Probit Model 
 

This is the full list of general that are applicable to this model estimator. 
 
Controlling Output from Model Commands 
 

; Margin displays marginal effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
  

; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
 ; Prob = name saves probabilities as a new (or replacement) variable. 
 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
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E33.10.2 Retrievable Results 
  

This model keeps the following retrievable results: 
 
 Matrices: b   =  estimate of (β1′,β2′,…,βM′ )′ = vector of slopes only  
   varb   =  asymptotic covariance matrix 
   omega =  M×M correlation matrix of disturbances 
 
 Scalars: kreg   =  number of parameters in model 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Variables: logl_obs =  individual contribution to log likelihood 
 
 Last Model: None 
 
 Last Function: None 
 
 
E33.10.3 Marginal Effects 
 

You can obtain marginal effects for this model of the following form:  The expected value of 
y1 given that all other ys equal one is 
 
               E[y1|y2=1,...,yM=1] = Prob(y1=1,...,yM=1)/Prob(y2=1,...,yM=1) = P1...M / P2...M  =  E1. 
 
The derivatives of this function are constructed as follows:  Let x equal the union of all of the 
regressors that appear in the model, and let γm be such that zm = x’γm = βm′xm.  (γm will usually have 
some zeros in it unless all regressors appear in all equations.)  Then, 
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The relevant parts of this combination of the coefficient vectors are then extracted and reported for 
the specific equations. Standard errors are obtained using the delta method, and all derivatives are 
approximated numerically. All effects are computed at the means of the Rhs variables.  Use 
 

  ; Partial Effects 
 
to request this computation. In the display of these results, derivatives with respect to the constant 
term are set to zero. 
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 Standard errors for these marginal effects cannot be computed directly. We report a 
bootstrapped approximation computed as follows:  Let the estimated set of marginal effects be 
denoted d.  This is computed using the parameter estimates from the model as given earlier.  Let V 
denote the estimated asymptotic covariance matrix for the coefficient estimates.  An estimate of the 
variance of the estimator of the marginal effects is obtained as the mean squared deviation of 50 
random draws from the distribution of the underlying slope parameters.  You can set the number of 
bootstrap replications to use with 
 
   ; Nbt = number of replications. 
 
The draws are based on the asymptotic normal distribution with mean b and variance V.  (The 
estimated correlation parameters are taken as fixed.)  Thus, the marginal effects at the data means are 
computed 50 additional times with these new parameters, using 
 

   ( )∑ =
−=

50
1

2

50
1][.

r jjrj dddVarEst  

 
Note that the sums are centered at the original estimated marginal effect, not at the means of the 
random draws. 
 
E33.10.4 Technical Details 
 

The probabilities that enter the log likelihood, its derivatives, and so on are computed using 
the GHK simulation method described in Section R26.8.  The approximation is based on averaging R 
draws from a certain multivariate normal distribution, for each observation.  Each observation has its 
own seed for the random number generator, so for identical parameter values and fixed R, the draws 
are repeatable. Increasing R brings greater accuracy, but at the cost of greatly increased computation 
time. Note, as well, that all derivatives for this model are computed numerically, so it is very time 
consuming. However, one useful result is that although the amount of time needed to compute the 
function and the derivatives varies with R and the number of equations, for a given number of 
equations, the number of right hand side variables has only a very minor influence on the amount of 
time needed to compute the model.  You can control the number of draws with 
 

  ; Pts = R 
 
where R is the number you desire. 

The log likelihood for this model is accumulated as the sum of the logs of the probabilities of 
the observed outcomes.  These are computed using the following construction: 
 

  Prob[y1,y2,...,yM|x1,x2,...,xM] = Mvn ( Tz , TRT′ ) 
 
where z = the vector of utilities, zm= βm′xim, R is the correlation matrix, and T is a diagonal matrix 
with tmm = 2ym - 1 (i.e. tmm = 1 if ym = 1 and tmm = -1 if ym = 0). 
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E33.10.5 Example 
 
 The following example demonstrates estimation of a four equation model. The correlations 
are actually zero, so in principle, this could be fit with individual probit equations.  But, normally, 
that would not be known a priori. 
 

SAMPLE ; 1-200 $ 
CALC  ; Ran (12345) $ 
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; x3 = Rnn(0,1) ; x4 = Rnn(0,1) $ 
CREATE ; u1 = Rnn(0,1) ; u2 = Rnn(0,1) ; u3 = Rnn(0,1) ; u4 = Rnn(0,1) $ 
CREATE ; y1 = (x1+u1) > 0  

; y2 = (x2+x3+u2) > 0  
; y3 = (x1+x4+u3) > 0  
; y4 = (x2+x4+u4) > 0 $ 

MPROBIT ; Lhs = y1,y2,y3,y4 
; Eq1 = one,x1  
; Eq2 = one,x2,x3  
; Eq3 = one,x1,x4  
; Eq4 = one,x2,x4 
; Pts = 10 ; Output = 4  
; Partial Effects $ 

 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg   .0000D+00 chg.F   .0000D+00 max|dB|   .1000D-05 
Nodes for quadrature: Laguerre=20;Hermite=64. 
Replications for GHK simulator=  10 
Start values:   .12360D+00   .70740D-01   .12269D+00   .55103D-01   .63230D-01 
   .13232D+00   .56338D-01   .64745D-01   .12034D+00   .65986D-01   .58720D-01 
   .00000D+00   .00000D+00   .00000D+00   .00000D+00   .00000D+00   .00000D+00 
1st derivs.     .84798D+01  -.76676D+02   .19921D+02  -.63304D+02  -.73836D+02 
   .14141D+02  -.63575D+02  -.76630D+02   .31436D+02  -.71270D+02  -.73015D+02 
   .19690D+02  -.17021D+02   .13362D+02   .13334D+02  -.30084D+02  -.36003D+02 
Parameters:     .12360D+00   .70740D-01   .12269D+00   .55103D-01   .63230D-01 
   .13232D+00   .56338D-01   .64745D-01   .12034D+00   .65986D-01   .58720D-01 
   .00000D+00   .00000D+00   .00000D+00   .00000D+00   .00000D+00   .00000D+00 
Itr  1 F=  .5272D+03 gtHg=  .2014D+03 chg.F=  .5272D+03 max|db|=  .3600D+08 
Try =  0 F=  .5272D+03 Step=  .0000D+00 Slope= -.2014D+03 
Try =  1 F=  .5078D+03 Step=  .1000D+00 Slope= -.1867D+03 
Try =  2 F=  .3623D+03 Step=  .1369D+01 Slope= -.5825D+02 
Try =  3 F=  .3391D+03 Step=  .1945D+01 Slope= -.2370D+02 
Try =  4 F=  .3337D+03 Step=  .2476D+01 Slope=  .2739D+01 
1st derivs.     .32766D+01   .43567D+01  -.41789D+01  -.91291D+00  -.99307D+00 
  -.82940D+01  -.91181D+01  -.75208D+01  -.17834D+02  -.11640D+02  -.65515D+00 
  -.50245D+00   .16244D+02  -.81459D+01  -.94190D+01   .16572D+02   .17481D+02 
Parameters:     .19343D-01   .10134D+01  -.12222D+00   .83338D+00   .97099D+00 
  -.41531D-01   .83795D+00   .10069D+01  -.26614D+00   .94220D+00   .95639D+00 
  -.24207D+00   .20926D+00  -.16428D+00  -.16393D+00   .36986D+00   .44264D+00 
Itr  2 F=  .3337D+03 gtHg=  .4136D+02 chg.F=  .1935D+03 max|db|=  .1997D+03 
Try =  0 F=  .3337D+03 Step=  .0000D+00 Slope= -.4136D+02 
Try =  1 F=  .4215D+03 Step=  .2476D+01 Slope=  .1999D+03 
Try =  2 F=  .3261D+03 Step=  .1089D+01 Slope=  .1681D+02 
Try =  3 F=  .3225D+03 Step=  .6287D+00 Slope= -.1412D+01 
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1st derivs.    -.14478D+01  -.23864D+00  -.22465D+01  -.20622D+01  -.22485D+01 
  -.24826D+01  -.60476D+01  -.49056D+01   .50617D+01  -.18036D+01  -.81122D+01 
  -.41065D+01   .39010D+01   .29559D+01   .75582D+00   .61893D+00  -.24286D+01 
Parameters:    -.30461D-01   .94719D+00  -.58704D-01   .84725D+00   .98608D+00 
   .84539D-01   .97655D+00   .11212D+01   .49424D-02   .11191D+01   .96634D+00 
  -.23443D+00  -.37641D-01  -.40463D-01  -.20757D-01   .11795D+00   .17692D+00 
Itr 20 F=  .3191D+03 gtHg=  .1340D-04 chg.F=  .4547D-11 max|db|=  .6587D-03 
Try =  0 F=  .3191D+03 Step=  .0000D+00 Slope= -.4783D-04 
Try =  1 F=  .3191D+03 Step=  .5017D-06 Slope= -.1911D-04 
Try =  2 F=  .3191D+03 Step=  .8357D-06 Slope= -.2119D-08 
1st derivs.    -.22084D-06   .29391D-07   .31594D-07   .31861D-07  -.52226D-08 
   .12163D-07   .17487D-07   .47632D-08  -.30642D-07  -.21781D-07  -.13777D-07 
   .39684D-07  -.60782D-07  -.34254D-07  -.68164D-08  -.40873D-08   .23301D-07 
Parameters:    -.20652D-01   .95692D+00  -.38949D-01   .93476D+00   .10500D+01 
   .14372D+00   .12490D+01   .14330D+01  -.33649D-01   .12912D+01   .12151D+01 
  -.11798D+00  -.13321D+00  -.92436D-01   .16791D-02   .93420D-01   .22953D+00 
Itr 21 F=  .3191D+03 gtHg=  .2945D-07 chg.F=  .1955D-10 max|db|=  .2424D-06 
                                                           * Converged 
Normal exit:  21 iterations. Status=0, F=    319.0703 
Function=  .52721306618D+03, at entry,  .31907030043D+03 at exit 
 
----------------------------------------------------------------------------- 
Multivariate Probit Model:  4 equations. 
Dependent variable             MVProbit 
Log likelihood function      -319.07030 
Estimation based on N =    200, K =  17 
Inf.Cr.AIC  =  672.141 AIC/N =    3.361 
Replications for simulated probs. =  10 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
MVProbit|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for Y1 
Constant|    -.02065         .10695     -.19  .8469     -.23028    .18897 
      X1|     .95692***      .14188     6.74  .0000      .67883   1.23501 
        |Index function for Y2 
Constant|    -.03895         .11830     -.33  .7420     -.27082    .19292 
      X2|     .93476***      .19402     4.82  .0000      .55448   1.31504 
      X3|    1.05004***      .16917     6.21  .0000      .71847   1.38160 
        |Index function for Y3 
Constant|     .14372         .13389     1.07  .2831     -.11871    .40614 
      X1|    1.24904***      .25474     4.90  .0000      .74975   1.74832 
      X4|    1.43296***      .27672     5.18  .0000      .89059   1.97533 
        |Index function for Y4 
Constant|    -.03365         .13220     -.25  .7991     -.29277    .22547 
      X2|    1.29116***      .22791     5.67  .0000      .84447   1.73785 
      X4|    1.21507***      .19898     6.11  .0000      .82507   1.60507 
        |Correlation coefficients 
R(01,02)|    -.11798         .16431     -.72  .4727     -.44002    .20406 
R(01,03)|    -.13321         .17566     -.76  .4482     -.47750    .21108 
R(02,03)|    -.09244         .17993     -.51  .6074     -.44510    .26023 
R(01,04)|     .00168         .19945      .01  .9933     -.38924    .39260 
R(02,04)|     .09342         .18562      .50  .6148     -.27039    .45723 
R(03,04)|     .22953         .21032     1.09  .2751     -.18268    .64174 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+--------------------------------------------+ 
| Partials of E[y1|other vars=1,X] wrt X     | 
| Computed at the means of all RHS vars.     | 
| Conditional mean is Prob[Y1      =1] given | 
| Y2       through Y4       all equal 1.000. | 
| Estimate of conditional mean =  .49399     | 
+--------------------------------------------+ 
+--------+---------+-------------------------------------------------+---------+ 
|        |Mean of  |---------- Coefficient in Equation --------------|Marginal | 
|Variable|Variable | Y1      | Y2      | Y3      | Y4      |         |Effect   | 
+--------+---------+---------+---------+---------+---------+---------+---------+ 
|ONE     | 1.000000| -.020652| -.038949|  .143717| -.033649|  .000000|  .000000| 
|X1      |  .108196|  .956919|  .000000| 1.249038|  .000000|  .000000|  .419524| 
|X2      |  .029540|  .000000|  .934758|  .000000| 1.291157|  .000000| -.046952| 
|X3      | -.048523|  .000000| 1.050036|  .000000|  .000000|  .000000|  .013699| 
|X4      | -.187948|  .000000|  .000000| 1.432961| 1.215068|  .000000| -.021750| 
+--------+---------+---------+---------+---------+---------+---------+---------+ 
 

----------------------------------------------------------------------------- 
Std.Errors are based on  50 bootstrap reps. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
MVProbit|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for Y1 
      X1|     .41952***      .05019     8.36  .0000      .32116    .51789 
        |Index function for Y2 
      X2|    -.04695         .08341     -.56  .5735     -.21044    .11653 
      X3|     .01370         .03955      .35  .7290     -.06381    .09121 
        |Index function for Y3 
      X1|     .41952***      .05019     8.36  .0000      .32116    .51789 
      X4|    -.02175         .09006     -.24  .8092     -.19827    .15477 
        |Index function for Y4 
      X2|    -.04695         .08341     -.56  .5735     -.21044    .11653 
      X4|    -.02175         .09006     -.24  .8092     -.19827    .15477 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E33.10.6 Sample Selection Model 
 
 There are two modifications of the multivariate probit model built into the estimator.  The 
first is a multivariate version of the selection model in Section E33.4.  The model structure is 
 

  yi1*   =  β1′xi1 + εi1,  

  yi2*   =  β2′xi2 + εi2, 
   … 
  yi,M-1*   =  βM-1′xi,M-1 + εI,M-1,  

  yiM*   =  βM′xiM + εiM,  

  yim    =  1 if yim* > 0, and 0 otherwise. 

  εim, m  =  1,...,M  ~ MVN [0,R] 

   yi,1,yi,2,…,yi,M-1 only observed when yiM = 1. 
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In the same fashion as earlier, the log likelihood is built up from the laws of probability.  The 
different terms in the likelihood function are 
 
   Prob(yiM = 1|xim)  
 
for the nonselected case, then 
 
   Prob(Yi1 = yi1,…,Yi,M-1 = yi,M-1 , yiM = 1|xi1,…,xiM). 
 
The last equation is the selection mechanism.  This produces a difference in the likelihood that is 
maximized (and, to some degree, in the interpretation of the model), but no essential difference in the 
estimation results. 
 This form of the model is requested by adding 
 
   ; Selection  
 
to the MVPROBIT command.  There are no other changes in the model specification, or the data.  
Missing data may be coded as zeros or as missing. 
 
E33.10.7 Sequential Selection or Attrition 
 
 A second form of the multivariate probit model accommodates exogenous attrition.  In this 
form, the M equations would be a sequence of probit outcomes, in the form of an M period panel.  
The feature produced here is that the individual is present only for the first Ti of the M periods; Ti 
might equal M, but could be fewer.  For this form of the model, the structure is exactly as above, for 
all M periods.  However, for individual i, only a Ti-variate probit model applies.  To  request this 
form of the model, use 
 
 MVPROBIT ; … all as before 
   ; Pds = the variable that provides Ti $ 
 
The remaining features of the model are, once again, all as before.  A (probably obvious) restriction 
is that at least some individuals must be present for all M periods in order for the model to be 
estimable. 
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E34: Ordered Choice Models 
 
E34.1 Introduction 
 
 The basic ordered choice model is based on the following specification:  There is a latent 
regression, 
   yi* =  β′xi + εi,  εi ~ F(εi |θ), E[εi|xi] = 0, Var[εi|xi] = 1, 
 
The observation mechanism results from a complete censoring of the latent dependent variable as 
follows: 
   yi   =  0 if yi  ≤ µ0, 

    =  1 if µ0 < yi  ≤ µ1, 

    =  2 if µ1 < yi   ≤ µ2, 

    ... 

    =  J if  yi  > µJ-1. 
  
The latent ‘preference’ variable, yi* is not observed.  The observed counterpart to yi* is yi.  Five 
stochastic specifications are provided for the basic model shown above.  The ordered probit model 
based on the normal distribution was developed by Zavoina and McElvey (1975).  It applies in 
applications such as surveys, in which the respondent expresses a preference with the above sort of 
ordinal ranking.  The variance of εi is assumed to be one, since as long as yi*, β, and εi are 
unobserved, no scaling of the underlying model can be deduced from the observed data.  (The 
assumption of homoscedasticity is arguably a strong one.  We will relax that assumption in Section 
E35.2.) Since the µs are free parameters, there is no significance to the unit distance between the set 
of observed values of y.  They merely provide the coding.  Estimates are obtained by maximum 
likelihood.  The probabilities which enter the log likelihood function are 
 
   Prob[yi  =  j]  =  Prob[yi* is in the jth range]. 
  
The model may be estimated either with individual data, with yi = 0, 1, 2, ... or with grouped data, in 
which case each observation consists of a full set of J+1 proportions, p0i,...,pJi. 
 
NOTE:  If your data are not coded correctly, this estimator will abort with one of several possible 
diagnostics – see below for discussion.  Your dependent variable must be coded 0,1,...,J.  We note 
that this differs from some other econometric packages which use a different coding convention. 
 
 There are numerous variants and extensions of this model which can be estimated. The 
underlying mathematical forms are shown below, where the CDF is denoted F(z) and the density is 
f(z).  (Familiar synonyms are given as well.) 
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Probit   
 

 F(z)  =  
2exp( / 2)

2
z t dt

−∞

−
π∫   =  Φ(z),   f(z)  =  φ(z) 

 

Logit    
 

 F(z)  =  exp( )
1 exp( )

z
z+

  =  Λ(z),    f(z)  =  Λ(z)[1 - Λ(z)] 

 
Complementary log log or Weibull 
 

 F(z)  =  1 - exp(-exp(z))  =  C(z),   f(z)  =  exp(z)[1 - C(z)] 
 
Gompertz or log log or extreme value 
 
 F(z)  =  exp(-exp(-z))  =  G(z),     f(z)  = exp(-z)G(z) 
 
Arctangent  
 
 F(z)  = 2/π arctan(z),      f(z)  =  2/π × 1/(1 + z2) 
 
The ordered probit model is an extension of the probit model for a binary outcome with normally 
distributed disturbances.  The ordered logit model results from the assumption that ε has a standard 
logistic distribution instead of a standard normal.  The ordered Weibull, ordered Gompertz and ordered 
arctangent models are based on asymmetric distributions with skews to the right and left, respectively.  
A variety of additional specifications and extensions are provided.   Basic models are treated in this 
chapter. Extensions such as censoring and sample selection are given in Chapter E35.  Panel data 
models for ordered choice are discussed in Chapter E36. 
 
E34.2 Command for Ordered Probability Models 
 

 The essential command for estimating ordered probability models  is 
 
 ORDERED  ; Lhs = y or p0,p1,...pJ ; Rhs = regressors $ 
 
Note that the estimator accepts proportions data for a set of J proportions.  The proportions would 
sum to one at each observation.  The probit model is the default specification.  To estimate an 
ordered logit, ordered Weibull, ordered Gompertz or ordered arctangent model instead, add  
 
   ; Model = Logit 
 

or   ; Model = Weibull (this is the extreme value model) 
 

or   ; Model = Gompertz 
 

or   ; Model = Arctangent 
 
to the command. The standardized logistic distribution (mean zero, standard deviation approximately 
1.81) is used as the basis of the model instead of the standard normal.  The command builder for this 
model is found at Model:Discrete Choice/Ordered. 
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E34.2.1 Data Problems 
 
 If you are using individual data, the Lhs variable must be coded 0,1,...,J.  All the values must 
be present in the data.  LIMDEP will look for empty cells.  If there are any, estimation is halted.  (If 
value ‘j’ is not represented in the data, then the threshold parameter, µj is not estimable.) In this 
circumstance, you will receive a diagnostic such as 
 

ORDE,Panel,BIVA PROBIT:A cell has (almost) no observations. 
Empty cell: Y        never takes value  2 

 
This diagnostic means exactly what it says.  The ordered probability model cannot be estimated 
unless all cells are represented in the data.  Users frequently overlook the coding requirement,           
y = 0,1,... If you have a dependent variable that is coded 1,2,..., you will see the following 
diagnostic: 
 

Models - Insufficient variation in dependent variable. 
 
The reason this particular diagnostic shows up is that LIMDEP creates a new variable from your 
dependent variable, say y, which equals zero when y equals zero, and one when y is greater than 
zero.  It then tries to obtain starting values for the model by fitting a regression model to this new 
variable.  If you have miscoded the Lhs variable, the transformed variable always equals one, which 
explains the diagnostic.  In fact, there is no variation in the transformed dependent variable.  If this is 
the case, you can simply use CREATE to subtract 1.0 from your dependent variable to use this 
estimator. 
 
E34.2.2 Other Standard Options 
 

This is the full list of general specifications that are applicable to this model estimator. 
 
Controlling Output from Model Commands 
 

; Par  keeps ancillary parameters µj with main parameter β vector in b. 
; Margin displays marginal effects. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  
; Cluster = spec requests computation of the cluster form of corrected covariance estimator. 
; Stratum = spec is used with ; Cluster for stratified and clustered data sets. 
; Robust requests a sandwich estimator or robust VC for TSCS and some discrete 
  choice models. 
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Optimization Controls for Nonlinear Optimization 
 
 ; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 

 ; Prob = name saves probabilities of outcome as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 

 
; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
E34.3 Output from the Ordered Probability Estimators 
 
 All of the ordered probit/logit models begin with an initial set of least squares results of 
some sort.  These are suppressed unless your command contains ; OLS.  The iterations are then 
followed by the maximum likelihood estimates in the usual tabular format.  The final output includes 
a listing of the cell frequencies for the outcomes.  When the data are stratified, this output will also 
include a table of the frequencies in the strata.  The log likelihood function, and a log likelihood 
computed assuming all slopes are zero are computed.  For the latter, the threshold parameters are still 
allowed to vary freely, so the model is simply one which assigns each cell a predicted probability 
equal to the sample proportion.  This appropriately measures the contribution of the nonconstant 
regressors to the log likelihood function.  As such, the chi squared statistic given is a valid test 
statistic for the hypothesis that all slopes on the nonconstant regressors are zero.  
 The sample below shows the standard output for a model with six outcomes.  These are the 
German health care data used in several earlier examples. The dependent variable is the self reported 
health satisfaction rating. For the purpose of a convenient sample application, we have truncated the 
health satisfaction variable at five by discarding observations – in the original data set, it is coded 
0,1,...,10. 
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HINT:  The ordered logit model typically produces the same sort of scaling of the coefficient vector 
that arises in the binary choice models discussed in Chapter E27.  As before, the difference becomes 
much less pronounced when the marginal effects are considered instead. We are unaware of a 
convenient specification test for distinguishing between the probit and logit models. A test of 
normality against the broader Pearson family of distributions is described in Glewwe (1997), but it is 
not especially convenient.  A test for skewness based on the Vuong test seems like a possibility.   
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                 HSAT 
Log likelihood function    -11284.68638 
Restricted log likelihood  -11308.02002 
Chi squared [   4 d.f.]        46.66728 
Significance level               .00000 
McFadden Pseudo R-squared      .0020635 
Estimation based on N =   8140, K =   9 
Inf.Cr.AIC  =22587.373 AIC/N =    2.775 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.32892***      .07276    18.27  .0000     1.18632   1.47152 
  FEMALE|     .04526*        .02546     1.78  .0755     -.00465    .09517 
  HHNINC|     .35590***      .07832     4.54  .0000      .20240    .50940 
  HHKIDS|     .10604***      .02665     3.98  .0001      .05381    .15827 
    EDUC|     .00928         .00630     1.47  .1407     -.00307    .02162 
        |Threshold parameters for index 
   Mu(1)|     .23635***      .01237    19.11  .0000      .21211    .26059 
   Mu(2)|     .62954***      .01440    43.72  .0000      .60132    .65777 
   Mu(3)|    1.10764***      .01406    78.78  .0000     1.08008   1.13519 
   Mu(4)|    1.55676***      .01527   101.94  .0000     1.52683   1.58669 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------------------------+ 
|                CELL FREQUENCIES FOR ORDERED CHOICES                | 
+--------------------------------------------------------------------+ 
|               Frequency        Cumulative  < =    Cumulative  > =  | 
|Outcome      Count    Percent   Count    Percent   Count    Percent | 
|----------- ------- ---------  ------- ---------  ------- --------- | 
|HSAT=00         447    5.4914      447    5.4914     8140  100.0000 | 
|HSAT=01         255    3.1327      702    8.6241     7693   94.5086 | 
|HSAT=02         642    7.8870     1344   16.5111     7438   91.3759 | 
|HSAT=03        1173   14.4103     2517   30.9214     6796   83.4889 | 
|HSAT=04        1390   17.0762     3907   47.9975     5623   69.0786 | 
|HSAT=05        4233   52.0025     8140  100.0000     4233   52.0025 | 
+--------------------------------------------------------------------+ 
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Cross tabulation of predictions and actual outcomes 
+------+-----+-----+-----+-----+-----+-----+-----+ 
|y(i,j)|  0  |  1  |  2  |  3  |  4  |  5  |Total| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
|   0  |    0|    0|    0|    0|    0|  447|  447| 
|   1  |    0|    0|    0|    0|    0|  255|  255| 
|   2  |    0|    0|    0|    0|    0|  642|  642| 
|   3  |    0|    0|    0|    0|    0| 1173| 1173| 
|   4  |    0|    0|    0|    0|    0| 1390| 1390| 
|   5  |    0|    0|    0|    0|    0| 4233| 4233| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
| Total|    0|    0|    0|    0|    0| 8140| 8140| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
Row = actual, Column = Prediction, Model = Probit 
Prediction is number of the most probable cell. 
 
Cross tabulation of outcomes and predicted probabilities. 
+------+-----+-----+-----+-----+-----+-----+-----+ 
|y(i,j)|  0  |  1  |  2  |  3  |  4  |  5  |Total| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
|   0  |   26|   15|   36|   66|   77|  228|  447| 
|   1  |   14|    8|   21|   37|   44|  131|  255| 
|   2  |   36|   20|   51|   93|  110|  331|  642| 
|   3  |   64|   37|   93|  170|  200|  609| 1173| 
|   4  |   75|   43|  109|  200|  237|  725| 1390| 
|   5  |  230|  132|  333|  610|  722| 2206| 4233| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
| Total|  445|  255|  644| 1176| 1389| 4230| 8140| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
Row = actual, Column = Prediction, Model = Probit 
Value(j,m)=Sum(i=1,N)y(i,j)*p(i,m). 
Column totals may not match cell sums because of rounding error. 
 

 The model output is followed by a (J+1)×(J+1) frequency table of predicted versus actual 
values.  (This table is not given when data are grouped or when there are more than 10 outcomes.)  
The predicted outcome for this tabulation is the one with the largest predicted probability.  Even 
though the model appears to be highly significant, the table of predictions has seems to suggest a 
lack of predictive power.   Tables such as the one above are common with this model.  The driver of 
the result is the sample configuration of the data. Note in the frequency table that the sample is quite 
unbalanced, and the highest outcome is quite likely to have the highest probability for every 
observation.  The estimation criterion for the ordered probability model is unrelated to its ability to 
predict those cells, and you will rarely see a predictions table that closely matches the actual 
outcomes.  It often happens that even in a set of results with highly significant coefficients, only one 
or a few of the outcomes are predicted by the model.  The second table relates more closely to the 
aggregate predictions of the model.  The table entries are the sample proportions that would be 
predicted for each outcome. For example, the first row of the table shows that 447 individuals in the 
sample chose outcome 0.  For every individual, the model produces a full set of J+1 probabilities.  
For the 447 individuals, 8140 times the sum of the probabilities of outcome 0 equals 26, 8140 times 
the sum of the probabilities of outcome 1 equals 15, and so on. 
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E34.3.1 Robust Covariance Matrix Estimation 
 
The Sandwich Estimator 
 
 The standard robust covariance matrix is  
 

 Est.Asy.Var ˆ 
 β   =  

1 12 2

1 1 1

log log log log
ˆ ˆ ˆ ˆ ˆ

n n ni i i i
i i i

F F F F
− −

= = =

 ′      ∂ ∂ ∂ ∂           ′ ′ ∂ ∂ ∂ ∂ ∂ ∂         
∑ ∑ ∑γ γ γ γ γ γ

 

 
where γ̂  indicates the full set of parameters in the model.  To obtain this matrix with any of the 
forms of the ordered choice models, use 
 
   ; Robust 
 
in the ORDERED command.   
 
Clustering and Stratification 
 
 A related calculation is used when observations occur in groups which may be correlated.  
This is rather like a panel; one might use this approach in a random effects kind of setting in which 
observations have a common latent heterogeneity.  The parameter estimator is unchanged in this 
case, but an adjustment is made to the estimated asymptotic covariance matrix.  Full details on this 
estimator appear in Chapter R10.  To specify this estimator, use 
 
   ; Cluster = specification 
 
where the specification is either a fixed number of observations or the name of a variable that 
provides an identifier for the cluster, such as an id number.  Note that if there is exactly one 
observation per cluster, then this is G/(G-1) times the sandwich estimator discussed above.  Also, if 
you have fewer clusters than parameters, then this matrix is singular – it has rank equal to the 
minimum of G and K, the number of parameters. 
 The extension of this estimator to stratified data is described in detail in Section R10.3.  To 
use this with the ; Cluster specification, add 
 
   ; Stratum = specification 
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E34.3.2 Saved Results 
 
 Computation of predictions and ancillary variables is as follows:  For each observation, the 
predicted probabilities for all J+1 outcomes are computed.  Then if you request ; List, the listing will 
contain 
 
 Predicted Y:  Y with the largest probability. 
 
 Residual:  the largest of the J+1 probabilities (i.e., Prob[y = fitted Y]). 
 

Var1:  the estimate of E[yi]  =  
i

J

=∑ 0
i ×  Prob[Yi  = i].   

(Note that since the outcomes are only ordinal, this is not a true expected value.) 
   
 Var2:   the probability estimated for the observed Y. 
 
 Estimation results kept by the estimator are as follows: 
  
 Matrices: b   =  estimate of β, 
         varb =  estimated asymptotic covariance, 
   mu =  J-1 estimated µs. 
 
 Scalars:  kreg, nreg, and logl. 
 
 Last Model: The labels are b_variables, mu1, ... 
 
 Last Function: Prob(y = highest outcome | x) 
  
The specification ; Par adds µ (the set of estimated threshold values) to b and varb.  The additional 
matrix, mu is kept regardless, but the estimated asymptotic covariance matrix is lost unless the 
command contains ; Par.  The Last Function is used in the SIMULATE and PARTIAL EFFECTS 
routines.  The default function is the probability of the highest outcome.  You can specify a different 
outcome in the command with 
 
   ; Outcome = j 
 
where j is the desired outcome.  For example, in our earlier application in which outcomes are 
0,1,2,3,4,5, the command might specify 
 
 PARTIAL EFECTS ; Effects: hhninc ; Outcome = 3 $ 
 
and likewise for SIMULATE.  A full examination of all outcomes is obtained by using 
 
   ; Outcome = *  
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E34.4 Model Structure and Data 
 
E34.4.1 Constant Term 
 
 This model must include a constant term, one, as the first Rhs variable.  Since the equation 
does include a constant term, one of the µs is not identified.  We normalize µ0 to zero.  (Consider the 
special case of the binary probit model with something other than zero as its threshold value.  If it 
contains a constant, this cannot be estimated.)  Data may be grouped or individual.  (Survey data 
might logically come in grouped form.)  If you provide individual data, the dependent variable is 
coded 0, 1, 2, ..., J.  There must be at least three values.  Otherwise, the binary probit model applies. 
If the data are grouped, a full set of proportions, p0, p1, ..., pJ, which sum to one at every observation 
must be provided.  In the individual data case, the data are examined to determine the value of J, 
which will be the largest observed value of y which appears in the sample.  In the grouped data case, 
J is one less than the number of Lhs variables you provide.  Once again, we note that other programs 
sometimes use different normalizations of the model.  For example, if the constant term is forced to 
equal zero, then one will instead, add a nonzero threshold parameter, µ0, which equals zero in the 
presence of a nonzero constant term.   
 
E34.4.2 Censored Data 
 
 Suppose that the dependent variable for the ordered probability model is censored for some 
observations.  For example, suppose that Y takes values 0,1,2,...,10.  But, for some observations, we 
observe only a five and an indicator that the dependent variable was actually at least five, though the 
actual value is unknown.  Then, for this observation, the relevant probability is the sum of the 
probabilities from five to 10, not just the cell probability for Y = 5.  These sorts of data are likely to 
occur in the context of the ordered extreme value model for duration described in Chapter E59.3.  
LIMDEP will accommodate this form of censoring, and modify the log likelihood function and all 
estimates accordingly.  Censoring is indicated as in the other duration models.  That is, when data 
are censored, you can so indicate by including in your model command a second Lhs variable which 
is the censoring indicator.  Remember that the indicator takes values zero for the censored 
observations and one for the uncensored observations. 
 Mathematically, the censored data model is a simple extension of the familiar ordered 
probability model.  Let y = 0,1,...,J.  The probability that y equals j is 
 
   Prob[observed y = j]  =  F[µj - β′x] - F[µj-1 - β′x]. 
  
The log likelihood and its derivatives are built up from this relationship.  If, however, y is censored, 
then the observed value y = j contributes a term 
  

     Prob[observed y = j]  =  
i j

J

=∑ {F[µi - β′x] - F[µi-1 - β′x]}. 
  
The log likelihood and its derivatives are obtained just by summing all of the relevant cells. 
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NOTE:  Recall that LIMDEP deduces the value of J from the data – the highest value of yi.  
Therefore, you must have some uncensored observations, and J is the largest value of yi observed 
among these data points.  By implication, if a censored yi exceeds J, there is a problem in the data. 
 
NOTE:  (On computation)  This additional summation will not add any additional time to fit your 
model. The reason is that LIMDEP already obtains the log likelihood function by taking a weighted 
sum of all J+1 terms, where in the standard case, the weights are either [0,0,...,1,0,...] for the 
individual case or [p0,p1,...,pJ] in the grouped data case.  For the censored data case, we merely 
change the weight vector to [0,0,...,1,1,1...], which is a trivial operation. 
 
 In the example below, we have randomly censored about 20% of the observations.  The 
commands are 
 
 SAMPLE ; All $ 
 REJECT  ; _groupti < 7 $ 
 CREATE ; censor = Rnu(0,1) > .2 $ 
 ORDERED ; Lhs = newhsat,censor ; Rhs = one,female,hhninc,hhkids,educ   
   ; Logit $  
 
The results do reveal an impact of the censoring.  For comparison, the same model estimated without 
censoring is presented with the results. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -11253.80999 
Censoring indicator is CENSOR 
Total observations =   6209.0 
Uncensored =   5002.0, censored =   1207.0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    3.32240***      .14571    22.80  .0000     3.03683   3.60798 
  FEMALE|    -.32084***      .04839    -6.63  .0000     -.41569   -.22600 
  HHNINC|     .21830         .15550     1.40  .1604     -.08647    .52307 
  HHKIDS|     .42233***      .04748     8.89  .0000      .32926    .51539 
    EDUC|     .09499***      .01233     7.70  .0000      .07082    .11916 
        |Threshold parameters for index 
   Mu(1)|     .51490***      .05948     8.66  .0000      .39831    .63149 
   Mu(2)|    1.23940***      .05891    21.04  .0000     1.12393   1.35486 
   Mu(3)|    1.91493***      .05111    37.47  .0000     1.81476   2.01509 
   Mu(4)|    2.44072***      .04558    53.55  .0000     2.35138   2.53005 
   Mu(5)|    3.44902***      .03893    88.60  .0000     3.37273   3.52532 
   Mu(6)|    3.89066***      .03724   104.48  .0000     3.81767   3.96364 
   Mu(7)|    4.51839***      .03603   125.39  .0000     4.44777   4.58902 
   Mu(8)|    5.54920***      .03807   145.75  .0000     5.47458   5.62383 
   Mu(9)|    6.26265***      .04367   143.40  .0000     6.17706   6.34825 
--------+-------------------------------------------------------------------- 
(Uncensored) 
----------------------------------------------------------------------------- 
Log likelihood function    -12971.89392 
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--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    3.02189***      .13081    23.10  .0000     2.76551   3.27827 
  FEMALE|    -.31859***      .04729    -6.74  .0000     -.41129   -.22590 
  HHNINC|     .23133*        .13880     1.67  .0956     -.04072    .50338 
  HHKIDS|     .47849***      .04529    10.56  .0000      .38972    .56726 
    EDUC|     .10241***      .01122     9.12  .0000      .08041    .12441 
        |Threshold parameters for index 
   Mu(1)|     .49176***      .05264     9.34  .0000      .38859    .59493 
   Mu(2)|    1.26288***      .05011    25.20  .0000     1.16468   1.36109 
   Mu(3)|    1.94907***      .04093    47.62  .0000     1.86886   2.02929 
   Mu(4)|    2.48180***      .03468    71.57  .0000     2.41383   2.54976 
   Mu(5)|    3.48744***      .02747   126.94  .0000     3.43360   3.54129 
   Mu(6)|    3.94860***      .02594   152.22  .0000     3.89776   3.99944 
   Mu(7)|    4.61859***      .02627   175.79  .0000     4.56710   4.67009 
   Mu(8)|    5.70197***      .03154   180.78  .0000     5.64015   5.76378 
   Mu(9)|    6.48830***      .04110   157.86  .0000     6.40774   6.56886 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E34.5 Partial Effects and Simulations 
 
 There is potentially a large amount of output for the ordered choice model, in addition to the 
basic model results.  There is no single conditional mean because the outcomes are labels, not 
measures.  There are J+1 probabilities to analyze, 
 
   Prob[cell j] = F(µj - β′xi) - F(µj-1 - β′xi). 
 
Typically, the highest or lowest cell is of interest. However, the PARTIAL EFFECTS (or just 
PARTIALS) and SIMULATE commands can be used to examine any or all of them. 
 Marginal effects in the ordered probability models are also quite involved.  Since there is no 
meaningful conditional mean function to manipulate, we compute, instead, the effects of changes in 
the covariates on the cell probabilities.  These are: 
 

   ∂Prob[cell j]/∂xi  =  [f(µj-1 - β′xi) - f(µj - β′xi)] × β, 
 
where f(.) is the appropriate density for the standard normal, φ(•), logistic density, Λ(•)(1-Λ(•)), 
Weibull, Gompertz or arctangent.  Each vector is a multiple of the coefficient vector. But it is worth 
noting that the magnitudes are likely to be very different.  In at least one case, Prob[cell 0], and 
probably more if there are more than three outcomes, the partial effects have exactly the opposite 
signs from the estimated coefficients.   
  
NOTE:  This estimator segregates dummy variables for separate computation in the marginal 
effects.  The marginal effect for a dummy variable is the difference of the two probabilities, with and 
without the variable. 
 
 Partial effects for the ordered probability models are obtained internally in the command  by 
adding 
   ; Partial Effects  
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in the command.  This produces a table oriented to the outcomes, such as the one below.  A second 
summary that is oriented to the variables rather than the outcomes is requested with 
 
   ; Partial Effects ; Full 
 
The internal results are computed at the means of the data.  Partial effects can also be obtained with 
the PARTIALS command.  The third set of results below is obtained with 
 
 PARTIALS ; Effects: hhninc ; Outcome = * $ 
 
This command produces average partial effects by default, but you can request that they be 
computed at the data means by adding ; Means to the command.  Probabilities for particular 
outcomes are obtained with the SIMULATE command.  An example appears below. 
 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
    HSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
 *FEMALE|    -.00498*       -.09207    -1.77  .0763     -.01049    .00053 
  HHNINC|    -.03907***     -.23836    -4.53  .0000     -.05599   -.02216 
 *HHKIDS|    -.01132***     -.20926    -4.08  .0000     -.01676   -.00588 
    EDUC|    -.00102        -.20477    -1.47  .1409     -.00237    .00034 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
 *FEMALE|    -.00210*       -.06711    -1.78  .0758     -.00441    .00022 
  HHNINC|    -.01647***     -.17397    -4.54  .0000     -.02358   -.00936 
 *HHKIDS|    -.00483***     -.15473    -4.04  .0001     -.00718   -.00249 
    EDUC|    -.00043        -.14945    -1.47  .1408     -.00100    .00014 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
 *FEMALE|    -.00414*       -.05244    -1.77  .0760     -.00872    .00043 
  HHNINC|    -.03257***     -.13605    -4.50  .0000     -.04675   -.01838 
 *HHKIDS|    -.00964***     -.12205    -3.98  .0001     -.01439   -.00489 
    EDUC|    -.00085        -.11688    -1.47  .1412     -.00198    .00028 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
 *FEMALE|    -.00473*       -.03273    -1.77  .0764     -.00997    .00050 
  HHNINC|    -.03727***     -.08501    -4.43  .0000     -.05375   -.02078 
 *HHKIDS|    -.01121***     -.07751    -3.87  .0001     -.01689   -.00554 
    EDUC|    -.00097        -.07303    -1.47  .1417     -.00227    .00032 
        |--------------[Partial effects on Prob[Y=04] at means]-------------- 
 *FEMALE|    -.00208*       -.01214    -1.77  .0762     -.00438    .00022 
  HHNINC|    -.01643***     -.03166    -4.34  .0000     -.02385   -.00901 
 *HHKIDS|    -.00518***     -.03026    -3.66  .0002     -.00795   -.00241 
    EDUC|    -.00043        -.02720    -1.47  .1427     -.00100    .00014 
        |--------------[Partial effects on Prob[Y=05] at means]-------------- 
 *FEMALE|     .01803*        .03469     1.78  .0755     -.00185    .03792 
  HHNINC|     .14181***      .09003     4.54  .0000      .08065    .20297 
 *HHKIDS|     .04219***      .08116     3.99  .0001      .02145    .06292 
    EDUC|     .00370         .07734     1.47  .1407     -.00122    .00861 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+----------------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Model (probit)   | 
| Effects computed at means.  Effects for binary variables (*) are     | 
| computed as differences of probabilities, other variables at means.  | 
| Binary variables change only by 1 unit so s.d. changes are not shown.| 
| Elasticities for binary variables = partial effect/probability = %chgP | 
+----------------------------------------------------------------------+ 
+----------------------------------------------------------------------+ 
|          Binary(0/1) Variable FEMALE      Changes in *FEMALE    % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00498    -.00498     .00000       -       -.00498    -.09207 
Y = 01    -.00210    -.00708     .00498       -       -.00210    -.06711 
Y = 02    -.00414    -.01122     .00708       -       -.00414    -.05244 
Y = 03    -.00473    -.01595     .01122       -       -.00473    -.03273 
Y = 04    -.00208    -.01803     .01595       -       -.00208    -.01214 
Y = 05     .01803     .00000     .01803       -        .01803     .03469 
+----------------------------------------------------------------------+ 
|           Continuous Variable HHNINC      Changes in HHNINC     % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.03907    -.03907     .00000    -.00655    -.11703    -.23836 
Y = 01    -.01647    -.05555     .03907    -.00276    -.04933    -.17397 
Y = 02    -.03257    -.08811     .05555    -.00546    -.09753    -.13605 
Y = 03    -.03727    -.12538     .08811    -.00625    -.11161    -.08501 
Y = 04    -.01643    -.14181     .12538    -.00275    -.04921    -.03166 
Y = 05     .14181     .00000     .14181     .02377     .42472     .09003 
+----------------------------------------------------------------------+ 
|          Binary(0/1) Variable HHKIDS      Changes in *HHKIDS    % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.01132    -.01132     .00000       -       -.01132    -.20926 
Y = 01    -.00483    -.01615     .01132       -       -.00483    -.15473 
Y = 02    -.00964    -.02579     .01615       -       -.00964    -.12205 
Y = 03    -.01121    -.03701     .02579       -       -.01121    -.07751 
Y = 04    -.00518    -.04219     .03701       -       -.00518    -.03026 
Y = 05     .04219     .00000     .04219       -        .04219     .08116 
+----------------------------------------------------------------------+ 
|           Continuous Variable EDUC        Changes in EDUC       % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00102    -.00102     .00000    -.00212    -.01120    -.20477 
Y = 01    -.00043    -.00145     .00102    -.00089    -.00472    -.14945 
Y = 02    -.00085    -.00230     .00145    -.00177    -.00934    -.11688 
Y = 03    -.00097    -.00327     .00230    -.00202    -.01069    -.07303 
Y = 04    -.00043    -.00370     .00327    -.00089    -.00471    -.02720 
Y = 05     .00370     .00000     .00370     .00770     .04066     .07734 
------------------------------------------------------------------------ 
 
  



E34: Ordered Choice Models   E-753 

PARTIALS  ; Effects: hhninc ; Outcome = * $ 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Ordered Probit     Probability Y = 5 
--------------------------------------------------------------------- 
Effects on function with respect to HHNINC 
Results are computed by average over sample observations 
Partial effects for continuous HHNINC   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dHHNINC         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE Prob(y= 0)     -.03930     .00872    4.51     -.05640     -.02220 
APE Prob(y= 1)     -.01643     .00373    4.41     -.02374     -.00912 
APE Prob(y= 2)     -.03238     .00734    4.41     -.04677     -.01800 
APE Prob(y= 3)     -.03694     .00827    4.47     -.05315     -.02072 
APE Prob(y= 4)     -.01624     .00382    4.26     -.02372     -.00876 
APE Prob(y= 5)      .14129     .03099    4.56      .08055      .20204 
 

SIMULATE  ; Scenario: & hhninc = 0(.05)1 ; Plot(ci) ; Outcome = 4 $ 
 
--------------------------------------------------------------------- 
Model Simulation Analysis for Ordered Probit     Probability Y = 4 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avrg. Function      .17068     .00988   17.27      .15131      .19005 
HHNINC  =   .00     .17528     .01026   17.09      .15517      .19538 
HHNINC  =   .05     .17477     .01021   17.11      .15476      .19479 
HHNINC  =   .10     .17421     .01016   17.14      .15429      .19413 
HHNINC  =   .15     .17360     .01011   17.17      .15379      .19342 
HHNINC  =   .20     .17294     .01005   17.20      .15324      .19265 
HHNINC  =   .25     .17223     .00999   17.23      .15264      .19182 
HHNINC  =   .30     .17147     .00993   17.26      .15199      .19094 
HHNINC  =   .35     .17065     .00987   17.28      .15130      .19001 
HHNINC  =   .40     .16979     .00982   17.30      .15055      .18903 
HHNINC  =   .45     .16888     .00976   17.30      .14975      .18801 
HHNINC  =   .50     .16793     .00971   17.30      .14890      .18695 
HHNINC  =   .55     .16692     .00966   17.28      .14799      .18586 
HHNINC  =   .60     .16587     .00962   17.24      .14701      .18473 
HHNINC  =   .65     .16478     .00959   17.18      .14598      .18358 
HHNINC  =   .70     .16364     .00957   17.09      .14488      .18241 
HHNINC  =   .75     .16246     .00957   16.98      .14371      .18122 
HHNINC  =   .80     .16124     .00958   16.84      .14247      .18001 
HHNINC  =   .85     .15998     .00960   16.66      .14116      .17880 
HHNINC  =   .90     .15868     .00965   16.45      .13978      .17758 
HHNINC  =   .95     .15734     .00971   16.21      .13832      .17637 
HHNINC  =  1.00     .15596     .00979   15.93      .13678      .17515 
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Figure E34.1  Simulated Probabilities 

 
E34.6 Technical Details for Ordered Choice Models 
 
 For brevity, we generalize the basic model at this point by integrating both the 
heteroscedasticity and stratification that are presented in the next two chapters.  Either or both can be 
assumed away.  Define the augmented vector of threshold parameters 
 
  µ  =  µ-1  µ0  µ1  ...  µJ-1  µJ,  in which  µ-1  =  -∞,   µ0  =  0,   and   µJ  =  +∞. 
 
Then,  Prob[yi,s  =  j]  =  F[(µj,s - β′xi)/wi]  -  F[(µj-1,s - β′xi)/wi], j = 0,1,...,J 
  
where s denotes the stratum, which may be one for all observations, ‘wi’ is the individual specific 
standard deviation, which is 1.0 for all i, or an observed variable, wi, or exp(γ′zi) with unknown 
parameters γ and observed variables zi which does not include a constant.  Then, let 
  
 F(.) = the CDF of the distribution of ε, normal, logistic; Weibull, arctangent or Gompertz. 
 
The log likelihood function is  
 
   log L =  Σi log Li   

    =  Σi log Prob[Yi,s  =  yi,s], 

where   Yi,s   =  the theoretical random variable 

and   yi,s   =  the observed value of Yi,s for observation i in stratum s. 
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The first derivatives are  
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where f(.) denotes the appropriate density, φ(.) or Λ(1-Λ) for normal or logistic, etc.  For 
convenience, denote 
 
   fj,s  =  f[(µj,s - β′xi)/wi]    

and   Fj,s  =  F[(µj,s - β′xi)/wi], 
 
and likewise for ‘j-1.’  By convention,  
 
   f-1,s = F-1,s  = fJ,s = 0, and FJ,s = 1.   

Then,   ∂log Li/∂µj,s   =   [fj,s / (Fj,s - Fj-1,s)] / wi 

and   ∂log Li/∂µj-1,s =  -[fj-1,s / (Fj,s - Fj-1,s)] / wi. 

These imply that ∂log Li/∂µm  =  0  if m = -1, 0, or J. 
 
For the model with multiplicative heteroscedasticity, 
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For estimation with grouped data and observed proportions p0,...,pJ, 
 
   log Lj    =  Σj pjlog Prob[Yi,s = j]. 
  
The preceding expressions are summed over all outcomes.  Second derivatives are extremely tedious, 
but use common expressions and are in principle straightforward.  The analytic Hessian is used for 
computing asymptotic standard errors. 
 The algorithm used to obtain the maximum likelihood estimates is BFGS.  Starting values 
are obtained by least squares, either ordinary or generalized depending on the type of data.  In either 
case, this initial regression is based on the dichotomy formed by using the binary indicator 1[y > 0] 
as if a univariate probit model applied.  For grouped data, p+ and p0 = 1-p+ provide the dichotomy, 
and minimum chi squared estimates are obtained.  The constant term and the values of the thresholds 
are then estimated by using the cell frequencies under the assumption that all of the slopes are zero.  
We segment the real line in such a way that the normal (or other distribution) probabilities 
corresponding to this partition match the sample cell frequencies.  You may provide your own 
starting values with 
   ; Start = start values for β, start values for µ1,...,µJ-1. 
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The first threshold parameter, µ0 equals 0.0.  If the model contains a constant term, this is not 
estimable.  Note, also, that there is no µJ.  For example, if J = 2, so y = 0,1,2, then only µ1 is to be 
estimated.  The full parameter vector is 
 
   Θ  =  [β1,...,βK,µ1,...,µJ-1]. 
 
NOTE:  It is necessary for the threshold parameters to be strictly ordered.  That is, µj > µj-1.  
Occasionally, during the line search, this requirement will be violated by a trial value.  A diagnostic 
will be issued,  
 
 ORDERED PROBIT - Current estimated thresholds not ordered.  
 
but estimation will continue.  This is merely a warning, and the line search will continue with a 
smaller step.  But, if your data are such that there are many cells, and some of them are nearly empty, 
this condition may be persistent, and it is possible that the estimation process will break down. 
 
The partial effects are obtained by a manipulation of the likelihood equations. 
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E35: Extended Ordered Choice Models 
 
E35.1 Introduction 
 

 The basic ordered choice model is based on the following specification:  There is a latent 
regression, 
   yi*   =  β′xi + εi,  εi ~ F(εi |θ), E[εi|xi] = 0, Var[εi|xi] = 1, 
 
The observation mechanism results from a complete censoring of the latent dependent variable as 
follows: 
   yi     =  0 if yi  ≤ µ0, 

    =  1 if µ0 < yi  ≤ µ1, 

    =  2 if µ1 < yi   ≤ µ2, 
    ... 

    =  J if  yi  > µJ-1. 
  
The latent ‘preference’ variable, yi* is not observed.  The observed counterpart to yi* is yi.  The 
probabilities which enter the log likelihood function are 
 
   Prob[yi  =  j]  =  Prob[yi* is in the jth range]. 
 
Estimation and analysis of the basic model are presented in Chapter E34.  A variety of additional 
specifications and extensions are supported.  The extensions shown in this chapter are: 
 

• heteroscedasticity, 
• sample selection and treatment effects, 
• generalized ordered, proportional odds and the parallel regressions assumption, 
• hierarchical ordered probit models, 
• zero inflated ordered probit models, 
• bivariate ordered probit and polychoric correlation. 

 

E35.2 Weighting and Heteroscedasticity 
 

 An ordered probit model with simple heteroscedasticity,  
 
   Var[εi] = wi

2

 
,  

may be estimated with 
 
 ORDERED  ; Rhs = ... ; Lhs = ...  
   ; Wts = your weighting variable, wi 
   ; Heteroscedastic $ 
 
Your command gives the name of the variable which carries the observed individual specific 
standard deviations.  This formulation does not add new parameters to the model, and only instructs 
the estimator how the weighting variable is to be handled.   
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 This approach is different from estimating the model with weights.  Without ; Het, this 
model is treated as any other weighted log likelihood, and the estimator maximizes  
 
   log L   =   

1
log Pr ob(  )n

i ii
w observed outcome

=∑  

where   Prob[cell j] =  F(µj - β′xi) - F(µj-1 - β′xi). 
 
With ; Het, the probabilities are built up from the heteroscedastic random variable, but the terms in 
the log likelihood are unweighted.  With this form of the command, using ; Het, the model is 
 
   Prob[cell j] =  F[(µj - β′xi)/wi] - F[(µj-1 - β′xi)/wi] 

and   log L   =  
1

log Pr ob(  )n
ii

observed outcome
=∑   

 
E35.3 Multiplicative Heteroscedasticity 
 
 The model with multiplicative heteroscedasticity,  
 
   Var[εi]  =  [exp(γ′zi)]2,  
 
is requested with 
 
 ORDERED  ; Rhs = ... ; Lhs = ...  
   ; Het  
   ; Rh2 = list of variables in z $ 
 
NOTE:  Do not include a constant (one) in z.  A variable in z which has no variation, such as one, 
will lead to a singular Hessian, and the estimator will fail to converge.   
 
This formulation adds a vector of new parameters to the model.  For purposes of starting values, 
restrictions, and hypothesis tests, the full parameter vector becomes  
 
   Θ  =  [β1,...,βK,γ1,...,γL,µ1,...,µJ-1]. 
 
You can use ; Rst and ; CML: for imposing restrictions as usual.  As always, restrictions that force 
ancillary variance parameters (γh) to equal parameters in the conditional mean function (βk) will 
rarely produce satisfactory results.  In the saved results, the estimator of γ will always be included in 
b and varb.  Thus, if you want to extract parts of the parameter vector after estimation, you might use 
 
 NAMELIST ; x = ...  
   ; z = ... $ 
 ORDERED ; Lhs  = y ; Rhs = x   
   ; Rh2  = z ; Het $ 
 CALC  ; k = Col(x) ; k1 = k+1 ; kt = k + Col(z) $ 
 MATRIX ; beta = b(1:k)  
   ; gamma = b(k1:kt) $ 
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The µ threshold parameters are still the ancillary parameters.  Marginal effects, fitted values, and so 
on are requested exactly as before with this extension of the ordered probit model.  In the Last Model 
labels list, the variance parameters will be denoted c_variable, so with this model, the complete list 
of labels is 
   Last Model = [B_...,C_...,MU1,...]. 
  
The Last Function for the model is the probability including the exponential heteroscedasticity model 
 

   1Prob( 1| )
exp( ) exp( )

j jy F F −′ ′µ − µ −   
= = −   ′ ′   

x x
x,z

z z
β β

γ γ
 

 

E35.3.1 Testing for Heteroscedasticity 
 
 The model with homoscedastic disturbances is nested in this model (γ = 0) so the standard  
tests, i.e., LM, likelihood ratio, and Wald, are available for testing the specification. The first two of 
these will be very convenient.  To carry out an LM test, you could use the following:  First define the 
two variable lists. 
 
  NAMELIST ; x = ...  
   ; z = ... $ 
 
Fit the model without heteroscedasticity.  This command saves b and mu needed later. 
 
 ORDERED ; Lhs = y  ; Rhs = x $ 
 
Define the zero vector for the variance parameters. 
 
  MATRIX ; {h = Col(z)} ; gamma = Init (h,1,0) $ 
 
Now, fit the heteroscedastic model, but do not iterate.  This displays the LM statistic. 
 
  ORDERED ; Lhs = y ; Rhs = x ; Rh2 = z ; Het 
   ; Start = b,gamma,mu ; Maxit = 0 $ 
 
To use a likelihood ratio test, instead, the preceding is modified as follows: 
 

1. Add CALC ; lr = logl $ after the first ORDERED command. 
 

2. Omit ; Maxit = 0 from the second ORDERED command. 
 

3. Add the command  
 

CALC  ; List ; chi = 2*(logl - lr) $ 
 

after the second ORDERED command; chi is the chi squared statistic.  This can be referred 
to the table with 

 
CALC  ; cstar = Ctb(.95,L) $ 

 
which provides the necessary critical value. 
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 The following experiment illustrates these computations.  We test for heteroscedasticity in the 
health satisfaction model, using the three standard tests in an ordered logit model as the platform.  To 
simplify it a bit, we use a restricted sample of only those individuals observed in all seven periods. 
 
 SAMPLE  ; All $ 
 REJECT  ; _groupti < 7 $ 
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,female,hhninc,hhkids,educ  
   ; Logit $  
 CALC    ; lr = logl $ 
 
This command carries out the LM test. The starting values are from the previous model for β and µ 
and zeros for the elements of γ.  The test is requested with ; Maxit = 0. 
 
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,female,hhninc,hhkids,educ  
   ; Logit ; Het ; Rh2 = married,univ,working,female,hhninc 
   ; Start = b,0,0,0,mu ; Maxit = 0 $ 
 
This command estimates the full heteroscedastic model.  Based on these results, we then carry out 
the likelihood ratio and Wald tests. 
 
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,female,hhninc,hhkids,educ  
   ; Logit ; Het ; Rh2 = married,univ,working,female,hhninc $ 
 CALC    ; lu = logl $ 
 CALC    ; List ; lrtest = 2*(lu - lr) $ 
 MATRIX  ; gamma = b(6:10) ; vgamma = varb(6:10,6:10) $ 
 MATRIX  ; List  
   ; waldstat = gamma'<vgamma>gamma $ 
 
As might be expected in a sample this large, the three tests give the same answer.  The LM, LR and 
Wald statistics obtained are 84.16200, 84.26808 and 83.90174, respectively. 
 
The first set of results are for the restricted, homoscedastic model. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -12971.89392 
Restricted log likelihood  -13138.97978 
Chi squared [   4 d.f.]       334.17171 
Significance level               .00000 
McFadden Pseudo R-squared      .0127168 
Estimation based on N =   6209, K =  14 
Inf.Cr.AIC  =25971.788 AIC/N =    4.183 
Underlying probabilities based on Logistic 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    3.02189***      .13081    23.10  .0000     2.76551   3.27827 
  FEMALE|    -.31859***      .04729    -6.74  .0000     -.41129   -.22590 
  HHNINC|     .23133*        .13880     1.67  .0956     -.04072    .50338 
  HHKIDS|     .47849***      .04529    10.56  .0000      .38972    .56726 
    EDUC|     .10241***      .01122     9.12  .0000      .08041    .12441 
        |Threshold parameters for index 
   Mu(1)|     .49176***      .05264     9.34  .0000      .38859    .59493 
   Mu(2)|    1.26288***      .05011    25.20  .0000     1.16468   1.36109 
   Mu(3)|    1.94907***      .04093    47.62  .0000     1.86886   2.02929 
   Mu(4)|    2.48180***      .03468    71.57  .0000     2.41383   2.54976 
   Mu(5)|    3.48744***      .02747   126.94  .0000     3.43360   3.54129 
   Mu(6)|    3.94860***      .02594   152.22  .0000     3.89776   3.99944 
   Mu(7)|    4.61859***      .02627   175.79  .0000     4.56710   4.67009 
   Mu(8)|    5.70197***      .03154   180.78  .0000     5.64015   5.76378 
   Mu(9)|    6.48830***      .04110   157.86  .0000     6.40774   6.56886 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The next set of results is the computation of the Lagrange multiplier statistic.  This next command 
does not reestimate the model.  Note that the coefficient estimates are identical, save for the 
parameters in the variance function.  The estimated standard errors do change, however, because in 
the restricted model above, the Hessian is computed and inverted just for the parameters estimated.  
In the results below, the Hessian is computed as if the inserted zeros for γ were actually the 
parameter estimates.  These standard errors are not useful. 
 
Maximum iterations reached. Exit iterations with status=1. 
Maxit = 0. Computing LM statistic at starting values. 
No iterations computed and no parameter update done. 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
LM Stat. at start values       92.77220 
LM statistic kept as scalar    LMSTAT 
Log likelihood function    -12971.89392 
Restricted log likelihood  -13138.97978 
Chi squared [   9 d.f.]       334.17171 
Significance level               .00000 
McFadden Pseudo R-squared      .0127168 
Estimation based on N =   6209, K =  19 
Inf.Cr.AIC  =25981.788 AIC/N =    4.185 
Underlying probabilities based on Logistic 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
Constant|    3.02189***      .18716    16.15  .0000     2.65507   3.38871 
  FEMALE|    -.31859***      .04747    -6.71  .0000     -.41164   -.22555 
  HHNINC|     .23133         .15162     1.53  .1271     -.06584    .52849 
  HHKIDS|     .47849***      .05058     9.46  .0000      .37936    .57762 
    EDUC|     .10241***      .01246     8.22  .0000      .07798    .12683 
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        | Variance function 
 MARRIED|        0.0         .02958      .00 1.0000 -.57975D-01  .57975D-01 
    UNIV|        0.0         .06508      .00 1.0000 -.12755D+00  .12755D+00 
 WORKING|        0.0         .02825      .00 1.0000 -.55371D-01  .55371D-01 
  FEMALE|        0.0         .02483      .00 1.0000 -.48663D-01  .48663D-01 
  HHNINC|        0.0         .07843      .00 1.0000 -.15372D+00  .15372D+00 
        | Threshold parameters for index 
   Mu(1)|     .49176***      .06836     7.19  .0000      .35778    .62574 
   Mu(2)|    1.26288***      .09719    12.99  .0000     1.07240   1.45336 
   Mu(3)|    1.94907***      .11474    16.99  .0000     1.72420   2.17395 
   Mu(4)|    2.48180***      .12755    19.46  .0000     2.23181   2.73178 
   Mu(5)|    3.48744***      .15442    22.58  .0000     3.18479   3.79010 
   Mu(6)|    3.94860***      .16835    23.45  .0000     3.61864   4.27856 
   Mu(7)|    4.61859***      .18971    24.35  .0000     4.24677   4.99041 
   Mu(8)|    5.70197***      .22651    25.17  .0000     5.25801   6.14592 
   Mu(9)|    6.48830***      .25426    25.52  .0000     5.98996   6.98664 
----------------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

These are the estimates for the full heteroscedastic model.  The test statistics appear after the 
estimated parameters. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -12924.94799 
Restricted log likelihood  -13138.97978 
Chi squared [   9 d.f.]       428.06357 
Significance level               .00000 
McFadden Pseudo R-squared      .0162898 
Estimation based on N =   6209, K =  19 
Inf.Cr.AIC  =25887.896 AIC/N =    4.169 
Underlying probabilities based on Logistic 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.38708***      .14152    16.87  .0000     2.10971   2.66445 
  FEMALE|    -.22820***      .03379    -6.75  .0000     -.29442   -.16199 
  HHNINC|     .13810         .09576     1.44  .1492     -.04958    .32579 
  HHKIDS|     .33481***      .03573     9.37  .0000      .26478    .40485 
    EDUC|     .06415***      .00763     8.40  .0000      .04919    .07911 
        |Variance function 
 MARRIED|    -.13333***      .03198    -4.17  .0000     -.19601   -.07066 
    UNIV|    -.19916***      .05658    -3.52  .0004     -.31007   -.08826 
 WORKING|    -.18323***      .02928    -6.26  .0000     -.24062   -.12584 
  FEMALE|    -.03756         .02478    -1.52  .1296     -.08613    .01101 
  HHNINC|    -.19768***      .07590    -2.60  .0092     -.34643   -.04893 
        |Threshold parameters for index 
   Mu(1)|     .38333***      .05379     7.13  .0000      .27790    .48875 
   Mu(2)|     .97539***      .07759    12.57  .0000      .82333   1.12746 
   Mu(3)|    1.48986***      .09299    16.02  .0000     1.30761   1.67211 
   Mu(4)|    1.88162***      .10423    18.05  .0000     1.67733   2.08590 
   Mu(5)|    2.60926***      .12681    20.58  .0000     2.36072   2.85779 
   Mu(6)|    2.93848***      .13795    21.30  .0000     2.66810   3.20885 
   Mu(7)|    3.41196***      .15468    22.06  .0000     3.10880   3.71512 
   Mu(8)|    4.16905***      .18272    22.82  .0000     3.81092   4.52718 
   Mu(9)|    4.72049***      .20380    23.16  .0000     4.32105   5.11992 
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--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
The final results are the test statistics for the hypothesis of homoscedasticity.  The three results are, 
as expected, essentially the same. 
 
LM Stat. at start values       92.77220  (from the earlier results) 
 
[CALC] LRTEST  =     93.8918620 
 
WALDSTAT|             1 
--------+-------------- 
       1|       94.6903 
 
E35.3.2 Partial Effects in the Heteroscedasticity Model 
 
 Partial effects in the ordered choice models with heteroscedasticity appear from two sources, 
in the latent utility and in the variance function. When variables appear in both places, the total effect 
is the sum of the two terms. 
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Request the partial effects within the command with 
 
   ; Partial Effects  
 
(In previous versions, the command was ; Marginal Effects.  This form is still supported.) 
 The following results show the computation for the full model fit earlier.  (Effects for 
outcomes 0 to 7 are omitted below.) 
 
+-------------------------------------------+ 
| Marginal Effects for OrdLogit             | 
| * Total effect = sum of terms             | 
+----------+----------+----------+----------+ 
| Variable | NEWHSA=8 | NEWHS=9  | NEWHS=10 | 
+----------+----------+----------+----------+ 
| FEMALE   |  -.02676 |  -.02181 |  -.02998 | 
| HHNINC   |   .01619 |   .01320 |   .01814 | 
| HHKIDS   |   .03925 |   .03200 |   .04399 | 
| EDUC     |   .00752 |   .00613 |   .00843 | 
| MARRIED  |   .01949 |  -.00278 |  -.02676 | 
| UNIV     |   .02911 |  -.00415 |  -.03997 | 
| WORKING  |   .02678 |  -.00382 |  -.03677 | 
| HHNINC   |   .02889 |  -.00412 |  -.03967 | 
| FEMALE   |   .00549 |  -.00078 |  -.00754 | 
| FEMALE  *|  -.02127 |  -.02260 |  -.03752 | 
| HHNINC  *|   .04508 |   .00908 |  -.02153 | 
+----------+----------+----------+----------+ 
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 The PARTIAL EFFECTS (or just PARTIALS) and SIMULATE commands receive the 
estimates form the heteroscedastic ordered choice model, so you can use them to analyze the 
probabilities or partial effects.   For example, to replace the preceding results, use 
 
 PARTIALS ; Effects: female / hhninc ; Outcome = * $ 
 
Three differences are first, this estimator uses average partial effects by default (or means if you 
request them), second, it uses partial differences for dummy variables while the built in computation 
uses scaled coefficients and, third, as seen below, the PARTIAL EFFECTS command produces 
standard errors and confidence intervals for the partial effects. 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Ordered Logit      (Het) Prob[Y = 10] 
--------------------------------------------------------------------- 
Effects on function with respect to FEMALE 
Results are computed by average over sample observations 
Partial effects for binary var FEMALE   computed by first difference 
--------------------------------------------------------------------- 
df/dFEMALE         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE Prob(y= 0)      .00195     .00148    1.32     -.00096      .00485 
APE Prob(y= 1)      .00166     .00075    2.23      .00020      .00312 
APE Prob(y= 2)      .00534     .00170    3.14      .00201      .00867 
APE Prob(y= 3)      .00959     .00218    4.40      .00532      .01387 
APE Prob(y= 4)      .01189     .00210    5.66      .00778      .01601 
APE Prob(y= 5)      .03070     .00447    6.87      .02194      .03946 
APE Prob(y= 6)      .01222     .00255    4.79      .00721      .01722 
APE Prob(y= 7)      .00646     .00381    1.70     -.00100      .01393 
APE Prob(y= 8)     -.02026     .00510    3.97     -.03025     -.01027 
APE Prob(y= 9)     -.02224     .00323    6.89     -.02857     -.01591 
APE Prob(y=10)     -.03732     .00645    5.79     -.04996     -.02468 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Ordered Logit      (Het) Prob[Y = 10] 
--------------------------------------------------------------------- 
Effects on function with respect to HHNINC 
Results are computed by average over sample observations 
Partial effects for continuous HHNINC   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dHHNINC         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE Prob(y= 0)     -.01302     .00449    2.90     -.02183     -.00421 
APE Prob(y= 1)     -.00620     .00215    2.89     -.01041     -.00199 
APE Prob(y= 2)     -.01426     .00473    3.01     -.02354     -.00498 
APE Prob(y= 3)     -.01675     .00575    2.91     -.02803     -.00547 
APE Prob(y= 4)     -.01297     .00544    2.39     -.02362     -.00231 
APE Prob(y= 5)     -.00775     .01253     .62     -.03231      .01681 
APE Prob(y= 6)      .01008     .00739    1.36     -.00440      .02456 
APE Prob(y= 7)      .02766     .01108    2.50      .00593      .04938 
APE Prob(y= 8)      .04272     .01395    3.06      .01538      .07006 
APE Prob(y= 9)      .01063     .00909    1.17     -.00718      .02845 
APE Prob(y=10)     -.02014     .02072     .97     -.06076      .02047 
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E35.4 Sample Selection and Treatment Effects 
 
 The following describes an ordered probit counterpart to the standard sample selection 
model.  This is only available for the ordered probit specification.  The structural equations are, first, 
the main equation, the ordered choice model, 
 
   yi*   =  β′xi + εi,  εi ~ F(εi |θ), E[εi] = 0, Var[εi] = 1, 

   yi     =  0 if yi  ≤ µ0, 

    =  1 if µ0 < yi  ≤ µ1, 

    =  2 if µ1 < yi   ≤ µ2, 

    ... 

    =  J if  yi  > µJ-1. 
 
Second is the selection equation, a univariate probit model, 
 
   di*  =  α′zi + ui, 

   di    =  1 if di*
 

 > 0 and 0 otherwise, 

The observation mechanism is 
  
   [yi,xi] is observed if and only if di  =  1. 

   εi,ui  ~  N2[0,0,1,1,ρ]; there is ‘selectivity’ if ρ is not equal to zero. 
 
This model is a straightforward generalization of the bivariate probit model with sample selection in 
Section E33.4. 
 The treatment effects model includes di as an endogenous binary variable in the ordered 
probit equation; 
   yi*   =  β′xi + γdi +  εi,  εi ~ F(εi |θ), E[εi] = 0, Var[εi] = 1, 

   yi     =  j if µj-1 < yi* < µj, j = 0,1,…,J 

   di*  =  α′zi + ui, 

   di    =  1 if di*

   εi,ui  ~  N2[0,0,1,1,ρ]; di is endogenous if ρ is not equal to zero. 

 > 0 and 0 otherwise, 

 
This model is a generalization of the recursive bivariate probit model in Section E33.6. 
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E35.4.1 Command 
 
 These models require two passes to estimate.  In the first, you fit a probit model for the 
selection (or treatment) variable, d.  You then pass these values to the ordered probit model using a 
standard command for this operation, the ; Hold parameter in the probit command.  The two 
commands would be as follows:  (This model is requested in the same fashion as LIMDEP’s other 
sample selectivity models.)  Estimate first stage probit model and hold results for next step in the 
estimation. 
 
 PROBIT  ; Lhs = d ; Rhs = Z list ; Hold $ 
 
Second, estimate the ordered probit model with selectivity 
 
 ORDERED  ; Lhs = y ; Rhs = X ; ... as usual ; Selection $ 
 
You need not make any other changes in the ordered probit command.  For the treatment effects 
case, the probit model is unchanged while the ORDERED command becomes 
 
 ORDERED  ; Lhs = y ; Rhs = X,d ; ... as usual ; Selection ; All $ 
 
Note that the treatment variable now appears on the right hand side of the ordered choice model. 
 The ; Rst = ... and ; CML: options for imposing restrictions can be used freely with this 
model to constrain β and α.  The parameter vector is 
 
   Θ  =  [β1,...,βK,α1,...,αL,µ1,...,µJ-1,ρ]. 
 
The usual warning about cross equation restrictions apply.  You may also give your own starting 
values with ; Start = list ..., though the internal values will usually be preferable. 
 
E35.4.2 Saved Results 
 
 All results kept for the basic model are also kept; b and varb still include only β, but ; Par 
adds all of [µ,α,ρ] to the parameter vector.  This model adds two additional scalars: 
 
   rho   =  estimate of ρ, 
   varrho   =  estimate of asymptotic variance of estimated ρ. 
 
NOTE:  The estimates of α update the estimates you stored with ; Hold when you fit the probit 
model. Thus, for example, if you were to follow your ORDERED command immediately with the 
identical command, the starting values used for α would be the MLEs from the prior ordered probit 
command, not the ones from the original probit model that you fit earlier.  Also, if you were to 
follow this model command with a SELECTION model command, this estimate of α would be used 
there, as well. 
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With the corrected estimates of [β,µ] in hand, predictions for this model are computed in the same 
manner as for the basic model without selection.  The only difference is that no prediction for y is 
computed in the selection model if d = 0. 
 The PARTIAL EFFECTS and SIMULATE commands are not available for these two 
specifications (because they only operate on single equation models).  An internal program for 
partial effects is provided.  An application below illustrates. 
 
E35.4.3 Applications 
 
 To illustrate the computations of this model, we have fit an equation for insurance purchase, 
then followed with an equation for health satisfaction in which insurance is taken to be a selection 
mechanism.  The treatment effects formulation is shown later. 
 

PROBIT  ; Lhs = public ; Rhs = one,age,hhninc,hhkids ; Hold $ 
ORDERED  ; Lhs = newhsat ; Rhs = one,age,educ,hhninc,female  

; Selection  
; Partial Effects $ 

 
This is the initial probit equation. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               PUBLIC 
Log likelihood function     -1868.84461 
Restricted log likelihood   -1976.59009 
Chi squared [   3 d.f.]       215.49097 
Significance level               .00000 
McFadden Pseudo R-squared      .0545108 
Estimation based on N =   6209, K =   4 
Inf.Cr.AIC  = 3745.689 AIC/N =     .603 
Results retained for SELECTION model. 
Hosmer-Lemeshow chi-squared =  46.95244 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  PUBLIC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.24898***      .13551     9.22  .0000      .98339   1.51458 
     AGE|     .01695***      .00285     5.96  .0000      .01137    .02253 
  HHNINC|   -1.73406***      .12491   -13.88  .0000    -1.97889  -1.48923 
  HHKIDS|    -.07027         .04906    -1.43  .1521     -.16643    .02589 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This ordered probit model is fit using the selected observations to obtain starting values for the full 
model. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -13609.65952 
Estimation based on N =   6209, K =  14 
Inf.Cr.AIC  =27247.319 AIC/N =    4.388 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.80968***      .11725    23.96  .0000     2.57986   3.03949 
     AGE|    -.02310***      .00153   -15.13  .0000     -.02609   -.02011 
    EDUC|     .04028***      .00808     4.99  .0000      .02445    .05611 
  HHNINC|     .24424***      .08883     2.75  .0060      .07015    .41833 
  FEMALE|    -.16710***      .02850    -5.86  .0000     -.22295   -.11124 
        |Threshold parameters for index 
   Mu(1)|     .20275***      .02260     8.97  .0000      .15846    .24703 
   Mu(2)|     .55416***      .02389    23.20  .0000      .50735    .60098 
   Mu(3)|     .88530***      .02158    41.03  .0000      .84301    .92759 
   Mu(4)|    1.16592***      .01973    59.10  .0000     1.12726   1.20459 
   Mu(5)|    1.75777***      .01743   100.82  .0000     1.72360   1.79194 
   Mu(6)|    2.04344***      .01695   120.56  .0000     2.01022   2.07667 
   Mu(7)|    2.45759***      .01729   142.18  .0000     2.42371   2.49147 
   Mu(8)|    3.11320***      .01946   160.01  .0000     3.07507   3.15133 
   Mu(9)|    3.53306***      .02325   151.96  .0000     3.48749   3.57863 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
This is the full information maximum likelihood estimate of the full model 
 
----------------------------------------------------------------------------- 
Ordered Probit Model with Selection. 
Dependent variable              NEWHSAT 
Log likelihood function    -13607.57507 
Restricted log likelihood  -13609.65952 
Chi squared [   1 d.f.]         4.16889 
Significance level               .04117 
McFadden Pseudo R-squared      .0001532 
Estimation based on N =   6209, K =  19 
Inf.Cr.AIC  =27253.150 AIC/N =    4.389 
--------+-------------------------------------------------------------------- 
  PUBLIC|                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.57206***      .16019    16.06  .0000     2.25809   2.88604 
     AGE|    -.01972***      .00194   -10.15  .0000     -.02353   -.01591 
    EDUC|     .04014***      .00784     5.12  .0000      .02478    .05550 
  HHNINC|    -.06053         .12872     -.47  .6382     -.31282    .19176 
  FEMALE|    -.16256***      .02716    -5.99  .0000     -.21579   -.10933 
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        |Threshold parameters for index 
   Mu(1)|     .19073***      .02687     7.10  .0000      .13807    .24340 
   Mu(2)|     .52241***      .04182    12.49  .0000      .44044    .60437 
   Mu(3)|     .83633***      .05229    15.99  .0000      .73385    .93881 
   Mu(4)|    1.10353***      .06012    18.35  .0000      .98569   1.22137 
   Mu(5)|    1.67048***      .07410    22.54  .0000     1.52524   1.81572 
   Mu(6)|    1.94557***      .07952    24.47  .0000     1.78972   2.10142 
   Mu(7)|    2.34576***      .08663    27.08  .0000     2.17597   2.51554 
   Mu(8)|    2.98257***      .09539    31.27  .0000     2.79561   3.16953 
   Mu(9)|    3.39287***      .09921    34.20  .0000     3.19843   3.58731 
        |Selection equation 
Constant|    1.33407***      .13228    10.09  .0000     1.07481   1.59333 
     AGE|     .01525***      .00287     5.32  .0000      .00963    .02087 
  HHNINC|   -1.72207***      .09850   -17.48  .0000    -1.91514  -1.52901 
  HHKIDS|    -.10648**       .04594    -2.32  .0205     -.19653   -.01643 
        |Cor[u(probit),e(ordered probit)] 
Rho(u,e)|     .50973***      .14253     3.58  .0003      .23038    .78908 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The FIML results provide two test statistics for ‘selectivity.’  The z statistic on the estimate of ρ is 
3.58, which is well over the critical value of 1.96.   The likelihood ratio test can be carried out using 
the initial results for the full model.  The restricted value in 
 
Log likelihood function    -13607.57507 
Restricted log likelihood  -13609.65952 
 
is based on the separate probit and ordered probit equations, which corresponds to the model with    
ρ = 0.  The LR statistic would be 2(-13607.57507 - (-13609.65952) = 4.169.  The critical chi squared 
with one degree of freedom would be 3.84, so the null hypothesis is rejected again. 

A table of partial effects for the conditional model is produced for each outcome.  Only the 
last one is shown here. 
 
----------------------------------------------------------------------------- 
Partial effects of variables on P[NEWHSAT  = 10|PUBLIC   = 1] 
--------+-------------------------------------------------------------------- 
  PUBLIC|     Partial      Standard            Prob.      95% Confidence 
 NEWHSAT|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Direct partial effect in ordered choice equation 
     AGE|    -.00245***      .00033    -7.45  .0000     -.00310   -.00181 
    EDUC|     .00499***      .00104     4.82  .0000      .00296    .00702 
  HHNINC|    -.00753         .01591     -.47  .6360     -.03872    .02365 
  FEMALE|    -.02022***      .00367    -5.52  .0000     -.02741   -.01304 
        |Indirect partial effect in sample selection equation 
     AGE|     .00052***      .00016     3.19  .0014      .00020    .00084 
  HHNINC|    -.05896***      .01285    -4.59  .0000     -.08414   -.03378 
  HHKIDS|    -.00365**       .00169    -2.16  .0307     -.00695   -.00034 
        |Full partial effect = direct effect + indirect effect 
     AGE|    -.00193***      .00046    -4.17  .0000     -.00284   -.00102 
  HHNINC|    -.06649**       .02627    -2.53  .0114     -.11799   -.01499 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The treatment effects model is obtained by adding public to the ; Rhs specification in the 
ORDERED command and ; All to the command. 
 
----------------------------------------------------------------------------- 
Treatment Effects Model: Treatment=PUBLIC 
Dependent variable              NEWHSAT 
Log likelihood function    -14765.42035 
Restricted log likelihood  -14770.39033 
Chi squared [   1 d.f.]         9.93996 
Significance level               .00162 
McFadden Pseudo R-squared      .0003365 
Estimation based on N =   6209, K =  20 
Inf.Cr.AIC  =29570.841 AIC/N =    4.763 
Model estimated: Jun 18, 2011, 15:38:04 
--------+-------------------------------------------------------------------- 
  PUBLIC|                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.27014***      .22312    10.17  .0000     1.83283   2.70746 
     AGE|    -.02027***      .00154   -13.13  .0000     -.02330   -.01724 
    EDUC|     .03917***      .00692     5.66  .0000      .02561    .05273 
  HHNINC|     .06610         .09022      .73  .4638     -.11072    .24292 
  FEMALE|    -.14568***      .02612    -5.58  .0000     -.19687   -.09450 
  PUBLIC|     .34172**       .13586     2.52  .0119      .07544    .60801 
        |Threshold parameters for index 
   Mu(1)|     .19408***      .02587     7.50  .0000      .14337    .24479 
   Mu(2)|     .52700***      .03637    14.49  .0000      .45572    .59828 
   Mu(3)|     .85528***      .04110    20.81  .0000      .77471    .93584 
   Mu(4)|    1.13190***      .04397    25.74  .0000     1.04573   1.21808 
   Mu(5)|    1.70234***      .04863    35.01  .0000     1.60703   1.79766 
   Mu(6)|    1.97911***      .05078    38.98  .0000     1.87959   2.07864 
   Mu(7)|    2.38797***      .05406    44.17  .0000     2.28201   2.49393 
   Mu(8)|    3.02974***      .05925    51.13  .0000     2.91361   3.14587 
   Mu(9)|    3.45667***      .06272    55.12  .0000     3.33375   3.57959 
        |Index function for probit equation 
Constant|    1.26527***      .13081     9.67  .0000     1.00889   1.52164 
     AGE|     .01641***      .00282     5.83  .0000      .01090    .02193 
  HHNINC|   -1.68223***      .10083   -16.68  .0000    -1.87986  -1.48459 
  HHKIDS|    -.09807**       .04589    -2.14  .0326     -.18802   -.00812 
        |Cor[u(probit),e(ordered probit)] 
Rho(1,2)|     .41059***      .08110     5.06  .0000      .25164    .56955 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E35.4.4 Technical Details for the Selection Model 
 
 In the sample selection model, [ε,u] are assumed to have a bivariate standard normal 
distribution with correlation ρ.  Then, the probabilities in the log likelihood are: 
 
 For observations with di = 0, Prob =  Prob[d  = 0 ] = univariate normal CDF. 

 For observations with di = 1, Prob =  Prob[yi* in particular range and d = 1 | ρ] 

     =  bivariate normal probability. 

The log likelihood for the model with sample selection is 
  
   logL   =  Σd=0 log Φ(-α′x2)  +  Σd=1 log {Φ2[aj,α′z,ρ] - Φ2[aj-1,α′z,ρ]} 

where   Φ(•)   =  standard normal CDF, 

   Φ2(•,•,•) =  bivariate standard normal CDF, 

   aj   =  µj - β′x, 

   aj-1   =  µj-1 - β′x, 

and   j   =  the value taken by yi for that observation. 
 
The same convention used above is maintained for the µs.  The first derivatives are tedious but 
straightforward.  They can be derived by applying the formulas given in Chapter E33 for the 
bivariate probit model.  The derivation is a bit simpler here because for the differentiation of the 
bivariate CDF, q1 and q2 are both +1. 
 The second step reestimates α from the probit model along with β and µ, obtaining a FIML 
set of estimates for all parameters including ρ.  The ordered probit command results in two full 
rounds of estimation.  In the first round, the model is estimated as if there were no selection.  This 
provides the remaining starting values.  The starting value for ρ is zero.  Then, in the second round, 
the FIML estimates are computed.  This model is rather difficult to estimate, and it is best to allow 
LIMDEP to use its own starting values.  (In spite of this, nonconvergence can be a problem.  When 
problems arise, be sure first to check the scaling of the independent variables.) 
 
NOTE:  This model is not fit by computing a ‘lambda’ variable, λi = φ(α′zi)/ Φ(α′zi) from the results 
of the first step probit and including it in the ordered probit at the second.  It is estimated by 
maximizing the likelihood function above with respect to β, α, and ρ.  There will be no coefficient 
shown for such a variable in the estimation results, though the estimated ρ is shown. 
 
NOTE:  (This is another frequently asked question.)  All observations in the sample are used in 
fitting this model, not just the ones for which d = 1.  The observations for which d = 0 contribute to 
the probit part of the log likelihood.  The remainder contribute both to the probit and the ordered 
probit. 
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 The treatment effects model is developed in exactly the same steps as the recursive bivariate 
probit model in Section E33.6.  The relevant probabilities that enter the log likelihood are 
 
   logLi   =  log [Prob(di = 1 or 0)  ×  Prob(yi = j | di = 1 or 0) 
 
which, once again, is simply the joint probability.  Thus, the log likelihood function has terms 
 
   Σall observations  log {Φ2[(aj - γdi) , qiα′z, qiρ] - Φ2[aj-1 - γdi,  qiα′z, qiρ]} 

where    qi = 2di - 1 = -1 (+1)  when di = 0 (1). 
 
E35.5 Generalized Ordered Choice and Parallel Regressions 
 
 Two specification questions that bear directly on the model discussed to this point are the 
‘proportional odds’ assumption and the ‘parallel regressions’ assumption.  We consider them in turn. 
 
E35.5.1 The Proportional Odds Assumption 
 
 The proportional odds assumption is imposed (only) by the ordered logit model.  If 
 
   Prob[yi = j]  =  Λ(µj - β′x) - Λ(µj-1 - β′x) 

Then,   Prob[yi < j]  =  Λ(µj - β′x) 
 
Using the simple algebra of the logit model, it follows that 
 
   log{Prob[yi < j] / Prob[yi > j])  =  µj - β′xi. 
 
This is known as the proportional odds assumption, and it is viewed as a restrictive assumption of the 
model.  The implication is that the log-odds for any outcome, µj, differs from that for any other only 
by a constant, j.  A number of alternative tests and assumptions have been proposed to relax the 
‘restriction.’  In point of fact, the researcher bound by this restriction is a prisoner of the logistic 
assumption to begin with.  It does not apply to any other model that we have considered, so the 
simple expedient to pursue if this assumption is viewed as problematic is to switch to an ordered 
probit model.  But, this is merely a question of functional form, and the probit model may be no less 
‘restrictive’ in this regard than the logit model.  There is, however, a more substantive issue to 
consider.  Whether the proportional odds assumption imposes a restriction on behavior is at least 
conceivable. The question is not unrelated to that of the ‘independence from irrelevant alternatives’ 
implication of the logit model in the discrete choice framework.  That question seems at least 
ambiguous here – whether an assumption about the log odds translates backwards into an assumption 
about behavior seems at least uncertain. 
 We note, some authors have advocated abandoning the latent regression model altogether, in 
some cases, in favor of a multinomial logit model for the J+1 outcomes.  By this prescription, one 
loses the ordered nature of the data, which could be argued to be at higher cost than the initial 
assumption that the same parameter vector, β, appears in the probabilities of all J+1 outcomes to 
begin with.  This issue is not settled in the literature, and can’t be resolved here.  We conclude at this 
point only that the alternatives that have been suggested can all be fit with LIMDEP, using other 
modeling frameworks. 
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E35.5.2 Brant Test of the Parallel Regressions Assumption 
 
 The ‘parallel regressions’ assumption, such as it is, also characterizes the ordered logit 
model, but no other functional form.  The assumption, itself, is a curious one.  The term appears to 
have gotten some impetus from a frequently cited ‘result’ for the ordered probit model in Long 
(1997) which states, for, say, a five outcome model, that 
 

   Pr[ 1| ] Pr[ 2 | ] Pr[ 3 | ]y x y x y x
x x x

∂ ≤ ∂ ≤ ∂ ≤
= =

∂ ∂ ∂
 

 
at any trio of points, x1, x2 and x3, at which all three probabilities are equal.  ‘It is this sense that the 
regression curves are parallel.’  (Long (1997), page 141)  The implication that the ‘regression curves’ 
implied by the model are parallel is cited as a significant restriction of the ordered choice model. In 
fact, these are not ‘regressions’ in any sense – they are not conditional mean functions. But, that is 
merely terminology.  In this model, some things are parallel.  The so called parallel regressions 
restriction has attracted some attention.  A familiar ‘test’ for the assumption is the Brant test.  
Arguably, the Brant test is a test of preference homogeneity.  It does provide an interesting 
specification test for the model – the preference heterogeneity implication of the model is testable.  
What rejection of the hypothesis then suggests is less than obvious, however. 
 The Brant test of homogeneity is constructed as follows:  According to the ordered logit 
model,  
   Prob(yi > j | xi)  =  Λ[β′xi - µj], j = 0, 1, ..., J-1. 
 
If we define zij = 1[yi > j], then this defines a simple binary logit model for the J-1 binary outcomes, 
zij.  The force of the restrictions of the model is that each such probability ‘model’ has the same 
coefficient vector, β, though each has its own constant term.  Define these as β0, β1,...  The test is 
carried out by constructing a Wald test of the null hypothesis that β0 - β1 = 0, β0 - β2 = 0, etc.  Note 
that the model does not imply that the constant terms are the same.  We will return to this detail later.  
To carry out the test, we compute the J-1 binary logit models, and obtain b0,...,bJ-1. With each 
coefficient vector, we compute the predicted probabilities, pij = exp(bj′xi)/[1+exp(bj′xi)] for the 
sample and the quantities wimj = pij = pimpij.  The moment matrix Vmj = Σi wimjxixi′ is computed, where 
xi includes the constant term.  The matrix, 
 
   Amj  =  Vmm

-1 Vmj Vjj
-1, 

 
estimates the asymptotic covariance of bm and bj. The row and column corresponding to the constant 
term are removed. Then, the covariance matrix, V, for the set of estimates b = [b0′,b1′,...,bJ-1′]′ is 
assembled in partitioned form using the blocks defined above (and their transposes). The Wald test 
of the homogeneity restriction is carried out using the chi squared statistic, 
 
   Wald = (Db)′ [DVD′]-1(Db), 
 

where   

I -I ... 0
I 0 -I ...

D
... ... ... ...
I 0 ... -I

 
 
 =
 
 
 

.   
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The statistic has a limiting chi squared distribution with degrees of freedom equal to (J-1)K1 where 
K1 is the number of independent variables in the model, not including the constant term.  (E.g., if the 
original problem has y taking values 0,1,2,3,4, then we will compute J = 4 logit coefficient vectors, 
b0, b1, b2, b3, and (J - 1) contrasts, b0 - b1, b0 - b2 and b0 - b3.). 
 The Wald statistic is an omnibus test for homogeneity of the entire coefficient vector.  It is 
possible that some of the coefficients are (or appear to be) homogeneous while others are not.  The 
test can be carried out coefficient by coefficient by isolating just one of the contrasts in the set of K1.  
Define the matrix C with J-1 rows and (J-1)K1 columns.  The row is a set of J-1 row vectors.  There 
is a single one in the kth position of the jth row vector in the jth row of C, and zeros elsewhere  Then, 
the chi squared for the kth coefficient is 
 
   Waldk = [C(Db)]′[C(DVD′)C]-1[C(Db)]. 
 
This statistic has a limiting chi squared distribution with J-1 degrees of freedom. 
 
Application of the Brant Test 
 
 The Brant test is automated in LIMDEP.  You need only add 
 
   ; Brant test 
 
to your ORDERED ; Logit command.  The full set of results is computed and reported. 
 We have applied this test to the treatment effects model fit earlier, while treating public as 
exogenous.  The following results are obtained. 
 
+------------------------------------------------+ 
| Brant specification test for equal coefficient | 
| vectors in the ordered prob. model. The model  | 
| implies that logit[Prob(y>j|x)]=beta(j)*x - mj | 
| for all j = 0,..., 9. The chi squared test is  | 
| H0:beta(0) = beta(1) = ... beta( 9)            | 
| Chi squared test statistic =    236.72126      | 
| Degrees of freedom         =     45            | 
| P value                    =       .00000      | 
+------------------------------------------------+ 
 
=========================================================================== 
Specification Tests for Individual Coefficients in Ordered Logit Model 
(Note, Coefficients for values beyond y = 5 are not reported.) 
Degrees of freedom for each of these tests is  9 
=========================================================================== 
        |   Brant Test    | Coefficients in implied model Prob(y > j).    | 
Variable| Chi-sq  P value |   0   |   1   |   2   |   3   |   4   |   5   | 
AGE     |  30.71   .00033 | -.0324| -.0297| -.0369| -.0379| -.0406| -.0315| 
EDUC    |  48.26   .00000 |  .4105|  .3437|  .1978|  .0776|  .0540|  .0804| 
HHNINC  |  66.60   .00000 | 1.3013| 1.2476|  .6096|  .7653|  .7257|  .8924| 
FEMALE  |  41.78   .00000 |  .2032|  .1441| -.0715| -.1607| -.1800| -.3864| 
PUBLIC  |  63.03   .00000 | -.7669| -.9268|-1.8901| -.9694| -.6624| -.5484| 
 
Based on these results, the null hypothesis is rejected.  The results for the individual coefficients 
suggest that the hypothesis is rejected for all the individual coefficients as well. 
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 The Brant test can be adapted to the normal distribution (ordered probit model).  Two 
changes are required.  First, in the procedure, itself, we would fit probit models rather than logit 
models.  Second, we must change the computation of the parts of the asymptotic covariance matrix 
to conform to the probit model.  To do this, we will use the BHHH estimator.  The MLE of the 
parameter vector in each regression is written (bj - β) = Hj

-1gj where Hj is the Hessian and gj is the 
first derivatives vector.  We then use the information matrix equality to invoke the BHHH estimator 
for the asymptotic variance of bj which we write (Gj′Gj)-1. For the asymptotic covariances, we once 
again invoke the information matrix equality, and the estimator of Hj, which produces a sandwich 
style estimator,  
   Est.Asy.Cov[bj,bm] = (Gj′Gj)-1 (Gj′Gm) (Gm′Gm)-1. 
 
The remaining detail is how to compute the rows of Gj.  For the probit model, the relevant derivative 
is 
   ∂logPji / ∂βj  =  (2zji-1) φ[βj′xi] / Φ[(2zji-1) βj′xi] xi. 
 
 LIMDEP detects this internally and adjusts the computations.  For the earlier example, the 
automatically generated results are as follows: 
 
+------------------------------------------------+ 
| Brant specification test for equal coefficient | 
| vectors in the ordered probit model. The model | 
| implies that normit[Prb(y>j|x)]=beta(j)*x - mj | 
| for all j = 0,..., 9. The chi squared test is  | 
| H0:beta(0) = beta(1) = ... beta( 9)            | 
| Chi squared test statistic =    200.97546      | 
| Degrees of freedom         =     45            | 
| P value                    =       .00000      | 
+------------------------------------------------+ 
 
=========================================================================== 
Specification Tests for Individual Coefficients in Ordered Logit Model 
(Note, Coefficients for values beyond y = 5 are not reported.) 
Degrees of freedom for each of these tests is  9 
=========================================================================== 
        |   Brant Test    | Coefficients in implied model Prob(y > j).    | 
Variable| Chi-sq  P value |   0   |   1   |   2   |   3   |   4   |   5   | 
AGE     |  36.28   .00004 | -.0126| -.0123| -.0170| -.0191| -.0219| -.0191| 
EDUC    |  34.75   .00007 |  .1508|  .1360|  .0869|  .0350|  .0267|  .0457| 
HHNINC  |  40.90   .00001 |  .4913|  .5027|  .2817|  .3933|  .4139|  .5594| 
FEMALE  |  38.25   .00002 |  .0576|  .0362| -.0485| -.0945| -.1093| -.2371| 
PUBLIC  |  42.63   .00000 | -.2887| -.3505| -.7556| -.4342| -.3220| -.3090| 
 
The results are consistent with those for the ordered logit model, which might be expected. 
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E35.6 Generalized Ordered Choice Models 
 
 The preceding notwithstanding, researchers have devoted considerable attention to 
restructuring the ordered choice model to redeem it from the objectionable result noted above.  We 
note, first, the latent regressions, ordered logit model already analyzed here implies the preference 
structure, 
   Prob[yi <  j | xi]  =  Λ[µj - β′ xi]. 
 
The parallel regressions assumption is that the same β appears in every equation.  The generalized 
ordered logit model suggested, e.g., by Williams (2006) is (using our normalizations) 
 
   Prob[ yi <  j | xi ]  =  Λ[ µj  -  βj′ xi], j = 1,2,...,J. 
 
Versions of this model appear in a number of publications.  This specification has two major flaws. 
First, there is no parametric restriction, other than the one we seek to avoid to begin with (βj = β for 
all j) that can be used to make the probabilities of the J + 1 outcomes sum to one.  The model is 
internally inconsistent unless each outcome is viewed as a model in its own right – a peculiar 
assumption about the distribution of preferences across individuals. Worse, for the interior outcomes 
of the dependent variable (i.e., not zero and not J), the probability is 
 
   Prob[yi = j |xi]  =  Λ[ µj  -  βj′xi] -  Λ[ µj-1  -  βj-1′ xi] 
 
a difference which cannot be forced even to be positive.  For any βj and βj-1, whether or not this 
difference is positive will be data dependent, and if there is more than one variable in xi, would be 
pure luck as much as anything else. The model is not an internally consistent probability model 
defined over an outcome space. 
 The difficulty being dealt with here ultimately arises from an assumption that the coding of 
the dependent variable in the model is structural.  Why the observed respondent should have 
preferences that are structurally defined in terms of the coding of the survey is difficult to fathom. 
For example, in the simplest imaginable cases, it is difficult to see why the preference orderings of 
respondents should be functions of whether the surveyor presents them with a three point or a five 
point scale.  In more general terms, in the generalized ordered logit model, the parameter vector 
seems to be a function of the dependent variable.  This is unlike the multinomial logit model, in 
which the multiplicity of parameter vectors is merely the parameterization of J distinct utility 
functions defined across J alternatives.  Here, each parameter vector is identified with a different 
response to the same question.  It is unclear how one should interpret such a structure.   

There is another aspect of this construction that suggests the ambiguity of the model.  It is 
not possible to simulate data that correspond to the assumptions of the model.  In the ordered probit 
model, with x, β and µ known, in order to simulate a draw on y, we would compute β′x, draw a 
random normal value ε, compute y* = β′x + ε, then see which interval, (-∞,0), (0,µ1), (µ1,µ2) etc. 
contains y* to produce y = 0 or 1 or 2, etc.  This is not possible for the ‘generalized model’ suggested 
here, because one needs to know y in order to compute βj′x (you need to know which β to use) so the 
outcome has to be known before ε is even drawn.  This is the implication of the internal incoherency 
of the model. 
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E35.7 Hierarchical Ordered Probit Models 
 
 The hierarchical ordered probit model (or generalized ordered probit model) is a univariate 
ordered probit model in which the threshold parameters depend on variables.  (We opt for the 
acronym HOPIT model as slightly more melodious than GOPIT.  In the original proposal of this 
model (Pudney and Shields (2000)), the thresholds were modeled as linear functions of the data, 
producing the model 
 

   y*   =  β′x  +  ε 

   y =  0  if y* < 0, 

    =  1  if 0 < y* < µ1, 

    =  2  if µ1 < y* < µ2, 

    ... 

   µj =  δj′z. 
 
(There is no disturbance on the equation for the threshold variables.)  The model has an inherent 
identification problem, because in 
 
   Prob[y = j]  =  Φ(µj - β′x) - Φ(µj-1 - β′x), 
 
if x and z have variables in common, then (with a sign change) the same model is produced whether 
the common variable appears in µj or β′x.  (Pudney and Shields note and discuss this.)  The LIMDEP 
implementation avoids this indeterminacy by using a different functional form.  (That does imply 
that we achieve identification through functional form.) 
 Two forms of the model are provided. 
 
   Form 1: µj  =  exp(θj + δ′z) 

   Form 2: µj  =  exp(θj + δj′z) 
 
Note that in form 1, each µj has a different constant term, but the same coefficient vector, while in 
form 2, each threshold parameter has its own parameter vector.  (We note, for purposes of 
estimation, it is always necessary for µj to be greater than µj-1.  We are able to impose that on form 1 
fairly easily by parameterizing θj in a way that does so.  However, for form 2, this is much more 
difficult to obtain, and users should expect to see diagnostics about unordered thresholds when they 
use form 2.)  The threshold coefficients will be difficult to compare between the original ordered 
probit model and form 2 of the HOPIT model.  For form 1, the model reverts to the unmodified 
ordered probit model if the single vector δ equals 0. 
 The command for this model augments the usual ordered probit command with the 
specification for the thresholds,  
 
 ORDERED ; Lhs = ... ; Rhs = ... 
   ; HO1 = list of variables or ; HO2 = list of variables $ 
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The list of variables in the HO1 or HO2 part must not contain a constant term (one).  All other 
options for the ordered probit model are exactly as described previously, including fitted values, 
restrictions, marginal effects, and so on, unchanged.  This form of the ordered probit model can also 
be combined with the sample selection corrected ordered probit model described in Section E35.4.  
 In the example below, the model is first fit to the health satisfaction variable with no 
modification to the thresholds.  In the HOPIT model fit next, the thresholds vary with whether or not 
the family has kids in the household and with the number of types of insurance they have.  For 
purpose of a limited example, we use a subset of the sample. 
 
 SAMPLE ; All $ 
 CREATE ; insuranc = public + addon $ 
 ORDERED  ; Lhs = hsat ; Rhs = one,age,educ,female,hhninc  

; Partial Effects $ 
 ORDERED  ; Lhs = hsat ; Rhs = one,age,educ,female,hhninc 
   ; HO1 = hhkids,insuranc  
   ; Partial Effects $ 
 
These are the estimates for the base case.  (We have omitted the partial effects.) 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                 HSAT 
Log likelihood function    -56876.85183 
Restricted log likelihood  -57836.42214 
Chi squared [   4 d.f.]      1919.14061 
Significance level               .00000 
McFadden Pseudo R-squared      .0165911 
Estimation based on N =  27326, K =  14 
Inf.Cr.AIC  =********* AIC/N =    4.164 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.68410***      .04392    61.12  .0000     2.59802   2.77018 
     AGE|    -.02096***      .00056   -37.71  .0000     -.02205   -.01987 
    EDUC|     .03341***      .00284    11.76  .0000      .02784    .03898 
  FEMALE|    -.05800***      .01259    -4.61  .0000     -.08268   -.03332 
  HHNINC|     .26478***      .03631     7.29  .0000      .19362    .33594 
        |Threshold parameters for index 
   Mu(1)|     .19340***      .01002    19.30  .0000      .17376    .21305 
   Mu(2)|     .49929***      .01087    45.93  .0000      .47799    .52060 
   Mu(3)|     .83548***      .00990    84.39  .0000      .81608    .85489 
   Mu(4)|    1.10462***      .00908   121.63  .0000     1.08682   1.12242 
   Mu(5)|    1.66162***      .00801   207.44  .0000     1.64592   1.67732 
   Mu(6)|    1.93021***      .00774   249.46  .0000     1.91504   1.94537 
   Mu(7)|    2.33753***      .00777   300.92  .0000     2.32230   2.35275 
   Mu(8)|    2.99283***      .00851   351.70  .0000     2.97615   3.00951 
   Mu(9)|    3.45210***      .01017   339.31  .0000     3.43216   3.47204 
--------+-------------------------------------------------------------------- 
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These are the estimates for the HO1 hierarchical model. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                 HSAT 
Log likelihood function    -56868.23498 
Restricted log likelihood  -57836.42214 
Chi squared [   4 d.f.]      1936.37431 
Underlying probabilities based on Normal 
HOPIT (covariates in thresholds) model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.66036***      .04828    55.10  .0000     2.56573   2.75499 
     AGE|    -.02035***      .00058   -35.09  .0000     -.02149   -.01921 
    EDUC|     .03313***      .00293    11.30  .0000      .02738    .03887 
  FEMALE|    -.06072***      .01259    -4.83  .0000     -.08539   -.03606 
  HHNINC|     .26373***      .03648     7.23  .0000      .19222    .33523 
        |Estimates of t(j) in mu(j)=exp[t(j)+d*z] 
Theta(1)|   -1.62461***      .06134   -26.49  .0000    -1.74484  -1.50439 
Theta(2)|    -.67653***      .03254   -20.79  .0000     -.74029   -.61276 
Theta(3)|    -.16186***      .02193    -7.38  .0000     -.20485   -.11888 
Theta(4)|     .11739***      .01750     6.71  .0000      .08309    .15170 
Theta(5)|     .52583***      .01258    41.79  .0000      .50117    .55049 
Theta(6)|     .67578***      .01122    60.25  .0000      .65379    .69776 
Theta(7)|     .86747***      .00979    88.62  .0000      .84828    .88665 
Theta(8)|    1.11497***      .00843   132.20  .0000     1.09844   1.13150 
Theta(9)|    1.25794***      .00787   159.74  .0000     1.24250   1.27337 
        |Threshold covariates mu(j)=exp[t(j)+d*z] 
  HHKIDS|    -.01830***      .00526    -3.48  .0005     -.02862   -.00799 
INSURANC| .15082D-04**    .5872D-05     2.57  .0102  .35726D-05  .26592D-04 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
(Partial effects for outcomes 0-9 are omitted.) 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
    HSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=10] at means]-------------- 
     AGE|    -.00377***    -1.52276   -11.54  .0000     -.00441   -.00313 
    EDUC|     .00614***      .64474     9.12  .0000      .00482    .00746 
 *FEMALE|    -.01123        -.10424     -.50  .6182     -.05541    .03294 
  HHNINC|     .04887***      .15964     3.51  .0004      .02161    .07613 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E35.8 Zero Inflated Ordered Probit (ZIOP, ZIHOP) Models  
 
 Harris and Zhao (2007) have developed a zero inflated ordered probit (ZIOP) counterpart to 
the zero inflated Poisson model.  The ZIOP formulation would appear  
 
   d* =  α′w  +  u, d  = 1 (d* > 0) 

   y* =  β′x  +  ε,  y  = 0 if y* < 0  or d = 0 

         1 if 0 < y* < µ1 and d = 1, 

         2 if µ1 < y* < µ2 and d = 1, 

         and so on. 
 
The first equation is assumed to be a probit model (based on the normal distribution) – this estimator 
does not support a logit formulation.  The correlation between u and ε is ρ, which by default equals 
zero, but may be estimated instead.  The latent class nature of the formulation has the effect of 
inflating the number of observed zeros, even if u and ε are uncorrelated.  The model with correlation 
between u and ε is an optional specification that analysts might want to test.  The zero inflation 
model may also be combined with the hierarchical (generalized) model discussed in the previous 
section. Thus, it might also be specified as part of the model that 
 
   Form 1: µj  =  exp(θj + δ′z) 

   Form 2: µj  =  exp(θj + δj′z) 
 
The command structure for ZIOP and ZIHOP models are 
 
 PROBIT ; Lhs = d ; Rhs = variables in w ; Hold $ 
 ORDERED ; Lhs = y ; Rhs = variables in x 
   ; ZIOP $ 
 
This form of the model imposes ρ = 0.  To allow the correlation to be a free parameter, add 
 
   ; Correlation 
 
to the command.   
 
NOTE:  The ; HO1 and ; HO2 specifications discussed in the preceding section may also be used 
with this model. 
 

In the example below, we continue the analysis of the health care data.  The (artificial) 
model has the zero inflation probability based on the presence of ‘public’ insurance while the 
ordered outcome continues to be the self reported health satisfaction.  Here, we have used the entire 
sample of 27,236 observations. 
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The commands are: 
 
 SAMPLE  ; All $ 
 PROBIT  ; Lhs = public  
   ; Rhs = one,age,hhninc,hhkids,married ; Hold $ 
 ORDERED ; Lhs = hsat    
   ; Rhs = one,age,educ,female  
   ; ZIO ; Correlated $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               PUBLIC 
Log likelihood function     -9229.32605 
Restricted log likelihood   -9711.25153 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  PUBLIC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.51862***      .05021    30.25  .0000     1.42022   1.61702 
     AGE|     .00553***      .00105     5.26  .0000      .00347    .00759 
  HHNINC|   -1.55524***      .05120   -30.37  .0000    -1.65560  -1.45489 
  HHKIDS|    -.08320***      .02370    -3.51  .0004     -.12966   -.03675 
 MARRIED|     .10035***      .02694     3.72  .0002      .04754    .15316 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                 HSAT 
Log likelihood function    -56903.42663 
Restricted log likelihood  -57836.42214 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.70343***      .04379    61.73  .0000     2.61760   2.78926 
     AGE|    -.02078***      .00056   -37.41  .0000     -.02186   -.01969 
    EDUC|     .03881***      .00274    14.16  .0000      .03344    .04419 
  FEMALE|    -.05742***      .01259    -4.56  .0000     -.08210   -.03274 
        |Threshold parameters for index 
   Mu(1)|     .19279***      .00999    19.29  .0000      .17320    .21238 
   Mu(2)|     .49771***      .01085    45.88  .0000      .47645    .51896 
   Mu(3)|     .83298***      .00989    84.26  .0000      .81361    .85236 
   Mu(4)|    1.10156***      .00907   121.43  .0000     1.08378   1.11934 
   Mu(5)|    1.65744***      .00800   207.07  .0000     1.64175   1.67313 
   Mu(6)|    1.92551***      .00773   249.00  .0000     1.91036   1.94067 
   Mu(7)|    2.33231***      .00776   300.37  .0000     2.31709   2.34753 
   Mu(8)|    2.98735***      .00851   351.12  .0000     2.97067   3.00402 
   Mu(9)|    3.44694***      .01018   338.75  .0000     3.42700   3.46688 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Zero Inflated Ordered Probit Model. 
Dependent variable                 HSAT 
Log likelihood function    -56895.22719 
Restricted log likelihood  -56903.42663 
--------+-------------------------------------------------------------------- 
  PUBLIC|                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.77007***      .04944    56.03  .0000     2.67317   2.86697 
     AGE|    -.02150***      .00057   -37.68  .0000     -.02262   -.02038 
    EDUC|     .03769***      .00284    13.27  .0000      .03212    .04325 
  FEMALE|    -.05844***      .01255    -4.66  .0000     -.08304   -.03384 
        |Threshold parameters for index 
   Mu(1)|     .19868***      .01235    16.08  .0000      .17447    .22289 
   Mu(2)|     .50918***      .01694    30.05  .0000      .47597    .54239 
   Mu(3)|     .84768***      .01897    44.70  .0000      .81051    .88486 
   Mu(4)|    1.11767***      .01978    56.50  .0000     1.07890   1.15644 
   Mu(5)|    1.67504***      .02062    81.25  .0000     1.63463   1.71545 
   Mu(6)|    1.94359***      .02087    93.15  .0000     1.90269   1.98449 
   Mu(7)|    2.35098***      .02119   110.97  .0000     2.30946   2.39251 
   Mu(8)|    3.00678***      .02174   138.30  .0000     2.96417   3.04939 
   Mu(9)|    3.46677***      .02222   156.00  .0000     3.42322   3.51033 
        |Zero inflation probit probability 
Constant|    -.30749        1.71064     -.18  .8573    -3.66028   3.04530 
     AGE|     .10718         .06555     1.63  .1021     -.02131    .23566 
  HHNINC|    -.19155         .62143     -.31  .7579    -1.40954   1.02644 
  HHKIDS|    -.59894**       .24410    -2.45  .0141    -1.07737   -.12051 
 MARRIED|    1.06982         .94393     1.13  .2571     -.78024   2.91988 
        |Cor[u(probit),e(ordered probit)] 
Rho(u,e)|    -.90968        1.40561     -.65  .5175    -3.66462   1.84525 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E35.9 Bivariate Ordered Probit and Polychoric Correlation 
 
 The bivariate ordered probit model is analogous to the SUR model for the ordered probit 
case:   
   yji*  =   βj′xji + εji 

   yji    =   0 if yji* < 0,  

    1 if 0 < yji* < µ1,  

    2, ... and so on, j = 1,2, 
 
for a pair of ordered probit models that are linked by Cor(ε1i,ε2i) = ρ. The model can be estimated 
one equation at a time using the results described earlier. Full efficiency in estimation and an 
estimate of ρ are achieved by full information maximum likelihood estimation. LIMDEP’s 
implementation of the model uses FIML, rather than GMM.  Either variable (but not both) may be 
binary.  If both are binary, the bivariate probit model should be used.  (The development here draws 
on Butler and Chatterjee (1997) who analyzed maximum likelihood and GMM estimators for the 
bivariate extension of the ordered probit model.) 
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 The command structure requires prior estimation of the two univariate models to provide 
starting values for the iterations.  The third command then fits the bivariate model.  We assume that 
the first variable is multinomial.   
 
 ORDERED  ; Lhs = y1 ; Rhs = ... $ 
 MATRIX ; b1 = b ; mu1 = mu $ 
 
Use one of the following.  If the second variable has more than two outcomes, use 
 
 ORDERED ; Lhs = y2 ; Rhs = ... $ 
 MATRIX ; b2 = b ; mu2 = mu $ 
 
If the second variable is binary, use 
 
 PROBIT ; Lhs = y2 ; Rhs = ... $ 
 MATRIX ; b2 = b $ 
 
Then, estimate the bivariate model with 
 
 ORDERED ; Lhs = y1,y2 ; Rh1 = ... ; Rh2 = ... 
   ; Start = b1,mu1,b2,mu2, 0 $   
 
The variable mu2 is omitted if y2 is binary.  The final zero in the list of starting values is for ρ.  You 
may use some other value if you have one. 
 The standard options for estimation are available (iteration controls, technical output, cluster 
corrections, etc.). You may also retain fitted values with ; Keep = yf1,yf2  (note that both names are 
provided).  Probabilities for the joint observed outcome are retained with ; Prob = name.  Listings 
of probabilities for outcomes are obtained with ; List as usual. 
 To illustrate the estimator, we use the health care utilization data analyzed earlier.  The two 
outcomes are y1 = health care satisfaction, taking values 0 to 5 (we reduced the sample) and y2 = the 
number of types of health care insurance.  Results for a bivariate ordered probit model appear below.  
The initial univariate models are omitted. 
  
 SAMPLE ; All $ 
 REJECT ; newhsat > 5  | _groupti < 7  $ 
 ORDERED  ; Lhs = newhsat ; Rhs = one,age,educ,female,hhninc $ 
 MATRIX  ; b1 = b ; mu1 = mu $ 
 CREATE ; insuranc = public + addon $ 
      CROSSTAB ; Lhs = newhsat  ; Rhs = insuranc $ 
 ORDERED ; Lhs = insuranc ; Rhs = one,age,educ,hhninc,hhkids $ 
 MATRIX  ; b2 = b ; mu2 = mu $ 
 ORDERED  ; Lhs = newhsat,insuranc 
   ; Rh1 = one,age,educ,female,hhninc  
   ; Rh2 = one,age,educ,hhninc,hhkids 
   ; Start = b1,mu1,b2,mu2,0 $  
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----------------------------------------------------------------------------- 
Bivariate Ordered Probit Model 
Dependent variable             BivOrdPr 
Log likelihood function     -3099.59435 
Restricted log likelihood   -3100.36600 
--------+-------------------------------------------------------------------- 
 NEWHSAT|                  Standard            Prob.      95% Confidence 
INSURANC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for Probability Model for NEWHSAT 
Constant|    1.98379***      .23742     8.36  .0000     1.51846   2.44913 
     AGE|    -.01233***      .00288    -4.28  .0000     -.01797   -.00668 
    EDUC|     .01815         .01667     1.09  .2762     -.01452    .05082 
  FEMALE|     .09626*        .05301     1.82  .0694     -.00764    .20016 
  HHNINC|     .13547         .17765      .76  .4457     -.21271    .48365 
        |Index function for Probability Model for INSURANC 
Constant|    2.57737***      .38142     6.76  .0000     1.82980   3.32493 
     AGE|     .01847***      .00609     3.03  .0024      .00654    .03040 
    EDUC|    -.13925***      .02090    -6.66  .0000     -.18022   -.09828 
  HHNINC|    -.63131*        .33803    -1.87  .0618    -1.29383    .03121 
  HHKIDS|    -.01720         .10527     -.16  .8702     -.22353    .18912 
        |Threshold Parameters for Probability Model for NEWHSAT 
  MU(01)|     .24263***      .03171     7.65  .0000      .18048    .30479 
  MU(02)|     .67851***      .04404    15.41  .0000      .59220    .76483 
  MU(03)|    1.15093***      .04917    23.41  .0000     1.05456   1.24730 
  MU(04)|    1.61433***      .05193    31.09  .0000     1.51255   1.71611 
        |Threshold Parameters for Probability Model for INSURANC 
LMDA(01)|    4.07012***      .09615    42.33  .0000     3.88168   4.25856 
        |Disturbance Correlation = RHO(1,2) 
RHO(1,2)|    -.06225         .06013    -1.04  .3005     -.18010    .05560 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is NEWHSAT  (Out of range 0-49:      0)             | 
|Number of Rows =  6      (NEWHSAT  =  0 to  5)                   | 
|Col variable is INSURANC (Out of range 0-49:      0)             | 
|Number of Cols =  3      (INSURANC =  0 to  2)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[  10] =   17.61732   Prob value =  .06177            | 
|G-squared  [  10] =   27.62274   Prob value =  .00207            | 
+-----------------------------------------------------------------+ 
|               INSURANC                                          | 
+--------+---------------------+------+                           | 
| NEWHSAT|      0      1      2| Total|                           | 
+--------+---------------------+------+                           | 
|       0|      2     87      0|    89|                           | 
|       1|      1     54      0|    55|                           | 
|       2|      0    156      2|   158|                           | 
|       3|     14    250      3|   267|                           | 
|       4|     22    307      7|   336|                           | 
|       5|     59    963     12|  1034|                           | 
+--------+---------------------+------+                           | 
|   Total|     98   1817     24|  1939|                           | 
+-----------------------------------------------------------------+ 
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Polychoric Correlation 
 
 The polychoric correlation coefficient is used to quantify the correlation between discrete 
variables that are qualitative measures.  The standard interpretation is that the discrete variables are 
discretized counterparts to underlying quantitative measures.  We typically use ordered probit 
models to analyze such data.  The polychoric correlation measures the correlation between                
y1 = 0,1,...,J1 and y2 = 0,1,...,J2.  (Note, J1 need not equal J2.)  One of the two variables may be binary 
as well.  (If both variables are binary, we use the tetrachoric correlation coefficient described in 
Section E33.3.) 
 By this description, the polychoric correlation is simply the correlation coefficient in the 
bivariate ordered probit model when the two equations contain only constant terms.  Thus, to 
compute the polychoric correlation for a pair of qualitative variables, you can use LIMDEP’s 
bivariate ordered probit model.  The commands are as follows:  The first two model commands 
compute the starting values, and the final one computes the correlation. 
 
 ORDERED ; Lhs = y1 ; Rhs = one $ 
 MATRIX  ; b1 = b ; mu1 = mu $ 
 ORDERED ; Lhs = y2 ; Rhs = one $ 
 MATRIX ; b2 = b ; mu2 = mu $ 
 
or  PROBIT ; Lhs = y2 ; Rhs = one $ 
 MATRIX ; b2 = b $ 
 
Then, ORDERED ; Lhs = y1,y2 ; Rh1 = one ; Rh2 = one  
   ; Start = b1,mu1,b2,mu2,0 $ 
 
 For a simple example, we compute the polychoric correlation between self reported health 
status and sex in the health care usage data examined earlier.  Results appear below.  Note that the 
‘model’ for sex is simply a computational device. 
 
 ORDERED  ; Lhs = newhsat ; Rhs = one $ 
 MATRIX      ; b1 = b ; mu1 = mu $ 
 PROBIT      ; Lhs = female ; Rhs = one $ 
 MATRIX      ; b2 = b $ 
 ORDERED  ; Lhs = newhsat,female  
   ; Rh1 = one ; Rh2 = one ; Start = b1,mu1,b2,0 $ 
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----------------------------------------------------------------------------- 
Bivariate Ordered Probit Model 
Dependent variable             BivOrdPr 
Log likelihood function     -3976.40233 
Restricted log likelihood   -3977.17511 
--------+-------------------------------------------------------------------- 
 NEWHSAT|                  Standard            Prob.      95% Confidence 
  FEMALE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Mean inverse probability for NEWHSAT 
Constant|    1.68575***      .04935    34.16  .0000     1.58903   1.78248 
        |Mean inverse probability for FEMALE 
Constant|     .05109*        .02849     1.79  .0729     -.00475    .10693 
        |Threshold Parameters for Probability Model for NEWHSAT 
  MU(01)|     .24123***      .03150     7.66  .0000      .17950    .30296 
  MU(02)|     .67373***      .04341    15.52  .0000      .58864    .75882 
  MU(03)|    1.14226***      .04824    23.68  .0000     1.04770   1.23681 
  MU(04)|    1.60213***      .05087    31.49  .0000     1.50242   1.70184 
        |Polychoric Correlation for NEWHSAT  and FEMALE 
RHO(1,2)|     .03998         .03216     1.24  .2138     -.02305    .10302 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E36: Panel Data Models for Ordered Choice 
 
E36.1 Introduction 
 
 The basic ordered choice model is based on the following specification:  There is a latent 
regression, 
   yi*   =  β′xi + εi,  εi~ F(εi |θ), E[εi|xi] = 0, Var[εi|xi] = 1, 
 
The observation mechanism results from a complete censoring of the latent dependent variable as 
follows: 
   yi =  0 if yi ≤ µ0, 

    =  1 if µ0 < yi ≤ µ1, 

    =  2 if µ1 < yi ≤ µ2, 
    ... 

    =  J if  yi > µJ-1. 
 
The latent ‘preference’ variable, yi* is not observed.  The observed counterpart to yi* is yi.  Four 
stochastic specifications are provided for the basic model shown above.  The ordered probit model 
based on the normal distribution was developed by Zavoina and McElvey (1975).  It applies in 
applications such as surveys, in which the respondent expresses a preference with the above sort of 
ordinal ranking.  The variance of εi is assumed to be one, since as long as yi*, β, and εi are 
unobserved, no scaling of the underlying model can be deduced from the observed data.  Estimates 
are obtained by maximum likelihood.  The probabilities which enter the log likelihood function are 
 
   Prob[yi  =  j]  =  Prob[yi* is in the jth range]. 
 
The model may be estimated either with individual data, with yi = 0, 1, 2, ... or with grouped data, in 
which case each observation consists of a full set of J+1 proportions, p0i,...,pJi.  This chapter gives the 
panel data extensions of the ordered choice model. 
 
 
 
 
 There are four classes of panel data models in LIMDEP, fixed effects, random effects, 
random parameters, and latent class.  All four are supported for all five of the functional forms 
presented in Chapter E34. 
 
 
  

NOTE:  The panel data versions of the ordered choice models require individual data. 
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E36.2 Fixed Effects Ordered Choice Models 
 
 The fixed effects models are estimated by maximum likelihood.  The command for 
requesting the model is in two parts.  You must fit the model without fixed effects first, to provide 
the starting values, then the command for the fixed effects estimator follows.  The first command and 
the second must be identical, save for the panel specification in the second command and the 
constant term in the first, as noted below. 
 

ORDERED ; Lhs = dependent variable 
; Rhs = independent variables  
[ ; Model = Weibull, Logit , Arctangent or Gompertz ] $ 

ORDERED ; Lhs = dependent variable 
; Rhs = independent variables  
; Pds = fixed number of periods or count variable 
; Fixed Effects   
[ ; Model = Weibull, Logit, Arctangent or Gompertz ] $ 

 
NOTE:  The Rhs in your first command must contain a constant term, one as the first variable. Your 
Rhs list for a fixed effects model generally should not include a constant term as the fixed effects 
model fits a complete set of constants for the set of groups.  But, for the ordered probit model, you 
must provide the identical Rhs list as in the first command, so for this model, do include one. It will 
be removed prior to beginning estimation. When you set up your commands, leaving one in the Rhs 
list will help insure that your model specification is correct.  It will look correct.  Note, it is crucial 
that you fit the pooled model first so that LIMDEP can find the right starting values for the second 
estimation step. 
 
 The fixed effects model assumes a group specific effect: 
 
   Prob[yit =  j]  =  F( j,µ, β′xit  +  αi) 
 
where αi is the parameter to be estimated.  You may also fit a two way fixed effects model 
 
   Prob[yit  =  j]  =  F( j,µ, β′xit  +  αi + γt) 
 
where γt is an additional, time (period) specific effect.  The time specific effect is requested by 
adding 
   ; Time 
 
to the command if the panel is balanced, and  
 
   ; Time = variable name 
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if the panel is unbalanced.  For the unbalanced panel, we assume that overall, the sample observation 
period is t  = 1,2,..., T and that the ‘Time’ variable gives for the specific group, the particular values 
of t that apply to the observations.  Thus, suppose your overall sample is five periods.  The first 
group is three observations, periods 1, 2, 4, while the second group is four observations, 2, 3, 4, 5.  
Then, your panel specification would be 
 
   ; Pds = Ti  for example, where Ti = 3, 3, 3, 4, 4, 4, 4 
and   ; Time = Pd for example, where Pd = 1, 2, 4, 2, 3, 4, 5. 
 
NOTE:  See the discussion below on how this model is estimated.  It places an important restriction 
on the two way fixed effects model. 
 
 You must provide the starting values for the iterations by fitting the basic model without 
fixed effects.  You will have a constant term in these results even though it is dropped from the fixed 
effects model.  This is used to get the starting value for the fixed effects.  Iterations begin with the 
restricted model that forces all the fixed effects to equal the constant term in the restricted model.   
 Results that are kept for this model are 
 
 Matrices: b =  estimate of β 
   varb =  asymptotic covariance matrix for estimate of β. 
   alphafe =  estimated fixed effects 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 

 

 Last Function: None 
  
The upper limit on the number of groups is 100,000.  Technical details on the method of estimation 
for this model are given below and in Chapter R23.  Full estimation of the fixed effects model in this 
fashion encounters the ‘incidental parameters’ problem.   
 
NOTE:  In the ordered probit model with fixed effects αi, the individual effect coefficient cannot be 
estimated if the dependent variable within the group takes the same value in every period.  The 
results will indicate how many such groups had to be removed from the sample. 
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E36.2.1 Standard Model Specifications for Panel Data Ordered 
Choice Models 
 

This is the full list of general specifications that are applicable to this model estimator.  See 
Chapter E1 and references noted there for further details on these specifications. 
 
Controlling Output from Model Commands 
 
 ; Par  keeps ancillary parameters µj with main parameter β vector in b. 

; Partial Effects displays marginal effects, same as ; Marginal Effects. 
; Table = name saves model results to be combined later in output tables. 

 
Asymptotic Covariance Matrices 
 

Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
  

; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Hpt = n sets the number of points to use for Hermite quadrature 
 ; Set   keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Prob = name saves probabilities as a new (or replacement) variable. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
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E36.2.2 Application 
 
 We have fit a fixed effects ordered probit model with the German health care data used in 
the previous examples.  This is an unbalanced panel with 7,293 individuals.  The health status 
variable is coded 0 to 10.  The model is fit using the commands below.  We first fit the pooled 
model, then the fixed effects model. 
 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,hhninc,hhkids,educ ; Partial Effects $  
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,hhninc,hhkids,educ ; Partial Effects   
   ; Fixed Effects ; Pds = _groupti $  
 
----------------------------------------------------------------------------- 
FIXED EFFECTS OrdPrb Model 
Dependent variable              NEWHSAT 
Log likelihood function    -42217.91813 
Estimation based on N =  27326, K =5679 
Inf.Cr.AIC  =95793.836 AIC/N =    3.506 
Model estimated: Jun 19, 2011, 16:33:13 
Probability model based on Normal 
Unbalanced panel has   7293 individuals 
Skipped 1626 groups with inestimable ai 
Ordered probability model 
Ordered probit (normal) model 
LHS variable = values 0,1,...,10 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
  HHNINC|    -.38858***      .06374    -6.10  .0000     -.51351   -.26365 
  HHKIDS|     .07337***      .02718     2.70  .0069      .02010    .12665 
    EDUC|    -.04469*        .02635    -1.70  .0898     -.09633    .00695 
   MU(1)|     .32638***      .02045    15.96  .0000      .28630    .36646 
   MU(2)|     .84692***      .02743    30.88  .0000      .79316    .90068 
   MU(3)|    1.39245***      .03005    46.34  .0000     1.33355   1.45135 
   MU(4)|    1.81634***      .03102    58.55  .0000     1.75554   1.87714 
   MU(5)|    2.68396***      .03226    83.19  .0000     2.62072   2.74719 
   MU(6)|    3.10845***      .03272    95.01  .0000     3.04432   3.17258 
   MU(7)|    3.76428***      .03340   112.69  .0000     3.69880   3.82975 
   MU(8)|    4.79590***      .03478   137.88  .0000     4.72773   4.86407 
   MU(9)|    5.50760***      .03610   152.55  .0000     5.43684   5.57836 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The results below compare the estimated partial effects for the outcome y = 10 for the fixed effects 
model followed by the pooled model.  The differences are large. Note that the educ coefficient is 
significantly negative in the fixed effects model and significantly positive in the pooled model.  The log 
likelihood for the pooled model is -57420.08880, so the LR test statistic is about 30,000 with 7,293 
degrees freedom.  The critical chi squared for 7,292 degrees of freedom, given with the command  
 

CALC   ; List ; Ctb(.95,7292) $ 
 
is 7,491, which suggests that the fixed effects estimator, at least at this point is preferred.  The 
remains some question, however, because of the incidental parameters problem.  Based on received 
results, in the OP setting, the coefficient is biased away from zero, but not in sign, which still weighs 
in favor of the FEM result. 
 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
 NEWHSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=10] at means]-------------- 
  HHNINC|     .00025         .52441      .93  .3532     -.00028    .00078 
 *HHKIDS|     .00469         .17144     1.46  .1431     -.00159    .01097 
    EDUC|    -.00282***    -1.16548   -10.59  .0000     -.00334   -.00230 
        |--------------[Partial effects on Prob[Y=10] at means]-------------- 
  HHNINC|     .03739***      .11620     5.36  .0000      .02372    .05105 
 *HHKIDS|     .04378***      .38649    16.73  .0000      .03865    .04891 
    EDUC|     .00996***      .99545    18.30  .0000      .00889    .01103 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Technical Notes 
 
 The fixed effects model is fit essentially by ‘brute force.’  LIMDEP actually estimates the 
full K + N up to 100,150 coefficients by Newton’s method.  It is possible to fit the huge number of 
coefficients because we take advantage of the properties of the sparse second derivatives matrix.  
One of the implications, however, is that there is no covariance matrix computed for the fixed 
effects.  It is possible to test for the fixed effects model with a likelihood ratio test or a Lagrange 
multiplier test, but since the covariance matrix is not computed, it is not possible to do any kind of 
inference for individual fixed effects. 
 The two way fixed effects estimator is computed by actually creating the time specific 
dummy variables and adding them to the model.  This means that the usual 150 parameter limit on 
model size applies to the number of variables in the model plus the number of periods (minus one). 
 Marginal effects in the fixed effects model are computed at the means of the data and with 
the sample average of the fixed effects estimates as the constant term. 
 The unconditional log likelihood is maximized by using Newton’s method. A full discussion 
of the method is given in Chapter R23. 
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E36.3 Random Effects Ordered Choice Models 
 

The random effects model is 
 
   yit*  =  β‘xit  +  εit  +  ui 
 
where i = 1,...,N indexes groups and t = 1,...,Ti indexes periods.  (As always, the number of periods 
may vary by individual.)  The unique term, εit, is distributed as N[0,1], standard logistic, extreme 
value, or Gompertz as specified in the general model discussed earlier.  The group specific term, ui is 
distributed as N[0,σ2] for all cases.  Note that the unobserved heterogeneity, ui is the same in every 
period.   The parameters of the model are fit by maximum likelihood.  As in the binary choice 
models, the underlying variance, σ2 = σu

2 + σε
2 is not identified.  The reduced form parameter,           

ρ = ( )2 2 2/u uεσ σ + σ , is estimated directly.  With the normalization that we used earlier, σε
2 = 1, we 

can determine σu = /(1 )ρ − ρ . Further discussion of the estimation of the structural parameters 
appears in Chapter R24.  The ordered probability model with random effects is estimated in the same 
fashion as the binary probability models with random effects.  The heterogeneity is handled by using 
Hermite quadrature to integrate the effect out of the joint density of the Ti observations for the ith 
group.  Technical details appear at the end of this section. 
 
E36.3.1 Commands 
 

The specification is for the ordered probability model.  Use 
 

ORDERED  ; Lhs = ... ; Rhs = ...  
; Panel spec.  
[ ; Model = Logit, Comploglog, Arctangent or Gompertz] $ 

 
where the ; Pds specification follows the standard convention, fixed T or variable name for variable 
T.  The default is the ordered probit.  Request the ordered logit just by adding ; Model = Logit etc. to 
the command.  The random effects model is the default panel data model for the ordered probability 
models, so you need only include the ; Pds specification in the command. 
 
NOTE:  The random effect, ui is assumed to be normally distributed in all models. Thus, the logit, 
arctangent, and other models contain a hybrid of distributions. 
 

All other options are the same as were listed earlier for the pooled ordered probability 
models.   
 Marginal effects are computed by setting the heterogeneity term, ui to its expected value of 
zero.  In order to do the computations of the marginal effects, it is also necessary to scale the 
coefficients.  The ordered probability model with the random effect in the equation is based on the 
index function (µj - β′xi) / (1 + σu

2). 
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 This estimator can accommodate restrictions, so 
 
   ; Rst = list 
and   ; CML: specification 
 
are both available. Restrictions may be tested and imposed exactly as in the model with no 
heterogeneity.  Since restrictions can be imposed on all parameters, including ρ, you can fix the 
value of ρ at any desired value.  Do note that forcing the ancillary parameter, in this case, ρ, to equal 
a slope parameter will almost surely produce unsatisfactory results, and may impede or even prevent 
convergence of the iterations. 
 Starting values for the iterations are obtained by fitting the basic model without random 
effects.  Thus, the initial results in the output for these models will be the ordered choice models 
discussed earlier. You may provide your own starting values for the parameters with 
 
   ; Start = ... the list of values for β, values for µ, value for ρ 
 
There is no natural moment based estimator for ρ, so a relatively low guess is used as the starting 
value instead.  The starting value for ρ is approximately .2 (θ = [2ρ/(1-ρ)]1/2 ≈ .29 – see the technical 
details below.  Maximum likelihood estimates are then computed and reported, along with the usual 
diagnostic statistics.  (An example appears below.) 
 
E36.3.2 Output and Results 
 
 Your data may not be consistent with the random effects model.  That is, there may be no 
discernible evidence of random effects in your data.  In this case, the estimate of ρ will turn out to be 
negligible.  If so, the estimation program issues a diagnostic and reverts back to the original, 
uncorrelated formulation and reports (again) the results for the basic model. 
 Results that are kept for this model are 
 
 Matrices: b =  estimate of β 
   varb =  asymptotic covariance matrix for estimate of β. 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
   rho =  estimated value of ρ 
   varrho =  estimated asymptotic variance of estimator of ρ. 
 
 Last Model: b_variables 
 
 Last Function: Prob(y = outcome | x) 
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The additional specification 
 
   ; Par 
 
in the command requests that µ and σu be included in b and the additional rows and columns be 
included in varb.  The PARTIAL EFFECTS and SIMULATE commands use the same probability 
function as the pooled model.  The default outcome is the highest one, but you may use ; Outcome = j 
to specify a specific one, or ; Outcome = * for all. 
 
NOTE:  The hypothesis of no group effects can be tested with a Wald test (simple t test) or with a 
likelihood ratio test.  The LM approach, using ; Maxit = 0 with a zero starting value for ρ does not 
work in this setting because with ρ = 0, the last row of the covariance matrix turns out to contain 
zeros. 
 
NOTE: This model is fit by approximating the necessary integrals in the log likelihood function by 
Hermite quadrature.  An alternative approach to estimating the same model is by Monte Carlo 
simulation.  You can do exactly this by fitting the model as a random parameters model with only a 
random constant term.  This model is described in Section E36.4. 
 
E36.3.3 Application 
 
 In the following example, we fit random effects ordered probit models for the health status 
data.  The pooled estimator is fit with and without the clustered data correction.  Then, the random 
effects model is fit, first using the Butler and Moffitt method, then as a random parameters model 
with a random constant term.    
 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ $   
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ  
   ; Cluster = id $  
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ 
   ; Panel  $  
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ $   
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ    
   ; Panel ; RPM ; Fcn = one(n) ; Halton ; Pts = 25 $  
 
The first pair of estimation results shown below compares the cluster estimator of the covariance 
matrix to the pooled estimator which ignores the panel data structure.  As can be seen in the results, 
the robust standard errors are somewhat higher.  The second set of results compares two estimators 
of the random effects model. The first results are based on the quadrature estimator.  The second uses 
maximum simulated likelihood.  These two estimators give almost the same results.  They would be 
closer still had we used a larger number of Halton draws.  We set this to 25 to speed up the 
computation.  With, say, 250, the results of the two estimators would be extremely close. 
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----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -57420.08880 
Restricted log likelihood  -57816.35761 
Chi squared [   3 d.f.]       792.53762 
Significance level               .00000 
McFadden Pseudo R-squared      .0068539 
Estimation based on N =  27326, K =  13 
Inf.Cr.AIC  =********* AIC/N =    4.204 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.42634***      .03136    45.48  .0000     1.36487   1.48781 
  HHNINC|     .19469***      .03624     5.37  .0000      .12366    .26571 
  HHKIDS|     .22199***      .01261    17.61  .0000      .19728    .24669 
    EDUC|     .05187***      .00276    18.81  .0000      .04647    .05728 
        |Threshold parameters for index 
   Mu(1)|     .19061***      .00988    19.29  .0000      .17123    .20998 
   Mu(2)|     .49125***      .01073    45.80  .0000      .47023    .51228 
   Mu(3)|     .82152***      .00979    83.95  .0000      .80233    .84070 
   Mu(4)|    1.08609***      .00898   120.91  .0000     1.06849   1.10370 
   Mu(5)|    1.63179***      .00793   205.69  .0000     1.61624   1.64734 
   Mu(6)|    1.88965***      .00767   246.35  .0000     1.87462   1.90469 
   Mu(7)|    2.28993***      .00770   297.40  .0000     2.27484   2.30503 
   Mu(8)|    2.92948***      .00843   347.32  .0000     2.91295   2.94601 
   Mu(9)|    3.38076***      .01008   335.50  .0000     3.36101   3.40051 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.42634***      .05039    28.30  .0000     1.32757   1.52511 
  HHNINC|     .19469***      .05008     3.89  .0001      .09653    .29284 
  HHKIDS|     .22199***      .01886    11.77  .0000      .18503    .25894 
    EDUC|     .05187***      .00432    12.00  .0000      .04340    .06035 
        |Threshold parameters for index 
   Mu(1)|     .19061***      .02054     9.28  .0000      .15035    .23086 
   Mu(2)|     .49125***      .03180    15.45  .0000      .42892    .55358 
   Mu(3)|     .82152***      .03548    23.16  .0000      .75198    .89105 
   Mu(4)|    1.08609***      .03432    31.64  .0000     1.01882   1.15337 
   Mu(5)|    1.63179***      .03334    48.95  .0000     1.56644   1.69713 
   Mu(6)|    1.88965***      .03261    57.95  .0000     1.82574   1.95357 
   Mu(7)|    2.28993***      .02965    77.24  .0000     2.23183   2.34804 
   Mu(8)|    2.92948***      .02827   103.62  .0000     2.87407   2.98489 
   Mu(9)|    3.38076***      .02920   115.77  .0000     3.32353   3.43800 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Random Effects Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -53631.92165 
Underlying probabilities based on Normal 
Unbalanced panel has   7293 individuals 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.19480***      .07252    30.27  .0000     2.05267   2.33692 
  HHNINC|    -.03764         .04636     -.81  .4169     -.12850    .05323 
  HHKIDS|     .18979***      .01866    10.17  .0000      .15322    .22635 
    EDUC|     .07474***      .00609    12.27  .0000      .06280    .08668 
        |Threshold parameters for index model 
  Mu(01)|     .27725***      .01553    17.85  .0000      .24680    .30769 
  Mu(02)|     .71390***      .02041    34.98  .0000      .67391    .75390 
  Mu(03)|    1.18482***      .02235    53.01  .0000     1.14101   1.22863 
  Mu(04)|    1.55571***      .02305    67.49  .0000     1.51053   1.60089 
  Mu(05)|    2.32085***      .02394    96.95  .0000     2.27393   2.36777 
  Mu(06)|    2.68712***      .02427   110.74  .0000     2.63956   2.73469 
  Mu(07)|    3.25778***      .02467   132.08  .0000     3.20944   3.30612 
  Mu(08)|    4.16499***      .02560   162.70  .0000     4.11482   4.21517 
  Mu(09)|    4.79284***      .02605   183.99  .0000     4.74178   4.84390 
        |Std. Deviation of random effect 
   Sigma|    1.01361***      .01233    82.23  .0000      .98945   1.03778 
--------+-------------------------------------------------------------------- 
Random Coefficients  OrdProbs Model 
Dependent variable              NEWHSAT 
Log likelihood function    -53699.77298 
Ordered probit (normal) model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
  HHNINC|    -.02668         .03421     -.78  .4354     -.09373    .04037 
  HHKIDS|     .18456***      .01227    15.05  .0000      .16052    .20860 
    EDUC|     .07680***      .00278    27.58  .0000      .07134    .08226 
        |Means for random parameters 
Constant|    2.13724***      .03627    58.93  .0000     2.06615   2.20832 
        |Scale parameters for dists. of random parameters 
Constant|    1.04507***      .00729   143.43  .0000     1.03079   1.05935 
        |Threshold parameters for probabilities 
   MU(1)|     .26755***      .01479    18.09  .0000      .23856    .29653 
   MU(2)|     .69343***      .01916    36.20  .0000      .65588    .73097 
   MU(3)|    1.15786***      .02068    55.98  .0000     1.11732   1.19840 
   MU(4)|    1.52579***      .02116    72.09  .0000     1.48431   1.56728 
   MU(5)|    2.28879***      .02177   105.11  .0000     2.24612   2.33147 
   MU(6)|    2.65507***      .02203   120.53  .0000     2.61189   2.69824 
   MU(7)|    3.22614***      .02239   144.06  .0000     3.18225   3.27003 
   MU(8)|    4.13325***      .02334   177.07  .0000     4.08750   4.17900 
   MU(9)|    4.75862***      .02385   199.56  .0000     4.71188   4.80535 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E36.3.4 Technical Details for the Random Effects Models 
 
 The structure of the random effects model is 
 
   zit | ui  =  β′xit  +  εit  +  σuui 
 
where ui ~ N[0,1], and εit is the stochastic term in the model that provides the conditional 
distribution, 
   Prob[yit =  j | xit, ui]  =  F[j, µ,(β′xit  +  σuui)] i = 1,...,N, t = 1,...,Ti. 
 
where F(.) is based on the distribution discussed earlier (normal, logistic, extreme value, arctangent, 
Gompertz). The parameter vector for the random effects model is 
 
   θ =  [β1,...,βK, µ1,…,µJ-1, ρ]′.   
 
With the usual normalization, σε = 1,   
 

   σu = 
ρ−

ρ
1

.    

 
The log likelihood function is 
 
   log L =  Σi  log Li 
 
where log Li is the contribution of the ith individual (group) to the total.  Conditioned on ui, the joint 
probability for the ith group is 
 

   Prob[Yi1 = yi1,...,YiTi = yiTi | xi1,...,ui]  =  [ ]
1

iT

it it u i
t

F y , ' u
=

+ σ∏ x,µ β  

 
where now, ui is normalized to unit variance.  Since ui is unobserved, it is necessary to obtain the 
unconditional log likelihood by taking the expectation of this over the distribution of ui.  For 
convenience, write the tth term in the probability above as G(yit, µ, β′xit + γui), where γ = σu, so that 
 

   Li| ui =  
1

x
iT

it it i
t

G( y , ' u ),µ β γ
=
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Then,    Li =  Eui [Li | ui] 
 

    =  
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NOTE:  It can be seen in the likelihood function that it is necessary actually to compute the product 
of the probabilities for the group, not the sum of the logs.  For this reason, the number of 
observations in a group cannot be extremely large.  Since the probability is likely to be on the order 
of .25 or so, the product of 100 probabilities is on the order of 10-100.  This means that the end result 
is more rounding error than result.  In worse cases, the computation will ‘overflow’ – that is, exceed 
the computer’s capacity to compute the value.  For example, the correct result for the product of 100 
probabilities on the order of .01 cannot be computed in the accuracy of the computer, which is about 
10+/-380.  The diagnostic that this estimator produces mentions a ‘Bad counter...’  When the counter 
for group size exceeds 100, the estimator assumes that you have made some kind of error. 
 
Then, finally,   

   log L =  ∑ =

N
i iL

1
log  

 
The function is maximized by solving the likelihood equations: 
 

   ∑ =









γ

∂

∂
=









γ

∂

∂ N
i

iLL
1

loglog
ββ

        =  0. 

 
For convenience below, let θ denote the full parameter vector, [β,γ]′. 
 The integration is done with Hermite quadrature.  Make the change of variable to vi = ui/ 2 .  
Then, 

   log Li =  2

1

1 exp( )
iT

i it it i i
t

log v F( y , , ' v ) dv
∞

−∞
=

− +∏∫ x  µ β δ
π

 

 
where δ = γ× 2  [so ρ = δ2/(2 + δ2)] and σu = [ρ/(1-ρ)]1/2].  The integral of the form  
 

   ∫
∞

∞−
− dvvgv )()exp( 2   

 
is approximated by the Hermite quadrature, 
 

   ∫
∞

∞−
− dvvgv )()exp( 2 ≈∑ =

H
h hh zgw

1
)(  

 
where wh are the weights and zh are the abscissas for the approximation.  (See Section R23.3.1, 
Butler and Moffitt (1982) and Abramovitz and Stegun (1972) for further details.)  Collecting terms, 
then, the log likelihood is computed with 
 

   logL  ≈
1 1

1

1 x
iT

N H
h it it hi h
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π= =
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The derivatives of the log likelihood function are approximated as well (the derivation appears in 
Chapter R23), 
 

      
    ≈

∂

∂
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Note that Li and its derivatives are approximated separately.  The summation involves two separate 
integrals. We use a 20 point quadrature by default, but you can change the number of quadrature 
points by including ; Hpt = p in the command, where ‘p’ is the desired number of points, from 4 to 
96 (even). In some cases, the accuracy of the computations will improve with the number of 
quadrature points.  However, the amount of computation will increase as well at the same rate. 
 The variance, δ, appears linearly in the function along with β, so no complication is added 
by this additional parameter as the summation is done over the nodes.  In each case, the term is 
 
   F(yit, µ, β′xit + γzh)  =  1( ) ( )  -  x   -    -  xy it h y it hF ' z F ' zβ γ β γ−   µ + µ +     
 
The forms of the particular distribution functions, Fit(.), differ among the five models.  The 
functional forms appear in Section E34.1.  The asymptotic covariance matrix is estimated by the 
BHHH estimator, 
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 It is necessary to account for the presence of the random effect when computing probabilities 
or marginal effects from this model.  The CDF is computed from 
 
   yit*  =  β‘xit  +  εit  +  ui. 
 
Thus,    Prob[yit*  <µ ] =  Prob[β‘xit  +  εit  +  ui<µ] 
 
or      =  Prob[εit  +  ui<µ  -  β‘xit  ] 
 

     =  Prob
2 21 1

it i it

u u

u ' ε + µ − ≤
 + σ + σ 

xβ
 

 
     =  Prob [vit<µ*  -  β*′xit] 
 
where vit ~ N[0,1].  These are the probabilities that enter the calculation of marginal effects and fitted 
values. 
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E36.4 Random Parameters and Random Thresholds 
Ordered Choice Models 
 
 The structure of the random parameters model is based on the conditional probability 
 
   Prob[yit =  j| xit, βi]  =  F( j,µ, βi′xit  +  αi), i = 1,...,N, t = 1,...,Ti. 
 
where F(.) is the distribution discussed earlier (normal, logistic, extreme value, Gompertz).  The 
model assumes that parameters are randomly distributed with possibly heterogeneous (across 
individuals) parameters generated by 
 
   E[βi| zi]  =  β  +  ∆zi,   
 
(the second term is optional – the mean may be constant), 
 
   Var[βi| zi]  =  Σ. 
 
The model is operationalized by writing 
 
   βi  =  β  +  ∆zi  +  Γvi. 
 
As noted earlier, the heterogeneity term is optional.  In addition, it may be assumed that some of the 
parameters are nonrandom.  It is convenient to analyze the model in this fully general form here.    
We accommodate nonrandom parameters just by placing rows of zeros in the appropriate places in ∆ 
and Γ. 
 
NOTE:  If there is no heterogeneity in the mean, and only the constant term is considered random – 
the model may specify that some parameters are nonrandom – then this model is functionally 
equivalent to the random effects model of the preceding section.  The estimation technique is 
different, however.  An application appears in the previous section. 
 
 Two major extensions of the RP-OC model are provided.  The threshold parameters, µij and 
disturbance variance of εi may also be random, in the form 
 
   µij  =  µi,j-1  +  exp(αj + δ′wi + θuij), µ0 = 0, uij ~ N[0,1] 
 
   εit ~ N[0,σi

2], σi = exp(γ′fi + τhi), hi ~ N[0,1] 
  
This model is developed in Section E36.4.4. 
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E36.4.1 Model Commands 
 
 The basic model command for this form of the model is, as is the fixed effects estimator, 
given in two parts. The model is fit conventionally first to provide the starting values, then fully 
specified. 
 
 ORDERED ; Lhs  = dependent variable 

; Rhs = independent variables 
[ ; Model = Gompertz, Logit or Weibull ] $ 

 ORDERED ; Lhs  = dependent variable 
; Rhs = independent variables 
; Pds  = fixed periods or count variable 
; RPM 
; Fcn = random parameters specification 
[ ; Model = Gompertz, Logit or Weibull ] $ 

 
NOTE:  For this model, your Rhs list should include a constant term. 
 
 Starting values for the iterations are provided by the user by fitting the basic model without 
random parameters first.  Note in the applications below that the two random parameters ordered 
probit estimators are each preceded by an otherwise identical fixed parameters version.   
 
NOTE:  The command cannot reuse an earlier set of results.  You must refit the basic model without 
random parameters each time.  Thus, 
 
 ORDERED ; ... $ 
 ORDERED ; RPM ; ... $ 
 ORDERED ; RPM ; ... $ 
 
will not work properly.  Each random parameters model must be preceded by a set of starting values. 
 
Correlated Random Parameters 
 
 The preceding defines an estimator for a model in which the covariance matrix of the 
random parameters is diagonal.  To extend it to a model in which the parameters are freely 
correlated, add 
   ; Correlation (or just ; Cor) 
 
to the command.  Note that this formulation of the model has an ambiguous interpretation if your 
parameters are not jointly normally distributed.  A correlated mixture of several distributions is 
difficult to interpret. 
 
  



E36: Panel Data Models for Ordered Choice   E-803 

Heterogeneity in the Means 
 
 The preceding examples have specified that the mean of the random variable is fixed over 
individuals.  If there is measured heterogeneity in the means, in the form of 
 
   E[βki]  =  βk  +  Σmδkmzmi 
 
where zm is a variable that is measured for each individual, then the command may be modified to 
 
   ; RPM  =  list of variables in z. 
 
In the data set, these variables must be repeated for each observation in the group. 
 
Autocorrelation 
 
 You may change the character of the heterogeneity from a time invariant effect to an AR(1) 
process, vkit = ρkvki,t-1 + wkit.  (See Section R24.7 for details.) 
 
Controlling the Simulation 
 
 There are two parameters of the simulations that you can change.  R is the number of points 
in the simulation. Authors differ in the appropriate value.  Train (2009) recommends several 
hundred.  Bhat suggests 1,000 is an appropriate value.  The program default is 100.  You can choose 
the value with 
   ; Pts  =  number of draws, R 
 
The value of 50 that we set in our experiments above was chosen purely to produce an example that 
you could replicate without spending an inordinate amount of waiting for the results. 
 The standard approach to simulation estimation is to use random draws from the specified 
distribution.  As suggested immediately above, good performance in this connection requires very large 
numbers of draws.  The drawback to this approach is that with large samples and large models, this 
entails a huge amount of computation and can be very time consuming.  Some authors have 
documented dramatic speed gains with no degradation in simulation performance through the use of a 
small number of Halton draws instead of a large number of random draws.  Halton sequences are 
discussed in Section R24.7.  Some authors (e.g., Bhat (1999)) have found that a Halton sequence of 
draws with only one tenth the number of draws as a random sequence is equally effective.  To use this 
approach, add 
   ; Halton 
 
to your model command. 
 In order to replicate an estimation, you must use the same random draws.  One implication 
of this is that if you give the identical model command twice in sequence, you will not get the 
identical set of results because the random draws in the sequences will be different.  To obtain the 
same results, you must reset the seed of the random number generator with a command such as 
 
 CALC   ;  Ran (seed value) $ 
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(Note that we have used Ran(12345) before each of our examples above, precisely for this reason.  
The specific value you use for the seed is not of consequence; any odd number will do. 
 In this connection, we note a consideration which is crucial in this sort of estimation.  The 
random sequence used for the model estimation must be the same in order to obtain replicability.  In 
addition, during estimation of a particular model, the same set of random draws must be used for 
each person every time.  That is, the sequence vi1, vi2, ..., viR used for each individual must be the 
same every time it is used to calculate a probability, derivative, or likelihood function.  (If this is not 
the case, the likelihood function will be discontinuous in the parameters, and successful estimation 
becomes unlikely.  This has been called simulation ‘noise’ or ‘buzz’ in the literature. )  One way to 
achieve this which has been suggested in the literature is to store the random numbers in advance, 
and simply draw from this reservoir of values as needed.  Because LIMDEP is able to use very large 
samples, this is not a practical solution, especially if the number of draws is large as well.  We 
achieve the same result by assigning to each individual, i, in the sample, their own random generator 
seed which is a unique function of the global random number seed, S, and their group number, i; 
 
   Seed(S,i) =  S  +  123.0 ×i, then minus 1.0 if the result is even. 
 
Since the global seed, S, is a positive odd number, this seed value is unique, at least within the 
several million observation range of LIMDEP. 
 
Specifying Random Parameters 
 
 The ; Fcn = specification is used to define the random parameters.  It is constructed from 
the list of Rhs names as follows:  Suppose your model is specified by 
 
   ; Rhs = one, x1, x2, x3, x4 
 
This involves five coefficients.  Any or all of them may be random; any not specified as random are 
assumed to be constant.  For those that you wish to specify as random, use 
 
   ; Fcn = variable name (distribution), variable name (distribution), ... 
 
Numerous distributions may be specified.  All random variables, vik, have mean zero. See Section 
R24.3 for details.  
 

   c  for constant (zero variance), vi = 0 
n  for normally distributed, vi = a standard normally distributed variable 
u  for uniform, vi= a standard uniform distributed variable in (-1,+1) 
t   for triangular (the ‘tent’ distribution)  
h  for negative half normal, v = (2π)-1/2  - |u| 
e  for centered lognormal, v = Exp(u) – Sqr(e) 
s   for Johnson Sb, v = Exp(u) / [1 + Exp(u)] 
l   for lognormal 
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Each of these is scaled as it enters the distribution, so the variance is only that of the random draw 
before multiplication.  The latter two distributions are provided as one may wish to reduce the 
amount of variation in the tails of the distribution of the parameters across individuals and to limit 
the range of variation.  (See Train (2009) for discussion.)  To specify that the constant term and the 
coefficient on x1 are normally distributed with fixed mean and variance, use 
 
   ; Fcn = one(n), x1(n) 
 
This specifies that the first and second coefficients are random while the remainder are not.  The 
parameters estimated will be the mean and standard deviations of the distributions of these two 
parameters and the fixed values of the other three.  
 
Standard Model Specifications for the Random Parameters Ordered Choice 
Models 
 

This is the full list of general that are applicable to this model estimator.    
 
Controlling Output from Model Commands 
 
 ; Par  keeps individual specific parameter estimates.  

; Partial Effects displays marginal effects, same as ; Marginal Effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 
 ; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set   keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill   fills missing values (outside estimating sample) for fitted values. 
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Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values  specifies Lagrange multiplier test. 
 
 
E36.4.2 Results 
 
 Results saved by this estimator are: 
 
 Matrices: b =  estimate of θ 
   varb =  asymptotic covariance matrix for estimate of θ. 
   beta_i =  individual specific parameters, if ; Par is requested. 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: Prob(yit = J|xit) = Probability of the highest cell.  

May be changed with ; Outcome = j or ; Outcome = *. 
 
E36.4.3 Application 
 
 The following example illustrates the random parameters ordered probit model.  The data are 
recoded to make a more compact example, and the sample is restricted to those groups that have 
seven observations, to speed up the simulations.  The first two ordered probit models are the fixed 
parameters, pooled estimator followed by the random parameters case in which two of the five 
coefficients are random.  After the random parameters model is estimated, the individual specific 
estimates of E[βeduc|hs,x] are collected in a variable then a kernel estimator describes the distribution 
of the conditional means across the sample.  The results are rearranged to compare the coefficient 
estimates then the partial effects across the specifications. 
 The results include estimates of the means and standard deviations of the distributions of the 
random parameters and the estimates of the nonrandom parameters.  The log likelihood shown is 
conditioned on the random draws, so one might be cautious about using it to test hypotheses, for 
example, that the parameters are random at all by comparing it to the log likelihood from the basic 
model with all nonrandom coefficients. 
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The commands are: 
 
SAMPLE ; All $ 
SETPANEL  ; Group = id ; Pds = ti $ 
NAMELIST  ; x = one,age,educ,hhninc,handdum $ 
CREATE  ; hs = newhsat $ 
RECODE  ; hs ; 0/3 = 0 ; 4/6 = 1 ; 7/8 = 2 ; 9/10 = 3 $ 
HISTOGRAM ; Rhs = hs $ 
REJECT  ; ti < 7 $ 
ORDERED  ; Lhs = hs ; Rhs = x ; Partial Effects  $ 
ORDERED ; Lhs = hs ; Rhs = x  

; RPM ; Panel ; Fcn = age(n),educ(n) ; Halton ; Pts = 25  
; Partial Effects ; Par $ 

SAMPLE  ; 1-887 $ 
MATRIX  ; mb_educ = beta_i(1:118,1:1) $ 
CREATE  ; be_educ = mb_educ $ 
KERNEL  ; Rhs = be_educ $ 
ORDERED  ; Lhs = hs ; Rhs = x ; Partial Effects  $ 
ORDERED ; Lhs = hs ; Rhs = x  

; RPM ; Panel ; Fcn = age(n),educ(n) ; Halton ; Pts = 25  
; Correlated ; Partial Effects ; Par $ 

 
+--------------------------------------------------------------------+ 
|                CELL FREQUENCIES FOR ORDERED CHOICES                | 
+--------------------------------------------------------------------+ 
|               Frequency        Cumulative  < =    Cumulative  > =  | 
|Outcome      Count    Percent   Count    Percent   Count    Percent | 
|----------- ------- ---------  ------- ---------  ------- --------- | 
|HS=00           569    9.1641      569    9.1641     6209  100.0000 | 
|HS=01          2000   32.2113     2569   41.3754     5640   90.8359 | 
|HS=02          2342   37.7194     4911   79.0949     3640   58.6246 | 
|HS=03          1298   20.9051     6209  100.0000     1298   20.9051 | 
+--------------------------------------------------------------------+ 

 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                   HS 
Log likelihood function     -7679.52077 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      HS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.72050***      .10585    16.25  .0000     1.51304   1.92796 
     AGE|    -.02354***      .00155   -15.19  .0000     -.02658   -.02051 
    EDUC|     .06417***      .00687     9.34  .0000      .05069    .07764 
  HHNINC|     .26574***      .08773     3.03  .0025      .09381    .43768 
 HANDDUM|    -.34752***      .03370   -10.31  .0000     -.41358   -.28146 
        |Threshold parameters for index 
   Mu(1)|    1.17217***      .01623    72.20  .0000     1.14035   1.20399 
   Mu(2)|    2.24966***      .01942   115.83  .0000     2.21160   2.28773 
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--------+-------------------------------------------------------------------- 
Random Coefficients  OrdProbs Model 
Dependent variable                   HS 
Log likelihood function     -6724.01324 
Estimation based on N =   6209, K =   9 
Unbalanced panel has    887 individuals 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      HS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
Constant|    2.56865***      .11016    23.32  .0000     2.35275   2.78455 
  HHNINC|     .18922**       .08693     2.18  .0295      .01884    .35960 
 HANDDUM|    -.18622***      .03508    -5.31  .0000     -.25497   -.11747 
        |Means for random parameters 
     AGE|    -.04128***      .00159   -26.01  .0000     -.04439   -.03817 
    EDUC|     .10807***      .00748    14.45  .0000      .09341    .12273 
        |Scale parameters for dists. of random parameters 
     AGE|     .01357***      .00034    39.55  .0000      .01289    .01424 
    EDUC|     .08208***      .00155    53.01  .0000      .07905    .08512 
        |Threshold parameters for probabilities 
   MU(1)|    1.64297***      .02744    59.87  .0000     1.58918   1.69676 
   MU(2)|    3.17465***      .03234    98.16  .0000     3.11126   3.23804 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  OrdProbs Model 
Dependent variable                   HS 
Log likelihood function      -994.76038 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      HS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
Constant|    2.97520***      .25659    11.60  .0000     2.47230   3.47811 
  HHNINC|     .23351         .22085     1.06  .2903     -.19934    .66637 
 HANDDUM|    -.25589***      .09735    -2.63  .0086     -.44670   -.06508 
        |Means for random parameters 
     AGE|    -.04495***      .00386   -11.66  .0000     -.05250   -.03739 
    EDUC|     .06925***      .01533     4.52  .0000      .03921    .09930 
        |Diagonal elements of Cholesky matrix 
     AGE|     .00860***      .00262     3.29  .0010      .00347    .01373 
    EDUC|     .04047***      .00337    12.02  .0000      .03388    .04707 
        |Below diagonal elements of Cholesky matrix 
lEDU_AGE|     .03878***      .01003     3.87  .0001      .01912    .05844 
        |Threshold parameters for probabilities 
   MU(1)|    1.65758***      .08339    19.88  .0000     1.49414   1.82102 
   MU(2)|    3.11571***      .09843    31.65  .0000     2.92279   3.30864 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|   .739584E-04   .333495E-03 
       2|   .333495E-03     .00314200 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|     .00859991 
       2|      .0560536 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000       .691818 
       2|       .691818       1.00000 
 
 

 
Figure E36.1  Estimators of E[β(educ)|y,x] 
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(Fixed parameters) 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
      HS|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
     AGE|     .00353***     1.93407    14.53  .0000      .00305    .00401 
    EDUC|    -.00962***    -1.30082    -9.18  .0000     -.01168   -.00757 
  HHNINC|    -.03986***     -.17200    -3.02  .0025     -.06570   -.01402 
 HANDDUM|     .05213***      .13505    10.09  .0000      .04200    .06225 
(outcomes 1 and 2 omitted) 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
     AGE|    -.00654***    -1.46872   -14.52  .0000     -.00742   -.00566 
    EDUC|     .01782***      .98783     9.17  .0000      .01401    .02163 
  HHNINC|     .07381***      .13061     3.02  .0025      .02598    .12164 
 HANDDUM|    -.09653***     -.10255   -10.15  .0000     -.11517   -.07788 
--------+-------------------------------------------------------------------- 
(Random parameters) 
----------------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
     AGE|     .00247***     4.25914    16.65  .0000      .00218    .00276 
    EDUC|    -.00647***    -2.75143   -12.52  .0000     -.00748   -.00546 
  HHNINC|    -.01133**      -.15380    -2.16  .0306     -.02159   -.00106 
 HANDDUM|     .01115***      .09088     5.22  .0000      .00696    .01533 
 (Outcomes 1 and 2 omitted, effects reordered) 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
     AGE|    -.00776***    -3.12921   -22.25  .0000     -.00844   -.00708 
    EDUC|     .02031***     2.02149    13.54  .0000      .01737    .02325 
  HHNINC|     .03557**       .11300     2.17  .0296      .00351    .06762 
 HANDDUM|    -.03500***     -.06677    -5.27  .0000     -.04801   -.02199 
--------+-------------------------------------------------------------------- 
(Correlated random parameters) 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
     AGE|     .00344***     4.40201     6.82  .0000      .00245    .00443 
    EDUC|    -.00530***    -1.78538    -4.17  .0000     -.00779   -.00281 
  HHNINC|    -.01786        -.19039    -1.05  .2927     -.05114    .01541 
 HANDDUM|     .01958***      .13543     2.67  .0077      .00519    .03397 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
     AGE|    -.00772***    -3.51945    -9.49  .0000     -.00931   -.00612 
    EDUC|     .01189***     1.42743     4.34  .0000      .00653    .01726 
  HHNINC|     .04010         .15222     1.06  .2906     -.03427    .11448 
 HANDDUM|    -.04395**      -.10827    -2.55  .0107     -.07768   -.01022 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E36.4.4 Random Parameters HOPIT Model 
 
 This model extends the hierarchical ordered probit model in several directions.  The core 
model is an ordered probit specification: 
 
   yit*  =  β′xit  +  εit, 

   yit =  0  if yit* < 0, 

    =  1  if 0 < yit* <µ1, 

    =  2  if µ1< yit* <µ2, 

    ... 

    =  J if yit* > µJ 
 
as usual.  The model is constructed to include random coefficients, βi, random variance 
heterogeneity, σi, and random thresholds, µij. The random parameters form of the general model is 
 
   βi =  β  + ∆hi +  Γwi 
 
where Γ is a diagonal matrix of standard deviations and wik ~ N[0,1], k = 1,…,K.  The mean of the 
random parameter vector is β + ∆hi where hi may be a set of variables specified in the model.  The 
disturbance in the model may be heteroscedastic and distributed with random standard deviation as 
well, with 
   εit ~ N[0,σi

2],  σi  =  exp[γ′zi + τvi] where vi ~ N[0,1]. 
 
Finally, the thresholds are formed as shown for the cross section variant of this model in Section 
E35.6; 
   µij   =  µi,j-1  +  exp(αj + δ′wi +  θjuij], where uij ~ N[0,1] 

   µ0 =  0 and xit contains a constant term. 
  
The various parts are optional.  In addition, the model may be fit with cross section or panel data.  As 
usual, panel data are likely to be more effective.  The command for this model is 
 
 ORDERED ; Lhs = … ; Rhs = … 

   ; RPM  for the random coefficients, β 
or   ; RPM = list of variables in hi 

   ; RTM  for the random thresholds model 
   ; Limits = list of variables for the wi in the thresholds 
   ; Random Effects to use a common ui in the thresholds 

   ; RVM    for the random term i, vi in σi 
   ; Het ; Hfn = list of variables in zi for the heteroscedastic model $ 
 



E36: Panel Data Models for Ordered Choice   E-812 

When the model includes any of the three random components, the maximum simulated likelihood 
estimator is used.  The default model is an ordered probit specification.  You may specify an ordered 
logit model instead by adding 
 
   ; Logit 
 
to the command. 

The simulation can be modified with 
 
   ; Pts = the number of points or draws 
and   ; Halton 
 
to indicate that Halton sequences rather than random draws be used for the simulations.  Halton 
sequences are recommended.  The simulation is over the J elements in µij plus the element vi in σi 
plus the K variables in the Rhs specification.  If you specify a ‘random effects’ model, then the same 
single random term appears in all of the threshold equations. 

If you are using a panel data set, use either 
 
 SETPANEL ; Group = variable name  

; Pds = variable name $ 
with   ; Panel 
 
in the ORDERED command, or, if the Pds variable is already prepared, use 
 
   ; Pds = the group count variable. 
 
Partial effects for this model are computed internally and requested with 
 
   ; Partial Effects. 
 
 This general form of the random parameters ordered probit model does not use the template 
random parameters form described in Chapter R24.  (Note that there is no ; Fcn = specification 
component in the command.)  As formulated, all parameters on the variables in the Rhs list are 
assumed to be random.  You can modify this by imposing a constraint that the corresponding 
diagonal element of Γ, which is the standard deviation of the random part of that element of βi, be 
equal to zero.  To do this, include in the command 
 
   ; Rh2 = list of variables with nonrandom parameters. 
 
Thus, the full list of variables in the model is those in the Rhs list plus those in the Rh2 list.  There is 
no overlap – variables must appear in only one of these two lists. 
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 Results saved by this estimator are: 
 
 Matrices: b =  estimate of β 
   varb =  asymptotic covariance matrix for estimate of θ. 
   betartop =  full set of parameter estimates , if ; Par is requested. 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
 
Standard Model Specifications for the Random Parameters Ordered Choice 
Models 
 

This is the full list of general that are applicable to this model estimator.    
 
Controlling Output from Model Commands 
 
 ; Par  keeps individual specific parameter estimates.  

; Partial Effects  displays partial effects, same as ; Marginal Effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 
 ; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set   keeps current setting of optimization parameters as permanent. 
 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values  specifies Lagrange multiplier test. 
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 The following application uses the subset of the GSOEP sample that have five observations 
in each group.  The application is further speeded up by using only 10 Halton draws in the 
simulations.  This is sufficient for a numerical example, but would be far too small for an actual 
application.  The estimated model allows for unobserved heterogeneity in all three places, the 
parameters, thresholds and disturbance variance. 
 

SAMPLE ; All $ 
SETPANEL ; Group = id ; Pds = ti $ 
REJECT ; ti # 5 $ 
ORDERED ; Lhs = hsat ; Rhs = one,age,educ ; Rh2 = hhninc,married,hhkids 

; RPM ; RTM ; RVM 
; Limits = female ; Pts = 10  
; Halton ; Panel ; Maxit = 25 $ 

 
----------------------------------------------------------------------------- 
Random Thresholds Ordered Choice Model 
Dependent variable                 HSAT 
Log likelihood function    -10134.79176 
Restricted log likelihood  -10899.81624 
Chi squared [  17 d.f.]      1530.04896 
Significance level               .00000 
McFadden Pseudo R-squared      .0701869 
Estimation based on N =   5255, K =  29 
Inf.Cr.AIC  =20327.584 AIC/N =    3.868 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Latent Regression Equation 
Constant|    4.17571***      .16744    24.94  .0000     3.84754   4.50388 
     AGE|    -.04388***      .00218   -20.13  .0000     -.04815   -.03961 
    EDUC|     .06261***      .00965     6.49  .0000      .04370    .08153 
  HHNINC|     .35696***      .11753     3.04  .0024      .12662    .58731 
 MARRIED|     .09078*        .04999     1.82  .0694     -.00719    .18876 
  HHKIDS|    -.09768**       .04371    -2.23  .0254     -.18334   -.01201 
        |Intercept Terms in Random Thresholds 
Alpha-01|   -1.19538***      .13834    -8.64  .0000    -1.46653   -.92423 
Alpha-02|    -.69311***      .08966    -7.73  .0000     -.86884   -.51739 
Alpha-03|    -.70446***      .06420   -10.97  .0000     -.83029   -.57862 
Alpha-04|   -1.14567***      .08731   -13.12  .0000    -1.31679   -.97455 
Alpha-05|    -.19232***      .03307    -5.82  .0000     -.25713   -.12751 
Alpha-06|   -1.03759***      .05273   -19.68  .0000    -1.14094   -.93424 
Alpha-07|    -.58017***      .03466   -16.74  .0000     -.64810   -.51224 
Alpha-08|    -.04815*        .02878    -1.67  .0943     -.10456    .00826 
Alpha-09|    -.39987***      .04048    -9.88  .0000     -.47920   -.32054 
        |Standard Deviations of Random Thresholds 
Alpha-01|     .24187***      .07688     3.15  .0017      .09118    .39256 
Alpha-02|     .34510***      .06721     5.14  .0000      .21338    .47682 
Alpha-03|     .19508**       .08818     2.21  .0270      .02224    .36792 
Alpha-04|     .26252***      .08332     3.15  .0016      .09922    .42582 
Alpha-05|     .11536***      .03689     3.13  .0018      .04305    .18767 
Alpha-06|     .17729***      .06490     2.73  .0063      .05009    .30448 
Alpha-07|     .23047***      .03758     6.13  .0000      .15683    .30412 
Alpha-08|     .15433***      .02927     5.27  .0000      .09697    .21170 
Alpha-09|     .04443         .04045     1.10  .2721     -.03486    .12371 



E36: Panel Data Models for Ordered Choice   E-815 

        |Variables in Random Thresholds 
  FEMALE|    -.03079**       .01291    -2.38  .0171     -.05609   -.00549 
        |Standard Deviations of Random Regression Parameters 
Constant|     .06490         .05458     1.19  .2344     -.04208    .17187 
     AGE|     .02166***      .00083    26.18  .0000      .02004    .02328 
    EDUC|     .00519**       .00234     2.22  .0264      .00061    .00977 
  HHNINC|        0.0    .....(Fixed Parameter)..... 
 MARRIED|        0.0    .....(Fixed Parameter)..... 
  HHKIDS|        0.0    .....(Fixed Parameter)..... 
        |Latent Heterogeneity in Variance of Epsilon 
  Tau(v)|     .29096***      .01860    15.65  .0000      .25451    .32741 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
 

+----------------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Model (probit)   | 
| Effects are computed by averaging  over observs. during simulations. | 
| Binary variables change only by 1 unit so s.d. changes are not shown.| 
| Elasticities for binary variables = partial effect/probability = %chgP | 
+----------------------------------------------------------------------+ 
+----------------------------------------------------------------------+ 
|           Regression Variable AGE         Changes in AGE        % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00     .00158     .00158     .00000     .01766     .06166    5.85945 
Y = 01     .00057     .00215    -.00158     .00640     .02235    3.00925 
Y = 02     .00128     .00343    -.00215     .01425     .04973    2.42584 
Y = 03     .00168     .00511    -.00343     .01876     .06548    1.83159 
Y = 04     .00130     .00641    -.00511     .01451     .05065    1.18846 
Y = 05     .00336     .00977    -.00641     .03753     .13101     .94528 
Y = 06     .00154     .01131    -.00977     .01720     .06003     .70612 
Y = 07     .00046     .01176    -.01131     .00511     .01782     .12789 
Y = 08    -.00304     .00872    -.01176    -.03401    -.11873    -.56476 
Y = 09    -.00344     .00528    -.00872    -.03840    -.13403   -1.42223 
Y = 10    -.00528     .00000    -.00528    -.05901    -.20598   -2.34240 
+----------------------------------------------------------------------+ 
|           Regression Variable EDUC        Changes in EDUC       % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00226    -.00226     .00000    -.00540    -.02482   -2.13858 
Y = 01    -.00082    -.00307     .00226    -.00196    -.00900   -1.09832 
Y = 02    -.00182    -.00489     .00307    -.00435    -.02002    -.88538 
Y = 03    -.00240    -.00729     .00489    -.00573    -.02636    -.66849 
Y = 04    -.00185    -.00914     .00729    -.00443    -.02039    -.43376 
Y = 05    -.00479    -.01394     .00914    -.01147    -.05273    -.34501 
Y = 06    -.00220    -.01613     .01394    -.00525    -.02416    -.25772 
Y = 07    -.00065    -.01679     .01613    -.00156    -.00717    -.04668 
Y = 08     .00434    -.01244     .01679     .01039     .04779     .20613 
Y = 09     .00490    -.00754     .01244     .01173     .05395     .51909 
Y = 10     .00754     .00000     .00754     .01803     .08291     .85493 
+----------------------------------------------------------------------+ 
|           Regression Variable HHNINC      Changes in HHNINC     % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
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Y = 00    -.01286    -.01286     .00000    -.00229    -.03857    -.37184 
Y = 01    -.00466    -.01752     .01286    -.00083    -.01398    -.19097 
Y = 02    -.01037    -.02790     .01752    -.00185    -.03111    -.15394 
Y = 03    -.01366    -.04156     .02790    -.00244    -.04096    -.11623 
Y = 04    -.01057    -.05213     .04156    -.00188    -.03168    -.07542 
Y = 05    -.02733    -.07946     .05213    -.00487    -.08195    -.05999 
Y = 06    -.01252    -.09198     .07946    -.00223    -.03755    -.04481 
Y = 07    -.00372    -.09570     .09198    -.00066    -.01115    -.00812 
Y = 08     .02477    -.07093     .09570     .00442     .07427     .03584 
Y = 09     .02796    -.04297     .07093     .00499     .08384     .09025 
Y = 10     .04297     .00000     .04297     .00766     .12884     .14865 
+----------------------------------------------------------------------+ 
|           Regression Variable MARRIED     Changes in MARRIED    % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00327    -.00327     .00000    -.00138    -.00327    -.20824 
Y = 01    -.00119    -.00446     .00327    -.00050    -.00119    -.10695 
Y = 02    -.00264    -.00710     .00446    -.00111    -.00264    -.08621 
Y = 03    -.00347    -.01057     .00710    -.00147    -.00347    -.06509 
Y = 04    -.00269    -.01326     .01057    -.00113    -.00269    -.04224 
Y = 05    -.00695    -.02021     .01326    -.00293    -.00695    -.03359 
Y = 06    -.00318    -.02339     .02021    -.00134    -.00318    -.02509 
Y = 07    -.00095    -.02434     .02339    -.00040    -.00095    -.00455 
Y = 08     .00630    -.01804     .02434     .00266     .00630     .02007 
Y = 09     .00711    -.01093     .01804     .00300     .00711     .05054 
Y = 10     .01093     .00000     .01093     .00461     .01093     .08325 
+----------------------------------------------------------------------+ 
|           Regression Variable HHKIDS      Changes in HHKIDS     % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00     .00352     .00352     .00000     .00173     .00352     .11752 
Y = 01     .00128     .00480    -.00352     .00063     .00128     .06036 
Y = 02     .00284     .00763    -.00480     .00139     .00284     .04865 
Y = 03     .00374     .01137    -.00763     .00183     .00374     .03674 
Y = 04     .00289     .01426    -.01137     .00142     .00289     .02384 
Y = 05     .00748     .02174    -.01426     .00367     .00748     .01896 
Y = 06     .00343     .02517    -.02174     .00168     .00343     .01416 
Y = 07     .00102     .02619    -.02517     .00050     .00102     .00257 
Y = 08    -.00678     .01941    -.02619    -.00332    -.00678    -.01133 
Y = 09    -.00765     .01176    -.01941    -.00375    -.00765    -.02853 
Y = 10    -.01176     .00000    -.01176    -.00577    -.01176    -.04698 
------------------------------------------------------------------------ 
Indirect Partial Effects for Ordered Choice Model 
Variables in thresholds 
Outcome  FEMALE 
Y = 00    .000000 
Y = 01   -.000468 
Y = 02   -.001603 
Y = 03   -.002728 
Y = 04   -.002883 
Y = 05   -.009219 
Y = 06   -.005379 
Y = 07   -.005158 
Y = 08    .002091 
Y = 09    .007557 
Y = 10    .017791 
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E36.5 Latent Class Ordered Choice Models 
 

The ordered choice model for a panel of data, i = 1,...,N, t = 1,...,Ti  is 
 

  Prob[Yit = yit| xit]   =  F(yit, µ, β′xit)  =  P(i,t), yit = 0, 1,...,. 
 
Henceforth, we use the term ‘group’ to indicate the Ti observations on respondent i in periods             
t = 1,...,Ti.  Unobserved heterogeneity in the distribution of Yit is assumed to impact the density in the 
form of a random effect.  The continuous distribution of the heterogeneity is approximated by using 
a finite number of ‘points of support.’  The distribution is approximated by estimating the location of 
the support points and the mass (probability) in each interval.  In implementation, it is convenient 
and useful to interpret this discrete approximation as producing a sorting of individuals (by 
heterogeneity) into J classes, j = 1,...,J. (Since this is an approximation, J is chosen by the analyst.) 

Thus, we modify the model for a latent sorting of yit into J ‘classes’ with a model which 
allows for heterogeneity as follows:  The  probability of observing yit given that regime j applies is 

 
  P(i,t|j)  =  Prob[Yit = yit| xit, j] 

 
where the density is now specific to the group.  The analyst does not observe directly which class,      
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model 
 
   P(i,t|j)  =  F[yit, µ, β′xit  +  δj], Prob[class = j]  =  Fj. 
 
We formulate this approximation more generally as, 
 
   P(i,t|j)  =  F[yit, µ, β′xit  +  δj′xit], Fj =  exp(θj) / Σj exp(θj), with θJ  = 0. 
 
In this formulation, each group has its own parameter vector, βj′ = β + δj, though the variables that 
enter the mean are assumed to be the same.  (This can be changed by imposing restrictions on the 
full parameter vector, as described below.)  This allows the Heckman and Singer formulation as a 
special case by imposing restrictions on the parameters – each δj has only one nonzero element in the 
location of the constant term.  You may also specify that the latent class probabilities depend on 
person specific characteristics, so that 
 
   θij  =  θj′zi, θJ  =  0. 
 
Technical details for estimation of latent class models are given in Section R25.9. 
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E36.5.1 Command 
 
 The estimation command for this model is 
 
 ORDERED ; Lhs = ... 

; Rhs = independent variables 
[; Model = Weibull, Logit or Gompertz] 
; LCM (for latent class model)   
[; LCM = list of variables in zi for multinomial logit class probabilities] 
; Pds = panel data specification $ 

 
The default number of support points is five.  You may set J to 2, 3, ..., 10 with 
 
   ; Pts = the value you wish. 
 
Some particular values computed for the latent class model are 
 
   ; Group = the index of the most likely latent class 
   ; Cprob = estimated posterior probability for the most likely 

 latent class 
 
You can obtain a listing of these two results by using 
 
   ; List. 
 
Standard Model Specifications for the Latent Class Ordered Choice Model 
 

This is the full list of general specifications that are applicable to this model estimator.  
 
Controlling Output from Model Commands 
  

; Par  keeps individual specific parameter estimates.  
; Partial Effects displays marginal effects, same as ; Marginal Effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
  

; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set   keeps current setting of optimization parameters as permanent. 
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Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill   fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
You can use the ; Rst = list option to structure the latent class model so that different variables 
appear in different classes.  Alternatively, you can use this to force the Heckman and Singer form of 
the model as follows, where we use a three class model as an example: 
 
 NAMELIST ; x = ... one, list of variables $ 
 CALC  ; k1 = Col(x) - 1 ; kmu = Max(y) - 1 $ 
 ORDERED ; Lhs  = ... ; Rhs = x ; LCM ; Pts = 3 
   ; Rst  = d1, k1_b, kmu_mu, 

 d2, k1_b, kmu_mu, 
 d3, k1_b, kmu_mu,  t1,t2,t3 $ 

E36.5.2 Results 
 
 Results saved by this estimator are 
 

Matrices: b   =  full parameter vector, [β1′, β2′,... F1,...,FJ] 
   varb   =  full covariance matrix 
    
   (Note that b and varb involve J×(K+#outcomes - 1) estimates.) 
  
   beta_ =  individual specific parameters, if ; Par is requested 

  b_class  =  a J×K matrix with each row equal to the corresponding βj 

   class_pr =  a J×1 vector containing the estimated class probabilities 
 
Scalars: kreg =  number of variables in Rhs list 

   nreg =  total number of observations used for estimation 
  logl =  maximized value of the log likelihood function 

   exitcode =  exit status of the estimation procedure 
  

Last Function: None 
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Application 
 
 To illustrate the model, we will fit an ordered probit model with three latent classes.  We 
have modified the health care data set to set up a compact example. (The latent class estimator is 
actually unable to resolve more than one class with nine threshold parameters.) We have censored 
the health satisfaction measure to three classes for purpose of this exercise. The ordered probit model 
is the same one specified earlier. Some of the numerical results are omitted to simplify comparison 
of the estimated models. The first set of commands creates the data set. 
 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 CREATE  ; health = newhsat $ 
 RECODE  ; health ; 0/4 = 0 ; 5/8 = 1 ; 9/10 = 2 $ 
 NAMELIST  ; x = one,hhninc,hhkids,educ $ 
 
We now fit the base case pooled model. 
 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects $ 
 
This is a three class latent class model. 
 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects 
   ; LCM ; Pts = 3 ; Panel $ 
 
This fits two random effects models, the continuous, normally distributed effects model and 
Heckman and Singer’s discrete approximation. 
 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects ; Panel $ 
 ORDERED  ; Quietly ; Lhs = health ; Rhs = x $ 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects 
   ; LCM  ; Pts = 3 ; Panel 
   ; Rst = alpha0,3_b,cmu,alpha1,3_b,cmu, 
    alpha2,3_b,cmu,theta0,theta1,theta2 $ 
 
This model specifies that the class probabilities depend on age and sex. 
 
 SAMPLE ; All $ 
 ORDERED  ; Quietly ; Lhs = health ; Rhs = x $ 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects 
   ; LCM = one,age,female ; Pts = 3 ; Panel $ 
 
Finally, we use a small subsample to show the listing of the posterior class probabilities. 
 

REJECT ; ti # 3 $ 
 ORDERED  ; Quietly ; Lhs = health ; Rhs = x $ 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects  
   ; LCM = one,age,female ; Pts = 3 ; Panel ; List $ 
 
This is the base case, pooled ordered probit model, with no group effects followed by the estimates 
of the parameters of the three class latent class model. 
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----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable               HEALTH 
Log likelihood function    -24522.47670 
Restricted log likelihood  -24801.77601 
Chi squared [   3 d.f.]       558.59861 
Significance level               .00000 
McFadden Pseudo R-squared      .0112613 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =49054.953 AIC/N =    1.795 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
Constant|     .38694***      .03538    10.94  .0000      .31761    .45628 
  HHNINC|     .15134***      .04069     3.72  .0002      .07160    .23109 
  HHKIDS|     .21408***      .01419    15.09  .0000      .18627    .24188 
    EDUC|     .04904***      .00311    15.77  .0000      .04294    .05513 
        | Threshold parameters for index 
   Mu(1)|    1.83426***      .01130   162.26  .0000     1.81210   1.85641 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Latent Class / Panel OrdProbs Model 
Dependent variable               HEALTH 
Log likelihood function    -21956.55643 
Estimation based on N =  27326, K =  17 
Inf.Cr.AIC  =43947.113 AIC/N =    1.608 
Model estimated: Jul 19, 2011, 18:58:26 
Unbalanced panel has   7293 individuals 
Ordered probability model 
Ordered probit (normal) model 
LHS variable = values 0,1,..., 2 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Model parameters for latent class 1 
Constant|    1.16608***      .10831    10.77  .0000      .95379   1.37838 
  HHNINC|    -.22927**       .08945    -2.56  .0104     -.40458   -.05395 
  HHKIDS|     .10979***      .03316     3.31  .0009      .04480    .17479 
    EDUC|     .08077***      .00937     8.62  .0000      .06241    .09913 
   MU(1)|    1.73212***      .04607    37.60  .0000     1.64184   1.82241 
        | Model parameters for latent class 2 
Constant|     .62012***      .07038     8.81  .0000      .48218    .75805 
  HHNINC|    -.06265         .07865     -.80  .4257     -.21681    .09151 
  HHKIDS|     .24254***      .02664     9.11  .0000      .19034    .29475 
    EDUC|     .06115***      .00621     9.85  .0000      .04899    .07332 
   MU(1)|    2.68221***      .02902    92.43  .0000     2.62533   2.73909 
        | Model parameters for latent class 3 
Constant|   -1.00572***      .11321    -8.88  .0000    -1.22762   -.78383 
  HHNINC|     .52603***      .12473     4.22  .0000      .28157    .77050 
  HHKIDS|     .24566***      .04766     5.15  .0000      .15225    .33908 
    EDUC|     .05198***      .01000     5.20  .0000      .03239    .07157 
   MU(1)|    1.88097***      .06379    29.49  .0000     1.75595   2.00600 
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        | Estimated prior probabilities for class membership 
Class1Pr|     .27635***      .00916    30.17  .0000      .25839    .29430 
Class2Pr|     .56896***      .01168    48.69  .0000      .54605    .59186 
Class3Pr|     .15470***      .00823    18.80  .0000      .13857    .17083 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 
These are the estimated marginal effects for the two models presented above, with the pooled 
estimates first followed by those derived from the latent class model. 
 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HEALTH|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
  HHNINC|    -.03364***     -.08477    -3.72  .0002     -.05137   -.01591 
 *HHKIDS|    -.04653***     -.33304   -15.36  .0000     -.05247   -.04060 
    EDUC|    -.01090***     -.88316   -15.70  .0000     -.01226   -.00954 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
  HHNINC|    -.01184***     -.00657    -3.63  .0003     -.01824   -.00545 
 *HHKIDS|    -.01875***     -.02955   -11.05  .0000     -.02208   -.01542 
    EDUC|    -.00384***     -.06848   -11.47  .0000     -.00449   -.00318 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
  HHNINC|     .04548***      .07091     3.72  .0002      .02150    .06947 
 *HHKIDS|     .06528***      .28908    14.74  .0000      .05660    .07396 
    EDUC|     .01474***      .73880    15.58  .0000      .01288    .01659 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HEALTH|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
  HHNINC|     .00289         .01116      .34  .7345     -.01381    .01959 
 *HHKIDS|    -.03296***     -.36179   -10.53  .0000     -.03910   -.02683 
    EDUC|    -.01068***    -1.32670   -12.47  .0000     -.01236   -.00900 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
  HHNINC|     .00154         .00073      .34  .7350     -.00738    .01046 
 *HHKIDS|    -.01987***     -.02682    -7.68  .0000     -.02494   -.01479 
    EDUC|    -.00569***     -.08698    -8.07  .0000     -.00707   -.00431 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
  HHNINC|    -.00443        -.00928     -.34  .7347     -.03004    .02118 
 *HHKIDS|     .05283***      .31427    10.18  .0000      .04265    .06300 
    EDUC|     .01637***     1.10240    12.05  .0000      .01371    .01903 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This is the random effects model.  It is comparable to the Heckman and Singer form that follows. 
The first model with continuously distributed effects suggests a random constant term with mean 
2.33642 and standard deviation 0.99095.  From the Heckman and Singer model, using the three 
estimated constants and the three estimated prior probabilities, we find a mean of 2.19016 and 
standard deviation 0.90994.  Since the remaining coefficients in the latent class model do not differ 
across classes, they are directly comparable to the random effects model.  The overall similarity is to 
be expected, but there are some substantive differences. For example, the latent class model predicts 
a much smaller influence of marital status than does the random effects model. 
 
----------------------------------------------------------------------------- 
Random Effects Ordered Probability Model 
Dependent variable               HEALTH 
Log likelihood function    -22042.38298 
Restricted log likelihood  -24522.47670 
Chi squared [   1 d.f.]      4960.18744 
Significance level               .00000 
McFadden Pseudo R-squared      .1011355 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =44096.766 AIC/N =    1.614 
Underlying probabilities based on Normal 
Unbalanced panel has   7293 individuals 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
Constant|     .64927***      .07239     8.97  .0000      .50739    .79115 
  HHNINC|    -.03500         .05665     -.62  .5367     -.14603    .07603 
  HHKIDS|     .20576***      .02188     9.40  .0000      .16288    .24865 
    EDUC|     .07118***      .00625    11.40  .0000      .05894    .08343 
        | Threshold parameters for index model 
  Mu(01)|    2.56175***      .01686   151.90  .0000     2.52870   2.59480 
        | Std. Deviation of random effect 
   Sigma|    1.00299***      .01483    67.63  .0000      .97392   1.03206 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

--------+-------------------------------------------------------------------- 
Latent Class / Panel OrdProbs Model 
Dependent variable               HEALTH 
Log likelihood function    -22048.67454 
Estimation based on N =  27326, K =   9 
Inf.Cr.AIC  =44115.349 AIC/N =    1.614 
Unbalanced panel has   7293 individuals 
Ordered probability model 
Ordered probit (normal) model 
LHS variable = values 0,1,..., 2 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Model parameters for latent class 1 
Constant|    2.12385***      .06069    35.00  .0000     2.00490   2.24279 
  HHNINC|    -.07289         .05188    -1.40  .1601     -.17458    .02880 
  HHKIDS|     .20014***      .01936    10.34  .0000      .16220    .23808 
    EDUC|     .05987***      .00507    11.81  .0000      .04994    .06981 
   MU(1)|    2.46535***      .01693   145.63  .0000     2.43217   2.49853 
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        | Model parameters for latent class 2 
Constant|    -.95230***      .06385   -14.92  .0000    -1.07743   -.82717 
  HHNINC|    -.07289         .05188    -1.40  .1601     -.17458    .02880 
  HHKIDS|     .20014***      .01936    10.34  .0000      .16220    .23808 
    EDUC|     .05987***      .00507    11.81  .0000      .04994    .06981 
   MU(1)|    2.46535***      .01693   145.63  .0000     2.43217   2.49853 
        | Model parameters for latent class 3 
Constant|     .56180***      .05806     9.68  .0000      .44801    .67560 
  HHNINC|    -.07289         .05188    -1.40  .1601     -.17458    .02880 
  HHKIDS|     .20014***      .01936    10.34  .0000      .16220    .23808 
    EDUC|     .05987***      .00507    11.81  .0000      .04994    .06981 
   MU(1)|    2.46535***      .01693   145.63  .0000     2.43217   2.49853 
        | Estimated prior probabilities for class membership 
Class1Pr|     .23642***      .00833    28.38  .0000      .22009    .25275 
Class2Pr|     .13069***      .00723    18.07  .0000      .11652    .14487 
Class3Pr|     .63289***      .00995    63.60  .0000      .61338    .65239 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 The following takes a closer look at the distributions of heterogeneity implied by the continuous 
random effects model and the discrete distribution implied by the Heckman and Singer model.  The 
program below plots the two distributions.  The densities are evaluated at 500 points ranging from the 
mean of the continuous distribution plus and minus three standard deviations.  (The program could be 
made generic based on the model results.  We have used the actual values in a few commands.) 
 
 MATRIX ; ah = [2.12385/-.95230/.56180] $ 
 MATRIX ; ph = [.23642/.13069/.63289] $ 
 SAMPLE  ; 1-500 $ 
 CALC    ; min = .64927 - 3*1.00299 
   ; max = .64927 + 3*1.00929 
   ; delta = .002 * (max-min) $ 
 CREATE   ; alpha = Trn(min,delta) $ 
 CREATE  ; Normal = 1/1.00929  * N01((alpha - .64927)/1.00929) $ 
 CALC    ; ahs1 = ah(2) ; ahs2 = ah(3) ; ahs3 = ah(1) $ 
 CALC    ; mid12 = .5*(ahs2+ahs1) ; mid23 = .5*(ahs2+ahs3) $ 
 CALC    ; dhs1 = ph(2)/(mid12-min) $ 
 CALC    ; dhs2 = ph(3)/(mid23-mid12) $ 
 CALC    ; dhs3 = ph(1)/(max-mid23) $ 
 CREATE ; hecksing = dhs1*(alpha < mid12) +  
     dhs2*(alpha >= mid12) * (alpha < mid23) + 
     dhs3*(alpha >= mid23) $ 
 PLOT    ; Lhs = alpha ; Rhs = normal,hecksing 
   ; Fill ; Limits = 0,.45 ; Endpoints = min,max 
   ; Title = Discrete & Continuous Distributions of Heterogeneity 
   ; Yaxis = RndmEfct $ 
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Figure E36.2  Discrete and Continuous Distributions of Heterogeneity 

 
These are the estimated marginal effects for the two models.  Once again, they are quite similar, as 
might be expected. 
 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HEALTH|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
  HHNINC|     .00552         .01381      .62  .5368     -.01199    .02303 
 *HHKIDS|    -.03196***     -.22713    -9.53  .0000     -.03853   -.02539 
    EDUC|    -.01122***     -.90314   -11.26  .0000     -.01318   -.00927 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
  HHNINC|     .00203         .00114      .62  .5350     -.00437    .00842 
 *HHKIDS|    -.01283***     -.02046    -6.92  .0000     -.01646   -.00920 
    EDUC|    -.00412***     -.07437    -8.19  .0000     -.00511   -.00313 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
  HHNINC|    -.00754        -.01144     -.62  .5362     -.03145    .01636 
 *HHKIDS|     .04479***      .19287     9.10  .0000      .03514    .05444 
    EDUC|     .01534***      .74797    11.24  .0000      .01267    .01802 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

This is the Heckman and Singer form of the model. 
 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HEALTH|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 



E36: Panel Data Models for Ordered Choice   E-826 

        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
  HHNINC|     .00993         .04901     1.40  .1606     -.00394    .02380 
 *HHKIDS|    -.02655***     -.37215   -10.42  .0000     -.03154   -.02155 
    EDUC|    -.00816***    -1.29445   -11.47  .0000     -.00955   -.00676 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
  HHNINC|     .00772         .00353     1.40  .1614     -.00308    .01852 
 *HHKIDS|    -.02285***     -.02968    -7.96  .0000     -.02848   -.01723 
    EDUC|    -.00634***     -.09323    -8.90  .0000     -.00774   -.00494 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
  HHNINC|    -.01765        -.03913    -1.41  .1600     -.04227    .00697 
 *HHKIDS|     .04940***      .31106     9.90  .0000      .03962    .05917 
    EDUC|     .01450***     1.03341    11.49  .0000      .01202    .01697 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
In the model below, the class probabilities depend on age and sex.  These are averaged over the data 
in the table at the end of the results.  The constant probabilities from the model estimated earlier are 
shown with them.  An important feature to note here is that there is no natural ordering of classes in 
the latent class model.  The ordering of the second and third classes has changed from the earlier 
model to this one. 
 
----------------------------------------------------------------------------- 
Latent Class / Panel OrdProbs Model 
Dependent variable               HEALTH 
Log likelihood function    -21779.75836 
Estimation based on N =  27326, K =  21 
Inf.Cr.AIC  =43601.517 AIC/N =    1.596 
Model estimated: Jul 19, 2011, 19:27:39 
Unbalanced panel has   7293 individuals 
Ordered probability model 
Ordered probit (normal) model 
LHS variable = values 0,1,..., 2 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    1.41223***      .10283    13.73  .0000     1.21070   1.61377 
  HHNINC|    -.24084***      .08785    -2.74  .0061     -.41301   -.06866 
  HHKIDS|     .02548         .03257      .78  .4340     -.03836    .08932 
    EDUC|     .06130***      .00862     7.11  .0000      .04441    .07819 
   MU(1)|    1.72679***      .04553    37.93  .0000     1.63756   1.81602 
        |Model parameters for latent class 2 
Constant|    -.80867***      .12257    -6.60  .0000    -1.04890   -.56845 
  HHNINC|     .55004***      .12874     4.27  .0000      .29771    .80236 
  HHKIDS|     .11778**       .05227     2.25  .0242      .01533    .22023 
    EDUC|     .03595***      .01105     3.25  .0011      .01430    .05760 
   MU(1)|    1.93880***      .06839    28.35  .0000     1.80477   2.07284 
        |Model parameters for latent class 3 
Constant|     .80114***      .07069    11.33  .0000      .66260    .93969 
  HHNINC|    -.08541         .07783    -1.10  .2725     -.23796    .06713 
  HHKIDS|     .16879***      .02640     6.39  .0000      .11706    .22052 
    EDUC|     .04689***      .00614     7.64  .0000      .03487    .05892 
   MU(1)|    2.66629***      .02734    97.53  .0000     2.61270   2.71987 
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        |Estimated prior probabilities for class membership 
   ONE_1|     .81468***      .13922     5.85  .0000      .54181   1.08755 
   AGE_1|    -.03807***      .00345   -11.05  .0000     -.04482   -.03131 
FEMALE_1|    -.13830*        .07356    -1.88  .0601     -.28247    .00586 
   ONE_2|   -3.09023***      .22351   -13.83  .0000    -3.52830  -2.65215 
   AGE_2|     .04049***      .00447     9.07  .0000      .03174    .04924 
FEMALE_2|    -.01649         .09674     -.17  .8647     -.20609    .17312 
   ONE_3|        0.0    .....(Fixed Parameter)..... 
   AGE_3|        0.0    .....(Fixed Parameter)..... 
FEMALE_3|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
+------------------------------------------------------------+ 
|  Prior class probabilities at data means for LCM variables | 
|   Class 1     Class 2     Class 3     Class 4     Class 5  | 
|    .24199      .15782      .60019      .00000      .00000  | 
+------------------------------------------------------------+ 
 
 The model estimates include the estimates of the prior probabilities of group membership. 
As shown in Section R25.9, it is also possible to compute the posterior probabilities for the groups, 
conditioned on the data.  The ; List specification will request a listing of these.  The following 
illustration shows this feature for a small subset of the data used above. 
 
Predictions computed for the group with the largest posterior probability 
Obs.  Periods Fitted outcomes 
============================================================================= 
Ind.=    1  J* = 2  P(j)=  .008  .881  .111 
Ind.=    2  J* = 2  P(j)=  .401  .491  .109 
Ind.=    3  J* = 2  P(j)=  .203  .737  .060 
Ind.=    4  J* = 2  P(j)=  .050  .909  .041 
Ind.=    5  J* = 2  P(j)=  .186  .702  .113 
Ind.=    6  J* = 2  P(j)=  .172  .735  .094 
Ind.=    7  J* = 2  P(j)=  .177  .735  .088 
Ind.=    8  J* = 2  P(j)=  .039  .869  .092 
Ind.=    9  J* = 3  P(j)=  .002  .334  .663 
Ind.=   10  J* = 3  P(j)=  .000  .003  .997 
Ind.=   11  J* = 2  P(j)=  .106  .836  .057 
Ind.=   12  J* = 2  P(j)=  .079  .758  .164 
Ind.=   13  J* = 2  P(j)=  .023  .928  .049 
Ind.=   14  J* = 2  P(j)=  .017  .959  .024 
Ind.=   15  J* = 2  P(j)=  .106  .829  .065 
Ind.=   16  J* = 2  P(j)=  .070  .895  .036 
Ind.=   17  J* = 2  P(j)=  .388  .497  .114 
Ind.=   18  J* = 2  P(j)=  .065  .842  .093 
Ind.=   19  J* = 3  P(j)=  .006  .111  .884 
Ind.=   20  J* = 3  P(j)=  .017  .391  .592 
Ind.=   21  J* = 3  P(j)=  .010  .353  .637 
Ind.=   22  J* = 2  P(j)=  .140  .735  .125 
Ind.=   23  J* = 3  P(j)=  .003  .422  .575 
Ind.=   24  J* = 2  P(j)=  .101  .826  .073 
Ind.=   25  J* = 2  P(j)=  .043  .920  .037 
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E36.6 Stratification by Thresholds 
 
 A version of the ordered probability model for a particular type of stratified data may be 
estimated with 
 
 ORDERED ; Lhs  = your dependent variable  
   ; Rhs = ...  
   ; Str  = your stratification variable $  
 
The Lhs and Rhs variables are as usual and y is still coded 0,1,2,...  The model assumes that there are 
S≤ 9 strata, indicated for each observation with the value of the stratification variable.  The model 
estimates the slope parameters as usual but allows each stratum to have its own set of cutoff values. 
These are the µs.  They are marked accordingly in the output.  For example, suppose that y takes 
values 0,1,2,3, and there are four strata.  Variable stratum takes values 1,2,3,4.  The commands 
which use an artificial set of data, 
 
 CALC  ; Ran (12345) $ 
 SAMPLE ; 1-500 $ 
 CREATE ; x1 = Rnn(1,4) ; x2 = Rnd(2) - 1 $ 
 CREATE ; y = 1 + .5*x1 + 1.2*x2 + Rnn(0,1) $ 
 RECODE ; y ; -10/2.5 = 0 ; 2.501/3 = 1 ; 3.001 /4 = 2 ; 4.001/10 = 3 $ 
 CREATE ; stratum = Rnd(4) 

; s2 = (stratum = 2) 
; s3 = (stratum = 3)  
; s4 = (stratum = 4) $ 

 ORDERED  ; Lhs = y  
   ; Rhs = one, s2, s3, s4, x1, x2  
   ; Str = stratum  
   ; Partial Effects $ 
 
estimate parameters β0, α2, α3, α4, β1, β2, and µ11, µ21, µ12, µ22, µ13, µ23, µ14, µ24.  The Lhs variable y 
takes four values, so each stratum has a µ1 and a µ2.  There are four such pairs. 
 Because the first of the cutoff parameters for each stratum is a free parameter, and the 
intercept is adjusted as a normalization, you should have a constant term for each stratum.  Instead of 
separate intercepts, you must have a basis constant term and then separate dummy variables for S - 1 
other strata. Omit one of the dummy variables to avoid the dummy variable trap. 
 With stratification, the vector mu contains the S times (J-1) values, where S is the number of 
strata.  Likewise, in the Last Model labels vector, the parameters are labeled as shown above, that is 
mu1_1,mu2_1, and so on.  Aside from these changes, the model is otherwise unchanged.  The results 
below are produced by the preceding set of commands. 
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----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                    Y 
Log likelihood function      -320.84619 
Restricted log likelihood    -574.87353 
Chi squared [  11 d.f.]       508.05468 
Significance level               .00000 
McFadden Pseudo R-squared      .4418839 
Estimation based on N =    500, K =  14 
Inf.Cr.AIC  =  669.692 AIC/N =    1.339 
Model estimated: Jul 12, 2011, 20:35:46 
Underlying probabilities based on Normal 
   Stratification on STRATUM 
 1   135       2   122       3   116 
 4   128 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|   -1.68077***      .16762   -10.03  .0000    -2.00930  -1.35224 
      S2|     .22883         .18979     1.21  .2279     -.14315    .60081 
      S3|     .45747**       .20630     2.22  .0266      .05312    .86182 
      S4|     .01482         .18971      .08  .9377     -.35700    .38665 
      X1|     .51182***      .03058    16.74  .0000      .45188    .57176 
      X2|    1.26894***      .14268     8.89  .0000      .98929   1.54860 
        |Threshold parameters for index 
 Mu(1,1)|     .38644***      .05855     6.60  .0000      .27168    .50120 
 Mu(2,1)|    1.20251***      .09181    13.10  .0000     1.02256   1.38246 
 Mu(1,2)|     .68566***      .06306    10.87  .0000      .56206    .80925 
 Mu(2,2)|    2.19620***      .12518    17.54  .0000     1.95085   2.44155 
 Mu(1,3)|     .51859***      .07248     7.16  .0000      .37654    .66064 
 Mu(2,3)|    1.54458***      .09916    15.58  .0000     1.35023   1.73893 
 Mu(1,4)|     .51921***      .08191     6.34  .0000      .35866    .67976 
 Mu(2,4)|    1.53027***      .09235    16.57  .0000     1.34926   1.71128 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------------------------+ 
|                CELL FREQUENCIES FOR ORDERED CHOICES                | 
+--------------------------------------------------------------------+ 
|               Frequency        Cumulative  < =    Cumulative  > =  | 
|Outcome      Count    Percent   Count    Percent   Count    Percent | 
|----------- ------- ---------  ------- ---------  ------- --------- | 
|Y=00            278   55.6000      278   55.6000      500  100.0000 | 
|Y=01             43    8.6000      321   64.2000      222   44.4000 | 
|Y=02             77   15.4000      398   79.6000      179   35.8000 | 
|Y=03            102   20.4000      500  100.0000      102   20.4000 | 
+--------------------------------------------------------------------+ 
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----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
       Y|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
     *S2|    -.08701    .....(Fixed Parameter)..... 
     *S3|    -.17589    .....(Fixed Parameter)..... 
     *S4|    -.00555        -.00920     -.67  .5032     -.02178    .01069 
      X1|    -.19122***     -.34783   -12.22  .0000     -.22188   -.16056 
     *X2|    -.45361***     -.75220    -5.87  .0000     -.60509   -.30213 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
     *S2|     .01514***      .13045     3.47  .0005      .00660    .02368 
     *S3|     .02666***      .22972     2.93  .0034      .00885    .04448 
     *S4|     .00106         .00918      .45  .6494     -.00353    .00566 
      X1|     .03694***      .34914     5.12  .0000      .02280    .05108 
     *X2|     .07206***      .62088     5.36  .0000      .04573    .09839 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
     *S2|     .04242    .....(Fixed Parameter)..... 
     *S3|     .08412***      .46894    15.80  .0000      .07369    .09455 
     *S4|     .00273         .01523      .43  .6641     -.00960    .01506 
      X1|     .09425***      .57638     9.49  .0000      .07478    .11373 
     *X2|     .20959***     1.16842     7.89  .0000      .15753    .26165 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
     *S2|     .02945***      .29004     5.01  .0000      .01792    .04097 
     *S3|     .06511***      .64138    11.85  .0000      .05434    .07589 
     *S4|     .00175    .....(Fixed Parameter)..... 
      X1|     .06003***      .64861     4.17  .0000      .03182    .08823 
     *X2|     .17196***     1.69388     2.75  .0059      .04950    .29443 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
Cross tabulation of predictions and actual outcomes 
+------+-----+-----+-----+-----+-----+ 
|y(i,j)|  0  |  1  |  2  |  3  |Total| 
+------+-----+-----+-----+-----+-----+ 
|   0  |  262|    0|    5|   11|  278| 
|   1  |   27|    0|    4|   12|   43| 
|   2  |   26|    0|    4|   47|   77| 
|   3  |    8|    0|    5|   89|  102| 
+------+-----+-----+-----+-----+-----+ 
| Total|  323|    0|   18|  159|  500| 
+------+-----+-----+-----+-----+-----+ 
Row = actual, Column = Prediction, Model = Probit 
Prediction is number of the most probable cell. 
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Cross tabulation of outcomes and predicted probabilities. 
+------+-----+-----+-----+-----+-----+ 
|y(i,j)|  0  |  1  |  2  |  3  |Total| 
+------+-----+-----+-----+-----+-----+ 
|   0  |  230|   15|   21|   12|  278| 
|   1  |   19|    5|   10|    9|   43| 
|   2  |   19|    7|   18|   33|   77| 
|   3  |    9|    5|   15|   74|  102| 
+------+-----+-----+-----+-----+-----+ 
| Total|  277|   32|   63|  128|  500| 
+------+-----+-----+-----+-----+-----+ 
Row = actual, Column = Prediction, Model = Probit 
Value(j,m)=Sum(i=1,N)y(i,j)*p(i,m). 
Column totals may not match cell sums because of rounding error. 
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E37: Multinomial Logit Models 
 
E37.1 Introduction 
 
 Chapters E37 and E38 will describe two forms of the ‘multinomial logit’ model.  These 
models are also known variously as ‘conditional logit,’ ‘discrete choice,’ and ‘universal logit’ 
models, among other names.  All of them can be viewed as special cases of a general model of utility 
maximization:  An individual is assumed to have preferences defined over a set of alternatives (travel 
modes, occupations, food groups, etc.) 
 
   U(alternative 0) =  β0′xi0  +  ε i0 

   U(alternative 1) =  β1′xi1  +  ε i1 

    ... 

    U(alternative J) =  βJ ′xiJ  +  εiJ 

   Observed Yi = choice j if  Ui(alternative j) > Ui(alternative k) ∀ k ≠ j. 
 
The ‘disturbances’ in this framework (individual heterogeneity terms) are assumed to be 
independently and identically distributed with identical extreme value distribution; the CDF is 
 
   F(εj)  =  exp(-exp(-εj)). 
 
Based on this specification, the choice probabilities, 
 
   Prob[ choice j ] =  Prob[Uj > Uk], ∀ k ≠ j 
 

     =  
0

exp( )

exp( )
j ji

J
m mim=

′

′∑
x

x

β

β
, j = 0,...,J, 

 
where ‘i’ indexes the observation, or individual, and ‘j’ and ‘m’ index the choices.  We note at the 
outset, the IID assumptions made about εj are quite stringent, and lead to the ‘Independence from 
Irrelevant Alternatives’ or IIA implications that characterize the model.  Much (perhaps all) of the 
research on forms of this model consists of development of alternative functional forms and 
stochastic specifications that avoid this feature.  We return to that aspect in Chapter E38, and leave it 
unresolved for the present. 
 The observed data consist of the Rhs vectors, xjt, and the outcome, or choice, yt.  (We also 
consider a number of variants.)   There are many forms of the multinomial logit, or multinomial 
choice model supported in LIMDEP.  The NLOGIT program provides the major extensions.  
LIMDEP contains two basic forms of the model that are documented in this and the next chapter of 
this manual. 
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 This chapter will examine what we call the multinomial logit model.  In this setting, it is 
assumed that the Rhs variables consist of a set of individual specific characteristics, such as age, 
education, marital status, etc.  These are the same for all choices, so the choice subscript on x in the 
formula above is dropped.  The observation setting is the individual’s choice among a set of 
alternatives, where it is assumed that the determinant of the choice is the characteristics of the 
individual.  An example might be a model of choice of occupation.  (This is the model originally 
devised by Nerlove and Press (1973).)  For convenience at this point, we label this the multinomial 
logit model. 
 Chapter E38 will examine what we call (again, purely for convenience) the discrete choice 
model and, also, to differentiate the command, the conditional logit model.  In this framework, we 
observe the attributes of the choices, as well as (or, possibly, instead of) the characteristics of the 
individual.  A well known example is travel mode choice.  Samples of observations often consist of 
the attributes of the different modes and the choice actually made.  Sometimes, no characteristics of 
the individuals are observed beyond their actual choice.  Models may also contain mixtures of the 
two types of choice determinants.  These are considered in Chapter E38 as well. (We emphasize, 
these naming distinctions are meaningless in the modeling framework – we just use them here only 
to organize the applicable parts of LIMDEP.  In practice, all of the models considered in this chapter 
and Chapter E38 are multinomial logit models. 
 
E37.2 The Multinomial Logit Model – MLOGIT 
 
 The general form of the multinomial logit model is 
 

   Prob[ choice j ]  =  
1

exp( )

exp( )
j t

J
m tm=

′

′∑
x

x

β

β
, j = 0,...,J, 

 
A possible J+1 unordered outcomes can occur.  In order to identify the parameters of the model, we 
impose the normalization  β0 = 0.  This model is typically employed for individual or grouped data in 
which the ‘x’ variables are characteristics of the observed individual(s), not the choices.  For present 
purposes, that is the main distinction between this and the discrete choice model described in 
Chapter E38.  The characteristics are the same across all outcomes.  The study of occupational 
choice, by Schmidt and Strauss (1975) provides a well known application. 
 The data will appear as follows:   
 

• Individual data: yt coded 0, 1, ..., J, 
• Grouped data:  y0t, y1t,...,yJt give proportions or shares. 

 
In the grouped data case, a weighting variable, nt, may also be provided if the observations happen to 
be frequencies.  The proportions variables must range from zero to one and sum to one at each 
observation.  The full set must be provided, even though one is redundant.  The data are inspected to 
determine which specification is appropriate.  The number of Lhs variables given and the coding of 
the data provide the full set of information necessary to estimate the model, so no additional 
information about the dependent variable is needed. There is a single line of data for each individual. 
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 This model proliferates parameters.  There are J×K nonzero parameters in all, since there is a 
vector βj for each probability except the first.  Consequently, even moderately sized models quickly 
become very large ones if your outcome variable, y, takes many values. The maximum number of 
parameters which can be estimated in a model is 150 as usual with the standard configuration.  
However, if you are able to forego certain other optional features, the number of parameters can 
increase to 300.  The model size is detected internally.  If your configuration contains more than 150 
parameters, the following options and features become unavailable: 
 

• marginal effects 
• choice based sampling 
• ; Rst = list for imposing restrictions 
• ; CML: specification for imposing linear constraints 
• ; Hold for using the multinomial logit model as a sample selection equation 

 
In addition, if your model size exceeds 150 parameters, the matrices b and varb cannot be retained.  
(But, see below for another way to retrieve large parameter matrices.) 
 The choice set should be restricted to no more than 25 choices.  If you have more than 25 
choices, the number of characteristics that may be used becomes very small.  Nonetheless, it is 
possible to fit models with up to 100 choices by using CLOGIT, as discussed in Chapter E38.  In 
addition, if you are able to make a few other compromises on the model specification, it is possible 
to fit models with up to 200 choices by using the panel data binary logit estimator – this is a ‘trick’– 
as described below in Section E37.10. 
 
E37.3 Model Command for the Multinomial Logit Model 
 
 The command for fitting this form of multinomial logit model is 
 
 MLOGIT  ; Lhs = y     or     y0,y1,...yJ   
   ; Rhs = regressors $  
 
(The command may also be LOGIT, which is what has always been used in previous versions of 
LIMDEP.)  All general options for controlling output and iterations are available except ; Keep = 
name.  (A program which can be used to obtain the fitted probabilities is listed below.)  There are 
internally computed predictions for the multinomial logit model.  The command builder for this 
model is found in Model:Discrete Choice/MLogit. 
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Figure E37.1  Command Builder for Multinomial Logit Models 

 
Standard Model Specifications for the Multinomial Logit (MLOGIT) Model 
 

This is the full list of general specifications that are applicable for this model: 
 
Controlling Output from Model Commands 
 

; Partial Effects  displays marginal effects, same as ; Marginal Effects. 
 ; OLS  displays least squares starting values when (and if) they are computed. 

; Table = name saves model results to be combined later in output tables. 
 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 ; Choice uses choice based sampling (sandwich with weighting) estimated matrix. 
 ; Cluster = name cluster form of corrected covariance estimator. 
 ; Robust requests a ‘sandwich’ estimator or robust covariance matrix for TSCS 
    and several discrete choice models. 
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Optimization Controls for Nonlinear Optimization 
 
 ; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set   keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
 ; Prob = name saves probabilities as a new (or replacement) variable. 

; Fill  fills missing values (outside estimating sample) for fitted values. 
 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
Imposing Constraints on Parameters 
 
 The ; Rst = list form of restrictions is supported for imposing constraints on model 
parameters, either fixed value or equality.  One possible application of the constrained model 
involves making the entire vector of coefficients in one probability equal that in another.  You can do 
this as follows: 
  
 NAMELIST ; x  = the entire set of Rhs variables $ 
 CALC  ; k  = Col(x) $ 
 LOGIT ; Lhs  = y 
   ; Rhs  = x 
   ; Rst = k_b, k_b, ... , k_b $ 
 
This would force the corresponding coefficients in all probabilities to be equal.  You could also 
apply this to some, but not all of the outcomes, as in 
 
   ; Rst = k_b, k_b, k_b2, k_b3 
 
HINT:  The coefficients in this model are not the marginal effects.  But, forcing the coefficient on a 
characteristic in probability j to equal its counterpart in probability m also forces the two marginal 
effects to be equal. 
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Starting Values  
 
 The parameter vector for this model is a J×K column vector, 
 
   Θ  =  [β1′ ,β2′ , ...,βJ′ ]′. 
 
You may provide starting values with ; Start = list.  
 
E37.4 Choice Based Sampling and Robust Covariance 
Matrices 
 
Choice Based Sampling 
 
 The choice based sampling methodology for individual data can be applied here.  You must 
provide a weighting variable which gives the sampling ratios.  The variable gives the ratio of the 
true, population proportion to the sample proportions.  This presumes that you know the population 
proportions, φ0,...,φJ.  If you know the sample proportions, f0,...,fJ, as well, then you can calculate the 
necessary ratios, w0,...,wJ = φj/fj needed for the calculations to follow.  With these in hand, you can 
create the weights using RECODE as follows: 
 
 CREATE  ; wts = y (your dependent variable) $ 
 RECODE  ; wts  ; 0 = weight for 0  
    ; 1 = weight for 1  
   ; ... $ 
 
Perhaps a more convenient way to do the same computation is to create a vector with the weights,  
 
 MATRIX ; cbwt  = [w0, w1,...,wJ] $ 
 
then you can use the following: 
 
 CREATE ; yplus1 = y + 1 ; wts = cbwt(yplus1) $  Zero is not a valid subscript. 
 
Regardless, you must have the population proportions in hand.  If you do not know the appropriate 
sample proportions, there is a special MATRIX function, Prpn(variable), for this purpose, which 
you can use as follows: 
 
 CREATE ; yplus1 = y + 1 $ 
 MATRIX ; f = Prpn (yplus1) $ 
 
Since you have φj in hand, you can now proceed as follows: 
 
 MATRIX ; phi = [ φ0,...,φJ] $  You provide the values. 
 MATRIX ; cbwt = diag(f) ; cbwt = phi * <cbwt> $ 
 CREATE ; wts = cbwt(yplus1) $ 
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(Note, the Prpn(variable) function is used specifically for this purpose.  It creates a vector with one 
column and number of rows equal to the minimum of 100 and the maximum of yplus1.  Values 
larger than 100 or less than one are discarded, and not counted in the proportions.) 
 Be sure to provide a sampling ratio for every outcome.  With the weights in place, your 
MLOGIT command is 
 
 MLOGIT     ; Lhs = y 
   ; Rhs = regressors 
   ; Wts = weights  
   ; Choice Based Sampling $  
 
This adjustment changes the estimator in two ways.  First, the observations are weighted in 
computing the parameter estimates. Second, after estimation, the standard errors are adjusted.  The 
estimator of the asymptotic covariance matrix for the choice based sampling case is 
 
   Asy.Var[bCBWT]  =  (-H)-1BHHH (-H)-1 

 
where the weighted matrices are constructed from the Hessian and first derivatives using 
 
   ∂2log L/∂βl∂βm′    =  Σt

 wt{-[1(l=m)Pl - PlPm ]}X′X. 
 

   ∂log L/∂βj   =  Σt wi(dtj - tij)xt where dtj = 1 if person t makes choice j; 
 
   BHHH(in blocks) =  Σt wi(dtl - Ptl)(dtm - Ptm)xtxt′ 
 
and   wt = population frequency for choice made by individual t 
         divided by sample proportion for choice made by 
     individual t. 
 
Generic Robust Covariance Matrix 
 
 It has become common in the literature to compute a ‘robust covariance matrix’ for the 
MLE.  (The misspecification to which the matrix is robust is left unspecified in most cases.)  The 
desired robust covariance matrix would result in the preceding computation if wi equals one for all 
observations.  This suggests a simple way to obtain it, just by specifying  
 
   ; Choice Based ; Wts = one.   
 
Alternatively, just use  
 
   ; Robust  
 
which is equivalent. 
 
  



E37: Multinomial Logit Models    E-839 

Cluster Correction 
 
 A related calculation is used when observations occur in groups which may be correlated.  
This is rather like a panel; one might use this approach in a random effects kind of setting in which 
observations have a common latent heterogeneity.  The parameter estimator is unchanged in this 
case, but an adjustment is made to the estimated asymptotic covariance matrix.  The calculation is 
done as follows: Suppose the n observations are assembled in C clusters of observations, in which 
the number of observations in the cth cluster is nc.  Thus, 
 
   

1

C
cc

n
=∑   =  n. 

 
Denote by β the full set of model parameters, [β1′, ..., βJ′]′.  Let the observation specific gradients 
and Hessians for individual i in cluster c be 
 

   gic   =  
log icL∂
∂β

 

 

   Hic  =  
2 log

'
icL∂

∂ ∂β β
. 

 
The uncorrected estimator of the asymptotic covariance matrix based on the Hessian is 
 

   VH   =   -H-1  =  ( ) 1

1 1
cC n

icc i

−

= =
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The corrected asymptotic covariance matrix is 
 

   Est.Asy.Var 






∧
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Note that if there is exactly one observation per cluster, then this is C/(C-1) times the sandwich 
(robust) estimator discussed above.  Also, if you have fewer clusters than parameters, then this 
matrix is singular – it has rank equal to the minimum of C and JK, the number of parameters.  This 
estimator is requested with 
 
   ; Cluster = specification  
 
where the specification is either a fixed number of observations per cluster, or an identifier that 
distinguishes clusters, such as an identification number.  This estimator can also be extended to 
stratified as well as clustered data, using 
 
   ; Stratum = specification 
 
The full description of using these procedures appears in Chapter R10. 
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E37.5 Output for the Logit Models 
 
 Initial ordinary least squares results are used for the starting values for this model.  For 
individual data, J binary variables are implied by the model.  These are used in a least squares 
regression.  For the grouped data case, a minimum chi squared, generalized least squares estimate is 
obtained by the weighted regression of 
 
   qij =  log(Pij / Pi0)  
  
on the regressors, with weights wij =  (niPijPi0)1/2 (ni may be 1.0).  The OLS estimates based on the 
individual data are inconsistent, but the grouped data estimates are consistent (and, in the binomial 
case, efficient).  The least squares estimates are included in the displayed results by including 
 
   ; OLS 
 
in the model command.  The iterations are followed by the maximum likelihood estimates with the 
usual diagnostic statistics.  An example is shown below. 
 
NOTE:  Minimum chi squared (MCS) is an estimator, not a model.  Moreover, the MCS estimator 
has the same properties as, but is different from the maximum likelihood estimator.  Since the MCS 
estimator in LIMDEP is not iterated, it should not be used as the final results of estimation.  Without 
iteration, the MCS estimator is not a fixed point – the weights are functions only of the sample 
proportions, not the parameters.  For current purposes, these are only useful as starting values. 
 
 Standard output for the logit model will begin with a table such as the following which 
results from estimation of a model in which the dependent variable takes values 0,1,2,3,4,5: 
 
 SAMPLE ; All $ 
 REJECT ; hsat > 5 $ 
 LOGIT ; Lhs = hsat ; Rhs = one,educ,hhninc,age,hhkids $ 
 
 (This is based on the health satisfaction variable analyzed in the preceding chapter. We reduced the 
sample to those with hsat reported zero to five. We would note, though these make for a fine 
numerical example, the multinomial logit model would be inappropriate for these ordered data.) The 
restricted log likelihood is computed for a model in which one is the only Rhs variable.  In this case, 
 
   log L0   =  Σj nj logPj 
 
where nj is the number of individuals who choose outcome j and Pj = nj/n = the jth sample 
proportion.  The chi squared statistic is 2(log L - log L0).  If your model does not contain a constant 
term, this statistic need not be positive, in which case it is not reported.  But, even if it is computable, 
the statistic is meaningless if your model does not contain a constant. 
 The diagnostic statistics are followed by the coefficient estimates:  These are β1,...,βJ.  Recall 
β0 is normalized to zero, and not reported. 
 
  



E37: Multinomial Logit Models    E-841 

----------------------------------------------------------------------------- 
Multinomial Logit Model 
Dependent variable                 HSAT 
Log likelihood function    -11246.96937 
Restricted log likelihood  -11308.02002 
Chi squared [  20 d.f.]       122.10132 
Significance level               .00000 
McFadden Pseudo R-squared      .0053989 
Estimation based on N =   8140, K =  25 
Inf.Cr.AIC  =22543.939 AIC/N =    2.770 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|   -1.77566**       .69486    -2.56  .0106    -3.13756   -.41376 
    EDUC|     .07326         .04476     1.64  .1017     -.01447    .16099 
  HHNINC|     .28572         .58129      .49  .6231     -.85359   1.42503 
     AGE|     .00566         .00838      .68  .4996     -.01077    .02209 
  HHKIDS|     .27188         .19642     1.38  .1663     -.11311    .65686 
        |Characteristics in numerator of Prob[Y = 2] 
Constant|    -.54217         .54866     -.99  .3231    -1.61752    .53318 
    EDUC|     .06152*        .03617     1.70  .0890     -.00937    .13240 
  HHNINC|     .85929*        .44943     1.91  .0559     -.02158   1.74017 
     AGE|    -.00090         .00651     -.14  .8903     -.01365    .01185 
  HHKIDS|     .13921         .15530      .90  .3700     -.16517    .44359 
        |Characteristics in numerator of Prob[Y = 3] 
Constant|    -.25433         .49206     -.52  .6053    -1.21876    .71010 
    EDUC|     .10996***      .03247     3.39  .0007      .04632    .17359 
  HHNINC|    1.54517***      .40167     3.85  .0001      .75791   2.33242 
     AGE|    -.00955         .00584    -1.64  .1017     -.02099    .00189 
  HHKIDS|     .08178         .14014      .58  .5595     -.19289    .35645 
        |Characteristics in numerator of Prob[Y = 4] 
Constant|     .09378         .48301      .19  .8461     -.85291   1.04047 
    EDUC|     .10453***      .03202     3.26  .0011      .04178    .16729 
  HHNINC|    1.74362***      .39382     4.43  .0000      .97175   2.51550 
     AGE|    -.01430**       .00571    -2.50  .0123     -.02550   -.00310 
  HHKIDS|     .19549         .13660     1.43  .1524     -.07224    .46321 
        |Characteristics in numerator of Prob[Y = 5] 
Constant|    1.58459***      .45170     3.51  .0005      .69927   2.46991 
    EDUC|     .07527**       .03035     2.48  .0131      .01579    .13475 
  HHNINC|    1.64030***      .37209     4.41  .0000      .91101   2.36959 
     AGE|    -.01481***      .00526    -2.82  .0049     -.02512   -.00450 
  HHKIDS|     .19988         .12655     1.58  .1142     -.04815    .44791 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 The statistical output for the coefficient estimates is followed by a table of predicted and 
actual frequencies, such as the following:  This table is requested by adding 
 
   ; Summary 
 
to the MLOGIT command. 
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Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
 
            Predicted 
------  ------------------------------  +  ----- 
Actual      0    1    2    3    4    5  |  Total 
------  ------------------------------  +  ----- 
  0         0    0    0    0    0  447  |    447 
  1         0    0    0    0    0  255  |    255 
  2         0    0    0    0    0  642  |    642 
  3         0    0    0    0    0 1173  |   1173 
  4         0    0    0    0    0 1390  |   1390 
  5         0    0    0    0    0 4233  |   4233 
------  ------------------------------  +  ----- 
Total       0    0    0    0    0 8140  |   8140 
 
The prediction for any observation is the cell with the largest predicted probability for that 
observation. 
 
NOTE:  If you have more than three outcomes, it is very common, as occurred above, for the model 
to predict zero outcomes in one or more of the cells.  Even in a model with very high t ratios and 
great statistical significance, it takes a very well developed model to make predictions in all cells. 
 
 The ; List specification produces a listing such as the following: 
 
Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual      MaxPr(i)  Prob[Y*=y] 
       20          2.0000000    5.0000000      .000000     .6845695     .0631146 
       24            .000000    4.0000000      .000000     .3196778     .0885942 
       38          5.0000000    5.0000000      .000000     .6041918     .6041918 
       39          2.0000000    5.0000000      .000000     .6439476     .1224276 
       57          5.0000000    5.0000000      .000000     .5050133     .5050133 
       59          5.0000000    5.0000000      .000000     .4284611     .4284611 
       60          5.0000000    5.0000000      .000000     .4173034     .4173034 
 
In the listing, the MaxPr(i) is the probability attached to the outcome with the largest predicted 
probability; the outcome is shown as the Predicted Y.  The last column shows the predicted 
probability for the observed outcome.  Residuals are not computed – there is no significance to the 
reported zero.  (The results above illustrate the format of the table.  They were complete with a small 
handful of observations, not the 8,140 used to fit the model shown earlier.) 
 The results kept for further use are: 
 
 Matrices:  b and varb.  
    b_logit = (J+1)×K.  
    This additional matrix contains the parameters arranged so that βj′ is the  
    jth row.  The first row is zero.  This matrix can be used to obtain fitted  
    probabilities, as discussed below. 
 
 Scalars: kreg, nreg, logl, and exitcode.  
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 Labels for WALD are constructed from the outcome and variable numbers.  For example, if 
there are three outcomes and ; Rhs = one,x1,x2, the labels will be 
 
 Last Model: [b1_1,b1_2,b1_3,b2_1,b2_2,b2_3]. 
 
 Last Function: Prob(y = J|x).   
   You may specify other outcomes in the PARTIALS and SIMULATE 
   commands. 
 
E37.6 Partial Effects 
 
 The partial effects in this model are 
  
   δj   =  ∂Pj/∂x,  j = 0,1,...,J. 
  
For the present, ignore the normalization β0 = 0.  The notation Pj is used for Prob[y = j].  After some 
tedious algebra, we find  
 
   δj   =  Pj(βj  - β )   
 
where   β  = ∑ =

J
j 0

Pj βj. 

 
It follows that neither the sign nor the magnitude of δj need bear any relationship to those of βj.   
(This is worth bearing in mind when reporting results.)  The asymptotic covariance matrix for the 
estimator of δj would be computed using 
 

   Asy.Var. δ
∧





j   =  Gj Asy.Var β
∧





Gj′ 

 
where β is the full parameter vector.  It can be shown that  

   Asy.Var. δ
∧





j   =  Σl Σm  Vjl Asy.Cov.[ 
∧
β l, 

∧
β m′]Vjm′, j=0,...,J, 

where   Vjl   =  [1(j = l) - Pl ]{PjI  + δjx′} - Pjδlx′ 
 
and   1(j = l) =  1 if j = l, and 0 otherwise. 
 
  



E37: Multinomial Logit Models    E-844 

E37.6.1 Internal Computation of Partial Effects 
 

This full set of results is produced automatically when your LOGIT command includes 
 
   ; Partial Effects (or just ; Partials). 
 
NOTE:  Marginal effects are computed at the sample averages of the Rhs variables in the model. 
  
There is no conditional mean function in this model, so marginal effects are interpreted a bit 
differently from the usual case.  What is reported are the derivatives of the probabilities.  (Note this 
is the same as the ordered probability models.)  These derivatives are saved in a matrix named 
partials which has J+1 rows and K columns.  Each row is the vector of partial effects of the 
corresponding probability.  Since the probabilities will always sum to one, the column sums in this 
matrix will always be zero.  That is, 
 
 MATRIX ; List ; 1 ’ partials $ 
 
will display a row matrix of zeros.  The elasticities of the probabilities, (∂Pj/∂xk)×(xk/Pj) are placed in 
a (J+1)×K matrix named elast_ml.  The format of the results is illustrated in the example below. 
 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are  All Obs. 
A full set is given for the entire set of 
outcomes, HSAT     =  0 to HSAT     =   5 
Probabilities at the mean values of X are 
  0= .052 1= .030 2= .078 3= .145 4= .171 
  5= .523 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
    HSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Marginal effects on Prob[Y = 0] 
    EDUC|    -.00415***     -.87310    -2.87  .0042     -.00699   -.00131 
  HHNINC|    -.07533***     -.48081    -4.28  .0000     -.10982   -.04085 
     AGE|     .00059**       .53969     2.36  .0184      .00010    .00109 
  HHKIDS|    -.00875        -.05610    -1.44  .1505     -.02067    .00317 
        |Marginal effects on Prob[Y = 1] 
    EDUC|    -.00021        -.07636     -.21  .8331     -.00220    .00178 
  HHNINC|    -.03570***     -.38652    -2.64  .0083     -.06222   -.00918 
     AGE|     .00052***      .80559     2.62  .0087      .00013    .00091 
  HHKIDS|     .00313         .03408      .68  .4994     -.00596    .01222 
        |Marginal effects on Prob[Y = 2] 
    EDUC|    -.00147        -.20405     -.92  .3557     -.00458    .00165 
  HHNINC|    -.04677**      -.19725    -2.31  .0211     -.08652   -.00703 
     AGE|     .00083***      .49750     2.67  .0075      .00022    .00144 
  HHKIDS|    -.00234        -.00993     -.32  .7478     -.01662    .01194 
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       |Marginal effects on Prob[Y = 3] 
    EDUC|     .00430**       .32277     2.29  .0218      .00063    .00797 
  HHNINC|     .01276         .02908      .53  .5938     -.03413    .05965 
     AGE|     .00028         .09081      .70  .4822     -.00050    .00106 
  HHKIDS|    -.01265        -.02898    -1.35  .1760     -.03097    .00567 
        |Marginal effects on Prob[Y = 4] 
    EDUC|     .00416**       .26381     2.07  .0385      .00022    .00810 
  HHNINC|     .04913**       .09457     1.98  .0482      .00040    .09787 
     AGE|    -.00048        -.13248    -1.14  .2552     -.00132    .00035 
  HHKIDS|     .00452         .00874      .46  .6444     -.01466    .02370 
        |Marginal effects on Prob[Y = 5] 
    EDUC|    -.00262        -.05450     -.94  .3475     -.00809    .00285 
  HHNINC|     .09591***      .06048     2.78  .0054      .02827    .16355 
     AGE|    -.00174***     -.15634    -3.07  .0021     -.00285   -.00063 
  HHKIDS|     .01609         .01020     1.23  .2205     -.00965    .04183 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Marginal Effects Averaged Over Individuals 
--------+---------+---------+---------+---------+---------+---------+ 
Variable|    Y=00 |    Y=01 |    Y=02 |    Y=03 |    Y=04 |    Y=05 | 
--------+---------+---------+---------+---------+---------+---------+ 
ONE     |  -.0377 |  -.0772 |  -.0975 |  -.1380 |  -.1051 |   .4556 | 
EDUC    |  -.0044 |  -.0002 |  -.0014 |   .0043 |   .0042 |  -.0025 | 
HHNINC  |  -.0786 |  -.0361 |  -.0459 |   .0136 |   .0494 |   .0977 | 
AGE     |   .0006 |   .0005 |   .0008 |   .0003 |  -.0005 |  -.0018 | 
HHKIDS  |  -.0092 |   .0033 |  -.0023 |  -.0125 |   .0045 |   .0162 | 
--------+---------+---------+---------+---------+---------+---------+ 
 
Averages of Individual Elasticities of Probabilities 
--------+---------+---------+---------+---------+---------+---------+ 
Variable|    Y=00 |    Y=01 |    Y=02 |    Y=03 |    Y=04 |    Y=05 | 
--------+---------+---------+---------+---------+---------+---------+ 
ONE     |  -.7050 | -2.4807 | -1.2472 |  -.9593 |  -.6112 |   .8796 | 
EDUC    |  -.8732 |  -.0764 |  -.2041 |   .3227 |   .2638 |  -.0545 | 
HHNINC  |  -.4847 |  -.3904 |  -.2011 |   .0252 |   .0907 |   .0566 | 
AGE     |   .5315 |   .7974 |   .4894 |   .0827 |  -.1406 |  -.1645 | 
HHKIDS  |  -.0571 |   .0330 |  -.0110 |  -.0300 |   .0077 |   .0092 | 
--------+---------+---------+---------+---------+---------+---------+ 
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Figure E37.2  Matrices Created by MLOGIT 

 
Marginal effects are computed by averaging the effects over individuals rather than computing them 
at the means.  The difference between the two is likely to be quite small.  Current practice favors the 
averaged individual effects, rather than the effects computed at the means.  MLOGIT also reports 
elasticities with the marginal effects.  An example appears above. 
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E37.6.2 Partial Effects Using PARTIALS 
 
 The ; Partials specification in the MLOGIT command computes the partial effects at the 
means of the variables.  The post estimation command, PARTIAL EFFECTS (or just PARTIALS), 
can be used to compute average partial effects, and to compute various simulations of the outcome.  
For example, we compute the partial effects on Prob(hsat = 5|x) for the model estimated above with 
 
 SAMPLE ; All $ 
 REJECT ; hsat > 5 $ 
 LOGIT ; Lhs = hsat ; Rhs = one,educ,hhninc,age,hhkids ; Partials $ 
 PARTIALS ; Effects: educ / hhninc / age / hhkids ; Summary $ 
 
The first results below are those reported earlier.  The second set are the average partial effects.  (The 
similarity is striking.) 
 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
    HSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Marginal effects on Prob[Y = 5] 
    EDUC|    -.00262        -.05450     -.94  .3475     -.00809    .00285 
  HHNINC|     .09591***      .06048     2.78  .0054      .02827    .16355 
     AGE|    -.00174***     -.15634    -3.07  .0021     -.00285   -.00063 
  HHKIDS|     .01609         .01020     1.23  .2205     -.00965    .04183 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
--------------------------------------------------------------------- 
Partial Effects for Multinomial Logit Probability Y =  5 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      EDUC         -.00249     .00279     .89     -.00796      .00298 
      HHNINC        .09767     .03445    2.84      .03015      .16519 
      AGE          -.00175     .00056    3.11     -.00286     -.00065 
   *  HHKIDS        .01592     .01310    1.22     -.00976      .04160 
--------------------------------------------------------------------- 
 
The various optional specifications in PARTIALS may be used here.  For example, 
 
 PARTIALS ; Effects: hhkids & hhninc=.05(.5)3 ; Outcome = 4 ; Plot $ 
 
plots the effect of hhkids on Prob(hsat=4) for several values of hhninc.  
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E37.7 Predicted Probabilities 
 
 Predicted probabilities can be computed automatically for the multinomial logit model.  
Since there are multiple outcomes, this must be handled a bit differently from other models.  The 
procedure is as follows:  Request the computation with 
 
   ; Prob = name 
 
as you would normally for a discrete choice model.  However, for this model, LIMDEP does the 
following: 
 

1. A namelist is created with name consisting of up to the first four letters of ‘name’ and prob 
is appended to it.  Thus, if you use ; Prob = pfit, the namelist will be named pfitprob. 

 
2. The set of variables, one for each outcome, are named with the same convention, with prjj 

instead of prob.  
 
For example, in a five outcome model, the specification  
 
   ; Prob = job 
 
produces a namelist 
 
   jpbprob  =  jobpr00, jobpr01, jobpr02, jobpr03, jobpr04. 
 
For our running example, 
 
   ; Prob = hsat 
 
produces the namelist named hsatprob and variables hsatpr00, hsatpr01, …, hsatpr05. The variables 
will then contain the respective probabilities.  You may also use 
 
   ; Fill 
 
with this procedure to compute probabilities for observations that were not in the sample.  
Observations which contain missing data are bypassed as usual. 
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E37.8 Generalized Maximum Entropy (GME) Estimation 
 
 This is an alternative estimator for the multinomial logit model.  The GME criterion is based 
on the entropy of the probability distribution, 
 
   E(p0,...,pJ)  =  -Σj pj lnpj. 
 
The implementation of the GME estimator in LIMDEP’s multinomial logit model is done by 
augmenting the likelihood function with a term that accounts for the entropy of the choice 
probability set.  Let 
 
   H =  the number of support points for the entropy distribution. 
 
and   V =  an H specific set of weights.  These are 

   V =  -1/ N , +1/ N      for H = 2 

       =  -1/ N , 0, +1/ N     for H = 3 

       =  -1/ N , -.5/ N , [0], +.5/ N , +1/ N   for H = 4 or 5 

       =   ...  [0], +.33/ N , +.67/ N , +1/ N    for H = 6 or 7 

       =   ...  [0], +.25/ N , +.50/ N , +.75/ N , +1/ N   for H = 8 
or 9 
 
(You may optionally choose to scale the entire V by 1/ N ).  Then, 
 
   Ψij = exp[H

h j ih
V

=
′∑ xβ

1
]  

 
Then, the additional term which augments the contribution to the log likelihood for individual i is 
 
   FΨi = 

0
lnJ

ijj=
Ψ∑  

 
This estimator is invoked simply by adding 
 
   ; GME = the number of support points, H 
 
to the LOGIT command.  You may choose to scale the weighting vector with 
 
   ; Scale 
 
You may also choose the GME estimator in the command builder, as shown in Figure E37.1 earlier. 
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 In the example below, we have treated the self reported health satisfaction measure as a 
discrete choice (doubtlessly inappropriately – just for the purpose of a numerical example).  The first 
set of estimates given are the GME results.  The model is refit by maximum likelihood in the second 
set.  As can be seen, the GME estimator triggers some additional results in the table of summary 
statistics.  It also brings some relatively modest changes in the estimated parameters. 
 
----------------------------------------------------------------------------- 
Generalized Maximum Entropy (Logit) 
Dependent variable                 HSAT 
Log likelihood function   -106287.21094 
Estimation based on N =   8140, K =  25 
Number of support points =            7 
Weights in support scaled to 1/sqr(N) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|   -1.76249**       .69184    -2.55  .0108    -3.11848   -.40650 
    EDUC|     .07199         .04453     1.62  .1059     -.01529    .15926 
  HHNINC|     .26975         .57843      .47  .6410     -.86396   1.40346 
     AGE|     .00570         .00835      .68  .4951     -.01067    .02207 
  HHKIDS|     .26950         .19568     1.38  .1684     -.11402    .65302 
        |Characteristics in numerator of Prob[Y = 2] 
Constant|    -.53230         .54599     -.97  .3296    -1.60243    .53782 
    EDUC|     .06033*        .03595     1.68  .0933     -.01012    .13078 
  HHNINC|     .84177*        .44699     1.88  .0597     -.03432   1.71786 
     AGE|    -.00083         .00648     -.13  .8986     -.01353    .01188 
  HHKIDS|     .13734         .15466      .89  .3745     -.16579    .44047 
        |Characteristics in numerator of Prob[Y = 3] 
Constant|    -.24497         .48927     -.50  .6166    -1.20392    .71398 
    EDUC|     .10879***      .03223     3.38  .0007      .04562    .17197 
  HHNINC|    1.52790***      .39910     3.83  .0001      .74567   2.31013 
     AGE|    -.00948         .00581    -1.63  .1030     -.02087    .00191 
  HHKIDS|     .07994         .13948      .57  .5666     -.19344    .35332 
        |Characteristics in numerator of Prob[Y = 4] 
Constant|     .10311         .48018      .21  .8300     -.83803   1.04426 
    EDUC|     .10338***      .03178     3.25  .0011      .04108    .16567 
  HHNINC|    1.72645***      .39122     4.41  .0000      .95966   2.49323 
     AGE|    -.01423**       .00569    -2.50  .0124     -.02538   -.00308 
  HHKIDS|     .19367         .13593     1.42  .1542     -.07276    .46009 
        |Characteristics in numerator of Prob[Y = 5] 
Constant|    1.59393***      .44877     3.55  .0004      .71437   2.47350 
    EDUC|     .07412**       .03010     2.46  .0138      .01512    .13312 
  HHNINC|    1.62344***      .36941     4.39  .0000      .89940   2.34748 
     AGE|    -.01474***      .00523    -2.82  .0049     -.02500   -.00448 
  HHKIDS|     .19810         .12585     1.57  .1155     -.04857    .44477 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+--------------------------------------------------------------------+ 
| Information Statistics for Discrete Choice Model.                  | 
|                            M=Model MC=Constants Only   M0=No Model | 
| Criterion F (log L)  -106287.21094     -106347.98256 -109623.17376 | 
| LR Statistic vs. MC      121.54324            .00000        .00000 | 
| Degrees of Freedom        20.00000            .00000        .00000 | 
| Prob. Value for LR          .00000            .00000        .00000 | 
| Entropy for probs.     11250.94128       11311.43749   14584.92208 | 
| Normalized Entropy          .77141            .77556       1.00000 | 
| Entropy Ratio Stat.     6667.96160        6546.96918        .00000 | 
| Bayes Info Criterion      26.13692          26.15185      26.95656 | 
| BIC(no model) - BIC         .81965            .80472        .00000 | 
| Pseudo R-squared            .22859            .00000        .00000 | 
| Pct. Correct Pred.        52.00246          52.00246      16.66667 | 
| Means:       y=0    y=1    y=2    y=3    y=4    y=5     y=6   y>=7 | 
| Outcome     .0549  .0313  .0789  .1441  .1708  .5200  .0000  .0000 | 
| Pred.Pr     .0552  .0314  .0788  .1440  .1707  .5199  .0000  .0000 | 
| Notes: Entropy computed as Sum(i)Sum(j)Pfit(i,j)*logPfit(i,j).     | 
|        Normalized entropy is computed against M0.                  | 
|        Entropy ratio statistic is computed against M0.             | 
|        BIC = 2*criterion - log(N)*degrees of freedom.              | 
|        If the model has only constants or if it has no constants,  | 
|        the statistics reported here are not useable.               | 
+--------------------------------------------------------------------+ 
 
E37.9 Technical Details on Optimization  
 
 Newton’s method is used to obtain the estimates in all cases.  The log likelihood function for 
the multinomial logit model is 
 
   log L    =  ΣtΣjdtj logPtj, 
 
where Ptj is the probability defined earlier and dtj  =  1 if yt = j, 0 otherwise, j = 0,...,J or dtj equals the 
proportion for choice j for individual t in the grouped data case.  The first and second derivatives are 
 
   ∂log L/∂βj   =  Σt (dtj - Ptj)xt. 

   ∂2log L/∂βl∂βm′ =  Σt -[1(l=m)Ptl - PtlPtm ]xtxt′. 
 
The negative inverse of the Hessian provides the asymptotic covariance matrix. 
 The log likelihood function for the multinomial logit model is globally concave.  With the 
exception of OLS and possibly the Poisson regression model, this is the most benign optimization 
problem in LIMDEP, and convergence should always be routine.  As such, you should not need to 
change the default algorithm or the convergence criteria.  If you do observe convergence problems, 
such as more than a handful of iterations, you should suspect the data.  Occasionally, a data set will 
contain some peculiarities that impede Newton’s method.  In most cases, switching the algorithm to 
BFGS with 
   ; Alg = BFGS 
 
will solve the problem. 
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E37.10 Panel Data Multinomial Logit Models 
 
 The random parameters model described in Chapter R24 is useful for constructing two types 
of panel data structures for the multinomial logit model, random effects and a dynamic model. 
 
E37.10.1 Random Effects and Common (True) Random Effects 
 
 The structural equations of the multinomial logit model are 
 
   Uijt  =  βj′xit  +  εijt, t = 1,...,Ti, j = 0,1,...,J, i = 1,...,N, 
 
where Uijt gives the utility of choice j by person i in period t – we assume a panel data application 
with t = 1,...,Ti.  The model about to be described can be applied to cross sections, where Ti = 1.  
Note also that as usual, we assume that panels may be unbalanced.  We also assume that εijt has a 
type 1 extreme value (Gumbel) distribution and that the J random terms are independent.  Finally, 
we assume that the individual makes the choice with maximum utility.  Under these (IIA inducing) 
assumptions, the probability that individual i makes choice j in period t is 
 

   Pijt  =  
0

exp( )

exp( )
j it

J
j itj=

′

′∑
x

x

β

β
. 

 
Note that this is the MLOGIT form of the model – the Rhs data are in the form of individual 
characteristics, not attributes of the choices.  That would be handled by CLOGIT, discussed in 
Chapter E38.  We now suppose that individual i has latent, unobserved, time invariant heterogeneity 
that enters the utility functions in the form of a random effect, so that 
 
    Uijt  =  βj′xit  + αij + εijt, t = 1,...,Ti, j = 0,1,...,J, i = 1,...,N. 
 
The resulting choice probabilities, conditioned on the random effects, are 
 

   Pijt | αi1,...,αiJ =  
0

exp( )

exp( )
j it ij

J
j it ijj=

′ + α

′ + α∑
x

x

β

β
. 

 
To complete the model, we assume that heterogeneity is normally distributed with zero means and 
(J+1)×(J+1) covariance matrix, Σ.  For identification purposes, one of the coefficient vectors must 
be normalized to zero and one of the αijs is set to zero. We normalize the first element – subscript 0 – 
to zero.  For convenience, this normalization is left implicit in what follows.  It is automatically 
imposed by the software.  To allow the remaining random effects to be freely correlated, we write 
the J×1 vector of nonzero αs as 
 
   αi  =  Γ vi 
 
where Γ is a lower triangular matrix to be estimated and vi is a standard normally distributed (mean 
zero, covariance matrix, I) vector. 
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 The preceding extends the random effects model to the multinomial logit framework.  It is 
also of the form of LIMDEP’s other random parameter models, which is how we do the estimation, 
by maximum simulated likelihood. (See Section R24.7.)  There are two additional versions of the 
essential structure: 
 

1. Independent effects: Γ = A diagonal matrix. 
2. True random effects:   Γ = A diagonal matrix,  
   and vji = vi = the same random variable in all utility functions. 

 
Thus, in the second case, the preference heterogeneity is a choice invariant characteristic of the 
person. 
 The command structure for this model has two parts.  In the first, the logit model is fit 
without the effects in order to obtain the starting values.  In the second, we use a standard form of the 
random parameters model, as described in Chapter R24. 
 
 MLOGIT  ; Lhs = dependent variable  
   ; Rhs  = list of variables including one $ 
 MLOGIT ; Lhs  = dependent variable  
   ; Rhs  = list of variables including one 
   ; RPM ; Fcn = one(n) 
   [; Halton] 
   [; Pts  = ...] 
   ; Pds  = panel specification  $ 
 
The items in the square brackets are optional.  This requests the type 1, independent effects model.  
To estimate the second model, type 2, true random effects model, add 
 
   ; Common Effect 
 
to the commands.  To fit the general model with freely correlated effects, use, instead, 
 
   ; Correlated 
 
Partial effects for this model are obtained using the procedure shown in Section E37.6.2. 
 To illustrate this estimator, we constructed an example using the health care data.  The Lhs 
variable is health satisfaction.  We restricted the sample by first, keeping only groups with Ti = 7.  
We then eliminated all observations with Lhs variable greater than four.  This leaves a dependent 
variable that takes five outcomes, 0,1,2,3,4, and a total sample of 905 observations in 394 groups 
ranging in size from one to seven.  So, the resulting panel is unbalanced.  The Rhs variables are one, 
age, income and hhkids that is kids in the household.  We fit all three models described above.  
  



E37: Multinomial Logit Models    E-854 

The commands are as follows: 
 

 REJECT  ; _groupti < 7 $  
REJECT  ; hsat > 4 $ 
REGRESS ; Lhs = one  ; Rhs = one ; Str = id ; Panel $ 
MLOGIT  ; Lhs = hsat  ; Rhs = one,age,hhninc,hhkids $ 
MLOGIT  ; Lhs = hsat  ; Rhs = one,age,hhninc,hhkids 

; RPM ; Fcn = one(n)  
; Halton ; Pts = 50 
; Pds = _groupti  
; Common $ 

MLOGIT  ; Lhs = hsat ; Rhs = one,age,hhninc,hhkids ; Quietly $ 
MLOGIT  ; Lhs = hsat ; Rhs = one,age,hhninc,hhkids 
   ; RPM ; Fcn = one(n)  
  ; Halton ; Pts = 50 
  ; Pds = _groupti $ 
MLOGIT  ; Lhs = hsat ; Rhs = one,age,hhninc,hhkids ; Quietly $ 
MLOGIT  ; Lhs = hsat ; Rhs = one,age,hhninc,hhkids 

; RPM ; Fcn = one(n)  
; Halton ; Pts = 50  
; Pds = _groupti  
; Correlated $ 

 

These are the initial values, without latent effects. 
 
----------------------------------------------------------------------------- 
Multinomial Logit Model 
Dependent variable                 HSAT 
Log likelihood function     -1289.68419 
Restricted log likelihood   -1295.05441 
Chi squared [  12 d.f.]        10.74042 
Significance level               .55129 
McFadden Pseudo R-squared      .0041467 
Estimation based on N =    905, K =  16 
Inf.Cr.AIC  = 2611.368 AIC/N =    2.885 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.97586        1.20831     -.81  .4193    -3.34410   1.39238 
     AGE|     .00500         .02273      .22  .8259     -.03954    .04954 
  HHNINC|     .29496        1.23304      .24  .8109    -2.12176   2.71167 
  HHKIDS|     .47793         .42941     1.11  .2657     -.36370   1.31957 
        |Characteristics in numerator of Prob[Y = 2] 
Constant|    -.58489         .93591     -.62  .5320    -2.41923   1.24946 
     AGE|     .01279         .01758      .73  .4667     -.02166    .04724 
  HHNINC|    1.48473         .93548     1.59  .1125     -.34877   3.31823 
  HHKIDS|     .22135         .33932      .65  .5142     -.44370    .88641 
        |Characteristics in numerator of Prob[Y = 3] 
Constant|    1.05098         .84361     1.25  .2128     -.60247   2.70442 
     AGE|    -.00744         .01590     -.47  .6400     -.03860    .02373 
  HHNINC|    1.28703         .87733     1.47  .1424     -.43251   3.00657 
  HHKIDS|    -.03754         .31211     -.12  .9043     -.64926    .57419 
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        |Characteristics in numerator of Prob[Y = 4] 
Constant|     .56268         .83149      .68  .4986    -1.06700   2.19237 
     AGE|     .00343         .01564      .22  .8263     -.02723    .03409 
  HHNINC|    1.55568*        .85486     1.82  .0688     -.11982   3.23118 
  HHKIDS|     .30585         .30374     1.01  .3140     -.28946    .90116 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
This model has a separate, independent effect in each utility function. 
 
+---------------------------------------------+ 
| Random Coefficients  MltLogit Model         | 
| Dependent variable                 HSAT     | 
| Log likelihood function     -1232.79687     | 
| Estimation based on N =    905, K =  20     | 
| Inf.Cr.AIC  = 2505.594 AIC/N =    2.769     | 
| Model estimated: Jul 21, 2011, 22:49:15     | 
| Unbalanced panel has    394 individuals     | 
+---------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Random Coefficients  MltLogit Model 
All parameters have the same random effect 
Multinomial logit with random effects 
Simulation based on  50 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .00522         .01994      .26  .7936     -.03387    .04431 
  HHNINC|     .18002        1.04166      .17  .8628    -1.86160   2.22165 
  HHKIDS|     .48013         .38705     1.24  .2148     -.27848   1.23874 
     AGE|     .02077         .01814     1.15  .2520     -.01477    .05632 
  HHNINC|    1.20948         .82664     1.46  .1434     -.41070   2.82967 
  HHKIDS|     .23686         .35048      .68  .4992     -.45007    .92379 
     AGE|     .00077         .01694      .05  .9636     -.03243    .03397 
  HHNINC|     .96235         .86369     1.11  .2652     -.73045   2.65516 
  HHKIDS|    -.01765         .35090     -.05  .9599     -.70539    .67010 
     AGE|     .01048         .01741      .60  .5472     -.02364    .04460 
  HHNINC|    1.19343         .87672     1.36  .1734     -.52492   2.91177 
  HHKIDS|     .31389         .34815      .90  .3673     -.36847    .99625 
        |Means for random parameters 
Constant|    -.97734        1.00299     -.97  .3298    -2.94317    .98849 
Constant|     .23872         .96599      .25  .8048    -1.65459   2.13202 
Constant|    2.06626**       .88897     2.32  .0201      .32392   3.80860 
Constant|    1.56019*        .90344     1.73  .0842     -.21052   3.33089 
        |Scale parameters for dists. of random parameters 
Constant|     .02031         .19069      .11  .9152     -.35343    .39406 
Constant|    1.22214***      .17722     6.90  .0000      .87480   1.56948 
Constant|    1.73095***      .17833     9.71  .0000     1.38142   2.08048 
Constant|    2.55108***      .18704    13.64  .0000     2.18448   2.91768 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This model has the same latent effect in each utility function, though different scale factors. 
 
----------------------------------------------------------------------------- 
Random Coefficients  MltLogit Model 
Dependent variable                 HSAT 
Log likelihood function     -1258.50063 
Estimation based on N =    905, K =  20 
Inf.Cr.AIC  = 2557.001 AIC/N =    2.825 
Unbalanced panel has    394 individuals 
Multinomial logit with random effects 
Simulation based on  50 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|    -.00209         .02263     -.09  .9264     -.04644    .04226 
  HHNINC|     .48018        1.17852      .41  .6837    -1.82968   2.79003 
  HHKIDS|     .29347         .43402      .68  .4989     -.55720   1.14414 
     AGE|     .01538         .01558      .99  .3234     -.01515    .04591 
  HHNINC|    1.34339*        .70838     1.90  .0579     -.04501   2.73178 
  HHKIDS|     .21473         .32248      .67  .5055     -.41733    .84679 
     AGE|    -.00776         .01237     -.63  .5304     -.03201    .01649 
  HHNINC|    1.19572*        .65055     1.84  .0661     -.07933   2.47077 
  HHKIDS|    -.05011         .29433     -.17  .8648     -.62699    .52676 
     AGE|     .00310         .01324      .23  .8149     -.02286    .02906 
  HHNINC|    1.44279**       .70145     2.06  .0397      .06796   2.81761 
  HHKIDS|     .31137         .29645     1.05  .2936     -.26967    .89241 
        |Means for random parameters 
Constant|   -1.47532        1.20016    -1.23  .2190    -3.82759    .87696 
Constant|    -.70734         .82080     -.86  .3888    -2.31608    .90140 
Constant|    1.09794*        .62345     1.76  .0782     -.12401   2.31988 
Constant|     .64952         .67371      .96  .3350     -.67094   1.96998 
        |Scale parameters for dists. of random parameters 
Constant|    1.38963***      .18611     7.47  .0000     1.02486   1.75439 
Constant|     .40740***      .09464     4.30  .0000      .22192    .59289 
Constant|     .26460***      .07701     3.44  .0006      .11367    .41553 
Constant|    1.27599***      .10406    12.26  .0000     1.07203   1.47995 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
This model has separate, correlated effects in all utility functions. 
 
----------------------------------------------------------------------------- 
Random Coefficients  MltLogit Model 
Dependent variable                 HSAT 
Log likelihood function     -1228.68780 
Estimation based on N =    905, K =  26 
Inf.Cr.AIC  = 2509.376 AIC/N =    2.773 
Unbalanced panel has    394 individuals 
Multinomial logit with random effects 
Simulation based on  50 Halton draws 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Nonrandom parameters 
     AGE|    -.00277         .01900     -.15  .8840     -.04001    .03447 
  HHNINC|     .18258        1.05908      .17  .8631    -1.89318   2.25833 
  HHKIDS|     .44728         .39924     1.12  .2626     -.33522   1.22978 
     AGE|     .01952         .01979      .99  .3239     -.01927    .05832 
  HHNINC|     .99148         .88908     1.12  .2648     -.75109   2.73405 
  HHKIDS|     .19586         .36220      .54  .5887     -.51404    .90577 
     AGE|    -.00134         .01802     -.07  .9407     -.03667    .03398 
  HHNINC|     .74182         .88342      .84  .4011     -.98965   2.47329 
  HHKIDS|    -.06698         .35619     -.19  .8508     -.76510    .63114 
     AGE|     .00795         .01824      .44  .6631     -.02780    .04369 
  HHNINC|     .95944         .89476     1.07  .2836     -.79425   2.71313 
  HHKIDS|     .26625         .34917      .76  .4457     -.41811    .95061 
        | Means for random parameters 
Constant|   -1.44262         .98772    -1.46  .1441    -3.37851    .49327 
Constant|     .03520        1.05196      .03  .9733    -2.02660   2.09700 
Constant|    2.00734**       .94721     2.12  .0341      .15083   3.86384 
Constant|    1.54147         .94470     1.63  .1027     -.31011   3.39305 
        | Diagonal elements of Cholesky matrix 
Constant|     .77973***      .21166     3.68  .0002      .36489   1.19458 
Constant|    1.02801***      .14489     7.10  .0000      .74403   1.31199 
Constant|     .22445**       .09346     2.40  .0163      .04127    .40763 
Constant|     .18188**       .08031     2.26  .0235      .02447    .33929 
        | Below diagonal elements of Cholesky matrix 
lONE_ONE|     .50481***      .18120     2.79  .0053      .14966    .85995 
lONE_ONE|    1.08605***      .17694     6.14  .0000      .73926   1.43284 
lONE_ONE|     .94188***      .13768     6.84  .0000      .67204   1.21172 
lONE_ONE|    1.88987***      .18720    10.10  .0000     1.52296   2.25677 
lONE_ONE|    1.07104***      .14041     7.63  .0000      .79584   1.34624 
lONE_ONE|     .37947***      .09765     3.89  .0001      .18807    .57086 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 

Implied covariance matrix of random parameters 
Var_Beta|             1             2             3             4 
--------+-------------------------------------------------------- 
       1|       .607984       .393614       .846831       1.47359 
       2|       .393614       1.31163       1.51651       2.05506 
       3|       .846831       1.51651       2.11703       3.14646 
       4|       1.47359       2.05506       3.14646       4.89580 
 

Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .779734 
       2|       1.14527 
       3|       1.45500 
       4|       2.21265 
 

Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3             4 
--------+-------------------------------------------------------- 
       1|       1.00000       .440776       .746426       .854121 
       2|       .440776       1.00000       .910072       .810972 
       3|       .746426       .910072       1.00000       .977343 
       4|       .854121       .810972       .977343       1.00000 
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E37.10.2 A Dynamic Multinomial Logit Model 
 
 The preceding random effects model can be modified to produce the dynamic multinomial 
logit model analyzed in Gong, van Soest and Villagomez (2000).  Then  
 

  Pijt | αi1,...,αiJ =  
1

exp( )

exp( )
j it j it ij

J
j it j it ijj=

′ ′+ + α

′ ′+ + α∑
x z

x z

β γ

β γ
 t = 1,...,Ti, j = 0,1,...,J, i = 1,...,N 

 
where zit contains lagged values of the dependent variables (these are binary choice indicators for the 
choice made in period t) and possibly interactions with other variables.  The zit variables are now 
endogenous, and conventional maximum likelihood estimation is inconsistent.  The authors argue 
that Heckman’s treatment of initial conditions is sufficient to produce a consistent estimator.  (We 
used this method to set up a dynamic probit model in Section E31.2.6.)  The core of the treatment is 
to treat the first period as an equilibrium, with no lagged effects, 
 

  Pij0 | θi1,...,θiJ =  0

01

exp( )

exp( )
j i ij

J
j i ijj=

′ + θ

′ + θ∑
x

x

δ

δ
, t = 0, j = 0,1,...,J, i = 1,...,N 

 
where the vector of effects, θ, is built from the same primitives as α in the later choice probabilities.  
Thus, αi = Γvi and θ = Φ vi, for the same vi, but different lower triangular scaling matrices.  This 
treatment slightly less than doubles the size of the model – it amounts to a separate treatment for the 
first period.)  Full information maximum likelihood estimates of the model parameters, 
(β1,...,βJ,γ1,...,γJ,δ1,...,δJ,Γ,Φ) are obtained by maximum simulated likelihood, by modifying the 
random effects model.  The likelihood function for individual i consists of the period 0 probability as 
shown above times the product of the period 1,2,...,Ti probabilities defined earlier. 
 In order to use this procedure, you must create the lagged values of the variables, and the 
products with other variables if any are to be present – that is, the elements of zit.  Then, starting 
values for both parameter vectors must be provided for the iterations.  The program below shows the 
several steps involved.  In terms of the broad command structure, the essential new ingredient will be 
the addition of 
   ; Rh2 = the variables in z 
 
to the model definition.  However, again, several steps must precede this, as shown in the command 
set below. 
 To construct this estimator in generic form,  we assume the dependent variable is named y 
and the independent variables are to be contained in a namelist x.  Several commands remain 
application specific.  These are modified for the specific model.  We need a time variable first.  For 
convenience, periods are numbered 1,...,T with t = 1 being the initial period. 
 
 NAMELIST  ; x = the x variables in the model, including one $ 
 SAMPLE  ; All $ 
 CREATE  ; time = Trn(-T,0) $ Fixed number of periods 
      or  CREATE  ; time = Ndx(ID,1) $ Unbalanced panel, variable T(i) 
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Compute the binary variables for the outcomes - endogenous variables. 
 
 CREATE  ; dit1 = (y=1) ; dit2 = (y=2) ; dit3 = (y=3) ... and so on ... $ 
 
Create lagged values of the dummy variables and interactions of lagged dummy variables with other 
variables in the model if desired. You will name variables according to your application. This is just 
a template. (And repeat likewise for a second, third, ... x variable.) 
 
 CREATE  ; dit1lag = dit1[-1] ; dit2lag = dit2[-1]  
   ; dit3lag = dit3[-1] ... and so on $ 
 CREATE  ; d1x1lag = dit1lag*x1 ; d2x1lag = dit2lag*x1 ... $ 
 NAMELIST  ; z = dit1L,dit2L,...,d1x1L,...,... for the z variables $ 
 
Fit the time invariant model for the first period and retain the coefficients. 
 
     REJECT  ; time > 1 $ 
 MLOGIT  ; Lhs = y ; Rhs = x $ 
 MATRIX  ; delta = b $ 
 
Fit the dynamic part for 2,...,Ti and again, save the coefficients. 
 
     INCLUDE  ; New ; T > 1 $ 
     MLOGIT  ; Lhs = y ; Rhs = x,z $ 
     MATRIX  ; betagama = b $ 
 
The full model for all periods is a random parameters model. 
 
     SAMPLE  ; All $ 
     MLOGIT  ; Lhs = y ; Rhs = x  
                 ; Rh2 = z ?  This indicates the dynamic MNL model. 
                  ; Start = delta,betagama 
   ; RPM ; (options including ; Halton, ; Pts = replications) 
                  ; Panel specification 
   ; Fcn = one(n) ; Common $ (; Correlated may be specified) 
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E38: Conditional Logit Models 
 
E38.1 Introduction 
 
 This chapter and Chapters E39 and E40 will describe the major extension of the MLOGIT 
model of Chapter E37.  An individual is assumed to have preferences defined over a set of 
alternatives (travel modes, occupations, food groups, etc.) 
 
   U(alternative 1) =  β1′xi1  + γ1′zi +  ε i1 
    ... 

    U(alternative J) =  βJ ′xiJ  + γJ′zi +  εiJ 

   Observed Yi   = choice j if  Ui(alternative j) > Ui(alternative k) ∀ k ≠ j. 
 
In this expanded specification, we use xij to denote the attributes of choice j that face individual i – 
attributes generally differ across choices and across individuals. We use zi to denote characteristics 
of individual i, such as age, income, gender, etc.  Characteristics differ across individuals, but not 
across choices.  The ‘disturbances’ in this framework (individual heterogeneity terms) are assumed 
to be independently and identically distributed with identical extreme value distribution; the CDF is 
 
   F(εj)  =  exp(-exp(-εj)) 
 
Based on this specification, the choice probabilities, 
 
   Prob[ choice j ] =  Prob[Uj > Uk], ∀ k ≠ j 
 

     =  
1

exp( )

exp( )
ji j i

J
mi m im=

′ ′+

′ ′+∑
x z

x z

β γ

β γ
, j = 1,...,J, 

 
where ‘i’ indexes the observation, or individual, and ‘j’ and ‘m’ index the choices.  We note at the 
outset, the IID assumptions made about εj are quite stringent, and lead to the ‘Independence from 
Irrelevant Alternatives’ or IIA implications that characterize the model.  Much (perhaps all) the 
research on forms of this model consists of development of alternative functional forms and 
stochastic specifications that avoid this feature.  We return to that aspect in Section E40.4, and leave 
it unresolved for the present. 
 The observed data consist of the vectors, xjt and zi and the outcome, or choice, yi.  (We also 
consider a number of variants.)  A well known example is travel mode choice.  Samples of 
observations often consist of the attributes of the different modes and the choice actually made.  
Usually, no characteristics of the individuals are observed beyond their actual choice, though survey 
data may include familiar sociodemographics such as age and income.  Models may also contain 
mixtures of the two types of choice determinants.  Chapters E38-E40 present the various aspects of 
this model contained in LIMDEP.  This chapter describes basic model specification and estimation.  
Chapter E39 describes extensions of the model that allow for different types of data, different 
specifications of the utility functions and a built in feature of the estimation for modeling choice 
strategy of the individual.  Chapter E40 develops the post estimation features, partial effects, 
prediction and model simulation. 
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Notes on the Conditional Logit Model, MLOGIT, CLOGIT and NLOGIT 
 
 For the present, we have labeled the model estimated by the program described in this 
chapter as the ‘conditional logit model.’  It will be clear shortly that this is a meaningless 
distinction.  The only significance to the use of CLOGIT (conditional logit) here and MLOGIT 
(multinomial logit) in the preceding chapter is to differentiate the commands used in LIMDEP.  
The models are, in fact, the same.  We will demonstrate this with an example below.  Indeed, in 
the contemporary literature the model we are examining here above is generically called the 
‘multinomial logit model,’ and the artificial distinction we have drawn based on characteristics 
vs. attributes has largely faded from view. 
 The internal programs that do the estimation for MLOGIT and CLOGIT are different, 
however. MLOGIT is a specific estimation module in LIMDEP.  CLOGIT is likewise a particular 
estimation module, but it is also the gateway to NLOGIT, a separate package of analysis tools for 
analysis of discrete choice models.  The models estimated by NLOGIT Version 5 are extensions 
of the basic multinomial logit fit by CLOGIT.  These include:  
 

• nested logit, 
• generalized nested logit, 
• nested logit with covariance heterogeneity, 
• multinomial probit, 
• heteroscedastic extreme value, 
• mixed (random parameters) logit, 
• latent class logit, 
• error components logit, 
• generalized mixed logit, 
• scaled mixed logit, 
• random regret logit model, 
• nonlinear random parameters logit, 
• Box-Cox nested logit, 
• latent class mixed logit, 

 
and a few others.  These models are not in LIMDEP.  (Development of NLOGIT began in the late 
1990s with the construction of full information maximum likelihood estimators for the nested 
logit model (hence the name, ‘NLOGIT’).  The package has evolved into a large group of 
estimators for the models listed above, as well as a separate set of tools for estimation and 
analysis of discrete choice models.  NLOGIT Version 5 consists of all of LIMDEP as described in 
these manuals plus the analysis tools for discrete choice.  Further information about NLOGIT and 
its features may be found on the website for the program, www.nlogit.com.  
 
  

http://www.nlogit.com/�
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E38.2 The Conditional Logit Model – CLOGIT 
 
 In the multinomial logit model described in Chapter E37, there is a single vector of 
characteristics that describes the individual, and a set of J parameter vectors.  In the ‘discrete choice’ 
setting of this chapter, these are essentially reversed.  The J (not J+1 – we will be changing the 
notation slightly here) alternatives are each characterized by a set of K ‘attributes,’ xij. Respondent ‘i’ 
chooses among the J alternatives.  In the example we will use throughout this discussion, a sampled 
individual making a trip between Sydney and Melbourne chooses one of four modes of travel, air, 
train, bus or car.  The attributes include cost, travel time and terminal time, which differ by mode, 
and characterize the choice, not the person.  The data also include a characteristic of the chooser, 
household income.  It will emerge shortly however, that MLOGIT and CLOGIT are not different 
models at all.  The estimator described here accommodates both cases, and mixtures of the two.  For 
example, for the commuting application just noted, we also have income for the person and traveling 
party size, both of which are choice invariant. 
 For the present, we develop the model with a single parameter vector, β.  The model 
underlying the observed data is assumed to be the following random utility specification: 
 
   U(choice j for individual i)  =  Uij  =  β′xij  +  γ′zi +  εij, j = 1,...,J. 
  
The random, individual specific terms, (εi1,εi2,...,εiJ) are once again assumed to be independently 
distributed across the utilities, each with the same type 1 extreme value distribution 
 
   F(εij)  =  exp(-exp(-εij)). 
 
Under these assumptions, the probability that individual i chooses alternative j is 
 
   Prob[Uij > Uim] for all m ≠ j. 
  
It has been shown that for independent extreme value (Gumbel) distributions, as above, this 
probability is 

   Prob[yi = j]  =  
( )

( )1

exp

exp
ij j i

J
im m im=

′ ′+

′ ′+∑
x z

x z

β γ

β γ
 

 
where yi is the index of the choice made.  As before, we note at the outset that the IID assumptions 
made about εj are quite stringent, and induce the ‘Independence from Irrelevant Alternatives’ or IIA 
features that characterize the model. We will return to this restriction later in Chapter E40. 
Regardless of the number of choices, there is a single vector of K parameters to be estimated.  This 
model does not suffer from the proliferation of parameters that appears in the MLOGIT model 
described in Section E37.2. 
 For convenience in what follows, we will refer to the estimator as CLOGIT, keeping in 
mind, this refers to a command and class of models in LIMDEP, not a separate program. 
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 The basic setup for this model consists of observations on n individuals, each of whom 
makes a single choice among Ji choices, or alternatives.  There is a subscript on Ji because 
ultimately, we will not restrict the choice sets to have the same number of choices for every 
individual.  The data will typically consist of the choices and observations on K ‘attributes’ for each 
choice.  The attributes that describe each choice, i.e., the variables that enter the utility functions, 
may be the same for all choices, or may be defined differently for each utility function.  The 
estimator described in this chapter allows a large number of variations of this basic model.  In the 
discrete choice framework, the observed ‘dependent variable’ usually consists of an indicator of 
which among Ji alternatives was most preferred by the respondent.  All that is known about the 
others is that they were judged inferior to the one chosen.  But, there are cases in which information 
is more complete and consists of a subjective ranking of all Ji alternatives by the individual.  
CLOGIT allows specification of the model for estimation with ‘ranks data.’  In addition, in some 
settings, the sample data might consist of aggregates for the choices, such as proportions (market 
shares) or frequency counts.  CLOGIT  will accommodate these cases as well. 
 

E38.3 Clogit Data for the Applications 
 The documentation of the CLOGIT program below includes numerous applications based on 
the data set clogit.dat, that is distributed with LIMDEP.  These data provide a compact illustration of 
how data should be arranged for CLOGIT.  The data set is a survey of the transport mode chosen by 
a sample of 210 travelers between Sydney and Melbourne (about 500 miles) and other points in 
nonmetropolitan New South Wales.  As will be shown, the clogit data will generally consist of a 
record (row of data) for each alternative in the choice set, for each individual.  Thus, the data file 
contains 210 observations, or 840 records.  The variables in the data set are as follows: 
 
Original Data 
 
 mode  =  0/1 for four alternatives: air, train, bus, car 
      (this variable equals one for the choice made, labeled choice below), 
 ttme  =  terminal waiting time, 
 invc  =  invehicle cost for all stages, 
 invt  =  invehicle time for all stages, 
 gc    =  generalized cost measure = Invc + Invt × value of time, 
 chair  =  dummy variable for chosen mode is air, 
 hinc  =  household income in thousands, 
 psize  =  traveling party size. 
 
Transformed Variables 
 
 aasc  =  choice specific dummy for air (generated internally), 
 tasc  =  choice specific dummy for train, 
 basc  =  choice specific dummy for bus, 
 casc  =  choice specific dummy for car, 
 hinca  =  hinc × aasc, 
 psizea  =  psize × aasc. 
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The table below lists the first 10 observations in the data set.  In the terms used here, each 
‘observation’ is a block of four rows.  The mode chosen in each block is boldfaced. 
 
mode  choice  ttme   invc    invt        gc  chair  hinc  psize  aasc tasc basc casc hinca psizea   obs. 
 
Air   0   69    59   100    70   0   35   1   1   0   0   0  35   1    i=1 
Train  0   34    31   372    71   0   35    1   0   1   0   0   0   0   
Bus    0   35    25   417    70   0   35    1   0   0   1   0   0   0   
Car    1    0    10   180    30   0   35    1   0   0   0   1   0   0        

Air    0   64    58    68    68   0   30    2   1   0   0   0  30   2    i=2 
Train  0   44    31   354    84   0   30    2   0   1   0   0   0   0   
Bus    0   53    25   399    85   0   30    2   0   0   1   0   0   0   
Car    1    0    11   255    50   0   30    2   0   0   0   1   0   0     

Air    0   69   115   125   129   0   40    1   1   0   0   0  40   1    i=3 
Train  0   34    98   892   195   0   40    1   0   1   0   0   0   0   
Bus    0   35    53   882   149   0   40    1   0   0   1   0   0   0   
Car    1    0    23   720   101   0   40    1   0   0   0   1   0   0         

Air    0   64    49    68    59   0   70    3   1   0   0   0  70   3    i=4 
Train  0   44    26   354    79   0   70    3   0   1   0   0   0   0   
Bus    0   53    21   399    81   0   70    3   0   0   1   0   0   0   
Car    1    0     5   180    32   0   70    3   0   0   0   1   0   0         

Air    0   64    60   144    82   0   45    2   1   0   0   0  45   2    i=5 
Train  0   44    32   404    93   0   45    2   0   1   0   0   0   0   
Bus    0   53    26   449    94   0   45    2   0   0   1   0   0   0   
Car    1    0     8   600    99   0   45    2   0   0   0   1   0   0         

Air    0   69    59   100    70   0   20    1   1   0   0   0  20   1    i=6 
Train  1   40    20   345    57   0   20    1   0   1   0   0   0   0   
Bus    0   35    13   417    58   0   20    1   0   0   1   0   0   0   
Car    0    0    12   284    43   0   20    1   0   0   0   1   0   0    

Air    1   45   148   115   160   1   45    1   1   0   0   0  45   1    i=7 
Train  0   34   111   945   213   1   45    1   0   1   0   0   0   0   
Bus    0   35    66   935   167   1   45    1   0   0   1   0   0   0   
Car    0    0    36   821   125   1   45    1   0   0   0   1   0   0        

Air    0   69   121   152   137   0   12    1   1   0   0   0  12   1    i=8 
Train  0   34    52   889   149   0   12    1   0   1   0   0   0   0   
Bus    0   35    50   879   146   0   12    1   0   0   1   0   0   0   
Car    1    0    50   780   135   0   12    1   0   0   0   1   0   0      

Air    0   69    59   100    70   0   40    1   1   0   0   0  40   1    i=9 
Train  0   34    31   372    71   0   40    1   0   1   0   0   0   0   
Bus    0   35    25   417    70   0   40    1   0   0   1   0   0   0   
Car    1    0    17   210    40   0   40    1   0   0   0   1   0   0         

Air    0   69    58    68    65   0   70    2   1   0   0   0  70   2    i=10 
Train  0   34    31   357    69   0   70    2   0   1   0   0   0   0   
Bus    0   35    25   402    68   0   70    2   0   0   1   0   0   0   
Car    1    0     7   210    30   0   70    2   0   0   0   1   0   0         
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E38.3.1 Setting Up the Data 
 
 The clogit data are arranged as follows, where we use a specific set of values for the problem 
to illustrate.  Suppose you observe 25 individuals.  Each individual in the sample faces three choices 
and there are two attributes, q and w.  For each observation, we also observe which choice was made.  
Suppose further that in the first three observations, the choices made were two, three, and one, 
respectively.  The data matrix would consist of 75 rows, with 25 blocks of three rows.  Within each 
block, there would be the set of attributes and a variable y, which, at each row, takes the value one if 
the alternative is chosen and zero if not.  Thus, within each block of J rows, y will be one once and 
only once.  For the hypothetical case, then, we have: 
 

  y        q        w     
 i=1 0        q1,1     w1,1  
     >1        q2,1     w2,1  
        0        q3,1     w3,1  
          
 i=2 0        q1,2     w1,2  
  0        q2,2     w2,2  
     >1        q3,2     w3,2  
          
 i=3 >1        q1,3     w1,3  
  0        q2,3     w2,3  
  0        q3,3     w3,3  

 
and so on, continuing to i = 25, where ‘>’marks the row of the respondent’s actual choice.  The 
clogit.dat data set shown earlier illustrates the general construction of the data set.  Note that for 
purposes of CLOGIT, the data are set up in the same fashion as a panel data set in other settings. 
 When you READ the data for this model, the data set is not treated any differently. Nobs 
would be the total number of rows in the data set, in the hypothetical case, 75, not 25, and 840 for 
clogit.dat.  The separation of the data set into the above groupings would be done at the time this 
particular model is estimated. 
 
NOTE:  Missing values are handled automatically by this estimator.  Do not reset the sample or use 
SKIP with CLOGIT.  Observations which have missing values are bypassed as a group.  We note 
an implication of this: the multiple imputation programs in LIMDEP cannot be used to fill missing 
values in a multinomial choice setting. 
 
 Thus far, it is assumed that the observed outcome is an indicator of which choice was made 
among a fixed set of up to 500 choices.  There are numerous possible variations: 
 

• Data on the observed outcome may be in the form of frequencies, market shares or ranks. 

• The number of choices may differ across observations.    

• The choice set may be extremely large.  A method of fitting models with up very large 
choice sets is discussed below 
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E38.3.2 Checking Data Validity   
 
 CLOGIT does a full check of the data for bad observations (usually coding errors or missing 
values) before estimation is done.  The program output will contain a simple count of the number of 
invalid observations that have been bypassed.  For example, we sprinkled some missing values into 
the clogit.dat data set, and fit a model.  The initial output contains the count: 
 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found   3 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -181.67965 
Estimation based on N =    207, K =   7 
Inf.Cr.AIC  =  377.359 AIC/N =    1.823 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -279.9949  .3511 .3437 
Chi-squared[ 4]          =    196.63055 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    3 obs 
--------+-------------------------------------------------------------------- 
 
You may request the program  to show you exactly where the problem observations are by adding 
 

  ; Check Data  
 
to the command.  A complete listing of the bad observations is produced – note in a large data set, 
this could be quite long.  For the preceding, we obtained  
 
+----------------------------------------------------------+ 
| Inspecting the data set before estimation.               | 
| These errors mark observations which will be skipped.    | 
| Row Individual = 1st row then group number of data block | 
+----------------------------------------------------------+ 
    1      1  Individual data, LHS variable is not 0 or 1 
    9      3  Missing value found for characteristic or attribute in utility 
   17      5  Missing value found for LHS variable 
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E38.3.3 Types of Data on the Choice Variable 
 
 Data on the dependent (Lhs) variable may come in four forms: 
 

• Individual Data:  The Lhs variable consists of zeros and a single one which indicates the 
choice that the individual made.  The data sets shown earlier are individual data. 

 

• Proportions Data:  The Lhs variable consists of a set of sample proportions or market 
shares.  Values range from zero to one, and they sum to 1.0 over the set of choices in the 
choice set. Observed proportions may equal 1.0 or 0.0 for some observations. 

 

• Frequency Data:  The Lhs variable consists of a set of frequency counts for the outcomes.  
Frequencies are nonnegative integers for the outcomes in the choice set and may be zero.  

 

• Ranks Data:  The Lhs variable consists of a complete set of ranks of the alternatives in the 
individual’s choice set.  Thus, if there are J alternatives available, the observation will 
consist of a full set of the integers 1,...,J not necessarily in that order, which indicate the 
individual’s ranking of the alternatives.  The number of choices may still differ by 
observation.  Thus, we might have [(unranked),0,1,0,0,0] in the usual case, and [(ranked) 
4,1,3,2,5] with ranks data.  Note that the positions of the ones are the same for both sets, by 
definition.  (See Beggs, Cardell, and Hausman (1981).)  You may also have partial rankings.  
For example, suppose respondents are given 10 choices and asked to rank their top three. 
Then, the remaining six choices should be coded 4.0.  A set of ranks might appear thusly:  
[1,4,2,4,3,4,4,4,4,4].  The ties must only appear at the lowest level. Ties in the data are 
detected automatically.  No indication is needed. For later reference, we note the following 
for the model based on ranks data: 

 

° You may have observation weights, but no choice based sampling. 
° The IIA test described in Chapter E40 is not available. 

 
 The first three data types can be detected automatically by CLOGIT.  You generally do not 
have to give any additional information about the data set, since the type of data being provided can 
usually be deduced from the values.  The ranks data are an exception for which you must use 
 
 CLOGIT   ; ... as before ...; Ranks $ 
 
If you are using frequency or proportions data, and your data contain zeros or ones, then certain 
kinds of observations cannot be distinguished from erroneous individual data, and they may be 
flagged as such.  For example, in a frequency data set, the observation [0,0,1,1,0,0] is a valid 
observation, but for individual data, it looks like a badly coded observation.  In order to avoid this 
kind of ambiguity, if you have frequency data containing zeros, add 
 

  ; Frequencies 
 
to your CLOGIT command.  (You may use this in any event to be sure that the data are always 
recognized correctly.)  If you have proportions data, instead, you may use 
 

   ; Shares 
 

to be sure that the data are correctly marked.  (Again, this will only be relevant if your data contain 
zeros and/or ones.) 
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 Data are checked for validity and consistency.  An unrecognizable mixture of the three types 
will cause an error.  For example, a mixture of frequency and proportions data cannot be properly 
analyzed.  For the ranks data, an error will occur if the set of ranks is miscoded or incomplete or if 
ties are detected for any ranks other than the lowest. 
 
E38.3.4 Simulated Choice Data   
 
 For some kinds of experiments and simulations, you might want to draw a random sample of 
choices given known utility functions.  CLOGIT allows simulation of the Lhs variable in a choice 
model using  
   Y = j*  from Max(Uij)  
 
where Uij = vij + a simulated random term.  You must provide the utility values as the Lhs variable.  
The choice outcome is then simulated by adding a type 1 extreme value error term to each utility 
value, and choosing the j associated with the largest simulated utility.  Request this computation by 
adding 

  ; MCS (for Monte Carlo Simulation) 
 
to the CLOGIT command.  (The utilities are not lost.  You can reuse them, for example to do 
another simulation.  On the other hand, the simulated data are lost at the end of the estimation.)  
Keep in mind, if you want to reuse the data for a simulation, you have to reset the seed for the 
random number generator.  You might for example want to fit different models with the same 
simulated data set. 
 
E38.3.5 Entering Data on a Single Line 
 
 The clogit data are generally provided as if in a panel data set, in blocks of Ji observations per 
individual, where Ji is the number of choices.  The following describes an alternative format in which 
data for these models are provided in one line per individual.  This construction can only be used for 
discrete choice models with a fixed number of alternatives available to each individual.  This feature is 
not available for cases in which the choice set varies across individuals.  (We have seen this 
arrangement of data called the ‘wide form,’ with the data arranged as earlier in the ‘long form.’) 

In general, discrete choice models require that the data set be arranged with a line of data 
(observation) for each alternative in the model, essentially as a panel.  For purposes of the 
discussion, it will be useful to consider an example.  Suppose individuals choose among four 
alternatives, (air,train,bus,car), and the attributes are cost and traveltime, which vary across choice, 
and income which is fixed.  The actual data for an observation would consist of four variables on 
four records, arranged as follows:  (The yj variable consists of three zeros and a one to indicate the 
choice made.) 
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The arrangement is as follows: 
 

            Choice Cost     Time   Income
Air

Train
   

Bus
Car

air air air

train train train

bus bus bus

car car car

y cost time income
y cost time income
y cost time income
y cost time income

 
 
 
 
 
 

 

 
The model observation would be constructed from the four variables, and would, with alternative 
specific  constants for the first three alternatives, ultimately appear as follows:  
 

   

choice  cost time   constants                   income         
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0 0

air a a

train t t
i

bus b b

car c c

y c t income
y c t income
y c t income
y c t

 
 
 =
 
 
 

X  

 
 This setup normally requires four lines of data.  But, an alternative way to arrange the same 
data would be in a single line of data, consisting of 
 

Choice(coded 0,1,2,3)  ca  ct  cb  cc  ta  tt  tb  tc  one  income 
 
from which it would be straightforward to construct the observation above. 

The command for this arrangement will contain the following to set this up:  First, the choice 
set is specified as follows: 
 
    ; Lhs =  the name of the choice variable (here, choice) 

  ; Choices = the list of J choice labels [coding of Lhs variable] 
 
The coding is contained in square brackets.  If the dependent variable is coded as consecutive 
integers, such as 0,1,2,3, then just put the first value in the brackets.  Thus, 0,1,2,3 is indicated with 
[0], while 1,2,3,4 is [1].  For our example, this is going to appear 
 
   ; Lhs = choice 
   ; Choices = air,train,bus,car [0] 
 
If the coding is some other set of integers, put the set of integers in the square brackets.  Suppose, for 
example, in our model, we eliminated train as a choice. Then, the coding might be [0,2,3]. 
 
NOTE:  It is only the square brackets in the ; Choices specification which indicates that you will be 
using this data arrangement instead of the standard one. 
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Second, for variables which provide attributes which vary by choice, such as cost and time 
above, a ; Rhs specification must contain blocks of J variable names.  For the example, this might be 

 
                ; Rhs = cair,ctrain,cbus,ccar,tair,ttrain,tbus,tcar 
 
For variables which are to be interacted with alternative specific constants, as well as the constants 
themselves, use ; Rh2 instead of ; Rhs.  Thus, for the example above, we might use 
 
   ; Rh2 = one,income 
 
NOTE:  To request a set of alternative specific constants, include one in the Rh2 list, not the Rhs 
list. 
 
Notice that when these interactions are created, the last one in the set is dropped.  In the example 
above, only three constants and three income terms appear in the four choice model. 

Third, for the Rhs groups, a name is created for the group, attrib01, attrib02, and so on.  If 
you would like to provide your own names for the blocks, use 
 
             ; Attr = list of k labels 
 
To combine all of these in our example, we might use 
 

      ; Lhs = mode 
                  ; Choices = air,train,bus,car [ 0 ] 

      ; Rhs  = cair,ctrain,cbus,ccar,tair,ttrain,tbus,tcar 
       ; Rh2 = one,income 

      ; Attr = cost,time 
 
E38.3.6 Converting Wide Data Sets to the Long Format 
 
 The single line format for multinomial choice  modeling is clumsy, and will become extremely 
unwieldy if the choice set has more than a few alternatives or the model has more than two or three 
attributes.  A utility program is provided for you to convert single line choice data to the more 
convenient format. 
 We wish to transform the data set so that one observation in the second form shown above 
becomes three observations in the first form above.  The general command is 
 
 CLCONVERT ; Lhs  = one or more choice variables 
   ; Choices = the J names for the choices in the choice set 
   ; Rhs  = K sets of J variable names – the attributes 
   ; Rh2  = M characteristics variables 
   ; Names  = names for new choice variables, 
     names for new attribute variables, 
     names for new characteristic variables $   
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For the example above, the command would be 
 
 CLCONVERT ; Lhs = choicei 
   ; Choices = car,train,bus 
   ; Rhs = ctime,ttime,btime,ccost,tcost,bcost 
   ; Rh2 = agei,incomei 
   ; Names = choice,time,cost,age,income $ 
    
This command is set up to resemble a model command to make it simple to construct.  But, it does 
nothing but rearrange the data set.   
 
 Some points to note about CLCONVERT are: 
 

• It is only for choice settings with fixed numbers of choices for every observation. 

• You can recode more than one choice variable with the other data. 

• You can rearrange the entire data set, not just the variables for a particular model.  The 
appearance of the command as a model command is only for convenience. 

• After the data are converted, the new data are placed at the top of the data array, regardless of 
where they were before.  You can, for example, convert rows 201 to 250 in your data set.  If 
this is a three choice setting, the new data will be observations 1 to 150. 

 
There are also several conventions that must be followed: 
 

• The new names must not be in use for anything else already in your project, including other 
variables.  CLCONVERT cannot replace existing variables. 

• You must provide the ; Names and ; Choices specifications.  These are mandatory. 

• You must provide at least one of ; Rhs or ; Rh2 variable.  Either is optional, but at least one of 
the two must be present.  

• Note that the count of Rhs variables is an exact multiple of the number of choices in the             
; Choices list. 

• The number of names in the ; Names list is the sum of 
 

° the number of Lhs variables 
° the number of sets of Rhs variables 
° the number of Rh2 variables. 

 
When CLCONVERT is executed, the sample is reset to the number of observations in the new 
sample.  There is an additional option with CLCONVERT.  After the data are converted, you can 
discard the original data set with 
 
   ; Clear 
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This leaves the entire data set consisting of the variables that are in your ; Names list.  (Use this with 
caution.  The operation cannot be reversed.) 
 To illustrate the operation of this command, suppose the data set consists of these three 
observations: 
 

 

1 2
2 3 44 29 56 125 40 25 37 56.6
1 1 19 44 20 160 18 50 42 98.6
3 2 28 55 15 85 50 9 10 22.0

choicei choicei ctime ttime btime ccost tcost bcost agei incomei 
 
 
 
 
 

. 

 
We wish to convert this data set to NLOGIT’s multiple line format.  There are three choices in the 
choice set, so there will be three rows of data for each observation.  The command and the results are 
as follows: 
 

IMPORT $ 
 

choicei1,choicei2,ctime,ttime,btime,ccost,tcost,bcost,agei,incomei 
2,3,44,29,56,125,40,25,37,56.6 
1,1,19,44,20,160,18,50,42,98.6 

 3,2,28,55,15, 85,50, 9,10,22.0 
  
 ENDDATA $ 
 CLCONVERT ; Lhs = choicei1,choicei2 
   ; Choices = car,train,bus 
   ; Rhs = ctime,ttime,btime,ccost,tcost,bcost 
   ; Rh2 = agei,incomei 
   ; Names = Choice1,Choice2,time,cost,age,income ; Clear $ 
 
================================================================= 
Data Conversion from One Line Format for NLOGIT 
Original data were cleared. This is now the whole data set. 
The new sample contains      9 observations. 
================================================================= 
Choice set in new data set has  3 choices: 
CAR      TRAIN    BUS 
----------------------------------------------------------------- 
There were  2 choice variables coded 1,..., 3 converted to binary 
Old variable = CHOICEI1, New variable = CHOICE1 
Old variable = CHOICEI2, New variable = CHOICE2 
----------------------------------------------------------------- 
There were  2 sets of variables on attributes converted.  Each 
set of  3 variables is converted to one new variable 
New Attribute variable TIME     is constructed from 
CTIME    TTIME    BTIME 
New Attribute variable COST     is constructed from 
CCOST    TCOST    BCOST 
----------------------------------------------------------------- 
There were  2 characteristics that are the same for all choices. 
Old variable = AGEI    , New variable = AGE 
Old variable = INCOMEI , New variable = INCOME 
================================================================= 
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Figure E38.1  Converted Data Set 

 
E38.4 Command for the Discrete Choice Model 
 
 The essential command for the discrete choice models is 
 
 CLOGIT  ; Lhs  = variable which indicates the choice made 
                  ; Choices = a set of J names for the set of choices  
   ; Rhs = choice varying attributes in the utility functions  
   ; Rh2 = choice invariant variables, including one for ASCs $ 
 
(The command DISCRETE CHOICE may also be used.)   
 The command builder for this model is found in Model:Discrete Choice/Discrete Choice.  
The model and the choice set are set up on the Main page.  The Rhs variables (attributes) and Rh2 
variables (characteristics) are defined on the Options page.  Note in the two windows on the 
Options page, the Rhs of the model is defined in the left window and the Rh2 variables are specified 
in the right window.   
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Figure E38.2  Command Builder for the Conditional Logit Model 
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 A set of exactly J choice labels must be provided in the command.  These are used to label 
the choices in the output.  The number you provide is used to determine the number of choices there 
are in the model.  Therefore, the set of the right number of labels is essential.  Use any descriptor of 
eight or fewer characters desired – these do not have to be valid names, just a set of labels, separated 
in the list by commas. 
 
 The internal limit on J, the number of choices, is 500. 
 
 There are K attributes (Rhs variables) measured for the choices.  The next chapter will 
describe variations of this for different formulations and options.  The total number of parameters in 
the utility functions will include K1 for the Rhs variables and (J-1)K2 for the Rh2 variables.  The total 
number of  utility function parameters is thus K = K1 + (J-1)K2. 
 
 The internal limit on K, the number of utility function parameters, is 300. 
 
 The random utility model specified by this setup is precisely of the form 
 
   Ui,j  =  β1xi,1 + β2xi,2 + ... + βK1xi,K1  +  γ1,jzi,1 + ... + γK2,jzi,K2 + εi,j 
 
where the x variables are given by the Rhs list and the z variables are in the Rh2 list.  By this 
specification, the same attributes and the same characteristics appear in all equations, at the same 
position.  The parameters, βk appear in all equations, and so on.  There are various ways to change 
this specification of the utility functions – i.e., the Rhs of the equations that underlie the model, and 
several different ways to specify the choice set.  These will be discussed at various points below. 
 
Unlabeled Choice Sets 
 
 In some situations, particularly in choice experiments and survey data, the choices will not 
be a well defined set of alternatives such as (air, train, bus, car), but, rather will simply be a set of 
unordered choices distinguished only by the different attributes.  For example, in a marketing 
experiment, the choice set might consist of (first, second, third, none of these).  When the choice set 
does not have natural labels, you may use 
 
   ; Choices = number_name 
 
to define the list.  For our example, we might use 
 
   ; Choices = 3_brand, none 
 
which produces the list (brand1,brand2,brand3,none). 
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Standard Model Specifications for the Conditional Logit (CLOGIT) Model 
 

This is the full list of general that apply to this model. 
 
Controlling Output from Model Commands 
 

; Partial Effects displays partial effects.  (Use ; Effects: specification.) 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 ; Choice uses choice based sampling (sandwich with weighting) estimated matrix. 
    (This is specified in the ; Choices = list specification for this model.) 
  ; Cluster = name requests computation of the cluster form of corrected covariance estimator. 
 
Optimization Controls for Nonlinear Optimization 
 
 ; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm. Newton’s method is best. BFGS is 
   occasionally needed. 
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set   keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
 ; Prob = name saves probabilities as a new (or replacement) variable. 
 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
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E38.5 Results for the Conditional Logit Model 
 
 The output for the CLOGIT estimator may contain a description of the model before the 
statistical results.  The description consists of a table that shows the sample proportions (and a ‘tree’ 
structure that is not useful here) and one that lists the components of the utility functions.  You can 
request these two listings by adding 
 
   ; Show Model 
 
to your CLOGIT command.   Starting values for the iterations are either zeros or the values you 
provide with ; Start = list.  As such, there is no initial listing of OLS results.  Output begins with the 
final results for the model.  Here is a sample:  The command is 
 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc 

   ; Rh2 = one,hinc 
   ; Show Model $ 
 
The full set of results is as follows: 
 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .27619| 1.000| 
|TRAIN     .30000| 1.000| 
|BUS       .14286| 1.000| 
|CAR       .28095| 1.000| 
+----------------+------+--- 
+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| INVC     INVT     GC       A_AIR    AIR_HIN1  | 
|        |Row  2| A_TRAIN  TRA_HIN2 A_BUS    BUS_HIN3           | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| INVC     INVT     GC       Constant HINC      | 
|        |     2| none     none     none     none               | 
|TRAIN   |     1| INVC     INVT     GC       none     none      | 
|        |     2| Constant HINC     none     none               | 
|BUS     |     1| INVC     INVT     GC       none     none      | 
|        |     2| none     none     Constant HINC               | 
|CAR     |     1| INVC     INVT     GC       none     none      | 
|        |     2| none     none     none     none               | 
+---------------------------------------------------------------+ 
Normal exit:   5 iterations. Status=0, F=    246.1098 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -246.10979 
Estimation based on N =    210, K =   9 
Inf.Cr.AIC  =  510.220 AIC/N =    2.430 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .1327 .1201 
Chi-squared[ 6]          =     75.29796 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.04613***      .01665    -2.77  .0056     -.07876   -.01349 
    INVT|    -.00839***      .00214    -3.92  .0001     -.01258   -.00419 
      GC|     .03633**       .01478     2.46  .0139      .00737    .06530 
   A_AIR|   -1.31602*        .72323    -1.82  .0688    -2.73353    .10148 
AIR_HIN1|     .00649         .01079      .60  .5477     -.01467    .02765 
 A_TRAIN|    2.10710***      .43180     4.88  .0000     1.26079   2.95341 
TRA_HIN2|    -.05058***      .01207    -4.19  .0000     -.07424   -.02693 
   A_BUS|     .86502*        .50319     1.72  .0856     -.12120   1.85125 
BUS_HIN3|    -.03316**       .01299    -2.55  .0107     -.05862   -.00770 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
NOTE:  (This is one of our frequently asked questions.)  The ‘R-squareds’ shown in the output are 
R2s in name only.  They do not measure the fit of the model to the data.  It has become common for 
researchers to report these with results as a measure of the improvement that the model gives over 
one that contains only a constant.  But, users are cautioned not to interpret these measures as 
suggesting how well the model predicts the outcome variable.  It is essentially unrelated to this. 
 
 To underscore the point, we will examine in detail the computations in the diagnostic 
measures shown in the box that precedes the coefficient estimates.  Consider the example below, 
which was produced by fitting a model with five coefficients subject to two restrictions, or three free 
coefficients – npfree = 3.  (The effect is achieved by specifying ; Choices = air,(train),(bus),car. 
 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  93 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .49573| 1.000| 
|TRAIN     .00000| 1.000|* 
|BUS       .00000| 1.000|* 
|CAR       .50427| 1.000| 
+----------------+------+--- 
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+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| GC       TTME     A_AIR    A_TRAIN  A_BUS     | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| GC       TTME     Constant none     none      | 
|TRAIN   |     1| GC       TTME     none     Constant none      | 
|BUS     |     1| GC       TTME     none     none     Constant  | 
|CAR     |     1| GC       TTME     none     none     none      | 
+---------------------------------------------------------------+ 
Normal exit from iterations. Exit status=0. 
 

----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function       -62.58418 
Estimation based on N =    117, K =   3 
Inf.Cr.AIC  =  131.168 AIC/N =    1.121 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only    -81.0939  .2283 .2079 
Chi-squared[ 2]          =     37.01953 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped   93 obs 
Restricted choice set. Excluded choices are 
TRAIN    BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|     .01320*        .00695     1.90  .0574     -.00042    .02682 
    TTME|    -.07141***      .01605    -4.45  .0000     -.10286   -.03996 
   A_AIR|    3.96117***      .98004     4.04  .0001     2.04032   5.88201 
 A_TRAIN|        0.0    .....(Fixed Parameter)..... 
   A_BUS|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
There are 210 individuals in the data set, but this model was fit to a restricted choice set which 
reduced the data set to n = 210 - 93 = 117 useable observations.  The original choice set had Ji = 4 
choices, but two were excluded, leaving Ji = 2 in the sample.  The log likelihood of -62.58418 is 
computed as shown in Section E38.6.  The ‘constants only’ log likelihood is obtained by setting each 
choice probability to the sample share for each outcome in the choice set.  For this application, those 
are 0.49573 for air and 0.50427 for car.  (This computation cannot be done if the choice set varies by 
person or if weights or frequencies are used.)  Thus, the log likelihood for the restricted model is  
 
 Log L0  =  117 ( 0.49573 × log 0.49573 + 0.50427 × log 0.50427 )  =  -81.09395. 
 
The ‘R2’ is 1 - (-62.54818/-81.0939) = 0.22869 (including some rounding error).  The adjustment factor 
is  
 K  =  (Σi Ji - n) / [(Σi Ji - n) - npfree]  =  (234 - 117)/(234 - 117 - 3)  =  1.02632. 
 
and the ‘Adjusted R2’ is 1 - K(log L /LogL0) 
 
 Adjusted R2  =  1  -  1.02632 (-62.54818/-81.0939)  =  0.20794. 
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 Results kept by this estimator are: 
 
 Matrices: b and varb =  coefficient vector and asymptotic covariance matrix 
 
 Scalars:  logl   =  log likelihood function 
   nreg   =  N, the number of observational units 
   kreg   =  the number of Rhs variables 
 
 Last Model: b_variable =  the labels kept for the WALD command 
 
NOTE: This estimator does not use PARTIALS or SIMULATE after estimation.  Self contained 
routines are contained in the estimator.  These are described in Chapter E40. 
 
 In the Last Model, groups of coefficients for variables that are interacted with constants get 
labels choice_variable, as in trai_gco.  (Note that the names are truncated – up to four characters for 
the choice and three for the attribute.)  The alternative specific constants are a_choice, with names 
truncated to no more than six characters.  For example, the sum of the three estimated choice specific 
constants could be analyzed as follows: 
 
 WALD  ; Fn1 = a_air + a_train + a_bus $ 
 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors for nonlinear 
functions and joint test of nonlinear restrictions. 
Wald Statistic             =     16.33643 
Prob. from Chi-squared[ 1] =       .00005 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|    3.96117***      .98004     4.04  .0001     2.04032   5.88201 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E38.5.1 Robust Standard Errors   
 
 The ‘cluster’ estimator described in Chapter R10 is available in CLOGIT. However, this 
routine does not support hierarchical samples. There may be only one level of clustering. Also, the 
cluster specification is defined with respect to the CLOGIT groups of data, not the data set.  
CLOGIT sorts out how many clusters there are and how they are delineated.  But, since the row 
count of the data set is used in constructing the estimator, you must treat a group of NALT 
observations as one.  For example, our sample data used in this section contain 210 groups of four 
rows of data.  Each group of four is an observation.  Suppose that these data were grouped in clusters 
of three choice situations.  The estimation command with the cluster estimator would appear 
 
 CLOGIT  ; ... (the model) ; Cluster = 3 $ 
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The relevant part of the output would appear as follows: 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of    210 observations contained     70 clusters defined by  | 
|      3 observations (fixed number) in each cluster.                 | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Estimation based on N =    210, K =   9 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.04613**       .01836    -2.51  .0120     -.08211   -.01014 
(rows omitted) 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

Use ; Cluster as per the other models in LIMDEP – the same construction is used here.   
 
E38.5.2 Descriptive Statistics 
 
 You may request a set of descriptive statistics for your model by adding 
 
   ; Describe 
 
to the model command.  For each alternative, a table is given which lists the nonzero terms in the 
utility function and the means and standard deviations for the variables that appear in the utility 
function.  Values are given for all observations and for the individuals that chose that alternative.  
For the example shown above, the following tables would be produced: 
 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc ; Rh2 = one,hinc 

   ; Describe $ 
 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative AIR                  | 
|     Utility Function          |                    |     58.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose AIR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   85.252     27.409|   97.569    31.733 | 
| INVT         -.0084  INVT     |  133.710     48.521|  124.828    50.288 | 
| GC            .0363  GC       |  102.648     30.575|  113.552    33.198 | 
| A_AIR       -1.3160  ONE      |    1.000       .000|    1.000      .000 | 
| AIR_HIN1      .0065  HINC     |   34.548     19.711|   41.724    19.115 | 
+-------------------------------------------------------------------------+ 
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+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative TRAIN                | 
|     Utility Function          |                    |     63.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose TRAIN    | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   51.338     27.032|   37.460    20.676 | 
| INVT         -.0084  INVT     |  608.286    251.797|  532.667   249.360 | 
| GC            .0363  GC       |  130.200     58.235|  106.619    49.601 | 
| A_TRAIN      2.1071  ONE      |    1.000       .000|    1.000      .000 | 
| TRA_HIN2     -.0506  HINC     |   34.548     19.711|   23.063    17.287 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative BUS                  | 
|     Utility Function          |                    |     30.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose BUS      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   33.457     12.591|   33.733    11.023 | 
| INVT         -.0084  INVT     |  629.462    235.408|  618.833   273.610 | 
| GC            .0363  GC       |  115.257     44.934|  108.133    43.244 | 
| A_BUS         .8650  ONE      |    1.000       .000|    1.000      .000 | 
| BUS_HIN3     -.0332  HINC     |   34.548     19.711|   29.700    16.851 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative CAR                  | 
|     Utility Function          |                    |     59.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose CAR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   20.995     14.678|   15.644     9.629 | 
| INVT         -.0084  INVT     |  573.205    274.855|  527.373   301.131 | 
| GC            .0363  GC       |   95.414     46.827|   89.085    49.833 | 
+-------------------------------------------------------------------------+ 
 

 You may also request a cross tabulation of the model predictions against the actual choices. 
(The predictions are obtained as the integer part of Σt P̂ jt yjt.)  Add 
 
   ; Crosstab 
 
to your model command.  For the same model, this would produce 
 
+-------------------------------------------------------+ 
| Cross tabulation of actual choice vs. predicted P(j)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i).  | 
| Column totals may be subject to rounding error.       | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            19            13             8            18            58 
   TRAIN|            12            30             9            12            63 
     BUS|            10             8             6             6            30 
     CAR|            17            12             7            23            59 
--------+---------------------------------------------------------------------- 
   Total|            58            63            30            59           210 
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+-------------------------------------------------------+ 
| Cross tabulation of actual y(ij) vs. predicted y(ij)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is N(k,j,i)=Sum(i=1,...,N) Y(k,j,i).  | 
| Predicted y(ij)=1 is the j with largest probability.  | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            23            15             0            20            58 
   TRAIN|             8            49             0             6            63 
     BUS|            13            12             1             4            30 
     CAR|            15            13             0            31            59 
--------+---------------------------------------------------------------------- 
   Total|            59            89             1            61           210 
 
E38.6 Estimating and Fixing Coefficients 
 
 Maximum likelihood estimates are obtained by Newton’s method.  Since this is a 
particularly well behaved estimation problem, zeros are used for the start values with little loss in 
computational efficiency.  The gradient and Hessian used in iterations and for the asymptotic 
covariance matrix are computed as follows: 
 
   dji  = 1 if individual i makes choice j and 0 otherwise 
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Occasionally, a data set will be such that Newton’s method does not work – this tends to occur when 
the log likelihood is flat in a broad range of the parameter space.  There is no way that you can 
discern this from looking at the data, however.  If Newton’s method fails to converge in a small 
number of iterations, unless the data make estimation impossible, you should be able to estimate the 
model by using 
   ; Alg = BFGS  
 
as an alternative.  The BFGS algorithm will take slightly longer, but for most data sets, the difference 
will be a few seconds. If this method fails as well, you should conclude that your model is 
inestimable. 
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 You may provide your own starting values with 
  
   ; Start = list of K values 
  
If you have requested a set of alternative specific constants, you must provide starting values for 
them as well.  Regardless of where ‘one’ appears in the Rhs list, the ASCs will be the last J-1 
coefficients corresponding to that list.  If you have Rh2 variables, the coefficients will follow the Rhs 
coefficients, including the list of ASCs. 
 Coefficients may be fixed at specific values during optimization.  Use 
 
   ; Fix = variable name [ value ] 
 
for example,   ; Fix = ttme [ .01 ] 
 
The following results are obtained from 
 
 CLOGIT ; Lhs = mode  
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme 
   ; Rh2 = one 
   ; Fix = ttme[.01] $ 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -287.31412 
Estimation based on N =    210, K =   4 
Inf.Cr.AIC  =  582.628 AIC/N =    2.774 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588 -.0125-.0190 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.02118***      .00403    -5.26  .0000     -.02908   -.01329 
    TTME|     .01000    .....(Fixed Parameter)..... 
   A_AIR|    -.53263***      .19044    -2.80  .0052     -.90589   -.15937 
 A_TRAIN|     .40186*        .22238     1.81  .0708     -.03400    .83773 
   A_BUS|    -.66610***      .23961    -2.78  .0054    -1.13572   -.19648 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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E38.7 MLOGIT and CLOGIT 
 
 When there are no choice varying attributes, CLOGIT is the same model as MLOGIT.  
From Chapter E37, the functional form for MLOGIT is 
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In the second equation, if β equals zero – there are no choice varying attributes – then the second 
probability is the same as the first, after a simple renaming of the parts; γj in the second replacing βj 
in the first, and zi replacing xi.  (The alternatives are renumbered, indexing from 1 to J rather than 
from 0 to J.)  The following illustrates the result: 
 
 ? CLOGIT using the original data 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
; Rhs = one ; Rh2 = hinc 
; Effects: hinc(*) $ 

 ? Create the dependent variable for MLOGIT, using the first row of clogit data 
CREATE ; pick = mode*(0*aasc+1*tasc+2*basc+3*casc) $ 
CREATE ; choice = 3 - (pick+pick[+1]+pick[+2]+pick[+3]) $ 
? Use only the first row for MLOGIT 
MLOGIT ; If[aasc = 1 ] ; Lhs = choice ; Rhs = one,hinc  

; Partial Effects  
; Labels = car,bus,train,air $ 

 
We have normalized MLOGIT so that choice = 0 means pick car and choice = 3 means pick air.  
The elasticities then correspond to those in the CLOGIT results, and the coefficients are the same. 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -261.74506 
Estimation based on N =    210, K =   6 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   A_AIR|     .04252         .45456      .09  .9255     -.84840    .93345 
 A_TRAIN|    2.00595***      .42180     4.76  .0000     1.17923   2.83266 
   A_BUS|     .64169         .49249     1.30  .1926     -.32358   1.60696 
AIR_HIN1|    -.00142         .00989     -.14  .8858     -.02081    .01797 
TRA_HIN2|    -.06048***      .01169    -5.17  .0000     -.08339   -.03756 
BUS_HIN3|    -.03677***      .01282    -2.87  .0041     -.06190   -.01165 
--------+-------------------------------------------------------------------- 
 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Elasticity of Choice Probabilities with Respect to HINC 
--------+----------------------------------- 
        |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
    HINC|   .5418  -1.4986   -.6796    .5908 
 
----------------------------------------------------------------------------- 
Multinomial Logit Model 
Dependent variable               CHOICE 
Log likelihood function      -261.74506 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[BUS     ] 
Constant|     .64169         .49249     1.30  .1926     -.32358   1.60696 
    HINC|    -.03677***      .01282    -2.87  .0041     -.06190   -.01165 
        |Characteristics in numerator of Prob[TRAIN   ] 
Constant|    2.00595***      .42180     4.76  .0000     1.17923   2.83266 
    HINC|    -.06048***      .01169    -5.17  .0000     -.08339   -.03756 
        |Characteristics in numerator of Prob[AIR     ] 
Constant|     .04252         .45456      .09  .9255     -.84840    .93345 
    HINC|    -.00142         .00989     -.14  .8858     -.02081    .01797 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Averages of Individual Elasticities of Probabilities 
--------+---------+---------+---------+---------+ 
Variable|     CAR |     BUS |   TRAIN |     AIR | 
--------+---------+---------+---------+---------+ 
HINC    |   .5908 |  -.6796 | -1.4986 |   .5418 | 
--------+---------+---------+---------+---------+ 
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E39: Specifications of the Conditional Logit 
Models 

 
E39.1 Introduction 
 
 Chapter E38 described how to fit the generic form of the multinomial logit model for 
multinomial choice. This chapter presents some modifications of the basic command that 
accommodate more general choice sets (possibly varying across individuals) and a convenient 
alternative command format that allows more general specifications of the utility functions.  Two 
modifications of the estimator are described, one for the case in which certain attributes are ignored 
by some of the sampled individuals and a second that is based on the maximum entropy criterion 
rather than maximum likelihood. 
 
E39.2 Choice Sets 
 
 In the standard case, data on the Lhs variable will consist of a column of J-1 zeros and a one 
for the choice made, when reading down the J rows of data for the individual.  We allow other types 
of data on the choice variable.  If you have grouped data, the values will be proportions or 
frequencies, instead.  For proportions data, within each observation (J data points), the values of the 
Lhs variable will sum to one when summed down the J rows.  (This will be the only difference in the 
grouped data treatment.)  With frequencies, the values will simply be a set of nonnegative integers.  
An example of a setting in which such data might arise would be in marketing, where the proportions 
might be market shares of several brands of a commodity.  Alternatively, the choice variable might 
be a set of ranks, in which case, instead of zeros and ones, the Lhs variable would take values 
1,2,...,J (not necessarily in that order) within, and reading down, each block. 
 
E39.2.1 Fixed and Variable Numbers of Choices 
 
 When every individual in the sample chooses from the same choice set, and all alternatives 
are available to all individuals, then the data set will appear as in the example developed in Chapter 
E38, and will consist of n sets of J ‘observations.’  You indicate this case with a command such as: 
  
 CLOGIT ; Lhs = the choice variable 
   ; Choices = ... a list of J names for the choices 
   ; ... the rest of the command $ 
 
For example, 
 
 CLOGIT ; Lhs = mode  
   ; Choices = air,train,bus,car 
   ; etc. $ 
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There are many cases in which the choice set will vary from one individual to another.  We consider 
the random choice model first in which the number of choices is not constant from one observation 
to the next.  Ranks data are considered later.  Two possible arrangements that might produce variable 
sized choice sets are as follows: 
 

• There is a universal choice set, from which individuals make their choice.  But, not all 
choices are available to all individuals.  Consider, for example, the choice of travel mode 
among train, bus, car, ferry.  If respondents are observed at many different locations, one or 
more of the choices, such as ferry or train, might be unavailable to them, and those might 
vary from person to person.   In this case, there is a fixed set of J alternatives, but each 
individual chooses among their own Ji choices.  This is called a ‘labeled’ choice set. 

 
• Individuals each choose among their own set of Ji alternatives.  However, there is no 

universal choice set.  Consider, for example, the choice of which shopping center to shop at. 
If observations are taken in many different cities, we will observe numerous different choice 
sets, but there is no well defined universal choice set.  This is called an ‘unlabeled’ choice 
set. 
 

Unlabeled choice sets often arise in survey data, or ‘stated choice experiments.’  In a stated choice 
experiment, an individual might be offered a set of Ji alternatives that are only differentiated by their 
attributes.  Configurations of features in a choice set of cars or appliances might be such a case.  In 
this instance, the choices are simply numbered, 1,2,… 
 Either of these cases can be accommodated with CLOGIT.  For both cases, you will provide 
a variable which gives the number of choices for each observation.  This variable is then a second  
; Lhs specification. The command for an unlabeled choice set, which is the simpler case, becomes 
 
 CLOGIT  ; Lhs = y,nij 
   ; ... specification of the utility functions 
   ; ... the rest of the command $ 
 
Note that the ; Choices = list is not defined in the command, since in this case, there is no clearly 
defined choice set.  Nothing else need be changed.  LIMDEP does all of the accounting internally. In 
this case, it is simply assumed that each individual has their own choice set.   
 For example, one such data set might appear as follows. 
 

  y        q       w        nij    
 i=1 0        q1,1     w1,1 3 
     >1        q2,1     w2,1 3 
        0        q3,1     w3,1 3 
         
 i=2 0        q1,2     w1,2 4 
  0        q2,2     w2,2 4 
     >1        q3,2     w3,2 4 
  0        q4,2     w4,2 4 
         
 i=3 >1        q1,3     w1,3 2 
  0        q2,3     w2,3 2 
 



E39: Specifications of the Conditional Logit Models E-889 

Note that nij is the usual group size variable for a panel in LIMDEP.  The model command might be  
 
 CLOGIT  ; Lhs = y,nij ; Rhs = q,w $   
 
Notice, once again, that the command does not contain a definition of the choice set, such as  
; Choices = list specification.   
 For the case of a universal choice set, suppose that the data set above were, instead: 
 
   Y        q       w        nij   altij     

 i=1 0        q1,1     w1,1 3 1 (Air) 
     >1        q2,1     w2,1 3 2 (Train) 
        0        q3,1     w3,1 3 4 (Car) 
         
 i=2 0        q1,2     w1,2 4 1 (Air) 
  0        q2,2     w2,2 4 2 (Train) 
     >1        q3,2     w3,2 4 3 (Bus) 
  0        q4,2     w4,2 4 4 (Car) 
          
 i=3 >1        q1,3     w1,3 2 3 (Bus) 
  0        q2,3     w2,3 2 4 (Car) 

 
The specific choice identifier, when it is needed, is provided as a third Lhs variable.  For this case, 
the choice set would have to be defined.  For example, 
 
 CLOGIT  ; Lhs = y,nij,altij  
   ; Choices = air,train,bus,car  
   ; Rhs = q,w $ 
 
In this case, every individual is assumed to choose from a set of four alternatives, though the altij 
variable indicates that some of these choices are unavailable to some individuals. 
 Do note that if you are not defining a universal choice set, LIMDEP simply uses the largest 
number of choices for any individual in the sample to determine J for the model. As such, an 
expanded set of choice specific constants is not likely to be meaningful, though you can create one 
with ; Rh2 = one.  Also, if you do not specify a universal choice set, the variable altij will not be 
meaningful.   
 
E39.2.2 Restricting the Choice Set 
 
 The IIA test described later in Section E40.4 is carried out by fitting the model to a restricted 
choice set, then comparing the two sets of parameter estimates.  You can restrict the choice set used 
in estimation, irrespective of the IIA test, by a slight change in the command.  In the 
; Choices = list of alternatives specification, enclose any choices to be excluded in parentheses.  For 
example, in our CLOGIT application, the specification 
 
   ; Choices = air,(train),(bus),car 
 
produces the following display in the model output: 
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+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  93 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .49573| 1.000| 
|TRAIN     .00000| 1.000|* 
|BUS       .00000| 1.000|* 
|CAR       .50427| 1.000| 
+----------------+------+--- 
Normal exit:   6 iterations. Status=0, F=    52.79148 
 

----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function       -52.79148 
Estimation based on N =    117, K =   5 
Number of obs.=   210, skipped   93 obs 
Restricted choice set. Excluded choices are 
TRAIN    BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.04871*        .02757    -1.77  .0772     -.10274    .00532 
    INVT|    -.01195***      .00395    -3.03  .0025     -.01969   -.00422 
      GC|     .08576***      .02654     3.23  .0012      .03374    .13778 
    TTME|    -.08222***      .01854    -4.43  .0000     -.11855   -.04588 
   A_AIR|    2.12899*       1.20531     1.77  .0773     -.23337   4.49135 
 A_TRAIN|        0.0    .....(Fixed Parameter)..... 
   A_BUS|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
 

Note that as in the IIA test, this procedure results in exclusion of some ‘bad’ observations, that is, the 
ones that selected the excluded choices.  Because of the model specification, the ASCs for bus and 
train have been fixed at zero. 
 You may combine the choice based sampling estimator with the restricted choice set.  All 
the necessary adjustments of the weights are made internally.  Thus, the specification 
 
       ; Choices = air,(train),(bus),car / .14,.13,.09,.64  
 

produces the following listing: 
 
+----------------+------+---+ 
|Choice   (prop.)|Weight|IIA| 
+----------------+------+---+ 
|AIR       .49573|  .387|   | 
|TRAIN     .00000|  .000| * | 
|BUS       .00000|  .000| * | 
|CAR       .50427| 1.739|   | 
+----------------+------+---+ 
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E39.2.3 Very Large Choice Sets 
 
 The conditional logit estimator can fit a model with up to 500 choices, which is quite 
large.  However, certain applications, such as home purchase choice, have involved many more 
than that. CLOGIT and the other estimators in LIMDEP are bound by certain internal limits.  
However, it is possible to stretch the estimator a bit more.  It turns out that Chamberlain’s fixed 
effects model for the binary logit model described in Section E30.5 can be used to fit a discrete 
choice model.  The log likelihood function for this model is 
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If the group of observations has exactly one ‘1’ and Ti - 1 ‘0s,’ then this is exactly the log 
likelihood for the discrete choice model that we have analyzed in this chapter.  Thus, if the group 
of observations for individual i is treated as if this were a fixed effects model, then this estimator 
can be used to obtain parameter estimates.  The command setup would be 
 
 LOGIT ; Lhs = choice  
   ; Rhs = the set of variables   
   ; Pds = the number of choices $ 
 
 This arrangement will allow up to 200 choices.  The only shortcoming (aside from the 
greatly restricted number of optional features) is that unless you can provide the actual dummy 
variables, as we do below, it is not possible to specify a set of choice specific constants with this 
estimator.  Two ways to fit the model in our example would be 
 

CLOGIT ; Lhs = mode 
; Rhs = invc,invt,gc,ttme 
; Rh2 = one 

       ; Choices = air,train,bus,car $ 
 LOGIT ; Lhs  = mode  
   ; Rhs  = aasc,tasc,basc,invc,invt,gc,ttme  
   ; Pds  = 4 $ 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -184.50669 
Estimation based on N =    210, K =   7 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.08493***      .01938    -4.38  .0000     -.12292   -.04694 
    INVT|    -.01333***      .00252    -5.30  .0000     -.01827   -.00840 
      GC|     .06930***      .01743     3.97  .0001      .03513    .10346 
    TTME|    -.10365***      .01094    -9.48  .0000     -.12509   -.08221 
   A_AIR|    5.20474***      .90521     5.75  .0000     3.43056   6.97893 
 A_TRAIN|    4.36060***      .51067     8.54  .0000     3.35972   5.36149 
   A_BUS|    3.76323***      .50626     7.43  .0000     2.77098   4.75548 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------+ 
| Panel Data Binomial Logit Model                  | 
| Number of individuals          =     210         | 
| Number of periods              =       4         | 
| Conditioning event is the sum of MODE            | 
| Distribution of sums over the  4 periods:        | 
| Sum        0     1     2     3     4     5     6 | 
| Number     0   210     0     0     0     5     6 | 
| Pct.     .00100.00   .00   .00   .00   .00   .00 | 
+--------------------------------------------------+ 
Normal exit:   6 iterations. Status=0, F=    184.5067 
 
----------------------------------------------------------------------------- 
Logit Model for Panel Data 
Dependent variable                 MODE 
Log likelihood function      -184.50669 
Estimation based on N =    840, K =   7 
Fixed Effect Logit Model for Panel Data 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    AASC|    5.20474***      .90521     5.75  .0000     3.43056   6.97893 
    TASC|    4.36060***      .51067     8.54  .0000     3.35972   5.36149 
    BASC|    3.76323***      .50626     7.43  .0000     2.77098   4.75548 
    INVC|    -.08493***      .01938    -4.38  .0000     -.12292   -.04694 
    INVT|    -.01333***      .00252    -5.30  .0000     -.01827   -.00840 
      GC|     .06930***      .01743     3.97  .0001      .03513    .10346 
    TTME|    -.10365***      .01094    -9.48  .0000     -.12509   -.08221 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E39.3 Weighting  
 
 You can, in principle, use any weighting variable you wish with this model to weight 
observations.  The model does not require that weights be the same for all outcomes for a given 
observation.  For example, in a grouped data case, you might have at hand the total number of 
observations which gave rise to each of the proportions in the proportions data.  If so, you could use 
the information to replicate each observation the appropriate number of times.  In this case, use the 
 
   ; Wts = name 
 
option on the CLOGIT command, as you would with any other model.  Normally, this variable 
would take the same value for each of the J data vectors associated with observation i.  (Suppose 
instead of 0,1,0 for the first observation, we observed .4, .5, .1 based on 200 observations.  Then, 
‘name’ would take the value 200 for the first three observations, etc.)  (Of course, you could achieve 
the same result by providing the frequencies as the Lhs variable.) 
 
E39.4 Choice Based Sampling 
 
 The weighting may be based on the outcomes. For example, suppose the model predicts 
mode of travel, car, train, or horse.  The true population proportions are known to be .6, .35, and .05. 
But, we deliberately oversample the last category so that the sample proportions are, say, .5, .3, and 
.2.  In estimation, to account for the nonrandom sampling, we would use a weighting scheme which 
gives observations in which outcome 1 (car) received a weight of .6/.5 = 1.2, outcome 2 (train), 
.35/.3 = 1.16667, and outcome 3 (horse), .05/.2 = .25.  Notice that regardless of the number of 
observations, the weighting variable in this scenario takes only J values, where J is the number of 
outcomes.  The Lerman-Manski (1981) correction to the variance matrix of the estimates is used at 
convergence to obtain the appropriate standard errors.  The covariance matrix used is V = H-1DH-1, 
where H is the weighted Hessian and D is the weighted sum of the outer products of the first 
derivatives, as opposed to V = H-1 which would be used normally. 
 To request this procedure, it is only necessary for you to provide the J population weights. 
Everything else is automated.  The weights are provided after the labels for the outcomes following a 
slash.  The following example is consistent with the discussion above.  The unweighted specification 
would be 
 
 CLOGIT  ; ... ; Choices = car,train,horse $ 
 
The choice based sampling weights would be provided in 
 
 CLOGIT  ; ... ; Choices = car,train,horse / .6,.35,.05 $ 
  
Notice that you only provide the population weights.  The program obtains the sample proportions 
and computes the appropriate weights for the estimator.  This is a bit different from the earlier 
applications (probit and logit – see Section E27.10), and it is the only estimator in LIMDEP for 
which you provide only the population weights, as opposed to the sampling ratios. 
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 Everything else is the same as before.  Note, you do not use a weighting (; Wts) variable 
here.  Your population weights must sum to 1.0; if not, an error occurs and estimation is halted.  If 
you provide population weights, you must give a full set.  Thus, if your list has the slash 
specification, the number of values after the slash must match exactly the number of labels before it. 
 The data used in our examples in Chapter E38 are choice based.  The example below shows 
the use of this option to make the appropriate corrections to the estimates: 
 

CLOGIT ; Lhs = mode 
; Rhs = invc,invt,gc,ttme 
; Rh2 = one 

       ; Choices = air,train,bus,car / .14,.13,.09,.64  
   ; Show $ 
 
The ; Show parameter requests the display of the table below. Otherwise, only the note in the box of 
diagnostic statistics indicates use of the choice based sampling estimator.) 
 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .27619|  .507| 
|TRAIN     .30000|  .433| 
|BUS       .14286|  .630| 
|CAR       .28095| 2.278| 
+----------------+------+--- 
+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| INVC     INVT     GC       TTME     A_AIR     | 
|        |Row  2| A_TRAIN  A_BUS                                | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| INVC     INVT     GC       TTME     Constant  | 
|        |     2| none     none                                 | 
|TRAIN   |     1| INVC     INVT     GC       TTME     none      | 
|        |     2| Constant none                                 | 
|BUS     |     1| INVC     INVT     GC       TTME     none      | 
|        |     2| none     Constant                             | 
|CAR     |     1| INVC     INVT     GC       TTME     none      | 
|        |     2| none     none                                 | 
+---------------------------------------------------------------+ 
Normal exit:   6 iterations. Status=0, F=    132.5388 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -132.53879 
Estimation based on N =    210, K =   7 
Vars. corrected for choice based sampling 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.11080***      .02336    -4.74  .0000     -.15659   -.06502 
    INVT|    -.01736***      .00299    -5.81  .0000     -.02322   -.01151 
      GC|     .09787***      .01967     4.98  .0000      .05931    .13643 
    TTME|    -.13929***      .02589    -5.38  .0000     -.19003   -.08855 
   A_AIR|    5.68250***     1.58789     3.58  .0003     2.57029   8.79472 
 A_TRAIN|    4.09890***      .90704     4.52  .0000     2.32113   5.87667 
   A_BUS|    3.91452***      .92554     4.23  .0000     2.10050   5.72854 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the parameter estimates computed without the correction for choice based sampling.  This 
is not only a correction to the covariance matrix.  The parameter estimates will change as well. 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.08493***      .01938    -4.38  .0000     -.12292   -.04694 
    INVT|    -.01333***      .00252    -5.30  .0000     -.01827   -.00840 
      GC|     .06930***      .01743     3.97  .0001      .03513    .10346 
    TTME|    -.10365***      .01094    -9.48  .0000     -.12509   -.08221 
   A_AIR|    5.20474***      .90521     5.75  .0000     3.43056   6.97893 
 A_TRAIN|    4.36060***      .51067     8.54  .0000     3.35972   5.36149 
   A_BUS|    3.76323***      .50626     7.43  .0000     2.77098   4.75548 
--------+-------------------------------------------------------------------- 
 
E39.5 Building the Utility Functions 
 
 The model specification thus far builds the utility functions from the common Rhs and Rh2 
specifications.  For example, in our four outcome model which contains cost, time, one and income, 
the data for the choice variable and the utility functions are contained in 
 

  

        choice  cost time  constants                   income
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0 0

air a a

train t t
i

bus b b

car c c

y c t income
y c t income
y c t income
y c t

 
 
 =
 
 
 

Z
. 

 
The utility functions are all the same; 
 
  Ui,air   =  βcostcosti,air  + βtimetimei,air  + αair  + γairincomei  + εi,air 
  Ui,train   =  βcostcosti,train  + βtimetimei,train  + αtrain  + γtrainincomei  + εi,train 
  Ui,bus   =  βcostcosti,bus  + βtimetimei,bus  + αbus  + γbusincomei  + εi,bus 
  Ui,car   =  βcostcosti,car  + βtimetimei,car  + αcar  + γcarincomei  + εi,car 
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In order to prevent a multicollinearity problem, αcar = γcar = 0.  One might want to have different 
attributes appear in the different utility functions, or impose other kinds of constraints on the 
parameters, or allow a generic coefficient such as β1 to differ across groups of observations.  In 
general, these sorts of modifications can be obtained by using transformations of the variables.   For 
example, to have β1 have one value for air and car and a different value for train and bus, we would 
use 
  CREATE   ; costac = cost*(aasc + casc) ; costtb = cost*(tasc + basc) $ 
 
Then, we would replace cost with costac,costtb in the Rhs specification of the model.  The resulting 
model would be 
 
 Ui,air   =  βcost1costi,air    + βtimetimei,air  + αair  + γairincomei  + εi,air 
 Ui,train   =    βcost2costi,train  + βtimetimei,train  + αtrain  + γtrainincomei  + εi,train 
 Ui,bus   =    βcost2costi,bus  + βtimetimei,bus  + αbus  + γbusincomei  + εi,bus 
 Ui,car   =  βcost1costi,car    + βtimetimei,car  + αcar  + γcarincomei  + εi,car 
 
This section will describe how to structure the utility functions individually, rather than generically 
with Rhs and Rh2 and transformations of variables. 
 
E39.5.1 Alternative Specific Constants and Choice Invariant 
Variables 
 
 The CLOGIT model is homogeneous of degree zero in the generic attributes.  Any attribute 
that does not vary across the choices, such as age, marital status, etc., will simply fall out of the 
probability.  Consider, for example, a model that contains an attribute cost that varies by choice, and 
income that does not.  The generic discrete choice model would specify  
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Therefore, the model in that form is not estimable.  The answer, as we have seen, is to make the 
coefficient on choice invariant variables vary with the choices. This includes the constant term, one. 
This is how the MLOGIT model of Chapter E37 arises – in that model, all variables are choice 
invariant.  Here, it produces a hybrid model, which can have both types of variables in the utility 
functions. 
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This is the form of the model in the earlier example, 
 
  Ui,air   =  βcostcosti,air  + βtimetimei,air  + αair  + γairincomei  + εi,air 
  Ui,train   =  βcostcosti,train  + βtimetimei,train  + αtrain  + γtrainincomei  + εi,train 
  Ui,bus   =  βcostcosti,bus  + βtimetimei,bus  + αbus  + γbusincomei  + εi,bus 
  Ui,car   =  βcostcosti,car  + βtimetimei,car  + αcar  + γcarincomei  + εi,car 
 
There remains an indeterminacy in the model after it is expanded in this fashion.  Suppose the same 
constant is added to each γj, say θ.  The resulting model is 
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So, the identical model arises for any θ.  This means that the model still cannot be estimated in this 
form.  The solution to this remaining issue is to normalize the coefficients so that one of the choice 
varying parameters is equal to zero.  CLOGIT sets the last one to zero.  The same result applies to 
the choice specific constant terms that you create with one. 
 The basic four choice model which contains cost, time, one and income will have utility 
functions 
  Ui,air =  βcost costi,air +  βtime timei,air +  αair +  γair incomei +  εi,air 

  Ui,train =  βcost costi,train +  βtime timei,train +  αtrain +  γtrain incomei +  εi,train 

  Ui,bus =  βcost costi,bus +  βtime timei,bus +  αbus +  γbus incomei  +  εi,bus 

  Ui,car =  βcost costi,car +  βtime timei,car    +  εi,car 
 
 The simple device you use to construct utility functions in this fashion is to use 
 
   ; Rhs = list of attributes that vary across choices 
and   ; Rh2 = list of variables that do not vary across choices 
 
The Rh2 variables are automatically expanded into a set of J-1 interactions with the choice specific 
constants, as they are in the matrix Zi shown above.  The implication is that, generally, you do not 
need to have these variables in your data set.  They are automatically created by your command.  
(Note that our clogit.dat data set actually does contain the superfluous set of four choice specific 
constants, aasc, tasc, basc and casc.) 
 
NOTE:  If you include one in your Rhs, it is automatically expanded to become a set of alternative 
specific constants.  That is, one is automatically moved to the Rh2 list if it is placed in the Rhs list. 
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The model specification for the four utility functions shown above would be 
 
   ; Rhs = cost,time ; Rh2 = one,income 
 
Note that the distinction between Rh2 and Rhs variables is that all variables in the first category are 
expanded by interacting with the choice specific binary variables.  (The last term is dropped.) 
 
HINT:  There are many different possible configurations of alternative specific constants (ASCs) 
and alternative specific variables.  In estimating a model, it is not possible to determine a priori if a 
singularity will arise as a consequence of the specification.  You will have to discern this from the 
estimation results for the particular model. 
 
 The constant term, one fits the hint above.  Recognizing this, LIMDEP assumes that if your 
Rhs list includes one, you are requesting a set of alternative specific constants.  As such, when the 
Rhs list includes one, LIMDEP will create a full set of J-1 choice specific constants. Note the earlier 
examples.  
 Finally, while it is necessary for choice invariant variables to appear in Rh2, it is not 
necessary that all variables in the Rh2 list actually be choice invariant.  Indeed, one could specify the 
preceding model with choice specific coefficients on the cost variable; it would appear 
 
  Ui,air =  γcost,air costi,air +  βtime timei,air +  αair +  γair incomei +  εi,air 

  Ui,train =  γcost,train costi,train +  βtime timei,train +  αtrain +  γtrain incomei +  εi,train 

  Ui,bus =  γcost,bus costi,bus +  βtime timei,bus +  αbus +  γbus incomei +  εi,bus 

  Ui,car =  γcost,car costi,car +  βtime timei,car                                       +  εi,bus 
 
Note also, that there is no need to drop one of the time coefficients because the variable cost varies 
by choices.  You can estimate a model with four separate coefficients for cost, one in each utility 
function.  However, it is not possible to do it by including cost in the Rh2 list as described above, 
because this form will automatically drop the last term (the one in the car utility function).  You 
could obtain this form, albeit a bit clumsily, by creating the four interaction terms yourself and 
including them on the Rhs.  We already have the alternative specific constants, so the following 
would work 
 
 CREATE ; cost_a = gc * aasc 
   ; cost_t = gc * tasc 
   ; cost_b = gc * basc 
   ; cost_c = gc * casc $ 
 CLOGIT  ; ...  ; Rhs  = time,cost_a,cost_t,cost_b,cost_c 
    ; Rh2 = one,income $ 
 
Having to create the interaction variables is going to be inconvenient.  The alternative method of 
specifying the model described in the next section will be much more convenient.  This method also 
allows you much greater flexibility in specifying utility functions. 
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E39.5.2 Building the Utility Functions 
 
 The utility functions need not be the same for all choices.  Different attributes may enter and 
the coefficients may be constrained in different ways.  The following more flexible format can be 
used instead of the ; Rhs = list and ; Rh2 = list parts of the command described above.  This format 
also provides a way to supply starting values for parameters, so this can also replace the ; Start = list 
specification.  Finally, you will also be able to use this format to fix coefficients, so it will be an easy 
way to replace the ; Rst = list and ; Fix = name[value] specifications. 
 We begin with the case of a fixed (and named) set of choices, then turn to the cases of 
variable numbers of choices.  We replace the Rhs/Rh2 setup with explicit definitions of the utility 
functions for the alternatives.  Utility functions are built up from the format 
  
   ; Model: U(choice 1) = linear equation  / 
    U(choice 2) = linear equation / 
    ... 
    U(choice J) = linear equation $ 
 
Though we have shown all J utility functions, for a given model specification, you could, in 
principle, not specify a utility function in the list.  The implied specification would be Uij = εij.  The  
: U(list) is mandatory if the command contains ; Model =…. LIMDEP now scans for the ‘U’ and the 
parentheses.  For example: 
  
   ; Model:  U(air) = ba + bcost * gc 
  
Note that the specification begins with ‘; Model:’ – the colon (‘:’) is also mandatory.  Parameters 
always come first, then variables.  Constant terms need not multiply variables.  Thus, ba in this could 
be an ‘Air specific constant.’  (It depends on whether ba appears elsewhere in the model.)  Notice 
that the utility function defines both the variables and the parameters.  Usually, you would give an 
equation for each choice in the model.  For example: 
 
 CLOGIT ; Lhs = mode   
   ; Choices = air,train,bus,car 
   ; Model: U(air) = ba + bcost * gc + btime * ttme / 
                           U(car) = bc + bcost * gc   / 
                                U(bus) = bb + bcost * gc   / 
                                U(train) =   bcost * gc + btime * ttme $ 
  
Utility functions are separated by slashes.  Note also that the alternative specific constants stand 
alone without multiplying a variable.  Your utility definitions now provide the names for the 
parameters.  The estimates produced by this model command are as follows: 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -223.43803 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      BA|    1.55491***      .37580     4.14  .0000      .81835   2.29147 
   BCOST|    -.02021***      .00435    -4.65  .0000     -.02873   -.01168 
   BTIME|    -.08680***      .01122    -7.73  .0000     -.10880   -.06481 
      BC|   -3.65316***      .46378    -7.88  .0000    -4.56216  -2.74417 
      BB|   -3.91983***      .45611    -8.59  .0000    -4.81379  -3.02586 
--------+-------------------------------------------------------------------- 
 
One point that you might find useful to note.  The order of the parameters in this list is determined by 
moving through the model definition from beginning to end.  Each time a new parameter name is 
encountered, it is added to the list.  Looking at the model command above, you can now see how the 
order in the displayed output arose. 
 The last example in the preceding subsection, which has four separate coefficients on a cost 
variable could be specified using 
 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
  ; Model: U(air)   = bc*invc+bt*invt+aa+cha*hinc+cga*gc / 
    U(train) = bc*invc+bt*invt+at +cht *hinc+cgt *gc / 
    U(bus)  = bc*invc+bt*invt+ab+chb*hinc+cgb*gc / 
    U(car)   = bc*invc+bt*invt                       +cgc *gc $ 

The estimates are 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      BC|    -.04387**       .01713    -2.56  .0104     -.07744   -.01029 
      BT|    -.00815***      .00242    -3.37  .0008     -.01289   -.00341 
      AA|   -1.37474         .83837    -1.64  .1011    -3.01791    .26844 
     CHA|     .00703         .01079      .65  .5145     -.01411    .02818 
     CGA|     .03762**       .01677     2.24  .0248      .00476    .07048 
      AT|    2.53157***      .60801     4.16  .0000     1.33990   3.72324 
     CHT|    -.05097***      .01214    -4.20  .0000     -.07477   -.02717 
     CGT|     .03349**       .01506     2.22  .0262      .00397    .06301 
      AB|    1.17858         .73949     1.59  .1110     -.27080   2.62795 
     CHB|    -.03339**       .01300    -2.57  .0102     -.05886   -.00792 
     CGB|     .03456**       .01516     2.28  .0227      .00484    .06428 
     CGC|     .03808**       .01524     2.50  .0125      .00821    .06795 
--------+-------------------------------------------------------------------- 
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E39.5.3 Shorthand Notations for Sets of Utility Functions 
 
 There are several shorthands which will allow you to make the model specification much more 
compact.  If the utility functions for several alternatives are the same, you can group them in one 
definition.  Thus, 
   ; Model: U(air) = b0 + bcost * gc   / 
                        U(car) = b0 + bcost * gc   $ 
 
could be specified as  ; Model: U(air, car) = b0 + bcost * gc $ 
  
For the model we have been considering, i.e., 
  
   ; Choices = air,train,bus,car 
  
all of the following are the same 
 
   ; Model: U(air)  = b1 * ttme + bcost * gc   / 
                         U(train) = b1 * ttme + bcost * gc   / 
                         U(bus)  = b1 * ttme + bcost * gc   / 
                         U(car)  = b1 * ttme + bcost * gc   $ 
 
and   ; Model: U(air,train,bus,car) = b1 * ttme  + bcost * gc $ 
and   ; Model: U(*) = b1 * ttme  + bcost * gc $ 
and   ; Rhs = ttme, gc 
  
The last will use the variable names instead of the supplied parameter names for the two parameters, 
but the models will be the same. 
 
E39.5.4 Alternative Specific Constants and Interactions 
  
 You can also specify alternative specific constants in this format, by using a special notation.  
When you have a U(a1, a2, ..., aJ) for J alternatives, then you may specify, instead of a single 
parameter, a list of parameters enclosed in pointed brackets, to signify interaction with choice 
specific constants.  Thus, <b1,b2,...,bL> indicates L interactions with choice specific dummy 
variables.  L may be any number up to the number of alternatives.  Use a zero in any location in 
which the variable does not appear in the corresponding equation.  For example, 
 
    ; Choices = air,train,bus,car 
   ; Model: U(air)  = ba + bcost * gc   / 
                            U(car)  = bc + bcost * gc   / 
                            U(bus)  =           bcost * gc   / 
                            U(train) = bt + bcost * gc   $ 
 
could be specified as ; Model: U(air,car,bus,train) = <ba,bc,0,bt> + bcost * gc $ 
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NOTE:  Within a < ... > construction, the correspondence between positions in the list is with the  
U(... list ...)  list, not with the original ; Choices list.  Note these are different (deliberately) in the 
example above. 
 
 Note the considerable savings in notation. The same device may also be used in interactions 
with attributes.  For example: 
 
  ; Model: U(air)  = ba + bcprv * gc   / 
                            U(car)  = bc + bcprv * gc   / 
                            U(bus)  =          bcpub * gc   / 
                            U(train) = bt + bcpub * gc   $ 
 
There are two cost coefficients, but the variable gc is common.  This entire model can be collapsed 
into the single specification 
 
   ; Model: U(air,car,bus,train) = <ba,bc,0,bt> +  
    <bcprv,bcprv,bcpub,bcpub> * gc $ 
 
Parameters inside the brackets need not all be different if you wish to impose equality constraints.  
The example above imposes the two equality constraints shown in the model specification. 
 
E39.5.5 Equality Constraints 
 
 There is no requirement that parameters be unique across any specification.  Equality 
constraints may be imposed anywhere in the model, just by using the same parameter name.  For 
example, nothing precludes 
 
   ; Model: U(air,car,bus,train) = <ba,bc,0,bt> +  
    <ba,bc,bcpub,bcpub> * gc $ 
 
This forces two of the slope coefficients to equal the alternative specific constants.  Expanded, this 
specification would be equivalent to 
 
   ; Model: U(air)  = ba + ba  * gc   / 
                            U(car)  = bc + bc        * gc   / 
                            U(bus)  =          bcpub * gc   / 
                            U(train) = bt + bcpub * gc   $ 
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E39.6 Starting and Fixed Values for Parameters 
 
 The default starting values for all slope parameters in the utility functions specified as above 
are 0.0.  You may provide a starting value for any parameter defined in a utility equation by 
including the value in parentheses after the first occurrence of the parameter definition. 
 For example: 
 
   ; Model: U(air) = ba(.53) + bcprv(-1.25) * gc   / 
                       U(car) = bc         +  bcprv            * gc   / 
                            U(bus)  =                 bcpub             * gc   / 
                            U(train)  = bt(.04) + bcpub            * gc   $ 
 
Starting values of 0.53 for ba, -1.25 for bcprv, and 0.04 for bt are given.  The other parameters, 
bcpub and bc both start at 0.0.  Note that the starting value for bcprv is given with the first 
occurrence of this name in the model.  It is not necessary to give additional starting values for bcprv; 
the first will suffice.  (If a parameter name appears more than once in a model definition, one might 
inadvertently give different starting values for the definitions. For example, if the second line above 
were U(car) = bc+bcprv(1.3)*gc/ then values of -1.25 and 1.3 are being given for the same 
parameter, bcprv.  The last definition is the one that controls.  Thus, in this example, the starting 
value for bcprv would be 1.3, not -1.25.  Note that this is not meant to be an option that is used for 
any purpose.  This is only meant to explain how this erroneous specification will be handled.) 
 In a multiple parameter specification, the same value is given to all parameters that appear in 
the specification.  Thus, in our earlier example: 
  
   ; Model:U(air,car,bus,train) = <ba,bc,0,bt> (1.27439) + bcost * gc 
  
the three parameters, ba, bc, and bt, are all started at 1.27439. 
 
E39.6.1 Fixed Values 
 
 Any parameter that appears in the model may be fixed at a given value, rather than 
estimated. This might be useful, for example, for testing hypotheses.  To fix a parameter, use the 
setup described above as if you were providing a starting value.  But, instead of enclosing the value 
in parentheses, enclose it in square brackets.  For example, in the model above, the coefficient bcost 
might be fixed at 0.05 with the command 
  
   ; Model: U(air,car,bus,train) = <ba,bc,0,bt> (1.27439) + bcost [0.05] * gc 
  
The fixed value will appear in the model output with all of the other estimated results, with a 
notation that this coefficient has been fixed rather than estimated. 
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E39.6.2 Starting Values and Fixed Values from a Previous Model 
 
 Each time you fit a model with CLOGIT, the coefficients and the names that you gave them 
are stored permanently for later use.  (This is separate from the coefficients saved for the WALD 
testing procedure discussed in Section R14.4.)  You may reuse these coefficients in the current 
model by specifying starting or fixed values with a simple ‘[  ]’ or ‘(  )’ with no specific values 
provided.  For example, 
 

   bcost (  ) * gc 
 
would instruct CLOGIT to examine the previous model that you fit.  If you had used the name bcost 
for one of the coefficients, then the estimated value from that model would be used as the starting 
value for this model. 
 
E39.7 Modeling Choice Strategy 
 
 In some occasions in survey data, particularly in stated preference experiments, respondents 
will indicate that they did not consider certain attributes among a set of attributes in making their 
choices.  When this aspect of the data is known, it has been conventional to insert zeros for the 
attribute in the choice model, thereby removing that attribute from the utility function.  However, in 
fact, that does not remove the attribute from the choice probability; it forces it to enter with a 
peculiar, possibly extreme value.  Consider, for example, a price variable. If a respondent indicates 
that they ignored price in a choice, then setting the ‘price’ to zero in the choice set would force a 
peculiar value on the choice process. Hensher, Rose, and Greene (2005b) argued that if a respondent 
truly ignores an attribute in a choice situation, then what should be zero in the choice model is not 
the attribute, but its coefficient in the utility function.  That restriction definitely removes the 
attribute from the choice consideration by taking it out of the model altogether. 
 Accommodating this idea requires, in essence, that there be a possibly different model for 
each respondent. That is, one with possibly different zero restrictions imposed for different 
individuals.  CLOGIT allows you to automate precisely this formulation in all discrete choice 
models with a special data coding. 
 

For respondents who ignore attributes (it must be known in the data), simply code 
the attribute with value -888 for this respondent. 

 
With this data convention, the program automatically detects these values and adjusts the model 
accordingly.  You do not have to add any other codes to any CLOGIT commands to signal this 
aspect of the data.  The model output will contain a diagnostic box noting when this option is being 
used when CLOGIT finds these values in the data. 
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 The following applies to this feature:  
 

1. At least some respondents must actually consider the attribute.  It cannot be omitted from the 
model for everyone. 

 
2. In computing elasticities (see Section E40.2), if ; Means is used, it may distort the means 

slightly.  How much so depends on how many observations are in use and how often the 
attribute is ignored.  No generalizations are possible. 

 
3. In computing descriptive statistics with the ; Describe option (see Section E38.5.2), this may 

distort the means because the -888 values are not skipped, they are changed to 0.0.  Output 
will contain a warning to this effect if it is noticed. 

 
E39.8 Generalized Maximum Entropy Estimator 
 

The CLOGIT multinomial logit model may be estimated using the generalized maximum 
entropy estimator described in Section E37.8 for the MLOGIT model.  The estimator is the same – 
the difference between there and here is only the constraint on the parameter vectors – there is only a 
single parameter vector in the CLOGIT model.  The computations are identical; the only difference 
is the format of the data. The estimator is requested by adding  

 
  ; GME 

or   ; GME = number of support points 
 
to the CLOGIT command.  In the application below, we reestimate the model used in several 
examples, using GME instead of MLE.  The MLE is shown at the end of the results for ease of 
comparison.  The command would be 
 
 CLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; GME = 5 $ 
 
----------------------------------------------------------------------------- 
Generalized Maximum Entropy LOGIT Estimator 
Dependent variable               Choice 
Log likelihood function     -1556.27248 
Estimation based on N =    210, K =   5 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01014***      .00356    -2.85  .0044     -.01711   -.00316 
    TTME|    -.09407***      .01002    -9.38  .0000     -.11371   -.07442 
   A_AIR|    5.62289***      .63242     8.89  .0000     4.38337   6.86241 
 A_TRAIN|    3.68504***      .41687     8.84  .0000     2.86800   4.50209 
   A_BUS|    3.10729***      .43557     7.13  .0000     2.25360   3.96098 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+--------------------------------------------------------------------+ 
| Information Statistics for Conditional Logit Model fit by GME      | 
| Number of support points =5. Weights in support scaled to 1/sqr(N) | 
|                            M=Model MC=Constants Only   M0=No Model | 
| Criterion Function     -1556.27248       -1635.80211   -2516.41511 | 
| LR Statistic vs. MC      159.05926            .00000        .00000 | 
| Degrees of Freedom         2.00000            .00000        .00000 | 
| Prob. Value for LR          .00000            .00000        .00000 | 
| Entropy for probs.       207.71575         283.75877     291.12182 | 
| Normalized Entropy          .71350            .97471       1.00000 | 
| Entropy Ratio Stat.      166.81214          14.72609        .00000 | 
| Bayes Info Criterion    3133.93338        3292.99265    5054.21865 | 
| BIC - BIC(no model)     1920.28527        1761.22600        .00000 | 
| Pseudo R-squared            .04862            .00000        .00000 | 
| Pct. Correct Prec.        70.47619          30.00000      25.00000 | 
| Notes: Entropy computed as Sum(i)Sum(j)Pfit(i,j)*logPfit(i,j).     | 
|        Normalized entropy is computed against M0.                  | 
|        Entropy ratio statistic is computed against M0.             | 
|        BIC = 2*criterion - log(N)*degrees of freedom.              | 
|        If the model has only constants or if it has no constants,  | 
|        the statistics reported here are not useable.               | 
|        If choice sets vary in size, MC and M0 are inexact.         | 
+--------------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -199.97662 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01578***      .00438    -3.60  .0003     -.02437   -.00719 
    TTME|    -.09709***      .01044    -9.30  .0000     -.11754   -.07664 
   A_AIR|    5.77636***      .65592     8.81  .0000     4.49078   7.06193 
 A_TRAIN|    3.92300***      .44199     8.88  .0000     3.05671   4.78929 
   A_BUS|    3.21073***      .44965     7.14  .0000     2.32943   4.09204 
--------+-------------------------------------------------------------------- 
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E40: Post Estimation Results for Conditional 
Logit Models 

 
E40.1 Introduction 
 
 This chapter completes the documentation of the conditional logit (CLOGIT) model with 
four post estimation calculations: 
 
 •  Partial effects and elasticities 
 •  Predictions of probabilities, utilities and several other variables, 
 •  Specification testing for the IIA assumption 
 •  Model simulation and examination of the effects of changing scenarios on market shares. 
 
E40.2 Partial Effects and Elasticities 
 
 In the discrete choice model, the effect of a change in attribute ‘k’ of alternative ‘j’ on the 
probability that individual i would choose alternative ‘m’ (where m may or may not equal j) is 
 
   δim(k|j)  =  ∂Prob[yi = m]/∂xi(k|j)  =  [1(j = m) – Pij]Pimβk. 
 
You can request a listing of the effects of a specific attribute on a specified set of outcomes with 
 
   ; Effects: attribute [list of outcomes] 
 
The outcomes listing defines the variables ‘j’ in the definition above.  The attribute is the ‘kth.’  A 
calculated partial effect is then listed for all alternatives (i.e., all ‘m’) in the model.  You can request 
additional tables by separating additional specifications with slashes.  For example: 
 
   ; Effects: gc [car, train] / ttme [bus,train] 
 
HINT:  It may generate quite a lot of output if your model is large, but you can request an analysis 
of ‘all’ alternatives by using the wildcard, attribute [ * ].   
 
 The table below is produced by 
 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc 

   ; Rh2 = one,hinc 
   ; Effects: gc [*] $ 
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Derivative wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|   .0060   -.0020   -.0012   -.0028 
   TRAIN|  -.0020    .0062   -.0018   -.0024 
     BUS|  -.0012   -.0018    .0043   -.0013 
     CAR|  -.0028   -.0024   -.0013    .0066 
 
The effects are computed by averaging the individual specific results, so the report contains the 
average partial effects.  Since the mean is computed over a sample of observations, we also report 
the standard deviation of the estimates. 
 As noted in the tables, the marginal effects are computed by averaging the individual sample 
observations.  An alternative way to compute these is to use the sample means of the data, and 
compute the effects for this one hypothetical observation.  Request this with 
 
   ; Means 
 
For the table above, the results would be as follows: 
 
Derivative wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|   .0073   -.0030   -.0014   -.0028 
   TRAIN|  -.0030    .0076   -.0016   -.0031 
     BUS|  -.0014   -.0016    .0044   -.0015 
     CAR|  -.0028   -.0031   -.0015    .0073 
 
Note that the changes are substantive. The literature is divided on this computation. Current practice 
favors the first (default) approach. 
 The results above are only the average partial effects.  In order to obtain a full listing of the 
effects and an estimator of the sample variance, use 
 
   ; Full 
 
For the preceding, we obtain 
 
+---------------------------------------------------+ 
| Derivative             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Average partial effect  on prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|     .00604***      .00017    36.54  .0000      .00572    .00637 
   TRAIN|    -.00201***   .7814D-04   -25.69  .0000     -.00216   -.00185 
     BUS|    -.00124***   .5504D-04   -22.48  .0000     -.00134   -.00113 
     CAR|    -.00280***      .00014   -19.84  .0000     -.00307   -.00252 
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--------+-------------------------------------------------------------------- 
Average partial effect  on prob(alt) wrt GC       in TRAIN 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.00201***   .7814D-04   -25.69  .0000     -.00216   -.00185 
   TRAIN|     .00618***      .00018    34.29  .0000      .00583    .00653 
     BUS|    -.00175***   .9502D-04   -18.46  .0000     -.00194   -.00157 
     CAR|    -.00242***   .9003D-04   -26.88  .0000     -.00260   -.00224 
--------+-------------------------------------------------------------------- 
Average partial effect  on prob(alt) wrt GC       in BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.00124***   .5504D-04   -22.48  .0000     -.00134   -.00113 
   TRAIN|    -.00175***   .9502D-04   -18.46  .0000     -.00194   -.00157 
     BUS|     .00433***   .9872D-04    43.88  .0000      .00414    .00453 
     CAR|    -.00134***   .4473D-04   -29.99  .0000     -.00143   -.00125 
--------+-------------------------------------------------------------------- 
Average partial effect  on prob(alt) wrt GC       in CAR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.00280***      .00014   -19.84  .0000     -.00307   -.00252 
   TRAIN|    -.00242***   .9003D-04   -26.88  .0000     -.00260   -.00224 
     BUS|    -.00134***   .4473D-04   -29.99  .0000     -.00143   -.00125 
     CAR|     .00656***      .00015    44.02  .0000      .00627    .00685 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

The ‘standard errors’ in these results are computed as the sample standard deviations of the sample 
of observations on the derivatives.  These are not identical to what would be obtained if the delta 
method were applied to the nonlinear function used to obtain the elasticities though they should be 
reasonably close. 
 

E40.2.1 Elasticities 
 
 Rather than see the partial effects, you may want to see elasticities, 
 
  ηim(k|j)  =  ∂logProb[yi = m]/∂logxi(k|j) =  xi(k|j)/Pim×δim(k|j) 

   =  [1(j = m) - Pij] xi(k|j)βk 
 
Notice that this is not a function of Pim.  The implication is that all the cross elasticities are identical. 
This will be obvious in the results, as shown in the example below. 
 You may request elasticities instead of partial effects simply by changing the square brackets 
above to parentheses, as in 
 
   ; Effects: attribute (list of outcomes) 
 
The first set of results above would become as shown in the following table: 
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Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  2.6002  -1.1293  -1.1293  -1.1293 
   TRAIN| -1.2046   3.5259  -1.2046  -1.2046 
     BUS|  -.5695   -.5695   3.6181   -.5695 
     CAR|  -.8688   -.8688   -.8688   2.5979 
 
With ; Full, the expanded set of elasticities is produced. 
 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    2.60021***      .05667    45.89  .0000     2.48915   2.71128 
   TRAIN|   -1.12927***      .06414   -17.61  .0000    -1.25498  -1.00356 
     BUS|   -1.12927***      .06414   -17.61  .0000    -1.25498  -1.00356 
     CAR|   -1.12927***      .06414   -17.61  .0000    -1.25498  -1.00356 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in TRAIN 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|   -1.20461***      .05673   -21.23  .0000    -1.31580  -1.09343 
   TRAIN|    3.52593***      .14909    23.65  .0000     3.23373   3.81813 
     BUS|   -1.20461***      .05673   -21.23  .0000    -1.31580  -1.09343 
     CAR|   -1.20461***      .05673   -21.23  .0000    -1.31580  -1.09343 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.56952***      .01973   -28.87  .0000     -.60818   -.53086 
   TRAIN|    -.56952***      .01973   -28.87  .0000     -.60818   -.53086 
     BUS|    3.61811***      .10298    35.13  .0000     3.41627   3.81995 
     CAR|    -.56952***      .01973   -28.87  .0000     -.60818   -.53086 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in CAR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.86881***      .03532   -24.59  .0000     -.93805   -.79958 
   TRAIN|    -.86881***      .03532   -24.59  .0000     -.93805   -.79958 
     BUS|    -.86881***      .03532   -24.59  .0000     -.93805   -.79958 
     CAR|    2.59786***      .10768    24.13  .0000     2.38682   2.80891 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The force of the independence from irrelevant alternatives (IIA) assumption of the multinomial logit 
model can be seen in the identical cross elasticities in the tables above. The table also shows two 
other aspects of the model. First, the meaning of the raw coefficients in a multinomial logit model, 
all of sign, magnitude and significance, are ambiguous. It is always necessary to do some kind of 
post estimation such as this to determine the implications of the estimates. Second, in light of this, 
we can see that the particular model estimated must be misspecified. The estimates imply that as the 
generalized cost of each mode rises, it becomes more attractive.  The gc coefficient has the ‘wrong’ 
sign. 
 Elasticities and partial effects in the CLOGIT model are computed by averaging the 
individual observations on these quantities.  Observations receive equal weight (1/n) in the average.  
A problem can arise when computing elasticities in this fashion.  If an observation in the sample has 
an extreme configuration of attributes for some reason, then the elasticity or marginal effect for that 
observation can be extremely large (up to 10,000,000 for some cases).  With the simple weighting 
wi = 1/n, regardless of the rest of the sample, this observation (or observations if it happens more 
than once), will cause the average to be huge, producing nonsense values.  LIMDEP provides two 
alternative methods of computing marginal effects and elasticities: 

 
1. If elasticities are computed just once at the sample means of the attributes, extreme values 

will almost surely be averaged out, and the end result will almost always be reasonable 
values.  You  can request this computation with 

 
   ; Effects:... (as usual) ; Means 
 

2. Some authors have advocated a probability weighted average scheme instead.  This uses a 
weight which differs by alternative.  The computation uses 

 
  w(t,j) = Estimated P(t,j) / Σt Estimated P(t,j) 

 
where t indexes individual observations and j indexes alternatives.  By this construction, if 
an individual probability is very small, the resulting extreme value for the marginal effect is 
multiplied by a very small probability weight, which offsets the extreme value.  This 
likewise produces reasonable values for elasticities in almost all cases.  You can request this 
computation with 

 

  ; Effects:... (as usual) ; Pwt 
 

This weighting scheme does cause a problem. In the simple discrete choice model, the 
elasticities are 

 

   ηim(k|j)  =  ∂logProb[yi = m]/∂logxi(k|j)  =  xi(k|j)/Pim×δim(k|j) 
 

which means that the cross elasticity of change in probability j when the x in the attributes 
for  choice m changes is the same for all of the alternatives.  (E.g., the elasticity of the 
probabilities of alternatives 2,3,... with respect to changes in x(k) in the attributes of 
alternative 1 are all equal to βkP(1)x(1,k).  This will be true for individual observations.  But, 
when probability weights are used, this will not be true for the weighted averages.  It is true 
for the unweighted averages.  The implication will be that the elasticities computed with        
; Pwt will suggest that the IIA property of the model has been relaxed.  But, it has not.  This 
is a result of the way the elasticity is computed.  The IIA property of the model remains.  
The following shows the comparison of using ; Pwt to the unweighted case for our example. 
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(Probability weighted) 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  2.3722   -.7268   -.9638  -1.0659 
   TRAIN|  -.9844   2.4338  -1.3509   -.9442 
     BUS|  -.5596   -.6035   3.3527   -.5102 
     CAR| -1.0170   -.6356   -.7857   2.0780 
 
(Unweighted) 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  2.6002  -1.1293  -1.1293  -1.1293 
   TRAIN| -1.2046   3.5259  -1.2046  -1.2046 
     BUS|  -.5695   -.5695   3.6181   -.5695 
     CAR|  -.8688   -.8688   -.8688   2.5979 
 
E40.2.2 Saving Elasticities in the Data Set 
 
 You can save the individual estimates of the own and cross elasticities as a variable in the 
data set by using 
   ; Effects: attribute(alternative) = variable 
 
This must provide the name of a specific attribute and a specific alternative.  Only one variable may 
be saved by the model command.  The following extends our earlier example by saving the 
elasticities with respect to the generalized cost of air.  This saves as a variable the estimates that are 
averaged to produce the first row of the table of unweighted elasticities above.  The table of 
descriptive statistics confirms the computations.  Figure E40.1 shows the first few observations in 
the data area. 
 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc ; Rh2 = one,hinc 
; Effects: gc(air) = gcair $ 

CREATE ; alt = Trn(-4,0) $ 
DSTAT ; Rhs = gcair ; Str = alt $ 

 
------------------------------------------------------------------------- 
Descriptive Statistics for GCAIR 
Stratification is based on ALT 
-----------------+------------------------------------------------------- 
Subsample        |        Mean     Std.Dev.    Cases  Sum of wts  Missing 
-----------------+------------------------------------------------------- 
ALT         =  1 |    2.600215      .823141      210      210.00        0 
ALT         =  2 |   -1.129273      .931694      210      210.00        0 
ALT         =  3 |   -1.129273      .931694      210      210.00        0 
ALT         =  4 |   -1.129273      .931694      210      210.00        0 
Full Sample      |    -.196901     1.851636      840      840.00        0 
-----------------+------------------------------------------------------- 
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Figure E40.1  Estimated Elasticities 

 
E40.2.3 Exporting Results in a Spreadsheet 
 
 Model results and estimated partial effects or elasticities may be exported to a spreadsheet 
file.  Before doing this, you must open the export file with 
 
 OPEN  ; Export = filename $ 
 
The file will be written in the generic .csv format, so you should open the file with a .csv extension, 
for example 
 
 OPEN  ; Export = “C:\workspace\elasticities.csv” $ 
 
The request to export the results is then done by adding 
 
   ; Export = table 
 
to your model command.  Once the export file is open, you can use it for a sequence of models.   
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The spreadsheet file below was created with this sequence of commands: 
 

OPEN  ; Export = “C:\ … \elasticities.csv” $ 
CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 

; Rhs = gc,ttme,invc,invt ; Rh2 = one,hinc 
; Export output 
; Export = table 
; Effects: gc(*),ttme(*) ; Full $ 

 
The ; Export output setting requests that the model estimates also be included in the export file.  
This is followed by the tables of elasticities.  The figure shows the results after the file has been read 
into Excel. 
 

 
Figure E40.2  Exported Model Results and Elasticities 
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 The exported results are in the form of the standard statistical table for estimated parameters.   
The format of the results in the .csv file may be changed to a matrix format by using  
 
   ; Export = matrix 
 
instead.  Figure E40.3 shows the effect on the table shown in Figure E40.2. 
 

 
Figure E40.3  Exported Elasticities in Matrix Format 

 
HINT:  The export file is created while the computations are being done.  However, there is a delay 
between when results are computed (by LIMDEP) and when they arrive in the file (by Windows).  
You should not try to open the export file (for example in Excel) while LIMDEP is still creating it.  
The results will be incomplete.  Open the export file after you exit LIMDEP.  Also, you should not 
try to write to an export file from LIMDEP while it is open by another program, such as Excel.  This 
will cause a write error.  You cannot modify with another program a spreadsheet file that Excel is 
using. 
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E40.3 Predicted Probabilities and Logsums (Inclusive Values) 
 
 There are several variables in addition to the elasticities that you can save in the data area 
while they are created by CLOGIT. 
 
E40.3.1 Fitted Probabilities 
 
 There are some models which make use of the predicted probabilities from the discrete 
choice model.  See, for example, Lee (1983).  Or, you may have some other use for them.  You can 
compute a column of predicted probabilities for the discrete choice model.  Each ‘observation’ 
consists of Ji rows of data, where the number of choices may be fixed or variable.  Use the command 
 
 CLOGIT  ; Lhs   = ... ; ...  
   ; Prob = name $ 
 
The variable name will contain the predicted probabilities.  The probabilities will sum to 1.0 for each 
observation, that is, down each set of Ji choices.  The ; Prob option will put the probabilities in the 
right places in your data set regardless of the setting of the current sample.  For example, if you 
happen to be estimating a model after having REJECTED some observations, the predictions will 
be placed with the outcomes for the observations actually used.  Unused rows of the data matrix are 
left undefined. 
 If your model has 14 or fewer choices, you can also include  
 
   ; List 
 
in your command to request a listing of the predicted probabilities.  These will be listed a full 
observation at a time, rowwise, with an indicator of the choice that was made by that individual.  For 
example, the first 10 observations (individuals) in the sample for the model above are 
 
 CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 

; Rhs = gc,ttme,invc,invt ; Rh2 = one ; Rh2 = hinc 
; List $ 

 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .0918     .1574     .1124     .6384*+ 
    2   .1110     .1481     .0790     .6618*+ 
    3   .4621 +   .1106     .0953     .3320* 
    4   .2112     .2639     .1240     .4008*+ 
    5   .1976     .2711     .1379     .3935*+ 
    6   .0901     .1306*    .1181     .6612 + 
    7   .8128*+   .0462     .0392     .1018 
    8   .3101     .0908     .0868     .5123*+ 
    9   .1098     .1867     .1312     .5724*+ 
   10   .1892     .2881     .1840     .3387*+ 
 
The ‘+’ and ‘*’ indicate the actual and predicted choices, respectively.  Where these mark the same 
probability, the model predicted the outcome correctly.  The predicted choice is the one that has the 
largest fitted probability 
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E40.3.2 Computing and Listing Model Probabilities 
 
 You can use an estimated model to compute (list and/or save) all probabilities, utilities, 
elasticities, and all descriptive statistics and crosstabulations for any specified set of observations, 
whether they were used in estimating the model or not.  For example, this feature will allow you to 
compute predicted probabilities for a ‘control’ sample, to assess how well the model predicts outcomes 
for observations outside the estimation sample.  To use this feature, use the following steps. 
 
Step 1. Set up the full model for estimation, and estimate the model parameters. 
 
Step 2. Reset the sample to specify the observations for which you wish to simulate the model. 
 
Step 3. Use the identical CLOGIT command, but add the specification ; Prlist to the command. 
 
The sample that you specify at Step 2 may contain as many observations as you wish; it may be just 
one individual or it may be an altogether different set of data – as long as the variables match in 
name and form the variables in the original model. 
 
NOTE:  The observations in the new sample must be consistent with the specification of the model. 
The usual data checking is done to ensure this. 
 
WARNING:  You must not change the specification of the model between Steps 1 and 3.  The 
coefficient vector produced by Step 1 is used for the simulation at Step 3.  But it is not possible to 
check whether the coefficient vector used at Step 3 is actually the correct one for the model 
command used at Step 3.  It will be if your model commands at Steps 1 and 3 are identical. 
 
 The following sequence fits the model in the preceding examples using the first 200 
observations (800 data rows), then simulates the probabilities for the remaining 10 observations in 
the full sample: 

 
SAMPLE ; 1-800 $ 
CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 

; Rhs = invc,invt,gc,ttme ; Rh2 = one $ 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -174.83929 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.08826***      .01987    -4.44  .0000     -.12721   -.04931 
    INVT|    -.01344***      .00257    -5.23  .0000     -.01847   -.00841 
      GC|     .07053***      .01778     3.97  .0001      .03568    .10539 
    TTME|    -.10176***      .01117    -9.11  .0000     -.12366   -.07986 
   A_AIR|    5.33347***      .92159     5.79  .0000     3.52720   7.13975 
 A_TRAIN|    4.44686***      .52778     8.43  .0000     3.41244   5.48129 
   A_BUS|    3.69334***      .52916     6.98  .0000     2.65620   4.73048 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The following commands produce an out of sample listing. 
 

SAMPLE ; 801-840 $ 
CLOGIT ; Lhs = mode  
  ; Choices = air,train,bus,car 

; Rhs = invc,invt,gc,ttme ; Rh2 = one 
; Prlist $ 

 
+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations               10     | 
+---------------------------------------------+ 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .0543     .0445     .7540*+   .1472 
    2   .2402     .2189     .2014     .3395*+ 
    3   .0137     .0885     .8571*+   .0406 
    4   .0203     .0890     .8287*+   .0620 
    5   .4058 +   .1092     .3745*    .1105 
    6   .2766     .3248 +   .2785     .1201* 
    7   .6129*+   .1446     .1240     .1185 
    8   .0824     .5444 +   .0648*    .3084 
    9   .1815     .3629 +   .1795     .2761* 
   10   .1958     .1863     .0514     .5665*+ 
 
This arrangement of the model may also include 
 
   ; Describe 
   ; Show Model to display the model configuration 
   ; Effects: desired elasticities or marginal effects 
   ; Prob = name to save probabilities 
   ; Ivb = name to save inclusive values 
 
All of these computations are done for the current sample. This process is the same as the full model 
computations listed earlier. But, with ; Prlist in place, the model estimated previously is used; it is 
not reestimated. 
 
E40.3.3 Utilities and Inclusive Values 
 
 The utility functions used to compute the probabilities are 
 
   Uij  =  β′xij. 
 
These may be saved in the data set as a new variable with the specification 
 
   ; Utility = name 
 
The inclusive value, or log sum, for the discrete choice model is 
 
   IVi =  log Σjexp(β′xi,j). 
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Inclusive values are used for a number of purposes, including computing consumer surplus 
measures.  You can keep the inclusive values for your model and data with the specification 
 
   ; Ivb = name 
 
The specification Ivb stands for ‘inclusive value for branch.’  Inclusive values are stored the same way 
that predicted probabilities are stored.  Since each observation has only one inclusive value, the same 
value will be stored for all rows (choices) for the observation (person).  An example is given below 
 
E40.3.4 Fitted Values of the Choice Variable 
 
 The actual and predicted outcomes for the model are saved with 
 
   ; Fittedy = name and ; Actualy = name 
 
The actual value is the index of the choice actually made, repeated in each row of the choice set for 
the observation.  The fitted value is the index of the alternative that has the largest probability based 
on the estimated model.  The example below combines all of these features in a single command. 
 

SAMPLE ; All $ 
CLOGIT ; Lhs = mode  

; Choices = air,train,bus,car 
; Rhs = invc,invt,gc,ttme ; Rh2 = one 
; Utility = utility ; Prob = probs ; Ivb = incvalue  
; Actualy = actual ; Fittedy = fitted $ 

 

 
Figure E40.4  Model Predictions 
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E40.4 Hypothesis and Specification Tests of IIA 
 
 We consider two types of hypothesis tests.  The first is a specification test of the IID extreme 
value specification.  The model assumptions induce the most prominent shortcoming of the 
multinomial logit model, the independence from irrelevant alternatives (IIA) property.  The fact that 
the ratio of any two probabilities in the model involves only the utilities for those two alternatives 
produces a number of undesirable implications, including the striking pattern in the elasticities in the 
model shown earlier.  We consider a test of the IIA assumption.  The second part of this section 
considers more conventional hypothesis tests about the coefficients in the model. 
 
E40.4.1 Testing the IIA Assumption 
 
 Hausman and McFadden (1984) proposed a specification test for this model to test the inherent 
assumption of the independence from irrelevant alternatives (IIA). (IIA is a consequence of the initial 
assumption that the stochastic terms in the utility functions are independent and extreme value 
distributed.  Discussion may be found in standard texts on qualitative choice modeling, such as 
Hensher, Rose and Greene (2005a) and Greene (2011).)  The procedure is, first, to estimate the model 
with all choices.  The alternative specification is the model with a smaller set of choices.  Thus, the 
model is estimated with this restricted set of alternatives and the same model specification.  The set of 
observations is reduced to those in which one of the smaller set of choices is made.  The test statistic is 
 
   q = [br - bu]′[Vr - Vu]-1[br - bu] 
 
where ‘u’ and ‘r’ indicate unrestricted and restricted (smaller choice set) models and V is an 
estimated variance matrix for the estimates.  To use LIMDEP to carry out this test, it is necessary to 
estimate both models.  In the second, it is necessary to drop the outcomes indicated.  This is done 
with the  
   ; Ias = list 
 
specification.  The list gives the names of the outcomes to be dropped.  This procedure is automated 
as shown in the following example: 
 
 CLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car  
   ; Rhs = invc,invt,gc,ttme $ 
 CLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car    
   ; Ias = car  
   ; Rhs = invc,invt,gc,ttme $ 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -244.13419 
Estimation based on N =    210, K =   4 
Inf.Cr.AIC  =  496.268 AIC/N =    2.363 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .1396 .1341 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.02243         .01435    -1.56  .1181     -.05056    .00570 
    INVT|    -.00634***      .00184    -3.45  .0006     -.00995   -.00274 
      GC|     .03183**       .01373     2.32  .0204      .00492    .05874 
    TTME|    -.03481***      .00469    -7.42  .0000     -.04401   -.02561 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  59 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Normal exit:   6 iterations. Status=0, F=    103.2012 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -103.20124 
Estimation based on N =    151, K =   4 
Inf.Cr.AIC  =  214.402 AIC/N =    1.420 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -159.0502  .3511 .3424 
Response data are given as ind. choices 
Number of obs.=   210, skipped   59 obs 
Hausman test for IIA. Excluded choices are 
CAR 
ChiSqrd[ 4] =  51.9631, Pr(C>c) =  .000000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.04642**       .02109    -2.20  .0277     -.08775   -.00508 
    INVT|    -.00963***      .00271    -3.55  .0004     -.01495   -.00432 
      GC|     .04116**       .01984     2.07  .0380      .00227    .08005 
    TTME|    -.07939***      .00992    -8.01  .0000     -.09882   -.05996 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 In order to compute the coefficients in the restricted model, it is necessary to drop those 
observations that choose the omitted choice(s).  In the example above, 59 observations were skipped.  
They are marked as bad data because with car excluded, no choice is made for those observations.  
As a consequence, the log likelihood functions are not comparable.  The Hausman statistic is used to 
carry out the test.  In the preceding example, the large value suggests that the IIA restriction should 
be rejected. 

Note that you can carry out several tests with different subsets of the choices without 
refitting the benchmark model.  Thus, in the example above, you could follow with a third model in 
which ; Ias = bus instead of car. 
 There is a possibility that restricting the choice set can lead to a singularity.  It is possible 
that when you drop one or more alternatives, some attribute will be constant among the remaining 
choices.  Thus, you might induce the case in which there is a ‘regressor’ which is constant across the 
choices.  In this case, LIMDEP will send up a diagnostic about a singular Hessian (it is).  Hausman 
and McFadden (1984) suggest estimating the model with the smaller number of choice sets and a 
smaller number of attributes.  There is no question of consistency, or omission of a relevant attribute, 
since if the attribute is always constant among the choices, variation in it is obviously not affecting 
the choice. After estimation, the subvector of the larger parameter vector in the first model can be 
measured against the parameter vector from the second model using the Hausman statistic given 
earlier.  This possibility arises in the model with alternative specific constants, so it is going to be a 
common case.  The examples below suggest one way you might proceed in such as case. 
 The first step is to fit the original model using the entire sample and retrieve the results. 
 
 CLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car  
   ; Rhs = invc,invt,gc,ttme,one $ 
 MATRIX ; bu = b(1:4) ; vu = Varb(1:4,1:4) $ 
 
The variable choice takes values 1,2,3,4,1,2,3,4... indicating the indexing scheme for the choices. 
 
 CREATE ; choice = Trn(-4,0) $ 
 
Chair is a dummy variable that equals one for all four rows when choice made is air. Now restrict 
the sample to the observations for choices train, bus, car. 
 
 REJECT ; chair = 1 | choice = 1 $ 
 
Fit the model with the restricted sample (choice set) and one less constant term. 
 
 CLOGIT ; Lhs = mode  
   ; Choices = train,bus,car   
   ; Rhs = invc,invt,gc,ttme,one $ 
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Retrieve the restricted results and compute the Hausman statistic. 
 
 MATRIX ; br = b(1:4) ; vr = Varb(1:4,1:4) 
   ; db = br - bu ; vdb = Nvsm(vr,-vu) $ 
 CALC  ; List   
   ; q = Qfr(db,vdb)  
   ; 1 - Chi(q,4) $ 
The results are: 
 
[CALC] Q       =     33.7844338 
[CALC] *Result*=       .0000008 
Calculator: Computed   2 scalar results 
 
NOTE: (We’ve been asked this one several times.)  The difference matrix in this calculation, vdb, 
might be nonsingular (have an inverse), but not be positive definite.  In such a case, the chi squared 
can be negative.  If this happens, the right conclusion is probably that it should be zero. 
 
E40.4.2 Lagrange Multiplier, Wald, and Likelihood Ratio Tests 
 
 CLOGIT keeps the usual statistics for the classical hypothesis tests.  After estimation, the 
matrices b and varb will be kept and can be further manipulated for any purposes, for example, in the 
WALD command.  You can use 
 
   ; Test: ... restrictions 
 
as well within the CLOGIT command to set up Wald tests of linear restrictions on the parameters.  
Likelihood ratio tests can be carried out by using the scalar logl, which will be available after 
estimation.  The value of the log likelihood function for a model which contains only J-1 alternative 
specific constants will be reported in the output as well (see the sample outputs above).  If your 
model actually contains the ASCs, LIMDEP will also report the chi squared test statistic and its 
significance level for the hypothesis that the other coefficients in the model are all 0.0. 
 
HINT:  LIMDEP can detect that a model contains a set of ASCs if you have used one in an ; Rhs 
specification.  But, it cannot determine from a set of dummy variables that you, yourself, provide, if 
they are a set of ASCs, because it inspects the model, not the data, to make the determination.  As 
such, there is an advantage, when possible, to letting LIMDEP set up the set of alternative specific 
constants for you. 
 
Finally, an LM statistic for testing the hypothesis that the starting values are not significantly 
different from the MLEs (the standard LM test) is requested by adding  
 
   ; Maxit  =  0 
 
to the CLOGIT command. 
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E40.5 Examining Scenarios and Model Simulations 
 
 Another way to analyze the estimated model is to examine the effect on predicted ‘market’ 
shares of changes in the attribute levels.  We compute the shares as 
 

   S(alternative j) =  N×
1

N
iji

P
∧

=∑  
 
Thus, save for the rounding error which is distributed, the model predicts the number of individuals 
in the sample who will choose each alternative.  The crosstab described earlier summarizes this 
calculation.  For our application, 
 
 CLOGIT ; Lhs  = mode 
   ; Choices = air,train,bus,car  
   ; Rhs = invc,invt,gc,ttme  
   ; Rh2 = one,hinc  
   ; Crosstab $ 
 
+-------------------------------------------------------+ 
| Cross tabulation of actual choice vs. predicted P(j)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i).  | 
| Column totals may be subject to rounding error.       | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|             7            13            18             3            42 
   TRAIN|             3            19            10             2            34 
     BUS|             5            11            24             2            42 
     CAR|             6            10            14             4            34 
--------+---------------------------------------------------------------------- 
   Total|            21            53            66            12           152 
+-------------------------------------------------------+ 
| Cross tabulation of actual y(ij) vs. predicted y(ij)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is N(k,j,i)=Sum(i=1,...,N) Y(k,j,i).  | 
| Predicted y(ij)=1 is the j with largest probability.  | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|             5            10            27             0            42 
   TRAIN|             1            27             4             2            34 
     BUS|             4             7            29             2            42 
     CAR|             5            10            18             1            34 
--------+---------------------------------------------------------------------- 
   Total|            15            54            78             5           152 
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The feature described here is used to examine what becomes of these predictions when the value of 
an attribute changes.  For example, how the predictions change when the generalized cost of air 
travel changes. 
 The simulator is used as follows: 
 
Step 1. Fit the model. 
 
Step 2. Use the identical model specification, but add to the command 
 

  ;  Simulation  [ = a subset of the choices, if desired – see below] 
   ;  Scenario =  what changes and how 
 
We take the base case first, in which all alternatives are considered in the simulation.  A scenario is 
defined using 
   ; Scenario:  attribute (choices in which it appears)  =  the change    
 
The change is defined using 
 
   =  specific value to force the attribute to take this value in all cases 
or   =  [*] value to multiply observed values by the value 
or   =  [+] value to add ‘value’ to the observed values. 
 
The results of the computation will show the market shares before and after the change. 
 For example, we will refit our transport mode model, then examine the effect of increasing 
by 25% the terminal time spent waiting for air transport. 
 
 SAMPLE ; 1-840 $ 
 CLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car $ 
 CLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; Simulation ; Scenario: ttme (air) = [*]1.25 $ 
 
Results are shown below. 
 
+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
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------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 15.118    32 |-12.501%      -26 | 
|TRAIN     | 30.000    63 | 33.694    71 |  3.694%        8 | 
|BUS       | 14.286    30 | 16.126    34 |  1.841%        4 | 
|CAR       | 28.095    59 | 35.061    74 |  6.966%       15 | 
|Total     |100.000   210 |100.000   211 |   .000%        1 | 
+----------+--------------+--------------+------------------+ 
 
The model predicts the base case using the actual data, shown in the left side and what would 
become of this case if the scenario is assumed.  In this case, each person’s ttme for air travel is 
increased by 25%, and the probabilities are recomputed.  We see a fairly strong effect is predicted; 
26 of 58 people who chose air are now expected to take other modes, eight changing to train, four to 
bus, and 15 to car (and one apparently deciding to walk – this is rounding error). 
 You may combine up to five scenarios in each simulation.  This allows you to have 
simultaneous changes in attributes.  Use 
 
   ; Scenario: attribute (choices in which it appears) = the change / 
    attribute (choices in which it appears) = the change /  

    ... 
 
For example, suppose terminal time for both air and train increased by 25%.  We would extend our 
previous setup as follows: 
 
 SAMPLE ; 1-840 $ 
 CLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car $ 
 CLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; Simulation ; Scenario: ttme (air)  = [*] 1.25  / 
     ttme (train) = [*] 1.25  $ 
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+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
TTME       TRAIN                            Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 16.417    34 |-11.202%      -24 | 
|TRAIN     | 30.000    63 | 23.178    49 | -6.822%      -14 | 
|BUS       | 14.286    30 | 18.796    39 |  4.510%        9 | 
|CAR       | 28.095    59 | 41.609    87 | 13.514%       28 | 
|Total     |100.000   210 |100.000   209 |   .000%       -1 | 
+----------+--------------+--------------+------------------+ 
 
 You may also compare the effects of different scenarios as well.  For example, rather than 
assume that ttme for both air and train changed, you might compare the two scenarios.  To do a 
pairwise comparison of scenarios, separate them with ‘&’ in the command.  For example, 
 
 CLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; Simulation ; Scenario: ttme (air)  = [*] 1.25 & 
     ttme (train) = [*] 1.25  $ 
 
produces the following: 
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+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 15.118    32 |-12.501%      -26 | 
|TRAIN     | 30.000    63 | 33.694    71 |  3.694%        8 | 
|BUS       | 14.286    30 | 16.126    34 |  1.841%        4 | 
|CAR       | 28.095    59 | 35.061    74 |  6.966%       15 | 
|Total     |100.000   210 |100.000   211 |   .000%        1 | 
+----------+--------------+--------------+------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 2 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       TRAIN                            Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 30.168    63 |  2.548%        5 | 
|TRAIN     | 30.000    63 | 20.787    44 | -9.213%      -19 | 
|BUS       | 14.286    30 | 16.383    34 |  2.097%        4 | 
|CAR       | 28.095    59 | 32.662    69 |  4.567%       10 | 
|Total     |100.000   210 |100.000   210 |   .000%        0 | 
+----------+--------------+--------------+------------------+ 
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The simulator located    209 observations for this scenario. 
Pairwise Comparisons of Specified Scenarios 
Base     for this comparison is scenario 1. 
Scenario for this comparison is scenario 2. 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 15.118    32 | 30.168    63 | 15.049%       31 | 
|TRAIN     | 33.694    71 | 20.787    44 |-12.907%      -27 | 
|BUS       | 16.126    34 | 16.383    34 |   .257%        0 | 
|CAR       | 35.061    74 | 32.662    69 | -2.399%       -5 | 
|Total     |100.000   211 |100.000   210 |   .000%       -1 | 
+----------+--------------+--------------+------------------+ 
 
 Simulations and scenarios can be combined and extended. You may have multiple scenarios 
and each scenario can involve several attributes.  Separate the specifications within a scenario with 
slashes (/) and separate scenarios with ampersands (&).  Finally, you can use the simulator to restrict 
the choice set.  The computed probabilities are computed assuming only the specified alternatives are 
available.  To do this, use 
 
   ; Simulation = the subset of alternatives 
 
 To continue the example, we simulate the model assuming that people could not drive, and 
examine what the effect of increasing terminal time in airports would do to the market shares for the 
remaining three alternatives. 
 
 SAMPLE ; 1-840 $ 
 CLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car $ 
 CLOGIT ; Lhs  = mode 

; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; Simulation = air,train,bus 

 ; Scenario: ttme (air) = [*] 1.25  $ 
 
+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
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------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 39.353    83 | 22.933    48 |-16.420%      -35 | 
|TRAIN     | 40.985    86 | 52.281   110 | 11.297%       24 | 
|BUS       | 19.662    41 | 24.786    52 |  5.123%       11 | 
|Total     |100.000   210 |100.000   210 |   .000%        0 | 
+----------+--------------+--------------+------------------+ 
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E41: Models for Count Data 
 
E41.1 Introduction 
 
 This chapter and Chapters E42-E44 describe estimators for models for count data.  
Applications are discussed in Cameron and Trivedi (1986), Winkelmann (2008) and Hilbe (2011). 
Another important reference is Hausman, Hall, and Griliches (1984).  Major surveys for practitioners 
are Winkelmann (2008), Cameron and Trivedi (1998, 2005) and Hilbe (2011).   
 The basic formulation is the Poisson regression model.  For a discrete random variable, Y, 
observed over a period of length Ti, and observed frequencies, yi, i =1,...,n, where yi is a nonnegative 
integer count, and regressors xi, the Poisson regression model is 
 

   Prob(Y = yi|xi)  =  exp( )( )
!

iy
i i i i

i

T T
y

− λ λ , yi = 0,1,...;  log λi = β′xi. 

 
In this model, λi is both the mean and variance of yi per unit of time; that is 
 
   E(Y/Ti|xi)  =  λi.  
 
The scale variable, Ti, might measure the size of a population observed, instead, as it would be if the 
model were one of the incidence of a disease in a set of locations.  As long as the intensity variable, 
Ti is observed, the model may be conveniently defined in terms of 
 
   λi  =  exp(β′xi + logTi). 
 
Then, we revert to the familiar linear index model, in which logTi enters the regression with a 
coefficient of one. An example appears below.  A multiplicative model is obtained if any of the 
components of xi enter λi logarithmically.  (For an application, see McCullagh and Nelder, (1983).) 
The partial effects in this nonlinear regression model are, 
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 The Poisson model has the restrictive equidispersion property that 
 
   Var[Y|xi]  =  E[Y|xi] = λi. 
 
The negative binomial regression model is an extension of the Poisson regression model that allows 
the variance of the process to differ from the mean. An alternative interpretation that also fits well 
with several of the extensions considered in the next chapter is that the negative binomial model 
results from the introduction of a certain kind of unobserved individual heterogeneity into the 
Poisson regression model.   
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 The probabilities in the negative binomial model are given by 
 

   Prob(Y = yi|xi)  =  ( )
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where θ is the overdispersion parameter.  The connection between the two models is that the Poisson 
model results if α = 1/θ = 0.  (A derivation appears in Section E41.4.5, the technical details section 
for the negative binomial model.) The formulation of the density that we use for optimization is 
 

    Prob(Y = yi|xi) =  iy
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where    ui =  θ / (θ + λi) 
 
and    θ   =  1/α. 
  
The negative binomial model has the property that 
  
   Var[yi]  =  E[yi]{1  +  αE[yi]}. 
 
This is a natural form of ‘overdispersion’ in that the overdispersion rate is 
  
   Var[yi]/E[yi]  =  1  +  αE[yi]. 
 
 We have reparameterized the probability distribution in terms of θ because this simplifies 
the formulation and computation of the log likelihood and its derivatives.  Greene (2008), defines the 
class of Negbin P models by a relationship between mean and variance functions, 
 
   E[yi|xi] = λi and Var[yi|xi] = λi + αλi

P.   
 
The model already considered, the standard case, is Cameron and Trivedi’s model Negbin 2, or NB2.  
An alternative form labeled Negbin 1 or NB1 is obtained by using P = 1.  The density is obtained by 
replacing θ with θλi in Prob(Y = yi|xi).  More generally, replacing θ with θλi

2-P produces the Negbin 
P family.  For NB2, this produces, after a bit of manipulation, 
 

   Prob(Y = yi|xi) =  ( ) (1 )
( ) ( 1)
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where    wi =  θ / (θ + 1). 
 
This is not a simple reparameterization of the model; it is a different model.  An example given in 
Section E41.4.4 demonstrates.  We also consider the fully general form of the negative binomial 
model, NBP in Section E41.4.4. 
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 We also provide many variants of each model.  (The list of different functional forms that 
have been derived is surprisingly long.  Hilbe (2011), for example, lists more than ten.)  Several of 
these different formulations arise in a model of the sort that produces the negative binomial model, 
but in which the heterogeneity term derives from a normal distribution, rather than a log-gamma 
distribution.  The resulting models are a bit simpler to estimate and appear to be more stable with 
respect to ill-behaved data sets.  Other formulations arise through the effects of different sampling 
mechanisms, such as censoring, and other functional forms such as the gamma, generalized Poisson 
and Poly-Aeppli models. 
 Data for the count data models are often censored or truncated.  The data are said to be 
censored if a range of values of the dependent variable is collapsed into a single value.  Consider, for 
example, a survey which asks how many times an individual visited a certain facility. The responses 
might be 0, 1, 2, and 3 or more.  Values above three are converted to three, so the data are censored. 
We allow censoring to be ‘on the right,’ as in our example, or ‘on the left,’ which would be the case 
if all values of yi less than or equal to a certain value were converted to that value.  Data are said to 
come from a truncated distribution, or be ‘truncated,’ (for convenience – it is the distribution, not the 
data that is truncated) if values in a certain range are simply not observed.  To continue our example, 
if the analyst discarded observations with values of three or more, the remaining observations would 
come from a truncated distribution.  The range of yi for this example would be 0,1,2 instead of 
0,1,2,... as in the original population.  Another common application is ‘on site sampling.’  A visitor 
to a site of some sort, such as a recreation site, is asked how many times they have visited the site.  
By construction, on site samples are truncated at zero. Like censoring, we allow truncation to be on 
the right or the left. 
 This chapter will develop the various functional forms of the models for count data.  Chapter 
E42 will document models that contain heterogeneity, censoring or truncation.  Chapter E43 extends 
the Poisson and negative binomial models to two part formulations such as zero inflation, hurdle and 
sample selection models.  Finally, Chapter E44 documents the panel data estimators. 
 
E41.2 The Poisson Regression Model 
 
 The basic command for the Poisson regression model is   
  
 POISSON  ; Lhs = dependent variable 
   ; Rhs = regressors  
   ; ... other options $ 
 
The default model assumes that the time period or unit of space in which the outcome is observed is 
the same for all observations.  When this is not the case, and the scaling is observed, use 
 
   ; Exposure = scale variable 
 
to provide it.  An example appears below. 
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 All of the general options for nonlinear models for controlling the iterative process and 
listing and keeping fitted values are available.  These include: 
  
   ; List   to display fitted values 
   ; Keep = name  to retain predicted values 
   ; Res = name  to retain residuals 
   ; Maxit = n   to set maximum iterations or ; Maxit = 0 for LM tests 
   ; Tlf, ; Tlb, ; Tlg  to set the convergence criteria 
   ; Output = value  to control technical output during iterations 
   ; Covariance Matrix to display the estimated asymptotic covariance matrix, 

   same as ; Printvc 
   ; Test: spec   to define Wald tests of linear restrictions 
 
and so on.  You may provide starting values and impose fixed values and  restrictions in this model 
with 
    ; Start = list   to give starting values 
    ; Rst = list   to specify constraints 
   ; CML: spec  to define a constrained maximum likelihood estimator 
  
The coefficient vector is  β = [β1,β2,...,βK].  LIMDEP uses zeros for the starting values for estimation.  
The estimated Hessian for the Poisson model is based on the actual second derivatives of the log 
likelihood.  Partial effects are requested with 
 
   ; Partial Effects 
 
Partial effects are computed by averaging the individual estimates.  A simpler estimator can be 
produced by doing the entire computation at the means of the data.  Request this by adding  
 
   ; Means  
 
to the model command. 
 The command builder for this model can be found in Model:Count Data/Poisson.  The 
basic model is specified on the Main and Options pages which are shown in Figure E41.1. 
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Figure E41.1  Command Builder for the Poisson Model 
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E41.2.1 Results for the Poisson Model 
 
 Estimation for the Poisson model begins with an ordinary least squares regression of the Lhs 
variable on the regressors.  These results are presented only for comparison purposes, if you request 
them with 
   ; OLS 
 
and are not used as the starting values for the iterations.  (Experience has shown clearly that 0 is a 
superior starting point for the iterations.)  Perhaps a still better point would replace the starting value 
for the constant with the log of the mean of the Lhs variable.  However, the model is so simple to 
estimate that is of little consequence. The model output consists of the standard results for maximum 
likelihood estimators, including the iterations, log likelihood function, restricted log likelihood 
function, and two goodness of fit statistics, 
 
   Chi squared  =  Σi(yi - ˆ

iλ )2/ ˆ
iλ  

and   G squared  =  2Σiyilog(yi/ ˆ
iλ ) (with 0log(0) = 0)) 

 
(See Agresti (1984). Note, ylogy = 0 when y = 0.)  Significance values are not computed for these 
because the degrees of freedom is dependent on the application.  CALC can be used to compute the 
appropriate probability. We do, however, present the chi squared statistic for testing the hypothesis 
that the slopes are all zero, including the significance level and degrees of freedom.  This 
computation assumes that there is a constant term in the model.  (It is easily shown that in this case, 
the MLE of λ is y , from which it follows that the MLE of β0 is log y , and the remaining 
computations follow.)   
 The output for the Poisson model also contains two R2 measures based on these fit measures,  
 
 Rp

2  =  1  -  [Σi(yi - ˆ
iλ )2/ ˆ

iλ ] / [Σi(yi - y  )2 / y ] (p = Pearson) 

 Rd
2  =  1  -  [Σiyilog(yi/ ˆ

iλ )] / [Σiyilog(yi/ y )] (d = deviance) 
 
In both cases, the fit measure assesses the improvement in the fit that results from using ˆ

iλ  instead 
of y  to predict yi. 
 
 The ; List specification produces a listing of: 
 

1. actual yi, 

2. predicted yi =  estimate of E[yi] = ˆ
iλ , 

3. residual   =  yi - ˆ
iλ , 

4. ‘var1’    =  estimate of β′x, 

5. ‘var2’    =  computed probability for observed yi. 
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 The partial effects in the Poisson (and negative binomial model) are 
 
   ∂E[yi|xi]/∂xi  =  λi β. 
  
The ; Partial Effects specification will produce a listing of these slopes computed at the sample 
means of the data. 
 Results saved for the Poisson model are:  
 
 Matrices: b and varb as usual  
 
 Scalars: nreg, kreg, logl, and exitcode for the model 
   ybar and sy = mean and standard deviation for dependent variable 
 
 Last Model: b_variable  
 
 Last Function: Conditional mean function, λ = exp(βꞌx) 
 
The exponential regression function is used for PARTIALS and SIMULATE. 
 
E41.2.2 Application of the Poisson Model 
 
 To illustrate the Poisson and related models, we will use the German health care data 
introduced in Section E2.4 and used in several earlier applications.  The examples below will fit 
count data models to the count of doctor visits, docvis.  Poisson regression of docvis on one, age, 
hhninc and educ produces the results below: 
 An example (developed further below) is the following: 
 

SAMPLE  ; All $ 
NAMELIST  ; x = one,age,hhninc,educ,female $ 
POISSON  ; Lhs = docvis ; Rhs = x  

; OLS ; Partial Effects $ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=DOCVIS   Mean                 =        3.18352 
             Standard deviation   =        5.68969 
             No. of observations  =          27326  Degrees of freedom 
Regression   Sum of Squares       =        30389.0           4 
Residual     Sum of Squares       =        854192.       27321 
Total        Sum of Squares       =        884581.       27325 
             Standard error of e  =        5.59151 
Fit          R-squared            =         .03435  R-bar squared =   .03421 
Model test   F[  4, 27321]        =      242.99522  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =   -85806.29089  Akaike I.C.   =  3.44268 
             Restricted (b=0)     =   -86283.92356  Bayes  I.C.   =  3.44419 
             Chi squared [  4]    =      955.26534  Prob C2 > C2* =   .00000 
Model was estimated on Jul 26, 2011 at 10:25:47 PM 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.29829***      .23965     5.42  .0000      .82858   1.76800 
     AGE|     .06734***      .00304    22.18  .0000      .06139    .07329 
  HHNINC|   -1.67038***      .19832    -8.42  .0000    -2.05908  -1.28169 
    EDUC|    -.08058***      .01554    -5.19  .0000     -.11103   -.05013 
  FEMALE|     .94932***      .06897    13.76  .0000      .81415   1.08449 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function   -103923.54929 
Restricted log likelihood -108662.13583 
Chi squared [   4 d.f.]      9477.17308 
Significance level               .00000 
McFadden Pseudo R-squared      .0436084 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =********* AIC/N =    7.607 
Model estimated: Jul 26, 2011, 22:25:47 
Chi- squared =255750.59514  RsqP= .0796 
G  - squared =154808.51777  RsqD= .0577 
Overdispersion tests: g=mu(i)  : 21.372 
Overdispersion tests: g=mu(i)^2: 21.373 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .57813***      .02630    21.98  .0000      .52659    .62968 
     AGE|     .02057***      .00031    67.30  .0000      .01997    .02117 
  HHNINC|    -.52855***      .02189   -24.14  .0000     -.57146   -.48565 
    EDUC|    -.02868***      .00173   -16.57  .0000     -.03208   -.02529 
  FEMALE|     .29405***      .00700    42.00  .0000      .28033    .30777 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   3.1835 
Scale Factor for Marginal Effects  3.1835 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .06550***      .00100    65.62  .0000      .06354    .06745 
  HHNINC|   -1.68266***      .06992   -24.06  .0000    -1.81971  -1.54562 
    EDUC|    -.09132***      .00552   -16.54  .0000     -.10214   -.08050 
  FEMALE|     .93023***      .02210    42.10  .0000      .88693    .97354   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 To examine the use of the duration, or exposure variable, Ti discussed earlier, we consider a 
constructed example.  As noted earlier, the data are an unbalanced panel.  If we consider not the year 
by year count of doctor visits but the total number of visits by the individual, then the counts will 
differ partly because of the differing number of years.  The following shows how to account for this 
effect.  (We are also making use of the result that the sum of Poisson variables has a Poisson 
distribution.)   
 
 SAMPLE ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 NAMELIST ; x = one,age,hhninc,educ,female $ 
 CREATE  ; sumy = Group Sums(docvis, Pds =_groupti) $ 
 CREATE ; sumy = Int(sumy + .1) ; date = Ndx(id,1) $ 
 REJECT  ; date > 1 $ 
 POISSON ; Lhs = sumy ; Rhs = x $ 
 POISSON ; Lhs = sumy ; Rhs = x ; Exposure = ti $ 
 
The results show that accounting for the length of exposure does, indeed, change the results 
noticeably.   
 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable                 SUMY 
Log likelihood function    -68730.19426 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    SUMY|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2.27241***      .02550    89.11  .0000     2.22243   2.32239 
     AGE|     .02117***      .00028    76.32  .0000      .02062    .02171 
  HHNINC|    -.81944***      .02509   -32.67  .0000     -.86861   -.77027 
    EDUC|    -.04808***      .00177   -27.10  .0000     -.05155   -.04460 
  FEMALE|     .21781***      .00698    31.22  .0000      .20414    .23148 
--------+-------------------------------------------------------------------- 
Poisson Regression 
Dependent variable                 SUMY 
Log likelihood function    -56253.06502 
Exposure variable for count data = TI 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    SUMY|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .67028***      .02597    25.81  .0000      .61939    .72117 
     AGE|     .02021***      .00031    65.55  .0000      .01961    .02082 
  HHNINC|    -.48585***      .02567   -18.93  .0000     -.53616   -.43555 
    EDUC|    -.03318***      .00176   -18.85  .0000     -.03663   -.02973 
  FEMALE|     .29277***      .00700    41.81  .0000      .27904    .30649 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E41.2.3 Testing for Overdispersion 
 
 Cameron and Trivedi (1990) have proposed a number of tests for over- or underdispersion in 
the Poisson regression model.  Probably the simplest, and by their results, the optimal test in the set 
they considered, involves simple least squares regressions.  The crux of the test is that under the 
hypothesis of the Poisson model, (y - E[y])2 - E[y] has mean 0.  The testing framework is built 
around 
   H0:  Var[yi|xi]  =  µi 

  vs. H1:  Var[yi|xi]  =  µi + αg(µi). 
 
They detail the several assumptions needed to carry out the tests.  Among them is the important one 
that under either hypothesis, the Poisson model gives consistent estimates of E[yi] = µi.  The reader is 
referred to their paper for the necessary background.  The test they propose, their Topt, is carried out 
by testing the significance of the single coefficient in the linear OLS regression of 
  
   zi   =  [(yi - µi)2 - yi] / (µi√2) 

on   wi   =  g(µi) / (µi√2). 
  
They suggest two possibilities: 
  
   g(µi) =  µi 

and   g(µi) =  µi
2. 

 
Under the null hypothesis of equidispersion, the statistics have limiting chi squared distributions with 
one degree of freedom. 
 The two statistics are reported in the standard output for the Poisson model, as shown in the 
example below. 
 
Poisson Regression 
Dependent variable                 SUMY 
Log likelihood function    -56253.06502 
Restricted log likelihood  -74728.12052 
Chi squared [   4 d.f.]     36950.11101 
Significance level               .00000 
McFadden Pseudo R-squared      .2472303 
Estimation based on N =   7293, K =   5 
Inf.Cr.AIC  =********* AIC/N =   15.428 
Exposure variable for count data = TI 
Chi- squared =123910.94497  RsqP= .3443 
G  - squared = 88390.28781  RsqD= .2948 
Overdispersion tests: g=mu(i)  : 14.829 
Overdispersion tests: g=mu(i)^2: 15.415 
  
Since the critical value from the chi squared table for one degree of freedom is 3.84, we would reject 
the null hypothesis on this basis, and proceed to a less restrictive model. 
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E41.2.4 Robust Covariance Matrices 
 
 The estimator of the asymptotic covariance matrix for the Poisson model based on the actual 
and expected (they are the same) second derivatives is 
 

   Est.Asy.Var ˆ 
 β   
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where Λ is a diagonal matrix of predicted values.  The BHHH estimator is the inverse of 
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where D is a diagonal matrix of residuals.  The Poisson model is one in which the MLE is robust to 
certain misspecifications of the model, such as the failure to incorporate latent heterogeneity in the 
mean (i.e., one fits the Poisson model when the negative binomial is appropriate.)  In this case, a 
robust covariance matrix, 
 
   Robust Est.Asy.Var ˆ 

 β   =  [X′ΛX]-1[X′D2X] [X′ΛX]-1 

 
is appropriate to accommodate this failure of the model.  This computation is requested with 
 
   ; Robust or ; HC2 (heteroscedasticity correction 2) 
 
added to the command.  For the model estimated earlier, the command produces the following 
results.  The rather large increase in the standard errors produced by the robust estimator suggests 
that, indeed, there is something missing in the Poisson specification.  As noted earlier, there is ample 
evidence of overdispersion in the data.  The corrected results appear second. 
 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function   -103923.54929 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .57813***      .02630    21.98  .0000      .52659    .62968 
     AGE|     .02057***      .00031    67.30  .0000      .01997    .02117 
  HHNINC|    -.52855***      .02189   -24.14  .0000     -.57146   -.48565 
    EDUC|    -.02868***      .00173   -16.57  .0000     -.03208   -.02529 
  FEMALE|     .29405***      .00700    42.00  .0000      .28033    .30777 
--------+-------------------------------------------------------------------- 
Robust (sandwich) estimator used for VC 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .57813***      .08107     7.13  .0000      .41924    .73703 
     AGE|     .02057***      .00095    21.72  .0000      .01872    .02243 
  HHNINC|    -.52855***      .06580    -8.03  .0000     -.65752   -.39958 
    EDUC|    -.02868***      .00484    -5.92  .0000     -.03817   -.01920 
  FEMALE|     .29405***      .02240    13.13  .0000      .25014    .33796 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 A related calculation is used when observations occur in groups which may be correlated.  
This is rather like a panel; one might use this approach in a random effects kind of setting in which 
observations have a common latent heterogeneity.  The parameter estimator is unchanged in this 
case, but an adjustment is made to the estimated asymptotic covariance matrix.  The calculation is 
done as follows: Suppose the n observations are assembled in G clusters of observations, in which 
the number of observations in the ith cluster is ni.  Thus, 
 

   
1

G
ii

n
=∑   =  n. 

 
Denote by β the full set of model parameters in whatever variant of the model is being estimated.  
Let the observation specific gradients and Hessians be 
 

   gij =  
log ijL∂

∂β
 

 

   Hij =  
2 log

'
ijL∂

∂ ∂β β
. 

 
The uncorrected estimator of the asymptotic covariance matrix based on the Hessian is  
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The corrected asymptotic covariance matrix is 
 

   Est.Asy.Var 
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Note that if there is exactly one observation per cluster, then this is G/(G-1) times the sandwich 
(robust) estimator discussed above.  Also, if you have fewer clusters than parameters, then this 
matrix is singular – it has rank equal to the minimum of G and JK, the number of parameters. This 
estimator is requested with 
 
   ; Cluster = variable (as in panel data setups) or 
          number of observations in a cluster 
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(Further details on this estimator appear in Section R10.2)  An extension for stratified and clustered 
(within strata) data may also be requested with 
 
   ; Stratum = the specification 
 
 Since our data set is a panel, these results apply to the models estimated here.  Using id as 
the clustering variable, we obtain the results below: 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .57813***      .11131     5.19  .0000      .35997    .79630 
     AGE|     .02057***      .00129    15.97  .0000      .01805    .02310 
  HHNINC|    -.52855***      .08191    -6.45  .0000     -.68908   -.36802 
    EDUC|    -.02868***      .00688    -4.17  .0000     -.04218   -.01519 
  FEMALE|     .29405***      .03212     9.15  .0000      .23109    .35701 
--------+-------------------------------------------------------------------- 
 
The continued increases in the standard errors compared to the results with the robust covariance 
matrix shown earlier suggest that the grouping of the observations is distorting the estimated 
covariance matrix. 
 
E41.2.5 Scaling the Asymptotic Covariance Matrix MLE   
 
 In order to correct the Poisson estimator’s asymptotic covariance matrix, a scale factor is 
suggested, 
   W  =   [1/(n-K)]Σi[(yi – exp(β′xi))2 / exp(β′xi). 
 
This correction factor will account for over or underdispersion as well as degrees of freedom.  To 
request this estimator, use 
 
   ; HC1  (Heteroscedasticity correction 1) 
 
An example appears below.  In the example, the scaling makes a considerable difference in the 
estimated standard errors.  In fact, for that model of doctor visits, there is an extreme preponderance 
of zeros so that the Lhs variable actually is considerably overdispersed.  The two tests listed in the 
diagnostic statistics box shown earlier are consistent with this. 
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-------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .57813***      .08046     7.19  .0000      .42043    .73583 
     AGE|     .02057***      .00094    22.00  .0000      .01874    .02241 
  HHNINC|    -.52855***      .06698    -7.89  .0000     -.65982   -.39728 
    EDUC|    -.02868***      .00530    -5.42  .0000     -.03907   -.01830 
  FEMALE|     .29405***      .02142    13.73  .0000      .25207    .33603 
--------+-------------------------------------------------------------------- 
 
These estimated standard errors are based on the unscaled covariance matrix. 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .57813***      .02630    21.98  .0000      .52659    .62968 
     AGE|     .02057***      .00031    67.30  .0000      .01997    .02117 
  HHNINC|    -.52855***      .02189   -24.14  .0000     -.57146   -.48565 
    EDUC|    -.02868***      .00173   -16.57  .0000     -.03208   -.02529 
  FEMALE|     .29405***      .00700    42.00  .0000      .28033    .30777 
--------+-------------------------------------------------------------------- 
 
E41.2.6 Technical Details for the Poisson Model 
 
 The log likelihood and its derivatives for the Poisson regression model are: 
 
   log L =  Σi[-λi + β′xiyi - lnyi!], 

   g =  Σi∂log Prob[Y = yi]/∂β  =  Σi(yi - λi)xi   

   H =  Σi∂2log Prob[Y = yi]/∂β∂β′  =  Σi[-λixixi′]   
 
Estimation is by Newton’s method, 
 
   bk+1  =  bk  -  [Hk]-1gk, 
 
which converges readily.  For this model, the iteration is equivalent to iteratively reweighted least 
squares, 
   bk+1  =  [X′ΛkX]-1[X′Λkz ], 
 
where Λk is a diagonal matrix of fitted variances, λi, at iteration k, while 
 
   zi   =  logλi + (yi - λi)/λi 
 
based on the current parameter estimates. 
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E41.3 Quantile Regression for Count Data 
 
 The quantile regression estimator for count data was proposed by Machado and Silva (2005).  
The approach is not a Poisson model.  Rather, the estimator develops conditional quantiles, Q(y|x,α) 
where α is the desired quantile of the distribution.  The estimator uses a loglinear, i.e., exponential, 
predictor for the model.  The linear programming methods are similar to those used for QREG for 
continuous data.  A difference for the count data case is that the authors provide an analytic approach 
for estimating the asymptotic covariance matrix while bootstrapping is used in the continuous case.  
Methods used for computing this estimator are provided by Machado and Silva (2005). 
 The model is requested with 
 
 QCREG ; Lhs = dependent variable 
   ; Rhs = independent variables (including one) $ 
 
The default model is the conditional median, quantile = 0.5.  Other quantiles are requested by adding 
 
   ; Qnt = the quantile, strictly between 0.0 and 1.0. 
 
You may produce results for multiple quantiles by specifying several quantiles in the ; Qnt 
specification.  For example, in our last application below, we use 
 
   ; Qnt = .4, .5, .6, .7, .8. 
 
The exponential function, λi is the conditional quantile here, not the conditional mean.  Note that the 
count distribution is unlikely to be symmetric, so the conditional median will not equal the 
conditional mean in any event.  Partial effects may be requested with 
 
   ; Partial Effects. 
 
The PARTIALS and SIMULATE commands may be used after estimation.  However, it should be 
noted, once again, that these estimators are operating on the conditional quantile function, not the 
conditional mean. 
 We applied these to the health care data, and estimated the 0.4 quantile, the median (0.5) and 
the 0.75 quantiles.  The Poisson model is compared to the conditional median. 
 

QCREG ; Lhs = docvis ; Rhs = one,age,educ,hhninc,female,public 
; Qnt = .4 ; Partial Effects $ 

QCREG ; Lhs = docvis ; Rhs = one,age,educ,hhninc,female,public 
; Qnt = .5 ; Partial Effects $ 

POISSON ; Lhs = docvis ; Rhs = one,age,educ,hhninc,female,public 
; Partials Effects $ 

QCREG ; Lhs = docvis ; Rhs = one,age,educ,hhninc,female,public 
; Qnt = .75 ; Partial Effects $ 
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----------------------------------------------------------------------------- 
Quantile Regression Model. Quantile =      .400000 
Quantile Regression Estimator for Count Data 
LHS=DOCVIS   Mean                 =        3.18352 
             Standard deviation   =        5.68959 
             Number of observs.   =          27326 
             Minimum              =         .00000 
             t= .40000 quantile   =        1.00000 
             Maximum              =      121.00000 
Model size   Parameters           =              6 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1.98244***      .13323   -14.88  .0000    -2.24358  -1.72131 
     AGE|     .03206***      .00153    20.93  .0000      .02906    .03506 
    EDUC|    -.01180         .00718    -1.64  .1004     -.02588    .00228 
  HHNINC|    -.18265**       .09090    -2.01  .0445     -.36081   -.00448 
  FEMALE|     .78127***      .03618    21.59  .0000      .71035    .85218 
  PUBLIC|     .26660***      .05312     5.02  .0000      .16249    .37072 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------------+ 
| Partial Effects for Quantile Count Regression          | 
| Variable    Value    Partial Effect    Semi-Elasticity | 
|  AGE       43.527           .106              .029     | 
|  EDUC      11.321          -.039             -.011     | 
|  HHNINC      .352          -.605             -.163     | 
| *FEMALE      .000          3.922             1.057     | 
| *PUBLIC      .000          1.012              .273     | 
+--------------------------------------------------------+ 
| * = Dummy variable. Other variables fixed at means.    | 
+--------------------------------------------------------+ 
 
These are the partial effects produced by PARTIALS.  They differ from the results above partly 
because they are treating λi as E[y|x] while the results are for the conditional median. 
 
--------------------------------------------------------------------- 
Partial Effects for Exponential Regression Function 
Partial Effects Computed at data Means 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .02741     .00128   21.39      .02489      .02992 
      EDUC         -.01540     .00608    2.53     -.02732     -.00349 
      HHNINC       -.24722     .08152    3.03     -.40700     -.08744 
      FEMALE        .63557     .03156   20.14      .57372      .69743 
      PUBLIC        .24353     .04546    5.36      .15442      .33263 
--------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Quantile Regression Model. Quantile =      .500000 
Quantile Regression Estimator for Count Data 
LHS=DOCVIS   Mean                 =        3.18352 
             Standard deviation   =        5.68959 
             Number of observs.   =          27326 
             Minimum              =         .00000 
             t= .50000 quantile   =        1.00000 
             Maximum              =      121.00000 
Model size   Parameters           =              6 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1.38214***      .15582    -8.87  .0000    -1.68755  -1.07674 
     AGE|     .03074***      .00151    20.30  .0000      .02777    .03371 
    EDUC|    -.01953**       .00871    -2.24  .0249     -.03659   -.00247 
  HHNINC|    -.21747**       .09591    -2.27  .0234     -.40546   -.02948 
  FEMALE|     .65814***      .03582    18.37  .0000      .58793    .72836 
  PUBLIC|     .33036***      .07036     4.70  .0000      .19245    .46826 
--------+-------------------------------------------------------------------- 
(Poisson) 
--------+-------------------------------------------------------------------- 
Constant|     .25069***      .03206     7.82  .0000      .18785    .31353 
     AGE|     .02059***      .00031    67.42  .0000      .01999    .02119 
    EDUC|    -.01983***      .00180   -11.03  .0000     -.02336   -.01631 
  HHNINC|    -.48298***      .02194   -22.01  .0000     -.52598   -.43998 
  FEMALE|     .29248***      .00700    41.80  .0000      .27877    .30619 
  PUBLIC|     .23566***      .01330    17.71  .0000      .20959    .26174 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------------+ 
| Partial Effects for Quantile Count Regression          | 
| Variable    Value    Partial Effect    Semi-Elasticity | 
|  AGE       43.527           .087              .026     | 
|  EDUC      11.321          -.055             -.017     | 
|  HHNINC      .352          -.615             -.185     | 
| *FEMALE      .000          2.635              .791     | 
| *PUBLIC      .000          1.108              .333     | 
+--------------------------------------------------------+ 
| * = Dummy variable. Other variables fixed at means.    | 
+--------------------------------------------------------+ 
(Poisson model) 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .06556***      .00100    65.73  .0000      .06360    .06751 
    EDUC|    -.06314***      .00573   -11.02  .0000     -.07437   -.05191 
  HHNINC|   -1.53758***      .07004   -21.95  .0000    -1.67486  -1.40030 
  FEMALE|     .92522***      .02208    41.90  .0000      .88194    .96850   # 
  PUBLIC|     .68233***      .03497    19.51  .0000      .61380    .75086   # 
--------+-------------------------------------------------------------------- 
 
  



E41: Models for Count Data  E-948 

----------------------------------------------------------------------------- 
Quantile Regression Model. Quantile =      .750000 
Quantile Regression Estimator for Count Data 
LHS=DOCVIS   Mean                 =        3.18352 
             Standard deviation   =        5.68959 
             Number of observs.   =          27326 
             Minimum              =         .00000 
             t= .75000 quantile   =        4.00000 
             Maximum              =      121.00000 
Model size   Parameters           =              6 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .21734*        .12905     1.68  .0922     -.03560    .47028 
     AGE|     .02188***      .00134    16.36  .0000      .01926    .02450 
    EDUC|    -.01569**       .00715    -2.20  .0281     -.02970   -.00168 
  HHNINC|    -.30590***      .08688    -3.52  .0004     -.47619   -.13561 
  FEMALE|     .38686***      .03140    12.32  .0000      .32532    .44839 
  PUBLIC|     .19154***      .04929     3.89  .0001      .09494    .28814 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------------+ 
| Partial Effects for Quantile Count Regression          | 
| Variable    Value    Partial Effect    Semi-Elasticity | 
|  AGE       43.527           .043              .016     | 
|  EDUC      11.321          -.031             -.011     | 
|  HHNINC      .352          -.596             -.221     | 
| *FEMALE      .000           .920              .341     | 
| *PUBLIC      .000           .411              .152     | 
+--------------------------------------------------------+ 
| * = Dummy variable. Other variables fixed at means.    | 
+--------------------------------------------------------+ 
 
 The full set of results can be obtained for several quantiles with ; Qnt = list of values.  A 
summary table will also be produced.  For our example, we obtained 
 
----------------------------------------------------------------------- 
Quantile Regression Coefficients Summary 
----------------------------------------------------------------------- 
Variable  b(0.40)  b(0.50)  b(0.60)  b(0.70)  b(0.80) 
 ONE       -1.968   -1.345    -.610    -.029     .444 
 AGE         .032     .030     .025     .022     .022 
 EDUC       -.014    -.018    -.010    -.013    -.016 
 HHNINC     -.287    -.224    -.312    -.372    -.397 
 FEMALE      .767     .661     .490     .426     .354 
 PUBLIC      .317     .298     .226     .198     .223 
----------------------------------------------------------------------- 
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 The quantile estimator is estimated by perturbing the sample data slightly with random 
draws to make the data continuous.  This creates some simulation ‘chatter’ (noise) in that the results 
are slightly dependent on the random draws.  To reduce this outcome, the authors suggest averaging 
the results over several series of draws.  The default in LIMDEP’s estimator is not to do this average 
– implicitly using m = 1 random sample and one estimator.  You can use additional estimates by 
specifying m with 
   ; Pts = m. 
 
In the results below, we have fit the model with m = 1, then a second time, averaging the results over 
m = 5 repetitions. 
 
 CALC  ; Ran(123457) $ 

QCREQ ; … $ 
 CALC  ; Ran(123457) $ 

QCREQ ; … ; Pts = 5 $ 
 
----------------------------------------------------------------------------- 
Quantile Regression Model. Quantile =      .400000 
Quantile Regression Estimator for Count Data 
LHS=DOCVIS   Mean                 =        3.18352 
             Standard deviation   =        5.68959 
             Number of observs.   =          27326 
             Minimum              =         .00000 
             t= .40000 quantile   =        1.00000 
             Maximum              =      121.00000 
Model size   Parameters           =              6 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1.97688***      .13173   -15.01  .0000    -2.23507  -1.71869 
     AGE|     .03247***      .00149    21.84  .0000      .02955    .03538 
    EDUC|    -.01448**       .00709    -2.04  .0411     -.02838   -.00059 
  HHNINC|    -.33054***      .09027    -3.66  .0003     -.50748   -.15361 
  FEMALE|     .80459***      .03594    22.39  .0000      .73415    .87504 
  PUBLIC|     .31003***      .05458     5.68  .0000      .20306    .41699 
--------+-------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Quantile Regression Model. Quantile =      .400000 
Quantile Regression Estimator for Count Data 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1.97692***      .13095   -15.10  .0000    -2.23358  -1.72027 
     AGE|     .03236***      .00151    21.37  .0000      .02939    .03533 
    EDUC|    -.01432**       .00718    -1.99  .0461     -.02840   -.00025 
  HHNINC|    -.25299***      .09583    -2.64  .0083     -.44080   -.06517 
  FEMALE|     .77923***      .03736    20.86  .0000      .70601    .85245 
  PUBLIC|     .30690***      .05319     5.77  .0000      .20264    .41115 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 



E41: Models for Count Data  E-950 

E41.4 Overdispersion: The Negative Binomial Model 
 
 The negative binomial model has served as the most common extension of the Poisson 
model to allow for overdispersion or latent heterogeneity.  We consider several other models as well 
an extension of the negative binomial model to allow individual variation in the overdispersion 
parameter and, in the next section, three models based on different functional forms that allow 
underdispersion as well. 
 
E41.4.1 The Negative Binomial Model 
 
 The negative binomial model can be obtained by introducing heterogeneity into the 
conditional mean of the Poisson. Thus, if 
 
   f (yi | λi, εi )  =  Poisson with λi  =  exp(β′xi + εi) 
 
where     exp( εi )  =  vi  ~  Gamma with mean 1,  
 

    f(vi)    =  1exp( )
( ) i iv v

θ
θ−θ

−θ
θΓ

, 

 
then the unconditional density is 
  
   log Prob[Yi = j] =  log Li 
 
     =  log Γ(θ + yi) - log Γ(θ) - log[Γ(yi+1)] + θlogui + yilog(1 - ui), 
 
where    θ   =  1/α 
 
and    ui  =  θ / (θ + λi). 
 
The crucial element of the result is that whereas in the Poisson model, Var[yi|λi] = E[yi|λi], in the 
negative binomial model, 
 
   Var[yi|λi]  =  E[yi|λi] + α E[yi|λi] > E[yi|λi]; 
 
the model has overdispersion. 
 The negative binomial regression model is requested by extending the Poisson model.  Use   
 
 NEGBIN ; Lhs = ... 
   ; Rhs = ... $ 
 
or POISSON   ; Lhs = ...   
   ; Rhs = ...   
   ; Model = Negbin $ 
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 The full set of estimates for the Poisson model will be given first, followed by the negative 
binomial estimates.  These can be compared for evidence of overdispersion.  (The Poisson results 
will contain two regression based test statistics for the hypothesis of no overdispersion as well.  See 
Section E41.2.3.)  The negative binomial model is estimated using only the BFGS algorithm.  All 
other parts of the basic command are identical to those for the Poisson model. 
 Starting values for the slopes are the Poisson regression parameters estimated earlier.  To 
compute an initial estimate of the overdispersion parameter, α, LIMDEP computes the OLS slope in 
an artificial regression based on the relationship between the Poisson and negative binomial models, 
 
   [(yi - λi)2 / λi  -  1]  =  αλi  +  wi. 
 
(Certainly, wi is heteroscedastic, but we are only interested in consistency.)  If the resulting estimate 
is not positive, this suggests that the data are inconsistent with the model.  But, LIMDEP then uses a 
value of α = .2, and continues.  You may provide your own starting values, as well, with 
  
   ; Start = slope parameters, value for 1/α 
  
(Be sure to provide the last value.)  
 
NOTE:  If you wish to provide your own starting values for the negative binomial model, provide 
the K values for β and θ = 1/α, not α. 
 
Fixed value and linear restrictions may be imposed with 
  
   ; Rst = list 
or   ; CML:  specification 
  
Once again, the list in the constraints specification must have a setting for θ = 1/α, either a fixed 
value or a parameter name. 
  
NOTE:  The restrictions are not imposed on the initial Poisson model when it is fit for starting 
values. 
 
The command builder for the negative binomial model is found at Model:Count Data/NegBin.  The 
dialog for the model specification and options for the model are identical to those for the Poisson 
model; the model command differs only in the command name. 
 The negative binomial model occasionally presents convergence problems in estimation, 
particularly when the data are censored or truncated. To deal with this, or for purposes of hypothesis 
testing or specification analysis, you may fix the value of α (not θ) with the  specification, 
 
   ; Dsp  =  value for α 
 
The parameters of the negative binomial model will be estimated by maximum likelihood with α 
held fixed at this value.  The value will be clearly marked as fixed in the final output. 
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 The retrievable results for this model are:  
 
 Matrices: b and varb as usual 

Adding ; Par requests that the estimate of α (not θ) be included with β in  
b and varb. 

 
 Scalars:  nreg, kreg, and logl for the model 
   ybar and sy = mean and standard deviation for dependent variable 
   alpha for the estimate of α for the negative binomial model 
 
  Last Function: Conditional mean function, λ = exp(βꞌx) 
 
The exponential regression function is used for PARTIALS and SIMULATE. 
 
E41.4.2 Application 
 
 The following refits the Poisson model estimated using, instead, the negative binomial 
specification.  The base Poisson model is shown as well to allow a comparison.  These results 
decisively reject the Poisson model in favor of the negative binomial.  The reported results indicate 
that the NB2 form of the model has been used.  It also shows the hypothesis test of the Poisson 
model as a restriction on the NB model.  The hypothesis is decisively rejected by several tests. 
 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function   -103923.54929 
Chi- squared =255750.59514  RsqP= .0796 
G  - squared =154808.51777  RsqD= .0577 
Overdispersion tests: g=mu(i)  : 21.372 
Overdispersion tests: g=mu(i)^2: 21.373 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .57813***      .02630    21.98  .0000      .52659    .62968 
     AGE|     .02057***      .00031    67.30  .0000      .01997    .02117 
  HHNINC|    -.52855***      .02189   -24.14  .0000     -.57146   -.48565 
    EDUC|    -.02868***      .00173   -16.57  .0000     -.03208   -.02529 
  FEMALE|     .29405***      .00700    42.00  .0000      .28033    .30777 
--------+-------------------------------------------------------------------- 
Negative Binomial Regression 
Log likelihood function    -60164.22014 
Restricted log likelihood -103923.54929 
Chi squared [   1 d.f.]     87518.65830 
Significance level               .00000 
NegBin form 2; Psi(i) = theta 
Tests of Model Restrictions on Neg.Bin. 
Model               Logl ChiSquared[df] 
Poisson(b=0)  -108662.14  ******** [**] 
Poisson       -103923.55    9477.2 [ 4] 
Negative Bin.  -60164.22   87518.7 [ 1] 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .62857***      .05457    11.52  .0000      .52162    .73553 
     AGE|     .02042***      .00070    29.07  .0000      .01904    .02179 
  HHNINC|    -.48779***      .04520   -10.79  .0000     -.57637   -.39921 
    EDUC|    -.03539***      .00378    -9.36  .0000     -.04281   -.02798 
  FEMALE|     .32673***      .01588    20.58  .0000      .29561    .35784 
        |Dispersion parameter for count data model 
   Alpha|    1.90309***      .01984    95.94  .0000     1.86421   1.94197 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

These estimates are for a negative binomial with the dispersion parameter forced to equal 1.5 with 
 

 NEGBIN ; Lhs = docvis ; Rhs = x ; Dsp = 1.5 $ 
 
----------------------------------------------------------------------------- 
Negative Binomial Regression 
Dependent variable               DOCVIS 
Log likelihood function    -60375.82426 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .62664***      .04454    14.07  .0000      .53934    .71394 
     AGE|     .02043***      .00058    35.48  .0000      .01930    .02156 
  HHNINC|    -.49059***      .03736   -13.13  .0000     -.56381   -.41736 
    EDUC|    -.03514***      .00312   -11.25  .0000     -.04126   -.02902 
  FEMALE|     .32555***      .01298    25.09  .0000      .30011    .35099 
        |Dispersion parameter for count data model 
   Alpha|    1.50000    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 

Based on the model with free dispersion parameter, the likelihood ratio statistic for this restriction 
would be -2(-60164.22014.14 - (-60375.82426)) = 423.21.  This is far larger than the critical chi 
squared with one degree of freedom of 3.84, so we would reject the hypothesis that α equals 1.5. 
 

E41.4.3 Heterogeneous Negative Binomial Model 
 

 The negative binomial model may be extended to allow observed heterogeneity in the 
dispersion parameter.  The structural model is 
 

   Prob[Y = yi] =  ( ) (1 )
( ) ( 1)

i iyi i
i i

i i

y u u
y

θθ +
−

θ +
Γ

Γ Γ
 

 

    ui =  θi / (θi  +  λi) 
 

    αi =  1 / θi  =   α exp(δ′zi) 
 

    λi  =  exp(β′xi) 
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The mean of the underlying gamma variate which produces the negative binomial model is one while 
its variance is αi.  Therefore, this extension is equivalent to allowing heteroscedasticity in the latent 
heterogeneity.  The command for adding this specification to the model is 
 
 NEGBIN ; ... as before ; Hfn = variables in zi $ 
 
NOTE:  Do not include one in the Hfn list.  The leading α provides the constant term. 
 
           The heterogeneity model retains all the options of the standard model, including fitted 
values, lists of predictions, saving results, etc.  The new parameters, δ, are kept as a matrix named 
deltanb.  The heterogeneity does not affect the conditional mean function, so the partial effects are 
still based on λi. 
 Note, that ∂log Li/∂δ = ∂log Li/αi × αi × zi.  This is a minor complication added to the model 
as already developed.  Once again, the BHHH estimator is used for the asymptotic covariance 
matrix. The following estimates the model shown earlier, now with variance function that is a 
function of whether the individual is married. 
 
----------------------------------------------------------------------------- 
Negative Binomial Regression 
Dependent variable               DOCVIS 
Log likelihood function    -60155.92470 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .62399***      .05532    11.28  .0000      .51556    .73241 
     AGE|     .02056***      .00071    29.00  .0000      .01917    .02195 
  HHNINC|    -.48776***      .04598   -10.61  .0000     -.57787   -.39764 
    EDUC|    -.03555***      .00384    -9.27  .0000     -.04307   -.02803 
  FEMALE|     .32528***      .01592    20.43  .0000      .29408    .35648 
        |Dispersion parameter for count data model 
   Alpha|    2.06990***      .04103    50.45  .0000     1.98948   2.15031 
        |Heterogeneity in dispersion parameter 
 MARRIED|    -.11067***      .02258    -4.90  .0000     -.15493   -.06642 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   3.1879 
Scale Factor for Marginal Effects  3.1879 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .06554***      .00248    26.44  .0000      .06068    .07039 
  HHNINC|   -1.55492***      .14763   -10.53  .0000    -1.84427  -1.26558 
    EDUC|    -.11334         .76186     -.15  .8817    -1.60657   1.37989 
  FEMALE|    1.02846*        .58182     1.77  .0771     -.11189   2.16881   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E41.4.4 Negbin 1, Negbin 2 and Negbin P 
 
 The literature, mostly associating the result with Cameron and Trivedi’s early (1986) work, 
defines two familiar forms of the negative binomial model.  Where 
 
   λi  =  exp(β′xi), 
 
the Negbin 2 form of the probability is 
 

   Prob(Y = yi|xi) =  iy
ii

i

i uu
y
y )1(

)1()(
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−
+ΓθΓ

+θΓ θ  

 
where    ui =  θ / (θ + λi) 
 
and    θ   =  1/α. 
 
This is the default form of the model in most (if not all) of the received econometrics packages that 
provide an estimator for this model.  This is the form of the model we have used up to this point.  
The Negbin 1 form of the model results if θ in the preceding is replaced with θi = θλi.  Then, ui 
becomes u = θ/(1+θ), and the density becomes 
 

   Prob(Y = yi|xi) =  ( ) (1 )
( ) ( 1)

i iyi i

i i

y w w
y

θλΓ θλ +
−

Γ θλ Γ +
 

 
where    w =  θ / (θ + 1) 
 
LIMDEP will fit the model with this specification by adding 
 
   ; Model = NB1 
 
to the NEGBIN model command.  An example appears below. 
 We note, this is somewhat more than a simple reparameterization of the model.  The results 
below show that the likelihood function is not quite equal at the maximum, and the parameters are 
not simple transformations in one model vs. the other.  We are not aware of a theory that justifies 
using one form or the other for the negative binomial model.  The two are not nested, so we cannot 
carry out a likelihood ratio test of one versus the other.  The Negbin P family does nest both of them, 
so this may provide a more general, encompassing approach to finding the right specification.  This 
is examined below. 
 The results below refit our model using the Poisson specification, Negbin 1 and Negbin 2.  
Since the conditional mean function in all three cases is  
 
   λi  =  exp(β′xi), 
 
the three sets of parameter estimates should be similar, as they are.  However, we have already 
rejected the Poisson model in favor of either negative binomial model. 
 



E41: Models for Count Data  E-956 

----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function   -103923.54929 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .57813***      .02630    21.98  .0000      .52659    .62968 
     AGE|     .02057***      .00031    67.30  .0000      .01997    .02117 
  HHNINC|    -.52855***      .02189   -24.14  .0000     -.57146   -.48565 
    EDUC|    -.02868***      .00173   -16.57  .0000     -.03208   -.02529 
  FEMALE|     .29405***      .00700    42.00  .0000      .28033    .30777 
--------+-------------------------------------------------------------------- 
Negative Binomial Regression 
Dependent variable               DOCVIS 
Log likelihood function    -60164.22014 
NegBin form 2; Psi(i) = theta 
Tests of Model Restrictions on Neg.Bin. 
Model               Logl ChiSquared[df] 
Poisson(b=0)  -108662.14  ******** [**] 
Poisson       -103923.55    9477.2 [ 4] 
Negative Bin.  -60164.22   87518.7 [ 1] 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .62857***      .05457    11.52  .0000      .52162    .73553 
     AGE|     .02042***      .00070    29.07  .0000      .01904    .02179 
  HHNINC|    -.48779***      .04520   -10.79  .0000     -.57637   -.39921 
    EDUC|    -.03539***      .00378    -9.36  .0000     -.04281   -.02798 
  FEMALE|     .32673***      .01588    20.58  .0000      .29561    .35784 
        |Dispersion parameter for count data model 
   Alpha|    1.90309***      .01984    95.94  .0000     1.86421   1.94197 
--------+-------------------------------------------------------------------- 
Negative Binomial Regression 
Dependent variable               DOCVIS 
Log likelihood function    -60063.78559 
NegBin form 1;Psi(i) = theta*exp[bx(i)] 
Tests of Model Restrictions on Neg.Bin. 
Model               Logl ChiSquared[df] 
Poisson(b=0)  -108662.14  ******** [**] 
Poisson       -103923.55    9477.2 [ 4] 
Negative Bin.  -60063.79   87719.5 [ 1] 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .47184***      .05439     8.67  .0000      .36523    .57845 
     AGE|     .01710***      .00065    26.24  .0000      .01582    .01838 
  HHNINC|    -.22813***      .04417    -5.16  .0000     -.31471   -.14155 
    EDUC|    -.01544***      .00356    -4.34  .0000     -.02241   -.00847 
  FEMALE|     .32894***      .01477    22.28  .0000      .30000    .35788 
        |Dispersion parameter for count data model 
   Alpha|    6.11096***      .06715    91.00  .0000     5.97934   6.24258 
--------+-------------------------------------------------------------------- 
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 The more general Negbin P model is obtained by replacing θ in 
 

   Prob(Y = yi|xi) =  iy
ii

i

i uu
y
y )1(

)1()(
)(

−
+ΓθΓ

+θΓ θ  

 
where    ui =  θ / (θ + λi), 
 
with θλi

2-P.  We have examined the cases of P = 1 and P = 2.  For convenience, let Q = 2 - P, Then, 
the density is 

   Prob(Y = yi|xi) =  
( )

( ) ( 1)

Q
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This model is also built into LIMDEP.  To request it, use 
 
 NEGBIN ; all as usual for your count data model 
   ; Model = NBP $ 
 
The following reestimates the negative binomial in this more general form. 
 
----------------------------------------------------------------------------- 
Negative Binomial (P) Model 
Dependent variable               DOCVIS 
Log likelihood function    -60029.85010 
Restricted log likelihood -103923.54929 
Chi squared [   1 d.f.]     87787.39838 
Significance level               .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .42597***      .06020     7.08  .0000      .30799    .54396 
     AGE|     .02028***      .00073    27.87  .0000      .01886    .02171 
  HHNINC|    -.34404***      .05023    -6.85  .0000     -.44250   -.24558 
    EDUC|    -.02284***      .00411    -5.56  .0000     -.03089   -.01479 
  FEMALE|     .36359***      .01643    22.13  .0000      .33139    .39580 
        |Dispersion parameter for count data model 
   Alpha|    3.83035***      .14966    25.59  .0000     3.53702   4.12367 
        |Negative Binomial. General form, NegBin P 
       P|    1.39570***      .03249    42.96  .0000     1.33203   1.45938 
--------+-------------------------------------------------------------------- 
 
Note that the log likelihood function continues to increase.  For this model, the likelihood ratio test 
against the NB2 model gives chi squared of -2(-60164.22 - (-60029.97)) = 268.5, which far exceeds 
the critical value of 3.84.  The Wald (t) test would be (1.3975 - 2)/.03249 = -18.31, which is likewise 
significant. 
 For exploring the functional form, it may be useful to fix the value of P in the estimation.  
You can use ; Rst = list in general.  For the NBP model, a convenient shorthand if P is the only 
parameter to be restricted is 
 
   ; Scale = the desired value. 
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In the example below, we have used ; Scale = 1.5. 
 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function   -103923.54929 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .57813***      .02630    21.98  .0000      .52659    .62968 
     AGE|     .02057***      .00031    67.30  .0000      .01997    .02117 
  HHNINC|    -.52855***      .02189   -24.14  .0000     -.57146   -.48565 
    EDUC|    -.02868***      .00173   -16.57  .0000     -.03208   -.02529 
  FEMALE|     .29405***      .00700    42.00  .0000      .28033    .30777 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Normal exit:  10 iterations. Status=0, F=    60164.22 
Normal exit:  11 iterations. Status=0, F=    60033.20 
----------------------------------------------------------------------------- 
Negative Binomial (P) Model 
Dependent variable               DOCVIS 
Log likelihood function    -60033.20247 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .43551***      .06064     7.18  .0000      .31665    .55437 
     AGE|     .02088***      .00073    28.64  .0000      .01945    .02230 
  HHNINC|    -.37749***      .05080    -7.43  .0000     -.47705   -.27793 
    EDUC|    -.02527***      .00414    -6.10  .0000     -.03339   -.01714 
  FEMALE|     .36737***      .01650    22.26  .0000      .33503    .39971 
        |Dispersion parameter for count data model 
   Alpha|    3.39373***      .03382   100.35  .0000     3.32744   3.46001 
        |Negative Binomial. General form, NegBin P 
       P|    1.50000    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
 The model in the NBP form is built into LIMDEP, but it is also easy to formulate it as a user 
defined procedure with MAXIMIZE.  The general form would be as follows: 
 
 SAMPLE ; whatever is appropriate for your application $ 
 NAMELIST ; x = your set of independent variables 
 CALC  ; k = Col(x) $ 
 CREATE ; y = your dependent variable $ 
 NEGBIN ; Lhs = y ; Rhs = x $ 
 MATRIX ; b0 = b ; t0 = 1/alpha $ 
 CALC  ; q0 = 0 $ 
 MAXIMIZE ; Start = b0,t0,q0 
      ; Labels = k_c,t,q 
   ; Fcn =  al  = Exp(c1'x)  |  
        tlq = t*(al^q)  | 
        w   = tlq/(al+tlq)  | 
      Lgm(y+tlq) - Lgm(tlq) - Lgm(y+1) + tlq*Log(w) + y*Log(1-w) $ 
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 A good starting value for Q is helpful.  One strategy that might be used is to fix Q in the 
model at some specific values, by providing specific starting values and using  
 
   ; Fix = q 
 
In the models already estimated, we fit Q with Q = 0 (Negbin 2) and Q = 1 (Negbin 1).  Experimenting 
with values between zero and one may be useful.  In our estimates below, the estimated value of Q is 
0.60429 (consistent with P = 1.3957 using the built in procedure earlier).  The data set in use for these 
applications is particularly rich and well behaved.  The estimator for this model was actually quite 
routine.  Parameter estimates for the fully general model (Negbin 1.3957) are shown below. 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function    -60029.85010 
Estimation based on N =  27326, K =   7 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      C1|     .42597***      .06020     7.08  .0000      .30799    .54396 
      C2|     .02028***      .00073    27.87  .0000      .01886    .02171 
      C3|    -.34404***      .05023    -6.85  .0000     -.44250   -.24558 
      C4|    -.02284***      .00411    -5.56  .0000     -.03089   -.01479 
      C5|     .36359***      .01643    22.13  .0000      .33139    .39580 
       T|     .26107***      .01020    25.59  .0000      .24108    .28107 
       Q|     .60429***      .03249    18.60  .0000      .54062    .66797 
--------+-------------------------------------------------------------------- 
 
In the results above, t, the estimate of θ, is an estimate of 1/α.  To compare it to the negative binomial 
model, we could use the delta method to estimate α and an asymptotic standard error.  The estimate 
would be 3.83039, which suggests much more dispersion than implied by the Negbin 2 model.   
 
E41.4.5 Technical Details 
 
 The negative binomial model arises is as a modification of the Poisson model in which the 
mean is now µi, respecified so that 
 
   log µi  =  logλi + εi  =  β′xi + εi, 
  
where exp(εi) has a gamma distribution with mean 1.0 and variance α.  (This is one of several 
variants of the negative binomial model discussed by Cameron and Trivedi (1986).) The resulting 
conditional probability distribution is 

   Prob(Y = yi|εi,xi)  =  exp[ (exp( ) )][exp( ) ]
!

iy
i i i i

iy
− ε λ ε λ , yi = 0,1,... 

 

where    f[exp(εi)] =  exp( ) 1[exp( )]
( )

i
ie

θ
−θ ε θ−θ

ε
Γ θ

, θ  =  1/α, exp(εi) > 0. 
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The unconditional distribution of yi is obtained by taking the expectation with respect to exp(εi) of 
the conditional probability.  For convenience, let τi = exp(εi).  Then 
 

      Prob(Y = yi|xi) =  1

0

exp[ ][ ]
! ( )

i
i

y
i i i i

i i
i

e d
y
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This is a gamma integral that can be simplified considerably.  Collecting terms and using results for 
the gamma integral, this reduces to 
 

   Prob(Y = yi|xi) =  ( )
( ) ! ( )
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θ λ Γ + θ
Γ θ λ + θ

 

 
 We have reparameterized the probability distribution in terms of θ because this simplifies 
the formulation and computation of the log likelihood and its derivatives. The formulation of the 
result that we use for optimization is 
  

   Prob(Y = yi|xi) =  iy
ii
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i uu
y
y )1(
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−
+ΓθΓ

+θΓ θ  

where    ui =  θ / (θ + λi) 
 
and    θ   =  1/α. 
  
 For optimization and forming the BHHH estimator, we have 
 
   ∂log Li/∂λi   =  [θ/ui  -  yi/(1-ui)]∂ui/∂λi. 
 
   ∂ui/∂λi    =  -ui / (θ + λi)   =  -ui(1 - ui) / λi 
 
   ∂ui/θ  =  ui(1-ui)/θ 
 
   ∂λi/∂β    =  λi xi. 
 
Combining terms,  ∂log Li/∂β =  [yiui - θ(1 - ui)]xi. 
 
Also,   ∂log Li/∂θ   =  Ψ(θ + yi) - Ψ(θ)  + logui +  (1 - ui)  -  yiui/θ 
 
where   Ψ(z)  =  dlog Γ(z)/dz. 
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The Hessian is   
 

   ∂2log Li/∂β∂β′ =  -(θ + yi)ui (1 - ui) xi xi′ 
 
   ∂2log Li/∂β∂θ =  [-(1-ui)2 +  yiui(1 - ui)/θ] xi  
 
   ∂2log Li/∂θ2   =  Ψ′(θ + yi) - Ψ′(θ)  + (1 - ui)2 / θ  +  yi ( ui/θ )2 
 
These are used in computation of the log likelihood function, gradient, and estimate of the 
asymptotic covariance matrix. 
 Greene (2008), define the class of Negbin P models by the relationship between mean and 
variance functions, 
 

   E[yi|xi]   =  λi and Var[yi|xi] = λi + αλi
P.   

 
The model already considered, the standard case, is their model Negbin 2, or NB2.  An alternative 
form labeled Negbin 1 or NB1 is obtained by using P = 1.  The density is obtained by replacing θ 
with θλi in Prob(Y = yi|xi).  This produces, after a bit of manipulation, 
 

   Prob(Y = yi|xi) =  ( ) (1 )
( ) ( 1)

i iyi i
i i

i i

y w w
y

θλΓ θλ +
−

Γ θλ Γ +
 

where    wi =  θ / (θ + 1) 
 
and    θ   =  1/α. 
 
This is not a simple reparameterization of the model; it is a different model.  An example given in 
Section E41.4.2 demonstrates.   We also consider the fully general form of their negative binomial 
model, Negbin P.   
 The more general Negbin P model is obtained by replacing θ in 
 

   Prob(Y = yi|xi) =  iy
ii
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where    ui =  θ / (θ + λi) 
 
with θλi

2-P.  We have examined the cases of P = 1 and P = 2.  For convenience, let Q = 2 - P. Then, 
the density is 

   Prob(Y = yi|xi) =  
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Derivatives of logLi for the general Negbin P model are tedious.  We obtain them by writing the 
density as 
 
  logLi  =  logΓ(yi + gi) - logΓ(gi) - logΓ(yi) + gi logwi + yi log(1-wi) 
 
where  gi  =  θ λi

Q  and  wi = gi / (gi + λi). 
 
Then,  ∂logLi / ∂λi  =  [Ψ( yi + gi) - Ψ(gi) + logwi] ∂gi /∂λi + [gi /wi – yi /(1-wi)] ∂w i/∂λi 
 
  ∂logLi / ∂θ  =  [Ψ( yi + gi) - Ψ(gi) + logwi] ∂gi /∂θ   + [gi /wi – yi /(1-wi)] ∂w i/∂θ 

 

  ∂logLi / ∂Q  =  [Ψ( yi + gi) - Ψ(gi) + logwi] ∂gi /∂Q + [gi /wi – yi /(1-wi)] ∂wi /∂Q. 
 
The inner parts are:  ∂gi / ∂λi  =  θQλi

Q-1 = (Q/λi)gi  
 
    ∂gi / ∂θ   =  λi

Q  =  (1/θ)gi 
 
    ∂gi/ ∂Q   =  θλi

Q logλi =  logλi gi 
 
    ∂wi / ∂λi  = [(Q-1)/λi]wi (1-wi) 
 
    ∂wi / ∂θ   =  (1/θ)wi (1-wi) 
 
    ∂wi / ∂Q  =  logλi wi (1-wi) 
 
Collecting terms, now, let  Ai =  [Ψ( yi + gi) - Ψ(gi) + logwi] 
 
    Bi  =  [gi (1 – wi) – yi wi], 
 

to obtain   
/ 1/

log / [ ] 1/ 0
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The final element needed is ∂logLi/∂β = λixi.  We use these and the BHHH estimator to compute the 
maximum likelihood estimates and their asymptotic standard errors for the NBP model.  When this 
model is estimated, there are three sets of iterations.  The Poisson model is estimated first.  These 
results are shown with the results.  The Negbin 2 model is then estimated using the Poisson estimates 
as starting values.  The NB2 results are not displayed, but you will observe this second set of 
iterations.  These are used to improve the starting values for the NBP estimates.  The starting values 
for NBP are the NB2 estimates, with P = 2 (Q = 0). 
 For all forms of the negative binomial model, when θ is allowed to be heteroscedastic, then 
θi = θexp(γ′zi) = θvi.  To obtain the derivatives for the underlying parameters, let ∆i = ∂logLi/∂θi.  
Then, ∂logLi/∂θ = ∆ivi and ∂logLi/∂γ = ∆iθizi. 
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E41.5 Other Models for Count Data 
 

 There is a huge literature on variants of the Poisson model for counts.  (See, e.g., 
Winkelmann (2003) or Hilbe (2011).)  We have included estimators for several of them.  In all cases, 
the models relax the equidispersion assumption of the Poisson model. 
 

E41.5.1 Gamma Model with Under- or Overdispersion 
 

 The gamma model proposed by Winkelmann (1995) and also discussed in Cameron and 
Trivedi (1998) represents a significant innovation.  The large majority of the extensions of the 
Poisson model that have been proposed have accommodated overdispersion – that is, variance 
greater than the mean.  Underdispersion is a phenomenon which has been much less convenient to 
model directly – some extensions, such as various forms of the ‘with zeros’ models discussed in 
Chapter E43, can induce underdispersion, but otherwise involve more structure than desired.  This  
extension provides a straightforward, easily implemented approach to a general model for counts that 
allows both under- and overdispersion.  As this is a new technique (and, to our knowledge, the first 
implementation in a general econometrics package), a detailed presentation of the mathematical 
background is presented here. 
 The gamma (based) probability model for counts is 
 
   Prob[yi  =  j]   =  G(αj, λi) - G(αj + α, λi) 
 
where     λi   =  exp(β′xi)  (as usual) 
 

and              G(αj, λi) =  1  if  j = 0, or  dueu
j

i uj∫
λ −−α

αΓ 0
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)(
1  if j > 0, j = 1,... 

 

The dispersion parameter is α; there is underdispersion if α > 1, overdispersion if α < 1, and 
equidispersion if α = 1, which reduces the gamma probability to the Poisson model.  The conditional 
mean function is  
   E[yi|xi] =  ),(

1 ij
jjG λα∑∞

=
 

 

This has no closed form, but an approximation that we use is 
 
   E[yi|xi] ≈  λi / α. 
 
The Poisson case arises conveniently if α = 1.  With this approximation, the marginal effects are 
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 The gamma model is requested with 
 
 POISSON ; ... as usual ...  ;  Model = gamma  $ 
 
All other options available with the Poisson model are retained, including the fitted values, restrictions, 
optimization parameters, etc.  Estimation is done via the BFGS algorithm.  Since this model is quite 
complex, the algorithm parameters should not be changed.  The only difference beyond the visible 
output, which is clearly marked, is the new scalar, alpha, which is retained by the estimator. 
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NOTE:  The derivatives for this model are computed numerically, not analytically.  The BHHH 
estimator is used to estimate the asymptotic covariance matrix of the MLE. 
 
 The gamma model for counts arises as follows:  Assume that waiting times between 
occurrences of events (which are counted to produce the ‘count variable’) are distributed as a 
continuous, two parameter gamma variate, with shape parameter α and location parameter                
λi = exp(β′xi) – we have skipped an introductory step and layered the regression model in at the 
outset.  Then, the density for interarrival times is 
 

   f(t | α, λi)  =  ,
)(

1 tet ii λ−−α
α

αΓ
λ t ≥ 0, α > 0, λi > 0. 

 

The arrival time of the jth event is 
 
   Qj    =  t1  +  t2  +  ...  +  tj. 
 
The gamma distribution is ‘reproductive;’  the density of Qj  is   
 

   f(Qj | α, λi)  =  ,
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The cumulative distribution function is 
 

   F(T | α, λi) =  ,
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             =  G(αj, λiT). 
 
The integral is an incomplete gamma function (probability; G(αj, 0) = 0 and G(αj, ∞) = 1) which 
must be approximated numerically.  Note that G(0,λiT) = 1.  If  j events occur in a period of length T 
or less, then equivalently, j or more events occur in the period of fixed length T.  Thus,  
 
   G(αj, λi T)  =  Prob[j events] + P[j+1 events] ...  in period of length T 
 
from which it follows that 
 
   G(α(j+1), λiT) =  Prob[j+1 events] ... 
 
so that   Prob[j events] =  G(αj, λi T)  -  G(α(j+1), λiT). 
 
We now normalize the period length to T = 1 to obtain the distribution for counts of events, 
 
   Prob[j events] =  G(αj, λi)  -  G(αj + α, λi) 
 
The mean/variance relationship is complicated, but it can be shown that the variance exceeds the 
mean if α < 1, and is less than it if α > 1. 
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E41.5.2 Generalized Poisson Models – GP1, GP2, GPP 
 
 The density for the generalized Poisson model suggested by Consul and Jain (1973) is 
 

(1 ) (1 )Prob[ | ] exp , 0,1,2,...; e .
1 ! 1

i

i

y

i i i i
i i i i

i i i

y yY y y
y

′   λ + θ λ + θ
= = − = λ =   + θλ + θλ   

xx β  

 
The mean and variance of this random variable are 
 

  2[ | ] ,  Var[ | ] (1 )i i i i i i iE y y= λ = λ + θλx x . 
 
Marginal effects are identical to those in the base Poisson model.  The overdispersion, as in all the 
negative binomial models, is a ‘mean preserving spread;’ the mean is unchanged – mass is moved in 
both directions. 
 The parameter θ is unrestricted. The model provides for both over- and underdispersion, 
though the latter is likely to be the more empirically relevant case.  Negative values can produce 
computational problems.  However, small negative values consistent with underdispersion are, 
nonetheless admissible.  The generalized Poisson model reverts to the familiar Poisson regression if 
θ = 0. 
 This model is requested with 
 

POISSON  ; <... the usual setup...>  
; Model = GP $ 

 
The general options provided for Poisson models, including marginal effects, fitted values, 
constraints, weights, clustering, etc. are all available.  However, truncation and censoring are not 
available for this model. 
 The ‘nonPoissonness’ of the distribution is embodied in the ancillary parameter θ.  An 
extension of the model allows θ to be a linear function of any variables, using 
 
   ; Hfn = list of variables 
 
The list should include a constant term. (If you omit it, one is automatically inserted.)  
 As in the case of the negative binomial model, there are GP1, GP2 and GPP forms of the 
model.  The same extension is used.  The ‘P’ form of the model is obtained by replacing θ with θλi

2-P 
in the general form of the density.  The default form is the GP2 model, which is obtained with 
 
   ; Model = GP or GP2 
 
The others are specified with 
 
   ; Model = GP1 
or     ; Model = GPP. 
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In all cases, the conditional mean function is still λi, so partial effects, the PARTIALS command and 
SIMULATE all work as they do for the Poisson and base case negative binomial model.  (The GPP 
form of the model builds on Greene (2008) and was proposed explicitly by Ismail (2010).) 
 In the example below, we have fit the GPP model, then reported the partial effects for the 
base Poisson model for comparison.  They are surprisingly different. 
 
 SAMPLE ; All $ 
 NAMELIST ; x = one,age,hhninc,educ,female $ 
 POISSON ; Lhs = docvis ; Rhs = x ; Model = GPP ; Partial Effects $ 
 POISSON ; Lhs = sumy ; Rhs = x ; Partial Effects $ 
 
----------------------------------------------------------------------------- 
Generalized Poisson (P) Model 
Dependent variable               DOCVIS 
Log likelihood function    -59915.33565 
Restricted log likelihood -103923.54929 
Chi squared [   1 d.f.]     88016.42728 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .37435***      .05994     6.25  .0000      .25688    .49182 
     AGE|     .02009***      .00079    25.39  .0000      .01854    .02164 
  HHNINC|    -.29243***      .04880    -5.99  .0000     -.38809   -.19678 
    EDUC|    -.01970***      .00395    -4.99  .0000     -.02745   -.01196 
  FEMALE|     .37817***      .01744    21.68  .0000      .34399    .41236 
        |Dispersion parameter in generalized Poisson model 
Constant|    1.43145***      .06229    22.98  .0000     1.30936   1.55354 
        |Nesting Parameter for P form of Generalized Poisson 
       P|    1.25803***      .03593    35.01  .0000     1.18760   1.32846 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point   3.0160 
Scale Factor for Marginal Effects  3.0160 
(Generalized Poisson – P) 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .06060***      .00236    25.69  .0000      .05597    .06522 
  HHNINC|    -.88196***      .14651    -6.02  .0000    -1.16912   -.59481 
    EDUC|    -.05942***      .01188    -5.00  .0000     -.08270   -.03615 
  FEMALE|    1.14055***      .05275    21.62  .0000     1.03716   1.24395   # 
--------+-------------------------------------------------------------------- 
(Poisson) 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .06550***      .00100    65.62  .0000      .06354    .06745 
  HHNINC|   -1.68266***      .06992   -24.06  .0000    -1.81971  -1.54562 
    EDUC|    -.09132***      .00552   -16.54  .0000     -.10214   -.08050 
  FEMALE|     .93023***      .02210    42.10  .0000      .88693    .97354   # 
--------+-------------------------------------------------------------------- 
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E41.5.3 Polya-Aeppli Model 
 
 The density for the Polya-Aeppli form of the Poisson model is 
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The mean and variance of this random variable are 
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In order to impose the constraint on θ, LIMDEP estimates α then reports θ, where θ = 
exp(α)/[1+exp(α)].  This model is primarily useful for data with excess zeros.  Note that the density 
is of the same form as the Poisson model, in which 
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The Polya-Aeppli model reverts to the Poisson model if θ = 0.  The model is requested with 
 

POISSON  ; <... the usual setup...>  
; Model = Polya $ 

 
The general options provided for Poisson models, including marginal effects, fitted values, 
constraints, weights, clustering, etc. are all available.  However, truncation and censoring are not 
available for this model. 
 The Polya-Aeppli model is useful for modeling ‘excess zeros.’  (Note that the zero inflation 
models described in the next chapter are also specifically designed for that purpose.)  Like other 
Poisson models, the framework is most compatible with values of the Lhs variable that truly are 
counts, generally of small to moderate numbers of events.  Numbers of patents, visits to the medical 
establishment, visits to recreational sites, highway fatalities, etc. are applications that come to mind.  
Applications that stretch the definitions, such as one recently reported to us involving counts (in the 
millions) of financial transactions, are probably best applied in some other modeling platform.  The 
danger here is that in models such as these, there is considerable risk of numerical overflow in 
attempting to compute the coefficients of the model.   
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For analysis of the Polya-Aeppli model, Johnson and Kotz (1993) provide some very useful 
recursions: 
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----------------------------------------------------------------------------- 
Polya-Aeppli Model 
Dependent variable               DOCVIS 
Log likelihood function    -60999.55518 
Restricted log likelihood -103923.54929 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.66892***      .05375   -12.44  .0000     -.77427   -.56356 
     AGE|     .01713***      .00063    27.15  .0000      .01590    .01837 
  HHNINC|    -.27029***      .04386    -6.16  .0000     -.35626   -.18432 
    EDUC|    -.01733***      .00357    -4.85  .0000     -.02433   -.01034 
  FEMALE|     .31139***      .01426    21.84  .0000      .28344    .33934 
        |Shape parameter for Polya-Aeppli distribution 
   Alpha|     .69409***      .00458   151.69  .0000      .68512    .70306 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   3.1835 
Scale Factor for Marginal Effects  3.1835 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .05455***      .00218    25.06  .0000      .05028    .05881 
  HHNINC|    -.86049***      .13993    -6.15  .0000    -1.13475   -.58622 
    EDUC|    -.05518***      .01139    -4.85  .0000     -.07750   -.03286 
  FEMALE|     .99131***      .04821    20.56  .0000      .89682   1.08581   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E41.5.4 The Logarithmic Distribution 
 
 The logarithmic distribution for a positive count variable is 
 

   Prob(Y = yi)  =  ,  1,2,... and 0 <  < 1
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where      α     =  -1 / log(1 - θ).   
 
(See Winkelmann (2008).) We can produce a regression model in this context by the 
parameterization 
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After some tedious algebra, we obtain the partial effects: 
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 We implement the logarithmic model with a user written MAXIMIZE command and obtain 
the partial effects and simulation with PARTIALS and SIMULATE.  The following template 
procedure can be used: 
  
 PROC = LogModel(y,x) $ 
 CALC  ; k = Col(x) $ 
 MAXIMIZE ; Start = k_0 ; Labels = k_b  
   ; Fcn = bxi = b1'x  | 
    thetai = Exp(bxi) / (1+Exp(bxi)) | 
    ai = -1 / Log(1-thetai) | 
    Log(ai) + y*Log(thetai) - Log(y) $ 
 PARTIALS ; Parameters = b ; Labels = k_b 
   ; Function = bxi = b1'x  | 
               thetai = Exp(bxi) / (1+Exp(bxi))  | 
                                  ai = -1 / Log(1-thetai)  | 
                        ai*thetai / (1-thetai) 
   ; Effects: x ; Summary $ 
 ENDPROC  
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The model is fit using the 1991 data on doctor visits.  For comparison, we have fit a Poisson model 
truncated at zero using the same data.  The results are strikingly similar, which suggests that the 
difference in the functional forms is much less than it might appear at first. 
 

SAMPLE  ; All $ 
REJECT  ; year # 1991 | docvis = 0 $ 
NAMELIST  ; x = one,age,educ,hhninc,female $ 
EXECUTE ; Proc = LogModel(docvis,x) $ 
POISSON  ; Lhs = docvis ; Rhs = one,x ; Truncation ; Limit = 0 ; Partial Effects $ 

 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function     -6607.64511 
Estimation based on N =   2932, K =   5 
Inf.Cr.AIC  =13225.290 AIC/N =    4.511 
Model estimated: Jul 28, 2011, 03:07:14 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|    2.11282***      .25447     8.30  .0000     1.61407   2.61156 
      B1|     .01915***      .00334     5.74  .0000      .01261    .02570 
      B2|    -.05520***      .01872    -2.95  .0032     -.09188   -.01852 
      B3|    -.48305**       .20597    -2.35  .0190     -.88674   -.07937 
      B4|     .16321**       .07898     2.07  .0388      .00840    .31801 
--------+-------------------------------------------------------------------- 
(Poisson coefficients) 
--------+-------------------------------------------------------------------- 
Constant|    1.33639***      .07360    18.16  .0000     1.19213   1.48065 
     AGE|     .01289***      .00082    15.68  .0000      .01127    .01450 
    EDUC|    -.03860***      .00495    -7.80  .0000     -.04831   -.02890 
  HHNINC|    -.39491***      .05694    -6.94  .0000     -.50650   -.28332 
  FEMALE|     .09550***      .01958     4.88  .0000      .05711    .13388 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------------------------------------------------------------------- 
Partial Effects for User Specified Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .04803     .00898    5.35      .03044      .06562 
      EDUC         -.13845     .04807    2.88     -.23267     -.04422 
      HHNINC      -1.21150     .51464    2.35    -2.22018     -.20281 
   *  FEMALE        .40602     .19803    2.05      .01788      .79415 
--------------------------------------------------------------------- 
(Poisson partial effects) 
--------+-------------------------------------------------------------------- 
     AGE|     .04821***      .00310    15.54  .0000      .04212    .05429 
    EDUC|    -.14443***      .01856    -7.78  .0000     -.18081   -.10804 
  HHNINC|   -1.47742***      .21340    -6.92  .0000    -1.89567  -1.05917 
  FEMALE|     .37794***      .07709     4.90  .0000      .22685    .52903   # 
--------+-------------------------------------------------------------------- 
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E41.5.5 NegBin X 
 
 The NBX model was proposed by Silva and Windmeijer (2001).  (See Winkelmann (2008).)  
Let S be distributed as Poisson(λi). Let R1, R2, …, RS be S draws from the logarithmic distribution 
described in the previous section.  (Note, S may be zero.)  Then, the random variable with NegBin X 
distribution is 
 
   Y  =  R1 + R2 + … + RS  =  

1

S
ii

R
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The parameter of each draw from the logarithmic distribution is 
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and the parameter of the Poisson distribution is 
 
   λi  =  exp(β′xi). 
 
Winkelmann provides the density for yi, 
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The model is constrained thus far in that the variables xi appear in both the logarithmic part and the 
Poisson part.  Winkelmann argues that this is the natural specification of the model.  The 
implementation below allows the variables in the logarithmic part of the model to differ from those 
in the Poisson. 
 The essential part of the command for the NBX model is 
 
 POISSON ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Model = NBX $ 
 
To relax the assumption that the same variables appear in both parts of the model, use 
 
   ; Rh2 = full set of variables in the logarithmic part of the model. 
 
 In the example below, the NBX model is fit first with the same regressors in both parts of the 
equation.  The built in routine for computing partial effects is used first.  Then PARTIALS is used to 
redo the computation.  The results of the two routines arises because the built in routine computes the 
partial effects at the means whereas PARTIALS computes the sample average partial effects (APE).  
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The differences between the two sets of partial effects arises because of the use of data means in the 
first case and the average partial effects in the second.  When PARTIALS computes the effects at the 
means, the same results are obtained. A further small difference in the standard errors is the result of 
using analytic derivatives for the Jacobian in computing the effects within the command and numerical 
derivatives by PARTIALS.  The decomposition of the partial effects produces a part due to the 
Poisson part of the probability and the remainder due to the logarithmic model component. 
 

SAMPLE ; All $ 
REJECT ; year # 1991 $ 
NAMELIST  ; x = one,age,educ,hhninc,female,hhkids,working $ 
POISSON ; Lhs = docvis ; Rhs = x ; Model = NBX ; Partial Effects $ 
PARTIALS ; Effects: x ; Summary $ 

 
----------------------------------------------------------------------------- 
Negative Binomial - X Model 
Dependent variable               DOCVIS 
Log likelihood function     -7930.91193 
Mean of LHS Variable =          3.78294 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson Probability 
Constant|    -.17270         .15540    -1.11  .2664     -.47728    .13187 
     AGE|     .00985***      .00196     5.03  .0000      .00602    .01369 
    EDUC|    -.00973         .00921    -1.06  .2910     -.02778    .00833 
  HHNINC|    -.18959*        .10078    -1.88  .0599     -.38712    .00794 
  FEMALE|     .38516***      .04290     8.98  .0000      .30107    .46924 
  HHKIDS|    -.20199***      .04516    -4.47  .0000     -.29050   -.11348 
 WORKING|    -.05160         .04800    -1.07  .2825     -.14568    .04249 
        |Parameters of Logarithmic Model in NB-X 
Constant|    2.03291***      .27977     7.27  .0000     1.48457   2.58126 
     AGE|     .00967***      .00371     2.60  .0092      .00239    .01694 
    EDUC|    -.03456*        .01800    -1.92  .0549     -.06985    .00073 
  HHNINC|    -.24824         .20553    -1.21  .2271     -.65108    .15460 
  FEMALE|     .01335         .07443      .18  .8576     -.13253    .15924 
  HHKIDS|     .07117         .07980      .89  .3725     -.08524    .22757 
 WORKING|    -.20767**       .08484    -2.45  .0144     -.37395   -.04139 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the partial effects produced by the built in specification in the model command. 
 
Analysis of Partial Effects in Two Part Negative Binomial Model 
Expected Value of DOCVIS   at means of all variables =   2.5865 
=============================================================== 
                      Effect  Standard Error    t ratio 
--------------------------------------------------------------- 
[AGE     ] 
Poisson Model         .02775      .00478          5.800 
Logarithmic Model     .00662      .00353          1.875 
Total Effect          .03437      .00480          7.162 
--------------------------------------------------------------- 
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[EDUC    ] 
Poisson Model        -.01387      .02154          -.644 
Logarithmic Model    -.07911      .01564         -5.059 
Total Effect         -.09297      .02188         -4.248 
--------------------------------------------------------------- 
[HHNINC  ] 
Poisson Model        -.55969      .27401         -2.043 
Logarithmic Model    -.38658      .20545         -1.882 
Total Effect         -.94628      .27328         -3.463 
--------------------------------------------------------------- 
[FEMALE  ] 
Poisson Model         .88928      .10319          8.617 
Logarithmic Model    -.19527      .06757         -2.890 
Total Effect          .69400      .09877          7.027 
--------------------------------------------------------------- 
[HHKIDS  ] 
Poisson Model        -.29986      .11095         -2.703 
Logarithmic Model    -.19147      .08012         -2.390 
Total Effect         -.49133      .11145         -4.409 
--------------------------------------------------------------- 
[WORKING ] 
Poisson Model        -.15448      .11895         -1.299 
Logarithmic Model    -.25740      .08315         -3.095 
Total Effect         -.41188      .11481         -3.587 
=============================================================== 
 
These are the average partial effects produced by the PARTIALS command. 
 
--------------------------------------------------------------------- 
Partial Effects for Negative Binomial Model (Type=X) 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .03661     .00522    7.02      .02639      .04684 
      EDUC         -.10010     .02373    4.22     -.14661     -.05358 
      HHNINC      -1.01158     .29156    3.47    -1.58302     -.44013 
   *  FEMALE        .72792     .10522    6.92      .52169      .93415 
   *  HHKIDS       -.50494     .11090    4.55     -.72231     -.28757 
   *  WORKING      -.45640     .13015    3.51     -.71149     -.20131 
--------------------------------------------------------------------- 
 
These are computed by PARTIALS using ; Means. 
 
--------------------------------------------------------------------- 
      AGE           .03437     .00480    7.17      .02497      .04377 
      EDUC         -.09297     .02205    4.22     -.13619     -.04976 
      HHNINC       -.94628     .27228    3.48    -1.47993     -.41262 
      FEMALE        .69400     .09898    7.01      .50001      .88800 
      HHKIDS       -.49133     .11155    4.40     -.70996     -.27271 
      WORKING      -.41188     .11481    3.59     -.63691     -.18685 
--------------------------------------------------------------------- 
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 The NBX model may be fit with different or overlapping variables in the Poisson and 
logarithmic models by using ; Rh2 to specify the logarithmic model. 
 

POISSON ; Lhs = docvis ; Rhs = x  
; Rh2 = one,hhkids,working 
; Model = NBX ; Partials Effects $ 

 
----------------------------------------------------------------------------- 
Negative Binomial - X Model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson Probability 
Constant|    -.19674         .14130    -1.39  .1638     -.47369    .08021 
     AGE|     .01173***      .00174     6.74  .0000      .00832    .01514 
    EDUC|    -.01614*        .00828    -1.95  .0512     -.03237    .00009 
  HHNINC|    -.28243***      .10170    -2.78  .0055     -.48176   -.08311 
  FEMALE|     .31017***      .03699     8.39  .0000      .23767    .38267 
  HHKIDS|    -.10756**       .04269    -2.52  .0117     -.19123   -.02390 
 WORKING|    -.05043         .04534    -1.11  .2661     -.13930    .03844 
        |Parameters of Logarithmic Model in NB-X 
Constant|    1.60729***      .04316    37.24  .0000     1.52270   1.69187 
  HHKIDS|    -.21691***      .05461    -3.97  .0001     -.32394   -.10988 
 WORKING|    -.28383***      .05400    -5.26  .0000     -.38966   -.17799 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Analysis of Partial Effects in Two Part Negative Binomial Model 
Expected Value of DOCVIS   at means of all variables =   2.6055 
=============================================================== 
                      Effect  Standard Error    t ratio 
--------------------------------------------------------------- 
[AGE     ] 
Poisson Model         .03057      .00450          6.786 
--------------------------------------------------------------- 
[EDUC    ] 
Poisson Model        -.04206      .02152         -1.954 
--------------------------------------------------------------- 
[HHNINC  ] 
Poisson Model        -.73589      .26449         -2.782 
--------------------------------------------------------------- 
[FEMALE  ] 
Poisson Model         .80816      .09621          8.400 
--------------------------------------------------------------- 
[HHKIDS  ] 
Poisson Model        -.28026      .11128         -2.518 
Logarithmic Model    -.27854      .07036         -3.959 
Total Effect         -.55880      .11113         -5.028 
--------------------------------------------------------------- 
[WORKING ] 
Poisson Model        -.13139      .11826         -1.111 
Logarithmic Model    -.36446      .07039         -5.178 
Total Effect         -.49585      .11361         -4.365 
=============================================================== 
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E41.5.6 Canonical Negative Binomial Regression Model 
 
 Hilbe (2011) recommends an alternative form of the negative binomial that he labels the 
‘canonical negative binomial’ model.  The signature feature of the model is that it applies to a 
discrete random variable with a formal negative binomial distribution – it is not obtained by 
integrating heterogeneity out of a mixed distribution.  Hence the name ‘canonical’ – it derives from 
first principles.  The conditional (on xi) density of the random variable is  
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The conditional mean function for this model is 
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The resemblance to the more familiar NB2 model is only superficial.  It can be seen from the 
conditional mean function that the parameters in the models are very different.  A more transparent 
way to examine the difference is to examine the partial effects.  In the NB2 model,  
 

∂E[yi|xi]/∂xi = λiβ. 
 
In the CNB model, 
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This is a completely different scaling of the parameter vector.  The implication seems likely to be 
that the parameters themselves from the two models will differ substantially if, as is common, the 
differences tend to even out in the partial effects.  We will explore this in an example below. 
 The canonical NB model is not a built in procedure in LIMDEP.  However, it is a very 
straightforward application of the maximize command to obtain the estimates followed by 
PARTIALS and SIMULATE to obtain the partial effects and model simulations.  The program 
below is written in the form of a template that requires only the specification of the dependent 
variable and the namelist containing the regressors.  A substantive complication for this estimator is 
the starting values.  The ordinary NB estimates might seem natural, but as the analysis above 
suggests, the parameters in the NB2 and the CNB models are likely to be quite different.  Hilbe 
suggests -1 for the constant term, zeros for the slopes, and 2 for θ (i.e., .5 for α = 1/θ).   
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 The procedure is generic save for a single line that is modified for the specific application 
 

PROC = CNBModel(y,x) $ 
CALC     ; k = Col(x) $ 
? MAXIMIZE estimates the model parameters 
MAXIMIZE  ; Start = -1,k_0,2 

; Labels = b0,k_b,theta 
; Fcn = bx = b0 + b1'x  |  
 lambdai = Exp(bx)  | 

   y*bx + theta*Log(1-lambdai) + Lgm(y+theta) - Lgm(y+1) - Lgm(theta) $ 
 ? PARTIALS computes the partial effects for the variables in the namelist 

PARTIALS ; Parameters = b 
  ; Labels = b0,k_b,theta 
  ; Covariance = varb 
  ; Function = bx = b0 + b1'x |  
   lambdai = Exp(bx)  | 
                       -theta*lambda / (lambdai-1) 
  ; Effects: x ; Summary  $ 

 ? We compare the results to the NB2 model.  Partials are comparable APEs 
NEGBIN ; Lhs = y ; Rhs = one,x $ 

 PARTIALS ; Effects: x ; Summary $ 
ENDPROC $ 

 

To execute the procedure, we use the health care data, and commands 
 

 SAMPLE ; All $ 
 NAMELIST  ; x = age,educ,hhninc,female$ 

EXECUTE ; Proc = CNBModel(docvis, x) $ 
 

The results are as follows:  Notice that they begin with several warnings about the computation of 
the function.  Unlike other models that we have examined thus far, this model does involve a 
computation that is quite likely to produce this result.  One of the terms in the log likelihood is  
log(1-λi).  The implication is that λi must be between zero and one.  Since λi = exp(β′xi), there is no 
constraint that can be placed on the parameters that will enforce this boundary.  It is not unlikely that 
for some observations, this error will occur.  The solver will draw the iterations on the parameters 
away from these values as it gets closer to a solution. 
 
  Error   590: Obs.=     1 Cannot compute function: Logminus 
Warning   137: Iterations: function not computable at crnt.trial estimates 
  Error   590: Obs.=     1 Cannot compute function: Logminus 
Warning   137: Iterations: function not computable at crnt.trial estimates 
  Error   590: Obs.=     1 Cannot compute function: Logminus 
Warning   137: Iterations: function not computable at crnt.trial estimates 
  Error   590: Obs.=    10 Cannot compute function: Logminus 
Warning   137: Iterations: function not computable at crnt.trial estimates 
  Error   590: Obs.=    93 Cannot compute function: Logminus 
Warning   137: Iterations: function not computable at crnt.trial estimates 
  Error   590: Obs.=    96 Cannot compute function: Logminus 
  Error   590: Obs.=    94 Cannot compute function: Logminus 
  Error   590: Obs.=    94 Cannot compute function: Logminus 
  Error   590: Obs.=    94 Cannot compute function: Logminus 
Normal exit:  19 iterations. Status=0, F=    60207.36 
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----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function    -60207.36401 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =********* AIC/N =    4.407 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|    -.23013***      .00867   -26.54  .0000     -.24712   -.21313 
      B1|     .00272***   .9967D-04    27.28  .0000      .00252    .00291 
      B2|    -.00435***      .00063    -6.87  .0000     -.00559   -.00311 
      B3|    -.06643***      .00747    -8.89  .0000     -.08107   -.05179 
      B4|     .03904***      .00220    17.77  .0000      .03474    .04335 
   THETA|     .52343***      .00545    96.04  .0000      .51275    .53411 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
--------------------------------------------------------------------- 
Partial Effects for User Specified Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .06788     .00324   20.97      .06153      .07422 
      EDUC         -.10864     .01603    6.78     -.14007     -.07722 
      HHNINC      -1.65817     .19003    8.73    -2.03061    -1.28572 
   *  FEMALE        .91204     .05373   16.97      .80672     1.01736 
--------------------------------------------------------------------- 
 (Intermediate results for Poisson regression omitted) 
----------------------------------------------------------------------------- 
Normal exit:  10 iterations. Status=0, F=    60164.22 
----------------------------------------------------------------------------- 
Negative Binomial Regression 
Dependent variable               DOCVIS 
Log likelihood function    -60164.22014 
Restricted log likelihood -103923.54929 
Chi squared [   1 d.f.]     87518.65830 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .62857***      .05457    11.52  .0000      .52162    .73553 
     AGE|     .02042***      .00070    29.07  .0000      .01904    .02179 
    EDUC|    -.03539***      .00378    -9.36  .0000     -.04281   -.02798 
  HHNINC|    -.48779***      .04520   -10.79  .0000     -.57637   -.39921 
  FEMALE|     .32673***      .01588    20.58  .0000      .29561    .35784 
        |Dispersion parameter for count data model 
   Alpha|    1.90309***      .01984    95.94  .0000     1.86421   1.94197 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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--------------------------------------------------------------------- 
Partial Effects for Loglinear, Exponential Mean 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .06514     .00246   26.44      .06031      .06996 
      EDUC         -.11290     .01213    9.31     -.13668     -.08913 
      HHNINC      -1.55610     .14504   10.73    -1.84037    -1.27183 
   *  FEMALE       1.03372     .05259   19.66      .93065     1.13680 
--------------------------------------------------------------------- 
Maximum repetitions of PROC 
 
 We note, finally, a possible extension of the model.  In the NB1 and NB2 formulations, we 
allow for heterogeneity in the scale parameter, θ.  In particular, the generalized model specifies 
 
   θi  =  θ exp(δ′zi). 
 
It is straightforward to incorporate the same extension in the canonical model, as shown in the 
revised procedure below: 
 

PROC = CNBModel(y,x,z) $ 
CALC     ; k = Col(x) ; m = Col(z) $ 
? MAXIMIZE estimates the model parameters 
MAXIMIZE  ; Start = -1,k_0,2, m_0 
  ; Labels = b0,k_b,theta,m_d 
  ; Fcn = bx = b0+b1'x  |  
   lambdai = Exp(bx)  | 
   vh  = Exp(d1’z)  | 
               y*bx + theta*vh*Log(1-lambdai)  
   + Lgm(y+theta*vh) - Lgm(y+1) - Lgm(theta*vh) $ 

 ? PARTIALS computes the partial effects for the variables in the namelist 
 NAMELIST ; xz = x,z $ 

PARTIALS ; Parameters = b 
  ; Labels = b0,k_b,theta,m_d 
  ; Covariance = varb 
  ; Function = bx = b0+b1'x |  
   lambdai = Exp(bx)  |  
   vh = Exp(d1’z)  | 
   -theta*vh*lambdai/(lambdai-1) 
  ; Effects: xz ; Summary $ 
ENDPROC $ 

 SAMPLE ; All $ 
 NAMELIST ; z = hhkids $ 
 NAMELIST  ; x = age,educ,hhninc,female $ 
 EXEC  ; Proc = CNBModel(docvis,x,z) $ 
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The results of the computation of this extended model are shown below. 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function    -60147.26561 
Estimation based on N =  27326, K =   7 
Inf.Cr.AIC  =********* AIC/N =    4.403 
Model estimated: Jul 27, 2011, 21:47:21 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|    -.20971***      .00879   -23.86  .0000     -.22693   -.19248 
      B1|     .00233***      .00010    22.58  .0000      .00213    .00253 
      B2|    -.00459***      .00063    -7.23  .0000     -.00583   -.00335 
      B3|    -.06695***      .00747    -8.96  .0000     -.08159   -.05231 
      B4|     .03939***      .00220    17.91  .0000      .03508    .04370 
   THETA|     .55914***      .00670    83.40  .0000      .54600    .57228 
      D1|    -.17037***      .01569   -10.86  .0000     -.20112   -.13961 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------------------------------------------------------------------- 
Partial Effects for User Specified Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .05720     .00306   18.71      .05121      .06320 
      EDUC         -.11267     .01579    7.14     -.14362     -.08172 
      HHNINC      -1.64338     .18613    8.83    -2.00818    -1.27858 
   *  FEMALE        .90849     .05293   17.16      .80474     1.01224 
   *  HHKIDS       -.52822     .04754   11.11     -.62139     -.43504 
--------------------------------------------------------------------- 
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E42: Censoring, Truncation and Heterogeneity 
in Count Models 

 
E42.1 Introduction 
 
 This chapter details several extended models for count data.  The basic formulation is the 
Poisson regression model.  For a discrete random variable, Y observed over a period of length Ti, and 
observed frequencies, yi, i=1,...,n, where yi is a nonnegative integer count, and regressors xi, 
 

   Prob(Y = yi|xi)   =  exp( )
!

iy
i i

iy
−λ λ , yi = 0,1,...;  log λi = β′xi. 

 
In this model, λi is both the mean and variance of yi; 
 
   E[yi|xi]  =  λi.  
 
The partial effects in this nonlinear regression model are, 
 

  [ | ]i i

i

E y∂
∂

x
x

 = iλ β . 

 
The negative binomial regression model is an extension of the Poisson regression model which 
allows the variance of the process to differ from the mean.  An interpretation which fits well with 
several of the extensions considered in this chapter is that the negative binomial model results from 
the introduction of unobserved individual heterogeneity into the Poisson model.  The model arises as 
a modification of the Poisson model in which the mean is µi, respecified so that 
 
   log µi  =  logλi  +  wi  =   β′xi + wi, 
 
where exp(wi) has a gamma distribution with mean 1.0 and variance α. This random variable yi then has 
 
   Var[yi |xi]  =  E[yi|xi]{1  +  αE[yi|xi]}. 
 
 The models presented in this chapter are extensions of the model with heterogeneity.  
Different treatments of the source of wi produce different model specifications.  The Poisson model 
considered above assumes that there is no unobserved ‘heterogeneity’ across individuals save for that 
measured in the covariates.  The Poisson and negative binomial models can both be extended to 
allow for unobserved heterogeneity in the conditional mean function, of the form  
 
   logE[yi|xi]  =  β′xi + εi.   
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Thus, the unobserved individual heterogeneity enters in the form of a normally distributed 
disturbance. This is the formulation which gives rise to the random effects model in the panel data 
case, but the models described here apply simply to cross section data. The extension is made for 
both the Poisson and negative binomial models.  Another method of introducing heterogeneity into 
the Poisson and negative binomial models is to allow random variation in the parameters.  This 
extension allows a large amount of flexibility in the functional form.   
 
E42.2 Censoring and Truncation 
 
 The tobit model is a standard tool for accounting for censoring in the linear regression 
model.  Censoring is also observed in count data.  Terza (1985) analyzed a survey of shoppers in the 
Atlanta SMSA who were asked, ‘How many times have you been to shopping area X in the past 
thirty days?’ with possible responses 0, 1, 2, and 3 or more.  This is a direct counterpart to the tobit 
model, though in this instance the censoring is at the right of the distribution rather than the left at 
zero, as is common in the regression case.  (See, also, Greene (2011) for an analysis of extramarital 
affairs self reported in a survey and Gurmu (1991) for a study of health care facility utilization.)  
Grogger and Carson (1991) analyzed a survey of the number of recreational fishing trips taken by a 
sample of Alaskan fisherman in which the sample was choice based so as to eliminate any 
individuals who reported zero trips.  In this case, the distribution is truncated, rather than censored.  
These two cases illustrate direct counterparts to the tobit and truncated regression models. 
 
E42.2.1 Commands for Censoring and Truncation  
 
 The Poisson model with right censoring is the Poisson model described earlier with the 
modification that for some positive integer C, all values of yi greater than or equal to C are reported 
as C.  Negative binomial models with censoring are obtained analogously by changing the functional 
form of the probability.  Either model may be estimated for a truncated distribution, instead of a 
censored one.  Suppose, for the present, that truncation is from below, at a value C.  Then, the 
distribution of ys applies only to values above C. 
 
Specifying Censoring in the Data 
 
 The Poisson regression model with right censoring is obtained by adding 
 
   ; Limit = C  
 
to the command.  The censoring limit, ‘C’ must be a positive integer.  This specification dictates that 
values of the original variable have been right censored.  That is, the observed y is the minimum of C 
and a latent Poisson variable, Yi*.  As such, the largest value in your sample will be C.  
 You can specify left censoring, instead, with 
 
   ; Limit = C ; Maximum 
 
to indicate that your observed dependent variable is yi = Max[Yi*

 

 ,C].  Then, the smallest value in 
your sample will be C. 
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Specifying a Truncated Distribution 
 
 In the right censored regression model, all values at or above a certain value are given that 
value. Thus, if the censoring is at three, all values of the ‘true’ yi at or above three take the value 
three in the observed sample. With truncation, values in the sample only take values strictly above or 
below a given limit value.  Thus, suppose the distribution of yi is left truncated at one.  Then, the 
observed sample will only take values 2, 3, ....  To specify left truncation, use 
 
   ; Limit = C  
   ; Truncation  
 
where C is the lower truncation point.  Note that for left truncation, the smallest value in your sample 
will be C + 1.   
 Alternatively, the distribution may be right truncated at some upper limit, such as four.  
Then, the sample will only contain the values 0, 1, 2, and 3.  Upper (right) truncation is requested by 
adding 
   ; Limit = C  
   ; Truncation ; Upper 
 
to the command.  The largest yi in your sample will be C - 1, so if  you request upper truncation, C 
must be greater than one. For example, 
 
 POISSON  ; Lhs = y  
   ; Rhs = ...   
   ; Limit = 0  
   ; Truncation $ 
 
estimates a model for yi = 1,2,....   
 
NOTE:  In all these formulations for censoring and truncation, C may be a fixed integer or a 
variable.  When the censoring limit is a variable, it is also a censoring indicator.  That is, the only 
way to tell if an observation is censored is to compare it to the censoring variable.  The implication is 
that, for example, two observations can have the same value, say 10, and one will be censored and 
the other will not.  The upshot is that when you use a variable censoring limit, that value must be 
greater than (or less than) the dependent variable for right (left) censored data sets.  Your data may 
also contain a mix of lower, upper or uncensored observations.  To specify this, add a second Rhs 
variable which takes the value -1 for lower censored data, 0 for uncensored observations and +1 for 
upper censored observations 
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E42.2.2 Results for the Models with Censoring and Truncation 
 
 The models with censoring and truncation are otherwise the same as those for the 
unmodified Poisson and negative binomial models.  All options are the same as well, including fitted 
values, optimization options, restrictions, hypothesis tests, and so on.  The output will contain 
notations in a few places to indicate the censoring or truncation, as shown in the example below. 
 
NOTE:  The fitted values for the dependent variable do not account for censoring or truncation, so 
the result should be interpreted as applying to the underlying distribution.  For relatively simple 
problems, it is possible to manipulate the results to obtain the mean of the censored or truncated 
distribution.  We return to this issue below. 
 
NOTE:  The computation of partial effects by the model command (with ; Partial Effects) accounts 
for censoring or truncation when the model is specified with one or the other.  The PARTIAL 
EFFECTS (or just PARTIALS) command uses the structural conditional mean, λi, without 
accounting for censoring or truncation. 
 
 The following illustrates estimation of a model with right censoring.  The doctor visits data 
contain a fairly large number of extremely large values.  About 10% of the observations are larger 
than 10, with the maximum well over 100.  A tail this long probably stretches what could be 
expected of a Poisson model.  To accommodate this, we have censored the data at 10 visits and 
reestimated the model.  (Note, the data themselves need not actually be censored.  Where we have 
specified a censoring limit of 10, internally, the program converts all values larger than 10 to 10.)  
The first results are for a base case Poisson model. We then fit a negative binomial (type 2) model. 
 
 SAMPLE ; All $ 
 REJECT ; _groupti < 7 $ 
 POISSON ; Lhs = docvis  
   ; Rhs = one,age,hhninc,educ,female,hhkids,married 
   ; Partial Effects $ 
 POISSON ; Lhs = docvis  

; Limit = 10 
   ; Rhs = one,age,hhninc,educ,female,hhkids,married 
   ; Partial Effects $ 
 NEGBIN ; Lhs = docvis  

; Limit = 10 
   ; Rhs = one,age,hhninc,educ,female,hhkids,married 
   ; Partial Effects $ 
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----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function    -22965.36559 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .62879***      .07114     8.84  .0000      .48935    .76823 
     AGE|     .02271***      .00095    23.98  .0000      .02086    .02457 
  HHNINC|    -.26608***      .04901    -5.43  .0000     -.36213   -.17002 
    EDUC|    -.05835***      .00434   -13.46  .0000     -.06684   -.04985 
  FEMALE|     .35718***      .01517    23.54  .0000      .32744    .38691 
  HHKIDS|    -.06041***      .01748    -3.45  .0006     -.09467   -.02614 
 MARRIED|     .06023***      .02094     2.88  .0040      .01920    .10127 
--------+-------------------------------------------------------------------- 
Log likelihood function    -16627.22612 
RIGHT Censored  Data: Threshold = 10. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .47430***      .07675     6.18  .0000      .32386    .62473 
     AGE|     .01842***      .00104    17.71  .0000      .01638    .02046 
  HHNINC|    -.18180***      .05356    -3.39  .0007     -.28676   -.07683 
    EDUC|    -.04525***      .00462    -9.79  .0000     -.05431   -.03619 
  FEMALE|     .33313***      .01672    19.93  .0000      .30037    .36589 
  HHKIDS|    -.08628***      .01922    -4.49  .0000     -.12396   -.04860 
 MARRIED|     .08787***      .02341     3.75  .0002      .04200    .13375 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Scale Factor for Marginal Effects  3.1340 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .07118***      .00301    23.63  .0000      .06528    .07709 
  HHNINC|    -.83388***      .15371    -5.42  .0000    -1.13516   -.53261 
    EDUC|    -.18286***      .01365   -13.40  .0000     -.20961   -.15611 
  FEMALE|    1.12583***      .04841    23.25  .0000     1.03094   1.22072   # 
  HHKIDS|    -.18806***      .05409    -3.48  .0005     -.29408   -.08205   # 
 MARRIED|     .18494***      .06297     2.94  .0033      .06151    .30837   # 
--------+-------------------------------------------------------------------- 
Scale Factor for Marginal Effects  2.5946 
RIGHT Censored  Data: Threshold = 10. 
--------+-------------------------------------------------------------------- 
     AGE|     .04779***      .00272    17.57  .0000      .04246    .05313 
  HHNINC|    -.47168***      .13899    -3.39  .0007     -.74410   -.19927 
    EDUC|    -.11741***      .01203    -9.76  .0000     -.14099   -.09383 
  FEMALE|     .87376***      .04448    19.64  .0000      .78658    .96094   # 
  HHKIDS|    -.22257***      .04919    -4.52  .0000     -.31898   -.12615   # 
 MARRIED|     .22187***      .05735     3.87  .0001      .10948    .33427   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Negative Binomial Regression 
Dependent variable               DOCVIS 
Log likelihood function    -11966.78137 
Restricted log likelihood  -16627.22612 
Chi squared [   1 d.f.]      9320.88949 
Significance level               .00000 
McFadden Pseudo R-squared      .2802900 
Estimation based on N =   6209, K =   8 
Inf.Cr.AIC  =23949.563 AIC/N =    3.857 
Model estimated: Jul 29, 2011, 06:36:58 
RIGHT Censored  Data: Threshold = 10. 
NegBin form 2; Psi(i) = theta 
Tests of Model Restrictions on Neg.Bin. 
Model               Logl ChiSquared[df] 
Poisson(b=0)   -24176.44  ******** [**] 
Poisson        -16627.23   15098.4 [ 6] 
Negative Bin.  -11966.78    9320.9 [ 1] 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .59206***      .16825     3.52  .0004      .26230    .92183 
     AGE|     .02214***      .00232     9.54  .0000      .01760    .02669 
  HHNINC|    -.28891**       .11596    -2.49  .0127     -.51619   -.06164 
    EDUC|    -.06254***      .01016    -6.16  .0000     -.08244   -.04263 
  FEMALE|     .43292***      .04080    10.61  .0000      .35294    .51289 
  HHKIDS|    -.10911**       .04359    -2.50  .0123     -.19455   -.02367 
 MARRIED|     .14036**       .05662     2.48  .0132      .02939    .25133 
        |Dispersion parameter for count data model 
   Alpha|    1.75668***      .04666    37.65  .0000     1.66523   1.84812 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   2.5842 
Scale Factor for Marginal Effects  1.8946 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .04195***      .00456     9.21  .0000      .03302    .05089 
  HHNINC|    -.54736**       .21999    -2.49  .0128     -.97855   -.11618 
    EDUC|    -.11848        3.49709     -.03  .9730    -6.97264   6.73568 
  FEMALE|    1.33039        2.63995      .50  .6143    -3.84381   6.50459   # 
  HHKIDS|    -.32999        1.31009     -.25  .8011    -2.89771   2.23774   # 
 MARRIED|     .40972         .68777      .60  .5514     -.93829   1.75772   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E42.2.3 Technical Details on Censoring and Truncation 
 
 The Poisson model with right censoring is the Poisson model described earlier with the 
modification that for some integer C > 0, all values of yi greater than or equal to C are reported as C. 
Define a ‘latent’ variable, Y*  which is the underlying Poisson variable; 
  
   Prob(Yi* = j)  =  exp(-λi ) λi

 j / j!,  log λi = β′xi. 
  
The observed variable is  
 
   yi    =  Min[Yi* ,C]. 
 
Then,    Prob[yi = j]  =  Prob[Yi*  = j]  =  if yi  < C 
 
and   Prob[yi = C] =  Prob[Yi* ≥ C] 
 
     =  1 - Prob[Yi*  < C] 
 

     =  1 - 
j

c

=

−∑ 0

1 Prob[Yi* = j]. 
 
The model with left censoring is obtained by reversing the direction of the inequality in the 
preceding.  Thus, with left censoring, 
 
   Prob[yi = j] =  Prob[Yi*  =  j]  if yi  > C 
 
and   Prob[yi = C] =  Prob[Yi*  ≤ C] 
 

     =  
j

c

=∑ 0
Prob[Yi*  = j]  otherwise. 

 
Negative binomial models with censoring are obtained analogously by changing the functional form 
of the probability. 
 For the censored distribution, the contribution of an observation to the log likelihood is 
 

   log Li   =  δilog Prob[Yi* = yi]  +  (1 - δi)log{1 - ∑ −

=
=

1
0

][obPrC
j i jY } 

 
if the observation is censored at the right and 
  

   log Li   =  δilog Prob[Yi* = yi]  +  (1 - δi)log {∑ =
=

C
j i jY

0
][obPr } 

 
if the observation is censored at the left, 
 
where   δi    =  1 if the observation is not censored and 0 if it is. 
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To form the gradients of the log likelihood, we denote Prob[Yi* = j] = Pj and make use of the result 
 
   ∂Prob[Yi* = j]/∂β =  Prob[[Yi* = j] × ∂log Prob[[Yi* = j]/∂β   
 
     =  Pj(j - λi)xi 
 
Combining terms, then, for the Poisson model with right censoring 
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For left censoring, the only change is the summation in the denominator in the second term.  The 
BHHH estimator based on first derivatives is used for the estimator of the asymptotic covariance 
matrix.  The analogous results for the negative binomial model are obtained by changing the 
individual term in the square brackets.  The necessary results appear below. 
 If y is right censored (no values larger than C), then 
         
   E[y|x]   =  

j

C

=

−∑ 0

1 jPj  +  C[1 -
j

C

=

−∑ 0

1 Pj ]. 

  
Another form of this which shows the effect of the censoring on the conditional mean is  
 
   E[y|x]   =  λ  -  ∑∞

=Cj
(j-C)Pj. 

 
Since this involves an infinite sum, it is not useable for computations as is.  For computation of the 
conditional mean and the marginal effects, we use, instead, 
 
   E[y|x] =  C  -  ∑ −

=

1
0

C
j

Pj (C - j). 

 
(For convenience, the sum may run to C, as the last term is zero.)  Then, the marginal effects are 
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for the Poisson model, and 
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for the negative binomial model. Analytic derivatives of these expressions are used for the delta 
method to compute the standard errors for the marginal effects.  Denote by γ′ the parameter vector, 
either β′ for the Poisson model or [β′,θ] for the negative binomial model. Then, the matrix of 
derivatives needed for the asymptotic covariance matrix is 
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 If y is censored at the left (no values smaller than C), then the conditional mean is just 
 

   E[y|x]  =  λ  + 
j
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=∑ 0
(C - j)Pj. 

 
so the marginal effects are 
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The remaining expressions used for analyzing the marginal effects are modified accordingly.  With 
the vector of probabilities in hand, these are straightforward to compute, say at the means of a set of 
regressors. 
 Suppose, for the present, that truncation is from below, at a value C.  Then, the distribution 
of ys applies only to values above C – it is left truncated.  Thus, 
 

   Prob[yi = j | yi > C] =  exp( ) / !
Prob[ ]

iy
i i i

i

y
y C

−λ λ
>

, for yi = C+1, C+2, .... 

 
For computational purposes, we use  Prob[yi > C] = 1 - Prob[yi ≤ C], so the manipulable form of the 
Poisson distribution is 
 

   Prob[yi = j | yi > C] =  
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The negative binomial model is formed likewise.  Truncation may also be from above, in which  
case, 

   Prob[yi = j | yi < C] =  exp( ) / !
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for the Poisson model and likewise for the negative binomial.  The log likelihood function is the sum 
of the probabilities.  For left truncation (that is, for Y greater than C) 
 

   log Li =  log Prob[Yi = yi]  -  




 − ∑ =

C
j jP

0
1log  

 
For right truncation, (that is, if the distribution restricts Y to be less than C), 
 

   log Li =  log Prob[Yi = yi]  -  
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log C
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 The conditional mean functions are considerably more involved in the truncation case.  For 
left truncation,  
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By adding and subtracting a term in the numerator, this can be written as 
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With some algebra (omitted), the marginal effects in this model can be written 
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For right truncation, 
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The functions differ between the Poisson and negative binomial models in the derivative term in the 
numerator of the scale,  
 
   ∂logPj/∂λ,  =  (j/λ - 1) for the Poisson model, 

   ∂logPj/∂λ   =  [ju/L  -  θ(1-u)/λ] for the negative binomial model. 
 
Standard errors based on the delta method are tedious but follow the same computations as shown 
earlier.  For brevity, they are omitted here. 
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E42.3 Endogenous Truncation – On Site Sampling 
 
 Shaw (1988) examined the Poisson regression model in the context of onsite sampling.  This 
is a type of truncation in that if the count is observed on site, it must equal at least one, and the 
truncation of the zero observations is a feature of the sampling mechanism.  Shaw’s important result 
on the density of the observed count under this assumption is 
 

1exp( )( | , 0) ,  1,2,...
( 1)!

iy
i i

i i i i
i

p y y y
y

−−λ λ
> = =

−
x , λi = exp(β′xi). 

 
This random variable has mean function λi + 1 and variance λi.  It can be seen that the model can be 
estimated and analyzed as a Poisson model simply in terms of wi = yi – 1.  The model continues to 
display (essentially) the equidispersion feature of the Poisson  model.  Englin and Shonkwiler (1992) 
proposed an extension of the Shaw model for the negative binomial distribution.  The density for this 
random variable is  

1 ( 1/ )( 1/ ) [1 ]( | , 0)
( 1) (1/ )

i i i iy y y
i i i i i i i

i i i
i i

y yp y x y
y

− − + αΓ + α α λ + α λ
> =

Γ + Γ α
. 

 
The conditional mean and variance in the Englin and Shonkwiler’s variant of the negative binomial 
model are 
   E[yi|xi]     =  λi + 1 + αiλi 

and   Var[yi|xi]  =  λi + αi(1 + λi + αiλi). 
 
We will allow for additional heterogeneity in the model by parameterizing αi as 
 
   αi   =  exp(δ′zi). 
 

The model is requested by using the model command 
 
 NEGBIN ; Lhs = dependent variable 
   ; Rhs = independent variables, including one 
   ; Model = NBE $ 
 
The extended specification for αi is requested with 
 
   ; Hfn = list of variables in z (not including one). 
 
 Results for this model are indicated by an identifier for the model, but appear otherwise as a 
variant of the negative binomial model shown in the previous chapter.  An example below. 
 
  



E42: Censoring, Truncation and Heterogeneity in Count Models   E-991 

----------------------------------------------------------------------------- 
NegBin with Endogenous Stratification 
Dependent variable               DOCVIS 
Log likelihood function     -5852.00081 
Restricted log likelihood   -8676.55824 
Chi squared [   1 d.f.]      5649.11487 
Significance level               .00000 
Tests of Model Restrictions on Neg.Bin. 
Model               Logl ChiSquared[df] 
Poisson(b=0)    -8913.52  ******** [**] 
Poisson         -8676.56     473.9 [ 3] 
Negative Bin.   -5852.00    5649.1 [ 1] 
--------+-------------------------------------------------------------------- 
 
It should be noted, as in Shaw’s case, this model is not the same as the truncated at zero version of 
the negative binomial model.  If the data generating process is not consistent of the model, the results 
will suggest that. For example, the first result below show the NBE model applied to the positive 
observations in the 1994 wave of the health care panel show the value of α to be consistent with a 
Poisson model while the actual negative binomial model shown second is consistent with other 
results that have suggested the overdispersion in the data. 
 
(NBE results) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -4.61983       15.94205     -.29  .7720   -35.86567  26.62600 
     AGE|     .01514***      .00178     8.49  .0000      .01164    .01864 
    EDUC|    -.04057***      .00969    -4.19  .0000     -.05956   -.02159 
  HHNINC|    -.36742***      .10950    -3.36  .0008     -.58203   -.15281 
        |Dispersion parameter for count data model 
   Alpha|    449.096       7165.590      .06  .9500  -13595.202  14493.394 
--------+-------------------------------------------------------------------- 
(Truncated NB Results 
Log likelihood function     -5848.91750 
--------+-------------------------------------------------------------------- 
Constant|    1.44839***      .15690     9.23  .0000     1.14087   1.75591 
     AGE|     .01538***      .00198     7.77  .0000      .01150    .01927 
    EDUC|    -.04127***      .01066    -3.87  .0001     -.06216   -.02038 
  HHNINC|    -.37279***      .12081    -3.09  .0020     -.60958   -.13601 
        |Dispersion parameter for count data model 
   Alpha|    1.17471***      .07414    15.84  .0000     1.02939   1.32002 
--------+-------------------------------------------------------------------- 
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E42.4 Unobserved Heterogeneity 
 
 This section will describe two models for unobserved heterogeneity in the Poisson and 
negative binomial regression models.  The techniques are applied to an example in Greene (2003).  
 
E42.4.1 Latent Heterogeneity in Poisson and Negative Binomial 
Models  
 

The Poisson and negative binomial models are modified to allow individual  heterogeneity.  
The Poisson model is modified so that 

 
     y|x,ε  ~  Poisson with mean λ|x,ε = exp(β′x + ε) where ε|x ~ N[0,σ2]. 
 
This is an alternative to the negative binomial model for unobserved heterogeneity in the count data 
model.  The negative binomial model arises if ε has a log-gamma density, that is, u = exp(ε) has the 
gamma density with mean one.  The unconditional variance of y can be obtained as  
 

  Var[y|x] =  E[Var[y|x,ε]] + Var[E[y|x,ε]].   
 
Conditioned on ε, y has mean and variance equal to exp(β′x)×exp(ε).  The second term has a 
lognormal distribution. Using properties of the lognormal distribution, we find 
 

  E[y|x]  =  exp(β′x) × exp( ½σ2) 
 
  Var[y|x] =  exp(β′x) × exp( ½σ2) + [exp(β′x)]2 × [exp(2σ2) - exp(σ2)] 
 

 =  E[y] × {1 + E[y](exp(σ2) - 1) }. 
 
This does induce overdispersion, as might be expected.  If σ2  0, E[y|x] reduces to the Poisson 
mean, and Var[y|x] = E[y|x].  Therefore a positive σ is the difference between this model and the 
Poisson.  Essentially the same result is obtained if E[exp(ε)] is normalized to -½σ2, so that E[u] = 1, 
as in the negative binomial case.  In this case, the constant term in the regression must be adjusted.  
In principle, a model without heterogeneity can be obtained by setting σ to zero.  But, this is not a 
well defined hypothesis for likelihood based tests, so we use a Vuong test, instead.  The statistic and 
its implication are presented in the output. 

Request this model with 
 

POISSON  ; Lhs = ... ; Rhs = ... ; Heterogeneity $ 
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All other options for the Poisson model are available, including controls for the optimization, 
keeping residuals and predictions, and marginal effects and so on.  Starting values for the iterations 
are the unconstrained Poisson estimates, with a moment estimator of σ.  You may provide your own 
starting values with ; Start = ... You may also impose constraints with ; Rst and ; CML:.  Other 
options as usual are available, such as ; Par for keeping ancillary parameters, etc. 

Predicted values for this model are 
 

E*[y|x]   =  
−∞

∞

∫ E[y|x,ε] f(ε) dε 

 
    =  Eε [ E[y|x,ε]] 

 

    =  
−∞

∞

∫ (1/σ)φ(ε/σ)exp(β′x + ε)dε. 

 
These are requested with ; Keep = name and ; List as usual.  Residuals kept with ; Res = name are 
computed as y-E*[y].  Other saved results are matrices b and varb as usual, scalars nreg, kreg, logl, 
and s which contains the estimate of σ.  The Last Model parameters are b_name for the Rhs 
variables. 
 The same heterogeneity model can be extended to the negative binomial regression.  Since 
the negative binomial model can be interpreted as a Poisson model with gamma heterogeneity, this 
new variant is likely to be problematic, as it adds heterogeneity to a model which already 
accommodates heterogeneity – see the example below.  Still, if the underlying population is believed 
to be negative binomial to start with, this model allows normal heterogeneity to be added on to that.  
The structure is 
 

   P(y|x,ε) =  {Γ(θ+y)/[Γ(θ)y!]} (u|ε)θ [1-(u|ε)]y 

 
  u|ε       =  θ / (θ + λ|ε) 
 
  λ|x,ε     =  exp( β′x + ε) 
 
  ε|x       ~  N[0,σ2]. 

 
The unconditional distribution is difficult to derive, and is evaluated by Hermite quadrature, instead. 

The command for this model is 
 

NEGBIN  ; Lhs = ... ; Rhs = ...  ; Heterogeneity $ 
 
Other aspects of this model are the same as those for the Poisson model. 
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E42.4.2 Applications 
 
 The foregoing are applied to the health care, with both the Poisson and negative models.  
The base models are included for comparison.   The first set of estimates is for the Poisson model.  
The starting value for the heterogeneity is shown with the initial estimates.  The Poisson model with 
heterogeneity is an alternative to the negative binomial model shown below.  
 
----------------------------------------------------------------------------- 
Unrestricted Poisson Regression Start Value 
Dependent variable               DOCVIS 
Log likelihood function    -31890.63195 
Estimation based on N =   3377, K =   7 
Inf.Cr.AIC  =63795.264 AIC/N =   18.891    
Estd. s for heterogeneity =      .59862 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .92173***      .06876    13.41  .0000      .78697   1.05650 
     AGE|     .01693***      .00090    18.90  .0000      .01518    .01869 
  HHNINC|    -.40982***      .04784    -8.57  .0000     -.50359   -.31605 
    EDUC|    -.02982***      .00435    -6.86  .0000     -.03834   -.02131 
  FEMALE|     .40223***      .01821    22.09  .0000      .36654    .43792 
  HHKIDS|    -.16138***      .02239    -7.21  .0000     -.20526   -.11750 
 MARRIED|     .03198         .02304     1.39  .1651     -.01317    .07713 
--------+-------------------------------------------------------------------- 
Line search at iteration 21 does not improve fn. Exiting optimization. 
----------------------------------------------------------------------------- 
Poisson Model with Normal Heterogeneity 
Dependent variable               DOCVIS 
Log likelihood function     -8026.16404 
Restricted log likelihood  -31890.63195 
Chi squared [   1 d.f.]     47728.93581 
Mean of LHS Variable =          3.78294 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson Probability 
Constant|     .01745         .18133      .10  .9234     -.33795    .37284 
     AGE|     .01799***      .00248     7.27  .0000      .01314    .02285 
  HHNINC|    -.37714***      .13074    -2.88  .0039     -.63339   -.12090 
    EDUC|    -.02716**       .01150    -2.36  .0182     -.04971   -.00461 
  FEMALE|     .57068***      .05004    11.40  .0000      .47261    .66876 
  HHKIDS|    -.27234***      .05940    -4.58  .0000     -.38876   -.15592 
 MARRIED|     .07941         .06408     1.24  .2153     -.04618    .20500 
        |Standard Deviation of Heterogeneity 
   Sigma|    1.28080***      .02146    59.68  .0000     1.23874   1.32286 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Neg.Bin. Model with Normal Heterogeneity 
Dependent variable               DOCVIS 
Log likelihood function     -7955.35165 
Restricted log likelihood  -31890.63195 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson Probability 
Constant|     .82348***      .18292     4.50  .0000      .46496   1.18200 
     AGE|     .01755***      .00247     7.12  .0000      .01272    .02239 
  HHNINC|    -.38946***      .13449    -2.90  .0038     -.65306   -.12586 
    EDUC|    -.03254***      .01177    -2.77  .0057     -.05560   -.00947 
  FEMALE|     .46983***      .05271     8.91  .0000      .36652    .57314 
  HHKIDS|    -.19711***      .05910    -3.33  .0009     -.31295   -.08127 
 MARRIED|     .04231         .06508      .65  .5156     -.08524    .16986 
        |Overdispersion parameter in NegBin 
   Alpha|    1.53709***      .07616    20.18  .0000     1.38781   1.68637 
        |Standard Deviation of Heterogeneity 
   Sigma|     .35507***      .06128     5.79  .0000      .23496    .47519 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Estimated value of E[y|x] computed at the 
means is  4.22499. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .07602***      .01050     7.24  .0000      .05545    .09660 
  HHNINC|   -1.59343***      .55345    -2.88  .0040    -2.67816   -.50869 
    EDUC|    -.11475**       .04844    -2.37  .0178     -.20969   -.01981 
  FEMALE|    2.41113***      .21410    11.26  .0000     1.99150   2.83076 
  HHKIDS|   -1.15063***      .25190    -4.57  .0000    -1.64436   -.65691 
 MARRIED|     .33550         .27082     1.24  .2154     -.19530    .86630 
--------+-------------------------------------------------------------------- 
 (Negative Binomial) 
Estimated value of E[y|x] computed at the 
means is  3.81318. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .06694***      .01021     6.56  .0000      .04694    .08694 
  HHNINC|   -1.48509***      .52004    -2.86  .0043    -2.50435   -.46582 
    EDUC|    -.12407***      .04551    -2.73  .0064     -.21327   -.03486 
  FEMALE|    1.79155***      .21395     8.37  .0000     1.37222   2.21088 
  HHKIDS|    -.75161***      .22182    -3.39  .0007    -1.18637   -.31684 
 MARRIED|     .16133         .24700      .65  .5137     -.32278    .64545 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E42.4.3 Random Constant Poisson Regression 
 
 The next section describes estimation of a count data model with random parameters.  The 
models of heterogeneity considered here can be treated and estimated as special cases.  In particular, 
we specify 
   yi|xi,εi  ~  Poisson λi 
 
   E[yi|xi,εi] =  λi  =  λ|x,ε  =  exp(αi + β′x)   
 
   αi =  α  +  εi  where  ε|x ~ N[0,σ2]. 
 
This is a special case of the random parameters model, that is estimated by maximum simulated 
likelihood, rather than by quadrature as are the models above. 
 The following demonstrates the alternative methods of fitting the Poisson model with 
normally distributed heterogeneity.  (The negative binomial model could be estimated this way as 
well.)  The commands are discussed in more detail below.   
 

POISSON  ; Lhs = docvis 
; Rhs = one,age,hhninc,educ,female,hhkids,married  
; Rpm ; Fcn = one(n) 
; Pts = 125 ; Halton  
; Partial Effects $ 

 
----------------------------------------------------------------------------- 
Poisson  Regression Start Values for DOCVIS 
Dependent variable               DOCVIS 
Log likelihood function    -31890.63195 
Estimation based on N =   3377, K =   7 
Inf.Cr.AIC  =63795.264 AIC/N =   18.891 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01693***      .00090    18.90  .0000      .01518    .01869 
  HHNINC|    -.40982***      .04784    -8.57  .0000     -.50359   -.31605 
    EDUC|    -.02982***      .00435    -6.86  .0000     -.03834   -.02131 
  FEMALE|     .40223***      .01821    22.09  .0000      .36654    .43792 
  HHKIDS|    -.16138***      .02239    -7.21  .0000     -.20526   -.11750 
 MARRIED|     .03198         .02304     1.39  .1651     -.01317    .07713 
Constant|     .92173***      .06876    13.41  .0000      .78697   1.05650 
--------+-------------------------------------------------------------------- 
Normal exit:  33 iterations. Status=0, F=    8044.167 
 
----------------------------------------------------------------------------- 
Random Coefficients  Poisson  Model 
Dependent variable               DOCVIS 
Log likelihood function     -8044.16703 
Restricted log likelihood  -31890.63195 
Sample is  1 pds and   3377 individuals 
POISSON regression model 
Simulation based on 125 Halton draws 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .02116***      .00085    24.96  .0000      .01950    .02282 
  HHNINC|    -.46239***      .04793    -9.65  .0000     -.55634   -.36845 
    EDUC|    -.03983***      .00438    -9.10  .0000     -.04841   -.03126 
  FEMALE|     .53115***      .01786    29.75  .0000      .49615    .56614 
  HHKIDS|    -.10946***      .02039    -5.37  .0000     -.14942   -.06950 
 MARRIED|    -.06366***      .02133    -2.98  .0028     -.10546   -.02186 
        |Means for random parameters 
Constant|     .12623*        .06969     1.81  .0701     -.01036    .26283 
        |Scale parameters for dists. of random parameters 
Constant|    1.37409***      .01077   127.60  .0000     1.35298   1.39519 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point   1.6866 
Scale Factor for Marginal Effects  1.6866 
 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCVIS|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .03569***      .90192    18.58  .0000      .03192    .03945 
  HHNINC|    -.77989***     -.20566    -7.75  .0000     -.97725   -.58253 
    EDUC|    -.06718***     -.45833    -5.96  .0000     -.08927   -.04510 
  FEMALE|     .89585***      .24615    14.48  .0000      .77462   1.01708 
  HHKIDS|    -.18462***     -.04243    -4.63  .0000     -.26281   -.10643 
 MARRIED|    -.10737***     -.04515    -2.92  .0035     -.17945   -.03529 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
(Poisson) 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .06406***      .00344    18.64  .0000      .05732    .07080 
  HHNINC|   -1.55034***      .18150    -8.54  .0000    -1.90608  -1.19460 
    EDUC|    -.11282***      .01647    -6.85  .0000     -.14510   -.08054 
  FEMALE|    1.51309***      .06861    22.05  .0000     1.37862   1.64756   # 
  HHKIDS|    -.59474***      .08051    -7.39  .0000     -.75254   -.43694   # 
 MARRIED|     .12011         .08592     1.40  .1621     -.04829    .28852   # 
--------+-------------------------------------------------------------------- 
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E42.4.4 Technical Details 
 

Parameters of the heterogeneity model are estimated by maximum likelihood. The likelihood 
function is formed as follows:  The conditional Poisson density for the observed y is 
 

  P(y|ε)  =  exp[-E(y|ε)] × [E(y|ε)]y / y! 
 
The unconditional probability is found by integrating ε out of this expression; 
 

    P(y) =  Eε[P(y|ε)] = 
−∞

∞

∫ P(y|ε) f(ε) dε 

 

  =  1( | )P y d
∞

−∞

ε   ε φ σ   σ σ   ∫  

 
where φ(.) is the standard normal PDF.  This function and its derivatives are evaluated by Hermite 
quadrature to maximize the log likelihood, which is 
 

  Log L =  
1
log ( ).n

ii
P y

=∑  
 
Details on using Hermite quadrature to evaluate log likelihoods of this form are given in Section 
R23.3.1. 
 The hypothesis σ = 0, which would produce the model without heterogeneity, is not well 
defined – the restricted value is on the boundary of the parameter space.  An alternative statistic that 
can be used for such a test is the Vuong statistic.  Define 
 
   mi =  log(Pi|H0 / Pi|H1) 
 
Thus, mi is the ratio of the logs of the fitted probabilities for the ith observation under the null and 
alternative hypotheses. (Minus twice m  is the likelihood ratio statistic for testing H0 against a 
broader alternative H1.  But, that is not the case here. ) The test statistic is the standard measure for 
testing whether a mean is zero, 
 
   V   =  n  / mm s . 
 
The limiting distribution of V is normal (0,1).  Large values (greater than 2.0) favor H0; small values 
(less than -2.0) favor H1.  The intermediate values are inconclusive.  The Vuong statistic is reported 
for several models, including the heterogeneity models shown in the examples below. 
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E42.5 Heterogeneity in the Form of Random  Parameters 
 
 The models described above are equivalent to the following formulation in which ‘i’ indexes 
individuals: 

  β1i =  β1  +  v1i 

   vi ~  N[0,σ2] 

   βki =  βk, k = 2,...,K 

   βi =  [β1i, β2i, ..., βKi]′ 

   xi =  [1, x2i, x3i,..., xKi]′ 

   λi|vi =  exp(βi′xi) 

   P(yi|vi) =  Poisson or negative binomial probability conditioned on vi. 
 
This has reformulated the heterogeneity model as a model with a randomly distributed constant term.   
The correct log likelihood for this model is obtained by integrating out the heterogeneity term; 
 

   log L =  ∫∑ =
iv iiii

n
i

dvvyPvg
1

1111
),|()(log ix  

 
The preceding applications have made this feasible by approximating the integration with 

Hermite quadrature (assuming that v1i is normally distributed).  (Note that in the negative binomial 
case with unit mean gamma heterogeneity, the integral has a closed form, which we treated in 
Section E41.4.5)  The approximate log likelihood that was maximized in the previous section is 
 

   log LH =  hhii
H
h

n
i

wvyP ),|(log 111
x∑∑ ==

 
 
where v1h and wh are the nodes and weights for the Hermite quadrature. 
 An alternative approach to maximizing the log likelihood is integration of the simulated log 
likelihood – see Chapter R24.  For the model examined here, the simulated log likelihood function is 
 

   log LS =  ),|(1log 111 irii
H
h

n
i

vyP
R

x∑∑ ==
 

 
where v1ir is the rth of R simulated draws from the distribution of v1i.  With a sufficient number of 
draws, R, the estimator converges to the true MLE.  This ‘random constant term’ approach is 
equivalent to the heterogeneity models in the previous section, though it uses a different method of 
approximating the log likelihood.  Before proceeding to the more general formulation, we will 
illustrate this particular model with the data described below. 
 
NOTE:  Random parameter models are often associated with analysis of panel data.  But, this is one 
of many models in LIMDEP that allow random parameter models in a cross section setting. 
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 The random parameters model may be extended to the full parameter vector.  We allow for a 
general model in which some parameters are random and others are not.  Also, several extensions of 
the model are added at this point.  The structure of the random parameters model is 
 

β1i = β1   (K1  nonrandom parameters) 

 x1i = variables multiplied by β1i 

 β2i =   β2  +  ∆zi  +  Γvi  (K2
 random parameters) 

 
where  β2 = the fixed means of the distributions for the random parameters 

  zi = a set of M observed variables which enter the means (optional) 

  ∆ = coefficient matrix, K2×M, which forms the observation specific term in  
    the mean 

  vi  = unobservable K2×1 latent random term in the ith observation in β2i.  Each 
   element of vi has zero mean and variance one.  Each element of vi may be  
   distributed as normal, uniform, or triangular.  They need not be the same. 

  Γ = lower triangular or diagonal matrix which produces the covariance matrix  
    of the random parameters, Ω  =  Γ Γ ′ 

 x2i =  variables multiplied by β2i 

 βi = [β1′, β2i′]′ 

 xi = [x1i′, x2i′]′ 

 λ|vi = exp(βi′xi) 

 P(yi|xi,vi)  =  Poisson or negative binomial probability given λi. 
  
This formulation allows great flexibility in the specification of the model, and accommodates many 
special cases. 
 The command for the random parameters model is structured as follows: 
 
 POISSON   ; Lhs = dependent variable 
   or NEGBIN ; Rhs = list of all variables in xi, including one if the model contains a 
     constant 
   ; Pts = r (number of replications – this is optional) 
   ; RPM  (for random parameters model)    
or    ; RPM = list of variables in zi 
   ; Fcn  = specification of random parameters 
   ; Cor  (for correlated parameters – optional) $ 
 
The ; Fcn list consists of a list of names of variables which appear in x2i, followed in parentheses by 
(n) for normally distributed, (u) for uniform, or (t) for triangular.   
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 The following example refits the earlier model with three normally distributed coefficients 
 

POISSON  ; Lhs = docvis 
; Rhs = one,age,hhninc,educ,female,hhkids,married  
; Rpm ; Fcn = one(n), hhninc(n), female(n) ; Correlated 
; Pts = 125 ; Halton  
; Partial Effects $ 

 
----------------------------------------------------------------------------- 
Poisson  Regression Start Values for DOCVIS 
Dependent variable               DOCVIS 
Log likelihood function    -31890.63195 
Estimation based on N =   3377, K =   7 
Inf.Cr.AIC  =63795.264 AIC/N =   18.891 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01693***      .00090    18.90  .0000      .01518    .01869 
    EDUC|    -.02982***      .00435    -6.86  .0000     -.03834   -.02131 
  HHKIDS|    -.16138***      .02239    -7.21  .0000     -.20526   -.11750 
 MARRIED|     .03198         .02304     1.39  .1651     -.01317    .07713 
Constant|     .92173***      .06876    13.41  .0000      .78697   1.05650 
  HHNINC|    -.40982***      .04784    -8.57  .0000     -.50359   -.31605 
  FEMALE|     .40223***      .01821    22.09  .0000      .36654    .43792 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Normal exit:  23 iterations. Status=0, F=    8048.005 
 
----------------------------------------------------------------------------- 
Random Coefficients  Poisson  Model 
Dependent variable               DOCVIS 
Log likelihood function     -8048.00464 
Restricted log likelihood  -31890.63195 
Chi squared [   6 d.f.]     47685.25460 
Significance level               .00000 
McFadden Pseudo R-squared      .7476373 
Estimation based on N =   3377, K =  13 
Inf.Cr.AIC  =16122.009 AIC/N =    4.774 
Sample is  1 pds and   3377 individuals 
POISSON regression model 
Simulation based on 125 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01220***      .00083    14.77  .0000      .01058    .01382 
    EDUC|    -.04728***      .00420   -11.25  .0000     -.05551   -.03904 
  HHKIDS|    -.41927***      .02094   -20.02  .0000     -.46031   -.37822 
 MARRIED|     .25499***      .02173    11.73  .0000      .21240    .29758 
        |Means for random parameters 
Constant|     .51623***      .06881     7.50  .0000      .38137    .65109 
  HHNINC|    -.59478***      .06467    -9.20  .0000     -.72154   -.46802 
  FEMALE|     .62911***      .02711    23.21  .0000      .57598    .68223 
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        |Diagonal elements of Cholesky matrix 
Constant|    1.12902***      .01800    62.71  .0000     1.09373   1.16431 
  HHNINC|     .06537***      .02414     2.71  .0068      .01806    .11268 
  FEMALE|     .53563***      .01231    43.50  .0000      .51150    .55977 
        |Below diagonal elements of Cholesky matrix 
lHHN_ONE|    -.41713***      .04503    -9.26  .0000     -.50539   -.32887 
lFEM_ONE|    -.11997***      .01863    -6.44  .0000     -.15648   -.08346 
lFEM_HHN|     .10061***      .01526     6.59  .0000      .07071    .13052 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.27468      -.470946      -.135446 
       2|      -.470946       .178270      .0566190 
       3|      -.135446      .0566190       .311417 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.12902 
       2|       .422220 
       3|       .558048 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000      -.987943      -.214978 
       2|      -.987943       1.00000       .240299 
       3|      -.214978       .240299       1.00000 
 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point   1.7120 
Scale Factor for Marginal Effects  1.7120 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCVIS|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .02089***      .52009    14.82  .0000      .01813    .02365 
    EDUC|    -.08094***     -.54398   -11.24  .0000     -.09505   -.06683 
  HHKIDS|    -.71779***     -.16252   -18.92  .0000     -.79216   -.64342 
 MARRIED|     .43655***      .18084    11.43  .0000      .36169    .51142 
  HHNINC|   -1.01828***     -.26454    -9.07  .0000    -1.23842   -.79814 
  FEMALE|    1.07704***      .29155    17.97  .0000      .95957   1.19452 
--------+-------------------------------------------------------------------- 
 
 Other options for the Poisson and negative binomial models are generally supported, 
including predictions and residuals, restrictions, controls on the optimization, display of output, 
marginal effects, and so on.  Output includes the standard displays, as shown above.  The matrices 
saved are b and varb as usual, as are scalars nreg, kreg, logl, and exitcode.  An additional matrix, 
sdrpm is created. This is a column vector which contains the implied standard deviations of the 
random coefficients. 
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E43: Two Part Models for Count Data 
 
E43.1 Introduction 
 
 This chapter describes several extended models for count data.  The basic formulation is the 
Poisson regression model.  For a discrete random variable, Y observed over a period of length Ti, and 
observed frequencies, yi, i = 1,...,n, where yi is a nonnegative integer count, and regressors xi, 
 

   Prob(Y = yi|xi)   =  exp( )
!

iy
i i

iy
−λ λ , yi = 0,1,...;  log λi = β′xi. 

 
In this model, λi is both the mean and variance of yi; 
 
   E[yi|xi]  =  λi.  
 
The partial effects in this nonlinear regression model are, 
 

  [ | ]i i

i

E y∂
∂

x
x

 = iλ β . 

 
The various extensions are also provided for the negative binomial model. 

The two part models involve a behavioral specification of the count model generally 
involving a participation equation and an intensity equation.  The hurdle model, for example, has 
been used in health care applications in which the individual decides whether or not to use the health 
care system (the first, binary outcome model equation) and then, given a decision to participation, 
how intensively to use the system (the second, count equation).  The five models detailed in this 
chapter are 
 

• sample selection 
• endogenous treatment effects 
• models for underreporting of counts 
• zero inflation models (GPP allows this form ; Rh2) 
• hurdle models    

 
These and other two part models are surveyed in Greene (2005a) 
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E43.2 Model for Sample Selection 
 
 The Poisson and negative binomial models can be fit with a Heckman style correction for 
sample selection.  The method used here is maximum likelihood, however, not two step least squares.  
The formulation is similar to the linear selectivity model.  The specification used here is as follows: 
 
   yi = Poisson or negative binomial variable with conditional mean 

   log λi = β′xi + εi; 

    zi = a binary indicator of whether data on [yi,xi] are observed, with 
         underlying latent structure, zi  =  1(γ′wi + ui) > 0  (a probit model); 

    (εi,ui) ~ bivariate standard normal with correlation ρ and Var[εi] = σ2; 

and   [yi,xi]  = observed only when zi = 1. 
  
Estimation of the selection model is by full information maximum likelihood.  
 The following is a counterpart to the sample selection model for linear regression.  We 
present two approaches.  The Poisson and negative binomial specifications are modified as follows: 
The selection indicator zi is determined by 
 
    zi*  = γ′wi  +  ui in which ui ~ N[0,1], 
 
   zi   = 1(zi*   >  0). 
  
Thus, a probit model applies to the indicator, zi.  For the observed count variable, in the population, 
  
   yi   ~ Poisson (λi)  or  negative binomial (λi,θ) 
 
However,  yi,xi   are observed only when zi = 1. 
 
Then,   yi|xi,(zi  = 1) ~ Poisson or negative binomial. 
 
This leads to a Heckman style correction of the count data model.  However, the last assumption is 
questionable.  In the standard regression framework, the development proceeds by modeling the joint 
distribution of ui and the disturbance in the regression model, which would correspond to 
  
   εi  =  yi - E[yi|xi]. 
  
The familiar Heckman model hinges on joint normality of [ui,εi], which is clearly untenable here – 
since yi is discrete, its deviation from the conditional mean function would not be normally 
distributed.  The approach taken is to join the selection approach with the heterogeneity model of the 
Section E42.4.1; 
   λi|εi  = exp(β′xi + εi) 
 
Then,   [ui,εi] ~  Bivariate normal with zero means, correlation ρ,  
         and standard deviations 1 and σ. 
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Thus, y|ε is distributed as Poisson with mean (and variance) E[y|ε] = exp(β′x + ε).  The distribution 
in the selected population is nonPoisson, but this does preserve its discreteness.  The force of the 
sample selection is exerted on the mean of the discrete variable (and its variance).  The estimator is 
full information maximum likelihood.  Discussion appears in Terza (1998, 2009) and Greene (2011). 
  
E43.2.1 Full Information Maximum Likelihood Estimation 
 
 A full information maximum likelihood estimator for the sample selection model is 
requested for the POISSON or NEGBIN specifications with 
 
 PROBIT    ; Lhs = ... ; Rhs = ... ; Hold $ 
 POISSON  ; Lhs = ..  ; Rhs = ... ; Selection ; MLE $ (or NEGBIN) 
 
The computations are based on the heterogeneity model.  This must be preceded by the probit model 
in order to define the full set of variables in the model and to provide the starting values for the 
iterations.   Partial effects are requested with 
 
   ; Partial Effects. 
 
All options, including 
 
 Optimization: ; Maxit = n  to set maximum restrictions 
   ; Alg  = name  to select algorithm (you generally should not change this) 
   ; Tlf [ = value]  to set tolerance for convergence criteria 
   ; Output = value to control intermediate output  
   ; Hpt = n  to specify number of nodes for Hermite quadrature 

 
 Constraints: ; Rst = list  to specify fixed value and equality restrictions 
   ; CML: spec to define a constrained maximum likelihood estimator 
   ; Test: spec  to define Wald tests 
  
 Output: ; Covariance Matrix to display the estimated asymptotic covariance matrix,  

   same as ; Printvc.  
   ; List  to display predicted values 
   ; Keep = name  to retain fitted values 
   ; Res = name  to retain residuals 
   ; Parameters  to retain estimates of σ and ρ in b and varb 
 
and so on for other program options are all supported.  Output for this model will include the initial 
Poisson regression followed by the FIML results, then any optional output you have requested, such 
as a list of fitted values.   
 
NOTE:  This estimator reestimates the parameters of the probit model, and replaces the estimates 
that were initially retained with ; Hold on the probit command.  See the example below. 
 
  



E43: Two Part Models for Count Data   E-1006 

The results that are retained include  
 
 Matrices: b and varb include Poisson slopes followed by probit parameters  
   σ then ρ with ; Parameters option 
 
 Scalars: logl =  log likelihood 
   kreg =  number of parameters in [β′, γ′, σ, ρ]′ 
   nreg =  number of observations, total, not just selected 
   s =  estimate of σ 
   rho =  estimate of ρ 
 
 Last Function: None 
 
The elements of the partial effects are computed by quadrature with the model, during the estimation 
step.  PARTIALS and SIMULATE are not enabled for this model. 
 This example bases the sample selection on the addon insurance variable in the health care 
data. 
 

 PROBIT ; Lhs = addon ; Rhs = one,age,hhninc,married,hhkids ; Hold $ 
 POISSON  ; Lhs = docvis ; Rhs = one,age,female,hsat  

; Select ; MLE ; Partial Effects $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                ADDON 
Log likelihood function     -2545.01803 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   ADDON|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|   -2.36091***      .08870   -26.62  .0000    -2.53475  -2.18706 
     AGE|     .00447**       .00183     2.44  .0147      .00088    .00805 
  FEMALE|     .05305         .03593     1.48  .1398     -.01738    .12348 
 MARRIED|     .05665         .04745     1.19  .2325     -.03635    .14965 
  HHKIDS|     .03654         .04251      .86  .3901     -.04679    .11986 
--------+-------------------------------------------------------------------- 
Unrestricted Poisson Regression Start Value 
Dependent variable               DOCVIS 
Log likelihood function     -3424.32688 
Sample size=   27326; selected      514 
Estd sigma for heterogeneity =     .413 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2.09288***      .14137    14.80  .0000     1.81580   2.36996 
     AGE|     .00748***      .00243     3.08  .0021      .00272    .01224 
  FEMALE|     .29679***      .05149     5.76  .0000      .19587    .39770 
    HSAT|    -.23627***      .01018   -23.20  .0000     -.25623   -.21631 
--------+-------------------------------------------------------------------- 
Normal exit:  24 iterations. Status=0, F=    3646.965 
----------------------------------------------------------------------------- 
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Poisson  Model with Sample Selection. 
Dependent variable               DOCVIS 
Log likelihood function     -3646.96549 
Restricted log likelihood   -5969.34491 
Chi squared [   2 d.f.]      4644.75884 
Significance level               .00000 
McFadden Pseudo R-squared      .3890510 
Estimation based on N =  27326, K =  11 
Restr. Log-L is Poisson+Probit (indep). 
LogL for initial probit =    -2545.0180 
LogL for initial Poisson=    -3424.3269 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson/Neg. Binomial Probability 
Constant|    1.71261        3.79360      .45  .6517    -5.72271   9.14792 
     AGE|     .01086         .00762     1.42  .1545     -.00409    .02580 
  FEMALE|     .41822***      .13145     3.18  .0015      .16059    .67585 
    HSAT|    -.24388***      .02512    -9.71  .0000     -.29312   -.19464 
        |Parameters of Probit Selection Model 
Constant|   -2.35926***      .09212   -25.61  .0000    -2.53980  -2.17872 
     AGE|     .00446**       .00193     2.31  .0210      .00067    .00824 
  FEMALE|     .05301         .03640     1.46  .1453     -.01833    .12434 
 MARRIED|     .05560         .04984     1.12  .2647     -.04209    .15329 
  HHKIDS|     .03565         .04357      .82  .4132     -.04974    .12104 
        |Standard Deviation of Heterogeneity 
   Sigma|     .93205***      .12290     7.58  .0000      .69117   1.17294 
        |Correlation of Heterogeneity & Selection 
     Rho|    -.09092        1.53194     -.06  .9527    -3.09347   2.91162 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the var- 
iables.  Separate effects are shown first 
followed by the sum of the two effects for 
variables which appear in both Poisson and 
Probit models.  Estimated value of E[y|D=1] 
using sample mean =   .06401. 
Note, std. errs. assume fixed rho & sigma. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson/Neg. Binomial Probability 
     AGE|     .00070         .00049     1.42  .1545     -.00026    .00165 
  FEMALE|     .02677***      .00841     3.18  .0015      .01028    .04326 
    HSAT|    -.01561***      .00161    -9.71  .0000     -.01876   -.01246 
        |Parameters of Probit Selection Model 
     AGE|     .03634**       .01647     2.21  .0273      .00406    .06861 
  FEMALE|     .43230         .30056     1.44  .1503     -.15679   1.02138 
 MARRIED|     .45340         .41237     1.10  .2715     -.35482   1.26163 
  HHKIDS|     .29073         .35830      .81  .4171     -.41152    .99298 
        |Combined effect of two terms 
     AGE|     .03703**       .01632     2.27  .0232      .00505    .06902 
  FEMALE|     .45907         .29990     1.53  .1258     -.12872   1.04686 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E43.2.2 Imposing Restrictions and Fixing ρ 
 
 The parameter vector is [β′, γ′, σ, ρ]′.  Use this if you wish to impose constraints.  For 
example, to fix the value of ρ at -.5, you could use the following: 
 
 NAMELIST ; xp = Rhs variables in probit equation 
   ; xr  = Rhs variables in Poisson model $ 
 CALC  ; kp  = Col(xp) ; kr = Col(xr) $ 
 PROBIT ; Lhs  = ...  
   ; Rhs  = xp  
   ; Hold $ 
 POISSON ; Lhs  = the dependent variable 
   ; Rhs  = xr 
   ; Selection  
   ; MLE 
   ; Rst  = kr_b, kp_c, sg, -.5 $ 
 
----------------------------------------------------------------------------- 
Poisson  Model with Sample Selection. 
Dependent variable               DOCVIS 
Log likelihood function     -3647.22494 
Restricted log likelihood   -5969.34491 
Chi squared [   2 d.f.]      4644.23995 
Significance level               .00000 
McFadden Pseudo R-squared      .3890075 
Estimation based on N =  27326, K =  10 
Inf.Cr.AIC  =   7314.4 AIC/N =     .268 
Model estimated: Jul 30, 2011, 11:06:12 
Mean of LHS Variable =          3.12451 
Restr. Log-L is Poisson+Probit (indep). 
LogL for initial probit =    -2545.0180 
LogL for initial Poisson=    -3424.3269 
Means for Psn/Neg.Bin. use selected data. 
Means for Probit based on all observations. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson/Neg. Binomial Probability 
Constant|    2.87547***      .30776     9.34  .0000     2.27228   3.47867 
     AGE|     .00903*        .00523     1.73  .0841     -.00122    .01928 
  FEMALE|     .39957***      .10993     3.63  .0003      .18411    .61504 
    HSAT|    -.24353***      .02488    -9.79  .0000     -.29230   -.19477 
        |Parameters of Probit Selection Model 
Constant|   -2.34934***      .09188   -25.57  .0000    -2.52941  -2.16927 
     AGE|     .00441**       .00191     2.31  .0209      .00067    .00815 
  FEMALE|     .05250         .03633     1.45  .1484     -.01870    .12370 
 MARRIED|     .04890         .04832     1.01  .3115     -.04580    .14361 
  HHKIDS|     .03031         .04290      .71  .4799     -.05377    .11439 
        |Standard Deviation of Heterogeneity 
   Sigma|    1.05096***      .06327    16.61  .0000      .92696   1.17495 
        |Correlation of Heterogeneity & Selection 
     Rho|    -.50000    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
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You can use this device to test for a selectivity effect as well.  The simple t and likelihood ratio tests 
can be carried out based on the value of ρ that is estimated.  But, the t test requires estimation of the 
full model while the LR test requires assembling estimates of the pair of models and collecting three 
terms: 
 

 PROBIT ; ... ; Hold $ 
 POISSON ; ... estimate full model by FIML $ 
 CALC  ; lfiml = logl $ 
 CALC  ; lprobit = logl $ 
 REJECT ; the Lhs variable for probit model = 0 $ 
 POISSON ; ... Poisson model without selection, on selected observations $ 
 CALC  ; lpois = logl  
   ; List  
   ; lm = 2*(lfiml - lprobit - lpois)  
   ; 1 - Chi(lm,1)  $ 
 
The LM test should be the simplest to carry out.  In the earlier example, just change our -.5 to 0, and 
add ; Maxit = 0 to the command.  An example appears below. 
 
E43.2.3 Technical Details 
 
 The central result in estimation of the two part models by FIML as done here is the 
connection of the participation equation to the intensity equation through the correlation of the two 
disturbances.  The participation equation is 
 
    zi*    = γ′wi  +  ui in which ui ~ N[0,1], 

   zi     = 1(zi*   >  0). 
 
The intensity equation is based on a conditional mean function 
 
   λi|εi  =  exp(β′xi  +  εi), where εi  ~  N[0,σ2] and corr(εi,ui) = ρ. 
 
To obtain the log likelihood, we first project ui on εi so 
 

   ui = (ρ/σ)εi + τvi where τ = 21− ρ . 
 
Combining terms, the density for the observed yi|εi when zi = 1 is the Poisson probability 
 
   P(yi|zi=1, εi)  =  Pi(yi|εi). 
 
The contribution to the likelihood is the density of the observed outcome.  Conditioned on εi, when   
zi = 0, this is 

   Prob(zi = 0|εi)  =  0

2

[ ( / ) ] ( )
1

i i
i i

z ′− γ + ρ σ ε
 Φ = Φ ε
 − ρ 
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The contribution to the likelihood when zi = 1 is the joint density of zi and yi. 
 
   Prob(yi,zi=1|εi)   =  Prob(yi|zi=1, εi )Prob(zi=1|εi) 
 

      =  Pi(yi|εi)
2

[ ( / ) ]
1

i iz ′γ + ρ σ ε
 Φ
 − ρ 

= 1( ) ( | )i i i iP yΦ ε ε . 

 
To form the log likelihood function, it is necessary to integrate ei out of the density.  The 
unconditional contribution to the likelihood of observation i is 
 

   ( , ) ( , | ) ( ) .
i

i i i i i i if y z f y z f d
ε

= ε ε ε∫  
 
Collecting terms once again, this is 
 

   0 1 1( , ) (1 ) ( ) + ( ) ( | ) .
i

i
i i i i i i i i i i if y z z z P y d

ε

ε  = − Φ ε Φ ε ε φ ε   σ σ ∫  

 

The log likelihood function is then the sum of the logs of the terms.  Parameters to be estimated are γ 
in the probit equation, β in the Poisson conditional mean function, ρ and σ.  The integrals are 
computed using Gauss-Hermite quadrature.  Further details on the method may be found in Section 
R26.7 and in Greene (2011). Partial effects are obtained as the derivatives of the expected 
conditional mean function, 

   1 1( | ) ( ) ( ) .
i

i
i i i i i iE y d

ε

ε  = Φ ε λ ε φ ε   σ σ ∫x  

 
This function and its derivatives are also computed using Hermite quadrature. 
 
E43.3 An Incidental Truncation Model 
 
 Winkelmann (1997, pp. 112-113) describes a model (attributed to Crepon and Duguet 
(1995)) which is labeled the ‘incidental truncation’ model.  This is a case in which the binary 
variable is correlated with the Poisson outcome, and directly affects it, in a form similar to the ZIP 
models discussed below.  In this model, the data are observed when zi = 0, but zi = 0 implies that  
yi = 0.  The difference between this and the ZIP model is the correlation between the two latent 
disturbances.  The structure is actually a small modification of the model we have considered above. 
 
   zi* =  γ′wi  +  ui in which ui ~ N[0,1], 

   zi =  1(zi*   >  0). 
 
Thus, a probit model applies to the indicator, zi.  The following applies to the observed yi: 
 
   yi* ~  Poisson (λi|εi) is a latent variable distributed as Poisson 

   λi|εi =  exp(β′xi + εi) 

   yi =  yi* and  xi  are observed when zi = 1. 

   yi =  0 when zi = 0, xi is still observed when zi = 0. 
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For the sample selection model, the joint density of the observed response variables yi and zi is of the 
form 
   1(zi = 1)×{Prob(zi = 1) × Poisson probability}  +  1(zi = 0)×Prob(zi = 0) 
 
while for the incidental truncation model, the joint density is of the form 
 
   Prob(zi = 1) × Poisson probability  +  1(zi = 0)×Prob(zi = 0) 
 
 This model is requested by adding 
 
   ; All 
 
to the POISSON command given earlier.  All other aspects are the same. 
 
E43.4 Endogenous Treatment Effect 
 
 The endogenous treatment is a modification of the selection model in which the ‘selection’ 
equation is replaced with a treatment equation, 
 
   zi* =  γ′wi  +  ui in which ui ~ N[0,1], 

   zi =  1(zi*   >  0). 
 
A probit model applies to the treatment indicator, zi.  The following applies to the observed yi: 
 
   yi*  ~  P(λi|εi) is a latent variable distributed as Poisson or negative binomial 

   λi|εi  =  exp(β′xi  +  θzi  +  εi), where εi  ~  N[0,σ2] and corr(εi,ui) = ρ. 
 
The treatment dummy variable appears in the conditional mean function of the count variable.  The 
endogeneity of the treatment effect is induced by the correlation of εi and ui. 
 This model is requested with 
 
 PROBIT    ; Lhs = ... ; Rhs = ... ; Hold $ 
 POISSON  ; Lhs = ..  ; Rhs = ... , z 
  or NEGBIN ; Selection ; MLE 
   ; Treatment $ 
 
The command differs from the selection model by the appearance of z in the Rhs of the count model 
and in the addition of ; Treatment in the command. 
 The example below continues the application of the selection model in Section E43.2.1. 
 
 PROBIT ; Lhs = addon 
   ; Rhs = one,age,female,married,hhkids ; Hold $ 
 POISSON ; Lhs = docvis  
   ; Rhs = one,age,female,hsat,addon 
   ; Selection ; MLE ; Treatment $ 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                ADDON 
Log likelihood function     -2482.98865 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   ADDON|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
Constant|   -2.67747***      .09373   -28.56  .0000    -2.86118  -2.49375 
     AGE|     .00521***      .00188     2.77  .0057      .00152    .00890 
  HHNINC|     .93381***      .07746    12.06  .0000      .78199   1.08563 
 MARRIED|    -.02112         .04875     -.43  .6649     -.11667    .07444 
  HHKIDS|     .05577         .04276     1.30  .1921     -.02803    .13958 
--------+-------------------------------------------------------------------- 
Unrestricted Poisson Regression Start Value 
Dependent variable               DOCVIS 
Log likelihood function   -212776.46611 
Estd. sigma for heterogeneity =    .424 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.95339***      .01809   107.99  .0000     1.91794   1.98885 
     AGE|     .01005***      .00031    32.30  .0000      .00944    .01066 
  FEMALE|     .27823***      .00687    40.49  .0000      .26476    .29170 
    HSAT|    -.22992***      .00132  -174.43  .0000     -.23251   -.22734 
   ADDON|    -.00412         .02519     -.16  .8702     -.05349    .04526 
--------+-------------------------------------------------------------------- 
Normal exit:  35 iterations. Status=0, F=    60497.98 
----------------------------------------------------------------------------- 
Poisson  Model with Endogenous Treatment 
Dependent variable               DOCVIS 
Log likelihood function    -60497.98492 
Restricted log likelihood -215259.45475 
Chi squared [   2 d.f.]    309522.93967 
Restr. Log-L is Poisson+Probit (indep). 
LogL for initial probit  =   -2482.9887 
LogL for initial Poisson = -212776.4661 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Parameters of Poisson/Neg. Binomial Probability 
Constant|    1.33582***      .04532    29.47  .0000     1.24698   1.42465 
     AGE|     .01235***      .00078    15.84  .0000      .01082    .01388 
  FEMALE|     .40651***      .01639    24.81  .0000      .37439    .43862 
    HSAT|    -.25744***      .00323   -79.61  .0000     -.26378   -.25111 
   ADDON|   -2.18277***      .07368   -29.63  .0000    -2.32717  -2.03836 
        | Parameters of Probit Selection Model 
Constant|   -2.75320***      .08502   -32.38  .0000    -2.91983  -2.58656 
     AGE|     .00768***      .00183     4.20  .0000      .00410    .01126 
  HHNINC|     .83750***      .06500    12.88  .0000      .71010    .96491 
 MARRIED|    -.01517         .04396     -.35  .7300     -.10134    .07100 
  HHKIDS|     .10323***      .03912     2.64  .0083      .02656    .17991 
        | Standard Deviation of Heterogeneity 
   Sigma|    1.24965***      .00820   152.44  .0000     1.23358   1.26571 
        | Correlation of Heterogeneity & Selection 
     Rho|     .81774***      .02025    40.38  .0000      .77804    .85743 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level.
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E43.5 Poisson Models with Underreporting 
 
 We consider two models for underreporting in count data.  The basic formulation is as 
follows:  The observed count yi is assumed to be the sum of J indicators of whether an event that 
occurred was reported or not.  Thus, suppose that an event occurs at instant j, and cj is an indicator, 0 
or 1, that the event is counted in the total.  Thus, yi = Σj cj.  The probability distribution associated 
with yi is induced by the underlying probability that ci is 1.  We consider several models of 
underreporting, based on probit and logit models, and based on exogenous or endogenous reporting. 

The Poisson model with underreporting is developed in Winkelmann (1996) and 
Winkelmann and Zimmermann (1993).  The underlying logic is that the Poisson count, Y, is the 
result of recording of Y individual events, yj.  In the standard model, if ci is an indicator that the ith 
event that happens is actually recorded, then, the probability that ci equals one is 1.0.  But, suppose 
that ci is a binary variable determined by a binary process, such that  
 

  ci*   =  γ′zi  + ui 

   ci    =  1 iff ci* > 0, 
 
where γ is a parameter vector, zi is a covariate vector, and ui is a disturbance.  If ui is normally 
distributed, this is a probit model.   The authors show that with this form of underreporting in the 
Poisson model, 

  E[yi |ci ] =  Pi* E[yi ] 
 
where    Pi   =  Prob[ci = 1] 
 
and           E[yi]   =  the mean of the underlying Poisson variable. 
 
In the probit case,  Pi = Φ(γ′zi) where Φ(.) is the standard normal CDF.  
 
We also allow a logistic model, with Pi = Λ(γ′zi).   

The basic underreporting model, is a Poisson regression model with 
 
   E[yi | xi,zi ]  =  exp[ β′xi ]F(γ′zi)   
 
where F(.) may be specified as either a probit or logit equation. The model commands for this model are 
 

POISSON  ; Lhs = y ; Rhs = x ; Rh2 = z  $ 
and POISSON  ; Lhs = y ; Rhs = x ; Rh2 = z ; Logit $  
 
 The other options for this model are the same as for the standard Poisson model, including     
; Partial Effects, the output controls for fitted values and residuals, display of technical output, 
controls of the optimization method, and restrictions, which can be imposed with 
 
   ; Rst = specification  
or   ; CML: specification 
 
In both cases, the parameter vector being estimated is [β, γ]. 
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E43.5.1 Heterogeneity and Exogenous Underreporting 
 

The model of the previous section can be converted to one with exogenous underreporting 
by adding unobserved heterogeneity to the Poisson model.  The full structure becomes 
 

  ci*    =  γ′zi  + ui 

   ci     =  1 iff ci* > 0, 

  E[yi |ci , εi]   =  Pi* E[yi  | εi]   

where    Pi    =  Prob[ci = 1] 

  E[yi  | εi]     =  the mean of the underlying Poisson variable 

  E[yi | xi,zi ,εi] =  exp[ β′xi +  εi]  F(γ′zi)   
 
At this point we assume that the correlation between εi and ui equals zero.  This model is requested 
by the command 
 

POISSON  ; Lhs = y ; Rhs = x ; Het ; Rh2 = z ; No Correlation $ 
 
(As before, ; Logit may be specified.)  The last specification  is provided to restrict the model to the 
exogeneity case – the more general model is presented just below.   
 An alternative model with exogenous underreporting is Winkelmann’s Poisson/Logit model, 
which replaces the probit reporting equation with a logit reporting equation. The resulting model is 
 
   E**[Yi |εi]  =  exp(β′xi + εi) × 1 / {1 + exp[-γ′zi]} 
 
This model is requested with 
 

POISSON  ; Lhs = y ; Rhs = x ; Heterogeneity ; Rh2 = z ; Logit $ 
 
This model is a modification of the heterogeneity model presented in Section E42.4.  Estimation is 
done by the same quadrature method.  This model merely changes the form of the conditional mean 
function. 
 
E43.5.2 Endogenous Underreporting 
 

The most general form of this class of models is the model with endogenous underreporting.  
This model is obtained by relaxing the restriction that the correlation between the heterogeneity and 
the latent effect in the binary choice model is zero.  Winkelmann shows that the resulting distribution 
is a modification of our heterogeneity model in the previous section.  We begin with the same 
specification: 

  ci*   =  γ′zi  + ui. 

Write   ui =  E[ui | εi]  +  hi   =  (ρ/σ)εi  +  hi. 

Then,    Var[hi] =  (1 - ρ2). 
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The recording event is  ci    =  1 iff ci* > 0. 
 
We require  Pi|εi =  Prob[ci = 1 | εi] 

    =  Prob[γ′zi/ 21 ρ−   +  {(ρσ)/ 21 ρ− }εi  +  vi  >  0] 
 

where vi = hi / 21 ρ−  has standard normal distribution.  Let θ = (ρσ)/ 21 ρ−  and  δ  =  γ/ 21 ρ− . 
The conditional probability is now the usual for a probit model, 
 
   Pi | εi  =  Φ[δ′zi + θεi]. 
 
Returning to the Poisson model, 
 
   E[yi |ci, εi]  =  Pi|εi × E[yi  | εi]   
 
where we have denoted 
 
   E[yi  | εi]  =  the mean of the underlying Poisson variable. 
 
Combining terms, we have   

 
   Prob[Yi = j |xi, zi, εi]  =  exp(-E*[Yi | εi ]) × {E*[ Yi | εi]}j / j!, 
 
where   E**[ Yi | εi]  =  exp[β′xi + εi] × Φ[δ′zi + θεi], 
 

  δ  =  γ / (1 - ρ2) 1/2  and θ  =  ρσ / 21 ρ− . 
 
and ρ is the correlation between εi and ui.  That is, the endogenous underreporting changes the mean 
of the Poisson distribution.  As before, estimation is carried out by integrating ui out of the 
conditional distribution.  A nonzero value of ρ produces the endogeneity of the reporting. 

This model is requested simply by adding 
 
   ; Rh2 = variables in z(i) ; Het 
 
to the Poisson model, so the full command is 
 

POISSON  ; Lhs = y ; Rhs = ... x ; Rh2 = ... z ; Het $ 
 
The additional parameters estimated are scalar coefficient ρ and coefficient vector γ.  For purposes of 
starting values and fixed value/equality restrictions, the coefficient vector in this model is [β   γ   ρ  
σ].  Thus, you should use 
 

  ; Start  = list of values for β, γ, ρ, σ, 
and/or   ; Rst  = list of specifications for β, γ, ρ, σ 
 
Other results for this model are the same as for the heterogeneity model, including parameter 
estimates, predicted values, marginal effects, etc.  An application below illustrates. 
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E43.6 Zero Inflation Models for Counts 
 
 In some settings, the zero outcome of the count data model represents a sort of partial 
observability.  Consider, for example, one’s answer to a survey question about utilization of a sport 
fishing site within a recent period.  The answer, ‘zero’ could arise from two underlying responses.  If 
the individual is not a participant in this sport, they would always answer zero.  If they are, however, 
then the zero may be just the number of times they used the site in the particular period, and the 
response might be some positive number in another period.   
 

• Y = 0 happens to be the number of times the individual used that facility in the survey  
period.  At some other time, the same individual might choose Y = j > 0. 
 

• Y = 0 occurs because the individual would never use the facility, regardless of the 
characteristics that appear in the model. 

 
If so, then fitting a simple Poisson model (or negative binomial) to these data would overstate 
(‘inflate’) the theoretical probability of zero in the Poisson model.  The Poisson model may not 
accurately assign probability to the outcome Y = 0, if a separate process is simultaneously at work 
influencing this outcome.  An alternative formulation for these data that might be more appropriate is 
the ‘Zero Inflated Poisson’ (ZIP) model: 
 
   z  =  0 if the response would always be 0, 1 if a Poisson model applies, 

   y =  the response from the Poisson model, 

   zy =  the observed response. 
  
Then, the probabilities of the various outcomes are 
  
   Prob[y = 0]   =  Prob[z = 0]  +  Prob[z = 1]×Prob[y = 0 | Poisson] 

   Prob[y = j > 0] =  Prob[z = 1]  ×  Prob[y = j | Poisson]. 
  
Another clearly defined example is provided by Lambert (1992) in which the observed outcome is 
the number of defective items produced by a production process.  If the process is ‘in control,’ the 
number will be zero, by definition.  If the process is ‘not in control,’ the sampled count might be zero 
or some positive value, depending partly on sampling variability.  As one more alternative, consider 
the number of children reported by a survey respondent.  The response 0 yet is different from the 
response 0 and none planned.   
 The ZIP model is based on construction of a model for z, such as the probit model, which is 
then integrated into the count data settings (Poisson and negative binomial) discussed above.  We allow 
several different formulations for the model.  (See Lambert (1992) and Greene (1994).)  The ZIP model 
is also extended to some of the other variants of the model, including the underreporting model and the 
semiparametric random effects model.   
 
  



E43: Two Part Models for Count Data   E-1017 

 The ZIP model is, using our own notation (not Lambert’s),  
 
   Yi  =  0 with probability qi 

   Yi  ~  Poisson(λi) with probability 1 - qi 

so that   Prob[Yi = 0]  =  qi + [1 - qi]Ri(0) 

    Prob[Yi = j > 0] =  [1 - qi]Ri(j) 

where   Ri(y) =  the Poisson probability = e -λi λi 
yi  / yi! 

and   λi   =  eβ′xi . 
 
We allow four formulations of the ancillary, state probability, qi, 
 
   qi  ~  Logistic[vi] 

 and   qi  ~  Normal[vi]. 
 
Let F[vi] denote either the normal or logistic CDF.  Then, vi may be defined in two ways.  First, 
 
   vi   =  τlog[λi] = τβ′xi 
 
which defines a single new parameter (which may be positive or negative).  This is labeled the 
ZIP(τ) model in the following.  The alternative model is 
 
   vi   =  γ′zi 
 
for a parameter vector γ and set of variables zi which may or may not share variables with xi.  Note 
that if zi equals xi, the two models are still not the same since even if so, the second allows a full set 
of new parameters. An excellent reference on this model, albeit with a somewhat narrower focus on 
the choice aspects of the model than we consider, is Lambert (1992).  Another related source is 
Mullahy (1986).  Finally, Greene (1994) presents the theory upon which the ZIP estimator and 
selectivity estimator described earlier are based. 
 The same formulations are provided for the negative binomial model, which has 
 

    Ri(j) =  Γ(θ+yi)/[yi!Γ(θ)] ui
θ [1 - ui] 

yi  

   θ  =  1/α, where α is the overdispersion parameter 

   ui   =  θ / [θ + λi]. 
 
and the gamma count model, 
 
   Ri(j) =  G(αj, λi)  -  G(αj + α, λi) 

where   λi =  exp(β′xi)  (as usual) 

   G(αj, λi) =  1  if  j = 0, or  dueu
j

i uj∫
λ −−α

αΓ 0
1

)(
1  if j > 0, j = 0,1,... 
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 The ZIP model extends the Poisson model in a few different directions.  First, of course, the 
altering of the zero probability will be useful in some settings.  In addition, the changed zero 
probability induces a divergence between the mean and variance of the distribution.  For the Poisson 
model, define the indicator di = 1 if state 1, yi always = 0 and di = 0 if state 2, yi produced by the 
Poisson process.  Thus, qi = Prob[di = 1].  Then, 
 
   E[yi]   =  qi0 + (1 - qi)λi  =  (1 - qi)λi 

and   Var[yi] =  Edi[Var[yi | di]]  +  Vardi[E[yi | di] 

    =  [qi0 + (1 - qi)λi] + [qi(0 - (1 - qi)λi)2 + (1 - qi)(λi - (1 - qi)λi)2] 

    =  λi(1 - qi)[1 + λiqi]  >  E[yi]. 
  
As such, the ZIP specification induces overdispersion, though it arises from a different source than is 
assumed in the familiar treatments in the literature.   
 It will be useful to test for the overdispersion. However, there will be a problem 
distinguishing the ZIP model from an underlying negative binomial specification as the source of the 
overdispersion.  In particular, recall for the negative binomial model that 
 
    Var[yi]/E[yi]  =  1 + αE[yi]. 
 
In the ZIP model, we have that 
 
   Var[yi]/E[yi]  =  1 + [qi/(1-qi)]E[yi], 
 
which is quite similar.  The testing procedure is complicated by the fact that the ZIP model is not 
nested within either the Poisson or the negative binomial models.  That is, the restriction which 
produces the simpler model is qi = 0, which is not a simple parametric restriction.  In order to make 
qi → 0, it is necessary for some parameter to → +∞ or -∞.  Vuong (1989) has proposed a test statistic 
for nonnested models which appears to have some power to distinguish between non-Poissonness 
due to the overdispersion of the negative binomial model and the force of the splitting mechanism in 
the ZIP part of the model.  The statistic is 
 

   V    =  msmn  /  

where   mi  =  log[f1(yi)/f2(yi)], 
 
f1(•) and f2(•) are densities for the competing models, and m  and sm are the sample mean and 
standard deviation for the sample of mis.  Asymptotically, the statistic is distributed as standard 
normal, so its value may be compared to the critical value from the standard normal distribution, e.g., 
1.96.  The test is directional; large positive values favor f1 while large negative values favor f2. The 
Vuong test is included in the standard output for the ZIP models.  (See the application below.) 
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E43.6.1 Commands for the ZIP Models 
 
 The basic model command for the Poisson/ZIP(τ) is 
 
 POISSON  ; Lhs = ... ; Rhs = ... 
  or NEGBIN ; ZIP $ 
 
This uses the logistic splitting distribution.  For the model, with normally distributed splitting rule, add 
 
   ; ZIP = normal 
 
to the command.  Once again, this requests the τ form of the model, zi = τβ′xi.  To request the second 
form, with an independent model for the regime split, simply add to the command 
 
   ; Rh2 = the variables in z 
 
Note that the presence of ; ZIP in the command is the essential switch.  If this is omitted, the default 
Poisson model is estimated.   The NEGBIN ; ZIP ; … combination is often called the ZINB or 
ZINB(τ) in the recent literature.  Other model frameworks available for this model are 
 
   ; Model = Gamma 
 
for the gamma model and  
 
   ; Model = GP1 or GP2 or GPP 
 
for the generalized Poisson model.  The generalized Poisson model does not provide the τ format.  If 
you do not include ; Rh2 = list for the generalized Poisson model, the program substitutes ; Rh2 = 
one.   The preceding provides 14 different specifications for the zero inflation model (four models, τ 
or not, logistic or normal, lead to the τ forms for the generalized Poisson). 
 
NOTE:  Censoring, truncation and sample selection are not supported in this model. 
 
 If you wish to give starting values and/or fixed value and equality constraints, specify them 
for the ZIP model with parameter vector [β,τ] for the ZIP(τ) model or [β,γ] for the ZIP model.  For 
the ZINB(τ), ZINB, and the gamma models, the extra parameter, θ  for the negative binomial model 
and P for the gamma model follows β in the list.   The generalized Poisson has yet another 
parameter, the P = 1 or 2 or free.  If you choose the ZIP form, γ will be the last set of parameters in 
the list (and in the displayed output).  Note, once again, you provide θ, not α for the negative 
binomial model.  The options 
 
    ; Start = list of starting values 
and   ; Rst = constraints 
or   ; CML: specification of constraints 
 
may be used freely with these models.  Do note that because of a difference in the order of 
magnitude, equality constraints forcing elements of γ to equal elements of β will probably produce 
very poor results. 
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 All other options for the Poisson and negative binomial models are available, including 
 
   ; Keep = name 
 
to save the conditional mean, E[yi]  =  (1 - qi)λi, 
 
   ; Res = name 
 
to save the residual, and 
 
   ; Prob = name 
 
to save the probability associated with the observed outcome, 
 
   Prob[Yi = 0]     =  qi + [1 - qi]Ri(0) 

    Prob[Yi = j > 0]  =  [1 - qi]Ri(j). 
 
All other options for nonlinear optimization listed earlier are also supported.  You may also request 
 
    ; Partial Effects 
  
as usual.  The computed marginal effects are the derivatives of the conditional mean function shown 
above, which are computed using 
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The second part of the marginal effect will vary depending on the model.  There are four forms for 
the normal or logistic models and the linear form, γ′zi and the τ form τβ′xi.  For convenience, assume 
that zi = xi.  (Otherwise, this applies to any variables that zi and xi have in common.).  The splitting 
probability is either the logistic CDF, Λ(.), which has density qi′(.) = Λ(.)[1-Λ(.)], or the normal 
CDF, Φ(.) which has density qi′(.) = φ(.).  Assembling the parts gives 
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where δ = γ for the linear form or δ = τβ for the τ form.  The computation of the marginal effects 
accounts for the splitting effect and for any overlap between the variables in the splitting model and 
in the base Poisson or negative binomial model.  An example appears below. 
 
NOTE:  Because the terms in the marginal effect enter with different signs, it is possible for the 
marginal effect of a variable to have the opposite sign from the corresponding coefficient in the 
Poisson regression.  This is likely to occur in samples which have a very large proportion of zeros, 
since in this case, the qi is likely to be quite large. 
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E43.6.2 ZIP Models with Latent Heterogeneity 
 
 The Zero Inflated Poisson model is extended to allow normal heterogeneity in the 
regression.  Thus, in the model, 

 
               Prob[yi = 0] =  [1 - qi]R[ β′xi + εi, 0 ] + qi, 

  Prob[yi = j]   =  [1 - qi]R[ β′xi + εi, j ],  j  >  0 
 
where R[.] is the Poisson probability with mean function exp[β′xi + εi, ] and qi is the regime splitting 
model described above.  The same four forms of the model for qi are available, logistic and normal 
(probit) for the distribution and linear or τ for the argument of the regime probability. 

The basic model command is 
 

POISSON  ; Lhs = y ; Rhs = ... ; ZIP  ; Het ; ... $ 
 
The different forms of the splitting model are the ZIP(τ) form, in which 
 
       qi  =  F[ τ γ′zi  ] 
and the ZIP form        qi  =  F[γ′zi ] 
 
and F(.) may be either a probit or logit equation.  The ZIP(τ) forms are requested with 
 

POISSON  ; Lhs = y ; Rhs = x ; Heterogeneity ; ZIP ; ...$ 
and POISSON  ; Lhs = y ; Rhs = x ; Heterogeneity ; ZIP ; Logit ; ...$ 
 
The default form is the probit model, and ; Logit requests the logit model instead.  (Note that this 
reverses the default in the model without heterogeneity, where logit is the default.)  The ZIP forms 
are  requested with the ; Rh2 = ... specification, 
 

POISSON  ; Lhs = y ; Rhs = x ; Rh2 = z ; Heterogeneity ; ZIP $ 
and      POISSON ; Lhs = y ; Rhs = x ; Rh2 = z ; Heterogeneity ; ZIP ; Logit $ 
 
NOTE:  This model does not extend to the negative binomial, gamma or GP models.  Each of these 
already accounts for heterogeneity and overdispersion, so adding this feature to a model which 
already has heterogeneity and excess zeros greatly overspecifies the model.  The estimation process 
will break down in these instances. 
 
E43.6.3 A ZIP Model with Endogenous Zero Inflation 
 

Finally, a model with an endogenously determined splitting model would be 
 
      qi  =  Φ[ γ′zi + ui] 

               Prob[yi = 0] =  [1 - qi]R[ β′xi + εi, 0 ] + qi, 

  Prob[yi = j]   =  [1 - qi]R[ β′xi + εi, j ],  j  >  0 
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and ui is correlated with εi.  This model is requested with 
 

POISSON  ; Lhs = y ; Rhs = x ; Rh2 = z  
; Het ; ZIP ; Correlation $ 

 
There is only one form for this model, the POISSON ; Zip = normal, index model with latent 
heterogeneity correlated with the latent effect in the splitting equation. 
 
E43.6.4 Output for the ZIP Models 
 
 The ZIP models begin with the full set of output for the underlying model, Poisson or 
negative binomial.  If you request it with ; OLS, this will include the initial OLS results, the Poisson 
regression model, if requested, the negative binomial model, then, finally, the results for the ZIP 
model.  The initial Poisson and, if requested, negative binomial model(s) will be fit ignoring any 
constraints in order to obtain starting values.  The final output presents the table of statistical results 
for the estimated coefficients.  The Poisson or negative binomial parameters will be followed by the 
parameter(s) for the splitting model.  The leading diagnostics table contains a number of related 
statistics.  A table gives the following comparison of the original model and the zero altered model: 
  
 Estimates of prob[Y = 0 | x = sample means], 
 Number of zero observations, actual and predicted using N×Prob[Y=0], 
 Log likelihood. 
  
Note that although in most cases, the log likelihood function for the zero inflated model will exceed 
that for the unaltered model, the two values are not comparable because the base model is not 
obtainable from the ZIP model by restricting the coefficients in the latter.  Finally, Vuong’s statistic 
is presented. 
 The saved results from the ZIP model are: 
 
  Matrices: b and varb 
   zaptau =  the parameters of the splitting model, τ or γ 
  
 Scalars: ybar and sy  for the Lhs variable 
   nreg and kreg  for the estimated model 
   exitcode 
   alpha and varalpha  for an estimated negative binomial model 
   tau and vartau  if you fit the ZIP(τ) model 
  
 Last Model: b_variable  for the Poisson or negative binomial model 
   alpha  if you fit the negative binomial model 
   c_variable  for the ZIP model, the coefficients on the Rh2 variables 
 
 Last Function: Conditional mean, (1 - qi)λi. 
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E43.6.5 Application 
 

To illustrate the model, we have fit the least elaborate Poisson specification, then the same 
model using the generalized Poisson (P) format. 
 

SAMPLE ; All $  
POISSON  ; Lhs = docvis ; Rhs = one,age,hhninc 

; Rh2 = one,age,female,married,hhkids 
; ZIP ; Partial Effects  $ 

PARTIALS  ; Effects: age/female ; Summary $ 
POISSON  ; Model = GPP 

; Lhs = docvis ; Rhs = one,age,hhninc 
; Rh2 = one,age,female,married,hhkids 
; ZIP ; Partial Effects  $ 

 
----------------------------------------------------------------------------- 
Zero Altered Poisson      Regression Model 
Logistic distribution used for splitting model. 
ZAP term in probability is F[tau x Z(i)     ] 
Comparison of estimated models 
            Pr[0|means]       Number of zeros        Log-likelihood 
Poisson          .04703   Act.= 10135 Prd.=  1285.2   -105125.23124 
Z.I.Poisson      .36394   Act.= 10135 Prd.=  9945.0    -83907.65103 
Note, the ZIP log-likelihood is not directly comparable. 
ZIP model with nonzero Q does not encompass the others. 
Vuong statistic for testing ZIP vs. unaltered model is     46.9219 
Distributed as standard normal. A value greater than 
+1.96 favors the zero altered Z.I.Poisson model. 
A value less than -1.96 rejects the ZIP model. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Poisson/NB/Gamma regression model 
Constant|    1.19474***      .00623   191.72  .0000     1.18253   1.20695 
     AGE|     .01296***      .00011   114.08  .0000      .01274    .01318 
  HHNINC|    -.53791***      .00834   -64.47  .0000     -.55427   -.52156 
        |Zero inflation model 
Constant|     .53149***      .06009     8.84  .0000      .41371    .64926 
     AGE|    -.01907***      .00133   -14.38  .0000     -.02167   -.01647 
  FEMALE|    -.61374***      .02635   -23.29  .0000     -.66539   -.56209 
 MARRIED|    -.11832***      .03361    -3.52  .0004     -.18420   -.05244 
  HHKIDS|     .25065***      .03017     8.31  .0000      .19152    .30977 
--------+-------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   3.1475 
Scale Factor for Marginal Effects  3.1475 
Effects of common variables in two part 
models are added to obtain partial effect. 
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--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index Function in Count Probability 
     AGE|     .06119***      .00151    40.59  .0000      .05824    .06414 
  HHNINC|   -1.69308***      .02709   -62.49  .0000    -1.74618  -1.63998 
        |Zero Inflation Probability 
     AGE|     .06119***      .00151    40.59  .0000      .05824    .06414 
  FEMALE|     .65679***      .02720    24.14  .0000      .60347    .71011 
 MARRIED|     .12662***      .03596     3.52  .0004      .05614    .19709 
  HHKIDS|    -.26823***      .03213    -8.35  .0000     -.33119   -.20526 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------------------------------------------------------------------- 
Partial Effects for Zero Inflation Model for Counts 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .06119     .00146   42.05      .05834      .06404 
   *  FEMALE        .66395     .02809   23.64      .60890      .71901 
--------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Generalized Poisson (P) Model 
Dependent variable               DOCVIS 
Log likelihood function    -59787.37107 
Restricted log likelihood -105125.23124 
Chi squared [   1 d.f.]     90675.72034 
Significance level               .00000 
McFadden Pseudo R-squared      .4312748 
Estimation based on N =  27326, K =  10 
Inf.Cr.AIC  = 119594.7 AIC/N =    4.377 
Wald test for dispersion      17.6 [ 1] 
Zero Inflated Generalized Poisson Model 
Logit Zero Inflation Probability Model 
Zeros in Sample: Actual           10135 
Zeros in Sample: Predicted        10150 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .71230***      .04894    14.55  .0000      .61637    .80823 
     AGE|     .01798***      .00092    19.53  .0000      .01618    .01978 
  HHNINC|    -.56393***      .05016   -11.24  .0000     -.66224   -.46563 
        |Zero Inflation Logit Probability = Logit(c*z) 
Constant|    -.40029**       .16205    -2.47  .0135     -.71791   -.08267 
     AGE|    -.01569***      .00374    -4.20  .0000     -.02301   -.00836 
  FEMALE|   -1.55244***      .12005   -12.93  .0000    -1.78774  -1.31714 
 MARRIED|    -.39331***      .07790    -5.05  .0000     -.54600   -.24063 
  HHKIDS|     .56189***      .07054     7.97  .0000      .42364    .70014 
        |Dispersion parameter in generalized Poisson model 
Constant|     .77613***      .05728    13.55  .0000      .66385    .88840 
        |Nesting Parameter for P form of Generalized Poisson 
       P|    1.57807***      .05272    29.93  .0000     1.47474   1.68139 
--------+-------------------------------------------------------------------- 
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Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   3.1806 
Scale Factor for Marginal Effects  3.1806 
Effects of common variables in two part 
models are added to obtain partial effect. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index Function in Count Probability 
     AGE|     .06416***      .00418    15.36  .0000      .05597    .07235 
  HHNINC|   -1.79366***      .16039   -11.18  .0000    -2.10801  -1.47931 
        |Zero Inflation Probability 
     AGE|     .06416***      .00418    15.36  .0000      .05597    .07235 
  FEMALE|     .69047***      .03782    18.26  .0000      .61634    .76459 
 MARRIED|     .17493***      .03507     4.99  .0000      .10619    .24367 
  HHKIDS|    -.24991***      .02950    -8.47  .0000     -.30772   -.19209 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E43.6.6 Technical Details 
 
 To formulate the log likelihood and gradient for the ZIP models, let 
 
   qi  =  F(γ′zi) for the ZIP models 

and   qi  =  F(τβ′xi)  for the ZIP(τ) model, 
 
where F(t) is either the cumulative normal probability, Φ(t), for the probit model or the cumulative 
logistic probability, Λ(t) for the logit model.  Let f(t) denote either the Poisson(λi), the negative 
binomial (λi,θ) or the gamma (λi,P) probability density function.  (This produces 12 possible 
models.)  Then, the probability density function for the observed random variable, yi, is 
 
   p(yi)   =  pi  =  (1 - qi)f(yi)  +  1(yi = 0)qi, 
 
so, the log likelihood is simply  
 
   log L =  Σilog p(yi).   
 
To obtain the gradient, let β* equal either β for the Poisson model, (β,θ) for the negative binomial 
model or (β,P) for the gamma model.  Then, each term in  
 

   
∗∂

∂
β

Llog  =  Σi (∂logpi/∂β*)  

is   
∗∂

∂
β

iplog  =  (1/pi)[(1 - qi)f(yi){∂logf(yi)/∂β*} + {1(yi = 0) - f(yi)}{∂qi/∂β*}]. 
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The derivatives of logf(yi) were given earlier.   
 
NOTE:  These derivatives are approximated numerically for the gamma model. 
 
 The cross derivatives, ∂qi/∂β* will equal 0 in the ZIP model, or τxiqi′ for the ZIP(τ) model 
with a trailing zero for θ or P if f(yi) is the negative binomial or gamma model, since these 
parameters do not enter qi.  (The inner derivative, qi′, is either the standard normal density, φi for the 
probit model, or Λi(1-Λi) for the logit model.)  Finally, the parameters of the ZIP model are either γ, 
a vector, in the ZIP model or τ, a scalar, in the ZIP(τ) model.  Denoting these generically as γ, we 
have 
   ∂logpi/∂γ  =  [1(yi = 0)](qi′/pi)(β′xi) 
  
for the ZIP(τ) model.  For the ZIP model, β′xi is replaced with zi, the vector of covariates.  The 
second derivatives are fairly complicated, but in LIMDEP’s implementation, the BHHH estimator is 
used, instead, as a convenient expedient. 
 For the ZIP specification, a natural set of starting values for the parameters is provided by 
the probit or logit and independent Poisson or negative binomial estimates.  (The Poisson values are 
used to start the gamma model.)  In the ZIP(τ) case, the Poisson or negative binomial model can be 
used for the regression parameters.  One could then choose a value for τ which would produce 
approximately the correct probability for zero.  An alternative possibility would be to estimate τ by 
fitting a probit or logit model to the binary indicator 1(yi = 0) with the single covariate equal to the 
Poisson estimates of β′xi (only to get the right sign and approximately the right magnitude on τ; this 
is not a consistent estimator).  Save for a few badly identified cases found by experimentation in 
which no solution could be found, convergence of the DFP or Broyden algorithms appears to be 
routine for these models. 
 
E43.7 Hurdle Models 
 
 A case related to the ZIP model is known as the hurdle model.  Hurdle models arise when 
the ‘zero or positive’ decision is different from the count decision.  One can think in terms of two 
decisions – the health care utilization data examined in the previous chapter provides a good 
example.  One decision is whether to ‘be a participant.’  This is equivalent to a decision as to 
whether the count will be zero or positive. The second decision is how many, given that the count 
will be positive.  In the health care utilization case, we can consider two types of individuals, those 
who do not intend to visit a doctor or the hospital and those who do.  For the latter, the observed 
count is the number of visits, given that the number of visits will be positive.  The formal model is 
 
   z =  0 if the response will be zero, 1 if the response will be positive 

   y =  the count of occurrences given that the count will be positive. 
 
This model consists of two parts, which may be dependent or independent: 
 
   Prob[z = 0 or 1|xi] =  a probit or logit model 

   Prob[y = j | y > 0|xi] =  a count data model with truncation at zero. 
 



E43: Two Part Models for Count Data   E-1027 

 An alternative approach to the excess zeros case is the hurdle model presented by Mullahy 
(1986) and Creel and Loomis (1990).  (A complete description may be found in Winkelmann 
(2000).)  Logically, the model arises from two simultaneous process.  The first is a ‘hurdle,’ in which 
the individual ‘decides’ whether y will equal zero or some value greater than zero.  The second is a 
conditional count model in which the number of occurrences is conditional on that number being 
positive. The hurdle model is very similar to the ZIP model: 
 
   Prob(Yi = 0) =  fi(0) 

   Prob[Yi = j] =  )(
)0(1
)0(1

jP
P
f

i
i

i

−
−

, j = 1,2,... 

     =  Ai(0)Pi(j) 
 
where fi(0) is the probability of the zero outcome, Pi(j) is the probability of the nonzero outcomes 
conditioned on the outcome being greater than zero, and the subscript i indicates dependence on 
covariates zi for fi and xi for Pi.  The combination of the two produces the unconditional distribution 
above.  The hurdle model can be assembled from any desired binary choice model and count model.  
 Let di denote a binary indicator of whether the observed count is zero or positive.  The log 
likelihood function separates the probabilities into two simple parts: 
 

   log L = ∑ =0d
 log fi(0)     

       +   ∑ =1d
  log[1 - fi(0)]  -  log[1 - Pi(0)]  +  log Pi(j). 

 

The four terms of the log likelihood partition into two log likelihoods, 
 

   log L =      ∑ =0d
 log fi(0)  +  ∑ =1d

log[1 - fi(0)]   

       +   ∑ =1d
  log Pi(j)  -  log[1 - Pi(0)].   

 

The first term is the log likelihood for a binary choice model – probit, logit, complementary log log, 
etc.  (See Chapter E27.)  The second part is the log likelihood for a count distribution that is truncated 
at zero.  We have already presented this model in Section E42.2.3.  The end result is that the hurdle 
model can be fit in two simple parts using models already presented.  A natural formulation would be 
the logit binary choice model coupled with the Poisson model for the positive counts.  (Mullahy’s 
original presentation of this model suggested an fi(0) that was a constant – no covariates. This could be 
obtained in our formulation simply by specifying ; Rhs = one in the binary choice model. 
 The hurdle model induces over- or underdispersion in the distribution, but in a nonconstant 
fashion.  Winkelmann presents the following convenient result: 
 

   Vari[Yi]  =  Ei[Yi]  +  
)0(

)0(1

i

i

A
A−

{Ei[Yi]}2 

 

where now, the subscript indicates dependence on both zi and xi.  Since Ai(0) can exceed one, this 
model can induce underdispersion.  (The mean function and Ai(0) are functionally dependent in such 
a way that no combination of parameters produces a negative variance.)  Underdispersion occurs if 
zeros are less frequent than the parent (Poisson or negative binomial) model would predict. 
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 The conditional mean in this model can be obtained by making convenient use of the fact 
that the sums from one to infinity are the same if the zero outcome is included.  This produces the 
conditional mean function 
 

   Ei[Yi] =   i
i

i

P
f

λ
−
−

)0(1
)0(1

, 

where   λi =  exp(β′xi) 

and   Pi(0) =  exp(-λi)  for the Poisson model and 

    =  [θ/(θ + λi)]θ for the negative binomial model. 
 
The marginal effects obtained by differentiation, after a bit of algebra and collecting terms, are 
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The latter derivatives are 
 

   
i

iP
λ∂

∂ )0(
 =  -Pi(0)  for the Poisson model and 

    =  - θ+θ /)1()]0([ iP . 
 
(The Poisson model results when θ → ∞ so the results are consistent.)  Finally,  
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The three cases supported here are 
 

 logit:   fi(0)  =  Λ(-δ′zi),  
i

if
z

 
∂

∂ )0(
  =  -Λ(-δ′zi)[1 - Λ(-δ′zi)] δ 

 probit:   fi(0)  =  Φ(-δ′zi),  
i

if
z

 
∂

∂ )0(
  =  -φ(-δ′zi) δ 

 complementary log log: fi(0)  =  exp(-exp(δ′zi))  =  exp(-γi), 
i

if
z

 
∂

∂ )0(
  =  -γifi(0) δ 

 
(The third of these, suggested by Mullahy (1986) is convenient as it allows a straightforward test of 
hurdle effects against the Poisson null, which is nested.  In the other two models, the Poisson model 
is not nested, so the test is less convenient.  See below for details)  Finally, when the regime model 
and the count model have variables in common, the two effects are added. 
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 Hurdle models can be fit with a single instruction rather by fitting the parts separately.  The 
command is 
 
 POISSON  ; Lhs  = dependent variable 
   ; Rhs  = independent variables 
   ; Hurdle  $ 
 
In this base case 
 

• the count model is assumed to be Poisson, 
• the hurdle equation is assumed to be logistic, 
• variables that enter the hurdle equation are the same as in the Poisson equation. 

 
Several alternative specifications may be chosen:  Use 
 
    ; Model = Negbin  
 
(or change the command to NEGBIN) for the negative binomial count model 
 
Use   ; Normal for the probit model 
   ; Cloglog for the complementary log log model.  (See below.) 
 
Use   ; Rh2 = list of variables to specify the variables in z explicitly. 
 
 Other specifications, including 
 
   ; Keep = name  to retain fitted values (using conditional mean) 
   ; Res = name  to retain residuals 
   ; Prob = name  to retain predicted probabilities for observed outcomes 
   ; List   to display predictions, residuals, etc. 
   ; Output = value to control technical output during iterations 
   ; Partial Effects 
   ; Test: spec  to define Wald tests 
   ; Rst = list  to specify fixed value and equality restrictions 
   ; CML: spec  to define a constrained maximum likelihood estimator 
 
and so on, are all available as in other count models already discussed.   
 The estimation results saved by this estimator are as usual: 
 
 Matrices:  b =  coefficient vector – this will be all parameters, including θ if 
         the negative binomial model is fit 
   varb =  asymptotic covariance matrix 
 
 Scalars:  logl =  scalar log likelihood 
   nreg =  number of observations 
   kreg =  number of variables in x - does not include z. 
 
 Last Function: hurdle conditional mean function 
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E43.7.1 Testing for Hurdle Effects 
 
 There are two ways to test for hurdle effects in this setting.  Under the assumption of a 
Poisson count model, complementary log log hurdle model, and identical variables in the two 
equations,  the probability which enters the log likelihood becomes 
 
   Prob(Yi = 0) =  exp(-γi) 

   Prob[Yi = j] =  
!

)exp(
)exp(1
)exp(1

i

yi
ii

i

i

y
λλ−

λ−−
γ−−

, j = 1,2,... 

where   λi =  exp(β′xi) 

and   γi =  exp(δ′xi). 
 
In this case, the hurdle model becomes the Poisson model if δ = β.  Since this is a simple parametric 
restriction, and the models are nested, a Wald, likelihood ratio, or LM test could be used.  Here is an 
approach: 
 
 NAMELIST ; x = the Rhs variables $ 
 CALC  ; k = Col(x) $ 
 POISSON ; Lhs = ... ; Rhs = x  $ 
 MATRIX ; bp = b $ 
 CALC  ; lp = logl $ 
 POISSON ; Lhs = ... ; Rhs = x  
   ; Hurdle ; Cloglog $ 
 CALC  ; lh = logl $ 
 MATRIX ; bh = b ; vh = varb $ 
 
The next three commands carry out the LM, LR and Wald tests, respectively. 
  
 POISSON ; Lhs = ... ; Rhs = x  
   ; Hurdle ; Cloglog  
   ; Start = bp,bp ; Maxit = 0 $ 
 CALC  ; List ; lrtest = 2*(lh - lp) ; 1 - Chi(lrtest,k) ; Wald = 0 $ 
 MATRIX ; d = i2’ * bh ; ik = Iden(k) ; ikm = -ik ; i2 = [ik/ikm] 
   ; Wald  = d’*< i2’[vh]i2>*d $ 
 CALC  ; List ; Wald ; 1 - Chi(Wald,k) $ 
 
 When other forms are used, the models are nonnested.  In these cases, the classical testing 
procedures no longer have the limiting chi squared distributions, and are no longer useable.  One 
possibility is the Vuong statistic for testing the nonnested models that was suggested in the previous 
section.  The statistic is 
 

    V   =  n m sm  /  
 

where   mi =  log[fh(yi)/fp(yi)], 
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fh(•) and fp(•) are densities for the hurdle and Poisson models, respectively, and m  and sm are the 
sample mean and standard deviation for the sample of mis.  In principle, asymptotically, the statistic 
is distributed as standard normal, so its value may be compared to the critical value from the 
standard normal distribution, e.g., 1.96.  The test is directional; large positive values favor fh while 
large negative values favor fp. We do note that the hurdle model involves an extension of the Poisson 
model with the addition of additional parameters.  As such, intuition suggests that it is unlikely that 
the test would ever favor the Poisson model.  If the intuition is right, then the asymptotic behavior of 
the statistic may not be as assumed here, and the validity of the test becomes questionable.  With that 
caveat, the following procedure could be used for this test – it is not part of the standard output for 
the hurdle model: 
 
 NAMELIST ; x = the Rhs variables $ 
 POISSON ; Lhs = ... ; Rhs = x   
   ; Prob = fp $ 
 POISSON ; Lhs = ... ; Rhs = x   
   ; Prob = fh 
   ; Hurdle ; ... (whatever other specification) $ 
 CREATE ; mi = Log(fh/fp) $ 
 CALC  ; List ; v = Sqr(n) * Xbr(mi) / Xdv(mi) $ 
 
E43.7.2 Heterogeneity and Endogeneity 
 
 Heterogeneity may be entered into the conditional mean of the count model in the same 
fashion as the ZIP models.  With 
 
   ; Heterogeneity 
 
The mean function becomes 
 
   λi  =  exp(β′xi  +  εi) 
 
As before, the log likelihood is now maximized using Hermite quadrature.  Results are essentially 
the same as before, with the additional results related to the distribution of εi.   The hurdle effect 
becomes endogenous if εi is correlated with ui in the hurdle equation.  Once again, this model 
parallels the zero inflation model.  The model with endogenous hurdle effects is requested with 
 
   ; Heterogeneity ; Correlated. 
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E43.7.3 Applications 
 

 Like the zero inflation model, there are many different combinations of hurdle equation, 
count model, heterogeneity and endogeneity.  Testing procedures for distinguishing some of them 
statistically were suggested earlier.  The following illustrates two specifications, the base case 
Poisson with exogenous hurdle effect and the Poisson model with endogenous hurdle effect. 
 

SAMPLE ; All $ 
POISSON  ; Lhs = docvis ; Rhs = one,age,hhninc 

; Rh2 = one,age,female,married,hhkids 
; Hurdle ; Partial Effects $ 

POISSON  ; Lhs = docvis ; Rhs = one,age,hhninc 
; Rh2 = one,age,female,married,hhkids 
; Hurdle ; Partial Effects ; Heterogeneity ; Correlated $ 

 
----------------------------------------------------------------------------- 
Poisson hurdle model for counts 
Dependent variable               DOCVIS 
Log likelihood function    -84270.74039 
Restricted log likelihood -105125.23124 
LOGIT  hurdle equation 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Parameters of count model equation 
Constant|    1.21788***      .00594   205.10  .0000     1.20624   1.22952 
     AGE|     .01300***      .00011   119.36  .0000      .01279    .01322 
  HHNINC|    -.58459***      .00800   -73.07  .0000     -.60027   -.56891 
        | Parameters of binary hurdle equation 
Constant|    -.60129***      .05889   -10.21  .0000     -.71671   -.48586 
     AGE|     .02019***      .00130    15.50  .0000      .01764    .02275 
  FEMALE|     .60428***      .02586    23.37  .0000      .55359    .65496 
 MARRIED|     .11115***      .03305     3.36  .0008      .04637    .17593 
  HHKIDS|    -.24273***      .02960    -8.20  .0000     -.30075   -.18471 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point    .0130 
Scale Factor for Marginal Effects  3.0552 
Effects of common variables in two part 
models are added to obtain partial effect. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Effects in Count Model Equation 
     AGE|     .03972         .03436     1.16  .2476     -.02762    .10707 
  HHNINC|   -1.78606        1.54499    -1.16  .2477    -4.81419   1.24207 
        | Effects in Binary Hurdle Equation 
     AGE|     .02216***      .00143    15.50  .0000      .01935    .02496 
  FEMALE|     .66299***      .02837    23.37  .0000      .60739    .71860 
 MARRIED|     .12195***      .03626     3.36  .0008      .05087    .19302 
  HHKIDS|    -.26631***      .03248    -8.20  .0000     -.32997   -.20265 
     AGE|     .06188*        .03448     1.79  .0727     -.00571    .12946 
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--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Hurdle Poisson with Normal Hetero. 
Dependent variable               DOCVIS 
Log likelihood function    -59634.85591 
Restricted log likelihood -227531.30639 
Vuong Stat. vs. Poisson =      37.38614 
Vuong test favors extended model. 
Hurdle model determines truncation (PROBIT) 
Endogenous censoring model. See RHO below. 
Predicted zeros: Poisson= 27325, ZIP=     0 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS| Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Parameters of Poisson Probability 
Constant|    1.07365***      .04952    21.68  .0000      .97659   1.17071 
     AGE|     .01036***      .00083    12.54  .0000      .00874    .01198 
  HHNINC|    -.47608***      .04909    -9.70  .0000     -.57230   -.37986 
        | Parameters of Probit/Logit ZIP/Hurdle Equation 
Constant|     .36125***      .03641     9.92  .0000      .28989    .43262 
     AGE|    -.01237***      .00081   -15.35  .0000     -.01395   -.01079 
  FEMALE|    -.38250***      .01708   -22.39  .0000     -.41599   -.34902 
 MARRIED|    -.05677***      .01955    -2.90  .0037     -.09509   -.01846 
  HHKIDS|     .15521***      .01790     8.67  .0000      .12012    .19030 
        | Correlation between hurdle and count eqns. 
     Rho|     .46429         .42738     1.09  .2773     -.37335   1.30193 
        | Standard Deviation of Heterogeneity 
   Sigma|     .99609***      .00921   108.15  .0000      .97804   1.01414 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics 
computed at the means of the variables. 
Separate effects are shown first followed 
by the sum of the two effects for variables 
which are in both Poisson and Probit models 
Estimated value of E[y|x] computed at the 
means is  3.12934. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Parameters of Poisson Probability 
     AGE|     .03243         .06571      .49  .6216     -.09635    .16122 
  HHNINC|   -1.48981***      .31414    -4.74  .0000    -2.10551   -.87411 
        | Parameters of Probit/Logit ZIP/Hurdle Equation 
     AGE|     .00270         .00741      .36  .7162     -.01184    .01723 
  FEMALE|     .08331         .22963      .36  .7167     -.36675    .53338 
 MARRIED|     .01237         .03432      .36  .7186     -.05490    .07963 
  HHKIDS|    -.03381         .09321     -.36  .7168     -.21649    .14888 
        | Combined effect of two terms 
     AGE|     .03513         .06640      .53  .5968     -.09501    .16527 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E43.7.4 Technical Details 
 
 Let di denote a binary indicator of whether the observed count is zero or positive.  The log 
likelihood function separates the probabilities into two simple parts: 
 
   log L = ∑ =0d

 log fi(0)    

        + ∑ =1d
 log[1 - fi(0)]  -  log[1 - Pi(0)]  +  log Pi(j) 

 
The four terms of the log likelihood partition into two log likelihoods, 
 
   log L = ∑ =0d

 log fi(0)    +  ∑ =1d
log[1 - fi(0)]   

        + ∑ =1d
 log Pi(j)  -  log[1 - Pi(0)]  

 
The derivatives for the hurdle model are quite simple.  Six mixtures of models are supported.  For 
the hurdle equation,  let 
 
   wi =  δ′zi. 
 
Then,   fi(0) =  logit model =  Λ(-wi) 

    =  probit model =  Φ(-wi) 

    =  complementary log log model =  exp(-exp(wi)) 
  
For the count model, 
 
   λi =  exp(β′xi) 

   Pi(j) =  Poisson model (λi) 

    =  negative binomial model (λi). 
 
The necessary terms for differentiation of these functions appear elsewhere in this chapter.  The 
BHHH estimator is used for the estimator of the asymptotic covariance matrix of the MLE.  As 
noted, this model can be estimated in parts, by fitting a binary choice model to the dependent 
variable obtained as 1(count > 0) and a truncated (at zero) count model to the observations with 
nonzero counts.  The identical parameter estimates will be obtained if you do so.  The advantage 
here, aside from the simplicity of the combined command, is the ability to impose various 
restrictions and use different procedures for testing hypotheses. 
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E44: Panel Data Models for Counts 
 
E44.1 Introduction 
 
 This chapter describes estimators for models for counts based on panel data.  The basic 
formulation, once again, is the Poisson regression model.  For a discrete random variable, Y, 
observed frequencies, yi, i = 1,...,n, where yi is a nonnegative integer count, and regressors xi, 
 

   Prob(Y = yi)  =  
exp( )

!

iy
i i

iy
λ λ

, yi = 0,1,...;  log λi = β′xi. 

 
In this model, λi is both the mean and variance of yi that is E[yi|xi] = Var[yi|xi] = λi. The partial 
effects in this nonlinear regression model are 
 

  βi
i

iiyE
λ=

∂
∂

x
x ]|[ . 

 
The negative binomial regression model is an extension of the Poisson regression model that results 
from the introduction of a certain kind of unobserved individual heterogeneity into the Poisson 
model; the negative binomial model arises as a modification of the Poisson model in which the mean 
is µi, respecified so that 
 
   log µi  =  logλi +  εi =   β′xi+ εi, 
 
where exp(εi) has a gamma distribution with mean 1.0 and variance α.   The resulting unconditional 
distribution (derived in Section E41.4.5) is 
 

   Prob[Y = yi]  =  iy
ii

i

i uu
y
y )1(

)1()(
)(

−
+ΓθΓ

+θΓ θ ,  ui =  θ / (θ + λi). 

 
This model has an additional parameter, α = 1/θ, such that  Var[yi] =  E[yi]{1  +  αE[yi]}. 
 This chapter presents LIMDEP’s implementation of panel data models for Poisson and 
negative binomial regressions.  The topics described in this chapter are  
 

• Panel data models 
• Commands for estimating panel data models 
• Fixed effects models 
• Random effects models 
• Random parameters models 
• Latent class models 
• GMM estimators for count models with panel data 
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E44.2 Panel Data Models for Count Data 
 
 The full range of LIMDEP’s panel data estimation routines are provided for the Poisson, and 
negative binomial regression models and for some of the formulations of the zero inflation models. 
 
NOTE:  Save for the exceptions explicitly noted below, the panel data treatments are not supported 
for the gamma model or for the extensions of the count data models, including the sample selection 
models, and the underreporting models.  Limited cases for the heterogeneity models are noted below.  
The ZIP/Logit and ZINB/Logit models are supported, but the (τ) forms are not. 
 
E44.2.1 Fixed Effects 
 
 For the fixed effects case, 
 
   logλit  =  αi  +  β′xit  ( + εit for the negative binomial model ). 
 
The difference here is that the model cannot be fit by least squares using deviations from group 
means.  Two approaches are used instead.  One possibility is to use a conditional maximum 
likelihood approach – the model conditioned on the sum of the observations is free of the fixed 
effects and has a closed form.  This is provided for both Poisson and negative binomial models.  A 
second approach is direct, brute force estimation of the full model including the fixed effects.  
Neglecting the latent log gamma heterogeneity in the negative binomial model, write the fixed 
effects model as 
 

   logλit  =  αidit  +  β′xit, i = 1,...,N, t = 1,...,Ti, 
 
where αi is the coefficient on a binary variable, di, which indicates membership in the ith group.  The 
panel is assumed to consist of N groups with Ti observations in the ith group.  The panel need not be 
balanced; Ti may vary across groups.  This model is estimated in two ways.  The conditional 
estimators are obtained by using the conditional joint distribution, f(yi1,yi2,...,yiT|Σtyit).  (See Griliches, 
Hall, and Hausman (1984).)  The resulting density is a function of β alone, which is then estimated 
by (conditional) maximum likelihood.  The unconditional estimator is obtained by a direct 
maximization of the full log likelihood function and estimating all parameters including the group 
specific constants.  
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E44.2.2 Random Effects 
 
 The random effects model is 
 
   log λit  =  β′xit +  ui. 
 
Once again, the approach used for the linear model, in this case, FGLS, is not useable.  The approach 
is to integrate out the random effect and estimate by maximum likelihood the parameters of the 
resulting distribution (which, it turns out, is the negative binomial model when the kernel is Poisson).  
Both fixed and random effects models are provided for the Poisson and negative binomial (gamma 
mixture) formulations.  The bulk of the received literature on random effects is in the Poisson model.  
We also present models for random effects based on the normal distribution. 
 The random effects model for the count data framework is 
 
   logλit  =  β′xit  +  ui, i = 1,...,N, t = 1,...,Ti, 
 
where ui is a random effect for the ith group such that exp(ui) has a gamma distribution with 
parameters(θ,θ).  Thus, E[exp(ui)] has mean 1 and variance 1/θ = α.  This is the framework which 
gave rise to the negative binomial model earlier, so that, with minor modifications, this is the 
estimating framework for the Poisson model with random effects.  For the negative binomial model, 
Hausman, et al. proposed the following approach:  We begin with the Poisson model with the 
random effects specification shown above.  The random term, ui is distributed as gamma with 
parameters(θi,θi), which produces the negative binomial model with a parameter that varies across 
groups.  Then, it is assumed that θi/(1+θi) is distributed as beta(an,bn), which layers the random group 
effect onto the negative binomial model.  The random effect is added to the negative binomial model 
by assuming that the overdispersion parameter is randomly distributed across groups.    
 The two random effects models discussed above may be modified to use the normal 
distribution for the random effect instead of the gamma, with ui ~ N[0,σ2].  For the Poisson model, 
this is an alternative to the log-gamma model which gives rise to the negative binomial model.  It is 
also essentially the same as the model of latent heterogeneity discussed in Section E42.4.1.  The 
negative binomial model is much more involved than this, and the normal model is a considerably 
simpler alternative.   
 
E44.2.3 Random Parameters 
 
 We provide a full random parameters formulation for both Poisson and negative binomial 
models,  
   log λit =  βi′xit +  ui ( + εit for the negative binomial model ), 

   βi =  β  +  ∆zi  +  Γvi, zi  =  a set of observed covariates, 

   vi ~  joint standard normal, uniform, or triangular. 
 
The random parameters models are described in detail below and in Chapter R24. 
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E44.2.4 Latent Class Models 
 

The Poisson model for a panel of data, i = 1,...,N, t = 1,...,Ti is 
 

  Prob[Yit = yit| λit]  =  exp[-λit] ×λit
yit  / yit!   =  P(i,t) 

where   λit =  exp(β′xit) 
 
is the conditional [on xit] mean, as usual.  Henceforth, we use the term ‘group’ to indicate the Ti 
observations on respondent i in periods t = 1,...,Ti. The following extends to the negative binomial 
model as well, but for the moment, we focus on the Poisson model. 

Unobserved heterogeneity in the distribution of Yit is assumed to impact the mean (and 
variance) λit.  The continuous distribution of the heterogeneity is approximated by using a finite 
number of ‘points of support.’  The distribution is approximated by estimating the location of the 
support points and the mass (probability) in each interval.  In implementation, it is convenient and 
useful to interpret this discrete approximation as producing a sorting of individuals (by 
heterogeneity) into J classes, j = 1,...,J.  (Since this is an approximation, J is chosen by the analyst.) 

Thus, we modify the model for a latent sorting of yit into J ‘classes’  with a model which 
allows for heterogeneity as follows:  The  probability of observing yit given that regime j applies is 

 
   P(i,t|j)   =  Prob[Yit = yit|λit,j] 
 
where the mean λit|j is specific to the group.  The analyst does not observe directly which class,         
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model 
 

  λit|j =  exp[ β′xit  +  δj]. 
 
We formulate this approximation more generally as, 
 

  λit|j =  exp[ β′xit  +  δj′xit]. 
 
In this formulation, each group has its own parameter vector, β′j =  β  +  δj,  though the variables that 
enter the mean are assumed to be the same.  (This could be changed by imposing restrictions on the 
full parameter vector, as described below.)  This allows the Heckman and Singer formulation as a 
special case by imposing restrictions on the parameters.  We denote the mass, or probability of 
membership in class j as Fj, j = 1,...,J, such that F1 + F2 + ... + FJ = 1.  Then, the posterior probability 
of an observed sequence of observations is 
 

  P(i)   =  j
J
=∑ 1 FjP(i|j)   

where     Fj =  
1

exp( )

exp( )
j

J
mm=

θ

θ∑
, θJ  =  0, Σj Fj = 1. 

 
The model is fit by maximizing the likelihood for the observed data with respect to all parameters 
including θj, j = 1,...,J. 
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E44.3 Commands for Panel Data Models 
 
 The command structure for the panel data models is built by adding specifications to the 
common command.  The panel data set is declared first. 
 
 SETPANEL ; Group = id variable ; Pds = group count variable $ 
 
Then, POISSON  ; Lhs = dependent variable ; Rhs = regressors 
 or NEGBIN ; ... any model specific specifications ... 
   ; Panel $  
 
As always, panels may be unbalanced.  The ; Panel may be replaced with; Pds specification which 
gives either the fixed number of periods or the variable which gives the group count.  The zero 
inflation models must be of the form 
 
   ; ZIP [ ; Rh2  =  list of variables in zero inflation probability] 
 
Only the logit splitting form is supported for this model.  If you omit the ; Rh2 list, then this 
probability will be a constant.  Otherwise, it will be of the form 
 

   Prob[regime 0] =  exp( ' )
1 exp( ' )

it

it+
z

z
δ

δ
 

 
(The (τ) form is not supported.)  The variables in zit may vary across time, or, for the random 
parameters model and latent class model, may be the same in every period.   
 
NOTE:  The panel data estimators automatically bypass missing values, and keep all valid 
observations in a group.  Thus, you should not use SKIP or REJECT to bypass missing values with 
these estimators.  An important implication of this is that in the actual data set used to fit the model, 
the actual group sizes may be smaller than specified by the SETPANEL command or the; Pds 
variable. 
 
 Other options for these models are the same as in other settings, including 
 
   ; Start = list  to give starting values 
   ; Keep = name  to retain fitted values 
   ; Res = name  to retain residuals 
   ; Prob = name to retain fitted probabilities for observed outcome 
   ; List   to display predicted values 
   ; Partial Effects  
   ; Rst = list to specify fixed value and equality restrictions 
   ; CML: spec to define a constrained maximum likelihood estimator 
 
and the various options for output and control during the iterations. 
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E44.4 Fixed Effects Models 
 
 The fixed effects Poisson and negative binomial models may be estimated two ways.  The 
conditional estimator is the one presented in Hausman, Hall, and Griliches (1984). The unconditional 
estimator is computed by maximizing the log likelihood directly for all parameters, including the 
dummy variable coefficients, as described in Chapter R23.  We consider them in turn.  Only the 
second method is available for the zero inflation models. 
 
E44.4.1 Conditional Estimation of Poisson and Negative Binomial 
Models 
 
 The conditional estimators for the Poisson and negative binomial models are based on the 
conditional log likelihood, 
 

   logLc = ( ),1 ,2 , ,1 1
log , ,..., | i

i

n T
i i i T i ti t

P y y y y
= =∑ ∑ . 

 
For the negative binomial, this is a different log likelihood and produces different results from the 
unconditional estimator given in the next section. For the Poisson model, it turns out to be 
algebraically and numerically identical.  The command structure for the conditional fixed effects 
estimator is 
 
 POISSON ; Lhs = y 
 or NEGBIN ; Rhs = independent variables 
   ; Panel $ 
 
That is, these are the default panel data estimators for these models.  Other options such as marginal 
effects, fitted values, controls on output, starting values, constraints, and so on are all available.  The 
model in this framework has 
 
   E[yit |xit]  =  exp(αi  +  β′xit)  =  λit 
 
so the marginal effects would be 
 
   ∂ E[yit |xit]/∂xit  =  λitβ. 
 
In order to compute this quantity, it would be necessary to have an estimate of αi in hand.  But, the 
estimator is conditioned on the sum, so αi is conditioned out of the log likelihood, and not estimated.  
In order to provide information about scaling in the model, we compute marginal effects by using y
as an estimate of the scale factor at the means.  This is an approximation that will estimate the 
marginal effects reasonably well.  The standard errors are questionable, as the variance of the mean 
is ignored – as a consequence, the t ratios for the marginal effects will be the same as for the 
corresponding coefficients. 
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NOTE:  The fixed effects model for the Poisson distribution does not allow an overall constant.  
Surprisingly, an overall constant term is identified in the conditional distribution of the negative 
binomial model. Your Rhs list may include one in the negative binomial model (but not the Poisson 
model.) Allison (2001) shows that the reason this occurs is that HHG did not formulate a true fixed 
effects model in the mean of the random variable. Their formulation layers the fixed effect into the 
heterogeneity model, not the conditional mean. This is then conditioned out of the distribution to 
produce the model that is estimated. Thus, in the HHG formulation for the negative binomial model, 
we do not have logλit = αi + β′xit.  The conditional mean is still exp(αi + β′xit), however. The 
unconditional estimator below (also advocated by Allison) produces this formulation for logλit.  A 
fuller discussion of the two different treatments appears in the technical details in Section E44.4.5. 
 
E44.4.2 Unconditional Estimation of Count Data Models 
 
 The unconditional estimator for the Poisson model is obtained by direct maximization of the 
log likelihood 

  log L  =  
1 1

exp( exp( ))[exp( )]log
!

iTn i it i it
i t

it

it

y

y
= =

 ′ ′− α + α + 
  

∑ ∏ x xβ β  

 
with respect to all K+N parameters, where N may be up to 100,000.  (Details on the mechanics of 
estimating 100,000+K parameters are given below and in Chapter R23.)  This estimator is also 
available for the negative binomial model, which has a similar log likelihood with the Poisson 
density replaced by the negative binomial counterpart; 
 

  p(yit|xit)  =  Prob[Y = yit] =  ity
itit

it

it uu
y
y )1(

)1()(
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−
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+θΓ θ , uit  =  θ / (θ + λit). 

 
NOTE:  Full estimation of the fixed effects negative binomial model in this fashion generally 
encounters the ‘incidental parameters’ problem. This does not affect the Poisson model, however. 
The incidental parameters problem is discussed in detail in Chapter R23. The specific relationship to 
the Poisson model is discussed in Section E44.4.5 below. 
 
 This estimator is obtained by adding  
 
   ; FEM 
 
to the POISSON or NEGBIN command.  (The default estimator is the conditional one.  The 
optional estimator is the unconditional one.)    
 The unconditional estimator allows for truncation (not censoring) at zero.  The model 
specification is 
   ; TPM 
 
with no other specifications.  This is for the conditional distribution yi|yi > 0, as appears in hurdle 
models. 
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 You may also estimate the zero inflation models with fixed effects.  The full specification of 
the zero inflation model with this modification is 
 
   Yit =  0 with probability qit 

   Yit ~  Poisson(λit) or negative binomial with probability 1 -qit 

so that   Prob[Yit= 0]  =  qit + [1 -qit]Rit (0) 

   Prob[Yit =  j > 0]  =  [1 -qit]Rit(j) 

where   Rit(y)  =  the Poisson probability = e -λitλit
yit  / yit! 

and   λit =  e αi+ β′xit 
 
or the negative binomial probability with overdispersion parameter α = 1/θ,  
 
   Rit (yit)  = Γ(θ+yit)/[yit!Γ(θ)] uit

θ [1 -uit] 
yit , ui  = θ / [θ + λit].  

 
The state probability, qi has 
 
   Prob[qit = 1]  =  Λ (γ′zit). 
 
You must provide a set of starting values for this model (unlike the other two).  Do this simply by 
fitting the model without fixed effects before fitting the model with the fixed effects.  The command 
structure would be as follows: 
 
 POISSON ; Lhs = dependent variable 
 or NEGBIN ; Rhs = independent variables 
   ; Zip ; Rh2 = variables in z (optional) $ 
 POISSON  ; Lhs = dependent variable 
 or NEGBIN ; Rhs  = independent variables 
   ; ZIP ; Rh2 = variables in z (optional)  
   ; FEM ; Pds = panel specification $ 
    
Note the Rh2 list is optional.  If you do not include it, then the regime model will contain only a 
constant term; i.e., qit will be a constant. 
 
NOTE:  In specifying the ZIP model, include one in both the Rhs and Rh2 lists in both model 
commands, even if the splitting probability is constant.  That is, in the first command above, you 
should have ; Rh2 = one.  If you do not have this, then the first model fit will be the ZIP(τ) or 
ZINB(τ), which will provide inappropriate starting values for the second model.  The starting values 
are very important for this model. 
 
NOTE:  In the zero inflation model, the individual effect enters the mean of the probability model, 
not the splitting probability. 
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 In this setting, a few of the optional estimation features are restricted.  The options  generally 
available are 
   ; Keep = name to retain the fitted value, λit 
   ; Res  = name  to retain residuals 
   ; Prob = name to retain pit 
   ; Cprob = name to retain the group probability, Πt pit 
   ; List to produce a list of actual and predicted outcomes  
    and probabilities 
   ; Covariance Matrix to display the covariance matrix for the slopes only,
    same as ; Printvc 
   ; Partial Effects to produce the marginal effects computed at the data 
    means 
     
The restrictions specifications, ; Rst and ; CML: are unavailable, but you may use 
 
   ; Test: spec to specify a Wald test based on the coefficient vector 
    not including αi 
   ; Start = list  to give starting values for β(and θ for NEGBIN).   
 
You may also provide one common value for the αis, but not a full set, regardless of N, and                
; Maxit = value, for example ; Maxit = 0 to carry out LM tests.  Estimation is only by Newton’s 
method, so ; Alg = method is not available.  But, you may set the convergence rules as usual. 
 
NOTE:  Though the fixed effects estimators are computed, the asymptotic covariance matrix is not.  
As such, the only hypotheses related to the fixed effects which may be tested will rely on the 
likelihood function, not the individual coefficients.  
 
E44.4.3 Two Way Unconditional Fixed Effects Estimator 
 
 The unconditional estimator can also produce a two way fixed effects model, 
 
   E[yit |xit]  =  exp(αi  + δt +  β′xit)  =  λit 
 
There will now be MaxTi-1 additional coefficients in the model.  You can request this estimator by 
adding 
   ; Time = ti 
 
where the variable ti tells, for each observation, in which period the observation occurred.  This 
variable must take the values 1,2,...,MaxTi.  That is, it must be coded with ‘t,’ the index number of 
the period.  A date will not work – it will be flagged as identifying too many coefficients.  
Observations may be made at different periods in the different groups.  For example, if you have a 
panel with three observations in the first group and seven in the second, the first three observations 
could have been made at t = 2, t = 4, and t = 7.  The program assumes that MaxTi is equal to the 
largest group size in the model.  (That way, it is assured that there are no holes in the sequence of 
observations.)  Thus, the largest group in the sample must have this variable coded with the complete 
set of integers, 1,2,...,Tmax. 
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NOTE:  If you have a balanced panel with ; Pds = T where T is a fixed value, then you can specify 
the time effects with ; Time = one as there can be no variation in the coding of the period in a 
balanced panel. 
 
NOTE:  Our experience has been that the fixed effects model produces considerable instability in 
the negative binomial, though it works nicely in the Poisson model.  The reason may be that as in the 
normal heterogeneity case, there is heterogeneity already embodied in the model. 
 
 The fixed effects model with time effects is estimated by actually creating the time specific 
dummy variables.  You will see a complete set of time effects in the output.  As such, however, if 
you have a large group size in your panel, this extension may create an extremely large model. 
 
E44.4.4 Applications 
 
 To illustrate the panel data estimators, we will return to the German health care data used in 
the preceding chapters.  This is an unbalanced panel with 7,293 individuals observed from one to 
seven times.  The following fits a few of the basic fixed effects models.  For these data, the ZIP 
model with fixed effects appears to be badly specified.  The unconditional fixed effects estimator for 
the negative binomial model is also inestimable with these data. 
 
 SETPANEL ; Group = id ; Pds = ti $ 
 NAMELIST  ; x = age,educ,hhninc,newhsat $ 
 CREATE    ; date = year - 1983 $ 
 CREATE    ; If(date = 8)date = 6 $ 
 CREATE    ; If(date = 11)date = 7 $ 
 
The base case is the Poisson model with no fixed effects. 
 
 POISSON ; Lhs = docvis ; Rhs = x,one ; Partial Effects $ 
 
This is the Poisson conditional fixed effects estimator. 
 
 POISSON ; Lhs = docvis ; Rhs = x,one 
   ; Panel ; Partial Effects $ 
 
This is the Poisson unconditional fixed effects estimator.  The coefficient estimates are identical, but 
the marginal effects are computed differently. 
 
 POISSON ; Lhs = docvis ; Rhs = x 
   ; Panel ; Partial Effects ; FEM $ 
 
This is the Hausman et al. negative binomial conditional fixed effects estimator. The unconditional 
fixed effects is computed as well.  As expected, since they are different models, the estimates are 
noticeably different. 
 
 NEGBIN  ; Lhs = docvis ; Rhs = x 
   ; Panel ; Partial Effects $ 
 NEGBIN ; Lhs = docvis ; Rhs = x,one $ 
 NEGBIN ; Lhs = docvis ; Rhs = x,one ; Panel ; FEM $ 
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These are two different fixed effects estimators. The first is the conditional estimator; the second is the 
unconditional estimator.  The parameter estimates and standard errors are identical. The log likelihood 
values are not because the conditional and unconditional log likelihoods are different functions. 
 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function    -90999.58348 
Restricted log likelihood -108662.13583 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01005***      .00031    32.08  .0000      .00944    .01067 
    EDUC|    -.01936***      .00170   -11.41  .0000     -.02269   -.01603 
  HHNINC|    -.27193***      .02150   -12.65  .0000     -.31407   -.22979 
 NEWHSAT|    -.22841***      .00133  -171.90  .0000     -.23102   -.22581 
Constant|    2.39944***      .02640    90.90  .0000     2.34771   2.45118 
--------+-------------------------------------------------------------------- 
(Conditional Poisson FE identical to unconditional Poisson FE) 
----------------------------------------------------------------------------- 
Panel Model with Group Effects 
Dependent variable               DOCVIS 
Log likelihood function    -45515.17412 
Unbalanced panel has   7293 individuals 
Missing or sumY=0, Skipped  1153 groups 
Poisson      Regression - Fixed Effects 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .02230***      .00143    15.55  .0000      .01949    .02511 
    EDUC|    -.04858***      .01732    -2.81  .0050     -.08252   -.01464 
  HHNINC|    -.18627***      .04159    -4.48  .0000     -.26778   -.10476 
 NEWHSAT|    -.14569***      .00222   -65.63  .0000     -.15004   -.14134 
--------+-------------------------------------------------------------------- 
(Negative binomial conditional fixed effects) 
----------------------------------------------------------------------------- 
Panel Model with Group Effects 
Dependent variable               DOCVIS 
Log likelihood function    -33473.82946 
Neg.Binomial Regression - Fixed Effects 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01569***      .00086    18.17  .0000      .01400    .01738 
    EDUC|     .02196***      .00417     5.27  .0000      .01379    .03012 
  HHNINC|     .09409*        .05487     1.71  .0864     -.01346    .20164 
 NEWHSAT|    -.13569***      .00333   -40.70  .0000     -.14222   -.12915 
--------+-------------------------------------------------------------------- 
(Negative binomial unconditional fixed effects) 
----------------------------------------------------------------------------- 
FIXED EFFECTS NegBin Model 
Dependent variable               DOCVIS 
Log likelihood function    -48797.32676 
Skipped 1153 groups with inestimable ai 
Negative binomial regression model 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .03065***      .00264    11.62  .0000      .02548    .03582 
    EDUC|    -.04438         .02865    -1.55  .1214     -.10053    .01178 
  HHNINC|    -.12178*        .07070    -1.72  .0850     -.26035    .01678 
 NEWHSAT|    -.16121***      .00434   -37.13  .0000     -.16972   -.15270 
        |Overdispersion parameter 
   Alpha|    2.16113***      .03520    61.40  .0000     2.09214   2.23012 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial Effects 
(Poisson) 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .03200***      .00100    31.90  .0000      .03003    .03397 
    EDUC|    -.06163***      .00541   -11.40  .0000     -.07223   -.05103 
  HHNINC|    -.86570***      .06851   -12.64  .0000     -.99998   -.73142 
 NEWHSAT|    -.72716***      .00490  -148.52  .0000     -.73676   -.71756 
--------+-------------------------------------------------------------------- 
(Poisson Conditional FE) 
--------+-------------------------------------------------------------------- 
     AGE|     .07099***      .00457    15.55  .0000      .06204    .07995 
    EDUC|    -.15465***      .05513    -2.81  .0050     -.26271   -.04660 
  HHNINC|    -.59298***      .13239    -4.48  .0000     -.85247   -.33350 
 NEWHSAT|    -.46380***      .00707   -65.63  .0000     -.47765   -.44995 
--------+-------------------------------------------------------------------- 
(Poisson unconditional FE) 
----------------------------------------------------------------------------- 
     AGE|     .12776***      .97983     4.51  .0000      .07222    .18330 
    EDUC|    -.27831***     -.54699    -5.61  .0000     -.37548   -.18114 
  HHNINC|   -1.06713***     -.06527    -3.19  .0014    -1.72232   -.41193 
 NEWHSAT|    -.83465***     -.97090    -5.05  .0000    -1.15839   -.51091 
--------+-------------------------------------------------------------------- 
(Negative binomial conditional fixed effects) 
--------+-------------------------------------------------------------------- 
     AGE|     .04996***      .00275    18.17  .0000      .04457    .05534 
    EDUC|     .06990***      .01327     5.27  .0000      .04390    .09590 
  HHNINC|     .29954*        .17469     1.71  .0864     -.04285    .64194 
 NEWHSAT|    -.43197***      .01061   -40.70  .0000     -.45277   -.41117 
--------+-------------------------------------------------------------------- 
(Negative binomial unconditional fixed effects) 
--------+-------------------------------------------------------------------- 
     AGE|     .17304***     1.34672     2.75  .0059      .04989    .29620 
    EDUC|    -.25054***     -.49968    -2.83  .0047     -.42420   -.07687 
  HHNINC|    -.68754        -.04267    -1.43  .1530    -1.63045    .25537 
 NEWHSAT|    -.91015***    -1.07438    -3.03  .0024    -1.49836   -.32194 
--------+-------------------------------------------------------------------- 
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E44.4.5 Technical Details for Fixed Effects Models 
 
 For the conditional approaches, the fixed effects models are transformed to an estimable 
form by obtaining the conditional density, p(yi1,yi2,...,yi,Ti|Σtyit).  This removes the fixed effect from 
the resulting distribution.  (Derivations may be found in Hausman, Hall, and Griliches (1984).)  For 
the Poisson distribution, 
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Note that pit = λit/Σtλit, where λit = i ite e ′α xβ , but the fixed effects fall out of the result.  The 
contribution to the log likelihood, gradient and Hessian for the ith group is 
 
   log Li =  log p(yi1,yi2,...,yi,Ti|Σt yit) 

   ∂ log p(yi1,yi2,...,yi,Ti|Σt yit)/∂β  =  Σt yit(xit - x i ) 

   x i   =  Σt pitxit. 

   ∂2 log p(yi1,yi2,...,yi,Ti|Σt yit)/∂β∂β′ =  - (Σt yit) [Σtpit(xit - x i )(xit - x i )′]. 
 
The negative inverse of the Hessian is used to estimate the asymptotic covariance of the estimator for 
the Poisson model.  Though it might not be obvious from the preceding, this result is algebraically 
identical to the solution that is obtained by using the unconditional, brute force approach described 
below. 
 The contribution of the ith group to the conditional log likelihood function in the Poisson 
fixed effects model is of the form 
 

   log Li  =  
1

logiT
it itt

y p
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Suppose for the moment that β were known.  The likelihood equation for the ith fixed effect 
coefficient provides the implicit solution 
 

   αi  =  ( ) ( )1 1
log / exp( ' ) .i iT T

it itt t
y

= =
 
  ∑ ∑ xβ  

 
If the dependent variable takes value zero for every observation in group i, then the sum equals zero, 
and group i does not contribute to the log likelihood.  Such observation groups are dropped from the 
analysis.  The results from conditional estimation of the Poisson model will contain a statement such 
as the following which appears in our application: 
 
Skipped 1153 groups with inestimable ai 
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Note that unlike the binary choice models, it is not necessary for the yit to vary within the group, so 
long as it is nonzero.  In essence, the estimator of αi is based on log iy , so any nonzero value will 
suffice, whether or not there is within group variation. The same consideration arises in the 
unconditional estimator described below, in this case for the negative binomial model as well.   (This 
would be expected, since for the Poisson model, the conditional and unconditional estimators are 
expected.) 
 For the negative binomial model, the treatment is quite different in the conditional and 
unconditional formulations.  Winkelmann (2008) provides a useful summary:  We begin with the 
NB2 assumption, 
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where Γ(.) is the gamma function.  In order to obtain the contagion result needed to derive the 
distribution of the sum of negative binomials, it is necessary to assume that the NB1 form applies to 
the individual observation.  The NB1 form can obtained by replacing θ with θλit in each appearance 
in the NB2 form. To avoid a step, we suppose as well that the overdispersion parameter plays the 
role of the fixed effect, θi.  We now also absorb the effect in λit, and write φit = θiλit.  The density for 
NB1 becomes 
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In this form,  E[yit]  =  θiλit =  φit 
 
and   Var[yit]  =  φit ( 1 + θi). 
 
This is a fixed effects model of a sort, since 
 
   E[yi]  =  exp(β′xit  +  logθi)  =  exp(β′xit + αi) 
 
but note that θi(or αi) is playing more than just the role of a fixed effect here.  It is also changing the 
variance.  It cannot be interpreted the way that we are accustomed to interpreting fixed effects.  We 
do note, this makes clear the source of a frequently observed peculiarity of the model.  No problem is 
caused by the presence of an overall constant, or, indeed, other time invariant variables in xit.  
Notwithstanding this ambiguity of the model, this is the formulation that was devised by Hausman, 
Hall and Griliches (1984) and that has been widely used since then.  The conditional distribution that 
corresponds to the NB1 model with that type of fixed effect is 
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The log likelihood is, again,  
 
   Log L =  Σilog p(yi1,yi2,...,yi,Ti|Σt yit).   
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The gradient for the ith observation group is 
 
   ∂ p(yi1,yi2,...,yi,Ti|Σt yit)/∂β  =  Σtλiteitxit, 

   eit  =  [Ψ(λit + yit) - Ψ(λit)] - [Ψ(Σt λit + Σt yit) - Ψ(Σt λit)], 

   Ψ(t)  =  Γ′(t)/Γ(t)  =  the digamma function. 
 
The asymptotic covariance matrix for the negative binomial estimator is computed with the BHHH 
estimator.  We do note an aspect of the negative binomial model. The Hausman et al. conditional 
estimator is numerically quite stable, in spite of its questionable theoretical pedigree.  (The model is 
overspecified – it essentially is a Poisson model with two heterogeneity effects and in spite of this, it 
is not really an ‘effects’ model.)  In contrast, the true fixed effects model fit with the unconditional 
estimator, while more theoretically orthodox is, in our experience, quite numerically unstable.  We 
have frequently observed serious numerical problems such as overflows. 
 The unconditional log likelihood for both models is maximized by using Newton’s method. 
A full discussion of the method is given in Chapter R23; for convenience, only a short sketch of the 
result is given here, for the Poisson model.  (The results for the negative binomial (NB2) model are 
similar.)  The log likelihood is 
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Let pit, yit, xit and λit denote the obvious components of this function.  Then, 
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The results for the Poisson model (not the negative binomial model) are identical to the conditional 
estimator.  This has an important implication:  Unlike most other models, the incidental parameters 
issue does not apply to the Poisson model.  The unconditional fixed effects estimator is consistent. 
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E44.5 Random Effects Models 
 
 The random effects model for the Poisson framework is 
 
   logλit* =  β′xit  +  εi, i = 1,...,N, t = 1,...,Ti, 

    =  log[λit exp(εi)] 
 
where εi is a random effect for the ith group, the same in every period, such that exp(εi) has a gamma 
distribution with parameters(θ,θ).  Thus, E[exp(εi)] has mean 1 and variance 1/θ = α.  This is the 
framework which gave rise to the negative binomial model earlier, so that, with the minor 
modifications, this is the estimating framework for the Poisson model with random effects.  For the 
negative binomial model, Hausman, et al. proposed the following approach:  We begin with the 
Poisson model with the random effects specification shown above.  The random term, εi is 
distributed as gamma with parameters(θi,θi), which produces the negative binomial model with a 
parameter that varies across groups.  Then, it is assumed that θi/(1+θi) is distributed as beta(an,bn), 
which layers the random group effect onto the negative binomial model.  Details on the resulting 
distribution are given below.  In sum, then, the random effect is added to the negative binomial 
model by assuming that the overdispersion parameter is randomly distributed across groups.  Use 
 
   ; Random 
 
to request the random effects model. 
 There is another useful interpretation of the random effects model.  Rewrite the model as 
 
   logλit*  =  αi  +  β1′xit, i = 1,...,N, t = 1,...,Ti, 

where   αi =  α  +  εi 
 
This is a trivial modification of the essential structure of the model.  However, as written, we can 
reinterpret the model as an ordinary count model with a random constant term.  This suggests an 
alternative approach to estimation.  The random parameters models discussed in Section R24.3 gives 
further details, including this special case.  The two random effects models discussed above may be 
modified to use the normal distribution for the random effect instead of the gamma,    εi ~ N[0,σ2].  
For the Poisson model, this is an alternative to the log-gamma model which gives rise to the negative 
binomial.  The negative binomial model is much more involved than this, and the normal model is a 
considerably simpler alternative.  To request the random effects models with normally distributed 
heterogeneity, use 
 
 POISSON ;  Lhs = ... ; Rhs = ... ; Pds = ... 

or NEGBIN  ;  Random Effects 
   ;  Normal distribution  $ 
 
The parameters estimated by these models are as follows: 
 
    Log-gamma Lognormal 
 Poisson   β,α  β,σ2 
 Negative Binomial β,an,bn β,α,σ2 



E44: Panel Data Models for Counts   E-1051 

NOTE:  The negative binomial model might be somewhat overparameterized by this extension.  The 
random effect essentially adds a heterogeneity term to a model that is obtained by adding a 
heterogeneity term to a lower level (the Poisson) model.  As such, it will be common that attempts to 
fit the negative binomial model with random effects will be unsuccessful.   
  
 You may use 
   ; Start = list  to give starting values 
and   ; Rst = list  to impose restrictions 
 
for any of the four models.  The default algorithm is BFGS, which you should use unless there is 
some definite reason to use some other.  Other controls, such as ; Maxit [ = 0] are available as usual. 
 The random effects models are computed using the Butler and Moffitt method, with Gauss-
Hermite integration.  They can also be fit as random parameters, i.e., random constant models, using 
the RP estimator described in Section E44.6. 
 The panel data models produce a full set of results for the base model before estimation of 
the random effects model.  Thus, the Poisson models produce three sets of estimates while the 
negative binomial model will produce four sets of results: 
 

• OLS results (if requested with ; OLS) 
• Poisson regression, ignoring the group effects 
• negative binomial model ignoring the group effects 
• negative binomial model including the fixed or random effects. 

 
The retrievable results are 
 
 Matrices: b and varb 
 
 Scalars: kreg, nreg, logl, s (when σ is estimated) 
 
 Last Model: b_variable, a (if you fit a negative binomial model) 
 

E44.5.1 Application 
 

 To illustrate the random effects estimators, we will reestimate two of the models fit earlier 
with fixed effects.  Several variants of the random effects models are suggested.  We first fit the 
Poisson model with no effects, then with log gamma then normally distributed random effects.  The 
random parameters model is an alternative estimator for the model with normally distributed effects 
fit by the Butler and Moffitt method.  The three random effects Poisson models can also be fig using 
the negative binomial specification. 
 
 SETPANEL ; Group = id ; Pds = ti $ 
 NAMELIST ; x = age,educ,hhninc,newhsat $ 
 POISSON ; Lhs = docvis ; Rhs = x,one ; Panel ; Partial Effects ; Random Effects $ 
 POISSON ; Lhs = docvis ; Rhs = x,one ; Panel ; Partial Effects ; Random Effects  

; Normal $ 
 ? These are alternative random effects specifications. 
 NEGBIN ; Lhs = docvis ; Rhs = x,one ; Pds = ni ; Partial Effects ; Random Effects $ 

NEGBIN ; Lhs = docvis ; Rhs = x,one ; Pds = ni ; Partial Effects ; Random Effects 
; Normal $ 
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----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function    -90999.58348 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01005***      .00031    32.08  .0000      .00944    .01067 
    EDUC|    -.01936***      .00170   -11.41  .0000     -.02269   -.01603 
  HHNINC|    -.27193***      .02150   -12.65  .0000     -.31407   -.22979 
 NEWHSAT|    -.22841***      .00133  -171.90  .0000     -.23102   -.22581 
Constant|    2.39944***      .02640    90.90  .0000     2.34771   2.45118 
--------+-------------------------------------------------------------------- 
Panel Model with Group Effects 
Log likelihood function    -68895.20568 
Unbalanced panel has   7293 individuals 
Poisson      Regression - Random Effects 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01432***      .00047    30.66  .0000      .01340    .01523 
    EDUC|    -.02658***      .00424    -6.27  .0000     -.03489   -.01828 
  HHNINC|    -.14117***      .01668    -8.46  .0000     -.17386   -.10848 
 NEWHSAT|    -.15979***      .00072  -220.90  .0000     -.16121   -.15838 
Constant|    1.82709***      .05312    34.39  .0000     1.72297   1.93121 
   Alpha|     .92313***      .01640    56.27  .0000      .89098    .95528 
--------+-------------------------------------------------------------------- 
Panel Model with Group Effects 
Log likelihood function    -69020.27550 
Poisson      Regression - Random Effects 
Normally distributed random effect 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01613***      .00044    36.59  .0000      .01527    .01700 
    EDUC|    -.02613***      .00389    -6.73  .0000     -.03375   -.01852 
  HHNINC|    -.16793***      .01665   -10.08  .0000     -.20057   -.13529 
 NEWHSAT|    -.16041***      .00071  -225.23  .0000     -.16181   -.15902 
Constant|    1.32711***      .04795    27.68  .0000     1.23312   1.42109 
   Sigma|     .97697***      .00699   139.72  .0000      .96327    .99068 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   3.1835 
Scale Factor for Marginal Effects  3.1835 
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--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .04558***      .00149    30.66  .0000      .04266    .04849 
    EDUC|    -.08463***      .01349    -6.27  .0000     -.11108   -.05818 
  HHNINC|    -.44941***      .05310    -8.46  .0000     -.55348   -.34535 
 NEWHSAT|    -.50871***      .00230  -220.90  .0000     -.51322   -.50419 
----------------------------------------------------------------------------- 
     AGE|     .05136***      .00140    36.59  .0000      .04861    .05411 
    EDUC|    -.08320***      .01237    -6.73  .0000     -.10744   -.05896 
  HHNINC|    -.53461***      .05302   -10.08  .0000     -.63852   -.43069 
 NEWHSAT|    -.51068***      .00227  -225.23  .0000     -.51512   -.50623 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E44.5.2 Technical Details for Random Effects Models 
 
 The random effects models are obtained by integrating exp(εi) out of  
 
   p(yi1,yi2,...,yiT,exp(εi))  =  p(yi1,yi2,...,yiT|exp(εi))g(exp(εi)). 
 
For the Poisson model, the random effect is assumed to enter multiplicatively through λit, the same as 
in the earlier derivation of the negative binomial model.  Conditioned on the heterogeneity, the Ti 
observations yit|exp(εi) are distributed as independent Poisson variates each with parameter exp(εi)λit. 
Then, 

   p(yi1,yi2,...,yiT|exp(εi))  =  Πtp(yit|exp(εi)). 

 
We assume that g(exp(εi)) is the gamma distribution with parameters (θ,θ) with θ = 1/α, so that 
E[exp(εi)] equals 1.  The density that results when ui is integrated out is 
 

   p(yi1,yi2,...,yiT,)  =  
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where ui= θ / (θ + Σtyit).  As usual, logL = Σilogp(...).  The gradient for the ith term is 
 
   ∂log Li/∂β =  Σtwitxit 

where   wit  =  λitui(Ai- 1)  +  λit(yit - Ai) 

   Ai  =  Σtyit / Σtλit 

and   ∂log Li/∂θ =  Ψ(θ + Σtyit) - Ψ(θ) + log ui + (1 - ui) - (ui/θ)Σtyit. 
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 Construction of the density for the random effects negative binomial model is described 
above.  We first build the heterogeneity in to the distribution of εi by letting θi carry the random 
effect.  (Note this is similar to the handling of the fixed effects negative binomial earlier.)  It is 
assumed that θi/(1+θi) is distributed as beta(an,bn), which layers the random group effect onto the 
negative binomial model.  The resulting model is 
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The derivatives are 
 
   ∂log Li/∂β =  Σtλiteitxit 

   ∂log Li/∂an =  Σtλiteit - Ψ(an) + Ψ(an + Σtλit) 

   ∂log Li/∂bn =  Σtλiteit - Ψ(bn) + Ψ(bn + Σtyit) 

   eit =  Ψ(an + Σtλit) - Ψ(an+ bn + Σtλit + Σtyit) + Ψ(λit + yit) - Ψ(λit) 

   Ψ(z) =  dlogΓ(z)/dz  (the ‘digamma’ function). 
 
 For the random effects model with normally distributed group effects, we form the 
likelihood function in the same fashion as in Section E44.5.2 for the cross section case – the 
derivation is identical with a small change in the notation.  For group i, conditioned on εi, the Ti 
observations are independent.  The unconditional density for the observed data is formed by 
integrating εi out of the joint density.  Thus, 
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where λit|εi = exp(β′xit + εi) is the mean of yit conditioned on the group effect.  The log likelihood, its 
derivatives with respect to β and σ, and the estimate of the Hessian are computed as discussed in 
Section E44.5.2.  In all cases, the estimator of the covariance matrix for the estimated coefficients is 
the BHHH estimator obtained by summing the outer products of the gradients for the N observations. 
 As before, there are two ways to handle the normally distributed effect, with quadrature 
using the Butler and Moffitt method, or as a random constant model, using maximum simulated 
likelihood, as considered in the next section. 
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E44.6 Random Parameters Models 
 
 The random parameters model is described in detail in Chapter R24.  The general form of 
the model for the Poisson and negative binomial regressions is 
 
 βi = β  +  ∆zi +  Γvit 

where   β = the fixed means of the distributions for the random parameters. 

   zi = a set of M observed variables which do not vary over time and which  
     enter the means (optional). 

   ∆ = coefficient matrix, K×M, which forms the observation specific term in 
     the mean. 

   vit = unobservable K×1 latent random term in the ith observation in βi. Each element 
     of vit has zero mean and variance one.  Each element of vit may be distributed 
     as normal, uniform, or triangular. They need not be the same.   

 λ|vit  =  exp(βi′xit) 

 P(yi|xit,vit)  =  Poisson or negative binomial probability given λi.   
 
Several extensions and narrower details for the model are given in Section R24.3.  The Poisson and 
negative binomial models are standard applications of the results given there. 
 The command for the random parameters model is structured as follows: 
 
 POISSON   ; Lhs   = dependent variable 
   or NEGBIN ; Rhs   = list of all variables in xi, including one if the model contains a 
     constant 
   ; Panel 
   ; RPM  (random parameters model)    
or   ; RPM = list of variables in zi 
   ; Fcn = specification of random parameters 
   ; Pts  = r (number of replications) 
   ; Cor   (for correlated parameters) $ 
 
The last two specifications are optional.  The remainder are mandatory parts of the command.  The   
; Fcn list consists of a list of names of variables which appear in xi, followed in parentheses by (n) 
for normally distributed, (u) for uniform, or (t) for triangular.  Other options for the Poisson and 
negative binomial model are specified as usual.  These include: 
 

; Par  to keep individual specific parameter estimates. 
   ; Keep = name to retain fitted values 
   ; Res =  name to retain residuals 
   ; Prob = name to retain fitted probabilities for observed outcome 
   ; Partial Effects 
   ; List to display predicted values (only available if Ti is < 10 for all i) 
   ; Maxit= n to set maximum iterations 
 
and so on.  The optional specifications are described in the technical details below. 
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 Here is an example command for the model estimated in the previous section: 
 
 POISSON ; Lhs = docvis ; Rhs = x,one ; Pds = ti 
   ; RPM ; Fcn = one(n),income(n) ; Correlation ; Pts = 50  

; Partial Effects $ 
 
This command specifies two correlated random and three fixed parameters, and 50 replications for 
the simulations. 
 The random parameters estimator allows for truncation (not censoring) at zero.  The model 
specification is 
   ; TPM 
 
with no other specifications.  This is for the conditional distribution yi|yi > 0, as appears in hurdle 
models. 

The random parameters model with only a random constant term is equivalent to the random 
effects model in the previous section.  However, the estimates obtained will be different for two 
reasons.  First, the model is estimated by simulation, not by analytical maximum likelihood.  Second, 
the distribution of the random term is assumed to be normal here, whereas in the previous models it 
is assumed to be log-gamma (though you can specify a normally distributed term as well). A 
comparison appears below. The random parameters model is also extended to the Poisson and 
negative binomial ZIP models.  This estimator is described at the end of this section. 
 
E44.6.1 Application 
 

In order to replicate results with this estimator, you must either reset the seed for the random 
number generator to the same value every time, or use Halton sequences as we have below. Otherwise, 
results produced by identical commands will differ slightly. The command CALC ; Ran(your value) 
placed before each command will remove this source of variation. We have continued the illustrations 
in the previous sections with a slightly different specification. For this illustration, we have also 
restricted the sample to those 886 individuals observed in all seven periods of the panel.  The 
commands are as follows: 
 
 REJECT ; ti < 7 $ 
 NAMELIST ; x = one,female,hhninc,educ $ 
 POISSON ; Lhs = docvis ; Rhs = x ; Partial Effects $ 
 POISSON ; Lhs = docvis ; Rhs = x ; Partial Effects  
   ; RPM ; Fcn = female(n),hhninc(n),educ(n) 
   ; Panel ; Pts = 25 ; Halton ; Correlated 
   ; Partial Effects $ 
 POISSON ; Lhs = docvis ; Rhs = x ; Partial Effects  
   ; RPM ; Fcn = female(n),hhninc(n),educ(n) 
   ; Panel ; Pts = 25 ; Halton ; Correlated ; AR1 $ 
 NEGBIN ; Lhs = docvis ; Rhs = x ; Partial Effects $  
 NEGBIN ; Lhs = docvis ; Rhs = x ; Partial Effects 
   ; RPM ; Fcn = female(n),hhninc(n),educ(n) 
   ; Panel ; Pts = 25 ; Halton; Correlated $ 
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----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function    -23415.68734 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.79197***      .04842    37.01  .0000     1.69706   1.88687 
  FEMALE|     .40467***      .01497    27.04  .0000      .37533    .43400 
  HHNINC|    -.04210         .04615     -.91  .3616     -.13255    .04834 
    EDUC|    -.07738***      .00432   -17.92  .0000     -.08584   -.06892 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   3.1340 
Scale Factor for Marginal Effects  3.1340 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  FEMALE|    1.28057***      .04821    26.56  .0000     1.18608   1.37506   # 
  HHNINC|    -.13195         .14463     -.91  .3616     -.41542    .15152 
    EDUC|    -.24252***      .01364   -17.78  .0000     -.26925   -.21578 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  Poisson  Model 
Dependent variable               DOCVIS 
Log likelihood function    -16498.80774 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
Constant|    1.38470***      .04129    33.53  .0000     1.30377   1.46563 
        |Means for random parameters 
  FEMALE|     .35720***      .01030    34.69  .0000      .33702    .37738 
  HHNINC|     .48114***      .03342    14.40  .0000      .41564    .54664 
    EDUC|    -.07369***      .00371   -19.89  .0000     -.08095   -.06643 
        |Diagonal elements of Cholesky matrix 
  FEMALE|     .26889***      .01080    24.89  .0000      .24771    .29006 
  HHNINC|    3.65976***      .03546   103.21  .0000     3.59026   3.72926 
    EDUC|     .11090***      .00054   206.14  .0000      .10984    .11195 
        |Below diagonal elements of Cholesky matrix 
lHHN_FEM|    2.00274***      .03653    54.83  .0000     1.93115   2.07434 
lEDU_FEM|     .04662***      .00137    34.06  .0000      .04394    .04930 
lEDU_HHN|     .14733***      .00117   126.26  .0000      .14504    .14962 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .268886 
       2|       4.17191 
       3|       .190205 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000       .480054       .245098 
       2|       .480054       1.00000       .797161 
       3|       .245098       .797161       1.00000 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point   2.4536 
Scale Factor for Marginal Effects  2.4536 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCVIS|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  FEMALE|     .87640***      .15101    17.35  .0000      .77738    .97542 
  HHNINC|    1.18050***      .16806    14.01  .0000     1.01538   1.34563 
    EDUC|    -.18080***     -.80623  -102.64  .0000     -.18425   -.17735 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  Poisson  Model 
Log likelihood function    -16414.99455 
First order autocorrelation model 
POISSON regression model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
Constant|    2.48699***      .03663    67.90  .0000     2.41520   2.55877 
        |Means for random parameters 
  FEMALE|     .39451***      .01138    34.67  .0000      .37221    .41681 
  HHNINC|    3.01874***      .05227    57.75  .0000     2.91629   3.12119 
    EDUC|    -.21165***      .00331   -63.98  .0000     -.21814   -.20517 
        |Diagonal elements of Cholesky matrix 
  FEMALE|     .12644***      .01253    10.09  .0000      .10187    .15100 
  HHNINC|    2.81944***      .06118    46.09  .0000     2.69953   2.93934 
    EDUC|     .02389***      .00128    18.70  .0000      .02139    .02639 
        |Below diagonal elements of Cholesky matrix 
lHHN_FEM|     .11513**       .05861     1.96  .0495      .00025    .23002 
lEDU_FEM|     .06450***      .00198    32.50  .0000      .06061    .06839 
lEDU_HHN|     .03971***      .00167    23.77  .0000      .03644    .04299 
        |First order autocorrelation parameters 
ar1FEMAL|    -.05159***      .01442    -3.58  .0003     -.07986   -.02333 
ar1HHNIN|    -.19906***      .00869   -22.91  .0000     -.21608   -.18203 
 ar1EDUC|     .91174***      .01147    79.49  .0000      .88926    .93423 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .126438 
       2|       2.82179 
       3|      .0794220 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000      .0408021       .812105 
       2|      .0408021       1.00000       .532726 
       3|       .812105       .532726       1.00000 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point   4.0251 
Scale Factor for Marginal Effects  4.0251 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCVIS|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  FEMALE|    1.58793***      .16679    19.48  .0000     1.42816   1.74771 
  HHNINC|    12.1507***     1.05443    28.13  .0000     11.3041   12.9972 
    EDUC|    -.85192***    -2.31566   -48.63  .0000     -.88625   -.81758 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Negative Binomial Regression 
Dependent variable               DOCVIS 
Log likelihood function    -13644.44645 
Restricted log likelihood  -23415.68734 
Chi squared [   1 d.f.]     19542.48178 
Significance level               .00000 
McFadden Pseudo R-squared      .4172946 
Estimation based on N =   6209, K =   5 
Inf.Cr.AIC  =  27298.9 AIC/N =    4.397 
Model estimated: Jul 30, 2011, 20:28:35 
NegBin form 2; Psi(i) = theta 
Tests of Model Restrictions on Neg.Bin. 
Model               Logl ChiSquared[df] 
Poisson(b=0)   -24176.44  ******** [**] 
Poisson        -23415.69    1521.5 [ 3] 
Negative Bin.  -13644.45   19542.5 [ 1] 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.87069***      .11081    16.88  .0000     1.65351   2.08788 
  FEMALE|     .40514***      .03568    11.35  .0000      .33521    .47508 
  HHNINC|    -.04981         .10937     -.46  .6488     -.26417    .16454 
    EDUC|    -.08450***      .00997    -8.47  .0000     -.10405   -.06495 
        |Dispersion parameter for count data model 
   Alpha|    1.92310***      .04172    46.10  .0000     1.84134   2.00486 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   3.1383 
Scale Factor for Marginal Effects  3.1383 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  FEMALE|    1.28294***      .12229    10.49  .0000     1.04325   1.52263   # 
  HHNINC|    -.15633         .34307     -.46  .6486     -.82873    .51607 
    EDUC|    -.26519***      .03211    -8.26  .0000     -.32812   -.20225 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  NegBnReg Model 
Dependent variable               DOCVIS 
Log likelihood function    -13049.40963 
Negative binomial regression model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
Constant|    1.33550***      .09784    13.65  .0000     1.14373   1.52727 
        |Means for random parameters 
  FEMALE|     .50627***      .03212    15.76  .0000      .44333    .56922 
  HHNINC|     .37829***      .10215     3.70  .0002      .17809    .57849 
    EDUC|    -.08845***      .00877   -10.09  .0000     -.10563   -.07127 
        |Diagonal elements of Cholesky matrix 
  FEMALE|     .06045*        .03166     1.91  .0562     -.00161    .12251 
  HHNINC|     .92641***      .11019     8.41  .0000      .71044   1.14237 
    EDUC|     .00337**       .00141     2.40  .0166      .00061    .00613 
        |Below diagonal elements of Cholesky matrix 
lHHN_FEM|   -1.39265***      .10589   -13.15  .0000    -1.60019  -1.18510 
lEDU_FEM|    -.11817***      .00400   -29.55  .0000     -.12601   -.11033 
lEDU_HHN|    -.02964***      .00372    -7.98  .0000     -.03692   -.02236 
        |Dispersion parameter for NegBin distribution 
ScalParm|    1.06614***      .02241    47.56  .0000     1.02220   1.11007 
--------+-------------------------------------------------------------------- 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|      .0604485 
       2|       1.67263 
       3|       .121880 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000      -.832608      -.969579 
       2|      -.832608       1.00000       .672574 
       3|      -.969579       .672574       1.00000 
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----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point   2.0421 
Scale Factor for Marginal Effects  2.0421 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCVIS|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  FEMALE|    1.03384***      .21404     7.85  .0000      .77575   1.29193 
  HHNINC|     .77249***      .13214     3.79  .0002      .37266   1.17232 
    EDUC|    -.18062***     -.96772  -312.54  .0000     -.18175   -.17949 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
----------------------------------------------------------------------------- 
 

E44.6.2 ZIP Models with Random Parameters 
 
 The random parameters model may be extended to the zero inflated Poisson and negative 
binomials models. The random parameters specification applies to the parameters in the regression 
model, not the regime splitting model.  The model is 
 
   Yit =  0 with probability qit,    

   Yit ~  Poisson(λit) or NegBin(λit,θ)  with probability 1 -qit 

   Prob[Yit= 0]  =  qit + [1 -qit]Rit (0),  Prob[Yit = j > 0]  =  [1 -qit]Rit (j)  

where   Rit(y)   =  Poisson probability = e -λitλit
yit / yit!,  λit  =  exp(βi′xit)    

(the random parameters appear in λit) or, 
 

   Rit (j)  =  negative binomial probability = Γ(θ+yit)/[yit!Γ(θ)] uit
θ [1 -uit] 

yit 

   θ =  1/α, where α is the overdispersion parameter 

   uit =  θ / [θ + λit], 

   qit ~  Logistic[vit],  vit  =  γ′zit. 
 
The command form is 
 
 POISSON   ; Lhs = dependent variable 
 or NEGBIN ; Rhs = list of all variables in xi, including one 
   ; ZIP  ; Rh2 = list of variables for regime split, including one 
   ; Panel 
   ; RPM  (for random parameters model)  
or    ; RPM = list of variables in zi 
   ; Fcn = specification of random parameters 
   ; Pts = r (number of replications – this is optional) 
   ; Cor    (for correlated parameters – optional) $ 
 
The ; Fcn = list specification is applied only to the Rhs variables. 
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E44.7 Latent Class Models 
 

The count model for a panel of data, i = 1,...,N, t = 1,...,Ti is the Poisson  
 

Prob[Yit = yit| λit]  =  exp[-λit] ×λit
yit  / yit!  where λit  =  exp[β′xit] 

 
or negative binomial probability, 
 
  Prob[Yit = yit| λit, τ]  =  Γ(τ + yit)/[yit!Γ(τ)] uit

τ [1 -uit] yit  where  ui  = τ / [τ + λit]. 
 
(We have changed the symbol for the dispersion parameter to avoid a conflict with our generic 
notation for the latent class probabilities.)  Henceforth, we use the term ‘group’ to indicate the Ti 
observations on respondent i in periods t=1,...,Ti.  The following extends to the negative binomial 
model as well, but for the moment, we focus on the Poisson model. 

Unobserved heterogeneity in the distribution of Yit is assumed to impact the mean (and 
variance) λit.  The continuous distribution of the heterogeneity is approximated by using a finite 
number of ‘points of support.’  The distribution is approximated by estimating the location of the 
support points and the mass (probability) in each interval.  In implementation, it is convenient and 
useful to interpret this discrete approximation as producing a sorting of individuals (by 
heterogeneity) into J classes, j = 1,...,J where J is chosen by the analyst.) 

The probability of observing yit given that the individual is in class j is 
 
   P(i,t|j)  =  Prob[Yit = yit|λit,j] 
 
where the mean  λit|j  is specific to the group.  The analyst does not observe directly  which class,       
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model  λit|j  =  exp[ β′xit  +  δj].  We formulate this more generally 
as, 

  λit|j  =  exp[βj′xit] and, for the negative binomial model, θ|j  =  θj. 
 
In this formulation, each class has its own parameter vector, (βj,θj)though the variables that enter the 
mean are assumed to be the same.  The negative binomial model has a separate dispersion parameter 
in each class as well.  This allows the Heckman and Singer formulation as a special case by imposing 
restrictions on the parameters.  The prior probabilities for the latent classes are formulated as 
constants. 

  Fj =  
1

exp( )

exp( )
j

J
mm=

θ

θ∑
, θJ   =  0, Σj Fj = 1. 

 
The class probabilities may also be functions of a set of covariates, in which case 
 

   Fij =  
1

exp( )

exp( )
j i

J
m im=

′

′∑
z

z

θ

θ
. 

 
An extension to the zero inflation models and a further generalization are presented in Section E44.7. 
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 The estimation command for this model is 
 
 POISSON ; Lhs = ... ; Rhs = independent variables 

or NEGBIN ; LCM (for latent class model)  
  ; Pts = the desired number of classes, 2, 3, ..., 9 

   ; Pds = panel data specification $ 
 
(The model must be fit with panel data.)  The default number of support points is five.  But, this is 
fairly high.  You may set J to 2, 3, 4, or 5.  To specify that the class probabilities are functions of 
covariates, use 
   ; LCM = the set of variables 
 
(The default is ; LCM = one.  You may omit the ‘= one’ if your class probabilities are constant.) 
 
NOTE:  For the case in which class probabilities have covariates, it is assumed that these are the 
same in every period.  You should repeat these variables for each observation within the group.  The 
program uses the first row, so, in fact, any data, including zeros, will suffice.  However, do not mark 
observations 2 - Ti for these variables as missing.  This will flag the observation as bad data to be 
bypassed. 
 
Other options are the standard ones for Poisson and negative binomial models, including 
 
   ; Par   to keep individual specific parameter estimates.  
   ; Keep = name to retain fitted values 
   ; Res = name  to retain residuals 
   ; Prob = name to retain estimated probabilities for observed outcome 
 
Some particular values computed for the latent class model are 
 
   ; Group = the index of the most likely latent class 
   ; Cprob = estimated probability for the most likely latent class 
 
(Computation of these values is described in the technical details.)  Other options include 
 
   ; Maxit = n  to set maximum iterations 
   ; Rst = list  to specify fixed value and equality restrictions 
   ; CML: spec  to define linear constraints 
   ; Test: spec  to define Wald tests 
 
and so on.  You can use the ; Rst = list option to structure the latent class model so that different 
variables appear in different classes.  Alternatively, you can use this to force the Heckman and 
Singer form of the model as follows, where we use a three class model as an example: 
 
 NAMELIST ; x = ... one, list of variables $ 
 CALC  ; k1 =  Col(x) - 1 $ 
 POISSON ; Lhs = ... ; Rhs = x ; LCM ; Pts = 3 
   ; Rst = d1,k1_b, d2,k1_0, d3,k1_0, t1,t2,t3 $ 
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Estimates retained by this model include 
 
 Matrices: b =  full parameter vector, [β1′, β2′,... F1,...,FJ] 

  varb =  full covariance matrix 
   beta_i =  individual specific parameters, if ; Par is requested. 
  
 Note that b and varb involve J×(K+1) estimates.  Two additional matrices are created 
  

b_class =  a J×K matrix with each row equal to the corresponding βj 

   class_pr =  a J×1 vector containing the estimated class probabilities 
 
Scalars: kreg =  number of variables in Rhs list 

   nreg =  total number of observations used for estimation 
  logl =  maximized value of the log likelihood function 

   exitcode =  exit status of the estimation procedure 
 
 The latent class estimator allows for truncation (not censoring) at zero.  The model 
specification is 
   ; TPM 
 
with no other specifications.  This is for the conditional distribution yi|yi > 0, as appears in hurdle 
models. 
 
E44.7.1 Testing for Latent Heterogeneity 
 
 In order to test for latent class effects, you must compare a model with the effects to one 
without.  This is not a parametric restriction on the latent class model.  Note, thus, if θj is set equal to 
zero, this just produces Fj = 1/J.  Alternatively, forcing all coefficient vectors to equal zero destroys 
the identifiability of the latent class probabilities – their standard errors will go to +∞.  (Try it.)  
Therefore, in order to test for class effects, the restricted and unrestricted models must be fit 
separately.  One can use a likelihood ratio test, based on the following computations:  For the latent 
class model the unrestricted log likelihood is, 
 

  log LU =  ∑ =

N
i 1

log j
J
=∑ 1 Fj t

Ti

=∏ 1
 P(i,t|j). 

 
For the Poisson or negative binomial model with no latent class sorting, the log likelihood is 
 

  log LR =  ∑ =

N
i 1

log t
Ti

=∏ 1
 P(i,t). 

 
In both models, observations within the groups are assumed to be independent.  Taking logs in the 
second expression produces the conventional log likelihood function for the count model, 
 

  log LR =  ∑ =

N
i 1 ∑ =

iT
t 1

 P(i,t). 
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Therefore, it appears that a conventional likelihood ratio statistic can be computed.  The degrees of 
freedom would be (J-1)(1+K).  The first J-1 would be for the free latent class probabilities while the 
latter K(J-1) would be for the additional slope parameters in the last J-1 latent classes.  The problem 
with this approach is that the model is not identified under the restrictions, so this is not a 
conventional LR test.  That is, without the latent class sorting, the extra slope parameters cannot be 
estimated, and without variation across classes in the slope parameters, the class parameters cannot 
be estimated.  The upshot is that if this is a valid LR statistic, then surely the degrees of freedom is 
fewer than (J-1)(1+K).  But, whether it is appears not to be conclusively determined in the literature.  
(See Heckman and Singer for discussion.) 
 
E44.7.2 Application 
 
 To illustrate the technique, we have applied the technique to the German health care data 
once again.  A three class model for docvis is fit without restrictions, then restricted so as to produce 
the Heckman and Singer form of the model in which only the constant terms differ. 
 
 POISSON ; Lhs = docvis ; Rhs = one,female,hhninc,educ 
   ; Panel ; Pts = 3 ; LCM ; Partial Effects $ 
 POISSON ; Lhs = docvis ; Rhs = one,female,hhninc,educ 
   ; Panel ; Pts = 3 ; LCM ; Partials Effects  
   ; Rst = b01,3_b,b02,3_b,b03,3_b,t1,t2,t3 $ 
 
Normal exit:  42 iterations. Status=0, F=    17537.48 
----------------------------------------------------------------------------- 
Latent Class / Panel Poisson  Model 
Dependent variable               DOCVIS 
Log likelihood function    -17537.47833 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    3.78019***      .14204    26.61  .0000     3.50180   4.05858 
  FEMALE|     .11507**       .04547     2.53  .0114      .02595    .20418 
  HHNINC|     .29716***      .11515     2.58  .0099      .07147    .52286 
    EDUC|    -.13751***      .01304   -10.54  .0000     -.16308   -.11195 
        |Model parameters for latent class 2 
Constant|    1.13460***      .18518     6.13  .0000      .77166   1.49755 
  FEMALE|     .47494***      .05972     7.95  .0000      .35790    .59198 
  HHNINC|     .22802*        .12580     1.81  .0699     -.01854    .47458 
    EDUC|    -.14129***      .01650    -8.56  .0000     -.17363   -.10896 
        |Model parameters for latent class 3 
Constant|    2.26186***      .09039    25.02  .0000     2.08469   2.43903 
  FEMALE|     .24702***      .03307     7.47  .0000      .18221    .31182 
  HHNINC|     .28702***      .07523     3.82  .0001      .13957    .43447 
    EDUC|    -.10320***      .00852   -12.12  .0000     -.11989   -.08651 
        |Estimated prior probabilities for class membership 
Class1Pr|     .07954***      .01004     7.93  .0000      .05987    .09921 
Class2Pr|     .47122***      .01887    24.97  .0000      .43423    .50821 
Class3Pr|     .44924***      .01830    24.55  .0000      .41337    .48510 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point   2.0799 
Scale Factor for Marginal Effects  2.0799 
B for latent class model is a wghted avrg. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCVIS|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  FEMALE|     .71532***      .14540     6.05  .0000      .48361    .94702 
  HHNINC|     .54082***      .09083     3.58  .0003      .24478    .83685 
    EDUC|    -.25766***    -1.35536   -34.92  .0000     -.27212   -.24319 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Latent Class / Panel Poisson  Model 
Dependent variable               DOCVIS 
Log likelihood function    -17566.10677 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    3.57127***      .08933    39.98  .0000     3.39619   3.74635 
  FEMALE|     .22546***      .02848     7.92  .0000      .16965    .28127 
  HHNINC|     .29045***      .06140     4.73  .0000      .17010    .41080 
    EDUC|    -.12384***      .00813   -15.23  .0000     -.13978   -.10791 
        |Model parameters for latent class 2 
Constant|    1.07754***      .09347    11.53  .0000      .89435   1.26073 
  FEMALE|     .22546***      .02848     7.92  .0000      .16965    .28127 
  HHNINC|     .29045***      .06140     4.73  .0000      .17010    .41080 
    EDUC|    -.12384***      .00813   -15.23  .0000     -.13978   -.10791 
        |Model parameters for latent class 3 
Constant|    2.49700***      .08922    27.99  .0000     2.32213   2.67187 
  FEMALE|     .22546***      .02848     7.92  .0000      .16965    .28127 
  HHNINC|     .29045***      .06140     4.73  .0000      .17010    .41080 
    EDUC|    -.12384***      .00813   -15.23  .0000     -.13978   -.10791 
        |Estimated prior probabilities for class membership 
Class1Pr|     .08083***      .00989     8.18  .0000      .06146    .10021 
Class2Pr|     .47999***      .01859    25.81  .0000      .44355    .51644 
Class3Pr|     .43918***      .01824    24.08  .0000      .40342    .47493 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point   2.1050 
Scale Factor for Marginal Effects  2.1050 
B for latent class model is a wghted avrg. 
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--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCVIS|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  FEMALE|     .47460***      .09532     6.92  .0000      .34014    .60906 
  HHNINC|     .61140***      .10145     4.50  .0000      .34483    .87798 
    EDUC|    -.26069***    -1.35494   -42.92  .0000     -.27260   -.24879 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E44.7.3 Latent Class Model with Zero Inflation 
 
 You can extend the latent class model to the zero inflation models as well.  The extended 
model departs from the basic probabilities as usual, the Poisson 
 

  R(i,t|j) =  exp[-λit | j] ×λit | j 
yit  / yit!  

 
where   λit|j =  exp[βj′xit] 
 
or negative binomial probability, 
 
   R(i,t|j) =  Γ(τj +yit)/[yit!Γ(τj )] uit | j

τj [1 -uit | j] 
yit 

 
   τj =  1/αj, where αj is the overdispersion parameter 
 
   uit|j =  τj / [τj + λit|j]. 
 
The mean λit | j and, if negative binomial, overdispersion, τj, are specific to the group.  The zero 
inflation model then adds 
 
   Yit| j =  0 with probability qit|j,    
 
   Yit| j ~  Poisson(λit | j ) or NegBin(λit | j,θj)  with probability 1 -qit | j 
 

where    qit | j =  Logit probability (γj′zit)  =  
exp( )

1 exp( )
j it

j it

′

′+

z
z

δ

δ
. 

 
Thus,   Prob[Yit= 0 | j]  =  qit|j + [1 -qit|j]Rit (0 | j),   
 
   Prob[Yit = m > 0 | j]  =  [1 -qit|j]Rit (m | j). 
 
Combining terms, the preceding define 
 
   P(i,t | j) =  Prob[Yit  =  yit | j] 
 
and the rest of the analysis is the same as in the previous section. 
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 The command for this model just adds the ZIP specification to the earlier latent class 
specification: 
 
 POISSON ; Lhs = ... 
 or NEGBIN ; Rhs = independent variables 
   ; ZIP ; Rh2 = variables in regime probability 
   ; LCM  (for latent class model)   
   ; Pts = the desired number of classes, 2, 3, 4, or 5 
   ; Pds = panel data specification $ 
 
All other options and parts of the command are the same as before.   
 
E44.7.4 Technical Details on Estimating Latent Class Models 
 

The sequence of Ti observations for individual i, given group j is y(i|j) = 
[y(i,1|j),y(i,2|j),...,y(i,Ti|j)].  Observations for individual i in different periods are assumed to be 
independent.  Thus, the joint probability of the sequence of  observations [y(i|j)] is 
 

   P(i|j)   =  t
Ti

=∏ 1
P(i,t|j). 

 
We denote the mass, or probability in interval (group) j as Fj, j = 1,...,J, such that F1 + F2 + ... + FJ = 1.  
Then, the posterior probability of an observed sequence of observations is 
 

  P(i)   =  j
J
=∑ 1 FjP(i|j) 

 
where Fj is the prior probability of membership in the jth class.  We parameterize the group  
probabilities with 

  Fj =  
1

exp( )

exp( )
j

J
mm=

θ

θ∑
, θJ   =  0, Σj Fj = 1. 

 
where θJ = 0, since Σj Fj = 1.  The class probabilities may also be functions of a set of covariates, in 
which case 
 

   Fij =  
1

exp( )

exp( )
j i

J
m im=

′

′∑
z

z

θ

θ
, θJ   =  0, Σj Fj = 1. 

 
NOTE:  In this formulation, the covariates are assumed to be the same in every period.   Data on zi 
must be present in every period, but the first observation in each group is used to compute the prior 
probabilities. 
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The log likelihood function for the observed sample is  
 

  log L =  ∑ =

N
i 1

 log[P(i)] 
 

  =  ∑ =

N
i 1

 log j
J
=∑ 1 Fij t

Ti

=∏ 1
 P(i,t|j). 

 
This function is maximized with respect to the vector of parameters 
 
   β  =  (β1,...,βJ),  θ1,...,θJ. 
 
subject to the restriction that θJ = 0.  (Other restrictions may be imposed as well.) 
 Among the useful results of this formulation is a posterior estimate of the probabilities of 
particular group membership; using Bayes theorem, 
 
   P(j | i)   =  P(i, j) / P(i) 
 

  =  
1

( | )

( | )
ij

J
ijj

P i j F

P i j F
=∑

 

 
Using this result, we compute j* = the index of the group with the highest posterior probability.  The 
predicted values, residuals, and predicted probabilities for the observed outcomes are then computed 
as those associated with group j*.  That is, for example,  
 
   Fitted valueit  =  λit|j*  =  exp(βj*′xit) 
 
and so on. 
 Maximization of the log likelihood does not require any unusual techniques or approaches.  
(Some authors, e.g., Cockburn (1999) have used the EM algorithm for a Poisson model of this sort, 
but this is a means to an end, not a necessity.  We have found that the conventional approach used 
here works without problems, and is much simpler.)  The gradient of the log likelihood function is 
 

   
j

jitT
tjij

i

N
i

j

P
PF

P
L i

ββ ∂

∂
=

∂
∂ ∑∑ ==

|
1|1

log1log
 

 

   |1 1

log 1 [1( ) ]N J
i m im j ii m

j i

L P F m j F
P= =

∂
= = −

∂ ∑ ∑ z
θ

 

 
The gradients in the first term are (yit - λit|j)xit for the Poisson model and |[ ( ) ]j it it j jy qτ + − τ xit where 
θj is the overdispersion parameter and qit|j = τj/(τj + λit|j) for the negative binomial model.  The 
BHHH estimator is used for estimating the asymptotic covariance matrix of the maximum likelihood 
estimates. 
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E44.8 GMM Estimators for Count Models with Panel Data 
 
 This section develops LIMDEP commands to compute GMM estimators for panel data count 
data models  See Blundell, Griffith, and Windmeijer (2002) and also Romeu (2004) for a review of 
Windmeijer’s software that does this.  These are not hard coded in LIMDEP, but can be directly 
implemented with trivial changes to the programs listed below.  The reader is referred to the articles 
for theoretical development of the models.  The remainder of this section presents the LIMDEP code 
for estimation. 
 
Step 1. Set up the data.  The Rhs variables in the model are assumed to be xa,xb,xc,...  We assume 

for the illustration below that this is xa,xb,xc,xd,xe.  The Lhs variable is y. 
 
Step 2. Create lagged values of all variables.  Use namelists x for the current Rhs values and x1 for 

the lagged values. Variables y and y1 are the current lagged values of the dependent variable. 
 
Step 3. Set up panel data indicators such that variable t is the period number.  The panel need not be 

balanced.  Also set up the usual group count variable, called, say, ti.  We also need the group 
identifier.  This would normally be _stratum created by the panel estimator.  We'll call it 
group where needed below. 

 
The data setup commands for our constructed example are as follows: 

 
NAMELIST ; x = xa,xb,xc,xd,xe $ 
CREATE    ; xa1 = xa[-1] ; xb1 = xb[-1] ; xc1 = xc[-1]  
 ; xd1 = xd[-1] ; xe1 = xe[-1]$ 
CREATE    ; y1= y[-1]$ 
NAMELIST  ; x1 = xa1,xb1,xc1,xd1,xe1 $ 

 
The sample must also be set to eliminate the lost observation due to the lagging. 

  
 SAMPLE ; 2 - n $ 
 
Step 4. If the models are being estimated using instrumental variables, define namelists for these as 

well. 
 
 NAMELIST  ; z = za,zb,zc,zd,ze,zf $ ... the list of instrumental variables $ 
 
Estimators are shown for four model groups: cross sections, panel data, presample means and linear 
feedback models, respectively.  Throughout, the nomenclature used is based on Romeu’s Table 1.  
The table has two columns of model definitions, which we label A and B.  In the A column, there are 
six models, which we label 1A,...,6A.  In the second column, we, use 1B, 2B, 3B1, 3B2, 4B1, 4B2, 
5B and 6B. 
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E44.8.1 Cross Section Estimators 
 

 For a model with exogenous or predetermined regressors, we use the whole sample. With 
additive errors, treat it as a cross section, Poisson regression – Models 1A and 3A. 
 

 SAMPLE ; All $ 
 POISSON   ; Lhs = y ; Rhs = x $   
 

This is for exogenous or predetermined regressors and multiplicative errors, Models 2A and 4A. 
 

 POISSON   ; Lhs = y ; Rhs = x $ 
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5        

; Fn1 = (y-exp(x'b1))/exp(x'b1) * xa  
; Fn2 = (y-exp(x'b1))/exp(x'b1) * xb 
; Fn3 = (y-exp(x'b1))/exp(x'b1) * xc  
; Fn4 = (y-exp(x'b1))/exp(x'b1) * xd 
; Fn5 = (y-exp(x'b1))/exp(x'b1) * xe $ 

 

With endogenous regressors, the number of equations changes to the number of  instrumental variables. 
Assumed here to be za,zb,zc,zd,ze,zf.  These are overidentified so we use a two step estimator.  The two 
routines are for additive (Model 5A) and multiplicative errors (Model 6A), respectively. 
 

 POISSON   ; Lhs = y ; Rhs = x $ 
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5 
   ; Fn1 = (y-exp(x'b1)) * za ; Fn2 = (y-exp(x'b1)) * zb  

; Fn3 = (y-exp(x'b1)) * zc ; Fn4 = (y-exp(x'b1)) * zd  
; Fn5 = (y-exp(x'b1)) * ze ; Fn6 = (y-exp(x'b1)) * zf $ 

 MATRIX    ; optimal w = <sigma> $   
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5 ; sigma = optimal w 

  ; Fn1 = (y-exp(x'b1)) * za ; Fn2 = (y-exp(x'b1)) * zb    
; Fn3 = (y-exp(x'b1)) * zc ; Fn4 = (y-exp(x'b1)) * zd  
; Fn5 = (y-exp(x'b1)) * ze ; Fn6 = (y-exp(x'b1)) * zf $ 

 

This is for the multiplicative errors model. 
 
 POISSON   ; Lhs = y ; Rhs = x $ 
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5      
   ; Fn1 = (y-exp(x'b1))/exp(x'b1) * za   

; Fn2 = (y-exp(x'b1))/exp(x'b1) * zb   
   ; Fn3 = (y-exp(x'b1))/exp(x'b1) * zc   

; Fn4 = (y-exp(x'b1))/exp(x'b1) * zd   
  ; Fn5 = (y-exp(x'b1))/exp(x'b1) * ze   

; Fn6 = (y-exp(x'b1))/exp(x'b1) * zf $ 
 MATRIX    ; optimal w = <sigma> $   
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5 ; sigma = optimal w 
   ; Fn1 = (y-exp(x'b1))/exp(x'b1) * xa   

; Fn2 = (y-exp(x'b1))/exp(x'b1) * xb   
  ; Fn3 = (y-exp(x'b1))/exp(x'b1) * xc   

; Fn4 = (y-exp(x'b1))/exp(x'b1) * xd   
  ; Fn5 = (y-exp(x'b1))/exp(x'b1) * xe $ 
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E44.8.2 Panel Data Estimators 
 
 The panel data estimators for exogenous regressors are not valid with multiplicative errors.  
(This is cell 2B (no model) in Romeu’s table.)  With additive errors, the estimator is the familiar 
fixed effects estimator, Model 1B. 
 
 POISSON   ; Lhs = y ; Rhs = x  ; Panel  ; FEM $  
 
For additive errors with predetermined and endogenous regressors and also for multiplicative errors, 
create the instrumental variables from the current and lagged values of z.  Collect these in namelist z.  
For the examples, z = z1,z2,z3,z4,z5,z6,z7. There are some differences across cases in the specific 
instrumental variables used.  Lose an observation in each group because of the lagging. 
 
 REJECT    ; t = 1 $ 
 
These are the Chamberlain forms, 3B1 and 4B1 and corresponding dynamic forms 
 
 POISSON   ; Lhs = y ; Rhs = x $ 
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5 
   ; Fn1 = (y*exp(x1'b1)/exp(x'b1) - y1) * z1  

; Fn2 = (y*exp(x1'b1)/exp(x'b1) - y1) * z2 
   ; Fn3 = (y*exp(x1'b1)/exp(x'b1) - y1) * z3  

; Fn4 = (y*exp(x1'b1)/exp(x'b1) - y1) * z4 
   ; Fn5 = (y*exp(x1'b1)/exp(x'b1) - y1) * z5  

; Fn6 = (y*exp(x1'b1)/exp(x'b1) - y1) * z6 
   ; Fn7 = (y*exp(x1'b1)/exp(x'b1) - y1) * z7 $ 
 MATRIX    ; optimal w = <sigma> $   
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5 ; sigma = optimal w 
   ; Fn1 = (y*exp(x1'b1)/exp(x'b1) - y1) * z1  

; Fn2 = (y*exp(x1'b1)/exp(x'b1) - y1) * z2 
   ; Fn3 = (y*exp(x1'b1)/exp(x'b1) - y1) * z3  

; Fn4 = (y*exp(x1'b1)/exp(x'b1) - y1) * z4 
   ; Fn5 = (y*exp(x1'b1)/exp(x'b1) - y1) * z5  

; Fn6 = (y*exp(x1'b1)/exp(x'b1) - y1) * z6 
   ; Fn7 = (y*exp(x1'b1)/exp(x'b1) - y1) * z7 $ 
 
  



E44: Panel Data Models for Counts   E-1073 

The Wooldridge forms 3B2, 4B2 and 5B, differ in the choices of instruments and the dynamic form 
of the model. 
 
 POISSON   ; Lhs = y ; Rhs = x $ 
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5 
   ; Fn1 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z1  

; Fn2 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z2 
; Fn3 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z3  
; Fn4 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z4 
; Fn5 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z5  
; Fn6 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z6 

   ; Fn7 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z7 $ 
 MATRIX   ; optimal w = <sigma> $   
 GMME      ; Start = b ; labels = b1,b2,b3,b4,b5 ; sigma = optimal w 
   ; Fn1 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z1  

; Fn2 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z2 
   ; Fn3 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z3  

; Fn4 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z4 
   ; Fn5 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z5  

; Fn6 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z6 
   ; Fn7 = (y/exp(x'b1) - y1/exp(x1'b1) ) * z7 $ 
 

E44.8.3 Presample Means Estimators 
 
 The presample is defined as observations 1 to t0.  The sample is t1 = t0+1 to t. 
 
 SAMPLE  ; All $ 
 REJECT  ; t  >  t0  $   
 MATRIX  ; pmeans = Gxbr(y,group) $ 
 SAMPLE ; All $ 
 CREATE  ; logpmi = Log(pmeans(group)) $ 
 REJECT  ; t < t1 $ 
 POISSON   ; Lhs = y ; Rhs = x,logpmi $ 
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5,f  
   ; Fn1 = (y-exp(x'b1-f*logpmi)) * xa  

; Fn2 = (y-exp(x'b1-f*logpmi)) * xb   
   ; Fn3 = (y-exp(x'b1-f*logpmi)) * xc   

; Fn4 = (y-exp(x'b1-f*logpmi)) * xd   
   ; Fn5 = (y-exp(x'b1-f*logpmi)) * xe   

; Fn6 = (y-exp(x'b1-f*logpmi)) * logpmi $ 
 MATRIX    ; optimal w = <sigma> $   
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5 ; sigma = optimal w 
   ; Fn1 = (y-exp(x'b1-f*logpmi)) * xa   

; Fn2 = (y-exp(x'b1-f*logpmi)) * xb   
   ; Fn3 = (y-exp(x'b1-f*logpmi)) * xc   

; Fn4 = (y-exp(x'b1-f*logpmi)) * xd   
   ; Fn5 = (y-exp(x'b1-f*logpmi)) * xe   

; Fn6 = (y-exp(x'b1-f*logpmi)) * logpmi $ 
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E44.8.4 Panel Data Linear Feedback Model Estimators 
 

 The linear feedback forms use the second lag of y.  The lagged value is created, then the 
sample is restricted to the useable observations. 
 

 SAMPLE   ; All $ 
 CREATE    ; y2 = y[-2] $ 
 REJECT    ; t <= 2 $ 
 

This is the Chamberlain form, 3B1 and 4B1, and the dynamic form 
 

 POISSON   ; Lhs = y ; Rhs = x,y1 $ 
 GMME      ; Start = b,0 ; Labels = b1,b2,b3,b4,b5,c 
   ; Fn1 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z1 
   ; Fn2 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z2 
   ; Fn3 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z3 
   ; Fn4 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z4 
   ; Fn5 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z5 
   ; Fn6 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z6 
   ; Fn7 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z7 $ 
 MATRIX   ; optimal w = <sigma> $   
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5,c ; sigma = optimal w 
   ; Fn1 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z1 
   ; Fn2 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z2 
   ; Fn3 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z3 
   ; Fn4 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z4 
   ; Fn5 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z5 
   ; Fn6 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z6 
   ; Fn7 = ((y-c*y1)*exp(x1'b1)/exp(x'b1) - (y1-c*y2)) * z7 $ 
 

This is the Wooldridge form for 3B2, 4B2 and 5B.   
 

 POISSON   ; Lhs = y ; Rhs = x $ 
 GMME      ; Start = b,0 ; Labels = b1,b2,b3,b4,b5,c 
   ; Fn1 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z1 
   ; Fn2 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z2 
   ; Fn3 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z3 
   ; Fn4 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z4 
   ; Fn5 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z5 
   ; Fn6 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z6 
   ; Fn7 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z7 $ 
 MATRIX    ; optimal w = <sigma> $   
 GMME      ; Start = b ; Labels = b1,b2,b3,b4,b5,c ; sigma = optimal w 
   ; Fn1 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z1 
   ; Fn2 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z2 
   ; Fn3 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z3 
   ; Fn4 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z4 
   ; Fn5 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z5 
   ; Fn6 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z6 
   ; Fn7 = ((y-c*y1)/exp(x'b1) - (y1-c*y2)/exp(x1'b1) ) * z7 $ 
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E45: The Tobit Model for Censored Data 
 
E45.1 Introduction 
 
 The model and estimators described in this chapter is based on the following general structure: 
 
 Latent Underlying Regression: yi*  =  β′xi  +  εi, εi ~ N[0,σ2]. 
 
 Observed Dependent Variable: if yi*  ≤  Li, then yi  =  Li  (lower tail censoring) 

      if yi*  ≥  Ui, then yi  =  Ui  (upper tail censoring) 

      if Li  <  yi*  <  Ui, then  yi  =  yi* =  β′xi  +  εi. 
  
Various modifications of the model are considered in the sections to follow.  Within this framework, 
the most familiar form is the lower censoring only, at zero variant.  Truncation, in which only data in 
the third group are observed, is a related case which is discussed in Chapter E47.  In practice, most 
of the received applications involve censoring, rather than truncation.  The thresholds, Li and Ui, may 
be constants or variables.  We accommodate censoring in the upper or lower (or both) tails of the 
distribution.  The most familiar case of this model in the literature is the ‘tobit’ model, in which       
Ui = +∞ and Li = 0, i.e., the case in which the observed data contain a cluster of zeros.  In the 
standard ‘censored regression,’ or tobit model, the censored range of yi* is the half of the line below 
zero.  (For convenience, we will drop the observation subscript at this point.)  If y* is not positive, a 
zero is observed for y, otherwise the observation is y*.  Models of expenditure are typical.  We also 
allow censoring of the upper tail (‘on the right’).  A model of the demand for tickets to sporting 
events might be an application, since the actual demand is only observed if it is not more than the 
capacity of the facility (stadium, etc.).  A somewhat more elaborate specification is obtained when 
the range of y* is censored in both tails.  This is the ‘two limit probit’ model.  An application might 
be a model of weekly hours worked, in which less than half time is reported as 20 and more than 40 
is reported as ‘full time,’ i.e., 40 or more. 
 The preceding gives the basic model.  We also allow for several variations, including a 
model with heteroscedasticity, models for panel data, two different models of sample selection, and 
models with nonnormally distributed disturbances.  Numerous variants and features of this model are 
gathered in Chapter E47.   The basic model is developed in this chapter. 
 
NOTE:  The mere presence of a clump of zeros in the data set does not, by itself, adequately motivate 
the tobit model.  The specification of the model also implies that the nonlimit observations will have a 
continuous distribution with observations near the limit points.  In general, if you try to fit a tobit 
model, e.g., to financial data in which there is a clump of zeros, and the nonzero observations are 
ordinary financial variables far from zero, the model is as likely as not to break down during 
estimation.  In such a case, the model of sample selection is probably a more appropriate specification. 
 
 The current theoretical literature contains a large amount of material devoted to 
semiparametric and nonparametric estimation of censored data models.  See, e.g., the work of Bo 
Honoré. (www.princeton.edu/~honore). Section E45.10 provides an estimator for Powell’s 
symmetrically censored least squares estimator at the end of this chapter. 

http://www.princeton.edu/~honore�
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E45.2 Commands 
 
 The basic command for estimation of the censored regression, or tobit model is 
 
 TOBIT  ; Lhs = y ; Rhs = ... $ 
 
The default value for the censoring limit is zero, at the left (i.e., the familiar case).  Censoring limits 
can be varied in two fashions.  To specify upper, rather than lower tail censoring, add 
 
   ; Upper 
 
to the model.  With no other changes, this would specify a model in which the observed values of the 
dependent variable would be either zero or negative rather than zero or positive.  The specific limit 
point to use can be changed by using 
 
   ; Limit = limit value 
 
where ‘limit value’ is either a fixed value (number or scalar) or the name of a variable.  For 
example, the model of the demand for sporting events at stadiums with fixed capacities which sell 
out a significant proportion of the time might be 
  
 TOBIT  ; Lhs = tickets    
   ; Rhs = one, price, ... 
   ; Upper censoring 
   ; Limit = capacity $  
 
Models with censoring in both tails of the distribution are requested by changing the ; Limit 
specification to 
   ; Limits = lower limit, upper limit 
 
where ‘lower limit’ and ‘upper limit’ are either numbers, scalars, or the names of variables (or one 
of each).  For example, in a labor supply model, we might have 
  
   ; Limits = 20,40 
  
NOTE:  A few of the variants of the tobit model discussed below do not allow variation in the 
specification of the censoring limits.  In particular, in the nested and bivariate tobit, and the sample 
selection models, only the default case of censoring from below (at the left) at zero is supported.  In 
these cases, a ; Limit = value specification will be ignored.  For these models, if your censoring is 
upper, instead, multiply the dependent variable by -1, then reverse the signs of the coefficients after 
estimation.  If censoring is at a nonzero value, subtract this value from the Lhs variable before 
estimation and before the sign switch above. 
 
 Starting values for estimation are obtained by ordinary least squares regression of the 
dependent variable on the regressors.  A full set of OLS results is given before any other output is 
displayed if you request it with ; OLS.  As has been widely documented, these OLS estimates are 
inconsistent in this setting (usually biased toward zero).  The results are presented for comparison 
purposes only; the actual OLS coefficients are not used for any other purposes by this program.  If you 
do not provide other starting values, the OLS estimates, [b,s] of [β,σ], are used to begin the iterations.   
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 You may provide your own starting values with 
 
   ; Start = values for β then σ 
 
The least squares estimates are followed by the iterations. 
 You may impose fixed value and within equation equality constraints on the coefficients by 
using the 
   ; Rst = specification 
 
Other restrictions may be imposed with 
 
   ; CML: specification of linear restrictions 
 
These are discussed in Chapter R13.  Note, once again, the parameters that enter this model are 
[β1,β2,...,βK,σ].  If you use these options, you must provide exactly K+1 identifiers for the parameters.  
As in all models, the option will allow you to constrain the variance to equal one of the slopes, but this 
is likely to impede convergence, and is unlikely to produce a satisfactory model specification. 
 During the iterations, the parameters are transformed using Olsen’s (1978) transformation, 
 
   [γ, θ]  =  [β/σ, 1/σ]. 
 
If you are generating technical output from the iterations in your output file, the reported parameter 
vector will be scaled. It is unscaled when the iterations are complete. Maximum likelihood estimates 
are displayed at exit from the iterations.  This will include a table of diagnostic statistics and some 
notation about the specific model along with the standard output.  The MLE of σ will appear with the 
other parameter estimates.  The display includes the log likelihood, the values or identity of the 
lower and upper bounds, and the estimates of [β,σ].  As usual, the ancillary parameter, σ, is included 
with the rest of the estimated parameter vector in the output table. 
 Other options for the tobit model are the standard ones for nonlinear models, including 
 

  ; Covariance Matrix to display the estimated asymptotic covariance matrix,
    same as ; Printvc.  
   ; List  to display predicted values 
   ; Parameters  to include the estimate of σ in the retained parameter 
    vector 
   ; Maxit = n  to set maximum iterations 
   ; Alg = name  to select algorithm  
   ; Tlf, ; Tlb, ; Tlg to set the convergence criteria  
    (use ; Set to keep these settings) 
   ; Output = value  to control the technical output during iterations 
   ; Keep = name  to retain fitted values 
   ; Res = name  to retain residuals 
   ; Partial Effects 
 
and so on.  Sample clustering for the estimated asymptotic covariance matrix may be requested with 
 
   ; Cluster = specification. 
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E45.3 Results for the Tobit Model 
 

 You may request the display of ordinary least squares results by adding  
 
   ; OLS 
 
to the command.  These will be suppressed if you do not include this request.  The OLS values will 
be used as the starting values for the iterations.  Maximum likelihood estimates are presented, as in 
the example below.   Note that unlike most of the discrete choice models, there is no restricted log 
likelihood presented.  The maximum likelihood estimates for a model that contains only a constant 
term are no less complicated than one with covariates, and there is no closed form solution for the 
(β,σ) parameter pair for this model.  For a general test of the joint significance of all the variables in 
the model, we suggest the standard trio of tests, which can be carried out as follows:  First set up the 
Rhs variables in the model. 
 
 NAMELIST  ; xvars = the x variables in the model, without the constant term $ 
 CALC  ; kx  = Col(xvars) $ 
 TOBIT  ; Lhs = y ; Rhs = one $ 
 CALC  ; l0 = logl $ 
 
This command will produce the Lagrange multiplier statistic. 
 
 TOBIT  ; Lhs = y ; Rhs = xvars,one ; Start = kx_0,b,s ; Maxit = 0 $ 
 TOBIT  ; Lhs = y ; Rhs = xvars,one $ 
 
Compute the likelihood ratio statistic. 
 
 CALC  ; List ; lr = 2*(logl - l0) ; 1 - Chi(lr,kx) $ 
 
This computes a Wald statistic. 
 
 MATRIX ; beta = b(1:kx) ; vb = varb(1:kx,1:kx) 
   ; List ; Wald = beta’<vb>beta $ 
 CALC  ; List ; 1 - Chi(wald,kx) $ 
 
The application below demonstrates use of the commands.  Retained output from the model includes 
 
 Matrices: b, varb 
 

 Scalars: s  = estimated σ 
   ybar, sy, kreg  = number of coefficients,  
   nreg = number of observations 
   nonlimts  = number of nonlimit observations in estimating sample 
 

 Variables: logl_obs, genres_1, genres_2 
 

 Last Model: b_variable names, sigma 
 

 Last Function:  E[y|x] – see the development in the next section. 
 

 The diagnostic information for the model also includes Fin and Schmidt’s LM test for the 
model specification against the alternative suggested by Cragg as well as a test for nonnormality.  
The tests are described in Sections E45.9.2 and E45.9.3. 
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E45.4 Partial Effects 
 
 The partial effects in the tobit model when censoring is at the left, at zero, are computed 
using 
    E[y|x]  =  Φ(β′x/σ)[β′x + σφ(β′x/σ)/Φ(β′x/σ)]. 
 
After some algebra, we find 
 
   ∂E[y|x]/∂x  =  Φ(β′x/σ)β. 
 
The preceding is a broad result which carries over to more general models.  That is, 
 
   ∂E[y|x]/∂x  =  Prob(nonlimit)β 
 
for all specifications of the censoring limits, whether in one tail or both. To obtain a display of the 
marginal effects for the tobit model, add 
 
   ; Partial Effects 
  
to the TOBIT command.  A full listing of the marginal effects computed at the sample means, 
including standard errors, the estimated conditional mean, and the scale factor, will be included in 
the model output.  An example appears below.  The partial effects for the tobit model can be 
obtained with 
 
 NAMELIST ; x = the Rhs of the model $ 
 PARTIALS  ; Effects: x ; Means ; Summary $ 
 
By using the average partial effects instead – omit the ; Means – you can use the full range of 
options with the PARTIALS and SIMULATE commands. 
 
E45.4.1 Notes About Partial Effects in the Tobit Model 
 
 The conditional mean function for the latent variable is the latent regression, 
 
   E[yi* | xi]  = xi′ β. 

 
In analysis of this regression for prediction purposes or for analysis of partial effects, 
 

  mk*  = ∂E[yi* | xi]/∂xik  =  βk 
 

is treated as is normally done in conventional linear regression analysis.  Standard errors and 
confidence intervals for predictions of the conditional mean,  
 

ˆ[ * | ]i iE y x  = ˆ
i′x β   
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and estimates of marginal effects,  
 

ˆ *km  = ˆ
kβ  

 
are computable using conventional forms and the estimated asymptotic covariance matrix for the 
maximum likelihood estimators. 

The more difficult computation involves the conditional mean function for the observed 
random variable, yi.  This is 

 
  E[yi | xi]  =   [1-Φ(αi)]Li +  Φ(αi)× [xi′β + σ λ(αi)]. 
 

For this conditional mean, the marginal effects are surprisingly simple, 
 

  mk  =  ∂E[yi | xi] / ∂xik  =   βk × [1 - Φ(αi)]. 
 
We note at this point a general result that we will use later.  It is shown in Greene (1999) that the 
simple result 
 

marginal effect  =  coefficient ×  probability of noncensored observation 
 
is general for censoring in either or both tails of the distribution, and extends beyond the normal 
distribution to any continuous distribution for ε.   
 
E45.4.2 Partial Effect for a Dummy Variable 
 

Typical applications of the censored regression model involve discrete independent 
variables, often binary variables indicating presence or absence of a condition or whether or not 
some treatment was experienced.  In our application below, we include a dummy variable for 
whether there are children in the home and whether or not the individual lives in a city.  Whether 
differentiation of the conditional mean provides an accurate measure of the marginal impact of 
presence or absence of a treatment, or for some other dummy variable, depends on the variables in 
the model and other factors.  Generally, the result will only be approximate, and the correct 
computation would be 
 

  Impact  =  E[yi | xi
1]  - E[yi | xi

0]       

    =  [1-Φ(αi
1)]Li +  Φ(αi

1) × [xi
1′β + σ λ(αi

1)] -  

          [1-Φ(αi
0)]Li +  Φ(αi

0) × [xi
0′β + σ λ(αi

0)], 
 
where the superscripts ‘1’ and ‘0’ indicate that in the computation, the dummy variable in the vector 
xi takes values 1 and 0, respectively.  Because it uses the means of the data, the internal calculation 
of partial effects does not accommodate this feature of the data.  You should use PARTIALS to 
obtain the partial effects for the tobit model.  The example below demonstrates. 
 
  



E45: The Tobit Model for Censored Data   E-1081 

E45.5 Predictions and Fit Measures 
 
 A listing of predictions is requested with 
  
   ; List 
  
The predictions and residuals are retained with 
  
   ; Keep = name  to retain predicted values 
and   ; Res = name  to retain residuals 
 
There is a possible ambiguity in the computation of predictions in this model.  Consider, first, the 
classical normal regression model with standard deviation σi.  (We do this to avoid having to treat 
separately the tobit model with heteroscedasticity.)  The conditional mean function is 
 
   E[yi | xi]  =  β′xi. 
  
But, if yi is restricted to the range [Li,Ui], the conditional mean becomes 
  

   E[yi|xi , Li < yi < Ui]   =  β′xi  + 
LU

UL
i Φ−Φ

φ−φ
σ   

 

where   φj   =  φ[(j - β′xi) / σi], j = Li,Ui 
 
and   Φj  =  Φ[(j - β′xi) / σi], j = Li,Ui. 
 
(This is the conditional mean function for the truncated regression model in Section E47.4.)  With 
censoring in only one tail, either Li will be -∞ or Ui will be +∞, in which case, φj will equal zero and 
Φj will be zero (for Li) or one (for Ui).  For the tobit model, then, 
 
   E[yi*xi] = LiProb[yi = Li] + UiProb[yi = Ui] + Prob[Li < yi < Ui]E[yi | Li < yi < Ui]. 
  
This is   LiΦL  +  Ui(1 - ΦU) + (ΦU - ΦL)β′xi  +  σi(φL - φU). 
 
LIMDEP reports this as the prediction for the tobit model.  Once again, in the case of censoring in 
only one tail, one of the densities is zero, and one of the tail probabilities is either zero or one. 
 The prediction displayed by ; List and retained with ; Keep = name is the conditional mean 
function listed above.  We emphasize, the prediction is not β′x.  The residual that is kept with ; Res 
is the difference between actual and predicted values.  If you require the linear index, you can obtain 
it with  
 
 NAMELIST  ; x = ... the Rhs for your tobit model $ 
 TOBIT  ; Lhs = ... ; Rhs = x $ 
 CREATE ; xb = x ’ b $ 
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With ; List the two additional variables displayed are the estimate of β′x and the estimate of [ΦU - ΦL].  
The latter is the estimated probability that the observation is a nonlimit observation.  A different kind 
of residual, Chesher and Irish’s (1987) ‘generalized residual,’ is discussed in Section E45.9.4. 
 You may use SIMULATE to analyze the predictions in the tobit model.  The function 
analyzed by SIMULATE is the conditional mean function given earlier. 
 As in any nonlinear model, there is no obvious, well behaved counterpart to the R2 in a linear 
regression (with a constant term) which is fit by ordinary least squares.   Many surrogates have been 
suggested.  A lengthy catalog appears in Veall and Zimmermann (1992).  These are largely of three 
types: 
 

1. Correlations between actual and predicted values for the nonlimit observations: Variations 
on two themes are suggested, one based on the squared correlation of the actual values of yi  

and the predictions of y*, E yi i

∧
[ *| ]x  = ˆ

i′x β  and one based on the squared correlation of the 

actual values of yi and the predictions of yi*|(yi* > Li), E y y Li i i i

∧
>[ *| , * ]x  = ˆ

i′x β  + σ
∧

λ( α
∧

i). 
The obvious defect here is that the limit observations are not included in the computation.  
But, this presents a bit of a dilemma.  Simply including the limit observations in the 
computation would not solve the problem, because the ‘fit’ aspect in the limit range of the 
distribution is the model’s ability to predict that an observation will be a limit observation, 
not its ability to predict the limit value, itself. 

 
2. Mixtures of the correlations in type 1 above and the predicted probabilities for the limit 

observations:  These represent an attempt to cover the defect in type 1.  Ultimately, these 
measures end up mixing residuals in the nonlimit observations, which are of the scale of the 
observed continuous responses with residuals in the limit observations, which are  

   ei
0 = (1-di) - Φ( α

∧

i) = - Φ( α
∧

i).   
 

The authors of the survey appear skeptical of these measures, perhaps appropriately so. 
 

3. Transformations of the log likelihood function which are bounded by zero and one:  The 
primary virtue of these measures is that they are bounded and usually improve as the model 
improves. The most widely used is McFadden’s  

 
   pseudo-R2’ = 1 - logL/logL0,  
 

where the latter is for a model with only a constant term.  Since this mimics behavior of the 
log likelihood function, itself, the value added of the normalization seems modest.  The 
measures do not relate to a proportion of variation explained, and they only range from zero 
to one because of the normalization.  On the other hand, for purposes of comparing two 
models, one of which is nested within the other, the difference in the pseudo-R2s will be a 
simple function of the likelihood ratio statistic that could be used to test the hypothesis of the 
restrictions.  Of course, since this is the case, one might want to proceed directly to the 
likelihood ratio statistic and not bother with the ‘fit measures.’ 
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 The authors of the survey suggest two criteria for fit measures:  They should, at least 
roughly, mimic the OLS-R2, and they should converge to the OLS-R2 as the censoring probability 
goes to zero (since, in this case, the model converges to a linear regression model). The fit measures 
suggested earlier are based on the continuous data.  However, prediction of the limit values is part of 
the purpose of the model.   With that in mind, LIMDEP presents two alternatives which appear to 
satisfy the first criterion, and do meet the second: 
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Both measures use the full sample of observations. In both cases, the conditional mean function, or 
prediction is E[yi | xi]  =   [1-Φ(αi)]Li +  Φ(αi)× [xi′β + σ λ(αi)].  The first fit measure takes the 
variance of the estimated conditional mean divided by the variance of the observed variable.  In the 
population, for any xi, the total variance equals the variance of the conditional mean plus the residual 
variance.  The numerator estimates a sample average of the first of these while the denominator 
averages the sum of the two.  The second measure takes the variance of the conditional mean 
function around the overall mean of the data in the numerator.  The denominator contains the sum of 
the numerator and a residual variance, the true value minus the conditional mean function.  In a 
linear regression, both measures equal R2 by construction.  (Note that the second does not equal zero 
in a model with only a constant.) 
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E45.6 Robust and Cluster Corrected Covariance Matrix 
 
 Generally, the objective of a robust covariance matrix estimator is to use an estimator of the 
asymptotic covariance matrix of the MLE that is robust to certain misspecifications of the model.  
The estimator typically used is the ‘sandwich’ estimator, V = H-1 × BHHH × H-1, where H is the 
negative of the second derivatives matrix of the log likelihood function and BHHH is the Berndt et 
al. outer products of first derivatives estimator.  Under certain circumstances (see Greene (2011)), 
the MLE is consistent in the presence of certain misspecifications of the model, though the standard 
estimators of the asymptotic covariance matrix is inappropriate.  The sandwich estimator provides 
the needed correction.  However, the maximum likelihood estimators of the coefficients in the 
censored regression models are inconsistent in the presence of 
 

• heteroscedasticity 
• omitted variables, even if they are orthogonal to the included ones,  
• incorrect assumption of the normal distribution,  
• incorrect functional form,  
• measurement error,  
• fixed effects in panel data (omitted variables),  
• random effects in a panel data (autocorrelation).   

 
That leaves very little for the robust estimator to be robust to. One possibility is unobserved 
heterogeneity in a cross section, but only if it is orthogonal to the included variables. It is difficult to 
construct a case for the estimator – for example, this model is quite far removed from the linear 
exponential families analyzed by Gourieroux, Monfort, and Trognon (1984).   In the end, for better 
or worse, the specification of the censored normal regression model is fairly fragile, and robust 
estimation of the asymptotic covariance is essentially a moot point. 
 The preceding notwithstanding, there are two robust covariance matrices obtainable with the 
tobit estimator.  The ; Cluster specification provides both.  The ordinary sandwich estimator can be 
obtained with 
   ; Cluster = 1 
 
while if you have clustered data, use 
 
   ; Cluster = fixed number of observations or stratification variable 
 
The estimator for stratified and clustered data that uses 
 
   ; Stratum = specification 
 
is also supported.  Details appear in Section R10.2. 
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E45.7 Application of the Tobit Model 
 
 We will demonstrate a few of the tobit estimators and carry out some specification tests and 
secondary analyses of the models.  The data used are the Mroz (1987) data on female labor supply.  
This data set contains 753 observations on women’s labor market experience.  (The data are 
provided in data file Mroz.dat.) 
 The data file is taken from the 1976 panel study of income dynamics, and is based on data 
for the previous year, 1975.  Of the 753 observations, the first 428 are for women with positive hours 
worked in 1975, while the remaining 345 observations are for women who did not work for pay in 
1975.  The listing below lists a few observations to illustrate.  There are 19 variables in the data set 
and one which is to be constructed from the data read in: 
 
 lfp    =  a dummy variable = 1 if woman worked in 1975, else 0 
  whrs   =  wife’s hours of work in 1975 
  kl6    =  number of children less than 6 years old in household 
  k618   =  number of children between ages 6 and 18 in household 
  wa     =  wife’s age 
  we     =  wife’s educational attainment, in years 
  ww     =  wife’s average hourly earnings, in 1975 dollars 

rpwg   =  wife’s wage reported at the time of the 1976 interview 
  hhrs   =  husband’s hours worked in 1975 
  ha     =  husband’s age 
  he     =  husband’s educational attainment, in years 
  hw     =  husband’s wage, in 1975 dollars 
  faminc  =  family income, in 1975 dollars 
  mtr    =  marginal tax rate facing the wife  
  wmed   =  wife’s mother’s educational attainment, in years 
  wfed   =  wife’s father’s educational attainment, in years 
  un   =  unemployment rate in county of residence, in percentage points    
 cit   =  dummy variable = 1 if live in large city (SMSA), else 0 
  ax   =  actual years of wife’s previous labor market experience 
  prin =  faminc - (whrs*ww)  =  wife’s property income (computed) 
 
  IMPORT $ 
 
   LFP WHRS KL6 K618 WA WE WW RPWG HHRS HA HE HW FAMINC MTR WMED WFED UN CIT AX 

1 1610 1 0 32 12  3.3540  2.65 2708 34 12  4.0288 16310 .7215 12  7  5.0 0 14 
1 1656 0 2 30 12  1.3889  2.65 2310 30  9  8.4416 21800 .6615  7  7 11.0 1  5 
1 1980 1 3 35 12  4.5455  4.04 3072 40 12  3.5807 21040 .6915 12  7  5.0 0 15 
1  456 0 3 34 12  1.0965  3.25 1920 53 10  3.5417  7300 .7815  7  7  5.0 0  6 
 0    0 0 0 54 14  0.0000  0.00 1960 58 14  7.9082 33856 .7215 12 12  9.5 1 10 
 0    0 1 2 30 12  0.0000  3.00 2940 31 17  6.9728 20500 .6915 12 12  7.5 1  4 
 0    0 0 0 55 12  0.0000  0.00 2467 56 11  4.9181 28600 .5815  7  7  5.0 1  0 
 0    0 0 1 51 10  0.0000  0.00 2256 56 12  8.3112 18750 .6915 10 10 11.0 0 10 
 0    0 0 1 44 12  0.0000  0.00 1680 46 12  7.1429 20300 .7215  7  7  9.5 1  5 

 

  



E45: The Tobit Model for Censored Data   E-1086 

 NAMELIST ; x = kl6,k618,wa,we,,cit,one $ 
 CREATE ; logwage = 0 ; If(ww > 0) logwage = Log(ww) $ 
 CREATE ; prin = faminc - (whrs * ww) $ 

TOBIT  ; Lhs = whrs ; Rhs = x ; Partial Effects $ 
PARTIALS ; Effects: x ; Summary $ 
PARTIALS ; Effects: wa & wa = 25(5)65 ; Plot(ci) $ 
CALC  ; logl1 = logl $ 

 
These are the tobit estimates of an hours equation with the partial effects computed at the means. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                 WHRS 
Log likelihood function     -3903.79391 
Estimation based on N =    753, K =   7 
Inf.Cr.AIC  =   7821.6 AIC/N =   10.387 
Threshold values for the model: 
Lower=     .0000     Upper=+infinity 
LM test [df] for tobit=     32.508[  6] 
Normality Test, LM    =     10.378[  2] 
ANOVA  based fit measure =    .048112 
DECOMP based fit measure =    .164940 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
     KL6|   -1075.62***    126.0104    -8.54  .0000    -1322.60   -828.65 
    K618|   -127.723***    42.74150    -2.99  .0028    -211.495   -43.952 
      WA|   -40.7847***     7.73797    -5.27  .0000    -55.9509  -25.6186 
      WE|    98.8168***    23.18132     4.26  .0000     53.3823  144.2514 
     CIT|   -93.6141       108.0917     -.87  .3865   -305.4700  118.2418 
Constant|    1308.73***    482.7473     2.71  .0067      362.56   2254.89 
        |Disturbance standard deviation 
   Sigma|    1280.45***    48.15479    26.59  .0000     1186.07   1374.83 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point 674.3503 
Scale Factor for Marginal Effects   .5924 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
    WHRS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     KL6|   -637.200***    73.29245    -8.69  .0000    -780.850  -493.549 
    K618|   -75.6635***    25.35208    -2.98  .0028   -125.3526  -25.9743 
      WA|   -24.1609***     4.56870    -5.29  .0000    -33.1154  -15.2064 
      WE|    58.5391***    13.65949     4.29  .0000     31.7670   85.3112 
     CIT|   -55.4571       64.03526     -.87  .3865   -180.9639   70.0498 
--------+-------------------------------------------------------------------- 
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These are the average partial effects using the same model results.  A second analysis examines the 
partial effect of age at various values of age. 
 

PARTIALS ; Effects: x ; Summary 
 
--------------------------------------------------------------------- 
Partial Effects for Tobit (Censored) Regression Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      KL6       -633.69216   73.01543    8.68  -776.79977  -490.58456 
      K618       -75.24695   25.17579    2.99  -124.59059   -25.90332 
      WA         -24.02790    4.51593    5.32   -32.87896   -15.17684 
      WE          58.21688   13.53082    4.30    31.69696    84.73681 
   *  CIT        -55.50839   64.48895     .86  -181.90441    70.88764 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Tobit (Censored) Regression Function 
--------------------------------------------------------------------- 
Effects on function with respect to WA 
Results are computed by average over sample observations 
Partial effects for continuous WA       computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dWA             Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function    -24.02790    4.51593    5.32   -32.87896   -15.17684 
WA      = 25.00  -31.29486    7.00604    4.47   -45.02670   -17.56303 
WA      = 30.00  -29.45665    6.43442    4.58   -42.06811   -16.84518 
WA      = 35.00  -27.44400    5.75781    4.77   -38.72932   -16.15869 
WA      = 40.00  -25.28392    4.99237    5.06   -35.06897   -15.49887 
WA      = 45.00  -23.01246    4.16318    5.53   -31.17229   -14.85263 
WA      = 50.00  -20.67312    3.30307    6.26   -27.14713   -14.19911 
WA      = 55.00  -18.31445    2.45094    7.47   -23.11829   -13.51060 
WA      = 60.00  -15.98700    1.65148    9.68   -19.22390   -12.75010 
WA      = 65.00  -13.74003     .96520   14.24   -15.63182   -11.84824 
 

 
Figure E45.1  Partial Effects of Wife’s Age 
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 The following set of commands tests the hypothesis that the slope coefficients in the model 
are all zero, using the Lagrange multiplier, Wald and likelihood ratio tests.  The first estimated model 
contains only a constant term. 
 

CALC  ; kx  = Col(x) - 1 $ 
TOBIT  ; Lhs = whrs ; Rhs = x $ 
CALC  ; logl1 = logl $ 
MATRIX   ; beta = b(1:kx) ; vb = Varb(1:kx,1:kx)  
  ; List ; Wald = beta'<vb>beta  $ 
CALC  ; List ; 1 - Chi(wald,kx) $ 
TOBIT  ; Lhs = whrs ; Rhs = one $ 
CALC  ; logl0 = logl $ 
TOBIT  ; Lhs = whrs ; Rhs = x ; Start = kx_0,b,s ; Maxit = 0 $ 

 CALC  ; List ; LR = 2*(logl1 - logl0) ; 1 - Chi(lr,kx) $ 
 

Using the full model, we use MATRIX to compute the Wald statistic.   
 
    WALD|             1 
--------+-------------- 
       1|       94.7034 
 
We then carry out the LM test by using the zero slope values as starting values and suppressing the 
iterations.  The LM statistic is 97.61745. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                 WHRS 
LM Stat. at start values       97.61745 
LM statistic kept as scalar    LMSTAT 
Log likelihood function     -3954.89176 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
     KL6|        0.0       120.8266      .00 1.0000 -.23682D+03  .23682D+03 
    K618|        0.0       45.02409      .00 1.0000 -.88246D+02  .88246D+02 
      WA|        0.0        8.17050      .00 1.0000 -.16014D+02  .16014D+02 
      WE|        0.0       24.35427      .00 1.0000 -.47733D+02  .47733D+02 
     CIT|        0.0       114.7817      .00 1.0000 -.22497D+03  .22497D+03 
Constant|    312.841       514.4513      .61  .5431    -695.465  1321.147 
        |Disturbance standard deviation 
   Sigma|    1375.21***    53.16139    25.87  .0000     1271.02   1479.41 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The likelihood ratio statistic is computed using the log likelihood from the full model and the log 
likelihood from the model with only a constant term.  The statistic equals 102.1957013. 
 
 [CALC] LR      =    102.1957013 
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E45.8 Technical Details 
 

Estimation of the censored regression model is quite routine. For fully parametric 
specifications – that is, in which the full distribution is specified, maximum likelihood is the 
accepted method.  The likelihood is formulated as follows:  For observations which are censored, 
terms in the log likelihood are the probability of observing the discrete value.  For uncensored 
observations, the term is the usual one, the density for the continuous random variable.  Thus, for the 
censored normal regression model with censoring only in the lower tail, 
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The model is estimated using Olsen’s (1978) transformation of the parameters, θ = 1/σ and           γ = 
(1/σ)β.  Let di = 1 for the noncensored observations and 0 otherwise.  Then, the log likelihood 
simplifies to 
 

log L = ( ) ( )2 2
0 1
log   +  ( 1/ 2) log(2 ) log ( )

i i
i i i id d

L y
= =

′ ′Φ θ − − π − θ + θ −∑ ∑x xγ γ  

 

 

0 1

0 1

0
1

( )
( )log

( ) 2
( )

(1 )
1

i i

i i

i
i i id d

i

i
i i id d

i

n i i
i i i ii

i i

a e
aL

a L e y
a

d d e
L y

= =

= =

=

φ − + 
∂ −  =

 φ   − −∂     θ θ    
      

− λ + +      − − θ     

∑ ∑

∑ ∑

∑

x x      
             

  

x x 0
                          =  

/

Φ
γ

Φ
 

     =    g
i

n

i=∑ 1
,  

 
in which ai = θLi - xi′γ, λi

0 = -φ(ai)/Φ(ai), and ei = θyi - xi′γ.  The Hessian is 
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The asymptotic covariance matrix for the maximum likelihood estimator is usually estimated by 
inserting the MLEs of γ and θ into the Hessian, then inverting. But, the BHHH estimator (sum of 
outer products of gradients) 
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is used occasionally instead.   
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The preceding obtains the estimated asymptotic covariance matrix for the MLEs of γ and θ.  
To recover the counterpart for the original parameters, β and σ, we use the delta method.  Let V̂  be 
the estimated covariance, and let 

   G = 
2

2

1 1
/ /
/ / 1

− 
 ′∂ ∂ ∂ ∂θ  θ θ=   ′∂σ ∂ ∂σ ∂θ −   ′
 θ 

I γβ γ β
γ

0
. 

 

Then, the estimated asymptotic covariance matrix for the MLEs of β and σ is  
 

  Ŝ ( )ˆ ˆ,σβ  = ˆ ˆˆ ′GVG ′. 
 

The Hessian for this model is negative definite for all values of the parameters.  As such, 
estimation by Newton’s method is the standard approach.  (See, e.g., Fair (1978), Pratt (1981), Olsen 
(1978), and Amemiya (1984) on various aspects of computation of the maximum likelihood 
estimator.)  Convergence to a maximum of the log likelihood is usually routine, the more so when 
Olsen’s transformation is used.   
 
NOTE:  If convergence is not achieved in a relatively small number of Newton iterations, this is 
usually indicative of a problem with the data.  Widely disparate scaling of the variables or near 
collinearity is likely to cause this situation. 
 
 The maximum likelihood estimator is consistent, efficient, and asymptotically normally 
distributed, in the fashion of other familiar estimators, such as in the probit model.  The fact that the 
density function for the observed random variable, yi, is a mixture of  discrete and continuous 
underlying distributions is a complication of some magnitude that was addressed in Amemiya’s 
(1973) seminal paper on the subject.  The end result is that maximum likelihood estimation can 
proceed as usual in spite of the complication. 

The full specification with censoring in both tails adds some complication.  The full model is 
 
  yi*  =  xi′β + εi, where εi|x ~ N[0,σ2]. 
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The algebraic results for this formulation are essentially the same.  The log likelihood now has three 
terms:  
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Let    γ  =  (1/σ)β, and  θ = (1/σ), 

   Li, Ui   =  lower, upper censoring limits (may be -∞, +∞, a number, or  variable) 

and   εi   =  θyi - γ′xi. 
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Individual terms in the log likelihood function and derivatives are as follows.  To avoid a possible 
source of confusion, we will now use Pi to denote a term in the log likelihood, rather than Li which to 
this point has stood both for the lower limit value and the term now denoted Pi. For nonlimit 
observations: 
   logPi    =  -(1/2)εi

2 + logθ - ½log2π, 

    ∂logPi/∂γ  =  εixi, 

    ∂logPi/∂θ  =  -εiyi + 1/θ, 

    ∂2logPi/∂γ∂γ′   =  -xixi′, 

    ∂2logPi/∂γ∂θ   =  xiyi, 

    ∂2logPi/∂θ2      =  -yi
2 - 1/θ2. 

 
For limit observations: 
 
    zi   =  γ′xi - θUi if yi ≥ Ui or zi = θLi - γ′xi if yi ≤ Li, 

    logPi    =  logΦ(zi), 

    ∂logPi/∂γ   =  [φ(zi)/Φ(zi)]xi if yi ≥ Ui, reverse sign if yi ≤ Li, 

    ∂logPi/∂θ   =  -[φ(zi)/Φ(zi)]Ui or +[...]Li if yi ≤ Li. 
 
Let   δi    =  (φ/Φ)[zi + φ/Φ]. 

Then,   ∂2logPi/∂γ∂γ′   =  -δixixi′, 

    ∂2logPi/∂γ∂θ    =  δiUi or δiLi, 

    ∂2logPi/∂θ2      =  -δUi
2 or -δLi

2. 
 
Actual Hessians are used to estimate the asymptotic covariance matrices. 
 Remaining results are based on 
 
           Prob(noncensored)  = 1 - Prob(censored in lower tail) – Prob(censored upper tail) 

                             =  1 - Φ(αi
L) - [1-Φ(αi

U)] 

                                 =  Φ(αi
U) - Φ(αi

L) 
 
where αi

L = (Li - xi′β)/σ and αi
U = (Ui - xi′β)/σ.  This produces the conditional mean function 
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L)] ( ) ( )
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The conditional mean function for the uncensored (truncated) variable appears in the brackets on the 
first line above.  Other characteristics of the model are essentially as before.  The marginal effects 
are once again a fraction of the underlying regression slopes 
 
   mk =  βk[Φ(αi

U) - Φ(αi
L)]. 
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The computation for dummy variables would proceed as before, by evaluating the conditional mean 
at the two points and computing the difference.  A standard error would be computed by the delta 
method.  The formidable algebra implied by the now quite complicated functional form suggests that 
the payoff to numerical differentiation using WALD will be considerable.  (A general program for 
censoring using LIMDEP is given above.) 
 The McDonald and Moffitt decomposition described below is still obtainable in two 
parts based on the truncated variance, but the split is now more complicated; 
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E45.9 Specification Analysis 
 
 The tobit model in the form given above has provided a workhorse for a wealth of empirical 
research.  In view of its widespread application, it is natural to expect there to be a variety of 
specification tests and analyses of the model.  Several of the more common of these are described in 
this section.  Some, such as the LM test for Cragg’s model are built into the program, while others 
are implemented using sets of LIMDEP commands. 
 
E45.9.1 McDonald and Moffitt’s Decomposition of the Conditional 
Mean 
 
 A frequently cited result due to McDonald and Moffitt (1980) decomposes changes in the 
conditional mean into two parts.  The conditional mean for the tobit model with simple zero lower 
tail censoring is 
 
   E[y|x]  =  0 × Prob(y = 0) + Prob(y > 0) × E(y|x, y > 0). 
 
It follows that, 
 
   ∂E[y|x]/∂x  =  Prob(y > 0) × ∂E[y|x, y > 0]/∂x + E[y|x,y > 0] × ∂Prob(y > 0)/∂x. 
 
This breaks the slope into two parts:  
 

• the change in y given nonlimit times the probability of being above the limit value, 
• the change in the probability of being above the limit times the conditional mean. 

 
 (See their paper for discussion.)  The formal counterparts to these expressions are: 
  
   ∂E[y|x]/∂x  =  [Φ(1 - (φ/Φ)(β′x/σ + φ/Φ))  +  φ(β′x/σ + φ/Φ)]β. 
  
The routines below do this computation twice.  The first time, for illustration, it is done with CALC 
just to get the value of the expressions.  Second, we use WALD to estimate a standard error for each 
part. 
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 A small application based on a specific model that one might have fit could be as follows.  
This computes the decomposition. 
 

 NAMELIST ; x = the set of variables $ 
 TOBIT  ; Lhs = y ; Rhs = x ; Parameters $ 
 CALC  ; kx = Col(x) $ 
 MATRIX ; xb = Mean(x) ; beta = b(1:kx) $ 
 CALC  ; bxs = beta’xb/s ; mu = N01(bxs)/Phi(bxs) 
   ; p = Phi(bxs) 
   ; p1 = p*(1-bxs*mu-mu^2) 
   ; p2 = N01(bxs)*(bxs + mu) $ 
 WALD  ; Labels = kx_b,v ; Start = b  ; Var = varb  
   ; Fn1 = b1’xb/v  
   ; Fn2 = Phi(Fn1) 
   ; Fn3 = N01(Fn1)/Fn2  
   ; Fn4 = Fn2*(1-Fn3*(Fn1+Fn3)) 
   ; Fn5 = Fn2*Fn3*(Fn1+Fn3) $ 
 

As an alternative, the following is a general procedure that you can use with any model.  First, set the 
model up with these three commands.  The rest is standard. The routine computes the full set of 
marginal effects for the estimated model, decomposed by the formula given above. 
 

NAMELIST ; x = the list of Rhs variables $ 
CREATE ; y = the dependent variable $ 
CALC  ; li = the lower limit value (usually zero) $ 

 

The remaining computations can use a standard procedure. 
 

PROC  = mcdnm(y,x, li) $ 
TOBIT  ; Lhs = y ; Rhs = x ; Par ; Limit = li ; Partial Effects $ 
MATRIX  ; xb = Mean(x) $ 
CALC  ; k = Col(x) $ 
WALD    ; Labels = k_b,v 
         ; Start = b ; Var = varb  
         ; Fn1 = alpha = (li - b1'xb)/v     
         ; Fn2 = p_censrd = 1-Phi(Fn1)  
         ; Fn3 = lambda = N01(Fn1) / Fn1  
         ; Fn4 = delta = Fn3*Fn3 - Fn1*Fn3  
         ; Fn5 = firtsprt = Fn2*Fn4   
         ; Fn6 = secndprt = Fn2*(1-Fn4) 
         ; Fn7 = effect = Fn5 + Fn6 $ 
CALC  ; Part1 = Waldfns(5) 
  ; Part2 = Waldfns(6) $ 
MATRIX ; beta = b(1:k) 
  ; me1 = part1 * beta 
  ; me2 = part2 * beta 
  ; me = me1 + me2 
  ; List ; me12 = [me1,me2,me] $ 
ENDPROC $ 
EXEC  ; Proc  =  mcdnm(y,x,0)$ 
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There is a modification that might be useful.  The routine does not actually compute the standard 
error for the marginal effects.  It computes the standard errors for the scale factors used to compute 
the marginal effects (Fn5, Fn6 and Fn7).  The actual scaled coefficient vector, in parts, is given by 
the MATRIX command.  If you want to compute the decomposition with standard errors for a 
particular coefficient, you can do so by simply adding these lines to the routine.  We suppose that b3 
is the coefficient of interest.   You could add 
 
   ; Fn8 = b3*Fn5 ; Fn9 = b3*Fn6 ; Fn10 = b3*Fn7 
 
to the WALD command to accomplish this. 
 The following applies the procedure to the labor supply data.  The model is set up with 
 

NAMELIST ; x = one,kl6,k618,wa,we,cit $ the list of Rhs variables  
CREATE ; y = whrs $  the dependent variable  
CALC  ; li = 0 $ the lower limit value (usually zero)  
EXECUTE ; Proc = mcdnm(y,x,li) $ 
 

----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
Estimation criterion        -3903.79391 
Estimation based on N =    753, K =   7 
Inf.Cr.AIC  =   7821.6 AIC/N =   10.387 
Threshold values for the model: 
Lower=     .0000     Upper=+infinity 
LM test [df] for tobit=     32.508[  6] 
Normality Test, LM    =     10.378[  2] 
ANOVA  based fit measure =    .048112 
DECOMP based fit measure =    .164940 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    1308.73***    482.7473     2.71  .0067      362.56   2254.89 
     KL6|   -1075.62***    126.0104    -8.54  .0000    -1322.60   -828.65 
    K618|   -127.723***    42.74150    -2.99  .0028    -211.495   -43.952 
      WA|   -40.7847***     7.73797    -5.27  .0000    -55.9509  -25.6186 
      WE|    98.8168***    23.18132     4.26  .0000     53.3823  144.2514 
     CIT|   -93.6141       108.0917     -.87  .3865   -305.4700  118.2418 
        |Disturbance standard deviation 
   Sigma|    1280.45***    48.15479    26.59  .0000     1186.07   1374.83 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
---------------------------------------------------------------------------------- 
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Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point 674.3503 
Scale Factor for Marginal Effects   .5924 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
       Y|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     KL6|   -637.200***    73.29245    -8.69  .0000    -780.850  -493.549 
    K618|   -75.6635***    25.35208    -2.98  .0028   -125.3526  -25.9743 
      WA|   -24.1609***     4.56870    -5.29  .0000    -33.1154  -15.2064 
      WE|    58.5391***    13.65949     4.29  .0000     31.7670   85.3112 
     CIT|   -55.4571       64.03526     -.87  .3865   -180.9639   70.0498 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
VC matrix for the functions is singular. 
Standard errors are reported, but the 
Wald statistic cannot be computed. 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   ALPHA|    -.23372***      .04711    -4.96  .0000     -.32606   -.14138 
P_CENSRD|     .59240***      .01829    32.39  .0000      .55655    .62825 
  LAMBDA|   -1.66090***      .35308    -4.70  .0000    -2.35294   -.96887 
   DELTA|    2.37041**      1.16860     2.03  .0425      .07998   4.66083 
FIRTSPRT|    1.40423**       .64893     2.16  .0305      .13235   2.67611 
SECNDPRT|    -.81183         .66722    -1.22  .2237    -2.11955    .49590 
  EFFECT|     .59240***      .01829    32.39  .0000      .55655    .62825 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
    ME12|             1             2             3 
--------+------------------------------------------ 
       1|       1837.75      -1062.46       775.290 
       2|      -1510.42       873.222      -637.200 
       3|      -179.353       103.690      -75.6635 
       4|      -57.2711       33.1102      -24.1609 
       5|       138.761      -80.2223       58.5391 
       6|      -131.456       75.9986      -55.4571 
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E45.9.2 Testing Cragg’s Specification of the Tobit Model 
 
 A variant of the tobit model which has been used in some studies is that of Cragg (1971), in 
which the tobit model above applies, but the probability of a nonlimit outcome is determined apart 
from the level of the nonlimit outcome.  Fin and Schmidt (1984) suggest, for example, that the 
probability of a fire in a building and the amount of the damage when a fire occurs might both 
depend on the age of the building, but in opposite directions.  The tobit model precludes this.  The 
model reduces to the following:  
 
   Prob(y* > 0)  =  Φ(γ′z), 

    Prob(y* ≤ 0)  =  1  -  Φ(γ′z), 

    if y* > 0, a truncated regression in β′x applies.  
  
This is a combination of the probit model and the truncated regression model.  As it stands, the 
model can be estimated in two parts simply by using a probit model for the indicator of whether y* is 
positive or not and a truncated regression model for the nonlimit observations. The tobit model 
results if it is assumed that z = x and γ = β.  Given the first, the second is a testable restriction.  The 
log likelihood of the unrestricted model is simply the sum of those of the probit and truncated 
regressions.  This can be compared to the log likelihood for the tobit model, which will be smaller 
than this sum.  An unresolved side issue is that if the first equation does give the probability of a 
positive observation, then the relationship of the disturbance in the latent regression underlying the 
probit model to that in the truncated regression is unclear.  It is unlikely that they could be 
independent.  In the tobit model, the probit disturbance is 1/σ times that in the truncated regression. 
In Cragg’s model, the relationship is ambiguous. 
 The tobit log likelihood function may be written 
 

   logL  =  Σi (1-Ii)logProb(yi = 0) + IilogProb(yi > 0)   

        + Σi log[f(yi | yi  > 0) / Prob(yi > 0)], 

where   Ii    =   1 if yi > 0, and 0 otherwise. 
 
The first part is the log likelihood function for a probit model.  The second line is the log likelihood 
function for the truncated regression.  The reformulation simply adds, then subtracts the second term 
in the first line.  In the tobit model, 
 
   Prob(y > 0) =  Φ(β′x/σ)  =  Φ(γ′x) 

and   f(y | y > 0) =  (1/σ)φ(β′x/σ). 
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To obtain Cragg’s formulation, it is necessary only to release the restriction that γ = β/σ.  This is 
testable with a likelihood ratio test just by estimating the three implied models and computing 
 
   λ  =  2(log Lprobit + log Ltruncation - log Ltobit). 
 
The following commands carry out the test for the small example in the preceding section.  We omit 
the model results as they are only of secondary interest.  Note, in the original data set, lfp is the 
variable corresponding to Ii.  The test statistic is 60.77.  The critical value with five degrees of 
freedom is 12.59, so the hypothesis of the tobit model is rejected.  The ‘p value’ is zero. 
 
 TOBIT  ; Quietly ; Lhs  = whrs ; Rhs = x $ 
 CALC  ; ltobit = logl $ 
 PROBIT ; Quietly ;  Lhs = lfp ; Rhs = x $ 
 CALC  ; lprobit = logl $ 
 TRUNCATE ; Quietly ; Lhs  = whrs ; Rhs = x $ 
 CALC  ; ltrunc = logl 
   ; List ; chisq  =  2*(lprobit + ltrunc - ltobit)  
   ; 1 - Chi(chisq,kreg) $ 
 
[CALC] CHISQ   =     60.7665209 
[CALC] *Result*=       .0000000 
Calculator: Computed   3 scalar results 
 
 There is a disadvantage to the preceding method.  The approach requires estimation of all 
three models.  Another approach which in the end may be simpler to use is the LM test devised by 
Fin and Schmidt (1984).  This requires estimation only of the tobit (i.e., restricted) model.  To set 
this up, we reparameterize the model as follows, incorporating Olsen’s transformation at the outset:   
 
 Limit probability = Prob(y* ≤ 0)  =  1  -  Φ(δ′x) 
 Density for the nonlimit observation = ηφ(ηy - γ′x) / Φ(γ′x) 
 
This is Cragg’s model as it stands.  Now, let θ be a free parameter vector and let 
 
   δ  =  γ  +  θ. 
 
Insert this in the definition above, to obtain the same model: 
 
 Limit probability = Prob(y* ≤ 0)  =  1  -  Φ[(γ + θ)′x] 
 Truncated normal density for the nonlimit observation = ηφ(ηy - γ′x) / Φ(γ′x) 
 
As before, let Ii = 1 indicate a nonlimit observation, and let Ii = 0 indicate a limit observation.  Then 
the log likelihood for this model is that for a tobit model; 
 
   log L =  Σi (1-Ii)log{1  -  Φ[(γ + θ)′xi]}  + Iilog{ηφ(ηyi - γ′xi) / Φ(γ′xi)} 
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Cragg’s model results if θ is a free parameter vector while the tobit model is obtained by the 
restriction θ = 0.  Given this simple formulation, Fin and Schmidt devised a Lagrange multiplier 
statistic to test the restriction.  Let the function λ(z) = φ(z)/Φ(z) = λ1.  Let λ(-z) = λ0.  In the 
following, z will equal γ′x, and for convenience, let Φ denote the CDF, Φ(z).  Then, Fin and 
Schmidt’s LM statistic is computed as follows:  Let 
 
   ai =  λ0iλ1i 

   bi =  Φi × (1 - ziλ1i - λ1
2) 

   ci =  Φi × (zi + λ1i)/η 

   di =  Φi × (2 + zi
2 + ziλ1i) 

   ei =  ηyi - γ′xi 
 
Let A and B, denote n×n diagonal matrices formed from these quantities and let c and d denote n×1 
vectors formed from ci and di.   Now, denote the full n×K data matrix as X.  Then, 
 
   g =  Σnonlimit observations (λ1i - ei)xi 

   H =  (X′AX)-1 - [X′BX - (X′c)(c′X)/d′d]-1 

and   LM =  g′Hg. 
 
This LM statistic is computed automatically by LIMDEP when it fits a tobit model, and is reported 
with the standard output.  Here is the diagnostic table from the model estimated in the example 
above: 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
Estimation criterion        -3903.79391 
Estimation based on N =    753, K =   7 
Inf.Cr.AIC  =   7821.6 AIC/N =   10.387 
Threshold values for the model: 
Lower=     .0000     Upper=+infinity 
LM test [df] for tobit=     32.508[  6] 
Normality Test, LM    =     10.378[  2] 
ANOVA  based fit measure =    .048112 
DECOMP based fit measure =    .164940 
--------+-------------------------------------------------------------------- 
 
The LM statistic is shown above the fit measures – for this model and data set, the value is 32.508, 
with six degrees of freedom.  The critical value, as noted earlier is 12.59, so the hypothesis of the 
model would be rejected. 
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E45.9.3 Testing for Nonnormality 
 
 Tests of the normality assumption in the censored regression model have been developed by 
many authors.  Generally, they are based on the same approach as is used in the linear regression 
model; the skewness (third moment) and kurtosis (fourth moment) of the ‘residuals’ are compared to 
what would be expected if the underlying distribution were normal (zero and three, respectively).  
The obstacle in this setting is that it is difficult to obtain a ‘clean’ set of residuals.  For the censored 
regression model, the obvious choice, yi - xi′ β̂  has an equally obvious defect. The residuals for the 
limit observations are clearly not going to conform to a normal distribution even if the model is 
correct, by construction. 
 
Pagan and Vella’s Conditional Moment Test 
 
 Pagan and Vella (1989) devised a conditional moment test for normality in the censored 
regression model.  The test is based on the moment restrictions: 
 

  yi*  =  xi′β + εi 

  Ey[E[εi
3 | yi]]  =  0 

  Ey[E[εi
4 | yi] - 3σ4]  =  0. 

 
Note that these are not the moments only of the truncated distribution, since they are averaged over 
the distribution of the observed y.  For observations for which yi > Li, we observe yi*, so the 
moments are the familiar ones.  For the limit observations, we require the moments of the truncated 
distribution.  Pagan and Vella provide the following useful result (adapted for current purposes):  
Denoting E[εi

j | yi = Li] as µj, their result is 
 

  µj  =  (j-1)σ2µj-2 + αi
j-1σjλi(αi) 

 
where, as usual, αi = (Li - xi′β)/σ, λi(αi) = -φ(αi)/Φ(αi) = λi, and, the initial values for the recursion 
are µ-1 = 0 and µ0 = 1.  Collecting terms, we have 
 

   y  =  Li           y > Li 

  E[εi | yi]     σ[λi]   0 

  E[εi
2 | yi ]    σ2[1 + λiαi]  σ2 

  E[εi
3 | yi ]   σ3[λi(2 + αi

2)]  0 

  E[εi
4 | yi ]    σ4[3 + λi(3αi + αi

3)] 3σ4 
 
To carry out the conditional moment test, we first compute  
 

  mi1  = E[εi
3 | yi ] and mi2 = E[εi

4 | yi] - 3σ4 
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using the appropriate form from above, the sample data, and the maximum likelihood estimates of 
the parameters.  Let the n×2 matrix, M, be constructed from these two columns of functions.  Let the 
n×(K+1) matrix, G, contain the derivatives of the log likelihood function for the K elements in β′ 
followed by that for σ.  The transpose of the ith row of G is 
 

  gi  =  1
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Then, G is computed with the sample data and the maximum likelihood estimates of the parameters.  
Finally, let i denote an n×1 column vector of ones.  Then, the conditional moment statistic for this 
test is  

  χ2[2]  =  i′M[M′ M - M′G(G′G)-1G′M]-1M′i. 
 
Under the hypothesis of normality, the statistic has a limiting chi squared distribution with two 
degrees of freedom. 

The program below gives a general set of computations. For a particular application, it is 
necessary to provide the definitions of x, y, and li. 
 
   NAMELIST   ; x = the Rhs variables in the regression $ 
   CALC       ; li = the lower censoring value (usually zero) $ 
   CREATE     ; y = the Lhs variable in the model $ 
 TOBIT      ; Lhs = y ; Rhs = x ; Limit = li $ 
 CREATE     ; d = y > li ; d0 = 1 - d ; xb = x’b ; e = y - xb 
               ; alpha = (li - xb)/s  ; lambda = -N01(alpha)/(1-Phi(alpha)) 
               ; m1 = d*e^3 + d0*s^3*lambda*(2+alpha^2)  
               ; m2 = (d*e^4 + d0*s^4*(3+lambda*(3*alpha+alpha^3))) - 3*s^4 
               ; qx = (d*e/s + d0*lambda)/s  
               ; qs = (d*((e/s)^2-1) + d0*lambda*alpha)/s $ 
 NAMELIST   ; m = m1,m2  $ 
 MATRIX     ; dd = Bhhh(x,one,qx,qs) 
               ; mdb = m’[qx]x ; mds = m’qs ; md = [mdb, mds] 
               ; v = m’m - md * <dd> * md’ 
        ; List ; cmtest = 1’m * <v> * m’1 $ 
  CALC       ; List ; pvalue = 1 - Chi(cmtest,2) $ 
 
Matrix CMTEST   has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   30.16118 
 
Applying the foregoing to our labor supply application produces a value of 30.16118.  The critical 
chi squared value for two degrees of freedom is 5.99, so the hypothesis of normality is rejected based 
on this test. 
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Chesher and Irish’s Generalized Residuals Test 
 
 The generalized residual based test devised by Chesher and Irish (1987) is based on a similar 
logic.  The generalized residuals are computed as the derivatives of the log likelihood with respect to 
the constant term in the model.  The Chesher and Irish test is based on the hypothesis that these will 
behave as if drawn from a normal distribution, the same as in the Pagan and Vella test.  The 
computations are as follows, where d1i denotes a nonlimit observation and d0i = 1 - d1i. 

   εI =  yi - xi'β  

   ai =  [(yi - xi'β)/σ] 

   αi  =  [(li - xi'β)/σ] where li is the lower censoring limit, usually zero 

or   αi  =  [(xi'β - ui)/σ] where ui is the upper censoring limit, usually zero 

   λi  =  φ(αi )/Φ(αi ) where φ(.) = normal PDF, Φ(.) = normal CDF (lower) 

or   λi  =  -φ(αi )/Φ(αi ) where φ(.) = normal PDF, Φ(.) = normal CDF (upper) 

   e1i =  -d0i λi + d1i ai 

   e2i =  -d0i αiλi + d1i (ai
2 - 1) 

   e3i =  -d0i (2+αi
2)λi + d1i ai

3 

   e4i =  -d0i (3 αi + αi
3)λi + d1i (ai

4 - 3) 

   ci   =  [e1ixi′, e2i, e3i, e4i]′ 
 
Define the n×(K+3) matrix C so that its ith row is ci′ and as before, let i be an n×1 column of ones.  
Then, the test statistic is 
 
   χ2[2]  = i′C (C′C)-1D′i   
 
This would be straightforward to program in similar fashion to the Pagan and Vella test.  It is 
reported automatically with the tobit model output, as shown below 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
Estimation criterion        -3903.79391 
Estimation based on N =    753, K =   7 
Inf.Cr.AIC  =   7821.6 AIC/N =   10.387 
Threshold values for the model: 
Lower=     .0000     Upper=+infinity 
LM test [df] for tobit=     32.508[  6] 
Normality Test, LM    =     10.378[  2] 
ANOVA  based fit measure =    .048112 
DECOMP based fit measure =    .164940 
--------+-------------------------------------------------------------------- 
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E45.9.4 Generalized Residuals 
 
 The conditional moment test suggested by Pagan and Vella (1989) is one of a class of tests 
devised by Chesher and Irish (1987) based on what they label generalized residuals.  Their 
specification tests are based on the standard approach to tests of specification in the regression 
model.  Tests for omitted variables are based on covariances of residuals from the model with the 
omitted variables in question; tests of heteroscedasticity are based on covariances of squares of 
residuals with hypothesized exogenous variables; tests of normality are based on the means and 
variances of third and fourth moments of residuals, and so on.  The problem with the extension of 
these methods to censored data models is that the residuals in the censored data are ill defined. 
Chesher and Irish defined the generalized residuals for these purposes.  For censored data models 
based on an ‘index function,’ xi′β (which includes most of the cases we have examined) the 
generalized residuals for the ith observation are 
 

  e(1)  =  
1

log
∂β

∂ if   and  e(2)  =  ∂
∂σ

log f i  

 

where log fi is the term for the ith observation in the log likelihood for the model and β1 is the constant 
term in the regression.  (Chesher and Irish do their analysis in terms of σ2, but to maintain consistency 
with our earlier results, we will modify their formulations.)  Their testing procedures extend to more 
general censored regression models, including the categorical data model we examined earlier, so we 
will consider the extension to that model as well.  For an observation which is not censored,  
 

  e(1)  =  1 i iy ′− 
 σ σ 

x β   and  e(2)  =  
21 1i iy ′−  −  σ σ   

x β . 

 
For an observation which falls in the open region (Loweri,Upperi],  
 

  fi  =  Φ(αi
Upper) - Φ(αi

Lower),  
 
with    αi

Lower  = (Loweri - xi′β)/σ and αi
Upper = (Upperi - xi′β)/σ,  

 

so   e(1)  =  
( ) ( )
( ) ( ) ( )1 1 ,

Upper Lower
i i Lower Upper

i iUpper Lower
i i

 φ α − φ α
 − = λ α α
 σ σα − α Φ Φ

. 

 
Notice we have extended the definition of the λ(•) function for this purpose.  For our basic censored 
regression model, Ui = ∞, Φ(αi

U) = 1, φ(αi
U) = 0, and the results we used earlier emerge. This definition 

of a ‘residual’ makes sense.  For the uncensored observation, e(1) = (1/σ2){E[yi*|yi, xi] - xi′β}, since 
when an observation is uncensored, yi = yi*.  For the censored regression with simple lower censoring 
at Li, Lower = -∞, Upper = Li, – we’ll maintain this for the moment, and extend it to the more general 
case presently – and 
 

  e(1) = 
( )
( ) ( )

01 1
0

L
i L

iL
i

 φ α −
 − = λ α
 σ σα − Φ

. 
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As we noted earlier,  

  E[yi*|yi, xi] = E[yi*|yi* < Li, xi] =  xi′β + σ
( )
( )

L
i

L
i

 −φ α
 
 α Φ

, 

so, once again,   e(1) = (1/σ2){E[yi*|yi, xi] - xi′β}.   
 
For uncensored observations, the other generalized residual is 
 

  e(2)  =  ∂log fi/∂σ  = (1/σ3)[(yi* - xi′β)2 - σ2]   
 

           =  (1/σ3){[E[yi*|yi, xi] - xi′β]2 - σ2},  
 

since, once again, if the observation is uncensored, yi = yi*.  For a censored observation,  
 

  e(2)  =  ∂log fi/∂σ  =  (1/σ)αiλi.   
 
The previous expression produced the deviation of a square from its expectation, so the interpretation 
as a residual makes intuitive sense.  In fact, this one does also.  For the censored observation,  
 

  [E[yi*|yi, xi] - xi′β]2 =  E[εi
2|εi < Li - xi′β]    

 
    =  Var[εi|εi < Li - xi′β] + {E[εi

 |εi < Li - xi′β]}2 
 
    =  σ2[1 - δ(αi)] + [σλ(αi)]2. 
 
    =  σ2 + σ2αiλ(αi). 
 
Therefore,   [E[yi*|yi, xi] - xi′β]2 - σ2 =  σ2αiλ(αi) 
 
which gives e(2) the same interpretation for the censored observations. 
 Chesher and Irish provide the general expression for e(2) in the categorical (grouped) data 
model. 

  e(2) = 
( ) ( )
( ) ( )

1
Upper Upper Lower Lower

i i i i

Upper Lower
i i

 α φ α − α φ α
 −
 σ α − α Φ Φ

 

 
as well as new expressions e(3) and e(4) which enter the computations of tests for normality.  The latter 
two, with their testing procedure produce exactly the Pagan and Vella approach laid out earlier, so 
we’ll not repeat them here.  Chesher and Irish suggest several specification tests using their generalized 
residuals.  The general approach, based on maximum likelihood estimates of the parameters and the 
BHHH estimator of the asymptotic covariance matrix for the estimators, uses the statistic 
 

  χ2[J]  =  i′R(R′R)-1R′i 
 

where R is an n×(K+1+J)  matrix of constructed observations.  Each row of R consists of, first K+1 
elements which are the derivatives of log fi with respect to β and σ, followed by J elements which 
are the products of variables which are expected to be orthogonal to the generalized residuals.  These 
first K+1 columns of R are the terms in the gradient of the log likelihood function, so for the first 
K+1 elements, at the maximum likelihood estimates, i′R = 0.   
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They suggest the following tests: 
 

1. for J omitted variables, z1,..., J trailing elements in Ri are e(1)izi′, 
 

2. for heteroscedasticity of a known functional form σi
2 = σ2h(zi,κ) where κ is a J×1 parameter 

vector such that h(zi,0) = 1, J trailing elements are e i(2) ∂h(zi,κ)/∂κ|κ=0, 
 

3. for heteroscedasticity of unknown form, J trailing elements are the J unique terms in ei(2) 
xi⊗xi, not including the constant term. 

 
They also suggest a test for random parameter variation which is identical to test 3 save for the 
addition of e(3) and e(4) – see the earlier discussion of Pagan and Vella’s test. 
 To operationalize this procedure, define as gi′ the first K+1 elements of the row in R.  As we 
observed, these are the elements of the derivatives of the log likelihood function.  Denote the trailing 
J elements as mi′.  If we arrange these in two sets of columns, then the matrix R becomes [G,M].  
With this in place, the test statistic becomes 
 

  χ2[J]  =  [ ]i'G i'M  
G'G G'M
M'G M'M

 
G'i
M'i

-1


















 . 

 

Recall, G′i is the derivative vector (gradient) of the log likelihood function, which equals zero at the 
maximum likelihood estimates.  Using the partitioned inverse formula, then, we reduce the statistic to 
 

  χ2[J]  =  i′M[M′M - M′G(G′G)-1G′M]-1M′i 
 
(which is identical to the Pagan and Vella statistic, as noted).  Carrying out the test, therefore, 
requires computation of the moments in M and the derivatives in G, and a bit of matrix algebra.  
Chesher and Irish’s results are quite convenient, and suggest a general strategy for a variety of other 
specification tests in the censored regression model.  
 Generalized residuals are computed automatically by the TOBIT (and TRUNCATION and 
GROUPED) estimators.  After estimation, the variables genres_1 and genres_2 will contain the two 
generalized residuals noted above. 
 

E45.9.5 Censoring with Unknown Censoring Limits 
 

 We have allowed for either lower or upper censoring based on known censoring points.  
It might be natural to ask if the censoring point could, itself, be unknown.  One might know whether or 
not an observation had been censored, but the exact value of the censoring threshold might not be 
known.  Can the censoring limit be treated as an unknown parameter, and estimated with the rest of the 
model?  Unfortunately, no, as it is simple to show.  Consider the log likelihood for the model with 

lower censoring that we examined earlier, and suppose that L
~

is an unknown parameter to be 
estimated.  Then,  

   ∂log L/∂ L
~

  =  φ/Φ × θ  > 0. 
 
This expression is always positive.  The only way to equate it to zero is to set θ to zero (infinite 
variance, σ2, or to have φ(.) go to zero, which will happen if any coefficient in the model diverges.  
The upshot is that for identification in the censoring model, the censoring threshold must be known.  
It is not estimable. 
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E45.10 Powell’s Symmetrically Censored LS Estimator 
 
 As noted earlier, a large body of research has focused on semiparametric alternatives to the 
normal based censored regression estimator.  Powell’s (1986) symmetrically censored least squares 
estimator is a simple one that can be implemented as a short procedure.  The procedure and an 
application are as follows: 
 

?============================================================= 
? Powell's symmetrically censored least squares estimator 
?============================================================= 
? This is the only part of the estimator that is specific to the problem.   
? Define the list of regressors and the dependent variable. 
NAMELIST  ; x = one,wa,we,hhrs,ha,he,kl6,k618,ww,cit,ax $ 
CREATE    ; y = whrs $ 
? Use the tobit MLE as starting values for beta. 
TOBIT     ; Quietly ; Lhs = y ; Rhs = x $ 
MATRIX    ; bj = b ; btobit = b ; vtobit = varb $ 
CALC      ; deltab = 1 $  Start delta large enough to begin. 
PROCEDURE $   This procedure computes the scls estimator iteratively 
CREATE    ; bx = x'bj ; bx2 = 2*bx ; ts = bx > 0 ; ys = Min(y,bx2) $ 
MATRIX    ; hj = <x'[ts]x> ; bj1 = hj  * x'[ts]ys ; db = bj1-bj $ 
? We check convergence using a scale free measure rather than db. 
CALC      ; list(exec) ; deltab = Qfr(db,hj) $ 
MATRIX    ; bj = bj1 $ 
ENDPROC $  
EXECUTE     ; While deltab > .00001 $ 
? Estimation is finished. Get covariance matrix and display results. 
CREATE    ; vs = (y > 0)*(y < bx2) ; u2 = ts*(ys-bx)^2 $ 
MATRIX    ; c = x'[vs]x ; d = x'[u2]x  ; v = <c>*d*<c> $ 
DISPLAY   ; Labels = x ; Parameters = bj  ; Covariance = v 

; Title = Symmetrically Censored Least Squares $ 
DISPLAY   ; Labels = x ; Parameters = btobit ; Covariance = vtobit 

; Title = Maximum Likelihood Tobit Estimates $ 
?============================================================ 

 
[CALC:Iteration=0001] DELTAB  =  11681.0721316 
[CALC:Iteration=0001] DELTAB  =   1909.8563458 
[CALC:Iteration=0001] DELTAB  =      8.4412047 
[CALC:Iteration=0001] DELTAB  =     28.2620147 
[CALC:Iteration=0001] DELTAB  =     26.4144440 
[CALC:Iteration=0001] DELTAB  =     11.8704001 
[CALC:Iteration=0001] DELTAB  =      4.7102712 
 (Values omitted) 
[CALC:Iteration=0001] DELTAB  =       .0000500 
[CALC:Iteration=0001] DELTAB  =       .0000207 
[CALC:Iteration=0001] DELTAB  =       .0000087 
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----------------------------------------------------------------------------- 
Symmetrically Censored Least Squares 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2307.33***    501.4397     4.60  .0000     1324.53   3290.13 
      WA|   -42.2714***    15.48364    -2.73  .0063    -72.6188  -11.9240 
      WE|    25.3684       28.43786      .89  .3724    -30.3688   81.1056 
    HHRS|    -.03411         .09091     -.38  .7075     -.21230    .14408 
      HA|   -2.85768       12.46911     -.23  .8187   -27.29668  21.58133 
      HE|   -40.9069**     20.12293    -2.03  .0421    -80.3472   -1.4667 
     KL6|   -681.440***    166.7827    -4.09  .0000   -1008.328  -354.552 
    K618|   -79.0379**     39.77414    -1.99  .0469   -156.9938   -1.0820 
      WW|    76.7658***    26.65889     2.88  .0040     24.5153  129.0162 
     CIT|    57.9004       99.87113      .58  .5621   -137.8434  253.6443 
      AX|    46.8506***     7.20154     6.51  .0000     32.7359   60.9654 
--------+-------------------------------------------------------------------- 
Maximum Likelihood Tobit Estimates 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2037.32***    458.1890     4.45  .0000     1139.28   2935.35 
      WA|   -45.4782***    12.47314    -3.65  .0003    -69.9252  -21.0313 
      WE|    9.84812       25.11007      .39  .6949   -39.36671  59.06295 
    HHRS|    -.07035         .07535     -.93  .3505     -.21804    .07734 
      HA|   -7.69527       11.91816     -.65  .5185   -31.05443  15.66389 
      HE|   -17.8252       18.51562     -.96  .3357    -54.1152   18.4647 
     KL6|   -767.883***    109.1351    -7.04  .0000    -981.783  -553.982 
    K618|   -21.6712       36.93462     -.59  .5574    -94.0618   50.7193 
      WW|    157.123***    14.41339    10.90  .0000     128.873   185.373 
     CIT|   -67.3054       94.64545     -.71  .4770   -252.8070  118.1963 
      AX|    63.1848***     6.15842    10.26  .0000     51.1146   75.2551 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

E45.11 Double Hurdle Model for Censored Regression 
 
 The double hurdle model is a generalization of Cragg’s specification in Section E45.9.2.  
The rather lengthy development in the literature is summarized in Yen and Jones (1997), which is 
used as the background for the implementation here.  The model consists of a binary choice (probit) 
participation equation, 
 
   d* = α′z + v, v ~ N[0,1], 

   d   = 1(d* > 0), 
 
a latent intensity equation, 
 
   y*  =  β′x + ε, ε ~ N[0,σ], 
 
and an observation mechanism that extends the tobit model, 
 
   y  =  y*  if d* > 0 and y* > 0 and y = 0 otherwise. 
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(The tobit model implicitly assumes that y* > 0 implies d = 1 by construction.)  Yen and Jones  
motivate the specification based on separate purchase decision and frequency of purchase decisions.  
Our implementation builds on the basic model and adds three extensions (all of which were 
suggested by Yen and Jones).  We note in Section E45.11.5 correction of a substantive error in the 
development in the Yen and Jones presentation. 
 The model is an extension of the tobit model.  The basic command for estimation of the 
double hurdle model is 
 

  TOBIT  ; Lhs = dependent variable 
    ; Rhs = independent variables 
    ; Hurdle $ 
 

Remaining options are the same as for the tobit model with the exception that censoring is always at 
zero from below.  If your data are censored at some other point, C or Ci, then simply create the new 
variable  yi - Ci to conform to the assumption.  If your data are censored from above, then create the 
new variable Ci - yi, then reverse the signs of the estimates of β after estimation.  The basic 
specification also assumes that the variables in the participation equation are the same as in the 
intensity equation.  This assumption is relaxed immediately in the next section.  Section E45.11.2 
extends the model to allow correlation between the intensity and participation equations.  Section 
E45.11.3 provides a transformation somewhat similar to the Box-Cox model that allows for different 
functional forms, e.g., linear vs. logarithmic and forms in between. 
 

E45.11.1 Basic Model with Heteroscedasticity 
 

 The central specification of the double hurdle model provides for different variables in the 
two equations.  The specification to accommodate the general model is 
 
 TOBIT  ; Lhs = dependent variable 
   ; Rhs = independent variables in intensity equation 
   ; Hurdle = independent variables in participation equation $ 
 
If the variables in the two equations are the same, then use ; Hurdle without a list in the command, 
as shown in the introduction to this section.  A second extension is to allow heteroscedasticity in the 
variance in the tobit equation.  The model is then 
 
   d* = α′z + v, v ~ N[0,1] 
   d   = 1(d* > 0) 

   y*  =  β′x + ε, ε ~ N[0,σi], σi  =  σ × exp(δ’hi) 
   y  =  y*  if d* > 0 and y* > 0 and y = 0 otherwise. 
 
The original double hurdle model returns if δ = 0.  The extended model command is 
 

 TOBIT  ; Lhs = dependent variable 
   ; Rhs = independent variables in intensity equation 
   ; Hurdle = independent variables in participation equation  

; Hfn = variables in variance ; Heteroscedasticity $ 
 

Note that consistent with the model equation above, the Hfn list should not contain one.  As always,  
; Heteroscedasticity may be abbreviated to ; Het. 
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E45.11.2 Endogenous Participation 
 
 The participation becomes endogenous if v and ε are correlated.  This produces a relatively 
large extension of the model – given the formulation, the extension is easily tested.  The model 
specification becomes 
 
   d* = α′z + v, v ~ N[0,1] 

   d   = 1(d* > 0) 

   y*  =  β′x + ε, ε ~ N[0,σi], σi  =  σ × exp(δ’hi) 

   y  =  y*  if d* > 0 and y* > 0 and y = 0 otherwise, 

   2

10
~ , .

0
i

i i

v
N

 ρσ    
      ρσ σε      

 

 
(Yen and Jones specified that the off diagonal element in the covariance matrix was constant.  The 
(invalid) assumption is substantive, and would affect the estimation results.) 
 The endogeneity assumption is added with the command 
 
 TOBIT  ; Lhs = dependent variable 
   ; Rhs = independent variables in intensity equation 
   ; Hurdle = independent variables in participation equation  

; Hfn = variables in variance ; Het  
; Correlation $ 

 
Note that the list of variables in the hurdle equation and the heteroscedasticity specification are both 
optional.  The simplest model with endogenous participation results with 
 
 TOBIT  ; Lhs = dependent variable 
   ; Rhs = independent variables in intensity equation 
   ; Hurdle  

; Correlation $ 
 
Endogeneity and different participation and intensity equations or endogeneity and heteroscedasticity 
are specified with 
 
 TOBIT  ; Lhs = dependent variable 
   ; Rhs = independent variables in intensity equation 
   ; Hurdle = independent variables in participation equation  

; Correlation $ 
 
and TOBIT  ; Lhs = dependent variable 
   ; Rhs = independent variables in intensity equation 
   ; Hurdle  

; Hfn = variables in variance ; Het  
; Correlation $ 
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E45.11.3 Inverse Hyperbolic Sine Transformation 
 
 The inverse hyperbolic sine transformation is suggested for this model as a device to extend 
the functional form beyond (or between) the usual levels or logarithms choices.  The transformation is  
 

   
( )1/22 2log 1

( , )
y y

T y
 γ + + γ  γ =

γ
 

 
where γ is the crucial new parameter that extends the model.  The transformation approaches 
linearity (T(y,γ) = y) as γ approaches zero and approaches the log function as γ increases.  The 
transformation is incorporated in the model with 
 
   d*    = α′z + v, v ~ N[0,1] 

   d      = 1(d* > 0) 

   y*     =  β′x + ε, ε ~ N[0,σi], σi  =  σ × exp(δ’hi) 

   T(y,γ)  =  y*  if d* > 0 and y* > 0 and T(y,γ) = 0 otherwise, 

   2

10
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To use the transformation, the command is modified to 
 
 TOBIT  ; Lhs = dependent variable 
   ; Rhs = independent variables in intensity equation 
   ; Hurdle = independent variables in participation equation  

; Hfn = variables in variance ; Het  
; Correlation  
; Model = IHS $ 

 
All of the model permutations noted earlier may be used with this specification. 
 

E45.11.4 Application 
 
 To illustrate the hurdle model, we have manipulated the income variable in the health care 
data set.  The dependent variable is income = ( )max 0,hhninc hhninc− .  The model is fit with the 
pooled data set – there is no panel data version of this specification. 
 

SAMPLE ; All $ 
CREATE  ; income = hhninc-xbr(hhninc) $ 
CREATE  ; income = max(0,income) $ 
NAMELIST  ; x = one,age,educ,hsat,married,hhkids $ 
NAMELIST  ; z = one,age,educ $ 
NAMELIST  ; h = female,married,age $ 
TOBIT  ; Lhs = income ; Rhs = x ; Hurdle = z ; Correlated ; Partial Effects 

; Het ; Hfn = h ; Model = IHS ; Maxit = 15 $ 
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Average partial  effects are computed for three outcomes, Prob(y > 0), E[y] and E[y|y>0].  The partial 
effects are also computed for the three sets of variables in the model, x in the regression, h in the 
disturbance variance (heteroscedasticity) and z in the hurdle equation. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable               INCOME 
Log likelihood function     -7592.81080 
Estimation based on N =  27326, K =  15 
Inf.Cr.AIC  =  15215.6 AIC/N =     .557 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  INCOME|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    -.16284***      .04393    -3.71  .0002     -.24894   -.07674 
     AGE|    -.00558***      .00053   -10.63  .0000     -.00661   -.00455 
    EDUC|     .02512***      .00093    27.10  .0000      .02330    .02694 
    HSAT|     .00243***      .00072     3.37  .0008      .00102    .00384 
 MARRIED|     .16178***      .01146    14.11  .0000      .13932    .18425 
  HHKIDS|    -.06916***      .00383   -18.05  .0000     -.07667   -.06165 
        |Disturbance standard deviation 
   Sigma|     .14803***      .01101    13.45  .0000      .12646    .16960 
        |Heteroscedasticity terms in disturbance variance 
  FEMALE|     .07770***      .01121     6.93  .0000      .05574    .09967 
 MARRIED|    -.60960***      .02258   -26.99  .0000     -.65386   -.56534 
     AGE|     .01717***      .00139    12.34  .0000      .01444    .01990 
        |Hurdle Equation for IHS/Hurdle Model 
Constant|   -2.13278***      .19219   -11.10  .0000    -2.50946  -1.75610 
     AGE|     .07989***      .00629    12.70  .0000      .06756    .09222 
    EDUC|     .00142         .00970      .15  .8834     -.01759    .02044 
        |Correlation Between Hurdle and Latent Regression 
Rho(u,e)|    -.30528**       .14504    -2.10  .0353     -.58956   -.02101 
        |Parameter for inverse hyperbolic sine 
   Gamma|    2.67679***      .09189    29.13  .0000     2.49669   2.85689 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------- 
Average Partial Effects in Inverse Hyperbolic Sine Double Hurdle Model 
Partial effects are added for variables common to components. 
----------------------------------------------------------------------- 
Average Partial Effects of Probability of Positive Outcome 
----------------------------------------------------------------------- 
Variable    Regression    Hurdle     Variance  Total Effect   Std.Error 
----------------------------------------------------------------------- 
     AGE    -.008669     .009750     .000141     .001223     .001394 
    EDUC     .038992     .000174     .000000     .039166     .001198*** 
    HSAT     .003772     .000000     .000000     .003772     .001120*** 
 MARRIED     .251115     .000000    -.005008     .246107     .017772*** 
  HHKIDS    -.107350     .000000     .000000    -.107350     .005948*** 
  FEMALE     .000000     .000000     .000638     .000638     .000092*** 
----------------------------------------------------------------------- 
 
  



E45: The Tobit Model for Censored Data   E-1111 

----------------------------------------------------------------------- 
Average Partial Effects in Inverse Hyperbolic Sine Double Hurdle Model 
Partial effects are added for variables common to components. 
----------------------------------------------------------------------- 
Average Partial Effects of Unconditional Expected Value 
----------------------------------------------------------------------- 
Variable    Regression    Hurdle     Variance  Total Effect   Std.Error 
----------------------------------------------------------------------- 
     AGE    -.002727     .001932    -.000692    -.001488     .000331*** 
    EDUC     .012268     .000034     .000000     .012302     .000365*** 
    HSAT     .001187     .000000     .000000     .001187     .000352*** 
 MARRIED     .079008     .000000     .024568     .103576     .005774*** 
  HHKIDS    -.033775     .000000     .000000    -.033775     .001871*** 
  FEMALE     .000000     .000000    -.003132    -.003132     .000452*** 
----------------------------------------------------------------------- 
 
----------------------------------------------------------------------- 
Average Partial Effects in Inverse Hyperbolic Sine Double Hurdle Model 
Partial effects are added for variables common to components. 
----------------------------------------------------------------------- 
Average Partial Effects of Conditional (on positive) Expected Value 
----------------------------------------------------------------------- 
Variable    Regression    Hurdle     Variance  Total Effect   Std.Error 
----------------------------------------------------------------------- 
     AGE     .037692    -.042974    -.001696    -.006978     .006151 
    EDUC    -.169541    -.000766     .000000    -.170307     .005226*** 
    HSAT    -.016401     .000000     .000000    -.016401     .004871*** 
 MARRIED   -1.091875     .000000     .060194   -1.031681     .077136*** 
  HHKIDS     .466769     .000000     .000000     .466769     .025863*** 
  FEMALE     .000000     .000000    -.007673    -.007673     .001106*** 
----------------------------------------------------------------------- 
 
E45.11.5 Technical Details 
 
 The following technical details will, for convenience, replicate the results in Yen and Jones.  
As noted earlier, there is a point at which a substantive correction is needed in their results. 
 The relevant components of the log likelihood for the model are 
 

Prob[T(yi,γ) = 0] =  Prob(yi* < 0 or di* < 0|xi,zi,hi)   

 =  1 – Prob(yi* > 0 and di* > 0| xi,zi,hi) 

(1)    =  21 , ,i
i

i

′ 
′− Φ ρ σ 

xz β
α  

 
where Φ2(…) is a bivariate normal CDF.  This term applies for censored, or ‘limit’ observations.  (In 
Yen and Jones (1997, eqn (5)), the ρ in the preceding appears as σ12/σi, which varies by observation.  
However, it must be the case in the joint distribution that the covariance equals the product of the 
correlation and the two standard deviations, so ‘σ12’ must equal ρ×σi×1.  This produces the constant 
value ρ in the bivariate normal probability above.  The necessity for this is clear; what must appear 
as the third argument in the probability is a correlation, but the erroneous term σ12/σi which appears 
in its place in Yen and Jones’s eqn (5) cannot be bounded in (-1,1).) 
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For nonlimit observations, the contribution to the likelihood function is the joint density  of 
the observed y transformed by T(yi,γ) and the observation mechanism di = 1.  This term is 
 
 f[yi|T(yi,γ), {di=1|T(yi,γ) > 0}]  =  f[yi|T(yi,γ) | {di=1|T(yi,γ) > 0}]  × Prob{di = 1|T(yi,γ) > 0}. 
 
The first term is the density for the observed nonzero yi, 
 

(2) [T(yi,γ) | {di = 1|T(yi,γ) > 0}]  = ( ) 1/22 2 ( , )11 i i
i

i i

T yy
− ′ γ −

+ γ φ σ σ 

xβ  

 
where the leading term is the Jacobian of the transformation from T(yi,γ) back to yi.  The second term is 
 

(3) Prob{di = 1|T(yi,γ) > 0}  =  
2

[( ( , ) ) / ]
1

i i i iT y ′ ′+ ρ γ − σ
Φ  

 − ρ 

z xα β
. 

 
The log likelihood consists of logs of (1) for the limit observations and (2)×(3) for the nonlimit 
observations. 
 There are three expectations and three margins in this model.  The probability of a nonlimit 
observation is 

(4) P = Prob(yi* > 0 and di* > 0| xi,zi,hi)  = Prob(yi > 0| xi,zi,hi]  =  2 , ,i
i

i

′ 
′Φ ρ σ 

xz β
α . 

The partial effects are fairly simple: 
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where gi1 and gi2 are the partial derivatives of the bivariate normal CDF with respect to the first two 
arguments.  For the bivariate normal PDF, Φ2(w1,w2,ρ), these are obtained using 
 

  2 1 2 2 1 2 1 2 1 2
1 22 2

1 2

( , , ) ( , , )( )  and ( ) .
1 1

w w w w w w w ww w
w w

   ∂Φ ρ − ρ ∂Φ ρ − ρ
= φ Φ = φ Φ   

∂ ∂   − ρ − ρ   
 

 
(See Greene (2011, eqn (17-52).)  Where parts have variables in common, the components are added.  
Note that for a variable that appears in all three vectors, the partial effect is the sum of the three 
terms. 
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 The conditional expectation, E[yi|yi > 0, xi,zi,hi] is 
 

   E+ = E[yi|yi > 0, xi,zi,hi]  =  
0

( | , , )
Prob( 0 | , , )

i i i i
i i

i i i i

f yy dy
y

∞

>∫
x z h

x z h
. 

 
The necessary components appear earlier; 

 
E+  =  E[yi|yi > 0, xi,zi,hi]  =  

     

( ) 1/22 2

0 2

2

( , ) [( ( , ) ) / ]1 11
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i i i i i i
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i ii
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T y T yy y dy
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β

α
. 

The unconditional mean is E = E[yi| xi,zi,hi]  = P × E+.   This is 
 

   E = ( ) 1/22 2

0 2

( , ) [( ( , ) ) / ]1[ | , , ] 1
1

i i i i i i
i i i i i i

i i

T y T yE y y y dy
∞ −  ′ ′ ′ γ − + ρ γ − σ

= + γ φ Φ   σ σ  − ρ   
∫

x z xx z h β α β
. 

 
Computation of the expectations and the derivatives requires the integration shown above.  

The complexity of the computation is reduced somewhat by the following:  
 

1. The limits of integration are not functions of any of the interesting variables.   
2. Though the functions appear quite complex, they can be greatly simplified for present 

purposes.    
 

Define quantities   
Ji =  ( ) 1/22 21i iy y

−
+ γ  

ei  = ( , )i i

i

T y ′γ −
σ

xβ .     

We will also use  
∂ei/∂xi = -β/σi, 

∂σi/∂hi = σiδ,  

∂ei/∂σi = -ei/σi,   

∂ei/∂hi = ∂ei/∂σi × ∂σi/∂hi  =  (-ei/σi)(σiδ) = -eiδ. 
 
Then, the unconditional mean can be written 
 

(5)    E  = [ ]
0 2

1[ | , , ] .
1

i i
i i i i i i

i

eE y J e d y
∞  ′ + ρ

= φ Φ  
σ  − ρ 

∫
zx z h α  
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The relevant derivatives are now found as follows.   We differentiate first with respect to ei and σi.  
Thus, 

(6) 
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Collecting the parts, we obtain 
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Derivatives of E[yi|yi > 0, xi,zi,hi] are simple given the parts already computed.  Since 
 
   E[yi|yi > 0, xi,zi,hi]  = [1/Φ2(…)]×E[yi|xi,zi,hi],  
 
so the relevant derivatives are simply E+

x  =  (1/P){Ex -  E × Px} and likewise for z and h. 
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Computation all of these parts requires the three integrals, 
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None of these are in forms amenable to Hermite or Gaussian quadrature.  We use a 15 point Newton-
Cotes trapezoid method.  There is a final complication in that the method is used for proper integrals 
(with finite limits).  As the upper limit here is infinite, a stopping rule is required – simple 
experimentation will take intolerably long.  In the integrals, the main weighting function is φ(ei).  
The Jacobian, Ji is essentially linear in yi and the second function in the integrand, Φ[.] or φ[.] 
quickly asymptotes to 1 or 0 as ei increases.  The task then is to determine the practical limit for yi 
which is then used to compute ei.  We solve for the yi at which ei reaches +8.0, where the standard 
normal PDF is essentially zero.  This, in turn is solved using a first order approximation to T(yi,γ). 
 In order to use the delta method to compute standard errors, we require the Jacobians of the 
partial effects with respect to the full parameter vector.  These, in turn, can all be computed from 
 
   JE  =  ∂E/∂θ′  where θ′ = [β′,σ,δ′,α,ρ,γ′] 

   J1  =  ∂E1/∂θ′   

   J2  =  ∂E2/∂θ′ 
 
These must also be computed from the integrals.  Numerical derivatives of the integrals are used for 
these three vectors. 
 



E46: Panel Data Models for Censored Data and Truncated Distributions   E-1116 

E46: Panel Data Models for Censored Data and 
Truncated Distributions 

 
E46.1 Introduction – Model Frameworks 
 
 This chapter will describe the extensions to panel data settings of the tobit model developed 
in Chapter E45.  The estimators shown here are the same for the truncated regression 
(TRUNCATION) and grouped data model (GROUPED) that are discussed in Chapter E47.  The full 
set of estimators developed for the binary choice models in Chapters E30 and E31 and for count data 
models in Chapter E44 are available here as well.  The results are collected here for both the 
censoring and truncation models as the models are largely the same, with a slight variation in the 
assumption about the data observation process. 
 The three models described in this chapter are the tobit model of the previous chapter and 
two variations on it, the truncated regression and the grouped data, or interval censored regression:  
All three structures are based on the latent regression structure, 
 
   yit*  =  β′xit  +  εit, εit ~ N[0,σ2]. 
 
The three differ in the observation mechanism for the observed dependent variable.  The tobit model is 
 
   if  yit*  ≤  Lit, then yit  =  Lit  (lower tail censoring) 

    if  yit*  ≥  Uit, then yit  =  Uit  (upper tail censoring) 

    if  Lit   <  yit*  <  Uit, then  yit  =  yit* =  β′xit  +  εit. 
 
A special case of the censored data regression model arises when the range of the dependent variable is 
completely censored.  This is the case when data are reported only by interval category.  For example, 
income data might be reported only by range.  We assume that the finite (internal) terminal points are 
known variables or constants.  The dependent variable is coded y = 1, 2, ..., J (not 0,..., as in the case of 
the ordered probability models).  For example, consider a survey of incomes, which reports ranges: 
 
    y     =  1 if            y*    <    $ 15,000, 
    2 if  $ 15,000 ≤  y* <   $ 30,000, 
    3 if  $ 30,000 ≤  y*   <   $ 50,000, 
    4 if  $ 50,000 ≤ y*   <   $ 75,000, 
    5 if   y*   ≥   $ 75,000. 
 
The observation mechanism, once again based on the latent regression model, is 
 
   yit    =  j  if  Ai,j-1  ≤  yit*  <  Aij, j = 1,...,J, A0 = -∞, AJ = +∞. 
 
The truncated regression model applies to the nonlimit observations in the tobit formulation.  The 
observation mechanism is simply 
 
   if  Lit   <  yit*  <  Uit, then  yit  =  yit* =  β′xit  +  εit, 

   yit is unobserved otherwise. 
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E46.2 Panel Data Frameworks 
 
 Chapter E45 analyzed in detail several variants of a single equation, latent regression model 
of censoring in the linear (or nonlinear) regression context.  The estimator is assumed to be based on 
a cross section.  Since it is typically applied in micro-level data, the extension of the censored and 
truncated regression models to panel data is a natural direction. There are several formulations for 
extensions to panel data setting. These include, where f(.) denotes the density for the observed 
random variable (i.e., the model), 
 

• Fixed effects:     f(yit)  =  f(β′xit  +  αidit), Cov(dit,xit) not necessarily zero 
 

• Random effects: f(yit)  =  f(β′xit  +  εit  +  ui ), Cov(ui,xit) = 0 
 

• Random parameters: f(yit)  =  f(βi′xit)   

 β|i ~ h(β|i) with mean vector β+∆zi and covariance matrix Σ 
 

• Latent class:  f(yit|class j)  =  f(βj′xit), Prob[class = j] = Fj(θ) 
 
We will detail these for the tobit model.  The commands and results are the same for the truncated 
and grouped data regressions, so they will be noted during the development. 

To illustrate the various estimators, we will use an artificial data set containing 1,000 groups 
of 10 observations, or 10,000 observations in total.  So that the applications can be replicated, we use 
the following data setup.  We first set the seed for the random number generator so that data can be 
replicated and set the dimensions of the data set. 
 

ROWS  ; 10000 $ 
CALC   ; Ran(12345) $ 
SAMPLE  ; 1-10000 $ 

 
If you are replicating these computations, note that the ROWS command may not be needed.  When 
you start LIMDEP, the bar at the top of the project window will indicate the current setting of the 
number of rows in the data area.  You will only need the ROWS command if the value shown is less 
than 10,000.  
 To begin, we create the group specific effects.  (The values of u are used in generating the 
data at this point, while v is used later.) 
 

MATRIX  ; u = Rndm(1000)  
  ; v = Rndm(1000) $ 
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The underlying data satisfy the assumptions of a fixed effects model.  The group effect is correlated 
with one of the independent variables. 
 

CREATE  ; i = Trn(10,0) $ 
CREATE  ; x1 = Rnn(0,1) ; x2 = Rnn(0,1)  
  ; z1 = Rnn(0,1) ; z2 =  Rnd(2) - 1 $ 
MATRIX ; x1b = Gxbr(x1,i) ; u = u + .5 * x1b $ 
CREATE ; eit = Rnn(0,2) ; ui = u(i)  ; vi = .25 * v(i) $ 
CREATE  ; ys = x1 + x2 + eit + ui ; y = Max(0,ys) $ 
NAMELIST ; x = x1,x2,z1,z2,one $ 

 
Note that the data are actually generated by a fixed effects model.  We will also be including z1 and 
z2 in the equation, though the true coefficients on them are zero. The MATRIX command that 
creates x1b also makes these group means part of the effects, thus inducing the correlation.  The 
disturbance variance in the model is σε

2 = 2. 
 This is the base case with no treatment for group effects.  We compare the results for the 
tobit and truncated regressions.  After this, we will focus on the tobit model. 
 

TOBIT  ; Lhs = y ; Rhs = x ; Partial Effects $ 
TRUNCATE ; Lhs = y ; Rhs = x ; Partial Effects $ 

 
The commands below estimate a fixed effects model, a random effects model and a random 
parameters model for the tobit framework. Results from these are shown below with development of 
the estimators. The truncation model is presented below as well. Note that the full set of results for 
the truncation model apply to the nonlimit data. 
 

TOBIT   ; Lhs = y ; Rhs = x; Random Effects ; Pds = 10 ; Partial Effects $ 
TOBIT   ; Lhs = y ; Rhs = x  

; RPM ; Fcn = one(n) ; Pds = 10 ; Pts = 20 ; Halton ; Partial Effects $  
TOBIT   ; Lhs = y ; Rhs = x; FEM ; Pds = 10 ; Partial Effects $ 

 
The commands below simulates the conditions of a random parameters model – the coefficient on x1 
has a normal distribution with mean 1 and standard deviation 0.25. 
 

CREATE ; y = (1+vi)*x1 + x2 + eit + ui   
  ; y = (y > 0) * y $ 
TOBIT   ; Lhs = y ; Rhs = x  

; RPM ; Fcn = one(n), x1(n) ; Correlated 
; Pds = 10 ; Pts = 20 ; Halton $ 

 
This is the base case tobit model with no individual effects.  Note that the three true values 

for the regression parameters are 0.0, 1.0, 1.0, 0.0, 0.0,  respectively.  The OLS starting values are 
not shown.  The tobit and truncated regression MLEs are both consistent and are estimating the same 
parameters.  The similarity in the two sets of results is to be expected.  The tobit estimator is based 
on more information, so one would expect it to be more efficient (have smaller variances).  This is, 
in fact, clearly evident in the results. 
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The base case results are followed by two estimators of the random effects model.  The first 
one uses the Butler and Moffitt quadrature method.  The second treats the random effects case as a 
random parameters model in which only the constant term is random.  The model is estimated by 
maximum simulated likelihood.  The results of the two methods are nearly identical.  This is to be 
expected.  It is striking, however, that the RP approach achieves the results with only 25 Halton 
draws, which is far less than what one would typically use in practice.  The final set of results is the 
unconditional fixed effects estimator.  The FEM includes estimates of the 1,000 dummy variable 
coefficients (not shown).  In principle, the estimator is affected by the incidental parameters problem.  
However, with T = 10, this appears not to be the case here. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
Log likelihood function    -13953.44433 
Estimation based on N =  10000, K =   6 
Inf.Cr.AIC  =  27918.9 AIC/N =    2.792 
Threshold values for the model: 
Lower =      .0000    Upper = +infinity 
LM test [df] for tobit=      5.568[  5] 
Normality Test, LM    =       .385[  2] 
ANOVA  based fit measure =      .126658 
DECOMP based fit measure =      .287434 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
      X1|    1.03177***      .02649    38.95  .0000      .97985   1.08369 
      X2|     .99321***      .02667    37.24  .0000      .94094   1.04548 
      Z1|    -.02438         .02524     -.97  .3341     -.07385    .02509 
      Z2|    -.13019***      .05038    -2.58  .0098     -.22894   -.03144 
Constant|     .04118         .03824     1.08  .2815     -.03377    .11614 
        |Disturbance standard deviation 
   Sigma|    2.21774***      .02421    91.59  .0000     2.17028   2.26520 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - TRUNCATE 
Dependent variable                    Y 
Log likelihood function     -8069.80996 
Estimation based on N =  10000, K =   6 
Inf.Cr.AIC  =  16151.6 AIC/N =    1.615 
Threshold values for the model: 
Lower =      .0000    Upper = +infinity 
Observations after truncation      4971 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
      X1|    1.11958***      .05898    18.98  .0000     1.00398   1.23518 
      X2|     .95695***      .05811    16.47  .0000      .84306   1.07084 
      Z1|     .00038         .04785      .01  .9937     -.09341    .09416 
      Z2|    -.18004*        .09624    -1.87  .0614     -.36867    .00860 
Constant|    -.00819         .13922     -.06  .9531     -.28106    .26469 
        |Disturbance standard deviation 
   Sigma|    2.23911***      .05200    43.06  .0000     2.13720   2.34102 
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--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
(Tobit) 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point    .8739 
Scale Factor for Marginal Effects   .4961 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
       Y|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .51184***      .01302    39.31  .0000      .48632    .53735 
      X2|     .49271***      .01305    37.76  .0000      .46713    .51829 
      Z1|    -.01210         .01252     -.97  .3341     -.03664    .01245 
      Z2|    -.06458***      .02499    -2.58  .0098     -.11357   -.01560 
--------+-------------------------------------------------------------------- 
(Truncated Regression) 
Conditional Mean at Sample Point   2.0032 
Scale Factor for Marginal Effects   .4207 
--------+-------------------------------------------------------------------- 
      X1|     .47104***      .02067    22.79  .0000      .43053    .51155 
      X2|     .40262***      .02141    18.80  .0000      .36065    .44459 
      Z1|     .00016         .02013      .01  .9937     -.03930    .03962 
      Z2|    -.07575*        .04044    -1.87  .0610     -.15500    .00350 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E46.3 Fixed Effects Models 
 

The fixed effects model has the desirable characteristic that it is not necessary to assume that 
the individual component is orthogonal to the included variables.  As such, it is a more robust 
specification than the random effects estimator.  The complication is that in a data set with n groups 
or individuals, each observed Ti times, the fixed effects specification creates n new parameters to be 
estimated.  In practical terms, n could be enormous (thousands), so approaches are devised to 
‘sweep’ the coefficient of the fixed effects out of the estimating equations.  Other issues concern the 
‘incidental parameters problem’ and the attendant inconsistency of the estimator of the main 
parameters.  LIMDEP contains a full, unrestricted fixed effects estimator.  The issues of small Ti and 
the incidental parameters problem must be resolved outside the program.  There is some evidence 
that even for fairly small Ti the issue of small sample bias of the fixed effects estimator is overstated. 
(See Heckman (1981).  See also Greene (2004b) for evidence specifically about the tobit and 
truncated regression models.  This study is discussed in Section E46.3.3.)  The practical issue of 
potentially large numbers of parameters has been overcome – LIMDEP is able to fit up to 100,000 
individual dummy variable parameters even in a model with no minimal sufficient statistics, such as 
the tobit or truncated regression models.    
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The command for estimation is 
 
 TOBIT  ; Lhs = dependent variable 
 or TRUNCATE ; Rhs = independent variables 
        or GROUPED ; Pds = panel specification 

  ; FEM (for fixed effects model)  $ 
 
The default limit value is zero, with left censoring or truncation.  The limit value and censoring in 
the lower tail may be changed with 
 
   ; Limit = the nonzero value 
and/or   ; Upper censoring or ; Upper truncation 
 
This estimator only supports censoring in one tail.  You may request residuals, fitted values, partial 
effects, and all other optional features with this model.  Restrictions that you would impose with        
; Rst, however, must be built into the model at the outset.  The algorithm does not accommodate 
restrictions.   
 
NOTE:  Your Rhs list should not include a constant term, as the fixed effects model fits a complete 
set of constants for the set of groups.  If you do include one in your Rhs list, it is removed prior to 
beginning estimation. 
 
 The fixed effects models are estimated by maximum likelihood.  The fixed effects model 
assumes a group specific effect: 
 
   f(yit)  =  f(β′xit  +  αi) 
 
where αi is the parameter to be estimated.  You may also fit a two way fixed effects model 
 
   f(yit)  =  f(β′xit  +  αi  +  γt) 
 
where γt is an additional, time (period) specific effect.  The time specific effect is requested by 
adding 
   ; Time 
 
to the command if the panel is balanced, and  
 
   ; Time = variable name 
 
if the panel is unbalanced.  For the unbalanced panel, we assume that overall, the sample observation 
period is  
   t  = 1,2,..., Tmax 
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and that the ‘Time’ variable gives for the specific group, the particular values of t that apply to the 
observations.  Thus, suppose your overall sample is five periods.  The first group is three 
observations, periods 1, 2, 4, while the second group is 4 observations, 2, 3, 4, 5.  Then, your panel 
specification would be 
 
   ; Pds = Ti,  for example, where Ti = 3, 3, 3, 4, 4, 4, 4 
and   ; Time = Pd,  for example, where Pd = 1, 2, 4, 2, 3, 4, 5. 
 
NOTE:  See the discussion in Chapter R23 for technical details on how this model is estimated.  It 
places an important restriction on the two way fixed effects model. 
 
 The only fitting algorithm available is Newton’s method, and some of the options for control 
of the optimization routine are not available.  Those that are available are shown in the list below.  
This estimator cannot accommodate restrictions, so 
 
   ; Rst = list  
and   ; CML: specification 
 
are both ignored. 
 Starting values for the iterations are obtained by fitting the basic model without fixed effects 
by ordinary least squares.    If you request the display of these results with ; OLS, you will see a 
constant term in these results even though you have not included one in your commands.  This is 
used to get the starting value for the fixed effects.  Iterations begin with the restricted model that 
forces all the fixed effects to equal the constant term in the restricted model. You may provide your 
own starting values for the slope parameters with 
 
   ; Start = ... the list of values for β,σ,α.   
 
Do not include a set of constants in your starting values.  The last value, if it is included (it is 
optional), provides a common starting constant. 
 Results that are kept for this model are 
 
 Matrices: b   =  estimate of β 
   varb   =  asymptotic covariance matrix for estimate of β 
   alphafe =  estimated fixed effects 
 
 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
 
The upper limit on the number of groups is 100,000. 
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Standard Model Specifications for the Fixed Effects Tobit and Truncated 
Regression Models 
 

This is the full list of general specifications available for this model estimator.    
 
Controlling Output from Model Commands 
 

; Par  keeps ancillary parameter σ in main results vector b. 
; Margin displays marginal effects. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 

 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set  keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 

 
E46.3.1 Technical Notes 
 
 The fixed effects model is fit by ‘brute force.’  LIMDEP actually estimates the full K+N up 
to 100,150 coefficients by Newton’s method.  It is possible to fit the huge number of coefficients 
because we take advantage of the properties of the sparse second derivatives matrix.  One of the 
implications, however, is that there is no covariance matrix computed for the fixed effects.  It is 
possible to test for the fixed effects model with a likelihood ratio test (though the incidental 
parameters issue casts some doubt on the validity of this test), but since the covariance matrix is not 
computed, it is not possible to do any kind of inference for individual fixed effects.  Marginal effects 
in the fixed effects model are computed at the means of the data and with the sample average of the 
fixed effects estimates as the constant term. 
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NOTE:  The individual specific constant term cannot be computed for any group in which the 
dependent variable always takes the limit value (usually zero).  The model results will show the 
count of such groups.  For example, for the preceding data, the following output is produced: 
 

------------------------------------------------------------------------------- 
FIXED EFFECTS Tobit  Model                   
Maximum Likelihood Estimates                 
Dependent variable                    Y      
Weighting variable                 None      
Number of observations            10000      
Iterations completed                  5      
Log likelihood function       -12499.95      
Sample is 10 pds and    1000 individuals.    
Bypassed   12 groups with inestimable a(i).  
TOBIT (censored) regression model            
(Lower) truncation limit is     .00          
------------------------------------------------------------------------------- 
 

This shows that 12 of the 1,000 groups contained 10 observations in which y equals zero in all of 
them.  The truncated regression estimator must also check for this condition in the data. In principle, 
your data will not contain limit observations for the truncation model.  But, if in fact, it does, these 
observations are bypassed.  If all of the observations in one or more groups are bypassed, then the 
same warning will appear for the truncation model. 
 
 The two way fixed effects estimator is computed by actually creating the time specific 
dummy variables and adding them to the model.  This means that the 150 parameter limit on model 
size applies to the number of variables in the model plus the number of periods (minus one). 
 

E46.3.2 Application 
 

 The following presents one and two way FEMs for the tobit model. 
 

TOBIT   ; Lhs = y ; Rhs = x ; FEM ; Pds = 10 ; Partial Effects $ 
TOBIT  ; Lhs = y ; Rhs = x ; FEM ; Pds = 10 ; Time ; Partial Effects $ 

 
----------------------------------------------------------------------------- 
FIXED EFFECTS Tobit  Model 
Dependent variable                    Y 
Log likelihood function    -12622.25665 
Estimation based on N =  10000, K = 994 
Inf.Cr.AIC  =  27232.5 AIC/N =    2.723 
Sample is 10 pds and   1000 individuals 
Skipped   11 groups with inestimable ai 
TOBIT (censored) regression model 
(Lower) truncation limit is     .00 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
      X1|     .98385***      .02420    40.65  .0000      .93641   1.03128 
      X2|     .99171***      .02462    40.27  .0000      .94345   1.03998 
      Z1|    -.03002         .02311    -1.30  .1941     -.07532    .01529 
      Z2|    -.08437*        .04624    -1.82  .0680     -.17499    .00625 
        | Variance parameter given is sigma 
Std.Dev.|    1.86697***      .02005    93.09  .0000     1.82767   1.90628 
--------+-------------------------------------------------------------------- 
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Partial derivatives of E[y] = F[*]   with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Estimated E[y|means,mean alphai]=    .748 
Estimated scale factor for dE/dx=    .501 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
       Y|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .49314***      .00575    37.52  .0000      .46738    .51890 
      X2|     .49709***     -.00067    37.44  .0000      .47107    .52311 
      Z1|    -.01505      .2748D-04    -1.30  .1941     -.03775    .00766 
      Z2|    -.04229*       -.02839    -1.86  .0631     -.08689    .00231 
--------+-------------------------------------------------------------------- 
FIXED EFFECTS Tobit  Model 
Dependent variable                    Y 
Log likelihood function    -12618.43315 
Estimation based on N =  10000, K =1003 
Sample is 10 pds and   1000 individuals 
Skipped   11 groups with inestimable ai 
No. of period specific effects= 9 
TOBIT (censored) regression model 
(Lower) truncation limit is     .00 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
      X1|     .98294***      .02612    37.64  .0000      .93175   1.03412 
      X2|     .99256***      .02799    35.46  .0000      .93771   1.04741 
      Z1|    -.03015         .02310    -1.31  .1917     -.07542    .01512 
      Z2|    -.08425*        .04627    -1.82  .0686     -.17493    .00644 
 Period1|    -.07945         .10545     -.75  .4512     -.28613    .12723 
 Period2|    -.03225         .10539     -.31  .7596     -.23882    .17432 
 Period3|    -.13292         .13870     -.96  .3379     -.40477    .13893 
 Period4|    -.01231         .09998     -.12  .9020     -.20827    .18365 
 Period5|    -.15049         .14569    -1.03  .3016     -.43603    .13505 
 Period6|    -.05039         .10948     -.46  .6453     -.26497    .16419 
 Period7|     .01634         .09507      .17  .8635     -.17000    .20268 
 Period8|     .02710         .09367      .29  .7723     -.15649    .21069 
 Period9|    -.11898         .13299     -.89  .3710     -.37965    .14168 
        | Variance parameter given is sigma 
Std.Dev.|    1.86605***      .02004    93.10  .0000     1.82676   1.90533 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]   with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Estimated E[y|means,mean alphai]=    .747 
Estimated scale factor for dE/dx=    .501 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
       Y|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .49266***      .00575    35.38  .0000      .46537    .51995 
      X2|     .49748***     -.00067    33.74  .0000      .46858    .52638 
      Z1|    -.01511      .2762D-04    -1.31  .1917     -.03780    .00758 
      Z2|    -.04223*       -.02836    -1.85  .0637     -.08686    .00241 
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This is the truncated regression model estimated with the same data.  Note that the sample is 
different for this model, because the estimator skips the limit observations.  This eliminates the same 
12 groups for which y is always zero,  However, since the estimator is skipping all limit 
observations, the sample is in fact, greatly reduced.  Indeed, the command set 
 
 CREATE ; d = y > 0 $ 
 MATRIX ; dbar = Gxbr(d,i) $ 
 SAMPLE ; 1-1000 $ 
 CREATE ; dd = dbar $ 
 REJECT ; dd < 1 $ 
 SAMPLE ; All $ 
 REJECT ; d = 0 $ 
 SETPANEL ; Group = i ; Pds = ti $ 

TRUNCATE ; Lhs = y  ; Rhs = x ; Partial Effects ; FEM ; Pds = 10 ; Time $ 
 
----------------------------------------------------------------------------- 
FIXED EFFECTS TrncRg Model 
Dependent variable                    Y 
Log likelihood function     -6376.58031 
Estimation based on N =   4971, K =1003 
Inf.Cr.AIC  =  14759.2 AIC/N =    2.969 
Unbalanced panel has    989 individuals 
Skipped    0 groups with inestimable ai 
No. of period specific effects= 9 
TRUNCATED regression model 
(Lower) truncation limit is     .00 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
      X1|     .87000***      .05335    16.31  .0000      .76544    .97457 
      X2|     .82205***      .02104    39.07  .0000      .78081    .86329 
      Z1|     .00729         .03578      .20  .8385     -.06283    .07741 
      Z2|    -.10906         .07344    -1.49  .1375     -.25300    .03487 
 Period1|    -.37064         .84491     -.44  .6609    -2.02663   1.28535 
 Period2|    -.48523        2.16078     -.22  .8223    -4.72028   3.74981 
 Period3|    -.42006        1.94393     -.22  .8289    -4.23010   3.38998 
 Period4|    -.19895        1.22310     -.16  .8708    -2.59618   2.19828 
 Period5|    -.44021        2.01074     -.22  .8267    -4.38119   3.50078 
 Period6|    -.41834        1.93849     -.22  .8291    -4.21771   3.38104 
 Period7|    -.36124        1.75008     -.21  .8365    -3.79134   3.06885 
 Period8|    -.44737        2.03715     -.22  .8262    -4.44011   3.54537 
 Period9|    -.08877         .91656     -.10  .9228    -1.88519   1.70765 
        |Variance parameter given is sigma 
Std.Dev.|    1.68755***      .02963    56.96  .0000     1.62948   1.74561 
--------+-------------------------------------------------------------------- 
 
 The results are striking in another respect.  Whereas the tobit estimator of the parameters 
seems to estimate them quite well, even with 10,000 observations, it appears that the tobit estimator 
has slightly underestimated σ2.  But, the truncated regression estimator, again, in spite of the large 
sample, has underestimated all of the parameters. These are precisely what would be predicted by the 
results on the incidental parameters problem in the next section. 
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E46.3.3 The Incidental Parameters Problem 
 
 Section R23.2.2 mentions the incidental parameters (IP) problem as a feature of the 
estimation of fixed effects models by maximum likelihood.  As widely understood in econometrics, 
the IP problem is associated with a persistent upward bias in the parameter estimator in the FE 
model.  Tables E46.1 and E46.2 below are extracted from the only received study of the IP problem 
in the tobit and truncated regression models, Greene (2004b). The remaining literature is focused on 
binary choice models.  The tables describe a Monte Carlo study of censoring and truncation in the 
model 
   yit*  =  αi + βxit + δidit + εit 
 
in which xit is a continuous variable and dit is a dummy variable.  The underlying data are generated 
according to the fixed effects model – the effects are correlated with both xit and dit.  The table entries 
show the estimates of the percentage biases of various estimators based on 1,000 replications of the 
model, with N also equal to 1,000.  Surprisingly, the experiment suggests that the conventional 
wisdom is wrong for both the tobit and the truncated regression models.  For the tobit case, the bias 
appears to manifest itself not in the estimator of β, but in the estimator of σ.  The implications for the 
estimated marginal effects and for the estimated standard errors are shown in the lower rows of the 
table.  Table E46.1 suggests that the truncated regression model works in the opposite direction – all 
model components appear to be biased downward.  The overall conclusion here is also somewhat 
contradictory.  Based on these results, one is tempted to conclude that once T reaches 5, the IP 
problem is relatively small for these particular models. 
 
Estimate T = 2 T = 3 T = 5 T = 8 T = 12 T = 15 T = 20 
β   0.67   0.53   0.50   0.29   0.098   0.082   0.047 

δ   0.33   0.90   0.57   0.54   0.32   0.16   0.14 

σ -36.14 -23.54 -13.78  -8.40  -5.54  -4.43  -3.30 

MEx  15.83   8.85   3.65   1.30   0.44   0.22   0.081 

MEd  19.67  11.85   5.08   2.16   0.89   0.46   0.27 

S.E. (β) -32.92 -19.00 -11.30  -8.36  -6.21  -4.98   0.63 

S.E. (δ) -32.87 -22.75 -12.66  -7.39  -5.56  -6.19   0.25 

Table E46.1  Tobit Model, Behavior of the MLE/FE, Percentage Bias in Estimation 
 
Estimate T = 2 T = 3 T = 5 T = 8 T = 12 T = 15 T = 20 
β -17.13  -11.97  -7.64  -4.92  -3.41  -2.79  -2.11 

δ -22.81  -17.08 -11.21  -7.51  -5.16  -4.14  -3.27 

σ -35.36  -23.42 -14.28  -9.12  -6.21  -4.94  -3.75 

MEx  -7.52   -4.85  -2.87  -1.72  -1.14  -0.94  -0.67 

MEd -11.64   -8.65  -5.49  -3.64  -2.41  -1.90  -1.53 

S.E. (β) -33.00  -21.36 -12.30  -8.41  -3.83  -6.17  -2.62 

S.E. (δ) -31.52  -16.81  -9.45  -3.82  -7.74  -1.43  -0.61 

Table E46.2  Truncated Regression Model, Behavior of the MLE/FE, Percentage Bias 
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E46.4 Random Effects Models 
 
 The random effects model with censored data or truncation is based on the same latent 
regression used earlier, but with a different treatment of the common effect.  Specifically, 
 

  yit*  =  xit′β  +  εit  +  ui. 

  εit , ui ~  bivariate normal with means  (0,0),  
    variances (σ2, ω2) and correlation 0. 
 

Data are observed by the mechanisms 
 

  yit  =  Max(Lit, yit*) for the tobit model and 

  yit  =  yit* if yit > Lit and unobserved otherwise for the truncation model. 
 
The essential assumptions are that the random effect is the same in every period and the unique 
effect, εit is uncorrelated across periods.  All effects are uncorrelated across individuals.  Since the 
unique effects are independent across periods, all of our previous results apply to the conditional 
distribution of yit|ui.   
 As before, for the tobit model, let dit = 1 if yit > Lit (uncensored) and 0 otherwise.  Then, the 
density of the observed random variable, yit is 
 

  f(yit|ui,dit = 0)  =  Prob[yit* < Lit | ui]  =  Φ
L uit it i−





x 'β −
σ

 (censored) 

  f(yit|ui,dit = 1)  =  1
σ

φ
σ

y uit it i− −





x 'β  (uncensored). 

 
(For convenience, we leave the dependence on xit implicit.)  For purposes of formulating the log 
likelihood, we will combine these by writing 
 

  f(yit|ui)  =  [f(yit|ui,dit = 0)]1 itd−  × [f(yit|ui,dit = 1)] itd
. 

 
Since, conditioned on ui, the observations are independent, the joint density of the Ti observations for 
group i is the product of the individual densities; 
 

  f(yi1,yi2,...,yiTi|ui)  =  f y uit it

Ti ( | )
=∏ 1

. 
 

To form the log likelihood function, we need the unconditional distribution, the log of which then 
enters the function to be maximized.  The unconditional density is obtained by integrating ui out of 
the conditional density 

  f(yi1,yi2,...,yiTi|ui)  =  f y y y u g u dui i iT i i ii
( , , ... , | ) ( )1 2

−∞

∞

∫  
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Recall g(u) = (1/ω)φ(ui/ω).  Combining all terms, then summing the logs to obtain the log likelihood 
function, we have log  
 

 log Ltobit  =  
i

n
i it it i

t

T
d

it it i
d

i
u L u y u dui

it it

=
−∞

∞

=
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1log exp ' '
ω π ω σ σ

φ
σ

Φ x xβ β . 

 
This function is to be maximized with respect to (β,σ,ω).  The same sequence of steps produces the 
counterpart for the truncated regression model, 
 

 log Ltruncation  =  
12

2 1
1

( ' ) '1 1log exp
22

i
n Ti it i it it it i

it
i

u u L y u du
−

∞

=−∞
=

      − − −    − Φ φ         ω σ σ σω π          
∑ ∏∫

x xβ + β . 

 
There are two ways to maximize the log likelihoods, both of which will generally prove successful. 
 

• The function and its derivatives can be evaluated by Hermite quadrature.  
 

• Since the function and derivatives are equal to expectations, Eu[h(...,ui)], they can be 
approximated by simulation.  At each point at which the function or derivative must be 
computed, the integral is replaced by the average of R function evaluations at random draws 
from the currently estimated distribution of ui. The simulation method is considered in the 
next section. 

 
 The quadrature based estimator can be requested with 
 
 TOBIT  ; Lhs = dependent variable 
         or TRUNCATE ; Rhs = independent variables 
         ; Pds = panel specification of group sizes  
   ; Random Effects $ 
 
(The quadrature based random effects estimator is not available for the GROUPED data model.  The 
random parameters specification is provided for the GROUPED command, so a random effects 
model can be estimated by maximum simulated likelihood instead.) 

The limit value and censoring in the lower tail may be changed with 
 
   ; Limit = the nonzero value or variable name 
and/or   ; Upper censoring 
  
Censoring or truncation in both tails of the distribution are specified with 
 
   ; Limits = lower specification, upper specification 
 
where each specification may be a constant or the name of a variable.  The other options, such as 
fitted values, marginal effects, and so on are the same as for the tobit model without the random 
effects treatment.  Censoring may be in either or both tails and censoring limits may be constant or 
may vary by observation.  As usual, zero, lower censoring is the default. 
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NOTE:  There is no limit on the number of groups in this model.  As always, the panel may be 
unbalanced. Also, in principle, there is no internal limit on the number of observations in a group.  
However, do note in this model, to compute the log likelihood, it is necessary actually to compute the 
joint probability for the Ti observations in a group. That is the product of probabilities, and, to the point, 
not the sum of the logs. Therefore, if your panel has a very large number of observations in a group – 
consider monthly observations on some variable, by firm, for a number of years – it will be necessary 
to compute the product of a large number of probabilities.  It is possible that this value can become 
extremely small, and when so, accuracy is lost in the computations. On occasion, if the estimator 
claims it is unable to locate a maximum of the objective function, it is possible that this is the reason. 
 

 To illustrate the estimator, the following reports the random effects estimates of the model fit 
earlier. 
 

   TOBIT   ; Lhs = y ; Rhs = x ; Random Effects ; Pds = 10 ; Partial Effects $ 
TOBIT   ; Lhs = y ; Rhs = x  

; RPM ; Fcn = one(n) ; Pds = 10 ; Pts = 20 ; Halton ; Partial Effects $  
 
----------------------------------------------------------------------------- 
Reestimated RANDOM EFFECTS Tobit Model 
Dependent variable                    Y 
Log likelihood function    -13659.74001 
Restricted log likelihood  -13953.44433 
Chi squared [   1 d.f.]       587.40864 
Significance level               .00000 
McFadden Pseudo R-squared      .0210489 
Estimation based on N =  10000, K =   7 
Inf.Cr.AIC  =  27333.5 AIC/N =    2.733 
Model estimated: Aug 01, 2011, 22:21:56 
Sample is 10 pds and    1000 individuals. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|    1.00083***      .02498    40.07  .0000      .95188   1.04979 
      X2|     .98910***      .02671    37.03  .0000      .93676   1.04145 
      Z1|    -.02806         .02424    -1.16  .2470     -.07557    .01945 
      Z2|    -.10308**       .04788    -2.15  .0313     -.19693   -.00923 
Constant|     .02745         .04647      .59  .5547     -.06363    .11853 
Sigma(v)|    2.00007***      .02294    87.20  .0000     1.95511   2.04503 
Sigma(u)|     .94842***      .03757    25.24  .0000      .87479   1.02206 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point    .7869 
Scale Factor for Marginal Effects   .4956 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
       Y|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .49601***      .01348    36.80  .0000      .46959    .52242 
      X2|     .49019***      .01590    30.83  .0000      .45903    .52135 
      Z1|    -.01391         .01237    -1.12  .2610     -.03816    .01034 
      Z2|    -.05109***      .01208    -4.23  .0000     -.07477   -.02741 
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Partial Effects for Tobit (Censored) Regression Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      X1            .49542     .01413   35.06      .46772      .52312 
      X2            .48961     .01508   32.47      .46005      .51917 
      Z1           -.01389     .01200    1.16     -.03741      .00963 
   *  Z2           -.05103     .02368    2.15     -.09745     -.00462 
--------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  Tobit    Model 
Dependent variable                    Y 
Log likelihood function    -13670.53292 
Estimation based on N =  10000, K =   7 
Inf.Cr.AIC  =  27355.1 AIC/N =    2.736 
Model estimated: Aug 01, 2011, 22:22:11 
Sample is 10 pds and   1000 individuals 
TOBIT (censored) regression model 
(Lower) censoring  limit is     .00 
Simulation based on  20 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
      X1|    1.00158***      .02412    41.52  .0000      .95430   1.04886 
      X2|     .99160***      .02577    38.48  .0000      .94109   1.04211 
      Z1|    -.02678         .02343    -1.14  .2531     -.07270    .01915 
      Z2|    -.09841**       .04630    -2.13  .0335     -.18915   -.00766 
        |Means for random parameters 
Constant|     .04182         .03546     1.18  .2383     -.02768    .11133 
        |Scale parameters for dists. of random parameters 
Constant|     .98345***      .02441    40.29  .0000      .93561   1.03128 
        |Variance parameter given is sigma 
Std.Dev.|    2.00468***      .02183    91.81  .0000     1.96189   2.04747 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point    .7971 
Scale Factor for Marginal Effects   .4989 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
       Y|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .49972***      .00336    39.83  .0000      .47513    .52431 
      X2|     .49474***     -.00202    37.34  .0000      .46877    .52070 
      Z1|    -.01336      .1880D-04    -1.14  .2529     -.03626    .00954 
      Z2|    -.04910**      -.03090    -2.08  .0371     -.09526   -.00293 
--------+-------------------------------------------------------------------- 
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E46.5 Random Parameters Models 
 
 We have extended the random parameters model to the censored regression (tobit) and 
truncated regression models.  (Full details on the random parameters model appear in Chapter R24.) 
The structure of the random parameters model is based on the conditional density 
 
   f(yit | xit, βi)  =  f(βi′xit), i = 1,...,N, t = 1,...,Ti. 
 
where f(.) is the hybrid continuous/discrete density for the tobit model.  The model assumes that 
parameters are randomly distributed with possibly heterogeneous (across individuals) mean 
 
   E[βi| zi]  =  β  +  ∆zi,   
 
(the second term is optional – the mean may be constant), 
 
   Var [βi| zi]  =  Σ. 
 
The model is operationalized by writing 
 
   βi  =  β  +  ∆zi  +  Γvi. 
 
As noted earlier, the heterogeneity term is optional.  In addition, it may be assumed that some of the 
parameters are nonrandom.  It is convenient to analyze the model in this fully general form here.  
One could easily accommodate nonrandom parameters just by placing rows of zeros in the 
appropriate places in ∆ and Γ. 
 
NOTE:  If there is no heterogeneity in the mean, and only the constant term is considered random – 
the model may specify that some parameters are nonrandom – then this model is equivalent to the 
random effects model of the preceding section. 
 
E46.5.1 Command for the Random Parameters Model 
 
 The basic model command for this form of the model is 
 
 TOBIT  ; Lhs = dependent variable 
         or TRUNCATE ; Rhs  = independent variables 
         or GROUPED ; Pds  = fixed periods or count variable 
   ; RPM 
or   ; RPM = list of variables in z 
   ; Fcn = random parameters specification $ 
 
The limit value and censoring in the lower tail may be changed for the tobit and truncated regression 
models with 
   ; Limit = the nonzero value 
and/or   ; Upper censoring 
  
This estimator only supports censoring in one tail.   
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NOTE:  For this model, your Rhs list should include a constant term. 
 
NOTE:  The ; Panel specification is optional.  You may fit these models with cross section data.  
There is nothing inherent in the model that limits it to a panel data application.  However, 
identification can be a bit weak for cross section estimation, and it will often break down.  Using this 
model in a cross section is likely to be successful only when the data and the model are strongly 
consistent with each other. 
 
Standard Model Specifications for the Random Parameters Truncated 
Regression Model 
 

This is the full list of general specifications applicable to this model estimator.   
 
Controlling Output from Model Commands. 
 

; Par  keeps individual specific parameter estimates.  
; Margin displays marginal effects. Marginal effects are computed by setting the 
  heterogeneity terms to their expected values of zero. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  
; Robust sandwich estimator or robust VC for TSCS and some discrete choice. 

 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb[ = value] sets convergence value for parameters. 
; Alg = name sets algorithm. The default (and best) algorithm for estimation is BFGS. 
  But, all other algorithms are available. 
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set  keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
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Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
E46.5.2 Specifying Random Parameters 
 
 The ; Fcn = specification is used to define the random parameters.  It is constructed from 
the list of Rhs names as follows:  Suppose your model is specified by 
 
   ; Rhs = one, x1, x2, x3, x4 
 
This involves five coefficients.  Any or all of them may be random; any not specified as random are 
assumed to be constant.  For those that you wish to specify as random, use 
 
   ; Fcn = variable name (distribution), variable name (distribution), ... 
 
Numerous distributions may be specified.  Three that are commonly used are   
 
   n =  standard normal distribution, variance = 1, 
   t =  triangular (tent shaped) distribution in [-1,+1], variance = 1/6, 
   u =  standard uniform distribution [-1,1], variance = 1/3. 
 
All random variables have mean zero.  Note that each of these is scaled as it enters the distribution, 
so the variance is only that of the random draw before multiplication.  The latter two distributions are 
provided as one may wish to reduce the amount of variation in the tails of the distribution of the 
parameters across individuals and to limit the range of variation.  (See Train, 2010).  Other options 
for the distributions of random parameters are described in Chapter R24.  To specify that the 
constant term and the coefficient on x1 are normally distributed with fixed mean and variance, use 
 
   ; Fcn = one(n), x1(n) 
 
This specifies that the first and second coefficients are not random while the remainder are.  The 
parameters estimated will be the mean and standard deviations of the distributions of these two 
parameters and the fixed values of the other three.   
 
NOTE:  The model with only a random constant term (; Fcn = one(n)) is precisely equivalent to the 
random effects model of the previous section. 
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E46.5.3 Application 
 
 The following example illustrates.  Note that this simulates the assumptions of the model. 
The first instruction fits the RP model with only a random constant term, which is the random effects 
model.  The second fits the model with both constant and one slope random. 
 
 SAMPLE ; All $ 

CREATE ; yrps = (1+vi)*x1 + x2 + eit + ui   
  ; yrp = max(0,yrps) $ 
TOBIT   ; Lhs = yrp ; Rhs = x  

; RPM ; Fcn = one(n), x1(n) ; Correlated 
; Pds = 10 ; Pts = 20 ; Halton $ 

 
 The results include estimates of the means and standard deviations of the distributions of the 
random parameters and the estimates of the nonrandom parameters.  The log likelihood shown is 
conditioned on the random draws, so one might be cautious about using it to test hypotheses, for 
example, that the parameters are random at all by comparing it to the log likelihood from the basic 
model with all nonrandom coefficients.  The random constant term model shown earlier is 
mathematically equivalent to the random effects model.  The results for the quadrature based 
estimator are shown earlier with the simulation based estimates.  They are strikingly close, in spite of 
the small number of draws used for the simulations.  The marginal effects shown are for the 
simulation estimator.  The results below are estimates of the model with two random parameters, the 
constant and the slope on x1.  The true values of the two variance parameters for the random 
parameters are roughly 1.15 for the constant and .25 for the coefficient on x1.  The true means are 
zero and one, while the true coefficient on x2 is also one. 
 
Correlated Random Parameters 
 
 The default RP command defines an estimator for a model in which the covariance matrix of 
the random parameters is diagonal.  To extend it to a model in which the parameters are freely 
correlated, add 
   ; Correlation (or just ; Cor) 
 
to the command.  The example below estimates a random parameters model with correlated random 
constant term and random slope. 
 
----------------------------------------------------------------------------- 
Random Coefficients  Tobit    Model 
Dependent variable                  YRP 
Log likelihood function    -13750.50869 
Estimation based on N =  10000, K =   9 
Inf.Cr.AIC  =  27519.0 AIC/N =    2.752 
Sample is 10 pds and   1000 individuals 
TOBIT (censored) regression model 
(Lower) censoring  limit is     .00 
Simulation based on  20 Halton draws 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YRP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
      X2|     .98788***      .02551    38.72  .0000      .93788   1.03788 
      Z1|    -.01670         .02320     -.72  .4717     -.06217    .02878 
      Z2|    -.10816**       .04612    -2.34  .0190     -.19856   -.01776 
        |Means for random parameters 
Constant|     .06495*        .03480     1.87  .0620     -.00326    .13316 
      X1|     .97941***      .02410    40.64  .0000      .93218   1.02664 
        |Diagonal elements of Cholesky matrix 
Constant|    1.02785***      .02620    39.23  .0000      .97650   1.07920 
      X1|     .25809***      .02389    10.80  .0000      .21126    .30492 
        |Below diagonal elements of Cholesky matrix 
 lX1_ONE|    -.03295         .02608    -1.26  .2064     -.08407    .01816 
        |Variance parameter given is sigma 
Std.Dev.|    1.99475***      .02141    93.19  .0000     1.95280   2.03671 
--------+-------------------------------------------------------------------- 
Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|       1.05647     -.0338705 
       2|     -.0338705      .0676965 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.02785 
       2|       .260185 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000      -.126651 
       2|      -.126651       1.00000 
 
E46.5.4 Model Specifications 
 
 There are several additional model specifications and estimation controls that you can use 
with the random parameters model.. 
 
Heterogeneity in the Means 
 
 The preceding examples have specified that the mean of the random variable is fixed over 
individuals.  If there is measured heterogeneity in the means, in the form of 
 
   E[βki]  =  βk  +  Σm δkm zmi 
 
where zm is a variable that is measured for each individual, then the command may be modified to 
 
   ; RPM =  list of variables in z 
 
In the data set, these variables must be repeated for each observation in the group. 
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Controlling the Simulation 
 
 There are two parameters of the simulations that you can change.  R is the number of points 
in the simulation.  Authors differ in the appropriate value.  Train (1999) recommends several 
hundred.  Bhat suggests 1,000 is an appropriate value.  The program default is 100.  You can choose 
the value with 
 
   ; Pts = number of draws, R 
 
The value of 20 that we set in our experiments above was chosen purely to produce an example that 
you could replicate without spending an inordinate amount of waiting for the results. 
 The standard approach to simulation estimation is to use random draws from the specified 
distribution.  As suggested immediately above, good performance in this connection requires very 
large numbers of draws.  The drawback to this approach is that with large samples and large models, 
this entails a huge amount of computation and can be very time consuming.  Some authors have 
documented dramatic speed gains with no degradation in simulation performance through the use of 
a small number of Halton draws instead of a large number of random draws.  Authors (e.g., Bhat 
(1999)) have found that a Halton sequence of draws with only one tenth the number of draws as a 
random sequence is equally effective.  To use this approach, add 
 
   ; Halton 
 
to your model command.  The results below show the same model as estimated immediately above 
using five Halton draws instead of 20 simulated random draws.  The estimates are essentially the 
same.  The estimator based on the Halton sequences required roughly 20 seconds and 14 iterations to 
converge; the one based on the pseudorandom numbers required about 70 seconds and 15 iterations 
to reach the same estimates.  (With ever faster computers, this consideration may ultimately be 
minor.  However, we have of late heard from users who are employing data sets involving hundreds 
of thousands of observations.  In a data set this large, use of the Halton sequences approach may 
produce a benefit worth pursuing.)  Halton sequences are discussed in Section R24.7. 
 In order to replicate an estimation, you must use the same random draws.  One implication 
of this is that if you give the identical model command twice in sequence, you will not get the 
identical set of results because the random draws in the sequences will be different.  To obtain the 
same results, you must reset the seed of the random number generator with a command such as 
 
 CALC   ; Ran(seed value) $ 
 
(Note that we have used ; Ran(12345) before each of our examples above, precisely for this reason.  
The specific value you use for the seed is not of consequence; any odd number will do.  You can also 
achieve replicability by using Halton sequences, which are not random, but are deterministic sequences. 
 

E46.5.5 Model Estimates 
 
 Results saved by this estimator are: 
 
 Matrices: b   =  estimate of θ 
   varb   =  asymptotic covariance matrix for estimate of θ 
      beta_i =  individual specific parameters, if ; Par is requested 
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 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
 
 Section R24.5 describes a method of estimating the conditional mean of the distribution 
from which βi is drawn  When you include ; Parameters in your command, the matrices of 
conditional means and conditional standard deviations are kept with the output of the model.  The 
matrices below are generated by the model command in the previous section.  These are in addition 
to b and varb shown below.  The matrix sdrpm saves the implied estimates of the standard deviations 
of the random parameters.  These are reported with the output as a matrix (column vector) of implied 
standard deviations.  The matrix gammarpm is the lower triangular matrix assembled from the 
estimated parameter vector.  In the vector of estimated parameters (see vector b), the diagonal 
elements of Γ appear first, followed by the below diagonal element(s).  Finally, beta_i and sdbeta_i 
are computed with a row for each individual. 
 

 
Figure E28.2  Matrix Results for RP Censored Regression 
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E46.6 Latent Class Models 
 

The tobit, truncated and grouped data regression models for a panel of data, i = 1,...,N, t = 
1,...,Ti are denoted 

 

  f(yit | xit)  =  f(yit,β′xit)  =  f(i,t). 
 
Henceforth, we will use the term ‘group’ to indicate the Ti observations on respondent i in periods       
t = 1,...,Ti.  Unobserved heterogeneity in the distribution of yit is assumed to impact the density in the 
form of a random effect.  The continuous distribution of the heterogeneity is approximated by using 
a finite number of ‘points of support.’  The distribution is approximated by estimating the location of 
the support points and the mass (probability) in each interval.  In implementation, it is convenient 
and useful to interpret this discrete approximation as producing a sorting of individuals (by 
heterogeneity) into J classes, j = 1,...,J.  (Since this is an approximation, J is chosen by the analyst.) 

Thus, we modify the model for a latent sorting of yit into J ‘classes’ with a model which 
allows for heterogeneity as follows:  The  density of the observed yit given that regime j applies is 

 
  f(i,t|j)  =  f(yit| xit, j) 

 
where the density is now specific to the group.  The analyst does not observe directly which class,      
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model 
 

  f(i,t|j)  =  f(yit, β′xit  +  δj), Prob[class = j]  =  Fj. 
 
We formulate this approximation more generally as, 
 

  f(i,t|j)  =  f[yit | β′xit  +  δj′xit, σj),  

  Fj  =  exp(θj) / Σj exp(θj), with θJ  = 0. 
 
In this formulation, each group has its own parameter vector, (βj′,σj) = (β + δj,σj) though the 
variables that enter the mean are assumed to be the same. (This can be changed by imposing 
restrictions on the full parameter vector, as described below.) This allows the Heckman and Singer 
formulation as a special case by imposing restrictions on the parameters. (A further generalization is 
discussed below.)  The class probabilities can also be extended in the form of a multinomial logit 
model; 
   θij  =  θj′zi 
 
by adding the variable names for these variables in the command as shown below. 
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E46.6.1 Commands for Latent Class Models 
 
 The estimation command for this model is 
 
 TOBIT  ; Lhs = ...  
         or TRUNCATE ; Rhs  = independent variables 
         or GROUPED ; LCM = list of variables in z if desired ( = list is optional) 
   ; Pds = panel data specification  
   ; Pts = number of latent classes $ 
 
The default number of support points is five.  You may set J to 2, 3, ..., 9 with 
 
   ; Pts = the value you wish 
 
The limit value and censoring in the lower tail may be changed with 
 
   ; Limit = the nonzero value 
and/or    ; Upper censoring or truncation 
  
This estimator only supports censoring in one tail.  Other options are the standard ones for the tobit 
and truncation models.  Some particular values computed for the latent class model are 
 
   ; Parameters  to keep the individual specific parameter estimates.   
   ; Group = name to retain the index of the most likely latent class 
   ; Cprob = name  to retain the estimated probability for the most likely  
    latent class 
 
You can obtain a listing of these two results by using 
 
   ; List 
 
Other model specifications appear in the list below. 
 This estimator does not support restrictions with ; CML or ; Test:  However, you can use 
the ; Rst = list option to constrain the model, for example to structure the latent class model so that 
different variables appear in different classes or that classes have common parameters as in  the 
Heckman and Singer form of the model.  To use these options, note, first, that the structure of the 
parameter vector is as follows: 
 
   β1,σ1, β2,σ2, ..., βJ,σJ, θ1, θ2,...,θJ. 
 
That is, the model parameters for the classes appear first, followed by the structural parameters for 
the class probabilities.  Note that θJ will be set equal to zero by the program, but if you use ; Rst, you 
must treat θJ as a free parameter.  The example below demonstrates.  In the following, we set up a 
three class model in which the two slope parameters and the disturbance variance parameters are 
forced to the same in all three classes, but the constants differ. This would correspond to Heckman 
and Singer’s formulation of a random effects model.   
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The commands are as follows: 
 
 TOBIT  ; Lhs = y  
   ; Rhs = one,x1,x2  
   ; LCM  
   ; Pts = 3 
   ; Pds = 10 
   ; Rst = a1,b1,b2,sigmav, a2,b1,b2,sigmav, a3,b1,b2,sigmav, 
                theta1,theta2,theta3 $ 
 
Standard Model Specifications for the Latent Class Truncated Regression 
Model 
 

This is the full list of general specifications that are applicable to this model estimator.    
 
Controlling Output from Model Commands 
 

; Par  keeps individual specific parameter estimates.  
 ; Margin displays marginal effects. 

; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 

 
; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  
; Robust requests a sandwich estimator or robust VC for TSCS and some discrete 

choice models. 
 
Optimization Controls for Nonlinear Optimization 

 
; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set  keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 

 
; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

  



E46: Panel Data Models for Censored Data and Truncated Distributions   E-1142 

Hypothesis Tests and Restrictions 
 
; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
E46.6.2 Model Estimates 
 
  Estimates retained by this model include 
 
 Matrices: b   = full parameter vector, [β1′,σ1, β2′,σ2, ... F1,...,FJ] 
   varb = full covariance matrix 
   beta_i = individual specific parameters, if ; Par is requested 

 
Note that b and varb involve J×(K+2) estimates.  Two additional matrices are created, 

  
   b_class = a J×K matrix with each row equal to the corresponding βj 

  class_pr = a J×1 vector containing the estimated class probabilities 
 
Scalars: kreg = number of variables in Rhs list 

   nreg = total number of observations used for estimation 
  logl = maximized value of the log likelihood function 

   exitcode = exit status of the estimation procedure. 
 
 Last Function: None 
 
E46.6.3 Applications 
 
 The first two sets of results fit three class latent class models to the simulated data used in 
the earlier examples.  The third fits the Heckman and Singer random effects model noted earlier. 
  
 TOBIT  ; Lhs = y ; Rhs = one,x1,x2  
    ; LCM  
    ; Pts = 3  
    ; Pds = 10 $ 
 TRUNCATE ; Lhs = y ; Rhs = one,x1,x2  
    ; LCM  
    ; Pts = 3  
    ; Pds = 10 $ 
 TOBIT  ; Lhs = y ; Rhs = x 
    ; LCM  
    ; Pts = 3   
    ; Pds = 10 
    ; Rst = b1,b2,b3,b4,a1,vv, b1,b2,b3,b4,a2,vv, b1,b2,b3,b4,a3,vv, 
                   theta1,theta2,theta3 $ 
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----------------------------------------------------------------------------- 
Latent Class / Panel Tobit    Model 
Dependent variable                    Y 
Log likelihood function    -13657.65434 
Estimation based on N =  10000, K =  20 
Inf.Cr.AIC  =  27355.3 AIC/N =    2.736 
Sample is 10 pds and   1000 individuals 
TOBIT (censored) regression model 
(Lower) censoring  limit is     .00 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
      X1|    1.05282***      .05571    18.90  .0000      .94363   1.16201 
      X2|     .99677***      .06244    15.96  .0000      .87439   1.11914 
      Z1|    -.14815**       .06345    -2.33  .0196     -.27251   -.02378 
      Z2|    -.28628***      .10773    -2.66  .0079     -.49742   -.07514 
Constant|    1.47990***      .11450    12.92  .0000     1.25549   1.70432 
   Sigma|    2.04735***      .04916    41.64  .0000     1.95099   2.14371 
        |Model parameters for latent class 2 
      X1|     .98396***      .05065    19.42  .0000      .88468   1.08324 
      X2|     .94552***      .05248    18.02  .0000      .84267   1.04838 
      Z1|     .08412*        .04983     1.69  .0914     -.01355    .18179 
      Z2|    -.02852         .09530     -.30  .7648     -.21530    .15827 
Constant|     .10902         .14351      .76  .4475     -.17227    .39030 
   Sigma|    1.94264***      .05097    38.11  .0000     1.84273   2.04255 
        |Model parameters for latent class 3 
      X1|     .97830***      .08225    11.89  .0000      .81709   1.13951 
      X2|    1.10262***      .09133    12.07  .0000      .92362   1.28162 
      Z1|    -.12957         .08407    -1.54  .1233     -.29435    .03521 
      Z2|    -.01240         .15479     -.08  .9362     -.31577    .29098 
Constant|   -1.31744***      .18876    -6.98  .0000    -1.68740   -.94748 
   Sigma|    2.08057***      .08736    23.82  .0000     1.90935   2.25180 
        |Estimated prior probabilities for class membership 
Class1Pr|     .23211***      .03917     5.93  .0000      .15534    .30888 
Class2Pr|     .47325***      .05732     8.26  .0000      .36090    .58560 
Class3Pr|     .29464***      .06091     4.84  .0000      .17526    .41402 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Latent Class / Panel TruncReg Model 
Dependent variable                    Y 
Log likelihood function     -8030.07436 
Estimation based on N =  10000, K =  20 
Sample is 10 pds and   1000 individuals 
Truncated regression model 
(Lower) truncation limit is     .00 
Model fit with  3 latent classes. 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
      X1|     .92559***      .11991     7.72  .0000      .69057   1.16062 
      X2|     .86473***      .10931     7.91  .0000      .65049   1.07897 
      Z1|     .01226         .10300      .12  .9052     -.18961    .21414 
      Z2|    -.25316         .20430    -1.24  .2153     -.65357    .14726 
Constant|    1.75262***      .45167     3.88  .0001      .86736   2.63788 
   Sigma|    2.00265***      .13186    15.19  .0000     1.74420   2.26109 
        |Model parameters for latent class 2 
      X1|    1.58660***      .24745     6.41  .0000     1.10160   2.07159 
      X2|     .92187***      .21586     4.27  .0000      .49878   1.34495 
      Z1|     .09177         .21943      .42  .6758     -.33830    .52184 
      Z2|    -.43398         .40013    -1.08  .2781    -1.21822    .35026 
Constant|     .95832**       .41865     2.29  .0221      .13777   1.77887 
   Sigma|    1.26725***      .27840     4.55  .0000      .72159   1.81290 
        |Model parameters for latent class 3 
      X1|    1.03265***      .11910     8.67  .0000      .79921   1.26608 
      X2|     .93355***      .10109     9.23  .0000      .73542   1.13169 
      Z1|    -.01100         .08030     -.14  .8911     -.16839    .14639 
      Z2|    -.04304         .17101     -.25  .8013     -.37822    .29213 
Constant|    -.52724*        .27910    -1.89  .0589    -1.07427    .01978 
   Sigma|    2.17506***      .11824    18.40  .0000     1.94332   2.40680 
        |Estimated prior probabilities for class membership 
Class1Pr|     .22782**       .10282     2.22  .0267      .02630    .42935 
Class2Pr|     .06220         .05608     1.11  .2674     -.04772    .17213 
Class3Pr|     .70997***      .11734     6.05  .0000      .47999    .93996 
--------+-------------------------------------------------------------------- 
 
 The following are the latent class estimates with variation only in the constant term.  This 
model is comparable to the random effects model with continuous variation in the constant.  The 
random effects model estimated earlier is shown below the latent class model.  The estimates of the 
model parameters are strikingly similar.  The similarity goes beyond that, however.  After the results, 
we compute the standard deviation of the estimated random effects for the latent class model.  Based 
on the three observations, the estimate is 0.9119797.  The counterpart in the random effects model is 
0.94842. 
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----------------------------------------------------------------------------- 
Latent Class / Panel Tobit    Model 
Dependent variable                    Y 
Log likelihood function    -13662.84487 
Estimation based on N =  10000, K =  10 
Sample is 10 pds and   1000 individuals 
TOBIT (censored) regression model 
(Lower) censoring  limit is     .00 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
      X1|    1.00236***      .02494    40.19  .0000      .95348   1.05124 
      X2|     .98747***      .02671    36.96  .0000      .93511   1.03983 
      Z1|    -.02450         .02439    -1.00  .3151     -.07231    .02331 
      Z2|    -.10470**       .04799    -2.18  .0291     -.19876   -.01065 
Constant|    2.21773***      .26620     8.33  .0000     1.69598   2.73947 
   Sigma|    2.00600***      .02309    86.87  .0000     1.96074   2.05126 
        |Model parameters for latent class 2 
      X1|    1.00236***      .02494    40.19  .0000      .95348   1.05124 
      X2|     .98747***      .02671    36.96  .0000      .93511   1.03983 
      Z1|    -.02450         .02439    -1.00  .3151     -.07231    .02331 
      Z2|    -.10470**       .04799    -2.18  .0291     -.19876   -.01065 
Constant|     .72316***      .09146     7.91  .0000      .54390    .90242 
   Sigma|    2.00600***      .02309    86.87  .0000     1.96074   2.05126 
        |Model parameters for latent class 3 
      X1|    1.00236***      .02494    40.19  .0000      .95348   1.05124 
      X2|     .98747***      .02671    36.96  .0000      .93511   1.03983 
      Z1|    -.02450         .02439    -1.00  .3151     -.07231    .02331 
      Z2|    -.10470**       .04799    -2.18  .0291     -.19876   -.01065 
Constant|    -.86188***      .07386   -11.67  .0000    -1.00665   -.71712 
   Sigma|    2.00600***      .02309    86.87  .0000     1.96074   2.05126 
        |Estimated prior probabilities for class membership 
Class1Pr|     .04677**       .02052     2.28  .0226      .00656    .08699 
Class2Pr|     .47728***      .03267    14.61  .0000      .41325    .54130 
Class3Pr|     .47595***      .03669    12.97  .0000      .40405    .54785 
--------+-------------------------------------------------------------------- 
 
 MATRIX ; aj = b_class(1:3,5:5) $ 
 MATRIX ; aj2 = Dirp(aj,aj) $ 
 MATRIX ; pj = class_pr $ 
 CALC   ; List ; meana = aj'pj ; sda = Sqr(aj2'pj - (aj'pj)^2) $ 
 
[CALC] MEANA   =       .0386644 
[CALC] SDA     =       .9119797 
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E47: Limited Dependent Variable Models 
 
E47.1 Introduction 
 
 The models and estimators described in this chapter are (numerous) variations on the 
following general structure: 
 
 Latent Underlying Regression: yi*  =  β′xi  +  εi, εi ~ N[0,σ2]. 
 
 Observed Dependent Variable: if  yi*  ≤  Li, then yi  =  Li  (lower tail censoring) 
      if  yi*  ≥  Ui, then yi  =  Ui  (upper tail censoring) 
      if  Li   <  yi*  <  Ui, then  yi  =  yi* =  β′xi  +  εi. 
 
Truncation, in which only data in the third group are observed, is a related case which is discussed in 
Section E47.4.  In practice, most of the received applications involve censoring, rather than 
truncation.  The thresholds, Li and Ui, may be constants or variables.  We accommodate censoring in 
the upper or lower (or both) tails of the distribution.  The most familiar case of this model in the 
literature is the ‘tobit’ model, in which Ui = +∞ and Li = 0, i.e., the case in which the observed data 
contain a cluster of zeros.  In the standard ‘censored regression,’ or tobit model, the censored range 
of yi* is the half of the line below zero.  (For convenience, we will drop the observation subscript at 
this point.)  If y* is not positive, a zero is observed for y, otherwise the observation is y*.  Models of 
expenditure are typical.  We also allow censoring of the upper tail (‘on the right’).  A model of the 
demand for tickets to sporting events might be an application, since the actual demand is only 
observed if it is not more than the capacity of the facility (stadium, etc.).  A somewhat more 
elaborate specification is obtained when the range of y* is censored in both tails.  This is the ‘two 
limit probit’ model.  An application might be a model of weekly hours worked, in which less than 
half time is reported as 20 and more than 40 is reported as ‘full time,’ i.e., 40 or more. 
 The preceding gives the basic model.  We also allow for several variations, including a 
model with heteroscedasticity and models for panel data. 
 

E47.2 Tobit Model 
 
 The basic tobit model corresponds to the specification in the Introduction.   This model is 
developed in Chapter E45.  The sections to follow show some extensions of the tobit model, 
including heteroscedasticity and two bivariate models. 
 

E47.2.1 Heteroscedastic Tobit Model 
 
 The disturbance in the tobit model may be heteroscedastic so that the variance term is 
 

   σi  =  σeγ′zi . 
 

This is the model of multiplicative heteroscedasticity used in several earlier models.  This model is 
requested with 
  

 TOBIT  ; Lhs  = y ; Rhs = list for x  
   ; Het ; Hfn = list for z $ 
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Limit specifications are as usual, upper (; Upper) or lower (default) censoring, and the limit value 
may be supplied with ; Limit = value and all other parts of the command and options are the same as 
for the basic model. 
 
NOTE:  Do not include one in the Hfn list.  Since σ is a free parameter, including one will put a 
redundant constant in the variance model.  This will cause a singular covariance matrix.  (Previous 
versions of LIMDEP used Rh2 instead of Hfn in this specification. You may continue to use that 
syntax.) 
 
 The full parameter vector is now [β,γ,σ].  Use this setup if you are providing starting values 
with ; Start = list or imposing restrictions with ; Rst = list or ; CML: restrictions.  The results 
saved are: log likelihood, identification of limit values, configuration of parameter vector, estimates 
of [β,γ,σ], etc.  The matrices b and varb will include the estimates of γ.  As before, σ is the ancillary 
parameter.  The specification ; Par adds σ to the retained parameter vector.  Finally, the Last Model 
parameters are [b_variables_in_x, c_variables_in_z].  

 
Testing for Heteroscedasticity 
 
 The three familiar testing procedures are available for testing for heteroscedasticity in the 
tobit model.  The following template shows how to apply the three procedures:  We first set up the 
variables that appear in the model 
 
 NAMELIST ; x  = the full Rhs for the mean in the model $ 
 NAMELIST ; z  = the variables in the variance function, does not include one $ 
 CREATE ; y  = the dependent variable $ 
 
The dimensions will be needed for degrees of freedom and matrix manipulations. 
 
 CALC  ; kx = Col(x) ; kz = Col(z) $ 
 
This is the restricted, homoscedastic model. 
 
 TOBIT  ; Lhs = y ; Rhs = x ; (if necessary, set up limits specification) $ 
 CALC  ; Lr = logl ; vr = s $ 
 
This does the LM test.  The command sends in restricted estimates and does no iterations. 
 
 TOBIT  ; Lhs = y ; Rhs = x ; Rh2 = z ; Het 
   ; Start = b, kz_0, vr ; Maxit = 0 $ 
 
This does the likelihood ratio test. 
 
 TOBIT  ; Lhs = y ; Rhs = x ; Rh2 = z ; Het ; Par $ 
 CALC  ; lu = logl ; List ; chisq = 2*(lu - lr) ; signif = 1 - Chi(chisq,kz) $ 
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We now do the Wald test. 
 
 CALC  ; kx1 = kx+1 ; kxz = kx+kz $ 
 MATRIX ; ghet = b(kx1:kxz) ; vghet = Varb(kx1:kxz, kx1:kxz)  
   ; List ; waldstat = ghet’<vghet>ghet $ 
 CALC  ; List ; signif = 1 - Chi(waldstat,kz) $ 
 
Partial Effects 
 
 Let wi be a variable which can appear in either xi or zi or both.  The marginal effects for xi 
were given earlier; 
 

 
i

iii

w
yE
∂

∂ ],|[ zx   =  [ΦUi - ΦLi]βw = [Prob(uncensored region)] × coefficient, 

 
where Φji is the probability associated with the censored regions, lower or upper.  (See the technical 
details below.)  For the terms in the variance function, we have the result 
 

 
i

iii

w
yE
∂

∂ ],|[ zx   =  σi[φLi - φUi] γw = σi [difference in densities at censoring points]×coefficient. 

 
Now, let wi be a variable which is assumed to appear both in xi and zi.  Then, 
 

 
i

iii
w

yE
∂

∂ ],|[ zx   =  [ΦUi - ΦLi]βw  +  (φLi - φUi)σiγw. 

 
This provides a decomposition of the marginal effect.  The decomposition is reported in the table of 
marginal effects.  (See the example below and the derivations in the technical details below.)  As 
always, marginal effects are requested with 
 
   ; Partial Effects 
 
Partial Effect for a Dummy Variable 
 
 The partial effect for a binary variable will be more involved than that for a continuous 
variable.  Define the following components, where C is the dummy variable 
 
   E[y*|x,C=1]  =  β′x + δ, Var[ε|z,C=1]  =  σexp(γ′z + λ)  =  σ1 

   E[y*|x,C=0]  =  β′x , Var[ε|z,C=0]  =  σexp(γ′z)  =  σ0 
 
We assume that C can enter either the mean function, the standard deviation, or both.  To 
accommodate all cases, either δ or λ may be zero, but neither need be.   
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 Now, let the censoring limits be L and U, 
 
   αL

1   =  (L - β′x - δ)/σ1, αL
0  =  (L - β′x)/σ0 

   αU
1   =  (U - β′x - δ)/σ1, αU

0  =  (U - β′x)/σ0 

   Φj
m =  Φ(αj

m), j = L,U, m = 0,1 

   φj
m =  φ(αj

m), j = L,U, m = 0,1 
 
The conditional mean functions for the two cases, C = 1 and C = 0, are 
 
 E[y|x,z,C]   =  ΦL

mL + (1 - ΦU
m)U + (ΦU

m - ΦL
m)(β′x + m) + σm(φL

m - φU
m), m = 0,1 

 
This does not simplify in any convenient way.  Taking the difference, 
 
 E[y|x,z,C=1] - E[y|x,z,C=0]  = (ΦL

1 - ΦL
0)L + (ΦU

0 - ΦU
1)U 

    + β′x (ΦU
1 - Φ L

1 - Φ U
0 + Φ L

0) + δ(Φ U
1 - Φ L

1) 

    + σ1(φL
1 - φ U

1) - σ0(φL
0 - φ U

0) 
 
The internal program invoked with ; Partials in the command computes effects for dummy variables 
using the scaled coefficients, as if the variable were continuous.  To obtain partial effects (at the 
means, or averaged over the data), you should use the PARTIALS command instead.  The example 
below illustrates. 
 The following illustrates the testing procedures and computation of partial effects for the 
heteroscedasticity model.  It computes the LM, LR and Wald tests, respectively. 
 

CREATE  ; kids = (kl6+k618)>0 ; y = whrs $ 
NAMELIST ; x = one,kl6,k618,wa,we  ; z = wa,kids $ 

 CALC  ; kx = Col(x) ; kz = Col(z) $ 
 TOBIT  ; Lhs = y ; Rhs = x  $ 
 CALC  ; lr = logl ; vr = s $ 
 TOBIT  ; Lhs = y ; Rhs = x ; Hfn = z ; Het 
   ; Start = b, kz_0, vr ; Maxit = 0 $ 
 CALC  ; List ; signif = 1 - Chi(lmstat,(Col(z))) $ 
 TOBIT  ; Lhs = y ; Rhs = x ; Hfn = z ; Het ; Par ; Partials $ 
          NAMELIST ; xz = x,kids $  (wa already appears in x) 
 PARTIALS ; Effects : xz ; Summary $ 
 CALC  ; lu = logl ; kx1 = kx+1 ; kxz = kx+kz 
   ; List ; lrstat = 2*(lu - lr) ; signif = 1 - Chi(lrstat,kz) $ 
 MATRIX ; ghet = b(kx1:kxz) ; vghet = varb(kx1:kxz, kx1:kxz) $ 
 MATRIX ; List ; waldstat = ghet’ <vghet> ghet $ 
 CALC  ; List ; signif = 1 - Chi(waldstat,kz) $ 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
Log likelihood function     -3904.16871 
Estimation based on N =    753, K =   6 
Threshold values for the model: 
Lower =      .0000    Upper = +infinity 
LM test [df] for tobit=     32.311[  5] 
Normality Test, LM    =     10.355[  2] 
ANOVA  based fit measure =      .049046 
DECOMP based fit measure =      .165396 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Primary Index Equation for Model 
Constant|    1320.87***    482.9241     2.74  .0062      374.36   2267.39 
     KL6|   -1077.45***    126.2053    -8.54  .0000    -1324.81   -830.09 
    K618|   -128.258***    42.74783    -3.00  .0027    -212.043   -44.474 
      WA|   -41.5052***     7.70256    -5.39  .0000    -56.6019  -26.4084 
      WE|    95.5038***    22.86314     4.18  .0000     50.6928  140.3147 
        | Disturbance standard deviation 
   Sigma|    1281.18***    48.18563    26.59  .0000     1186.74   1375.62 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Maximum of     0 iterations. Exit iterations with status=1. 
Maxit = 0. Computing LM statistic at starting values. 
No iterations computed and no parameter update done. 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
LM Stat. at start values        5.65988 
LM statistic kept as scalar    LMSTAT 
Log likelihood function     -3904.16871 
Estimation based on N =    753, K =   8 
Inf.Cr.AIC  =   7824.3 AIC/N =   10.391 
Model estimated: Aug 02, 2011, 07:51:54 
Threshold values for the model: 
Lower =      .0000    Upper = +infinity 
LM test [df] for tobit=     32.311[  5] 
ANOVA  based fit measure =      .049046 
DECOMP based fit measure =      .165396 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Primary Index Equation for Model 
Constant|    1320.87***    493.6328     2.68  .0075      353.37   2288.38 
     KL6|   -1077.45***    132.6381    -8.12  .0000    -1337.41   -817.48 
    K618|   -128.258***    45.15824    -2.84  .0045    -216.767   -39.750 
      WA|   -41.5052***     8.06388    -5.15  .0000    -57.3101  -25.7003 
      WE|    95.5038***    24.45763     3.90  .0001     47.5677  143.4398 
        | Heteroscedasticity Term 
      WA|        0.0         .00664      .00 1.0000 -.13009D-01  .13009D-01 
    KIDS|        0.0         .11419      .00 1.0000 -.22380D+00  .22380D+00 
        | Disturbance standard deviation 
   Sigma|    1281.18***    426.1212     3.01  .0026      446.00   2116.36 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
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[CALC] SIGNIF  =       .0590164 
 

--------+-------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
Log likelihood function     -3901.57772 
LM test [df] for tobit=    191.958[  5] 
ANOVA  based fit measure =      .039876 
DECOMP based fit measure =      .070291 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Primary Index Equation for Model 
Constant|    1436.37***    484.4913     2.96  .0030      486.79   2385.96 
     KL6|   -1034.95***    119.7063    -8.65  .0000    -1269.57   -800.33 
    K618|   -113.243***    43.13381    -2.63  .0087    -197.783   -28.702 
      WA|   -44.2385***     7.90943    -5.59  .0000    -59.7406  -28.7363 
      WE|    92.8179***    24.87012     3.73  .0002     44.0734  141.5625 
        | Heteroscedasticity Term 
      WA|     .00772         .00689     1.12  .2625     -.00578    .02122 
    KIDS|    -.07185         .11555     -.62  .5341     -.29833    .15462 
        | Disturbance standard deviation 
   Sigma|    968.183***    325.5848     2.97  .0029     330.048  1606.317 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected value  
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
       Y|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Effect of variables in Xbeta (mean) 
     KL6|   -612.113***    69.69413    -8.78  .0000    -748.711  -475.515 
    K618|   -66.9762***    25.57280    -2.62  .0088   -117.0980  -16.8544 
      WA|   -26.1644***     4.58136    -5.71  .0000    -35.1437  -17.1851 
      WE|    54.8962***    14.80223     3.71  .0002     25.8844   83.9080 
        | Effect of variables in exp(Zgamma) (variance) 
      WA|    3.83349        3.48858     1.10  .2718    -3.00400  10.67099 
    KIDS|   -35.6906       57.22086     -.62  .5328   -147.8414   76.4602 
--------+-------------------------------------------------------------------- 
 
Partial Effects for Tobit (Censored) Regression Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      KL6       -579.06888   98.76835    5.86  -772.65129  -385.48647 
      K618       -63.36060   25.57620    2.48  -113.48904   -13.23216 
      WA         -22.20567    5.65882    3.92   -33.29675   -11.11460 
      WE          51.93273   15.47267    3.36    21.60686    82.25860 
   *  KIDS       -23.49918   50.69046     .46  -122.85065    75.85229 
--------------------------------------------------------------------- 
 

[CALC] LRSTAT  =      5.1819841 
[CALC] SIGNIF  =       .0749457 
WALDSTAT|             1 
--------+-------------- 
       1|       3.90215 
[CALC] SIGNIF  =       .1421215 
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Technical Details for the Tobit Model with Heteroscedasticity 
 
 The parameters are not normalized by the Olsen transformation for this model.  We let: 
 
   εi   =  yi - β′xi, 

    θi   =  σεγ′zi, 

    d0i   =  1 if yi < L or yi > U, 0 otherwise, 

    d1i   =  1 - d0, 

    ri    =  1 and  wi  = (β′xi - Li)/θi if yi ≤ Li,  

    ri    =  -1 and wi  = (Ui  -  β′xi)/θi if yi ≥ Ui, 

    Pi   =  Φ(-wi) 

   φi =  φ(-wi). 

Then,   logLi   =  d0i logPi + d1i (-logθi - (εi/θi)2/2 - log(2π)/2), 

    ∂logLi/∂β  =  [(d1iεi/θi - d0i riφi/Φi)/θi]xi, 

    ∂logLi/∂γ =  [d1i ((εi/θi)2 - 1) + d0iwiφi/Φi]zi, 

    ∂logLi/∂σ =  [d1i ((εi/θi)2 - 1) + d0iwiφi/Φi]/σ. 
  
The BHHH estimator, using the outer product of the gradients, is used to estimate the asymptotic 
covariance matrix of the estimates. 
 The marginal effects in this model are complicated a bit by the fact that variables may appear 
in both the mean and the variance.  The conditional mean function in the fully general model is 
 

   E[yi|xi,zi]  = ΦLi×Li  +  (1-ΦUi)Ui + ( ) Li Ui
Ui Li i i

Ui Li

 φ − φ′Φ − Φ + σ Φ − Φ 
xβ  

where   ΦLi  =  i i

i

L ′ −
Φ σ 

xβ  =  Φ(αLi), and let aLi  =  ∂αLi/∂σi = -αLi/σi 

   ΦUi  =  i i

i

U ′ −
Φ σ 

xβ  =  Φ(αUi), and let aUi  =  ∂αUi/∂σi = -αUi/σi 

   σi   =  σeγ′zi . 
 
As derived in Greene (1999), marginal effects for the variables in the mean are simple; 
 
   ∂E[yi|xi,zi]/∂xi =  (ΦUi - ΦLi)β 
 
But, ∂E[yi|xi,zi]/∂σi is considerably more involved (at least it appears so).  The desired result is 
 

   
i

iiiyE
σ∂

∂ ],|[ zx  =  φLi Li aLi - φui Ui aUi + β′xi φUi aUi - β′xi φLi aLi + φLi - φUi  

             - σi αLi φLi ×(-αLi)/σi + σi αUi φUi ×(-αUi)/σi. 
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Collecting terms, and recalling the definitions of αLi and αUi produces the striking result 
 

   
i

iiiyE
σ∂

∂ ],|[ zx  =  φLi - φUi  

 
Now, let wi be a variable which is assumed to appear both in xi and zi.  Then, 
 

   
i

iii
w

yE
∂

∂ ],|[ zx  =  [ΦUi - ΦLi]βw  +  (φLi - φUi)σiγw 

 

 Analytic results for the standard errors of the marginal effects are complicated considerably 
by the presence of the estimated ancillary parameter, σ.  To simplify matters, let γ0 = logσ  and add a 
constant (one) to zi.  Include this parameter in γ so that now, σi = exp(γ′zi).  The full parameter vector 
is now θ  =  [β′, γ′]′.  In preparation for this, the entire last row of the (K + L + 1)×(K + L + 1) 
asymptotic covariance matrix for the directly estimated parameters, β, γ (without γ0), and σ, is 
multiplied by 1/σ, then the last diagonal element is multiplied by 1/σ again. This gives us a 
parameter vector and asymptotic covariance matrix that are conveniently partitioned into two parts. 
With all this in place, we now obtain the estimates of the asymptotic standard errors for the marginal 
effects using the delta method.   The marginal effects are 
 
   δx   =  [ΦU - ΦL] × β 

   δz   =  [φL - φU]σ × γ 
 
(Observation subscripts are dropped for the moment.  Recall, σ = exp(γ′z).  In order to use the delta 
method, we will require the following derivatives - the tedious algebra is omitted; 
 

   ')(1)(
'

xIx β
β
δ

LULU φ−φ
σ

−Φ−Φ=
∂
∂  

   ')(
'

zx β
γ
δ

UULL αφ−αφ=
∂
∂  

   ')(
'

xz γ
β
δ

UULL αφ−αφ=
∂
∂  

   ( ) ')')((
'

22 zzIz γγ
γ
δ

UULLUL φα−φασ++φ−φσ=
∂
∂   

 
Collect these in the matrix G which is now partitioned conformably with the estimated asymptotic 
covariance matrix for the parameter estimates, V.  The estimated asymptotic covariance matrix for 
the marginal effects is then GVG′.  At completion, the last row and column, corresponding to the 
scale parameter, σ, are discarded.  Finally, for variables which appear in both x and z, the marginal 
effect is the sum.  The estimated asymptotic variance for such a variable is simply the sum of the two 
estimated variances plus twice the estimated covariance.  
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E47.2.2 Bivariate and Nested Tobit Models 
 
The equations of a bivariate tobit model would be 
 
   y

   y1 =  Maximum (y1*
1*   =  β1′x1  +  ε1 

    y2*

, 0)  (the usual tobit specification) 

   y2 =  Maximum (y2*

   =  β2′x2  +  ε2 

    ε1,ε2 ~  N[0,0,σ1
2,σ2

2,ρ], covariance is σ12  =  ρσ1σ2. 

, 0)  (the usual tobit specification) 

 
The parameters of the bivariate model may be estimated by full information maximum likelihood 
(FIML). The nested tobit variant of this model, as specified in Lee (1992) and Howe, et al. (1994) is 
another form of sample selection model:  The model is defined by the additional specification 
 
   y2,x2 observed only when y1 > 0. 
 
 The command for the bivariate tobit model is 
 
 BTOBIT ; Lhs = y1,y2 ; Rh1 = ... x1 ... ; Rh2 = ... x2 ... $ 
 
and for nested tobit model, it is 
 
 NTOBIT   ; Lhs = y1,y2 ; Rh1 = ... x1 ... ; Rh2 = ... x2 ... $ 
 
The parameter vector for both models is θ = [β1,β2,σ1,σ2,ρ].  The default starting values for the 
iterations are OLS as usual for the tobit model, and zero for ρ.  You may provide your own starting 
values with ; Start = list and impose within equation restrictions on the parameters with ; Rst = list. 
The limit points for both equations in this model must be zero.  The ; Limits = ... specification is not 
used, and is ignored if present. 
 The usual output and optimization options are available for this model, however, neither 
fitted values (; Keep, ; List, ; Res) nor marginal effects (; Partial Effects) are computed.  The 
retrievable results are b = (β1,β2) and varb.  The specification ; Par adds (σ1,σ2,ρ) to b and varb.  
The scalars are kreg = k1+k2+3, nreg, logl, sigma1, sigma2, rho, and exitcode.  The Last Model labels 
for WALD are b1_variables, b2_variables, sigma1, sigma2, r12. 
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Technical Details 
 
 We use the Olsen normalization, γ1 = β1/σ1, η1 = 1/σ1, γ2 = β2/σ2, η2 = 1/σ2.  The  remaining 
parameter is ρ = Corr[η1ε1,η2ε2].  During estimation, we use the transformation of ρ, τ = 
log((1+ρ)/(1-ρ)). This transformed parameter ranges over the entire real line, so the parameter cannot 
go out of bounds during the iterations. Internally, ρ is obtained as ρ = [exp(τ)-1]/][exp(τ)+1]. 
Derivatives are modified accordingly.  However, note that technical output shown during iterations 
will display τ, nor ρ.   
 Let  
   δ = 1/(1 - ρ2)1/2, 

    ε1 =  η1y1 - γ1′x1, 

    ε2 =  η2y2 - γ2′x2 
 
Then, the log likelihood function for the nested tobit model is 
 
   log L   =  Σy1=0log[1 - Φ(γ1′x1)] 

             +  Σy1=1,y2=0 log{η1φ(η1y1 - γ1′x1)[1 - Φ(δ(γ2′x2 + ρε1))]} 

             +  Σy1=1,y2=1 -log2π + log(η1η2δ- 2δ2(ε 1
2

2
2 + ε

 
 - 2ρε1ε2). 

The third term is the log of the density of the bivariate normal distribution.  Derivatives can be 
obtained from results above.  The BHHH estimator is used for the asymptotic covariance matrix.  
For the bivariate tobit model, there are four cells.  The second term above is accompanied by a 
counterpart which reverses the role of the two variables while the first is replaced with the joint 
probability of two limit observations.  The result is 
 
   log L =   Σy1=0,y2=0log[Φ2(-γ1′x1, -γ2′x2, ρ)] 

         + Σy1>0,y2=0 log{η1φ(η1y1 - γ1′x1)[1 - Φ(δ(γ2′x2 + ρε1))]} 

        + Σy1=0,y2>0 log{η2φ(η2y2 - γ2′x2)[1 - Φ(δ(γ1′x1 + ρε2))]} 

        + Σy1=1,y2=1 -log2π + log(η1η2δ- 2δ2(ε 1
2

2
2 + ε

 
 - 2ρε1ε2), 

where Φ2 denotes the CDF for the bivariate standard normal distribution. 
 
NOTE:  Because of the use of the Olsen transformation, it is not possible to impose cross equation 
equality restrictions in this model.  In principle they may be imposed, but equality of scaled (by σj) 
coefficients does not imply equality of the original coefficients. 
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Application 
 
 To illustrate this model, we have fit a bivariate tobit model for the wife’s and husband’s 
hours in the labor supply data.  The command is 
 
 BTOBIT ; Lhs = whrs,hhrs ; Rh1 = one,kl6,k618  
   ; Rh2 = one,ha,he,faminc,kids $ 
 
----------------------------------------------------------------------------- 
Maximum likelihood ests.: Bivariate Tobit 
First  equation LHS variable: Y1 = WHRS 
Second equation LHS variable: Y2 = HHRS 
Estimation based on N =    753, K =  11 
Inf.Cr.AIC  =  19611.7 AIC/N =   26.045 
Nonlimit observations: WHRS    --   428.0 
Nonlimit observations: HHRS    --   753.0 
--------+-------------------------------------------------------------------- 
    WHRS|                  Standard            Prob.      95% Confidence 
    HHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Equation (RHS) for WHRS 
Constant|    545.371***    74.42661     7.33  .0000     399.498   691.245 
     KL6|   -775.299***    121.8240    -6.36  .0000   -1014.069  -536.528 
    K618|   -40.9340       42.04329     -.97  .3302   -123.3374   41.4693 
        |Equation (RHS) for HHRS 
Constant|    2300.79***    211.2934    10.89  .0000     1886.66   2714.92 
      HA|   -6.88365**      3.39381    -2.03  .0425   -13.53540   -.23190 
      HE|    8.61231        7.69781     1.12  .2632    -6.47512  23.69975 
  FAMINC|     .00619***      .00193     3.21  .0013      .00241    .00997 
    KIDS|    38.2482       57.43590      .67  .5055    -74.3241  150.8205 
        |          Disturbance Variances and Correlation 
Sigma(1)|    1325.83***    56.71038    23.38  .0000     1214.68   1436.98 
Sigma(2)|    586.483***    11.51530    50.93  .0000     563.913   609.052 
RHO(1,2)|    -.10319**       .04170    -2.47  .0133     -.18491   -.02146 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E47.3 Categorical (Grouped) Data 
 
 A special case of the censored data regression model arises when the range of the dependent 
variable is completely censored.  This is the case when data are reported only by interval category.  
For example, income data might be reported only by range.  We assume that the finite (internal) 
terminal points are known.  The dependent variable is coded y = 1, 2, ..., J (not 0,..., as in the case of 
the probability models).  For example, consider a survey of incomes, which reports ranges: 
  
   y     =  1 if           y*    <     $ 15,000, 
    2 if  $ 15,000 ≤  y* <   $ 30,000, 
    3 if  $ 30,000 ≤  y*   <   $ 50,000, 
    4 if  $ 50,000 ≤ y*   <   $ 75,000, 
    5 if   y*   ≥   $ 75,000. 
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Formally, the model is 
 
   (unobserved) y *  =  β′x  +  ε,  ε ~ N[0,σ2], 

   (observed) y    =  j  if  Aj-1  ≤  y*  <  Aj, j = 1,...,J, A0 = -∞, AJ = +∞. 
 
The difference between this and the ordered probit model of Chapter E34 is that the threshold values 
are known here.  Since that is true, there is information on the scale of y* in the data.  Hence an 
estimate of σ is produced.  It is not necessary to normalize it to 1.0. 
 The command for the grouped data model is 
 
 GROUPED DATA ; Lhs = dependent variable  
 (or just GROUPED) ; Rhs = regressors 
   ; Limits = a1,a2,...,aJ-1 $  
 
The limit points may be constants or variables.  If your data are in J groups, there will always be 
exactly J-1 interior limit values, which must be given in increasing order.  If the match is not found, 
the estimator aborts.  The data will be inspected to determine the value of J.  In addition, if there are 
any empty cells (i.e., intermediate values of y which are never observed), a diagnostic is given and 
the estimation is discontinued.  The limits are also checked.  If they are not in ascending order for 
every observation, it is necessary to stop the estimation.  For the earlier example, the command 
would be 
 
 GROUPED DATA ; Lhs = y  
   ; Rhs = ... regressors 
                ; Limits = 5000,7000,10000,15000 $  
 
In this case, there are five values of the dependent variable, so four limit values are given. 
 The command is otherwise identical to the TOBIT command, and the other options (fitted 
values, restrictions, starting values, iteration controls, and so on) are the same.  Output is likewise the 
same.  Since the dependent variable is not observed, there is no obvious conditional mean function.  
As such, there are no marginal effects for this model.  You can request a listing of predictions of a 
sort with ; List.  Let Li and Ui denote the lower and upper limits of the range indicated by the 
observed yi.   Thus, if yi equals one, Li is -∞ and Ui is A1, the first limit value given. The conditional 
mean function is then the expected value of y* in this range, which is the same as that for the 
truncated regression model, 
 

   E[y *|xi , Li < y* < Ui ]  =  β′xi  +  σi
LU

UL
Φ−Φ
φ−φ , 

where   αj  =  (j - β′x)/σ, j = L,U 

   Φj  = Φ(αj) 

   φj   = φ(αj). 
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 The results displayed for this model are the same as for the tobit model including OLS results 
if you request them with ; OLS, the iterations, then, the log likelihood, endpoints of all intervals, 
estimates of [β,σ], and so on.  The retrievable results (matrices b and varb, scalars, and Last Model 
labels) for this estimator are also the same as for the tobit model with the creation of an additional 
matrix, 
 

 limits = limit values, including large values for the outside limits (-∞ and +∞). 
 
This matrix can be used in subsequent GROUPED DATA commands, for example, if you are using 
the same Lhs variable and just changing the specification on the right hand side. 
 
NOTE:  The OLS starting values are obtained by a crude transformation of the dependent variable.  
For y = 1, y’ = A1; if y = J, y’ = AJ-1.  For other values, y’ is the average of the two bracketing limit 
values.  Then, y’ is regressed on the Rhs variables.  This will produce a coefficient vector that has the 
same order of magnitude as the MLE. 
 
E47.3.1 Grouped (Categorical) Panel Data 
 
 LIMDEP’s full menu of panel data estimators is available for the categorical data regression 
model.  (Full documentation on the modeling frameworks appears in Chapter R24 and below for the 
tobit model.)  To estimate the model, you must provide the starting values, which you should do, in 
all cases, by first fitting the model with no individual effects.  Thus, your command for this model 
will appear as 
 
 GROUPED ; Lhs = ... ; Rhs = ... ; Limits = the set of limits as described above $ 
 GROUPED ; Lhs = ... ; Rhs = ... ; Limits = the set of limits as described above  
   ; Pds = ... the specification of the panel structure 
 
plus exactly one of 
 
   ; FEM for the fixed effects model 
or   ; RPM ; Fcn = ... specification for the random parameters model 
or   ; LCM ; Pts = J   for the latent class model  $ 
 
Other parts of the specification for the categorical data model are the same as for other models of this 
type, e.g., tobit and truncation, that are documented elsewhere in this chapter. 
 
E47.3.2 Heteroscedasticity 
 
 LIMDEP’s generic formulation for heteroscedasticity, 
 
   σi = σ × exp(δ′zi) 
 
is supported for the grouped data (interval censored) regression model.  The option is requested with 
 

  ; Het ; Hfn = list 
 
Since the basic scale parameter σ is maintained, it plays the role of the constant term in the variance 
model, so your ; Hfn list should not contain one. 
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E47.3.3 Grouped Data and Sample Selection 
 
 The grouped data model is also extended to the sample selection treatment.  (This model is 
developed in Bhat (1994).)  The model is as above with the added feature that data for the primary 
model are observed (or not) nonrandomly via a Heckman style selection equation.  The model is as 
follows: 
   y * =  β′x  +  ε, ε ~ N[0,σ2], 

    y =  j  if  Aj-1  ≤  y * <  Aj, j = 1,...,J, A0 = -∞, AJ = +∞, 

    d * =  α′z  +  u, 

    d =  1 if d* > 0 and 0 otherwise, 

    [ε,u] ~  N2[0,0,σ2,1,ρ], 

    [y,x]     are observed only when d = 1. 
 
The correlation between ε and u is ρ.  The selection aspect of the model arises when ρ is not equal to 
zero.  Note that this extension is the same as its counterpart discussed below for the tobit model. 
 The command is 
 
 GROUPED ; Lhs = y,d   
   ; Rh1 = variables in x  
   ; Rh2 = variables in z 
   ; Limits = a1, a2,...,aJ-1 $ 
 
The GROUPED DATA command is exactly the same as in the nonselected case.  As before, you 
give only the interior limit points.  The difference is the specification of the probit equation by the 
second Lhs variable and the Rh2 list.  (Since this model proceeds directly to the MLE, we do not 
begin with a separate PROBIT command, as we do with most other sample selection models.) 
 The usual options are available, including fitted values, residuals, optimization controls, etc., 
with two exceptions.  First, the ; Partial Effects option is not supported for this model.  Second, the 
default algorithm is BFGS, and this cannot be changed.  In addition, you may impose within 
equations restrictions with the ; Rst = list option.   
 
NOTE:  Cross equation restrictions in this model are problematic, because the model fits the 
transformed parameters, not the original ones.  Unless you force the two standard deviations to be 
equal, it is not possible to force coefficients in the two equations to be equal. 
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 The fitted values for this model are computed using Bhat’s results:  Let 
 
   δ   =  1/(1 - ρ2)1/2,  

   η  =  1/σ,  

   q =  α′z 

    Wm =  ηAm  -  γ′x, m = L,U (limits for the range in which y falls) 

    Vm =  δ(q + ρWm), m = L,U 

    Tm =  δ(Wm + ρq), m = L,U. 
Then 

   E[y*|x,d=1]  =  β′x  +  σ
),,(),,(

)]()()[()()()()(

22 ρ−Φ−ρ−Φ
Φ−Φρφ+Φφ−Φφ

qWqW
TTqVWUVW

LU

LUULL  

 
The retrievable results from this model are 
  
 Matrices: b, varb;  use ; Par to add (σ,ρ) to the parameter vector 
 
 Scalars: s, rho, logl, kreg, nreg, ybar, sy, exitcode 
 
 Last Model: b_variables = elements of β  
   a_variables = elements of α, sigma, r12 
 
 The grouped data model with sample selection is developed further in Section E47.3.3.  The 
mathematical background and an application are presented there as well. 
 
E47.3.4 Application 
 
 To illustrate the model, the dependent variable in the tobit hours equation was recoded as 
follows: 
 
 CREATE ; whrss = whrs $ 
 RECODE  ; whrss ; 0/600 = 1 ; 600.1/1000 = 2 ; 1000.1/1500 = 3  
   ; 1500.1/2000 = 4 ; * = 5 $ 

NAMELIST ; x = one,kl6,k618,wa,we $ 
 
Then, GROUPED ; Lhs = whrss 
   ; Rhs = x 
   ; List 
   ; Limits = 600,1000,1500,2000 $ 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                WHRSS 
Log likelihood function      -935.28872 
Estimation based on N =    753, K =   6 
Inf.Cr.AIC  =   1882.6 AIC/N =    2.500 
Censoring Thresholds for the  5 cells: 
 y   Lower   Upper y   Lower    Upper 
 1 *******  600.00  2  600.00 1000.00 
 3 1000.00 1500.00  4 1500.00 2000.00 
 5 2000.00 ******* 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   WHRSS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    1588.32***    478.3766     3.32  .0009      650.72   2525.92 
     KL6|   -1022.09***    139.5848    -7.32  .0000    -1295.67   -748.51 
    K618|   -160.894***    43.99771    -3.66  .0003    -247.128   -74.660 
      WA|   -35.3833***     7.70697    -4.59  .0000    -50.4887  -20.2779 
      WE|    63.2289***    22.58890     2.80  .0051     18.9554  107.5023 
        |Disturbance standard deviation 
   Sigma|    1180.16***    61.29222    19.25  .0000     1060.03   1300.29 
--------+-------------------------------------------------------------------- 
 
E47.3.5 Technical Details for the Grouped Data Regression Models 
 
 Optimization is the same as for TOBIT.  All options, including ; Maxit, ; Tlf, ; Start, ; Rst, 
etc. operate the same.  Olsen’s transformation is used during the iterations.  The log likelihood 
function for the grouped data model is 
 
    log L =  Σi{log[Φ(ηU - γ′xi) - Φ(ηL - γ′xi)]} 

where   γ =  β/σ and η  = 1/σ. 
  
For this case, U is the upper limit of the range in which yi falls, and L is the lower limit.  Gradients 
and Hessians for these can be derived using the results shown earlier for the tobit model, as the terms 
are identical.  The second derivatives are used in estimating the asymptotic covariance matrix for the 
estimates. 

   ∂logL/∂(γ,η)   =  
1

1n i i
U Li

U L U L=

 − −   
φ − φ    Φ − Φ     

∑
x x

 

 
Let    λm =  φm / [ΦU - ΦL], m = L,U 
 
and   wm =  [-x, m]′, m = L,U 
 

Then, 
2 log

( , ) ( , )
L∂

′∂ η ∂ ηγ γ
= ∑ =

n
i 1

{λUwU [(-αU - λU)wU′ + λLwL′]} - {λLwL [(-αL + λL)wL′ - λUwU′]}. 
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E47.4 The Truncated Regression Model 
 
 The truncated regression model applies to the nonlimit observations in the tobit formulation. 
For the basic model with lower truncation at zero, the density is 
 
   f(y | x)   =  f(y*| x) if y* > 0. 

But,    Prob(y * > 0 | x) =  Prob(β′x + ε > 0), ε~ N[0,σ2]   

            =  Prob(ε > -β′x) 

            =  Φ[β′x/σ]. 

Therefore,    f[y | x]  =  (1/σ)φ[(y - β′x)/σ] / Φ[β′x/σ]. 
 
This is not a linear regression model.  For a general specification in which the range of the variable is 
truncated in (possibly) both tails, the conditional mean function is 
 

   E[yi|xi , Li  <  yi  <  Ui ]  =  β′xi  +  σ L U

U L

φ − φ
Φ − Φ

, 

 
where the specification of the limits is the same as that for the tobit model and 
 
   αlimit   =  (limit  -  β′x)/σ, limit = Ui or Li 

   Φlimit =  Φ(αlimit) 

   φlimit =  φ(αlimit) 
 
 Least squares is inconsistent.  The estimator used here is maximum likelihood.  As with the 
tobit model, we allow truncation in either or both tails of the distribution, and the truncation points 
may be constants or variables. The specifications are identical to that for the tobit model described in 
Section E47.2 save for the command name: 
 

           TRUNCATION ; Lhs = y  
   ; Rhs = covariates $ 
  

This specifies the default case of lower truncation at zero.  Alternative specifications of the 
truncation limits use 
   ; Limit = value or name for a different lower truncation limit 
   ; Upper  (only) for upper truncation at 0 (all observed ys will be negative) 
   ; Limit = value ; Upper for a different, upper truncation limit 
   ; Limits = lower, upper specification for truncation in both tails 
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E47.4.1 Truncated Regression for Panel Data 
 
 LIMDEP’s full menu of panel data estimators is available for the categorical data regression 
model.  (Full documentation on the modeling frameworks appears in Chapter E46 and below for the 
tobit model.)  To estimate the model, you must provide the starting values, which you should do, in 
all cases, by first fitting the model with no individual effects.  Thus, your command for this model 
will appear as 
 
 GROUPED ; Lhs = ... ; Rhs = ... ; Limits = the set of limits as described above $ 
 GROUPED ; Lhs = ... ; Rhs = ... ; Limits = the set of limits as described above  
   ; Pds = ... the specification of the panel structure 
 
plus exactly one of 
 
   ; FEM for the fixed effects model 
or   ; RPM ; Fcn = ... specification for the random parameters model 
or   ; LCM ; Pts = J   for the latent class model  $ 
  
Other parts of the specification for the categorical data model are the same as for other models of this 
type, e.g., tobit and truncation, that are documented elsewhere in this chapter. 
 
Standard Model Specifications for the Truncated Regression Model 
 

This is the full list of general specifications that are applicable to this model estimator 
 
Controlling Output from Model Commands 
 

; Par  keeps ancillary parameter σ with main parameter β vector in b. 
; Margin displays marginal effects. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  
; Cluster = name cluster form of corrected covariance estimator. 

 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set  keeps current setting of optimization parameters as permanent. 
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Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
E47.4.2 Displayed and Retained Results 
 
 The display includes the log likelihood, the values or identity of the lower and upper bounds, 
and the estimates of [β,σ], once again, the same as the tobit model.  For the truncated regression, the 
prediction displayed by ; List and retained with ; Keep = name is the conditional mean function 
listed above.  We emphasize, the prediction is not β′x.  The residual that is kept with ; Res is just the 
difference between actual and predicted values.  Results saved by this estimator are: 
 
 Matrices:    b and varb which contain the estimates for β.  ; Par adds σ to these. 
 
 Scalars:    s  = σ 
     ybar, sy  for the dependent variable 
     kreg, and nreg  for the size of the estimation problem 
     logl  = log likelihood 
   nonlimts  = number of nonlimit observations for truncated regression.  
 
 Last Model:   b_variables, sigma 
 
 Last Function: Conditional mean function 
 
E47.4.3 Application 
 
 In the following results, a tobit model is reestimated as a truncated regression model.  The 
results are based only on the nonlimit observations.  A comparison of the coefficients and marginal 
effects to those of the tobit model is included in the results.  Note that both the truncated regression 
and tobit models are estimating the same parameters, consistently, though results reveal substantial 
differences.  The partial effects are quite different as well.  These are finite sample effects. 
 
 NAMELIST ; x = one,kl6,k618,wa,we $ 
 TRUNCATION ; Lhs = whrs ; Rhs = x ; Partial Effects $ 
 TOBIT  ; Lhs = whrs ; Rhs = x ; Partial Effects $ 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - TRUNCATE 
Dependent variable                 WHRS 
Log likelihood function     -3408.77245 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Primary Index Equation for Model 
Constant|    2355.46***    482.4378     4.88  .0000     1409.90   3301.02 
     KL6|   -570.113***    170.0824    -3.35  .0008    -903.468  -236.757 
    K618|   -179.301***    47.05707    -3.81  .0001    -271.531   -87.071 
      WA|   -13.1034*       7.79318    -1.68  .0927    -28.3778    2.1710 
      WE|   -30.8952       23.38742    -1.32  .1865    -76.7337   14.9433 
        | Disturbance standard deviation 
   Sigma|    902.808***    48.72942    18.53  .0000     807.300   998.316 
--------+-------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                 WHRS 
Log likelihood function     -3904.16871 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Primary Index Equation for Model 
Constant|    1320.87***    482.9241     2.74  .0062      374.36   2267.39 
     KL6|   -1077.45***    126.2053    -8.54  .0000    -1324.81   -830.09 
    K618|   -128.258***    42.74783    -3.00  .0027    -212.043   -44.474 
      WA|   -41.5052***     7.70256    -5.39  .0000    -56.6019  -26.4084 
      WE|    95.5038***    22.86314     4.18  .0000     50.6928  140.3147 
        | Disturbance standard deviation 
   Sigma|    1281.18***    48.18563    26.59  .0000     1186.74   1375.62 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point ******** 
Scale Factor for Marginal Effects   .6914 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
    WHRS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 (Truncated regression) 
     KL6|   -394.180***    115.7743    -3.40  .0007    -621.093  -167.267 
    K618|   -123.970***    32.01708    -3.87  .0001    -186.723   -61.218 
      WA|   -9.05979*       5.37207    -1.69  .0917   -19.58885   1.46927 
      WE|   -21.3612       16.14521    -1.32  .1858    -53.0052   10.2829 
--------+-------------------------------------------------------------------- 
 (Tobit) 
     KL6|   -638.163***    73.38291    -8.70  .0000    -781.991  -494.335 
    K618|   -75.9663***    25.35200    -3.00  .0027   -125.6553  -26.2773 
      WA|   -24.5831***     4.54659    -5.41  .0000    -33.4943  -15.6720 
      WE|    56.5660***    13.46930     4.20  .0000     30.1667   82.9653 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
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E47.4.4 Technical Details 
 
 The log likelihood for the truncated regression model is maximized easily using Olsen’s 
transformation of the parameters.  After transformation, the log likelihood is  
  
   Σi logLi  = Σi logθ - ½log2π - ½ εi

2 - log[Φ(θUi - γ′xi) - Φ(θLi - γ′xi)]. 
  
where θ = 1/σ and γ = β/σ.  Derivatives are obtained from results given earlier for the tobit model; 
 

   0log 1
1/
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        ∂
= ε + φ − φ +        − − − θΦ − Φ         ∂ θ 
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The Hessian is tedious, but obtained along similar lines.  Newton’s method is used for estimation, 
and the actual Hessian is used to estimate the asymptotic covariance matrix of the estimates. 
  
HINT:  The truncated regression model is sometimes less well behaved than the tobit model.  If the 
data are clustered far from the assumed truncation point, the model will attempt to mimic ordinary 
least squares, but in so doing, the iterations can fail to converge.  Thus, in an hours equation, if the 
range of yearly hours is 1,000 to 2,500, and you assume a truncation point of zero, in some data sets, 
the model (as specified) can be difficult or impossible to estimate. 
 
HINT:  Because the truncated regression is a bit volatile, Newton’s method will occasionally break 
down.  One of the symptoms is that the estimated variance goes out of range, and the function cannot 
be computed.  If you are having trouble getting estimates, try the BFGS algorithm; add ; Alg = 
BFGS to your command. 
 
HINT:  Discarding censored observations in the tobit setting does not legitimize OLS on the 
remaining observations.  It produces the truncated regression model. 
 
 The conditional mean function in the truncated regression model is 
 

   E[yi|xi , Li  <  yi  <  Ui ]  =  β′xi  +  σ L U

U L

 φ − φ
 Φ − Φ 

, 

 
As usual for nonlinear models, therefore, the coefficients are not the marginal effects.  
Differentiation of this function with respect to xi produces the vector of slopes 
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The term in brackets is the scale factor for the marginal effects shown in the examples above.  
Standard errors for the marginal effects are obtained by using the delta method.  The effects are 
evaluated at the data means.  The effects are written in terms of the parameters and the preceding 
scale factor as 
   δ(β,σ) =  β × h(β,σ) 
 
Now, let Γ = ∂δ(β,σ)/∂(β′,σ).  The asymptotic covariance matrix is the sample estimate of  
 
   V  =  Γ × Asy.Var ˆ ˆ, σ β  × Γ ′ 

 
The matrix Γ is extremely tedious.  (For brevity, derivatives are omitted).   The general form is 
 
   ∂δ(β,σ)/∂(β′,σ)  =  [I : 0]  +  [∂h/∂(β′x) × βx′  :  β∂h/∂σ] 
 
Derivation makes repeated use of the rule 
 
   ∂[f(t)/F(t)]/∂t  =  [1/F(t)]∂f(t)/∂t - [f(t) / F2(t)] [∂F(t)/∂t] 
 
and the template results for the standard normal distribution 
 
   ∂Φ(t)/∂t =  φ(t),  

   ∂φ(t)/∂t =  -tφ(t),  

   ∂αlimit/∂β =  -x/σ, 

and   ∂αlimit/∂σ =  -αlimit/σ. 
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E48: Multiple Equation LDV Models  
 
E48.1 Introduction 
 
 The models and estimators described in this chapter are variations on the following general 
simultaneous equations structure suggested in Maddala (1983) that encompasses most of the cases 
we wish to consider. 
 

  y1*  =  γ1y2*  +  x1′β1  +  ε1 

  y2*  =  γ2y1*  +  x2′β2  +  ε2 

  [ε1,ε2] ~ BVN [(0,0), (σ11,σ22), σ12], with correlation = ρ. 
  
The simultaneous equations model is stated in terms of the latent, continuous dependent variables, 
before censoring.  The (assumed) existence of a reduced form (γ1γ2 ≠ 1) is crucial.  The literature is 
occasionally a bit ambiguous on this point.  If, for example, it is assumed that the simultaneous 
equations model applies to observed variables, y1 and y2, while either or both are simple censored 
variables, for example, y1i = Max(Li,y1i*), then restrictions are needed to insure that the model is even 
internally consistent, and, worse yet, for most formulations, that will not even be possible.  (A large 
amount of useful discussion appears in Amemiya (1984) and Maddala (1983).)  . 
 We consider two groups of models.  The first is estimated by full information maximum 
likelihood.  The estimators in the models in Sections E48.3 and E48.4 below use the two step 
maximum likelihood method.  Details of this method for general applications are given in Section 
E48.6. 
 
E48.2 Simultaneous Equations Model 
 
 The tobit model may be embedded in a recursive simultaneous equations model: 
  
   y1  =  tobit as formulated above with y1*  = β′x1 + γy2 + ε1, 

   y2  =  π2′x2 + ε2  in which Corr[ε1 ,ε2 ]  =  ρ12. 
  
The estimator is full information maximum likelihood.  (The second equation is a linear regression 
with observed dependent variable.)  This model requires specification of a two equation model.  As 
such, you must give both dependent variables and the Rhs for each equation.  The command is 
  
 TOBIT  ; Lhs = y1,y2  
   ; Rh1 = Rhs for tobit, including y2 
   ; Rh2 = Rhs of regression model $ 
  
The primary object of estimation in this model is the tobit model.  As such, the model output will 
show the regression results, but other statistics will be primarily related to the tobit equation, not the 
regression. Also, the retrievable results and fitted values will be for the tobit model only.  An 
example appears below. 
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 The results displayed include: log likelihood; identification of the model; description of the 
displayed parameter vector; separate estimates of σ1

2, σ2
2, ρ; then the parameter vector, β including γ 

the coefficient on y2, π2, σ12/σ2
2, and σ1.2 = [σ1

2 
 The full set of model parameters is [β,π2,ρ,σ1

2
(1-ρ2)]1/2. 

,σ2
2

 

].  But, for purposes of starting values and 
restrictions, base your specification of ; Start and ; Rst on the vector 

   θ  =  [β,π2,ρ,σ1.2] 
  
in which β includes the coefficient on y2.  (The variables need not be in such order that y2 is the last 
variable in Rh1.  Subscript ‘2’  refers to the 2nd  equation.);  β in the first equation includes γ, the 
coefficient on y2.  The second disturbance variance, σ2

2, is estimated separately as the mean squared 
residual.  The estimated parameters are β,π2, ψ = σ12/σ2

2, and σ11.2  =  [σ1
2

 Output is as usual for the tobit model.  The initial OLS output will not include the second 
equation.  These initial estimates will be inconsistent both because of the censoring and because of 
the endogeneity of y2.  OLS starting values are used for the second equation as well, but these are not 
displayed. 

(1 - ρ2)]1/2. 

 All other options for this model are the same as for the basic tobit model, including fitted 
values, iteration controls, marginal effects, and so on.  The fitted values must be modified slightly for 
the simultaneous equations model.  We condition on ε2 = (y2 - π2′x2), so 
  
   E[yi* | y2,x1, ε2]  =  β′x1  +  γy2  +  (σ12/σ2

2
 )ε2. 

  
Other computations are the same.  Retrievable results, are also the same as for the tobit model of 
Section E45.2.  For this model, the matrix b includes only the slopes in the tobit equation, including 
the coefficient on y2.  The specification ; Par adds σ1.2 to the parameter vector.  Since σ1 is saved in 
s, the estimate of ρ can be computed from these values.  An additional matrix named pi2 is saved and 
contains the estimates of π2.  The scalars and Last Model labels and coefficients saved are those of 
the tobit model. 
 
E48.2.1 Application 
 
 To illustrate the model, we use the Mroz data and a contrived example in which 
 
   whrs  =  f1(k618,wa,we,kl6) 
 and   kl6   =  f2(faminc,cit) 
  
(that is, the number of small children is assumed to be endogenous).  As might be expected, the data 
lend little support to the specification.  (See the next subsection.) 
 

TOBIT  ; Lhs = whrs,kl6  
; Rh1 = one,k618,wa,we,kl6  
; Rh2 = one,faminc,cit $ 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                 WHRS 
Log likelihood function     -3022.86186 
Estimation based on N =    753, K =  10 
Inf.Cr.AIC  =   6065.7 AIC/N =    8.055 
Threshold values for the model: 
Lower =      .0000    Upper = +infinity 
LM test [df] for tobit=     37.160[  5] 
Tobit fit jointly with model for KL6 
Variance estimates: 
          Sigma-squared(1) =1660519.2145 
          Sigma-squared(2) =       .2736 
          Rho              =      -.1075 
First   5 slopes are for WHRS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    1246.85       842.5984     1.48  .1389     -404.61   2898.32 
    K618|   -128.196***    44.95896    -2.85  .0044    -216.314   -40.078 
      WA|   -41.4272***     8.10705    -5.11  .0000    -57.3167  -25.5376 
      WE|    96.1374***    25.49679     3.77  .0002     46.1646  146.1101 
     KL6|   -813.287       2244.597     -.36  .7171   -5212.616  3586.042 
        |Regression Equation 
Constant|     .27648***      .04052     6.82  .0000      .19706    .35591 
  FAMINC|-.36504D-06      .1215D-05     -.30  .7638 -.27458D-05  .20157D-05 
     CIT|    -.04720         .03894    -1.21  .2255     -.12351    .02912 
        |Variance parameters 
 s12/s22|   -264.941       2235.637     -.12  .9057   -4646.709  4116.828 
s[e1:e2]|    1281.14***    52.76083    24.28  .0000     1177.73   1384.55 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E48.2.2 Simultaneous Equations and Testing Exogeneity 
 
 In estimating the simultaneous equations model, 
  
   y1*  =  β1′x1 + γy2  + ε1  (tobit) 

    y2    =  π2′x2  +  ε2, 
  
LIMDEP estimates β1, γ, π2, ψ=σ12/σ2

2
 , and σ11.2  =  [σ1

2

 

(1 - ρ2)]1/2.  Exogeneity of y2 can be tested 
by a simple t test of the hypothesis that ψ equals zero.  (I.e., that ρ[ε1 ,ε2 ] = 0.)  This is just the 
second to last coefficient reported in the model output.  Note in the application above that the t ratio 
is quite close to zero.  
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E48.2.3 Models with More than Two Equations 
 
 For models with more than one regression equation, a similar maximum likelihood 
procedure could be constructed (see Blundell and Smith (1986)).  But, the authors show that there is 
a much simpler way to proceed.  The model is: 
 
     y1*  =  β1′x1 + γ2y2  + γ3y3 + ... +  ε1  (tobit), 

    y2   =  π2′x2  + ε2, 

    y3   =  π3′x3  +  ε3, 

    and so on. 
  
The authors show that under the null hypothesis of no simultaneity, the following procedure is 
asymptotically equivalent to a score, or Lagrange multiplier test of weak exogeneity, i.e.,           
Cov[ε1 ,εj ] = 0, j = 2,...: 
 
Step 1. Use OLS to regress yj on xj for j = 2,... (the regression equations) and keep the residuals (as 

vj, say). 
 
Step 2. Estimate the tobit model as specified above by maximum likelihood, but include these 

residual vectors as additional Rhs variables. 
 
Step 3. The hypothesis is tested by testing the joint hypotheses that the slopes on the residuals 

jointly equal zero. 
 
E48.2.4 Technical Details 
 

This model is examined in Blundell and Smith (1986).  FIML is a straightforward method of 
estimation.  The strategy is to factor the joint distribution of εi1 and εi2 as f(εi1,εi2) = f(εi2)f(εi1|εi2).  
The log likelihood function factors likewise.  The second equation is a classical regression model, so 
the log likelihood function can be concentrated over σ22.  Regardless of how β2 is ultimately 
estimated, the estimator of σ22 will be  

 

  ( )2

22 2 2 21
ˆˆ (1/ ) n

i ii
n y

=
′σ = −∑ x β . 

 
To construct the remaining part of the log likelihood, define  
 

  vi2 = (yi2 - xi2′β2),  

  vi1 = (yi1 - xi1′β1 - γ1yi2 - ψvi2)  

  ψ = σ12/σ22 

  ω  =  [σ11(1 - ρ2)]1/2 
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Then, the log likelihood consists of the sum of the concentrated log likelihood for the regression  and 
the part for the censored regression based on conditional distribution: 
 

  log L = -(n/2)log ( )
2

2 2 21
(1/ ) n

i ii
n y

=
′−∑ x β  + log 1 1

11 ψ
φ

ψ
vi

di

















=∑  

              +
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0
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d

L y v
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′ − γ − ψ Φ  ω 
∑ x β  

 
The function is maximized over β2, β1, ψ, and ω.  The second variance parameter is estimated 
residually, and then, σ12 and σ11 are recovered from the estimated parameters. 
 
E48.3 Tobit Model with Sample Selection 
 
 The sample selection model detailed in Chapter E52 is extended to the tobit model.  That is, 
    
   y  =  tobit as formulated earlier with x on the Rhs, 

    d  =  a probit model based on z*  =  α′z  +  u, 

    Corr[ε,u ] = ρ, 

    [y ,x ] observed only when d = 1. 
 
This model is a mixture of censoring and a type of truncation.  The procedure for estimating this 
model follows the standard set of steps for selectivity models given in Section E52.2.  Complete 
details are given there, so we will just sketch the procedure here.  The procedure for estimating a 
sample selectivity model in LIMDEP is: 
  
Step 1. Estimate the parameters of the probit model first and ; Hold them aside for the next step in 

the procedure. 
 
Step 2. Using the probit results from Step 1, fit the sample selection model. 
  
The estimator to be described here is a full information maximum likelihood estimator.  Nonetheless, 
at the beginning of Step 2, a second step least squares regression is computed in order to obtain the 
starting values for the MLE.  These are corrected for selection, to a degree, but they are still 
inconsistent.  The results given at this point are obtained by least squares, and, as such, are 
inconsistent in the same manner as the OLS coefficients are in the basic tobit model.  As noted, these 
are just starting values for the iterations.  The MLE is consistent and efficient. 
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 The commands are: 
  
 PROBIT ; Lhs = d ;  Rhs  =  list for z ; Hold $ 
 SELECT  ; Tobit ; MLE ; Lhs = ... ; Rhs = ... $ 
  
Note that the command for the tobit model in this case is SELECT, not TOBIT. 
 
NOTE:  As in the MLE for the selection model, there is no ‘lambda’ variable computed for this 
model.  The estimator is not least squares.  When a sample selection model is fit by maximum 
likelihood, there is no selection ‘correction’ variable added to the model. 
 
 The model parameters estimated by MLE are α, β, σ, ρ.  These are also the estimation 
parameters.  The probit coefficients precede the regression parameters in the parameter vector.  You 
may provide your own starting values for the iterations with 
  
   ; Start = ... list 
  
Fixed value and equality restrictions may be imposed with 
  
   ; Rst = ... list 
  
as well.  Note that  constraining σ and/or ρ will likely produce unsatisfactory results.  In addition, 
cross equation restrictions that equate elements of α to elements of β will be problematic because of 
the different scaling of the two dependent variables. 
 The first set of output from the SELECT command is the standard output from the two step 
least squares estimation of this model.  The final output includes the log likelihood and an indication 
of the parts of the parameter vector.  The parameter vector shown is [α,β,σ1,ρ].  Remaining output is 
the same as for the selection model.  The retrievable results from this estimator are as follows: 
  
 Matrices: b and varb as usual.  These contain [α,β,σ,ρ].  Do not use ; Par. 
   bsr1 = all of b except α. 
 
 Scalars: logl, nreg, rho, varrho, s, ybar, sy, sigma1,  
 
 Last Model: a_variables, b_variables, r12, sigma 
 
 Last Function:  None 
 
 The tobit model with sample selection is developed further in Section E54.7, where 
derivation of the mathematical framework, an application, and further technical details are presented. 
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E48.4 Two Step Estimation of Censored Regression Models  
 
 The following will describe several multiple equations models.  In principle, they can be 
generalized to an arbitrary numbers of equations.  But, practical limitations, primarily the difficulty 
of computing multivariate normal integrals, have usually limited the applications to two equations.  
We will focus on this case.  Some of the original sources noted suggest multivariate extensions. 
 
E48.4.1 Recursive Simultaneous Equations Model 
 
 If γ2 = 0, and only y1 is censored, the resulting equation system is 
 

  yi1*  =  γ1yi2  +  xi1′β1  +  εi1, yi1 = Max(Li1,yi1*) 

  yi2    =   xi2′β2  +  εi2. 
 
This estimator is programmed directly in LIMDEP, so FIML estimation is a preprogrammed 
procedure.  (See Section E48.2.)  But, this model is a candidate for the two step procedure, and offers 
a good illustration of the technique.   

Since yi2 is directly observed without censoring, it can be inserted into the first equation, to 
obtain 

  yi1*  =  γ1(xi2′β2)  +  xi1′β1  +  (εi1 + γ1εi2) , yi1 = Max(Li1,yi1*) 

  yi2  =   xi2′β2  +  εi2 
 
Since the variance of εi1 and the covariance of εi1 and εi2 are both free parameters, no generality is 
lost by writing the first equation as 
 

  yi1*  =  γ1(xi2′β2)  +  xi1′β1  +  ui, yi1 = Max(Li1,yi1*), Var[ui] = σu
2. 

 
So, in the two equation model, the second equation is a classical normal linear regression model and 
the first is a censored regression model with a nonlinear index function.  We propose to fit this in 
two steps, then adjust the estimated asymptotic covariance matrix at the second step with the Murphy 
and Topel estimator.  (Note, we will be reversing subscripts 1 and 2 in this presentation.) 

Step 1. Step 1 is ordinary least squares, and β
∧

2  is simply b2 = (X2′X2)-1 X2′y2.  The estimated 
asymptotic covariance matrix would normally be V2 = [e2′e2/(n- K2)](X2′X2)-1.  The rows of 
the matrix D are the derivatives of the log likelihood for the classical regression, which 
would be di = (1/s2

2)ei2xi2. 
 
Step 2. Step 2 is maximum likelihood estimation of the censored regression model, in which the 

index function is γ1zi2 + xi1′β1 where zi2 = xi2′β2.  The parameter vector [γ1,β1,σu] is estimated 
exactly as we estimated the censored regression earlier.  The derivatives of the log likelihood 
will be 
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Note there is an extra element for the new term γ1,  
 

  ei1  =  yi1 - γ1zi2  -  xi1′β1,  

   αi1  =  (Li1 - γ1zi2  -  xi1′β1)/σu,  

and   λi1
0  =  -φ(αi1)/Φ(αi1).   

 
These K1+2 element vectors are stacked in the matrix G.  Finally, we require the matrix M which is 
embodied in G.  The rows of M would be 
 

  mi  =  [ ]1 1 1 1
0

1 1 1 2σ
λ γ σ

u
i i i i u id d e( ) /− + x . 

 
The matrices D, G, and M are used to correct the asymptotic covariance matrix computed by the 
censored regression estimator.  Note that the variance parameters estimated are σ22 by s2

2 in the 
second equation, computed by OLS, and σu

2 = σ11 + γ1
2σ22 + 2γ1σ12 by squaring the estimate of σu 

from the censored regression.  The covariance, σ12 is not estimable by this method – we are using a 
limited information (LIML) estimator, not a FIML one.  By construction, σ22 is unidentified as well.  
(In fact, it is possible to construct an estimator of the covariance parameter. We will return to this 
possibility in discussion of models of sample selection.) 
 This program computes Blundell and Smith’s two step estimator of a two equation recursive 
simultaneous equations model with censoring in one equation. The structure is: 
 
   y1*  =  γ1y2* + β1′x1 + ε1 y1* censored at lower limit Li 

    y2*  =  β2′x2 + ε2,   y2* observed directly 
 
Define the variable lists, x1 and x2, dependent variables, y1, y2, and censoring limit, li. 
 

NAMELIST  ; x1 = ... ; x2 = ... $ 
CREATE    ; y1 = ... ; y2 = ... $ 
CREATE    ; li = ... $ (May be a variable or a constant. Use a variable for both.) 

 
Estimate the second equation first by OLS, and retain fitted values, s-squared, and covariance matrix. 
 

REGRESS   ; Quietly ; Lhs = y2 ; Rhs = x2 ; Keep = z2 ; Res = e2 $ 
CALC      ; s22 = ssqrd $ 
MATRIX    ; v2 = varb $ 

 
For the second step, use the censored regression for y1 with z2.  Keep all parameters including σ. 
 

TOBIT     ; Quietly ; Lhs = y1 ; Rhs = z2,x1 ; Limit = li ; par $ 
MATRIX    ; v1 = varb $ 
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Now construct G, M and D.  In the matrix products, G, M etc. are scalars times products of 
variables. 
 

NAMELIST  ; z2x1 = z2,x1 $       (all variables in censored regression) 
CREATE    ; d1 = y1 > li $      (censoring indicator) 
CALC      ; k1 = Col(z2X1) $    (number of slope parameters) 
MATRIX    ; cb = b(1:k1) $      (parameters without sigma) 
CREATE    ; alpha = (li - z2x1’cb)/s 
           ; lambdai0 = -N01(alpha)/Phi(alpha) 
           ; e1 = (y1 - z2x1’cb)/s       
  ; h1 = e1*e1 - 1 
           ; gcb = ((1-d1)*lambdai0+d1*e1)/s   ? partial wrt slopes 
           ; gs = ((1-d1)*lambdai0*alpha+d1*h1)/s  ? partial wrt s 
           ; d2b = e2/s22                      ? use for d2i 
           ; mb = ((1-d1)*lambdai0+d1*e1)*b(1)/s  
           ; gcbmb = gcb*mb           
  ; gsmb = gs*mb  
           ; gcbd = gcb*d2b 
  ; gsd = gs*d2b  $ 
 

The matrix assembly is done here. G,M and G,D have two parts. 
 

MATRIX    ; gmb = z2x1’[gcbmb]x2   
  ; gms = gsmb’x2   
  ; gm = [gmb/gms] 
           ; gdb = z2x1’[gcbd]x2  
  ; gds = gsd’x2       
  ; gd = [gdb/gds] $ 
 

Now compute the revised covariance matrix and display the results. 
 

MATRIX    ; q = gm * v2 * gm’ - gd*v2*gm’ - gm*v2*gd’   
; v1star = v1 + v1*q*v1 $ 

 CLIST  ; twostep = z2x1,sigma $ 
DISPLAY ; Parameters = b ; Covariance = v1star ; Labels = twostep $ 

 
 The results below illustrate with the following data setup using the Mroz labor supply data: 
 

CREATE ; numkids = kl6 + k618 $ 
NAMELIST  ; x1 = one,wa,we ; x2 = one,faminc $ 
CREATE    ; y1 = whrs ; y2 = numkids $ 
CREATE    ; li = 0 $ 

 
The intermediate results are suppressed.  The final computations are shown below. 
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----------------------------------------------------------------------------- 
User Specified Model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      Z2|   -3850.45       5347.283     -.72  .4715   -14330.93   6630.03 
Constant|    6027.32       8730.194      .69  .4899   -11083.55  23138.18 
      WA|   -9.17475        6.96638    -1.32  .1878   -22.82860   4.47910 
      WE|    65.0048**     29.86126     2.18  .0295      6.4778  123.5318 
   SIGMA|    1353.74***    68.97469    19.63  .0000     1218.55   1488.93 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E48.4.2 Simultaneous Equations Model with Censoring 
 
 For this case, we retain the original structure, 
 

  yi1*  =  γ1yi2*  + xi1′β1  +  ε1 

  yi2*  =  γ2yi1*  + xi2′β2  +  ε2 

  [ε1,ε2] ~ BVN[(0,0),(σ11,σ22),ρσ11σ22] 
 

and suppose that either or both variables are censored at lower limit Li.  For the first case, this is the 
model considered earlier without the restriction that γ2 equals zero, while for the second, we assume 
that both variables are censored, so that least squares is inappropriate for both equations. 
 
One Variable Censored 
 
 Once again, we depart from the reduced form of the equation system, 
 

  yi1*  =  xi′π1  +  v1 

  yi2*  =  xi′π2  +  v2 
 
where xi = xi1 ∪ xi2 (all exogenous variables in the model).  Suppose that variable yi1* is censored at 
Li, but yi2* is observed without censoring.  (This model is due to Nelson and Olsen (1978).) Insert 
the reduced form for yi2* into the structure for y1* to obtain the censored regression and linear 
regression model 

  yi1* = γ1(xi′π2) +  xi1′β1  +  (εi1 + γ1vi2), yi1 = Max(Li1, yi1*) 

  yi2   = xi′π2  +  vi2. 
 
We propose the following two step estimation strategy for estimation of (γ1,β1): 
 
Step 1. Estimate π2 by ordinary least squares regression of y2 on all exogenous variables in the 

model. 
 

Step 2. Estimate γ1,β1,σ11 by maximum likelihood in the censored regression model in the first 
equation.  Then, use the Murphy and Topel correction for the asymptotic covariance matrix.   
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This procedure is exactly the one described in the previous section, as the partially reduced form 
shown above is precisely the recursive simultaneous equations model shown there.  Thus, there is no 
need to develop the estimator in detail. 
 However, it remains to estimate (γ2,β2).  We propose the following strategy:  Insert the 
reduced form equation for yi1* in the second equation to obtain the equation system 
 

  yi1*  =  xi′π1  +  v1,  yi1  =  Max(Li1,yi1*) 

  yi2    =  γ2 (xi′π1)  +  xi2′β2  +  (εi2 + γ2vi1). 
 
This is similar to the previous system, but is actually simpler.  The two step estimation strategy is: 
 
Step 1. Estimate π1 by maximum likelihood using the first equation, which is a censored regression 

model. 
 

Step 2. Estimate (γ2,β2) in the second equation by ordinary least squares regression of yi2 on zi1 = xi′ 1π̂  
and xi2.  Adjust the asymptotic covariance matrix at the second step using the Murphy and 
Topel results.   

 
For this case, the various components of the estimator are as follows: 
 
   V2  =  s2

2[(z1,X2)′(z1,X2)]-1,  
 
where s2

2 is the usual residual variance estimator from this regression.  From the Step 1 censored 
regression model, V1 is the K×K submatrix of the full estimated asymptotic covariance matrix, 
omitting the row and column that correspond to the MLE of σv1.  The derivatives from this 
estimation are 

  di = ( )0
1 1 1 1 1
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 The full set of variance parameters is not estimated by this procedure.  Since we are using 
single equation ML techniques, the estimator uses no information about σ12 and, therefore, only σ22 
is estimable.  The first equation produces only an estimate of σv1 = (σ11+γ1

2σ22+2γ1σ12)1/2.  Maddala 
(1983) proposes an alternative estimation technique for this model which appears to require an 
estimate of σ12, but does not provide the necessary expression for obtaining one.  Greene (1997, p. 
735) observes this omission, and suggests an approach based on a two step estimator of Heckman’s 
(1979).  Greene’s result, albeit correct, is unnecessary.  As noted above, the simple functions of 
sample moments provides all the information needed to compute the asymptotic covariance matrix. 
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 The program below completes the Blundell and Smith’s two step estimator of a two equation 
recursive simultaneous equations model with censoring in one equation: 
 
   y1*  =  π1′x1 + ε1     y1* censored at lower limit Li 

    y2*  =  γ2(π1′x1) + β2′x2 + ε2, y2* observed directly 
 
We begin with the usual data setup for the specific application. 
 

NAMELIST  ; x1 = ... ; x2 = ...    
  ; x = OR (x1,x2) $ 
CREATE    ; y1 = ... ; y2 = ... $ 
CREATE    ; li = ... (May be a variable or a constant. Use for both) $ 

 
The initial tobit estimator fits the reduced form for the first equation.  The variance estimator picks 
up only the part for π1. 
 

TOBIT  ; Quietly ; Lhs = y1 ; Rhs = x ; Limit = li $ 
MATRIX ; pi1 = b ; v1 = varb $ 

 
This obtains the scale factor for the slope derivatives from the tobit equation. 

 
CREATE ; zi1 = pi1’x 

; alphai1 = (li - zi1)/s  
; ei = y1 - zi1  
; lambdai0 = -N01(alphai1)/Phi(alphai1) 
; di = (y1 <= li)*lambdai0/s + (y1 > li)*ei/s^2 $ 

 
This is the second step linear regression.  Variable gi is the slope derivatives. 

 
NAMELIST ; z1x2  = zi1,x2 $ 
REGRESS ; Lhs = y2 ; Rhs = z1x2 ; Res = ei2 $ 
CREATE ; gi = ei2/s^2 ; mi = gi*b(1) $ 

 
Compute the corrected covariance matrix, then report results. 
 

CREATE ; gimi = gi*mi  
  ; gidi = gi*di $ 
MATRIX ; a  = z1x2’[gimi] x * v1 * x’[gimi]z1x2 
        - z1x2’[gidi ] x * v1 * x’[gimi]z1x2 
     - z1x2’[gimi] x * v1 * x’[gidi]z1x2 
  ; v2star = varb + varb * a * varb $ 
DISPLAY ; Parameters = b ; Covariance = v2star ; Labels = z1x2 $ 
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 The results below continue the analysis of the model above with the following data setup 
using the Mroz labor supply data.  This estimates the second equation in the system and corrects the 
asymptotic covariance matrix. 
 

CREATE ; numkids = kl6 + k618 $ 
NAMELIST  ; x1 = one,wa,we     
  ; x2 = one,faminc  $ 
NAMELIST ; x = OR (x1,x2) $ 
CREATE    ; y1 = whrs         
  ; y2 = numkids  $ 
CREATE    ; li = 0 $ 

 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y2       Mean                 =        1.59097 
             Standard deviation   =        1.46048 
             No. of observations  =            753  Degrees of freedom 
Regression   Sum of Squares       =        294.090           2 
Residual     Sum of Squares       =        1309.93         750 
Total        Sum of Squares       =        1604.02         752 
             Standard error of e  =        1.32158 
Fit          R-squared            =         .18335  R-bar squared =   .18117 
Model test   F[  2,   750]        =       84.19082  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -1276.91459  Akaike I.C.   =   .56163 
             Restricted (b=0)     =    -1353.17084  Bayes  I.C.   =   .58005 
             Chi squared [  2]    =      152.51250  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     ZI1|    -.00113***   .8741D-04   -12.95  .0000     -.00130   -.00096 
Constant|    1.83416***      .10398    17.64  .0000     1.63037   2.03796 
  FAMINC| .41300D-05      .3995D-05     1.03  .3012 -.36999D-05  .11960D-04 
--------+-------------------------------------------------------------------- 
User Specified Model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     ZI1|    -.00113***      .00017    -6.77  .0000     -.00146   -.00080 
Constant|    1.83416***      .17129    10.71  .0000     1.49845   2.16988 
  FAMINC| .41300D-05      .4401D-05      .94  .3481 -.44964D-05  .12756D-04 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Both Variables Censored 
 
 Finally, suppose both variables are censored.  The structural equation system is 
 

  yi1*  =  γ1yi2*   +  xi1′β1  +  εi1 

  yi2*  =  γ2yi1*   +  xi2′β2  +  εi2 

  [εi1,ε i2] ~ BVN[(0,0),(σ11,σ22),ρσ11σ22]. 
 
The reduced form is, as before,  
 

  yi1*  =  xi′π1  +  vi1,  yi1 = Max(Li1,yi1*) 

  yi2*  =  xi′π2  +  vi2,  yi2 = Max(Li2,yi2*). 
 
For the first equation, the partially reduced form is 
 

  yi1*  =  γ1 (xi′π2) +  xi1′β1  +  εi1 + γ1εi2 
 
and likewise for the second. 

A two step estimator can be obtained by combining the elements of the previous procedures: 
 

Step 1. Estimate (π1, π2) separately by maximum likelihood estimation of the two reduced form 
censored regression models.  Retain for each estimation, the part of the asymptotic 
covariance matrix corresponding to the slope parameters and the variables needed to 
compute the derivatives. 

 
Step 2. Estimate γ1,β1,σ11 by maximum likelihood in the first equation, with variables zi2 = xi′π2 and 

xi2 on the right hand side.  Correct the asymptotic covariance matrix. 
 

The estimator is symmetric for estimation of  γ2,β2,σ22 
 The program below shows the full set of computations for estimation of the parameters of 
the first equation.  The procedure is symmetric in the two variables, so the counterpart for the second 
equation would be obtained by repeating the computations with subscripts reversed.  The structure 
for the program is 
   y1*  =  γ1(π2′x) +  β1′x1 + ε1   y1* censored at lower limit Li1 

   y2*  =  γ2(π1′x) +  β2′x2 + ε2   y2* censored at lower limit Li2 
 
As usual, we begin by setting up the specific application. 
 

NAMELIST  ; x1 = ... ; x2 = ...    
; x = OR (x1,x2) $ 

CREATE    ; y1 = ... ; y2 = ... $ 
CREATE    ; l1 = ... limits for first equation  

; l2 = ... limits for second equation $ 
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This initial reduced form tobit will estimate π2.  Pick up variance estimator from tobit model.  This 
picks up only the π2 part; the σ22 part is not needed.  The derivatives from the tobit estimation are 
also picked up here. 
 

TOBIT  ; Quietly ; Lhs = y2 ; Rhs = x ; Limit = l2 $ 
MATRIX ; v1 = varb $ 

 CREATE ; q1 = y1 > l1  ;  q2 = y2 > l2 $ 
CREATE ; z2 = b’x   

; alpha2 = (l2 - z2)/s   
; e2 = y2 - z2  
; lamda2 = -N01(alpha2)/Phi(alpha2) 
; d2i = (1-q2) * lamda2/s + q2*e2/s^2 $ 

 
This is the second step tobit with corrected asymptotic covariance matrix for the first equation. The 
correction must pick up the estimated sigma now, as in tobit, Cov(b,s) is not zero. 
 

NAMELIST ; z2x1 = z2 , x1 $ 
TOBIT  ; Lhs = y1 ; Rhs = z2x1  ; Limit = l1 ; Par $ 
CALC  ; k21 = Col(z2x1) $ 
MATRIX ; bz = b(1:k21) $ 
CREATE ; v = bz’z2x1 ; alpha = (l1 - v)/s   

; e = y1 - v ; lambda = -N01(alpha)/Phi(alpha) 
; gbi = (1-q1)* lambda/s + q1*e/s^2    

   ; gsi = (1-q1)* lambda*alpha/s +  q1*(1/s)*(((e/s)^2 - 1)/s - 1)  
; mi = gbi*b(1) $ 

CREATE ; gmi = gbi * mi   $ 
MATRIX  ; gbm = z2x1’[gmi]x    

; gsm = gsi’[mi]x    
; gm = [gbm / gsm]  $ 

CREATE ; gdi = gbi * d2i $ 
MATRIX  ; gbd = z2x1’[gdi] x  

; gsd = gsi   ’[d2i] x   
; gd = [gbd /gsd ]  $ 

MATRIX  ; a = gm*v1*gm’ - gd*v1*gm’ - gm*v1*gd’ $ 
MATRIX ; v1star = varb + varb * a * varb  $ 
CLIST  ; twostep = z2x1,sigma $  
DISPLAY ; Parameters = b ; Covariance = v1star ; Labels = twostep $ 

 
 To illustrate use of the program, we have fit hours equations for husband and wife using the 
labor supply data.  The data setup is 
 

NAMELIST  ; x1 = one,kl6,k618,wa,we     
  ; x2 = one,ha,he,faminc,cit 
  ; x = OR (x1,x2) $ 
CREATE    ; y1 = whrs ; y2 = hhrs $ 
CREATE    ; l1 = 0 ?...  limits for first equation  

; l2 = 0 $     limits for second equation  
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We have omitted the intermediate results.  The output below shows the original tobit estimates for 
the wife’s hours followed by the estimates with the corrected covariance matrix.  The counterpart for 
the second equation would be obtained from the proceeding by reversing the subscripts in the 
commands or, perhaps more simply, by reversing the definitions of y1,x1 and y2,x2 in the data setup. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                   Y1 
Log likelihood function     -3902.61379 
Estimation based on N =    753, K =   7 
Inf.Cr.AIC  =   7819.2 AIC/N =   10.384 
Threshold values for the model: 
Lower = L1            Upper = +infinity 
ANOVA  based fit measure =      .047441 
DECOMP based fit measure =      .164508 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      Y1|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
      Z2|     .76571*        .43327     1.77  .0772     -.08349   1.61491 
Constant|   -289.097       1030.810     -.28  .7791   -2309.448  1731.253 
     KL6|   -1057.28***    125.6007    -8.42  .0000    -1303.46   -811.11 
    K618|   -159.159***    46.12655    -3.45  .0006    -249.565   -68.752 
      WA|   -38.8022***     7.81149    -4.97  .0000    -54.1125  -23.4920 
      WE|    79.0480***    24.52455     3.22  .0013     30.9807  127.1152 
        |Disturbance standard deviation 
   Sigma|    1276.57***    48.01167    26.59  .0000     1182.47   1370.67 
--------+-------------------------------------------------------------------- 
User Specified Model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 LHSVar.|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      Z2|     .76571*        .45896     1.67  .0952     -.13383   1.66525 
Constant|   -289.097       1088.379     -.27  .7905   -2422.281  1844.087 
     KL6|   -1057.28***    142.9767    -7.39  .0000    -1337.51   -777.06 
    K618|   -159.159***    49.67412    -3.20  .0014    -256.518   -61.799 
      WA|   -38.8022***     8.29942    -4.68  .0000    -55.0688  -22.5357 
      WE|    79.0480***    26.02201     3.04  .0024     28.0458  130.0502 
   SIGMA|    1276.57***    51.93209    24.58  .0000     1174.79   1378.36 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E48.5 Models with Binary Variables 
 
 The two step methods used for censored variables in the previous section can also be used 
when the endogenous variables are binary.  We examine two models. 
 
E48.5.1 Simultaneous Equations Model with Binary Variables 
 
 In principle, this is a fairly straightforward extension of the earlier results that combines a 
censored regression with the probit model discussed in Chapter E27.  Suppose the model is 
formulated as 

  yi1*  =  γ1yi2*  +  xi1′β1  +  εi1, yi1 = 1(yi1* > 0) 

  yi2*  =  γ2yi1*  +  xi2′β2  +  εi2, yi2 = Max(Li2,yi2*). 
 
Thus, the first equation is a probit model and the second is a censored regression.  As before, we can 
manipulate the reduced form to obtain the needed two step estimator.  We should note before 
proceeding, that the sample data provide no information about the scale of yi1*, so there is no point to 
carrying the parameter σ11 through the analysis – nothing is lost by assuming σ11 = 1 at the outset.  
The reduced form of the equation system in the latent variables is, as before,  
 

  yi1*  =  xi′π1  +  vi1,  yi1 = 1(yi1* > 0) 

  yi2*  =  xi′π2  +  vi2,  yi2 = Max(Li2,yi2*). 
 
The reduced form parameters can be estimated by applying maximum likelihood to the probit model 
in the first equation and the censored regression in the second.  We may now insert the estimated 
equations in the partial reduced forms 
 

  yi1*  =  γ1(xi′π2)  +  xi1′β1  +  εi1 + γ1vi2,  yi1 = 1(yi1* > 0) 

  yi2*  =  γ2(xi′π1)  +  xi2′β2  +  εi2 + γ2vi1,  yi2 = Max(Li,yi2*). 
 
The first equation can now be estimated as a probit model and the second as a censored regression.  
As a consequence of the loss of scale information, the probit estimator in the first equation estimates 
γ1 and β1 scaled down by Var[εi1 + γ1vi2].  This is the fundamental indeterminacy in the model.  The 
second equation can be estimated as a censored regression model.  In both cases, we then adjust the 
estimated asymptotic covariance matrix.  Both of these can be programmed using the results already 
given in the previous sections. 
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E48.5.2 Two Binary Variables 
 
 Finally, suppose both observed variables are binary.  The resulting model is 
 

  yi1*  =  γ1yi2*  +  xi1′β1  +  εi1, yi1 = 1(yi1* > 0) 

  yi2*  =  γ2yi1*  +  xi2′β2  +  εi2, yi2 = 1(yi2* > 0). 
 

Estimation can be done using the strategy suggested earlier.  Once again, the observed data contain 
no information on scaling of the latent variables, so we assume σ1 = σ2 = 1 at the outset, with no loss 
of generality.  Thus, Cov[ε1,ε2] = Corr[ε1,ε2] = ρ.  This would be a conventional simultaneous 
equations model but for the censoring.  The reduced form system is 
 

  yi1*  =  xi′π1  +  vi1,  yi1 = 1(yi1* > 0) 

  yi2*  =  xi′π2  +  vi2,  yi2 = 1(yi2* > 0) 
 

where xi = xi1 ∪ xi2. The partial reduced form system is 
 

  yi1*  =  γ1(xi′π2)  +  xi1′β1  +  εi1 + γ1vi2,  yi1 = 1(yi1* > 0) 

  yi2*  =  γ2(xi′π1)  +  xi2′β2  +  εi2 + γ2vi1,  yi2 = 1(yi2* > 0).  
 

 The model can be estimated using the two step method described earlier.  Note what can be 
estimated by this method, and what cannot.  Since we have normalized σ1 and σ2 to one in the 
original structure, in the reduced form, the two variances are (after skipping a bit of algebra) Var[vi1] 
= θ1

2 = (1 + γ1
2 + 2ργ2)/(1-γ1γ2)2 and Var[vi2] = θ2

2 = (1 + γ2
2 + 2ργ2)/(1-γ1γ2)2.  The full reduced form 

equations can both be estimated as probit models using maximum likelihood, but as always, the 
coefficients are implicitly scaled.  Thus, probit estimation of the reduced form produces estimates of 
(1/θ1)π1 and (1/θ2)π2.  The partial reduced form for y1* is, therefore,   
 

  yi1* =  θ2γ1(xi′π2/θ2)  +  xi1′β1  +  εi1 + γ1vi2 

          =  θ2γ1zi2   +  xi1′β1  +  εi1 + γ1vi2 
 

Taking zi2 as known, we could now fit this as a probit model.  Once again, however, there will be a 
scaling because of the lack of information about the scale of the latent variable.  The algebra is a bit 
tedious, but it follows from the fact that the partial reduced form is the true reduced form that has    
εi1 + γ1vi2, = vi1.  Therefore, probit estimation of the parameters of the first partial reduced form 
equation by maximum likelihood produces estimates of (θ2/θ1)γ1 and (1/θ1)β1.  Likewise, the MLEs 
in the second equation are of (θ1/θ2)γ2 and (1/θ2)β2.  Therefore, this two step estimator produces 
estimates not of the original parameters, but of these scaled versions of them. Can the original 
parameters be recovered?  No, because this method produces no estimate of the correlation 
coefficient between εi1 and εi2 or vi1 and vi2.  The product of γ1 and γ2 can be recovered, in an obvious 
way, but that is as far as one can go. 
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 In fact, there is a way to estimate all of the parameters of the model.  We return to the 
original structural equations.  The reduced form for the system can be written 
 

  yi1* =  γ1γ2yi1*  +  γ1xi2′β2 +  xi1′β1  +  εi1 + γ1εi2 

          =  [1/(1-γ1γ2)]xi1′β1  +  [γ1/(1-γ1γ2)]xi2′β2  +  [1/(1-γ1γ2)]( εi1 + γ1εi2) 

  =  xi1′δ1  +  γ1(xi2′δ2) + vi1 

  yi2* =  γ2(xi1′δ1) +  xi2′δ2      + vi2. 
 

This is a bivariate probit model, which can be fit by maximum likelihood.  The estimation is fairly 
complicated, because all of the cross equation restrictions must be imposed, and the index parts of 
the equations are nonlinear.  But, it is a conventional programming problem.  The variances of vi1 
and vi2 were given earlier.  The maximum likelihood procedure will produce estimates of γ1/θ1, γ2/θ2, 
and Corr(vi1,vi2), which are extremely complicated, but invertible functions of γ1, γ2, and ρ.  Finally, 
with these in hand, δ1 and δ2 could be unscaled to recover β1 and β2.  Obviously, this is far more 
complicated than the two step approach.  It does demonstrate the different quantities estimated by the 
two approaches.  Finally, we note, that the primary difference between the FIML approach and the 
two step (LIML) approach is that the former estimates ρ while the latter does not. 
 The two step estimator is by far the simpler of the two procedures.  For estimation of the first 
equation, 
 
Step 1. Fit the reduced form for the second equation and compute zi2 = xi′π2 using the MLE.  Let V1 

denote the asymptotic covariance matrix computed at this step.  At this step, also compute 
 

   di2 = (2yi2-1)φ(xi′π2)/Φ[(2yi2-1)(xi′π2)] × xi  =  λi1xi 
 

Step 2. Fit the structural probit equation on zi2 and xi1.  Denote the asymptotic covariance matrix 
computed at this step as V2.  The vectors needed at this step for the corrected asymptotic 
covariance matrix are 

 gi1 = {(2yi1-1)φ( γ1zi2 + xi1′β1)/Φ[(2yi1-1)( γ1zi2 + xi1′β1)]}
zi

i

2

1x








  = λi2xi1* 

   mi1 = {(2yi1-1)φ( γ1zi2 + xi1′β1)/Φ[(2yi1-1)( γ1zi2 + xi1′β1)]}γ1 xi  =  λi2xi. 
 

(Note, xi1* = (zi2,xi1′)′)  With these in hand, the corrected asymptotic covariance matrix can be 
computed as usual.  In this case, the estimator has a particularly simple form.  Let Λ1 = diag(λi1) and 
Λ2 = diag(λi2), and suppose we use the BHHH estimator for the asymptotic covariance matrix for 
both probit estimators.  Then, V1 = [X′Λ1

2X]-1, V2 = [X2*′Λ2
2X2*]-1, G′M = γ1[X2*′Λ2

2X], and G′D = 
[X2*′Λ2Λ1X].  Multiplying out the parts produces 

 
V2* = [X2*′Λ2

2X2*]-1 + γ1[X2*′Λ2
2X2*]-1{γ1 [X2*′Λ2

2X][X′Λ1
2X]-1[X′Λ2

2X2*] 

                                        - [X2*′Λ2Λ1X] [X′Λ1
2X]-1[X′Λ2

2X2*] 

                                        - [X2*′Λ2
2X][X′Λ1

2X]-1[X′Λ2Λ1X2*]}[X2*′Λ2
2X2*]-1 

 
The roles of equations 1 and 2 are reversed to obtain the counterparts for the second equation. 
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 The following program can be used for estimation of an equation system with two binary 
variables as the observed data.  Data setup is the usual.  Note in this application, y1 and y2 are 
binary, and there is no need to define the censoring limits.  The right hand sides of the two equations 
and the union are defined first. 

 
NAMELIST  ; x1 = ... ; x2 = ... $ 
CREATE    ; y1 = ... ; y2 = ... $ 
NAMELIST  ; x = OR (x1,x2) $ 

 
We now do the estimation for the first equation.  To repeat for the second equation, it is simplest just 
to reverse the subscripts in the data setup above.  Fit the reduced form for the second equation first. 
 

PROBIT    ; Lhs = y2 ; Rhs = x ; Hold(IMR = di) $ 
CREATE    ; z2 = b’x $ 
MATRIX    ; v1 = varb $ 

 
Estimate the structure for the first equation, for y1. 
 

NAMELIST  ; z2x1 = z2,x1 $ 
PROBIT    ; Lhs = y1 ; Rhs = z2x1 ; Hold(IMR = gi) $ 

 
This is all that is needed to compute the corrected covariance matrix. 
 

CREATE    ; migi = gi*gi*b(1) ; digi = di*gi $ 
MATRIX    ; a = z2x1’[migi] x * v1 * x’[migi]z2x1 
                 - z2x1’ [digi] x * v1 * x’[migi]z2x1 
                     - z2x1’ [migi] x * v1 * x’[digi]z2x1 
           ; v2star = varb + varb * a * varb $ 
DISPLAY ; Parameters = b ; Covariance = v2star ; Labels = z2x1 $ 

 
Second equation.  Same procedure. 
 

PROBIT    ; Lhs = y1 ; Rhs = x ; Hold(IMR = di) $ 
CREATE    ; z1 = b’x$ 
MATRIX    ; v1 = varb $ 
NAMELIST  ; z1x2 = z1,x2 $ 
PROBIT    ; Lhs = y2 ; Rhs = z1x2 ; Hold(IMR = gi) $ 
CREATE    ; migi = gi*gi*b(1) ; digi = di*gi $ 
MATRIX    ; a  = z1x2’[migi] x * v1 * x’[migi]z1x2 
                 - z1x2’[digi] x * v1 * x’[migi]z1x2 
                 - z1x2’[migi] x * v1 * x’[digi]z1x2 
           ; v2star = varb + varb * a * varb $ 
DISPLAY ; Parameters = b ; Covariance = v2star ; Labels = z1x2 $ 
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 To illustrate the procedure, we have fit a model for the wife’s labor force participation, and 
for the husband, whether they are working ‘full time,’ that is, at least 2,000 hours for the year. 
 

NAMELIST  ; x1 = one,kl6,k618,wa,we     
  ; x2 = one,ha,he,faminc,cit 
  ; x = OR(x1,x2) $ 
CREATE    ; y1 = whrs > 0  

; y2 = hhrs >= 2000  $ 
 
These are the two step structural estimates for the wife’s labor force participation. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                   Y1 
Log likelihood function      -464.51061 
Restricted log likelihood    -514.87320 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      Y1|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
      Z2|     .19357         .17690     1.09  .2738     -.15314    .54029 
Constant|     .55374         .47081     1.18  .2395     -.36904   1.47651 
     KL6|    -.87276***      .11258    -7.75  .0000    -1.09342   -.65210 
    K618|    -.07098*        .04254    -1.67  .0952     -.15435    .01239 
      WA|    -.03565***      .00782    -4.56  .0000     -.05098   -.02032 
      WE|     .11058***      .02379     4.65  .0000      .06396    .15720 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
User Specified Model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      Y1|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      Z2|     .19357         .18279     1.06  .2896     -.16469    .55184 
Constant|     .55374         .47897     1.16  .2476     -.38503   1.49250 
     KL6|    -.87276***      .11639    -7.50  .0000    -1.10088   -.64464 
    K618|    -.07098         .04395    -1.62  .1063     -.15712    .01516 
      WA|    -.03565***      .00791    -4.51  .0000     -.05114   -.02015 
      WE|     .11058***      .02477     4.46  .0000      .06204    .15913 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E48.5.3 Endogenous Binary Variables 
 
 A problem with the approach of the previous section is that unlike censored regressions, in 
which arguably the latent regressands, yj*, might be of interest, researchers would not ordinarily 
analyze a model involving a binary variable in terms of the latent regression.  The dummy variable is 
generally viewed as a shift parameter in the equation, and, as such, yi1, not yi1*, is what would 
typically appear in the second equation.  The reduced form analysis we have done above greatly 
simplifies the derivations, but they may substitute a simpler estimation process for the one really of 
interest. 

Results have been obtained for cases of ‘endogenous’ dummy variables – the extensive 
literature of Maddala (1983), Heckman (1979), Terza (1998), and others will apply.  Many of these 
results are based on placing endogenous binary variables in linear regression models – that is, 
models without censoring.  In this case, the conditional mean function, rather than the likelihood 
function turns out to be the platform on which consistent estimation can be performed. Consider, 
first, a regression model with a binary variable, but no censoring: 

 
  yi1*  =  γ1yi2 +  xi1′β1  +  εi1, yi1 = 1(yi1* > 0) 

  yi2    =  γ2yi1 +  xi2′β2  +  εi2,  
 
This model cannot be internally consistent unless γ1 equals zero.  (A sketch of a proof appears in 
Maddala (1983).) With γ1 = 0, a fairly common specification emerges – this is often employed as a 
‘treatment effects’ model.  In this formulation, the binary variable yi1 indicates presence or absence 
of some treatment (such as participation in a program or experiment), and  yi2 measures the outcome 
variable of interest, such as income, grade improvement, health improvement, and so on.  There are 
at least three approaches to estimation, FIML, instrumental variables, and the two step estimator 
pioneered by Heckman (1979).  We will analyze this model in some detail in the chapter on the 
sample selection model, so we consider it only briefly here. 

An important part of the development will be that yi2 is fully observed.  One approach to 
estimation can be based on constructing the conditional mean functions.  From the first equation, 
E[yi1|xi1] = Φ(xi1′β1) – recall, γ1 = 0 - so yi1 = Φ(xi1′β1) + ui1 where E[ui1|xi1] = 0 and, as usual for 
conditional mean functions, Cov[ui1,Φ(xi1′β1)] = 0.  Inserting these into the second equation, we 
obtain 

  yi2 =  γ2Φ(xi1′β1)  +  xi2′β2  +  (εi2 + γ2ui1) 
          =  γ2zi1  + xi2′β2 + vi2. 

 
At least in terms of the population values, this is a classical regression model.  It is interesting to note 
that the conventional rules for identification in simultaneous equations models do not apply here.  
Even though this is a recursive model, consistent estimation will not require that ε1 and ε2 be 
uncorrelated.  Moreover, because of the nonlinearity of the conditional mean function, it is not 
necessary for there to be variables excluded from either equation – the standard rank and order 
conditions do not apply to nonlinear systems. 
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 This is a natural candidate for the two step estimator.  The first step would be consistent 
estimation of β1 by treating the first equation as a probit model.  Estimates of the variable zi1 are 
computed using this maximum likelihood estimator of β1.  At the second step, γ2 and β2 are 
consistently estimated by least squares regression of yi2 on [zi1,xi2].  The asymptotic covariance 
matrix at the second step is adjusted by the Murphy and Topel estimator.  Let V1 denote the 
asymptotic covariance matrix computed for the probit estimator at the first step, and let V2 denote the 
estimated asymptotic covariance matrix computed at step 2.  Then, as in the other cases, 
 
   V2* =  V2 + V2[G′M V1M′G - G′DV1M′G - G′M V1 D′G]V2 

where    gi  =  ei[zi1,xi2]/σ2,  

  mi  =  ei{γ2φ(xi1′β1)]xi2}/σ2, and  

  di  =  (2yi1-1)φ(xi1′β1)/Φ[(2yi1-1)(xi1′β1)]xi1. 
 

Our interest at this juncture is in a model which includes censoring of the dependent variable 
in the second equation, so we consider that case now.  A fully operational estimator for the 
simultaneous equations model 

 
  yi1* =  γ1yi2*  +  xi1′β1  +  εi1, yi1 = 1(yi1* > 0) 
  yi2* =  γ2yi1    +  xi2′β2  +  εi2, yi2 = Max(Li,yi2*) (note, yi1, not yi1*) 

 
remains to be derived.  Estimation is not the only difficulty.  It is unclear whether the model is even 
internally consistent. (Maddala shows that the model cannot be internally consistent if γ1 is nonzero.)  
This restricts us to recursive models.  Consider, then, the model with γ1 = 0  
 

  yi1*  =  xi1′β1  +  εi1, yi1 = 1(yi1* > 0) 
  yi2*  =  γ2yi1  +  xi2′β2  +  εi2, yi2 = Max(Li,yi2*). 

 
The two step estimator is problematic in this case.  The partial reduced form for yi2* is not available 
– the precise prediction that should be inserted for yi1 is unclear.  But, a full information maximum 
likelihood estimator is quite feasible, so we will develop that.   

We continue to assume that ε1 and ε2 are bivariate normally distributed with zero means, 
variances one and σ1

2, and correlation ρ.  Consider, first, the cases in which yi2* is censored.  The 
probabilities associated with these outcomes are the probabilities of the joint events,  

 
  Prob[yi2 = Li2 , yi1 = 0] and Prob[yi2 = Li2 , yi1 = 1].   
 
 
These are simply the bivariate standard normal integrals, 
 

 Prob[yi2 = Li2, yi1 = 0]  =  Prob[εi1 < -xi1′β1, (εi2/σ2) < (Li2 - xi2′β2)/σ2 | ρ] 

and  Prob[yi2 = Li2, yi1 = 1]  =  Prob[εi1 > -γ - xi1′β1, (εi2/σ2) < (Li2 - xi2′β2)/σ2 | ρ] 

                                     =  Prob[εi1 < γ + xi1′β1, (εi2/σ2) < (Li2 - xi2′β2)/σ2 | -ρ], 
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so these are the terms in the likelihood function for the fully censored data.  It might seem odd that 
this has ignored the simultaneity.  However, the result can be obtained trivially by writing       
Prob[yi2 = Li2, yi1 = 1] = Prob[yi2 = Li2| yi1 = 1]Prob[yi1 = 1].  The former probability is just the joint 
probability divided by the marginal, which then cancels out of the product, and, of course, 
conditioned on yi1, we are free to treat yi1 as a constant.  The ‘simultaneity’ only becomes an issue in 
regression because of the use of covariances and moments.  In this instance, we are using the 
probabilities directly.   

For the uncensored observations, we require the mixed distributions, f(yi1=0,yi2) and 
f(yi1=1,yi2).  The first of these, f(yi1=0,yi2), is derived from  

 

f(εi1 < - xi1′β1, εi2) =  1 1
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For f(yi1=1,yi2), the numerator inside the CDF is changed to xi1′β1+(ρ/σ2)(yi2 - γ - xi2′β2), and other 
parts remain the same.  These four results, then, give the parts of the likelihood function, which can 
then be maximized to estimate the parameters. 
 The following estimation program is for a censored regression with an endogenous binary 
variable.  The equation system is 
 

  yi1*  =  xi1′β1  +  εi1, yi1 = 1(yi1* > 0) 

  yi2*  =  γ2yi1  +  xi2′β2  +  εi2,  yi2 = Max(Li,yi2*). 
 
The left and right hand sides of the two equations are defined for the specific problem.  The 
censoring limit for the second equation will typically be zero, but can be nonzero. That is defined 
here as well.  The rest of the command set is generic, and can be used without modification. 
 

NAMELIST  ; x1  = the Rhs of the probit model $ 
NAMELIST  ; x2  = exogenous variables in the censored regression $ 
CREATE    ; y1  = binary dependent variable $ 
CREATE    ; y2  = censored dependent variable $ 
CREATE    ; li  = censoring limit $ 
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Obtain the dimensions of the problem, and pointers to partition the parameter vector. 
 

CALC      ; k2  = Col(x2) ; k21=k2+1 ; k1=Col(x1) $ 
 
Get the starting values for the probit model. These are consistent, but LIML, so they are inefficient. 
 

PROBIT    ; Lhs = y1 ; Rhs = x1 $ 
MATRIX    ; beta10 = b $ 

 
Obtain the starting values for censored regression. These are inconsistent, but better than zero. 
 

TOBIT     ; Lhs = y2 ; Rhs = y1,x2 $ 
CALC      ; gamma0 = b(1) $ 
MATRIX    ; beta20 = b(2:k21) $ 

 
Compute a starting value for σ in the tobit equation, then use the Olsen transformation. 

 
CALC      ; s20 = s ; h20 = 1/s $ 
CREATE    ; d = y2 > li ; q1 = 2*y1 - 1 $ 
 

Finally, compute the FIML estimator of all model parameters using maximum likelihood. 
 

MAXIMIZE  ; Quietly ; Labels = k1_b1,c,k2_b2,h2,r 
           ; Start = beta10,gamma0,beta20,h20,0 
           ; Fcn = x1b1 = b11’x1                    | 
                      x2b2 = b21’x2                    | 
                      a2      = (li - x2b2)* h2           | 
                      e2      = (y2 - c*y1 - x2b2) * h2 | 
                      dr      = 1/sqr(1 - r*r)            | 
                      u1      = q1*(c*y1 + x1b1)          | 
                      u2      = -q1*r                     | 
       Log((1-d) * BVN(u1, a2, u2) + d * h2*N01(e2) * Phi(dr*(q1*x1b1 + r*e2))) $ 
CLIST   ; fiml = x1,gamma0,x2,sigma2,corr $ 
DISPLAY  ; Parameters = b ; Covariance = varb ; Labels = FIML $ 

 
We used the procedure to fit a model for joint determination of the wife’s labor force participation 
and husband’s hours for full time (hours greater than 2000). 
 

NAMELIST  ; x1 = one,wa,we,kl6,k618,cit $   
NAMELIST  ; x2 = one,ww,ha,he $ 
CREATE    ; y1 = lfp $ 
CREATE    ; y2 = hhrs $ 
CREATE    ; li = 2000 $ 

 
  



E48: Multiple Equation LDV Models   E-1193 

----------------------------------------------------------------------------- 
User Specified Model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .39909         .30801     1.30  .1951     -.20460   1.00278 
      WA|    -.02963***      .00529    -5.60  .0000     -.04000   -.01927 
      WE|     .09423***      .01942     4.85  .0000      .05616    .13230 
     KL6|    -.51115***      .07963    -6.42  .0000     -.66722   -.35507 
    K618|    -.01623         .02689     -.60  .5461     -.06893    .03647 
     CIT|    -.22019***      .07158    -3.08  .0021     -.36049   -.07988 
  GAMMA0|   -56.1770       69.06464     -.81  .4160   -191.5412   79.1872 
Constant|    2341.94***    96.29192    24.32  .0000     2153.21   2530.67 
      WW|   -8.28686       10.03896     -.83  .4091   -27.96285  11.38914 
      HA|   -7.00215***      .28790   -24.32  .0000    -7.56643  -6.43787 
      HE|    19.3696***     6.21548     3.12  .0018      7.1875   31.5517 
  SIGMA2|     .00160***   .4756D-04    33.74  .0000      .00151    .00170 
    CORR|     .88659***      .03027    29.29  .0000      .82727    .94591 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 

 
E48.6 Murphy and Topel’s Two Step Estimator  
 

We consider limited information maximum likelihood (LIML) estimation of a model which 
can be formulated in terms of two marginal distributions, f1(y1|x1,θ1) and f2(y2|x1,x2,θ1,θ2).  We propose 
to estimate this model in two steps:  First, estimate θ1 by maximum likelihood estimation based on 
f1(y1|x1,θ1).  Second, estimate θ2 by maximum likelihood based on f2(y2|x1,x2,θ1,θ2), after inserting the 
estimate of θ1 obtained at Step 1, and treating it as known.  The consistency of the MLE of θ1 implies 
that this strategy will produce a consistent estimator at the second step.  However, the conventional 
asymptotic covariance matrix computed at Step 2 will be inappropriate because of the variation 
introduced by the estimated value of θ1.  The Murphy and Topel (2002) result provides a strategy for 
computing an appropriate covariance matrix at the second step.  Let  

 
  log L1  =  ∑ =

n
i ii xyf

1 1111 ),|(log θ  
 
The first step MLE of θ1 is obtained by maximizing log L1.  Let V1 denote an appropriate estimator 

of the asymptotic covariance matrix of θ
∧

1 , however computed – this might be based on the actual 
Hessian (Newton’s method), the expected Hessian (scoring), or the BHHH estimator.  Let 
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∑  

 
denote the conditional log likelihood for y2 with the first step MLE of θ1 inserted as if it were the 
known θ1.  We obtain the two step MLE of θ2 by maximizing log L2

c with respect to θ2.  Let V2 
denote the estimated asymptotic covariance matrix for this estimator, however computed, 



E48: Multiple Equation LDV Models   E-1194 

assuming(incorrectly) that θ
∧

1  is the true value of θ1.  The matrix V2 underestimates the asymptotic 

covariance matrix for θ
∧

2 .  Murphy and Topel show that an appropriate estimator is found as 
follows:   
Let gi be the vector of partial derivatives of the ith term in log L2

c 

 

  gi  =  ∂log f2(y2|x1,x2, θ
∧

1 ,θ2)/∂θ2 
 
The matrix G constructed by stacking the rows gi contains the derivatives of the log likelihood for θ2, 
so ∂logL2/∂θ2 = G′i, which is 0 at the MLE.  The BHHH estimator would be [G′G]-1 when G is 

computed using θ
∧

2 .  Let  

  mi  =  ∂log f2(y2|x1,x2, θ
∧

1 ,θ2)/∂θ1. 
 
The matrix M contains the derivatives of log L2

c with respect to θ1 (the first step parameter vector), 
so ∂logL2

c/∂θ1 = M′i – this is not necessarily 0.  Finally, return to the first step maximum likelihood 
estimation procedure, and define  
 

  di  =  ∂log f1(y1|x1,θ1)/∂θ1. 
 
The matrix D contains the derivatives of log L1 with respect to θ1, so ∂logL1/∂θ1 = D′i.  This vector 

does equal 0 when evaluated at θ
∧

1 .  With these in place, the Murphy and Topel estimator of the 

appropriate estimator for the two step maximum likelihood estimator, θ
∧

2 | θ
∧

1 is 
 
  V2*  =  V2 + V2[(G′M)V1(M′G) - (G′D)V1(M′G) - (G′M)V1(D′G)]V2 
 
where G, M, and D are computed using the two sets of maximum likelihood estimates. 
 For most of the familiar econometric models, including the ones we will consider here, the 
variables, x1 and x2 enter the log likelihoods through linear index functions, x1′θ1 and x2′θ2. This 

means that frequently, we will find gi = wi22(xi1, xi2, θ
∧

1 , θ
∧

2 ) × x2 for some scalar function wi(.), and 
likewise for a wi21 for mi and wi11 for di.  This would make, for example,  
 

  G′M  =  
i

n

=∑ 1
 wi22(xi1, xi2, θ

∧

1 , θ
∧

2 ) × wi12(xi1, xi2, θ
∧

1 , θ
∧

2 ) × x2 × x1′. 
 
If we denote the product of scalars as simply wi, arrange these scalars in an n×n diagonal matrix, W, 
and define data matrices X1 and X2 in the obvious way, then this computation will simplify to  
 

  G′M  =  
i

n

=∑ 1
wi(xi1, xi2, θ

∧

1 , θ
∧

2 ) × x2 × x1′  =  X2′WX1. 
 
This is a pattern that occurs often enough that the Murphy and Topel results are usually far simpler 
than first appearances would suggest.  We made use of it in several of the applications described 
earlier. 
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E49: Generalized Linear Models – 1: Discrete 
 
E49.1 Introduction 
 
 This chapter and Chapters E50 and E51 present a group of ‘generalized linear models’ 
(GLMs) that can be used for dependent variables whose range is generally restricted, either because 
they are discrete (such as a binary variable) or because they naturally vary over only a restricted 
range (such as variables that are only nonnegative).  The class of generalized linear models was 
defined in the pioneering works of Nelder and Wedderburn (1972) and McCullagh and Nelder 
(1983).  As shown below, many of these are models that LIMDEP fits under a different heading, but 
it is convenient to group them here.  Formally, the class of models is a group in which the 
conditional mean function is of the form E[y|x] = h(β′x) for some continuous function h(.).  
(McCullagh and Nelder and others since have focused on ‘exponential families,’ but we take some 
license here, and broaden their class.)  This class includes most of the single index function models 
already considered, such as the binary choice models, censored regression, truncated regression, and 
all of the count models considered in Chapters E41-E44.  These chapters will present a group of 
models not already considered and also organize several from earlier chapters for the convenience of 
the user interested in this class of models.    
 The basic command for estimation of the models described in this chapter is 
 
 GLIM  ; Lhs = dependent variable  
   ; Rhs = independent variables 
   ; Model = type of model $ 
 
where ‘type of model’ is one of the 25 generalized linear models presented here.  
 The most convenient way to organize these models is by type of dependent variable.  This 
chapter will describe several models for discrete dependent variables, such as the probit and logit 
model.  Chapter E50 will describe models for continuous variables, such as some for variables 
constrained to lie in the interval (0,1).  Chapter E51 will extend both types of models to several panel 
data settings. 
 In each framework, the estimation procedure is maximum likelihood, based on the formal 
specification of the distribution of the observed random variable.  We begin the development with 
some methodological points about GLIM models. 
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E49.2 Estimating Generalized Linear Models 
 
 The following are the central features of Nelder and Wedderburn’s (1972) and McCullagh 
and Nelder’s (1983) GLM approach to specification. (We present this as an application to panel data 
to simplify the presentation in Chapter E51.)  The generalized linear model is specified by a ‘link’ to 
the conditional mean function,  
 
   f(E[yit | xit])  = β′xit, 
 
and a ‘family’ of distributions, 
 
   yit | xit ~  g(yit,β′xit, θ) 
 
where β and xit are as already defined and θ is zero or more ancillary parameters, such as the 
dispersion parameter in the negative binomial model (which is a GLM).  Many of the models already 
discussed fit into this framework, such as the standard probit model which has link function  
f(.) = Φ-1(P) and Bernoulli distribution family and the classical normal linear regression which has 
link function equal to the identity function and normal distribution family.  More generally, for the 
single index binary choice models estimated by LIMDEP, if Prob(yit = 1) = F(β′xit), then this is the 
conditional mean function, and the link function is simply (by definition) 
 
   f(E[yit | xit])  =  F-1[F(β′xit)]  =  β′xit. 
 
This includes the probit, logit, Gompertz, complementary log log, arctangent and Burr (scobit) 
models described in Chapter E27.  A like result holds for the count models, Poisson, negative 
binomial, etc. presented in Chapter E41 (and the extensions in Chapters E42-E44) for which the link 
is simply the log function.    
 
E49.2.1 Internally Consistent Generalized Linear Models 
 
 One can create a vast array of models by crossing a menu of link functions with a second 
menu of distributional families. (As shown below, LIMDEP offers at least 25 different distributional 
families.)    Consider, for example, the following matrix of a few possibilities.     
 

                                            Link Functions 

Kind of r.v. Family Identity Logit Probit Log Reciprocal 
Binary Bernoulli X • • X X 
Continuous normal • • • • • 
Count Poisson X X X • X 
Nonnegative gamma X X X • X 

Table E49.1  Families and Link Functions for Generalized Linear Models 
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We choose four distributional families to provide models for the indicated kinds of random variables 
and five link functions.  There is no theoretical restriction on the mesh between links and families.  
But, in fact, most of the combinations are internally inconsistent.  For example, for the binary 
dependent variable, only the probit and logit links make sense; the others imply a conditional mean 
that is not bounded by zero and one.  For the continuous random variable, any link could be chosen; 
this just defines a linear or nonlinear regression model.  For the count variable, only the log 
transformation insures an appropriate nonnegative mean.  The logit and probit transformations also 
imply a positive mean, but one would not want to formulate a model for counts that forces the 
conditional mean function to be a probability between zero and one, so these make no sense either.  
The exact same considerations rule out all but the log transformation for the gamma family.  The 
preceding lists most of the commonly used link functions.  More than half of our table is null.  Of the 
nine combinations that are internally consistent, five are just nonlinear regressions. But, the 
nonlinear regression model is a much broader class than this, and one would unduly restrict the 
model if they limited it to the GLIM framework for nonlinear regression analysis.  The end result of 
this development is that typically, only one link function is appropriate for most of the distributional 
families.  (Similar analyses appear in other popular programs such as SAS and Stata.  In general, the 
matrix of model combinations is usually about one third full, with most cells containing unusable or 
inconsistent combinations such as the ones noted above.) 
 The upshot of all this is that you can fit nearly all of the internally consistent ‘generalized 
linear models in common use’ – partly because in the end, the set of them is surprisingly small.  The 
width of the class is deceptive because of this consideration of consistency of the model and the 
specification of the conditional mean function. 
 
E49.2.2 The Similarity of Different Link Functions 
 
 The generic form of the GLIM implies that 
 
   E[y | x]  =  h(β′x). 
 
As noted in many previous applications, the implication of this is that while coefficients in different 
forms of the models for a given dependent variable may differ substantially, the differences often 
disappear (or nearly so), when one computes the partial effects.  Generally, for index function 
models, the partial effects are scaled versions of the structural coefficient vector; 
 

   [ | ] ( )E y h∂ ′ ′= =
∂

x x
x

δ β β . 

 
The different scale factors tend to eliminate the differences in the associated parameter vectors.  The 
effect is strikingly persistent in binary choice modeling, but it is likewise prevalent more generally in 
the analysis of generalized linear models.  Consider an example, based on the German health care 
data analyzed earlier and again in the sections to follow.  Suppose y is income, which we model with 
an exponential regression model, 
 
   p(yit | xit)  =  λit exp(-yit λit). 
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Then, this constitutes the ‘family’ of distributions.  For this model, E[yit|xit] = 1/λit.  We consider two 
possible ‘link’ functions, the log function, for which λit = exp(β′xit) and the identity function,           
λit = β′xit.  For the first of these, δit = (-1/λit)β, while for the second, δit = (-1/λit

2)β.  The following 
program does these computations for a model of incomes and displays the coefficients and the 
marginal effects. 
 
 SAMPLE ; All $ 
 REJECT ; _groupti <  7 $ 
 NAMELIST  ; x = one,age,educ,hhkids,female,married $ 
 CALC   ; k = Col(x) $ 
 MAXIMIZE  ; Labels = k_blog ; Start = k_0  
   ; Fcn = bx = blog1'x | ti = Exp(bx) | Log(ti) - hhninc*ti  $ 
 MATRIX  ; xb = Mean(x) $ 
 CALC   ; eb = -Exp(-b'xb) $ 
 MATRIX  ; deltae = eb*b $ 
 CALC   ; k1 = k-1 ; yb1 = 1/Xbr(hhninc) $ 
 MAXIMIZE  ; Labels = k_biden ; Start = yb1,k1_0  
   ; Fcn = bx = b1'x | ti = bx | Log(ti) - hhninc*ti $ 
 CALC   ; eb = -1/(b'xb)^2 $ 
 MATRIX  ; deltal = eb*b ; List ; deltas = [deltae,deltal] $ 
 
Though the coefficient vectors appear to be quite different, the marginal effects are, in fact, close to 
the same.  Moreover, the pattern of significance in the coefficients is the same as well.  The upshot, 
as illustrated in this example, is that there is generally little impact of the choice of the link function 
on quantities usually of interest in the model.  However, there is a cost to imposing the restriction of 
an internally inconsistent conditional mean on a model, for example, in forcing the mean of a 
Poisson variable to be a probability. 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function       395.15949 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   BLOG1|    2.06290***      .19758    10.44  .0000     1.67564   2.45016 
   BLOG2|    -.00595*        .00339    -1.76  .0787     -.01259    .00068 
   BLOG3|    -.05285***      .01384    -3.82  .0001     -.07996   -.02573 
   BLOG4|     .06976         .05980     1.17  .2434     -.04744    .18697 
   BLOG5|     .01509         .05818      .26  .7954     -.09895    .12913 
   BLOG6|    -.23094***      .06558    -3.52  .0004     -.35947   -.10241 
--------+-------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function       396.18120 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  BIDEN1|    5.73701***      .62302     9.21  .0000     4.51591   6.95811 
  BIDEN2|    -.01789*        .01053    -1.70  .0892     -.03852    .00274 
  BIDEN3|    -.13524***      .03641    -3.71  .0002     -.20660   -.06388 
  BIDEN4|     .16315         .18231      .89  .3709     -.19418    .52047 
  BIDEN5|     .03030         .17374      .17  .8615     -.31022    .37082 
  BIDEN6|    -.73576***      .21886    -3.36  .0008    -1.16471   -.30680 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
  DELTAS|             1             2 
--------+---------------------------- 
       1|      -.712105      -.668612 
       2|     .00205501     .00208502 
       3|      .0182427      .0157610 
       4|     -.0240819     -.0190135 
       5|    -.00520873    -.00353141 
       6|      .0797201      .0857480 
 
 The similarity of these effects seems to be little noted in the literature and on websites that 
discuss the generalized linear models.  For example, displays such as that in Figure E49.1 are meant 
to suggest the difference between the identity link E[y|x] = β′x and log link E[y|x] = exp(β′x).   
 

 
Figure E49.1  Link Functions for GLMs 

 
But, these figures vastly exaggerate what will occur when the methods are applied to a model and a 
data set. The scaling by the coefficients, and the inherent relationships among the variables will 
obscure the differences in functional form.  Consider the earlier example.  We now refit this model 
as a normal family regression model with identity and log link functions, and the same regressors.  
We then hold the other variables constant at their means, and plot the conditional mean functions as 
a function of age.  The figure shows that the impact of the choice of link function is minor. 
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The commands are: 
 
 NAMELIST ; x0 = one,educ,hhkids,female,married $ 
 REGRESS ; Quietly ; Lhs  = hhninc ; Rhs = x0,age $ 
 MATRIX ; b0i = b(1:5) ; xb0 = Mean(x0) $ 
 CALC  ; b6i = b(6) ; ai = b0i'xb0 $ 
 GLIM  ; Quietly ; Lhs = hhninc ; Rhs = x0,age ; Model = Normal $ 
 MATRIX ; b0l = b(1:5) $ 
 CALC  ; b6l = b(6) ; al = b0l'xb0 $ 
 SAMPLE ; 1-40 $ 
 CREATE ; years = Trn(25,1)$ 
 CREATE ; yf_iden = ai+b6i*years $ 
 CREATE ; yf_log = Exp(al+b6l*years) $ 
 PLOT  ; Lhs  = years ; Rhs = yf_iden,yf_log ; Fill  
   ; Title = Conditional Means for Log and Identity Links 
   ; Grid ; Yaxis = E[y|x] $ 
 

 
Figure E49.2  Estimated Conditional Means for Two Link Functions 
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E49.2.3 Estimation Methods 
 
 One of the useful byproducts of the early development of the generalized linear models 
methodology was an implied estimation technique, which has been labeled ‘iteratively reweighted 
least squares,’ or IRWLS.  Since the conditional mean function is identified, it implies a kind of 
nonlinear weighted least squares estimator.  Among the virtues of the GLM specifications is that this 
weighted least squares procedure is quite simple to compute – at least simple in that it should be easy 
to program.  In most cases, at convergence, IRWLS will produce the maximum likelihood estimator. 
Since the GLIM estimator is based on a fully specified parametric model of the density for the 
observed random variable, the maximum likelihood estimator is fully efficient, and, where it differs 
from the MLE, the IRWLS estimator is not. (This will be the case in models that contain ancillary 
parameters, such as the overdispersion parameter in the negative binomial model.) All of LIMDEP’s 
estimators for these models are MLEs not weighted least squares estimators.  (You may, as in other 
models, provide any observation specific weights you wish, but these are applied to terms in the log 
likelihood, not in any form of least squares.) 
 
E49.2.4 Generalized Linear Models 
 
 As noted earlier, many of the single index function models described in the preceding 
chapters fall under the definition of GLMs in that the conditional mean function is a function of the 
linear index.  However, in some of these cases, such as the censored regression, the inverse 
transformation to the index will be difficult or impossible to obtain.  Table E49.2 lists most of 
LIMDEP’s GLMs – some not listed here are documented elsewhere in the manual, though perhaps 
not specifically identified as GLMs.  The table also indicates the subset of the indicated families that 
are typically analyzed in the formal literature on GLMs.  As can be seen, we have extended the class 
a bit.  The third column defines the one ‘link function’ used in each of these cases.  As discussed 
earlier, typical tabulations in the literature provide a menu of link functions.  However, in most 
cases, only a single link function makes sense in any particular context. Moreover, in actual practical 
terms, except where they impose a strong inappropriate restrictions on the model – such as using a 
probability as the conditional mean in a count or regression model – different link functions will 
produce similar empirical results. 
 As shown in the top half of Table E49.2, many of the models have already been documented 
in earlier chapters.  All of the models above may be requested with the command 
 
 GLIM  ; Lhs = ...  ;  Rhs = ...  ; Model = the model name given above $ 
 
For those models with command names given in the top half of the table, the command will be the 
same as if you had used the earlier command.  That is, for example, the following two commands are  
identical: 
 
 GLIM  ; Lhs = y  ;  Rhs = x  ; Model = Logit  $ 
 LOGIT ; Lhs = y  ;  Rhs = x   $ 
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The remaining models may all be invoked with the GLIM command.  For these ten models (only), 
the command GLIM is also synonymous with LOGLINEAR. So, for example, the following two 
commands are identical: 
 
 GLIM  ; Lhs = y  ;  Rhs = x  ; Model = Beta  $ 
 LOGLINEAR ; Lhs = y  ;  Rhs = x  ; Model = Beta  $ 
 
 In the developments below, the results for the first group of models will only be sketched.  
The reader is directed to the full, earlier chapters on the subjects.  Most of this chapter will relate to 
the additional models detailed in the lower half of the table – the ‘loglinear’ models. 
 
Model                Dependent Variable        Conditional Mean             Command 

Models developed in preceding chapters 
Probitb    Binary  Φ(t)  PROBIT 
Logitb    Binary  Λ(t)  LOGIT 
Gompertzb   Binary  exp(-exp(-t)     GOMPERTZ  
Comp. log logb   Binary  1 - exp(- exp(t)) LOG 
Arctangent   Binary  2/π Arctan(exp(t)) ARCTANGENT 
Burr    Binary  Λ(t)γ  BURR 
Poissonb   Count  exp(t)  POISSON 
NB1 Neg. Bin.   Count  exp(t)  NEGBIN 
NB2 Neg. Binb.   Count  exp(t)  NEGBIN 
NBP Neg. Bin.   Count  exp(t)  NEGBIN 
Polya-Aeppli   Count  exp(t)/(1-θ)     POISSON 
GP, Generalized Poisson Count  exp(t)  POISSON 
PGamma, Poisson/Gamma Count  exp(t)/α (approx.)  POISSON 
Linearb    Continuous t  REGRESS 
 
Loglinear models developed in this chapter 
Lognormal   Nonnegative t    LOGNORMAL 
Binomialb   Count of successes KΛ(t) 
Geometricb   Count until success exp(t) 
Beta    Bounded in (0,1) exp(ta)/[exp(ta)+exp(tb)] 
Power    Bounded in (0,1) [exp(t)+1]/[exp(t)+2] 
Normal (Loglinear)  Continuous exp(t) 
Gamma    Nonnegative Pexp(-t) 
Weibull    Nonnegative [exp(-t)]1/PΓ[(P+1)/P] 
Exponentialb   Nonnegative exp(-t) 
Rayleigh   Nonnegative [πexp(-t)/2)]1/2 
Inverse Gaussianb  Nonnegative Pexp(-t) 
a In all models, t = β′x. 
b Exponential families typically included in analysis of ‘Generalized Linear Models’ 

Table E49.2  Generalized Linear Modelsa 
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E49.2.5 Residual Analysis 
 
 Many types of ‘residuals’ are suggested for model assessment of GLMs.  Three that have 
some useful characteristics are the ‘Pearson residual,’ the ‘deviance residual’ and Chesher and Irish’s 
generalized residuals.  Unfortunately, none of the three are useful for all of the models considered 
here, though they do come close.   The deviance residuals are based on models for which the log 
likelihood can be written in terms of the conditional mean function. For this computation, the 
estimated model is compared to one in which yi is predicted perfectly at every observation.  Thus, in 
computing the log likelihood for the ‘saturated’ model, we replace the estimator of the conditional 
mean with the actual value of yi.  Thus, the deviance measures the extent to which the model fails to 
predict perfectly.  The ‘deviance residual’ is 
 
   eD,i = logLi(yi)  -  logLi( ˆiy ) 
 
where ˆiy  is the model prediction of yi using the estimated parameters to compute the conditional 
mean function.  The ‘deviance’ for the model is 
 
   D  = 2 Σi di  =  -2× [Σi logLi( ˆiy ) - Σi logLi(yi)]. 
 
Consider two examples.  For a binary choice model, the conditional mean is îP  based on whatever 
model is used to estimate the probability model.  The model that produces a perfect fit would have îP  
= yi.  Therefore, the deviance residual would be 
 
   eD,i  =  [(1-yi)log(1-yi) + yilogyi] – [(1-yi)log(1- îP ) + yilog îP ] 
 
(where 0log0 = 0). The first term in square brackets is zero.  The model deviance would be  
 
   D  =  -2 Σi [(1-yi)log(1- îP ) + yilog îP ] 
 
which is just -2 times the log likelihood for the model.  Second, consider a Poisson model, in which 
ˆiy = ˆ

iλ .  The deviance residual would be 
 
   eD,i  =  [-yi + yilogyi - logΓ(yi+1)] - [- ˆ

iλ  + yilog ˆ
iλ  - logΓ(yi+1)] 

          =  -(yi - ˆ
iλ ) + yilog(yi/ ˆ

iλ ) 
 
(where as before 0log0 = 0).  The deviance for the model is 
 
   D  =  -2Σi [(yi - ˆ

iλ ) - yilog(yi/ ˆ
iλ )]. 

 
These measures are not computed internally for the models.  However, they are easily computed 
using the predictions from the models.  Catalogs of formulas for many generalized linear models can 
be found in the vast literature on GLMs.   
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 Deviance measures of ‘fit’ compute in the opposite direction from familiar measures of fit. 
For example, in linear models, the R2 compares the estimated model to a model that provides no fit. 
Likewise, the so called ‘pseudo R2’ for maximum likelihood estimation, 1 - logL/logL0 compares the 
estimated model to one which has no coefficients other than a constant term.  Again, the intent is to 
compare the estimated model to one which provides no fit.  The deviance measure, in contrast, 
compares an estimated model to one which predicts the dependent variable perfectly.  The scale of 
the measure is unclear.  For example, for a binary choice model, the deviance is simply -2 times the 
log likelihood.  For the Poisson (and other) models, the measure is not a simple function of the log 
likelihood. Moreover, it should be noted that the model itself, is not estimated in order to predict the 
dependent variable well with the estimated conditional mean function.  For example, for a binary 
choice model, the maximum score estimator will outperform any MLE.  Thus, it remains ambiguous 
what is being computed by the deviance measures. 
 The second residual of interest is the ‘Pearson residual,’ 
 

   eP,i  =  ˆ
ˆ ( )

i i

i

y y
Var y

−  

 
In many treatments, the denominator is assumed to be a function of ˆiy .  We leave it in the more 
general form to accommodate those cases in which the conditional variance is not a simple function 
of the conditional mean.  These can also be computed easily with the model results.  The predictions 
are all available after estimation with ; Keep = variable name.  To complete the computation, the 
conditional variances are required.  These are given in Table E49.3.  These are saved for the models 
listed in the table when the commands for these models (only) contain 
 
   ; Pres = variable name 
 
Note that LIMDEP supports many variants of these models for which these residuals are not 
computed (and sometimes not computable).  For example, by the various constructions in this 
chapter, the censored, truncated, zero inflated and hurdle versions of the Poisson and negative 
binomial models are all GLMs, however, they are not included in the set of models analyzed here. 
 A third useful quantity in some analyses is Chesher and Irish’s (1987) ‘generalized residual,’ 
which for the models in which they are useful, can be computed as the derivative of the log 
likelihood with respect to the constant term.  (For the normal linear regression model, it coincides 
with the Pearson residual above.)  The quantity is useful for specification testing in latent regression 
models based on the normal distribution.  Applications appear in Chapter E29 for the probit model 
and Chapter E47 with the development of the tobit model. 
 Finally, there are an array of variations on the Pearson and deviance residuals for the GLMs, 
such as the Anscombe residuals and variations thereon.  
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Model               Conditional Mean                 Conditional Variance 

Probit    Φ(t)  =  F  F (1 – F)     
Logit    Λ(t)  = λ/(1+λ) = F F (1 – F) 
Gompertz   exp(-1/λ) =  F  F (1 – F) 
Comp. log log   1 - exp(- λ)  =  F    F (1 – F) 
Arctangent   1/π Arctan(λ)  F (1 – F) 
Burr    Λ(t)γ  =  F  F (1 – F) 
Poisson    λ      λ 
NB1 Neg. Bin.   λ      λ(1 + λ) 
NB2 Neg. Bin.   λ      λ(1 + θλ) 
NBP Neg. Bin.   λ      λ(1 + θP-1λ) 
Polya-Aeppli   λ/(1-θ)   λ(1 + θ)/(1 - θ)2 

GP, Generalized Poisson λ   λ(1 + θλ)2 
PGamma, Poisson/Gammab λ/α   λ/α2 
Linear    t   σ2 

Lognormal   t   σ2[t]2 

Binomial   KΛ(t)  =  K F  K F (1 - F) 
Geometric   λ   λ(1 + λ) 
Beta    λa/(λa + λb)  λaλb/[(λa+λb+1)(λa+λb)2] 
Power    (λ+1)/(λ+2)  (λ+1)/(λ+3) - [(λ+1)/(λ+2)]2 

Normal (Loglinear)  λ   σ2 
Gamma    P/λ   P/λ2 
Weibull    (1/λ)1/PΓ[(P+1)/P)] (1/λ)2/P{Γ[(P+2)/P)] - Γ2[(P+1)/P]} 
Exponential   1/λ   1/λ2 
Rayleigh   [π/(2λ)]1/2  (4 - π)/(2λ) 
Inverse Gaussian  P/λ   P/λ3 
a In all results given, t = β′x  and λ = exp(t) = exp(β′x). 
b Mean and variance for the gamma count model are approximate based on increasing event window.  
   See Winkelmann (2003, p. 55). 

Table E49.3  Means and Variances of Variables in Generalized Linear Modelsa 
 
E49.2.6 Standard Model Specifications for the Loglinear Regression 
Models 
 

This is the full list of general specifications that are applicable to this group of model 
estimators. 
 
Controlling Output from Model Commands 
 

; Par  keeps ancillary parameter p in main results vector b. 
; Margin displays marginal effects. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 
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Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  
; Cluster = spec requests computation of the cluster form of corrected covariance estimator. 

    (; Stratum = specification for stratified clustered data). 
 ; Robust requests a ‘sandwich’ estimator or robust covariance matrix for TSCS and  
    several discrete choice models. 

 
 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set   keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill   fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
E49.2.7 Estimated Results for Loglinear Models 
 
 As noted earlier, the models in the top half of Table E49.2 are documented extensively in 
earlier chapters.  For those in the bottom half, which are the main subject of this chapter, the 
following are the estimated results: 
 
 Matrices:  b =  estimates of β, or  
    b =  estimates of α followed by β for the beta model 
   varb =  estimated asymptotic covariance matrix for MLE of  b  
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 Scalars:  logl =  log likelihood 
   kreg =  number of variables in Rhs 
   nreg =  number of observations 
   pgamma =  P for the gamma model 
   pweibull =  P for the Weibull model 
   pinverse =  P for the inverse Gaussian model 
   s =  σ for the normal (exponential regression) model, or  
   s =  σ for the lognormal regression model 
   exitcode 
 
 Last Model: for the WALD command using b_name for the parts of b 
 
 Last Function: conditional mean function 
 

E49.3 Discrete Dependent Variable Models 
 
 Four types of discrete dependent variables are supported in the GLM group, binary, count, 
count of successes (binomial) and number of trials until first success (geometric).  The fourth of 
these does not naturally describe a count outcome, but as shown in the application below, purely 
from the standpoint of a functional form, it might be preferable to the Poisson model.  
 
E49.3.1 Binary Dependent Variables 
 
 Six parametric model formulations are provided as internal procedures in LIMDEP for 
binary choice models.  The probability models and loglinear forms are shown in Table E49.4. 
 

Model           Probability for Y = 1            Loglinear Form* 

Probit   F  =  
2exp( / 2)

2
i t dt

′

−∞

−
π∫

xβ
 =  Φ(β′xi)      F  =  Φ(logλi) 

Logit   F  =  exp( )
1 exp( )

i

i

′
′+

x
x

β
β

   =  Λ(β′xi)    F  =  λi / (1 + λi) 

Comp. log log  F  =  1 - exp(- exp(β′xi)) =  C(β′xi)     F  =  1 - exp(-λi) 

Gompertz  F  =  exp(-exp(-β′xi))   =  G(β′xi)  F  =  exp(-1/λi) 

Arctangent  F  =  2/π Arctan(exp((β′xi))  F  = 2/π tan-1(λ) 

Burr   F  =  exp( )
1 exp( )

i

i

γ
′ 

 ′+ 

x
x

β
β

 =  [Λ(β′xi)]γ, γ > 0  F  =  [λi / (1 + λi)]γ. 

* λi = exp(β′xi) 
Table E49.4  Binary Choice Models 
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These may be invoked with the command 
 
 GLIM  ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Model = Probit, Logit, Comploglog, Gompertz, Arctangent or Burr $ 
 
The GLIM command is a synonym for the respective commands for each of these, PROBIT, 
LOGIT, COMPLOGLOG, GOMPERTZ, ARCTANGENT and BURR.  The GLIM command 
does not change the model request; it is merely an equivalent form.  The binary choice models are 
documented in Chapter E27 for cross section and pooled data, and in Chapters E30 and E31 for the 
various panel data estimators. 
 
E49.3.2 Count Variables 
 

Chapters E41-E44 document a wide variety of models for counts.  The basic platform is the 
Poisson model, 

   Prob(Y = yi|xi)  =  
exp( )

!

iy
i i

iy
−λ λ

, yi = 0,1,...;  λi = exp(β′xi). 

 
The crucial feature of the Poisson model is its equidispersion property, 
 
    Var[yi|λi]  =  E[yi|λi] = λi.  
 
Many variations have been developed to relax the equidispersion assumption.  The most popular is 
the negative binomial model (NB2), which has density 
 

   Prob(Y = yi|xi) =  iy
ii

i

i uu
y
y )1(

)1()(
)(

−
+ΓθΓ

+θΓ θ  

where   θ  =  1/α 
 
and   ui  =  θ / (θ + λi). 
 
In the negative binomial (NB2) model, 
 
   Var[yi|λi]  =  E[yi|λi]{1 + α E[yi|λi]}. 
 
There are a variety of other forms for the negative binomial model, based on the relationship 
 
   Var[yi|λi]  =  E[yi|λi]{1+  αP-1 E[yi|λi]}. 
 
The NB2 model above has P = 2.  The NB1 model, with P = 1, has density 
 

   Prob(Y = yi|xi) =  ( ) (1 )
( ) ( 1)

i iyi i

i i

y w w
y

θλΓ θλ +
−

Γ θλ Γ +
 

 

where   w   =  θ / (θ + 1). 
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The general form of the model is the NBP form, which has density 
 

   Prob(Y = yi|xi) =  
( )

( ) ( 1)

Q
i iyQ Q

i i i
Q Q Q
i i i i i i

y
y

θλ
   Γ θλ + θλ λ
   Γ θλ Γ + θλ + λ θλ + λ   

 

 

where    Q = P - 2. 
 
 Several other model forms for counts are supported.  The gamma (based) probability model is 
 
   Prob[yi  =  j]   =  G(αj, λi)  -  G(αj + α, λi) 
 
where   λi  =  exp(β′xi)  (as usual) 
 

and   G(αj, λi)  =  1  if  j = 0, or  dueu
j

i uj∫
λ −−α

αΓ 0
1

)(
1  if j > 0, j = 1,... 

 

The dispersion parameter is α; there is underdispersion if α > 1, overdispersion if α < 1, and 
equidispersion if α = 1, which reduces the gamma probability to the Poisson model.  The gamma 
distributed count variable may be underdispersed or overdispersed.  Underdispersion is usually of 
lesser interest.   
 The generalized Poisson model is another that has overdispersion. The density for the 
generalized Poisson model is 
 

(1 ) (1 )Prob[ | ] exp , 0,1,2,...; e .
1 ! 1

i

i

y

i i i i
i i i i

i i i

y yY y y
y

′   λ + θ λ + θ
= = − = λ =   + θλ + θλ   

xx β

 
The mean and variance of this random variable are 
 

2[ | ] ,  Var[ | ] (1 )i i i i i i iE y y= λ = λ + θλx x . 
 
Finally, the density for the Polya-Aeppli form of the Poisson model is 
 

1

Prob[ 0 | ] exp( ),
1 [ (1 ) / ]Prob[ | ] exp( )(1 ) , 1,2,...
1 !

e
0  < 1.

ii

i

i i

j
y iy i

i i i ij

i

Y
y

Y y y
j j=

′

= = −λ

−  λ − θ θ
= = −λ − θ = − 

λ =
< θ

∑
x

x

x

β

 

 
The mean and variance of this random variable are 
 

  2

(1 ) (1 )[ | ]  and Var[ | ] [ | ]
(1 )     (1 ) (1 )

i i
i i i i i iE y y E yλ λ + θ + θ

= = =
− θ − θ − θ

x x x . 

 
All of these models are requested with the command 

 
POISSON  ; Lhs = … ; Rhs = … ; Model = NegBin, NB1, NB2, Polya, etc. $ 
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E49.3.3 Number of Successes in K Trials  – The Binomial Regression 
Model 
 
 The binomial regression model describes the number of success in K trials.  The model is 
supported for both cross section and panel data applications.  The discrete probability model is 
 

   
Prob( | , ) (1 ) ,  0,1,...,

exp( ) ,0 1. 
1 exp( ) 1

i i ii y K y
i i i i i i i

i

i i
i i

i i

K
Y y K y K

y
− 

= = θ − θ = 
 

′ λ
θ = = < θ <

′+ + λ

x

x
x

β
β

 

 
The success probability on any single trial is θi.  The number of trials may differ at every 
observation, or may be constant.  The conditional mean function is 
 
   E[yi|Ki,xi]  =  Kiθi, 
 
so the vector of marginal effects is 
 
   δi  =  ∂ E[yi|Ki,xi]/∂ xi  =  Kiθi (1-θi)β. 
 
These can be averaged over observations or computed at the sample means, as usual.  The command 
for this model is 
 
 LOGLINEAR ; Lhs = y ; Rhs = … 
   ; Model = Binomial  
   ; Trials = specification 
   ; ... other options $ 
 
The ; Trials definition is the same as a panel data declaration.  If the number is constant, then that 
number is given.  If the number is variable, then the name of the variable is provided instead. 
 
A Zero Inflated Binomial Model 
 
 An extension to the binomial regression model that allows the zero probability to be inflated 
would be 

   

00Prob( 0 | , ) (1 ) (1 )
0

                              (1 ) (1 )
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exp( )                             
1 exp(

i

i
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K
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This formulation shifts some of the mass to the zero outcome.  This is a counterpart to the ‘zero 
inflated Poisson model’ presented in Chapter E43.  The ‘regime’ probability, Λi, is taken to be a logit 
model.  It may involve covariates zi or it may be a constant.  This model is requested with 
 
 LOGLINEAR ; Lhs = y  

; Rhs = … 
   ; Model = Binomial  
   ; Trials = specification 
   ; ZIB = list of variables in z 
   ; ... other options $ 
 
If the zero inflation probability is to be a constant, then use ; ZIB = one. 
 Marginal effects in this model are exerted by the variables in both parts of the probability.  
The conditional mean is 
 
   E[yi|Ki,xi]  =  ΛiKiθi, 
 
so the marginal effects, assuming that variables in xi might also appear in zi, are 
 
   δi  =  ∂E[yi|Ki,xi]/∂ xi  =  ΛiKiθi (1-θi)β + Λi(1-Λi)Kiθiγ. 
 
Variables which appear in both xi and zi exert both terms; those only in xi, the first, and those only in 
zi, only the second. 
 
Technical Details 
 
 The log likelihood for the binomial regression model is 
 

   
1

( 1)log log log ( ) log(1 )
( 1) ( 1)

N i
i i i i ii
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The second derivatives are obtained by using the earlier result and collecting terms; 
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The same result can be used to obtain the derivatives for the computation of the covariance matrix of 
the marginal effects.  The necessary term is 
 
   Gi  =  ∂δi/∂β′  =  Kiθi (1-θi)(1 - 2θi) βxi′. 
 
 For the zero inflated model,  
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For convenience, call the bracketed term in the first part P0.  Then, 
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The Jacobian for the marginal effects is tedious, but derivable based on earlier results. 
 
Application 
 
 To illustrate the binomial regression model estimator, we will simulate a data set that 
satisfies the assumptions of the model.  We begin with the regressors, a continuously (normally) 
distributed variable and a binary (dummy) variable.  The ‘regression’ model is 
 
   λi  =  exp(-.5 + 1x1i + 1x2i). 
 
The success probabilities are generated as logistic probabilities, θi = Λ(β′xi).  We then generate the 
number of trials, Ki, for each individual, using a random draw from the integers 3, 4, 5 and 6.  With 
the number of trials and the success probabilities in hand, we use the built in random number 
generators to obtain a sample from the observation specific binomial distribution.  The last three 
commands estimate the model, then use a Lagrange multiplier test to test for the joint significance of 
the two regressors.  (The model with only a constant term converges without iterating, because the 
starting values for the iterations are the MLEs for a model with only a constant term.  These results 
are omitted below.) 
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The commands are: 
 
 CALC   ; Ran(12345) $ 
 CREATE  ; x1 = Rnn(0,1) ; x2 = Rnu(0,1)>.5 $ 
 CREATE  ; bx = -.5 + x1 + x2 $ 
 CREATE  ; thetai = Lgp(bx) $ 
 CREATE  ; ki = Rnd(4)+2 $ 
 CREATE  ; y = Rnb(ki,thetai) $ 
 GLIM    ; Lhs = y ; Rhs = one,x1,x2 ; Model = Binomial ; Trials = ki $ 
 GLIM    ; Lhs = y ; Rhs = one ; Model = Binomial ; Trials = ki $ 
 GLIM    ; Lhs = y ; Rhs = one,x1,x2 ; Model = Binomial ; Trials = ki   
   ; Start = b,0,0  ; Maxit = 0 $ 
 
Based on the LM statistic, the hypothesis that the two coefficients are zero is rejected.  This might 
have been expected, given the ‘t statistics’ shown with the first set of results. 
 
----------------------------------------------------------------------------- 
Binomial (Loglinear) Regression Model 
Dependent variable                    Y 
Log likelihood function    -43054.94415 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in conditional mean function 
Constant|    -.48972***      .00824   -59.41  .0000     -.50587   -.47356 
      X1|     .99027***      .00690   143.44  .0000      .97674   1.00381 
      X2|     .99523***      .01172    84.89  .0000      .97225   1.01821 
--------+-------------------------------------------------------------------- 
Binomial (Loglinear) Regression Model 
Dependent variable                    Y 
Log likelihood function    -59413.01283 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in conditional mean function 
Constant|     .00787         .00516     1.52  .1274     -.00225    .01798 
--------+-------------------------------------------------------------------- 
Binomial (Loglinear) Regression Model 
Dependent variable                    Y 
LM Stat. at start values    29393.43182 
Log likelihood function    -59413.01283 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in conditional mean function 
Constant|     .00787         .00732     1.07  .2829     -.00649    .02222 
      X1|        0.0         .00518      .00 1.0000 -.10157D-01  .10157D-01 
      X2|        0.0         .01032      .00 1.0000 -.20225D-01  .20225D-01 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E49.3.4 Number of Trials Until Success – The Geometric Regression 
Model 
 
 This model is suitable for a discrete random variable whose values decay geometrically.  For 
example, using the health care data analyzed earlier, the following histogram shows the pattern of the 
dependent variable, number of doctor visits.  Though these data are appropriately modeled using a 
count model such as the Poisson, the pattern in the histogram is that of a variable that is generated by 
one with a geometric distribution. 
 

 
Figure E49.3  Histogram for Doctor Visits 

 
The geometric regression model characterizes a sequences of Bernoulli trials in which the random 
variable y is the number of failures that occur until the first success occurs.  The density is 
 
   f(y) = θ(1-θ)y   
 
where θ is the assumed constant probability of success on each trial.  We parameterize the model for 
regression analysis with 
 

   θi  =  1 1
1 exp( ) 1i i

=
′+ + λxβ

. 

 
Then   Prob(Y = yi)  =  (1 )(1 ) ,  0,1,..i iy y

i i iy− +λ + λ =  
 
This variable has E[yi|xi] = λi and  Var[yi|xi] = λi(1 + λi). 
 
In this model, the conditional mean function is λi, so the marginal effects are δi = λiβ. 



E49: Generalized Linear Models – 1: Discrete   E-1215 

 The model is requested with 
 
 LOGLINEAR ; Lhs = y 
   ; Rhs = variables in x 
   ; Model = Geometric $ 
 
Marginal effects, fitted values, restrictions, the cluster estimator, robust covariance matrices, 
residuals, etc. for all other program features operate as usual.   
 In the application below, the geometric and Poisson regression models are found to give 
similar results for the panel of data on hospital visits.  However, the Vuong test based on the 
likelihood functions seems strongly to favor the geometric model. 
 

SAMPLE ; All $ 
REJECT ; _groupti <  7 $ 
NAMELIST  ; x = one,age,hhninc,hhkids $ 
LOGLINEAR ; Lhs = docvis ; Rhs = x 
  ; Model = Geometric ; Partial Effects $ 
CREATE  ; lg = logl_obs $ 
POISSON ; Lhs = docvis ; Rhs = x ; Partial Effects $ 
CREATE  ; lp = logl_obs $ 
CREATE  ; d = lp - lg $ 
CALC  ; List ; v = Sqr(n)*Xbr(d) / Sdv(d) $ 

 
----------------------------------------------------------------------------- 
Geometric (Loglinear) Regression Model 
Dependent variable               DOCVIS 
Log likelihood function    -14037.19620 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in conditional mean function 
Constant|     .16510*        .09139     1.81  .0708     -.01403    .34423 
     AGE|     .02590***      .00179    14.43  .0000      .02238    .02941 
  HHNINC|    -.49160***      .09013    -5.45  .0000     -.66825   -.31496 
  HHKIDS|    -.07532**       .03345    -2.25  .0244     -.14088   -.00975 
--------+-------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function    -23461.40921 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .12493***      .04815     2.59  .0095      .03055    .21931 
     AGE|     .02717***      .00091    29.75  .0000      .02538    .02896 
  HHNINC|    -.53730***      .04684   -11.47  .0000     -.62910   -.44550 
  HHKIDS|    -.07968***      .01686    -4.73  .0000     -.11272   -.04663 
--------+-------------------------------------------------------------------- 
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(Geometric) 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point   3.0262 
Scale Factor for Marginal Effects  3.0262 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .07837***      .00549    14.27  .0000      .06761    .08913 
  HHNINC|   -1.48769***      .27316    -5.45  .0000    -2.02308   -.95231 
  HHKIDS|    -.22792**       .10126    -2.25  .0244     -.42639   -.02945 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
(Poisson) 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .08515***      .00293    29.10  .0000      .07941    .09088 
  HHNINC|   -1.68390***      .14729   -11.43  .0000    -1.97257  -1.39522 
  HHKIDS|    -.24761***      .05197    -4.76  .0000     -.34947   -.14574   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
[CALC] V       =    -17.2471538 
 
Technical Details 
 
 The log likelihood function is 
 
   

1
log log ( 1) log(1 )N

i i i ii
L y y

=
= λ − + + λ∑  

 
The derivatives are 
 

   [ ]1 1

( 1)log ( 1)(1 )
(1 )

N Ni i
i i i i i ii i

i

yL y y y
= =

 λ +∂
= − = − + − θ ∂ + λ 

∑ ∑x x
β

 

and 

   [ ]
2

1

log ( 1) (1 )N
i i i i ii

L y
=

∂ ′= − + θ − θ
′∂ ∂ ∑ x x

β β
. 

 
Since E[yi|xi] = λi, the partial effects are λiβ and the Jacobian is Gi = λi[I + βxi′]. 
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E50: Generalized Linear Models – 2: 
Continuous 

 
E50.1 Introduction 
 
 This chapter presents a group of ‘generalized linear models’ (GLMs) that can be used for 
dependent variables whose range is generally restricted, either because they are discrete (such as a 
binary variable) or because they naturally vary over only a restricted range (such as variables that are 
only nonnegative).  The class of generalized linear models was defined in the pioneering works of 
Nelder and Wedderburn (1972) and McCullagh and Nelder (1983).  As shown below, many of these 
are models that LIMDEP fits under a different heading, but it is convenient to group them here.  
Formally, as defined in the recent literature, the class of models is a group in which the conditional 
mean function is of the form E[y|x] = h(β′x) for some continuous function h(.).  (McCullagh and 
Nelder and others since have focused on ‘exponential families,’ but we take some license here, and 
broaden their class.)  This class includes all of the single index function models already considered, 
such as the binary choice models, censored regression, truncated regression, and all of the count 
models considered in Chapters E24-E26.  This chapter will present a group of models not already 
considered and also organize several from earlier chapters for the convenience of the user interested 
in this class of models.    
 The basic command for estimation of the models described in this chapter is 
 
 GLIM  ; Lhs = dependent variable  
   ; Rhs = independent variables 
   ; Model = type of model $ 
 
where ‘type of model’ is one of the  generalized linear models presented here. 
 
E50.2 Generalized Linear Models for Continuous Variables 
 
 As noted earlier, many of the single index function models described in the preceding 
chapters fall under the definition of GLMs in that the conditional mean function is a function of the 
linear index.  However, in some of these cases, such as the censored regression, the inverse 
transformation to the index will be difficult to obtain.  Table E50.1 lists most of LIMDEP’s GLMs – 
some not listed here are documented elsewhere in the manual, though perhaps not specifically 
identified as GLMs.  The table also indicates the subset of the indicated families that are typically 
analyzed in the formal literature on GLMs.  As can be seen, we have extended the class a bit.  The 
third column defines the one ‘link function’ used in each of these cases.  As discussed earlier, typical 
tabulations in the literature provide a menu of link functions.  However, in most cases, only a single 
link function makes sense in any particular context. Moreover, in actual practical terms, except 
where they impose a strong inappropriate restrictions on the model – such as using a probability as 
the conditional mean in a count or regression model – different link functions will produce similar 
empirical results. 
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 As many of the models have already been documented in earlier chapters.  All of the models 
may be requested with the command 
 
 GLIM  ; Lhs = ... ; Rhs = ... ; Model = the model name given above $ 
 
The models may all be invoked with the GLIM command.  For the models documented in this 
chapter, the command GLIM is also synonymous with LOGLINEAR. So, for example, the 
following two commands are identical: 
 
 GLIM  ; Lhs = y ; Rhs = x ; Model = Beta $ 
 LOGLINEAR ; Lhs = y ; Rhs = x ; Model = Beta $ 
 
Tables E50.1 and E50.2 list the loglinear models for continuous data described in this chapter. 
 
Model                Dependent Variable        Conditional Mean             Command 

Beta    Bounded in (0,1) exp(ta)/[exp(ta)+exp(tb)] 
Power    Bounded in (0,1) [exp(t)+1]/[exp(t)+2] 
Normal (Loglinear)  Continuous exp(t) 
Gamma    Nonnegative Pexp(-t) 
Weibull    Nonnegative [exp(-t)]1/PΓ[(P+1)/P] 
Exponentialb   Nonnegative exp(-t) 
Rayleigh   Nonnegative [πexp(-t)/2)]1/2 
Inverse Gaussianb  Nonnegative Pexp(-t) 
a In all models, t = β′x. 
b Exponential families typically included in analysis of ‘Generalized Linear Models’ 

Table E50.1  Generalized Linear Modelsa 

 
Model               Conditional Mean                 Conditional Variance 

Beta    λa/(λa + λb)  λaλb/[(λa+λb+1)(λa+λb)2] 
Power    (λ+1)/(λ+2)  (λ+1)/(λ+3) - [(λ+1)/(λ+2)]2 

Normal (Loglinear)  λ   σ2 
Gamma    P/λ   P/λ2 
Weibull    (1/λ)1/PΓ[(P+1)/P)] (1/λ)2/P{Γ[(P+2)/P)] - Γ2[(P+1)/P]} 
Exponential   1/λ   1/λ2 
Rayleigh   [π/(2λ)]1/2  (4 - π)/(2λ) 
Inverse Gaussian  P/λ   P/λ3 
a In all results given, t = β′x  and λ = exp(t) = exp(β′x). 
b Mean and variance for the gamma count model are approximate based on increasing event window.  
   See Winkelmann (2003, p. 55). 

Table E50.2  Means and Variances of Variables in Generalized Linear Modelsa 
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E50.2.1 Standard Model Specifications for the Loglinear 
Regression Models 
 

This is the full list of general specifications that are applicable to this group of model 
estimators. 
 
Controlling Output from Model Commands 
 

; Par  keeps ancillary parameter p in main results vector b. 
; Margin displays marginal effects. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  
; Cluster = spec requests computation of the cluster form of corrected covariance estimator.  

 (; Stratum = specification for stratified clustered data). 
 ; Robust requests a ‘sandwich’ estimator or robust covariance matrix for TSCS and 
    several discrete choice models. 
 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set  keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
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E50.2.2 Estimated Results for Loglinear Models 
 
 The following are the estimated results for the models in Table E50.1: 
 
 Matrices:  b =  estimates of β, or  
    b =  estimates of α followed by β for the beta model 
   varb =  estimated asymptotic covariance matrix for MLE of  b  
 
 Scalars:  logl =  log likelihood 
   kreg =  number of variables in Rhs 
   nreg =  number of observations 
   pgamma =  P for the gamma model 
   pweibull =  P for the Weibull model 
   pinverse =  P for the inverse Gaussian model 
   s =  σ for the normal (exponential regression) model, or  
   s =  σ for the lognormal regression model 
   exitcode 
 
 Last Model: For the WALD command using b_name for the parts of b 
 
 Last Function:  Conditional mean function 
 
E50.3 Variables with Unrestricted Range 
 
 The simplest form of generalized linear model is the linear regression, 
 
   yi   =  β′xi  +  εi 

    =  log(λi)  +  εi, εi ~ N[0,σ2]. 
 
The linear regression model is discussed in detail in Chapters E7 and E8 and in a variety of 
specifications.  One extension might be to use distributions other than the normal for the distribution 
family.  While this does not represent an extension of the model, there are several ways one might 
proceed.  First, least squares in this model is robust to distributional assumptions, so in some sense, 
the point of the distribution is moot.  The Gauss Markov assumptions are met, so without a specific 
distributional alternative, least squares with a robust covariance matrix would be the estimator of 
choice.  Alternatively, one might want to use a semiparametric method, such as least absolute 
deviations.  Finally, one might be interested in using a specific alternative distribution.  The 
MAXIMIZE command can be used to construct the particular maximum likelihood estimator.  
Alternatively, by treating yi as if it were the log of a survival time, one can use one of the parametric 
survival models described in Chapter E60.  A variety of panel data treatments for the linear model 
are presented in Chapter E51. 
 An alternative form of the normal regression model that remains in the loglinear class of 
models considered here is 
 

   yi   =  exp(β′xi) +  εi 

    =  λi  +  εi, εi ~ N[0,σ2]. 
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This is a nonlinear regression model that can be fit by nonlinear least squares, using NLSQ.  The 
commands could be 
 
 NAMELIST ; x = ... the list of variables $ 
 CALC  ; k = Col(x) $ 
 NLSQ  ; Lhs = y ; Fcn = Exp(b1’x) ; Labels = k_b ; Start = k_0 $ 
 
This nonlinear regression may also be fit as a loglinear model with the command 
 
 LOGLINEAR ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Model = Normal $ 
 
All other options described in this chapter for the loglinear models may be used as well.  This model 
is fit by maximum likelihood, which for the normal distribution is nonlinear least squares. If you use 
NLSQ, the estimator will use the Gauss-Marquardt method.  The BFGS algorithm is used here, 
instead.   
 Of course, you can use a different functional form in NLSQ, and the exponential does not 
have any particularly attractive features.  Moreover, perhaps less noted than it might be, one tends to 
get similar answers for the different functional forms when marginal effects are compared.  For the 
linear model, β gives the partial effects.  In the loglinear form, λiβ gives the marginal effects.  The 
example below compares these for a model of household income using the German health care data. 
 
 NAMELIST  ; x = one,age,educ,female,married,hhkids $ 
 REGRESS  ; Lhs = hhninc ; Rhs = x $ 
 LOGLINEAR ; Lhs = hhninc ; Rhs = x ; Partial Effects ; Model = Normal $ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=HHNINC   Mean                 =         .34930 
             Standard deviation   =         .16296 
             No. of observations  =           6209  Degrees of freedom 
Regression   Sum of Squares       =        19.3836           5 
Residual     Sum of Squares       =        145.477        6203 
Total        Sum of Squares       =        164.860        6208 
             Standard error of e  =         .15314 
Fit          R-squared            =         .11758  R-bar squared =   .11686 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.04123**       .01698    -2.43  .0152     -.07451   -.00796 
     AGE|     .00237***      .00025     9.67  .0000      .00189    .00285 
    EDUC|     .02090***      .00096    21.73  .0000      .01902    .02279 
  FEMALE|    -.00209         .00412     -.51  .6109     -.01016    .00597 
 MARRIED|     .07871***      .00565    13.93  .0000      .06764    .08978 
  HHKIDS|    -.01974***      .00456    -4.33  .0000     -.02868   -.01080 
--------+-------------------------------------------------------------------- 
Normal Regression with Exponential Mean 
Log likelihood function      2860.43906 
R squared = 1-Var(e)/Var(y) =  .1224360 
--------+-------------------------------------------------------------------- 
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        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in conditional mean function 
Constant|   -2.18838***      .04789   -45.70  .0000    -2.28224  -2.09451 
     AGE|     .00740***      .00071    10.48  .0000      .00602    .00879 
    EDUC|     .05486***      .00218    25.17  .0000      .05059    .05914 
  FEMALE|    -.00332         .01175     -.28  .7774     -.02635    .01971 
 MARRIED|     .25403***      .01892    13.42  .0000      .21694    .29112 
  HHKIDS|    -.04071***      .01327    -3.07  .0022     -.06671   -.01471 
        |Standard deviation of normally distributed effect 
   Sigma|     .15265***      .00137   111.44  .0000      .14996    .15533 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  HHNINC|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00255***      .00024    10.54  .0000      .00208    .00303 
    EDUC|     .01891***      .00074    25.73  .0000      .01747    .02035 
  FEMALE|    -.00115         .00405     -.28  .7774     -.00908    .00679 
 MARRIED|     .08756***      .00645    13.57  .0000      .07491    .10022 
  HHKIDS|    -.01403***      .00457    -3.07  .0021     -.02299   -.00507 
--------+-------------------------------------------------------------------- 
 
E50.4 Nonnegative Random Variables   
 
 This section presents estimators for five models for nonnegative variables, the exponential, 
gamma, Weibull, Rayleigh and inverse Gaussian.  A sixth, the lognormal regression, is considered in 
the next section.  In all of these loglinear models, we parameterize the regression using λi = exp(β′xi). 
 
E50.4.1 Exponential Regression Model 
 
 The exponential model is a single index model with density 
 
   f(yi) =  exp( )i i iyλ −λ , yi > 0, 
 
   λi =  exp(β′xi) 
 
The regression function has  
 
   E[yi | xi] =  1/λi and Var[yi | xi] =  1/λi

2 

 
so the slopes of conditional mean  are 
 
   δi =  -∂E[yi|xi]/∂xi  =   -λi β. 
 
(Note that the slopes have the opposite signs from the coefficients.)  The exponential model forms 
the most basic (restrictive) model in the group considered here. 
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E50.4.2 Gamma Regression Model 
 
 The gamma and Weibull models both extend the exponential model by allowing a shape 
parameter to change the model form.  The gamma model is 
 

   f(yi) =  1exp( )
( )

P
Pi

i i iy y
P

−λ
−λ

Γ
, yi > 0, 

 
with conditional mean and variance functions 
 
   E[yi | xi] =  P/λi and Var[yi | xi]  =  P/λi

2. 
 
The vector of slopes is 
 
   δi =  -(P/λi) β  = - E[yi | xi]β. 
 
The exponential model results from the gamma model if P = 1. 
 
E50.4.3 Weibull Regression Model 
 
 The Weibull model is similar to the gamma.  The density is 
 
   f(yi)  =  1 exp( )P P

i i i iP y y−λ −λ ,  yi > 0. 
 
The conditional mean is found by integrating this form of the gamma function to obtain 
 

   E[yi | xi]  =  
1 1

i

P
P

  + Γ   λ   
  

and variance   Var[yi | xi]  =  
2

21 2 1

i

P P
P P

   + +   Γ − Γ      λ      
 

 
which produces slope vector 
 
   δi  =  -E[yi | xi]β. 
 
Once again, the exponential model is the special case with P = 1. 
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E50.4.4 Rayleigh Regression Model 
 
 The Rayleigh distribution applies to a variable that is the square root of twice an exponential 
variable (i.e., a simple transformation).  The density (parameterized to be consistent with our general 
formulation) is 
   ( )21

2( ) exp , 0,  0.i i i i i i if y y y y= λ − λ > λ >  
 
Precisely, in this form, the variable zi = yi

2/2 has an exponential density with parameter λi.  (That is 
how the model is estimated – we simply transform your Lhs variable during the iterations and use the 
simpler exponential density to form the likelihood function to estimate the parameters.) The 
conditional mean and variance functions are 
 

   E[yi | xi]  =  
2 i

π
λ

 and Var[yi | xi]  =  4
2 i

− π
λ

 

 
The vector of partial effects is 
 

   1 1
2 2i

i

  π
= −    λ   

δ β  =  - (1/2)E[yi | xi]β. 

 
The Rayleigh form is a substantial extension of the model, since it has the shapes of the gamma 
function depending on the value of λi. 
 
E50.4.5 Inverse Gaussian Regression Model 
 
 The inverse Gaussian model appears in survival modeling and other types of reliability 
analysis.  The standard functional form, where for the present, we omit the covariates is 
 

   f(yi)  = 












µ

µ−α−













π

α

i

i

i y
y

y 2

22/1

3 2
)(

exp
2

, yi > 0, µ > 0, λ > 0. 

 
In this formulation, E[yi] = µ.  In order to estimate the parameters of the model, we reparameterize it 
using 
   P   =  α  
 

and   λ   =  
µ
α  
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(This is a slight departure from standard references which often replace α with λ in the original form. 
This is done here to maintain consistency with the other models presented in this section.)  The 
density is now 

   f(yi)   =  
2

3

( )1exp
22

i i

ii

y PP
yy

 λ −
− 

π  
,  yi > 0, P > 0, λ > 0.   

 
and the mean is P/λ.  Finally, to introduce the individual heterogeneity in the parameters, we write 
 
   λi =  exp(β′xi) 
 
which produces the conditional density just by substitution, while 
 
   E[yi|xi]  =  P/λi. and Var[yi|xi]  =  P/λi

3 

 
The slopes of the conditional mean are 
 
   δi   =  (-P/λi)β  =  -E[yi|xi] β. 
 
E50.4.6 Comparison of Loglinear Models 
 
 The first four functional forms differ partly through the shape parameter, P (which equals 1 
for the exponential model, which is this special case of the other functions.)  The precise shapes of 
the gamma and Weibull depends on P and whether P is larger than or smaller than 1.  The Rayleigh, 
however, is strictly a function of the exponential, as it does not have a separate shape parameter.  The 
figure below shows the three densities for λ = 1 and P = 1.5. 
 

SAMPLE ; 1-401 $ 
CREATE ; y = Trn(0,.01) $ 
CALC  ; al = 1 ; p = 1.5 $ 
CREATE ; exponent = al*Exp(-al*y) $ 
CREATE ; gamma = (al^p)/Gma(p)*Exp(-al*y)*(y^(p-1)) $ 
CREATE ; weibull = p*al*y^(p-1)*Exp(-al*(y^p)) $ 
CREATE ; Rayleigh = al*y*Exp(-.5*al*y^2) $ 
PLOT  ; Lhs = y 

; Rhs = exponent,gamma,weibull,rayleigh 
; Title = Densities for Loglinear Models 
; Vaxis = Density ; Fill ; Grid $ 
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Figure E50.1  Densities for Loglinear Models 

 
E50.4.7 Commands 
 
 The estimator is maximum likelihood in all cases.  To request these models, use 
 
 LOGLINEAR ; Lhs = dependent variable (must be nonnegative) 
   ; Rhs = one list of independent variables 
   ; Model = Rayleigh, Exponential, Gamma, Weibull  
     or Inverse Gaussian $ 
 
E50.4.8 Applications 
 
 To illustrate the different estimators, we have used two of the five distributions to fit a 
loglinear model to the distribution of incomes.  The partial effects at the means and averaged over 
the sample observations are shown with each model. 
 
 SAMPLE ; All $ 
 CREATE ; agesq = age*age $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 REJECT ; ti  <  7 | hhninc = 0 $ 
   NAMELIST ; x = one,age,age^2,educ,female,married $ 
 LOGLINEAR ; Lhs = hhninc ; Rhs = x ; Model = Exponential ; Partial Effects $ 
 PARTIALS ; Effects: age / educ / female / married ; Summary $ 
 LOGLINEAR ; Lhs = hhninc ; Rhs = x ; Model = Weibull ; Partial Effects $ 
 PARTIALS ; Effects: age / educ / female / married ; Summary $ 
 



E50: Generalized Linear Models – 2: Continuous  E-1227 

----------------------------------------------------------------------------- 
Exponential (Loglinear) Regression Model 
Dependent variable               HHNINC 
Log likelihood function       398.32536 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in conditional mean function 
Constant|    3.14298***      .28090    11.19  .0000     2.59242   3.69354 
     AGE|    -.05677***      .01299    -4.37  .0000     -.08223   -.03130 
 AGE^2.0|     .00056***      .00015     3.80  .0001      .00027    .00084 
    EDUC|    -.05084***      .00632    -8.04  .0000     -.06323   -.03845 
  FEMALE|     .02155         .02685      .80  .4222     -.03108    .07418 
 MARRIED|    -.18470***      .03593    -5.14  .0000     -.25512   -.11427 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  HHNINC|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .16454***      .03772     4.36  .0000      .09062    .23846 
 AGE^2.0|    -.00161***      .00042    -3.80  .0001     -.00245   -.00078 
    EDUC|     .14735***      .01842     8.00  .0000      .11125    .18345 
  FEMALE|    -.06246         .07783     -.80  .4222     -.21502    .09009 
 MARRIED|     .53533***      .10437     5.13  .0000      .33076    .73989 
--------+-------------------------------------------------------------------- 
Partial Effects for Exponential Regression Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .02358     .00460    5.13      .01457      .03258 
      EDUC          .14905     .01880    7.93      .11221      .18590 
   *  FEMALE       -.06328     .07897     .80     -.21806      .09150 
   *  MARRIED       .57631     .11970    4.81      .34171      .81090 
--------------------------------------------------------------------- 
 

----------------------------------------------------------------------------- 
Weibull (Loglinear) Regression Model 
Dependent variable               HHNINC 
Log likelihood function      3121.57173 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in conditional mean function 
Constant|    2.84688***      .08879    32.06  .0000     2.67286   3.02090 
     AGE|    -.06208***      .00427   -14.54  .0000     -.07045   -.05371 
 AGE^2.0|     .00061***   .4871D-04    12.60  .0000      .00052    .00071 
    EDUC|    -.03813***      .00183   -20.85  .0000     -.04171   -.03454 
  FEMALE|     .03741***      .00794     4.71  .0000      .02185    .05296 
 MARRIED|    -.00793         .00989     -.80  .4229     -.02731    .01146 
        |Scale parameter for Weibull model 
 P_scale|    2.26749***      .01360   166.76  .0000     2.24084   2.29414 
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--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  HHNINC|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01599***      .00110    14.48  .0000      .01382    .01815 
 AGE^2.0|    -.00016***   .1260D-04   -12.55  .0000     -.00018   -.00013 
    EDUC|     .00982***      .00046    21.15  .0000      .00891    .01073 
  FEMALE|    -.00963***      .00205    -4.71  .0000     -.01365   -.00562 
 MARRIED|     .00204         .00255      .80  .4229     -.00295    .00703 
--------+-------------------------------------------------------------------- 
Partial Effects for Weibull Loglinear Regression Model 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00243     .00017   14.45      .00210      .00276 
      EDUC          .01323     .00062   21.28      .01201      .01444 
   *  FEMALE       -.01293     .00275    4.71     -.01832     -.00755 
   *  MARRIED       .00274     .00341     .80     -.00395      .00943 
--------------------------------------------------------------------- 
 
E50.5 Technical Details for the Loglinear Models 
 
 All five models are parameterized in terms of 
 
   λi  =  exp(β′xi). 
 
The five densities, gradients of the log densities, and Hessians of the log densities are as follows: 
 
E50.5.1 Exponential 
 
 For the exponential model,  
 
   f(yi)     =  exp( )i i iyλ −λ ,  yi > 0, 

   ∂logf(yi)/∂λi   =  (1 - yiλi ) / λi 

   ∂ logf(yi)/∂β   =  (1 - yiλi )xi 

   ∂2logf(yi)/∂β∂β′ =  -(yi λi)xixi′ 
 
These terms then define the log likelihood function.  The actual Hessian is used for the asymptotic 
covariance matrix. In this model, the conditional mean function is just 1/λi, so the partial effects are 
 
   ∂E[yi|xi]  =  -λiβ =  -E[y|x]β  =  δi 
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which is computed at the means of the data.  Standard errors are computed using the delta method.  
(Note the sign reversal in the marginal effects.)  The derivatives matrix for this computation is 
 
   ∂δi/∂β′ =  Gi  =  -λi[I  +  βxi′] 
 
once again, computed at the means of the data. 
 
E50.5.2 Gamma 
 
 For the gamma model, 
 

   f(yi)    =  1exp( )
( )

P
Pi

i i iy y
P

−λ
−λ

Γ
,  yi > 0, 

   log f(yi)   =  Plogλi  -  logΓ(P)  -  λiyi  +  (P-1)logyi 

   ∂logf(yi)/∂λi   =  P/λi  -  yi 

   ∂ logf(yi)/∂β   =  (P - λiyi)xi 

   ∂ logf(yi)/∂P   =  logλi  -  Ψ(P)  +  logyi 
 
The terms in the Hessian are 
 
   ∂2logf(yi)/∂β∂β′ =  -(yi λi)xixi′ 

   ∂2logf(yi)/∂P2 =  - Ψ ′(P)  +  logyi 

   ∂2logf(yi)/∂β∂P =  xi 
 
The conditional mean function in the gamma model is 
 
   E[yi|xi] =  P / λi 
 
so, the partial effects are 
 
   δi  =  -P/λi β  =  -E[y|x]β 
 
For computing standard errors of the partial effects, 
 
   ∂δi/∂β′ =  Giβ  =  -P/λi[I  -  βxi′] 

   ∂δi/∂P =  GiP  =  -(1/λi)β 
 
  



E50: Generalized Linear Models – 2: Continuous  E-1230 

E50.5.3 Weibull 
 
 For the Weibull model, 
 
   f(yi)  =  1 exp( )P P

i i i iP y y−λ −λ ,  yi > 0, 

   log f(yi)  =  logP + logλi  +  (P-1)logyi - λiyi
P 

   ∂logf(yi)/∂λi  =  1/λi  -  yi
P 

   ∂ logf(yi)/∂β =  (1 - λiyi
P)xi 

   ∂2logf(yi)/∂β∂β′ =  -(yi λi
P

 )xixi′ 

   ∂ logf(yi)/∂P =  1/P  +  logyi - λiyi
Plog yi 

   ∂2logf(yi)/∂P2 =  -1/P2  - λiyi
P(log yi)2 

   ∂2logf(yi)/∂β∂P =  - λiyi
P(log yi) xi 

 
The conditional mean function in the Weibull model is 
  

   E[yi | xi]  =  1 1

i

P
P

  + Γ   λ   
. 

 
The partial effects are 
 

   δi  =  1 1

i

P
P

  + −   λ   
Γ β  =  -E[yi|xi] β 

 

For computing marginal effects, 
 
   ∂δi/∂β′ =  Giβ  =  -E[yi|xi] [I - (1/P)βxi′] 

   ∂δi/∂P =  GiP  =  -δi [Ψ((P+1)/P) × 1/P2] 
 
(We make use of the fact that Γ′(t) = Γ(t)Ψ(t).) 
 
E50.5.4 Rayleigh Distribution 
 
 The actual density for the Rayleigh distribution is 
 
   ( )21

2( ) exp , 0,  0.i i i i i i if y y y y= λ − λ > λ >  
 
However, rather than manipulate this distribution for estimation purposes, internally, we create          
zi = yi

2/2, which has an exponential distribution based on the same parameter λi.  Thus, we use the 
exponential model to estimate the parameters.   
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 The marginal effects are 
 

   δi  =  1
2 2 i

 − π
  λ 

β . 

 
The derivative matrix for computing the asymptotic covariance for the marginal effects is 
 

   Gi  =  1
2 2 i

 − π
  λ 

[I – (1/2)βx′]. 

 
E50.5.5 Inverse Gaussian 
 
For the inverse Gaussian model, 
 

   f(yi)    =  










 −λ
−

π i

ii

i
y

Py

y

P 2

3

)(
2
1exp

2
, yi > 0, P > 0, λ > 0. 

   log f(yi)  =  logP  - ½ log(2π yi
3) - ½ (λiyi - P)2/yi 

   ∂logf(yi)/∂λi  =  -ei  where ei  =  λiyi - P 

   ∂ logf(yi)/∂β =  -eiλixi 

   ∂2logf(yi)/∂β∂β′ =  - λi(ei + λiyi)xixi′ 

   ∂ logf(yi)/∂P =  1/P  +  ei/yi 

   ∂2logf(yi)/∂P2 =  -1/P2 - 1/yi 

   ∂2logf(yi)/∂β∂P =  λixi 
 
The mean in the inverse Gaussian model in the original form is µ.  Therefore, as reparameterized, the 
conditional mean in this model is 
 
   E[yi|xi]  =  P/λi 
 
(note the similarity to the other models, which is what motivated this reparameterization).  The 
partial effects are 
   δi  =  -P/λi β 
 
(note, again, the sign reversal).  For computing standard errors of the marginal effects, 
 
   ∂δi/∂β′ =  Giβ  =  -P/λi[I  -  βxi′] 

   ∂δi/∂P =  GiP  =  -(1/λi)β. 
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E50.6 The Lognormal Regression Model 
 
 The lognormal regression model is specified to include a particular type of heteroscedasticity 
as well as to deal explicitly with the nonnegative values of certain variables.  (See Amemiya (1973).)  
If y has a lognormal distribution, then its variance is proportional to the square of its mean.  The 
general form of the  underlying regression is 
 
   y   =  β′x + ε, 
 
where y is positive,  E[y]   =  β′x 
 
and,   Var[y]  =  σ2[β′x]2. 
 
In this model,  E[logy]  =  log(β′x) - 2σ2 
 
and     Var[logy] =  σ2. 
  
The lognormal regression also allows censoring.  (In the literature on this model, this variant is 
erroneously called truncation.)  In this case, censoring may only be on the right.  This model has 
been applied to the length of program participation, in which y must be positive and does not exceed 
the length of the program.  Another natural application is the distribution of incomes, as in the 
application below. 
 The command is 
  
 LOGNORMAL ; Lhs = dependent variable  
 (or GLIM) ; Rhs = regressors $  
  
The censored form of the model can be specified by adding the specification  
 
   ; Limit = limit value 
 
where limit is a fixed value or a variable.  The limit must always be positive, as it is an upper limit. 
 The model parameters are (β,σ2).  Estimation parameters are β and θ2 = log(1 + σ2).  Finally, 
for the lognormal regression model, the predicted value is just the mean, β′x.  The other values 
displayed by ; List are the residual, β′x again, and the probability that yi would exceed the limit 
value.  The latter is zero if the data are not censored.  This model, save for these considerations, is 
the same as the tobit model discussed in Chapter E45.  All other options and specifications are 
identical.  Note, however, that since the conditional mean is linear, ; Partial Effects does not 
produce additional results. 
 There are no panel data forms of the lognormal model.  For modeling in this context with 
panel data, the truncated regression or the loglinear models, Weibull, gamma, inverse Gaussian or 
Rayleigh should provide satisfactory alternatives.  (The exponential model is likely to be too 
restrictive.) 
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E50.6.1 Application 
 
 In the results below, we fit a lognormal distribution to the income variable hhninc, in the 
German health care data analyzed earlier. The first model illustrates the truncated lognormal 
estimator.  The second and third estimates compare the uncensored lognormal distribution to an  
ordinary truncated regression model with the same data.  These two models are roughly comparable. 
The commands are:  
  
 SAMPLE ; All $ 
 REJECT ; _groupti < 7 $ 
 NAMELIST  ; x = one,educ,hhkids,female,married,age $ 
 LOGNORMAL ; Lhs = hhnins ; Rhs = x ; Limit = 2 $ 
 LOGNORMAL ; Lhs = hhninc ; Rhs = x $ 
 TRUNCATION ; Lhs = hhninc ; Rhs = x $ 
 
Note that in comparing the models, the parameter ‘σ’ is completely different; in the lognormal model 
it is a scale factor in the scedastic function while in the truncation model, it carries the scale of the 
dependent variable.  Also, for comparing the estimated effects, the comparison would be between the 
coefficients in the lognormal model and the marginal effects in the truncation model, which, as can 
be seen below, are fairly similar.  The differences arise because of the intrinsic differences in the 
functional forms. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - LOGNORMA 
Dependent variable               HHNINC 
Log likelihood function     -3336.11491 
Estimation based on N =   6208, K =   7 
Lower =      .0000    Upper =     2.0000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    -.01587         .01561    -1.02  .3093     -.04646    .01472 
    EDUC|     .02123***      .00105    20.20  .0000      .01917    .02329 
  HHKIDS|    -.03004***      .00375    -8.01  .0000     -.03738   -.02269 
  FEMALE|    -.00505         .00354    -1.42  .1542     -.01199    .00190 
 MARRIED|     .09845***      .00360    27.32  .0000      .09139    .10551 
     AGE|     .00148***      .00019     7.62  .0000      .00110    .00186 
        |Variance for lognormal distribution 
   Sigma|     .43267***      .00409   105.75  .0000      .42465    .44069 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - LOGNORMA 
Dependent variable               HHNINC 
Log likelihood function     -3382.89616 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    -.00895         .01473     -.61  .5436     -.03783    .01993 
    EDUC|     .02087***      .00102    20.56  .0000      .01888    .02286 
  HHKIDS|    -.02972***      .00372    -7.98  .0000     -.03702   -.02242 
  FEMALE|    -.00520         .00354    -1.47  .1417     -.01214    .00174 
 MARRIED|     .09688***      .00363    26.68  .0000      .08976    .10399 
     AGE|     .00146***      .00020     7.46  .0000      .00107    .00184 
        |Variance for lognormal distribution 
   Sigma|     .43611***      .00394   110.74  .0000      .42840    .44383 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - TRUNCATE 
Dependent variable               HHNINC 
Log likelihood function      2965.37636 
Lower =      .0000    Upper = +infinity 
Observations after truncation      6208 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    -.09010***      .01931    -4.67  .0000     -.12795   -.05225 
    EDUC|     .02260***      .00105    21.45  .0000      .02054    .02467 
  HHKIDS|    -.02198***      .00513    -4.28  .0000     -.03204   -.01192 
  FEMALE|    -.00262         .00462     -.57  .5701     -.01167    .00643 
 MARRIED|     .09149***      .00662    13.83  .0000      .07852    .10446 
     AGE|     .00263***      .00028     9.50  .0000      .00209    .00318 
        |Disturbance standard deviation 
   Sigma|     .16204***      .00174    93.12  .0000      .15863    .16545 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E50.6.2 Technical Details for the Lognormal Regression Model 
 
 The log likelihood function is 
  
   logL  = - ½ Σnonlimit observations {logθ2 + log2π + (1/θ2)[logyi - log(β′xi) + θ2/2]2} 
 
         + Σlimit observations logΦ[-(1/θ)(log(β′xi) - logUi - θ2/2)], 
 
where   θ2 =  log(1 + σ2) 
 
and   Ui =  upper censoring point or +∞, in which case, there are no limit values. 
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The function and derivatives are the same as those for the tobit model with upper censoring at logUi, 
where we would use the analogy 
 
   logyi  =  log(β′xi) - θ2/2  +  εi. 
 
Let   εi   =  logyi  -  log(β′xi )  +  θ2/2. 
 
Thus,   ∂logL/∂β =  (1/θ2)Σnonlimit [εi/(β′xi )]xi  - Σlimit [(φ/Φ) 1/(θβ′xi )]xi 
 
and   ∂logL/∂θ2 = 1/(2θ2)Σnonlimit [(εi/θ)2 - εi - 1] + Σlimit [(φ/Φ)/(2θ)](1 + εi

2/θ2). 
  
The BHHH estimator is used to estimate the asymptotic covariance matrix of the coefficient 
estimates. 
 An aspect of the model should be noted.  The model implies the log of a linear function 
enters the log likelihood.  Since a linear function cannot be directly constrained, there is the 
possibility that the function can become noncomputable.  If the data and the model are well matched, 
this should be unusual.  Users are warned of this possibility, however.  The program cannot restrict 
the estimates in any way to prevent this.  A value of β′x that is nonpositive is fixed at a small 
positive value so that estimation can continue.  However, if the problem occurs many times, the 
estimation is likely to break down at some point, claiming to be unable to maximize the function. 
 

E50.7 Variable Limited to the (0,1) Interval 
 
 These models are defined for a random variable with range of variation restricted to an 
interval (L,U) which is usually (0,1) but may be any fixed interval.  To use this model, you will need 
to rescale your variable if (0,1) is not the range of variation by dividing it by U-L by using a 
CREATE command.  As such, we assume from this point on that y ranges in the unit interval.  The 
distributions for y are the beta distribution and the power distribution.   
 The beta distribution is defined by two parameters, a and b, such that 
 

   f(y|a,b)  =  10,)1(
)()(
)( 11      ≤≤−

ΓΓ
+Γ −− yyy

ba
ba ba . 

 
We parameterize this distribution by assuming 
 
   a  =  exp(α′x) = λa 

and   b  =  exp(β′x) = λb. 
 
This defines the conditional density, f(yi|xi,α,β) as well as the log likelihood function needed for 
parameter estimation.  The mean and variance of the beta distributed random variable are 
 

   E[y|x]  =  a

a b

λ
λ + λ

 and Var[y|x]  =  2( 1)( )
a b

a b a b

λ λ
λ + λ + λ + λ

. 
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Therefore, by differentiation, the marginal effects in this model are 
 

   δ  =  
x

x
∂

∂ ]|[yE  =  {E[y|x] × (1 - E[y|x])}(α - β)  =  d(α,β) × (α - β). 

 
Note that the signs of the individual coefficients are not necessarily indicative of the signs of the 
marginal effects. 
 The power model is also used to analyze a variable whose range is (0,1).  The density for the 
random variable (as formulated in LIMDEP) is 
 
   f(y | λ) =  (λ + 1) yλ, 0 < y < 1. 
 
We parameterize the model by setting 
 
   λ  = exp(β′x). 
 
For this model, 

   E[y|x]  =  1
2

λ +
λ +

 and Var[y|x]  =   
21 1

3 2
λ + λ + −  λ + λ + 

. 

 
The marginal effects are 
 

   δ  =  2

[ | ]
( 2)

E y  ∂ λ
=  ∂ λ + 

x
x

β . 

 
We note, this model is a bit volatile, but it generally works.  For analyzing a variable which is a 
proportion or is simply bounded by zero and one, one could use this formulation, or any of the binary 
choice models (probit, logit, complementary log log, Gompertz).  These estimators automatically 
detect and adjust the estimation procedure for a proportions variable. 
 The model request for these models is 
 
 LOGLINEAR  ; Lhs = dependent variable (must be in the range (0,1)) 
   ; Rhs = list of independent variables 
   ; Model = Beta or Power $ 
 
All other options available for loglinear models are extended to this one.  This model allows cross 
section analysis as above and all three panel data treatments, random parameters (; RPM), latent 
class (; LCM) and fixed effects (; FEM) as discussed below.  Standard errors for the marginal 
effects are computed using the delta method.  The models are fit by maximum likelihood.  For the 
beta model, two vectors of parameters are produced.  There is no obvious connection between them, 
nor any priority in their entry into the conditional mean function. The differences between the 
corresponding parameters feeds into the shape of the distribution. Note, for example, if α = β, 
regardless of the values, the distribution is standard uniform between zero and one.  Other 
configurations produce different shapes of the distribution. 
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E50.7.1 Application 
 
 A constructed example appears below: 
 

CALC  ; Ran(12345) $ 
SAMPLE ; 1-1000 $ 
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) $ 
CREATE ; y = Rnu(0,1) $ 
LOGLINEAR ; Lhs = y ; Rhs = one,x1,x2  
  ; Model = Beta ; Partial Effects ; List $ 

 
----------------------------------------------------------------------------- 
Beta (Loglinear) Regression Model 
Dependent variable                    Y 
Log likelihood function         3.07985 
Restricted log likelihood       -.13875 
Chi squared [   6 d.f.]         6.43719 
Significance level               .37604 
McFadden Pseudo R-squared    23.1973633 
Estimation based on N =   1000, K =   6 
Inf.Cr.AIC  =      5.8 AIC/N =     .006 
Model estimated: Aug 04, 2011, 22:15:45 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in ALPHA 
Constant|    -.00923         .04376     -.21  .8329     -.09499    .07653 
      X1|    -.06026         .04816    -1.25  .2108     -.15465    .03413 
      X2|    -.03412         .04647     -.73  .4627     -.12520    .05695 
        |Parameters in BETA 
Constant|     .01694         .04510      .38  .7072     -.07145    .10532 
      X1|    -.09959**       .04963    -2.01  .0448     -.19687   -.00231 
      X2|    -.01744         .04616     -.38  .7055     -.10791    .07302 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point    .4939 
Scale Factor for Marginal Effects   .2500 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
       Y|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|    -.01506         .08991     -.17  .8669     -.19127    .16115 
      X2|    -.00853         .08528     -.10  .9203     -.17567    .15861 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual       Lambda-A   Lambda-B 
        1           .9596596     .4954268     .4642329    -.0683902    -.0500967 
        2           .2399725     .4856611    -.2456886     .0565713     .1139426 
        3           .7801775     .4896772     .2905003    -.0459020    -.0046050 
        4           .6930874     .4941819     .1989055    -.0756854    -.0524118 
        5           .7516940     .4903664     .2613276     .0361852     .0747242 
        6           .8457808     .4833286     .3624522     .0843637     .1510741 
        7           .5540159     .4952044     .0588115    -.0727616    -.0535786 
        8           .2979716     .4991834    -.2012118     .0043903     .0076567 
        9           .6014696     .4842701     .1171995     .1500031     .2129434 
       10           .7536326     .4733595     .2802731     .0463947     .1530577 
 
E50.7.2 Technical Details 
 
 The log likelihood for the beta model is 
 
         , , , , , ,1

log log ( ) log ( ) log ( ) ( 1) log ( 1) log(1 )N
a i b i a i b i a i i b i ii

L y y
=

= Γ λ + λ − Γ λ − Γ λ + λ − + λ − −∑ . 
 
The derivatives are 

   
, , , ,1

, , , ,1

log [ ( ) ( ) log ]

log [ ( ) ( ) log(1 )]

N
a i b i a i i a i ii

N
a i b i b i i b i ii

L y

L y

=

=

∂
= Ψ λ + λ − Ψ λ + λ

∂
∂

= Ψ λ + λ − Ψ λ + − λ
∂

∑

∑

x

x

α

β

. 

 
The BHHH estimator is used for the asymptotic covariance matrix.  The conditional mean function is 
 

   E[y|x]  =  a

a b

λ
λ + λ

 =   µ  

 

The partial effects are 

   δ   =  
x

x
∂

∂ ]|[yE   =  [µ(1-µ)](α - β). 

 
To find the derivatives to use the delta method for the asymptotic covariance matrix for the estimated 
marginal effects, we require 
 
   G  =  [∂δ/∂α′, ∂δ/∂β′]  =  [Gα,Gβ]. 
 
By a tedious application of the chain rule, we find 
 
   ∂[µ(1-µ)]/∂λa = (1/λa)µ(1-µ)(1 - 2µ) 
 
and by symmetry ∂[µ(1-µ)]/∂λb = (1/λb)µ(1-µ)(1 - 2µ). 
 
Therefore,   Gα  =  µ(1-µ)I  +  [(1/λb)µ(1-µ)(1 - 2µ)]α [λax′] 
 
         =  µ(1-µ)[I + (1 - 2µ)αx′]. 
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By the symmetry of the function, we can deduce 
 
   Gβ  =  µ(1-µ)[I + (1 - 2µ)βx′]. 
 
 For the power model, the density is 
 
   f(y | λ)  =  (λ + 1) yλ, 0 < y < 1 
 
   λ  =  exp(β′x). 
 
so the log likelihood and its derivatives are 
 

   

1

1

2

21

log log(1 ) log

log log
1

log log
(1 )

N
i i ii

N i
i i ii

i

N i
i i i ii

i

L y

L y

L y

=

=

=

= + λ + λ

 λ∂
= + λ ∂ + λ 

 λ∂ ′= + λ ′∂ ∂ + λ 

∑

∑

∑

x

x x

β

β β

 

 
The marginal effects are 
 

   δ  =  2( 2)
 λ
 λ + 

β  

so, 

   
2 3

2

(2 ) 
( 2) ( 2)

2
( 2) 2

∂ λ λ − λ ′= = +
′∂ λ + λ +

λ − λ ′= + λ + + λ 

G I x

      I x

δ
β

β

β
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E51: Generalized Linear and Fractional 
Response Models for Panel Data 

 
E51.1 Introduction 
 
 This chapter presents the panel data estimators for the generalized linear models (GLMs) 
described in Chapters E49 and E50.  
 The basic command for estimation of the models described in this chapter is 
 
 GLIM  ; Lhs = dependent variable  
   ; Rhs = independent variables 
   ; Model = type of model  
   ; Panel 
   ; Panel model specification $ 
 
where ‘type of model’ is one of the generalized linear models presented here.  The panel model 
specification indicates the form of the stochastic specification, fixed or random effects, random 
parameters, or latent class. 
 The models listed in Table E51.1 provide specific extensions for panel data methods. 
 

Model Type of Random Variable 
Lognormal 
Binomial 
Geometric 
Power 
Normal (Loglinear) 
Gamma  
Weibull  
Exponential 
Rayleigh 
Inverse Gaussian 

Nonnegative 
Count of successes 
Count until success 
Bounded in (0,1) 
Continuous 
Nonnegative 
Nonnegative 
Nonnegative 
Nonnegative 
Nonnegative 

Table E51.1  Loglinear Models with Supported Panel Data Treatments 
 
There are no panel data estimators supported for the lognormal or beta models.  The full set of panel 
data treatments, fixed effects, random effects, random parameters, and latent class, are supported for 
these nine models. 
 An additional modeling framework that is similar to the ones listed above is Papke and 
Wooldridge’s (2008) fractional response model for panel data, which is presented in Section E51.8. 
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E51.2 GEE Modeling 
 
 The four panel data treatments noted above provide the most common applications of 
longitudinal, or repeated measures methods to microeconomic data of the sort of interest here.  A 
widely cited development in the statistics literature, generalized equation estimation (GEE) modeling 
appears to be yet another form of estimator.  (See Liang and Zeger (1986) and Diggle, Liang and 
Zeger, (1994).)  This is an extension of the GLM framework to panel data applications.  The GEE 
estimator is not explicitly supported in LIMDEP directly as a preprogrammed routine.  However, 
most of the internally consistent forms of GLM/GEE models are actually contained in the random 
parameters model package in LIMDEP.  As this is a frequently asked question, we consider it in 
detail. 
 The GEE approach adds what is essentially a random effects form to a panel data treatment 
in the preceding GLM models.  We redefine the link function as 
 
   f(E[yit| xit])  =  β′xit  +  εit, t = 1,...,Ti. 
 
Now, consider some different approaches to formulating the Ti×Ti covariance matrix for the 
heterogeneity:  (We borrow the nomenclature from the GEE literature): 
 
   Independent: Corr[εit, εis]  =  0, t≠s 
   Exchangeable: Corr[εit, εis]  =  ρ, t≠s 
   AR(1): Corr[εit, εis]  =  ρ|t-s| , t≠s 
   Nonstationary: Corr[εit, εis]  =  ρts , t≠s, |t-s| <g 
   Unstructured: Corr[εit, εis]  =  ρts , t≠s. 
 
The GEE approach to estimation is a form of generalized method of moments. Most of these models 
are already available in other forms in LIMDEP.  The first one is obvious – this is just the pooled 
estimator ignoring any group effects – we considered this model in Chapters E49 and E50.  The 
second is the random effects model.  We have noted a large number of models, including most of 
those in the valid set of GLIMs that LIMDEP can fit in the random effects form.  In addition, all 
models that are available in the random parameters form can be fit with just a random constant term 
to provide this random effects model.  This includes most of the GLM models and some others, such 
as the tobit model.  This model is produced simply by writing the random constants model as 
 
   f(E[yit| xit]) =  αi +  β′xit  +  uit, t = 1,...,Ti 

   αi =  α  +  wi, i = 1,...,N. 
 
Thus, the random constants model is functionally equivalent to the GEE model/estimator with the 
‘exchangeable’ form of the covariance matrix.  There is, however, an important difference in the 
treatment.  The GEE estimator is a type of method of moments estimator.  (See Diggle et al. (1994) 
for documentation.)  The estimator in LIMDEP is maximum simulated likelihood.  In addition, the 
random parameters model allows an AR(1) format for the random constant term, so all the models 
that fit in the exchangeable case can also be fit as in the AR(1) case.  (See Chapter R24 for details on 
random parameters estimation.) 
  



E51: Generalized Linear and Fractional Response Models for Panel Data   E-1242 

 The nonstationary covariance matrix is a restricted form of the of the unstructured covariance 
matrix, in which covariances are restricted to be zero after a certain lag.  It is possible to obtain both of 
these forms by using freely correlated random period specific constant terms (i.e., time dummy 
variables) in the model.  It might also be desired to force the means of the variables to be equal, so as to 
match exactly the structure above.  We do note, however, these sorts of models are very weakly 
identified in any estimation setting, owing to the large number of parameters that must be estimated to 
characterize the distribution of an unobserved random vector.  A fully unstructured correlation matrix, 
for example, is nearly inestimable as an ancillary parameter in a model fit by maximum likelihood, 
because the log likelihood becomes quite flat in the space of the correlations.  If the panel is at all large, 
users should not be optimistic about fitting models such as the unstructured one above using GEE, 
MSL or any other technique.  (For example, LIMDEP’s multinomial probit and multivariate probit 
models face this difficulty.) 
 LIMDEP can estimate most GEE models. The estimation technique however, is simulated 
maximum likelihood, not the method of moments.  By construction, LIMDEP’s estimator will be more 
efficient asymptotically, though in the sizes typical of panel data sets, this will probably be a minor 
consideration. We note, finally, ability to structure the random parameters model with random 
coefficients on all variables, rather than just the constant term, makes this estimator, in fact, far more 
general than the GEE estimator. The end result would be, in answer to the frequently asked question, 
yes, LIMDEP does do GLIM and GEE estimation, and considerably more with the random parameters 
model. 
 

E51.3 Panel Data Models 
 
 There are several general formulations for extensions of the regression models to a panel data 
setting.  These include, where f(.) denotes the density for the observed random variable (i.e., the model), 
 

• Fixed effects:     f(yit)   = f(β′xit  +  αi); αi may be correlated with xit, 

• Random effects: f(yit)   =   f(β′xit  +  ui); ui is uncorrelated with xit, 

• Random parameters: f(yit)   =   f(βi′xit),  β|i ~ h(β|i) with mean vector β + ∆zi 
        and covariance matrix Σ 

• Latent class:  f(yit|class j) =   f(βj′xit), Prob[class = j] = Fj(θ) 
 
NOTE:  The inverse Gaussian regression model is extremely volatile, particularly with fixed effects.  It 
is essential to have a good set of starting values, and even with these, the model is still often difficult to 
fit.  To fit this model in any of the panel data forms, you must precede your command with estimation 
of the same model with no heterogeneity.  That is, the immediately preceding command (each time you 
use it) must be 
 

 LOGLINEAR ; Lhs = ... ; Rhs = ... ; Model = Inverse Gaussian $ 
 

There is no natural starting value for the exponential regression model, other than the one fit to the 
pooled sample, as developed above. You must provide the values in the same way for this 
generalized regression model, with 
 

 LOGLINEAR  ; Lhs = ... ; Rhs = ... ; Model = Normal $  
 

Once again, the model specification must be otherwise identical in the pooled and panel data estimators.
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The same features, options, and panel data treatments are provided for all ten models listed in Table 
E51.1.  For convenience, the relevant specifications and restrictions for all of them are listed below.  
In all cases, the basic random effects model can be estimated by using the random parameters model 
with only a random constant term.  The binomial regression model (only) also supports a quadrature 
based (Butler and Moffitt estimator) for the random effects model. This is noted again below. 
 
Standard Model Specifications for the Panel Data Loglinear Models 
 

This is the full list of general specifications that are applicable to this model estimator.  
 
Controlling Output from Model Commands 
 

; Par  keeps individual specific parameter estimates. 
; Margin displays marginal effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm (not available for FEM).  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set   keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator (not for FEM). 
; Rst = list specifies equality and fixed value restrictions (not for FEM). 
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E51.4 Fixed Effects Models 
 
 The fixed effects model assumes a group specific effect: 
 
   f(yit) =  f( λit) 

where   λit   =  exp(β′xit  +  αi) 
 
where αi is the parameter to be estimated.  You may also fit a two way fixed effects model 
 
   λit  =  exp(β′xit  +  αi  +  γt) 

 
where γt is an additional, time (period) specific effect.  This model is fit (in principle) as a dummy 
variable with separate dummy variables in the model for each individual (and group for the two way 
model). 

The command for estimation of the fixed effects models is 
 
LOGLINEAR ; Lhs = dependent variable 
  ; Rhs = independent variables 
  ; Model = Binomial, Geometric, Power, Exponential, Gamma, Weibull, 
    Inverse Gaussian, Rayleigh, Power, Geometric, Binomial 
  ; Pds = panel specification 
  ; FEM (for fixed effects model) $ 

 
(See the earlier note about the command for the inverse Gaussian regression model.  The fixed 
effects form is not supported for the normal model.)  You may request residuals, fitted values, 
marginal effects, and all other optional features with this model.  Restrictions, with ; Rst, however, 
must be built into the model at the outset.  The algorithm does not accommodate restrictions.  Full 
details on estimating fixed effects models appear in Section R23.2. 
 
NOTE:  Your Rhs list should not include a constant term, as the fixed effects model fits a complete 
set of constants for the set of groups.  If you do include one in your Rhs list, it is removed prior to 
beginning estimation. 
 
 The fixed effects models are estimated by maximum likelihood.   The time specific effect is 
requested by adding 
 
   ; Time 
 
to the command if the panel is balanced, and  
 
   ; Time = variable name 
 
if the panel is unbalanced.   
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 For the unbalanced panel, we assume that overall, the sample observation period is  
 
   t  = 1,2,..., Tmax 
 
and that the time variable gives for the specific group, the particular values of t that apply to the 
observations.  Thus, suppose your overall sample is five periods.  The first group is three 
observations, periods 1, 2, 4, while the second group is four observations, 2, 3, 4, 5.  Then, your 
panel specification would be 
 
   ; Pds = Ti,  for example, where Ti = 3, 3, 3, 4, 4, 4, 4 
and   ; Time = Pd, for example, where Pd = 1, 2, 4, 2, 3, 4, 5. 
 
 Results that are kept for this model are 
 
 Matrices: b =  estimate of β 
   varb =  asymptotic covariance matrix for estimate of β 
   alphafe =  estimated fixed effects 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function:  None 
  
The upper limit on the number of groups is 100,000.   
 To illustrate the fixed effects estimator, we fit a Weibull model to the distribution of income in 
the health care data.  The model is somewhat limited, since it cannot accommodate time invariant 
regressors.  We use health satisfaction, marital status, presence of children and working status.  (It 
would be natural to include age and education.  This produces perfect collinearity in the two way fixed 
effects model – age can be expressed as a linear combination of the time dummy variables and any 
other nonzero variable.)  The results below compare a pooled model, the fixed effects model, and a two 
way model with time effects. One household with zero income is also removed from the sample. 
 
 SAMPLE ; All $ 
 REJECT  ; hhninc = 0 $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 REJECT ; ti < 7 $ 
 LOGLINEAR ; Lhs = hhninc ; Rhs = one,hsat,married,hhkids,working 
   ; Model = Weibull ; Partial Effects $ 
 LOGLINEAR ; Lhs = hhninc ; Rhs = one,hsat,married,hhkids,working 
   ; Model = Weibull ; Partial Effects  
   ; FEM ; Panel $ 
 LOGLINEAR ; Lhs = hhninc ; Rhs = one,hsat,married,hhkids,working 
   ; Model = Weibull ; Partial Effects  
   ; FEM ; Panel ; Time $ 
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----------------------------------------------------------------------------- 
Weibull (Loglinear) Regression Model 
Dependent variable               HHNINC 
Skipped    0 groups with inestimable ai 
Log likelihood function      3047.13922 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in conditional mean function 
Constant|    1.24391***      .01755    70.88  .0000     1.20952   1.27831 
    HSAT|    -.01057***      .00213    -4.97  .0000     -.01474   -.00640 
 MARRIED|    -.12722***      .00881   -14.44  .0000     -.14449   -.10995 
  HHKIDS|     .08500***      .00767    11.08  .0000      .06996    .10004 
 WORKING|    -.21951***      .00767   -28.61  .0000     -.23455   -.20448 
        |Scale parameter for Weibull model 
 P_scale|    2.24607***      .01379   162.87  .0000     2.21904   2.27310 
--------+-------------------------------------------------------------------- 
FIXED EFFECTS Weibull Model 
Log likelihood function      6350.69266 
Estimation based on N =   6202, K = 891 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
    HSAT|     .04355***      .00974     4.47  .0000      .02446    .06265 
 MARRIED|   -1.04619***      .08997   -11.63  .0000    -1.22254   -.86985 
  HHKIDS|    1.03632***      .05126    20.22  .0000      .93585   1.13678 
 WORKING|    -.71050***      .05750   -12.36  .0000     -.82320   -.59779 
        |Scale parameter for Weibull distribution 
 P_scale|    4.20649***      .04216    99.77  .0000     4.12386   4.28912 
--------+-------------------------------------------------------------------- 
FIXED EFFECTS Weibull Model 
Log likelihood function      7378.57387 
No. of period specific effects= 6 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
    HSAT|    -.01554         .00962    -1.62  .1063     -.03440    .00332 
 MARRIED|   -1.02930***      .09712   -10.60  .0000    -1.21965   -.83895 
  HHKIDS|     .41377***      .05553     7.45  .0000      .30493    .52261 
 WORKING|    -.98886***      .06115   -16.17  .0000    -1.10871   -.86900 
 Period1|    2.08793***      .06153    33.94  .0000     1.96734   2.20852 
 Period2|    2.06704***      .06072    34.04  .0000     1.94804   2.18605 
 Period3|    1.94827***      .05857    33.26  .0000     1.83347   2.06307 
 Period4|    1.86938***      .05743    32.55  .0000     1.75682   1.98193 
 Period5|    1.67965***      .05629    29.84  .0000     1.56932   1.78999 
 Period6|     .74510***      .05269    14.14  .0000      .64184    .84836 
        |Scale parameter for Weibull distribution 
 P_scale|    5.13238***      .05313    96.60  .0000     5.02825   5.23651 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  HHNINC|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
(Pooled) 
    HSAT|     .00274***      .00055     4.96  .0000      .00166    .00382 
 MARRIED|     .03298***      .00227    14.53  .0000      .02853    .03743 
  HHKIDS|    -.02204***      .00199   -11.09  .0000     -.02593   -.01814 
 WORKING|     .05691***      .00199    28.62  .0000      .05301    .06081 
--------+-------------------------------------------------------------------- 
(One way fixed effects) 
    HSAT|    -.00220***     -.06933    -4.75  .0000     -.00311   -.00129 
 MARRIED|     .05296***      .21021     9.54  .0000      .04208    .06383 
  HHKIDS|    -.05246***     -.11190   -18.64  .0000     -.05797   -.04694 
 WORKING|     .03596***      .12487    10.65  .0000      .02934    .04258 
--------+-------------------------------------------------------------------- 
(Two way fixed effects) 
    HSAT|     .00054         .02027     1.58  .1133     -.00013    .00122 
 MARRIED|     .03610***      .16951     9.03  .0000      .02826    .04393 
  HHKIDS|    -.01451***     -.03662    -7.53  .0000     -.01829   -.01073 
 WORKING|     .03468***      .14244    13.56  .0000      .02967    .03969 
--------+-------------------------------------------------------------------- 
(Random effects) 
  HSAT|    -.00085*       -.01636    -1.66  .0965     -.00186    .00015 
 MARRIED|     .05185***      .12573    21.99  .0000      .04723    .05647 
  HHKIDS|    -.06594***     -.08592   -28.44  .0000     -.07048   -.06139 
 WORKING|     .05527***      .11723    25.98  .0000      .05110    .05944 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

E51.5 Random Effects Models 
 
 The random effects model also assumes a group specific effect: 
 
   f(yit)  =  f( λit) 

where   λit   =  exp(β′xit  +  σuui), ui ~ N[0,1], 
 
where σu is the one additional parameter to be estimated.  This differs from the fixed effects model in the 
assumption that ui is uncorrelated with xit. For example, the binomial regression with this formulation 
would have 
   πit   =  exp(β′xit + σu ui)/[1+ exp(β′xit + σu ui)] where σu ui~ N[0,σu

2]. 
 
 The Butler and Moffitt procedure for estimating this model has been incorporated in many 
random effects estimators, including many models in LIMDEP.  A full listing of the frameworks 
appears in Section R23.3.  The approach uses Hermite quadrature to evaluate the one dimensional 
normal integral in the conditional log likelihood.  An alternative method of estimating one factor 
random effects models is via maximum simulated likelihood in a random parameters model with 
only a random constant term.  This is described in Chapter R24, and in the next section below. 
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 Random effects estimators for the loglinear models identified in Table E51.1 are obtained by 
using the random parameters approach.  The generic command would be 
 
 LOGLINEAR ; Lhs = the dependent variable 
   ; Rhs = one,... the remaining independent variables 
   ; ... any other model specifications 
   ; Pds = the panel data specification 
   ; RPM ; Fcn = one(n) [; Halton ; Pts = the desired number]  
   ; Model = one of Normal, Exponential, Gamma, Weibull, Rayleigh, 
     Inverse Gaussian, Power, Geometric, Binomial $ 
 
An example appears below.  In addition, (only) one of these models, the binomial model, may be fit 
with the Butler and Moffitt estimator.  The command would be 
 
 LOGLINEAR ; Lhs  = the dependent variable 
   ; Rhs  = one,... the remaining independent variables 
   ; Trials = the specification 
   ; Pds  = the panel data specification ; Normal 
   ; Model = Binomial $ 
 
 To illustrate, the following estimates a Weibull model for the distribution of incomes in the 
health care data.  Note that a pooled exponential regression (P = 1) (not shown) is used to obtain the 
starting values. The likelihood ratio statistic of over 8,000 firmly rejects this hypothesis.  Whether 
this is from the random parameters part of the model or the shape of the distribution remains to be 
determined.  Strictly within the Weibull results, we find the null hypothesis of P = 1, can be firmly 
rejected based on a Wald (t) statistic of (2.24607 – 1)/0.01378 = 90.36. 
 
 SAMPLE ; All $ 
 REJECT ; hhninc = 0 $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 REJECT ; ti < 7 $ 
 LOGLINEAR ; Lhs = hhninc 
   ; Rhs = one,hsat,married,hhkids,working 
   ; Model = Weibull ; Partial Effects  
   ; RPM ; Panel ; Fcn = one(n) ; Pts = 25 ; Halton $ 
 
----------------------------------------------------------------------------- 
Random Coefficients  WeiblReg Model 
Dependent variable               HHNINC 
Log likelihood function      4558.85190 
Unbalanced panel has    886 individuals 
Weibull loglinear regression model 
Simulation based on     25 Halton draws 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    HSAT|     .00888*        .00525     1.69  .0909     -.00141    .01917 
 MARRIED|    -.54048***      .02534   -21.33  .0000     -.59014   -.49081 
  HHKIDS|     .68732***      .02077    33.09  .0000      .64661    .72803 
 WORKING|    -.57613***      .02166   -26.60  .0000     -.61858   -.53368 
        |Means for random parameters 
Constant|    3.96401***      .04425    89.59  .0000     3.87729   4.05073 
        |Scale parameters for dists. of random parameters 
Constant|    1.71943***      .02040    84.29  .0000     1.67944   1.75941 
        |Scale parameter for Weibull distribution 
 P_scale|    3.63332***      .02142   169.60  .0000     3.59133   3.67530 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E51.6 Random Parameters Models 
 
 The random parameters model may be specified for all nine loglinear models.  The structure 
of the random parameters model is based on the conditional density 
 
   f(yit| xit, βi)  =  f(βi′xit), i = 1,...,N, t = 1,...,Ti. 
 
where f(.) is the density for the particular model.  The model assumes that parameters are randomly 
distributed with possibly heterogeneous (across individuals) means 
 
   E[βi| zi]  =  β  +  ∆zi.   
 
(The second term is optional – the mean may be constant.) 
 
   Var[βi| zi]  =  Σ. 
 
The model is operationalized by writing 
 
   βi  =  β  +  ∆zi  +  Γvi. 
 
As noted earlier, the heterogeneity term is optional.  In addition, it may be assumed that some of the 
parameters are nonrandom.  It is convenient to analyze the model in this fully general form here.  
One could easily accommodate nonrandom parameters just by placing rows of zeros in the 
appropriate places in ∆ and Γ. 
 
NOTE:  If there is no heterogeneity in the mean, and only the constant term is considered random – 
the model may specify that some parameters are nonrandom – then this model is equivalent to the 
random effects model. 
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E51.6.1 Command for the Random Parameters Model 
 
 The basic model command for this form of the model is 
 

LOGLINEAR ; Lhs  = dependent variable 
  ; Rhs = independent variables 
  ; Model = Exponential, Gamma, Weibull, Inverse Gaussian, 
    Rayleigh, Power, Normal, Geometric, Binomial 
  ; Pds = panel specification 
  ; RPM (or ; RPM = list of variables in z) 
  ; Fcn = specifications of the random parameters 
  [; Pts = number of replications and ; Halton are optional] $ 

 
(See the earlier note about the command for the inverse Gaussian regression and normal exponential 
models.)   
 
NOTE:  For this model, your Rhs list should include a constant term. 
 
NOTE:  The ; Pds specification is optional.  You may fit these models with cross section data.  
There is nothing inherent in the model that limits it to a panel data application. 
 
Specifying Random Parameters 
 
 The ; Fcn = specification is used to define the random parameters.  It is constructed from 
the list of Rhs names as follows:  Suppose your model is specified by 
 
   ; Rhs = one, x1, x2, x3, x4 
 
This involves five coefficients.  Any or all of them may be random; any not specified as random are 
assumed to be constant.  For those that you wish to specify as random, use 
 
   ; Fcn = variable name (distribution), variable name (distribution), ... 
 
Three distributions may be specified.  All random variables have mean zero. 
 
   n =  standard normal distribution, variance = 1, 
   t =  triangular (tent shaped) distribution in [-1,+1], variance = 1/6, 
   u =  standard uniform distribution [-1,1], variance = 1/3. 
 
(Several other available distributions are listed in Section R24.3.)  Note that each of these is scaled as 
it enters the distribution, so the variance is only that of the random draw before multiplication.  The 
latter two distributions are provided as one may wish to reduce the amount of variation in the tails of 
the distribution of the parameters across individuals and to limit the range of variation.  (See Train 
(2010) for discussion.).  To specify that the constant term and the coefficient on x1 are normally 
distributed with fixed mean and variance, use 
 
   ; Fcn = one(n), x1(n) 
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This specifies that the first and second coefficients are not random while the remainder are.  The 
parameters estimated will be the mean and standard deviations of the distributions of these two 
parameters and the fixed values of the other three.   
 
NOTE:  The model with only a random constant term (; Fcn = one(n)) is precisely equivalent to a 
‘random effects’ model.   
 
Correlated Random Parameters 
 
 The preceding defines an estimator for a model in which the covariance matrix of the random 
parameters is diagonal.  To extend it to a model in which the parameters are freely correlated, add 
 
   ; Correlation (or just ; Cor) 
 
to the command.   
 
Heterogeneity in the Means 
 
 The preceding examples have specified that the mean of the random variable is fixed over 
individuals.  If there is measured heterogeneity in the means, in the form of 
 
   E[βki]  =  βk  +  Σmδkmzmi 
 
where zm is a variable that is measured for each individual, then the command may be modified to 
 
   ; RPM  =  list of variables in z 
 
In the data set, these variables must be repeated for each observation in the group. 
 
The Parameter Vector and Starting Values 
 
The parameter vector is laid out as follows, in this order: 
 
 α1, ..., αK are the K nonrandom parameters, 
 β1,...,βM are the M means of the distributions of the random parameters, 
 σ1,σ2,...,σM are the M scale parameters for the distributions of the random parameters, 
 P is the shape parameter in the gamma, inverse Gauss or Weibull model  
  (last parameter). 
 
These are the essential parameters.  If you have specified that parameters are to be correlated, then 
the σs are followed by the below diagonal elements of Γ.  (The σs are the diagonal elements.)  If you 
have specified heterogeneity variables, z, then the preceding are followed by the rows of ∆.  
Consider an example:  The model specifies: 
 
   ; Model = Weibull 
   ; RPM = z1,z2 
   ; Rhs = one,x1,x2,x3,x4  ? The base parameters are β1, β2, β3, β4, β5. 
   ; Fcn = one(n),x2(n),x4(n)   
   ; Correlated 
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Then, after rearranging, the model becomes 
 
 Variable Parameter 
 x1  α1 
 x3    α2 
 one  β1  +  σ1vi1 +  δ11zi1  +  δ12zi2 
 x2  β2  +  σ2vi2  +  γ21vi1 +  δ11zi1  +  δ12zi2 
 x4  β3  +  σ3vi3  +  γ31vi1 + γ32vi2 +  δ11zi1  +  δ12zi2 
 
and the parameter vector would be 
 
 θ  =  α1, α2, β1, β2, β3, σ1, σ2, σ3, γ21, γ31, γ32, δ11, δ12, δ21, δ22, δ31, δ32,P 
 
You may use ; Rst and ; CML to impose restrictions on the parameters.  Use the preceding as a 
guide to the arrangement of the parameter vector. 
 Results saved by this estimator are: 
 
 Matrices: b =  estimate of θ 
   varb =  asymptotic covariance matrix for estimate of θ 
   beta_i =  individual specific parameters, if ; Par is requested 
   sdbeta_i =  estimated standard deviations of conditional distributions 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
 
E51.6.2 Application 
 
 The example below continues the application shown in the preceding sections.  Here, we fit 
the model with two random parameters, both heterogeneous and heteroscedastic.  The specification 
for the random coefficient on working, for example, is 
 

βworking,i  =  βworking + δFemalei + σworking,i,wworking,i 

σworking,i =  σworking  +  θworkingagei 

 wworking,i  ~  N[0,1]. 
 
The value used for agei is the observation in the first period of the observation.   
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The command set is: 
 

SAMPLE ; All $ 
REJECT ; hhninc = 0 $  (There are four bad observations in the data set) 
SETPANEL ; Group = id ; Pds = ti $ 
REJECT ; ti # 7 $ 

 LOGLINEAR ; Lhs = hhninc 
   ; Rhs = one,hsat,married,hhkids,working 
   ; Model = Weibull ; Partial Effects  
   ; RPM = female ; Panel ; Fcn = one(n),working(n); Het ; Hfr = age 

; Pts = 25 ; Halton $ 
 
----------------------------------------------------------------------------- 
Expnontl Regression Start Values for HHNINC 
Dependent variable               HHNINC 
Log likelihood function       388.47572 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    HSAT|    -.00628         .00577    -1.09  .2761     -.01758    .00502 
 MARRIED|    -.26601***      .03585    -7.42  .0000     -.33627   -.19575 
  HHKIDS|     .11582***      .02629     4.41  .0000      .06430    .16734 
Constant|    1.46378***      .05179    28.26  .0000     1.36227   1.56530 
 WORKING|    -.25276***      .02937    -8.60  .0000     -.31034   -.19519 
--------+-------------------------------------------------------------------- 
Random Coefficients  WeiblReg Model 
Dependent variable               HHNINC 
Log likelihood function      3854.38119 
Restricted log likelihood     388.47572 
Unbalanced panel has    886 individuals 
Weibull loglinear regression model 
Simulation based on     25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    HSAT|    -.02500***      .00581    -4.30  .0000     -.03640   -.01361 
 MARRIED|    -.71013***      .02641   -26.89  .0000     -.76189   -.65837 
  HHKIDS|     .43228***      .02414    17.91  .0000      .38498    .47959 
        |Means for random parameters 
Constant|    3.19326***      .06649    48.03  .0000     3.06294   3.32357 
 WORKING|    -.42880***      .05322    -8.06  .0000     -.53310   -.32449 
        |Scale parameters for dists. of random parameters 
Constant|     .22335***      .01970    11.34  .0000      .18474    .26195 
 WORKING|     .17416***      .02536     6.87  .0000      .12447    .22386 
        |Heterogeneity in the means of random parameters 
cONE_FEM|     .13341**       .05595     2.38  .0171      .02374    .24308 
cWOR_FEM|    -.44091***      .06662    -6.62  .0000     -.57149   -.31034 
        |Heterogeneity in the variances of random parameters 
hONE_AGE|     .02637***      .00204    12.91  .0000      .02237    .03037 
hWOR_AGE|    -.15711***      .00348   -45.19  .0000     -.16392   -.15029 
        |Scale parameter for Weibull distribution 
 P_scale|    2.35600***      .01635   144.12  .0000     2.32396   2.38804 
--------+-------------------------------------------------------------------- 
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Partial derivatives of expected val. with 
respect to the vector of characteristics. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HHNINC|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    HSAT|     .00349***      .07105     4.33  .0000      .00191    .00507 
 MARRIED|     .09915***      .25476    25.78  .0000      .09162    .10669 
  HHKIDS|    -.06036***     -.08334   -17.34  .0000     -.06718   -.05354 
 WORKING|     .05987***      .13455     7.11  .0000      .04336    .07638 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E51.7 Latent Class Loglinear Regression Models 
 

The model for a panel of data, i = 1,...,N, t = 1,...,Ti  is 
 

  f(yit| xit)  =  f(yit,β′xit)  =  f(i,t). 
 
Henceforth, we use the term ‘group’ to indicate the Ti observations on respondent i in periods            
t = 1,...,Ti.   Unobserved heterogeneity in the distribution of yit is assumed to impact the density in the 
form of a random effect.  The continuous distribution of the heterogeneity is approximated by using 
a finite number of ‘points of support.’  The distribution is approximated by estimating the location of 
the support points and the mass (probability) in each interval.  In implementation, it is convenient 
and useful to interpret this discrete approximation as producing a sorting of individuals (by 
heterogeneity) into J classes, j = 1,...,J.  (Since this is an approximation, J is chosen by the analyst.) 

Thus, we modify the model for a latent sorting of yit into J ‘classes’  with a model which 
allows for heterogeneity as follows:  The  density of the observed yit given that regime j applies is 

 
  f(yi,t|j)  =  f(yit| xit, j) 

 
where the density is now specific to the group.  The analyst does not observe directly which class,      
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model 
 

  f(yi,t |j)  =  f(yit, β′xit  +  δj), Prob(class = j)  =  Fj. 
 
We formulate this approximation more generally as, 
 

  f(yi,t |j)  =  f[yit | β′xit  +  δj′xit, Pj)  

  Fj  =  exp(θj) / Σj exp(θj), with θJ  = 0. 
 
If the prior class probabilities are functions of observed variables, then they may be extended in the 
form of a multinomial logit model, with 
    

θij  =  θj′zi. 
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This is done by adding the specification of z to the command as shown below. In this formulation, 
each group has its own parameter vector, (βj′,σj) = (β + δj,Pj) though the variables that enter the 
mean are assumed to be the same.  (This can be changed by imposing restrictions on the full 
parameter vector, as described below.)  This allows the Heckman and Singer formulation as a special 
case by imposing restrictions on the parameters.   
 The estimation command for this model is 
 

LOGLINEAR ; Lhs = dependent variable 
  ; Rhs = independent variables 
  ; Model = Exponential, Gamma, Weibull, Inverse Gaussian, 
          Rayleigh, Power, Normal, Geometric, Binomial 
  ; Pds = panel specification 
  ; LCM (or ; LCM = list of variables in z) 
  ; Pts = number of classes $ 

  
The default number of support points is five.  But, this is fairly high.  You may set J to 2, 3, ...,9 with 
 
   ; Pts = the value you wish 
 
Some particular values computed for the latent class model are 
 
   ; Group = the index of the most likely latent class 
   ; Cprob = estimated probability for the most likely latent class 
 
You can obtain a listing of these two results by using 
 
   ; List 
 
An example appears below. Computation of these values is described in the technical details in 
Chapter R25.  
 You can use the ; Rst = list option to structure the latent class model so that different 
variables appear in different classes.  For example, the following would restrict a model so that x1 
appears in one class and x2 in the other: 
 
   ; Rst = a1,bx1,0, a2,0,bx2,theta1,theta2. 
 
Alternatively, you can use this device to construct the Heckman and Singer form of the model as 
follows, where we use a three class model as an example: 
 
 NAMELIST ; x = ... one, list of variables $ 
 CALC  ; kx1 =  Col(x) - 1 $ 
 LOGLINEAR ; Lhs = ... ; Rhs = x ; LCM ; Pts = 3  

; Model = Exponential, Gamma, Weibull, etc. 
   ; Rst = d1,kx1_b, pshape1, 

d2,kx1_b, pshape2,  
d3,kx1_b, pshape3, t1,t2,t3 $ 
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Estimates retained by this model include 
 
 Matrices: b =  full parameter vector, [β1′,P1, β2′,P2, ... F1,...,FJ] 
   varb =  full covariance matrix 
   beta_i =  individual specific parameters, if ; Par requested 
   classp_i =  individual specific posterior class probabilities if ; Par requested 
 

Note that b and varb involve J×(K+2) estimates.  Two additional matrices are created, 
 

 b_class =  a J×K matrix with each row equal to the corresponding βj 

   class_pr =  a J×1 vector containing the estimated class probabilities 
 

Scalars: kreg =  number of variables in Rhs list 
   nreg =  total number of observations used for estimation 
   logl =  maximized value of the log likelihood function 
   exitcode =  exit status of the estimation procedure  
 
 Last Function: None 
 
Application 
 
 The following repeats the earlier example in the latent class framework.  We fit the model 
with three latent classes, and allow the prior class probabilities to depend on female.  The general 
formulation is as follows: 
 

SAMPLE  ; All $ 
REJECT ; hhninc = 0 $ 
SETPANEL ; Group = id ; Pds = ti $ 
REJECT ; ti # 7 $ 
LOGLINEAR ; Lhs = hhninc 

   ; Rhs = one,hsat,married,hhkids,working 
   ; Model = Weibull ; Partial Effects  

; LCM = female ; Panel ; Pts = 3 ; Par $ 
 
The model requests that the posterior class probabilities be retained in the matrix classp_i.  This is an 
886×3 matrix, shown below.  The average class probabilities are shown below the model results.  
The  matrix command, 
 

MATRIX  ; List ; 1/886 * 1'classp_i $ 
 
verifies the computation. 
 A restriction that the coefficients on hhkids and working and the shape parameter, P, be 
equal in all three classes is imposed by adding 
 

; Rst = a1,a2,a3,b1,b2,pw,c1,c2,c3,b1,b2,pw,d1,d2,d3,b1,b2,pw,t1,t2,t3 
 
to the command.   
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The results for this model are shown below.  This and the general model are nested, and we 
can use a likelihood ratio to test the restriction as a hypothesis.  The log likelihoods for the 
unrestricted and restricted models are 4615.52967 and 4476.74896, respectively.  The chi squared 
likelihood ratio statistic would be twice the difference, or 277.56 with 6 degrees of freedom (3 
restrictions times (3-1) classes).  The hypothesis would be rejected.  The restriction for producing the 
Heckman and Singer model would be 
 

; Rst = a1,4_b,pw,a2,4_b,pw,a3,4_b,pw,t1,t2,t3 
 
----------------------------------------------------------------------------- 
Latent Class / Panel WeiblReg Model 
Dependent variable               HHNINC 
Log likelihood function      4615.52967 
Restricted log likelihood     388.47572 
Weibull loglinear regression model 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    1.63419***      .16181    10.10  .0000     1.31704   1.95133 
    HSAT|    -.05480***      .01628    -3.37  .0008     -.08671   -.02290 
 MARRIED|     .30384**       .11854     2.56  .0104      .07150    .53617 
  HHKIDS|     .16158**       .07431     2.17  .0297      .01594    .30723 
 WORKING|    -.51480***      .08730    -5.90  .0000     -.68591   -.34370 
 P_scale|    2.35389***      .06473    36.37  .0000     2.22703   2.48076 
        |Model parameters for latent class 2 
Constant|    4.01033***      .11676    34.35  .0000     3.78148   4.23919 
    HSAT|     .02925***      .01096     2.67  .0076      .00777    .05073 
 MARRIED|    -.77124***      .07256   -10.63  .0000     -.91346   -.62902 
  HHKIDS|     .71216***      .05378    13.24  .0000      .60676    .81756 
 WORKING|    -.66530***      .06554   -10.15  .0000     -.79376   -.53685 
 P_scale|    3.73992***      .06670    56.07  .0000     3.60919   3.87064 
        |Model parameters for latent class 3 
Constant|    6.22776***      .16645    37.41  .0000     5.90152   6.55400 
    HSAT|     .00548         .01243      .44  .6595     -.01889    .02984 
 MARRIED|   -1.33406***      .08064   -16.54  .0000    -1.49210  -1.17601 
  HHKIDS|     .53559***      .06418     8.35  .0000      .40981    .66137 
 WORKING|    -.93793***      .07017   -13.37  .0000    -1.07546   -.80041 
 P_scale|    3.59117***      .06778    52.98  .0000     3.45831   3.72402 
        |Estimated prior probabilities for class membership 
   ONE_1|    -.91044***      .17327    -5.25  .0000    -1.25004   -.57084 
FEMALE_1|    -.01473         .23463     -.06  .9500     -.47459    .44514 
   ONE_2|     .32248**       .13658     2.36  .0182      .05479    .59017 
FEMALE_2|    -.02702         .17348     -.16  .8762     -.36704    .31300 
   ONE_3|        0.0    .....(Fixed Parameter)..... 
FEMALE_3|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
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+------------------------------------------------------------+ 
|  Prior class probabilities at data means for LCM variables | 
|   Class 1     Class 2     Class 3     Class 4     Class 5  | 
|    .14463      .49367      .36170      .00000      .00000  | 
+------------------------------------------------------------+ 
   |             1             2             3 
--------+------------------------------------------ 
       1|       .144623       .493670       .361707 
 

 
Figure E51.1 Matrix Results 

 
----------------------------------------------------------------------------- 
Latent Class / Panel WeiblReg Model 
Dependent variable               HHNINC 
Log likelihood function      4476.74896 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    1.25414***      .25515     4.92  .0000      .75405   1.75423 
    HSAT|    -.10689***      .02517    -4.25  .0000     -.15623   -.05755 
 MARRIED|    1.11362***      .16610     6.70  .0000      .78807   1.43916 
  HHKIDS|     .46848***      .04315    10.86  .0000      .38391    .55305 
 WORKING|    -.74635***      .04931   -15.14  .0000     -.84299   -.64971 
 P_scale|    3.30483***      .03145   105.08  .0000     3.24319   3.36648 
        |Model parameters for latent class 2 
Constant|    3.55050***      .11101    31.98  .0000     3.33293   3.76807 
    HSAT|     .03419***      .01179     2.90  .0038      .01107    .05730 
 MARRIED|    -.63192***      .07773    -8.13  .0000     -.78427   -.47957 
        |Model parameters for latent class 3 
Constant|    5.67164***      .11968    47.39  .0000     5.43707   5.90622 
    HSAT|     .00033         .01181      .03  .9779     -.02283    .02348 
 MARRIED|   -1.27033***      .07774   -16.34  .0000    -1.42270  -1.11796 
        |Estimated prior probabilities for class membership 
   ONE_1|   -1.45501***      .21827    -6.67  .0000    -1.88281  -1.02721 
FEMALE_1|     .08828         .27242      .32  .7459     -.44566    .62222 
   ONE_2|     .19068         .16191     1.18  .2389     -.12667    .50802 
FEMALE_2|     .07895         .17808      .44  .6575     -.27009    .42799 
   ONE_3|        0.0    .....(Fixed Parameter)..... 
FEMALE_3|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
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E51.8 Fractional Responses 
 
 Papke and Wooldridge (2998) panel data model for a fractional response is 
 
   E[yit| xit,ai]  =  Φ(β′xit + ai),  0 <yit< 1 
 
where ai is unobserved heterogeneity.  The model is completed with the assumption about the 
heterogeneity, 
   ai| Xi  ~  2[ , ]N ′α + δ σx  
 
where Xi is the Ti×K matrix of data on xit for the Ti periods.  After integrating out the heterogeneity, 
the conditional mean function in terms of the observables is 
 

   ( )
2

[ | ]
1

it i
it i a it a i aE y

 ′ ′+ + α ′ ′= Φ = Φ + + α 
+ σ 

x xX x xβ δ
β δ . 

 
The second result provides the useable model in terms of the scaled coefficients.  Since the 
parameter σ2 is not identified, estimation and inference is based on the scaled coefficients. The 
model should contain a constant term.  Note that if β contains a constant to begin with, β0, the 
parameter estimated is (β0 + α)/(1 + σ2)1/2.  We extend the model specification slightly to allow time 
invariant variables, zi, so 
     ( )[ | , ]it i i a it a i a a iE y ′ ′ ′= Φ + + α + γX z x x zβ δ . 
 
 The estimator for this model is obtained with command 
 
 FRACTIONAL ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Panel (or ; Pds = name) $ 
 
The group means of the Rhs variables are added to the model during estimation – the Rhs list should 
not contain the means.  The constant term, one, is automatically created, as it is part of the structure 
of the latent common effect.  All of the standard options are available.  Average partial effects based 
on the scaled coefficients are requested with 
 
   ; Partial effects. 
 
Estimation and computation of the partial effects are developed further in the technical details in 
Section E51.8.4.  Predictions and residuals are retained with 
 
   ; Keep = name  
and   ; Res = name. 
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E51.8.1 Standard Model Specifications for the Fractional Response 
Model 
 

This is the full list of general specifications that are applicable to this model estimator.  
 
Controlling Output from Model Commands 
 

; Partials displays marginal effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm (not available for FEM). 
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set   keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator (not for FEM). 
; Rst = list specifies equality and fixed value restrictions (not for FEM). 
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E51.8.2 Application 
 

 To illustrate the estimator, we have constructed the fractional variable frac which, for each 
household in the sample equals the proportion of the total income for the Ti years that is reported in 
each period, t.  Thus, fracit = hhnincit/(Σthhnincit).  For a few households, this equals zero in a few 
periods.  The estimated fractional response model appears below. 
 
 SAMPLE ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 REJECT  ; ti < 7 $ 
 CREATE ; sums = Group Sums(hhninc, Pds = ti) $ 
 CREATE ; frac = hhninc/sums $ 
 FRACTIONAL ; Lhs = frac ; Rhs = one,age,educ,female,hhkids,married 
   ; Panel ; Partial Effects $ 
 
Normal exit:  11 iterations. Status=0, F=    64.57008 
----------------------------------------------------------------------------- 
Fractional Response Model - Panel Data 
Dependent variable                 FRAC 
Log likelihood function        64.57008 
Estimation based on N =   6209, K =  10 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    FRAC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Time Invariant Variables in Conditional Mean 
Constant|   -1.07117***      .00133  -805.70  .0000    -1.07378  -1.06856 
  FEMALE|-.60292D-04         .00021     -.28  .7756 -.47494D-03  .35435D-03 
        |Time Varying Variables in Conditional Mean 
     AGE|     .02349***      .00102    23.02  .0000      .02149    .02549 
    EDUC|     .04549**       .01884     2.42  .0157      .00858    .08241 
  HHKIDS|    -.05524***      .01133    -4.87  .0000     -.07745   -.03303 
 MARRIED|     .15575***      .02286     6.81  .0000      .11094    .20056 
        |Group Means of Time Varying Variables 
     AGE|    -.02345***      .00102   -23.03  .0000     -.02545   -.02145 
    EDUC|    -.04565**       .01885    -2.42  .0154     -.08260   -.00871 
  HHKIDS|     .05419***      .01111     4.88  .0000      .03241    .07597 
 MARRIED|    -.15558***      .02268    -6.86  .0000     -.20003   -.11112 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected value. 
--------+-------------------------------------------------------------------- 
    FRAC|     Partial      Standard            Prob.      95% Confidence 
  E[y|x]|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Partial effect for dummy variable is P|1 - P|0. 
  FEMALE|-.13552D-04      .4755D-04     -.28  .7756 -.10675D-03  .79649D-04 
     AGE|     .00528***      .00023    23.16  .0000      .00483    .00573 
    EDUC|     .01023**       .00423     2.42  .0157      .00193    .01852 
        |Partial effect for dummy variable is P|1 - P|0. 
  HHKIDS|    -.01238***      .00253    -4.89  .0000     -.01735   -.00742 
        |Partial effect for dummy variable is P|1 - P|0. 
 MARRIED|     .03303***      .00456     7.24  .0000      .02409    .04197 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E51.8.3 Endogenous Explanatory Variables 
 
 The possibility of accommodating endogenous variables on the right hand side of the 
equation is raised in Papke and Wooldridge (2008).  Their application involves an endogenous 
continuous variable.  Since the estimator is not based on a likelihood function, the sort of full 
information maximum likelihood estimator proposed, for example, for the count model with sample 
selection, or other two part models, will not be appropriate.  The authors suggest, instead, the control 
function approach developed by Rivers and Vuong (1988) and investigated further by Terza, Basu 
and Rathouz (2008). 
 Consistent estimation is suggested by adding the residual from a reduced form equation for 
the endogenous variable to the fractional response model.  For example, assume that one of the 
variables in xit is xit,e, a continuous endogenous variable such as ‘spending,’ that depends on a zit that 
contains at least one variable that is not contained in xit.  Then, consistent estimation of the 
parameters of the fractional response model is achieved by adding vit, the residual in the linear 
regression of xit,e on z.  (Note, it is not suggested that predictions of xit,e be placed in the equation in 
place of the original data – rather, the residual is added to the equation.)  Three issues remain: 
 

1. If there is more than one endogenous variable, then a residual is added to the fractional 
response for each of them.  Identification requires that each equation be uniquely identified 
by its own exogenous variable(s). 

 
2. If the endogenous variables are not continuous, there may be an ambiguity as to how the 

residual is to be computed.  We suggest Chesher and Irish’s (1987) generalized residuals.  
For the single index models that are very likely to be behind the endogenous variables, the 
generalized residual is the derivative of the log density with respect to the constant term in 
the model.  For a linear model, this would be eit/s2.  For a binary choice (probit) model, this 
would be the signed inverse Mills ratio.  For a count data model, this would be yit - λit where 
λit is the conditional mean.  And so on. 

 
3. There is no obvious approach suggested for obtaining the appropriate asymptotic covariance 

matrix for this estimator.  The Murphy and Topel (2002) two step approach seems like the 
natural candidate, but is likely to be cumbersome in the extreme.  Papke and Wooldridge 
mention bootstrapping in passing – this seems like an attractive alternative to the tedious 
development of a Murphy and Topel estimator. 

 
 The following general template could be used to incorporate these steps: 
 
 SETPANEL ; Group = the variable ; Pds = ti $ 
 PROCEDURE = FracResp(y1,x,y2,z,model2) $ 
 MODEL2  ; Lhs = y2 ; Rhs = z $ 
 CREATE ; ey2 = _genres $ 
 FRACTIONAL  ; Lhs = y1 ; Rhs = x, ey2 ; Panel $ 
 ENDPROC $ 
 EXEC   ; Proc = FracResp(y1,x,y2,z,model2) ; Bootstrap = b  
   ; Panel ; N = number of bootstrap reps $ 
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 The following contrived example supposes that work status is endogenous in the fractional 
response model, and is determined by a probit model for the data generating process.  We use a panel 
bootstrap method to do the estimation.  In order to speed up the estimation, we have restricted the 
sample to groups with seven periods.  The program illustrates several features.  The procedure uses 
adjustable parameters, so it can be used with different model specifications.  Note one of the 
parameters in the parameter list is the model command name, ‘model2.’  The EXECUTE command 
that calls this procedure below requests model2 to be a PROBIT command.  The program also 
illustrates use of the panel bootstrap – bootstrap replications sample groups of observations defined 
by the SETPANEL command.  Finally, the estimator that is constructed is a two step MLE/NLSQ 
estimator with an endogenous right hand side variable, working, in the second equation.  The last 
command below computes the covariance matrix for the estimator without using the bootstrapping 
procedure.  The ; Maxit = 0 specification just reuses the previous estimates. 
 
 ? Initial preparation of the variables in the model 
 SAMPLE ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 CREATE ; sums = Group Sums(hhninc, Pds = ti) $ 
 CREATE ; frac = hhninc/sums $ 
 NAMELIST ; x = one,age,educ,hhkids $ 
 NAMELIST ; z = one,age,hsat,public $ 
 ? Two step bootstrap estimator 
 PROC = FracResp(y1,x,y2,z,model2) $ 
 MODEL2 ; Lhs = y2 ; Rhs = z $ 
 CREATE ; genres = score_fn $ 
 FRACTIONAL ; Lhs = y1 ; Rhs = x,y2,genres ; Panel $ 
 ENDPROC $ 
 ? Set the sample for estimation then estimate model 
 REJECT  ; ti < 7 $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 CALC   ; Ran(123457) $ 
 EXEC   ; N = 25 ; Bootstrap = b  
   ; Labels = constant,age,educ,kids,working,residual, 
    mean_age,mean_edc,mean_kds,mean_work,mean_res 
   ; Proc = FracResp(frac,x,working,z,probit)  
   ; Pds = ti  $ 
 ? Estimate the model without the bootstrap iterations 
 FRACTIONAL ; Lhs = frac ; Rhs = x,working,genres  
   ; Panel ; Maxit = 0 $ 
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----------------------------------------------------------------------------- 
Results of bootstrap estimation of model. 
Model has been reestimated      25 times. 
Coefficients shown below are the original 
model estimates based on the full sample. 
Bootstrap samples have  887 observations. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
BootStrp|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
CONSTANT|   -1.07102***      .00279  -384.01  .0000    -1.07649  -1.06556 
     AGE|     .02636***      .00134    19.64  .0000      .02373    .02899 
    EDUC|     .02370         .01586     1.49  .1351     -.00739    .05479 
    KIDS|    -.03033***      .00920    -3.30  .0010     -.04836   -.01230 
 WORKING|     .33992***      .07040     4.83  .0000      .20193    .47790 
RESIDUAL|    -.12308***      .04276    -2.88  .0040     -.20690   -.03927 
MEAN_AGE|    -.02632***      .00134   -19.59  .0000     -.02896   -.02369 
MEAN_EDC|    -.02378         .01586    -1.50  .1339     -.05487    .00732 
MEAN_KDS|     .02868***      .00910     3.15  .0016      .01084    .04651 
MEAN_WOR|    -.34129***      .06996    -4.88  .0000     -.47841   -.20417 
MEAN_RES|     .12460***      .04248     2.93  .0034      .04133    .20787 
--------+-------------------------------------------------------------------- 
(Estimated without bootstrapped standard errors) 
--------+-------------------------------------------------------------------- 
        |Time Invariant Variables in Conditional Mean 
Constant|   -1.07126***      .00239  -448.80  .0000    -1.07594  -1.06658 
        |Time Varying Variables in Conditional Mean 
     AGE|     .02634***      .00122    21.57  .0000      .02394    .02873 
    EDUC|     .02335         .01698     1.38  .1691     -.00993    .05662 
  HHKIDS|    -.03010***      .01124    -2.68  .0074     -.05213   -.00806 
 WORKING|     .33236***      .07141     4.65  .0000      .19239    .47233 
  GENRES|    -.11875***      .04112    -2.89  .0039     -.19935   -.03815 
        |Group Means of Time Varying Variables 
     AGE|    -.02629***      .00121   -21.65  .0000     -.02868   -.02391 
    EDUC|    -.02342         .01699    -1.38  .1680     -.05672    .00988 
  HHKIDS|     .02844**       .01104     2.58  .0100      .00680    .05009 
 WORKING|    -.33352***      .07079    -4.71  .0000     -.47227   -.19477 
  GENRES|     .12015***      .04072     2.95  .0032      .04034    .19996 
--------+-------------------------------------------------------------------- 
 

E51.8.4 Technical Details 
 
 Full technical details of this model are given in Papke and Wooldridge (2008).  We will 
provide a sketch of the main results here.  The structure of the model is 
 
   E[yit| xit,ai]  =  Φ(β′xit + ai),  0 <yit< 1 
 
where ai is unobserved heterogeneity with projection onto the group means of the data approximated 
with, 
   ai| Xi ~  2[ , ]N ′α + δ σx . 
 

The reduced form is 
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Objects of estimation are βa, δa and αa.  We estimate average partial effects as the partial derivatives 
of E[yit|Xi] and use the delta method to obtain the asymptotic standard errors for these.  The average 
is taken over all the sample observations. 
 The estimator is based on nonlinear multivariate least squares.  First step estimates of 
(βa,δa,αa) are obtained by a pooled grouped probit estimator, which maximizes the log likelihood 
 

   logL  =  
1 1

log ( )
(1 ) log[1 ( )]

in T it it i
i t

it it i

y
y= =

′ ′Φ + + α +
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β δ
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This initial estimator of the parameters, γ0, is used in construction of the weighting matrix for 
generalized least squares.  The criterion function for estimation is, then 
 
   Minγ S(γ)  =  Σi (yi – E[yi|Xi])′ [V(Xi,γ0]-1 (yi – E[yi|Xi]) 
 
where yi = (yi1,yi2,…,yi,Ti)′ and the Ti conditional means are stacked in E[yi|Xi].  The asymptotic 
covariance matrix for the estimator is computed using (3.8) in Papke and Wooldridge (2008).  Partial 
effects are based on their (3.11) and (3.12), for the entire sample. 
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E52: Linear Sample Selection Models 
 
E52.1 Introduction 
 
 Many variants of the ‘sample selection’ model can be estimated with LIMDEP. (See 
Heckman (1979), Maddala (1983) and Greene (2011) for further discussion.)  Most of them share the 
following structure:  A specified model, denoted A, applies to the underlying data.  However, the 
observed data are not sampled randomly from this population.  Rather, a related variable z* is such 
that an observation is drawn from A only when z* crosses some threshold.  If the observed data are 
treated as having been randomly sampled from A instead of from the subpopulation of A associated 
with the ‘selected’ values of z*, potentially serious biases result.  The general solution to the 
selectivity problem relies upon an auxiliary model of the process generating z*.  Information about 
this process is incorporated in the estimation of A. 
 Several of the forms of this model which can be estimated with LIMDEP depart from 
Heckman’s now canonical form, a linear regression with a binary probit selection criterion model: 
 
    y   =  β′x + ε, 

    z*   =  α′w + u, 

    ε,u ~  N[0,0,σε
2, σu

2, ρ]. 
 
A bivariate classical (seemingly unrelated) regressions model applies to the structural equations.  
The standard deviations are σε and σu, and the covariance is ρσεσu.  If the data were randomly 
sampled from this bivariate population, the parameters could be estimated by least squares, or GLS 
combining the two equations.  However, z* is not observed.  Its observed counterpart is z, which is 
determined by 
   z   =  1 if z* > 0 

and   z   =  0 if z* ≤ 0. 
 
Values of y and x are only observed when z equals one.  The essential feature of the model is that 
under the sampling rule, E[y|x,z=1] is not a linear regression in x, or x and z.  The development 
below presents estimators for the class of essentially nonlinear models that emerge from this 
specification. 
 The basic command structure for the models described in this chapter is 
 
 PROBIT ; Lhs = variable z ; Rhs = variables in w ; Hold $ 
 SELECT ; Lhs = variable y ; Rhs = variables in x $ 
 
Note that two commands are required for estimation of the sample selection model, one for each 
structural equation. 
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 This is the simplest form of this model.  In this chapter, we consider estimation by two step 
least squares and maximum likelihood.  In addition, we provide a large number of different forms 
and associated estimation techniques.  Because there are so many different models considered here, 
this chapter will depart from our usual format.  Rather than gather material by function (theoretical 
background, command, application, mathematical details), we will gather the material on sample 
selection by model.  This chapter will develop the two step and ML estimators for sample selection 
models using cross section data.  Chapter E53 presents panel data formulations of the sample 
selection models.  These two chapters are concerned with variations on the binary selection 
mechanism with linear primary equation.  Chapters E54 and E55 develop a variety of models that 
involve different types of equations and different types of selection mechanisms, respectively. 
 
E52.2 Regression Model with Sample Selection 
 
 The models described in this section are based on a dichotomous selection mechanism. 
Heckman’s approach to estimation is based on the following observations:  In the selected sample, 
 
   E[yi |xi, in sample] =  E[yi  | xi, zi =1] 

       =  E[yi  | xi, α′wi+ui > 0] 

       =  β′xi + E[εi  | ui > -α′wi] 

       =  β′xi + (ρσεσu ){φ(-α′wi)/[1 - Φ(-α′wi)]} 

       =  β′xi + (ρσεσu )[φ(α′wi)/Φ(α′wi)]. 
  
Given the structure of the model and the nature of the observed data, σu cannot be estimated, so it is 
normalized to 1.0.  (We observe the same values of zi regardless of the value of σu.)  Then, 
  
   E[yi | xi, in sample] =  β′xi + (ρσε )λi 

      =  β′xi + θλi . 
 
 There are some subtle ambiguities in the received applications of this model.  First, it is 
unclear whether the index function, β′xi, or the conditional mean is really the function of interest.  If 
the model is to be used to analyze the behavior of the selected group, then it is the latter.  If not, it is 
unclear.  The index function would be of interest if attention were to be applied to the entire 
population, rather than those expected to be selected.  This is application specific.  Second, the 
partial effects in this model are complicated as well.  For the moment, assume that xi and wi are the 
same variables.  Then, 
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For any variable xk which appears in both the selection equation (for zi) and the regression equation, 
the partial effect consists of both the direct part (βk) and the indirect part, which is of opposite sign – 
the term in parentheses is always negative; θ(-λiα′xi - λi

2)αk.  It is not obvious which part will 
dominate.  Most applications have at least some variables that appear in both equations, so this is an 
important consideration.  Note also that variables which do not appear in the index function still 
affect the conditional mean function through their affect on the inverse Mills ratio (the ‘selection 
variable’).  (We note the risk of conflict in the notation used here for the selection term, λi, and the 
loglinear term in the conditional mean functions of the generalized linear models in the preceding 
chapters.  There is no relationship between the two.  The two uses of ‘lambda’ are so common in the 
received literature as to have become part of the common parlance and as such, the risk of ambiguity 
is worse if we try to change the notation used here for clarity.) 
 LIMDEP contains three estimators for this model, Heckman’s two step (or ‘Heckit’) 
estimator, full information maximum likelihood, and two step maximum likelihood (which is, more 
or less, a limited information maximum likelihood estimator).  The first is presented in Section 
E52.2.  The MLEs are presented in the Sections E52.2.3 and E52.3.3.  The latter develops a model 
with heteroscedasticity, and uses the limited information maximum likelihood estimator. 
 
E52.2.1 Defining Limit Observations and Control Observations 
 
Limit Observations 
 
 The default specification for the selection model is to select on the value one for z.  If you 
wish, instead, to select on zero use  
 
   ; Limits 
  
to define observations with z = 1 as ‘limit’ observations in the commands. In this case, λ is computed 
using the appropriate formula, 
 
   λ = -φ(α′w)/[1 - Φ(α′w)] 
 
instead of φ(α′w)/Φ(α′w).  An application is suggested by the mover stayer model discussed in 
Section E56.2.  This brings no other changes in the model or results.  However, if you select on zero, 
LIMDEP saves sigma0 and bsr0 instead sigma1 and bsr1 when it retains the results.  This is noted 
again below.  Once again, these have relevance to the mover stayer model presented later. 
 
Control Observations 
 
 In some experimental situations, some observations might actually be randomly selected 
from the full population, not the selected one.  These might be controls, included by the experimental 
design.  For any such observation, the correct value of λ to include in the equation is zero.  You can 
indicate that there are control observations in your sample with a binary indicator included as a 
second Lhs variable in the command. Observations for which the variable is zero are given a value of 
0.0 for λ; observations for which it is one will get the appropriate value computed by the formulas 
given earlier. 
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NOTE:  This option is not used with the maximum likelihood estimators. 
 
 This variable, di must be coded 0/1.  When it is present, the value of λi that is inserted in the 
equation is diλi*, where λi* is computed as prescribed earlier.  As such, if you do not use a binary 
variable, the results may be seriously distorted. 
 
E52.2.2 Two Step Estimation of the Standard Model 
 
 Heckman’s two step, or ‘Heckit’ estimation method, is based on the method of moments.  It 
is a consistent, but not efficient two step estimator. 
 
Step 1. Use a probit model for zi to estimate α.  
 For each observation, compute λi = φ(α′wi)/Φ(α′wi) using the probit coefficients. 
 
Step 2. Linearly regress yi on xi and λi to estimate β and θ = ρσε. 
 Adjust the standard errors and the estimate of σε

2, which is inconsistent. 
 
The corrected asymptotic covariance matrix for the two step estimator, (b,c), is 
 
 Asy.Var[b,c]  =  σε

2(X*′X*)-1[X*′(I - ρ2∆)X*  +  ρ2(X*′∆W)Σ(W′∆X*)](X*′X*)-1 
 
where   X* =  [X : λ], 

   ∆    =  diag[δ], 

   δi   =  -λi(α′wi + λi)  (-1 ≤ δi ≤ 0), 

and   Σ    =  asymptotic covariance matrix for the estimator of α. 
 
A consistent estimator of σε

2 is 2ˆ εσ  = e′e/n - 2ˆ ˆθ δ .  The remaining parameters are estimated using the 
least squares coefficients.  The computations used in the estimation procedure are those discussed in 
Heckman (1979) and in Greene (1981). 
 
NOTE:  (This is one of our frequently asked questions.)  LIMDEP always computes the corrected 
asymptotic covariance matrix, for all variants of selection models in all model frameworks. 
 

The estimator of the correlation coefficient, ρ, is 2 2ˆ ˆ ˆsign( ) εθ θ /σ .  This is the ratio of a regression 
coefficient (the coefficient on λi) and the variance estimator above.  Note that it is not a sample 
moment estimator of the correlation of two variables.  This ratio is not guaranteed to be between       
-1 and +1.  (See Greene (1981), which is about this result.)  But, note also that an estimate of ρ is 
needed to compute the asymptotic covariance matrix above, so this is a potential complication.  
When this occurs, LIMDEP uses either +1 or -1, and continues.  We emphasize, this is not an error, 
nor is it a program failure.  It is a characteristic of the data.  (It may signal some problems with the 
model.)  When this condition occurs, the model results will contain the diagnostic 
 
 Estimated correlation is outside the range -1 < r < 1. Using 1.0 
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If the estimate of ρ is invalid, so that the polar value must be used, the corrected standard errors can 
be negative.  If this happens, a warning is given and the OLS standard errors for the estimates are 
used instead.  This condition is specific to the two step regression estimators.  The maximum 
likelihood estimators discussed below force the coefficient to lie in the unit interval – ρ is estimated 
directly, not by the method of moments. 
 To estimate this model with LIMDEP, it is necessary first to estimate the probit model, then 
request the selection model.  The pair of commands is 
 
  PROBIT  ; Lhs = name of z ; Rhs = list for w ; Hold results $      
 SELECT ; Lhs = name of y ; Rhs = list for x $  
  
For this simplest case, ; Hold ... may be abbreviated to ; Hold.  All of the earlier discussion for the 
probit model applies.  This application differs only in the fact the ; Hold requests that the model 
specification and results be saved to be used later. Otherwise, they disappear with the next model 
command.  The PROBIT command is exactly as described in Chapter E26.  The selection model is 
completely self contained.  You do not need to compute or save λi. 
 
Standard Model Specifications for the Sample Selection Model 
 

This is the full list of general specifications that are applicable to this model estimator.  
 
Controlling Output from Model Commands 
 

; Partial Effects displays marginal effects, same as ; Marginal Effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 
 None 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
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 Predictions for this model are computed according to the formula given above for the 
conditional mean, including λi.  The other variables listed are the residual computed as usual, β′x, 
and λi.  The optional specifications 
 
   ; Keep = name  
   ; Res = name 
   ; List  
 
are the same as for the linear regression model, REGRESS.   
 You may also specify weights for the regression with 
 
    ; Wts = weighting variable 
 
LIMDEP recomputes the scale factor for the weights so that the weights used in estimation sum to 
the number of observations in the selected sample, not the number in the full data set. 
 In most cases, it is not necessary for you to compute the selection variable, λ; this is taken 
care of internally.  Nonetheless, you may have occasion to use this variable for some other purpose.  
If so, change the ; Hold specification in the PROBIT command to 
 
   ; Hold (IMR = name) 
 
(IMR stands for Inverse Mill’s Ratio.)  This places λi in your data array as variable name and you 
can use it for any other purpose or write it to a data file for later use.  
 
NOTE:  The imr variable is computed as λ = φ/Φ if z = 1 and λ = -φ/(1-Φ) if z = 0.  Note that the 
data saved are determined by the current sample. This means that if you have partitioned the sample 
before giving the PROBIT command, after it is executed, the data array may have some cells which 
are undefined.  The variable is only computed for observations used to fit the probit model. 
 
 The retrievable results saved by the estimator are 
 
 Matrices: b   contains (β,θ) 
   varb   contains the corrected VC matrix 
   bsr1   contains [β,σε ,ρ]  (Used with the mover stayer model.) 
 
 Scalars: sy and ybar  for the dependent variable 
   x    =  σ,  (this is also saved in sigma1) 
   ssqrd    =  e′e/N 
   sumsqdev =  e′e 
   rsqrd    =  R2 in the linear regression 
   rho    =  ρ 
   degfrdm   =  N - K - 1 
   kreg    =  K + 1 
   nreg    =  number of observations in selected sample 
 
 Last Model: b_variables, theta 
 
 Last Function: Conditional mean function, β′x + θλi 
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The conditional mean function given above is used in the SIMULATE and PARTIAL EFFECTS 
commands when computing predictions and partial effects. 
 The estimate of ρ needed to compute the appropriate standard errors for the estimates is the 
square root of  
   ( )2 2 2ˆ ˆˆ / /   -  N′ρ = θ θ δe e . 
 
The output for the sample selection model consists of a short summary similar to the results for a 
least squares regression, with some additional information about the selection model.   
 To illustrate the estimator, we use one of the most familiar data sets used in the pedagogical 
segment of this literature, Mroz’s (1987) female labor supply data.  The data are described in detail 
in Section E45.7.  The variables in the data set are 
 
 lfp    =  a dummy variable = 1 if woman worked in 1975, else 0 
  whrs   =  wife’s hours of work in 1975 
  kl6    =  number of children less than 6 years old in household 
  k618   =  number of children between ages 6 and 18 in household 
  wa     =  wife’s age 
  we     =  wife’s educational attainment, in years 
  ww     =  wife’s average hourly earnings, in 1975 dollars 

rpwg   =  wife’s wage reported at the time of the 1976 interview  
  hhrs   =  husband’s hours worked in 1975 
  ha     =  husband’s age 
  he     =  husband’s educational attainment, in years 
  hw     =  husband’s wage, in 1975 dollars 
  faminc  =  family income, in 1975 dollars  
  mtr    =  marginal tax rate facing the wife  
  wmed   =  wife’s mother’s educational attainment, in years 
  wfed   =  wife’s father’s educational attainment, in years 
  un   =  unemployment rate in county of residence, in percentage points    
 cit   =  dummy variable = 1 if live in large city (SMSA), else 0 
  ax   =  actual years of wife’s previous labor market experience 
  prin =  faminc - (whrs*ww)  =  wife’s property income  
 
We will use the two step estimator to build the selection model: 
 
   lfp  =  f(kl6, k618, prin, un, hinc) 

   winc =  g(wa, wa2, we, cit, ax) 
 
where hinc = husband’s income = hhrs×hw, and winc = wife’s wage income = ww×whrs.  The 
estimates also compare the corrected results to uncorrected ordinary least squares. 
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 The commands are: 
 
 CREATE  ; prin = faminc - ww*whrs $ 
 CREATE  ; hinc = hw*hhrs $ 
 CREATE  ; winc  = ww*whrs $ 
 CREATE  ; wasq  = wa*wa $ 
 NAMELIST  ; w = one,kl6,k618,prin,un,hinc $ 
 NAMELIST  ; x  = one,wa,wasq,we,cit,ax $ 
 PROBIT  ; Lhs = lfp ; Rhs = w ; Hold $ 
 SELECTION  ; Lhs = winc ; Rhs = x ; Partial Effects $ 
 REGRESS  ; Lhs = winc ; Rhs = x $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                  LFP 
Log likelihood function      -491.93905 
Results retained for SELECTION model. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LFP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .60344***      .16379     3.68  .0002      .28242    .92446 
     KL6|    -.54906***      .09590    -5.73  .0000     -.73702   -.36111 
    K618|     .01988         .03555      .56  .5760     -.04980    .08956 
    PRIN|-.15882D-04**    .7770D-05    -2.04  .0410 -.31111D-04  -.65219D-06 
      UN|    -.00979         .01509     -.65  .5165     -.03936    .01978 
    HINC| .46551D-05      .9747D-05      .48  .6329 -.14449D-04  .23759D-04 
--------+-------------------------------------------------------------------- 
+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Probit selection equation based on LFP                   | 
| Selection rule is: Observations with LFP      =  1       | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set               753              753.0            | 
| Selected sample        428              428.0            | 
+----------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=WINC     Mean                 =     5192.94004 
             Standard deviation   =     4301.55079 
             Number of observs.   =            428 
Model size   Parameters           =              7 
             Degrees of freedom   =            421 
Residuals    Sum of squares       =    .614172E+10 
             Standard error of e  =     3819.47630 
Fit          R-squared            =         .20973 
             Adjusted R-squared   =         .19847 
Model test   F[  6,   421] (prob) =    18.6(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Standard error corrected for selection..4309.55979 
Correlation of disturbance in regression 
and Selection Criterion (Rho)     =        -.60967 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -7379.04       5831.829    -1.27  .2058   -18809.21   4051.14 
      WA|    270.821       266.8043     1.02  .3101    -252.106   793.748 
    WASQ|   -3.92282        3.10679    -1.26  .2067   -10.01201   2.16638 
      WE|    560.264***    84.95503     6.59  .0000     393.755   726.773 
     CIT|    671.261*      397.7575     1.69  .0915    -108.329  1450.852 
      AX|    196.088***    26.77697     7.32  .0000     143.606   248.570 
  LAMBDA|   -2627.39**     1272.297    -2.07  .0389    -5121.05   -133.73 
--------+-------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
--------+-------------------------------------------------------------------- 
Constant|   -11587.8***    3857.324    -3.00  .0027    -19148.0   -4027.6 
      WA|    394.398**     178.6805     2.21  .0273      44.191   744.606 
    WASQ|   -5.33362***     2.06127    -2.59  .0097    -9.37363  -1.29361 
      WE|    429.404***    59.27814     7.24  .0000     313.221   545.587 
     CIT|    202.857       279.6910      .73  .4683    -345.327   751.041 
      AX|    221.461***    17.38617    12.74  .0000     187.385   255.537 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial effects of E[y] = Xb + c*L   with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Means for direct effects are for selected 
observations.  Means for indirect effects 
are the  full sample used for the probit. 
If a variable appears in both Xb and in L 
the second effect shown in the table is 
b + c*dL/dx = direct+indirect. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
    WINC|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Direct effects in the regression 
      WA|    270.821       266.8043     1.02  .3101    -252.106   793.748 
    WASQ|   -3.92282        3.10679    -1.26  .2067   -10.01201   2.16638 
      WE|    560.264***    84.95503     6.59  .0000     393.755   726.773 
     CIT|    671.261*      397.7575     1.69  .0915    -108.329  1450.852 
      AX|    196.088***    26.77697     7.32  .0000     143.606   248.570 
        |Indirect effects in LAMBDA (means are for all obs.) 
     KL6|   -861.881*      444.3537    -1.94  .0524   -1732.798     9.036 
    K618|    31.2102       64.78761      .48  .6300    -95.7712  158.1916 
    PRIN|    -.02493       29.21305      .00  .9993   -57.28145  57.23159 
      UN|   -15.3645       38.50192     -.40  .6899    -90.8269   60.0979 
    HINC|     .00731       29.21252      .00  .9998   -57.24818  57.26279 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E52.2.3 Maximum Likelihood Estimation 
 
 The full log likelihood for the sample selection model is built up from 
 
   Prob(Selection) × density|selection for selected observations 

and   Prob(Nonselection) for nonselected observations. 
 
Combining the various parts, this produces the following log likelihood function for the sample 
selection model: 
 

 log L  =  ( )




























ρ−

+σρε
Φ

πσ

σε− ε
=∑ 2

22

1 1

'/
2

/)2/1(exp
log ieii

z
w  α   +   )'(log

0 iz
wα−Φ∑ =

 

 
where   εi   =  yi - β′xi. 
 
NOTE:  There are two (only apparent) inconsistencies between this and the statement of the 
counterpart in Maddala’s (1983) widely used reference on his page 266.  First, he appears to multiply 
the first term by 1/Φ(α′wi).  The reason for this is that his result gives the conditional density for the 
selected observations whereas the likelihood function is built up from the unconditional densities for 
the entire sample.  Thus, the log likelihood function above results from the construction,  
 
   density  =  Prob(selected) × Maddala’s result 
 
which gives our result.  The second inconsistency appears to be the sign on the residual term in the 
second function above, which is -ρ... in Maddala.  The reason for this is the inexplicable negative 
sign on ε1 in his statement (9.17) as opposed to our positive sign on u in our statement of the model. 
Since ε is normally (symmetrically) distributed, the formulations are equivalent.  There is no obvious 
reason for the sign reversal in Maddala’s treatment – at this juncture, the literature has settled on the 
slightly simpler formulation adopted herein. 
 
 Maximum likelihood estimates of the model parameters can be obtained by adding the 
specification 
   ; MLE 
  
to the SELECTION command described earlier.  This activates a number of the standard optional 
features, as shown in the revised listing below.  It is still necessary to precede this estimator with the 
probit model in order to provide starting values for the MLE.  The full set of output for the earlier 
methodology is produced as well. The final values from the Heckman procedure are used as the 
starting values for the maximum likelihood procedure. The method is that of BFGS. 
 
NOTE:  Although this model computes an estimate of  α, it does not replace the estimates that have 
been retained with the ; Hold instruction in the preceding PROBIT command. 
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Standard Model Specifications for the Sample Selection MLE 
 

This is the full list of general specifications that are applicable to this model estimator.  
 
Controlling Output from Model Commands 
 

; Par   keeps ancillary parameter σ with main parameter β vector in b. 
; Partial Effects displays marginal effects, same as ; Marginal Effects. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 ; Cluster = spec requests computation of the cluster form of corrected covariance estimator. 
 (includes ; Stratum as well for stratified and clustered data sets). 

; Robust requests a sandwich estimator or robust VC for TSCS and some discrete 
choice models (uses ; Cluster = 1). 

 
Optimization Controls for Nonlinear Optimization 
 
 ; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set   keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill   fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
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 Once the model has been estimated by maximum likelihood, all remaining computations are 
the same as for the earlier treatment with estimation by two step least squares.  But, in this case, fewer 
scalars are saved.  In particular, only ybar, sy, nreg, as before, plus logl, sigma1, rho, and varrho for 
the MLE are added.  The matrix bsr1 is as described above and  b and varb contain β,σε, and ρ. 
  

NOTE:  When the parameters are estimated by maximum likelihood, there is no ‘λi’ variable in the 
equation.  (See the technical details below.)  Therefore, there is one fewer parameter in b for the 
regression. 
 
TECHNICAL NOTE: During the optimization process, the parameter ρ is replaced by the 
transformation of τ = log[(1+ρ)/(1-ρ)], so that ρ = [exp(τ)-1]/[exp(τ)+1]. By this reparameterization, 
τ may be estimated as an unrestricted parameter – its range is unbounded. This circumvents 
problems of ρ straying outside the allowable range of (-1,+1). 
 
 The model estimated earlier is shown below using the maximum likelihood approach, instead.  
 
 CREATE  ; prin = faminc - ww*whrs $ 
 CREATE  ; hinc = hw*hhrs $ 
 CREATE  ; winc = ww*whrs $ 
 CREATE  ; wasq  = wa*wa $ 
 NAMELIST  ; w = one,kl6,k618,prin,un,hinc $ 
 NAMELIST  ; x = one,wa,wasq,we,cit,ax $ 
 PROBIT  ; Lhs = lfp ; Rhs = w ; Hold $ 
 SELECTION  ; Lhs = winc ; Rhs = x ; Partial Effects ; MLE $ 
 
Two sets of partial effects are reported. The first set are the partial effects based on the maximum 
likelihood estimator. The second set are those estimated earlier based on the two step estimator. 
 
----------------------------------------------------------------------------- 
ML Estimates of Selection Model 
Dependent variable                 WINC 
Log likelihood function     -4630.35920 
FIRST  6 estimates are probit equation. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Selection (probit) equation for LFP 
Constant|      .64244***      .16261     3.95  .0001      .32374    .96115 
     KL6|     -.57716***      .09854    -5.86  .0000     -.77030   -.38402 
    K618|      .00659         .03532      .19  .8520     -.06263    .07581 
    PRIN| -.14511D-04**    .6667D-05    -2.18  .0295 -.27578D-04  -.14427D-05 
      UN|     -.01380         .01487     -.93  .3535     -.04295    .01535 
    HINC|  .40862D-05      .9065D-05      .45  .6522 -.13681D-04  .21853D-04 
        | Corrected regression, Regime 1 
Constant|    -8801.21       5833.866    -1.51  .1314   -20235.37   2632.96 
      WA|     304.939       266.2113     1.15  .2520    -216.826   826.703 
    WASQ|    -4.29431        3.10729    -1.38  .1670   -10.38449   1.79587 
      WE|     538.907***    81.09275     6.65  .0000     379.968   697.846 
     CIT|     614.533       468.8614     1.31  .1900    -304.419  1533.484 
      AX|     200.737***    28.25734     7.10  .0000     145.353   256.120 
SIGMA(1)|     3950.06***    222.7821    17.73  .0000     3513.41   4386.70 
RHO(1,2)|     -.31471         .22337    -1.41  .1589     -.75250    .12309 
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--------+-------------------------------------------------------------------- 
 (Partial effects, ML) 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
    WINC|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Direct effects in the regression 
      WA|     304.939       266.2113     1.15  .2520    -216.826   826.703 
    WASQ|    -4.29431        3.10729    -1.38  .1670   -10.38449   1.79587 
      WE|     538.907***    81.09275     6.65  .0000     379.968   697.846 
     CIT|     614.533       468.8614     1.31  .1900    -304.419  1533.484 
      AX|     200.737***    28.25734     7.10  .0000     145.353   256.120 
        | Indirect effects in LAMBDA (means are for all obs.) 
     KL6|    -428.987       332.6624    -1.29  .1972   -1080.994   223.019 
    K618|     4.89735       29.82765      .16  .8696   -53.56376  63.35847 
    PRIN|     -.01079       13.88839      .00  .9994   -27.23152  27.20995 
      UN|    -10.2558       19.39879     -.53  .5970    -48.2767   27.7651 
    HINC|      .00304       13.88739      .00  .9998   -27.21574  27.22182 
--------+-------------------------------------------------------------------- 
 (Partial effects, two step) 
--------+-------------------------------------------------------------------- 
        | Direct effects in the regression 
      WA|     270.821       266.8043     1.02  .3101    -252.106   793.748 
    WASQ|    -3.92282        3.10679    -1.26  .2067   -10.01201   2.16638 
      WE|     560.264***    84.95503     6.59  .0000     393.755   726.773 
     CIT|     671.261*      397.7575     1.69  .0915    -108.329  1450.852 
      AX|     196.088***    26.77697     7.32  .0000     143.606   248.570 
        | Indirect effects in LAMBDA (means are for all obs.) 
     KL6|    -861.881*      444.3537    -1.94  .0524   -1732.798     9.036 
    K618|     31.2102       64.78761      .48  .6300    -95.7712  158.1916 
    PRIN|     -.02493       29.21305      .00  .9993   -57.28145  57.23159 
      UN|    -15.3645       38.50192     -.40  .6899    -90.8269   60.0979 
    HINC|      .00731       29.21252      .00  .9998   -57.24818  57.26279 
 

E52.2.4 A Selection Model with Heteroscedasticity 
 

 We extend the sample selection model to incorporate heteroscedasticity in the regression 
variance with the usual loglinear formulation, 
 

   σεi  =  σε exp(γ′vi). 
 

This adds a considerable complication to the model.  The full structure becomes 
 

    yi =  β′xi + εi, 

    zi* =  α′wi + ui, 

    εi,ui ~  N[0,0,σεi
2 ,1, ρ], 

   z =  1 if z* > 0  and  z = 0 if z* ≤ 0, 
 
Values of yi and xi are only observed when zi equals one.   The major complication arises because 
 
   E[yi | xi, in sample] = β′xi + (ρσεi )λi 

           = β′xi + θiλi . 
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Note that the heterogeneity in the variance now shows up in the mean.  The interesting effects in this 
model now come in three parts.  As we did earlier, assume for the moment that all three data vectors 
in the model are the same.  Then, 
 

   
i

iii zyE
x
x

∂
=∂ ]1,|[  =  β  +  [θi(-λiα′xi - λi

2)[α  +  [σεiλiρ]γ. 

 
It is not unlikely that a variable would appear in all three parts, so the marginal effect in this model is 
extremely complicated.  The example below and the technical details present further details. 
 The preceding implies that conventional least squares based estimation, such as Heckman’s 
estimator, will no longer be consistent. In order to use Heckman’s approach, one would require a 
consistent estimator of γ before the least squares step, and it is unclear where that would come from. 
LIMDEP uses a two step, maximum likelihood estimator for this model. The command for this model is 
 
 PROBIT ; Lhs = z ; Rhs = variables in w ; Hold $ 
 SELECT ; Lhs = y  ; Rhs = variables in x ; Hfn = variables in v $ 
 
Do not include one in the Hfn list.  The constant term in the variance model is already included 
(implicitly) as logσε, so if you include one of your own, the model will become inestimable. 
 Estimates of the heteroscedastic model are obtained in three steps.  First, the two step least 
squares estimator is obtained ignoring the heteroscedasticity.  Second, the full maximum likelihood 
estimator is obtained, again ignoring the heteroscedasticity.  This is done to obtain the starting values 
for the parameters, under the assumption that γ = 0.  Finally, the maximum likelihood estimates for 
the heteroscedasticity model are obtained, allowing γ to be unrestricted. The parameter vector in this 
final model is [β, γ, σ, ρ].  The estimator of α is not recomputed – this is a limited information 
maximum likelihood estimator. 
 Other optional features for this model are the same as for the maximum likelihood estimator 
of the model with homoscedastic disturbances.  (The list of standard model specifications is 
identical, so it is not repeated here.)  If you provide starting values or impose constraints, use this 
arrangement of the parameters.  Starting values are computed in two steps for this model.  First, the 
sample selection model is computed using Heckman’s method and ignoring the heteroscedasticity.  
Second, the MLE, once again ignoring the heteroscedasticity is computed, to sharpen the starting 
values of ρ and σ.  Then, the starting values for β, σ, and ρ from the MLE and a vector of zeros for γ 
are used as the start values for this estimator.  Therefore, your model results for this model will 
contain all three sets of estimates. 

The estimation results retained are 
 
 Matrices: b =  [β, γ, σ, ρ]  (all parameters are retained) 
   varb =  the full asymptotic covariance matrix 
 
 Scalars: s =  estimate of σ 
   rho =  estimate of ρ 
   varrho =  estimated asymptotic variance for estimated ρ 
   ybar, sy =  descriptive statistics for dependent variable 
   nreg =  number of observations in selected sample 
   logl =  log likelihood 
   exitcode 
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 To illustrate the model, we will layer heteroscedasticity on the earnings equation based on 
our previous application.  The probit equation is omitted from the results below, as it was estimated 
earlier.)  We note, as happens frequently in models with heteroscedasticity, the parameter estimates 
differ from those in the model with homoscedasticity, but the total marginal effects are very similar. 
 
 CREATE  ; prin = faminc - ww*whrs $ 
 CREATE  ; hinc = hw*hhrs $ 
 CREATE  ; winc  = ww*whrs $ 
 CREATE  ; wasq = wa*wa $ 
 NAMELIST  ; w = one,kl6,k618,prin,un,hinc $ 
 NAMELIST  ; x = one,wa,wasq,we,cit,ax $ 
 PROBIT  ; Lhs = lfp ; Rhs = w ; Hold $ 
 SELECTION  ; Lhs = winc ; Rhs = x ; Partial Effects  
   ; Hfn = cit,wa,kl6 $ 
 
The intermediate results that already appear above are omitted. 
 
----------------------------------------------------------------------------- 
Selection with heteroscedasticity 
Dependent variable                 WINC 
Log likelihood function     -4582.58916 
Restricted log likelihood   -4592.48517 
Chi squared [   3 d.f.]        19.79201 
Significance level               .00019 
McFadden Pseudo R-squared      .0021548 
Estimation based on N =    753, K =  11 
Inf.Cr.AIC  =   9187.2 AIC/N =   12.201 
Model estimated: Aug 09, 2011, 19:27:31 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Slopes in regression function 
Constant|   -6666.83       5723.047    -1.16  .2441   -17883.79   4550.14 
      WA|    221.284       254.3162      .87  .3842    -277.167   719.734 
    WASQ|   -3.40692       488.7922     -.01  .9944  -961.42205  954.60821 
      WE|    516.942***    78.61677     6.58  .0000     362.856   671.028 
     CIT|    913.228**     443.9549     2.06  .0397      43.093  1783.364 
      AX|    194.232***    27.17843     7.15  .0000     140.963   247.500 
        |Parameters of heteroscedasticity function 
     CIT|     .30289*        .18030     1.68  .0930     -.05048    .65627 
      WA|     .00389        4.32370      .00  .9993    -8.47041   8.47819 
     KL6|     .12457         .15586      .80  .4242     -.18091    .43004 
        |Variance and correlation parameters 
SIGMA(1)|    2660.49       1878.462     1.42  .1567    -1021.23   6342.21 
RHO(1,2)|    -.32939         .22600    -1.46  .1450     -.77233    .11356 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+-------------------------------------------------------------------------+ 
|            Marginal Effects in Heteroscedastic Selection Model          | 
+----------------------+----------------+----------------+----------------+ 
|Variable        Direct|       Selection|         Hetero.|           Total| 
+----------------------+----------------+----------------+----------------+ 
|WA           221.28378|          .00000|        -3.48631|       217.79746| 
|WASQ          -3.40692|          .00000|          .00000|        -3.40692| 
|WE           516.94222|          .00000|          .00000|       516.94222| 
|CIT          913.22822|          .00000|      -271.57199|       641.65623| 
|AX           194.23157|          .00000|          .00000|       194.23157| 
+----------------------+----------------+----------------+----------------+ 
 
These are the marginal effects estimated in the earlier model without heteroscedasticity.  As often 
happens, though the models are very different, the marginal effects are quite similar. 
 
        |Direct effects in the regression 
      WA|    270.821       266.8043     1.02  .3101    -252.106   793.748 
    WASQ|   -3.92282        3.10679    -1.26  .2067   -10.01201   2.16638 
      WE|    560.264***    84.95503     6.59  .0000     393.755   726.773 
     CIT|    671.261*      397.7575     1.69  .0915    -108.329  1450.852 
      AX|    196.088***    26.77697     7.32  .0000     143.606   248.570 
 
Technical Details on Estimation of the Heteroscedasticity Model 
 

The full log likelihood function for the full sample is  
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where the parameter vector is [β,α,γ,σε,ρ.]  The parameters of the probit selection equation can be 
estimated consistently in isolation using the probit model.  We do so, and insert the estimated α in 
the model, to obtain 
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Conditioned on α̂ , we may now maximize the likelihood with respect to the remaining parameters, 
[β,γ,σ,ρ].  Any terms involving α̂  are irrelevant to the solution.  To simplify the process, we make 
the following substitutions: 
 

   qi =  α̂ ′wi 

   η =  1/σε 

   τ =  ρ / 21 ρ−  

   δ =  -γ 

   µ =  β/σε 
 



E52: Linear Sample Selection Models   E-1282 

(Note, we are using the Olsen transformation.)  Then, the log likelihood becomes 
 

 log L | α̂    =   ∑ =0z
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In spite of its length, this is not a particularly difficult log likelihood to maximize, and estimation of 
this model is fairly routine.   
 The derivatives of the log likelihood are as follows, where we give the result for a single 
observation:  Let 
   εi =  ηyi  -  µ′xi, 

   κi =  exp(δ′vi), 

   Ai =  φ( . ) / Φ( .)  based on the logΦ(.) term in log L. 
 

Then,   
µ∂

∂ iLlog  =  [κi
2 εi -  Ai τ κi ]xi, 

   
δ∂

∂ iLlog  =  [1 -  κi
2εi

2  +  Aiτ κi εi]vi, 

   
η∂

∂ iLlog  =  
η
1  -  [κi

2εi  -  Ai τ κi]y,i, 

   
τ∂

∂ iLlog  =  Ai [κi εi  +  qi τ / 21 τ+ ]. 

 
The BHHH estimator is used for the asymptotic covariance matrix.   
 Since this is a two step estimator, we now make the Murphy and Topel correction.  Let the 
vector of derivatives given above, evaluated at the maximum likelihood estimators, be denoted gi.  The 
transpose of this vector forms the ith row of the matrix G, and the BHHH estimator noted above is 
 
   V2 =  (G′G)-1. 
 

Now, let  mi  =  
α∂

∂ iLlog
  

    =  -1(zi = 0)[φ(qi) / Φ(-qi)]wi  + 1(zi = 1)[Aiτ / 21 τ+ ] wi 
 
   di =  {(2zi - 1)φ(qi) / Φ[(2zi - 1)qi]}wi 
 
and define matrices M and D in the same manner as G.  Finally, let V1 denote the estimated 
asymptotic covariance matrix for the first round estimator of α.  (This could be the BHHH estimator, 
(D′D)-1, but LIMDEP uses the Hessian for this purpose, instead.)  The corrected covariance matrix is 
 
 V2*  =    V2 + V2 [(G′M)V1(M′G) - (G′D)V1(M′G) - (G′M)V1(D′G) ] V2. 
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E52.3 Treatment Effects – Using All Observations 
 
 If you wish to use the entire sample, that is, not select out any observations, use the 
specification 
   ; All 
  
in the SELECTION command, and otherwise, set it up in the usual manner.   In this instance, all 
computations are exactly as described earlier, save that in the calculations, 
 
   λi  =  (2zi - 1) φ(α′wi) / Φ[(2zi - 1)α′wi]. 
 
 The model of an endogenous binary variable is an example that would use this formulation. 
A specification of the selection, known as a ‘treatment effects model,’ has been used, for example, in 
the returns to education literature (see Barnow, Cain, and Goldberger (1981)); 
  
   y  =  β′x + δz + ε, 

   z* =  α′w + u, 

   z =  1 if z* > 0 and z = 0 if z* ≤ 0.  
  
The indicator, z is assumed to indicate the presence or absence of some treatment, for example, 
participation in an experiment or going to college.  This is the same as the selectivity model 
discussed earlier except that z itself appears in the primary equation.  Thus, there is an endogenous 
variable in the regression equation.  On the other hand, note that conditioned on z (i.e., the 
‘selection’) this is the same model we have been examining so far.  There are three approaches to 
estimation. 
 
E52.3.1 Two Step Estimation 
 
 Barnow, et. al. suggest two methods of estimating this model.  The simplest method is to use 
the selection model exactly as before.  It is still necessary to estimate the probit equation for z and 
pass the results to SELECT.  If z is now simply included among the Rhs variables in the SELECT 
command, consistent estimates of β and δ are obtained.  It is necessary, however, in this case, to use 
the entire sample of data, so the additional specification ; All is necessary.  All other output, saved 
results, options, etc. for the SELECT command are the same.  The initial results for the model will 
indicate that the entire sample is in use, as in the following: 
 
+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Probit selection equation based on LFP                   | 
| Sample is all observations.                              | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set               753              753.0            | 
| Selected sample        753              753.0            | 
+----------------------------------------------------------+ 
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E52.3.2 Two Stage Least Squares – Instrumental Variable Estimation 
 
 A second means of estimating the model is with two stage least squares.  The problem with 
ordinary least squares estimates of the model based on the observed data is the correlation between z 
and ε. A solution to the inconsistency of OLS is to use 2SLS, using as the instrumental variable for z 
the predicted probabilities from the probit equation.  It is not necessary to ; Hold the results of the 
probit in this case.  The set of commands would be 
  
 NAMELIST ; w = ...  ; x = ... $ 
 PROBIT  ; Lhs = z ; Rhs = w ; Prob = zfit $ 
 2SLS     ; Lhs = y ; Rhs = x,z  
   ; Inst = x,zfit $ 
 
We note, there is a tendency in the literature to equate the simple replacement of zi in the regression 
with the fitted probability as an instrumental variable estimator.  Ordinary least squares is then used 
to estimate the parameters.  We emphasize, this is not 2SLS for this model and the replacement 
variable is not an instrument, it is a proxy.  Whether the estimator so constructed is even consistent is 
debatable.  The following, developed below in the application, illustrates use of 2SLS to fit the 
treatment model.  In the main equation, we fit an hours equation for the husband, where the 
‘treatment’ is whether the wife is in the labor force. 
 
 NAMELIST  ; x  = one,ha,he,hw,faminc $ 
 NAMELIST  ; w = one,we,age,agesq,kl6,k618 $ 
 PROBIT  ; Lhs = lfp ; Rhs = w   
   ; Prob  = pfit $ 
 2SLS   ; Lhs = hhrs ; Rhs = x,lfp  
   ; Inst = x,pfit $ 
 
E52.3.3 Maximum Likelihood Estimation 
 
 Finally, a third approach is full information maximum likelihood.  The log likelihood for the 
treatment effects model is 
 

 log L   =  
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where   εi  =  yi - β′xi - δzi.   
 
This is a straightforward modification of the  estimator developed earlier for the selection model.  To 
fit the treatment effects model, just add ; MLE to the two step estimator.  The commands are 
 
 PROBIT ; Lhs = variable z ; Rhs = variables in w ; Hold $ 
 SELECT ; Lhs = variable y ; Rhs = variables in x, variable z ; All ; MLE $ 
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E52.3.4 Application 
 
 In the following, we fit a ‘treatment model’ for the husband’s hours, where the endogenous 
dummy variable is the wife’s labor force participation.  The following uses all three estimators. 
 
 NAMELIST  ; x = one,ha,he,hw,faminc $ 
 NAMELIST  ; w = one,we,age,agesq,kl6,k618 $ 
 PROBIT  ; Lhs = lfp    ; Rhs = w ; Hold ; Prob = pfit $ 
 SELECT  ; Lhs = hhrs ; Rhs = x,lfp ; All $ 
 2SLS   ; Lhs = hhrs ; Rhs = x,lfp ; Inst = x,pfit $ 
 SELECT  ; Lhs = hhrs ; Rhs = x,lfp ; All ; MLE $ 
 
These are the two step estimators using Heckman’s method. 
 
+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Probit selection equation based on LFP                   | 
| Sample is all observations.                              | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set               753              753.0            | 
| Selected sample        753              753.0            | 
+----------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=HHRS     Mean                 =     2267.27092 
             Standard deviation   =      595.56665 
             Number of observs.   =            753 
Model size   Parameters           =              7 
             Degrees of freedom   =            746 
Residuals    Sum of squares       =    .181436E+09 
             Standard error of e  =      493.16533 
Fit          R-squared            =         .31340 
             Adjusted R-squared   =         .30788 
Model test   F[  6,   746] (prob) =    56.8(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Standard error corrected for selection.. 495.44230 
Correlation of disturbance in regression 
and Selection Criterion (Rho)...........   -.12587 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2350.53***    150.0000    15.67  .0000     2056.53   2644.52 
      HA|   -6.42709***     2.32011    -2.77  .0056   -10.97442  -1.87976 
      HE|    30.4775***     6.94286     4.39  .0000     16.8697   44.0852 
      HW|   -112.030***     6.43336   -17.41  .0000    -124.639   -99.421 
  FAMINC|     .03248***      .00223    14.58  .0000      .02812    .03685 
     LFP|   -150.410       109.3608    -1.38  .1690    -364.753    63.934 
  LAMBDA|   -62.3601       70.67071     -.88  .3776   -200.8722   76.1519 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=HHRS     Mean                 =     2267.27092 
             Standard deviation   =      595.56665 
             Number of observs.   =            753 
Model size   Parameters           =              6 
             Degrees of freedom   =            747 
Residuals    Sum of squares       =    .183027E+09 
             Standard error of e  =      494.99127 
Fit          R-squared            =         .30831 
             Adjusted R-squared   =         .30368 
Instrumental Variables: 
ONE       HA        HE        HW        FAMINC    PFIT 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2334.61***    159.8080    14.61  .0000     2021.39   2647.83 
      HA|   -6.26441***     2.35599    -2.66  .0078   -10.88206  -1.64675 
      HE|    31.4818***     6.78263     4.64  .0000     18.1881   44.7755 
      HW|   -109.163***     7.48834   -14.58  .0000    -123.840   -94.486 
  FAMINC|     .03159***      .00260    12.17  .0000      .02651    .03668 
     LFP|   -159.015       111.4911    -1.43  .1538    -377.533    59.504 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
ML Estimates of Selection Model 
Dependent variable                 HHRS 
Log likelihood function     -6202.52230 
FIRST  6 estimates are probit equation. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Selection (probit) equation for LFP 
Constant|    -.23352        1.54515     -.15  .8799    -3.26195   2.79491 
      WE|     .11944***      .02223     5.37  .0000      .07588    .16300 
      WA|     .00276         .07099      .04  .9690     -.13638    .14190 
    WASQ|    -.00047         .00081     -.58  .5625     -.00207    .00112 
     KL6|    -.87593***      .11397    -7.69  .0000    -1.09932   -.65255 
    K618|    -.05539         .04028    -1.38  .1691     -.13434    .02355 
        |Corrected regression, Regime 1 
Constant|    2351.32***    140.8639    16.69  .0000     2075.23   2627.41 
      HA|   -6.43033***     2.19962    -2.92  .0035   -10.74150  -2.11916 
      HE|    30.5281***     6.68052     4.57  .0000     17.4345   43.6217 
      HW|   -112.027***     4.13167   -27.11  .0000    -120.125  -103.929 
  FAMINC|     .03250***      .00153    21.25  .0000      .02950    .03549 
     LFP|   -153.227       115.7198    -1.32  .1855    -380.034    73.580 
   SIGMA|    495.319***    11.30461    43.82  .0000     473.162   517.475 
     RHO|    -.12200         .14665     -.83  .4055     -.40944    .16543 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E52.4 Simultaneous Equations Models with Selectivity 
 
 A simultaneous equations model which is ‘selected’ is estimated in exactly the same fashion 
as a single equation, using a form of two stage least squares.  (See Lee, Maddala, and Trost (1980).) 
We consider a simple three equation case; the extensions to other cases would be analogous.   The 
assumed model is: 
   y1  =  α1  +  β1,1x1  +  β1,2x2  +  β1,3x3   +  γ1,2y2  +  ε1, 

   y2  =  α2  +  β2,1x1  +  β2,3x3  +  β2,4x4   +  γ2,1y1  +  ε2, 

   y3  =  α3  +  β3,5x5  +  γ3,1y1                    +  γ3,2y2  +  ε1 . 
 
This structure is observed if z = 1; some other if z = 0.  The general procedure would be: 
 
Step 1. Estimate the probit selection equation. 
 
Step 2. Estimate each equation of the reduced form and keep the fitted values. 
 
Step 3. Estimate the structural equations using SELECT, using fitted instead of actual values on the 

right  hand side of each equation. 
 
Step 4. As in a conventional simultaneous equations model, it  is necessary to use the original data, 

not the predicted values, when computing the estimate of the disturbance variance.  (Step 4 
is done automatically, internally.) 

 
 To accommodate the last of these, in order to estimate a simultaneous equations model with 
selectivity, after obtaining the predicted values at Step 3, the SELECT commands should be the 
same as the usual 2SLS commands.  That is, 
  
 SELECT  ; Lhs = left hand side variable  
   ; Rhs  = original variables including endogenous  
   ; Inst  = instruments, with fitted values in place of actual $ 
  
For the model shown above, the commands would be 
 
 NAMELIST ; x = one,x1,x2,x3,x4,x5 $ 
 PROBIT  ; Lhs = z   ; Rhs = list of variables in w ; Hold $ 
 SELECT  ; Lhs = y1  ; Rhs = x ; Keep = y1fit $   
 SELECT  ; Lhs = y2  ; Rhs = x ; Keep = y2fit $ 
 SELECT  ; Lhs = y3  ; Rhs = x ; Keep = y3fit $ 
 SELECT  ; Lhs = y1  ; Rhs = one,x1,x2,x3,y2   
   ; Inst = one,x1,x2,x3,y2fit $ 
 SELECT  ; Lhs = y2  ; Rhs = one,x1,x3,x4,y1 
          ; Inst = one,x1,x3,x4,y1fit $ 
 SELECT  ; Lhs = y3  ; Rhs = one,x5,y1,y2 
          ; Inst = one,x5,y1fit,y2fit $ 
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No mention is made in the output of the simultaneous nature of the model, but the necessary 
adjustments are made internally.  Since it is assumed that you are generating the predicted values 
yourself, it follows that the number of instruments is always identical to the number of Rhs variables.  
If not, an error is assumed, and estimation is terminated. 
 A small application based on our earlier example is shown below.  In this model, it is 
assumed that hours (whrs) and wage (ww) are simultaneously determined. 
 

NAMELIST ; x = one,kl6,k618,wa,we,wmed $ 
NAMELIST ; w = one,kl6,wa $ 
PROBIT ; Lhs = lfp ; Rhs = w ; Hold $ 
SELECT ; Lhs = whrs ; Rhs = x ; Keep = whrsfit $ 
SELECT ; Lhs = ww ; Rhs = x ; Keep = wwfit $ 
SELECT ; Lhs = whrs ; Rhs = one,kl6,k618,wa,ww 
  ; Inst = one,kl6,k618,wa,wwfit $ 
SELECT ; Lhs = ww ; Rhs = one,wa,we,wmed,whrs 
  ; Inst = one,wa,we,wmed,whrsfit $ 

 

E52.5 Incidental Truncation 
 
 In the single equation probit/selection model, if there are no observations with z = 0, then the 
probit model cannot be estimated.  Bloom and Killingsworth (1985) demonstrated that the model can 
still be fit, by maximum likelihood.  The full specification is: 
  
   y  =  β′x + ε, 

   z* =  α′w + u, 

   z  =  1 if z* > 0, z = 0 if z* ≤ 0, 

   ε,u ~  N[0,0,σε
2
 ,1,ρ]. 

 
A probit model applies to z.  In the usual circumstance, the familiar selectivity model applies. 
However, if observations on y, z, x, and w are obtained only when z equals one, then the model is no 
longer estimable by the method of Heckman.  (The dependent variable in the probit equation is 
always one.)  But, the model is identified as long as ρ is nonzero, and can be estimated by maximum 
likelihood.  The paper by Bloom and Killingsworth provides the methodology. 
 The data consist of a set of observations on y, x, and v, with which it is known at every 
observation that z equals one.  (Observations on z are unnecessary.)  The model command is 
 
 INCIDENTAL ; Lhs = y  
   ; Rh1 = x  
   ; Rh2 = w $ 
  
The only internal starting value for this model which seems viable is a pair of least squares 
estimators.  Thus, starting values are obtained by regressing y on x to estimate β and y on w to 
estimate α.  Admittedly, these starting values are inconsistent.  The second set are particularly 
problematic.  We use them only to provide some information on the relative scales of the coefficients 
in the second equation.  The first variable in w must be the constant term, one.  The starting value for 
ρ is the ratio of the first coefficient in the second equation to the estimate of σ from the first.  (This is 
computed internally.)  We assume that the constant term is first in the second equation. 
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 The model parameters are θ = [β,α,σ,ρ].  Use this ordering if you provide your own starting 
values for the iterations or use ; Rst to impose restrictions.  The retrievable results are 
  
 Matrices: b and varb include [β,α].  ; Par adds (σ,ρ) to the parameter vector. 
 
 Scalars: ybar, sy, nreg, kreg, logl, rho, varrho, exitcode 
 
 Last Model: b_variables in x, a_variables in v , sigma, reu. 
 
 Last Function: None 
 
All options for nonlinear models are available.  In particular, the ; Test: specification can be used to 
test the equality of coefficients across equations, and ; Rst can be used to impose fixed value and 
within or cross equation equality restrictions.  Predictions are computed using the formula given 
earlier for the standard selection model – once the parameters are in hand, the observed data can be 
treated as if the standard model applies. 
 
Standard Model Specifications for the Incidental Truncation Model 
 

This is the full list of general specifications that are applicable to this model estimator.   
 
Controlling Output from Model Commands 
 

; Par   keeps ancillary parameters σ and ρ with main parameter β vector in b. 
; Partial Effects displays marginal effects, same as ; Marginal Effects. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 

 
; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 ; Cluster = spec requests computation of the cluster form of corrected covariance estimator. 
 ; Robust requests a ‘sandwich’ estimator or robust covariance matrix for TSCS and 
    some discrete choice models (uses ; Cluster = 1). 
 
Optimization Controls for Nonlinear Optimization 

  
; Start = list gives starting values for a nonlinear model. 

 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set   keeps current setting of optimization parameters as permanent. 
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Predictions and Residuals 
 
; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill   fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 

 
; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
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E53: Sample Selection Models for Panel Data 
 
E53.1 Introduction 
 
 Heckman’s now canonical form of the sample selection model is a linear regression with a 
binary probit selection criterion model: 
 
   y   =  β′x + ε, 

    z*   =  α′w + u, 

    ε,u ~  N[0,0,σε
2, σu

2, ρ]. 
 
A bivariate classical (seemingly unrelated) regressions model applies to the structural equations.  
The standard deviations are σε and σu, and the covariance is ρσεσu.  If the data were randomly 
sampled from this bivariate population, the parameters could be estimated by least squares, or GLS 
combining the two equations.  However, z* is not observed.  Its observed counterpart is z, which is 
determined by 
   z   =  1 if z* > 0 

and   z   =  0 if z* ≤ 0. 
 
Values of y and x are only observed when z equals one.  The essential feature of the model is that 
under the sampling rule, E[y|x,z=1] is not a linear regression in x, or x and z.  The development 
below presents estimators for the class of essentially nonlinear models that emerge from this 
specification. 
 The basic command structure for the models described in this chapter is 
 
 PROBIT ; Lhs = variable z ; Rhs = variables in w ; Hold $ 
 SELECT ; Lhs = variable y ; Rhs = variables in x $ 
 
Note that two commands are required for estimation of the sample selection model, one for each 
structural equation.  Chapter E52 defined several estimators appropriate for cross sectional treatment 
of the model.  This chapter will develop some panel data approaches. 
 
E53.2 Panel Data Treatments 
 
 The literature on panel data models for the sample selection is rather incomplete and 
ambiguous.  Applications are relatively sparse, and few useable general modeling frameworks have 
been proposed.  The earliest contribution appears to be Hausman and Wise’s (1979) paper on 
attrition (see Section E53.7 for the estimator) which is a contemporary of Heckman’s seminal paper 
on cross sections.  The Hausman and Wise model is a two period fully parametric model.  The 
literature has come nearly full circle since then, in that some of the later work (Kyriazidou (1997) 
focuses once again on the two period framework.  (In Hausman and Wise’s case, two periods was a 
natural application, as their interest lay in the beginning (baseline) and ending point of a study, 
whereas in the more recent analyses, two periods is often assumed of necessity to make the analysis 
tractable.)   



E53: Sample Selection Models for Panel Data   E-1292 

 Fixed and random effects, and hybrid models have been suggested by Verbeek (1990), Zabel 
(1992) and Verbeek and Nijman (1992).  The estimators suggested here build on the suggestions by 
these authors, and extend them in several directions. The following modeling frameworks are provided: 
 
Fixed Effects 
 
 yit = θi  +  β′xit  +  εit,  [uit, εit] ~ BVN[(0,0),1,σ,ρ] 

 zit* = αi  +  δ′wit  +  uit 

 zit = 1( zit*  >  0) 

 yit, xit  observed only when zit = 1. 
 
Random Effects 
 

 yit = β′xit  +  εit  +  ci,  εit ~ N[0,σ2], ci ~ N[0,σc
2] 

 zit* = α′wit  +  uit  +  di 

 zit = 1(zit*  >  0), uit ~ N[0,1] , di ~ N[0,σd
2] 

 yit, xit  observed only when zit = 1, 

 Corr[εit,uit] =  ρ 

 Corr[ ci, di] =  θ 
 
Random Parameters 
 
 yit = βi′xit  +  εit  εit ~ N[0,σ2],  βi  =  β + ∆βfi  +  Γβvi 

 zit* = αi′wit  +  uit, uit ~ N[0,1], αi  =  α + ∆αgi  +  Γαhi, 

 zit = 1(zit*  >  0) 

 yit, xit  observed when zit = 1 

 Corr[εit,uit] =  ρ 
 
Hausman and Wise’s Attrition Model 
 
 yi1 =  xi1′β  +  εi1  +  ui, σ2 = Var[εi1  +  ui] (first period regression) 

 yi2 =  xi2′β  +  εi2  +  ui    (second period regression, same ui) 

 zi2* =  δyi2  + xi2′θ  +  wi2′α  +  vi2  (attrition mechanism) 

zi2* =  xi2′(δβ + θ)  +  wi2′α  +  δεi2  +  vi2  =  ri2′γ  +  hi2. 

 zi2 =  1(zi2*  >  0)     (attrition indicator observed in period 2) 

ρ12  =  Corr[εi1  +  ui, εi2  +  ui]  =  Var[ui] / σ2  

ρ23  =  Corr[hi2, εi2  +  ui] 
 
In each case, there are several different forms of the model which may be specified. 
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E53.3 Sample Selection Models with Fixed Effects 
 
 A sample selection model with fixed effects would appear as follows:  The structural probit 
model would be 
   zit* = αi  +  δ′wit  +  uit 

   zit = 1( zit*  >  0) 
 
The primary regression equation is, then 
 
   yit = θi  +  β′xit  +  εit,  [uit, εit] ~ BVN[(0,0),1,σ,ρ] 

   yit, xit   are observed only when zit = 1. 
 
Thus, the familiar selection model applies for each person in each period.  This model is fit by a 
hybrid two step maximum likelihood procedure described below. 
 
NOTE:  If you wish to include time effects in this model, you must create them separately as 
dummy variables and include them in the model specifications.  In order to implement the procedure 
described below, it is necessary to disable the automatic creation of the time dummies in this model. 
 
 The command for this model is completely self contained.  Use 
 
 SELECT ; Lhs  = y, z (specify both dependent variables) 
   ; Rhs = list of variables in x 
   ; Rh2 = list of variables in w 
   ; FEM 
   ; Pds = specification of the panel $ 
 
It is not necessary to precede this with a PROBIT command, as the probit equation is fit at the same 
time as the selection model.  The ‘treatment effects’ model, in which zit appears in the regression and 
all observations are used, 

   yit =  θi  + µzit +  β′xit  +  εit,  [uit, εit] ~ BVN[(0,0),1,σ,ρ], 
 
may be requested as in the cross section case by just including z in the Rhs list for the regression (if 
appropriate) and adding the request to the command: 
 
   ; All 
 
 A special case in the data must be considered when fitting this model.  If the probit model 
for individual i cannot be fit because zit is always zero or one in every period, then the selection 
model cannot be either.  Such groups must be skipped over in estimation of the model.   This is the 
same condition that must be met for the probit model, but it is more likely to be a problem in this 
setting, as the selection is likely to be the same in every period.  One possibility might be a model 
extension which treats selection as observation of the entire group or not, instead of period by period.  
This remains to be developed – the nature of the underlying correlation is complicated by this 
modification. 
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Results that are kept for this model are 
 
 Matrices: b    =  estimate of β 
   varb    =  asymptotic covariance matrix for estimate of β. 
   alphafe  =  estimated fixed effects 
 
 Scalars: kreg    =  number of variables in Rhs 
   nreg    =  number of observations 
   logl    =  log likelihood function 
 
 Last Model: b_variables  
 
 Last Function: None 
 
Asymptotic standard errors for the estimator in this model are computed by using bootstrapping.  In 
order to request the computation of bootstrapped standard errors, add 
 
   ; Nbt = the desired number of replications 
 
Computation of the model is not always possible.  As such, some of the bootstrap replications may 
fail.  A trace of the replications appears in the model results.  The example below illustrates. To 
compute the asymptotic standard errors without bootstrapping, use 
 
   ; Nbt = 1 
 
In this instance, the standard errors are computed as if the probit model estimates were known – that 
is, as if this were not a two step estimator. 
 
E53.3.1 Standard Model Specifications 
 

This is the full list of general specifications that are applicable to this model estimator. 
 
Controlling Output from Model Commands 
 
 ; Partial Effects displays marginal effects, same as ; Marginal Effects. 

; Table = name saves model results to be combined later in output tables. 
 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  
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Optimization Controls for Nonlinear Optimization 
 

; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set   keeps current setting of optimization parameters as permanent. 
 

Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 

 ; Prob = name saves probabilities as a new (or replacement) variable. 
; Fill   fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 

 
E53.3.2 Application 
 
 The following illustrates this estimator with a random sample drawn so that there are 200 
individuals and 15 periods of observation: 
 

CALC  ; Ran(12345) $ 
SAMPLE ; 1-3000 $ 
MATRIX ; ai = Rndm(200) ; ci = Rndm(200) $ 
CREATE ; i = Trn(15,0) ; u = Rnn(0,1) ; e = .5*u+.5*Rnn(0,1) $ 
CREATE ; z1 = Rnn(0,1) ; z2 = Rnn(0,1) 

; d = (.5*z1+.5*z2+ai(i)+u) > 0 $ 
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1)  ; y = x1+x2+ci(i)+e $ 
SELECT ; Lhs = y,d 

; Rh1 = x1,x2 ; Rh2 = z1,z2  
; FEM ; Pds = 15 ; Nbt = 10 $ 

 
These are the initial probit estimates computed to obtain the initial values. 
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----------------------------------------------------------------------------- 
Probit   Regression Start Values for D 
Dependent variable                    D 
Log likelihood function     -1895.34311 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      Z1|     .34436***      .02537    13.57  .0000      .29464    .39408 
      Z2|     .32921***      .02505    13.14  .0000      .28011    .37831 
Constant|    -.04731**       .02376    -1.99  .0465     -.09389   -.00073 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Normal exit from iterations. Exit status=0. 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable                    D 
Log likelihood function     -1179.81536 
Estimation based on N =   3000, K = 202 
Sample is 15 pds and    200 individuals 
Skipped    0 groups with inestimable ai 
PROBIT (normal)  probability model 
Std. errors based on 10 bootstraps. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
      Z1|     .52106***      .03391    15.36  .0000      .45459    .58752 
      Z2|     .50736***      .03423    14.82  .0000      .44027    .57445 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Normal exit from iterations. Exit status=0. 
Completed  2 bootstrap replications of 11. 
Completed  3 bootstrap replications of 11. 
Completed  4 bootstrap replications of 11. 
Completed  5 bootstrap replications of 11. 
Completed  6 bootstrap replications of 11. 
Completed  7 bootstrap replications of 11. 
Completed  8 bootstrap replications of 11. 
Completed  9 bootstrap replications of 11. 
Completed 10 bootstrap replications of 11. 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable                    D 
Log likelihood function     -1239.78148 
Sample is 15 pds and    200 individuals 
Skipped    0 groups with inestimable ai 
PROBIT (normal)  probability model 
Std. errors based on 10 bootstraps. 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
      Z1|     .49606***      .03228    15.37  .0000      .43280    .55933 
      Z2|     .53084***      .03304    16.07  .0000      .46609    .59559 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable                    D 
PROBIT (normal)  probability model 
Std. errors based on 10 bootstraps. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
      Z1|     .46132***      .03193    14.45  .0000      .39874    .52390 
      Z2|     .46627***      .03309    14.09  .0000      .40141    .53113 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Completed 11 bootstrap replications of 11. 
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Select Model 
Dependent variable                    Y 
Log likelihood function     -1859.55872 
Skipped    0 groups with inestimable ai 
Sample selection (by probit) model 
Selection effects model based on D 
Std. errors based on 10 bootstraps. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Selected regression parameters 
      X1|    1.02184***      .10561     9.68  .0000      .81484   1.22883 
      X2|    1.02110***      .01178    86.65  .0000      .99800   1.04419 
        |Regression standard deviation 
   Sigma|     .66743***      .01252    53.30  .0000      .64288    .69197 
        |Correlation coefficient 
     Rho|     .78222***      .03344    23.39  .0000      .71669    .84776 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
This warning applies to a bootstrap replication that failed.  The estimator continues to attempt to 
complete the requested number of replications. In this case, as noted, it requires 11 attempts to 
complete the 10 replications. 
 
Error   143: Models - estimated variance matrix of estimates is singular 
Bootstrap rep. 10, attempt  1 failed. Continuing. 
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E53.3.3 Technical Details on FE Selection Models 
 
 The log likelihood function for this model including all parameters, for the ith individual in 
the sample is as follows: 
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The full log likelihood is then summed over all individuals.  We first make the following 
reparameterizations: 
 
   η  = 1/σ 

   γ  = (1/σ)β 

   κi  = θi / σ 

   τ  = 2/ 1ρ − ρ  
 
This greatly simplifies the log likelihood: 
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 In principle, this can now be maximized to provide fully efficient maximum likelihood 
estimates of the model’s parameters.  However, this would entail simultaneous estimation of two sets 
of fixed effects parameters.  We do this in two steps instead, in a fashion similar to the Heckman 
style two step estimator for the cross section counterpart. 
 
Step 1. The fixed effects probit estimator is estimated using the method described in Section 

R23.2.3. The model estimates are retained for Step 2. 
 
Step 2. The log likelihood function is now conditioned on the probit estimates obtained at Step 1.  
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Let     
   µit   =  αi  +  δ′wit 
 
and let mit denote the estimate of µit obtained by computing it at the Step 1 probit estimates.  The 
conditional log likelihood is 
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At this step, the conditional log likelihood function is maximized with respect to the remaining 
parameters, η, κi, γ, and τ.  Note that the zit = 0 observations are not used in obtaining this solution.  
In the treatment effects model, once again, only terms from the second part of the function are 
included, but the sign and form of the argument in Φ(.) is changed appropriately.  If the treatment 
effects model is requested, then the sign of the term in the second part of the log likelihood is also 
changed accordingly, observation by observation.  No other changes are needed internally. 
 Aside from the aforementioned incidental parameters problem, these estimates are 
consistent, albeit inefficient.  However, since it is a two step estimator, the estimated asymptotic 
covariance matrix is inappropriate as it does not account for the randomness induced by estimation 
of the probit parameters used to compute mit.  In other applications we have used the Murphy and 
Topel estimator to complete this computation.  In this case, however, that would require a full 
covariance matrix for the fixed effects parameters in the probit model and, moreover, require an 
exorbitant amount of computation.  With contemporary computers, the latter consideration is 
generally going to be minor, but the former remains problematic.   
 As an alternative, we use the bootstrap method of obtaining an estimator of the asymptotic 
covariance matrix.  Our approach is as follows:  The number of bootstrap replications is set either at 
20 or with  
   ; Nbt = desired number of replications. 
 
Within each replication, the bootstrap is drawn over the set of N individuals, not over the full sample.  
Suppose, for example, the sample contains 200 people, each observed 15 times (our earlier 
application).  The bootstrap samples are then drawn from these 200 individuals, each with their 15 
observations.  Then, the entire two step procedure is computed for each replication – both the probit 
model and the selection model. 
 There is an additional complication.  The log likelihood for the sample selection model is not 
globally concave.  As a consequence, the iterations at Step 2 occasionally break down because the 
Hessian becomes indefinite.  If this occurs during the initial estimation, the process is halted.  
However, if this occurs during a bootstrap replication the program tries again with a new bootstrap 
sample.  This ‘retry’ is repeated up to 10 times.  If after 10 tries it remains impossible to obtain a set 
of estimates, the routine gives up. 
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E53.4 Sample Selection Models with Random Effects 
 
 There is a lengthy literature on fixed and random effects in sample selection models.  The fixed 
effects model was presented in the preceding section.  The random effects model is cast in its simplest 
terms in Verbeek (1990), Zabel (1992) and Verbeek and Nijman (1992).  The structural equations are: 
 
Regression  

  yit   =  β′xit  +  εit  +  ci,  εit ~ N[0,σ2], nonautocorrelated 
 
Selection Mechanism 
 
   zit* = α′wit  +  uit  +  di 

   zit = 1(zit*  >  0), uit ~ N[0,1] 
 
Selection 

  yit, xit  observed only when zit = 1, 

   Corr[εit,uit]  =  ρ 
 
The random effects, (ci, di) are assumed to be bivariate normally distributed with zero means, 
standard deviations σc and σd and correlation θ.   ‘Selectivity’ comes in two forms here, through the 
correlation of the unique components, εit and uit, and the correlation of the group specific 
components, ci and di.  Estimable parameters in this model are the slope parameters, β and α, 
variance parameters σc and σd and the two correlation parameters. 
 
NOTE:  This model is fit by maximum simulated likelihood, not by two step least squares.  There is 
no ‘lambda’ variable, φ(...)/Φ(...) created or used during the estimation, so no coefficient for this 
variable will appear in the results. 
 
E53.4.1 Including Group Means 
 
 A standard criticism of the random effects approach is that the group effects are likely to be 
correlated with the included variables.  Zabel (1992) suggests that this can be remedied by including 
the group means of the variables in the models.  The modified specification is 
 
   yit   =  β′xit  +  ' ixδ  + εit  +  ci,  εit ~ N[0,σ2], nonautocorrelated 

   zit*   =  α′wit  +  ' iwγ  + uit  +  di 
 
with the same stochastic specification.  
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E53.4.2 Treatment Effects 
 
 The ‘treatment effects’ model, in which zit appears in the regression and all observations are 
used, 
   yit  =  β′xit  +  ' ixδ  +  γzit  +  εit  +  ci,  εit ~ N[0,σ2], nonautocorrelated 
 
is requested as in the cross section case by just including z in the Rhs list for the regression (if 
appropriate) and adding the request to the command: 
 
   ; All 
 
E53.4.3 Commands 
 
 This model is fit as a random parameters model, using simulation rather than quadrature to 
do the estimation.  It must be fit in three steps  as shown below 
 
Step 1.  Compute the probit model to define selection mechanism 
 
 PROBIT ; Lhs = variable zit ; Rhs = one,... ; Hold $ 
 
Step 2. Selection model to produce good starting values 
 
 SELECT ; Lhs = variable yit ; Rhs = one,... ; MLE $ 
 
Step 3. Random effects model 
 
 SELECT ; Lhs = variable zit ; Rhs = one,... 
   ; RPM ; Pds = panel specification    
   ; Fcn = REM $ 
 
NOTE:  Both equations must include a constant term, one. 
 
The model part of the second SELECT command is the same as that in the first one.  Zabel’s 
modification is requested by adding 
 
   ; Means 
 
to the SELECT command.  The default specification is uncorrelated group effects (θ = 0).  This may 
be relaxed by adding 
 

   ; Correlated 
 
to the command.  Our experience suggests that the identification of θ is a bit weak.  In the 
experiment below, in a large sample of N = 300, T = 15, in which the correlation is zero by 
construction in the original data, the estimate of it is, nonetheless, large and highly significant.  
However, convergence of the iterations could not be reached; the likelihood surface became quite 
flat in the dimension of θ in a range in which the derivatives with respect to the other parameters 
were fairly far from zero. 
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E53.4.4 Other Model Specifications 
 
 This model is estimated as a random parameters model with two random coefficients, the 
constants in the two equations.  The set of options for the model specification are the same as for 
other random parameters models.  See Chapter R24 for discussion.  The results retained by this 
estimator are  
 
 Matrices:  b =  full coefficient vector 
     varb =  full estimated asymptotic covariance matrix 
 
 Scalars:  nreg =  total number of observations 
   kreg =  number of parameters estimated 
   logl =  log likelihood 
   s =  estimate of σ 
   rho =  estimate of ρ 
 
E53.4.5 Application 
 
 The model is applied to the data used to illustrate the fixed effects model.  By construction, 
these data actually conform to the random effects model without the means included and with 
uncorrelated effects.   Each formulation begins with the initial PROBIT followed by SELECT. 
 
Basic Random Effects Formulation 
 

PROBIT ; Lhs = d ; Rhs = one,z1,z2 ; Hold $ 
SELECT ; Lhs = y ; Rhs = one,x1,x2 ; MLE ; Par $ 
SELECT ; Lhs = y ; Rhs = one,x1,x2 

; RPM ; Pds = 15 ; Fcn = REM $ 
 
Random Effects with Group Means (First  SELECT is the same) 
 

SELECT ; Lhs = y ; Rhs = one, x1,x2 
; RPM ; Pds = 15 ; Fcn = REM ; Means $ 

 
Correlated Random Effects (First SELECT is the same) 
 

SELECT ; Lhs = y ; Rhs = one,x1,x2 
; RPM ; Pds = 15 ; Fcn = REM ; Correlated ; Halton $ 

 
Group Means and Correlated Random Effects (First  SELECT is the same) 
 

SELECT ; Lhs = y ; Rhs = one,x1,x2 
; RPM ; Pds = 15 ; Fcn = REM ; Means ; Correlated ; Halton $ 

 
We show the full set of results for the second model, the REM with group means.  
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    D 
Log likelihood function     -1895.34311 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       D|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.04731**       .02376    -1.99  .0465     -.09389   -.00073 
      Z1|     .34436***      .02537    13.57  .0000      .29464    .39408 
      Z2|     .32921***      .02505    13.14  .0000      .28011    .37831 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Probit selection equation based on D                     | 
| Selection rule is: Observations with D        =  1       | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set              3000             3000.0            | 
| Selected sample       1444             1444.0            | 
+----------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=Y        Mean                 =         .26107 
             Standard deviation   =        1.81942 
             Number of observs.   =           1444 
Model size   Parameters           =              4 
             Degrees of freedom   =           1440 
Residuals    Sum of squares       =        1992.04 
             Standard error of e  =        1.17617 
Fit          R-squared            =         .58181 
             Adjusted R-squared   =         .58094 
Standard error corrected for selection     1.20443 
Correlation of disturbance in regression 
and Selection Criterion (Rho)     =         .27787 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.03295         .09311     -.35  .7234     -.21544    .14953 
      X1|     .99532***      .03211    31.00  .0000      .93238   1.05825 
      X2|     .98370***      .03033    32.44  .0000      .92426   1.04314 
  LAMBDA|     .33468***      .11660     2.87  .0041      .10614    .56322 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Normal exit:  11 iterations. Status=0, F=    4178.508 
----------------------------------------------------------------------------- 
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ML Estimates of Selection Model 
Dependent variable                    Y 
Log likelihood function     -4178.50797 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Selection (probit) equation for D 
Constant|    -.04739**       .02377    -1.99  .0462     -.09397   -.00080 
      Z1|     .34587***      .02560    13.51  .0000      .29570    .39605 
      Z2|     .32698***      .02463    13.28  .0000      .27872    .37525 
        |Corrected regression, Regime 1 
Constant|    -.03440         .09333     -.37  .7124     -.21732    .14852 
      X1|     .99600***      .03179    31.33  .0000      .93369   1.05832 
      X2|     .98376***      .03123    31.50  .0000      .92255   1.04497 
SIGMA(1)|    1.20470***      .03039    39.64  .0000     1.14514   1.26426 
RHO(1,2)|     .27940***      .09379     2.98  .0029      .09556    .46323 
--------+-------------------------------------------------------------------- 
Random Coefficients  SelctREM Model 
Dependent variable                    Y 
Log likelihood function     -3142.96683 
Sample is 15 pds and    200 individuals 
Sample selection with random effects 
Simulation based on    100 random draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Selection corrected regression parameters 
      X1|    1.01804***      .01769    57.56  .0000      .98338   1.05271 
      X2|    1.01922***      .01609    63.33  .0000      .98768   1.05076 
        |Correlation between regression and probit 
      X1|    -.03590         .06865     -.52  .6010     -.17044    .09865 
      X2|    -.40206***      .06548    -6.14  .0000     -.53040   -.27373 
        |Disturbance standard deviation 
      Z1|     .49125***      .02825    17.39  .0000      .43589    .54661 
      Z2|     .45698***      .03124    14.63  .0000      .39575    .51822 
        |Correlation between regression and probit 
      Z1|     .31623***      .10835     2.92  .0035      .10387    .52860 
      Z2|     .04251         .09871      .43  .6667     -.15096    .23597 
        |Means for random parameters 
One_Regr|    -.07960***      .02465    -3.23  .0012     -.12791   -.03128 
One_Prbt|    -.03615         .02628    -1.38  .1689     -.08766    .01535 
        |Scale parameters for dists. of random parameters 
sOne_Reg|    1.08397***      .01613    67.21  .0000     1.05236   1.11558 
sOne_Prb|    1.14806***      .03847    29.84  .0000     1.07266   1.22346 
        |Disturbance standard deviation 
   Sigma|    1.42515***      .01568    90.88  .0000     1.39441   1.45588 
        |Correlation between regression and probit 
     Rho|     .66677***      .03376    19.75  .0000      .60061    .73294 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E53.4.6 Technical Details on RE Selection Models 
 
 The log likelihood function for one group for the sample selection model is built up from the 
structure 
   yit  =  β′xit  +  εit  +  ci,  εit ~ N[0,σ2], nonautocorrelated 
 
   zit*  =  α′wit  +  uit  +  di 
 
   zit   =  1(zit*  >  0), uit ~ N[0,1] 
 
The contribution of the ith group to the log likelihood (which is then summed) is 
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We reparameterize the log likelihood as follows: 
 

   θ =  1/σ 

   γ =  (1/σ)β 

   τ =  ρ / 21− ρ  
 
We also isolate the two constant terms, α0 and β0 (γ0 after the Olsen normalization) so that in the 
formulation below, the slope vectors do not contain constant terms.  We also allow the group means 
for the nonconstant variables in w and x to appear in the vectors below, but there is no need to note 
them in particular in the derivation, so we leave them implicit.  With these reparameterizations, the 
function becomes  
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The treatment effects model removes the first term and changes the sign of the argument in the CDF 
in the second term when zit = 0, but no other changes are necessary. The unconditional log likelihood 
is found by integrating out the effects, ci and di which we do with the simulation procedure described 
in Section R24.7.  This is the form of our random parameters model as described there, in this case 
with exactly two random parameters.  The original parameters are recovered after estimation, with 
standard errors obtained via the delta method. 
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E53.5 Random Parameters Sample Selection Models 
 
 The random parameters form of the sample selection model contains several structural 
equations. 
 

Regression 
   yit = βi′xit  +  εit  εit ~ N[0,σ2], nonautocorrelated,  

   βi  = β + ∆βfi  +  Γβvi 
  
Selection Mechanism 
 

    zit* = αi′wit  +  uit,   

   αi  = α + ∆αgi  +  Γαhi, 

   zit   = 1(zit*  >  0), uit ~ N[0,1] 
  
Observation Mechanism  
 

   yit, xit observed when zit = 1 
 
‘Selectivity’ 
   (εit,uit ) ~ N[(0,0),(σ2,1,ρσ)], Corr[εit,uit]  =  ρ 
 
Our implementation of this model is the same as the one with all nonrandom parameters.  Although 
the model here is fit by maximum likelihood, it is fit in two steps in the fashion of the two step least 
squares estimator described earlier in this chapter.  In the first step, the probit model is fit and the 
results are stored for use by the selection model.  In the second, the regression with selection is fit 
conditionally on the first step estimation. 
 
NOTE:  This model is fit by maximum simulated likelihood, not by two step least squares.  There is 
no ‘lambda’ variable, φ(...)/Φ(...) created or used during the estimation, so no coefficient for this 
variable will appear in the results. 
 
E53.5.1 Treatment Effects 
 
 The ‘treatment effects’ model, in which zit appears in the regression and all observations are 
used, 
   yit  =  βi′xit  +  γizit  +  εit  εit ~ N[0,σ2], nonautocorrelated 
 
is requested as in the cross section case by just including z in the Rhs list for the regression (if 
appropriate) and adding the request to the command: 
 
   ; All 
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E53.5.2 Commands 
 
 This must be fit in two parts as shown below:  The probit model need not be a random 
parameters model; it can be fit as a standard model with nonrandom parameters if desired. 
 
 PROBIT ; Lhs = ... ; Rhs = ... ; Hold 
   [; RPM ; Pds = ... ; Fcn = ... ; Pts =  ...] $ 
 SELECT ; Lhs = ... ; Rhs = ... 
   ; RPM  ; Pds = ... ; Fcn = ... $ 
 
Zabel’s modification is requested by adding 
 
   ; Means 
 
to the SELECT command.  All other options for the random parameters are available, including 
 
   ; Correlated  to allow random parameters to be freely correlated 
   ; AR1   for autoregressive random effects 
   ; RPM = list  of variables if means of parameters are heterogeneous 
   ; Pts = n  for the number of replications 
   ; Halton  to use Halton draws 
 
and so on.  (Details appear in Chapter R24.)  Fitted values and residuals may be computed requesting 
 
   ; Par   to keep individual specific parameter estimates. 
   ; Keep = name  to retain fitted values 
   ; Res = name  to retain residuals 
 
These are computed using individual specific coefficient vectors. 
 
E53.5.3 Results 
 
 The results retained by this estimator are  
 
 Matrices: b =  full coefficient vector 
   varb =  full estimated asymptotic covariance matrix 
      beta_i =  individual specific parameters, if ; Par is requested. 
 
 Scalars: nreg =  total number of observations 
     kreg =  number of parameters estimated 
     logl =  log likelihood 
     s =  estimate of σ 
     rho =  estimate of ρ 
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E53.5.4 Application 
 
 There are many possible variants of the random parameters model.  The following illustrates 
the simplest case, in which the template sample selection model is specified and coefficients in the 
selection model are random and uncorrelated. 
 
 PROBIT ; Lhs = d  ; Rhs = one,z1,z2 ; Hold ; RPM     
   ; Pds = 15 ; Fcn = one(n), z1(n), z2(n) ; Pts = 25 ; Halton $ 
 SELECT ; Lhs = y ; Rhs = one,x1,x2 ; RPM 
   ; Pds = 15 ; Fcn = one(n), x1(n), x2(n) ; Pts = 25 ; Halton $ 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for D 
Dependent variable                    D 
Log likelihood function     -1895.34311 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       D|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.04731**       .02376    -1.99  .0465     -.09389   -.00073 
      Z1|     .34436***      .02537    13.57  .0000      .29464    .39408 
      Z2|     .32921***      .02505    13.14  .0000      .28011    .37831 
--------+-------------------------------------------------------------------- 
Random Coefficients  Probit   Model 
Dependent variable                    D 
Log likelihood function     -1498.85939 
Restricted log likelihood   -1895.34311 
Sample is 15 pds and    200 individuals 
PROBIT (normal)  probability model 
Simulation based on     25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       D|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Means for random parameters 
Constant|    -.08282***      .02828    -2.93  .0034     -.13825   -.02739 
      Z1|     .48350***      .03235    14.95  .0000      .42010    .54689 
      Z2|     .47184***      .03281    14.38  .0000      .40753    .53615 
        |Scale parameters for dists. of random parameters 
Constant|    1.15242***      .04112    28.03  .0000     1.07183   1.23301 
      Z1|     .12805***      .03142     4.07  .0000      .06646    .18964 
      Z2|     .06748**       .03173     2.13  .0334      .00529    .12968 
--------+-------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
(Results omitted) 
----------------------------------------------------------------------------- 
Random Coefficients  Selection  Model 
Simulation based on     25 Halton draws 
Standard errors corrected for 2 step est. 
Selection effects model based on D 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Means for random parameters 
Constant|     .01375         .42229      .03  .9740     -.81393    .84142 
      X1|    1.01654***      .03808    26.69  .0000      .94190   1.09118 
      X2|    1.01010***      .01620    62.37  .0000      .97835   1.04184 
        |Scale parameters for dists. of random parameters 
Constant|     .96273***      .01561    61.68  .0000      .93213    .99332 
      X1|     .04740**       .02094     2.26  .0236      .00636    .08843 
      X2|     .05047***      .01726     2.92  .0034      .01665    .08430 
        |Disturbance standard deviation 
   Sigma|    1.43616***      .15245     9.42  .0000     1.13736   1.73497 
        |Correlation between regression and probit 
     Rho|     .56156         .52556     1.07  .2853     -.46853   1.59164 
--------+-------------------------------------------------------------------- 
 
E53.5.5 Technical Details on the RP Selection Model 
 
 The log likelihood function for one group for the sample selection model is built up from the 
general random parameters structure 
 
   yit   =  βi′xit  +  εit  εit ~ N[0,σ2], nonautocorrelated,  

   βi   =  β + ∆βfi  +  Γβvi 

   zit*  =  αi′wit  +  uit,   

   αi   =  α + ∆αgi  +  Γαhi, 

   zit    =  1(zit*  >  0), uit ~ N[0,1] 
 
The contribution of the ith group to the log likelihood (which is then summed) is 
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The ancillary parameters, σ and ρ are assumed to be nonrandom as usual.  This model is fit in two 
steps.  In the first, the probit model is estimated as usual for the Heckman procedure or as a random 
parameters model.  The results are retained for later use.  If the probit model has been fit as a random 
parameters model, then the means of the parameter distributions are retained for use in the second 
step.   
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 We then reparameterize the log likelihood as follows: 
 
   θ =  1/σ 

   γi =  (1/σ)βi  (this also scales β, ∆β and Γβ) 

   τ =  ρ / 21− ρ  

   ait =  α′wit (where α is the standard probit estimates or the means of 
        the random parameters in the random parameters probit model.) 
 
With these reparameterizations, the function becomes 
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After the normalization, ait (and the first term in the function) becomes irrelevant to the solution.  The 
second term is then maximized using the template form of the random parameters model discussed in 
Chapter R24.  When estimation is complete, the asymptotic covariance matrix is obtained by the delta 
method.  Finally, the Murphy and Topel procedure is used to account for the presence of the estimated 
parameters in ait.  This particular form of the model is a fairly straightforward form of the random 
parameters structure. 
 
E53.6 FIML Estimator for the RP Selection Model  
 
 The preceding section describes a two step random parameters model estimator.  At the first 
step, the probit model is constructed.  This may be a random parameters model or a fixed parameters 
model.  At the second step, the random parameters sample selection model is estimated, taking the 
estimated probit model as fixed.  The log likelihood that is maximized is 
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where ait = α′wit from the probit model.  Thus, ait is taken as data, and α is not reestimated. 
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 You may also estimate the full model with all parameters random simultaneously.  The log 
likelihood function that is maximized is 
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All location parameters in both the probit model and in the regression model can be modeled as 
random.  As before, we use the Olsen transformation to simplify the estimation; 
 
   θ =  1/σ 

   γi =  (1/σ)βi  (this also scales β, ∆β and Γβ) 

   τ =  ρ / 21− ρ  
 
This model is essentially the same as the one in the previous section.  The difference is that the 
parameters of the distribution of αi are reestimated – it is a full information estimator.  The command is 
 
 PROBIT or LOGIT ; … ; Hold $  (as usual for selection models) 
 SELECT   ; MLE ; Lhs = y,d  
   ; Rhs = Rhs in the selection regression 
   ; Rh2 = Rhs in the binary variable (probit or logit) equation 
   ; RPM … as usual  
   ; Pds = setting is optional, 1 period is the default 
   ; Pts  = setting if desired 
   ; Halton if desired 
   ; Fcn  = settings for random parameters with 
     (type) for the regression parameters 
     [type] for the binary choice model parameters $ 
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E53.7 The Hausman and Wise Attrition Model 
 
 The recent literature on sample selection contains numerous analyses of two period models, 
such as Kyriazidou (1997).  They tend to focus on non- and semiparametric analyses. An early 
parametric contribution of Hausman and Wise (1979) is considered here.  The model is specifically a 
two period model of attrition, which would seem to characterize many of the studies suggested in the 
current literature (which is why we consider it here).  The model formulation is a two period random 
effects formulation: 
 

   yi1 =  xi1′β  +  εi1  +  ui (first period regression) 

   yi2   =  xi2′β  +  εi2  +  ui (second period regression). 
 
Attrition is likely in the second period (to begin the study, the individual must have been observed in 
the first period).  The authors suggest that the probability that an observation is made in the second 
period varies with the value of yi2 as well as some other variables, 
 
   zi2* =  δyi2  + xi2′θ  +  wi2′α  +  vi2. 
 
Attrition occurs if zi2* < 0, which produces a probit model, 
 
   zi2  =  1(zi2*  >  0)  (attrition indicator observed in period 2). 
 
An observation is made in the second period if zi2 = 1, which makes this an early version of the 
familiar sample selection model.  The reduced form of the observation equation is 
 

  zi2* =  xi2′(δβ + θ)  +  wi2′α  +  δεi2  +  vi2 

           =  xi2′π  + wi2′α  +  hi2 

           =  ri2′γ  +  hi2. 
 
The variables in the probit equation are all those in the second period regression plus any additional 
ones dictated by the application.  The estimable parameters in this model are β, γ, σ2 = Var[εit + ui] 
and two correlation coefficients,  
 

  ρ12 =  Corr[εi1  +  ui, εi2  +  ui]  =  Var[ui] / σ2,  

and    ρ23 =  Corr[hi2, εi2  +  ui]. 
 
All disturbances are assumed to be normally distributed.  (Readers are referred to the paper for 
motivation and details on this specification.) 
 The authors propose a full information maximum likelihood estimator.  The estimator 
described here uses two steps.  The parameters of the probit model are estimated first by maximum 
likelihood.  Then the remaining parameters are estimated conditionally on these first step estimates.  
The Murphy and Topel adjustment is made after the second step.  Further details are given at the end 
of this section. 
 



E53: Sample Selection Models for Panel Data   E-1313 

E53.7.1 Commands 
 
 The Hausman and Wise estimator is obtained as follows:  The data are not set up as a panel.  
All data appear on a single line, as one observation.  There are three dependent variables and three 
sets of independent variables, as shown below. 
 
 PROBIT ; Lhs =  z  

; Rhs = variables in probit and in second regression 
; Hold $ 

 SELECT ; Lhs = first period y, second period y 
   ; Rhs = first period regression 
   ; Rh2 = second period regression $ 
 
NOTE:  The Rhs and Rh2 lists must contain the same number of variables.  These are two sets of 
observations on the same variables. 
 
Data on yi2 and xi2 can be coded as missing values or anything else for observations which have 
attrition (z = 0).    Values there will be ignored. 
 Other options are the standard ones for nonlinear optimization.  There are no fitted values or 
marginal effects produced for this estimator, however.  The results retained by the estimator are 
 
 Matrices: b =  estimate of β 

  varb =  estimate of asymptotic covariance matrix 
 
 Scalars: logl =  log likelihood 
   nreg =  number of observations 
   rho12 =  estimate of ρ12 

  rho23 =  estimate of ρ23 
   s =  estimate of σ 
 
E53.7.2 Application 
 
 We used the data from the previous example, and created a second period of data.  
 
 SAMPLE ; 1-3000 $ 
 CALC  ; Ran(12345) $ 

MATRIX ; ai = Rndm(200) ; ci = Rndm(200) $ 
CREATE ; i = Trn(15,0) $ 
CREATE ; u = Rnn(0,1) ; e = .5*u+.5*Rnn(0,1) $ 
CREATE ; z1 = Rnn(0,1) ; z2 = Rnn(0,1)   

; d = (.5*z1+.5*z2+ai(i)+u) > 0 $ 
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) 

; y = x1+x2+ci(i)+e $ 
CREATE ; x1a = Rnn(0,1) ; x2a = Rnn(0,1) 

; ya = x1a+x2a+e+Rnn(0,1) $ 
PROBIT ; Lhs = d ; Rhs = one,z1,z2,x1a,x2a ; Hold $ 
SELECT ; Lhs = y,ya ; Rhs = one,x1,x2 ; Rh2 = one,x1a,x2a $ 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    D 
Log likelihood function     -1892.00484 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       D|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.04977**       .02381    -2.09  .0366     -.09644   -.00310 
      Z1|     .34466***      .02540    13.57  .0000      .29489    .39443 
      Z2|     .32991***      .02508    13.15  .0000      .28076    .37907 
     X1A|    -.03439         .02418    -1.42  .1549     -.08177    .01300 
     X2A|     .05144**       .02402     2.14  .0322      .00436    .09853 
--------+-------------------------------------------------------------------- 
OLS Start values for attrition model.............. 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =        -.00870 
             Standard deviation   =        1.84943 
             Number of observs.   =           3000 
Model size   Parameters           =              3 
             Degrees of freedom   =           2997 
Residuals    Sum of squares       =        .000000 
             Standard error of e  =         .00000 
Fit          R-squared            =         .58461 
             Adjusted R-squared   =         .58433 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.01845         .02177     -.85  .3969     -.06113    .02423 
      X1|    1.01748***      .02203    46.19  .0000      .97430   1.06065 
      X2|    1.00345***      .02162    46.41  .0000      .96107   1.04583 
--------+-------------------------------------------------------------------- 
Hausman and Wise Attrition Model 
Dependent variable                    Y 
Log likelihood function     -8881.37248 
Estimation based on N =   3000, K =   6 
First  period dependent variable =Y 
Second period dependent variable =YA 
Attrition indicator is D 
Data means are for first period 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.04316**       .02098    -2.06  .0397     -.08429   -.00203 
      X1|     .99566***      .02099    47.43  .0000      .95452   1.03680 
      X2|    1.00692***      .02096    48.03  .0000      .96583   1.04801 
   Sigma|    1.20586***      .01385    87.10  .0000     1.17872   1.23299 
Rho(1,2)|     .34237***      .02256    15.18  .0000      .29816    .38659 
Rho(2,3)|     .33678***      .03151    10.69  .0000      .27502    .39853 
--------+-------------------------------------------------------------------- 
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E53.7.3 Technical Details for the Hausman and Wise Attrition Model 
 
 The individual terms in the log likelihood for the model are 
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Reparameterization of the log likelihood brings some large simplification.  First, δ has been 
estimated at the first step, so we carry only 
 
   ai2  =  ri2′δ  
 
in the log likelihood.  Then, let c = -.5log2π and 
 
   θ   = 1/σ, 

   γ    = (1/σ)β, 

   T12  = 2
121− ρ , τ12  =  ρ12  / T12 

   T23  = 2
231− ρ ,   τ12  =  ρ123 / T23 

   T13  = 2 2
12 231+ τ + τ ,   τ13  =  τ12 τ23 / T13 

   ei1  = θ yi1 - xi1′γ 

   ei2  = θ yi2 - xi2′γ 

   Ui  = T12 ei2  -  τ12 ei1 

   Vi   = T23ai2 + τ13ei2 
 
The log likelihood for observation i is now  
 
 log Li  =  c + logθ - .5ei1

2 + zi2( c + logθ - logT12 - .5*Ui
2 + logΦ(Vi)] + (1-zi2)logΦ(-Vi) 
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This is maximized with respect to γ, θ, τ12 and τ23.  Derivatives are complicated, but use familiar results 
for the normal distribution.  The BHHH estimator is used for the asymptotic covariance matrix.  The 
original parameters and their asymptotic covariance matrix are recovered using the delta method. 
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E54: Alternative Sample Selection Models 
 
E54.1 Introduction 
 
 Many variants of the ‘sample selection’ model can be estimated with LIMDEP. (See 
Heckman (1979), Maddala (1983) and Greene (2011) for further discussion.)  The basic structure is   
 
   y =  β′x + ε, 

    z* =  α′w + u, 

    ε,u ~  N[0,0,σε
2 ,σu

2 ,ρ]. 
 
A bivariate classical normal (seemingly unrelated) regressions model applies to the structural 
equations.  The standard deviations are σε and σu, and the covariance is ρσεσu.  If the data were 
randomly sampled from this bivariate population, the parameters could be estimated by least squares, 
or GLS combining the two equations.  However, z* is not observed.  Its observed counterpart is z, 
which is determined by 
 
    z =  1 if z* > 0 

 and   z =  0 if z* ≤ 0. 
 
Moreover, values of y and x are only observed when z equals one.  Thus, the model is two steps 
removed from the two equations seemingly unrelated regressions which would be simple to estimate.  
The essential feature of the model is that under the sampling rule, E[y|x,z = 1] is not a linear 
regression.  The development below presents estimators for the class of essentially nonlinear models 
that emerge from this specification. 
 This is the simplest form of this model.  Several variants and estimators were considered in 
Chapter E52.  Panel data estimators were developed in Chapter E53.  In this chapter, we develop a 
number of models in which the first, linear equation, y =  β′x + ε, is replaced with a nonlinear model 
in which the density of the random variable, rather than its conditional mean are specified; 
 
   f(y|x,ε)  =  g(y,x, ε,β). 
 
The other assumptions are the same.  The model is extended to a variety of settings, such as binary 
and multinomial choice models, count data models and a stochastic frontier model. 
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E54.2 Probit Model with Selection 
 
 In the bivariate probit setting (see Section E33.2), data on y1 might be observed only when y2 
equals one.  For example, in modeling loan defaults with a sample of applicants, default will only 
occur among applicants who are granted loans.  Thus, in a bivariate probit model for the two 
outcomes, the observed default data are nonrandomly selected from the set of applicants.  The model 
that might be used is 
   zi1 =  β′xi1 + εi1, yi1 = sgn(zi1), 

    zi2  =  β′xi2 + εi2, yi2 = sgn(zi2), 

    εi1,εi2 ~  BVN(0,0,1,1,ρ), 

     (yi1,xi1)  is observed only when yi2 = 1. 
 
This is a type of sample selectivity model.   The model was proposed by Wynand and van Praag 
(1981). An extensive application which uses choice based sampling as well is Boyes, Hoffman, and 
Low (1989). (See also Greene (1992 and 2011).)  The sample selection model is obtained by adding   
; Selection to the BIVARIATE PROBIT (or just BIVARIATE) command.  This model is fit in a 
single step, using full information maximum likelihood.  Use 
 
 BIVARIATE ; Lhs  = y1, y2 (selection variable is second) 
   ; Rhs = x1  (variables in selected model) 
   ; Rh2 = x2  (variables in selection equation) 
   ; Selection $ 
 
All other options and specifications are the same as for the model without selection.  Except for the 
diagnostic table which indicates that this model has been chosen, the results for the selection model 
are exactly the same as for the basic model. 
 
E54.2.1 Choice Based Sampling 
 
 Like other discrete choice models, you may use a choice based sampling correction with this 
model.  You must provide a weighting variable which for this model will take only three different 
values.  In each case, the weight is 
 
 wi(zi1,zi2)  =  population proportion / sample proportion. 
 
The three cells in your data set for this selection model are z2 = 0, (z2 = 1,z1 = 0) and (z2 = 1,z1 = 1).  
Your command is modified to account for the weighting as follows: 
 
 BIVARIATE ; Lhs = y1, y2 (selection variable is second) 
   ; Rhs = x1  (variables in selected model) 
   ; Rh2 = x2  (variables in selection equation) 
   ; Wts = wi  
   ; Choice Based Sampling 
   ; Selection $ 
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E54.2.2 Application 
 
 The foregoing was applied in Greene (1992).  The study analyzed usage and default patterns 
for a sample of individuals applying for and using a major credit card.  Descriptive statistics for a 
subset of the variables in this data set of 13,444 observations (provided as data file credit.lpj) are as 
follows.   
 
Variable          Mean      Standard Deviation    Minimum         Maximum           Cases 

Dummy variable for whether individual holds the credit card 
CARDHLDR| .780943 .413623 .000000 1.00000 13444 

Dummy variable for whether individual cardholder defaulted on the credit card 
DEFAULT | .074085 .261919 .000000 1.00000 13444 

Number of major and minor derogatory reports on credit card usage 
MAJORDRG| .462809 1.43272 .000000 22.0000 13444 
MINORDRG| .290539 .767620 .000000 11.0000 13444 

Age in years and twelfths of a year when card was applied for 
     AGE|     33.54046     10.06261        18.0       88.6667  13444 

Income in $ per year – regular income and additional income 
  INCOME|     30114.33     15035.36       600.0      99999.0   13444 
ADDLINCM| 4126.17  9127.93 .000000 99999.0 13444 

Ratio of average yearly expenditure to average total yearly income 
EXP_INC|      .070974      .103922       .0000882    2.03773     13444 

Average yearly expenditure using the credit card 
AVGYREXP|     2357.658     3734.952     12.00000     121663.8      13444 

Dummy variable indicates whether individual owns or rents their home 
OWNRENT | .455965 .498076 .000000 1.00000 13444 

Dummy variable indicates whether individual is self employed 
SELFEMPL| .057944 .233646 .000000 1.00000 13444 

Number of dependents in household, not including the individual 
DEPDNT  | 1.01726 1.27910 .000000 9.00000 13444 

Income per dependent, in $10,000 units 
INCPER  | 21719.7 13591.2 362.500 150000. 13444 

Months residing at current address when applied for the credit card 
CURNTADD| 55.3189 63.0897 .000000 576.000 13444 

Dummy variable for whether the individual holds another major credit card 
CREDMAJR| .813076 .389865 .000000 1.00000 13444 

Number of credit accounts active at the time of card application 
TRADACCT| 6.42205 6.10691 .000000 50.0000 13444 
 
The variable cardhldr is a binary variable which indicates whether the individual holds the major 
credit card whose vendor produced the overall data set.  The probit equation is used to model default. 
The selection model that arises as the default is only observed for those with cardhldr = 1. 
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 This application continues the original analysis.  (The specification is different below.)  The 
first set of estimates computes the bivariate probit model with selection.  In fact, the sample is choice 
based.  The list below shows the sample and true population proportions and the weights to be 
applied. 
     Sample     Population Weight 
Card holder = 0     0.219  0.768  3.507 
Card holder = 1  Default = 1 0.0949  0.0237  0.2497 
   Default = 0 0.905  0.208  0.2298 
 
The choice based sampling in these data is fairly drastic.  The sample was constructed for the 
purpose of studying default, so it was heavily skewed toward defaulters, far in excess of observed 
rates.  (We note, in the years since the study was done, the vendor has also drastically increased the 
acceptance rate.) 
 
 NAMELIST  ; card = one,age,income,ownrent,selfempl,curntadd $ 
 NAMELIST  ; dflt = one,income,avgyrexp,depdnt,incper,credmajr,tradacct $ 
 BIVARIATE  ; Lhs = default,cardhldr  
   ; Rh1 = dflt ; Rh2 = card ; Selection 
   ; Summary ; Partial Effects $ 
 
This set of instructions computes the weights for the choice based sampling estimator. 
 
 CALC   ; wc0 = 1-Xbr(cardhldr) ; pc0 = .768 $ 
 REJECT  ; cardhldr = 0 $ 
 CALC   ; wc11 = Xbr(default) ; pc11 = .232*.102  
   ; wc10 = 1 - wc11 ; pc10 = .232*.898 $ 
 SAMPLE ; All $ 
 CREATE  ; cbwt = (cardhldr = 0)*pc0 / wc0 
               + (cardhldr = 1)*(default = 1) * pc11 / wc11 
               + (cardhldr = 1)*(default = 0) * pc10 / wc10 $ 
 
This is the same model, now applying the weights.  The results are substantially different, as might 
be expected. 
 
 BIVARIATE  ; Lhs = default,cardhldr  
   ; Rh1 = dflt ; Rh2 = card ; Selection  
   ; Wts = cbwt ; Choice Based Sampling $ 
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----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable               DEFCAR 
Log likelihood function    -10049.00092 
Estimation based on N =  13444, K =  14 
Selection model based on CARDHLDR 
Selected obs. 10499, Nonselected:  2945 
--------+-------------------------------------------------------------------- 
 DEFAULT|                  Standard            Prob.      95% Confidence 
CARDHLDR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for DEFAULT 
Constant|    -.93050***      .05904   -15.76  .0000    -1.04621   -.81479 
  INCOME|-.12203D-04***   .1999D-05    -6.10  .0000 -.16120D-04  -.82851D-05 
AVGYREXP|-.89928D-05*     .4690D-05    -1.92  .0552 -.18185D-04  .19900D-06 
  DEPDNT|     .04689**       .02213     2.12  .0341      .00351    .09027 
  INCPER|-.12370D-05      .2208D-05     -.56  .5754 -.55649D-05  .30910D-05 
CREDMAJR|    -.08457**       .04245    -1.99  .0464     -.16777   -.00136 
TRADACCT|    -.01441***      .00299    -4.82  .0000     -.02028   -.00855 
        |Index    equation for CARDHLDR 
Constant|     .35085***      .04541     7.73  .0000      .26185    .43985 
     AGE|    -.00269*        .00138    -1.94  .0519     -.00540    .00002 
  INCOME| .16129D-04***   .8858D-06    18.21  .0000  .14393D-04  .17865D-04 
 OWNRENT|     .16698***      .02687     6.21  .0000      .11431    .21965 
SELFEMPL|    -.33527***      .04967    -6.75  .0000     -.43263   -.23792 
CURNTADD|-.33633D-05         .00021     -.02  .9874 -.42220D-03  .41547D-03 
        |Disturbance correlation 
RHO(1,2)|     .85078        2.63801      .32  .7471    -4.31963   6.02119 
--------+-------------------------------------------------------------------- 
+--------------------------------+ 
|  Partial Effects for Ey1|y2=1  | 
+----------+----------+----------+ 
|          |   Direct | Indirect | 
| Variable | Efct  x1 | Efct  x2 | 
+----------+----------+----------+ 
|   INCOME |   .00000 |   .00000 | 
| AVGYREXP |   .00000 |   .00000 | 
|   DEPDNT |   .00776 |   .00000 | 
|   INCPER |   .00000 |   .00000 | 
| CREDMAJR |  -.01399 |   .00000 | 
| TRADACCT |  -.00238 |   .00000 | 
|      AGE |   .00000 |   .00008 | 
|  OWNRENT |   .00000 |  -.00523 | 
| SELFEMPL |   .00000 |   .01051 | 
| CURNTADD |   .00000 |   .00000 | 
+----------+----------+----------+ 
 
 (The partial effects related to income and incper are small because of the scale of the variable.  The 
values are shown in the table below.) 
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----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .085556 
Observations used for means are  All Obs. 
Total effects reported = direct+indirect. 
--------+-------------------------------------------------------------------- 
 DEFAULT|     Partial      Standard            Prob.      95% Confidence 
CARDHLDR|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  INCOME|-.25246D-05***   .3255D-06    -7.76  .0000 -.31626D-05  -.18865D-05 
AVGYREXP|-.14881D-05*     .7756D-06    -1.92  .0551 -.30083D-05  .32180D-07 
  DEPDNT|     .00776**       .00366     2.12  .0341      .00058    .01494 
  INCPER|-.20468D-06      .3656D-06     -.56  .5756 -.92131D-06  .51195D-06 
CREDMAJR|    -.01399**       .00703    -1.99  .0465     -.02777   -.00022 
TRADACCT|    -.00238***      .00049    -4.84  .0000     -.00335   -.00142 
     AGE| .84248D-04*     .4335D-04     1.94  .0520 -.71561D-06  .16921D-03 
 OWNRENT|    -.00523***      .00086    -6.10  .0000     -.00691   -.00355 
SELFEMPL|     .01051***      .00157     6.69  .0000      .00743    .01359 
CURNTADD| .10539D-06      .6696D-05      .02  .9874 -.13019D-04  .13229D-04 
--------+-------------------------------------------------------------------- 
These  are the  direct marginal  effects. 
--------+-------------------------------------------------------------------- 
 DEFAULT|     Partial      Standard            Prob.      95% Confidence 
CARDHLDR|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  INCOME|-.20192D-05***   .3289D-06    -6.14  .0000 -.26639D-05  -.13745D-05 
AVGYREXP|-.14881D-05*     .7756D-06    -1.92  .0551 -.30083D-05  .32180D-07 
  DEPDNT|     .00776**       .00366     2.12  .0341      .00058    .01494 
  INCPER|-.20468D-06      .3656D-06     -.56  .5756 -.92131D-06  .51195D-06 
CREDMAJR|    -.01399**       .00703    -1.99  .0465     -.02777   -.00022 
TRADACCT|    -.00238***      .00049    -4.84  .0000     -.00335   -.00142 
     AGE|        0.0    .....(Fixed Parameter)..... 
 OWNRENT|        0.0    .....(Fixed Parameter)..... 
SELFEMPL|        0.0    .....(Fixed Parameter)..... 
CURNTADD|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
These are the indirect  marginal effects. 
--------+-------------------------------------------------------------------- 
 DEFAULT|     Partial      Standard            Prob.      95% Confidence 
E[y1|x,z|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  INCOME|-.50539D-06***   .3307D-07   -15.28  .0000 -.57020D-06  -.44057D-06 
AVGYREXP|        0.0    .....(Fixed Parameter)..... 
  DEPDNT|        0.0    .....(Fixed Parameter)..... 
  INCPER|        0.0    .....(Fixed Parameter)..... 
CREDMAJR|        0.0    .....(Fixed Parameter)..... 
TRADACCT|        0.0    .....(Fixed Parameter)..... 
     AGE| .84248D-04*     .4335D-04     1.94  .0520 -.71561D-06  .16921D-03 
 OWNRENT|    -.00523***      .00086    -6.10  .0000     -.00691   -.00355 
SELFEMPL|     .01051***      .00157     6.69  .0000      .00743    .01359 
CURNTADD| .10539D-06      .6696D-05      .02  .9874 -.13019D-04  .13229D-04 
--------+-------------------------------------------------------------------- 
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+-----------------------------------------------------------+ 
| Analysis of dummy variables in the model. The effects are | 
| computed using E[y1|y2=1,d=1] - E[y1|y2=1,d=0] where d is | 
| the variable. Variances use the delta method.  The effect | 
| accounts for all appearances of the variable in the model.| 
+-----------------------------------------------------------+ 
|Variable      Effect   Standard error     t ratio          | 
+-----------------------------------------------------------+ 
 CREDMAJR    -.014613     .007653           -1.909 
 OWNRENT     -.005187     .000846           -6.130 
 SELFEMPL     .013307     .002578            5.161 
 
+-----------------------------------------------------+ 
| Joint Frequency Table for Bivariate Probit Model    | 
| Predicted cell is the one with highest probability  | 
+-----------------------------------------------------+ 
|                         CARDHLDR                    | 
+-------------+---------------------------------------+ 
|  DEFAULT    |       0            1         Total    | 
|-------------+-------------+------------+------------+ 
|         0   |         0   |     9503   |     9503   | 
|    Fitted   |   (    10)  |  ( 10489)  |  ( 10499)  | 
|-------------+-------------+------------+------------+ 
|         1   |         0   |      996   |      996   | 
|    Fitted   |   (     0)  |  (     0)  |  (     0)  | 
|-------------+-------------+------------+------------+ 
|     Total   |         0   |    10499   |    10499   | 
|    Fitted   |   (    10)  |  ( 10489)  |  ( 10499)  | 
|-------------+-------------+------------+------------+ 
| Counts based on  10499 selected of  13444 in sample | 
+-----------------------------------------------------+ 
+--------------------------------------------------------+ 
| Bivariate Probit Predictions for DEFAULT  and CARDHLDR | 
| Predicted cell (i,j) is cell with largest probability  | 
| Neither DEFAULT  nor CARDHLDR predicted correctly      | 
|                             0 of   13444 observations  | 
| Only    DEFAULT  correctly predicted                   | 
|         DEFAULT  = 0:      10 of    9503 observations  | 
|         DEFAULT  = 1:       0 of     996 observations  | 
| Only    CARDHLDR correctly predicted                   | 
|         CARDHLDR = 0:       0 of       0 observations  | 
|         CARDHLDR = 1:       0 of   10499 observations  | 
| Both    DEFAULT  and CARDHLDR correctly predicted      | 
|         DEFAULT  = 0 CARDHLDR = 0:       0 of       0  | 
|         DEFAULT  = 1 CARDHLDR = 0:       0 of       0  | 
|         DEFAULT  = 0 CARDHLDR = 1:    9493 of    9503  | 
|         DEFAULT  = 1 CARDHLDR = 1:       0 of     996  | 
+--------------------------------------------------------+ 
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----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable               DEFCAR 
Weighting variable                 CBWT 
Log likelihood function     -6818.41100 
Estimation based on N =  13444, K =  14 
Selection model based on CARDHLDR 
Selected obs. 10499, Nonselected:  2945 
Std. errs corrected for choice based sample 
--------+-------------------------------------------------------------------- 
 DEFAULT|                  Standard            Prob.      95% Confidence 
CARDHLDR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for DEFAULT 
Constant|   -1.68985        1.98645     -.85  .3949    -5.58323   2.20353 
  INCOME|-.60682D-05      .2645D-04     -.23  .8185 -.57905D-04  .45769D-04 
AVGYREXP|-.81195D-05      .1246D-04     -.65  .5147 -.32543D-04  .16304D-04 
  DEPDNT|     .04496         .05019      .90  .3704     -.05342    .14333 
  INCPER|-.11524D-05      .4013D-05     -.29  .7740 -.90180D-05  .67131D-05 
CREDMAJR|    -.07196         .12814     -.56  .5744     -.32312    .17919 
TRADACCT|    -.01178         .01788     -.66  .5098     -.04682    .02325 
        |Index    equation for CARDHLDR 
Constant|   -1.27003        1.54792     -.82  .4119    -4.30390   1.76384 
     AGE|    -.00239         .05642     -.04  .9662     -.11296    .10818 
  INCOME| .15219D-04***   .5646D-05     2.70  .0070  .41521D-05  .26285D-04 
 OWNRENT|     .17197         .72795      .24  .8132    -1.25478   1.59873 
SELFEMPL|    -.33413        1.22403     -.27  .7849    -2.73319   2.06492 
CURNTADD|-.60381D-04         .00306     -.02  .9843 -.60603D-02  .59395D-02 
        |Disturbance correlation 
RHO(1,2)|     .71564        1.78004      .40  .6877    -2.77317   4.20445 
--------+-------------------------------------------------------------------- 
 
E54.2.3 Technical Details 
 
 The log likelihood for the bivariate probit model with selection is 
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The necessary first and second derivatives are given in Section E33.2.9. 
 
NOTE:  This is one of several sample selection models estimated by maximum likelihood with 
LIMDEP.  In this setting, there is no ‘lambda’ variable as there is in the regression model with 
sample selection.  Heckman’s (1979) selection correction variable applies to the linear regression 
model estimated with two step least squares, but not generally to models fit by maximum likelihood.  
For testing for selection effects, the appropriate approach is to test the hypothesis of no effects, 
which results if ρ equals zero. 
 
NOTE:  You may code y1 as 0.0 for the nonselected (nonobserved) observations in this model.  The 
correct value to use (or ignore) is determined by the program during estimation. 
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E54.3 Ordered Probit Model 
 
 The following describes an ordered probit counterpart to the standard sample selection 
model.  This is only available for the ordered probit specification, not the ordered logit, Gompertz, 
etc.  The structural equations are, first, the main equation, the ordered choice model, 
 
   yi* =  β′xi + εi,  εi ~ F(εi |θ), E[εi] = 0, Var[εi] = 1, 

   yi  =  0 if yi  ≤ µ0, 

    =  1 if µ0 < yi  ≤ µ1, 

    =  2 if µ1 < yi   ≤ µ2, 

    ... 

    =  J if  yi  > µJ-1. 
 
Second is the selection equation, a univariate probit model, 
 
   di*  =  α′zi + ui, 

   di   =  1 if di*
 

 > 0 and 0 otherwise, 

The observation mechanism is 
  
   [yi,xi] is observed if and only if di  =  1. 

   εi,ui  ~   N2[0,0,1,1,ρ]; there is ‘selectivity’ if ρ is not equal to zero. 
 
This model requires two passes to estimate.  In the first, you fit a probit model for the selection 
variable, d. You then pass these values to the ordered probit model using a standard command for 
this operation, the ; Hold parameter in the probit command.  The two commands would be as 
follows:  (This model is requested in the same fashion as LIMDEP’s other sample selectivity 
models.)  Estimate the first stage probit model and hold the results for next step in the estimation. 
 
 PROBIT  ; Rhs = z list ; Lhs = d ; Hold $ 
 
Second, estimate the ordered probit model with selectivity, 
 
 ORDERED  ; ... as usual ; Selection  $ 
 
You need not make any other changes in the ordered probit command. 
  



E54: Alternative Sample Selection Models   E-1326 

 The second step reestimates α from the probit model along with β and µ, obtaining a FIML 
set of estimates for all parameters including ρ.  The ordered probit command results in two full 
rounds of estimation.  In the first round, the model is estimated as if there were no selection.  This 
provides the remaining starting values.  The starting value for ρ is zero.  Then, in the second round, 
the FIML estimates are computed.  This model is rather difficult to estimate, and it is best to allow 
LIMDEP to use its own starting values.  (In spite of this, nonconvergence can be a problem.  When 
problems arise, be sure first to check the scaling of the independent variables.) 
 
NOTE:  This model is not fit by computing a ‘lambda’ variable, λi = φ(α′zi)/ Φ(α′zi) from the results 
of the first step probit and including it in the ordered probit at the second.  It is estimated by 
maximizing the likelihood function shown at the end of this section with respect to β, α, and ρ.  
There will be no coefficient shown for such a variable in the estimation results, though the estimated 
ρ is shown. 
 
NOTE:  (This is another frequently asked question.)  All observations in the sample are used in 
fitting this model, not just the ones for which d = 1.  The observations for which d = 0 contribute to 
the probit part of the log likelihood.  The remainder contribute both to the probit and the ordered 
probit. 
 
 The ; Rst = ... and ; CML: options for imposing restrictions can be used freely with this 
model to constrain β and α.  The parameter vector is 
 
   Θ  =  [β1,...,βK,α1,...,αL,µ1,...,µJ-1,ρ]. 
  
You may also give your own starting values with ; Start = list ..., though the internal values will 
usually be preferable. 
 All results kept for the basic model are also kept; b and varb still include only β, but ; Par 
adds all of [µ,α,ρ] to the parameter vector.  This model adds two additional scalars: 
 
   rho   =  estimate of ρ, 
   varrho   =  estimate of asymptotic variance of estimated ρ. 
 
NOTE:  The estimates of α update the estimates you stored with ; Hold when you fit the probit 
model. Thus, for example, if you were to follow your ORDERED command immediately with the 
identical command, the starting values used for α would be the MLEs from the prior ordered probit 
command, not the ones from the original probit model that you fit earlier.  Also, if you were to 
follow this model command with a selection model command, this estimate of α would be used 
there, as well. 
 
With the corrected estimates of [β,µ] in hand, predictions for this model are computed in the same 
manner as for the basic model without selection.  The only difference is that no prediction for y is 
computed in the selection model if d = 0. 
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E54.3.1 Application 
 
 The following illustrates the model with some simulated data which satisfy the assumptions 
of the specified model: 
 

CALC  ; Ran(12345) $  
SAMPLE  ; 1-500 $ 
CREATE ; x1 = Rnu(1,4) ; x2 = Rnd(2) - 1 $ 
CREATE ; z1 = Rnn(0,1) ; z2 = Rnn(0,1) ; u = Rnn(0,2) $ 
CREATE ; d = (z1 + z2 + u) > 0 $ 
CREATE ; e = u + Rnn(0,3) ; y = 1 + .5 * x1 + 1.2 * x2 + e $ 
RECODE ; y ; -25/2.5 = 0 ; 2.501/3 = 1 ; 3.001/4 = 2 ; 4.01/100 = 3 $ 
PROBIT ; Lhs = d ; Rhs = one,z1,z2 ; Hold $ 
ORDERED ; Lhs = y ; Rhs = one,x1,x2 ; Select ; Partial Effects $ 

 
This is the initially estimated probit equation.  The coefficients below are used as the starting values 
for the ordered probit with selection.  At this point, this is the model that is used in subsequent 
sample selection models. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    D 
Log likelihood function      -302.36938 
Results retained for SELECTION model. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       D|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
Constant|     .04460         .05935      .75  .4524     -.07173    .16093 
      Z1|     .44979***      .06353     7.08  .0000      .32528    .57430 
      Z2|     .40994***      .06890     5.95  .0000      .27490    .54499 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 
This is the ordered probit model fit without regard to the sample selection issue.  These are used as 
starting values for the MLE.  The initial value for ρ is zero. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                    Y 
Log likelihood function      -578.78276 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
Constant|    -.13761         .24213     -.57  .5698     -.61219    .33696 
      X1|     .17417**       .08453     2.06  .0394      .00849    .33986 
      X2|     .45932***      .14938     3.07  .0021      .16654    .75210 
        | Threshold parameters for index 
   Mu(1)|     .14970***      .03905     3.83  .0001      .07316    .22624 
   Mu(2)|     .49683***      .06502     7.64  .0000      .36940    .62426 
--------+-------------------------------------------------------------------- 
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+--------------------------------------------------------------------+ 
|                CELL FREQUENCIES FOR ORDERED CHOICES                | 
+--------------------------------------------------------------------+ 
|               Frequency        Cumulative  < =    Cumulative  > =  | 
|Outcome      Count    Percent   Count    Percent   Count    Percent | 
|----------- ------- ---------  ------- ---------  ------- --------- | 
|Y=00             76   30.0395       76   30.0395      500  100.0000 | 
|Y=01             13    5.1383       89   35.1779      424   69.9605 | 
|Y=02             33   13.0435      122   48.2213      411   64.8221 | 
|Y=03            131   51.7787      500  100.0000      131   51.7787 | 
+--------------------------------------------------------------------+ 
 
This is the objective; FIML estimates of the ordered probit model and, simultaneously, the probit 
model.  The ‘Selection equation’ below is the reestimated probit model.  This model is stored for use 
by later sample selection models. 
 
Normal exit:  16 iterations. Status=0, F=    573.5784 
----------------------------------------------------------------------------- 
Ordered Probit Model with Selection. 
Dependent variable                    Y 
Log likelihood function      -573.57840 
--------+-------------------------------------------------------------------- 
       D|                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
Constant|    -.54284**       .21559    -2.52  .0118     -.96538   -.12030 
      X1|     .13625*        .07301     1.87  .0620     -.00684    .27935 
      X2|     .40042***      .13360     3.00  .0027      .13857    .66226 
        | Threshold parameters for index 
   Mu(1)|     .12773***      .03751     3.41  .0007      .05421    .20124 
   Mu(2)|     .42892***      .07020     6.11  .0000      .29134    .56651 
        | Selection equation 
Constant|     .04349         .05929      .73  .4633     -.07273    .15970 
      Z1|     .41957***      .06248     6.72  .0000      .29711    .54202 
      Z2|     .44936***      .06940     6.48  .0000      .31335    .58538 
        | Cor[u(probit),e(ordered probit)] 
Rho(u,e)|     .69491***      .14488     4.80  .0000      .41095    .97888 
--------+-------------------------------------------------------------------- 
Partial effects of variables on P[Y        =  0|D        = 1] 
--------+-------------------------------------------------------------------- 
       D|     Partial      Standard            Prob.      95% Confidence 
       Y|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Direct partial effect in ordered choice equation 
      X1|    -.03444*        .01807    -1.91  .0567     -.06986    .00098 
      X2|    -.10121***      .03236    -3.13  .0018     -.16463   -.03779 
        | Indirect partial effect in sample selection equation 
      Z1|     .06577***      .01282     5.13  .0000      .04064    .09090 
      Z2|     .07044***      .01309     5.38  .0000      .04478    .09610 
        | Full partial effect = direct effect + indirect effect 
--------+-------------------------------------------------------------------- 
Partial effects of variables on P[Y        =  1|D        = 1] 
--------+-------------------------------------------------------------------- 
        | Direct partial effect in ordered choice equation 
      X1|     .00281         .00348      .81  .4196     -.00401    .00962 
      X2|     .00825*        .00470     1.75  .0794     -.00097    .01746 
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        | Indirect partial effect in sample selection equation 
      Z1|     .01137***      .00259     4.39  .0000      .00630    .01645 
      Z2|     .01218***      .00274     4.44  .0000      .00681    .01755 
        | Full partial effect = direct effect + indirect effect 
--------+-------------------------------------------------------------------- 
Partial effects of variables on P[Y        =  2|D        = 1] 
--------+-------------------------------------------------------------------- 
        | Direct partial effect in ordered choice equation 
      X1|     .00823         .00626     1.31  .1889     -.00405    .02050 
      X2|     .02418**       .01006     2.40  .0163      .00445    .04390 
        | Indirect partial effect in sample selection equation 
      Z1|     .02669***      .00701     3.81  .0001      .01295    .04043 
      Z2|     .02859***      .00746     3.83  .0001      .01396    .04322 
        | Full partial effect = direct effect + indirect effect 
--------+-------------------------------------------------------------------- 
Partial effects of variables on P[Y        =  3|D        = 1] 
--------+-------------------------------------------------------------------- 
        | Direct partial effect in ordered choice equation 
      X1|     .02341*        .01257     1.86  .0627     -.00124    .04805 
      X2|     .06879***      .02341     2.94  .0033      .02290    .11467 
        | Indirect partial effect in sample selection equation 
      Z1|     .05875***      .01898     3.10  .0020      .02155    .09595 
      Z2|     .06292***      .02096     3.00  .0027      .02185    .10400 
        | Full partial effect = direct effect + indirect effect 
--------+-------------------------------------------------------------------- 
 
E54.3.2 Technical Details for the Selection Model 
 
 In the sample selection model, [ε,u] are assumed to have a bivariate standard normal 
distribution with correlation ρ.  Then, the probabilities in the log likelihood are: 
 
 For observations with di = 0, Prob =  Prob[d  = 0 ] = univariate normal CDF. 

 For observations with di = 1, Prob =  Prob[yi* in particular range and d = 1 | ρ] 

     =  bivariate normal probability. 

The log likelihood for the model with sample selection is 
  
   logL   =  Σd=0 log Φ(-α′x2)  +  Σd=1 log {Φ2[aj,α′z,ρ] - Φ2[aj-1,α′z,ρ]} 

where   Φ(•)   =  standard normal CDF, 

   Φ2(•,•,•) =  bivariate standard normal CDF, 

   aj   =  µj - β′x, 

   aj-1   =  µj-1 - β′x, 

and   j   =  the value taken by yi for that observation. 
 
The same convention used above is maintained for the µs.  The first derivatives are tedious but 
straightforward.  They can be derived by applying the formulas given in Chapter E33 for the 
bivariate probit model.  The derivation is a bit simpler here because for the differentiation of the 
bivariate CDF, q1 and q2 are both +1. 
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E54.4 Poisson and Negative Binomial Regression Models 
with Selection 
 
 Extending the selectivity model to models for counts, such as the Poisson and negative 
binomial requires a change in approach from the models of the previous sections.  Since there is no 
natural joint normality assumption that ties the count model to the selection model, a different 
approach is needed.  We use the following structure.  (See Terza (2010).  The mathematical detail for 
this model is developed in full later in this section.)  The Poisson and negative binomial 
specifications are modified as follows: 
 
   zi*    =   α′wi  +  ui in which ui ~ N[0,1] 

   zi     =   1(zi*   >  0)  (probit selection equation) 

   λi| εi =   exp(β′xi + εi) 

   yi | εi  ~   Poisson (λi | εi)  (count model for outcome) 

   [ui,εi] ~  N[(0,1),(1,ρσ, σ2) 

   yi,xi    are observed only when zi = 1. 
 
Thus, y | ε is distributed as Poisson with mean (and variance) E[y|ε] = exp(β′x + ε).  The distribution 
in the selected population is nonPoisson, but this does preserve its discreteness.  The force of the 
sample selection is exerted on the mean of the discrete variable (and its variance).  The estimator is 
full information maximum likelihood.  (The negative binomial model is considered below.) 
 In the standard regression framework, the development proceeds by modeling the joint 
distribution of ui and the disturbance in the regression model, which would correspond to 
 
   εi   = yi - E[yi|xi]. 
 
The familiar Heckman model hinges on joint normality of [ui,εi], which is clearly untenable here – 
since yi is discrete, its deviation from the conditional mean function could not be normally 
distributed.  The approach taken is to introduce the unobservable factors in the mean of the count 
variable, then use a form of the selection approach to model it through the covariance of u and ε, as 
is done elsewhere.  The change in this model is that the linear techniques used in Chapter E52 are 
inappropriate here. 
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E54.4.1 Full Information Maximum Likelihood Estimation 
 
 A full information maximum likelihood estimator for the sample selection model is 
requested with 
 
 PROBIT    ; Lhs = ... ; Rhs = ... ; Hold $ 
 POISSON  ; Lhs = ... ; Rhs = ... ; Selection ; MLE $  
 or NEGBIN  ; Lhs = ... ; Rhs = ... ; Selection ; MLE $ 
 
The computations are based on the heterogeneity model of Section E42.3.  This must be preceded by 
the probit model in order to define the full set of variables in the model and to provide the starting 
values for the iterations.   
 All options that are useable for the Poisson model are supported here as well, including 
 
 Optimization: ; Maxit = n  to set maximum restrictions 
   ; Alg  = name  to select algorithm (you generally should not change this) 
   ; Tlf [ = value]  to set tolerance for convergence criteria 
   ; Output = value to control intermediate output  
   ; Hpt = n  to specify number of nodes for Hermite quadrature 
  
 Constraints: ; Rst = list  to specify fixed value and equality restrictions 
   ; CML: spec 
   ; Test: spec  to define Wald tests 
  
 Output: ; Partial Effects 
   ; Covariance Matrix to display the estimated asymptotic covariance matrix, 
    same as ; Printvc 
   ; List  to display predicted values 
   ; Keep = name  to retain fitted values 
   ; Res = name  to retain residuals 
   ; Parameters  to retain estimates of σ and ρ in b and varb 
 
and so on for other program options are all supported.  Output for this model will include the initial 
Poisson regression followed by the FIML results, then any optional output you have requested, such 
as a list of fitted values.   
 
NOTE:  This estimator reestimates the parameters of the probit model, and replaces the estimates 
that were initially retained with ; Hold on the PROBIT command.  See the example below. 
 
WARNING:  The negative binomial model with sample selection is quite volatile, and without prior 
scaling of the data (and a good fit of the model and the data), the numerical properties of the 
estimator appear to be somewhat unstable. 
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The results that are retained include  
 
 Matrices: b and varb, as usual 
   include Poisson slopes followed by probit parameters  
   σ then ρ with ; Parameters option 

 
Scalars: logl =  log likelihood 

   kreg =  number of parameters in [β′, γ′, σ, ρ]′ 
   nreg =  number of observations, total, not just selected 
   s =  estimate of σ 
   rho =  estimate of ρ 
 

E54.4.2 An Incidental Truncation Model 
 
 Winkelmann (2008, pp. 153-154) describes a model (attributed to Crepon and Duguet 
(1997)) which is labeled the ‘incidental truncation’ model.  This is a case in which the binary 
variable is correlated with the Poisson outcome, and directly affects it, in a form similar to the ZIP 
models discussed below.  In this model, the data are observed when zi = 0, but zi = 0 implies that       
yi = 0.  The difference between this and the ZIP model is only the correlation between the two latent 
disturbances.  The structure is actually a small modification of the model we have considered above. 
 
   zi* =  γ′wi  +  ui in which ui ~ N[0,1], 

   zi =  1(zi*   >  0). 
 
Thus, a probit model applies to the indicator, zi.  The following applies to the observed yi: 
  
   yi* ~  Poisson (λi|εi) is a latent variable distributed as Poisson, 

   λi|εi =  exp(β′xi + εi), 

   yi =  yi* and  xi  are observed when zi = 1, 

   yi =  0 when zi = 0, xi is still observed when zi = 0. 
 
For the sample selection model, the joint density of the observed response variables yi and zi is of the 
form 
   1(zi = 1) × {Prob(zi = 1) × Poisson probability}  +  1(zi = 0)×Prob(zi = 0) 
 
while for the incidental truncation model, the joint density is of the form 
 

   Prob(zi = 1) × Poisson probability  +  1(zi = 0)×Prob(zi = 0). 
 

 This model is requested by adding 
 

   ; All 
 

to the POISSON command given earlier.   
 
 PROBIT    ; Lhs = ... ; Rhs = ... ; Hold $ 
 POISSON  ; Lhs = ... ; Rhs = ... ; Selection ; MLE ; All $  
 
All other aspects are the same as in the model described earlier. 
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E54.4.3 Imposing Restrictions and Fixing ρ 
 
 The parameter vector is [β′, γ′, σ, ρ]′.  Use this if you wish to impose constraints.  For 
example, to fix the value of ρ at -.5 (as we do below in an example), you could use the following: 
 
 NAMELIST ; xp = Rhs variables in probit equation 
   ; xr = Rhs variables in Poisson model $ 
 CALC  ; kp = Col(xp) ; kr = Col(xr) $ 
 PROBIT ; Lhs  = ... ; Rhs = xp ; Hold $ 
 POISSON ; Lhs  = the dependent variable 
   ; Rhs = xr 
   ; Selection ; MLE 
   ; Rst = kr_b, kp_c, sg, -.5 $ 
 
You can use this device to test for a selectivity effect as well.  The simple t and likelihood ratio tests 
can be carried out based on the value of ρ that is estimated.  But, the t test requires estimation of the 
full model while the LR test requires assembling estimates of the pair of models and collecting three 
terms: 
 
 PROBIT ; ... ; Hold $ 
 POISSON ; ... estimate full model by FIML $ 
 CALC  ; lfiml = logl $ 
 CALC  ; lprobit = logl  $ 
 REJECT ; the Lhs variable for probit model = 0 $ 
 POISSON ; ... Poisson model without selection, on selected observations $ 
 CALC  ; lpois = logl  
   ; List  
   ; lm = 2*(lfiml - lprobit - lpois)  
   ; 1 - Chi(lm,1)  $ 
 
The LM test should be the simplest to carry out.  In the earlier example, just change our -.5 to 0, and 
add ; Maxit = 0 to the command.  An example appears below. 
 
E54.4.4 Application 
 
 The variable cardhldr is a binary variable which indicates whether the individual holds the 
major credit card whose vendor produced the overall data set; inc_per, which is the ratio of 
household income to number of dependents.  The probit equation is used to model cardhldr  as a 
function of age, income, and inc_per. The count variable analyzed here is majordrg, the number of 
major derogatory credit reports (long defaults) reported in the first year of credit card usage.  The 
selection corrected Poisson model is then fit using only those observations for which cardhldr  
equals 1.  Since majordrg is by far the dominant determinant of whether an application for a credit 
card will be accepted, one would expect the effect of the selection to be substantive in these data.  
The other variables used in the count model are age, income, ownrent and avgexp.  The first 
command fits an unrestricted model. In the second, the correlation coefficient is fixed at -.5. 
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The commands are: 
 

NAMELIST ; xp = one,age,income,incper $ 
NAMELIST ; xr = one,age,income,ownrent,avgyrexp $ 
PROBIT ; Lhs = cardhldr ; Rhs = xp ; Hold $ 
POISSON ; Lhs = majordrg ; Rhs = xr 

; MLE ; Selection ; Partial Effects $ 
PROBIT ; Quietly ; Lhs = cardhldr ; Rhs = xp ; Hold $ 
POISSON ; Lhs = majordrg ; Rhs = xr 

; MLE ; Selection ; Rst = 5_b,4_c,sc,-.5 $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable             CARDHLDR 
Log likelihood function     -6873.93812 
Results retained for SELECTION model. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
CARDHLDR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .23319***      .04775     4.88  .0000      .13961    .32678 
     AGE|    -.00045         .00129     -.35  .7251     -.00297    .00207 
  INCOME|     .13251***      .01067    12.42  .0000      .11159    .15343 
  INCPER|     .08520***      .01085     7.85  .0000      .06393    .10647 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Unrestricted Poisson Regression Start Value 
Dependent variable             MAJORDRG 
Log likelihood function     -4875.30997 
Estd sigma for heterogeneity =     .355 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
MAJORDRG|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -3.15941***      .09107   -34.69  .0000    -3.33790  -2.98092 
     AGE|     .02109***      .00252     8.38  .0000      .01616    .02602 
  INCOME|     .11903***      .01446     8.23  .0000      .09070    .14737 
 OWNRENT|    -.03243         .05812     -.56  .5769     -.14635    .08149 
AVGYREXP|     .24865***      .02746     9.05  .0000      .19483    .30248 
--------+-------------------------------------------------------------------- 
Line search at iteration 45 does not improve fn. Exiting optimization. 
----------------------------------------------------------------------------- 
Poisson  Model with Sample Selection. 
Dependent variable             MAJORDRG 
Log likelihood function    -11212.97881 
Restr. Log-L is Poisson+Probit (indep). 
LogL for initial probit =    -6873.9381 
LogL for initial Poisson=    -4875.3100 
Means for Psn/Neg.Bin. use selected data. 
Means for Probit based on all observations. 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
MAJORDRG|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson/Neg. Binomial Probability 
Constant|   -3.13246***      .17071   -18.35  .0000    -3.46705  -2.79787 
     AGE|     .02594***      .00399     6.49  .0000      .01811    .03377 
  INCOME|    -.10181**       .03956    -2.57  .0101     -.17934   -.02428 
 OWNRENT|     .00137         .06968      .02  .9844     -.13519    .13793 
AVGYREXP|     .46542***      .07656     6.08  .0000      .31536    .61548 
        |Parameters of Probit Selection Model 
Constant|     .23623***      .04585     5.15  .0000      .14638    .32609 
     AGE|-.86380D-05         .00127     -.01  .9946 -.25001D-02  .24828D-02 
  INCOME|     .14002***      .00924    15.15  .0000      .12191    .15814 
  INCPER|     .06679***      .00873     7.65  .0000      .04969    .08390 
        |Standard Deviation of Heterogeneity 
   Sigma|    2.46562***      .22069    11.17  .0000     2.03307   2.89817 
        |Correlation of Heterogeneity & Selection 
     Rho|    -.97406***      .01745   -55.82  .0000    -1.00826   -.93986 
--------+-------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the var- 
iables.  Separate effects are shown first 
followed by the sum of the two effects for 
variables which appear in both Poisson and 
Probit models.  Estimated value of E[y|D=1] 
using sample mean =   .13436. 
Note, std. errs. assume fixed rho & sigma. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
MAJORDRG|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson/Neg. Binomial Probability 
     AGE|     .00349***      .00054     6.49  .0000      .00243    .00454 
  INCOME|    -.01368**       .00531    -2.57  .0101     -.02410   -.00326 
 OWNRENT|     .00018         .00936      .02  .9844     -.01816    .01853 
AVGYREXP|     .06253***      .01029     6.08  .0000      .04237    .08269 
        |Parameters of Probit Selection Model 
     AGE|-.22827D-05         .00034     -.01  .9946 -.66071D-03  .65614D-03 
  INCOME|     .03700***      .01261     2.93  .0033      .01229    .06171 
  INCPER|     .01765***      .00575     3.07  .0021      .00638    .02892 
        |Combined effect of two terms 
     AGE|     .00348***      .00048     7.20  .0000      .00254    .00443 
  INCOME|     .02332**       .00948     2.46  .0139      .00474    .04190 
--------+-------------------------------------------------------------------- 
Poisson  Model with Sample Selection. 
Dependent variable             MAJORDRG 
Log likelihood function    -11224.44055 
Restricted log likelihood  -11749.24809 
Chi squared [   2 d.f.]      1049.61508 
Significance level               .00000 
McFadden Pseudo R-squared      .0446673 
Estimation based on N =  13444, K =  10 
Inf.Cr.AIC  =  22468.9 AIC/N =    1.671 
Restr. Log-L is Poisson+Probit (indep). 
LogL for initial probit =    -6873.9381 
LogL for initial Poisson=    -4875.3100 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
MAJORDRG|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters of Poisson/Neg. Binomial Probability 
Constant|   -3.79785***      .14884   -25.52  .0000    -4.08958  -3.50612 
     AGE|     .02418***      .00359     6.73  .0000      .01714    .03122 
  INCOME|     .07714***      .02208     3.49  .0005      .03386    .12042 
 OWNRENT|    -.01769         .06989     -.25  .8002     -.15467    .11929 
AVGYREXP|     .41203***      .05039     8.18  .0000      .31327    .51079 
        |Parameters of Probit Selection Model 
Constant|     .22217***      .04621     4.81  .0000      .13160    .31274 
     AGE|    -.00033         .00129     -.26  .7985     -.00285    .00219 
  INCOME|     .13466***      .00978    13.77  .0000      .11549    .15384 
  INCPER|     .08566***      .00960     8.92  .0000      .06684    .10448 
        |Standard Deviation of Heterogeneity 
   Sigma|    1.40050***      .06452    21.71  .0000     1.27404   1.52695 
        |Correlation of Heterogeneity & Selection 
     Rho|    -.50000    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
Technical Details on FIML Estimation 
 
 The log likelihood function for the full model is the joint density for the observed data.  When 
zi equals one, (yi,xi,zi,wi) are all observed. We seek P[yi, zi=1|xi,wi].  To obtain it, proceed as follows: 
 

   P[yi,zi=1|xi,wi]  =  
∞

−∞∫ P[yi,zi=1|xi,wi,εi] f(εi)dεi   

 =  Eε{P[yi,zi=1|xi,wi,εi]}. 
 
Conditioned on εi, zi and yi are independent.  Therefore, 
 
   P[yi,zi=1|xi,wi,εi] =  P[yi|xi,εi]Prob[zi=1|wi,εi]. 
 
The first part, P[yi |xi,εi] is the conditional Poisson distribution with heterogeneity defined earlier. By 
joint normality, f(ui|εi) = N[(ρ/σ)εi , (1-ρ2)].  Therefore, Prob[zi=1|wi,εi] is  
 

  Prob[zi=1|wi,εi] =  ( )2[ ( / ) ]/ 1i i′Φ + ρ σ ε − ρwα . 
 

Combining terms and using the earlier approach, the unconditional probability is  
 
   P[yi,zi=1|xi,wi]  = 

   −∞
∞

∫
exp[ ( )] ( )

!

iy
i i

iy

−λ ε λ ε ( )2[ ( / ) ]/ 1i i′Φ + ρ σ ε − ρwα 21 2exp[ /(2 )]
2 i id−ε σ ε

σ π
. 

Let    v = ε/(σ 2 ), θ= σ 2 , τ = 2 [ρ/ 1 2− ρ ], and γ = [1/ 1 2− ρ ]α.   
 
(Thus, the reverse transformations are  
 

ρ2 = [τ2/(2 + τ2)], Sgn(ρ) = Sgn(τ), and σ = θ/ 2 .)   
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After making the change of variable and reparameterizing the probability as before, we obtain 
 

P[yi,zi=1|xi,wi]  =  1
π −∞

∞
∫ exp(-v2) 

exp[ ( )] ( )

!

iy
i i

i

v v

y

−λ λ
Φ(γ′wi + τvi) dvi 

 
where λi(v) = exp(β′xi + θv).  This is approximated with Hermite quadrature since no closed form 
exists.  When zi equals zero, only (zi,wi) are observed.  The contribution to the likelihood function is 
 

Prob[zi = 0|wi ]  =  Eε[1 - Prob[ui > -α′wi|wi,εi]]  =  Eε[Prob[ui ≤ -α′wi|wi,εi]]. 
 
This provides the probability needed to construct the likelihood function. 
 
    Prob[zi = 0|wi,εi]  =  1 - Φ[γ′wi  + τεi/( 2 σ)] 

so           Prob[zi = 0|wi]  =  1
π

 −∞
∞

∫ exp(-v2) Φ[-(γ′w + τv)]dv. 

 
Hermite quadrature is used to evaluate the integral.   
 Maximum likelihood estimates of [β, γ, θ, τ] are obtained by maximizing 
 

  log L  =  Σz=0 logProb[zi=0|w] + Σz=1 logP[yi,zi=1|x,w]. 
 
The approximate function is 
 

       log L   =  ( ).  1 1

exp( ( )) ( )1log
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h i hi obs with z h
i

v v v
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where   vh and ωh  are the nodes and weights for the quadrature and 

   λi(vh) =  exp(β′xi + θvh). 
 
The BHHH estimator of the asymptotic covariance matrix for the parameter estimates is a natural 
choice given the complexity of the function.  The first derivatives must be approximated as well.  For 
convenience, let 

   Pih   =   P(yi,λi(vh))  =  
!

)())(exp(

i

y
hihi

y
vv iλλ−  

   λih =  exp(β′xi + θvh) 

   Φih =  Φ(γ′wi + τvh )  (normal CDF) 

and   φih =  φ(γ′wi + τvh )  (normal density). 
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To save some notation, denote the individual terms summed in the log likelihood as log Li.  We also 
take advantage of the result that ∂P(.,.)/∂z = P×∂logP(.,.)/∂z for any argument z which appears in the 
function.  Then, 
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Estimates of the structural parameters, (α,ρ,σ) and their standard errors are computed using the delta 
method.  
 The incidental truncation model requires only minor modification of the preceding.  The 
approximate log likelihood for that model is 
 

     log L    = ( ) . 1

exp( ( )) ( )1log
!

iy
H i h i h

h i hall obs h
i

v v v
y=
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π 
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H
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v
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This merely changes the observations included in the first summation.  Other changes in the 
subsequent results are likewise minor. 
 
E54.5 Multinomial Logit Model 
 
 The multinomial logit model can be extended in the same fashion as the binomial logit 
model.  As before, the first step is to incorporate the unobservable heterogeneity in the multinomial 
logit model in a consistent fashion, then extend the selection model.  The basic probability model for 
choice among J + 1 alternatives is based on a random utility model, 
 
   Uij  =  βj′xi + εij 
 
where εij, j = 0,...,J have independent type 1 extreme value distributions.  This produces the familiar 
multinomial logit model 
 
   Prob(yi = j|xi)   =  Prob(Uij > Uik) ∀ k ≠ j 

     =  0
0

exp( )
, 0,1,..., , .

exp( )
x

0
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j i
J
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j J
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We introduce the individual heterogeneity into the model by augmenting the utility functions with 
the common individual term, vi, so that 
 
   Uij | vi  =  βj′xi + θjvi + εij, vi ~ N[0,1]. 
 
Then, the conditional probabilities are 
 
   Prob(yi = j|xi,vi) =  Prob(Uij > Uik|vi) ∀ k ≠ j 

     =  0 0
0

exp( )
, 0,1,..., , , 0.

exp( )
x

0
x

j i j i
J
m m i m i

v
j J

v=

′ + θ
= = θ =

′Σ + θ

β
β

β
 

 
As before, the selection mechanism is 
 
   zi*  =  α′wi + ui, ui ~ N[0,1], zi = 1(zi* > 0) 

     (yi,xi)      is observed only when yi2 = 1 

   (ui,vi) ~  BVN[(0,0),(1,ρ,1)] 
 
This model is estimated using maximum simulated likelihood. 
 An example appears below.  Estimation proceeds in three steps.  First, the starting values for 
the uncorrected multinomial logit model are obtained by simple linear regression of the choice 
binary variables, Aij = 1(yi = j), j = 1,...,J on xi.  You can display these results by adding ; OLS to 
your MLOGIT command, but we emphasize these OLS results are not useful for anything but 
computing starting values. Then, the multinomial logit model is computed ignoring the selection. 
(This step and the OLS results are based on the observations for which zi equals one.)  These results 
are not displayed.  When these iterations are complete, the solver returns immediately to the 
iterations to compute the parameters of the full model.  This intermediate step is used to improve the 
starting values.  The final results are then displayed.  You can also compute marginal effects, 
probabilities, etc. with the model in the same fashion as with the basic model without selectivity. 
 The commands for estimating this model are 
 
 PROBIT ; Lhs = zi ; Rhs = variables in w ; Hold $ 
 MLOGIT ; Lhs = yi ; Rhs = variables in x  ; Selection $ 
 
All other parts of the command and optional features are the same as in the uncorrected case.  
 To illustrate this model, we have used the health care data employed in numerous earlier 
examples.  Here, we have modeled the self reported health satisfaction variable (which is more 
naturally an ordered choice, but this is purely for a numerical example) as a multinomial logit outcome.  
The selection variable is whether or not the individual has visited the doctor.  In order to simplify the 
application, we have reduced the sample size and truncated the distribution of outcomes by discarding 
observations with reported value greater than five.  The commands and output are as follows: 
 
 REJECT ; _groupti < 7 $ 
 REJECT ; hsat  > 5 $  (This leaves 1,939 observations in the sample.) 
 PROBIT ; Lhs = doctor ; Rhs = one,age,married ; Hold $ 
 MLOGIT ; Lhs = hsat ; Rhs = one,hhninc,female 
   ; Selection ; Partial Effects 
   ; Pts = 25 ; Halton $ 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function      -956.23551 
Results retained for SELECTION model. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .09864         .17848      .55  .5805     -.25118    .44845 
     AGE|     .01752***      .00366     4.78  .0000      .01034    .02470 
 MARRIED|    -.06564         .08757     -.75  .4535     -.23728    .10600 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Normal exit:   4 iterations. Status=0, F=    2185.501 
Normal exit:  27 iterations. Status=0, F=    9379.743 
----------------------------------------------------------------------------- 
Sample Selection/Multinomial Logit 
Dependent variable                 HSAT 
Log likelihood function     -9379.74304 
Sample observations selected:DOCTOR  =1 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Characteristics in numerator of Prob[HSAT=1  ] 
Constant|    -.73557         .48874    -1.51  .1323    -1.69348    .22234 
  HHNINC|     .26479        1.33280      .20  .8425    -2.34744   2.87702 
  FEMALE|     .10919         .36555      .30  .7652     -.60727    .82565 
        | Characteristics in numerator of Prob[HSAT=2  ] 
Constant|    -.31745         .34419     -.92  .3564     -.99205    .35715 
  HHNINC|    2.04040**       .87440     2.33  .0196      .32660   3.75421 
  FEMALE|     .20314         .28148      .72  .4705     -.34855    .75483 
        | Characteristics in numerator of Prob[HSAT=3  ] 
Constant|     .53281*        .31114     1.71  .0868     -.07702   1.14264 
  HHNINC|    1.27974         .83194     1.54  .1240     -.35083   2.91030 
  FEMALE|     .07637         .25708      .30  .7664     -.42750    .58024 
        | Characteristics in numerator of Prob[HSAT=4  ] 
Constant|     .49256         .30491     1.62  .1062     -.10505   1.09017 
  HHNINC|    1.94458**       .80461     2.42  .0157      .36758   3.52159 
  FEMALE|     .06189         .25180      .25  .8058     -.43162    .55541 
        | Characteristics in numerator of Prob[HSAT=5  ] 
Constant|    1.73810***      .26891     6.46  .0000     1.21104   2.26516 
  HHNINC|    1.12489         .73288     1.53  .1248     -.31153   2.56131 
  FEMALE|     .24064         .23129     1.04  .2981     -.21268    .69396 
        | Utility weights on latent heterogeneity 
Theta_00|        0.0    .....(Fixed Parameter)..... 
Theta_01|     .30356         .19640     1.55  .1222     -.08137    .68848 
Theta_02|    -.11145         .15471     -.72  .4713     -.41468    .19179 
Theta_03|    -.04753         .14733     -.32  .7470     -.33629    .24124 
Theta_04|     .02616         .14186      .18  .8537     -.25189    .30421 
Theta_05|    -.00108         .13334     -.01  .9935     -.26242    .26025 
        | Reestimated Probit Selection Equation 
Constant|     .09833         .18919      .52  .6032     -.27247    .46913 
     AGE|     .01753***      .00395     4.44  .0000      .00979    .02527 
 MARRIED|    -.06568         .08765     -.75  .4536     -.23747    .10611 
        | Correlation Between Heterogeneity and Selection 
Rho(e,u)|     .00267         .03243      .08  .9344     -.06090    .06624 
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----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are  All Obs. 
A full set is given for the entire set of 
outcomes, HSAT     =  0 to HSAT     =   5 
Probabilities at the mean values of X are 
  0= .054 1= .030 2= .086 3= .147 4= .174 
  5= .508 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
    HSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Marginal effects on Prob[HSAT=0  ] 
  HHNINC|    -.06933*       -.42594    -1.92  .0547     -.14006    .00141 
  FEMALE|    -.00893        -.08945     -.77  .4397     -.03156    .01371 
        | Marginal effects on Prob[HSAT=1  ] 
  HHNINC|    -.03054        -.33804     -.92  .3566     -.09548    .03439 
  FEMALE|    -.00168        -.03032     -.19  .8456     -.01858    .01522 
        | Marginal effects on Prob[HSAT=2  ] 
  HHNINC|     .06546         .25140     1.46  .1455     -.02267    .15359 
  FEMALE|     .00328         .02055      .23  .8210     -.02513    .03169 
        | Marginal effects on Prob[HSAT=3  ] 
  HHNINC|    -.00049        -.00111     -.01  .9939     -.12596    .12498 
  FEMALE|    -.01303        -.04810     -.72  .4708     -.04845    .02239 
        | Marginal effects on Prob[HSAT=4  ] 
  HHNINC|     .11534*        .21959     1.72  .0861     -.01639    .24707 
  FEMALE|    -.01801        -.05594     -.93  .3535     -.05606    .02004 
        | Marginal effects on Prob[HSAT=5  ] 
  HHNINC|    -.08044        -.05252     -.89  .3733     -.25753    .09665 
  FEMALE|     .03837         .04086     1.50  .1343     -.01186    .08859 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Marginal Effects Averaged Over Individuals 
--------+---------+---------+---------+---------+---------+---------+ 
Variable|  HSAT=0 |  HSAT=1 |  HSAT=2 |  HSAT=3 |  HSAT=4 |  HSAT=5 | 
--------+---------+---------+---------+---------+---------+---------+ 
ONE     |  -.0549 |  -.0524 |  -.1134 |  -.0676 |  -.0874 |   .3757 | 
HHNINC  |  -.0704 |  -.0307 |   .0652 |  -.0004 |   .1153 |  -.0792 | 
FEMALE  |  -.0091 |  -.0017 |   .0033 |  -.0129 |  -.0180 |   .0383 | 
--------+---------+---------+---------+---------+---------+---------+ 
 
Averages of Individual Elasticities of Probabilities 
--------+---------+---------+---------+---------+---------+---------+ 
Variable|  HSAT=0 |  HSAT=1 |  HSAT=2 |  HSAT=3 |  HSAT=4 |  HSAT=5 | 
--------+---------+---------+---------+---------+---------+---------+ 
ONE     |  -.9949 | -1.7305 | -1.3124 |  -.4621 |  -.5024 |   .7432 | 
HHNINC  |  -.4292 |  -.3416 |   .2457 |  -.0059 |   .2140 |  -.0571 | 
FEMALE  |  -.0877 |  -.0308 |   .0180 |  -.0479 |  -.0555 |   .0376 | 
--------+---------+---------+---------+---------+---------+---------+ 
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E54.6 Sample Selected Stochastic Frontier Model 
 
 This model does not yet appear in the literature, and is new with this release of LIMDEP. 
The model is a familiar sample selection form 
 
   z*  =  α′w  +  ω, z = 1(z* > 0) 

   y   =  β′x   +  v  –  u 

   u  =  |U| with U ~ N[0,σu
2] 

   (v,ω) ~  Bivariate normal with [(0,0),(σv
2, ρσv, 1)] 

and    (y,x)   only observed when z = 1. 
 
(It is necessary to deviate from the common notation of this chapter because the frontier function 
literature also has a common notation for the components of these models, that conflicts with our 
usage in this chapter.  The difference will be immaterial.)  The selection mechanism operates through 
the heterogeneity component of the production model, v, not the inefficiency, u.  (Thus, 
‘observation’ – being in the sample – is not viewed as a function of the level of inefficiency.) 
 The model is fit by maximum simulated likelihood.  To request it, use 
 
 PROBIT  ; Lhs = d ; Rhs = variables in w ; Hold $ 
 FRONTIER  ; Lhs = y ; Rhs = variables in x ; Selection $ 
 
The model must be the base case, half normal model, with no panel data application, no truncation, 
or heteroscedasticity, etc.  Other aspects of the frontier model, in particular,  
 
   ; Eff = JLMS estimates of u 
 
operate in the usual way. 
 You may control the simulations with ; Halton and ; Pts for the simulation.  The estimation 
method is developed in detail in Section E54.5 below. 
 In the example below, we use a contrived selection mechanism with the dairy farm data used 
to demonstrate the stochastic frontier models in Chapters E62-E64.  The variables in the model are 
output, milk production, and four inputs, cows, land, feed and labor, in log form.  We created zi as 
simply a dummy variable that splits the sample into large and small farms and used a logit model 
based simply on the number of cows.  The second results do not correct for selection.  The 
commands are 
 
 CREATE ; group = yit > 11.1$ 
 PROBIT ; Lhs = group ; Rhs = one,cows ; Hold ; Quiet $ 
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4 
   ; Selection 
   ; Halton ; Pts = 15 ; tlg = 1.d-4 $ 
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4 $ 
 
  



E54: Alternative Sample Selection Models   E-1343 

----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  YIT 
Log likelihood function       607.89950 
Estimation based on N =   1482, K =   8 
Variances: Sigma-squared(v)=     .01713 
           Sigma-squared(u)=     .00243 
           Sigma(u)        =     .04929 
           Sigma(v)        =     .13090 
           Sigma           =     .13987 
           Lambda          =     .37658 
Sample Selection/Frontier Model 
Murphy/Topel Corrected VC Matrix 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          491.68632 
Chi-sq=2*[LogL(SF)-LogL(LS)] =  232.426 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    11.6143***      .01634   710.69  .0000     11.5823   11.6463 
      X1|     .65235***      .02271    28.72  .0000      .60783    .69687 
      X2|     .02442**       .01232     1.98  .0475      .00027    .04856 
      X3|     .03930***      .01326     2.96  .0030      .01332    .06528 
      X4|     .41258***      .01078    38.26  .0000      .39145    .43371 
Sigma(u)|     .04929**       .01973     2.50  .0125      .01062    .08797 
Sigma(v)|     .13090***      .00360    36.37  .0000      .12385    .13795 
Rho(w,v)|     .80390***      .06290    12.78  .0000      .68061    .92718 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  YIT 
Log likelihood function       822.68831 
Estimation based on N =   1482, K =   7 
Variances: Sigma-squared(v)=     .01075 
           Sigma-squared(u)=     .02425 
           Sigma(v)        =     .10371 
           Sigma(u)        =     .15573 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .18710 
Gamma = sigma(u)^2/sigma^2 =     .69277 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          809.67610 
Chi-sq=2*[LogL(SF)-LogL(LS)] =   26.024 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    11.7014***      .00447  2614.87  .0000     11.6926   11.7101 
      X1|     .58369***      .01887    30.93  .0000      .54670    .62068 
      X2|     .03555***      .01113     3.20  .0014      .01375    .05736 
      X3|     .02256*        .01281     1.76  .0783     -.00256    .04768 
      X4|     .44948***      .01035    43.42  .0000      .42919    .46977 
        |Variance parameters for compound error 
  Lambda|    1.50164***      .08748    17.17  .0000     1.33019   1.67310 
   Sigma|     .18710***      .00011  1698.90  .0000      .18688    .18732 
--------+-------------------------------------------------------------------- 
 
E54.7 Tobit Model with Selectivity 
 
 The sample selection model detailed in Chapter E52 is extended to the tobit model.  The 
model is 
    y* = β′x + ε, 

   y  = 0 if y* ≤ 0, y = y* otherwise, or y = max(0,y*), (tobit) 

   z* = α′w + u, 

   z  = 1 if z* > 0, or 0 if z*  ≤ 0, or z = 1[z* > 0], (probit) 

    [y ,x ]  are observed only when z = 1,   (sampling) 
 
This model is a mixture of censoring and a type of truncation.  The procedure for estimating this 
model follows the standard set of steps for selectivity models given in Section E52.2.2.  The standard 
procedure for estimating a sample selectivity model in LIMDEP is: 
 
Step 1. Estimate the parameters of the probit model first and ; Hold them aside for the next step in 

the procedure. 
 
Step 2. Using the probit results from Step 1, fit the main equation of the model. 
 
The tobit estimator to be described here is a full information maximum likelihood estimator.  
Nonetheless, at the beginning of Step 2, a second step least squares regression is computed in order 
to obtain the starting values for the MLE.  These are corrected for selection, to a degree, but they are 
still inconsistent.  The results given at this point are obtained by least squares, and, as such, are 
inconsistent in the same manner that the OLS coefficients are inconsistent in the basic tobit model. 
As noted, these are just starting values for the iterations.  The MLE is consistent and efficient. 
 The commands are 
  
 PROBIT ; Lhs = z ; Rhs = list for w ; Hold $ 
 SELECT  ; Tobit ; MLE ; Lhs = y ; Rhs = list for x $ 
  
Note that the command for the tobit model in this case is SELECT, not TOBIT. 
 



E54: Alternative Sample Selection Models   E-1345 

NOTE:  As in the MLE for the selection model, there is no ‘lambda’ variable computed for this 
model.  The estimator is not least squares.  When a sample selection model is fit by maximum 
likelihood, there is no selection ‘correction’ variable added to the model. 
 
 The model parameters estimated by MLE are α, β, σ, ρ.  The probit coefficients precede the 
regression parameters in the parameter vector.  You may provide your own starting values for the 
iterations with 
   ; Start = ... list 
 
Fixed value and equality restrictions may be imposed with 
 
   ; Rst = ... list 
 
 The first set of output from the SELECT command is the standard output from the two step 
least squares estimation of this model.  The final output includes the log likelihood and an indication 
of the parts of the parameter vector.  The parameter vector shown is [α,β,σ1,ρ].  Remaining output is 
the same as for the selection model.  The retrievable results from this estimator are as follows: 
 
 Matrices: b and varb as usual.  These contain [α,β,σ,ρ].  Do not use ; Par. 
   bsr1 = all of b except α 
 
 Scalars: logl, nreg, rho, varrho, s, ybar, sy, sigma1  
 
 Last Model: a_variables, b_variables, r12, sigma 
 
E54.7.1 Predictions from the Selection Model 
 
 The tobit model with sample selection uses the linear prediction of the underlying latent 
variable for the fitted values.  This is 
 
   E[y* | z = 1] =  β′x  +  ρσλ 

where   λ    =  φ(α′w) / Φ(α′w). 
 
This is the value that is displayed and kept with ; List and ; Keep.  Other parts of the fitted values 
listing are the same as for the basic tobit model. These predictions are based on the linear, single 
equation specification, not the tobit specification, and they do not exploit the correlation between the 
primary equation and the selection model.  As such, they can be improved with some further 
manipulation.  For the observed variable in the tobit model, ignoring the selectivity, 
 
   E[y|x]  =  Prob(y > 0| x) × E[y|y > 0, x] 

                =  Φ[β′x/σ] × [β′x + σλ], 

where   λ  =  φ[β′x/σ] / Φ[β′x/σ]. 
 
For the tobit model with selection, we need, instead, 
 
   E[y| x, selection]  =  Prob(y > 0 | z = 1) × E[y | x, y > 0, z = 1]. 
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The probability can be found from the bivariate normal distribution: 
 
   Prob(y > 0|z = 1)  =  Φ2[β′x/σ,α′w,ρ] / Φ(α′w). 
 
The conditional mean function is more involved.  We use a general result for truncation in a bivariate 
normal distribution.  For present purposes, it would be as follows: 
 
   E[y|y > 0, z = 1]  =  β′x  +  E[ε|ε > -β|x, u > -α′w]. 
 
To simplify the notation, write this as 
 
   E[ε|ε > -β′x, u > -α′w]  =  σE[q|q > h, u > k], 

where   q   =  ε/σ, 

    h   =  -β′x/σ, 

and   k   =  -α′w. 
 
Maddala (1983) gives an expression for this conditional mean of a bivariate standard normal 
distribution (0,0,1,1,ρ).  Let Φ2 denote the bivariate normal probability and 
 
   δ   =  -1 / (1 - ρ2)1/2. 

Then,   E[q | q > h, u > k]  =  {φ(h)Φ[δ(k - ρh)] + ρφ(k)Φ[δ(h - ρk)]}/Φ2. 
 
Thus,   E[y | z = 1]  =  Φ2β′x  +  σ{φ(h)Φ[δ(k - ρh)] + ρφ(k)Φ[δ(h - ρk)]}. 
 
The program below can be used for this computation:  We first set up the data and fit the model. 
 
 NAMELIST ; x = variables in tobit model ; w = variables in probit  $ 
 CREATE ; y = dependent variable in regression 
   ; z = dependent variable in probit equation $ 
 PROBIT ; Lhs = z ; Rhs = w ; Hold $ 
 SELECT ; Lhs = y ; Rhs = x  ; Tobit ; MLE $ 
 
Do the following only if data for the predictions are unavailable for the limit (d=0) observations. 
 
 REJECT ; z = 0 $ 
 
Determine the size and location of parameter vectors in b. 
 
 CALC  ; ka = Col(w) ; kb = ka + Col(x) ; jb = ka+1 $ 
 
Extract subvectors of saved parameter vector.  Scalars s and rho already contain σ and ρ needed below. 
 
 MATRIX ; alpha = b(1 : ka) ; beta = b(jb : kb) $ 
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This simplifies the bivariate normal calculation.  Then, set up the variables for the bivariate normal. 
 
 CALC   ; delta = -1 / Sqr (1 - rho^2) $ 
 CREATE ; h = -beta’x/s ; mh = -h ; k = -alpha’w ; mk = -k $ 
 NAMELIST ; hk = mh, mk $ 
 
Compute the conditional mean function. 
 
 CREATE ; phi2 = Bvn(hk,rho) 
   ; ey  = phi2 * beta’x 
     + s  * (N01(h) * Phi(delta*(k-rho*h))   
    + rho*N01(k) * Phi(delta*(h-rho*k))) $ 
 
The result can now be inspected or saved in a file. 
 
 LIST  ; ey $ 
 

E54.7.2 Application 
 
 To illustrate this model, we have fit an hours equation using the Mroz labor supply data 
analyzed in Section E52.2.2. Here, we use additional information about the determinants of labor 
force participation. 
 
 PROBIT     ; Lhs = lfp ; Rhs = one,kids,faminc,cit   
   ; Hold $ 
 SELECT     ; Lhs = whrs ; Rhs = one,kl6,k618,wa,we  
   ; Tobit ; MLE $ 
 
This command sequence produces the following results: 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                  LFP 
Log likelihood function      -510.23024 
Results retained for SELECTION model. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LFP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .04610         .12714      .36  .7169     -.20308    .29529 
    KIDS|    -.10867         .10071    -1.08  .2806     -.30607    .08872 
  FAMINC| .11344D-04***   .3945D-05     2.88  .0040  .36109D-05  .19077D-04 
     CIT|    -.09083         .09943     -.91  .3610     -.28571    .10406 
--------+-------------------------------------------------------------------- 
+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Probit selection equation based on LFP                   | 
| Selection rule is: Observations with LFP      =  1       | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set               753              753.0            | 
| Selected sample        428              428.0            | 
+----------------------------------------------------------+ 
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----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=WHRS     Mean                 =     1302.92991 
             Standard deviation   =      776.27438 
             Number of observs.   =            428 
Model size   Parameters           =              6 
             Degrees of freedom   =            422 
Residuals    Sum of squares       =    .228070E+09 
             Standard error of e  =      735.15314 
Fit          R-squared            =         .10104 
             Adjusted R-squared   =         .09039 
Model test   F[  5,   422] (prob) =     9.5(.0000) 
Not using OLS or no constant. Rsqrd & F may be < 0 
Standard error corrected for selection  1831.13623 
Correlation of disturbance in regression 
and Selection Criterion (Rho)     =       -1.00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    4044.67***    1038.178     3.90  .0001     2009.88   6079.46 
     KL6|   -279.240*      154.1284    -1.81  .0700    -581.326    22.846 
    K618|   -95.5417*      55.43541    -1.72  .0848   -204.1931   13.1097 
      WA|   -12.4152        8.78275    -1.41  .1575    -29.6291    4.7986 
      WE|   -44.3066       27.41159    -1.62  .1060    -98.0323    9.4191 
  LAMBDA|   -2178.31**     1108.233    -1.97  .0493    -4350.41     -6.21 
--------+-------------------------------------------------------------------- 
Normal exit:  49 iterations. Status=0, F=    3949.050 
----------------------------------------------------------------------------- 
ML Estimates of Selection Model 
Dependent variable                 WHRS 
Log likelihood function     -3949.04956 
Estimation based on N =    753, K =  11 
Inf.Cr.AIC  =   7920.1 AIC/N =   10.518 
LHS is CENSORED. Tobit Model fit by MLE. 
FIRST  4 estimates are probit equation. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Selection (probit) equation for LFP 
Constant|    -.00712         .12085     -.06  .9530     -.24398    .22974 
    KIDS|    -.11741         .10046    -1.17  .2425     -.31431    .07949 
  FAMINC| .14538D-04***   .3395D-05     4.28  .0000  .78842D-05  .21191D-04 
     CIT|    -.11780         .09641    -1.22  .2218     -.30676    .07116 
        |Corrected regression, Regime 1 
Constant|    2496.30***    484.8102     5.15  .0000     1546.09   3446.51 
     KL6|   -321.906***    80.39344    -4.00  .0001    -479.474  -164.338 
    K618|   -114.815***    34.01524    -3.38  .0007    -181.483   -48.146 
      WA|   -9.31341*       5.44718    -1.71  .0873   -19.98968   1.36286 
      WE|   -27.3182       18.02920    -1.52  .1297    -62.6548    8.0183 
SIGMA(1)|    803.614***    112.7699     7.13  .0000     582.589  1024.638 
RHO(1,2)|    -.46809         .34061    -1.37  .1694    -1.13568    .19950 
--------+-------------------------------------------------------------------- 
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E54.7.3 Technical Details on Estimation 
 
 The log likelihood function for the tobit model with sample selection is as follows: 
 
          log L =     Σz = 0 logΦ(-α′w)   

        + Σz = 1,y=0 logΦ2[-β′x/σ,α′w,-ρ]  

          + Σz = 1, y > 0 - ½[log2π + logσ + (εi/σ)2] + log Φ[ri / (1 - ρ2)1/2], 

where   εi   =  yi - β′x, 

    ri  =  α′w + ρεi/σ, 

Let   δ   =  1 / (1 - ρ2)1/2. 
  
Derivatives in the three parts of the log likelihood are defined as: 
  
   gρ   =  ∂logLi/ρ, 

    gσ   =  ∂logLi/σ, 

    dα   =  ∂logLi/∂(α′w), 

    dβ   =  ∂logLi/∂(β′x). 
 
For the three parts of the log likelihood function, in the order above: 
  

          gρ   =  0, 

   gσ   =  0, 

   dα   =  -φ/Φ from the first normal CDF term, 

   dβ   =  0. 
 

The second set of terms are from the bivariate probit model presented in Chapter E33. 
 
        gρ   =  φ00/Φ00  (bivariate normal density over CDF), 

            gρ   =  (φ/Φ)[δεi/σ1 + ρuiδ3], 

   gσ   =  -1/σ1 + (εi/s1)2/σ1 - (φ/Φ)ρδεi/σ1
2

   dα   =  (φ/Φ)δ, 

, 

   dβ   =  εi/σ
 

1
2 - (φ/Φ)ρδ/σ1. 

Terms are then assembled for the gradient.  The BHHH estimator is used for the asymptotic 
covariance matrix. 
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E54.8 Binomial Logit Model 
 

 The binomial probit model with sample selection converts naturally into a form of bivariate 
probit model.  The simple result follows from the bivariate normality of the heterogeneity in the 
main equation and the unobservables in the selection equation.  Likewise, the tobit model with the 
sample selection correction in Section E54.7 becomes convenient through the bivariate normality of 
the two random components.  If the main equation is a logit model, rather than a probit or some other 
structure based on the normal distribution, then an alternative method is needed.  We use the 
following:  The departure point is a logit model of interest, 
 

   Prob(yi = 1|xi)  =  exp( )
1 exp( )

i

i

′
′+

x
x

β
β

, Prob(yi = 0|xi) = 1 - Prob(yi = 1|xi) 

 

and the familiar selection mechanism, 
 
   zi*  =  α′wi + ui, ui ~ N[0,1], zi = 1(zi* > 0) 

     (yi,xi)  is observed only when yi2 = 1. 
 
There is no obvious connection between the logit model of interest and the selection mechanism.  
Since the force of sample selection is exerted through its influence on unobservables in the model, 
we modify the model as follows: 
 

   Prob(yi = 1|εi, xi)  =  exp( )
1 exp( )

i i

i i

′ + σε
′+ + σε

x
x

β
β

, εi ~ N[0,1]. 

   (ui,εi) ~ BVN[(0,0),(1,ρ,1)] 
 

The commands are 
 
 PROBIT ; Lhs = zi ; Rhs = variables in w ; Hold $ 
 LOGIT ; Lhs = yi ; Rhs = variables in x  ; Selection $ 
 
Other features, such as marginal effects, predicted values, etc. are the same as with the binary logit 
model without selection. This model is estimated using maximum simulated likelihood.  Full details 
are presented in Section E54.5.  Note, marginal effects are computed using the final estimates of β, 
but without the indirect effects of the selection equation.  Thus, as in the uncorrected case, the 
marginal effects are computed after estimation as 
 

   δ  =  Λ(β′x)[1 - Λ(β′x)] β. 
 
 To illustrate, we have reestimated the bivariate probit model of the preceding section.  The 
commands are 
  
 CREATE  ; avgyrexp = avgyrexp/10000 $ 
 CREATE  ; income = income/10000 $ 
 CREATE  ; incper = incper/10000 $  
 NAMELIST  ; card = one,age,income,ownrent,selfempl,curntadd $ 
 NAMELIST  ; dflt = one,income,avgyrexp,depdnt,incper,credmajr,tradacct $ 
 PROBIT ; Lhs = cardhldr ; Rhs = card ; Hold $ 
 LOGIT ; Lhs = default ; Rhs = dflt ; Selection ; Halton ; Pts = 25 $ 
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The second set of estimates are the uncorrected logit estimates from the restricted sample of 
cardholders.  As might be expected given the small estimate of ρ, the results are very similar. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable             CARDHLDR 
Log likelihood function     -6866.36894 
Results retained for SELECTION model. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
CARDHLDR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .37122***      .04615     8.04  .0000      .28076    .46167 
     AGE|    -.00323**       .00141    -2.29  .0218     -.00598   -.00047 
  INCOME|     .16061***      .01019    15.76  .0000      .14064    .18059 
 OWNRENT|     .16334***      .02753     5.93  .0000      .10938    .21731 
SELFEMPL|    -.34597***      .05113    -6.77  .0000     -.44619   -.24575 
CURNTADD| .33354D-04         .00021      .16  .8765 -.38739D-03  .45410D-03 
--------+-------------------------------------------------------------------- 
Logit    Regression Start Values for DEFAUL 
Dependent variable              DEFAULT 
Log likelihood function     -3182.37907 
Estimation based on N =  13444, K =   7 
Inf.Cr.AIC  =   6378.8 AIC/N =     .474 
Model estimated: Aug 09, 2011, 23:08:27 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 DEFAULT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.90918***      .12363    -7.35  .0000    -1.15150   -.66686 
  INCOME|    -.33584***      .04154    -8.09  .0000     -.41724   -.25443 
AVGYREXP|    -.20111*        .11529    -1.74  .0811     -.42707    .02486 
  DEPDNT|     .09223**       .04173     2.21  .0271      .01045    .17402 
  INCPER|    -.03839         .04690     -.82  .4131     -.13031    .05354 
CREDMAJR|    -.17314**       .08547    -2.03  .0428     -.34065   -.00562 
TRADACCT|    -.03129***      .00642    -4.88  .0000     -.04387   -.01872 
--------+-------------------------------------------------------------------- 
 
Line search at iteration 18 does not improve fn. Exiting optimization. 
----------------------------------------------------------------------------- 
Selectivity Corrected Logit Model 
Dependent variable              DEFAULT 
Log likelihood function    -53323.21934 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 DEFAULT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Coefficients in binary logit model 
Constant|    -.90905***      .11501    -7.90  .0000    -1.13446   -.68364 
  INCOME|    -.33587***      .04143    -8.11  .0000     -.41707   -.25467 
AVGYREXP|    -.20075*        .10551    -1.90  .0571     -.40754    .00604 
  DEPDNT|     .09232**       .04486     2.06  .0396      .00440    .18024 
  INCPER|    -.03836         .04758     -.81  .4201     -.13161    .05489 
CREDMAJR|    -.17357**       .08574    -2.02  .0429     -.34161   -.00553 
TRADACCT|    -.03129***      .00640    -4.89  .0000     -.04384   -.01875 
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--------+-------------------------------------------------------------------- 
        |Coefficients in Probit = Alpha/sqr(1-rho^2) 
Constant|     .37122***      .04582     8.10  .0000      .28141    .46103 
     AGE|    -.00323**       .00140    -2.30  .0214     -.00598   -.00048 
  INCOME|     .16061***      .00889    18.07  .0000      .14320    .17803 
 OWNRENT|     .16334***      .02716     6.01  .0000      .11010    .21659 
SELFEMPL|    -.34597***      .05042    -6.86  .0000     -.44479   -.24715 
CURNTADD| .33363D-04         .00022      .15  .8780 -.39269D-03  .45941D-03 
        |Standard deviation of e(i) in logit model 
Sigma(e)|     .01473         .03354      .44  .6607     -.05102    .08047 
        |Correlation of selection u(i) and logit e(i) 
Rho(u,e)|    -.00012         .01215     -.01  .9919     -.02394    .02369 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E54.9 Grouped Data Model with Selection 
 
 The grouped data model is also extended to the sample selection treatment. (This model is 
developed in Bhat (1994).)  (The model is described earlier in Section E47.3.)  The structure is as 
follows: 
   y * =  β′x  +  ε, ε ~ N[0,σ2], 

    y =  j  if  Aj-1  ≤  y * <  Aj, j = 1,...,J, A0 = -∞, AJ = +∞, 

    d * =  α′z  +  u 

    d =  if d* > 0 and 0 otherwise, 

    [ε,u] ~  N[0,0,σ2,1,ρ], 

    [y,x]  are observed only when d = 1. 
  
The correlation between ε and u is ρ.  The selection aspect of the model arises when ρ is not equal to 
zero.  Note that this extension is the same as its counterpart discussed above for the tobit model.  The 
command is 
 
    GROUPED DATA ; Lhs = y,d   
   ; Rh1 = variables in x  
   ; Rh2 = variables in z 
   ; Limits = a1, a2,...,aJ-1 $ 
 
The GROUPED DATA command is exactly the same as in the nonselected case.  As before, you 
give only the interior limit points.  The difference is the specification of the probit equation by the 
second Lhs variable and the Rh2 list.  (Since this model proceeds directly to the MLE, we do not 
begin with a separate PROBIT command, as we do with most other sample selection models.)  
 The usual options are available, including fitted values, residuals, optimization controls, etc., 
with two exceptions.  First, the ; Partial Effects option is not supported for this model.  Second, the 
default algorithm is BFGS, and this cannot be changed.  In addition, you may impose within 
equations restrictions with the ; Rst = list option.   
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The retrievable results from this model are 
  
 Matrices: b, varb;  use ; Par to add (σ,ρ) to the parameter vector 
 
 Scalars: s, rho, logl, kreg, nreg, ybar, sy, exitcode 
 
 Last Model: b_variables = elements of β  
   a_variables = elements of α, sigma, r12 
 
Technical Details on the Grouped Data Regression Models 
 
 Optimization is the same as for TOBIT.  All options, including ; Maxit, ; Tlf, ; Start, ; Rst, 
etc. operate the same.  Olsen’s transformation is used during the iterations.  The log likelihood 
function for the grouped data model is 
 
    log L =  Σi{log[Φ(ηU - γ′xi) - Φ(ηL - γ′xi)]} 

where   γ =  β/σ and η  = 1/σ. 
 
For this case, U is the upper limit of the range in which yi falls, and L is the lower limit.  Gradients 
and Hessians for these can be derived using the results shown earlier for the tobit model, as the terms 
are identical.  The second derivatives are used in estimating the asymptotic covariance matrix for the 
estimates. 

   ∂logL/∂(γ,η) =  
1

1n i i
U Li

U L U L=

 − −   
φ − φ    Φ − Φ     

∑
x x

. 

Let    λm =  φm / [ΦU - ΦL], m = L,U. 

and   wm =  [-x, m]′, m = L,U 

Then, 
2 log

( , ) ( , )
L∂

′∂ η ∂ ηγ γ
 = ∑ =

n
i 1

{λUwU [(-αU - λU)wU′ + λLwL′]} - {λLwL [(-αL + λL)wL′ - λUwU′]}. 

 
 For the sample selection version, estimates of [β,α,σ,ρ] are obtained by full information 
maximum likelihood.  The log likelihood is constructed from the simple probabilities of the events: 
  
   log L =   Σd=0 log[1 - Φ(γ′z)] 

                     + Σd=1,y=j log[Φ2(ηAj - β′x,α′z,-ρ) - Φ2(ηAj-1 - β′x,α′z,-ρ)], 

where   Φ2   =  bivariate normal CDF. 
 
In the two polar cases, if j = 1,  Φ2(ηAj-1 - β′x , α′z, -ρ)  =  0 

and   if j = J,  Φ2(ηAj - β′x , α′z, -ρ) =  Φ(α′z). 
 
Derivatives of the log likelihood may be constructed using the results given in Chapter E33 for the 
bivariate probit model.  The BHHH estimator is used for the asymptotic covariance matrix of the 
estimates. 
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 The fitted values for this model are computed using Bhat’s results:  Let 
 

   δ   =  1/(1 - ρ2)1/2,  

   η  =  1/σ,  

   q =  α′z, 

    Wm =  ηAm  -  γ′x,  m = L,U (limits for the range in which y falls) 

    Vm =  δ(q + ρWm),  m = L,U 

    Tm =  δ(Wm + ρq),  m = L,U. 

Then,  E[y*|x,d=1] =  β′x  +  σ
2 2

( ) ( ) ( ) ( ) ( )[ ( ) ( )]
( , , ) ( , , )

L L U U U L

U L

W V W V q T T
W q W q

φ φ ρφ
ρ ρ

Φ − Φ + Φ − Φ
Φ − − Φ −

. 

 

E54.10 Parametric Survival Models with Sample Selection 
 
 The random parameters model opens the possibility of a sample selection model for 
parametric survival models.  The structure would be the base case parametric model, using the 
Weibull model as the standard case, 
 
   h(ti)  =  λi P (λi ti)P-1 

where   λi     =  exp(β′xi  +  σεi). 
 
We accommodate this case by treating the random component as a random constant term in the 
parametric model.  The observation mechanism is now 
 
   zi*   =  α′zi  +  ui,  zi  =  1(zi* > 0) 
 
where the correlation between ui and εi is ρ.  We assume that the data for the duration model are only 
observed when zi = 1.  The model is fit by full information maximum likelihood.  (This means that 
there is no ‘lambda’ = the inverse Mills ratio added to the duration model.  That treatment is only 
appropriate for the linear model fit by two step least squares.) 
 This model is requested by the following command set: 
 
 PROBIT ; Lhs = z  

; Rhs = variables in w  
; Hold $ 

 SURVIVAL ; Lhs = logt [, and possibly a censoring indicator] 
   ; Rhs = variables in x 
   ; Model = one of Weibull, Normal, Loglogistic 
   ; Selection 
   ; RPM  

; Fcn = one(n) $ 
 
(Other controls for the RP models, such as the number of replications, Halton draws, and so on, 
operate as usual.) 
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E54.11 A General Approach to Incorporating Selectivity in 
a Model 
 
 Based on the wisdom obtained from Heckman’s modification of the linear model, there 
seems to be a widespread tendency (temptation) to extend that model to other frameworks by 
mimicking the two step approach used there.  Thus, for example, one might fit a Poisson model with 
sample selection (developed Section E54.4 above), with the following two steps: 
 
Step 1. Fit the probit model for the sample selection equation. 
 
Step 2. Using the selected sample, fit the second step Poisson model merely by adding the inverse 

Mills ratio from the first step to the Poisson model as an additional independent variable. 
 
This approach is inappropriate for several reasons 
 

• The impact on the conditional mean of the Poisson does not take the form of an inverse Mills 
ratio.  That is specific to the linear model.  (See Terza (1995, 1998, 2010).) 
 

• The bivariate normality assumption needed to justify the inclusion of the inverse Mills ratio 
in the Poisson mean does not appear anywhere in the model. 
 

• The dependent variable, conditioned on the sample selection, is unlikely to have the Poisson 
distribution needed to use this technique. 

 
Counterparts to these three problems will show up in any nonlinear model.  Thus, note, in all of the 
preceding applications, we have built the selection into the model, rather than attempt to deal with it 
by dropping the inverse Mills ratio into the model at a convenient point. 
 The preceding development for the Poisson model suggests a method of incorporating 
sample selection in a model. The model is based on the premise that the force of ‘sample selectivity’ 
is exerted through the behavior of the unobservables in the model.  As such, the key to modeling the 
effect is to introduce the unobservables that might be affected into the model in a reasonable way 
that maintains the internal consistency of the model itself.  In the Poisson model, the standard 
approach to introducing unobserved heterogeneity is through the conditional mean, specifically, 
 
   λi(εi)  =  exp(β′xi + εi) where ε ~ N[0,σ2]. 
 
The negative binomial model arises, for example, if it is assumed that the unobserved heterogeneity, 
ε, has a log gamma distribution.  ‘Selectivity’ would arise if the unobserved heterogeneity in this 
conditional mean is correlated with the unobservables in the selection mechanism, which is how it is 
modeled above.  We propose a general approach to sample selection – one that we have used at 
several points above – by modifying the index function model along the lines of the Poisson model 
analyzed above.  The following uses the Poisson model developed earlier as a template, and develops 
it more generally as an index function model that can be adapted to a specific model framework. 
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 The generic model will take the form 
 
   zi*    =  α′wi  +  ui in which ui ~ N[0,1] 

   zi     =  1(zi*   >  0)  (probit selection equation) 

   λi| εi =  β′xi + σεi, εi ~ N[0,1] (index function with heterogeneity) 

   yi |xi, εi  ~  f(yi | xi,εi)  (index function model for outcome) 

   [ui,εi] ~  N[(0,1),(1,ρ,1)] 

   yi,xi       are observed only when zi = 1. 
 
The model given above is broad enough to include most of the models developed in the first 30 
chapters of this manual, and most of them yet to follow.  Again, the main equation of interest is 
taken to be an index function model, though, in fact, even that is merely a convenience, and the 
analysis will carry through if only we have yi | εi ~ f(xi,σεi).  But, this is more general than we will 
need. 
 The log likelihood function for the full model is the joint density for the observed data.  When 
zi equals one, (yi,xi,zi,wi) are all observed. We seek f(yi, zi=1|xi,wi).  To obtain it, proceed as follows: 
 

  f(yi, zi=1|xi,wi)  =  
∞

−∞∫  f(yi,zi=1|xi,wi,εi) f(εi)dεi   

 =  Eε[f(yi,zi=1|xi,wi,εi)]. 
 
Conditioned on εi, zi and yi are independent.  Therefore, 
 

  f(yi,zi=1|xi,wi,εi)  =  f(yi|xi,εi)Prob(zi=1|wi,εi). 
 
The first part, f(yi |xi,εi) is the conditional index function model, however specified. By joint 
normality, f(ui|εi) = N[ρεi , (1-ρ2)].  Therefore, Prob(zi=1|wi,εi) is  
 

   Prob(zi=1|wi,εi)  =  ( )2[ ]/ 1i i′Φ + ρε − ρwα . 
 
Combining terms and using the earlier approach, the unconditional joint density is  
 

   f[yi,zi=1|xi,wi] = −∞
∞

∫ f(yi|xi,εi) ( )2[ ]/ 1i i′Φ + ρε − ρwα
2exp( / 2)]

2
i

id−ε
ε

π
. 

Let    v = ε/ 2 , θ = σ 2 , τ = 2 [ρ/ 1 2− ρ ], and γ = [1/ 1 2− ρ ]α.   
 

(Thus, the reverse transformations are ρ2 = [τ2/(2 + τ2)], Sgn(ρ) = Sgn(τ), and σ = θ/ 2 .)  After 
making the change of variable and reparameterizing the probability as before, we obtain 
 

               f(yi,zi=1|xi,wi)  =  1
π −∞

∞
∫ exp(-v2) f(yi|xi,vi)Φ(γ′wi + τvi) dvi 

 
where the index function model now involves λi| vi = β′xi + θvi. 
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E54.11.1 Using Quadrature to Maximize the Log Likelihood 
 
 The function in the form above can be approximated with Hermite quadrature since no 
closed form exists.  When zi equals zero, only (zi,wi) are observed.  The contribution to the likelihood 
function is 

Prob(zi = 0|wi) = Eε[1 - Prob(ui > -α′wi|wi,εi)] = Eε[Prob(ui ≤ -α′wi|wi,εi)]. 
 
This provides the probability needed to construct the likelihood function. 
 
    Prob(zi = 0|wi,εi) = 1 - Φ(γ′wi  + τεi/ 2 ) 

so           Prob(zi=0|wi) = 1
π

 −∞
∞

∫ exp(-v2) Φ[-(γ′w + τv)]dv. 

 
Maximum likelihood estimates of [β, γ, θ, τ] are obtained by maximizing 
 

  log L  =  Σz=0 logProb(zi=0|w) + Σz=1 logP(yi,zi=1|x,w). 
 
The approximating function is  
 

   log L  =  ( )1 1

1log ( | , ) 
i

H
h i i h i hz h

f y v v
= =

 ′ω Φ + τ π 
∑ ∑ x wγ  

                  + ( )z 0 1

1log 'w
i

H
h i hh

v
= =

 
ω Φ − − τ π 

∑ ∑ γ  

 
where vh and ωh are the nodes and weights for the quadrature and 
 
   f(yi| xi, vh)  =  the index function model, using β′xi + θvh. 
 
There are two useful further simplifications to employ.  First, since zi is binary,  
 
   (1-zi) + zi f(yi| xi, vh)  =  f(yi| xi, vh) when zi = 1 and 1 when zi = 0. 
 
Second, since the normal distribution is symmetric, the two appearances of the normal CDF above 
can be combined by using 
 
 Φ[(2zi – 1) (γ′wi + τvh)]  =  Φ[γ′wi + τvh] when zi = 1 and Φ[-(γ′wi + τvh)] when zi = 0. 
 
With these two devices, the approximating log likelihood function becomes 
 

 log L  =  [ ] ( )1 1

1log (1 ) ( | , ) (2 1)N H
h i i i i h i i hi h

z z f y v z v
= =

 ′ω − + Φ  − + τ   π 
∑ ∑ x wγ . 
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 The BHHH estimator of the asymptotic covariance matrix for the parameter estimates is a 
natural choice given the complexity of the function.  The first derivatives must be approximated as 
well.  For convenience, let 
 
   Pih  =  f(yi| xi, vh)  

   Φih =  Φ(γ′wi + τvh) (normal CDF) 

and   φih =  φ(γ′wi + τvh)   (normal density) 
 
and to save some notation, denote the individual terms summed in the log likelihood as log Li.  We 
also take advantage of the result that ∂P(.,.)/∂z = P×∂logP(.,.)/∂z for any argument z which appears in 
the function.  Then, 
 

   
β∂

∂ Llog
 =  

1 1

log ( | , )1 1
i

H i i h
h ih ihz h

i i

f y vP
L= =

∂
ω Φ

∂λπ
∑ ∑ x xi 

   
θ∂

∂ Llog  =  
1 1

log ( | , )1 1
i

H i i h
h ih ihz h

i i

f y vP
L= =

∂
ω Φ

∂λπ
∑ ∑ x vh 

   
γ∂

∂ Llog
 =  

1 1

1 1
i

H
h ih ihz h

i

P
L= =

ω φ
π

∑ ∑ wi  –  0 1

1 1
i

H
h ihz h

iL= =
ω φ

π
∑ ∑ wi 

   
τ∂

∂ Llog  =  
1 1

1 1
i

H
h ih ihz h

i

P
L= =

ω φ
π

∑ ∑ vh   –  0 1

1 1
i

H
h ihz h

iL= =
ω φ

π
∑ ∑ vh 

 
Estimates of the structural parameters, (α,ρ,σ) and their standard errors are computed using the delta 
method. The main parameter vector, β, has been estimated explicitly. 
 
E54.11.2 Using Simulation to Maximize the Log Likelihood 
 
 Simulation is another effective approach to maximizing the log likelihood function.  To set 
this up, we return to the problem in its untransformed form.  Using the simplifications suggested 
above, the log likelihood function to be maximized is 
 
  logL  =  

1
logN

i=∑   −∞
∞

∫ [(1-zi) + zi f(yi|xi,σεi)] ( )[(2 1) ]i i iz ′Φ − + τεwγ  ( )i idφ ε ε  
 

where γ = [1/ 1 2− ρ ]α, and τ = ρ/ 1 2− ρ .  (The 2 has fallen out of the expression because we 
are not setting this up for Hermite quadrature.)  The log likelihood in this form is an  expectation that 
is amenable to estimation by simulation.  The simulated log likelihood would be 
 

  logLS  =  
1
logN

i=∑ 1

1 R

rR =∑ [(1-zi) + zi f(yi|xi,σεir)] ( )[(2 1) ]i i irz ′Φ − + τεwγ  

 
where εir is a set of R random draws from the standard normal population.  (We would propose to 
improve this part of the estimation by using Halton draws instead.  See Section R24.7 for details.)  
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Derivatives of the simulated log likelihood are straightforward.  For the ith observation, 
 

     ,
1

,

log log ( | , )1 1 ( | , ) [(2 1)( )]
log

RS i i i ir
i i i ir i i ir ir

S i

L f yz f y z
L R =

 ∂  ∂ σε ′= σε Φ − + τε  ∂ ∂λ   
∑ xx w x

ι

γ
β

 

 

     ,
1

,

log log ( | , )1 1 ( | , ) [(2 1)( )]
log

RS i i i ir
i i i ir i i ir irr

S i i

L f yz f y z
L R =

 ∂  ∂ σε ′= σε Φ − + τε ε  ∂σ ∂λ   
∑ xx wγ  

 

     ,
1

,

log 1 1 [(1 ) ( | , )] [(2 1)( )]
log

RS i
i i i i ir i i ir ir

S i

L
z z f y z

L R =

∂
′= − + σε φ − + τε

∂ ∑ x w wγ
γ

 

 

     ,
1

,

log 1 1 [(1 ) ( | , )] [(2 1)( )]
log

RS i
i i i i ir i i ir irr

S i

L
z z f y z

L R =

∂
′= − + σε φ − + τε ε

∂τ ∑ x wγ  

 
 To illustrate the technique, we consider constructing a binary logit model subject to sample 
selection. The immediate obstacle is the lack of a functional form for the joint distribution of a 
normally distributed ε and the logistically distributed variable that underlies the logit model.  We use 
the template described here, instead. 
 
   zi*    =  α′wi  +  ui in which ui ~ N[0,1], 

   zi     =  1(zi*   >  0)  (probit selection equation) 

   Prob(yi=1|xi.εi)  =  exp( )
1 exp( )

i i

i i

′ + σε
′+ + σε

x
x

β
β

, εi ~ N[0,1] 

   [ui,εi] ~  N[(0,1),(1,ρ,1)] 

   yi,xi       are observed only when zi = 1. 
 

The simulated log likelihood function is 

 logLS  =  
1
logN

i=∑ 1

1 R

rR =∑ [(1-zi)  +  zi 
exp( )

1 exp( )
i i

i i

′ + σε
′+ + σε

x
x

β
β

] ( )[(2 1) ]i i irz ′Φ − + τεwγ . 

 
 The Hermite quadrature method was used to obtain the estimates in the Poisson model 
applications in Section E54.4.4. The simulation technique was used for the binomial logit model in 
Section E54.8 and the stochastic frontier model in Section E54.6. 
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E55: Alternative Sample Selection Equations 
 
E55.1 Introduction 
 
 Several of the forms of the selection model which can be estimated with LIMDEP depart 
from Heckman’s now canonical form, a linear regression with a binary probit selection criterion 
model: 
    y =  β′x + ε, 

    z* =  α′w + u, 

    ε,u ~  N[0,0,σε
2 ,σu

2 ,ρ]. 
 
A bivariate classical normal (seemingly unrelated) regressions model applies to the structural 
equations.  The standard deviations are σε and σu, and the covariance is ρσεσu.  If the data were 
randomly sampled from this bivariate population, the parameters could be estimated by least squares, 
or GLS combining the two equations.  However, z* is not observed.  Its observed counterpart is z, 
which is determined by 
 
    z =  1 if z* > 0 

 and   z =  0 if z* ≤ 0. 
 
Moreover, values of y and x are only observed when z equals one.  Thus, the model is two steps 
removed from the two equations seemingly unrelated regressions which would be simple to estimate.  
The essential feature of the model is that under the sampling rule, E[y|x,z = 1] is not a linear 
regression.   
 This chapter will describe a set of alternative specifications for the selection mechanism.  
The regression part of the model is assumed to be linear, as in the first specification shown in 
Chapter E53.  Some of the models are ‘hardwired’ as procedures in LIMDEP, for example the 
bivariate probit model.  Others require fairly lengthy sets of commands in order to program the 
computations.  We will include these in full in order to present the model and techniques and to 
demonstrate the range of calculations that can be added to the preprogrammed procedures. 
 
WARNING:  Users of these procedures should watch very closely for conflicts between their own 
variable, namelist, matrix, and scalar names and those which we are using in these programs.  
Sometimes these can cause subtle errors which will not be picked up by the program.  For example, 
if you use one of our matrix or variable names for your own matrices, then use the program below as 
is, you may find the wrong calculations being done, for reasons that will not be obvious. 
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E55.2 The Univariate Probit Model 
 
 The standard selection rule in most of the existing programs is the single equation probit 
model, which you set up with 
 
 PROBIT ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Hold $ 
 
If you have already estimated the probit equation you want to use in a selection model, you can 
bypass the estimation stage with the following: 
 
 PROBIT  ; Lhs = z  
   ; Rhs = v  
   ; Hold  
   ; Load ; Start = parameters $  
 
Just set up the PROBIT command as if the model were to be estimated.  When you provide a set of 
parameters with ; Load, the estimation stage is skipped.  The parameter vector you provide must 
correspond exactly to the list you provide in the ; Rhs specification.  This method would be useful 
primarily in a very large data set, in which multiple passes through the data could take a significant 
amount of time compared to the three needed for the selection model. 
 

E55.3 Bivariate Probit Selection Rule 
 
 An extension of the sample selection model which allows a bivariate probit selection 
equation can be handled just by using ; Hold with a bivariate probit model.  Nothing else needs to be 
changed.  The model is as follows: 
 
   y   =  β′x + ε, 

   za*  =  αa′

   z

wa + ua, 

b*  =  αb′

   zj    =  1 if z

wb + ub, 

 
 > 0 and 0 otherwise for j = a,b. 

The random components, ε, ua, and ub have a trivariate normal distribution with variances σ2, 1, and 
1, respectively and correlations ρaε, ρbε and ρab.  Estimates are obtained for all parameters of the 
model.  We assume that y and x are observed only if za = ja and zb = jb where ja and jb are either 0 or 
1.  I.e., you can select on any of the four possible combinations of za and zb.  The assumed 
combination is 1,1, but you can change this, as shown below. 
 If ua and ub are correlated, a bivariate probit model applies.  The corresponding counterparts to 
the inverse Mills ratios, the λs, are complicated, but this is all taken care of internally.  If ua and ub are 
not correlated, the model is one of two independent selection criteria, which is also easily handled.  The 
estimates are obtained using a method analogous to the single equation selectivity model.  In this case, 
the truncated bivariate normal distribution is needed to compute the estimates.  As in the single 
equation case, negative estimated standard errors can arise in a finite sample.  In this instance, OLS 
standard errors are used.  The output contains the standard output for a least squares regression plus a 
listing of the corrected standard errors and the estimates of the two correlation coefficients.   
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 All of the usual options for single equation models are available, including ; Test: for 
restrictions, lists of predicted values, and so on.  The ; Fill option can be used to fill in missing data 
if the values of the regressors are provided.   To estimate this model, you must provide the estimated 
probit equations through the ; Hold option.  We consider the bivariate probit case first.  The set of 
instructions might look as follows:  (You would, of course, substitute your own appropriate 
variables.) 
 

BIVARIATE ; Lhs  = za,zb 
   ; Rh1 = one,wa1,wa2  
   ; Rh2 = one,wb1,wb2 
   ; Hold for SELECT $ 

SELECT ; Lhs = hours 
   ; Rhs = one,x1,x2,x3,x29 $ 
 
The estimator assumes that you want to select those observations which have za = zb = 1.  To use 
some other criterion, you add to the above  
 
    ; Selection = ja,jb  
 
where ja applies to the first probit equation in your model and jb the second.  For example, to select 
observations with za = 0 and zb = 1, we would use ; Selection = 0,1. 
 Once you estimate and ; Hold a bivariate probit model, you can use it again without 
reestimating it.  For example, in the preceding specification, we might reestimate the model for 
observations with za = zb = 0 by adding another line to the procedure: 
  
 SELECT  ; Lhs = hours  
   ; Rhs = one,x1,x2,x3,x29  
   ; Selection = 0,0 $  
 
Remember that the bivariate probit criterion which you ; Hold is replaced by another ; Hold 
command. This means that if you estimate a single equation probit model and use ; Hold, you will 
lose the bivariate probit you estimated earlier.  Since the bivariate probit model can be time 
consuming to estimate, the option in the next section may be useful. 
 
E55.3.1 Independent Probit Equations 
 
 The method of the previous section provides an easy way to estimate the selection model 
with two independent selection equations.  Just estimate the two probit equations separately by 
maximum likelihood and pass a zero for the starting value for ρab.  I.e., 
 
 PROBIT  ; ... first  equation $ 
 MATRIX  ; ba = b $ 
 PROBIT ; ... second equation $ 
 MATRIX  ; bb = b $ 
 BIVARIATE  ; [specifications] ; Start = ba,bb,0 ; Load $ 
 
This sets up the regression (SELECT) command so it can be used as above. 
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E55.3.2 Loading a Probit Equation 
 
 If you have the parameter values from the bivariate probit model stored somewhere, you can 
use the BIVARIATE PROBIT (or just BIVARIATE) command just to load these known values, 
and bypass the estimation step.  To do so, there are two ways to proceed.  In each, you provide the 
entire command, exactly as if the model were to be estimated.  If you just have the two slope vectors, 
you can use 
  
 BIVARIATE  ; Lhs = ... ; Rh1 = ... ; Rh2 = ... ; Start = ba,bb ; Load $ 
  
Given in this fashion, the command requests the procedure to compute an internal starting value for 
ρ.  This will be attached to your slope vectors and passed on with the ; Load specification which is 
now equivalent to ; Hold. However, if you have your own estimate of the correlation coefficient, just 
add it to the list of starting values.  That is, 
  
 BIVARIATE  ; Lhs = ... ; Rh1 = ... ; Rh2 = ... ; Start = ba,bb,rhoab ; Load $ 
 
Now, no computation is done at all.  The equation is merely loaded and passed on to SELECT. 
 
E55.3.3 Computing Lambda for the Sample Selection Model 
 
 The underlying regression model is 
 
   y  =  β′x  +  ε 
 
Corr(ua,ε) = ρaε, Corr(u,ε) = ρbε.  But, (y,x) are only observed when (z1 = 1, z2 = 1).  Estimation of 
this model is done by a two step extension of Heckman’s method for a single probit selection model. 
The linear regression is computed using the observed data, with regression of y on x, λa and λb where 
the two ‘lambda’ variables are, in fact,  ga/Φ2 and gb/Φ2 as defined in the next section.   
 These variables are computed internally during estimation, but not retained anywhere 
accessible.  We are often asked how these can be computed and, moreover, can they be computed for 
the ‘nonselected’ observations.  Using what is already done above, the computation is actually 
simple.  The full set of computations would look as follows:  (This is generic. Only the first two 
commands that set up the data would be specific to any application.) 
 
 NAMELIST ; xa = equation a variables ; xb = equation b variables $ 
 CREATE ; ya = Lhs variable in equation a 
   ; yb = Lhs variable in equation b $ 
 BIVARIATE ; Lhs = ya, yb ; Rh1 = xa ; Rh2 = xb $ 
 CREATE ; qa = 2*ya - 1 ; qb = 2*yb - 1 $ 
 CALC  ; ka = Col(xa) ; kba = ka + 1 ; kvar = Row(b) $ 
 MATRIX ; ba = b(1:ka) ; bb = b(kba:kvar) $ 
 CREATE ; va = qa*xa’ba ; vb = qb * xb’bb ; rs = qa*qb*rho $ 
 NAMELIST ; v = va,vb $ 
 CREATE ; lambdaa = qa*Bv1(v,rs) / Bvn(v,rs)   
   ; lambdab = qb*Bv2(v,rs) / Bvn(v,rs) $ 
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E55.3.4 Technical Details  
 
 For the selectivity model with bivariate probit selection equation, the augmented regression 
is 
   yi   =  β′xi  +  θa λai  +  θb λbi  +  ηi. 
 
There are three correlation coefficients in the model, 
 
   ρab  =  corr(ua ,ub ), ρaε  =  corr(ua ,ε), ρbε  =  corr(ub ,ε). 
  
The bivariate probit model estimates ρab in isolation.  In the regression model, the parameters are 
  
   θa  =  ρaεσaε, θb  =  ρbεσbε. 
  
The ‘λ‘ variables in the regression are 
  
   λa   =  φ(wa)Φ[(wb - ρabza)/(1 - ρab

2)1/2] / Φ2 
  
where wa = -αa′wa, and likewise for ‘b,’ and Φ2 = bivariate normal CDF, Φ(wa ,wb ,ρab ).  The 
coefficients are computed by least squares regression of y on x, λa , and λb.  The estimator of the 
asymptotic covariance matrix is 
  
 V  =  (X* ′X* )-1[X*′(σ2I - Π)X* + θa

2X*′GaΣGa′X* + θb
2X*′GbΣGb′X*](X* ′X* )-1, 

 
where   X*   =  [ X : λa : λb ], 

   Π   =  diag(π1 ,...,πN ), 

   πi   =  θa
2wa λa + θb

2wb λb + (θa λa + θb λb )2 - [2θa θb  - ρab (θa
2 + θb

2)]φ2/Φ2, 

   Σ   =  asymptotic covariance matrix for estimates of [αa ,αb ,ρab], 

and   Gj  =  ∂λj/∂[αa ,αb ,ρab], j = a,b. 
 
The expressions for the derivatives are exceedingly cumbersome.  The estimate of σ2 is 
  

   σ
∧

2  =  (1/N)e′e  -  (1/N)Σi πi. 
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E55.4 A Binary Logit Selection Model 
 
 Lee (1983) describes a reformulation of the selection model which allows more general 
specifications of the criterion equations.  The most common application of the techniques in this 
paper would be the use of a logit instead of a probit equation for the selection criterion equation.  
This results in a minor modification of the estimation procedure.  In the probit case, λ is computed 
using α′v.  For the logit model, we use the transformed variable 
  

   q  =  1 exp( )
1 exp( )

− ′ 
Φ  ′+ 

v
v

α
α

 

    =  Φ-1 [ Plogit ]. 

Then,   λ =  φ(q) / Φ(q) or -φ(-q)/Φ(-q) if selection is on z = 0. 
 
Other computations are now the same as before.  To use this estimator in LIMDEP, simply use 
 
 LOGIT  ; Lhs = z ; Rhs = list of v ; Hold $ 
 SELECT  ; ... exactly the same as before ... $  
 
All necessary modifications – there are very few – are already set up internally. The model 
specification 

  ; Hold (IMR = name) 
 
is usually used for the probit model to set up a sample selection model.  The same parameter may 
now be used with LOGIT, for the same purpose.  This variable, λ can be computed as follows: 
 
 NAMELIST ; v = ... $ 
 LOGIT   ; Lhs = y ; Rhs = v $ 
 CREATE  ; alphax = v’b    ? computes index α‘v 
   ; j1 = Inp(alphax) ? computes Lee’s j1 
   ; lambda = Lmd(j1,z)   $ computes lambda  
 
 To illustrate the estimator, we analyze a data set on credit applications.  The file (credit.lpj) 
contains 13,444 observations on applications for a major credit cards.  Variables used in the model 
below include: 
 

cardhldr  = whether the application was accepted (0/1), 
income = average monthly income, 
depdnt = number of dependents in the household, 
incper = income / (1 + depdnt), 
credmajr = number of major credit cards held, 
tradacct = number of merchant credit accounts, 
age = age in months, 
ownrent = dummy variable for home ownership, 
selfempl = dummy variable for self employed, 
curntadd = number of months living at current address, 
spending = average monthly expenditure. 
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The regression model analyzes average yearly expenditure.  The selection mechanism is, as before, 
cardholder status. 
 
 NAMELIST  ; card = one,age,income,ownrent,selfempl,curntadd $ 
 NAMELIST  ; spending = one,income,depdnt,incper,credmajr,tradacct $   
 LOGIT  ; Lhs = cardhldr  ; Rhs = card ; Hold $ 
 SELECT  ; Lhs = avgyrexp ; Rhs = spending $ 
 
Results are shown below.  Based on the estimate of ρ, cardholder status does not have much impact 
on average yearly spending. 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable             CARDHLDR 
Log likelihood function     -6861.79654 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
CARDHLDR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[CARDHL=1] 
Constant|     .52749***      .08067     6.54  .0000      .36939    .68560 
     AGE|    -.00581**       .00241    -2.42  .0157     -.01053   -.00110 
  INCOME|     .30124***      .01952    15.43  .0000      .26298    .33949 
 OWNRENT|     .27087***      .04803     5.64  .0000      .17672    .36501 
SELFEMPL|    -.58068***      .08662    -6.70  .0000     -.75046   -.41090 
CURNTADD| .96096D-04         .00037      .26  .7956 -.63079D-03  .82298D-03 
--------+-------------------------------------------------------------------- 
+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Logit  selection equation based on CARDHLDR              | 
| Selection rule is: Observations with CARDHLDR =  1       | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set             13444            13444.0            | 
| Selected sample      10499            10499.0            | 
+----------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=AVGYREXP Mean                 =         .30156 
             Standard deviation   =         .39858 
             Number of observs.   =          10499 
Model size   Parameters           =              7 
             Degrees of freedom   =          10492 
Residuals    Sum of squares       =        1543.79 
             Standard error of e  =         .38359 
Fit          R-squared            =         .07373 
             Adjusted R-squared   =         .07320 
Model test   F[  6, 10492] (prob) =   139.2(.0000) 
Standard error corrected for selection      .38372 
Correlation of disturbance in regression 
and Selection Criterion (Rho)     =         .05371 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
AVGYREXP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .03352         .04517      .74  .4581     -.05502    .12206 
  INCOME|     .05541***      .00565     9.80  .0000      .04433    .06649 
  DEPDNT|     .01885***      .00482     3.91  .0001      .00941    .02830 
  INCPER|     .02812***      .00454     6.19  .0000      .01922    .03703 
CREDMAJR|     .02498**       .01042     2.40  .0165      .00457    .04540 
TRADACCT|    -.00225***      .00063    -3.59  .0003     -.00349   -.00102 
  LAMBDA|     .02061         .07645      .27  .7875     -.12923    .17044 
--------+-------------------------------------------------------------------- 
 

E55.5 Multinomial Logit Selection Model 
 
 Lee (1983) also describes the computation of an estimator for the sample selection model 
when selection is based on the multinomial logit or discrete choice model of Chapter E37.  The 
following will show how to compute the first model.  (Another relevant study on this model is Hay 
(1980).)  We first present some background, since Lee’s paper stops at the point of presenting the 
estimating regression equation. Following Lee, we suppose, then, that z is the selection variable 
which takes values 0, 1, ..., J for J + 1 outcomes.  The model for determination of z is 
  

   Prob[zi=j]  =  exp(αj′wi ) / [1 + 
j

J

=∑ 1
exp(αj′wi )], 

  
where ‘i’ indexes the observation and ‘j’ indexes the choice or outcome.  This embodies a number of 
assumptions about the joint and marginal distributions of disturbances in the model, for which 
reference can be made to Lee’s paper.  Selection is based on zi = j.  For convenience below, we drop 
the observation subscript.  The implied regression equation for estimation derived by Lee is 
  
   yj  =  β′xi + (ρjσj)φ[Hj(αj′wi)]/Φ[Hj(αj′

    =  β′xi + (ρjσj)λj + ηj 

wi)] + ηj 

    =  β′xi + θjλj + ηj. 
  
Our notation differs slightly from Lee’s.  We use ‘H’ for his ‘J’ function (the inverse of the standard 
normal CDF evaluated at Prob[z = j]) to avoid a conflict with our formulation of the logit model.  We 
have also reversed the sign of the second term in the regression to be consistent with our notation 
elsewhere.  This is merely a matter of interpreting ρ.  As in Lee’s paper, the functions φ(t) and Φ(t) 
are the PDF and CDF of the standard normal distribution.  Finally, although the denominator in λj is 
just Prob[z = j], it is convenient to have it in the form above when we derive the appropriate standard 
errors.  This full set of computations is fully automated.  To fit this model, just use 
 
 MLOGIT ; Lhs = z ; Rhs = w ; Hold $ 
 SELECT ; Lhs = y ; Rhs = x ; Choice = j $ 
 
The MLOGIT command may fit a binomial or multinomial logit model.  The ; Choice = j may be 
omitted in the SELECT command if you are selecting observations with choice = 1.  For any other 
choice, you must provide this specification.  All of the other features of the selection model available 
in the standard case, including marginal effects, are supported for this selection mechanism as well. 
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E55.5.1 Application 
 
 To illustrate the estimator, we have contrived an application based on credit data used above.  
We suppose that cardholders (i.e., those with cardhldr = 1) are further divided into three card types, 
cardtype = 0,1,2.  (The partition is artificial, for the purpose of our simulation.) 
 
 CREATE  ; cardtype = cardhldr*(Rnd(3)-1) $ 
 REJECT  ; cardhldr = 0 $ 
 MLOGIT  ; Lhs = cardtype  ; Rhs = card ; Hold $ 
 SELECT  ; Lhs = avgyrexp ; Rhs = spending ; Choice = 1 $ 
 SELECT  ; Lhs = avgyrexp ; Rhs = spending ; Choice = 2 $ 
 
Results are shown below for the first selection model.  The second model result is similar, but is 
based on the different subset of the observations.  Note that the method of moments based estimate 
of the correlation coefficient is larger than one, so one is used in the subsequent computations. 
 
----------------------------------------------------------------------------- 
Multinomial Logit Model 
Dependent variable             CARDTYPE 
Log likelihood function    -11523.41187 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
CARDTYPE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[CARDTY=1] 
Constant|    -.12458         .08836    -1.41  .1586     -.29775    .04860 
     AGE|     .00449         .00281     1.60  .1101     -.00102    .01000 
  INCOME|     .02549         .01678     1.52  .1287     -.00739    .05838 
 OWNRENT|    -.12473**       .05367    -2.32  .0201     -.22991   -.01954 
SELFEMPL|    -.26083**       .10933    -2.39  .0170     -.47511   -.04655 
CURNTADD|    -.00058         .00041    -1.41  .1594     -.00139    .00023 
        |Characteristics in numerator of Prob[CARDTY=2] 
Constant|    -.12395         .08877    -1.40  .1626     -.29793    .05003 
     AGE|     .00435         .00281     1.55  .1219     -.00116    .00987 
  INCOME|     .00069         .01704      .04  .9677     -.03270    .03409 
 OWNRENT|    -.11334**       .05400    -2.10  .0358     -.21917   -.00751 
SELFEMPL|    -.02944         .10462     -.28  .7784     -.23449    .17561 
CURNTADD| .94742D-04         .00041      .23  .8159 -.70298D-03  .89246D-03 
--------+-------------------------------------------------------------------- 
Estimated correlation is outside the range -1 < r < 1. Using 1.0 
+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| MLogit selection equation based on CARDTYPE              | 
| Selection rule is: Observations with CARDTYPE =  2       | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set             10499            10499.0            | 
| Selected sample       3438             3438.0            | 
+----------------------------------------------------------+ 
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----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=AVGYREXP Mean                 =         .30009 
             Standard deviation   =         .37459 
             Number of observs.   =           3438 
Model size   Parameters           =              7 
             Degrees of freedom   =           3431 
Residuals    Sum of squares       =        442.841 
             Standard error of e  =         .35926 
Fit          R-squared            =         .07988 
             Adjusted R-squared   =         .07827 
Standard error corrected for selection      .66895 
Correlation of disturbance in regression 
and Selection Criterion (Rho)     =        1.00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
AVGYREXP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.88837*        .48195    -1.84  .0653    -1.83298    .05624 
  INCOME|     .04312***      .00843     5.11  .0000      .02660    .05964 
  DEPDNT|     .02154**       .01088     1.98  .0478      .00021    .04288 
  INCPER|     .03321***      .01007     3.30  .0010      .01347    .05295 
CREDMAJR|     .02536         .02420     1.05  .2947     -.02207    .07278 
TRADACCT|    -.00012         .00142     -.08  .9336     -.00290    .00267 
  LAMBDA|     .84996*        .44253     1.92  .0548     -.01739   1.71731 
--------+-------------------------------------------------------------------- 
 
E55.5.2 Technical Details 
 
 The two step estimation technique is as follows:  (The reader is referred to Lee’s paper for 
some of the relevant background for this.)  The first step is to estimate the multinomial logit model 
by maximum likelihood, retaining the coefficients, estimated asymptotic covariance matrix of these 
estimates, and the full set of predicted probabilities.  Select those observations for which z takes the 
value in question.  (This depends on the application.)  For these observations, compute λj by 
obtaining, first, the predicted probability, Pi (Lee denotes this Fj), then 
 
   Hj   =  Φ-1(Pj),  λj  =  φ(Hj) / Φ(Hj). 
 
In the following, ‘i’ is the observation, ‘j’ is the selection choice, j = 0,...,J, and K2 is the number of 
variables in w. 
 The second step is to obtain consistent estimates of β and θj by least squares regression of yj 
on x and λj.  Denote by Xj the Nj×(K1+1) matrix of regressors used in this regression including λj.  
Then, the appropriate asymptotic covariance matrix is: 
  
   C  =  (Xj′Xj)-1[σj

2Xj′(I-ρj
2∆j)Xj + θj

2 FjΣFj′](Xj′Xj)-1, 

where   δij  =  λij
2 + Hijλij,   ∆j  =  diag(δ1j,δ2j,...,δNj,j), 

   Σ   =  asymptotic covariance matrix of estimated α = [α1,α2,...αJ], 

   Fj   =  Xj′Gj, 

and   Gj   =  Nj×(JK2)  =  ∂[Nj×1 vector of λs]/∂α′. 



E55: Alternative Sample Selection Equations   E-1370 

This is a matrix of derivatives of the lambdas with respect to the logit parameters.  We  construct 
 
   Gj  =  [G1j, G2j, ..., GJj]. 
 
The ith row of the Nj×K2 matrix Gsj is 
 

gisj′  =  (δij / Fij)qisjw′. 
 
The scalar qisj depends on the choice.  If selection is on z = 0, 
 

qisj   =  - P0iPsi, s=1,...,J. 
 
If selection is on z = some other value, say, k, then, for the kth item, 
 

qikj   =  Pik(1 - Pik), 
 
while for all other items, 
 

qisj   =  -PikPsk, s = 1,...,J but not equal to k. 
 
E55.6 Tobit Selection Rule 
 
 It is possible to use a tobit or classical regression model as the selection criterion.  (See Lee, 
Maddala, and Trost (1980).) Consider the tobit model first, where we take as the example the 
standard specification.  One might select, for instance on ‘hours worked’ in a labor supply setting.  
This variable would be either zero for nonworkers, or positive for the remaining observations.  One 
simple way to estimate this revised model is to reformulate the tobit model as a probit model.  We 
would recode the dependent variable as zero as before and one for the existing nonzero observations.  
It is straightforward to show that doing so amounts to estimating by probit analysis the parameter 
vector α/σ, instead of obtaining the separate estimates of the two parameters with the tobit estimator.  
This is a practical solution which may sacrifice some efficiency by discarding information on the 
dependent variable.  This would show up in the standard errors of the selection equation’s parameter 
estimates, as the Σ in the second part of the bracketed term in the expressions given earlier is the 
asymptotic covariance matrix for the estimator of the parameters in the selection equation.  It is not 
necessarily true though, that there would be any efficiency loss in a finite sample.  The reason is that 
although the tobit estimator does, asymptotically, estimate α/σu more efficiently than the probit 
model, in a finite sample, this nonlinear function of the parameters of the tobit model may be as 
variable as the estimates from the probit equation. 
 In a case in which the limit values in the tobit model are not zero and +∞, the preceding is 
moot.  When the censoring point in the tobit model is nonzero, the parameter σ (or its reciprocal) enters 
λ independently from β.  As such, in computing the asymptotic covariance matrix for the selectivity 
corrected parameter estimates, it is necessary to account for the variation in the estimate of σ. 
 We depart from the doubly censored regression model with lower censoring limit L and 
upper limit U.  We use Olsen’s reformulation of the tobit model, 
 
   γ  =  α/σu , η  =  1/σu. 
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Then, the auxiliary variable in the selectivity corrected regression will be 
  

   ( ) ( )
( ) ( )

L U
U L

′ ′φ η − − φ η −
λ =

′ ′Φ η − − Φ η −
x x
x x

γ γ
γ γ

. 

 
The asymptotic covariance matrix for the slopes in the regression of y on X and λ would take a 
familiar form, 
 

   C   =  (X*′X* )-1[σε
2

 
(X*′(I - ρ2∆)X*  +  X*′GΣG′X* ](X*′X* )-1, 

where   zj   =  ηj - γ′x, j = L,U, 

   φj   =  φ(zj), j = L,U,  Φj   =  Φ(zj), j = L,U, 

   δ   =  L L U U

U L

z zφ − φ
−Φ Φ

,  ∆     =  diag(δ1 ,δ2 ,...), 

   X*   =  (X : λ),  G  =  matrix of derivatives, rows = gi, 

   gi   =  (∂λi /∂γ′ : ∂λi /∂η), 

   ∂λ/∂γ′ =  δv′,  ∂λ/∂η =  [UφU(zU - λ)  -  LφL(zL - λ)] / (ΦU - ΦL). 
 
In the computation of C, Σ is the asymptotic covariance matrix for estimates of [γ,η].  The tobit 
program estimates 

   Q   =  asymptotic covariance matrix for estimates of [β,σ], 
 
not Σ.  To estimate Σ from Q, we reverse the usual application of the delta method.  Let 
 

   K   =  
( )
( )

(1 ) 1

1

 σ σ∂ ∂ ∂ ∂σ   = ∂η ∂ ∂η ∂σ  σ   

2

2

/ I - // ' /
     

/ ' / 0 - /

βγ β γ
β

. 

 
Then,   Σ =  KQK′. 
 
 The following is a program which will do all of the computations for the selectivity model 
for tobit equations with either lower, upper, or both tails censored.  You control this aspect of the 
computation by specifying the limit values.  E.g., for upper censoring at 6.25, you would use -∞ (use 
-10000) as the lower limit and 6.25 as the upper, etc. The first few lines set up the data for the 
specific application. 
 
 CREATE   ; y = dependent variable in regression  
           ; z = dependent variable in tobit model $ 
  NAMELIST    ; x = the Rhs in selectivity corrected regression 
           ; w = the Rhs in tobit model $ 
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Lower and upper must now be set to define the lower and upper limits of the selection region for y. 
Either or both may be infinite. For minus or plus infinity, use 10000 or -10000. These may be 
different from those used in the tobit model. For example, if the limit values used in estimation  were 
zero and one and you want to select those at the upper limit value of one, you would set lower = 1 
and upper = 10000 in the command below.  Do note, in all cases, both values must be provided 
below, even if one of them is plus infinity or minus infinity.  To allow these to vary by observations, 
we use variables, even if the limits do not vary by observation. 
 
 CREATE     ; Lower = the specification ; Upper = the specification  $  
 
None of the commands to follow require any modification.  First, pick up tobit estimates of σ and β, 
and transform them to η and γ. Then, get the appropriate asymptotic covariance matrix for the 
transformed estimates. 
 
 TOBIT  ; Lhs = z  ; Rhs = w ; Par ; Limits = lower,upper $ 
 CALC     ; kw = Col(w) ; eta = 1/s ; etasq = -eta^2 $ 

MATRIX ; beta = b(1 : kw) 
  ; k11 = eta * Iden(kw) ; k12 = etasq * beta 
  ; k21 = Init(1,kw,0) ; k22 = etasq 
  ; k = [k11,k12 / k21,k22] 
  ; sg = k * varb * k’ ; gamma = eta * beta $ 

 
Isolate the selected sample. 
 
 REJECT   ; y <= lower | y >= upper $  
 
Create the variables needed to compute the estimates and asymptotic covariance matrix. 
 

CREATE   ; wgamma = w’gamma   
  ; zu = eta * upper - wgamma ; fu = N01(zu) ; pu = Phi(zu) 
  ; zl = eta * lower  - wgamma ; fl  = N01(zl) ; pl = Phi(lz) 
  ; pul = pu - pl 
  ; lambda = (fl - fu) / pul 
  ; delta = (zl*fl - zu*fu) / pul - lambda ^ 2 
   ; dldeta = (upper*fu*(zu - lambda) - lower*fl *(zl - lambda)) / pul  $ 

 
Compute the slopes in the selectivity corrected regression.  Pick up three parts: c1 = slope on 
lambda, sigma(1) = OLS disturbance standard deviation, b1 = full set of slopes including c1.  Then, 
compute consistent estimates of σ2 and  ρ2. 
 

NAMELIST ; xl = x,lambda $ 
REGRESS ; Lhs = y ; Rhs = xl $  
MATRIX   ; b1 = b $  
CALC     ; l1 = b(kreg) ; csq = c1 ^ 2 
  ; sigma1 = Sqr(s ^ 2 - csq * Xbr(delta))   
  ; rho12 = c1 / sigma1  $  
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Compute the components of the variance matrix and θ = σ2(1 - ρ2*). 
 

CREATE   ; theta = sigma1 - rho12 ^ 2 * delta ; delta = Abs(delta) $  
 
Compute the matrix components.  We must deal with an extra column because of σ. 
 

MATRIX ; psi1 = xl’ [theta]v 
  ; f1 = xl’ [delta]v ; f2   = xt’dldeta ; f = [f1,f2] 
  ; c = xl’[theta]xl + csq * f * sg * f’ 
  ; f = <xt’xt> * c * <xt’xt> 
  ; Stat(b1,f,xl)  $ 

 

E55.7 Ordered Probit Selection Rule 
 
 This program computes the regression coefficient estimates and the appropriate asymptotic 
covariance matrix for a sample selection model based on the ordered probit model. The ordered 
probit model is: 
   z*    =   α′w  +  u, 

   z     = 0   if  -∞        z*  ≤  0, 

     1   if  0    <     z*  ≤   µ1,  

     2   if  µ1   <   z*  ≤   µ2, 

     and so on,  

     J   if  µJ-1  <    z*  ≤    +∞. 
 
z* is not observed; z is its observed counterpart. The disturbance, u is assumed to be distributed as 
standard normal. (See Greene and Hensher (2010) for details on the ordered probit model.) The 
equation of interest is 
   y    = β′x  +  ε, 
 
where ε is normally distributed with mean zero, standard deviation σ and correlation ρ with u. Data 
on y are only observed when z takes a particular value, so the selection mechanism is 
 
   y is only observed when z = j for some j in (0,1,...,J). 
 
The estimation of this model by a two step procedure follows exactly the steps in Heckman (1979) 
and Greene (1981), which provide the standard results for the case in which J = 1 (simple probit 
model).  The steps are 
 
Step 1. Estimate the ordered probit by MLE using all observations. 
 
Step 2. Select the observations for the regression. 
 
Step 3. Estimate the primary equation by OLS including the correction term E[ε | z = j]. 
 
Step 4. Correct the estimated asymptotic covariance matrix of the estimates. 
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 The procedure follows, with annotation provided within the commands.  The following must 
be set by the user prior to using this routine to set up the data: 
 
 NAMELIST    ; w = the Rhs variables in the ordered probit $ 
 CREATE   ; z  = the Lhs variable in the ordered probit $ 
 NAMELIST    ; x  = the Rhs variables in the regression model $ 
 CREATE   ; y  = the Lhs variable in the regression model $ 
 CALC     ; j  = the value on which sample selection is based $ 
 
Estimate the ordered probit model and collect results.  The number of values taken by the dependent 
variable in the ordered probit model is JP = J+1. Retrieve the dimensions and estimates from ordered 
probit. KP is the number of variables in the ordered probit, KP1 = KP+1, M  = number of threshold 
parameters, L  = number of parameters estimated. Retrieve the slope vector as alpha. 
 
 ORDERED ; Lhs = z ; Rhs = w ; Par $ 
 CALC     ; Nolist ; jp = Max(z) + 1 ; jp1 = jp + 1 
   ; kp = Col(w) ; kp1 = kp + 1 ; m = jp - 2 ; l = kp + m $ 

MATRIX   ; alpha = b(1 : kp) $ 
 
The full threshold vector is -∞,0,µ1,µ2,...,µJ-1,+∞.  The name mu is used by the ordered probit 
program, so we use mua. 
 
 MATRIX   ; u1 = [-10000 / 0 ] ; u2 = b(kp1:l ) ; u3 = [10000] ; mua = [u1/u2/u3] $ 
 
The covariance matrix for this full parameter vector, including thresholds with (-∞,0) embedded and 
∞ at the end is as follows: (the four parts are KP, 2, M and 1 parameter, respectively) 
 

ˆ
,0

ˆ
0

Var

   
   −∞   =
   
   ∞   

0 0
0 0 0 0

0 0
0 0 0

αα αµ

µα µµ

α Σ Σ

µ Σ Σ
 

 
 MATRIX       ; z11 = varb(1:kp, 1:kp)        
   ; z21 = Init(2,kp,0) ; z22 = [0,0/0,0] 
   ; z31 = varb(kp1:l, 1:kp) ; z32 = Init(m,2,0) ; z33 = varb(kp1:l, kp1,l) 
   ; z41 = Init(1,kp,0) ; z42 = [0,0] ; z43 = Init(1,M,0) ; z44 = [0] 

  ; v = [z11 / z21,z22 / z31,z32,z33 / z41,z42,z43,z44] $ 
Select the sample. 
 
 INCLUDE  ; New ; z  = j $ 
 
Construct some variables needed for the regression. For selection on z = j, E[ε|z=j] = ρ σ λ, 
Var[ε|z=j] = σ2(1 - ρ2 δ). 
 

CALC     ; j1 = j + 1 ; j2 = j + 2 $ 
CREATE   ; aj1 = mua(j1) - w’alpha ; aj = mua(j2) - w’alpha 
  ; dj1 = N01(aj1) ; dj = N01(aj) ; fj1 = Phi(aj1) ; fj = Phi(aj) 
  ; lambda = (dj1 - dj) / (fj - fj1) 
  ; delta = (aj1*dj1 - aj*dj) / (fj - fj1) - lambda ^ 2 $ 
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The regression is computed by regressing y on x and λ. Let c be the coefficient on λ.  We estimate 
the residual variance with s2 = e’e/N(j) - c2 δ  (the same as in the simpler case). Then the correlation 
between the regression disturbance and the structural disturbance in the ordered probit is estimated 
with ρ2 = c2 / s2. 
 

NAMELIST    ; xl = x,lambda $ 
REGRESS  ; Lhs  = y ; Rhs = xl $ 
CALC     ; p = Col(xl) ; c  = b(p) 
  ; s2 = sumsqdev / nreg - c^2 * Xbr(delta) 
  ; rhosqd = c^2 / s2 $ 

 
The asymptotic covariance matrix for the estimates is 
 
   C  =  s2 (X′X)-1[X′(I-ρ2∆)X + ρ2(X′G)Σ(G′X)] (X′X)-1 
 
where X includes lambda, ∆ is a diagonal matrix of δs, and G is a matrix whose columns are the 
derivatives of the lambda variable with respect to the parameters [α,µ].  G is more complicated here 
than in the standard probit case. The first KP columns of G are -∆W where W is the n×KP matrix of 
regressors in the ordered probit model.  We have augmented the slope parameter vector with M+3 
values, three of which are zeros and M = J-1 are elements in the estimated threshold vector.   

 
CREATE  ; pj1 = (j > 1) * dj1 / (fj - fj1) * (lambda - aj1) 
  ; pj = (j > 0) * (j < (jp-1)) * ( - dj/(fj - fj1) * (lambda - aj)) $ 
CREATE   ; h = 1 - rhosqd * delta $ 

 
Note that if j = 0, both of these values are zero, while if j = 1, the first is zero, and if j = J, the second 
is zero.  These are then inserted as the (KP+2)+(j-1) and (KP+2)+j columns of G.  The remaining 
columns of G are columns of zeros.  To assemble this, we work with X′G rather than G itself and 
use some tricks from matrix algebra.  Let X′G consist of two parts, X′G1 and X′G2.  X′G1 is just    -
X′∆W, which is easy to get.  X′G2 is the P×(J+2) matrix of moments defined using the variables 
above. Suppose the two columns are X′p1 and X′p. We have to place these two columns into G in 
the right place.  The following will do so without requiring the user to modify the program.  Let  H  
be a P×3 column matrix consisting of X′p1, X′p, and a third column filled with zeros.  Then, the full 
X′G matrix that we need is just HR  where R is the matrix of zeros. The first row is JP+1 zeros save 
for a one in the column corresponding to where we want X′p1 to be in X′G. The second row is 
defined likewise for X’p. 
 

MATRIX   ; xp1 = xl’pj1 ; xp = xl’pj ; zero = Init(p,1,0) 
  ; r = Init(3,jp1,0) ; r(1,j1) = 1 ; r(2,j2) = 1 
  ; xpp = [xp1,xp,zero] 
  ; xg1 = xl’[delta]w ; xg2 = xpp * r ; xg = [xg1,xg2] $ 

 
Obtain the corrected covariance matrix and display the results. 
 

MATRIX   ; vc = xl’[h]xl + rhosqd * xg * v * xg’ 
  ; vc = s2 * <xl’xl> * vc * <xl’xl>   
  ; Stat(b,varb,xl) ? (uncorrected results) 
  ; Stat(b,vc,xl)      $ (corrected results) 
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E56: Treatment Effects and Switching 
Regressions 

 
E56.1 Introduction 
 
 The essential form of the treatment effects ‘model’ is a measure of an outcome, y, and an 
input, say z, which takes the form of some treatment – income equations with a college attendance 
dummy variable, or wage equations with training program participation dummy variables are 
common examples.  Some of the more widely used methods are programmed in LIMDEP.  This 
chapter will detail several models that are related to this type of analysis.   

A variety of procedures are presented here.  This chapter examines some formal regression 
approaches that specify the ‘treatment effect’ as an endogenous dummy variable in a model.  The 
switching regressions and mover stayer models describe the effect of ‘treatment’ as a change in 
regime – that is, as a change in the applicable regression model.  These are more general than the 
endogenous dummy variable models, but they are, as well, fully parameterized. 
 
E56.2 The Mover Stayer Model 
 
 A fully parameterized model for treatment effects is the structural model 
 
   yi   =  Y1  =  β1′xi  +  εi1  when zi  =  1 

   yi   =  Y0  =  β0′xi  +  εi0  when zi  =  0 

   zi*   =  α′wi  +  ui,  zi  =  1(zi*  >  0). 
 
In this model, zi represents the presence (zi = 1) or absence (zi = 0) of the treatment.  In this instance, 
a different model applies in the two ‘states.’  This has been labeled a ‘mover stayer’ model in studies 
of income of migrants (movers) and nonmigrants (stayers).  The model can be estimated for the 
purpose of examining the various coefficients.  However, in recent treatments (such as Heckman, 
Tobias and Vytlacil (2003)) the interesting feature of the model is what it can reveal about ‘treatment 
effects,’ such as E[y|x,w,z=1] - E[y|x,w,z=0].    
 This is an application of the mover stayer model.  (See Willis and Rosen (1978), Lee (1978), 
Robinson and Tomes (1982), and Nakosteen and Zimmer (1980).) The structural equations of the 
model are: 
   y1   =  β1′x1 +  ε1  (may be a tobit model), 

   y0   =  β0′x0  +  ε0  (may be a tobit model), 

   c =  α′w   +  uc, 

   z*  =  y1 - y0, 

   z =  1 if z* > c and z = 0 if z* ≤ c, 

   y =  y1 if I = 1 and y = y0 if I = 0.  
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For an example (the setting of the Robinson and Tomes study), suppose yj is the market wage 
obtainable at location ‘j’ while ‘c’ is the cost of moving from initial state 1 to alternative state 0. 
Observed wage is y, which will be in state 0 if the premium I* exceeds the cost of the move, c. 
Otherwise, y is observed in state 1 and no transition of state takes place.  Variants of this model can 
be applied in a variety of situations, as suggested by the sampling of the literature noted above. 
 Observed data consist of y, x1, x0, z, and w.  The disturbances are assumed to be joint 
normally distributed.  I is an indicator of whether the individual ‘moves’ (I = 1) or ‘stays’ (I = 0). 
The sample selectivity model described earlier applies here with only minor variation, and, as noted, 
could be applied separately to each structural equation. (The two step estimation techniques are 
presented in Lee (1976).)  This section presents a FIML estimator for the full model.  We will denote 
the model with endogenous switching, whether or not it fully conforms to the structural model 
shown above, as the mover stayer model. 
 
NOTE:  The two regression equations in the mover stayer model may be tobit models. 
 

E56.2.1 Sample Selection Models 
 
 With an assumption of trivariate normality, 
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This is actually precisely the sample selection model developed in Chapter E52 in each of the two 
regimes.  (Note that in the trivariate normal distribution, it is assumed that εi0 and εi1 are uncorrelated.  
This is not a restriction.  The sample will never contain individuals who exist in both states, so a 
nonzero correlation could never be estimated with any sample data.  The zero ‘assumption’ is merely a 
convenient notation. This unidentified correlation will not play a role in any estimation. 
 Each regression equation can be treated separately, with the probit model, as a sample 
selection model.  The conditional mean functions are 
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so, the familiar two step estimator can be used for each equation.  The commands would be 
 
 PROBIT ; Lhs = z  

; Rhs = variables in w  
   ; Hold $ 
 SELECT ; Lhs = y  

; Rhs = variables in x $ for the first equation 
 SELECT ; Lhs = y  

; Rhs = variables in x ? for the second equation 
   ; Limits = 1 $    
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E56.2.2 Commands for the Mover Stayer Model  
 
 All relevant results for the estimated selection models above are those described in Section 
E52.2.  However, one can fit the entire equation system at once, including the probit equation, by full 
information maximum likelihood.  The commands will be as follows:  The estimator requires several 
steps to set it up, but these are routine. The essential commands are as follows: 
 
 PROBIT ; Lhs = z ; Rhs = w ; Hold $ 
 SELECT ; Lhs = y ; Rhs = x1 $ 
 MATRIX ; beta1 = bsr1 $ 
 SELECT ; Lhs = y ; Rhs = x0 ; Limits = 1 $ 
 MATRIX ; beta0 = bsr0 $ 
 SELECT ; Lhs = y ; Rh1 = x1 ; Rh2 = x0   
   ; MLE ; All ; Start = beta1, beta0 $ 
  
The right hand sides of the two regressions can be different if desired.  However, the formal model 
has the same regressors in both equations.  The last select command may also include  
 
   ; Tobit  
 
if the model is a pair of tobit equations.  The first two sample selection models are estimated just to 
get the complete set of starting values.  Since this model requires several steps, there is no command 
builder for the mover stayer model. 
 
NOTE: You may use ; Rst = list to impose restrictions anywhere in the mover stayer model. 
  
WARNING: Do not fit the first two selection equations as tobit equations, even if the model actually 
is a tobit model (as specified by ; Tobit  in the final command). 
  
 The two step linear regressions (SELECT) are needed to get the proper starting values put in 
the right place for LIMDEP to find them when the next command is carried out.  Also, note that after 
each linear selection model is estimated, we pick up the matrix bsrj where j is 1 or 0, depending on 
what the selection rule was with respect to z.  After estimating the selection model, LIMDEP 
automatically creates either bsr1 or bsr0 but the bsr matrix replaces the previous one.  So, after the 
first SELECT command, bsr1 will be in your matrix work area, but bsr0 will not.  After the 
SELECT command which selects on z = 0 (i.e., ; Limits = 1), bsr0 will exist, but bsr1 will not.  To 
make sure that the values are saved, we follow each SELECT command with a MATRIX command 
to make a copy of the coefficient vector in a place where it will not be overwritten.  These matrices 
are constructed as follows: 
 
   bsrj  =  [Estimate of β without the coefficient on λ, or σj , ρuj]. 
 
They are, thus, constructed precisely with the configuration needed for the mover stayer model.  If 
you want to provide a different set of starting values, the full set you need is 
 
   θ  =  [β1, σ1, ρu1, β0, σ0, ρu0]. 
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Note in the command template above how beta1, beta0 is used to supply exactly these values to the 
SELECT command. 
 For imposing restrictions with ; Rst = list, it is necessary to rearrange the parameter vector.  
(This is the only instance in LIMDEP’s estimators that the parameter vector used to impose 
restrictions differs from the one that is set up with your starting values.)  For imposing restrictions, 
use the modified parameter vector, θ* = [α, β1, β0, σ0, ρu0, σ1, ρu1].  Other options for the mover 
stayer model are the same as in the list in Section E56.8 for the switching regressions model. 
 
E56.2.3 Results for the Mover Stayer Model 
 
 Output from the mover stayer model is the same as the sample selection model estimated by 
maximum likelihood.  Since the single equation, linear regressions have (presumably) preceded this 
command, the program proceeds directly to the maximum likelihood procedure, without a first round 
least squares estimation.  Final output includes the log likelihood and a guide to the partitioning of 
the parameter vector. 
 Predictions for the mover stayer model are computed exactly the same as for the sample 
selection model  In this case, we compute 
 
   ŷ   =  β1′x1  +  (ρ1σ1)[φ/Φ]         if  z = 1 

and   ŷ   =  β0′x0  +  (ρ0σ0)[-φ/(1-Φ)]  if  z = 0. 
  
Recall that the coefficient on λ in the linear regression is an estimate of ρjσj, j = 0,1.  In the mover 
stayer model, these are estimated separately, and both pairs of estimates will appear in the results.  
Note, however, since this is the maximum likelihood estimator, the parameters ρj and σj are 
estimated separately.  There is no separate estimate of the product produced or displayed. 
 The following results are saved by this estimator: 
 
 Scalars: ybar, sy, logl, s = σ1, rho = ρ1u, sigma0, rho0u. 
 
 Matrices:  b contains the entire vector of parameters estimated.  In order, this is: 
 
    α  = parameters of the probit equation, 
    β1  = parameters in first regression, 
    β2  = parameters in second regression, 
    [σ0 ,ρ0u ,σ1 ,ρ1u] = ancillary parameters. 
 
   varb is the full asymptotic covariance matrix. 
 
To obtain specific parts of the parameter vector, use the matrix ; Part function to extract them. 
 
  



E56: Treatment Effects and Switching Regressions   E-1380 

E56.2.4 Application 
 
 The following will simulate the conditions of the switching regressions and mover stayer 
models in order to demonstrate the output that results.  The commands were executed all at once 
from the editor. 
 

SAMPLE ; 1-500 $ 
CALC  ; Ran(12345) $ 
CREATE   ; x1 = Rnn(0,1)                ? regressor for equation 1 
  ; x0 = Rnn(0,1)                ? regressor for equation 0 
  ; e1 = Rnn(0,1)                ? disturbance for equation 1 
  ; e0 = .5*e1+.5*Rnn(0,1)     ? e for equation 0, correlated 
  ; u = Rnn(0,1)+.5*(e1+e0) ? u for endogenous selection 
  ; w = Rnn(0,1)                ? regressor for selection equation 
  ; z = w+u                      ? underlying regression for probit 
  ; z = z > 0                     ? binary variable for probit 
  ; y1 = x1+e1               ? structural variable, y1* 
  ; y0 = x0+e0               ? structural variable, y0* 
  ; If(y1 < y0) ys = y1      ? choose minimum of y1*, y0* 
  ; (Else) ys = y0 
  ; yms = z*y1+(1-z)*y0       $ Lhs for mover stayer model 

 PROBIT   ; Lhs  = z ; Rhs = one,w ; Hold $ 
 SELECT   ; Lhs  = yms ; Rhs = one,x1,x0 $ 
 MATRIX   ; b1 = bsr1 $ 
 SELECT   ; Lhs = yms ; Rhs = one,x1,x0 ; Limits = 1 $ 
 MATRIX   ; b0 = bsr0 $ 
 SELECT   ; Lhs  = yms  
   ; Rh1= one,x1,x0 ; Rh2 = one,x1,x0  
   ; Start = b1,b0 ; MLE ; All $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Z 
Log likelihood function      -269.37019 
Results retained for SELECTION model. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Z|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .00342         .06254      .05  .9563     -.11915    .12600 
       W|     .87139***      .08062    10.81  .0000      .71337   1.02941 
--------+-------------------------------------------------------------------- 
+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Probit selection equation based on Z                     | 
| Selection rule is: Observations with Z        =  1       | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set               500              500.0            | 
| Selected sample        239              239.0            | 
+----------------------------------------------------------+ 
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----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=YMS      Mean                 =         .32104 
             Standard deviation   =        1.28792 
             Number of observs.   =            239 
Model size   Parameters           =              4 
             Degrees of freedom   =            235 
Residuals    Sum of squares       =        164.802 
             Standard error of e  =         .83743 
Fit          R-squared            =         .57544 
             Adjusted R-squared   =         .57002 
Standard error corrected for selection      .89237 
Correlation of disturbance in regression 
and Selection Criterion (Rho)     =         .47568 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YMS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .11713         .10888     1.08  .2820     -.09627    .33052 
      X1|    1.01122***      .05769    17.53  .0000      .89815   1.12429 
      X0|    -.05795         .05237    -1.11  .2685     -.16060    .04470 
  LAMBDA|     .42448***      .14287     2.97  .0030      .14446    .70450 
--------+-------------------------------------------------------------------- 
+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Probit selection equation based on Z                     | 
| Selection rule is: Observations with Z        =  0       | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set               500              500.0            | 
| Selected sample        261              261.0            | 
+----------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=YMS      Mean                 =        -.23974 
             Standard deviation   =        1.15506 
             Number of observs.   =            261 
Model size   Parameters           =              4 
             Degrees of freedom   =            257 
Residuals    Sum of squares       =        99.8946 
             Standard error of e  =         .62345 
Fit          R-squared            =         .70754 
             Adjusted R-squared   =         .70412 
Standard error corrected for selection      .68682 
Correlation of disturbance in regression 
and Selection Criterion (Rho)     =         .59235 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YMS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.00384         .07759     -.05  .9606     -.15592    .14824 
      X1|     .00844         .03943      .21  .8305     -.06884    .08573 
      X0|     .98204***      .03959    24.81  .0000      .90444   1.05963 
  LAMBDA|     .40684***      .10918     3.73  .0002      .19285    .62083 
--------+-------------------------------------------------------------------- 
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+------------------------------------------------+ 
| Sample Selection Model                         | 
| Probit selection equation based on Z           | 
| MOVER/STAYER model (MLE). LHS= YMS             | 
+------------------------------------------------+ 
Normal exit:  16 iterations. Status=0, F=    812.0407 
 
----------------------------------------------------------------------------- 
ML Estimates of Selection Model 
Dependent variable                  YMS 
Log likelihood function      -812.04069 
MOVER/STAYER model (MLE). LHS= YMS 
FIRST  2 estimates are probit equation. 
Next   3 slopes are for the Y=1 equation. 
Next   3 slopes are for the Y=0 equation. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YMS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Selection (probit) equation for Z 
Constant|     .01933         .06220      .31  .7559     -.10257    .14123 
       W|     .87198***      .08241    10.58  .0000      .71045   1.03350 
        |Corrected regression, Regime 1 
Constant|     .01926         .09946      .19  .8465     -.17568    .21420 
      X1|    1.00866***      .05500    18.34  .0000      .90086   1.11647 
      X0|    -.05293         .05800     -.91  .3615     -.16662    .06076 
        |Corrected regression, Regime 0 
Constant|    -.03587         .07531     -.48  .6338     -.18348    .11173 
      X1|     .00835         .04375      .19  .8485     -.07739    .09410 
      X0|     .98324***      .03983    24.68  .0000      .90517   1.06132 
        |Variance parameters 
SIGMA(0)|     .67448***      .03828    17.62  .0000      .59945    .74952 
RHO(0,u)|     .51879***      .12893     4.02  .0001      .26609    .77148 
SIGMA(1)|     .92669***      .05794    15.99  .0000      .81313   1.04025 
RHO(1,u)|     .61988***      .11638     5.33  .0000      .39178    .84799 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E56.2.5 Technical Details 
 
 The log likelihood function for the mover stayer model is that of the sample selection model 
applied to each regime separately.  Thus, we maximize 
 

         log L    = 
( )2 2

1 1 1 1 1
1 2

1 1

exp (1/ 2) / /   'log
2 1

i i i
z=

  − ε σ ρ ε σ +  Φ
  σ π − ρ  

∑ wα   +   

 

   
( )2 2

0 0 0 0 0
0 2

0 0

exp (1/ 2) / /   'log
2 1

i i i
z=

   − ε σ ρ ε σ +   Φ −
   σ π − ρ   

∑ wα . 

 
  



E56: Treatment Effects and Switching Regressions   E-1383 

E56.2.6 Treatment Effects 
 
 There are several treatment effects that one can identify in the model.  (See Heckman, 
Tobias and Vytlacil (2003) for example.)   The obvious candidate is the ‘treatment effect,’ 
 
   TE =  E[Y1|z=1]  -  E[Y0|z=0] 
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The problem with this measure is that it refers to different people – no one can be in both states.  
Nonetheless, it could be averaged over all individuals under the assumption that the treatment 
assignment is random at least with respect to x (that is the point of the previous section).  For an 
individual selected at random from the entire population, the ‘average treatment effect’ is 
 
   ATE   =  β1′x - β0′x  =  (β1 - β0)′x. 
 
On the other hand, perhaps more interesting is the ‘treatment effect on the treated,’ which is 
 
   ATT   =  E[Y1|z=1]  -  E[Y0|z=1] 
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Heckman et al. define as well, the ‘local average treatment effect’ which is the expected outcome 
gain for those induced to receive treatment through a change in the instrument from wk to wk

+.  The 
variable wk is assumed to change the treatment decision but not to directly affect the outcomes.  
Define, then, w to be the original vector and w+ to be the changed vector such that the one element 
has changed and moreover, α′w+ > α′w, so that the margin increases the probability of choosing the 
treatment.  Then, the local average treatment effect is 
 

   LATE =  (β1 - β0)′x  +  [(ρ1σ1)  -  (ρ0σ0)]
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Unfortunately, both sign and magnitude of these quantities are completely ambiguous – only the 
actual computation with the data can reveal either.  Signs of the coefficients are uninformative. 
 These results can be computed easily from the regression results.  The following program 
does the computation.  Its length is due to the need to collect quite a few specific inputs to the 
functions.  We begin with the same data setup used previously.  Your own application would replace 
the indicated parts. 
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 Compute the raw data.  Your own application would provide the variables for the namelists 
wi and x and the two dependent variables yms for the regression and z for the probit model. 
 
 SAMPLE ; 1-500 $ 
 CALC  ; Ran(12345) $ 
 CREATE   ; x1 = Rnn(0,1)                 ? regressor for equation 1 
   ; x0 = Rnn(0,1)                 ? regressor for equation 0 
   ; e1 = Rnn(0,1)                 ? disturbance for equation 1 
   ; e0 = .5*e1+.5*Rnn(0,1)       ? e for equation 0, correlated 
   ; u = Rnn(0,1)+.5*(e1+e0)   ? u for endogenous selection 
   ; w = Rnn(0,1)                 ? regressor for selection equation 
   ; z = w+u                       ? underlying regression for probit 
   ; z = z > 0                      ? binary variable for probit 
   ; y1 = x1+e1                ? structural variable, y1* 
   ; y0 = x0+e0                ? structural variable, y0* 
   ; If(y1 < y0) ys = y1       ? choose minimum of y1*, y0* 
   ; (Else) ys = y0 
   ; yms = z*y1+(1-z)*y0       $ Lhs for mover stayer model 
 CALC  ; n0 = n - Sum(z) ; n1 = Sum(z) $ 
 NAMELIST     ; wi = one,w $ 
 NAMELIST ; x = one,x1,x0 $ 
 
The remainder of the program is generic and need not be changed for a particular application.  This 
block computes the means for the whole sample and the two subsamples. 
 
 CALC  ; k = Col(x) ; m = Col(wi) $ 
 PROBIT   ; Lhs = z ; Rhs = wi ; Hold $ 
 MATRIX ; alpha = b $ 
 MATRIX ; wb = Mean(wi)   
   ; wb1 = 1/n1 *wi'z ; wb0 = 1/n0 * Mdif(wi'1,wi'z) $ 
 MATRIX ; xb = Mean(x)     
   ; xb1 = 1/n1 *x'z ; xb0 = 1/n0 * Mdif(x'1,x'z) $ 
 
The two regressions produce coefficient vectors and estimates of ρj and σj. 
 
 SELECT   ; Lhs = yms ; Rhs = x $ 
 MATRIX   ; beta1 = bsr1 ; b1  = bsr1(1:k) $ 
 CALC  ; r1 = rho ; s1 = s $ 
 SELECT   ; Lhs = yms ; Rhs = x ; Limits = 1 $ 
 MATRIX   ; beta0 = bsr0 ; b0 = bsr0(1:k) $ 
 CALC  ; r0 = rho ; s0 = s $ 
 
Compute the treatment effects. 
 
 CALC  ; List ; TE = b1'xb1 + r1*s1*  N01(alpha'wb1)/Phi(alpha'wb1) 
                        -b0'xb0 - r0*s0*(-N01(alpha'wb0)/Phi(-alpha'wb0)) $ 
 CALC  ; List ; ATE = b1'xb - b0'xb $ 
 CALC  ; List ; ATT = ATE + (r1*s1 - r0*s0)*N01(alpha'wb)/Phi(alpha'wb) $ 
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 It would be useful to have standard errors for the computed average treatment effects.  In 
principle, this can be done using the delta method.  However, there are two obstacles in the 
preceding.  The complexity of the computations does suggest it will be tedious.  However, the single 
equation estimates do not provide the necessary asymptotic variances for the estimates of ρj and σj, 
so as it stands, the computation cannot be done (at least not without treating these as constants.)  
However, the MLE for the mover stayer model and the WALD command solve both problems 
easily. 
 
 SELECT   ; Lhs = yms  
   ; Rh1 = x  
   ; Rh2 = x 
   ; Start = beta1, beta0 ; MLE ; All $ 
 WALD  ; Start = b  
   ; Var = varb  
   ; Labels = m_alpha, k_bs1, k_bs0, ss0, rs0, ss1, rs1 
   ; Fn1 = bs11'xb1 + rs1*ss1* N01(alpha1'wb1)/Phi(alpha'wb1) 
               -bs01'xb0 + rs0*ss0*N01(alpha1'wb0)/Phi(-alpha'wb0)  
   ; Fn2 = bs11'xb - bs01'xb 
   ; Fn3 = Fn2 + (rs1*ss1-rs0*ss0)*N01(alpha1'wb)/Phi(alpha1'wb) $ 
 
We applied these computations to the data in the preceding example.  The estimates of the 
parameters are the same.  The computations of the treatment effects are shown below.  (The estimate 
of the variance of the first treatment effect was too close to zero; evidently with the rounding error of 
the computation, that diagonal element of the matrix became negative.  The third estimate, the effect 
of treatment on the treated is the usual object of estimation.) 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 TE      =       .505201 
 ATE     =       .107003 
 ATT     =       .121913 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| VC matrix for the functions is singular.      | 
| Standard errors are reported, but the         | 
| Wald statistic cannot be computed.            | 
+-----------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 Fncn(1) |     .65997144    ......(Fixed Parameter)....... 
 Fncn(2) |     .04118714       .12689739      .325   .7455 
 Fncn(3) |     .22861000       .13082471     1.747   .0806 
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E56.3 Alternative Distribution for Selection and Treatment 
Effects 
 
 The treatment effects model developed above has structure 
 
   yi   =  Y1  =  β1′xi  +  εi1  when zi  =  1 

   yi   =  Y0  =  β0′xi  +  εi0  when zi  =  0 

   zi*   =  α′wi  +  ui,  zi  =  1(zi*  >  0). 
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The trivariate normality of the random components is an important feature of the specification.  
Heckman, Tobias and Vytlacil (2001) (see also Heckman and Vytlacil (2000) and references cited) 
suggest that the model can be improved by allowing a different distribution with thicker tails to 
govern the selection mechanism.  The logit model, instead of the probit is a natural candidate.  In 
order to maintain the flexible structure of the model, they propose to link the selection model to the 
regressions through an inverse transformation that reproduces the joint normality of the system.  
Formally, using their notation, we maintain that 
 
   ui ~ F(ui) with CDF F(ui) where F(ui) defines a symmetric distribution, 
 
Let J(t) be a strictly increasing function, such that 
 
   zi  = 1  when  ui > -α′wi 

or   zi  = 1  when  J(ui)  >  J(-α′wi). 
 
To map the model with nonnormal selection rule into the model where the normal distribution 
applies, they propose the mapping iu = JΦ(ui) = Φ-1[F(ui)].  Then, iu  has a standard normal 
distribution.  The revised system is 
 
   yi  =  Y1  =  β1′xi  +  εi1  when zi  =  1 

   yi  =  Y0  =  β0′xi  +  εi0  when zi  =  0 

   zi**        =  JΦ(α′wi)  +  iu ,  zi  =  1(zi*  >  0). 
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The implications for the conditional mean functions and treatment effects are simple; 
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   ATE   =  β1′x - β0′x  =  (β1 - β0)′x 
 
   ATT   =  E[Y1|z=1]  -  E[Y0|z=1] 
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   LATE =  (β1 - β0)′x + [(ρ1σ1)  -  (ρ0σ0)]
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The denominators of the results are all obtained from Φ{Φ-1[F(ui)]} = F(ui). 
 Though advocated as a ‘modern’ approach, this is precisely Lee’s (1982, 1983) model (the 
authors do note this) developed in Section E55.4.  Thus, estimating the parameters and computing 
the treatment effects with this form is a small modification of what we have already done.  The 
commands would be as follows.  We have computed the treatment effects, but not the asymptotic 
standard errors.  The Lee model is fit by two step least squares, so we do not have the asymptotic 
covariance matrix needed for the computation.  One could possibly use bootstrapping to add this 
computation to the results. 
 The results below display only a trivial change due to the modification of the model.  Of 
course, these are simulated data.  The authors construct a Monte Carlo study which produces more 
pronounced differences.  They also suggest that one might relax the joint normality assumption.  
Their proposal, a multivariate t distribution with small degrees is a bit ad hoc, but their results 
suggest that differences in the sizes of the tails of the distributions does induce changes in the results.   
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The commands are: 
 
 NAMELIST     ; wi = one,w $ 
 NAMELIST ; x = one,x1,x0 $ 
 CALC  ; k = Col(x) ; m = Col(wi) $ 
 LOGIT   ; Lhs = z ; Rhs = wi ; Hold $     
 MATRIX ; alpha = b $ 
 MATRIX ; wb = Mean(wi)   
   ; wb1 = 1/n1 *wi'z ; wb0 = 1/n0 * Mdif(wi'1,wi'z) $ 
 MATRIX ; xb = Mean(x)     
   ; xb1 = 1/n1 *x'z ; xb0 = 1/n0 * Mdif(x'1,x'z) $ 
 SELECT   ; Lhs = yms ; Rhs = x $ 
 MATRIX   ; beta1 = bsr1 ; b1 = bsr1(1:k) $ 
 CALC  ; r1 = rho ; s1 = s $ 
 SELECT   ; Lhs = yms ; Rhs = x ; Limits = 1 $ 
 MATRIX   ; beta0 = bsr0 ; b0 = bsr0(1:k) $ 
 CALC  ; r0 = rho ; s0 = s $ 
 CALC  ; jphi1 = Ntb(Lgp(alpha’wb1)) ; f1 = Lgp(alpha’wb1) $ 
 CALC  ; jphi0 = Ntb(Lgp(alpha’wb0)) ; f0 = Lgp(-alpha’wb0) $ 
 CALC  ; jphi = Ntb(Lgp(alpha’wb) ; f = Lgp(alpha’wb) $ 
 CALC  ; List ; TE = b1'xb1 + r1*s1*N01(jphi1)/f1 
                                                            -b0'xb0 - r0*s0*(-N01(jphi0)/f0) $ 
 CALC  ; List ; ATE = b1'xb - b0'xb $ 
 CALC  ; List ; ATT = ATE + (r1*s1 - r0*s0)*N01(jphi)/f $ 
 
These are the results from estimation with the logit selection rule.  The results obtained earlier with 
the probit model follow. 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 TE      =       .497570 
 ATE     =       .107562 
 ATT     =       .127761 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 TE      =       .505201 
 ATE     =       .107003 
 ATT     =       .121913 
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E56.4 Treatment Effects Regression – Endogenous Dummy 
Variable Models 
 
 This section will narrow the analysis of the preceding estimator by formally embedding the 
treatment effect in a single regression model.  The basic structure is 
 

  yi  =  γzi  + β′xi  +  εi,  
 
where zi is a dummy variable that once again indicates the presence (zi = 1) or absence (zi = 0) of 
some treatment. For example, yi might be lifetime income and zi might record attendance at an elite 
college.  As long as zi is exogenous, this is merely a classical regression with a dummy variable in it.  
The problem is the likely endogeneity of the treatment.  This is formalized in this model with the 
familiar auxiliary probit equation 
 
   zi*  =  α′wi  +  ui, zi = 1(zi* > 0). 
 
This is an ordinary probit equation.  The problem for estimation of (γ,β) is the possible endogeneity 
of the dummy variable. This is the ‘treatment effects’ sample selection model examined in Section 
E52.3.  It is also a restricted version of the mover stayer model in the previous section, in which the 
two regimes, rather than having separate regressions, now have the same regression simply with 
different constant terms.  (The models are nested, so this is a testable restriction.) 
 The modification of the earlier sample selection model is as follows:  
 
   E[yi |xi, zi = 1]  =  β′xi + γ +  (ρσ)[φ(α′wi)/Φ(α′wi)] 

while   E[yi |xi, zi = 0]  =  β′xi       +  (ρσ)[-φ(α′wi)/Φ(-α′wi)]. 
 
Once again, we are interested in estimation of the ‘treatment effect’ in the model.  Contrary to 
intuition, this is not γ, which is what motivates the sample selection model approach to this model 
(and, more generally, much of the literature.) 
 
E56.4.1 Estimation 
 
 There are three estimators available for this model, two step, maximum likelihood and two stage 
least squares. (There are others, including a nonlinear least squares approach, not considered here.) 
 
Two Step Estimation 
 
 Heckman’s two step, or ‘Heckit’ estimation method is consistent, but not efficient: 
 
Step 1. Use a probit model for zi to estimate α.  For each observation, compute  
 
   λi  =   φ(α′wi) / Φ(α′wi) when zi = 1 and 

   λi  = - φ(α′wi) / Φ(-α′wi) when zi = 0 
 
 using the probit coefficients. 
 
Step 2. Linearly regress yi on xi, zi and λi to estimate β, δ and θ = ρσ. 
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After estimation, it is necessary to adjust the standard errors and the usual least squares estimate of 
σ2, which is inconsistent.  This uses the same prescription used in Chapter E52 for the simpler 
model.  The corrected asymptotic covariance matrix for the two step estimator, (b,c), is 
  
 Asy.Var[b,c]  =  σε

2(X*′X*)-1[X*′(I - ρ2∆)X*  +  ρ2(X*′∆W)Σ(W′∆X*)](X*′X*)-1 

 
where   X* =  [X,z : λ], 

   δi   =  -λi(α′wi + λi)  (-1 ≤ δi ≤ 0), 

   ∆    =  diag[δ], 

and   Σ    =  asymptotic covariance matrix for the estimator of α. 
 

A consistent estimator of σ2 is 2σ̂  = e′e/n - 2ˆ ˆθ δ .  The remaining parameters are estimated using the 
least squares coefficients.  The computations used in the estimation procedure are those discussed in 
Heckman (1979) and in Greene (1981). 
 To estimate this model with LIMDEP, it is necessary first to estimate the probit model, then 
request the selection model.  The pair of commands is 
 
  PROBIT  ; Lhs = name of z  
   ; Rhs = list for w  
   ; Hold results $      
 SELECT ; Lhs = name of y  
   ; Rhs = list for x,z  
   ; All $  
  
For this simplest case, ; Hold ... may be abbreviated to ; Hold.  All of the earlier discussion for the 
probit model applies.  (See Chapter E27.)  This application differs only in the fact the ; Hold 
specification requests that the model definition and results be saved to be used later.  Otherwise, they 
disappear with the next model command.  The PROBIT command is exactly as described in Chapter 
E18.  The selection model is completely self contained.  You do not need to compute or save λi.  
Here, we must use entire sample, that is, not select out any observations.  Use the specification ; All 
in the SELECTION command, and otherwise, set it up in the usual manner.   In this instance, all 
computations are exactly as described earlier, save those in the calculations.  This is precisely the same 
as the application in Chapter E52 for the basic selection model, save for the addition of the dummy 
variable to the right hand side of the regression, and ; All to the command. 
 
Maximum Likelihood Estimation 
 
 The log likelihood function for this treatment effects model is the same as that for the mover 
stayer model, with the various equality restrictions imposed.  It is also a minor modification of the 
log likelihood for the basic sample selection model.  Thus, we maximize 
 

 log L  =  
( )2 2

1 2

exp (1/ 2)( ) / ( ) /   'log
2 1

i i i i i
z

y y
=

  ′− − δ − σ ′ρ − δ − σ +  Φ
  σ π − ρ  

∑
x x wβ β α   +   

   ( )2 2 2

0 2

exp (1/ 2)( ) / ( ) /   'log
2 1
i i i i i

z

y y
=

   ′− − σ ′ρ − σ +   Φ −
   σ π − ρ   

∑
x x wβ β α . 
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To fit the treatment effects model, just add ; MLE to the two step estimator.  The commands are 
 
 PROBIT ; Lhs = variable z  
   ; Lhs = variables in w  
   ; Hold $ 
 SELECT ; Lhs = variable y  
   ; Rhs = variables in x, variable z   
   ; All  
   ; MLE $ 
 
Two Stage Least Squares – Instrumental Variable Estimation 
 
 A second means of estimating the model is with two stage least squares.  The problem with 
ordinary least squares estimates of the model based on the observed data is the correlation between z 
and ε.  A solution to the inconsistency of OLS is to use 2SLS, using as the instrumental variable for z 
the predicted probabilities from the probit equation.  It is not necessary to ; Hold the results of the 
probit model in this case.  The set of commands would be  
  
 NAMELIST ; w = ... ; x = ... $ 
 PROBIT  ; Lhs = z ; Rhs = w ; Prob = zfit $ 
 2SLS     ; Lhs = y  ; Rhs = x, z ; Inst = x,  zfit $ 
 
 We note, there is a tendency in the literature to equate the simple replacement of zi in the 
regression with the fitted probability as an ‘instrumental variable’ estimator.  Ordinary least squares 
is then used to estimate the parameters.  We emphasize, this is not 2SLS for this model and the 
replacement variable is not an instrument, it is a proxy.  Whether the estimator so constructed is even 
consistent is debatable.    
 
E56.4.2 Treatment Effects 
 
 Under the assumptions of the model, the ‘treatment effect’ would be 
 

 E[y | z = 1,x,w] – E[y | z=0,x,w] =  ( ) ( )( )
( ) ( )

′ ′ φ φ
γ + ρσ + ′ ′Φ Φ − 

w w
w w

α α
α α

 

     =  ( )( )
( )[1 ( )]

′ φ
γ + ρσ  ′ ′Φ − Φ 

w
w w

α
α α

. 

 
As suggested earlier, the notable aspect is that this is not equal to γ unless ρ equals zero.  The result 
is straightforward to compute using CALC, and the results of any of the estimators suggested below.  
If a standard error is desired, then the FIML estimator, and WALD would be the preferred approach.  
For the application that is developed below, the following commands would compute the effect and 
estimate its standard error. 
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 The following does this computation for the model estimated below.  The calculation is 
based on the maximum likelihood estimator.  This is the third set of estimates given below.  In the 
estimated model, the coefficient on lfp, the endogenous variable, is -153.226961.  But, when the full 
model is accounted for in the WALD command below, the impact of the ‘treatment’ goes up 
substantially, to -250.110003. 
 
 NAMELIST  ; x = one,ha,he,hw,faminc $ 
 CREATE ; age = wa ; agesq = age*age $ 
 NAMELIST  ; w = one,we,age,agesq,kl6,k618 $ 
 PROBIT  ; Lhs = lfp ; Rhs = w ; Hold ; Prob = pfit $ 
 SELECT  ; Lhs = hhrs ; Rhs = x,lfp ; All ; MLE $ 
 CALC   ; kw = Col(w) ; kx = Col(x) $ 
 MATRIX  ; wbar = Mean(w) $ 
 WALD  ; Start = b ; Var = varb  
   ; Labels = kw_alpha,kx_beta,gamma,sgma,ro  
             ; Fn1 = gamma + sgma*ro*N01(alpha1'wbar) / 
                            (Phi(alpha1'wbar)*Phi(-alpha1'wbar)) $ 
 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =     40.98666 
Prob. from Chi-squared[ 1] =       .00000 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|   -250.110***    39.06698    -6.40  .0000    -326.680  -173.540 
--------+-------------------------------------------------------------------- 
 
E56.4.3 Application 
 
 In the following, we fit a ‘treatment model’ for the husband’s hours, where the endogenous 
dummy variable is the wife’s labor force participation.  The following uses all three estimators.  The 
probit estimates are the same as those obtained earlier. 
 
 NAMELIST  ; x = one,ha,he,hw,faminc $ 
 NAMELIST  ; w = one,we,age,agesq,kl6,k618 $ 
 PROBIT  ; Lhs = lfp    ; Rhs = w ; Hold ; Prob = pfit $ 
 SELECT  ; Lhs = hhrs ; Rhs = x,lfp ; All $ 
 2SLS   ; Lhs = hhrs ; Rhs = x,lfp ; Inst = x,pfit $ 
 SELECT  ; Lhs = hhrs ; Rhs = x,lfp ; All ; MLE $ 
 
These are the two step estimators using Heckman’s method. 
 
  



E56: Treatment Effects and Switching Regressions   E-1393 

+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Probit selection equation based on LFP                   | 
| Sample is all observations.                              | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set               753              753.0            | 
| Selected sample        753              753.0            | 
+----------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=HHRS     Mean                 =     2267.27092 
             Standard deviation   =      595.56665 
             Number of observs.   =            753 
Model size   Parameters           =              7 
             Degrees of freedom   =            746 
Residuals    Sum of squares       =    .181436E+09 
             Standard error of e  =      493.16533 
Fit          R-squared            =         .31340 
             Adjusted R-squared   =         .30788 
Standard error corrected for selection   495.44230 
Correlation of disturbance in regression 
and Selection Criterion (Rho)     =        -.12587 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2350.53***    150.0000    15.67  .0000     2056.53   2644.52 
      HA|   -6.42709***     2.32011    -2.77  .0056   -10.97442  -1.87976 
      HE|    30.4775***     6.94286     4.39  .0000     16.8697   44.0852 
      HW|   -112.030***     6.43336   -17.41  .0000    -124.639   -99.421 
  FAMINC|     .03248***      .00223    14.58  .0000      .02812    .03685 
     LFP|   -150.410       109.3608    -1.38  .1690    -364.753    63.934 
  LAMBDA|   -62.3601       70.67071     -.88  .3776   -200.8722   76.1519 
--------+-------------------------------------------------------------------- 
Two stage    least squares regression ............ 
LHS=HHRS     Mean                 =     2267.27092 
             Standard deviation   =      595.56665 
             Number of observs.   =            753 
Model size   Parameters           =              6 
             Degrees of freedom   =            747 
Residuals    Sum of squares       =    .183027E+09 
             Standard error of e  =      494.99127 
Fit          R-squared            =         .30831 
             Adjusted R-squared   =         .30368 
Instrumental Variables: 
ONE       HA        HE        HW        FAMINC    PFIT 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2334.61***    159.8080    14.61  .0000     2021.39   2647.83 
      HA|   -6.26441***     2.35599    -2.66  .0078   -10.88206  -1.64675 
      HE|    31.4818***     6.78263     4.64  .0000     18.1881   44.7755 
      HW|   -109.163***     7.48834   -14.58  .0000    -123.840   -94.486 
  FAMINC|     .03159***      .00260    12.17  .0000      .02651    .03668 
     LFP|   -159.015       111.4911    -1.43  .1538    -377.533    59.504 
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+----------------------------------------------------------+ 
| Sample Selection Model                                   | 
| Probit selection equation based on LFP                   | 
| Sample is all observations.                              | 
| Results of selection:                                    | 
|                   Data points     Sum of weights         | 
| Data set               753              753.0            | 
| Selected sample        753              753.0            | 
+----------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=HHRS     Mean                 =     2267.27092 
             Standard deviation   =      595.56665 
             Number of observs.   =            753 
Model size   Parameters           =              7 
             Degrees of freedom   =            746 
Residuals    Sum of squares       =    .181436E+09 
             Standard error of e  =      493.16533 
Fit          R-squared            =         .31340 
             Adjusted R-squared   =         .30788 
Standard error corrected for selection   495.44230 
Correlation of disturbance in regression 
and Selection Criterion (Rho)     =        -.12587 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2350.53***    150.0000    15.67  .0000     2056.53   2644.52 
      HA|   -6.42709***     2.32011    -2.77  .0056   -10.97442  -1.87976 
      HE|    30.4775***     6.94286     4.39  .0000     16.8697   44.0852 
      HW|   -112.030***     6.43336   -17.41  .0000    -124.639   -99.421 
  FAMINC|     .03248***      .00223    14.58  .0000      .02812    .03685 
     LFP|   -150.410       109.3608    -1.38  .1690    -364.753    63.934 
  LAMBDA|   -62.3601       70.67071     -.88  .3776   -200.8722   76.1519 
--------+-------------------------------------------------------------------- 
ML Estimates of Selection Model 
Dependent variable                 HHRS 
Log likelihood function     -6202.52230 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Selection (probit) equation for LFP 
Constant|    -.23352        1.54515     -.15  .8799    -3.26195   2.79491 
      WE|     .11944***      .02223     5.37  .0000      .07588    .16300 
     AGE|     .00276         .07099      .04  .9690     -.13638    .14190 
   AGESQ|    -.00047         .00081     -.58  .5625     -.00207    .00112 
     KL6|    -.87593***      .11397    -7.69  .0000    -1.09932   -.65255 
    K618|    -.05539         .04028    -1.38  .1691     -.13434    .02355 
        | Corrected regression, Regime 1 
Constant|    2351.32***    140.8639    16.69  .0000     2075.23   2627.41 
      HA|   -6.43033***     2.19962    -2.92  .0035   -10.74150  -2.11916 
      HE|    30.5281***     6.68052     4.57  .0000     17.4345   43.6217 
      HW|   -112.027***     4.13167   -27.11  .0000    -120.125  -103.929 
  FAMINC|     .03250***      .00153    21.25  .0000      .02950    .03549 
     LFP|   -153.227       115.7198    -1.32  .1855    -380.034    73.580 
   SIGMA|    495.319***    11.30461    43.82  .0000     473.162   517.475 
     RHO|    -.12200         .14665     -.83  .4055     -.40944    .16543 
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E56.5 Sample Selection with Two Treatments 
 
 Consider evaluating the impact of two treatments (e.g., programs).  The basic regression is 
 
   yi  =  β′xi  +  α1D1i  +  α2D2i  +  εi. 
 
Binary variables D1i and D2i indicate presence (=1) or absence (=0) of the two treatments.  To this 
point, save for D1 and D2 in the equation (which need not be the case), this is the selection model 
with bivariate probit sample selection equations.  To the preceding, however, we add an ‘eligibility 
requirement,’ 
   E1i  =  1 if individual is eligible for program 1, 0 otherwise, 

   E2i  =  1 if individual is eligible for program 2, 0 otherwise. 
  
Then, D1i = 0 if E1i = 0 by definition and likewise for D2i.  Thus, the sample contains data on 
[yi,xi,D1i,D2i,E1i,E2i] for observations i = 1,...,N.  We suppose that m1 ≤ N individuals are eligible for 
program 1 and m2 ≤ N are eligible for program 2. 
 The selection equations defined over those eligible for the programs are: 
  
   D

   Dk =  z2k′δ2 +  v2k,  k = 1,...,m2. 

j  =  z1j′δ1 +  v1j, j = 1,...,m1, 

  
The Ds (for participation given eligibility are determined by probit models in the usual way, save for 
the complications introduced by the eligibility requirements.  The final element of the specification is 
a trivariate normal distribution assumed for [εi,v1i,v2i].  The marginal distributions of v1 and v2 are 
standard normal as usual for the probit model. 
 Estimation proceeds along lines similar to those for the basic model, with the following 
changes: 
  
Step 1. The two step estimation procedure is based on all observations in the sample, not just those 

for which D1i = D2i = 1. The model is estimated by using least squares in an augmented 
regression containing two ‘λ‘ variables. These are computed differently, however, depending 
on eligibility. 

 
Step 2. For observations with E1i = E2i = 1, the usual bivariate probit model applies and the 

procedure shown in Section E55.3 applies.  This group will still contain observations in all 
four D1/D2 cells. 

 
Step 3. If E1i = 1 but E2i = 0, λ1 is computed based on the univariate probit model for D1i, but λ2 is 

taken to be 0.  This group may have observations with D1i equal to 1 or 0, but D2i must be 0. 
 
Step 4. For E2i = 1 and E1i = 0, the reverse of the procedure in Step 3 applies. 
 
Step 5. If E1i = E2i = 0, then both D1i and D2i must be 0, so both λs are taken to be 0. 
 
The necessary adjustments to the way the asymptotic covariance matrix is computed are all made 
internally.  Note that it is possible to miscode the data.  For example, the pair of values D1i = 1,       
E1i = 0, is invalid.  Individuals cannot participate in programs for which they are ineligible.  LIMDEP 
checks for miscoded data. 
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 The procedure for estimation of this model must be as follows: With the exception noted, 
you can use any names you like. 
 

CREATE ; d1 = dependent variable in first probit 
  ; d2 = dependent variable in second probit 
  ; y = dependent variable in main regression $ 
NAMELIST  ; x = Rhs in primary equation   
       ; z1 = Rhs for probit for d1 
           ; z2 = Rhs for probit for d2 $ 
INCLUDE   ; New ; e1 = 1 | e2 = 0 $ 
PROBIT    ; Lhs = d1  
  ; Rhs = z1 $   (No need to ; Hold) 
MATRIX    ; delta1 = b $ (You must use name delta1) 
INCLUDE   ; New ; e1 = 0 & e2 = 1 $ 
PROBIT    ; Lhs = d2  
  ; Rhs = z2 $ 
MATRIX    ; delta2 = b $ 
INCLUDE   ; New ; e1 = 1 & e2 = 1 $ 
BIVARIATE ; Lhs  = d1, d2  
  ; Rh1 = z1; Rh2 = z2  
  ; Hold  
  ; Start = delta1, delta2, 0 $ 
MATRIX    ; vdelta = varb $ 
INCLUDE   ; New ; e1 = 1 | e1 = 0 | e2 = 1 | e2 = 0 $ (all properly coded data) 
SELECT    ; Lhs = y  
  ; Rhs = x ; Rh2 = e1,e2 $ 

 
Output from this procedure is essentially the same as that for the selection model with bivariate 
probit selection.  However, a complete tabulation of the numbers of observations in the various cells  
is given at the beginning of the results for the SELECT command. 
 
E56.6 ML Estimation of a Tobit Model with an Endogenous 
Dummy Variable 
 

Our interest is in a model which includes censoring of the dependent variable in the second 
equation.  A fully operational estimator for the simultaneous equations model 
 

  zi*  =  γ1yi2* +  α′wi  +  ui, zi  =  1(zi1* > 0) 

  yi*  =  γ2zi  +  β′xi   +  εi, yi  =  Max(Li,yi*) (note, zi, not zi1*) 
 
remains to be derived.  Maddala (1983) shows that the model cannot be internally consistent if γ1 is 
nonzero.)  This restricts us to recursive models.  Consider, then, the model with γ1 = 0  
 

  zi*  =  α′wi  +  ui, zi = 1(zi1* > 0) 

  yi*  =  γ2zi  +  β′xi  +  εi, yi  =  Max(Li,yi*). 
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The two step estimator is problematic in this case.  The partial reduced form for yi2* is not available 
– the precise prediction that should be inserted for zi  is unclear.  But, a full information maximum 
likelihood estimator is feasible.   

We continue to assume that u and ε are bivariate normally distributed with zero means, 
variances one and σ2, and correlation ρ.  Consider, first, the cases in which yi* is censored.  The 
probabilities associated with these outcomes are the probabilities of the joint events,  
 

  Prob[yi = Li , zi = 0] and Prob[yi = Li , zi = 1].   
 
These are simply the bivariate standard normal integrals, 
 

  Prob[yi = Li, zi = 0]  =  Prob[(εi/σ) < (Li - β′xi)/σ, ui  < -α′wi, | ρ] 

   =  Φ2[(Li - β′xi)/σ, -α′wi,ρ] 
 
and   Prob[yi = Li, zi = 1]  =  Prob[(εi/σ) < (Li - γ - β′xi)/σ, ui  > -α′wi | ρ] 

   =  Prob[(εi/σ) < (Li - γ - β′xi)/σ, ui  < α′wi | -ρ] 

   =  Φ2[(Li - γ - β′xi)/σ, α′wi,-ρ] 
 
where Φ2 denotes the bivariate standard normal CDF.  These are the terms in the likelihood function 
for the fully censored data.  It might seem odd that this has ignored the simultaneity.  However, the 
result can be obtained trivially by writing  
 

Prob[yi = Li, zi = 1] =  Prob[yi = Li| zi = 1]Prob[zi = 1]. 
 
The former probability is just the joint probability divided by the marginal, which then cancels out of 
the product, and, of course, conditioned on zi, we are free to treat zi as a constant.  The ‘simultaneity’ 
only becomes an issue in regression because of the use of covariances and moments.  In this 
instance, we are using the probabilities directly.   

For the uncensored observations, we require the two mixed distributions, f(yi, zi = 0) and    
f(yi, zi = 1).  The first of these, f(yi, zi=0), is derived from  
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For f(yi, zi = 1), the numerator inside the CDF is changed to α′wi +(ρ/σ)(yi - γ - β′xi) and all other 
parts remain the same.  These four results, then, give the parts of the likelihood function, which can 
then be maximized to estimate the parameters. 
 The following program will estimate the parameters of the model by maximum likelihood.  
This is not built into LIMDEP, so we use MAXIMIZE instead.  The left and right hand sides of the 
two equations are defined for the specific problem.  The censoring limit for the second equation will 
typically be zero, but can be nonzero. That is defined here as well.  The rest of the command set is 
generic, and can be used without modification. 
 

NAMELIST  ; w = the Rhs of the probit model $ 
NAMELIST  ; x  = exogenous variables in the censored regression $ 
CREATE    ; z  = binary dependent variable $ 
CREATE    ; y  = censored dependent variable $ 
CREATE    ; li = censoring limit $ 

 
Obtain the dimensions of the problem and pointers to partition the parameter vector. 
 

CALC      ; k = Col(x) ; k1 = k+1 ; m = Col(w) $ 
 
Get the starting values for the probit model.  These are consistent, but LIML so inefficient. 
 

PROBIT    ; Lhs = z ; Rhs = w $ 
MATRIX    ; alpha 0 = b $ 

 
Obtain the starting values for censored regression.  These are inconsistent, but better than zero. 
 

TOBIT     ; Lhs = y ; Rhs = z,x ; Limit = li $ 
CALC      ; gamma0 = b(1) $ 
MATRIX    ; beta0 = b(2:k1) $ 

 
Compute a starting value for σ in the tobit equation, then use the Olsen transformation.  The starting 
value for ρ is zero. 
 

CALC      ; s0 = s  ; r0 = 0 ; h0 = 1/s $ 
CREATE    ; d = y > li ; q = 2*z - 1 $ 
 

Finally, compute the FIML estimation of all model parameters using maximum likelihood. 
 

MAXIMIZE  ; Labels = c,k_beta,m_alpha,h,r 
           ; Start = gamma0,beta0,alpha0,h0,r0 
           ; Fcn = alphaw = alpha1’w                    | 
                      betax = beta1’x                    | 
                      a0 = (li – c*z - betax)* h    | 
                      a1 = (y  - c*z - betax)* h | 
                      dr = 1/Sqr(1 - r*r)            | 
                      uz = q*alphaw       | 
                      ur = -q*r                      | 
    Log((1-d) * BVN(a0,uz,ur) + d * h*N01(a1) * Phi(dr*(q*alphaw + r*a1))) $ 
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 The following application reestimates the husband’s hours equation that was estimated earlier.  
To force the data into the present framework, we have censored the hours variable at 1,800 hours.  
 
 NAMELIST  ; x = one,ha,he,hw,faminc $ 
 NAMELIST  ; w = one,we,age,agesq,kl6,k618 $ 
 CREATE    ; hours = hhrs ; If(hours < 1800)hours = 1800 $ 
 CREATE ; z = lfp ; li = 1800 ; y = hours $ 

CALC      ; k = Col(x) ; k1 = k+1 ; m = Col(w) $ 
PROBIT    ; Quietly ; Lhs = z ; Rhs = w $ 
MATRIX    ; alpha 0 = b $ 
TOBIT     ; Quietly ; Lhs = y ; Rhs = z,x ; Limit = li $ 
CALC      ; gamma0 = b(1) $ 
MATRIX    ; beta0 = b(2:k1) $ 
CALC      ; s0 = s ; r0 = 0 ; h0 = 1/s $ 
CREATE    ; d = y > li ; q = 2*z - 1 $ 
MAXIMIZE  (exactly as shown above) 

 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function     -5395.66339 
Estimation based on N =    753, K =  14 
Inf.Cr.AIC  =  10819.3 AIC/N =   14.368 
Model estimated: Aug 10, 2011, 22:14:06 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       C|   -97.7351*      52.14551    -1.87  .0609   -199.9384    4.4682 
   BETA1|    2039.00***    116.1124    17.56  .0000     1811.42   2266.57 
   BETA2|   -7.28367***     1.94937    -3.74  .0002   -11.10436  -3.46299 
   BETA3|    25.1337***     5.15560     4.88  .0000     15.0289   35.2385 
   BETA4|   -73.8593***     6.20867   -11.90  .0000    -86.0281  -61.6905 
   BETA5|     .01853***      .00160    11.60  .0000      .01540    .02166 
  ALPHA1|    -.48662        1.00183     -.49  .6272    -2.45017   1.47693 
  ALPHA2|     .02912**       .01145     2.54  .0110      .00668    .05156 
  ALPHA3|     .03019         .04755      .63  .5254     -.06300    .12339 
  ALPHA4|    -.00047         .00056     -.85  .3966     -.00156    .00062 
  ALPHA5|    -.20567***      .05693    -3.61  .0003     -.31724   -.09409 
  ALPHA6|    -.03359         .02517    -1.33  .1820     -.08291    .01574 
       H|     .00149***   .4428D-04    33.70  .0000      .00141    .00158 
       R|     .96643***      .00982    98.42  .0000      .94718    .98568 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E56.7 Endogenous Dummy Variable in a Probit Model 
 
 A natural extension of the model examined in the previous section is one in which both 
variables are binary.  This would be a probit model with an endogenous variable on the right hand side, 
 

  zi*  =  α′wi  +  ui, zi = 1(zi1* > 0) 

  yi*  =  γzi  +  β′xi  +  εi,  yi = 1(yi* > 0). 
 
Estimation of this model turns out to be considerably simpler than the models that we have 
considered thus far.  Consider the model for the probabilities of the event y = 0/1 and z = 0/1 .  For 
the (1,1) case, 
   Prob[y = 1, z = 1 | x , w ] Prob[y = 1| z = 1, x , w] × Prob[z = 1|w] 

       [ ]
2

( )
1

 ′ ′+ γ + ρ ′Φ Φ 
 − ρ 

x w wβ α
α  

        Φ2 (β′x  +  γ, α′w, ρ). 
 
This is simply the joint probability from the bivariate probit model.  The other three cells would be 
constructed likewise, giving 
 
   Prob[y1 = 1, y2 = 0 | x1 , x2 ]  =  Φ2 (β1′x1,           -β2′x2, -ρ) 

   Prob[y1 = 0, y2 = 1 | x1 , x2 ]  =  Φ2 (-β1′x1   +  γ1, β2′x2, -ρ) 

   Prob[y1 = 0, y2 = 0 | x1 , x2 ]  =  Φ2 (-β1′x1,          -β2′x2,  ρ) 
 
This is a recursive simultaneous equations model.  Surprisingly enough, it can be estimated by full 
information maximum likelihood ignoring the simultaneity in the system; 
 
 BIVARIATE ; Lhs  = y,z 
   ; Rh1 = x,z ; Rh2 = w $ 
 
An application of the result to the gender economics study is given in Greene (1998), redone below.  
Some extensions are presented in Greene (2011). 
 This model presents the same ambiguity in the conditional mean function and marginal effects 
that were noted earlier in Chapter E33 in the bivariate probit model.  The conditional mean for y is 
 
   E[y | z  = 1, x, w]  =  Φ2 (β′x +  γ1, α′w, ρ) / Φ(α′w) 
 
for which derivatives were given earlier.  Given the form of this result, we can identify direct and 
indirect effects in the conditional mean: 
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The total effect for any variable which appears in both x and w would be the sum of the two effects 
above.  The unconditional mean function is 
 
    E[y | x, w]  =  Φ(α′w) E[y | z = 1, x, w]  + [1-Φ(α′w)] E[y | z = 0, x, w] 

          =  Φ2 (β′x +  γ1, α′w, ρ)  + Φ2 (β′x, -α′w, -ρ). 
 
Derivatives for partial effects can be derived using the results given earlier.  Analysis appears in 
Greene (1998). 
 To illustrate the estimator, we examine the model estimated in Burnett (1997) and revisited 
in Greene (1998).  The study examines the likelihood that an economics department at a liberal arts 
college will offer a gender economics course (y = 1). The endogenous dummy variable is whether 
there is a women’s studies program offered on the campus (z = 1).  There are 132 observations in the 
data set.  The variables in the data set are 
 
 gndrecon =  y = 1 if a gender economics course is offered, 0 if not 
 womstud =  z = 1 if there is a women’s studies program, 0 if not  
 acrep  =  a measure of the academic reputation of the school, a ranking 
 econfac  =  size of the economics faculty 
 pctwecn =  percentage of the economics faculty that are women 
 pctwfac  =  percentage of the faculty that are women 
 relig  =  1 if the school has a religious affiliation, 0 if not 
 sou  =  1 if the school is located in the south, 0 if not 
 nor  =  1 if the school is located in the north, 0 if not 
 mid  =  1 if the school is located in the middle of the country, 0 if not 
 west  =  1 if the school is located in the west. 
 
The bivariate probit model described above is estimated in Greene (1998) and examined further in 
Greene (2011).  The lists of variables are 
 
 x  =  constant, acrep, econfac, pctwecn, relig 
 w  =  acrep, pctwfac, relig, sou, west, nor, mid. 
 
The commands are as follows.  The second estimator constrains ρ to equal zero. 
 
 NAMELIST  ; gendrecn = one,acrep,womstud,econfac,pctwecn,relig $ 
 NAMELIST  ; womnstud = acrep,pctwfac,relig,sou,west,nor,mid $ 
 BIVARIATE ; Lhs  = gndrecon,womstud 
   ; Rh1 = gendrecn ; Rh2 = womnstud ; Partial Effects $ 
 CALC   ; kg = Col(gendrecn) ; kw = Col(womnstud) $ 
 BIVARIATE ; Lhs = gndrecon,womstud ; Rh1 = gendrecn ; Rh2 = womnstud 
    ; Rst  = kg_bg, kw_bw, 0 $ 
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----------------------------------------------------------------------------- 
FIML - Recursive Bivariate Probit Model 
Dependent variable               WOMGND 
Log likelihood function       -85.63172 
Estimation based on N =    132, K =  14 
Inf.Cr.AIC  =    199.3 AIC/N =    1.510 
--------+-------------------------------------------------------------------- 
 WOMSTUD|                  Standard            Prob.      95% Confidence 
GNDRECON|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for WOMSTUD 
   ACREP|    -.01939***      .00570    -3.40  .0007     -.03057   -.00821 
 PCTWFAC|    1.89144**       .87140     2.17  .0300      .18354   3.59935 
   RELIG|    -.45838         .34033    -1.35  .1780    -1.12541    .20864 
     SOU|    1.34706*        .68968     1.95  .0508     -.00469   2.69881 
    WEST|    2.33757***      .86108     2.71  .0066      .64989   4.02525 
     NOR|    1.90088**       .84946     2.24  .0252      .23597   3.56579 
     MID|    1.80703**       .89525     2.02  .0435      .05237   3.56169 
        |Index    equation for GNDRECON 
Constant|   -1.19114        2.21546     -.54  .5908    -5.53336   3.15109 
   ACREP|    -.01233         .00794    -1.55  .1203     -.02789    .00323 
 ECONFAC|     .06769         .06952      .97  .3303     -.06858    .20395 
 PCTWECN|    2.56355**      1.01441     2.53  .0115      .57536   4.55175 
   RELIG|    -.37410         .52644     -.71  .4773    -1.40591    .65771 
 WOMSTUD|     .88349        2.26034      .39  .6959    -3.54668   5.31367 
        |Disturbance correlation 
RHO(1,2)|     .13594        1.25392      .11  .9137    -2.32170   2.59358 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

--------------------------------------------------------------- 
Decomposition of Partial Effects for Recursive Bivariate Probit 
Model is  WOMSTUD = F(x1b1), GNDRECON = F(x2b2+c*WOMSTUD ) 
Conditional mean function is E[GNDRECON|x1,x2] = 
            Phi2(x1b1,x2b2+gamma,rho) + Phi2(-x1b1,x2b2,-rho) 
Partial effects for continuous variables are derivatives. 
Partial effects for dummy variables (*) are first differences. 
Direct effect is wrt x2, indirect is wrt x1, total is the sum. 
--------------------------------------------------------------- 
Variable   Direct Effect   Indirect Effect    Total Effect 
---------+---------------+-----------------+------------------- 
   ACREP |  -.0017329       -.0005207          -.0022536 
 ECONFAC |   .0095116        .0000000           .0095116 
 PCTWECN |   .3602429        .0000000           .3602429 
   RELIG*|  -.0716051       -.0716051          -.1432101 
 PCTWFAC |   .0000000        .0508014           .0508014 
     SOU*|   .0000000        .0266914           .0266914 
    WEST*|   .0000000        .0420631           .0420631 
     NOR*|   .0000000        .0580612           .0580612 
     MID*|   .0000000        .0382104           .0382104 
---------+----------------------------------------------------- 
 

----------------------------------------------------------------------------- 
FIML - Recursive Bivariate Probit Model 
Dependent variable               WOMGND 
Log likelihood function       -85.64578 
Estimation based on N =    132, K =  13 
Inf.Cr.AIC  =    197.3 AIC/N =    1.495 
Model estimated: Aug 10, 2011, 22:21:01 



E56: Treatment Effects and Switching Regressions   E-1403 

--------+-------------------------------------------------------------------- 
 WOMSTUD|                  Standard            Prob.      95% Confidence 
GNDRECON|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for WOMSTUD 
   ACREP|    -.01957***      .00552    -3.54  .0004     -.03039   -.00874 
 PCTWFAC|    1.94293**       .84350     2.30  .0213      .28971   3.59615 
   RELIG|    -.44937         .33313    -1.35  .1774    -1.10230    .20355 
     SOU|    1.35969**       .65941     2.06  .0392      .06727   2.65211 
    WEST|    2.33865***      .81044     2.89  .0039      .75021   3.92708 
     NOR|    1.88670**       .82040     2.30  .0215      .27874   3.49465 
     MID|    1.82481**       .87231     2.09  .0364      .11510   3.53451 
        |Index    equation for GNDRECON 
Constant|   -1.41763*        .80692    -1.76  .0789    -2.99917    .16391 
   ACREP|    -.01143***      .00408    -2.80  .0051     -.01943   -.00344 
 ECONFAC|     .06730         .06874      .98  .3275     -.06742    .20202 
 PCTWECN|    2.53916**       .98691     2.57  .0101      .60486   4.47347 
   RELIG|    -.34825         .49842     -.70  .4847    -1.32513    .62864 
 WOMSTUD|    1.10951*        .56742     1.96  .0505     -.00260   2.22163 
        |Disturbance correlation 
RHO(1,2)|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
E56.8 Switching Regressions   
 
 We consider variants of the following model: 
  
 Latent structure, two regimes: y

     y

1i  =  β1′x1i  +  ε1i, ε1i ~ N[0,σ11], 

     Corr[ε1i ,ε0i] = ρ10 (may be assumed to equal zero). 

0i  =  β0′x0i  +  ε0i, ε0i ~ N[0,σ00], 

 Observation mechanism: yi  =  min(y0i , y1i) or yi  =  max(y0i , y

 Observed data:   yi, x1i, and x0i, i = 1,...,N. 
1i). 

 
The observed quantity traded in a disequilibrium model of supply and demand is an example.  
Maddala (1983) contains extensive discussion.  The model with ‘exogenous switching’ (Maddala’s 
terminology) holds that the separation into one regime or the other is determined outside the 
structure of the model.  Two cases are possible: 
 

Observed separation indicator:  There exists an observed indicator variable, zi, which equals 
1 if regime 1 applies and 0 if regime 0 applies.  Continuing the earlier example, one 
suggestion for an indicator has been Sgn(Pt - Pt-1).  I.e., whether price is rising or falling 
indicates whether the market is in shortage (Q on supply equation) or surplus (Q on demand 
equation). 
 
No separation indicator:  It is not known which regime applies for a given observation.  This 
case produces a variant of the latent class model. 
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All combinations of the preceding are available for the basic model, i.e.: 
 

• Minimum or maximum observation mechanism, 
• Correlated or uncorrelated disturbances, 
• Observed sample separation or none observed. 

  
 A model with ‘endogenous switching’ would have an auxiliary equation for the separation 
indicator, 
   zi*

   zi   =  1 if zi*

   =  α′wi  +  ui, 

   Corr[ui ,ε1i]  =  ρu1, 

 > 0, and 0 otherwise, 

   Corr[ui ,ε0i]  =  ρu0. 
 
This is the mover stayer model presented above in Section E56.2.   This section is concerned with 
the model with exogenous, observed switching, or with an unobserved switching indicator. 
 
E56.8.1 Model Commands 
 
 Commands for the switching regressions models are as follows: 
  
 SWITCH ; Lhs  = y   
   ; Rh1 = x1   
   ; Rh2 = x2 $ 
 
This requests the basic model with 
  

• no sample separation indicator, 
• uncorrelated disturbances, and 
• y = Min(y1 ,y0

  
). 

To request the alternative specifications, use 
 
    ; Sep = name of z,  sample separation binary variable 
   ; Cor   to request the model with ρ10 not fixed at 0 
   ; Max  to use the alternative observation mechanism 
   ; Wts = weighting variable 
 
The parameter vector for SWITCH is 
 
   θ  =  [β1 ,β0 ,σ1 ,σ0]. 
 
The restrictions in ; Rst = list may be used for within and across equations.  If the model is estimated 
with correlation, ρ10 will precede σ1 in the parameter vector.   
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Standard Model Specifications for the Switching Regressions Model 
 

This is the full list of general specifications that are applicable to this model estimator. 
 
Controlling Output from Model Commands 
 
 ; Par  keeps ancillary parameters such as a correlation in main results vector b. 

; Partial Effects displays marginal effects, same as ; Marginal Effects. 
 ; OLS  displays least squares starting values when (and if) they are computed. 

; Table = name saves model results to be combined later in output tables. 
 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 ; Cluster = spec requests computation of the cluster form of corrected covariance estimator. 
 
Optimization Controls for Nonlinear Optimization 
  

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 

 ; Alg = name requests a particular algorithm. The only fitting algorithm available is 
  Newton’s method.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set  keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 

 ; Rst = list specifies equality and fixed value restrictions. 
 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
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E56.8.2 Results for Switching Regressions Models 
 
 Initial output consists of least squares regressions for both equations.  If there is no sample 
separation indicator, the full sample is used in both regressions.  If a sample separation indicator is 
available, the relevant subsample is used in each regression.  Either way, the OLS estimates are 
inconsistent, and are used only as starting values.  The starting value for ρ, when the model with 
correlation is requested, is 0.0. 
 The iterations are followed by the maximum likelihood estimates.  Output includes the log 
likelihood, an indication of whether the observation mechanism is ‘; Minimum’ or ‘; Maximum,’ 
and, if one is present, the identification of the sample separation indicator.  The final estimates 
include, in order, β1, β0, σ1, and σ0. 
 Results saved by this procedure are  
 
 Matrices: b = [β1 ,β0] and varb.  ; Par adds (σ1 ,σ0 ) to the parameter vector. 
  
 Scalars:  sy, ybar, kreg = k1 + k0, nreg = N, logl, sigma1, sigma0. 
   If the correlation model is specified, rho contains the estimate of D. 
  
 Last Model: b1_variables, b0_variables, r10, sigma1, sigma0. 
 
 Last Function: None 
 
Predicted values are computed as follows:  If there is a separation indicator, z, available, then 

   ŷ   =  β1′x1 if z = 1, and  y
∧

  =  β0′x0 if z = 0. 
 
If there is no separation indicator, the prediction is 
 
    ŷ   =  Prob[y = y1* ]β1′x1  +  Prob[y = y
 

0* ]β0′x0. 

The probability is computed using 
  
   Prob[y = y1* ] =  Prob[ β1′x1 + ε1  <  β0′x0 + ε0] 

    =  Prob[ε1 - ε0  <  β0′x0 - β1′x1]. 

Let   σ   =  [σ1
2  +  σ2

2

 
  -  2ρ10 σ1σ0]1/2  

Then,   Prob[y = y1*
  

]   =  Φ[(β0′x0 - β1′x1)/σ]. 

If the observation is the maximum instead of the minimum, the sign of the argument in the normal 
CDF is reversed.  The other two variables shown when ; List is requested are β1′x1 and β0′x0. 
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E56.8.3 Application 
 
 The following will simulate the conditions of the switching regressions model in order to 
demonstrate the output that results.  The commands were executed all at once from the editor. 
 

SAMPLE ; 1-500 $ 
CALC  ; Ran(12345) $ 
CREATE   ; x1 = Rnn(0,1)                ? regressor for equation 1 
  ; x0 = Rnn(0,1)                ? regressor for equation 0 
  ; e1 = Rnn(0,1)                ? disturbance for equation 1 
  ; e0 = .5*e1+.5*Rnn(0,1)      ? u for equation 0, correlated 
  ; u = Rnn(0,1)+.5*(e1+e0)  ? u for endogenous selection 
  ; w = Rnn(0,1)     ? regressor for selection equation 
  ; z = w+u                       ? underlying regression for probit 
  ; z = z > 0                      ? binary variable for probit 
  ; y1 = x1+e1                ? structural variable, y1* 
  ; y0 = x0+e0                ? structural variable, y0* 
  ; If(y1<y0) ys = y1       ? choose minimum of y1*, y0* 
  ; (Else) ys = y0 $ 

 
We fit four variants of switching regressions model: 
 

1. Uncorrelated disturbances, no separation indicator.  Least squares are displayed. 
 
      SWITCH   ; Lhs = ys ; Rh1 = one,x1 ; Rh2 = one,x0 ; OLS $ 
 

2. Correlated equation, no separation indicator. 
 
      SWITCH   ; Lhs = ys ; Rh1 = one,x1 ; Rh2 = one,x0 ; Cor $ 
 

3. Uncorrelated disturbances, observed separation indicator. 
 
      SWITCH   ; Lhs = ys ; Rh1 = one,x1 ; Rh2 = one,x0 ; Sep = z $ 
 

4. Correlated disturbances, observed separation indicator. 
 
      SWITCH   ; Lhs = ys ; Rh1 = one,x1 ; Rh2 = one,x0 ; Sep = z ; Cor $ 
 
Results are shown for the fourth model. 
 
----------------------------------------------------------------------------- 
Switching Regressions 
Dependent variable                   YS 
Log likelihood function     -1037.65076 
Estimation based on N =    500, K =   7 
Inf.Cr.AIC  =   2089.3 AIC/N =    4.179 
Sample separation variable is Z 
YS       = the minimum of y*_1 and y*_0 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      YS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS for Regime 1 
Constant|     .26815***      .10196     2.63  .0085      .06832    .46798 
      X1|     .58947***      .08506     6.93  .0000      .42275    .75619 
        |RHS for Regime 2 
Constant|     .50201***      .12090     4.15  .0000      .26505    .73897 
      X0|     .68764***      .07816     8.80  .0000      .53445    .84084 
     Rho|    -.61372***      .11099    -5.53  .0000     -.83125   -.39618 
Sigma(1)|    1.58227***      .11322    13.98  .0000     1.36036   1.80417 
Sigma(0)|    1.26835***      .07055    17.98  .0000     1.13008   1.40662 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

E56.8.4 Technical Details 
 
 Technical results for the switching regressions model with exogenous switching appear in 
Maddala (1983), though most of his results pertain to the uncorrelated case.  For the general case 
here, we have: 
 
   parameters =  σ1 , σ0 , ρ, 

   δ   =  1 / (1 - ρ2)1/2, 

   v1   =  ε1 /σ1 , v0 =  ε0 /σ0, 

   fj   =  (1/σj)φ(vj),  j   = 0,1, 

   u1   =  ρv1 - v0 , u0   =  ρv0 - v1, 

   P1   =  Φ[δv0], P0  =  Φ[δv1], 

   P01  =  P0 f1, P10 =  P1 f0. 
 
With no sample separation,  
 
   log L   =  Σi log(P10  +  P01 ). 
 
With sample separation,   
 
   log L   =  Σi zilogP10  +  (1 - zi )logP01. 
  
In both cases, the BHHH estimator is used to estimate the asymptotic covariance matrix of the 
parameter estimates.  The BFGS algorithm is used by default. 
 
NOTE:  The nonconvergence problems and possible unboundedness of the log likelihood function 
in the case in which the sample separation is unknown have been widely documented. 
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E56.8.5 MLE for the Endogenous Switching Model 
 

As noted earlier, this is the mover stayer model in Section E56.2.  We provide some further 
details and a command language estimator for this model.  The log likelihood can be reparameterized 
to equal 

Li = 0 0 1 1
0 1 12 2

0 1
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1 1

i i i i
i i
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The log likelihood function is Σi log(Li). The formulation suggested here uses the Olsen 
transformation of the model parameters.  A command file that estimates the model parameters is 
 

? This part is specific to the application 
NAMELIST  ; x0 = ... $ 
NAMELIST ; x1 = ... $ 
NAMELIST  ; z = ... $ 
CREATE  ; y = the dependent variable $ 
? Commands from here on are generic. 
REGRESS  ; Lhs = y ; Rhs = x0 $ 
CALC   ; theta00 = 1/s ; k0 = Col(x0) $ 
MATRIX ; lambda00 = theta00 * b $ 
REGRESS  ; Lhs = y ; Rhs = x1 $ 
CALC  ; theta10 = 1/s ; k1 = Col(x1) $ 
MATRIX ; lambda10 = theta10 * b $ 
CALC   ; kz = Col(z) $ 
MATRIX  ; alpha0 = Init(kz,1,0) $ 
MAXIMIZE  ; Labels = k0_lmda0,theta0,k1_lmda1,theta1,q0,q1,kz_a 

; Start = lambda00,theta00,lambda10,theta10,0,0,alpha0 
; Fcn = r0  = -(Exp(q0)-1)/(Exp(q0)+1) |  

dr0 = 1/Sqr(1-r0*r0)  |  
r1  = -(Exp(q1)-1)/(Exp(q1)+1) |  
dr0 = 1/Sqr(1-r2*r2)  | 
e0  = theta0*y - lmda01’x0  |  
e1  = theta1*y - lmda11’x1  |  
za  = a1’z  | 
li  = theta0*N01(e0)*Phi(-dr0*(za+r0*e0)) +  
          theta1*N01(e1)*Phi( dr1*(za+r1*e1)) | 
Log(li) $ 
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E57: Propensity Score Matching 
 
E57.1 Introduction 
 
 Propensity score matching is the least parametric approach provided for examining treatment 
effects.  This procedure is targeted essentially at measuring the change in the average value of y pre- 
and post- treatment.  This program is used for estimating average treatment effects by matching 
observations based on propensity scores.  Let O denote the outcome variable and T denote the 
treatment dummy variable, such that for an observation which has experienced the ‘treatment,’ T = 1, 
and  T = 0 if not.  We are interested in the effect of treatment on the treated. In principle, this means 
observing the treated individual before and after treatment. The problem, of course, is that ex post, we 
don’t observe the counterfactual outcome variable, O, for the treated, in the absence of the treatment.  
If assignment to the treatment is nonrandom, estimation of treatment effects is biased by the effect of 
the variables that effect the treatment assignment.  The strategy is to locate an untreated individual who 
looks like the treated one in every respect except the treatment, then compare the outcomes.  We then 
average this across individual pairs to estimate the ‘average treatment effect on the treated.’ 
 
E57.2 Methodology 
 

Let x denote the vector of characteristics of the individual, before the treatment.  Let the 
probability of treatment be denoted P(T=1|x) = P(x).  Since T is binary, P(x) = E[T|x].  If treatment is 
random given x, then treatment is random given P(x), which in this context is called the propensity 
score.  It will generally not be possible to match individuals based on all the characteristics individually 
– with continuously measured characteristics, such as income, there are too many cells.  The matching 
is done via the propensity score.  Individuals with similar propensity scores are expected (on average) 
to be individuals with similar characteristics.  Overall, the strategy is, for a ‘treated’ individual with 
propensity P(xi) and outcome Oi, we locate a control observation with similar propensity P(xc) and with 
outcome Oc.  The effect of treatment on the treated for this individual is estimated by Oi - Oc.  This is 
averaged across individuals to estimate the average treatment effect on the treated.  The underlying 
theory asserts that the estimates of treatment effects across treated and controls are unbiased if the 
treatment assignment is random among individuals with the same propensity score – the propensity 
score, itself, captures the drivers of the treatment assignment. (Relevant papers that establish this 
methodology are too numerous to list here. Useful references are three canonical papers, Heckman et 
al. (1997, 1998a, 1998b) and a study by Becker and Ichino (2002).) 

The steps in the propensity matching analysis consist of the following: (Steps 2 and 3 are 
tests of the ‘balancing hypothesis.’) 
 
Step 1. Estimate the propensity score function, P(x), for each individual by fitting a probit or logit 

model, and using the fitted probabilities. 
 

Step 2. Establish that the average propensity scores of treatment and controls are the same within 
particular ranges of the propensity scores. 
 

Step 3. Establish that the averages of the characteristics for treatment and controls are the same for 
observations in specific ranges of the propensity score. 
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Step 4. For each treated observation in the sample, locate similar control observation(s) based on the 
propensity scores.  Compute the treatment effect, Oi - Oc.  Average this across observations 
to get the average treatment effect. 
 

Step 5. In order to estimate a standard error for this estimate, Step 4 is repeated with a set of 
bootstrapped samples. 

 

E57.3 Commands for Matching 
 
 The commands used for propensity score matching are similar to those for the sample 
selection estimator.  First, you must set the sample to include observations to be used to estimate the 
propensity score function.  These use any set of observations you wish – they need not be the same 
ones subject to the propensity score analysis.   
 
 The commands to request the propensity score matching program are 
 
 PROBIT ; Lhs = treatment dummy variable 
             or LOGIT ; Rhs = covariates ; Hold $ 
 MATCH ; Lhs = outcome variable $ 
 
The sample may be changed in any way desired after the PROBIT/LOGIT command.  The sample 
is set to be those observations containing the treated individuals and control individuals to be used in 
the analysis. No other specifications are mandatory in the MATCH command.  The current sample 
and the previously fit propensity score function are used.  Some optional specifications are: 
 
   ; Nbt = number of bootstraps (default = 25) 
 
NOTE:  To replicate an earlier set of bootstrap results, use CALC ; Ran(seed) $ to set the seed for 
the random number generator to a specific value immediately before the MATCH command. 
 
   ; List to request detailed output during analysis 
 
   ; Common Support to use observations in common support of 
    propensity scores for treated and controls. (See Section E57.6.) 
 

Matching on the single nearest neighbor is the default.  The other methods are specified with either a 
kernel weighting function or a ‘caliper’ to define a range of neighbors.  Use 
 

   ; Kernel to use kernel weights to create the neighbor.   
    Epanechnikov is the default, with bandwidth of 0.06 
 

or   ; Range = value to use a caliper approach. Values .001 to .50 are 
    allowed.  If the value given is positive, then the range is +/- value. 
    If the value given is negative, then the range is +/- a proportion of the 
    propensity scores.  For example, -5.0 means +/- 5% of Pmax - Pmin. 
 

Options for the kernel estimator are 
 

   ; Normal (with ; Kernel) to specify the standard normal kernel function 
   ; Logit (with ; Kernel)  to specify the logistic kernel function 
   ; Smooth = bandwidth  (default = .06, .001 to .25 allowed) 



E57: Propensity Score Matching   E-1412 

E57.4 Retained Results 
 

 In addition to the numerical displays shown in the examples below, this routine keeps the 
following results in your project.  (All are defaults; there are no options.) 
 
  Scalars: nused        =  number of observations analyzed.   
 

Beginning from the original current sample, nused is the number of observations that remain 
after observations with missing values for any x variables, O, or T are eliminated and, if the 
common support option is requested, after observations which fall outside the common 
support are eliminated from the sample. 

 
   ntreated   =  number of observations among nused with T = 1. 
   ncontrol  =  number of controls = nused – ntreated. 
   trt_efct    =  estimated average treatment effect. 
   sd_trtmt   =  estimated standard error for estimated effect. 
 

The standard deviation is the square root of the mean squared deviation of the bootstrap 
estimates around the estimated treatment effect (not around the mean of the bootstrap 
estimates). 

 
 Variable: ps_range   =  number of the interval in the partitioned range 
        of propensity scores that each observation falls in. 
 

This is the identity of the interval in the mesh [P*] determined in Section E57.6 in the 
mathematical details below.  For example, if the mesh is [.1, .2, .3, .4, .5, .6] and a score is 
0.34, this variable would take value 3 for this observation. 

 
 Matrix: psranges   =  partitioning of the range of propensity scores 
        used to analyze the balancing hypothesis. 
 
 In the example immediately above, this matrix would be the column vector,  
 

   psranges   =  [.1, .2, .3, .4, .5, .6] ′ 
 
E57.5 Applications 
 
 In the following, we redo the example reported in Becker and Ichino (2002) (BI).  This 
application and data are derived from Dehejia and Wahba (1999) (DW), whose study, in turn was 
based on LaLonde (1986).  The data set consists of observed samples of treatments and controls from 
the National Supported Work demonstration.  Some of the institutional features of the data set are 
given by Becker and Ichino. The data were downloaded from Rajeev Dehejia’s data page 
http://www.nber.org/~rdehejia/nswdata.html. Becker and Ichino report that they were unable to 
replicate DW’s results, though they did obtain similar results.  (They indicate that they did not have 
the original authors’ specifications of the number of blocks used in the partitioning of the range of 
propensity scores, significance levels, or exact procedures for testing the balancing property.)  In 
turn, we could not replicate BI’s results – we can identify the reason, as discussed below.  Likewise, 
however, we obtain qualitatively similar results. 
  

http://www.nber.org/~rdehejia/nswdata.html�
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 There are 2,675 observations in the data set.  The variables in the data set are  
 
 t  =  treatment dummy variable 

age  =  age in years 
educ  =  education in years 
marr  =  dummy variable for married 
black  =  dummy variable for black 
hisp  =  dummy variable for Hispanic 
nodegree =  dummy for no degree (not used) 
re74  =  real earnings in 1974 
re75  =  real earnings in 1975 
re78  =  real earnings in 1978 

 
Transformed variables added to the equation are 
 
 age2  =  age squared 
 educ2  =  educ squared 
 re742  =  re74 squared 
 re752  =  re75 squared 
 blacku74 =  black times 1(re74 = 0) 
 
In order to improve the readability of some of the reported results, we have divided the income 
variables by 10,000.  The outcome variable is re78.  The sample contains, in total, 2490 controls and 
185 treated observations. 
 The data set is setup and described first. 
 
 CREATE ; age2 = age^2 ; educ2 = educ^2 $ 
 CREATE ; re74 = re74/10000 ; re75 = re75/10000 ; re78 = re78/10000 $ 
 CREATE ; re742 = re74^2 ; re752 = re75^2 $ 
 CREATE ; blacku74 = black * (re74 = 0) $ 
 DSTAT ; Rhs = * $ 
 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|       Mean       Std.Dev.     Minimum      Maximum     Cases Missing 
--------+--------------------------------------------------------------------- 
       T|      .069159      .253772          0.0          1.0     2675       0 
     AGE|     34.22579     10.49984         17.0         55.0     2675       0 
    EDUC|     11.99439     3.053556          0.0         17.0     2675       0 
    MARR|      .819439      .384726          0.0          1.0     2675       0 
   BLACK|      .291589      .454579          0.0          1.0     2675       0 
    HISP|      .034393      .182269          0.0          1.0     2675       0 
NODEGREE|      .333084      .471404          0.0          1.0     2675       0 
    RE74|     1.823000     1.372225          0.0     13.71490     2675       0 
    RE75|     1.785089     1.387778          0.0     15.66530     2675       0 
    RE78|     2.050238     1.563252          0.0     12.11740     2675       0 
    AGE2|     1281.610     766.8415        289.0       3025.0     2675       0 
   EDUC2|     153.1862     70.62231          0.0        289.0     2675       0 
   RE742|     5.205628     8.465891          0.0     188.0980     2675       0 
   RE752|     4.883459     8.250059          0.0     214.8480     2675       0 
  BLKU74|      .055327      .228660          0.0          1.0     2675       0 
--------+--------------------------------------------------------------------- 
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 We next fit the logit model for the propensity scores.  An immediate problem arises with the 
data set as used by Becker and Ichino.  The income data are in raw dollar terms – the mean of re74, 
for example is $13,714.86.  The square of it, which is on the order of 200,000,000, as well as the 
square of re75 which is similar, is included in the logit equation with a dummy variable for Hispanic 
which is zero for 96.5% of the observations and the blacku74 dummy variable which is similar.  This 
data set is numerically unstable, and estimation of the logit model in this form is next to impossible.  
It was not possible to replicate the (Stata generated) coefficients without scaling the data.  Thus, we 
have divided the income variables by 10,000 before beginning the analysis.  From this point forward, 
none of their reported results can be reproduced.  However, as noted at various points below, our 
results are quite similar to theirs in spite of this.  (Comparable values appear in parentheses at some 
points below.) 
 
 NAMELIST  ; x = age,age2,educ,educ2,marr,black,hisp, 
      re74,re75,re742,re752,blacku74,one $ 
 LOGIT  ; Lhs = t ; Rhs = x ; Hold ; Summary $ 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable                    T 
Log likelihood function      -205.12591 
Restricted log likelihood    -672.64954 
Chi squared [  12 d.f.]       935.04727 
Significance level               .00000 
McFadden Pseudo R-squared      .6950479 
Estimation based on N =   2675, K =  13 
Inf.Cr.AIC  =    436.3 AIC/N =     .163 
Model estimated: Aug 10, 2011, 23:12:24 
Hosmer-Lemeshow chi-squared =  12.90811 
P-value=  .11505 with deg.fr. =       8 
----------------------------------------------------------------------------- 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       T|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[T=1     ] 
     AGE|     .32965***      .12043     2.74  .0062      .09361    .56569 
    AGE2|    -.00633***      .00186    -3.41  .0007     -.00997   -.00269 
    EDUC|     .88403***      .34150     2.59  .0096      .21471   1.55335 
   EDUC2|    -.05215***      .01702    -3.06  .0022     -.08552   -.01878 
    MARR|   -1.89160***      .29919    -6.32  .0000    -2.47801  -1.30519 
   BLACK|    1.13696***      .35195     3.23  .0012      .44715   1.82677 
    HISP|    1.96830***      .56695     3.47  .0005      .85709   3.07951 
    RE74|   -1.04742***      .35896    -2.92  .0035    -1.75097   -.34386 
    RE75|   -2.18585***      .41827    -5.23  .0000    -3.00564  -1.36607 
   RE742|     .23048***      .08231     2.80  .0051      .06916    .39180 
   RE752|     .02516         .08841      .28  .7759     -.14811    .19844 
BLACKU74|    2.13433***      .42694     5.00  .0000     1.29753   2.97112 
Constant|   -7.63663***     2.42743    -3.15  .0017   -12.39431  -2.87895 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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(Note: BI coefficients on re74 and re75 are multiplied by 10,000, and coefficients on re742 and 
re752 are multiplied by 100,000,000.  Some additional logit results are omitted.) 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Logit    model for variable T          | 
+----------------------------------------+ 
|                 Y=0       Y=1     Total| 
| Proportions  .93084    .06916   1.00000| 
| Sample Size    2490       185      2675| 
+----------------------------------------+ 
| Log Likelihood Functions for BC Model  | 
|              P=0.50    P=N1/N   P=Model| 
| LogL =     -1854.17   -672.65   -205.13| 
+----------------------------------------+ 
| Fit Measures based on Log Likelihood   | 
| McFadden = 1-(L/L0)          =   .69505| 
| Estrella = 1-(L/L0)^(-2L0/n) =   .44968| 
| R-squared (ML)               =   .29499| 
| Akaike Information Crit.     =   .16308| 
| Schwartz Information Crit.   =   .19172| 
+----------------------------------------+ 
| Fit Measures Based on Model Predictions| 
| Efron                        =   .66728| 
| Ben Akiva and Lerman         =   .95673| 
| Veall and Zimmerman          =   .77403| 
| Cramer                       =   .66395| 
+----------------------------------------+ 
 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |   2463 ( 92.1%)|     27 (  1.0%)|   2490 ( 93.1%)| 
|  1   |     51 (  1.9%)|    134 (  5.0%)|    185 (  6.9%)| 
+------+----------------+----------------+----------------+ 
|Total |   2514 ( 94.0%)|    161 (  6.0%)|   2675 (100.0%)| 
+------+----------------+----------------+----------------+ 
+---------------------------------------------------------+ 
|Crosstab for Binary Choice Model.  Predicted probability | 
|vs. actual outcome. Entry = Sum[Y(i,j)*Prob(i,m)] 0,1.   | 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|      Predicted Probability      |                | 
|Value |    Prob(y=0)        Prob(y=1)   | Total Actual   | 
+------+----------------+----------------+----------------+ 
| y=0  |   2432 ( 90.9%)|     57 (  2.1%)|   2490 ( 93.0%)| 
| y=1  |     57 (  2.1%)|    127 (  4.7%)|    185 (  6.9%)| 
+------+----------------+----------------+----------------+ 
|Total |   2489 ( 93.0%)|    185 (  6.9%)|   2675 ( 99.9%)| 
+------+----------------+----------------+----------------+ 
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 The first set of matching results use the kernel estimator for the neighbors, lists all 
intermediate results, and uses only the observations in the common support.  The output below is 
annotated. 
 
 MATCH  ; Lhs = re78 ; Kernel ; List ; Common Support $ 
 
The estimated propensity score function is echoed first.  This merely reports the earlier estimated 
model binary choice model for the treatment assignment.  The treatment assignment model is not 
reestimated. (The ; Hold in the LOGIT or PROBIT command stores the estimated model for this 
use.) 
 
+---------------------------------------------------+ 
| ******* Propensity Score Matching Analysis ****** | 
| Treatment variable = T       , Outcome = RE78     | 
| Sample In Use                                     | 
| Total number of observations     =   2675         | 
| Number of valid (complete) obs.  =   2675         |(BI report 1342. Their 
| Number used (in common support)  =   1347         | estimated probabilities 
| Sample Partitioning of Data In Use                | are slightly different. 
|                     Treated   Controls     Total  | Their reported counts are 
| Observations            185       1162      1347  | 185 1157 1342) 
| Sample Proportion    13.73%     86.27%   100.00%  | 
+---------------------------------------------------+ 
 
+-------------------------------------------------------------+ 
| Propensity Score Function = Logit  based on T               | 
| Variable   Coefficient  Standard Error  t statistic         | 
| AGE             .32965       .12042910       2.737          | 
| AGE2           -.00633       .00185630      -3.409          | 
| EDUC            .88403       .34149595       2.589          | 
| EDUC2          -.05215       .01702488      -3.063          | 
| MARR          -1.89160       .29919332      -6.322          | 
| BLACK          1.13696       .35195110       3.230          | 
| HISP           1.96830       .56695463       3.472          | 
| RE74          -1.04742       .35896340      -2.918          | 
| RE75          -2.18585       .41826670      -5.226          | 
| RE742           .23048       .08230843       2.800          | 
| RE752           .02516       .08840602        .285          | 
| BLACKU74       2.13433       .42694403       4.999          | 
| ONE           -7.63663      2.42743171      -3.146          | 
| Note:Estimation sample may not be the sample analyzed here. | 
| Observations analyzed are restricted to the common support =| 
| only controls with propensity in the range of the treated.  | 
+-------------------------------------------------------------+ 
 
The note in the reported logit results reports how the common support is defined, that is, as the range 
of variation of the scores for the treated observations. 
 The next set of results reports the iterations which partition the range of probabilities.  The 
report includes the results of the F tests within the partitions as well as the details of the full partition 
itself.  Becker and Ichino do not report the results of this search for their data, but do report that they 
ultimately found seven blocks whereas we find eight.  They do not report the means by which the 
test of equality is carried out within the blocks or the critical value used.  The method used here is 
reported in the mathematical details in Section E57.6. 
  



E57: Propensity Score Matching   E-1417 

Partitioning the range of propensity scores 
================================================================================ 
Iteration  1. Partitioning range of propensity scores into  5 intervals. 
================================================================================ 
    Range                Controls               Treatment 
                  # Obs. Mean PS S.D. PS   # obs. Mean PS S.D. PS     F     Prob 
----------------  ----------------------   ----------------------  ------------- 
  .00059  .19544    1086  .02108  .03352       18  .08025  .06307   15.77  .0010 * 
  .19544  .39029      41  .28559  .05967       24  .30771  .05508    2.29  .1361 
  .39029  .58514      15  .49623  .05068       21  .48810  .06451     .18  .6748 
  .58514  .77999      13  .68860  .04677       19  .64604  .04682    6.39  .0179 
  .77999  .97484       7  .96228  .00706      103  .92986  .05425   29.44  .0000 * 
Iteration  1  Mean scores are not equal in at least one cell 
================================================================================ 
Iteration  2. Partitioning range of propensity scores into  6 intervals. 
================================================================================ 
    Range                Controls               Treatment 
                  # Obs. Mean PS S.D. PS   # obs. Mean PS S.D. PS     F     Prob 
----------------  ----------------------   ----------------------  ------------- 
  .00059  .09802    1030  .01509  .02117       11  .03650  .03263    4.72  .0550 
  .09802  .19544      56  .13121  .02746        7  .14901  .02862    2.43  .1632 
  .19544  .39029      41  .28559  .05967       24  .30771  .05508    2.29  .1361 
  .39029  .58514      15  .49623  .05068       21  .48810  .06451     .18  .6748 
  .58514  .77999      13  .68860  .04677       19  .64604  .04682    6.39  .0179 
  .77999  .97484       7  .96228  .00706      103  .92986  .05425   29.44  .0000 * 
Iteration  2  Mean scores are not equal in at least one cell 
================================================================================ 
Iteration  3. Partitioning range of propensity scores into  7 intervals. 
================================================================================ 
    Range                Controls               Treatment 
                  # Obs. Mean PS S.D. PS   # obs. Mean PS S.D. PS     F     Prob 
----------------  ----------------------   ----------------------  ------------- 
  .00059  .09802    1030  .01509  .02117       11  .03650  .03263    4.72  .0550 
  .09802  .19544      56  .13121  .02746        7  .14901  .02862    2.43  .1632 
  .19544  .39029      41  .28559  .05967       24  .30771  .05508    2.29  .1361 
  .39029  .58514      15  .49623  .05068       21  .48810  .06451     .18  .6748 
  .58514  .77999      13  .68860  .04677       19  .64604  .04682    6.39  .0179 
  .77999  .87741       0  .00000  .00000       17  .81657  .02822     .00 1.0000 
  .87741  .97484       7  .96228  .00706       86  .95225  .01815    9.18  .0090 * 
Iteration  3  Mean scores are not equal in at least one cell 
================================================================================ 
Iteration  4. Partitioning range of propensity scores into  8 intervals. 
================================================================================ 
    Range                Controls               Treatment 
                  # Obs. Mean PS S.D. PS   # obs. Mean PS S.D. PS     F     Prob 
----------------  ----------------------   ----------------------  ------------- 
  .00059  .09802    1030  .01509  .02117       11  .03650  .03263    4.72  .0550 
  .09802  .19544      56  .13121  .02746        7  .14901  .02862    2.43  .1632 
  .19544  .39029      41  .28559  .05967       24  .30771  .05508    2.29  .1361 
  .39029  .58514      15  .49623  .05068       21  .48810  .06451     .18  .6748 
  .58514  .77999      13  .68860  .04677       19  .64604  .04682    6.39  .0179 
  .77999  .87741       0  .00000  .00000       17  .81657  .02822     .00 1.0000 
  .87741  .92612       0  .00000  .00000        7  .90719  .00944     .00 1.0000 
  .92612  .97484       7  .96228  .00706       79  .95625  .01244    4.01  .0732 
Mean PSCORES are tested equal within the blocks listed below. 
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 After partitioning the range of the propensity scores, we report the empirical distribution of 
the propensity scores and the boundaries of the blocks estimated above.  The values below show the 
percentiles that are also reported by Becker and Ichino.  Finally, the reported search algorithm 
notwithstanding, the block boundaries shown are rough. 
 
+-------------------------------------------------------------+ 
| Empirical Distribution of Propensity Scores in Sample Used  | BI results 
|   Percent      Lower   Upper   Sample size =   1347         |(Percentiles) 
|   0% -   5%   .000591  .000783 Average score  .137238       |(.0006426) 
|   5% -  10%   .000787  .001061 Std.Dev score  .274079       |.0008025) 
|  10% -  15%   .001065  .001377 Variance       .075119       |(.0010932) 
|  15% -  20%   .001378  .001748 Blocks used to test balance  | 
|  20% -  25%   .001760  .002321      Lower    Upper   # obs  | 
|  25% -  30%   .002340  .002956  1  .000591  .098016   1041  |(.0023546) 
|  30% -  35%   .002974  .004057  2  .098016  .195440     63  | 
|  35% -  40%   .004059  .005272  3  .195440  .390289     65  | 
|  40% -  45%   .005278  .007486  4  .390289  .585138     36  | 
|  45% -  50%   .007557  .010451  5  .585138  .779986     32  | 
|  50% -  55%   .010563  .014643  6  .779986  .877411     17  |(.0106667) 
|  55% -  60%   .014686  .022462  7  .877411  .926123      7  |  
|  60% -  65%   .022621  .035060  8  .926123  .974835     86  | 
|  65% -  70%   .035075  .051415                              | 
|  70% -  75%   .051415  .076188                              |(.0757115) 
|  75% -  80%   .076376  .134189                              | 
|  80% -  85%   .134238  .320638                              | 
|  85% -  90%   .321233  .616002                              | 
|  90% -  95%   .624407  .949418                              |(.6250823) 
|  95% - 100%   .949418  .974835                              |(.949302 .970598) 
+-------------------------------------------------------------+ 
 
Becker and Ichino report the following blocks and sample sizes: 
 
  Lower  Upper Observations 
 1     0.0006 0.05 931 
 2 0.05 0.10 106 
 3 0.10 0.20  63 
 4 0.20 0.40  69 
 5 0.40 0.60  35 
 6 0.60 0.80  33 
 7 0.80 1.00 105 
 
 The next set of results reports the analysis of the balancing property for the independent 
variables.  Note that a test is reported for each variable in each block as listed in the table above. The 
lines marked (by the program) with ‘*’ show cells in which one or the other group had no 
observations, so the F test could not be carried out.  This was treated as a ‘success’ in each analysis. 
Lines marked with an ‘o’ note where the balancing property failed.  There are relatively few of these, 
but those we do find are not borderline.  Becker and Ichino report their finding that the balancing 
property is satisfied.  Note that this finding does not prevent the further analysis.  It merely suggests 
to analysts that they might want to consider a richer specification of the propensity function model. 
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Examining exogenous variables for balancing hypothesis 
* Indicates no observations, treatment and/or controls, for test. 
o Indicates means of treated and controls differ significantly. 
================================================================= 
Variable  Interval Mean Control   Mean Treated    F     Prob 
--------  -------- ------------   ------------  ------  ----- 
AGE           1       31.426214      30.363636     .38  .5489 
AGE           2       28.196429      28.714286     .02  .8978 
AGE           3       27.902439      28.583333     .09  .7611 
AGE           4       26.800000      24.809524     .60  .4458 
AGE           5       24.846154      24.210526     .10  .7544 
AGE           6         .000000      30.823529     .00 1.0000 * 
AGE           7         .000000      28.857143     .00 1.0000 * 
AGE           8       23.285714      23.392405     .02  .8843 
AGE2          1     1078.808738     953.454545    1.37  .2659 
AGE2          2      854.089286     923.857143     .07  .7932 
AGE2          3      854.829268     891.416667     .07  .7997 
AGE2          4      774.400000     676.523810     .36  .5553 
AGE2          5      644.230769     623.789474     .03  .8568 
AGE2          6         .000000    1003.058824     .00 1.0000 * 
AGE2          7         .000000     884.000000     .00 1.0000 * 
AGE2          8      543.857143     570.506329     .59  .4496 
EDUC          1       11.216505      11.545455     .35  .5666 
EDUC          2       10.339286      10.714286     .20  .6665 
EDUC          3       10.634146       9.875000    1.59  .2135 
EDUC          4       10.200000      10.190476     .00 1.0000 
EDUC          5       10.230769      11.000000    1.03  .3218 
EDUC          6         .000000      11.058824     .00 1.0000 * 
EDUC          7         .000000      10.142857     .00 1.0000 * 
EDUC          8       10.571429      10.037975     .88  .3729 
EDUC2         1      132.542718     136.636364     .11  .7477 
EDUC2         2      112.946429     119.000000     .12  .7413 
EDUC2         3      117.609756     103.541667    1.70  .1983 
EDUC2         4      108.066667     108.285714     .00 1.0000 
EDUC2         5      109.923077     124.263158     .83  .3703 
EDUC2         6         .000000     124.705882     .00 1.0000 * 
EDUC2         7         .000000     105.285714     .00 1.0000 * 
EDUC2         8      113.714286     104.215190     .70  .4258 
MARR          1         .833010        .818182     .02  .9013 
MARR          2         .571429        .857143    3.73  .0821 
MARR          3         .268293        .250000     .03  .8712 
MARR          4         .200000        .047619    1.81  .1935 
MARR          5         .153846        .210526     .17  .6821 
MARR          6         .000000        .529412     .00 1.0000 * 
MARR          7         .000000        .000000     .00 1.0000 * 
MARR          8         .000000        .000000     .00 1.0000 
BLACK         1         .356311        .636364    3.69  .0811 
BLACK         2         .625000        .571429     .07  .7935 
BLACK         3         .756098        .750000     .00 1.0000 
BLACK         4         .866667        .523810    6.00  .0194 
BLACK         5         .846154        .947368     .81  .3792 
BLACK         6         .000000        .941176     .00 1.0000 * 
BLACK         7         .000000        .428571     .00 1.0000 * 
BLACK         8        1.000000       1.000000     .00 1.0000 
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HISP          1         .048544        .000000   52.44  .0000 o 
HISP          2         .071429        .285714    1.51  .2583 
HISP          3         .048780        .000000    2.10  .1547 
HISP          4         .066667        .142857     .58  .4508 
HISP          5         .153846        .052632     .81  .3792 
HISP          6         .000000        .058824     .00 1.0000 * 
HISP          7         .000000        .571429     .00 1.0000 * 
HISP          8         .000000        .000000     .00 1.0000 
RE74          1        1.235202       1.214261     .01 1.0000 
RE74          2         .572655        .203166   12.23  .0019 o 
RE74          3         .597151        .524593     .22  .6437 
RE74          4         .253634        .361641     .77  .3866 
RE74          5         .154631        .197888     .44  .5108 
RE74          6         .000000        .002619     .00 1.0000 * 
RE74          7         .000000        .000000     .00 1.0000 * 
RE74          8         .000000        .000000     .00 1.0000 
RE75          1        1.050114        .896447     .44  .5197 
RE75          2         .409156        .325001     .59  .4610 
RE75          3         .271518        .296956     .15  .6984 
RE75          4         .286058        .168348    2.54  .1213 
RE75          5         .137276        .139118     .00 1.0000 
RE75          6         .000000        .061722     .00 1.0000 * 
RE75          7         .000000        .000000     .00 1.0000 * 
RE75          8         .012788        .023447     .53  .4798 
RE742         1        2.400191       2.335453     .00 1.0000 
RE742         2         .651190        .079029    9.34  .0034 o 
RE742         3         .652245        .684379     .01 1.0000 
RE742         4         .127254        .360581    2.27  .1439 
RE742         5         .040070        .095745    1.31  .2647 
RE742         6         .000000        .000117     .00 1.0000 * 
RE742         7         .000000        .000000     .00 1.0000 * 
RE742         8         .000000        .000000     .00 1.0000 
RE752         1        1.796624       1.446671     .53  .4761 
RE752         2         .276672        .072511    8.78  .0048 o 
RE752         3         .200186        .224688     .08  .7781 
RE752         4         .082652        .091302     .04  .8366 
RE752         5         .016499        .028328    1.06  .3127 
RE752         6         .000000        .000019     .00 1.0000 * 
RE752         7         .000000        .000000     .00 1.0000 * 
RE752         8         .000000        .000000     .00 1.0000 
BLACKU74      1         .014563        .000000   15.12  .0001 o 
BLACKU74      2         .071429        .142857     .27  .6173 
BLACKU74      3         .121951        .166667     .24  .6280 
BLACKU74      4         .200000        .095238     .74  .3969 
BLACKU74      5         .230769        .315789     .29  .5952 
BLACKU74      6         .000000        .941176     .00 1.0000 * 
BLACKU74      7         .000000        .428571     .00 1.0000 * 
BLACKU74      8        1.000000       1.000000     .00 1.0000 
Variable BLACKU74 is unbalanced in block  1 
Other variables may also be unbalanced 
You might want to respecify the index function for the P-scores 
 
This part of the analysis ends with a recommendation that the analyst reexamine the specification of 
the propensity score model.  Since this is not a numerical problem, the analysis continues with 
estimation of the average treatment effect on the treated.   
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 The first example below shows estimation using the kernel estimator to define the 
counterpart observation from the controls. This stage consists of nbot + 1 iterations.  The first is the 
actual estimation, which is reported in the intermediate results.  Then the nboot repetitions are 
reported.  (These will be omitted if ; List is not included in the command.) 
  Recall, we divided the income values by 10,000.  The value of .157435 reported below thus 
corresponds to $1,574.35.  Becker and Ichino report a value (see their Section 6.4) of $1537.94 based 
on the 185 treateds and 1,157 controls.  The result below is based on the same 185 treateds and 1,162 
controls.  Note that the kernel estimator is the most time consuming of the three approaches.  For this 
sample of over 2,600 observations, the entire procedure required less than one second.  
 
+----------------------------------------------------------------------+ 
| Estimated Average Treatment Effect (T       )  Outcome is RE78       | 
| Kernel            Using Epanechnikov kernel with bandwidth =  .0600  | 
| Note, controls may be reused in defining matches.                    | 
| Number of bootstrap replications used to obtain variance    =     25 | 
+----------------------------------------------------------------------+ 
   
  Estimated average treatment effect =       .157435 
  Begin bootstrap iterations ******************************************* 
  Bootstrap estimate   1             =       .017963 
  Bootstrap estimate   2             =       .267056 
  Bootstrap estimate   3             =       .023318 
  Bootstrap estimate   4             =       .082595 
  Bootstrap estimate   5             =       .102630 
  Bootstrap estimate   6             =       .011022 
  Bootstrap estimate   7             =       .095340 
  Bootstrap estimate   8             =       .131663 
  Bootstrap estimate   9             =       .227142 
  Bootstrap estimate  10             =       .048036 
    (Iterations 11 – 20 omitted) 
  Bootstrap estimate  21             =       .203207 
  Bootstrap estimate  22             =       .006060 
  Bootstrap estimate  23             =       .123456 
  Bootstrap estimate  24             =       .120571 
  Bootstrap estimate  25             =       .044657 
  End bootstrap iterations   ******************************************* 
 
(Note, the values reported in parentheses below for the average treatment effect and the estimated 
asymptotic standard error are Becker and Ichino’s estimates, not part of the output of the program. 
Their counterpart to the confidence interval shown below is (-.0479755 to  3.555643). 
 
+----------------------------------------------------------------------+ 
| Number of Treated observations =    185  Number of controls =   1162 |  
| Estimated Average Treatment Effect   =        .157435  (.1537943)    |  
| Estimated Asymptotic Standard Error  =        .096927  (.1016874)    | 
| t statistic (ATT/Est.S.E.)           =       1.624276                | 
| 95% Confidence Interval for ATT      = -.032541 to .347411) 95%      |  
| Average Bootstrap estimate of ATT    =        .119419                |   
| ATT - Average bootstrap estimate     =        .038017                | 
+----------------------------------------------------------------------+ 
Elapsed time:     0 hours,  0 minutes,  0.75 seconds. 
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 The next set of estimates is based on all of the program defaults.  The single nearest 
neighbor is used for the counterpart observation; 25 bootstrap replications are used to compute the 
standard deviation, and the full range of propensity scores (rather than the common support) is used.  
Intermediate output is also suppressed. 
 
 MATCH  ; Rhs = re78 $ 
 
+---------------------------------------------------+ 
| ******* Propensity Score Matching Analysis ****** | 
| Treatment variable = T       , Outcome = RE78     | 
| Sample In Use                                     | 
| Total number of observations     =   2675         | 
| Number of valid (complete) obs.  =   2675         | 
| Number used                      =   2675         | 
| Sample Partitioning of Data In Use                | 
|                     Treated   Controls     Total  | 
| Observations            185       2490      2675  | 
| Sample Proportion     6.92%     93.08%   100.00%  | 
+---------------------------------------------------+ 
 
+-------------------------------------------------------------+ 
| Propensity Score Function = Logit  based on T               | 
| Variable   Coefficient  Standard Error  t statistic         | 
| AGE             .32965       .12042909       2.737          | 
| AGE2           -.00633       .00185630      -3.409          | 
| EDUC            .88403       .34149593       2.589          | 
| EDUC2          -.05215       .01702488      -3.063          | 
| MARR          -1.89160       .29919331      -6.322          | 
| BLACK          1.13696       .35195111       3.230          | 
| HISP           1.96830       .56695458       3.472          | 
| RE74          -1.04742       .35896354      -2.918          | 
| RE75          -2.18585       .41826677      -5.226          | 
| RE742           .23048       .08230861       2.800          | 
| RE752           .02516       .08840623        .285          | 
| BLACKU74       2.13433       .42694404       4.999          | 
| ONE           -7.63663      2.42743151      -3.146          | 
+-------------------------------------------------------------+ 
 
 The reported estimated propensity score function is the same as before, as it is simply an 
echo of the earlier function.  All of the subsequent results will be different because the previous 
example restricted the sample in use to those in the common support while the results to follow use 
all observations in the sample.  Becker and Ichino do not report a like set of results, so we can only 
compare the final results here. The partitioning of the range of propensity scores once again produces 
eight blocks. 
 
Partitioning the range of propensity scores 
Iteration  1  Mean scores are not equal in at least one cell 
Iteration  2  Mean scores are not equal in at least one cell 
Iteration  3  Mean scores are not equal in at least one cell 
Mean PSCORES are tested equal within the blocks listed below. 
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+-------------------------------------------------------------+ 
| Empirical Distribution of Propensity Scores in Sample Used  | 
|   Percent      Lower   Upper   Sample size =   2675         | 
|   0% -   5%   .000000  .000000 Average score  .069159       | 
|   5% -  10%   .000000  .000002 Std.Dev score  .206222       | 
|  10% -  15%   .000002  .000006 Variance       .042527       | 
|  15% -  20%   .000006  .000015 Blocks used to test balance  | 
|  20% -  25%   .000015  .000031      Lower    Upper   # obs  | 
|  25% -  30%   .000032  .000062  1  .000000  .097484   2369  | 
|  30% -  35%   .000062  .000122  2  .097484  .194967     63  | 
|  35% -  40%   .000122  .000205  3  .194967  .389934     65  | 
|  40% -  45%   .000206  .000365  4  .389934  .584901     36  | 
|  45% -  50%   .000367  .000609  5  .584901  .779868     32  | 
|  50% -  55%   .000613  .001111  6  .779868  .877352     17  | 
|  55% -  60%   .001123  .001813  7  .877352  .926094      7  | 
|  60% -  65%   .001824  .003037  8  .926094  .974835     86  | 
|  65% -  70%   .003054  .005404                              | 
|  70% -  75%   .005431  .011012                              | 
|  75% -  80%   .011029  .023221                              | 
|  80% -  85%   .023327  .051415                              | 
|  85% -  90%   .051471  .135404                              | 
|  90% -  95%   .135611  .624407                              | 
|  95% - 100%   .627957  .974835                              | 
+-------------------------------------------------------------+ 
 
Examining exogenous variables for balancing hypothesis 
Variable BLACKU74 is unbalanced in block  1 
Other variables may also be unbalanced 
You might want to respecify the index function for the P-scores 
 
+----------------------------------------------------------------------+ 
| Estimated Average Treatment Effect (T       )  Outcome is RE78       | 
| Nearest Neighbor  Using average of  1 closest neighbors              | 
| Note, controls may be reused in defining matches.                    | 
| Number of bootstrap replications used to obtain variance    =     25 | 
+----------------------------------------------------------------------+ 
  Estimated average treatment effect =       .141870 
+----------------------------------------------------------------------+ 
| Number of Treated observations =    185  Number of controls =     55 | 
| Estimated Average Treatment Effect   =        .141870                | 
| Estimated Asymptotic Standard Error  =        .118904                | 
| t statistic (ATT/Est.S.E.)           =       1.193147                | 
| Confidence Interval for ATT = (     -.091182  to        .374921) 95% | 
| Average Bootstrap estimate of ATT    =        .177653                | 
| ATT - Average bootstrap estimate     =       -.035783                | 
+----------------------------------------------------------------------+ 
 
 Using the full sample in this fashion produces an estimate of $1,418.70 for the treatment 
effect with an estimated standard error of $1,189.04.  Note that from the results above, we find that 
only 55 of the 2490 control observations were used as nearest neighbors for the 185 treated 
observations.  In comparison, using the 1,342 observations in their estimated common support, and 
the same 185 treateds, Becker and Ichino report estimates of $1,667.64 and $2,113.59 for the effect 
and the standard error, respectively and use 57 of the 1,342 controls as nearest neighbors.  Finally, 
this is the fastest of the three procedures.  Computation based on the same sample now requires 
about a third of a second. 
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 The next set of results uses the caliper form of matching and again restricts attention to the 
estimates in the common support.   
 
 MATCH  ; Rhs = re78 ; Range = .0001 ; Common Support $ 
 
+---------------------------------------------------+ 
| ******* Propensity Score Matching Analysis ****** | 
| Treatment variable = T       , Outcome = RE78     | 
| Sample In Use                                     | 
| Total number of observations     =   2675         | 
| Number of valid (complete) obs.  =   2675         | 
| Number used (in common support)  =   1347         | 
| Sample Partitioning of Data In Use                | 
|                     Treated   Controls     Total  | 
| Observations            185       1162      1347  | 
| Sample Proportion    13.73%     86.27%   100.00%  | 
+---------------------------------------------------+ 
 
+-------------------------------------------------------------+ 
| Propensity Score Function = Logit  based on T               | 
| Variable   Coefficient  Standard Error  t statistic         | 
| AGE             .32965       .12042909       2.737          | 
| AGE2           -.00633       .00185630      -3.409          | 
| EDUC            .88403       .34149593       2.589          | 
| EDUC2          -.05215       .01702488      -3.063          | 
| MARR          -1.89160       .29919331      -6.322          | 
| BLACK          1.13696       .35195111       3.230          | 
| HISP           1.96830       .56695458       3.472          | 
| RE74          -1.04742       .35896354      -2.918          | 
| RE75          -2.18585       .41826677      -5.226          | 
| RE742           .23048       .08230861       2.800          | 
| RE752           .02516       .08840623        .285          | 
| BLACKU74       2.13433       .42694404       4.999          | 
| ONE           -7.63663      2.42743151      -3.146          | 
| Note:Estimation sample may not be the sample analyzed here. | 
| Observations analyzed are restricted to the common support =| 
| only controls with propensity in the range of the treated.  | 
+-------------------------------------------------------------+ 
 
Partitioning the range of propensity scores 
Iteration  1  Mean scores are not equal in at least one cell 
Iteration  2  Mean scores are not equal in at least one cell 
Iteration  3  Mean scores are not equal in at least one cell 
Mean PSCORES are tested equal within the blocks listed below. 
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+-------------------------------------------------------------+ 
| Empirical Distribution of Propensity Scores in Sample Used  | 
|   Percent      Lower   Upper   Sample size =   1347         | 
|   0% -   5%   .000591  .000783 Average score  .137238       | 
|   5% -  10%   .000787  .001061 Std.Dev score  .274079       | 
|  10% -  15%   .001065  .001377 Variance       .075119       | 
|  15% -  20%   .001378  .001748 Blocks used to test balance  | 
|  20% -  25%   .001760  .002321      Lower    Upper   # obs  | 
|  25% -  30%   .002340  .002956  1  .000591  .098016   1041  | 
|  30% -  35%   .002974  .004057  2  .098016  .195440     63  | 
|  35% -  40%   .004059  .005272  3  .195440  .390289     65  | 
|  40% -  45%   .005278  .007486  4  .390289  .585138     36  | 
|  45% -  50%   .007557  .010451  5  .585138  .779986     32  | 
|  50% -  55%   .010563  .014643  6  .779986  .877411     17  | 
|  55% -  60%   .014686  .022462  7  .877411  .926123      7  | 
|  60% -  65%   .022621  .035060  8  .926123  .974835     86  | 
|  65% -  70%   .035075  .051415                              | 
|  70% -  75%   .051415  .076188                              | 
|  75% -  80%   .076376  .134189                              | 
|  80% -  85%   .134238  .320638                              | 
|  85% -  90%   .321233  .616002                              | 
|  90% -  95%   .624407  .949418                              | 
|  95% - 100%   .949418  .974835                              | 
+-------------------------------------------------------------+ 
 
Examining exogenous variables for balancing hypothesis 
Variable BLACKU74 is unbalanced in block  1 
Other variables may also be unbalanced 
You might want to respecify the index function for the P-scores 
 

 Results to this point will be identical to the first set as the same sample and the same 
procedures are used to partition the range of propensity scores and test the balancing property.  The 
estimated treatment effects are very different.  We see that only 28 of the 185 controls had a neighbor 
within a range (radius in the terminology of Becker and Ichino) of 0.0001.  The treatment effect is 
estimated to be only $167.16 with a standard error of $294.66.  In contrast, using this procedure, and 
this radius, Becker and Ichino report a nonsense result of -$5,546.10 with a standard error of $2,388.72.  
They note that this illustrates the sensitivity of the estimator to the choice of radius, which is certainly 
the case.  To examine this aspect, we recomputed the estimator using a range of 0.01 instead of 0.0001.  
This produces the expected effect, as seen in the second set of results below.  The estimated treatment 
effect rises to $1,552.11 which is comparable to the other results already obtained. 
 
+----------------------------------------------------------------------+ 
| Estimated Average Treatment Effect (T       )  Outcome is RE78       | 
| Caliper           Using distance of  .00010 to locate matches        | 
| Note, controls may be reused in defining matches.                    | 
| Number of bootstrap replications used to obtain variance    =     25 | 
+----------------------------------------------------------------------+ 
  Estimated average treatment effect =       .016716 
+----------------------------------------------------------------------+ 
| Number of Treated observations =     28  Number of controls =     74 | 
| Estimated Average Treatment Effect   =        .016716                | 
| Estimated Asymptotic Standard Error  =        .029466                | 
| t statistic (ATT/Est.S.E.)           =        .567303                | 
| Confidence Interval for ATT = (     -.041037  to        .074469) 95% | 
| Average Bootstrap estimate of ATT    =        .011175                | 
| ATT - Average bootstrap estimate     =        .005541                | 
+----------------------------------------------------------------------+ 
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The final results are produced by the command: 
 
 MATCH  ; Rhs = re78 ; Range = .01 $ 
 
+----------------------------------------------------------------------+ 
| Estimated Average Treatment Effect (T       )  Outcome is RE78       | 
| Caliper           Using distance of  .01000 to locate matches        | 
| Note, controls may be reused in defining matches.                    | 
| Number of bootstrap replications used to obtain variance    =     25 | 
+----------------------------------------------------------------------+ 
  Estimated average treatment effect =       .155211 
  Begin bootstrap iterations ******************************************* 
  End bootstrap iterations   ******************************************* 
+----------------------------------------------------------------------+ 
| Number of Treated observations =    141  Number of controls =   1119 | 
| Estimated Average Treatment Effect   =        .155211                | 
| Estimated Asymptotic Standard Error  =        .068781                | 
| t statistic (ATT/Est.S.E.)           =       2.256596                | 
| Confidence Interval for ATT = (      .020400  to        .290022) 95% | 
| Average Bootstrap estimate of ATT    =        .123361                | 
| ATT - Average bootstrap estimate     =        .031850                | 
+----------------------------------------------------------------------+ 
 
 Finally, we examine the effect of using a probit model instead of a logit for the propensity 
scores.  The first set of results below repeats the first set computed above.  The second set is 
otherwise the same, save for the change to a probit model.  The effect on the estimated treatment is 
very small, only $70 or about 4%.  The standard error falls noticeably, but this is probably not a 
general result.  The logit results are 
 
+----------------------------------------------------------------------+ 
| Number of Treated observations =    185  Number of controls =   1162 | 
| Estimated Average Treatment Effect   =        .157435                | 
| Estimated Asymptotic Standard Error  =        .096927                | 
| t statistic (ATT/Est.S.E.)           =       1.624276                | 
| Confidence Interval for ATT = (     -.032541  to        .347411) 95% | 
| Average Bootstrap estimate of ATT    =        .119419                | 
| ATT - Average bootstrap estimate     =        .038017                | 
+----------------------------------------------------------------------+ 
 
The same set of computations based on a probit model for the propensity scores produces the 
following: 
 
+----------------------------------------------------------------------+ 
| Number of Treated observations =    185  Number of controls =   1042 | 
| Estimated Average Treatment Effect   =        .150392                | 
| Estimated Asymptotic Standard Error  =        .077791                | 
| t statistic (ATT/Est.S.E.)           =       1.933289                | 
| Confidence Interval for ATT = (     -.002078  to        .302862) 95% | 
| Average Bootstrap estimate of ATT    =        .160183                | 
| ATT - Average bootstrap estimate     =       -.009791                | 
+----------------------------------------------------------------------+ 
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E57.6 Mathematical Details of the Procedure 
 
 The following are the computations used to estimate the average treatment effect. 
 
Propensity Score Model 
 
 The propensity scores are calculated using an estimated probit or logit binary choice model.  
The model estimates 
 
   P(T=1|x)  =  P(x) 

    =  Φ(β′x) for a probit model  

and     =  Λ(β′x) for a logit model. 
 
The model need not be estimated with the sample analyzed to compute the treatment effects.  Any 
subsample, or a different sample entirely may be used.  The specification of the treatment model 
should contain sufficient richness, perhaps with quadratic or interaction terms, to capture, as fully as 
possible, the underlying drivers of assignment to treatment.  The next series of steps are applied to 
the sample to be used to estimate the average treatment effect. 
 
Balancing Hypothesis 
 
 The data are examined to see if they satisfactorily meet the balancing hypothesis of equal 
means of treatment and controls – that is, to see if the treatment assignment between treated and 
controls is random given the characteristics. 
 Let the sample of propensity scores for the full sample be denoted Pi, those for the treated as 
Pt and for the controls Pc.  It is decided at the outset whether to examine all individuals in the 
sample, or those whose propensities lie in the ‘common support.’  The common support consists of 
the range of propensities defined by  
 
   Pmin  =  Mint Pt to Pmax = Maxt Pt. 
 
Thus, the sample consists of all the treated observations and the subset of controls whose propensity 
scores lie in this range. 
 The range of propensity scores is divided into a set of K intervals and the average propensity 
scores of treated and controls are tested for equality using the observations whose propensities lie 
within these ranges. LIMDEP uses the standard F test of equality of means, 
 
   Fk[1,d]  =  2 2 2

, ,( ) /( / / )k k k k
C T C k C T k TP P s N s N− + , k = 1,...,K. 

 
For the degrees of freedom for the denominator, we use the Satterthwaite approximation, 
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We use a critical p value of 0.01 for the test.  The default number of ranges is five.  If the test fails in 
any cell, we use a finer partition of the range of scores.  Two strategies are used.   
 

1. Becker and Ichino recommend halving the range of the cell in which the test fails and 
repeating the test in the halves.  Thus, if the initial ranges are .1-.2, .2-.3, .3-.4, .4-.5,     .5-.6, 
and the test fails in the third cell, they convert the .3-.4 cell to two cells, .3-.35 and .35-.4 and 
repeating.  By this calculation, a single cell can be partitioned into many small parts.  In our 
first pass, we use this strategy, up to a maximum of 15 cells in total.  

 
2. If the maximum of 15 cells is reached in pass one, we then start again with five equal length 

intervals, and if a cell fails the equal means test, we increase the number of cells to six and 
repeat the testing.  In the case examined above, the second iteration would start again with 
cells .1000-.1833, .1833-.2666, .2666-.3500, .3500-.4333, .4333-.5167,  .5167-.6000, and so 
on.  By this strategy, the range of propensity scores is divided into finer, still equal length 
intervals.  Once again, the iterations continue up to a maximum. 

 
If a cell has insufficient observations to carry out the test, treat the F statistic as zero – that is, the 
means test passes for such a cell. 
 The outcome of this search will either be an indication that the overall test appears to pass, 
or if it persistently fails, a recommendation that the propensity score function is insufficiently 
specified.  Either way, this failure does not prevent further processing.  The result of this step is a 
mesh of points, 
   [P*]  =  [P1, P2, ...,PK+1] 
 
that is then used in the next step.  This mesh is the set of ranges shown at the right of the sample 
output below (which was reported earlier with our first set of results). 
 
+-------------------------------------------------------------+ 
| Empirical Distribution of Propensity Scores in Sample Used  | 
|   Percent      Lower   Upper   Sample size =   2675         | 
|   0% -   5%   .000000  .000000 Average score  .069159       | 
|   5% -  10%   .000000  .000002 Std.Dev score  .206222       | 
|  10% -  15%   .000002  .000006 Variance       .042527       | 
|  15% -  20%   .000006  .000015 Blocks used to test balance  | 
|  20% -  25%   .000015  .000031      Lower    Upper   # obs  | 
|  25% -  30%   .000032  .000062  1  .000000  .097484   2369  | 
|  30% -  35%   .000062  .000122  2  .097484  .194967     63  | 
|  35% -  40%   .000122  .000205  3  .194967  .389934     65  | 
|  40% -  45%   .000206  .000365  4  .389934  .584901     36  | 
|  45% -  50%   .000367  .000609  5  .584901  .779868     32  | 
|  50% -  55%   .000613  .001111  6  .779868  .877352     17  | 
|  55% -  60%   .001123  .001813  7  .877352  .926094      7  | 
|  60% -  65%   .001824  .003037  8  .926094  .974835     86  | 
|  65% -  70%   .003054  .005404                              | 
|  70% -  75%   .005431  .011012                              | 
|  75% -  80%   .011029  .023221                              | 
|  80% -  85%   .023327  .051415                              | 
|  85% -  90%   .051471  .135404                              | 
|  90% -  95%   .135611  .624407                              | 
|  95% - 100%   .627957  .974835                              | 
+-------------------------------------------------------------+ 
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 Once the mesh [P*] is obtained, we then carry out a test of the balancing hypothesis for each 
variable in x, using the sets of observations that are contained in the ranges.  A test of equality of 
means is carried for each variable in x, in each range defined by [P*].  The test statistic is computed 
in the same manner as above for the propensity scores, and, again, the 0.01 critical value is used.  
The outcome of this step is either a notification that the data are consistent with the balancing 
hypothesis (equal means), or they are not.  Either way, this does not prevent further computation.  
The test of the variable age in our first analysis was reported as 
 
Examining exogenous variables for balancing hypothesis 
* Indicates no observations, treatment and/or controls, for test. 
o Indicates means of treated and controls differ significantly. 
================================================================= 
Variable  Interval Mean Control   Mean Treated    F     Prob 
--------  -------- ------------   ------------  ------  ----- 
AGE           1       31.426214      30.363636     .38  .5489 
AGE           2       28.196429      28.714286     .02  .8978 
AGE           3       27.902439      28.583333     .09  .7611 
AGE           4       26.800000      24.809524     .60  .4458 
AGE           5       24.846154      24.210526     .10  .7544 
AGE           6         .000000      30.823529     .00 1.0000 * 
AGE           7         .000000      28.857143     .00 1.0000 * 
AGE           8       23.285714      23.392405     .02  .8843 
 
Note that there are no control observations in the sixth and seventh blocks.  These are taken to 
represent successes of the hypothesis. 
 
Average Treatment Effect 
 
 The average treatment effect on the treated is now estimated.  For each treated 
observation/outcome, Ot, we locate the counterpart control observations, Oc* that are similar in the 
characteristics, by using closeness of the propensity scores.  The treatment effect for this observation 
is then estimated with Ot - Oc*.  The average over the treated observations is then our estimate of the 
effect of treatment on the treated. 
 Note that this computation proceeds regardless of the outcome of the data examination in the 
previous step.  However, a negative outcome in that step might call the results of this computation 
into question. 
 We offer three methods of locating the counterpart observation, Oc*: 
 
 Single Nearest Neighbor 
 
 The counterpart observation is the one that has the nearest propensity score.  Oc* is the 
outcome for the person for whom |Pt - Pc| is minimized.  Note that a particular control observation 
may be the nearest neighbor to more than one treated observation.  And, some controls may not be 
the closest neighbors to any treated observations. 
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 Caliper 
 
 The counterpart observation is constructed by averaging all control observations whose 
propensity scores fall in a given range.  Thus, we first locate the set [Ct*] = the set of control 
observations for which |Pt - Pc| < r, where the user specifies the value of r in the command. (The 
distance may be specified to be a specific value, such as .01, or a percentage of the range of 
propensity scores, such as Pt +/- 2% of (Pmax - Pmin).  By this construction, the neighbor may be an 
average of several control observations.  It may also not exist, if no observations are close enough.  
As in the single nearest neighbor computation, control observations may be used more than once, or 
they might not be used at all.  (E.g., if the caliper is .01, a control observation has propensity .5 and 
the nearest treated observations have propensities of .45 and .55, then this control will never be 
used.) 
 
 Kernel 
 
 The counterpart observation is obtained by constructing a kernel estimator, 
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where K[.] is a kernel weighting function and h is the bandwidth.  Three kernel functions are 
supported 
   Epanechnikov[z]   =  .75 (1 – z2/5) / 51/2  for |z| < 5 
   Normal =  φ(z) = standard normal density 
   Logistic =  Λ(z)[1-Λ(z)] = logistic density 
        Λ(z) = exp(z)/[1+exp(z)]. 
 
The bandwidth may be specified by the user.  The default value is 0.6; any positive value less than 
.25 may be specified.  (The kernel function becomes unstable if the bandwidth is too large.) Note 
that this is a weighted average of the outcomes for all control observations, where the weights sum to 
one and are 
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In this instance, the neighbor is an average of all control observations. 
 
Estimated Standard Error for the Average Treatment Effect 
 
 The variance of the estimator is estimated by using bootstrapping.  The entire process is 
repeated nboot times, specified by the user.  The default number is 25; up to 1,000 may be requested.  
The mean squared deviation around the actual estimator is used as the variance estimator.  The 
square root is reported as the estimated asymptotic standard error. 
 
  



E57: Propensity Score Matching   E-1431 

Computation Time   
 
 Searching for the neighbors could be time consuming in a very large sample.  The procedure 
is limited to samples of 200,000 observations or less.  LIMDEP’s algorithms are quite fast.  The 
search is optimized by sorting the observations on propensity scores before any searching is done.  
Thus, for example, the search for the single nearest neighbor, which might involve searching the 
entire data set if the data are unsorted, is a trivial inspection of the few adjacent observations with the 
sorted data.  Doing this entire analysis with a sample of 2,500 observations, and using the kernel 
estimator and 25 bootstrap iterations takes about 0.5 seconds, including estimating the probit 
equation, on a recent vintage desktop computer.  Computation time will generally not be a 
substantive constraint. 
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E58: Nonparametric Analysis of Duration Data 
 
E58.1 Introduction 
 
 This and the next two chapters will document LIMDEP’s programs for analyzing duration or 
lifetime (sometimes called ‘survival’ or ‘failure time’) data.  This chapter presents the nonparametric 
(life table) methods.  Chapter E59 narrows the analysis to ‘semiparametric’ models, which make 
minimal, but nonetheless substantive assumptions about the underlying distribution.  Finally, 
Chapter E60 presents models which make explicit distributional assumptions for the duration data.  
Principal references for the developments in these chapters are:  Kalbfleisch and Prentice (1980), 
Cox and Oakes (1984), Gross and Clark (1975), and Kiefer (1988). 
 The techniques and LIMDEP routines described here are used for analyzing duration data 
such as survival times, length of time until failure, lengths of spells of unemployment, strike 
duration, and so on.  The data consist of measurements on the length of survival and, possibly, a set 
of regressors (covariates).  In addition, the data may be ‘right censored.’  That is, the time measured 
may represent only the last observation of an individual who had not yet ‘exited’ the process being 
studied.  For example, in studying spells of unemployment, the observed duration time may represent 
the full length of the spell, i.e., the length of time it took for the individual to find a job.  
Alternatively, at the time of measurement, the individual might have still been seeking a job.  The 
duration datum in this case is censored; we know only (assume) that the individual left 
unemployment at some time after the measurement.  The methods described here assume that 
observations are homogeneous in the probability distribution over duration times, with the exception 
of the measured covariates, if any.  This is relaxed in Chapter E60.  In addition, it is assumed that 
any censoring in the data is unrelated to the duration values themselves. 
 This chapter will show how to compute, store, and plot simple life tables for duration data.  
Treatment for a single sample is shown first.  A method of stratifying the sample is shown at the end 
of the chapter.   
 
E58.2 Life Tables 
 
 If only the duration times are available (i.e., no covariates), then life tables and survival 
curves can be derived by actuarial methods.  In addition, if any observations are censored, the data 
must contain an indicator (binary) variable indicating which observations ‘exited’ (indicator = 1) and 
which observations are censored (indicator = 0). 
 
NOTE:  The maximum number of observations which can be analyzed is 75,000. 
 
 Suppose, then that observations consist of survival times, t1, t2, ..., tN.  Survival times are 
ordered low to high by the program.  Your data need not be ordered; they are sorted internally.  Also, 
let c1, c2, ..., cN be the censoring indicator equal to zero for censored, or one for exited observations.   
  



E58: Nonparametric Analysis of Duration Data  E-1433 

The following are computed: 
 
Table 1. Life table based on the method of Cutler and Ederer (1958):  The range of t is divided into 

K equal intervals.  For each interval, j = 1,…,K, we compute: 
 

a. the number of observations, nj, 
b. size of the risk set, rj  =  nj - Cj /2 , where Cj is the number of censored observations, 
c. the number of observations which ‘exit,’ mj , 
d. the proportion of observations in the risk set which exited, qj  =  mj /rj, 
e. the proportion surviving (the survival function) = the cumulative proportion of  

individuals surviving to the beginning of the interval,  
 
   pj   =  (1-qj-1)Pj-1, where P1=1, 
 

f. standard error for estimated survival rate,  
 
   se(Pj )  =  Pj[

1

1

k

j

−

=∑ qk /(rk (1-qk ))]1/2, 

 
g. hazard rate,  

 
   λj   =  2qj/(h(2-qj)), where h is the interval width, 
 

h. standard error for the hazard function,  
 
   se(λj)   =  λj [(1 - (hλj /2)2)/(rj qj )]1/2. 
 

The survival function and hazard function are then plotted.  The median survival time is 
reported with the plotted survival function. 

 
Table 2. If requested, the survival rates may be computed for the individual observations.  The  

observations are sorted from low to high and the following are reported in a table: 
 

a. observation, 
b. survival time, 
c. status – either exited or censored, 
d. the cumulative survival rate to the time at which this individual was measured, 
e. estimated standard error of the survival rate, 
f. total number of observations which have exited up to that duration, 
g. total number of observations censored at or less than that duration, 
h. size of the risk set at the beginning of the period.  (This is the number of observations 

whose duration is at least as large as that of this observation.) 
 
Table 3. If the results in Table 2 are requested, the same information is reported for each distinct  

exit time in the sample.  This will differ from the preceding if there are ties in the data.  In 
the first table, when the data are sorted, the survival rate is computed based simply on 
observation number, so that only the last observation in a set of ties is meaningful. 
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E58.3 Commands for Life Tables 
 
 The basic command to request the nonparametric survival analysis is 
 
 SURVIVAL  ; Lhs = time variable $  
 
If the data are censored, the censoring indicator is given as a second Lhs variable.  For example, 
 
 SURVIVAL ; Lhs = time,status $  
 
The censoring indicator must be coded 1 for actual exit times and 0 for censored observations.  The 
number of intervals in the life table is set at 10.  This may be changed by using 
 

; Int = number desired 
 
The number given may be any value from 10 to 120.  
 The estimated hazard function and survival function can be plotted after the life table is 
displayed by adding  
   ; Plot  
 
to the command.  
 
E58.3.1 Tables for Individuals and Specific Exit Times 
 
 The default output for the program is Table 1.  Tables 2 and 3 are requested by adding 
 
   ; List 
 
to the command.  The results in Table 3 may be kept permanently as data with the following:  (Note, 
these are for the distinct exit times, not the observations.) 
 
   ; Res = name saves the integrated hazard 
 
The integrated hazard is a form of ‘generalized residual,’ which can be used to analyze model 
specification.  (See Lancaster (1985).)  (At this point, there is no model as such.)  When the density, 
f(t) and survival rate, S(t) are defined, the integrated hazard is computed as 
 

   ∫ λi (t)dt  =  ∫ [f(t)/S(t)]dt  =  -logS(t). 
 
We approximate this function with our estimated survival rates. 
 
   ; Keep = name saves the hazard rate 
   ; Fill   keeps the distinct duration times 
 
Since these variables are not specific to the observation, they are placed in the first K rows of the 
data area, where K is the number of distinct exit times.  A scalar called ‘numexit’ contains the 
number of exit times observed in the data set. 
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HINT:  The ; Fill option replaces the duration variable with its results.  So, if you intend to use this 
option, use CREATE to make a copy of the original duration variable and use the copy as your 
duration variable in the command. 
 
Separate plots will show the hazard and survival rates.  An example is given below. 
 

E58.3.2 Stratification 
 

 The survival tables and other analysis may be based on stratified data.  The stratification 
must be provided by a variable which takes values 1, 2, ...  As many as nine strata may be analyzed. 
A full set of results is provided for each stratum identified.  At the end, two statistics, the log-rank 
and generalized Wilcoxon, are computed for testing homogeneity of the survival distributions across 
the strata.  The command is: 
 
 SURVIVAL ; Lhs = time [,status]  
   ; Str = stratification indicator variable 
   ; other options $  
 
The strata must be identified explicitly.  If you have a variable whose values you wish to use to define 
the strata, it is only necessary to use RECODE to create the stratification variable.  For example, 
suppose age in the ranges 18-24, 25-45, and 46-99 is used to define three strata.  You could use 
 
 CREATE ; strat = age $  
 RECODE ; strat ; 18 / 24 = 1 ; 25 / 45 = 2 ; 46 / 99 = 3 $  
 SURVIVAL ; Lhs = time ; Str = strat $  
 

E58.4 Applications 
 

 The estimators are illustrated with two data sets, one on strike duration from Kennan (1985) 
and the other a simulated data set with covariates. 
 

E58.4.1 Strike Duration Data 
 
 The data listed below are the durations of 62 strikes reported by Kennan (1985).  The last 12 
are censored at 80 weeks. 
 

READ  ; Nobs = 62 ; Nvar = 1 ; By Variables ; Names = time $  
 

  1    2   2   2   2   3   3   3   9   12   21   27   43   49  
  52   3   4   5   7   8   9  10  11   12   13   14   15   17  
  19  21  22  23  25  26  27  28  29   32   33   35   37   38  
  41  42  43  44  49  52  61  72  80   80   80   80   80   80  
  80  80  80  80  80  80 
 

CREATE ; status = time < 80 $ 
SURVIVAL  ; Lhs = time,status ; Int = 20 ; List ; Plot $ 

 
Estimated Survival Function 
Duration variable is        TIME 
Status is given by variable STATUS 
Number of observations in stratum =    62 
Number of observations exiting    =    50 
Number of observations censored   =    12 
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    Survival   Enter  Cnsrd  At Risk  Exited   Survival Rate     Hazard Rate 
    .0-   4.0     62      0       62       9  1.0000 ( .000)   .0391 ( .013) 
   4.0-   8.0     53      0       53       3   .8548 ( .045)   .0146 ( .008) 
   8.0-  12.0     50      0       50       5   .8065 ( .050)   .0263 ( .012) 
  12.0-  16.0     45      0       45       5   .7258 ( .057)   .0294 ( .013) 
  16.0-  20.0     40      0       40       2   .6452 ( .061)   .0128 ( .009) 
  20.0-  24.0     38      0       38       4   .6129 ( .062)   .0278 ( .014) 
  24.0-  28.0     34      0       34       4   .5484 ( .063)   .0313 ( .016) 
  28.0-  32.0     30      0       30       2   .4839 ( .063)   .0172 ( .012) 
  32.0-  36.0     28      0       28       3   .4516 ( .063)   .0283 ( .016) 
  36.0-  40.0     25      0       25       2   .4032 ( .062)   .0208 ( .015) 
  40.0-  44.0     23      0       23       4   .3710 ( .061)   .0476 ( .024) 
  44.0-  48.0     19      0       19       1   .3065 ( .059)   .0135 ( .014) 
  48.0-  52.0     18      0       18       2   .2903 ( .058)   .0294 ( .021) 
  52.0-  56.0     16      0       16       2   .2581 ( .056)   .0333 ( .024) 
  56.0-  60.0     14      0       14       0   .2258 ( .053)   .0000 ( .000) 
  60.0-  64.0     14      0       14       1   .2258 ( .053)   .0185 ( .019) 
  64.0-  68.0     13      0       13       0   .2097 ( .052)   .0000 ( .000) 
  68.0-  72.0     13      0       13       0   .2097 ( .052)   .0000 ( .000) 
  72.0-  76.0     13      0       13       1   .2097 ( .052)   .0200 ( .020) 
  76.0-  80.0     12     12        6       0   .1935 ( .050)   .0000 ( .000) 
 
Individual Survival Data 
Observation  Survival   Status   Srv.rate (S.E.) Exited  Censored  # at risk 
       1        1.000   Exited    1.0000 (.0000)      1         0         62 
       2        2.000   Exited     .9839 (.0160)      2         0         61 
       3        2.000   Exited     .9677 (.0224)      3         0         60 
       4        2.000   Exited     .9516 (.0273)      4         0         59 
       5        2.000   Exited     .9355 (.0312)      5         0         58 
       6        3.000   Exited     .9194 (.0346)      6         0         57 
       7        3.000   Exited     .9032 (.0375)      7         0         56 
       8        3.000   Exited     .8871 (.0402)      8         0         55 
      16        3.000   Exited     .8710 (.0426)      9         0         54 
      17        4.000   Exited     .8548 (.0447)     10         0         53 
      18        5.000   Exited     .8387 (.0467)     11         0         52 
      19        7.000   Exited     .8226 (.0485)     12         0         51 
      20        8.000   Exited     .8065 (.0502)     13         0         50 
       9        9.000   Exited     .7903 (.0517)     14         0         49 
      21        9.000   Exited     .7742 (.0531)     15         0         48 
      22       10.000   Exited     .7581 (.0544)     16         0         47 
      23       11.000   Exited     .7419 (.0556)     17         0         46 
      10       12.000   Exited     .7258 (.0567)     18         0         45 
      24       12.000   Exited     .7097 (.0576)     19         0         44 
      25       13.000   Exited     .6935 (.0585)     20         0         43 
      26       14.000   Exited     .6774 (.0594)     21         0         42 
      27       15.000   Exited     .6613 (.0601)     22         0         41 
      28       17.000   Exited     .6452 (.0608)     23         0         40 
      29       19.000   Exited     .6290 (.0613)     24         0         39 
      11       21.000   Exited     .6129 (.0619)     25         0         38 
      30       21.000   Exited     .5968 (.0623)     26         0         37 
      31       22.000   Exited     .5806 (.0627)     27         0         36 
      32       23.000   Exited     .5645 (.0630)     28         0         35 
      33       25.000   Exited     .5484 (.0632)     29         0         34 
      34       26.000   Exited     .5323 (.0634)     30         0         33 
      12       27.000   Exited     .5161 (.0635)     31         0         32 
      35       27.000   Exited     .5000 (.0635)     32         0         31 
      36       28.000   Exited     .4839 (.0635)     33         0         30 
      37       29.000   Exited     .4677 (.0634)     34         0         29 
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      38       32.000   Exited     .4516 (.0632)     35         0         28 
      39       33.000   Exited     .4355 (.0630)     36         0         27 
      40       35.000   Exited     .4194 (.0627)     37         0         26 
      41       37.000   Exited     .4032 (.0623)     38         0         25 
      42       38.000   Exited     .3871 (.0619)     39         0         24 
      43       41.000   Exited     .3710 (.0613)     40         0         23 
      44       42.000   Exited     .3548 (.0608)     41         0         22 
      13       43.000   Exited     .3387 (.0601)     42         0         21 
      45       43.000   Exited     .3226 (.0594)     43         0         20 
      46       44.000   Exited     .3065 (.0585)     44         0         19 
      14       49.000   Exited     .2903 (.0576)     45         0         18 
      47       49.000   Exited     .2742 (.0567)     46         0         17 
      15       52.000   Exited     .2581 (.0556)     47         0         16 
      48       52.000   Exited     .2419 (.0544)     48         0         15 
      49       61.000   Exited     .2258 (.0531)     49         0         14 
      50       72.000   Exited     .2097 (.0517)     50         0         13 
      51       80.000   Censored   .1935 (.0502)     50         1         12 
      ... 
      62       80.000   Censored   .1935 (.0502)     50        12          1 
 

Summary of Duration Data 
Observation  Survival   Status   Srv.rate (S.E.) Exited  Censored  # at risk 
       1        1.000      .0161  1.0000 (.0000)      1         0         62 
       2        2.000      .0656   .9839 (.0160)      4         0         61 
       3        3.000      .0702   .9194 (.0346)      4         0         57 
       4        4.000      .0189   .8548 (.0447)      1         0         53 
       5        5.000      .0192   .8387 (.0467)      1         0         52 
       6        7.000      .0196   .8226 (.0485)      1         0         51 
       7        8.000      .0200   .8065 (.0502)      1         0         50 
       8        9.000      .0408   .7903 (.0517)      2         0         49 
       9       10.000      .0213   .7581 (.0544)      1         0         47 
      10       11.000      .0217   .7419 (.0556)      1         0         46 
      11       12.000      .0444   .7258 (.0567)      2         0         45 
      12       13.000      .0233   .6935 (.0585)      1         0         43 
      13       14.000      .0238   .6774 (.0594)      1         0         42 
      14       15.000      .0244   .6613 (.0601)      1         0         41 
      15       17.000      .0250   .6452 (.0608)      1         0         40 
      16       19.000      .0256   .6290 (.0613)      1         0         39 
      17       21.000      .0526   .6129 (.0619)      2         0         38 
      18       22.000      .0278   .5806 (.0627)      1         0         36 
      19       23.000      .0286   .5645 (.0630)      1         0         35 
      20       25.000      .0294   .5484 (.0632)      1         0         34 
      21       26.000      .0303   .5323 (.0634)      1         0         33 
      22       27.000      .0625   .5161 (.0635)      2         0         32 
      23       28.000      .0333   .4839 (.0635)      1         0         30 
      24       29.000      .0345   .4677 (.0634)      1         0         29 
      25       32.000      .0357   .4516 (.0632)      1         0         28 
      26       33.000      .0370   .4355 (.0630)      1         0         27 
      27       35.000      .0385   .4194 (.0627)      1         0         26 
      28       37.000      .0400   .4032 (.0623)      1         0         25 
      29       38.000      .0417   .3871 (.0619)      1         0         24 
      30       41.000      .0435   .3710 (.0613)      1         0         23 
      31       42.000      .0455   .3548 (.0608)      1         0         22 
      32       43.000      .0952   .3387 (.0601)      2         0         21 
      33       44.000      .0526   .3065 (.0585)      1         0         19 
      34       49.000      .1111   .2903 (.0576)      2         0         18 
      35       52.000      .1250   .2581 (.0556)      2         0         16 
      36       61.000      .0714   .2258 (.0531)      1         0         14 
      37       72.000      .0769   .2097 (.0517)      1         0         13 
      38       80.000      .0000   .1935 (.0502)      0        12         12 
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Figure E58.1  Nonparametric Estimates of Hazard and Survival Functions 
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E58.4.2 An Example with Stratification 
 
 The following reads an artificial set of data on censoring and duration and requests an 
analysis stratified on marital status. 
  
 READ   ; Nobs = 22 ; Nvar = 4  
   ; Names = time,status,sex,married ; By Variables $ 
   
   11  3 19 32 2 14 8 21 16 5 2 8 14 18 18 21 10 1 9 23 19 7 
    1  1  0  1 1  1 1  1  0 1 1 1  1  1  1  1  0 1 0  1  1 1 
    0  0  1  0 1  0 1  1  1 0 0 1  1  0  1  1  0 0 1  1  0 1 
     1  1  2  2 1  1 1  1  2 2 2 1  1  1  2  1  2 2 1  1  2 1 
 
 SURVIVAL ; Lhs = time,status ; Str = married ; List $ 
 
 +------------------------------------------------+ 
 | Estimated Survival Function                    | 
 | Duration variable is        TIME               | 
 | Status is given by variable STATUS             | 
 | Stratification variable is  MARRIED            | 
 | Number of strata is         2                  | 
 | Counts are:    Stratum      Count              | 
 |                  1            13               | 
 |                  2             9               | 
 +------------------------------------------------+ 
 
Estimation results for stratum MARRIED  = 1 
Number of observations in stratum =      13 
Number of observations exiting    =      12 
Number of observations censored   =       1 
    Survival   Enter  Cnsrd  At Risk  Exited   Survival Rate     Hazard Rate 
    .0-   2.3     13      0       13       1  1.0000 ( .000)   .0348 ( .035) 
   2.3-   4.6     12      0       12       1   .9231 ( .074)   .0378 ( .038) 
   4.6-   6.9     11      0       11       0   .8462 ( .100)   .0000 ( .000) 
   6.9-   9.2     11      1       10       3   .8462 ( .100)   .1449 ( .083) 
   9.2-  11.5      7      0        7       1   .6044 ( .138)   .0669 ( .067) 
  11.5-  13.8      6      0        6       0   .5181 ( .143)   .0000 ( .000) 
  13.8-  16.1      6      0        6       2   .5181 ( .143)   .1739 ( .120) 
  16.1-  18.4      4      0        4       1   .3454 ( .138)   .1242 ( .123) 
  18.4-  20.7      3      0        3       0   .2590 ( .128)   .0000 ( .000) 
  20.7-  23.0      3      0        3       3   .2590 ( .128)   .8696 ( .000) 
Individual Survival Data 
Observation  Survival   Status   Srv.rate (S.E.) Exited  Censored  # at risk 
       5        2.000   Exited    1.0000 (.0000)      1         0         13 
       2        3.000   Exited     .9231 (.0739)      2         0         12 
      22        7.000   Exited     .8462 (.1001)      3         0         11 
       7        8.000   Exited     .7692 (.1169)      4         0         10 
      12        8.000   Exited     .6923 (.1280)      5         0          9 
      19        9.000   Censored   .6154 (.1349)      5         1          8 
       1       11.000   Exited     .6154 (.1349)      6         1          7 
       6       14.000   Exited     .5275 (.1414)      7         1          6 
      13       14.000   Exited     .4396 (.1426)      8         1          5 
      14       18.000   Exited     .3516 (.1385)      9         1          4 
       8       21.000   Exited     .2637 (.1288)     10         1          3 
      16       21.000   Exited     .1758 (.1119)     11         1          2 
      20       23.000   Exited     .0879 (.0836)     12         1          1 
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Summary of Duration Data 
Observation  Survival   Status   Srv.rate (S.E.) Exited  Censored  # at risk 
       1        3.000      .0909  1.0000 (.0000)      2         0         13 
       2        7.000      .0500   .8462 (.1001)      1         0         12 
       3        8.000      .1053   .7692 (.1169)      2         0         11 
       4        9.000      .0000   .6154 (.1349)      0         1          9 
       5       11.000      .0625   .6154 (.1349)      1         0          8 
       6       14.000      .1333   .5275 (.1414)      2         0          7 
       7       21.000      .2308   .3516 (.1385)      3         0          5 
       8       23.000      .1000   .0879 (.0836)      1         0          2 
 
Estimation results for stratum MARRIED  = 2 
Number of observations in stratum =       9 
Number of observations exiting    =       6 
Number of observations censored   =       3 
    Survival   Enter  Cnsrd  At Risk  Exited   Survival Rate     Hazard Rate 
    .0-   3.2      9      0        9       2  1.0000 ( .000)   .0781 ( .055) 
   3.2-   6.4      7      0        7       1   .7778 ( .139)   .0481 ( .048) 
   6.4-   9.6      6      0        6       0   .6667 ( .157)   .0000 ( .000) 
   9.6-  12.8      6      1        5       0   .6667 ( .157)   .0000 ( .000) 
  12.8-  16.0      5      1        4       0   .6667 ( .157)   .0000 ( .000) 
  16.0-  19.2      4      1        3       2   .6667 ( .157)   .2500 ( .162) 
  19.2-  22.4      1      0        1       0   .2857 ( .189)   .0000 ( .000) 
  22.4-  25.6      1      0        1       0   .2857 ( .189)   .0000 ( .000) 
  25.6-  28.8      1      0        1       0   .2857 ( .189)   .0000 ( .000) 
  28.8-  32.0      1      0        1       1   .2857 ( .189)   .6250 ( .000) 
Individual Survival Data 
Observation  Survival   Status   Srv.rate (S.E.) Exited  Censored  # at risk 
      18        1.000   Exited    1.0000 (.0000)      1         0          9 
      11        2.000   Exited     .8889 (.1048)      2         0          8 
      10        5.000   Exited     .7778 (.1386)      3         0          7 
      17       10.000   Censored   .6667 (.1571)      3         1          6 
       9       16.000   Censored   .6667 (.1571)      3         2          5 
      15       18.000   Exited     .6667 (.1571)      4         2          4 
      21       19.000   Exited     .5000 (.1863)      5         2          3 
       3       19.000   Censored   .3333 (.1843)      5         3          2 
       4       32.000   Exited     .3333 (.1843)      6         3          1 
Summary of Duration Data 
Observation  Survival   Status   Srv.rate (S.E.) Exited  Censored  # at risk 
       1        1.000      .0455  1.0000 (.0000)      1         0          9 
       2        2.000      .0476   .8889 (.1048)      1         0          8 
       3        5.000      .0500   .7778 (.1386)      1         0          7 
       4       10.000      .0000   .6667 (.1571)      0         1          6 
       5       16.000      .0000   .6667 (.1571)      0         1          5 
       6       18.000      .0588   .6667 (.1571)      1         0          4 
       7       19.000      .0625   .5000 (.1863)      1         1          2 
       8       32.000      .0714   .3333 (.1843)      1         0          1 
 
           +----------------------------------------------------+ 
           | Homogeneity tests: Degrees of freedom=   1         | 
           |                                                    | 
           | Log-Rank (LM) =     .93355    ,  Prob.   .33394    | 
           |                                                    | 
           | Gen. Wilcoxon =     .15433    ,  Prob.   .69443    | 
           +----------------------------------------------------+ 
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E58.5 Technical Details for the Homogeneity Tests 
 
 The log-rank and generalized Wilcoxon tests are both used for testing the hypothesis of 
homogeneity of the strata.  They are computed as follows:  Let 
 
 K =  the number of strata, strata denoted k = 1,...,K, 
 N =  the number of distinct exit times, 
 Ti =  the exit time at time ‘i,’ 
 nik =  the number of individuals in stratum k with exit time tik ≥ Ti, 
 ni.  =  Σk nik = number of individuals in the sample with tik  ≥ Ti, 
 xik =  number of individuals who exit stratum k at time Ti, 
 xi.  =  Σk xik = number of individuals in the sample who exit at time Ti, 
 xi =  [xi1 ,xi2 ,...,xiK]′. 
 
Under the assumption of homogeneity, conditioned on the sums nik and xi., the vector xi has a (K-1) 
dimensional hypergeometric distribution with mean vector 
 
   E[xik] =  nik xi. /ni. , k = 1,...,K, 
 
and covariances  
 
   Cov[xik ,xil ]  =  nij (δkl - nil /ni. )xi. (ni. - xi. ) / [ni. (ni. - 1)],  δkl  =  1(k = l). 
 
Let     x     =  Σi xi,  E  =  Σi E[xi ],  and  V  =  Σi Var[xi ].    
 
The log-rank statistic is 
 
   LR =  (x - E)′V-1(x - E). 
 
This has a limiting chi squared distribution with K-1 degrees of freedom.  Since V is short ranked, its 
ordinary inverse does not exist.  We use a G2 inverse to compute the statistic. 
 The generalized Wilcoxon statistic is a slight modification.  Let 
 
   wik   =  ni. (xik - xi. nik /ni. ), 
 
   wk =  Σi wik, 
 
and   w  =  [w1 ,w2 ,...,wK ]′. 
 
This vector has mean 0 and covariance matrix 
 
   Q =  Σi ni.

2Var[xi ]. 
 
The statistic is  
 
   GW =  w′Q-1w.  
 
Once again, a generalized inverse is needed to compute the statistic. 
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E59: Proportional Hazard Models 
 
E59.1 Introduction 
 
 Two models for duration data are presented in this chapter.  Cox’s proportional hazards 
model has proven useful for modeling duration data with only minimal assumptions about the 
underlying distribution. The shortcoming, however, is that this approach can be rather inflexible.  
The second model considered here, Han and Hausman’s ordered logit model is, like the Cox model, 
semiparametric in that it only assumes a basic form for the hazard function. 
 
E59.2 The Proportional Hazards Model 
 
 If one or more covariates are observed with the duration data, a regression-like model 
derived by Cox (1972) may be estimated.  The formal model is based on the hazard rate at time t, 
 
   h(t,x)  =  h(t,0)eβ′x, 
  
where h(t,0) is the baseline hazard rate at time t for covariate vector 0.  Assumptions for the model 
are presented in Cox (1972, 1975) and the related references cited there.  The parameters are 
estimated as follows:  We allow for ties and censored data in the measured durations.  Let T1,...,TK be 
the set of K distinct times in the N observations.  Let Rj be the index set of the individuals at risk just 
prior to time Tj (i.e., the set of individuals with duration greater than or equal to tj).  For every 
individual i in Rj, ti ≥ Tj.  The probability that an individual ‘exits’ (dies, leaves, etc.) at time Tj, given 
that exactly this one individual exits at time Tj, is 
 

   Prob(exit at time Tj)  =  
exp( )

exp( )
j

j

ii R∈

′

′∑
x

x
β

β
. 

The conditioning eliminates the baseline hazard.  If exactly one individual exits at each time and no 
observations are censored, the partial log likelihood (see Cox (1975)) is 
 

   logL  =  
K

j=1∑ log exp( )
j

j ii R∈
 ′ ′−   ∑x xβ β .  

 
If mj ≥ 1 individuals exit at the same tj, the partial log likelihood is the sum of the individual 
likelihoods, 
   logL  =  log exp( )

j j

K
r j ij=1 r T i R

m
∈ ∈

 ′ ′−   ∑ ∑ ∑x xβ β . 

 
Censored observations enter the risk set at each observation but do not contribute to the numerator of 
the partial likelihood. 
 The partial log likelihood is maximized using Newton’s method.  Options available for this 
model include stratification, time dependent covariates, and fixed values of the parameters.  
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E59.2.1 Commands for the Proportional Hazards Model 
 
 The minimal command for this model is 
 
 SURVIVAL ; Lhs = time [,status] ; Rhs = list of covariates $  
 
This differs from the model of the previous chapter only in the list of Rhs variables. 
 
NOTE:  This model is homogeneous of degree zero in x.  Any variable which does not vary over 
individuals will simply multiply both numerator and denominator of the partial likelihood, and hence 
drop out of it.  If it is found, the variable one is automatically removed from your Rhs list.  But, if 
there are other covariates which are constant over individuals, the Hessian will become singular and 
the estimation process will break down. 
 
A censoring indicator variable is provided exactly as before, as a second Lhs variable.  This is 
indicated as the optional [,status] variable above.  If you provide a status variable, code it as one for 
complete observations and zero for censored observations. 
 
Standard Model Specifications for the Cox Proportional Hazards Model 
 

This is the full list of general specifications that are applicable to this model estimator. 
 
Controlling Output from Model Commands 
 

; Table = name saves model results to be combined later in output tables. 
 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
  

; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set   keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
 ; Keep = name keeps survival rates as a new (or replacement) variable in data set. 
 ; Res = name keeps integrated hazards as a new (or replacement) variable. 



E59: Proportional Hazard Models   E-1444 

Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
The algorithm is preset to Newton’s method.  This form of the partial likelihood is quite well 
behaved, and convergence is normally routine after only a few iterations.  If you do not find this to 
be the case, the problem is probably multicollinearity among the covariates.  Time dependent 
covariates can also be problematic.  However, there may be cases in which BFGS is a preferable 
algorithm.  In general, Newton’s method should be best. 
 There are no predictions or residuals produced for this model, since the baseline hazard is 
not estimated.  A number of related variables are computed.  These are described below. 
 
E59.2.2 Plotting the Survival and Integrated Hazard Functions 
 
 As part of the results for this model, LIMDEP will display plots of the survival function and 
the integrated hazard rate, computed at the means of the covariates.   Use 
 
   ; Plot 
 
to request the figures.  You may also request additional plots at specified values of the Rhs variables.  
To use other values which you provide: 
  
Step 1. Load these values as the rows of a matrix using the MATRIX command.  Load one row  for 

each set of values you wish to use for a plot. 
 
Step 2. Add ; Plot = name of the matrix to the SURVIVAL command. 
  
This will produce an additional pair of plots for each row of the matrix, i.e., for each set of values.   
 
E59.2.3 Keeping the Survival and Integrated Hazard Functions 
 
 You can also keep an estimate of the survival and/or integrated hazard function in your data 
area.  Use 
   ; Keep  = name of variable for survival function 
and    ; Res  = name of variable for integrated hazard  
 
(The integrated hazard function is a ‘generalized residual.’)  These are computed for each 
observation in the sample.  The formulas used for these computations are as follows:  (Note, no 
correction is made for censoring.  This can be problematic if the data are heavily censored.) 
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1. Obtain N distinct exit times, t1, t2, ..., tN; t0 = 0. 
 
2. Obtain N counts of exit times; mi = number of exits at time ti. 

 
3. The baseline hazard at ti is 

 

   h(ti,0)  =  
i

1  R  such that 

( ,0)
( ) exp( )

j i

i
i

i i jj T t

mh t
t t − ∈ ≥

=
′− ∑ xβ

. 

  
4. The baseline integrated hazard is 

 

   H(ti,0)  =  11
( ) ( ,0)i

j j jj
t t h t−=

−∑   
 

5. For each individual,  
 
   H(ti,xi)  =  exp(β′xi)H(ti,0).   
 
 (This is the generalized residual for individual i.  It is kept by ; Res.) 
 

6. The survival probability is  
 
   S(ti,xi)  = exp[-H(ti,xi)]. 
 

This estimated survival rate is not necessarily monotonic in ti in the sample because xi differs 
across observations. 

 
E59.2.4 Time Dependent Covariates 
 
 It may be useful to include in the model covariates which change over time or are functions 
of time and other variables.  LIMDEP allows a large amount of flexibility in specifying these.  The 
feature described here is for covariates which are explicit functions of time, i.e., time dependent 
covariates.  Time varying covariates, such as marital status, cannot be handled in the proportional 
hazards model.  They are, however, permissible in the parametric models discussed in the next 
chapter.  To include time dependent covariates (TVCs), add the following specification, once for 
each one you want to specify: 
 
   ; TVC = specification  
   ; TVC = specification ... 
 
The covariates in the model will now be the Rhs variables plus the TVCs.  Thus, each one adds a 
new coefficient to the model.  The Rhs variables must exist in the data set.  The TVCs are computed 
during the iterations. (An example is given below.)   
 The specifications which may be used are as follows: 
 
   TVC  = expression, 
   TVC  = Log(expression)  -  natural log, 
   TVC  = Exp(expression)  -  e raised to the power, 
   TVC  = Abs(expression)  -  absolute value. 
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Expressions are any algebraic function of the data and ‘time’ (see below) with the following 
restrictions: 
 

• Expressions may not contain parentheses except for the special notation described below. 
• Expressions are evaluated strictly from left to right, with multiplication, division, and the 

other operators described below taking precedence over addition and subtraction. 
  
The basic operators which may be used in the expression are +, -, *, /, and ^.  (The last means raise 
to the following power).  Operands in the expressions may be any variable in the data set, whether in 
the model elsewhere or not, or any scalar, either given explicitly, i.e., 3.14159265, or in a scalar 
referred to by name, such as pi (also 3.14159265) or myown (which you would have calculated 
earlier).  Before describing the entry of time into the expression, we note an important aspect of the 
computational rule.  The left to right rule will only depart from the obvious when the ‘^’ operator is 
used.  When calculated in this fashion, 
 
   x ^ 2 * y = x2y, 

but   y * x ^ 2 = (xy)2 = x2y2 
  
because in the second case, y * x is calculated first.  For other operations, the rules of arithmetic 
apply.  Thus, 
   TVC = x * y + z * w * r / c + 1.1 / var  
 
is evaluated exactly as it appears.  You may not have analytic functions (such as log(.) or cos(.)) of 
the variables directly in the expression.  If you need them, just use CREATE to produce them 
beforehand, then use the created variables in the expression. 
 Time is entered into the expression by using the name, enclosed in parentheses.  As 
described below, you can use any calculable function of time in the expression.  For the simplest 
case, note that ‘time,’ itself is the Lhs variable in the model.  A model with a TVC defined as  z(time) 
= z1 * time might appear as follows:  
 
  SURVIVAL     ; Lhs = time ; Rhs = x1,x2  
   ; TVC = z1 * (time) $  
 
Be sure to remember the parentheses!  The variable time, which is fixed for each observation (at its 
respective value) is a valid variable in this expression.  It is only by including the parentheses in the 
expression that you insure that zi(t) is computed as a function of time as it varies and not time for the 
ith individual.  That is, as the partial likelihood is evaluated, at each observation, ‘(time)’ is the value 
of ‘time’ that applies for the specific value for which the risk set is being defined.  Recall the partial 
likelihood is computed over the K distinct exit times in the N observations, ti , i = 1,...,K.  With a 
TVC, zi(t), the partial likelihood becomes 
 
   logL  =  

K

j=1∑ ( ) log exp( ( ))
j

j j i ii R
z t z t

∈
 ′ ′+ γ − + γ  ∑x xβ β .  
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 You can also enter any function of time by computing the variable using the CREATE 
command to obtain the function of time you want.  (LIMDEP will keep track and use the correct 
values in computing zi(t).)  For example, suppose instead of time itself, you wish to use 
 
   zi(t)  =  z1i × exp(-0.01×time) 
  
for the effect of a covariate whose influence fades over time.  The commands could be 
  
 CREATE ; time1 = Exp(-.01 * time) $ 
 SURVIVAL  ; Lhs = time ; Rhs = x1,x2  
   ; TVC = x1 * (time1) $  
  
There are several other operations which can be used.  These are all of the form 
 
   result  =  x operator y, 
  
where x, because of the left to right rule, may already be a function of one or more other variables. 
The operations are: 
   x @ y  = exy, 
   x ! y  = max(x,y)  [note, x!y!w... = max(x,y,w...)], 
   x # y  = min(x,y), 
   x & y  = 1 if x > y and 0 else, 
   x % y  = max(x-y,0)  (useful for splines), 
   x _ y  = min(x-y,0). 
 
The first of these would allow you to specify the TVC shown in the earlier example without having 
to create it.  We could have used  
  
   z(i,t)  =  z1 * exp(-.01×time) = -.01 @ (time) * z1. 
  
(Because of the left to right rule, z1 must appear last, not first.) 
 With the dummy variable operator, ‘&,’ you have some limited capability for ‘time varying 
covariates,’ that is covariates that vary, perhaps discretely, over time.  For example, consider creating 
the variable 
   z(i,t)  =  age if t > T and 0 otherwise, 
  
where T is some threshold.  You could obtain this with 
 
   ; TVC = (time) & t * age 
  
The other logical operators, ‘%’ and ‘_’ give some additional possibilities, but they are fairly limited.  
In particular, although this allows discrete jumps at points in time, it cannot be computed for the 
specific individual; it is computed as the same function of time for all individuals.  Once again, direct 
handling of true time varying covariates is accomplished with the parametric models described in the 
next chapter. 
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 You may also add an ‘IF’ sort of construction to the TVC specification.  The syntax of the 
conditional TVC specification is  
  
   ; TVC  =  alternative value: [condition] expression 
where: 

‘expression’ is exactly as shown above. 
 
‘alternate value:’ (with its trailing colon) is the value to give the TVC if the condition is 
false.  This is optional.  If you do not provide this, the TVC equals zero if the condition is 
false. 
 
‘[condition]’ (enclosed in brackets) is a logical condition which is evaluated to determine 
whether or not to set the TVC equal to the value of the expression. 
  

The alternate value may be any of:  
 

• a number, e.g., 1.234, 
• a calculator scalar, e.g., rho, 
• any variable existing in the data set, in which case the value for that individual is used, 
• functions of (time) enclosed in parentheses to indicate that this is the value obtained as we 

move through the risk set for this observation. 
 
The [condition] is a logical expression of the form 
 
   entity relation entity +/& entity relation entity ... 
 
Entities may be any of those listed above.  Relations are >, >=, <, <=, =, and #.  Use ‘+’ for ‘OR’ and 
‘&’ for ‘AND.’  This may be as involved as you like, but the compiler will run out of space if the 
number of operations (relation or +/&) exceeds 10 in any TVC.  For examples: 
 
 Set TVC = 1 if (time) is greater than or equal warranty and 0 otherwise. 
 
    ; TVC = [(time) >= warranty] 1 
 
 Set TVC = (time) if (time) is less than warranty, and exp(-.01(time)) otherwise. 
 
   ; TVC = (time) : [(time) >= warranty] -.01@ (time) 
 
 Set TVC = 1 if (time) >= 12 and (time) < age or if (time) < retire, and 0  otherwise. 
 
   ; TVC = [(time) >= 12 & (time) < age + (time) < retire] 1 
 
 An error occurs and estimation is halted if a TVC cannot be calculated for any observation.  
For example, ‘(time)@1’ = exp(time) will cause an overflow error if (time) exceeds 308.  The 
observation and sequence number of the TVC are given at the point at which the error occurs.  It is 
not possible to anticipate such conditions; they will only be found during estimation. 
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E59.2.5 Stratification 
 
 The sample may be stratified with separate baseline hazard functions for each stratum by 
specifying a stratification variable.  This is done as follows: 
 
   ; Str = stratification variable  
 
It is assumed that this variable is coded 1,2,3,...  The expanded specification given below can be used 
if some other scheme is desired.  But, it is important to be sure that this variable does not contain 
zeros.  Instead of stratifying on the values of a variable, you might wish to stratify based on limit 
values.  Specify the variable as above and add the ; Limits specification as shown below.  For 
example, suppose the stratification is based on weight, with separate strata for the following classes: 
 
    1  =  weight # 150 pounds, 
   2  =  150 < weight # 200, 
   3  =  weight > 200. 
We use   
 
 SURVIVAL ; Lhs = time ; Rhs = ...  
   ; Str = weight  
   ; Limits = 150,200 $  
  
Note that only two limits need to be specified.  The number of strata will be one more than the 
number of limits you give since you need not give the extreme end values.  The strata in this 
formulation are always defined as ‘greater than lower limit and less than or equal to upper limit.’ The 
low end of the first class is always negative infinity, and the highest limit is plus infinity. 
 
E59.2.6 Cox Model with Fixed Effects 
 
 Suppose the data can be divided into G groups, possibly strata, for example.  The model for 
stratification assumes that the model is the same in all strata, but the risk set and partial likelihood 
are recomputed for each stratum.  A type of fixed effects model would allow variation of the model 
itself across the groups.  A fixed effects approach, for example would be 
 

   Prob(exit at time Tj)  =  ,

,

exp( )
exp( )

j

j g j g

i g i gi R

d
d

∈

′ + α
′ + α∑

x
x

β

β
 

 
Thus, the probabilities shift based on which group the individual is in.  But, the risk set is computed 
as usual as if there were no stratification.  This model assumes that the baseline hazard is 
 
   hg(ti,0)  =  γgh(ti,0) 
 
where γi = exp(αi).  Since the baseline hazards are not estimated, their scale is unknown.  As such, 
the individual group effects must be normalized, which we do by setting αG = 0. After estimation,  
 
   γg  =  exp(αg)  /  Σg exp(αg). 
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 The model with stratification and the one with fixed effects differ in the treatment of the 
grouping in the data.  The log likelihood, neglecting ties, for the stratification case is 
 

   logL =  { },
, ,log exp( )s

j s

K
j s i ss strata j=1 i R= ∈

 ′ ′−   ∑ ∑ ∑x xβ β .  

 
For the fixed effects case, it is 
 

   logL =  ,log exp( )s

j

K
js s js i s s iss strata j=1 i R

d d
= ∈

 ′ ′+ γ − + γ  ∑ ∑ ∑x xβ β .  
 
The risk set in the stratification case is composed only of the individuals in the stratum.  In the fixed 
effects case, the risk set is composed of the entire sample. 
 To request this estimator, it is necessary to have a group variable, which will appear exactly 
the same as a stratification variable.  Then, 
 
 SURVIVAL ; Lhs = duration ; Rhs = the desired variables 
   ; Str = the group variable ; Fixed Effects $ 
 
This estimator is limited to 150 - K groups.  The parameters are estimated by creating the dummy 
variables and augmenting the model.  An example appears below. 
 
E59.2.7 Output from the Proportional Hazards Model 
 
 Initial output from this estimator contains a tally of the number of observations, number of 
distinct exit times, number of censored observations, and number of observations which exited (were 
not censored).  If any TVCs have been specified, the specification is echoed in the initial output. 
 After the iterations end, the report includes the partial log likelihood and the value of the 
partial log likelihood evaluated at the starting values.  If you do not provide starting values, these are 
zero.  A chi squared test of the hypothesis that the coefficients equal the starting values is given next.  
The log-rank test is a Lagrange multiplier test of the same hypothesis.  Tabulated output includes 
estimates, standard errors and descriptive statistics for the regressors. 
 A listing of the estimates of 10 points from the survival distribution and integrated hazard 
function is given.  Finally, the  estimated survival function and integrated hazard (negative log-
survival) function are plotted at the means of the regressors and at any additional points that you 
have specified. 
 Results saved automatically by this procedure are only scalar logl, matrices b and varb, and 
Last Model labels b_variables.  If your model included TVCs, the additional labels would be tvc1, 
tvc2, ... 
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E59.2.8 Applications of the Proportional Hazards Model 
 
 To illustrate the technique, we apply Cox’s proportional hazard model to the data used in the 
previous chapter. 
 
 READ  ; Nobs = 22 ; Nvar = 4  
   ; Names = time,status,sex,married ; By Variables $ 
 
   11  3 19 32 2 14 8 21 16 5 2 8 14 18 18 21 10 1 9 23 19 7 
    1  1  0  1 1  1 1  1  0 1 1 1  1  1  1  1  0 1 0  1  1 1 
    0  0  1  0 1  0 1  1  1 0 0 1  1  0  1  1  0 0 1  1  0 1 
    1  1  2  2 1  1 1  1  2 2 2 1  1  1  2  1  2 2 1  1  2 1 
 
This sets up a matrix for plotting the survival function.  The matrix command loads two rows in the 
matrix, so there will be two additional plots of the survival function.  The models have censoring, 
stratification, a fixed coefficient, and a time varying covariate, respectively. 
 

MATRIX  ; mf = [0 / 1] $ 
SURVIVAL  ; Lhs = time,status ; Rhs = sex ; Plot = MF $  
SURVIVAL ; Lhs = time,status ; Rhs = sex ; Str = married $  
SURVIVAL  ; Lhs = time,status ; Rhs = sex,married ; Rst = b1 , 0.01 $   
SURVIVAL ; Lhs = time,status ; Rhs = married ; TVC = -.1*(time)*sex $   

 
+---------------------------------------------------+ 
| Cox Proportional Hazard Model                     | 
| Duration variable is                   TIME       | 
| Status is given by variable            STATUS     | 
| Total Number of Observations          =    22     | 
| Total Number of Observations Exiting  =    18     | 
| Total Number of Observations Censored =     4     | 
| Total Number of Distinct Exit Times   =    13     | 
| Number of Observed Times Incl. Cnsrd. =    16     | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Cox Proportional Hazard Model 
Dependent variable                 TIME 
Log likelihood function       -39.79330 
Restricted log likelihood     -40.09036 
Log-rank test with  1 degrees of freedom: 
Chi-squared =     .609, Prob  =    .4353 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    TIME|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     SEX|    -.38029         .49028     -.78  .4379    -1.34122    .58063 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Figure E59.1  Estimated Survival Function 

 

 
Figure E59.2  Comparison of Two Survival Functions 
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Figure E59.3  Estimated Integrated Hazard Function 

 
+----------------------------------------------------------------+ 
| Cox Proportional Hazard Model                                  | 
| Duration variable is                   TIME                    | 
| Status is given by variable            STATUS                  | 
| Total Number of Observations          =    22                  | 
| Total Number of Observations Exiting  =    18                  | 
| Total Number of Observations Censored =     4                  | 
| Total Number of Distinct Exit Times   =    13                  | 
| Number of Observed Times Incl. Cnsrd. =    16                  | 
| Stratification is based on             MARRIED                 | 
| Stratum   Lower Limit  Upper Limit  Observations  Proportion   | 
|    1        .0000        1.000          13.         .5909      | 
|    2        1.000        2.000           9.         .4091      | 
| (Range: greater than lower and less than or equal to upper.)   | 
+----------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Cox Proportional Hazard Model 
Dependent variable                 TIME 
Log likelihood function       -29.16864 
Log-rank test with  1 degrees of freedom: 
Chi-squared =    1.436, Prob  =    .2308 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    TIME|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     SEX|    -.66598         .56356    -1.18  .2373    -1.77054    .43858 
--------+-------------------------------------------------------------------- 
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+---------------------------------------------------+ 
| Cox Proportional Hazard Model                     | 
| Duration variable is                   TIME       | 
| Status is given by variable            STATUS     | 
| Total Number of Observations          =    22     | 
| Total Number of Observations Exiting  =    18     | 
| Total Number of Observations Censored =     4     | 
| Total Number of Distinct Exit Times   =    13     | 
| Number of Observed Times Incl. Cnsrd. =    16     | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Cox Proportional Hazard Model 
Dependent variable                 TIME 
Log likelihood function       -39.81778 
Log-rank test with  2 degrees of freedom: 
Chi-squared =    2.347, Prob  =    .3093 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    TIME|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     SEX|    -.37656         .49024     -.77  .4424    -1.33742    .58429 
 MARRIED|     .01000    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
+---------------------------------------------------+ 
| Cox Proportional Hazard Model                     | 
| Duration variable is                   TIME       | 
| Status is given by variable            STATUS     | 
| Total Number of Observations          =    22     | 
| Total Number of Observations Exiting  =    18     | 
| Total Number of Observations Censored =     4     | 
| Total Number of Distinct Exit Times   =    13     | 
| Number of Observed Times Incl. Cnsrd. =    16     | 
| Total Number of time dependent covariates= 1      | 
|  1.  -.1*(TIME)*SEX                               | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Cox Proportional Hazard Model 
Dependent variable                 TIME 
Log likelihood function       -38.91896 
Log-rank test with  2 degrees of freedom: 
Chi-squared =    2.312, Prob  =    .3148 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    TIME|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 MARRIED|    -.73891         .57805    -1.28  .2012    -1.87186    .39405 
T.V.C.-1|    -.00645         .00533    -1.21  .2263     -.01688    .00399 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 To illustrate the fixed effects estimator, we have arbitrarily divided the 22 observations into 
six unequal sized groups with the variable group, which is defined by 
 
   group = [1,1,1,2,2,2,2,3,3,4,4,4,4,5,5,5,5,6,6,6,6,6] 
 
The command and results are, then, 
 

SURVIVAL ; Lhs = time,status ; Rhs = married,sex  
; Str = group ; Fixed $   

 
+---------------------------------------------------+ 
| Cox Proportional Hazard Model                     | 
| Duration variable is                   TIME       | 
| Status is given by variable            STATUS     | 
| Total Number of Observations          =    22     | 
| Total Number of Observations Exiting  =    18     | 
| Total Number of Observations Censored =     4     | 
| Total Number of Distinct Exit Times   =    13     | 
| Number of Observed Times Incl. Cnsrd. =    16     | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Cox Proportional Hazard Model 
Dependent variable                 TIME 
Log likelihood function       -36.37568 
Log-rank test with  8 degrees of freedom: 
Chi-squared =    7.248, Prob  =    .5102 
Model includes group fixed effects 
Mean and Variance = 1.0 and  .8546 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    TIME|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 MARRIED|    -.87065         .64656    -1.35  .1781    -2.13788    .39658 
     SEX|    -.95204         .67628    -1.41  .1592    -2.27752    .37344 
        |Model for group specific effects 
GROU=001|     .91582         .63922     1.43  .1519     -.33703   2.16868 
GROU=002|     .54904         .39406     1.39  .1635     -.22331   1.32138 
GROU=003|     .39708         .41032      .97  .3332     -.40713   1.20129 
GROU=004|    2.84684***     1.02810     2.77  .0056      .83179   4.86188 
GROU=005|     .50994         .33666     1.51  .1298     -.14989   1.16978 
GROU=006|     .78128*        .44281     1.76  .0777     -.08662   1.64917 
--------+-------------------------------------------------------------------- 
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E59.2.9 Cox Model with Time Varying Covariates 
 
 The Cox proportional hazard (semiparametric) model may be modified to allow time varying 
covariates.  In order to construct this form, the estimator requires one record of data for each interval 
within which the covariates are constant, and T records in total for each person, if covariates change 
T - 1 times (altogether – more than one covariate may be changing). The command changes as 
follows: 
 
 SURVIVAL ; Lhs = time 
   ; Rhs = the list of covariates 
   ; Entry = a variable which gives t0, the time of the beginning 
       of the interval 
   ; Pds = the number of records $ 
 
The interval described by a particular data record are interval (t0 to t1) measured by T to time, i.e., 
‘entry’ to ‘Lhs.’  Note that in records after the first, t0 will be time on the previous record. All 
records but the last are treated as censored.  The last may be also, in which you would also include a 
censoring indicator as a second Lhs variable, as usual.  Note, also, that this is the same setup that is 
currently used in the TVC versions of the parametric survival models.  Other options available with 
this estimator include all previous features, as well as 
 
   ; Robust to request the sandwich estimator 
   ; Cluster = ... specification 
   ; Wts = a weighting variable  
 
The Cox model also now creates a matrix named cox_bsln with five columns containing  
 

1. exit times,  
2. baseline survival rates,  
3. hazard functions,  
4. cumulative hazard functions,  
5. integrated hazard function = -log(survival function). 

 
 The Cox model may be fit with group ‘fixed effects’ by specifying 
 
   ; Str = the group identifier 
   ; Fixed Effects 
 
(In other treatments, this is labeled a ‘frailty’ model.  That is probably not appropriate here, as the 
usual random effects ‘frailty model’ is not identified in this context.)  With this option in use, the 
estimated effects are renormalized to have mean 1.0 while the variance is left unrestricted. 
 The output results reported for this model may be modified to include ‘hazard ratios,’ which 
are, for a specific coefficient bk, equal to exp(bk).  Add 
 
   ; Hazard Ratios 
 
to the command to request this treatment. 
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E59.3 The Ordered Extreme Value Model 
 
 Han and Hausman (1988) have devised a semiparametric estimator for the proportional 
hazards model.  They cite three virtues: 
 

1. It is suited to discrete data. 
2. It is unhindered by large numbers of ties. 
3. It circumvents problems associated with heterogeneity. 

 
In addition, they argue that an advantage of the technique is that the parameters of the covariates are 
invariant to the length of time intervals chosen.  As such, the grid of intervals, which need not be of 
equal length, can be made finer as the sample size increases. 
 The hazard rate is 
 

   λi (τ)  =  00
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The logs of the integrated baseline hazards, Rt are treated as unknown parameters.  (The authors 
observe that Cox’s proportional hazard model treats them as nuisance parameters and conditions 
them out of the likelihood function.)  Let yi  =  t - 1 if ti falls in interval t.  Then, the probability 
defined above, with the extreme value distribution for ε, defines exactly the ordered probability 
model described in Chapter E58 with an extreme value (Gompertz) probability model.  The ls in the 
present context would be the µs in the ordered probability model discussed previously. 
 To estimate this model, therefore, it is necessary only to code the dependent variable 
appropriately and submit it with the ORDERED PROBABILITY (or just ORDERED) command.  
The data are assumed to be generated as observations on duration in intervals 
 

   t  =   1 2 30
0 1 2 3

JT T T T
J
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The lower row shows the values taken by what will be the Lhs variable in the model.  The time 
variable in the data must be recoded to conform to the preceding layout.  RECODE may be used if 
necessary.  The threshold values µ0, µ1, ... are then interpreted as the logs of the integrated baseline 
hazard functions.  This may be estimated as an ordinary ordered Gompertz model, with up to 50 
values (J = 49) taken by the Lhs variable.  At the end of the estimation, LIMDEP computes estimates 
of the hazard rate at the means of the regressors by the computation 
 
   h(t)  =  Prob[tj < t < tj+1] / Prob(t ≥ tj). 
  
This is computed by using the predicted cell probabilities for the ordered logit model at the means of 
the covariates.  These probabilities are divided by the interval width if values are provided that allow 
these to be calculated.   
 The model command is simply 
 
 ORDERED ; Lhs = ...  
   ; Rhs = ...  
   ; Hazard  
   ; Model = Gompertz $ 
 
By this formulation, the intervals are assumed to be one period in length.  The specification 
 
     ; Endpoints = T1,T2,...,TJ 
 
can be used to provide the interior endpoints of the intervals.  The authors discuss using the ordered 
probit model instead of the Gompertz model.  This is a bit ambiguous, however.  Nonetheless, the 
hazard rates are computed using whichever distribution has been used to fit the model. 
 If desired, the Rhs may contain only a constant term, one.  That is, it is not necessary to have 
covariates in the model.  This produces a semiparametric alternative to the Kaplan-Meier estimator 
of the previous chapter.  The program first estimates the ordered probability model.  All results saved 
are the same as the ordered probability model discussed earlier, except that the matrix mu which is 
normally saved for the ordered Gompertz model is now replaced with a matrix named hazard which 
contains the estimated hazard rates.  There is one hazard rate computed for each interval.  The last 
one is assumed to be the same as the second to last one.  Suppose your dependent variable takes 
values 0,1,...,7.  This is eight values, and eight hazard rates will be computed.  You can then plot the 
hazard rates against the left endpoints of the intervals, which can be defined separately.  An example 
is given below. 
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Application 
 
 We apply Han and Hausman’s technique to the Kennan strike data used earlier.  Since there 
are no covariates, the estimated hazard function compares directly to the one computed earlier.   
 
 READ    ; Nobs = 62 ; Nvar = 1 ; Names = t ; By Variables $ 
  
           1  2  2  2  2  3  3  3  9 12 21 27 43 49 52 
           3  4  5  7  8  9 10 11 12 13 14 15 
          17 19 21 22 23 25 26 27 28 29 32 33 
          35 37 38 41 42 43 44 49 52 61 72 80 
          80 80 80 80 80 80 80 80 80 80 80 
 
 CREATE  ; yt = t $ 
 RECODE  ; yt  
          ;  0 / 4  = 0  ; 5  / 10 = 1 ; 11 / 13 = 2 ; 14 / 17 = 3 
          ; 18 / 23 = 4  ; 24 / 28 = 5 ; 29 / 40 = 6 ; 41 / 60 = 7  
          ; 61 / 80 = 8 $ 
 MATRIX  ; endt = [1,5,11,14,18,24,29,41,61] $ 
 ORDERED    ; Lhs = yt ; Rhs = one  
   ; Model = Gompertz 
          ; Hazard  
   ; Endpoints = endt $ 
 MPLOT   ; Lhs = endt ; Rhs = hazard  

; Fill  
; Grid 

   ; Title = Estimated Gompertz Hazard Function $ 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                   YT 
Log likelihood function      -129.69815 
Underlying probabilities based on Gompertz 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      YT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .60133***      .14017     4.29  .0000      .32661    .87605 
        |Threshold parameters for index 
   Mu(1)|     .29787***      .10668     2.79  .0052      .08878    .50696 
   Mu(2)|     .47788***      .12574     3.80  .0001      .23142    .72433 
   Mu(3)|     .60973***      .13711     4.45  .0000      .34100    .87846 
   Mu(4)|     .83083***      .15420     5.39  .0000      .52860   1.13307 
   Mu(5)|    1.06237***      .17229     6.17  .0000      .72470   1.40005 
   Mu(6)|    1.37013***      .19818     6.91  .0000      .98170   1.75855 
   Mu(7)|    1.96417***      .26111     7.52  .0000     1.45241   2.47594 
--------+-------------------------------------------------------------------- 
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Figure E59.4  Han-Hausman Estimated Gompertz Hazard Function 

 

 
Figure E59.5  Kaplan-Meier Estimated Hazard Function 
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E60: Parametric Models for Duration 
 
E60.1 Introduction 
 
 The models discussed in this chapter embody specific assumptions about the distribution of 
duration or failure times.  LIMDEP includes many of the models which have been proposed in the 
literature.  (See, e.g., Kalbfleisch and Prentice (1980), Lancaster (1990) and Cox and Oakes (1984).)  
This chapter presents a large number of variations of the models.  The choice among the various 
models is sometimes made on the basis of the shape of the hazard function.  As shown below, this can 
vary widely.  In order to arrange the material in a convenient fashion, the basic formulations are first 
presented in full.  Some of the more esoteric extensions are collected in later sections.  We begin with 
basic models for duration, without covariates or heterogeneity.  Later sections will extend the models. 
 The essential model command for estimating parametric survival models is 
 
 SURVIVAL ; Lhs = log of time variable [ , censoring indicator (optional) ] 
   ; Rhs = covariates 
   ; Model = type $ 
 
Type is one of Weibull, exponential, normal, loglogistic, inverse Gaussian, gamma, F, or Gompertz.  
Plots of hazard functions, integrated hazards and survival functions may also be requested.  
‘Residuals’ in this model are the integrated hazard function.  ‘Fitted values’ are the estimated hazard 
function values. Other specifications which may each (alone) modify the basic model include:  latent 
heterogeneity in the location of the distribution, time varying covariates, panel data estimators, (fixed 
effects, random effects, random parameters, and latent class), split population models, truncation, 
variance heterogeneity, and sample selection. These extensions are treated in Chapter E61. 
 

E60.2 Parametric Models for Survival Data 
 
 We denote by ‘t’ the nonnegative random variable ‘time until transition’ (using Lancaster’s 
term).  In many familiar applications, t is time until failure, which produces the term ‘failure time 
models.’  But, other applications, for example, strike duration, involve time until recovery from a 
disease, elapsed time until a merger takes place or length of a spell of unemployment.  In each of 
these, Lancaster’s term seems more appropriate than ‘failure time’ so we will use this. 
 Parametric models may be defined in terms of the density, f(t), the survival function, S(t) = 
Prob[T  > 

 The survival function for the gamma model must be written in implicit form because of the 
incomplete gamma integral.  The hazard rate is likewise complicated.  Note that the gamma model is 
an encompassing model for the Weibull and exponential models.  If θ equals one, the Weibull model 
results.  If θ and p both equal one, the exponential model results.  As described below, the 
generalized F model is even more broad, as it encompasses all the above save for the Gompertz and 
inverse Gaussian models. 

 t], or the hazard function, h(t) = f(t)/S(t).  Note that f(t) = -dS(t)/dt and h(t) = -dlogS(t)/dt.  
In LIMDEP’s set of specifications, each model is characterized, at minimum, by a positive location 
or rate parameter, λ, and a positive scale parameter, p.  The parametric distributions supported by 
this program in LIMDEP are listed in Table E60.1. 
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 Authors differ on how useful the parametric models are.  All assume a specific functional 
form, which is not necessarily good.  On the other hand, all save for the exponential model allow for 
both positive and negative duration dependence, and all are fairly flexible functional forms.  
Moreover, some of the options discussed below, such as variance heterogeneity, latent heterogeneity 
and the presence of covariates, allow you a large amount of room to accommodate different patterns 
in the data that cannot be accommodated with the semiparametric or Kaplan-Meier approaches. 
 

Distribution Density and Survival Hazard Function 

exponential    λexp(-λt)  
  exp(-λt)   λ 
 

Weibull  1( ) exp[ ( ) ]p pp t t−λ λ − λ   

  exp[ ( ) ]pt− λ     1( ) pp t −λ λ  
   
lognormal   [p/(λt)]φ(-plog(λt)) 
  Φ(-p log(λt)) φ(-plog(λt))/Φ(-plog(λt)) 
 

loglogistic       
1

2
( )

[1 ( ) ]

p

p
p t

t

−λ λ

+ λ
  

  1
[1 ( ) ]pt+ λ

 
1( )

[1 ( ) ]

p

p
p t

t

−λ λ

+ λ
 

 

gamma  
1( )( ) exp( ( ) )

P
pp t t

θ−λ λ
− λ

Γ(θ)
   

  no closed form no closed form 
 
Gompertz p exp(λt)exp{(-p/λ)[exp(λt) -1]}  
  exp{(-p/λ)[exp(λt)- 1)]}   pexp(λt)    
 

inverse Gaussian ( ) /t p t φ − λ −  1.5
p

t
  

  ( ) /t p t Φ − λ −  (1-exp(2λp) 
1.5

( ) /

( ) / (1 exp( 2 ))

t p t p
t p t t p

 φ − λ − 
 Φ − λ − − − λ 

 

generalized F see below 
 

Weibull or exponential (p = 1) with gamma heterogeneity {S(t) = exp[ ( ) ]pt− λ } 

  
1/1 1( ) ( ) 1 ( )p pS t p t t

− θθ+ −   λ λ + θ λ      

  1( ) ( ) pS t p tθ −  λ λ    
1/

( ) 1 ( ) pS t t
− θ

 + θ λ    

Table E60.1  Parametric Survival Models 
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E60.2.1 Loglinear Models and Estimation Strategies 
 
 For the first five models listed above, estimation is facilitated by the transformation, 
 
   w  =  (log t - β) / σ, 

where   λ  =  e-β and p = 1/σ. 
  
With this change of variable, the densities and survival functions for w for the five distributions are 
as listed in Table E60.2.  
  
 Distribution  Density  Survival Function 

 Weibull:  exp(w - ew)  exp(-ew )  

  exponential:  exp(-ew)  e-w  

 lognormal:    φ(w)   Φ(-w) 

 loglogistic:    ew(1 + ew)-2  1/(1 + ew ) 

 gamma:  exp(θw - ew - logθ) 1- γ(θ,ew),   γ(θ,t) = incomplete gamma integral  
Table E60.2  Loglinear Survival Models for Transformed Variables 

 
 The Gompertz model, S(t) = exp((-p/λ)(eλt-1)) and h(t) = peλt, is not loglinear, so we adopt a 
somewhat different estimation strategy.  The inverse Gaussian model is log linear, but the 
transformation above does not produce a convenient functional form to use for optimization.  The 
inverse Gaussian survival model is estimated as a particular form of the general loglinear model – 
see Chapter E55 for details.   
 The generalized F model, like the inverse Gaussian model, is not easily transformed to a 
simple functional form.  Let z = (λt)p.  Assume that z has a central F distribution with degrees of 
freedom parameters 2M1 and 2M2. (M1 and M2 need not be integers.)  By the change of variable 
technique, the density of t is   
 
   f(t)  =  [(λp) (λt) (p-1) / β(M1,M2)] [K(t)]M1{1 + [K(t)]}-(M1+M2) 

where     K(t)   =  (M1/M2)(λt)p 

and       β(M1,M2)  =  the beta function, Γ(M1)Γ(M2)/Γ(M1+M2). 
 
The generalized F distribution has four structural parameters, λ, p = 1/σ, M1 and M2.  The other 
parametric models have two (λ and p; lognormal, loglogistic, Weibull, Gompertz), one (λ; 
exponential), three (λ, θ, p; Weibull/heterogeneity), or three (λ, p, γ; gamma), so this is more general 
than the other models.  Also, all of those listed except the Gompertz, mixed Weibull and inverse 
Gaussian models are special cases of the generalized F listed in Table E60.3. 
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 Distribution Form of the Generalized F Distribution 
 loglogistic:    M1 = 1   M2 = 1 p free 
 lognormal:  M1 → +∞  M2 → +∞ p free 
 Weibull:  M1 = 1   M2 → +∞ p free 
 exponential: M1 = 1   M2 → +∞   p = 1 
 gamma: M1 free           M2 → +∞ p free 

Table E60.3  Special Cases of the Generalized F Distribution 
 

The survival and hazard functions do not exist in closed form and must be approximated.  The 
survival function is computed using the CDF of the beta distribution: 
 

  S(t)  =  Bds [ 1/(1+K), M2, M1] 
 

from which the hazard function may then be estimated.  Lancaster (1990) has analyzed this model at 
length.  Among his results is that the generalized F is a gamma weighted mixture of gamma models, 
which suggests that it can be interpreted as a gamma model with latent gamma distributed 
heterogeneity.  Other models with heterogeneity are detailed below. 
 

E60.2.2 Covariates and Log Likelihood Functions 
 
 The effect of external covariates, xi on the survival rate or the hazard function can be 
incorporated by writing 

   λi  =  e-β′xi. 
 

(This is labeled the ‘accelerated failure time’ model.)  The model is otherwise the same as before.  After 
transformation, the covariates enter wi linearly, which, once again, makes estimation relatively simple.  
This formulation is used in all the models listed above, including those not handled as loglinear. 
 We note at this point a possible inconsistency in the literature.  The formulations shown 
above correspond to Kalbfleisch and Prentice.  Elsewhere, the signs and normalizations of the 
parameters may be different.  For example, in terms of the original models, Kiefer (1988) writes the 
densities and hazard rates in terms of a ‘γ‘ which would correspond to λp in our models.  He also 
reverses the signs on the coefficients in the models.  With both of these changes, where we have 
 

   logti  =  β′xi  +  σwi 
 

Kiefer would have 
   logti  =  -(1/σ)β′xi  -  σwi. 
 

For the present, we assume that the covariates, xi have been fixed for the individual from time T = 0 
to T = ti, when we make our observation.  Section E60.7 generalizes these models to allow xi to 
evolve as a step function from time zero to the time of observation. 
 Data on observed transition times may be complete or censored.  If an observation is 
censored, then ti marks the time, relative to the origin, that the observation was made, not when the 
transition occurred.  There is a presumption, dropped in the split population model, that the transition 
would occur some time after time ti (but that for certain it would occur).   
 For the loglinear models, the likelihood function for N observations on  
 

   yi   =  logti  =  σwi + β 
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and right censoring indicator δi (one for complete observations, zero for censored) is 
 

   L  = Πi[σ -1f(wi)]δi[S(wi)]1-δi. 
 

Note that logL may be written 
 
   logL =  Σi [δi (-logσ + logh(wi ))  +  logS(wi)] 
where   hi (wi ) =  f(wi )/S(wi )  =  the hazard function. 
  
Log likelihood functions are maximized by BFGS or Newton’s method.  The choice is discussed 
below.  For discussions of interpretation of the parameters and the distributions, the reader is referred 
to Kalbfleisch and Prentice (1980), Lancaster (1990) or to Kiefer’s (1988) survey. 
 The log likelihood for the loglinear models is the sum of individual terms of the form 
  
   logLi    =  δi log[f(wi)/σ]  +  (1 - δi)logS(wi ) 

where   wi    =  (logti -β′xi )/σ. 

The derivatives are: ∂logLi /∂β   =  [δi ∂logf/∂wi + (1-δi)∂logS/∂wi ](-xi/σ) 

   ∂logLi /∂σ  =  [δi ∂logf/∂wi + (1-δi)∂logS/∂wi ](-1/σ)  -  δi /σ. 

Note that  δi logf(wi)   +  (1 - δi)logS(wi )  =  δi loghi (wi)  +  logS(wi), 
 
where h(wi ) is the hazard function.  Let the bracketed term in the derivatives be denoted Ai.  It follows 
from the first term that Σi Ai xi = 0 at the maximum of the log likelihood for the sample.  Therefore, 
terms involving Ai times constants not involving wi will fall out of the second derivatives matrix at the 
maximum. Making use of this result (and skipping some algebra), we have, at the maximum of the log 
likelihood, 
   ∂2logL/∂θ∂θ′  =  -Σi [δi ∂2logh/∂wi

2 + ∂2logS/∂wi
2]zi zi′  +  K, 

where   zi′    =  (1/σ)[xi′,-wi ] 

   θ′     =  [β′,σ] 

and   Kij    =  Σi δi /σ2   
 
in the lower right corner and zero everywhere else.  We use this matrix as the weighting matrix in 
Newton’s method.  This is, therefore, a hybrid of Newton’s method and the method of scoring, since 
we use the exact expectation for one part of the Hessian and estimate the expectation with the mean 
for the rest of the terms. 
 What differs from model to model are the bracketed terms in the second derivatives. For the 
four models for which this procedure is available, these terms denoted by Ci are listed in Table E60.4. 
 
  Model    Second Derivative 
  Weibull and exponential: Ci  =  e wi,  

  loglogistic:    Ci  =  [S(wi)]2(1 + δi)ewi, 
 
  lognormal:    Ci  =  [h(wi) - δi wi ][h(wi) - wi)] + δi . 

Table E60.4  Second Derivatives 
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The remaining models, mixed Weibull, gamma, generalized F, Gompertz and inverse Gaussian 
models are estimated using the original log likelihood in terms of observed ti rather than log ti.  The 
log likelihood takes the same general form as for the loglinear models.  For these cases, the BHHH 
method is used to estimate the asymptotic covariance matrix of the MLE. 
 

E60.3 Commands for Parametric Duration Models 
  
 The model command is  
 
 SURVIVAL  ; Lhs = logt,delta (delta is optional and may be omitted)  
   ; Rhs = one  
   ; Model = Weibull $ 
 
Weibull may be replaced by Loglogistic, Exponential, Normal, Gamma, InverseGauss or F.  To 
add additional covariates, simply add them to the Rhs list.  (There is no default model.  If you do not 
specify a particular model, the estimator reverts to the Cox model discussed in Chapter E59.)  The 
censoring indicator, delta, is optional. The censoring indicator is set up as noted earlier, taking values 
one for complete observations, zero for censored. 
 
NOTE: The Lhs variable in all models except the Gompertz model is the log of time.  You must 
CREATE and use log time for the Lhs variable.  The command, itself, may compute the log, as in    
; Lhs = log(time). 
  
 When there are covariates on the Rhs, β in the preceding becomes β′x where x is the 
covariate vector, including one.  The first set of maximum likelihood estimates given is the complete 
parameter vector, [β′,σ].  Since λ now depends on x [λ=exp(-β′x)], we compute it at the means of the 
variables.  This value of λ, p (which is 1/σ), and the median and several percentiles of this 
distribution are also displayed. 
 ‘Predictions’ for survival models are computed as follows: 
 
   ; List requests a listing of 

  
• actual observation on ti (not logti) 
• prediction of ti = exp(β′xi)  (Note, in general this is neither the mean nor the median.) 
• generalized residual = integrated hazard = -logS(ti) 
• hazard function 
• survival function 

 
The survival probabilities or hazard rates may also be retained as new variables in the data set by 
including 
   ; Keep = name to retain the hazard function 
and   ; Res  = name  to retain the integrated hazard rate. 
 
The preceding provide generic model forms that can be used for the exponential, Weibull, 
loglogistic, lognormal and inverse Gaussian models. The gamma, Gompertz and generalized F 
models require specific forms of the model commands.  These are given below in Section E60.6. 
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Standard Model Specifications for the Parametric Duration Models 
 

This is the full list of general specifications that are applicable to this model estimator. 
 
Controlling Output from Model Commands 
 

; Par  keeps ancillary parameter σ with main parameter β vector in b. 
 ; OLS  displays least squares starting values when (and if) they are computed. 

; Table = name saves model results to be combined later in output tables. 
 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 ; Cluster = spec requests computation of the cluster form of corrected covariance estimator. 
 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 

 ; Rst = list specifies equality and fixed value restrictions. 
 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
 You may provide your own starting values for the models if you wish.  In all cases, the 
values you provide are parameters = -β, σ.  You may also impose fixed value and equality 
restrictions with 
    ; Rst = list... 
  
In the exponential model, σ equals one, so you should not include it in the list.  Note that during 
estimation, LIMDEP is using the negative of the parameter vector during the iterations.   
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E60.4 Results for Parametric Models 
 
 Ordinary least squares is used to obtain the starting values.  The iterations follow, then the 
maximum likelihood estimates are displayed.  The estimates presented first are β and σ.  In a 
subsequent table, estimates of λ, p, the median of the distribution, and four percentiles (.25, .50, .75, 
and .95) of the distribution of time (not log time) with these values of λ and p are listed.  These are 
computed at the sample mean values of the covariates. 
 The CDFs of all models given above save the gamma and inverse Gaussian can be inverted 
(the lognormal distribution requires an approximation) to obtain percentiles of the distributions.  In 
particular, where α is the probability of surviving to time t or longer, these are given in Table E60.5.  
 
  Model  Inverse CDF  

  Weibull        t = [(-logα)1/p]/λ   

  Gompertz   t = [log(1.0 - λlogα)/p)]/λ    

  lognormal         t = exp(-Φ-1(α)/p)]/λ 

  loglogistic       t = [((1.0 - α)/α)1/p]/λ 

  exponential    t = [-logα]/λ   

Table E60.5  Inverse CDF 
 

The median of the gamma distribution is obtained by inverting the corresponding chi squared 
distribution (with noninteger degrees of freedom parameters).  The median of each distribution 
above is obtained by setting α = .5.  This estimate is presented with an estimate of its asymptotic 
standard error with the earlier estimates of λ and p.  The displayed results contains the values of t 
corresponding to α = .25, .50, .75, and .95. 
       When you estimate any of the parametric survival models (Weibull, loglogistic, Gompertz, 
exponential, normal, inverse Gaussian or F), plots of the survival function, hazard function, and 
integrated hazard function can be produced by adding the following to your command, 
 
   ; Plot 
 
Results saved by the loglinear models are: 
 
 Matrices: b and varb contain the estimate of β and the asymptotic covariance matrix. 
   ; Par adds the ancillary parameters, σ, and for the gamma model, θ to b  
   and varb. 
 

 Scalars: s = σ, 
   ybar and sy are descriptive statistics for logti, 
   kreg and nreg give the dimensions of the estimation problem, 
   logl contains the log likelihood, 
   theta is the value of γ for the gamma model, θ for the heterogeneity models. 
  
 Last Model: b_variables and sigma. 
 
 Last Function: None 
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E60.5 Applications 
 
 We will illustrate several of the parametric models with Kennan’s strike data.  These are 
reported in Greene (2011).  The two variables are t = duration in days of major strikes in several 
years and prod, a measure of ‘unexpected’ output in the economy in that year.  Note that prod is the 
same for all observations in a given year.  The data are listed in Table E60.6. 
 
                   t      prod              t            prod 

  7.00000      .0113800 3.00000      .0742700 
  9.00000      .0113800 10.0000      .0742700 
  13.0000      .0113800 1.00000      .0645000 
  14.0000      .0113800 2.00000      .0645000 
  26.0000      .0113800 3.00000      .0645000 
  29.0000      .0113800 3.00000      .0645000 
  52.0000      .0113800 3.00000      .0645000 
  130.000      .0113800 4.00000      .0645000 
  9.00000      .0229900 8.00000      .0645000 
  37.0000      .0229900 11.0000      .0645000 
  41.0000      .0229900 22.0000      .0645000 
  49.0000      .0229900 23.0000      .0645000 
  52.0000      .0229900 27.0000      .0645000 
  119.000      .0229900 32.0000      .0645000 
  3.00000     -.0395700 33.0000      .0645000 
  17.0000     -.0395700 35.0000      .0645000 
  19.0000     -.0395700 43.0000      .0645000 
  28.0000     -.0395700 43.0000      .0645000 
  72.0000     -.0395700 44.0000      .0645000 
  99.0000     -.0395700 100.000      .0645000 
  104.000     -.0395700 5.00000     -.104430 
  114.000     -.0395700 49.0000     -.104430 
  152.000     -.0395700 2.00000     -.00700000 
  153.000     -.0395700 12.0000     -.00700000 
  216.000     -.0395700 12.0000     -.00700000 
  15.0000     -.0546700 21.0000     -.00700000 
  61.0000     -.0546700 21.0000     -.00700000 
  98.0000     -.0546700 27.0000     -.00700000 
  2.00000      .00535000 38.0000     -.00700000 
  25.0000      .00535000 42.0000     -.00700000 
  85.0000      .00535000 117.000     -.00700000 

Table E60.6  Kennan (1985) Data on Strike Duration 
 
The following compares four of the model formulations. 

 

CREATE ; logt  = Log(t) $ 
SURVIVAL ; Lhs  = logt ; Rhs = one,prod ; Model = Exponential $ 
SURVIVAL ; Lhs  = logt ; Rhs = one,prod ; Model = Weibull ; Plot $ 
SURVIVAL ; Lhs  = logt ; Rhs = one,prod ; Model = Loglogistic $ 
SURVIVAL ; Lhs  = logt ; Rhs = one,prod ; Model = InverseGauss ; Plot $ 

 
  



E60: Parametric Models for Duration   E-1470 

----------------------------------------------------------------------------- 
Loglinear survival model: EXPONENTIAL 
Dependent variable                 LOGT 
Log likelihood function       -97.28844 
Estimation based on N =     62, K =   2 
Inf.Cr.AIC  =    198.6 AIC/N =    3.203 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS of hazard model 
Constant|    3.77651***      .13909    27.15  .0000     3.50390   4.04912 
    PROD|   -9.33381***     2.97787    -3.13  .0017   -15.17033  -3.49730 
        |Ancillary parameters for survival 
   Sigma|        1.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
+-------------------------------------------------------------------------+ 
| Alternative representations of survival model:                          | 
| Accelerated Failure Time:  b(k)  =  beta(k)    (Given above)            | 
+--------+-----------------------------+----------------------------------+ 
|        | Proportional Hazards        | Hazard Ratios                    | 
|        | c(k) = -1/sigma*beta(k)     | h(k)=exp[(-1/sigma)*beta(k)]     | 
|        | z  =  c(k)/Std.Err.[c(k)]   | z  = [h(k)-1]/Std.Err.[h(k)]     | 
+--------+-----------------------------+----------------------------------+ 
|Variable|     c(k)   Std.Err.   |z|   |     h(k)       Std.Err     |z|   | 
+--------+-----------------------------+----------------------------------+ 
|PROD    |    9.3338    2.9779   3.134 |   11314.1995  33692.1826    .336 | 
+-------------------------------------------------------------------------+ 
 
+----------------------------------------------------------------+ 
| Parameters of underlying density at data means:                | 
| Parameter   Estimate   Std. Error     Confidence Interval      | 
| ------------------------------------------------------------   | 
| Lambda        .02538       .00339       .0187 to       .0320   | 
| P            1.00000       .00000      1.0000 to      1.0000   | 
| Median      27.30615      3.64417     20.1636 to     34.4487   | 
| Percentiles  of  survival  distribution:                       | 
| Survival       .25       .50       .75       .95               | 
| Time         54.61     27.31     11.33      2.02               | 
+----------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Loglinear survival model: WEIBULL 
Dependent variable                 LOGT 
Log likelihood function       -97.28542 
Estimation based on N =     62, K =   3 
Inf.Cr.AIC  =    200.6 AIC/N =    3.235 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS of hazard model 
Constant|    3.77977***      .13833    27.32  .0000     3.50865   4.05090 
    PROD|   -9.33220***     2.95428    -3.16  .0016   -15.12249  -3.54191 
        |Ancillary parameters for survival 
   Sigma|     .99220***      .12064     8.22  .0000      .75576   1.22865 
---------------------------------------------------------------------------- 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+-------------------------------------------------------------------------+ 
| Alternative representations of survival model:                          | 
| Accelerated Failure Time:  b(k)  =  beta(k)    (Given above)            | 
+--------+-----------------------------+----------------------------------+ 
|        | Proportional Hazards        | Hazard Ratios                    | 
|        | c(k) = -1/sigma*beta(k)     | h(k)=exp[(-1/sigma)*beta(k)]     | 
|        | z  =  c(k)/Std.Err.[c(k)]   | z  = [h(k)-1]/Std.Err.[h(k)]     | 
+--------+-----------------------------+----------------------------------+ 
|Variable|     c(k)   Std.Err.   |z|   |     h(k)       Std.Err     |z|   | 
+--------+-----------------------------+----------------------------------+ 
|PROD    |    9.4055    3.3030   2.848 |   12155.3802  40149.5959    .303 | 
+-------------------------------------------------------------------------+ 
 
+----------------------------------------------------------------+ 
| Parameters of underlying density at data means:                | 
| Parameter   Estimate   Std. Error     Confidence Interval      | 
| ------------------------------------------------------------   | 
| Lambda        .02530       .00337       .0187 to       .0319   | 
| P            1.00786       .12254       .7677 to      1.2480   | 
| Median      27.47425      3.66307     20.2946 to     34.6539   | 
| Percentiles  of  survival  distribution:                       | 
| Survival       .25       .50       .75       .95               | 
| Time         54.65     27.47     11.48      2.07               | 
+----------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Loglinear survival model: LOGISTIC 
Dependent variable                 LOGT 
Log likelihood function      -101.34034 
Estimation based on N =     62, K =   3 
Inf.Cr.AIC  =    208.7 AIC/N =    3.366 
Model estimated: Aug 11, 2011, 11:01:41 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS of hazard model 
Constant|    3.29228***      .16511    19.94  .0000     2.96866   3.61589 
    PROD|   -9.54360***     3.07860    -3.10  .0019   -15.57755  -3.50964 
        |Ancillary parameters for survival 
   Sigma|     .70847***      .09732     7.28  .0000      .51773    .89921 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+-------------------------------------------------------------------------+ 
| Alternative representations of survival model:                          | 
| Accelerated Failure Time:  b(k)  =  beta(k)    (Given above)            | 
+--------+-----------------------------+----------------------------------+ 
|        | Proportional Hazards        | Hazard Ratios                    | 
|        | c(k) = -1/sigma*beta(k)     | h(k)=exp[(-1/sigma)*beta(k)]     | 
|        | z  =  c(k)/Std.Err.[c(k)]   | z  = [h(k)-1]/Std.Err.[h(k)]     | 
+--------+-----------------------------+----------------------------------+ 
|Variable|     c(k)   Std.Err.   |z|   |     h(k)       Std.Err     |z|   | 
+--------+-----------------------------+----------------------------------+ 
|PROD    |   13.4707    4.7901   2.812 |   708368.36  3389322.32     .209 | 
+-------------------------------------------------------------------------+ 
 
+----------------------------------------------------------------+ 
| Parameters of underlying density at data means:                | 
| Parameter   Estimate   Std. Error     Confidence Interval      | 
| ------------------------------------------------------------   | 
| Lambda        .04129       .00662       .0283 to       .0543   | 
| P            1.41149       .19389      1.0315 to      1.7915   | 
| Median      24.21755      3.88060     16.6116 to     31.8235   | 
| Percentiles  of  survival  distribution:                       | 
| Survival       .25       .50       .75       .95               | 
| Time         52.74     24.22     11.12      3.01               | 
+----------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Loglinear survival model: INVERSE GAUSSIAN 
Dependent variable                 LOGT 
Log likelihood function      -298.24556 
Restricted log likelihood    -331.34838 
Chi squared [   2 d.f.]        66.20563 
Significance level               .00000 
McFadden Pseudo R-squared      .0999034 
Estimation based on N =     62, K =   3 
Inf.Cr.AIC  =    602.5 AIC/N =    9.718 
Model estimated: Aug 11, 2011, 11:05:33 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Parameters in conditional mean function 
Constant|    2.53283***      .65173     3.89  .0001     1.25547   3.81019 
    PROD|   -10.4031       10.93846     -.95  .3416    -31.8421   11.0359 
        |Scale parameter for inverse gaussian model 
   Sigma|     .28218         .24945     1.13  .2580     -.20674    .77110 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------------+ 
| Percentiles  of  survival  distribution at data means  | 
| Survival       .25       .50       .75       .95       | 
| Time         41.50     16.13      7.10      2.80       | 
+--------------------------------------------------------+ 
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 In order to compare the various models, one can examine the coefficients, log likelihoods, 
and various diagnostic statistics.  A tool which can be used to diagnose model adequacy is the 
integrated hazard function, ih(t) = -logS(t) where S(t) is the survival function.  Under the hypothesis 
that the model specification is correct, the integrated hazard function should be a straight line 
emanating from the origin.  Departures from this might signal model misspecification.  For example, 
the figures below are produced by adding ; Plot to the Weibull and inverse Gaussian models:  The 
curvature of the integrated hazard for the inverse Gaussian model suggests (slightly) that the Weibull 
might be the preferred model. 
 
                              Weibull        Inverse Gaussian 

           
Figure E60.1  Comparison of Weibull and Inverse Gaussian Models 

 
 To examine the effect of censoring, we modify the data by censoring observations at T = 80.  
The results produced earlier with the uncensored data are repeated. 
 

CREATE  ; ct = 80 ~ t ; d = (ct = 80) $ 
CREATE  ; logct = Log(ct) $ 
SURVIVAL ; Lhs = logct ; Rhs = one,prod  
  ; Model = Weibull  
  ; Plot $ 

 
----------------------------------------------------------------------------- 
Loglinear survival model: WEIBULL 
Dependent variable                LOGCT 
Log likelihood function       -89.64803 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   LOGCT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS of hazard model 
Constant|    3.61369***      .14190    25.47  .0000     3.33558   3.89180 
    PROD|   -6.41060**      2.89543    -2.21  .0268   -12.08553   -.73567 
        |Ancillary parameters for survival 
   Sigma|     .85049***      .10611     8.01  .0000      .64251   1.05847 
--------+-------------------------------------------------------------------- 
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+-------------------------------------------------------------------------+ 
| Alternative representations of survival model:                          | 
| Accelerated Failure Time:  b(k)  =  beta(k)    (Given above)            | 
+--------+-----------------------------+----------------------------------+ 
|        | Proportional Hazards        | Hazard Ratios                    | 
|        | c(k) = -1/sigma*beta(k)     | h(k)=exp[(-1/sigma)*beta(k)]     | 
|        | z  =  c(k)/Std.Err.[c(k)]   | z  = [h(k)-1]/Std.Err.[h(k)]     | 
+--------+-----------------------------+----------------------------------+ 
|Variable|     c(k)   Std.Err.   |z|   |     h(k)       Std.Err     |z|   | 
+--------+-----------------------------+----------------------------------+ 
|PROD    |    7.5376    3.7119   2.031 |    1877.2373   6968.0266    .269 | 
+-------------------------------------------------------------------------+ 
 
+----------------------------------------------------------------+ 
| Parameters of underlying density at data means:                | 
| Parameter   Estimate   Std. Error     Confidence Interval      | 
| ------------------------------------------------------------   | 
| Lambda        .02893       .00376       .0216 to       .0363   | 
| P            1.17580       .14670       .8883 to      1.4633   | 
| Median      25.31274      3.28804     18.8682 to     31.7573   | 
| Percentiles  of  survival  distribution:                       | 
| Survival       .25       .50       .75       .95               | 
| Time         45.64     25.31     11.98      2.76               | 
+----------------------------------------------------------------+ 
| Uncensored data                                                | 
| Lambda        .02530       .00337       .0187 to       .0319   | 
| P            1.00786       .12254       .7677 to      1.2480   | 
| Median      27.47425      3.66307     20.2946 to     34.6539   | 
| Percentiles  of  survival  distribution:                       | 
| Survival       .25       .50       .75       .95               | 
| Time         54.65     27.47     11.48      2.07               | 
+----------------------------------------------------------------+ 
 
                           Uncensored Data                                                    Censored Data 

       
Figure E60.2  Integrated Hazard Functions 
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E60.6 Gamma, Gompertz and Generalized F Models 
 
 These three models generally require additional information specific to the model to set up 
the estimation command.  The Gompertz model can be estimated using more than one procedure.  
Owing to the complexity of the model, a specific application may require use of different procedures 
to obtain a result. 
 
E60.6.1 Estimating the Gamma Model 
 
 The gamma model must be treated differently from the other models.  The parameter θ 
cannot be easily estimated simultaneously with the other parameters because of the difficulty of 
computing the derivative of the log likelihood.  One method of estimation is to search over θ. You 
can provide the value of θ at the time the command is requested, as follows: 
 
 SURVIVAL  ; Lhs = ...  ; Rhs = ... ; Model = Gamma ; Theta = value $ 
  
Even though θ is supplied by you rather than searched for by the iterative algorithm, it is still treated 
as an unknown parameter.  LIMDEP will compute an estimated standard error for the estimate of θ 
and factor this variance into the estimated covariance matrix for the other parameter estimates.  I.e., 
it treats it just like the other parameters.  Unlike the other parameters, though, we use a first 
difference approximation to estimate the derivative of the log likelihood with respect to θ. 
 You may specify that θ is to be treated as fixed in the preceding and not allow its variance to 
be factored into the estimated asymptotic covariance matrix.  This will nearly always result in the 
remaining estimated standard errors being smaller than when θ is treated as having been estimated.  
To request this, add 
   ; Fix 
  
to the command.  The output will clearly show the constraint. 
 Three alternative formulations may also be specified for the gamma model: 
 

1. To fix σ at some value and allow θ to be freely estimated instead, use 
 

 NAMELIST  ; x = the set of Rhs variables $ 
 CALC      ; k = Col(x) $ 
        SURVIVAL  ; Lhs = ... ; Rhs = x ; Model = Gamma  
   ; Rst = k_b, value for sigma, tt $ 
 

2. To fix both σ and θ, use the same as above, but instead of the free label tt above, insert the 
desired fixed value. 

 
Experience suggests that estimation of the gamma model with one or both of the parameters fixed is 
fairly routine.  The third approach is to allow both σ and θ to vary freely, and be estimated as free 
parameters. To request this, simply use 
 
 SURVIVAL  ; Lhs = ... ; Rhs = ... ; Model = Gamma $ 
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To continue, our experience with some carefully constructed data sets suggests that the model with 
free σ and θ is quite difficult to estimate.  We found in most cases that θ and the slope parameters 
wandered off to extreme values, and ultimately, it was not possible to obtain convergence of the 
estimator.  (It is quite well behaved with our sample data, however.) 
 A number of options discussed below are unavailable for the gamma model: 
 

• truncation 
• splitting model 
• gamma heterogeneity 
• time varying covariates 

 
The following show several formulations of the gamma model.  For the data analyzed here, the 
unrestricted model turns out to be fairly easily estimated. 
 
 SURVIVAL  ; Lhs = logt ; Rhs = one,prod ; Model = Gamma $ 
 SURVIVAL  ; Lhs = logt ; Rhs = one,prod ; Model = Gamma ; Theta = .5 $ 
 SURVIVAL  ; Lhs = logt ; Rhs = one,prod ; Model = Gamma ; Theta = 1.5 $ 
 
----------------------------------------------------------------------------- 
Loglinear survival model: GENRL.GAMMA 
Dependent variable                 LOGT 
Log likelihood function       -97.28530 
Estimation based on N =     62, K =   4 
Inf.Cr.AIC  =    202.6 AIC/N =    3.267 
Model estimated: Aug 11, 2011, 13:25:31 
Generalized GAMMA Model, Theta=   1.015 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS of hazard model 
Constant|    3.76120***     1.40938     2.67  .0076      .99887   6.52354 
    PROD|   -9.33410***     2.98174    -3.13  .0017   -15.17820  -3.48999 
        |Ancillary parameters for survival 
   Sigma|    1.00138         .71035     1.41  .1586     -.39088   2.39364 
   THETA|    1.01482        1.18452      .86  .3916    -1.30679   3.33643 
--------+-------------------------------------------------------------------- 
 

+----------------------------------------------------------------+ 
| Parameters of underlying density at data means:                | 
| Parameter   Estimate   Std. Error     Confidence Interval      | 
| ------------------------------------------------------------   | 
| Lambda        .02578       .03642      -.0456 to       .0972   | 
| P             .99862       .90798      -.7810 to      2.7783   | 
| Median      27.43512       .00000     27.4351 to     27.4351   | 
| Percentiles  of  survival  distribution:                       | 
| Survival       .25       .50       .75       .95               | 
| Time         54.60     27.44     11.48      2.09               | 
+----------------------------------------------------------------+ 
 

Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit from iterations. Exit status=0. 
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----------------------------------------------------------------------------- 
Loglinear survival model: GENRL.GAMMA 
Dependent variable                 LOGT 
Log likelihood function       -97.63613 
Generalized GAMMA Model, Theta=    .500 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS of hazard model 
Constant|    4.42078***      .57425     7.70  .0000     3.29527   5.54630 
    PROD|   -9.17447***     2.78655    -3.29  .0010   -14.63602  -3.71292 
        |Ancillary parameters for survival 
   Sigma|     .63011         .39717     1.59  .1126     -.14832   1.40854 
   THETA|     .50000         .47370     1.06  .2912     -.42844   1.42844 
--------+-------------------------------------------------------------------- 
 
+----------------------------------------------------------------+ 
| Parameters of underlying density at data means:                | 
| Parameter   Estimate   Std. Error     Confidence Interval      | 
| ------------------------------------------------------------   | 
| Lambda        .01330       .00774      -.0019 to       .0285   | 
| P            1.58701      1.08060      -.5310 to      3.7050   | 
| Median      29.56565       .00000     29.5657 to     29.5657   | 
| Percentiles  of  survival  distribution:                       | 
| Survival       .25       .50       .75       .95               | 
| Time         57.94     29.57     11.49      1.48               | 
+----------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Loglinear survival model: GENRL.GAMMA 
Dependent variable                 LOGT 
Log likelihood function       -97.35987 
Generalized GAMMA Model, Theta=   1.500 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS of hazard model 
Constant|    3.16619        2.41356     1.31  .1896    -1.56430   7.89668 
    PROD|   -9.37034***     3.04648    -3.08  .0021   -15.34132  -3.39936 
        |Ancillary parameters for survival 
   Sigma|    1.27142        1.03610     1.23  .2198     -.75930   3.30213 
   THETA|    1.50000        2.08518      .72  .4719    -2.58688   5.58688 
--------+-------------------------------------------------------------------- 
 
+----------------------------------------------------------------+ 
| Parameters of underlying density at data means:                | 
| Parameter   Estimate   Std. Error     Confidence Interval      | 
| ------------------------------------------------------------   | 
| Lambda        .04675       .11290      -.1745 to       .2680   | 
| P             .78652       .90435      -.9860 to      2.5590   | 
| Median      26.48423       .00000     26.4842 to     26.4842   | 
| Percentiles  of  survival  distribution:                       | 
| Survival       .25       .50       .75       .95               | 
| Time         53.42     26.48     11.32      2.35               | 
+----------------------------------------------------------------+ 
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E60.6.2 Estimating the Gompertz Model 
 
 Estimation of λ and p for a (possibly censored) set of observations on t = time is done as 
follows: 
 
 SURVIVAL  ; Lhs = t[,status] ; Model = Gompertz $ 
 
The status variable is optional.  Note that there are no covariates.  Starting values for the parameters 
are obtained from the Kaplan-Meier estimates of the hazard function, based on 
 
   loght  =  logp  +  λt. 
 
We use the least squares coefficients in the regression of the estimated hazards on a constant and ‘t.’  
The log of the hazard, which has been tabulated for 10 or more values of t, is, theoretically, linear in 
t. Then, λ and p are estimated directly by maximum likelihood.  They and the estimated median of 
the distribution are presented with standard errors.  Several percentiles of the distribution are also 
presented. A listing by observation of time, the survival rate, density of the distribution, and hazard 
rate is obtained by adding 
 
   ; List 
 
to the model command. 
 
NOTE: The input (Lhs) variable is time for this model, not log(time). 
 
 When the Gompertz model is estimated with covariates, you must provide starting values.  
They are optional with the other models.  It is difficult to obtain good starting values for this model – 
it depends partly on the data.  Here are two strategies: 
 

1. Use the procedure described above to fit the model without the covariates.  Then, use             
; Start = * in your later command to specify the starting values for the expanded model.  
This will result in an initial assumption of zero for all coefficients but the constant term.  
Thus, for example, 

 
     SURVIVAL  ; Lhs = time ; Model = Gompertz $ 
     SURVIVAL  ; Lhs = time ; Rhs = one,sex  
   ; Start = * ; Model = Gompertz $ 
 

2. Estimate some other functional form, such as the Weibull and use the estimates as the 
starting values for the Gompertz model.  These will not be particularly good, but they will 
probably be better than zero as they will provide some information about relative sizes.  If 
you do this, you must use the ; Par option to make sure that an estimate of σ = 1/P gets 
passed as well.  Thus, for example, 
 

     SURVIVAL ; Lhs = Log(time) ; Rhs = one,sex ; Model = Weibull ; Par $ 
     SURVIVAL  ; Lhs = time ; Rhs = one,sex ; Start = b ; Model = Gompertz $ 
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We note, within our experience, regardless of the strategy chosen, estimate of the Gompertz model 
will be a challenge in most cases. 
 The following shows an exercise in which the Weibull and Gompertz hazard functions are 
compared.  The MAXIMIZE command is used to fit the Gompertz model. 

 
SAMPLE ; 1-62 $ 
SURVIVAL ; Quietly ; Lhs = logt  
  ; Rhs = one,prod ; Model = Weibull $ 
CALC  ; pw = 1/s $ 

 CALC   ; prbar = Xbr(prod) $ 
CALC  ; lbarw = Exp(-b(1)-b(2)*prbar) $ 
SURVIVAL ; Quietly ; Lhs = logt ; Rhs = one,prod ; Model = Exponential $ 
MATRIX ; beta0  = b $ 
CALC  ; p0 = 1/s $ 

 MAXIMIZE ; Labels = b0,b1,pgomp ; Start = beta0,p0 
   ; Fcn = al = Exp(-b0-b1*prod) | 
     Log(pgomp)+al*t-(pgomp/al)*(Exp(al*t)-1) ; Output = 3 $ 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function      -292.91074 
Estimation based on N =     62, K =   3 
Inf.Cr.AIC  =    591.8 AIC/N =    9.546 
Model estimated: Aug 11, 2011, 13:38:11 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|    6.86763        6.03419     1.14  .2551    -4.95917  18.69443 
      B1|   -41.0662       91.48359     -.45  .6535   -220.3708  138.2384 
   PGOMP|     .02100***      .00359     5.85  .0000      .01397    .02804 
--------+-------------------------------------------------------------------- 
 
 CALC   ; lbarg = Exp(-b(1)-b(2)*prbar) $ 
 CALC   ; pg = b(3) $ 
 SAMPLE  ; 1-200 $ 
 CREATE  ; time = Trn(1,1) $ 
 CREATE  ; ghazard = pg*Exp(lbarg*time) $ 
 CREATE  ; whazard = pw*lbarw*(lbarw*time)^(pw-1) $ 
 PLOT   ; Lhs = time ; Rhs = ghazard,whazard  
   ; Endpoints = 0,200 
   ; Title = Gompertz and Weibull Hazard Functions 
   ; Grid ; Fill $ 
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Figure E60.3  Gompertz and Weibull Hazard Functions 

 
The hazard function for the Weibull model is essentially that of an exponential model.  Since the 
estimated value of p is only 1.00786 for the Weibull model, this is to be expected. 
 
E60.6.3 Estimating the Generalized F Model 
 
 This model is more general than the other models in the set, and may be used to help decide 
which is the best among the set to use as a modeling framework. The hazard function for the 
generalized F may display negative or positive duration dependence. 

 To request this model, the basic command is 
 

SURVIVAL  ; Lhs = ... as usual, including censoring if appropriate 
                 ; Rhs = ... as usual 
                 [; Rh2 = ... if the splitting model is desired (with the other  
          options for the splitting model)] 
                 [; Hfn = ... if the variance heterogeneity model is desired] 

; Model  = F   
               ... (other options) $ 

 
All options for the parametric survival models are available except the time varying covariates 
specification.  The model may be estimated with M1 and M2 fixed or free.  Two available setups are 
as follows: 
 

1. ML estimation of free M1 and M2.  If you wish to let the optimization procedure find M1 and 
M2, just use the ; Model = F form of the command exactly as shown above. 

 
2. Fixed M1 and/or M2: The likelihood for this model is a bit ill behaved in some data sets, as 

M1 and/or M2 begin to wander to the values for the special cases, i.e., +∞.  You can fix one 
or both of the two parameters using a special form of the command.  To fix both M1 and M2 
at particular values, use 

 

; Model = F (value1, value2) 
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For example, ; Model = F(1,1) produces the loglogistic distribution. This will produce conditional 
maximum likelihood estimates of the other parameters in the model with M1 and M2 fixed at the 
specific values you give.  To fix just one of them, use 

 
; Model = F (M1, value2)  to fix M2, for example, F(M1,2.5) 
; Model = F (value1, M2)  to fit M1, for example, F(1.25,M2). 

  
The estimator computes maximum likelihood estimates of all free model parameters. 

The full parameter vector in the generalized F model is, in order, 
 
 β =  slope parameters in index function  (mandatory), 

α =  slope parameters in splitting model (optional), 
γ =  parameters in variance heterogeneity model (optional – see Section E61.4), 
M1,M2 =  degrees of freedom parameters in F distribution (mandatory), 
σ =  scale (variance parameter) for duration distribution (mandatory). 

 
You may also fix M1 and/or M2 using the ; Rst specification.  But, you should not use this unless 
you are constraining other parameters in the model as well.  For fixing only M1 and/or M2, ; Model 
= F(...,...) does the same thing, and is much simpler. 
 The following are special cases of LIMDEP’s generalized F model. 
 

 Distribution Form of the Generalized F Distribution 
 loglogistic:    M1 = 1   M2 = 1 σ free 

 lognormal:  M1 → +∞  M2 → +∞ σ free 

 Weibull:  M1 = 1   M2 → +∞ σ free 

 exponential: M1 = 1   M2 → +∞   σ = 1 

 gamma: M1 free           M2 → +∞ σ free 
Table E60.7  Special Cases of the Generalized F Distribution 

 
To specify the limiting forms, you can use a large value for M1 and/or M2 (or, of course, use the 
form directly). 
 For an example of the generalized F, we use Kennan’s strike data with the production data 
used earlier.  Without the censoring, the results strongly support the Weibull specification – indeed 
the ML results are virtually identical to the Weibull model.  M2 wanders off to an extreme value 
while M1 moves toward one, suggesting that the Weibull model gives the highest likelihood. 
However, the exponential model cannot be rejected based on its log likelihood of  -97.285.  Note that 
the standard errors for the estimated parameters of the Weibull model will be inflated by the 
presence of M1 and M2, compared to the estimates when the Weibull model is specified explicitly. 
Recall, the integrated hazard function plotted earlier also suggested that a Weibull model would be 
appropriate. 
 
 SURVIVAL ; Lhs = logt ; Rhs = one,prod  
   ; Model = F $ 
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Warning   141: Iterations:current or start estimate of sigma nonpositive 
Warning   141: Iterations:current or start estimate of sigma nonpositive 
Maximum of    50 iterations. Exit iterations with status=1. 
 
----------------------------------------------------------------------------- 
Loglinear survival model: GENRLIZED F 
Dependent variable                 LOGT 
Log likelihood function       -97.28532 
Generalized F(    1.01,96241.70) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS of hazard model 
Constant|    3.77595***      .28074    13.45  .0000     3.22571   4.32620 
    PROD|   -9.33410***     3.36300    -2.78  .0055   -15.92545  -2.74274 
        |Ancillary parameters for survival 
      M1|    1.01474        4.09810      .25  .8044    -7.01739   9.04688 
      M2|    96241.7      .1463D+11      .00 1.0000 ***********  *********** 
   Sigma|    1.00133        3.17303      .32  .7523    -5.21771   7.22036 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+-------------------------------------------------------------------------+ 
| Alternative representations of survival model:                          | 
| Accelerated Failure Time:  b(k)  =  beta(k)    (Given above)            | 
+--------+-----------------------------+----------------------------------+ 
|        | Proportional Hazards        | Hazard Ratios                    | 
|        | c(k) = -1/sigma*beta(k)     | h(k)=exp[(-1/sigma)*beta(k)]     | 
|        | z  =  c(k)/Std.Err.[c(k)]   | z  = [h(k)-1]/Std.Err.[h(k)]     | 
+--------+-----------------------------+----------------------------------+ 
|Variable|     c(k)   Std.Err.   |z|   |     h(k)       Std.Err     |z|   | 
+--------+-----------------------------+----------------------------------+ 
|PROD    |    9.3217   28.2834    .330 |   11178.4412 316164.5113    .035 | 
+-------------------------------------------------------------------------+ 
 
+----------------------------------------------------------------+ 
| Parameters of underlying density at data means:                | 
| Parameter   Estimate   Std. Error     Confidence Interval      | 
| ------------------------------------------------------------   | 
| Lambda        .02540       .00732       .0111 to       .0397   | 
| P             .99868      3.16464     -5.2040 to      7.2014   | 
| Median      27.27760       .00000     27.2776 to     27.2776   | 
| Percentiles  of  survival  distribution:                       | 
| Survival       .25       .50       .75       .95               | 
| Time         54.61     27.28     11.31      2.01               | 
+----------------------------------------------------------------+ 
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E60.7 Time Varying Covariates 
 
 As noted earlier, we have assumed thus far that the covariates are constant from the 
beginning of the measurement period, T = 0, to the time of the measurement, T = ti.  There will be 
circumstances in which this assumption must be relaxed.  For example, a model of the duration of 
unemployment might include marital status, and the individual’s marital status might change during 
the spell.  A second example might be job tenure, during which rank or position in the firm might 
have changed.  This section presents a method of incorporating true time varying covariates in the 
duration model. We draw heavily on Petersen (1986a, 1986b).  Petersen and we differ on the 
definition of time varying as opposed to time dependent covariates.  We use the latter to denote 
covariates which are written as explicit functions of time.  We use the term time varying covariates 
to denote what he calls time dependent covariates. 
 Following Petersen, we formulate the model as follows:  Let the interval 0 to ti be divided 
into k exhaustive, nonoverlapping intervals, t0 < t1 < ... < tk-1 < tk , where t0 = 0 and tk = ti.  The 
covariates are assumed to stay constant within each of the k intervals, but may change from one 
interval to the next.  Let 
 
   h(t|xj)  =  hazard function from time tj-1 to tj, 
  
since within that interval, the covariates are constant.  We deviate slightly from Petersen’s notation. 
His formulation includes both time varying covariates, denoted x(t) and time dependent covariates, 
z(t).  The models considered here allow only the former.  Then, from the relationship between the 
hazard function and the survival rate, 
 
   ht  =  -dlogS(t)/dt, 

and   Prob[T ≤ tj | T ≥ tj-1 ]  =  exp -
-1

( | )d .j

j

t

jt
h s s∫

 

 
x  

 
The survival function for duration of tk or more can then be written 
 
    S(tk | xk )  =  

=1

k

j∏ Prob[T ≥ tj | T ≥ tj-1 ]. 
 
Finally, the density at tk is 
 

  f(tk | xk )  =  h(tk )S(tk ). 
  
The log likelihood function for one observation is 
 
   logLi  =  δi logh(tk | xk )  +  logS(tk ). 
 
Thus, each observation contributes the survivor function to the log likelihood function.  For 
noncensored observations, we add the density, evaluated at the terminal point.  Therefore, 
 

   logLi  =  δi logh(tk | xk )  - 
j

j-1
=1

( | )d .
tk

jj t
h s s∑ ∫

 

 
x  
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 The hazard function is modeled as a step function, with different values of the covariates 
through several intervals between t = 0 and t = ti, the terminal value in the observation, at which 
either censoring or exit takes place.  This requires one or more lines of data per observation, since 
the covariates must be provided for each interval observed.  The number may vary by observation.  
For example, suppose marital status and education are the covariates in a model of duration of 
unemployment.  For an observation i, education is constant, E = 12, say, for the entire observation 
period, but marital status changes at t = 10.  The observation period is 0 to 24.  This would require 
two lines of data 
    t  e m             status          nperiod 
  1st 10 12 0 1 2 
  2nd 24 12 1 1 2 
 
The censoring status is provided for all periods, even though only the one on the last record is 
needed. This is requested with ; Pds = nperiod, where nperiod is a variable which tells how many 
lines of data are needed for the observation.  The model command is 
 
 SURVIVAL  ; Lhs  = time or logtime, censoring status 
   ; Rhs = covariates 
   ; Pds  = nperiod 
   ; Model = ... as usual, along with other options $ 
 
The only change is the addition of ; Pds = nperiod.  Note that this is the same setup as the discrete 
choice model with variable numbers of choices as well as the other panel data estimators in 
LIMDEP. As discussed earlier, only the Gompertz model uses actual time, as opposed to the 
logarithm of time as the Lhs variable. 
 
NOTE:  The number of periods, nperiod, was given as a third Lhs variable in previous versions of 
LIMDEP.  (You may continue to use this format if you wish.) 
 
 This formulation is available for the following models: Weibull, loglogistic, exponential, 
Gompertz, and Weibull with heterogeneity.  The excluded models are the normal, split population, 
gamma, and generalized F models. 
 
Technical Details 
 
 For the model with time varying covariates, we construct the log likelihood as the sum of 
terms 
   logLi  =  δi logh(tk | xk )  - 

j

j-1
=1

( | )d .
tk

jj t
h s s∑ ∫

 

 
x  

 
where, for the present, we have reverted back to expressing time in natural units.  The hazard 
functions for the distributions which include this feature are listed below.  To construct the second 
term in the log likelihood, we require the indefinite integrals of these functions.  The terms in the 
likelihood functions for these models are listed in the table below.  
  



E60: Parametric Models for Duration   E-1485 

Model   Hazard Function  Indefinite Integral 

Weibull   (λp)(λt)p-1   (λt)p 

Weibull/gamma  (λp)(λt)p-1 / [1 + θ(λt)p ]  (1/θ)log[1 + θ(λt)p] 

exponential/gamma λ / [1 + θλt]   (1/θ)log[1 + θ(λt)] 

exponential  λ    λt 

loglogistic  (λp)(λt)p-1 / [1 + (λt)p ]  log[1 + (λt)p ] 

Gompertz  peλ    (p/λ)eλt 

Table E60.8  Characteristics of Survival Distributions 
 
For the Gompertz model, it is more convenient to leave the distribution in its original form.  Petersen 
(1986a, 1986b) used a modified form of nonlinear least squares to estimate the parameters. We apply 
the BFGS method directly to the log likelihood.  Derivatives with respect to β and σ are obtained as 
follows: 
   ∂logLi /∂β =  (∂logLi /∂λi)λixi, 

   ∂logLi/∂σ =  (∂logLi/∂p)(dp/dσ)  =  (∂logLi/∂p) (-1/σ2). 
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E61: Panel Data and Heterogeneity in 
Parametric Duration Models  

 
E61.1 Introduction 
 
 This chapter develops several extensions of the duration models for panel data and other 
nonstandard forms.  The other extensions include heterogeneity, heteroscedasticity and a two part 
model for sample selection. 
 
E61.2 Panel Data Models 
 
 The following are less natural for the parametric survival models than they are for, say, the 
linear regression model or the probit model.  The notion of ‘clustering’ might be more applicable 
than panel data in this context.  Consider a setting in which observations occur in naturally collected 
groups, in which group members have common attributes.  For example, one might consider bank or 
business failures in which there is a strong regional or local influence shared within a group, but 
perhaps not between groups.  Then, we consider a parametric model of the form 
 
   f(tij) =  (1/σ) f(wij) 

where    wij  =  (1/σ) (log tij  -  βi′xij) 
 
where ‘i’ indexes the group, ‘j’ indexes the member of group i, and there are Ni members of group i. 
LIMDEP provides four formulations for such a model: 
 

1. Fixed effects 
2. Random effects 
3. Random parameters 
4. Latent class 

 
Extensive descriptions of these four modeling frameworks and how LIMDEP does the estimation 
appear elsewhere in this manual, e.g., in Chapters R22-R25, so at this juncture, we will present only 
the essential details.  We emphasize, again, in this framework, the usual panel data interpretation is a 
bit ambiguous, since one would not normally observe the same individual repeatedly.  The ‘cluster of 
observations’ seems a more appropriate application.  As a consequence, covariance structures for 
observations should be ‘exchangeable’ – that is, any time sequencing operation, such as 
autocorrelation, would normally not be used in this context.   
 
NOTE:  These ‘panel data models’ are available only for the Weibull, loglogistic and lognormal 
models.   
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 All models will contain the mandatory part of the specification 
 
 SETPANEL ; Group = identifier  
   ; Pds = count variable $ 
 SURVIVAL ; Lhs = the log of the time variable 
   ; Rhs = the list of covariates 
   ; Model = Weibull or Normal or Loglogistic 
   ; Panel 
   ; ... specification of the particular model form 
   ; ... any other options $ 
 
 Since the Kennan data are grouped by year, they can be viewed as a panel (by our earlier 
loose interpretation).  To illustrate the different estimators, we will fit several different forms of the 
Weibull model which appears to be a good choice for these data. 
 
E61.2.1 Fixed Effects Models 
 
 The fixed effects model would result from 
 
   βi′xi*  =  βi

0  +  β′xi 
 
where xi* is the full covariate vector including a constant term while xi is all variables not including 
a constant term, and where βi is partitioned conformably.  The fixed effects estimator is requested 
with 
   ; FEM  
   ; Panel  
 
NOTE:  The fixed effect cannot be estimated for any group in which all observations in the group 
are censored.  These groups must be dropped from the analysis.  The output for the estimator will 
indicate how many times this condition was encountered in the data set. 
 

Since prod does not vary within each year, the fixed effects model must be fit with just the 
constant terms. Since there are no covariates, this might seem to be equivalent to fitting separate 
models for each year, however, the underlying variance parameter is constrained to be the same in 
every year. (We created the count variable, ni, by hand, since the sample is so small. Purely for this 
numerical example, we created nine groups with seven observations in each group save for the last, 
which has six.) 
 

SURVIVAL ; Lhs = logt ; Rhs = one  
; Model = Weibull  
; Panel ; FEM ; Par $ 

MATRIX ; List ; alphafe $ 
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----------------------------------------------------------------------------- 
FIXED EFFECTS SWeibl Model 
Dependent variable                 LOGT 
Log likelihood function       -86.95720 
Estimation based on N =     62, K =  10 
Unbalanced panel has      9 individuals 
Skipped    0 groups with inestimable ai 
Weibull loglinear survival model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Variance parameter given is sigma 
Std.Dev.|     .81949***      .08502     9.64  .0000      .65286    .98612 
--------+-------------------------------------------------------------------- 
 
 ALPHAFE|             1 
--------+-------------- 
       1|       2.13448 
       2|       2.93709 
       3|       3.65576 
       4|       3.87759 
       5|       3.26583 
       6|       4.23517 
       7|       4.67064 
       8|       3.65549 
       9|       4.00311 
 
E61.2.2 Random Effects and Random Parameters Models 
 
 The random parameters model specifies that 
 
   βi =  β  +  ∆zi  +  Γvi 
 
where β is the mean of the distribution, ∆ is a matrix of coefficients, and Γ is a lower triangular 
matrix.  By this specification, each coefficient in the model is 
 
   βik =  βk  +  δk′zi  +  γ′vi. 
 
Any coefficient can be assumed to be nonrandom.  Correlation across parameters is achieved by 
having nonzero off diagonal elements in Γ.  The diagonal elements are the scales (not necessarily the 
standard deviations) for the random terms. 
 
NOTE:  A random effects model is obtained in this framework by allowing only the constant term to 
be random and not providing any ‘z’ variables for the heterogeneous mean.   
 
The random parameters models are specified by providing, for each random parameter desired: 
 
   ; RPM [ = list of variables in z if desired. This is optional.] 
   ; Fcn = name of variable (n, u, t, etc.)  
    for normal, uniform, tent distribution, etc. 
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 LIMDEP’s Weibull and exponential models support heterogeneity with log-gamma density 
by writing the survival function as 
 
   S(t|v) =  v × exp[(-λt)P] 
 
where v has a gamma density with mean one. 
 The random parameters formulation of the parametric models allows the modeler to 
incorporate heterogeneity in the parametric survival models in the form of variation in the model 
parameters, β.  Thus, for example, the hazard function for the Weibull model is 
 
   h(ti) =  λi p (λi ti )p-1 

where    λi     =  exp(βi′xi) 

and, we allow   βi   =  β0  +  ∆zi  +  Γ vi. 
 
This builds individual heterogeneity into the hazard rate in a different manner than in the gamma 
model above.   Note, however, that if only the constant term in β is so affected, then this random 
parameter model becomes the same as the gamma model above with a different distribution.  
Typically the heterogeneity would be assumed to arise from a normally distributed vi, in which case, 
the gamma variable v in the earlier model would be changed to include a lognormal γvi in this new 
formulation. 
 This formulation, available for the Weibull, exponential, lognormal and loglogistic survival 
models, adds these survival models to LIMDEP’s class of random parameter models.  The full range 
of features for the random parameter models is available.  The function definition may specify that 
any parameter in the model is random.  The randomness may be ‘pure’ as in 
 
   βi   =  β0  +  Γ vi 
 
which replicates (at least in spirit) earlier formulations, or heterogeneous, 
 
   βi   =  β0  +  ∆zi  +  Γ vi. 
 
We should note, the preceding heterogeneity model assumes (as all random ‘effects models’ do) that 
the heterogeneity is uncorrelated with the covariates.  If this is not true, then parameter estimates are 
inconsistent and inference about them from that model is possibly problematic.  In other settings, the 
‘fixed effects’ model is the preferable alternative.  LIMDEP’s fixed effects estimator is available for 
these models as well.  However, it is unclear how viable an option this will be, because the fixed 
effects model requires panel data, and one typically does not observe panels of duration data. 
 The random parameters model with a random constant term is comparable to the latent 
heterogeneity models discussed in Section E61.3.  We will treat the data as a panel here – there are 
nine years of data.  For these treatments, we assume that the latent effect is common to all 
observations in the given year, as it would be in the spirit of Kennan’s treatment in which the prod 
variable represents a macroeconomic shock that hits all industries.  Thus, the treatment here assumes 
that there are other shocks that do likewise.   
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The first model is a simple random effects formulation.  The second allows both parameters 
to be random. 
 

SURVIVAL ; Lhs = logt ; Rhs = one,prod  
  ; Model = Weibull  

; Panel ; RPM ; Fcn = one(n) ; Halton $ 
SURVIVAL ; Lhs = logt ; Rhs = one,prod  
  ; Model = Weibull  

; Panel ; RPM ; Fcn = one(n),prod(n) ; Halton ; Corr ; Pts = 200 $ 
 
---------------------------------------------------------------------------- 
Random Coefficients  WiblSurv Model 
Dependent variable                 LOGT 
Log likelihood function       -95.33572 
Estimation based on N =     62, K =   4 
Simulation based on    100 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    PROD|   -8.84829***     1.81985    -4.86  .0000   -12.41513  -5.28144 
        |Means for random parameters 
Constant|    3.69841***      .13270    27.87  .0000     3.43832   3.95850 
        |Scale parameters for dists. of random parameters 
Constant|     .50916***      .13244     3.84  .0001      .24958    .76873 
        |Scale parameter for survival distribution 
ScalParm|     .88209***      .11850     7.44  .0000      .64983   1.11435 
--------+-------------------------------------------------------------------- 
 
The next set of results extends this model by allowing the slope to be random as well.  In view of the 
results above, one should not expect much improvement.   
 
----------------------------------------------------------------------------- 
Random Coefficients  WiblSurv Model 
Dependent variable                 LOGT 
Log likelihood function       -89.14375 
Simulation based on    200 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Means for random parameters 
Constant|    3.84798***      .09445    40.74  .0000     3.66286   4.03309 
    PROD|   -17.4211***     2.12527    -8.20  .0000    -21.5865  -13.2556 
        |Diagonal elements of Cholesky matrix 
Constant|     .58786***      .11122     5.29  .0000      .36986    .80585 
    PROD|    15.2982***     2.32825     6.57  .0000     10.7349   19.8615 
        |Below diagonal elements of Cholesky matrix 
lPRO_ONE|    1.58832        2.16962      .73  .4641    -2.66406   5.84070 
        |Scale parameter for survival distribution 
ScalParm|     .67565***      .06457    10.46  .0000      .54909    .80222 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|       .345575       .933705 
       2|       .933705       236.559 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .587857 
       2|       15.3805 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000       .103269 
       2|       .103269       1.00000 
 

E61.2.3 Latent Class Models 
 
 The latent class model specifies a complete parameter vector, including σ, for each of J 
latent classes.  The model is specified with 
 
   ; LCM ; Pts = the number of classes desired 
 
 We fit a three class model to the strike data.  In view of the previous results, these should not be 
expected to amount to much.  Surprisingly, the latent class model seems to work quite well. However, a 
closer look at the results suggests that we have overfit it.  The second and third classes, while different 
from the first, are nearly identical to each other.  When we refit the model with two classes, the results 
are virtually identical to those below, with the second and third classes simply combined to one class. 
 

SURVIVAL ; Lhs = logt ; Rhs = one,prod ; Model = Weibull  
; Panel ; LCM ; Pts = 3 ; List $ 

 
----------------------------------------------------------------------------- 
Latent Class / Panel WiblSurv Model 
Dependent variable                 LOGT 
Log likelihood function       -89.58133 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Model parameters for latent class 1 
Constant|    4.02923***      .17348    23.23  .0000     3.68921   4.36925 
    PROD|   -6.52161*       3.44670    -1.89  .0585   -13.27702    .23379 
   Sigma|     .87649***      .11016     7.96  .0000      .66057   1.09241 
        | Model parameters for latent class 2 
Constant|    3.21546***      .48212     6.67  .0000     2.27053   4.16040 
    PROD|   -24.3683       14.86458    -1.64  .1011    -53.5023    4.7658 
   Sigma|     .67642***      .14614     4.63  .0000      .38998    .96286 
        | Model parameters for latent class 3 
Constant|    2.49119***      .39354     6.33  .0000     1.71986   3.26252 
    PROD|   -9.19942        8.38600    -1.10  .2726   -25.63568   7.23683 
   Sigma|     .52569**       .21591     2.43  .0149      .10252    .94885 
        | Estimated prior probabilities for class membership 
Class1Pr|     .68785***      .17967     3.83  .0001      .33570   1.04001 
Class2Pr|     .24318         .27691      .88  .3798     -.29954    .78591 
Class3Pr|     .06896         .18114      .38  .7034     -.28606    .42398 
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============================================================================= 
Predictions computed for the group with the largest posterior probability 
Obs.  Periods Fitted outcomes 
============================================================================= 
Ind.=    1  J* = 3  P(j)=  .001  .378  .621 
       01-07   93.7   31.2   93.7   31.2   93.7   37.0   93.7 
Ind.=    2  J* = 2  P(j)=  .004  .996  .000 
       01-07   11.4   77.0   11.4   77.0   11.4   77.0   11.4 
Ind.=    3  J* = 1  P(j)= 1.000  .000  .000 
       01-07   91.1   61.4   83.6   61.4   83.6   61.4   83.6 
Ind.=    4  J* = 1  P(j)= 1.000  .000  .000 
       01-07   61.4   83.6   61.4   83.6   61.4   83.6   61.4 
Ind.=    5  J* = 1  P(j)= 1.000  .000  .000 
       01-07  133.1   61.4  133.1   61.4  133.1   61.4  133.1 
Ind.=    6  J* = 1  P(j)= 1.000  .000  .000 
       01-07   61.4  133.1   61.4  133.1   61.4  133.1  215.7 
Ind.=    7  J* = 1  P(j)=  .985  .015  .000 
       01-07  133.1  215.7  133.1  104.5  133.1  104.5  133.1 
Ind.=    8  J* = 2  P(j)=  .202  .798  .000 
       01-07  149.3  831.4  149.3  831.4  149.3  831.4  149.3 
Ind.=    9  J* = 1  P(j)=  .999  .001  .000 
       01-06   95.3  104.5   95.3  104.5   95.3  104.5 
 
E61.3 Latent Heterogeneity 
 
 This section considers handling heterogeneity in the survival models. We first provide a 
robust covariance matrix for the case of uncorrected latent heterogeneity.  Sections E61.3.2 to 
E61.3.4 consider explicit treatments for latent heterogeneity in survival models.  The traditional 
approach has been to embed a gamma distributed latent effect in a Weibull or exponential model.  In 
Section E61.3.2, we present a more general, flexible model that can be used in several of the 
parametric models.  Sections E61.3.3 and E61.3.4 present the traditional models.  The final part, 
discussed in Section E61.4, presents a model of scale heterogeneity, which would be a counterpart to 
heteroscedasticity in a regression context. 
 
E61.3.1 A Heterogeneity Corrected Covariance Matrix 
 
 Under certain conditions (see Gourieroux, Monfort, and Trognon (1984)), an appropriate 
asymptotic covariance matrix for a ‘pseudo maximum likelihood estimator’ can be obtained by using 
 
   V  =  H-1 (BHHH) H-1 
 
where H is the negative expected Hessian of the pseudo-log likelihood and BHHH is the expected 
outer product of the first derivatives, i.e., the inverse of the BHHH estimator of the asymptotic 
covariance matrix.  The pseudo-log likelihood is the incorrectly assumed log likelihood for our 
purposes.  This computation can be done for any of the parametric models by ‘tricking’ the cluster 
estimator.  The right matrix emerges if the cluster estimator is invoked with clusters of one, so the 
command is 
 
 SURVIVAL ; Lhs = ... ; Rhs = ... ; Model = ... ; Cluster = 1 $ 
 
This is available for all of the parametric models described to this point. 
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 To illustrate the estimator, we have reestimated the Weibull model with the correction to the 
covariance matrix.  The evidence of heterogeneity below is mixed.  However, the robust covariance 
matrix is substantially larger.  The commands are 
 

SURVIVAL ; Lhs = logt  
; Rhs = one,prod ; Model = Weibull   
; Cluster = 1 $ 

SURVIVAL ; Lhs = logt  
; Rhs = one,prod ; Model = Weibull $ 

 
----------------------------------------------------------------------------- 
Loglinear survival model: WEIBULL 
Dependent variable                 LOGT 
Log likelihood function       -97.28542 
Estimation based on N =     62, K =   3 
Inf.Cr.AIC  =    200.6 AIC/N =    3.235 
Model estimated: Aug 11, 2011, 18:57:22 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
(Robust covariance matrix, <H>*OPG*<H> is used for the estimator.) 
        |RHS of hazard model 
Constant|    3.77977***      .34986    10.80  .0000     3.09407   4.46548 
    PROD|   -9.33220       13.19748     -.71  .4795   -35.19879  16.53439 
        |Ancillary parameters for survival 
   Sigma|     .99220***      .31292     3.17  .0015      .37889   1.60552 
--------+-------------------------------------------------------------------- 
(No correction) 
Constant|    3.77977***      .13833    27.32  .0000     3.50865   4.05090 
    PROD|   -9.33220***     2.95428    -3.16  .0016   -15.12249  -3.54191 
        |Ancillary parameters for survival 
   Sigma|     .99220***      .12064     8.22  .0000      .75576   1.22865 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E61.3.2 Parametric Models with Heterogeneity 
 
 If one assumes the survival distribution is homogeneous when it is not, there are two likely 
consequences: 
 

• parameter estimates will be inconsistent and/or 
• inferences will be based on inappropriate standard errors. 

 
The results of Gourieroux et al. suggest that in many settings, the primary effect of the 
misspecification will be the second of these, but not the first. (For extensive discussions of 
heterogeneity, see Kiefer (1988) and Heckman and Singer (1984).)  The following will describe two 
estimators that deal with both possibilities by specifically incorporating heterogeneity in the model. 
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 A familiar, traditional model of heterogeneity in the parametric survival models (see the next 
section), is of the form of a multiplicative term in the Weibull survival model, 
 
   S(t|v) = v{exp[(-λt)p]}. 
 
where v has a gamma density with mean one.  (See, e.g., Hui (1991).)  The unconditional survival 
function is found by 

   S(t) = 
 

 0

∞

∫ vS(t|v)f(v)dv. 

        =  [1 + θ(λt)p]-1/θ 
 
where θ is the parameter of the gamma distribution.  There is no natural mechanism that produces 
this model; it is devised as a reasonable approach that is mathematically convenient.   

Consider the alternative approach 
 
   λi   =  exp(β′xi + σεi), E[εi] = 0, Var[εi] = 1, 
 
where the unobserved heterogeneity enters the model in the same fashion that the observed 
heterogeneity does.  (The assumption of zero mean is innocent if the model contains a constant term, 
while the unit variance is simply a scaling – the variance is carried by σ2.)  We use maximum 
simulated likelihood to estimate the model parameters.  The term λi(εi) enters any of the models in 
Table E60.1 – the estimator described here is available for the exponential, Weibull, lognormal, 
loglogistic and inverse Gaussian.  The log likelihood, conditioned on εi is 
 
 log L|ε1,…,εN  =  

1
log [ , ( ), ] (1 ) log [ , ( ), ]N

i i i i i i i ii
f y p S y p

=
δ λ ε + − δ λ ε∑ . 

 
The unconditional log likelihood to be maximized is obtained by integrating εi out of the conditional 
log likelihood; 
 

 log L  =  { }
 

1  
lo g[ , ( ), ] (1 ) lo g[ , ( ), ] ( )N

i i i i i i i i i ii
f y p S y p f d

∞

= −∞
δ λ ε + − δ λ ε ε ε∑ ∫ . 

 
The integral does not exist in closed form, but there are two approaches that can be used to provide a 
satisfactory approximation.  If εi has a standard normal distribution, the integral can be computed 
using Hermite quadrature.  Alternatively, if εi has a distribution that can be simulated (such as the 
standard normal), the integral can be computed using Monte Carlo methods. The simulated log 
likelihood that is used here is 
 

 log L  =  { }1 1

1 log [ , ( ), ] (1 ) log [ , ( ), ]N R
i i i ir i i i iri r

f y p S y p
R= =

δ λ ε + − δ λ ε∑ ∑  

 
where εir is a random sample of R draws from the appropriate population.   
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 The maximum simulated likelihood estimator for this model is available for the Weibull, 
exponential, lognormal, loglogistic and inverse Gaussian models.  The command is 
 
 SURVIVAL ; Lhs = dependent variable, censoring indicator if any 
   ; Rhs = covariates (should include one) 
   ; Model = the desired model 
   ; RPM ; Fcn = one(n) 
   ; Pts = 1 
   [; Halton ; Pts = desired value of R] $ 
 
(The model is fit as a random parameter model with only a random constant term.) 
 To illustrate, we have fit the Weibull model with normally distributed heterogeneity.   
 

SURVIVAL ; Lhs = logt ; Rhs = one,prod ; Model = Weibull   
; Pds = 1 ; RPM ; Fcn = one(n) ; Output = 3 ; Halton $ 

 
----------------------------------------------------------------------------- 
Random Coefficients  WiblSurv Model 
Dependent variable                 LOGT 
Log likelihood function       -97.28525 
Sample is  1 pds and     62 individuals 
Weibull duration model 
Simulation based on    100 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    PROD|   -9.33205***     2.95417    -3.16  .0016   -15.12212  -3.54199 
        |Means for random parameters 
Constant|    3.77976***      .13833    27.32  .0000     3.50864   4.05088 
        |Scale parameters for dists. of random parameters 
Constant|     .00782         .13208      .06  .9528     -.25105    .26670 
        |Scale parameter for survival distribution 
ScalParm|     .99218***      .12063     8.22  .0000      .75574   1.22861 
--------+-------------------------------------------------------------------- 

 
E61.3.3 Weibull Survival Model With Gamma Heterogeneity 
 
 A modification of the Weibull (or exponential) model suggested by Hui (1991) is 
 
   S(t|v) = v{exp[(-λt)p]}. 
 
The random variable, v, is the heterogeneity effect.  We assume that v is distributed as gamma with 
parameters k and R; 

   f(v)   =  [kR / Γ(R)]e-kvvR-1. 
 
If the duration model contains a constant, then no generality is lost by assuming that the mean of v is 
one. Thus,  
   E[v] = k/R = 1 or k = R.   
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Now, we find 
   S(t)   =  

 

 0

∞

∫ vS(t|v)f(v)dv. 

 
The result for the Weibull model is 
 

   S(t)  =  [1 + θ(λt)p]-1/θ 

and   h(t)   =  S(t)θ  times Weibull hazard, 
 
where θ = 1/k.  The variance of v is 1/k, so, θ = 0 corresponds to the Weibull model.  The further θ 
deviates from zero, the greater is the effect of the heterogeneity.  The Weibull survival function 
emerges if the limit of S(t) as θ goes to zero is taken. 
 To request this variant of the Weibull model, use 
  
 SURVIVAL  ; Lhs = ... ; Rhs = ...    
   ; Model = Weibull  
   ; Heterogeneity (or just ; Het) $ 
 
All other options and features described for the other parametric models apply equally. The only 
difference is that the BFGS algorithm is always used for estimation and the estimated covariance 
matrix for the parameter estimates is always the BHHH estimator.  Since the exponential  is a minor 
modification of the Weibull model, you may also specify ; Model = Exponential in the command.  
The other models (loglogistic, normal, etc.) are not available with this specification. 
 
NOTE:  The log likelihood is somewhat volatile in the parameter θ.  You may find the diagnostic 
‘Unable to compute function at current estimates’ appearing in the output for your iterations. This 
means that the current trial value of θ is not positive.  This is a recoverable error; LIMDEP will now 
try a new value. 
 
 The normal and gamma models are not directly comparable. The gamma model is not 
obtained by changing the normality assumption to the log gamma model in our formulation.  The 
heterogeneity enters in a different form in the gamma model.  The normal model turns out to be 
much easier to fit with these data, and appears to produce better results.  The gamma model is 
actually inestimable, and we stopped the iterations at 12 to show the intermediate results.  At 
‘convergence,’ θ has gravitated to zero. 
 

SURVIVAL ; Lhs = logt ; Rhs = one,prod  
; Model = Weibull  
; Het  
; Output = 3  
; Maxit = 25 $  
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This is the outcome when the estimator is allowed to iterate to completion: 
 
Itr 12 F=  .9729D+02 gtHg=  .5460D+02 chg.F=  .8193D-04 max|db|=  .7173D+08 
1st derivs.    -.45911D+00  -.22948D-01   .28633D+01   .13717D+00 
Parameters:    -.37856D+01   .91768D+01   .24002D-06   .99166D+00 
Itr 13 F=  .9729D+02 gtHg=  .6801D+01 chg.F=  .4096D-04 max|db|=  .1869D+08 
1st derivs.     .00000D+00   .00000D+00   .00000D+00   .00000D+00 
Parameters:    -.37856D+01   .91768D+01  -.16856D-07   .99166D+00 
Itr 14 F=  .0000D+00 gtHg=  .0000D+00 chg.F=  .9729D+02 max|db|=  .0000D+00 
                        * Converged                        * Converged 
Normal exit:  14 iterations. Status=0, F=    .0000000 
Function=  .10472246124D+03, at entry,  .00000000000D+00 at exit 
 
The estimator claims convergence, but note that the estimate of θ is zero, and the derivatives matrix 
has essentially vanished – the BHHH estimator is singular, so estimation is halted.  The results 
consist, within rounding error, of the original Weibull model plus a parameter that is zero. 
 
----------------------------------------------------------------------------- 
Loglinear survival model: WEIBULL 
Dependent variable                 LOGT 
Log likelihood function       -97.28851 
Weibull Model with Gamma Heterogeneity 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    LOGT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |RHS of hazard model 
Constant|    3.78562***      .28325    13.36  .0000     3.23046   4.34078 
    PROD|   -9.17681***     3.07247    -2.99  .0028   -15.19874  -3.15488 
        |Ancillary parameters for survival 
   Theta| .24002D-06         .47115      .00 1.0000 -.92344D+00  .92344D+00 
   Sigma|     .99166***      .25293     3.92  .0001      .49593   1.48739 
--------+-------------------------------------------------------------------- 
 
E61.3.4 Other Heterogeneity Mixtures 
 
 A variety of base models and heterogeneity distributions are contained within LIMDEP’s 
menu of parametric models.  The table below lists some of these. 
 

Conditional Density Heterogeneity Unconditional 
Density Estimator 

gamma gamma generalized F(M1,M2) ; Model = F 
gamma exponential generalized F(M1,1) ; Model = F(M1,1) 
exponential gamma Pareto ; Model = E ; Het 
exponential exponential  ; Model = F(1,1) 
Weibull gamma Burr ; Model = W ; Het 
Weibull exponential loglogistic ; Model = L 

Table E61.1  Models for Heterogeneity 
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E61.4 Heterogeneity in the Scale Parameter for Loglinear 
Models 
 

The parametric survival models, Weibull, loglogistic, lognormal, Weibull/gamma, inverse 
Gaussian and generalized F and their time varying covariates counterparts are specified so that the 
parameter λ = exp(-β′x) makes the location of the survival distribution heterogeneous across 
individuals. The scale of the distribution, as specified by the parameter σ, is generally fixed for all 
individuals. The modification described here allows σ to be a function of individual specific 
covariates as well. 
 The loglinear specifications are defined in terms of a transformation, 
 
   w  =  (log t  -  β′x) / σ 
 
where σ is the scale parameter.  You may specify the same sort of multiplicative heteroscedasticity 
as in the regression, tobit, logit, and probit models, 
 
   σi   =  σ exp(γ′hi) 
 
where hi is a vector of covariates.  This extension is provided for the following models, all with or 
without time varying covariates or split population:  Weibull, Weibull with gamma heterogeneity, 
loglogistic, lognormal, inverse Gaussian and generalized F. It is provided for the lognormal with or 
without the optional split population specification.  To request this specification, just add 
 
   ; Hfn = list of variables in hi 
 
NOTE:  The list must not contain one.  The variance model already contains a constant, σ.  
 
 For hypothesis testing and providing starting values, note that with this extension, the 
parameter vector in the full model become 
 
   θ =  β, α, γ, θ, (M1,M2), σ. 
 
Some parts are optional. If you do not specify the split population model, α will not be present, while 
the parameter θ is only present for the Weibull or exponential model with gamma heterogeneity or 
the generalized gamma model, and (M1,M2) apply only to the generalized F model. 
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E61.5 Split Population Survival Models 
 
 The following describes a modification of the parametric survival models: Weibull (with or 
without gamma heterogeneity), lognormal, loglogistic, or exponential.  (The models developed here 
are based on Schmidt and Witte (1989).  The specification is not available for the Gompertz model.) 
 For analyzing survival time data with censoring indicator, δi (we use LIMDEP’s rather than 
Schmidt and Witte’s notation), LIMDEP’s parametric survival models are based on the log 
likelihood 
   log L   =  Σδ=1 log{(1/σ)f[µi/σ]}  +  Σδ=0 logS(µi /σ), 

where,     µi   =  logti - β′xi 

and, in all these models, wi   =  (logti - β′xi) / σ = µi / σ. 
  
In the log likelihood, (1/σ)f(wi) is the density and S(wi) is the survival function (equal to one minus 
the CDF).  The model as stated assumes that censored observations will all fail eventually.  Schmidt 
and Witte suggest that the model be modified by allowing for the possibility that a censored 
observation might, in fact, never fail.  Thus, they suggest that we model the probability of eventual 
failure as 
   Prob[Ri = 1]  =  Pi   (our notation). 
 
Then, for an observed individual, the appropriate term which appears in the log likelihood is 
  
   Prob[Ri = 1] × g(ti | Ri = 1) + Prob[δi = 0], 
  
where g(•) is the original density above, and the probability attached to a censored observation         
(δi = 0) is  
   Prob[Ri = 0] (i.e., never fail)  +  Prob[Ri = 1] × Prob[fail at time t or later]. 
  
Let the determinants of the probability of eventual failure be zi (in the Schmidt and Witte paper,         
zi = xi, which makes sense, though LIMDEP does not require it) and let 
 
   Prob[Ri = 1] = Pi = G(α′zi ). 
 
Combining terms, the revised log likelihood is now 
  
   logL  =      Σδ=1 log{       G(α′zi )(1/σ)f(wi )}  

    + Σδ=0 log{[1 - G(α′zi)] + G(α′zi )S(wi)}. 
 
It remains to model G(α′zi ).  Schmidt and Witte suggest a logistic model, 
 
   G(α′zi ) = 1/[1 + exp(α′zi )]  =  1 - Λ(α′zi). 
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LIMDEP allows two models, the preceding logit model and a normal (probit) model, 
  
   G(α′zi ) = 1 - Φ(α′zi ), 
 
where Φ(•) is the standard normal CDF.  (There is no variance parameter, as it would not be 
identified in the model.  The same principle as in the univariate probit model applies here.) 
 This augmented model is requested simply by adding 
 
   ; Rh2  =  list of variables in zi 
  
The default model for G(•) is the normal model.  Request Schmidt and Witte’s logistic model by 
adding 
   ; Logit 
  
to the command with the ; Rh2 specification.  No other changes are required in the command.  This 
applies to ; Model = Weibull, ; Model = Exponential, ; Model = Normal, or ; Model = Loglogistic 
for the survival rate. 
 Schmidt and Witte discuss various models for G and the survival rate with and without 
individual effects.  In your command, either (or both) of the models S(•) or G(•) may be specified to 
have just a constant term, one or may have covariates.  As noted, there is no requirement that the Rhs 
and Rh2 models be the same.  For example, to estimate their ‘SPLIT’ models (their Table 2, page 
153), just specify ; Rh2 = one and the rest of the command as usual.  Likewise, by specifying both    
; Rhs = one and ; Rh2 = one, you would obtain the models described on their page 147. 
 The additional output for this model consists of a header which displays the specification 
requested and an additional set of coefficients in the statistical output.  In the table which is given 
after the coefficient estimates, there will now appear an additional row with an estimate of the 
average value of the probability of eventual failure.  This is labeled ‘SPLIT’ in the table. 
 
WARNING:  This model is a bit quirky.  If the model does not have much explanatory power, and if 
the censoring indicator is not explained very well by both the duration variable (logtime) and the 
covariates in the duration model, then the estimated probability of eventual failure will tend to 
gravitate toward 1.0 (as one might expect).  This will show up in the model as extreme values of the 
coefficients in the equation for G(•).  When this happens, the other coefficients will be identical to 
those which would be estimated if the ‘splitting’ model were ignored (i.e., as if you had not included 
the ; Rh2 specification).  The model reported will appear to show coefficients in the G(•) equation, 
but it will not be possible to compute standard errors, and, in fact, the coefficients themselves will not 
be usable.  If this occurs, the coefficients which were computed will be reported, along with zeros for 
their standard errors.  A message will be given that the covariance matrix is singular (which it is).  
LIMDEP then uses a generalized inverse to invert the nonsingular submatrix. 
 
  



E61: Panel Data and Heterogeneity in Parametric Duration Models   E-1501 

E61.6 Left and Right Truncation 
 
 There are cases in which the natural limit point of zero is not actually appropriate for the 
duration data in hand.  Consider, for example, an experiment in which duration measurement did not 
even begin until a certain amount of time had passed.  The actual distribution of observed survival 
times will logically be constrained to some range other than zero to infinity.  Presumably the 
truncation point will be somewhere above zero. In order to accommodate such a situation, the 
survival distribution, which is normally defined over [0,+∞), must be scaled up so that it integrates to 
one over the appropriate range. 
 Accounting for truncation can bring drastic changes in the estimated distribution.  The 
relevant theory is exactly that underlying the truncated regression model. To account for truncation, 
modify the model command to  
  
 SURVIVAL  ; Lhs = ...  
   ; Rhs = ...  
   ; Model = ...  
   ; other options if any 
   ; Limit = limit point $ 
  
The default is lower (left) truncation.  Specify upper truncation, instead, with 
  
   ; Limit = limit ; Upper 
 
(I.e., your data may be such that the observation is not observed if T exceeds a certain value. 
Consider, for example, observed failure times for a product with a warranty period of a fixed length.) 
The limit may be a constant or the name of a variable, if the truncation varies by observation.  The 
model is otherwise unchanged.  A header at the beginning of the output for the model will echo the 
specification of a model with truncation.  But, there will be no further mention of the fact, since 
subsequent changes are all internal.  The following restrictions apply: 
 

• The model must be one of Weibull, exponential, lognormal, or loglogistic.  This option is not 
available for the gamma, inverse Gaussian, generalized F, Gompertz, or the split population 
models. 

 
• Newton’s method is not available for this model.  If you prefer a Newton-like method, you 

may still use BHHH.  Note, though, that this extension makes calculation much more 
difficult.  We have had our best success with BFGS. 
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E61.7 Sample Selection 
 
 The random parameters treatment noted above opens the possibility of a sample selection 
model for parametric survival models.  The structure would be the base case parametric model, as 
modified above, using the Weibull model as the standard case, 
 
   h(ti) =  λi p (λi ti )p-1 

where   λi =  exp( β′xi + σvi) 
 
We accommodate this case by treating the random component as a random constant term in the 
parametric model.  The observation mechanism is now 
 
   di* =  α′zi  +  εi,  di  =  1(di* > 0) 
 
where the correlation between vi and εi is ρ.  We assume that the data for the duration model are only 
observed when di = 1.  The model is fit by full information maximum likelihood.  (This means that 
there is no ‘lambda,’ the familiar inverse Mills ratio, added to the duration model.  That treatment is 
only appropriate for the linear model fit by two step least squares.) 
 This model is requested by the following command set: 
 
 PROBIT ; Lhs = d  

; Rhs = variables in z  
; Hold $ 

 SURVIVAL ; Lhs = logt [, and possibly a censoring indicator] 
   ; Rhs = variables in x 
   ; Model = one of Weibull, Normal, Loglogistic 
   ; Selection 
   ; RPM ; Fcn = one(n) $ 
 
(Other controls for the random parameters models, such as the number of replications, Halton draws, 
and so on, operate as with all other random parameters specifications.) 
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E62: Stochastic Frontier Models and Efficiency 
Analysis 

 
E62.1 Introduction 
 
 Chapters E62-E65 present LIMDEP’s programs for two types of efficiency analysis, 
stochastic frontier analysis (SFA) and data envelopment analysis (DEA).  To a large extent, these are 
competing methodologies.  No formulation has yet been devised that unifies the two in a single 
analytical framework.  Arguably, the former is a fully parameterized model whereas the latter is 
‘nonparametric,’ albeit also atheoretical in nature. 
 The stochastic frontier model is used in a large literature of studies of production, cost, 
revenue, profit and other models of goal attainment.  The model as it appears in the current literature 
was originally developed by Aigner, Lovell, and Schmidt (1977). The canonical formulation that 
serves as the foundation for other variations is their model, 
 
   y  =  β′x  +  v  -  u, 
 
where y is the observed outcome (goal attainment), β′x + v is the optimal, frontier goal (e.g., 
maximal production output or minimum cost) pursued by the individual, β′x is the deterministic part 
of the frontier and v ~ N[0,σv

2

   u  = |U| and U ~ N[0,σu
2

] is the stochastic part.  The two parts together constitute the 
‘stochastic frontier.’  The amount by which the observed individual fails to reach the optimum (the 
frontier) is u, where 

 
] 

(change to v + u for a stochastic cost frontier or any setting in which the optimum is a minimum).  In 
this context, u is the ‘inefficiency.’  This is the normal-half normal model which forms the basic 
form of the stochastic frontier model. 
 Many varieties of the stochastic frontier model have appeared in the literature.  A major 
survey that presents an extensive catalog of these formulations is Kumbhakar and Lovell (2000).  
(See, as well, Bauer (1990), Greene (2008) and several other surveys, many of which are cited in 
Kumbhakar and Lovell and in Greene.)  The estimator in LIMDEP computes parameter estimates for 
most single equation cross section and panel data variants of the stochastic frontier model.     
 A large number of variants of the stochastic frontier model based on different assumptions 
about the distribution of the ‘inefficiency’ term, u have been proposed in the received literature.  
Most of these are available in LIMDEP, as suggested in the list below.  The bulk of the received 
technology centers on cross section style modeling.  However, recent advances include many 
extensions that take advantage of the features of panel data.  A large array of panel data estimators 
are also supported by LIMDEP as well.  
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 The conventional approach to deterministic frontier estimation is currently data envelopment 
analysis.  This is usually handled with linear programming techniques.  The analysis assumes that 
there is a frontier technology (in the same spirit as the stochastic frontier production model) that can 
be described by a piecewise linear hull that envelopes the observed outcomes.  Some (efficient) 
observations will be on the frontier while other (inefficient) individuals will be inside.  The 
technique produces a deterministic frontier that is generated by the observed data, so by construction, 
some individuals are ‘efficient.’  This is one of the fundamental differences between DEA and SFA.  
Data envelopment analysis is documented in Chapter E65. 
 The analysis of production, cost, etc. in the stochastic frontier framework involves two steps.  
In the first, the frontier model is estimated, usually by maximum likelihood.  In the second, the 
estimated model is used to construct measures of inefficiency or efficiency.  Individual specific 
estimates are computed that provide the basis of comparison of firms either to absolute standards or 
to each other.  The sections of this chapter develop several model forms used in the first step.  
Efficiency estimation, the second step, appears formally in Section E62.8.  The general methodology 
is then used in the already developed specifications and with several proposed in the sections that 
follow, as well as in Chapters E63 and E64. 
 

E62.2 Stochastic Frontier Model Specifications 
 
 The stochastic frontier model is 
 
   y  =  β′x  +  v-u, u =|U|. 
 
In this area of study, unlike most others, estimation of the model parameters is usually not the 
primary objective.  Estimation and analysis of the inefficiency of individuals in the sample and of the 
aggregated sample are usually of greater interest.  This part of the development will present tools for 
estimation of inefficiency.  
 Typically, the production or cost model is based on a Cobb-Douglas, translog, or other form 
of logarithmic model, so that the essential form is 
 
   log y  =  β′x  +  v  -  u 
 
where the components of x are generally logs of inputs for a production model or logs of output and 
input prices for a cost model, or their squares and/or cross products.  In this form, then, at least for 
relatively small variation, u represents the proportion by which y falls short of the goal, and has a 
natural interpretation as proportional or percentage inefficiency.  The numerous examples below will 
demonstrate.  Users are also referred to the various survey sources listed earlier. 
 The results one obtains are, of course, critically dependent on the model assumed.  Thus, 
specification and estimation of model parameters, while perhaps of secondary interest, are 
nonetheless a major first step in the model building process.  In nearly all received formulations, the 
random component, v, is assumed to be normally distributed with zero mean.  In some models, v may 
be heteroscedastic.  But, in either form, the large majority of the different frontier models that have 
been proposed result from variations on the distribution of the inefficiency term, u. The range of 
specifications examined in this chapter includes the following: 
 

• Distributional assumptions: half normal, exponential, gamma 
• Partially nonparametric frontier function 
• Sample selection model 
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The following extensions are presented in Chapters E63: 
 

• Truncated normal with nonzero, heterogeneous mean in the underlying U 
• Heteroscedasticity in v and/or u 
• Heterogeneity in the parameter of the exponential or gamma distribution 
• Alvarez, Amsler, Orea and Schmidt’s (2006) ‘scaling model’ 
• Alvarez, Arias and Greene’s (2006) model of fixed, latent management 

 
A number of treatments for panel data are presented in Chapter E64. 
 
E62.3 Basic Commands for Stochastic Frontier Models 
 
 The command for all specifications of the stochastic frontier model is 
 
 FRONTIER ;  Lhs = y  ;  Rhs = one, ... ; … other specifications $ 
 
NOTE:  One must be the first variable in the Rhs list in all model specifications. 
 
The default specification is Aigner, Lovell and Schmidt’s canonical normal-half normal model.  The 
default form is a production frontier model, 
 
   y  =  β′x  +  v  -  u, u = |U|. 
 
That is, the right hand side of the equation specifies the maximum goal attainable.  To specify a cost 
frontier model or other model in which the frontier represents a minimum, so that 
 
   y  =  β′x  +  v  +  u, u = |U|, 
use    
   ;  Cost 
 
This specification is used in all forms of the stochastic frontier model.  As noted below, one 
additional specification you may find useful is 
 
   ; Start = values for β, λ, σ. 
 
(The meanings of the parameters are developed below.)  ALS also developed the normal-exponential 
model, in which u has an exponential distribution rather than a half normal distribution.   To request 
the exponential model, use 
 
   ; Model = Exponential  (or ; Model = E ) 
 
in the FRONTIER command.   For this model, the parameters are (β,θ,σv).  Further details appear 
below.  There are also several model forms, and numerous modifications such as heteroscedasticity 
that are developed below. 
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This is the full list of general specifications that are applicable to this model estimator.   
 
Controlling Output from Model Commands 
 

; Par  keeps ancillary parameters σ, λ, etc. with main parameter β vector in b. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 ; Choice uses choice based sampling (sandwich with weighting) estimated matrix. 
 ; Cluster = spec requests computation of the cluster form of corrected covariance estimator. 
 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set   keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill   fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
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E62.3.1 Predictions, Residuals and Partial Effects 
 
 Predicted values and ‘residuals’ for the stochastic frontier models are computed as follows: 
The same forms are used for cross section and panel data forms.  The predicted value is β′x.  (These 
are rarely useful in this setting.)  The ‘residual’ is computed directly as 
 
   ˆ

i i ie y ′= − xβ  
 
This residual is usually not of interest in itself.  It is, however, the crucial ingredient in the efficiency 
estimator discussed in Section E62.8.  The estimator of ui that we will use is computed by the 
Jondrow formula E[u|v-u] or E[u|v+u] if based on a cost frontier, 
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σ
 

 
In the JLMS formula, ei is the estimator of εi.  The formulas and computations are discussed in 
Section E62.8.   
 The frontier model is, save for its involved disturbance term, a linear regression model.  The 
conditional mean in the model is 
 
   E[yi|xi]  =  β′xi  -  E[ui|xi]. 
 
In most cases, E[ui|xi]is not a function of xi, so the derivatives of E[yi|xi] with respect to xi are just β.  
In other cases, we will consider, the conditional mean of ui does depend on xi or other variables, so 
the partial effects in the model might be more involved than this.  Once again, however, these will 
usually not be of direct interest in the study.  But, in all cases, ˆ[ | ]E u ε  will be an involved function of 
xi and any other variables that appear anywhere else in the model.  We will examine the partial 
effects on the efficiency estimators in Section E62.8. 
 
E62.3.2 Results Saved by the Frontier Estimator 
 
 The results saved by the frontier estimator are 
 
 Matrices: b =  regression parameters, α,β 
   varb =  asymptotic covariance matrix 
  
 Scalars: sy, ybar, nreg, kreg, and logl 
 
 Last Function: JLMS estimator of ui. 
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Use ; Par to add the ancillary parameters to these.  The ancillary parameters that are estimated for 
the various models are as follows, including the scalars saved by the estimation program: 
 
 Half and truncated normal: estimates λ, σ, saves lmda and s = σ, 
 Truncated normal:  same as half normal, estimates µ, saved as mu, 
 Exponential:   estimates θ, σv, saves theta and s = σv, 
 Heteroscedastic model: average value of σ as s, average value of λ as lmda 
 Heterogeneity in mean: estimates λ, σ, saves lmda and s = σ. 
 
E62.4 Data for the Analysis of Frontier Models 
 
 We will use two data sets to illustrate the frontier estimators.  The first, the data on U.S. 
airlines is a panel data set that we will use primarily for illustrating the stochastic frontier model.  
The second, the famous WHO data on health care attainment, will be used both for the stochastic 
frontier models and for the later work on data envelopment analysis. 
 
E62.4.1 Data on U.S. Airlines 
 
 We will develop several examples in this section using a panel data set on the U.S. airline 
industry from the pre-deregulation period (airlines.dat).  The observations are an unbalanced panel 
on 25 airlines.  The original balanced panel data set contained 15 observations (1970-1984) on each 
of 25 airlines.  Mergers, strikes and other data problems reduced the sample to the unbalanced panel 
of 256 observations  The group sizes (number of firms) are 2 (4), 4(1), 7 (1), 9 (3), 10 (3), 11 (1), 12 
(2), 13 (1), 14 (3) and 15 (6).  The variables in the data set are 
 
 firm = ID, 1,...,25  year = 1970...1984 t = year - 1969 = 1,...,15 
 cost = total cost revenue = revenue output = total output 
 stage = average stage length points = number of points served loadfct = load factor 
 cmtl = materials cost      mtl  = materials quantity  pm = price of material 
 cfuel = fuel cost           fuel  = fuel quantity  pf = fuel price 
 ceqpt = equipment cost      eqpt = equipment quantity  pe = equipment price 
 clabor = labor cost          labor = labor quantity  pl = labor price 
 cprop = property cost       property = property quantity  pp = property price 
 k = capital index pk = capital price index 
 
Transformed variables used in the examples are as follows: 
 
 lc = log(cost) cn = cost/pp lcn = log(cn) 
 lpm = log(pm)  lpf = log(pf)  lpe = log(pe)  
 lpl = log(pl)  lpp = log(pp) lpk = log(pk) 
 lpmpp = log(pm/pp)    lpfpp = log(pf/pp)   lpepp = log(pe/pp)   
 lplpp = log(pl/pp) lf = log(fuel) lm = log(mtl) 
 le = log(eqpt) ll = log(labor) lp = log(property) 
 lq = log(output)      lq2  = lq2 
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E62.4.2 World Health Organization (WHO) Health Attainment Data 
 
 The data used by the WHO in their 2000 World Health Report assessment of health care 
attainment by 191 countries have been used by many researchers worldwide both for developing 
frontier models and for analyzing health outcomes.  The data are a panel of five years, 1993-1997, on 
health outcome data for 191 countries and a number of internal political units, e.g., the states of 
Mexico.  The main outcome variables are dale and comp (an aggregate of such measures as 
efficiency and equity of health care delivery in the country).  The main input variables are hexp and 
educ.   A variety of other variables, listed below, were observed only in 1997.  The following 
descriptive statistics apply to the entire data set of 840 observations: 
 

Variable        Mean         Std. Dev.    Description 
country         *                * country number omitting internal units, 1...,191 
year         *                * year (1993-1997)  
small         *     * internal political unit, 0 for countries, else 1,...,6. 
comp 75.0062726 12.2051123 composite health care attainment 
dale 58.3082712 12.1442590 disability adjusted life expectancy 
hexp 548.214857 694.216237 health expenditure per capita, PPP units 
educ 6.31753664 2.73370613 educational attainment, years 
oecd .279761905 .449149577 OECD member country, dummy variable 
gdpc 8135.10785 7891.20036 per capita GDP in PPP units 
popden 953.119353 2871.84294 population density per square KM 
gini .379477914 .090206941 gini coefficient for income distribution 
tropics .463095238 .498933251 dummy variable for tropical location 
pubthe 58.1553571 20.2340835 proportion of health spending paid by government 
geff .113293978 .915983955 World Bank government effectiveness measure 
voice .192624849 .952225978 World Bank measure of democratization 

 
(The data were analyzed in Greene (2004a,b). Some of the variables, such as popden and gdpc, were 
augmented from other sources in these studies.) Although the data are a five year panel – a few 
countries were observed for fewer than five years – there is almost no cross year variation in any 
variable. (The proportion of total variation that is within groups is less than 1% for the four time 
varying variables.) We have created a cross section from these data as follows:  First, we  discarded the 
data on internal political units. We then averaged comp, dale, hexp and educ across the five years. We 
retained a sample of 191 cross sectional (country) units. The following command set creates the data set. 
 
 SAMPLE ; 1-840 $ 
 REJECT ; small > 0 $ 
 SETPANEL ; Group = country ; Pds = ti $ 
 RENAME ; hc3 = educ $ 
 CREATE ; lpubthe = log(pubthe) $ 
 CREATE ; dalebar = Group Mean(dale, Pds  = ti) $ 
 CREATE ; compbar = Group Mean(comp, Pds = ti) $ 
 CREATE ; educbar = Group Mean(educ, Pds  = ti) $ 
 CREATE ; hexpbar = Group Mean(hexp, Pds = ti) $ 
 CREATE ; logdbar = Log(dalebar) ; logcbar = Log(compbar) $ 
 CREATE ; logebar = Log(educbar) ; loghbar = Log(hexpbar) $ 
 CREATE  ; loghbar2 = loghbar^2 $ 
 REJECT ; year # 1997 $ 
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E62.5 Skewness of the OLS Residuals and Problems Fitting 
Stochastic Frontier Models 
 
 Before maximum likelihood estimation begins, the skewness of the OLS residuals in the 
regression of y on x is checked.  Waldman (1982) has shown that when the OLS residuals are 
skewed in the wrong direction, a solution for the maximum likelihood estimator for the stochastic 
frontier model is simply OLS for the slopes and for σv

2 and 0.0 for σu
2.  If this condition is found, a 

lengthy warning is issued.  We emphasize, this is not a bug in the program, nor is it something to be 
‘fixed,’ beyond changing the specification of the model or rethinking the stochastic frontier as the 
modeling platform.  This is our single most frequently posed question, so we offer an application to 
demonstrate the effect.  Consider the commands 
 
 CALC  ; Ran(12345) $ 
 SAMPLE  ; 1-500 $ 
 CREATE  ; u = Abs(Rnn(0,2))  

; v = Rnn(0,1)  
; x = Rnn(0,1)  
; y = x + v + u $ 

 REGRESS  ; Lhs = y ; Rhs = one,x  
; Res = e $ 

 FRONTIER  ; Lhs = y ; Rhs = one,x $ 
 KERNEL  ; Rhs = e $ 
 
The CREATE command generates y exactly according to the model, except note that u is not 
subtracted, it is added.  Thus, we should expect this model to perform poorly.  The estimation results 
from the FRONTIER command are shown below.  Note the string of warnings.  Estimation is 
allowed to proceed, but the results are not a ‘frontier’ as such.  The final estimate of λ is essentially 
zero, with a huge standard error and the reported estimate of σu

2 in the box above the results is 
0.0000.  The other estimates are, in fact, the same as OLS. The kernel density estimator for the OLS 
residuals is clearly skewed in the positive, that is, the wrong direction.  Once again, we emphasize, 
this is a failure of the data to conform to the model. 
 
  Error   315: Stoch. Frontier: OLS residuals have wrong skew. OLS is MLE. 
WARNING! OLS residuals have the wrong skewness for SFM 
Other forms of the model models may also behave poorly. 
In this case, one MLE for the half normal model is OLS 
for beta and sigma and zero for the inefficiency term. 
Warning   141: Iterations:current or start estimate of sigma nonpositive 
Warning   141: Iterations:current or start estimate of sigma nonpositive 
Warning   141: Iterations:current or start estimate of sigma nonpositive 
Warning   141: Iterations:current or start estimate of sigma nonpositive 
Warning   141: Iterations:current or start estimate of sigma nonpositive 
Line search at iteration 30 does not improve fn. Exiting optimization. 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                    Y 
Log likelihood function      -921.33848 
Estimation based on N =    500, K =   4 
Inf.Cr.AIC  =   1850.7 AIC/N =    3.701 
Variances: Sigma-squared(v)=    2.33375 
           Sigma-squared(u)=     .00000 
           Sigma(v)        =    1.52766 
           Sigma(u)        =     .00000 
Sigma = Sqr[(s^2(u)+s^2(v)]=    1.52766 
Gamma = sigma(u)^2/sigma^2 =     .00000 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0         -921.33851 
Chi-sq=2*[LogL(SF)-LogL(LS)] =     .000 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    1.61107       165.2912      .01  .9922  -322.35365  325.57580 
       X|    1.00746***      .07057    14.28  .0000      .86914   1.14578 
        |Variance parameters for compound error 
  Lambda| .10897D-05       135.6070      .00 1.0000 -.26578D+03  .26578D+03 
   Sigma|    1.52766***      .00242   630.99  .0000     1.52292   1.53241 
--------+-------------------------------------------------------------------- 
 

 
Figure E62.1  Kernel Density for Least Squares Residuals 
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 Unfortunately, the Waldman result is a sufficient condition, not a necessary one.  That is, it 
has been shown that when the OLS residuals have the ‘right’ skewness, then the MLE for the frontier 
model is unique, and you will have no trouble in estimation.  When they have the ‘wrong’ skewness, 
it is only shown that the OLS results are a local stationary point of the log likelihood, not that they 
are the global maximizers.  There may be another point that is yet better than OLS.  Our airline data 
used below provide an example.  Consider the following results, where we present both the 
stochastic frontier estimates and OLS.  (The model, itself, is developed later, so we show only the 
useful results here.)  As above, we receive the initial warning about the skewness of the OLS 
residuals.  Then, estimation proceeds and an apparently routine solution emerges that is different 
from, and better than (has a higher log likelihood) OLS. 
 
Error   315: Stoch. Frontier: OLS residuals have wrong skew. OLS is MLE. 
WARNING! OLS residuals have the wrong skewness for SFM 
Other forms of the model models may also behave poorly. 
In this case, one MLE for the half normal model is OLS 
for beta and sigma and zero for the inefficiency term. 
Normal exit:  11 iterations. Status=0, F=   -105.0617 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       105.06169 
Variances: Sigma-squared(v)=     .02411 
           Sigma-squared(u)=     .00457 
           Sigma(v)        =     .15527 
           Sigma(u)        =     .06757 
Stochastic Production Frontier, e = v-u 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -1.05847***      .02333   -45.37  .0000    -1.10419  -1.01274 
      LF|     .38355***      .07045     5.44  .0000      .24547    .52163 
      LE|     .21961***      .07300     3.01  .0026      .07653    .36270 
      LM|     .71667***      .07654     9.36  .0000      .56666    .86668 
      LL|    -.41139***      .06382    -6.45  .0000     -.53647   -.28630 
      LP|     .18973***      .02960     6.41  .0000      .13171    .24775 
        |Variance parameters for compound error 
  Lambda|     .43515**       .20117     2.16  .0305      .04086    .82944 
   Sigma|     .16933***      .00057   295.74  .0000      .16821    .17045 
--------+-------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
Diagnostic   Log likelihood       =      105.05876 
             Standard error of e  =         .16244 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1.11237***      .01015  -109.57  .0000    -1.13227  -1.09247 
      LF|     .38283***      .07116     5.38  .0000      .24335    .52231 
      LE|     .21922***      .07389     2.97  .0033      .07441    .36404 
      LM|     .71924***      .07732     9.30  .0000      .56769    .87078 
      LL|    -.41015***      .06455    -6.35  .0000     -.53665   -.28364 
      LP|     .18802***      .02980     6.31  .0000      .12961    .24643 
--------+-------------------------------------------------------------------- 
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 There is no simple bullet proof strategy for handling this situation.  You can try different 
starting values with ; Start = values for β, λ, σ that differ from OLS, but it is hard to know where 
these will come from. Moreover, it is likely that you will end up at OLS anyway.  As Waldman 
points out, this is a potentially ill behaved log likelihood function.  We offer the preceding as a 
caution for the practitioner.  For the particular data set used here, we can identify a specific culprit.  
The ‘failure’ of the model emerges in the presence of the variable lm, and does not occur when lm is 
omitted from the equation.  We have no theory, however, for why this should be the case.  Simply 
deleting variables from the model until one which does not have the skewness problem emerges does 
not seem like an effective strategy. 
 We do note, the failure might signal a misspecified model.  For example, for our airlines 
example, the specification above omits the capital variable.  When lk = log(k) is added to the model, we 
obtain the following quite routine results (albeit with the wrong signs on capital and labor inputs). 
 
Normal exit:  13 iterations. Status=0, F=   -108.4392 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       108.43918 
Estimation based on N =    256, K =   9 
Inf.Cr.AIC  =   -198.9 AIC/N =    -.777 
Variances: Sigma-squared(v)=     .01902 
           Sigma-squared(u)=     .01692 
           Sigma(v)        =     .13791 
           Sigma(u)        =     .13007 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .18957 
Gamma = sigma(u)^2/sigma^2 =     .47074 
Var[u]/{Var[u]+Var[v]}     =     .24425 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =     .730 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Deterministic Component of Stochastic Frontier Model 
Constant|   -2.98823***      .72136    -4.14  .0000    -4.40206  -1.57439 
      LF|     .37257***      .07038     5.29  .0000      .23463    .51052 
      LE|    2.09473***      .68790     3.05  .0023      .74647   3.44299 
      LM|     .69910***      .07580     9.22  .0000      .55054    .84766 
      LL|    -.42909***      .06315    -6.79  .0000     -.55287   -.30530 
      LP|     .44533***      .09498     4.69  .0000      .25917    .63149 
      LK|   -2.09806***      .76556    -2.74  .0061    -3.59853   -.59759 
        | Variance parameters for compound error 
  Lambda|     .94309***      .16870     5.59  .0000      .61244   1.27373 
   Sigma|     .18957***      .00064   297.81  .0000      .18832    .19082 
--------+-------------------------------------------------------------------- 
 

 We emphasize, the Waldman result, and this particular theoretical outcome, is specific to the 
normal-half normal model.  However, when it occurs, problems of a similar sort will often, but not 
always, show up in other models.  Thus, in spite of a warning, your fitted exponential, or panel data 
model, may be quite satisfactory. 
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E62.6 The Ordinary Least Squares Estimator 
 
 For the simplest specification 
 
   y  =  β′x  +  v  -  u, u =|U| 
 
in which β contains a constant term and both v and U are homoscedastic and have zero means, i.e., in 
the original half normal or exponential models, the OLS estimator of all elements of β except the 
constant term are consistent.  It is convenient to rewrite the model as 
 
   y  =  β0 +  β1′x1  +  v  -  u. 
 
Under the assumptions, we can write the model as 
 
   y  =  (β0 - E[u])  +  β1′x1  +  v  -  (u - E[u]) 

or   y  =  α  +  β1′x1  +  e 
 
in which e has zero mean and constant variance, and is orthogonal to (1,x1).  Thus, the model as shown 
can be estimated consistently by OLS.  The constant term estimates α = (β0 - E[u]).  Assuming that 
E[u] is estimable, therefore, estimation of β by MLE vs. OLS is a question of efficiency, not 
consistency.  (However, we remain interested in estimation of u, so this may be a moot point.)   
 
E62.6.1 Corrected Ordinary Least Squares – COLS 
 
 The COLS estimator is obtained by turning the least squares estimator into a deterministic 
frontier model.  This is done by shifting the intercept in the OLS estimator upward (for a production 
frontier) or downward (for a cost frontier) so that all points lie either below or above the estimated 
function.  Figure E62.2 shows the result for estimation of a simple cost frontier for the airlines data.  
The function is shifted so that  it rests on the single most extreme point (residual) in the data.  The 
COLS estimator is requested with 
 
 FRONTIER ; Lhs = goal variable 
   ; Rhs = one, … 
   ; Model = COLS $ 
 
Add ; Cost if the model is a cost frontier.   
 Efficiency values, as discussed below, are obtained as follows: 
 
   ; Eff = variable name 
 
saves the residuals from the deterministic frontier.  These are the estimates of ui.  Note in Figure E62.2, 
for a cost frontier, all values of ui are positive.  If you fit a production frontier, then all points will lie 
below the regression and all residuals will be negative.  The estimated inefficiency that is saved will be 
-ei.  Thus, in both cases, the values saved by ; Eff = variable are the positive estimates of the size of 
the deviation of the observation from the frontier.  The estimator saved by ; Eff = variable name is the 
inefficiency estimate, in this model, a direct estimate of ui.  The estimator of technical or cost efficiency 
is  
   Efficiency = exp ˆ( )iu−  
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If you fit a production frontier, use 
 
   ; Techeff = variable name 
 
to save this variable.  For a cost frontier, use 
 
   ; Costeff = variable name 
 

 
Figure E62.2  COLS Estimator of Cost Frontier Function 

 
 The following shows computation of a COLS estimator for the airlines.  The FRONTIER 
command requests both the inefficiency estimates, ui, and the cost efficiency estimates, eui_cost.  
The kernel density estimate for the cost efficiency is shown in Figure E62.3.  The results for the 
estimator begin with the standard output for least squares regression.  The second panel includes 
some preliminary results for the stochastic frontier model, including the chi squared test for zero 
skewness (which is rejected); χ2 = (n/6)(m3/s3)2.  The standard normal statistic is the signed (based on 
m3) square root of χ2.  The third panel presents descriptive statistics for ui and exp(-ui). 
 

CREATE ; lc  = Log(cost/pp) 
; lpkp = Log(pk/pp) 
; lplp = Log(pl/pp) 
; lpmp = Log(pm/pp) 
; lpep = Log(pe/pp) 
; lpfp = Log(pf/pp) $ 

CREATE ; lk  = Log(k) $ 
CREATE ; ly  = Log(output) ; ly2 = .5*ly*ly $ 
FRONTIER ; Lhs = lc ; Rhs = one,ly,ly2,lpkp,lplp,lpmp,lpep,lpfp 

; Cost ; Model = COLS 
; Costeff = Eui_cost ; Eff = ui $ 

KERNEL ; Rhs = eui_cost 
; Title = Estimated Cost Efficiency Based on COLS Estimator $ 
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----------------------------------------------------------------------------- 
Corrected OLS Deterministic Frontier Cost Function 
LHS=LC       Mean                 =        2.84024 
             Standard deviation   =        1.09256 
             No. of observations  =            256  Degrees of freedom 
Regression   Sum of Squares       =        300.028           7 
Residual     Sum of Squares       =        4.36487         248 
Total        Sum of Squares       =        304.393         255 
             Standard error of e  =         .13267 
Fit          R-squared            =         .98566  R-bar squared =   .98526 
Model test   F[  7,   248]        =     2435.25310  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      157.91523  Akaike I.C.   = -4.00909 
             Restricted (b=0)     =     -385.41031  Bayes  I.C.   = -3.89830 
             Chi squared [  7]    =     1086.65108  Prob C2 > C2* =   .00000 
-------------------------------------------------- 
Skewness test for inefficiency based  on residuals 
Normalized skewness = m3/s^3      =         .21340 
Chi squared test (1 degree of freedom)     1.94294  Critical value=  3.84000 
Standard normal test statistic             1.39389  Test value = +/- 1.96000 
Estimated Efficiency Values Based on e(i)+Min e(i) 
--------+----------------------------------------- 
        |     Mean     Std.Dev.   Minimum  Maximum 
CostInef|     .357        .133       .000     .773 
Cost Eff|     .706        .091       .462    1.000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic COLS Frontier Function 
Constant|    19.4363       27.45697      .71  .4790    -34.3783   73.2510 
      LY|     .94303***      .01809    52.12  .0000      .90757    .97849 
     LY2|     .08248***      .01236     6.67  .0000      .05825    .10671 
    LPKP|    1.42385        2.14849      .66  .5075    -2.78711   5.63480 
    LPLP|     .01915         .10169      .19  .8506     -.18016    .21847 
    LPMP|     .04504        1.41721      .03  .9746    -2.73264   2.82272 
    LPEP|    -.57070         .67904     -.84  .4007    -1.90159    .76019 
    LPFP|    -.04811**       .01986    -2.42  .0154     -.08704   -.00919 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 

 
Figure E62.3  Kernel Estimator for Cost Efficiency 
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E62.6.2 Modified OLS and Starting Values for the MLE 
 
 Under the specific distributional assumptions of the half normal and exponential models, we 
do have method of moments estimators of the underlying parameters.  They are based on the moment 
equations 
   Var[e]  =  Var[v]  +  Var[u] 

and   Skewness[e]  =  Skewness[u] 
 
since v is symmetric.  The left hand sides can be consistently estimated using the OLS residuals: 
 
   m2  =  (1/n)Σi ei

2 

and   m3  =  (1/n)Σiei
3. 

 
Both of the functions on the right hand side are known for the half normal and exponential models.  
In particular, for the half normal model, the moment equations are 
 
   m2  =  σv

2  +  [1 - 2/π]σu
2 , 

   m3  =  (2/π)1/2[1 - 4/π]σu
3. 

 

The solutions are: 
1/ 3

3 / 2ˆ
1 4 /u
m π

σ =  
− π  

 and 2
2ˆ ˆ(1 2 / )v umσ = − − π σ . 

 
Note that there is no solution for σu if m3 is not negative, which is the problem discussed in Section 
E62.5.  Assuming that this problem does not arise, the corrected constant term is 
 
   α̂ = a + Est.E[u]  = a  +  ˆ 2 /uσ π . 
 
This is the ‘modified least squares’ (MOLS) estimator that is discussed in a number of sources, such 
as Greene (2005).  These are the values used for starting values for the MLE, as well.  Looking 
ahead, note that there is no natural method of moments estimator for the mean parameter in the 
truncated normal model discussed in Section E63.3.  For this model, we use 
 
   µ̂ /σu  =  0. 
 
For the normal-exponential model, the moment equations that correspond to the preceding are 
 
   m2  =  σv

2   +  1/θ2 

   m3  =  -2/θ3. 

Therefore,  
1/ 3

2
2

3

2ˆ ˆˆand  1/v m
m

 −
θ = σ = − θ 

 
 

and   α̂ = a  +  ˆ1/ θ . 
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 The header information in the results table will display the decomposition of the variance of 
the composed error in two parts.  In the case of the half normal model, 
 
   Var[u]  =  [(π-2)/π]σu

2 
 
not σu

2.  Therefore, the estimated parameters might be a bit misleading as to the relative influence of 
u on the total variation in the structural disturbance. 
 We note, these estimators are sometimes quite far from the maximum likelihood estimators, 
particularly when the sample is small.  But, they are generally quite satisfactory as starting values for 
the MLE.  The following demonstrates these results for the airline data, where we use MOLS and 
MLE to fit a normal-half normal cost frontier.  (Note, the signs of the OLS residuals are reversed 
because we are fitting a cost function.)  In the results below, we have imposed the assumption of 
linear homogeneity in prices in the cost function by normalizing the six input prices, pk, pl, pe, pp, 
pm, pf, by the property price, pp.  The model contains log(pj/pp).  To complete the constraint, we 
have also normalized total cost by pp before taking logs. 
 

CREATE ; lpk = Log(pk) $ 
CREATE  ; lpmpp = lpm - lpp ; lpfpp = lpf - lpp ; lpepp = lpe - lpp  

; lplpp = lpl - lpp ; lpkpp = lpk - lpp $ 
CREATE ; lcp = lc - lpp $ 

 NAMELIST  ; x = one,ly,ly2,,lpkp,lplp,lpmp,lpep,lpfp $ 
 REGRESS  ; Lhs = lc ; Rhs = x ; Res = e $ 
 CREATE  ; e = -e ; e2 = e*e ; e3 = e2*e $ 
 CALC   ; m2 = Xbr(e2) ; m3 = Xbr(e3) $ 
 CALC   ; List  ; su = (m3 * Sqr(pi/2) / (1-4/pi))^(1/3)  
   ; sv = Sqr(m2 - (1-2/pi) * su^2) 
   ; a = b(1) + su * Sqr(2/pi) ; lambda = su/sv  
   ; sgma = Sqr(su^2 + sv^2) $ 
 FRONTIER  ; Lhs = lc ; Rhs = x ; Cost $ 
 
 The first set of results below are the OLS estimates with the correction to the constant term 
and the method of moments estimators of σu and σv used to start the MLE.  The maximum likelihood 
estimators are shown next.  The estimates for the stochastic frontier model include the log likelihood 
and the implied estimates of σu, σv and their squares, based on the estimates of λ = σu/σv and σ2 = σu

2 
+ σv

2, which are estimated by ML.  (The reverse transformations are σu
2 = σ2λ2/(1 + λ2) and σv

2 = 
σ2/(1 + λ2).  The MLE is documented further in the next section. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LC       Mean                 =        2.84024 
             Standard deviation   =        1.09256 
             No. of observations  =            256  Degrees of freedom 
Regression   Sum of Squares       =        300.028           7 
Residual     Sum of Squares       =        4.36487         248 
Total        Sum of Squares       =        304.393         255 
             Standard error of e  =         .13267 
Fit          R-squared            =         .98566  R-bar squared =   .98526 
Model test   F[  7,   248]        =     2435.25310  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      157.91523  Akaike I.C.   = -4.00909 
             Restricted (b=0)     =     -385.41031  Bayes  I.C.   = -3.89830 
             Chi squared [  7]    =     1086.65108  Prob C2 > C2* =   .00000 



E62: Stochastic Frontier Models and Efficiency Analysis   E-1519 

--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LC|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    19.7932       27.45697      .72  .4717    -34.0214   73.6079 
      LY|     .94303***      .01809    52.12  .0000      .90757    .97849 
     LY2|     .08248***      .01236     6.67  .0000      .05825    .10671 
    LPKP|    1.42385        2.14849      .66  .5081    -2.78711   5.63480 
    LPLP|     .01915         .10169      .19  .8508     -.18016    .21847 
    LPMP|     .04504        1.41721      .03  .9747    -2.73264   2.82272 
    LPEP|    -.57070         .67904     -.84  .4015    -1.90159    .76019 
    LPFP|    -.04811**       .01986    -2.42  .0161     -.08704   -.00919 
--------+-------------------------------------------------------------------- 
 

[CALC] SU      =       .1296481 
[CALC] SV      =       .1046056 
[CALC] A       =     19.8966785 
[CALC] LAMBDA  =      1.2393989 
[CALC] SGMA    =       .1665862 
Calculator: Computed   5 scalar results 
 

----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LCN 
Log likelihood function       159.20743 
Estimation based on N =    256, K =  10 
Inf.Cr.AIC  =   -298.4 AIC/N =   -1.166 
Variances: Sigma-squared(v)=     .01021 
           Sigma-squared(u)=     .01890 
           Sigma(v)        =     .10103 
           Sigma(u)        =     .13746 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .17059 
Gamma = sigma(u)^2/sigma^2 =     .64927 
Var[u]/{Var[u]+Var[v]}     =     .40216 
Stochastic Cost Frontier Model, e = v+u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          157.91523 
Chi-sq=2*[LogL(SF)-LogL(LS)] =    2.584 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LCN|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    19.8020       25.91115      .76  .4447    -30.9829   70.5869 
      LY|     .95577***      .01781    53.68  .0000      .92088    .99067 
     LY2|     .09086***      .01198     7.58  .0000      .06738    .11435 
    LPKP|    1.43400        2.02750      .71  .4794    -2.53982   5.40783 
    LPLP|     .01242         .09676      .13  .8979     -.17722    .20205 
    LPMP|     .05744        1.33747      .04  .9657    -2.56396   2.67883 
    LPEP|    -.56860         .64356     -.88  .3770    -1.82995    .69275 
    LPFP|    -.06002***      .01993    -3.01  .0026     -.09907   -.02096 
        |Variance parameters for compound error 
  Lambda|    1.36059***      .20306     6.70  .0000      .96261   1.75857 
   Sigma|     .17059***      .00058   294.50  .0000      .16946    .17173 
--------+-------------------------------------------------------------------- 
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E62.7 Estimating the Normal-Half Normal and Normal-
Exponential Models 
 
 ALS’s canonical form of the model is the normal-half normal model, 
 
   y =  β′x  +  v  - Su, u = |U|, S = +1 for production, -1 for cost, 

   U ~  N[0,σu
2], 

   v   ~  N[0,σv
2]. 

 
The command for estimating the stochastic frontier model is 
 
 FRONTIER ; Lhs = y ; Rhs = one, ... $ 
 
The default form is the normal-half normal model. In this form, model estimates consist of β, 

2 2
v uσ = σ + σ  and λ = σu/σv, and the usual set of diagnostic statistics for models fit by maximum 

likelihood.  The other basic form in the ALS model is the exponential model, 
 
   u  ~  θ exp(-θu), u> 0, 
 
which has mean inefficiency E[u] = 1/θ and standard deviation, σu= 1/θ. The parameters estimated in 
the exponential specification are (β,θ,σv).  The estimate of σu is reported in the results as well. 
 The following illustrate the estimator, with a normal-half normal cost frontier and a normal-
exponential production frontier.  The coefficient estimates for the exponential cost frontier are shown 
as well. 
 
 FRONTIER ; Cost ; Lhs = lcn ; Rhs = x $ 
 FRONTIER ; Cost ; Lhs = lcn; Rhs = x; Model = Exponential $ 
 
The stochastic frontier results include the standard output for MLEs  The derived estimates of σu, σv, 
σu

2, σv
2 and σ are shown as well.  The value of γ = σu

2/σ2 is given for comparability with other parts 
of the literature.  This ratio, which lies in (0,1) is sometimes reported as a variance decomposition of 
ε.  However, the variance of u = |U| is (1 - 2/π)σu

2, so the appropriate decomposition is (1 - 
2/π)σu

2/[σv
2 + (1 - 2/π)σu

2].  This is the value shown next under γ in the results.  
A likelihood ratio test against the hypothesis of no inefficiency follows the variance 

estimates.  The degrees of freedom for the test are accumulated in the table.. The first is for σu in the 
base case.  The second is for the heteroscedasticity terms in Var[u] when they are introduced in the 
model.  Heteroscedasticity is developed in Chapters E63.  The third term is for the truncation 
parameters in the normal-truncated normal model, also developed in the next chapter.  The ‘degrees 
of freedom for the inefficiency model’ are the sum of these three terms.  The likelihood ratio statistic 
is presented next.  This is a nonstandard test because the null value of σu is on the boundary of the 
parameter space.  Appropriate tables for the mixed chi squared test used here are given in Kodde and 
Palm (1986).  (A copy of the relevant parts of the table is kept internally by the program.  (See, also, 
Coelli, Rao and Battese (1998) for further details.) 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LCN 
Log likelihood function       159.20743 
Estimation based on N =    256, K =  10 
Inf.Cr.AIC  =   -298.4 AIC/N =   -1.166 
Variances: Sigma-squared(v)=     .01021 
           Sigma-squared(u)=     .01890 
           Sigma(v)        =     .10103 
           Sigma(u)        =     .13746 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .17059 
Gamma = sigma(u)^2/sigma^2 =     .64927 
Var[u]/{Var[u]+Var[v]}     =     .40216 
Stochastic Cost Frontier Model, e = v+u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          157.91523 
Chi-sq=2*[LogL(SF)-LogL(LS)] =    2.584 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LCN|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    19.8020       25.91115      .76  .4447    -30.9829   70.5869 
      LY|     .95577***      .01781    53.68  .0000      .92088    .99067 
     LY2|     .09086***      .01198     7.58  .0000      .06738    .11435 
    LPKP|    1.43400        2.02750      .71  .4794    -2.53982   5.40783 
    LPLP|     .01242         .09676      .13  .8979     -.17722    .20205 
    LPMP|     .05744        1.33747      .04  .9657    -2.56396   2.67883 
    LPEP|    -.56860         .64356     -.88  .3770    -1.82995    .69275 
    LPFP|    -.06002***      .01993    -3.01  .0026     -.09907   -.02096 
        |Variance parameters for compound error 
  Lambda|    1.36059***      .20306     6.70  .0000      .96261   1.75857 
   Sigma|     .17059***      .00058   294.50  .0000      .16946    .17173 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 Results for the normal-exponential model appear below.  It is not possible to use a LR test to 
choose between these two models.  The test has zero degrees of freedom – neither model is obtained 
by a restriction on the other.  One possibility might be a Vuong (1989) statistic, which would be 
computed as 

    ,  log( | ) log( | )i i i
m

n mV m f normal f exponential
s

= = − . 

 
Results of the test are shown below the model results.  The statistic is well inside the inconclusive 
region. 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LCN 
Log likelihood function       159.89917 
Estimation based on N =    256, K =  10 
Inf.Cr.AIC  =   -299.8 AIC/N =   -1.171 
Exponential frontier model 
Variances: Sigma-squared(v)=     .01147 
           Sigma-squared(u)=     .00568 
           Sigma(v)        =     .10709 
           Sigma(u)        =     .07539 
Stochastic Cost Frontier Model, e = v+u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          157.91523 
Chi-sq=2*[LogL(SF)-LogL(LS)] =    3.968 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LCN|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    22.6569       25.48354      .89  .3740    -27.2899   72.6038 
      LY|     .96069***      .01892    50.77  .0000      .92360    .99777 
     LY2|     .09281***      .01249     7.43  .0000      .06832    .11729 
    LPKP|    1.65439        1.99409      .83  .4067    -2.25395   5.56272 
    LPLP|    -.00962         .09785     -.10  .9217     -.20140    .18216 
    LPMP|    -.06595        1.31569     -.05  .9600    -2.64465   2.51275 
    LPEP|    -.62841         .63243     -.99  .3204    -1.86795    .61114 
    LPFP|    -.06397***      .02033    -3.15  .0017     -.10381   -.02412 
        |Variance parameters for compound error 
   Theta|    13.2651***     2.90719     4.56  .0000      7.5671   18.9630 
  Sigmav|     .10709***      .00980    10.93  .0000      .08788    .12629 
--------+-------------------------------------------------------------------- 
 
 
 FRONTIER  ; … half normal model $ 
 CREATE ; fn = logl_obs $ 
 FRONTIER ; …  Model = Exponential $ 
 CREATE ; fe = logl_obs  
   ; mi = fn - fe $ 
 CALC  ; List  
   ; vuong = Sqr(n) * Xbr(mi)/Sdv(mi) $ 
 
[CALC] VUONG   =      -.9047927 
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E62.7.1 Log Likelihoods for the Half Normal and Exponential Models 
 
 As will be evident below, different formulations of the log likelihood are most convenient 
for estimation of the different forms of the frontier models.  (And, different authors sometimes 
parameterize the models differently.)  The base case is the normal-half normal model.  In this form, 
vi~ N[0,σv

2] and ui = |Ui| where Ui ~ N[0,σu
2].  It follows that f(ui) = 2φ(ui/σu), ui> 0.  The density of 

εi = vi- ui has been shown to be  
 
   f(εi)   =  (2/σ)φ(εi/σ)Φ(-εiλ/σ). 
 
The most common form of the individual term in the log likelihood function (and the one used in 
LIMDEP) is 
   log Li =  ½ log(2/π) - logσ - ½(εi/σ)2 + logΦ[-Sεiλ/σ] 

where   εi =  yi  -  β′xi 

   λ =  σu / σv,  

   σ2 =  σu
2  +  σv

2, σv
2  =  σ2 / (1 + λ2),  σu

2   =  σ2λ2 / (1 + λ2) 

   S =  +1 for production frontier, -1 for cost frontier 
 
Olsen’s transformation is used for maximizing the log likelihood.  We reparameterize the function in 
terms of η = 1/σ andγ = (1/σ)β.  Then,  
 
   log Li =  ½ log(2/π) + logη + ½ωi

2 + log Φ(-Sωiλ) 

where   ωi =  ηyi - γ′xi. 

Define the functions ai =  -Sωiλ 

   δi =  φ(ai)/Φ(ai) 

   ∆i =  -aiδi = δi
2. 

 
Then, the gradient and Hessian are 
 

  
0
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 The log likelihood for the exponential model is 
 

   log Li=  logθ + ½θ2σv
2  + θSεi+ logΦ[-Sεi/σv - θσv]. 

 

The parameter θ in the exponential model is 1/σu.  The Olsen transformation is not useful for this 
model.  Define ci = -Sεi/σv - θσv, δi = φ(ci), ∆i = -ciδi - δi

2 and ai = Sεi/σv - θ.  The gradient and 
Hessian for the exponential model are 
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E62.7.2 Alternative Parameterization  
 

 Some treatments of the normal-half normal model (e.g., Coelli (1996b)) use the alternative 
parameterization γ = σu

2 / σ2 in the formulation of the log likelihood.  This does not change the 
model, since it is a one to one transformation of the parameters; 
 

1
γ

λ =
− γ

.   

 
The parameterization in terms of λ is more convenient but does not produce different results. 
 

E62.7.3 Variance Estimator in Frontier 4.1 
 
 A number of researchers have used Tim Coelli’s (1996b) Frontier 4.1 program for estimation 
of stochastic frontier models.  Frontier 4.1 and LIMDEP use different methods for computing 
estimators of the asymptotic covariance matrix of the ML estimator.  LIMDEP uses either the BHHH 
estimator or the negative inverse of the Hessian.  Frontier 4.1 used the weighting matrix used by the 
DFP algorithm to approximate the inverse Hessian during the iterations. As a general proposition, we 
recommend against this ‘estimator,’ and never use it.  There is no theoretical assurance of its accuracy 
if convergence is reached in a finite number of iterations.  Nonetheless, we have been asked about this 
many times.  In the interest of methodological advance, LIMDEP provides a command switch, 
 
   ; F41 
 
that will invoke this estimator.  (This is only provided for the stochastic frontier estimators.)  No 
indication is given in the output that this option has been used. 
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E62.8 Estimating Inefficiency and Efficiency Measures 
 
 The main objectives of fitting the frontier models is to estimate the inefficiency terms in the 
stochastic model, ui, by observation.  The Jondrow estimator of E[u|v-u] is the standard estimator.  
This is 

   
2

( )ˆ[ | ] ,
1 1 ( )

wE u w v u
w

 σλ φ
ε = − ε = ± + λ − Φ 

 , w =Sελ/σ. 

 
(This is an indirect estimator of u.  Unfortunately, it is not possible to estimate ui directly from any 
observed sample information.  The various surveys noted earlier discuss the computation of and 
properties of this estimator.)  The counterpart for the normal-exponential model is 
 

   ( )ˆ[ | ]
1 ( )v

wE u w
w

 φ
ε = σ − − Φ 

, w = (Sε/σv + θσv). 

These are computed and saved as new variables in your data set with 
 
   ; Eff = variable name 
 
The ; List specification will also request a listing of this variable.  This form is used for all 
distributions and all variations of the stochastic frontier model.   
 By adding ; Eff = u to the frontier command, then 
 
 KERNEL  ; Rhs = u $ 
 
we obtain the results below.   (We also added the title to the command with ; Title = …)  Note an 
important element of the estimation.  The ‘Standard Deviation’ reported below is 0.054895, whereas 
the estimate of σu is 0.13746.  The difference arises because the 0.054895 is an estimate of the 
standard deviation of E[u|ε], not the standard deviation of u. 
 
+---------------------------------------+ 
| Kernel Density Estimator for U        | 
| Observations       =           256    | 
| Points plotted     =           256    | 
| Bandwidth          =       .016298    | 
| Statistics for abscissa values----    | 
| Mean               =       .109394    | 
| Standard Deviation =       .054895    | 
| Minimum            =       .030722    | 
| Maximum            =       .350422    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =       .000000    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
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Figure E62.4  Analysis of Estimated Inefficiencies 

 
E62.8.1 Estimating Technical or Cost Efficiency 
 
 One might be interested in estimating the ‘efficiency’ of the individuals in the sample.  The 
model is usually specified in logs, of the form 
 
   log y  =  β′x  +  v  -  u. 
 
Under this assumption, the efficiency of the individual would be 
 

   EFF  =  Exp( )
 

y u
Optimal y

≈ −  

 
This can be obtained with 
 
   ; Techeff = the variable name 
or   ; Costeff = the variable name 
 
if you estimate a cost frontier instead. You may compute both inefficiencies and efficiency measures 
in the same command.  Figure E62.5 was obtained by adding 
 
   ; Costeff = ecu 
 
to the FRONTIER command, then requesting the kernel density estimator as before (with the title 
changed accordingly). 
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Figure E62.5  Estimated Cost Efficiencies 

 
E62.8.2 Confidence Intervals for Inefficiency and Efficiency 
Estimates 
 
 Horrace and Schmidt (1996, 2000) suggest a useful extension of the Jondrow result.  JLMS 
have shown that the distribution of ui|εi is that of a N[μi*,σ*] random variable, truncated from the left 
at zero, where μi* = -εiλ2/(1+λ2) and σ*  = σ

 For locating 100(1-α)% of the conditional distribution of ui|εi, we use the following system 
of equations 

λ/(1+λ2).  This result and standard results for the 
truncated normal distribution (see, e.g., Greene (2011)) can be used to obtain the conditional mean 
and variance of ui|εi.  With these in hand, one can construct some of the features of the distribution of 
ui|εi or E[TEi|εi] = E[exp(-ui|εi]. The literature on this subject, including the important contributions 
of Bera and Sharma (1999) and Kim and Schmidt (2000) refer generally to ‘confidence intervals’ for 
ui|εi.  For reasons that will be clear shortly, we will not use that term – at least not yet, until we have 
made more precise what we are estimating. 

   σ2 =  σv
2 + σu

2 

   λ =  σu/σv 

   µi* =  -εiσu
2/σ2 = -εiλ2/(1+λ2) 

   σ*  =  σuσv/σ = σλ/(1 + λ2) 
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Then, if the elements were the true parameters, the region [LBi,UBi] would encompass 100(1-α)% of 
the distribution of ui|εi.  For constructing ‘confidence intervals’ for technical efficiency, TEi|εi, it is 
necessary only to compute TEUBi = exp(-LBi) and TELBi = exp(-UBi). 
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 We note two caveats about the estimator.  First, the received papers based on classical 
methods have labeled this a confidence interval for ui. However, it is a range that encompasses 
100(1-α)% of the probability in the conditional distribution of ui|εi. based on E[ui|εi], not ui, itself.  
The interval is ‘centered’ at the estimator of the conditional mean, E[ui|εi], not the estimator of ui, 
itself, as a conventional ‘confidence interval’ would be.  The estimator is actually characterizing the 
conditional distribution of ui|εi, not constructing any kind of interval that brackets a particular ui – 
that is not possible.  Second, these limits are conditioned on known values of the parameters, so they 
ignore any variation in the parameter estimates used to construct them.  Thus, we regard this as a 
minimal width interval. 
 You can request computation of these lower and upper bounds by adding 
 
   ; CI(100( 1 - α )) = lower, upper 
 
where 100(1-α) is one of 90, 95, or 99 and lower, upper are names for two variables that will be 
created. You may use this feature with ; Eff = variable or ; Techeff = variable (or ; Costeff = 
variable for a cost frontier).  If you have both ; Eff and ; Techeff in the command, the confidence 
intervals are computed for ; Techeff. (You can obtain the interval for ; Eff in this case by computing 
the negatives of the logs with CREATE.) 

We obtained these bounds for our cost function with 
 
   ; Costeff = euc ; CI(95) = eucl,eucu 
 
We followed the estimation with 
 

PLOT  ; Rhs = eucl,ecu,eucu 
; Title = Upper and Lower Bound Estimates of Cost Efficiency 
; Vaxis = Cost Efficiency$ 

 
to obtain Figure E62.6. 
 

 
Figure E62.6  Lower and Upper Bound Estimates of Cost Efficiency 
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The centipede plot is also a useful device in this context.  The following redraws Figure E62.6 using 
a different view for the lower and upper bounds 
 
 CREATE ; Firm_i = Trn(1,1) $ 
 PLOT      ; Lhs = firm_i ; Rhs = eucl,eucu 
   ; Centipede ; Endpoints = 0,260 ; Grid  
   ; Title = Confidence Limits for Cost Efficiency $ 
 

 
Figure E62.7  Centipede Plot of Efficiency Bounds 

 
E62.8.3 Partial Effects on Efficiencies 
 
 The variables in the production or cost frontier function begin with either the inputs for the 
production model or input prices and outputs in the cost model.  Analyses of how these variables 
affect technical or cost efficiency are not likely to be particularly revealing.  However, if the function 
includes environmental variables (we call these zi), it might be of interest to examine how variation 
in these impacts efficiency.  For our example, we consider 
 
   Log(Cost/Pp) = α + βq logQ + βqq log2Q  +  Σkβk log(Pk/Pp) 

        +  δLload factor + δNnodes + δSLog stage length  +  v  +  u 
 
In this case, it might be interesting to examine how increased load factor, route complexity, or stage 
length impact efficiency. 
 Expressions for the technical inefficiency values appear at the beginning of Section E62.8.  
In those expressions, we will use  
 
   Efficiency  =  exp{- ˆ[ | ]E u ε }. 
 
The two expressions for the normal and exponential models are functions of a w(ε) that is specific to 
the model.  Each may be written as 
 
   Efficiency  =  exp{-τmA[wm(ε)]} 
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Where m = half normal or exponential, τm = σλ/(1+λ2) for the half normal and 1/σv for the 
exponential, and wm is defined earlier.  We now suppose that  
 
   ε  = y  -  β′x  -  δ′z 
 
where x is the theoretical inputs to the goal and z are the environmental variables. We require the 
derivatives with respect to z.  For convenience, let W = -w and exploit the symmetry of the normal 
density.  Then, A[wm(ε)]  =  [φ(W)/Φ(W) + W].  The derivative is  
 
   ∂Efficiency/∂z = Efficiency×-τm×dA(W)/dW× -1 ×∂wm/∂ε× -δ. 
 
The two terms that we need to complete the derivation are ∂wm/∂ε = Sλ/σ for the half normal model 
and S/σv for the exponential model and 
 

   
2

( ) ( ) ( )1 ( ).
( ) ( )

dA W W W W D W
dW W W

  φ φ
= − − =  Φ Φ   

 

Collecting terms,  

   

2 2/(1 )
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Efficiency Efficiency D W Sor
z

 λ + λ
∂  = × × × × − ∂  

 

δ  

 
We can sign this result, though the magnitude will be empirical. The first three terms are all between 
zero and one, as is their product.  S is either +1 for a production frontier or -1 for a cost frontier.  
Thus, in total, the derivative is a fraction of the corresponding coefficient, which takes the same sign 
for a cost frontier and the opposite sign for a production frontier. 
 Partial derivatives and simulations are computed with PARTIALS and SIMULATE.   The 
general approach would be 
 
 FRONTIER ; Cost (optional) 
   ; Lhs = goal variable   

; Rhs = one, x variables, z variables $ 
 
The command might also contain ; Eff = variable, ; Techeff = variable or ; Costeff = variable.  
Then, you may follow it with 
 
 PARTIALS ; Effects: variables desired ; other options $ 
or SIMULATE ; Scenario … all options $ 
 
The function analyzed in these two commands is the technical or cost efficiency,  
 

Efficiency = exp{- ˆ[ | ]E u ε }.   
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The following demonstrates using the cost frontier, with variables z = (load factor, log stage length, 
points served).  Data on z are missing for one of the firms. 
 
 CREATE ; logstage = Log(stage) $ 
 NAMELIST ; x = one,ly,ly2,,lpkp,lplp,lpmp,lpep,lpfp 
   ; z = loadfctr,logstage,points $ 

FRONTIER ; Cost ; Lhs = lc ; Rhs = x,z 
; Eff = u ; Costeff = euc ; CI(95) = eucl,eucu $ 

 SIMULATE  ; Scenario: & loadfctr = .4(.025)1 ; Plot(ci) $ 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LC 
Log likelihood function       215.15699 
Estimation based on N =    256, K =  13 
Inf.Cr.AIC  =   -404.3 AIC/N =   -1.579 
Variances: Sigma-squared(v)=     .00820 
           Sigma-squared(u)=     .00753 
           Sigma(v)        =     .09054 
           Sigma(u)        =     .08676 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .12539 
Gamma = sigma(u)^2/sigma^2 =     .47870 
Var[u]/{Var[u]+Var[v]}     =     .25020 
Stochastic Cost Frontier Model, e = v+u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          214.75424 
Chi-sq=2*[LogL(SF)-LogL(LS)] =     .806 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    9.19939       21.64273      .43  .6708   -33.21957  51.61835 
      LY|     .97398***      .01751    55.63  .0000      .93966   1.00829 
     LY2|     .05123***      .01029     4.98  .0000      .03106    .07140 
    LPKP|     .49455        1.69257      .29  .7701    -2.82283   3.81193 
    LPLP|     .13721*        .08121     1.69  .0911     -.02195    .29637 
    LPMP|     .45863        1.11624      .41  .6812    -1.72915   2.64642 
    LPEP|    -.10302         .53634     -.19  .8477    -1.15422    .94818 
    LPFP|    -.02090         .01794    -1.16  .2441     -.05607    .01427 
LOADFCTR|    -.99466***      .17446    -5.70  .0000    -1.33660   -.65273 
LOGSTAGE|    -.17940***      .02531    -7.09  .0000     -.22902   -.12979 
  POINTS|     .00164***      .00031     5.20  .0000      .00102    .00225 
        |Variance parameters for compound error 
  Lambda|     .95827***      .16869     5.68  .0000      .62763   1.28890 
   Sigma|     .12539***      .00039   321.29  .0000      .12463    .12616 
--------+-------------------------------------------------------------------- 
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--------------------------------------------------------------------- 
Model Simulation Analysis for JLMS efficiency estimator in SF model 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avrg. Function      .93354     .00635  147.07      .92110      .94598 
LOADFCTR=   .40     .95844     .00346  277.19      .95166      .96522 
LOADFCTR=   .43     .95502     .00344  277.54      .94827      .96176 
LOADFCTR=   .45     .95123     .00357  266.70      .94424      .95822 
LOADFCTR=   .48     .94706     .00392  241.56      .93937      .95474 
LOADFCTR=   .50     .94247     .00456  206.48      .93353      .95142 
LOADFCTR=   .53     .93746     .00552  169.87      .92664      .94828 
(some rows omitted) 
LOADFCTR=   .83     .84622     .03145   26.91      .78458      .90786 
LOADFCTR=   .85     .83696     .03384   24.73      .77063      .90329 
LOADFCTR=   .88     .82763     .03616   22.89      .75676      .89850 
LOADFCTR=   .90     .81827     .03839   21.32      .74303      .89352 
LOADFCTR=   .93     .80892     .04053   19.96      .72947      .88836 
LOADFCTR=   .95     .79958     .04259   18.78      .71611      .88305 
LOADFCTR=   .98     .79029     .04455   17.74      .70296      .87761 
 

 
Figure E62.8  Simulated Cost Efficiency Values 

 
We have also analyzed the partial effects.   
 

FRONTIER ; Cost ; Lhs = lcp ; Rhs = x,z  $ 
PARTIALS  ; Effects: loadfctr & loadfctr = .4(.025)1 ; Plot(ci) $ 
PARTIALS ; Effects: z ; Summary $ 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for JLMS efficiency estimator in SF model 
--------------------------------------------------------------------- 
Effects on function with respect to LOADFCTR 
Results are computed by average over sample observations 
Partial effects for continuous LOADFCTR computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dLOADFCTR       Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function      -.22444     .06690    3.35     -.35557     -.09331 
LOADFCTR=   .40    -.13020     .02575    5.06     -.18067     -.07973 
LOADFCTR=   .43    -.14405     .03134    4.60     -.20547     -.08263 
LOADFCTR=   .45    -.15900     .03766    4.22     -.23281     -.08519 
LOADFCTR=   .48    -.17497     .04464    3.92     -.26246     -.08748 
(Some rows omitted) 
LOADFCTR=   .85    -.37205     .09615    3.87     -.56051     -.18359 
LOADFCTR=   .88    -.37392     .09265    4.04     -.55551     -.19234 
LOADFCTR=   .90    -.37452     .08896    4.21     -.54887     -.20017 
LOADFCTR=   .93    -.37403     .08524    4.39     -.54109     -.20697 
LOADFCTR=   .95    -.37265     .08160    4.57     -.53259     -.21271 
LOADFCTR=   .98    -.37054     .07813    4.74     -.52368     -.21739 
 

 
Figure E62.9  Partial Effects of Load Factor 

 
--------------------------------------------------------------------- 
Partial Effects for JLMS efficiency estimator in SF model 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      LOADFCTR     -.25723     .07389    3.48     -.40205     -.11240 
      LOGSTAGE     -.04620     .01292    3.58     -.07153     -.02088 
      POINTS        .00035     .00012    2.95      .00012      .00058 
--------------------------------------------------------------------- 
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E62.8.4 Partial Effects of Model Variables on Efficiencies 
 
 The preceding has examined the partial effects with respect to z in the model 
 
   y  =  β′x  +  δ′z  +  v-Su. 
 
It was noted that partial effects with respect to x are not likely to be particularly interesting.  
Nonetheless, they could be computed.   
 
NOTE: Partial effects of variables in the stochastic frontier efficiency models may be computed 
with respect to any variable in any model, regardless of where those variables appear in the model.  
That includes x in the original frontier model, z in the means of the truncated regression formats, and 
z in the variances of the heteroscedasticity models. 
 
To continue the earlier example, the partial effect of LogQ could be computed in the cost function 
using 
 

NAMELIST ; x = one,lq,lq^2,lpmpp,lpfpp,lpepp,lplpp,lpkpp $ 
NAMELIST ; z = loadfctr,logstage,points $ 
FRONTIER ; Cost ; Lhs = lcp ; Rhs = x,z  $ 
PARTIALS ; Effects : lq ; summary $ 

 
Note that the specification will correctly account for the fact that the square of LogQ appears in the 
cost function when it computes the partial effects. 
 
E62.8.5 Examining Ranks of Inefficiencies 
 
 Researchers often analyze outcome data in which the absolute values of the inefficiencies are 
not necessarily of interest.  Rather, it is the ranking of observations that they wish to analyze.  The 
WHO analysis of health care attainment (see Section E62.4.2) is a prominent example.  LIMDEP 
provides several tools for examining ranks of inefficiencies.   
 First, to rank the raw observations on efficiency or inefficiency, use 
 
 CREATE ; rank variable = Rnk(variable) $ 
 
The Rnk function sorts the data for you and creates the ranking variable.  The observation with the 
highest value gets the rank of one.  The lowest gets a rank of n.  Note, tied observations do not get the 
same rank.  Tied observations are ranked in the order in which they appear in the data.  For example, in 
a sample of 100, if 10 observations are tied for third place, they will receive ranks 3 through 12. 
 Two CALC functions provide descriptive measures for ranks.  For two sets of ranks, the 
Spearman rank correlation coefficient is computed as 
 
   ρ = 1 - 6 Σidi

2 /n(n2 - 1),  

   di= variable1i - variable2i 
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The function for computing this is 
 

CALC  ; List ; Rkc(variable1,variable2) $  
 
The rank correlation is a correlation coefficient, so it has a natural range of measurement. (See the 
application below.)  For more than two sets of ranks, a useful statistic is Kendall’s coefficient of 
concordance, 
   W = 12 1

n

i=∑ (Si - S )2/[nK2(n2 - 1)] 

where    Si = Σkrankk,i. 
 
To compute this measure, use 
 

CALC  ; List ; Cnc(ranks1,...,ranksK) $ 
 

The concordance coefficient is not a correlation coefficient, so its magnitude is ambiguous.  It can be 
used for a large sample test of discordance.  Under the null hypothesis that the sets of ranks are 
independent, the statistic has a large sample chi squared distribution.  In particular, 
 
   K(n-1)W  → χ2[K(n-1)]. 
 
 To illustrate these computations, we have analyzed the WHO data described in Section 
E62.4.2.  We have fit identical stochastic frontier models for the two attainment variables, lcomp, the 
log of the composite measure, and ldale, the log of disability adjusted life expectancy.  We then 
computed the ranks for the 191 countries and plotted the ranks for the two measures as well as the 
raw efficiency measures. The simple correlation for the efficiency measures and the rank correlation 
for the ranks are displayed.  The commands are as follows: 
 
 NAMELIST  ; x = one,logebar,loghbar,loghbar2 $ 
 NAMELIST  ; z = gini,lpopden,lgdpc,geff,voice,oecd,lpubthe,tropics $ 
 FRONTIER  ; Lhs = logdbar ; Rhs = x,z  
   ; Eff = udale ; Techeff = edale $ 
 FRONTIER  ; Lhs = logcbar ; Rhs = x,z  
   ; Eff = ucomp ; Techeff = ecomp $ 
 CREATE ; dalerank = 192 - Rnk(edale) $ 
 CREATE ; comprank = 192 - Rnk(ecomp) $ 
 PLOT  ; Lhs = dalerank ; Rhs = comprank  
   ; Endpoints = 0,200 ; Limits = 0,200  
   ; Title = Ranks of Efficiencies: DALE vs. COMP $ 
 PLOT  ; Lhs = edale ; Rhs = ecomp ; Endpoints = .8,1 ; Grid  
   ; Title = Efficiencies: DALE vs. COMP $ 
 CALC   ; List ; Rkc(dalerank,comprank) $ 
 CALC   ; List ; Cor(edale,ecomp) $ 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable              LOGDBAR 
Log likelihood function       155.83849 
Estimation based on N =    191, K =  14 
Inf.Cr.AIC  =   -283.7 AIC/N =   -1.485 
Variances: Sigma-squared(v)=     .00145 
           Sigma-squared(u)=     .03288 
           Sigma(v)        =     .03808 
           Sigma(u)        =     .18134 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .18529 
Gamma = sigma(u)^2/sigma^2 =     .95777 
Var[u]/{Var[u]+Var[v]}     =     .89180 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          141.59006 
Chi-sq=2*[LogL(SF)-LogL(LS)] =   28.497 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 LOGDBAR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    2.60812***      .18255    14.29  .0000     2.25034   2.96590 
 LOGEBAR|     .11227***      .01869     6.01  .0000      .07564    .14891 
 LOGHBAR|     .30118***      .05072     5.94  .0000      .20177    .40059 
LOGHBAR2|    -.02710***      .00455    -5.96  .0000     -.03601   -.01818 
    GINI|    -.30417***      .10600    -2.87  .0041     -.51192   -.09642 
 LPOPDEN|     .00213         .00402      .53  .5955     -.00574    .01001 
   LGDPC|     .07541***      .02424     3.11  .0019      .02789    .12293 
    GEFF|    -.00673         .01551     -.43  .6642     -.03714    .02367 
   VOICE|     .02093*        .01113     1.88  .0601     -.00089    .04275 
    OECD|     .01608         .03055      .53  .5987     -.04381    .07596 
 LPUBTHE|     .00974         .01497      .65  .5150     -.01959    .03908 
 TROPICS|    -.03703**       .01714    -2.16  .0307     -.07063   -.00344 
        |Variance parameters for compound error 
  Lambda|    4.76248***     1.22054     3.90  .0001     2.37026   7.15470 
   Sigma|     .18529***      .00086   214.30  .0000      .18360    .18698 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable              LOGCBAR 
Log likelihood function       248.18065 
Estimation based on N =    191, K =  14 
Inf.Cr.AIC  =   -468.4 AIC/N =   -2.452 
Variances: Sigma-squared(v)=     .00142 
           Sigma-squared(u)=     .00888 
           Sigma(v)        =     .03768 
           Sigma(u)        =     .09421 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .10147 
Gamma = sigma(u)^2/sigma^2 =     .86207 
Var[u]/{Var[u]+Var[v]}     =     .69429 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          241.57767 
Chi-sq=2*[LogL(SF)-LogL(LS)] =   13.206 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 LOGCBAR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    3.21081***      .10704    30.00  .0000     3.00101   3.42060 
 LOGEBAR|     .06590***      .01319     4.99  .0000      .04004    .09177 
 LOGHBAR|     .18617***      .03763     4.95  .0000      .11240    .25993 
LOGHBAR2|    -.01509***      .00328    -4.61  .0000     -.02151   -.00867 
    GINI|    -.25334***      .07579    -3.34  .0008     -.40189   -.10478 
 LPOPDEN|     .00523*        .00281     1.86  .0628     -.00028    .01073 
   LGDPC|     .05747***      .01681     3.42  .0006      .02453    .09040 
    GEFF|     .00290         .01068      .27  .7858     -.01803    .02384 
   VOICE|     .02082**       .00872     2.39  .0170      .00373    .03791 
    OECD|     .01699         .01946      .87  .3827     -.02115    .05513 
 LPUBTHE|     .01798**       .00903     1.99  .0466      .00027    .03568 
 TROPICS|    -.02365**       .01191    -1.99  .0471     -.04700   -.00031 
        |Variance parameters for compound error 
  Lambda|    2.50000***      .41784     5.98  .0000     1.68104   3.31896 
   Sigma|     .10147***      .00045   224.53  .0000      .10058    .10235 
--------+-------------------------------------------------------------------- 
 
[CALC] *Result*=       .6353076 
[CALC] *Result*=       .6062125 
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Figure E62.10  Ranks and Estimates of Efficiency 
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E62.9 Partially Nonparametric Stochastic Frontier Model 
 
 The stochastic frontier is fully parametric in both the deterministic part of the frontier and 
the distribution of the components of εi.  This section examines a partially nonparametric model of 
the form 
   y  =  g(x,z)  +  v – Su. 
 
The estimator is based on the locally linear regression in Section E9.5.  The underlying logic is the 
result that in the stochastic frontier model, apart from the constant term, OLS consistently estimates 
the slope parameters of the model and estimates the constant term with a known bias.  For the 
constant, a, the bias is E[u], the unconditional mean, which in the stochastic frontier model is  
 

E[u]  =  2 /uσ π .   
 
Continuing this approach, then, the least squares residuals estimate εi + E[u].  In addition, the least 
squares residual variance, e′e/n, consistently estimates Var[εi]  =  θ2 = σv

2 + [(1 – 2/π)σu
2].  The 

implication is that the only parameter remaining to estimate is σu
2.  In Section E62.6.2, we used the 

third moment of the OLS residuals and the method of moments to estimate σu, then used this 
estimate to estimate α, the constant term in the frontier function. 
 The approach proposed here uses this same method with three differences.   
 

1. The residuals used to compute the variance estimator are based on a locally linear, 
nonparametric estimator of the deterministic function. 

 
2. The remaining parameter to be estimated in this case is λ rather than σu.  We will base the 

estimation on the result 2 2 2 2/ (1 ).uσ = σ λ + λ  
 

3. The approach will be based on a maximum likelihood estimator rather than the method of 
moments. 

 
Estimation uses the following steps:  We begin with estimation of the conventional normal-half 
normal frontier model with a linear frontier function in order to obtain an initial estimator of λ and of 
θ2.  The LOWESS estimator developed in Section E9.5 is then employed to estimate g(x,z) for each 
point in the sample.  The residuals from the estimated functions are used with the estimate of θ2 for 
estimation of λ.  With θ2 and λ in hand, we can compute the constant term, a set of residuals, and the 
JLMS estimators of technical or cost efficiency.  Technical details appear in Section E62.9.2. 
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E62.9.1 Application 
 
 We have reestimated the airlines cost frontier with the semiparametric estimator. The 
frontier functions differ noticeably, primarily in the parameter estimates that are statistically 
insignificant. The kernel estimators suggest, however, that the difference in the estimates of 
inefficiency are quite modest.  The descriptive statistics suggest the same pattern.  The final plot 
shows more graphically how the nonparametric function has changed the estimates.  The fact that 
most of the estimates from the nonparametric estimator lie below the 45 degree line is consistent 
with the appearance that generally, they are smaller than the parametric values.  The last set of 
results are the ordinary (Pearson) correlation and Kendall’s tau. 
 

FRONTIER ; Cost ; Lhs = lc ; Rhs = x,z ; Costeff = eup $ 
FRONTIER ; Cost ; Lhs = lc ; Rhs = x,z ; Lowess ; Costeff = eunp$ 
KERNEL ; Rhs = eunp,eup 

; Title = Estimated Inefficiencies from Parametric and Nonparametric  
  Frontiers $ 

DSTAT ; Rhs = eup,eunp $ 
PLOT  ; Lhs = eup ; Rhs = eunp ; Rh2 = eup ; Fill ; Grid ; Vaxis = EUNP 

; Title = Nonparametric vs. Parametric Estimates $ 
CALC  ; List; Cor(eup,eunp) ; Ktr(eup,eunp) $ 

 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LC 
Log likelihood function       215.15699 
Estimation based on N =    256, K =  13 
Variances: Sigma-squared(v)=     .00820 
           Sigma-squared(u)=     .00753 
           Sigma(v)        =     .09054 
           Sigma(u)        =     .08676 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .12539 
Gamma = sigma(u)^2/sigma^2 =     .47870 
Var[u]/{Var[u]+Var[v]}     =     .25020 
Stochastic Cost Frontier Model, e = v+u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          214.75424 
Chi-sq=2*[LogL(SF)-LogL(LS)] =     .806 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    9.19939       21.64273      .43  .6708   -33.21957  51.61835 
      LY|     .97398***      .01751    55.63  .0000      .93966   1.00829 
     LY2|     .05123***      .01029     4.98  .0000      .03106    .07140 
    LPKP|     .49455        1.69257      .29  .7701    -2.82283   3.81193 
    LPLP|     .13721*        .08121     1.69  .0911     -.02195    .29637 
    LPMP|     .45863        1.11624      .41  .6812    -1.72915   2.64642 
    LPEP|    -.10302         .53634     -.19  .8477    -1.15422    .94818 
    LPFP|    -.02090         .01794    -1.16  .2441     -.05607    .01427 
LOADFCTR|    -.99466***      .17446    -5.70  .0000    -1.33660   -.65273 
LOGSTAGE|    -.17940***      .02531    -7.09  .0000     -.22902   -.12979 
  POINTS|     .00164***      .00031     5.20  .0000      .00102    .00225 
        |Variance parameters for compound error 
  Lambda|     .95827***      .16869     5.68  .0000      .62763   1.28890 
   Sigma|     .12539***      .00039   321.29  .0000      .12463    .12616 
--------+-------------------------------------------------------------------- 
+-----------------------------------------------+ 
| Locally linear weighted regression estimation | 
| Sample size               256                 | 
| Model size                 11                 | 
| Band width            .500000                 | 
| LOESS Sum of Squared Residuals        1.69637 | 
| OLS   Sum of Squared Residuals        2.79975 | 
| Derivatives Matrix   LOCLBETA                 | 
+-----------------------------------------------+ 
Reestimating lambda using residuals based on LOWESS regression 
Normal exit:   3 iterations. Status=0, F=   -337.3385 
----------------------------------------------------------------------------- 
Partially Nonparametric Stochastic Frontier Fit by LOWESS 
Dependent variable                   LC 
Estmation based on N =    256, K =   11 
Variances: Sigma-squared(u)=     .00438  Sigma(u) =   .06616 
           Sigma-squared(v)=     .00504  Sigma(v) =   .07096 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .09702  Lambda   =   .93233 
Stochastic Cost Frontier Model, e = v+u 
----------------------------------------------------------------------------- 
Statistical results are for the sample means of the LOWESS estimated betas. 
They are not moments of an asymptotic distribution. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    34.8551       23.42958     1.49  .1368    -11.0661   80.7762 
      LY|     .98897***      .05040    19.62  .0000      .89018   1.08775 
     LY2|     .04598***      .01677     2.74  .0061      .01310    .07885 
    LPKP|    2.48149        1.78813     1.39  .1652    -1.02319   5.98616 
    LPLP|     .09976         .10851      .92  .3579     -.11292    .31244 
    LPMP|    -.85374        1.34656     -.63  .5261    -3.49295   1.78547 
    LPEP|    -.71103         .43514    -1.63  .1023    -1.56389    .14183 
    LPFP|    -.02183         .03324     -.66  .5114     -.08698    .04332 
LOADFCTR|    -.78691         .65061    -1.21  .2265    -2.06208    .48826 
LOGSTAGE|    -.20490*        .11308    -1.81  .0700     -.42653    .01672 
  POINTS|     .00225         .00205     1.10  .2710     -.00176    .00627 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|       Mean       Std.Dev.     Minimum      Maximum     Cases Missing 
--------+--------------------------------------------------------------------- 
     EUP|      .933537      .025027      .812486      .975689      256       0 
    EUNP|      .948487      .019528      .844732      .983878      256       0 
--------+--------------------------------------------------------------------- 
 
[CALC] *Result*=       .8690148 
[CALC] *Result*=       .6339461 
Calculator: Computed   2 scalar results 
 

 
Figure E62.11  Kernel Estimators of Inefficiency Distributions 

 

 
Figure E62.12  Plot of Nonparametric Estimates vs. Parametric Estimates 
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E62.9.2 Technical Details 
 
 The log likelihood function for the normal-half normal model is the sum of 
 
   log Li  =  ½ log(2/π) - logσ - ½(εi/σ)2 + logΦ[-Sεiλ/σ]. 
 
The value of θ2= σv

2 + [(1 – 2/π)σu
2]is estimated using the squared LOWESS residuals; it is the 

sample variance = q2.  The LOWESS residuals, themselves, are estimates of εi + E[ui].  With q2 and 
the residuals in hand, the log likelihood is a function only of λ.  During the iteration, we compute 
 
   a  =  λ/(1+λ2)1/2, 

   s2   =  q2 / (1 – (2/π)a2), then s 

   m  =  as 2 / π  

   ei  =  residuali - m. 
 
These residuals and s are used to compute logLi and the derivative with respect to λ.  This estimation 
step provides the estimator of λ that we need to compute the efficiencies.  After estimation of λ, 
computation of the JLMS estimates of inefficiency is done the same as in the parametric form of the 
model, using the LOWESS residuals. 
 
E62.10 The Normal-Gamma Model 
 
 The normal-gamma model is the remaining distributional form of the stochastic frontier 
model.  Under this specification, 
 

   ui  ~  
1exp( ) , 0, 0, 0.

( )

P P
i i

i
u u  u P

P

−θ −θ
≥ > θ >

Γ
 

 
This model is more flexible than the half normal or exponential model in that with two parameters, it 
allows the both the shape and location to vary independently.  (The truncation model does likewise, 
but it is considerably more difficult to estimate.)  To specify the gamma model, use 
 
   ; Model = Gamma (or ; Model = G) 
 
 The normal-gamma model is estimated by the method of simulated maximum likelihood. 
(See Greene (2000b) and the details in Section E62.10.2.)  The counterpart to the JLMS estimator of 
the inefficiency, E[u|ε] must also be estimated by simulation.   
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E62.10.1 Application of the Normal-Gamma Model 
 
 We illustrate the gamma model by fitting a cost frontier model with normal-gamma 
inefficiency.  For comparison, we have also fit the exponential model, which results when P is 
constrained to equal one.  (The exponential model is fit directly by its own log likelihood, not by 
constraining P to equal one in the gamma model.)  We have also computed the inefficiencies for the 
two models, and plotted kernel density estimators to compare them.  The commands are 
 
 FRONTIER  ; Lhs = lc ; Rhs = x ; Cost ; Model = Gamma ; Costeff = eucg  
   ; Pts = 50 ; Halton $  
 FRONTIER  ; Lhs = lc ; Rhs = x ; Cost ; Model = Exponential ; Costeff = euce $  
 KERNEL ; Rhs = eucg,euce  
   ; Title = Kernel Density Estimates for E[u|e,exponential and gamma] $ 
 
We note by the Wald and likelihood ratio tests, we cannot reject the hypothesis of the exponential 
model (P is close to one).  The similarity of the kernel density estimators is consistent with this finding. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LC 
Log likelihood function       159.94270 
Estimation based on N =    256, K =  11 
Inf.Cr.AIC  =   -297.9 AIC/N =   -1.164 
Model estimated: Aug 22, 2011, 22:09:16 
Normal-Gamma frontier model 
Variances: Sigma-squared(v)=     .01169 
           Sigma-squared(u)=     .00547 
           Sigma(v)        =     .10814 
           Sigma(u)        =     .07399 
Stochastic Cost Frontier Model, e = v+u 
Half Normal:u(i)=|U(i)|; frontier model 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          157.91523 
Chi-sq=2*[LogL(SF)-LogL(LS)] =    4.055 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    22.9007       27.13658      .84  .3987    -30.2860   76.0874 
      LY|     .96086***      .02028    47.38  .0000      .92112   1.00061 
     LY2|     .09283***      .01327     7.00  .0000      .06682    .11883 
    LPKP|    1.67283        2.12387      .79  .4309    -2.48987   5.83553 
    LPLP|    -.01112         .06724     -.17  .8687     -.14290    .12066 
    LPMP|    -.07676        1.37564     -.06  .9555    -2.77297   2.61944 
    LPEP|    -.63376         .68533     -.92  .3551    -1.97698    .70946 
    LPFP|    -.06405***      .02311    -2.77  .0056     -.10934   -.01876 
        |Variance parameters for compound error 
   Theta|    12.4180**      5.05037     2.46  .0139      2.5194   22.3165 
       P|     .84426         .69128     1.22  .2220     -.51062   2.19913 
  Sigmav|     .10814***      .01148     9.42  .0000      .08563    .13064 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Log likelihood function       159.89917 
Exponential frontier model 
Variances: Sigma-squared(v)=     .01147 
           Sigma-squared(u)=     .00568 
           Sigma(v)        =     .10709 
           Sigma(u)        =     .07539 
Stochastic Cost Frontier Model, e = v+u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          157.91523 
Chi-sq=2*[LogL(SF)-LogL(LS)] =    3.968 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    22.6569       25.48354      .89  .3740    -27.2899   72.6038 
      LY|     .96069***      .01892    50.77  .0000      .92360    .99777 
     LY2|     .09281***      .01249     7.43  .0000      .06832    .11729 
    LPKP|    1.65439        1.99409      .83  .4067    -2.25395   5.56272 
    LPLP|    -.00962         .09785     -.10  .9217     -.20140    .18216 
    LPMP|    -.06595        1.31569     -.05  .9600    -2.64465   2.51275 
    LPEP|    -.62841         .63243     -.99  .3204    -1.86795    .61114 
    LPFP|    -.06397***      .02033    -3.15  .0017     -.10381   -.02412 
        |Variance parameters for compound error 
   Theta|    13.2651***     2.90719     4.56  .0000      7.5671   18.9630 
  Sigmav|     .10709***      .00980    10.93  .0000      .08788    .12629 
--------+-------------------------------------------------------------------- 
 

 
Figure E62.13  Kernel Density Estimates for Gamma and Exponential Inefficiencies 
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E62.10.2 Technical Details on Normal-Gamma Model 
 
The log likelihood for this model is equal to the log likelihood for the normal-exponential 

model plus a term that is produced by the difference between the exponential and the gamma 
distributions; 

  Log L =   Log L(exponential) 

   +  n[(P-1)logθ - logΓ(P)] + Σi log h(P-1,εi) 

where   h(r,εi) =   
( ) ( )

( ) ( )
0

0

1/ ( ) /

1/ ( ) /  
v i v

v i v

rz z dz

z dz

∞

∞

σ φ − η σ

σ φ − η σ

∫
∫

, ηi = -εi - θσv
2. 

 
The normal-exponential model results if P = 1.  Computation of the function h(r,εi) is the obstacle to 
estimation.  Beckers and Hammond (1987) derived a closed form expression, but the result has never 
been operationalized – it is complex in the extreme.  Greene (1990) attempted estimation by using a 
crude approximation with Simpson’s rule, but failed to obtain reasonable results.  (See Ritter and 
Simar (1997).)   

A satisfactory solution is produced by the technique of maximum simulated likelihood.  The 
integral and its derivatives can be estimated consistently by Monte Carlo simulation. The crucial 
result is that h(r,εi)  is the expectation of a random variable; 
 

  h(r,εi) =  E[zr | z≥ 0] 

where    z  ~  N[ηi, σv
2] 

   ηi =  -εi- θσv
2 

 
Therefore, h(r,εi)  is  the expected value of zr where z has a truncated at zero normal distribution.  
Thus, we estimate h(r,εi) by using the mean of a sample of draws from this distribution.  For given 
values of εi and ηi (i.e., yi, xi, β, σv, θ, r), h(r,εi) is consistently estimated by 
 

   
1

1ˆ Q r
i iqq

h z
Q −

= ∑  

 
where ziq is a random draw from the truncated normal distribution with mean parameter ηi and 
variance parameter σv.  This produces the simulated log likelihood function 
 
   Log LS =   Log L(exponential) 

    +  n[(P-1)logθ - logΓ(P)] + Σi log ĥ  (P-1,εi) 
 
which for a given set of draws is a smooth and continuous function of the parameters. 
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 Random draws from the truncated distribution are obtained using Geweke’s method as 
follows:  Let  

  L =  truncation point = 0 for this application 

   µ =  the mean of untruncated distribution = -εi - θσv
2 

   σ =  the standard deviation of the untruncated distribution = σv 

   PL =  Φ[(L - µ) / σ] 

   F =  one draw from U[0,1] 

   z =  µ + σΦ-1[PL + F×(1 - PL)] 

Then,    z =  the draw from the truncated distribution. 

 
Collecting all terms, then, this produces the simulated log likelihood function: 

  Log  L  =   n{logθ  +  ½ σv
2θ2}  + Σi{θdεi  +  logΦ[-(dεi/σv  +  θσv)]} 

     +   n[(P-1)logθ - logΓ(P)] 

     +   Σi log
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   εi =   yi - β′xi 

   µi =  -εi- θσv
2 

 
and Fiq is a fixed set of Q draws from U[0,1] specific to the individual.  Derivatives of h(r,εi) and log 
h(r,εi) are also estimated by simulation.  The JLMS efficiency measure has the simple form 
 
   E[u|ε]  =  h(P,εi) / h(P-1,εi). 
 
 The final consideration is the method of obtaining the draws.  The default method is to use 
the random number generators.  Since this is a very computation intensive model, it is usually more 
efficient to use Halton draws – you can use many fewer Halton draws than random draws to obtain 
the same quality results.  Halton draws are discussed in Section R24.7.  To use Halton draws with 
this estimator, add 
   ; Halton  
 
to the command.  The number of points for either method is specified with 
 
   ; Pts = the desired number of draws 
 
We have used this feature in the example in the previous section. 
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E62.11 Sample Selection in a Stochastic Frontier Model 
 
 This model is a counterpart to familiar models of sample selection.  See Greene (2010) for 
details on the methodology.  Additional results appear in Terza (2010).  The model is a familiar 
sample selection form 
 
   d* =  α′z  +  w, d = 1(d* > 0) 

   y =  β′x  +  v  -  u 

   u =  |U| with U ~ N[0,σu
2] 

   (v,w)  ~  bivariate normal with [(0,0),(σv
2, ρσv, 1)] 

   (y,x)      only observed when d = 1. 
 
Thus, the selection operates through the heterogeneity component of the production model, not the 
inefficiency.  (Thus, observation is not viewed as a function of the level of inefficiency.) 
 The model is fit by maximum simulated likelihood.  To request it, use LIMDEP’s usual 
format for sample selection models, 
 
 PROBIT  ; Lhs = d ; Rhs = variables in w ; Hold $ 
 FRONTIER  ; Lhs = y ; Rhs = variables in x; Selection $ 
 
The model must be the base case, half normal, with no panel data application, no truncation, or 
heteroscedasticity, etc.  You may control the simulations with ; Halton and ; Pts for the simulation.  
Efficiency and inefficiency estimates are saved as with other models with ; Eff and ; Techeff.  
However, observations in the nonselected part of the sample are given missing values (-999) for any 
of these computations. The PARTIALS and SIMULATE commands do not inherit the selection 
model – these commands are not available after fitting this model. 
 
E62.11.1 Application 
 
 The following creates a data set that conforms exactly to the assumptions of the model. 
 

CALC  ; Ran(123457) $ 
SAMPLE ; 1-2000 $ 
CREATE ; z1 = Rnn(0,1) ; z2 = Rnn(0,1) $ 
CREATE ; v1 = Rnn(0,1) ; v2 = Rnn(0,1) $ 
CREATE ; e1 = v1 ; e2 = .7071 * (v1+v2) $ 
CREATE ; ds = z1 + z2 + e1 ; d = ds > 0 $ 
CREATE ; u = Abs(Rnn(0,1)) ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) $ 
CREATE ; y = x1 + x2 + e2 - u $ 
PROBIT ; Lhs = d ; Rhs = one,z1,z2 ; Hold $ 
FRONTIER ; Lhs = y ; Rhs = one,x1,x2 ; Selection $ 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    D 
Log likelihood function      -825.27526 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       D|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .03616         .03525     1.03  .3051     -.03294    .10525 
      Z1|     .96314***      .04604    20.92  .0000      .87291   1.05338 
      Z2|    1.01534***      .04702    21.59  .0000      .92318   1.10750 
--------+-------------------------------------------------------------------- 
Warning   141: Iterations:current or start estimate of sigma nonpositive 
Normal exit:  14 iterations. Status=0, F=    1916.202 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                    Y 
Log likelihood function     -1916.20216 
Estimation based on N =   2000, K =   6 
Inf.Cr.AIC  =   3844.4 AIC/N =    1.922 
Variances: Sigma-squared(v)=    1.00545 
           Sigma-squared(u)=    1.07396 
           Sigma(u)        =    1.03632 
           Sigma(v)        =    1.00272 
           Sigma           =    1.44202 
           Lambda          =    1.03351 
Sample Selection/Frontier Model 
Murphy/Topel Corrected VC Matrix 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0        -1662.32532 
Chi-sq=2*[LogL(SF)-LogL(LS)] = -507.754 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
----------------------------------------------------------------------------- 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    -.04492         .10971     -.41  .6822     -.25994    .17011 
      X1|    1.00102***      .03357    29.82  .0000      .93522   1.06682 
      X2|     .95627***      .03195    29.93  .0000      .89364   1.01890 
Sigma(u)|    1.03632***      .13217     7.84  .0000      .77728   1.29537 
Sigma(v)|    1.00272***      .05471    18.33  .0000      .89549   1.10995 
Rho(w,v)|     .77553***      .06187    12.54  .0000      .65427    .89679 
--------+-------------------------------------------------------------------- 
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E62.11.2 Log Likelihood and Estimation Method 
 
 Write the model structure as 
 
   d*  =  α′z  +  w, w ~ N[0,1],  d = 1(d* > 0) 

   y =  β′x  +  σvv  - σu u 

   u =  |U| with U ~ N[0,1] 

   (v,w)  ~  bivariate normal with [(0,0),(1, ρ, 1)] 

   (y,x)      only observed when d = 1. 
 
(Note for convenience later, we have moved the scale parameters into the structural model.) To set 
up the estimator, we now write w in its conditional on v form, 
 
   w|v = ρv + h where h ~ N[0, (1 - ρ2)] and h is independent of v. 

Therefore,   d*|v = α′z +ρv + h, d = 1(d* > 0|v) 

Then,   Prob[d = 1 or 0 | z,v]  =  
2

(2 1)
1
z vd

  ′ + ρ  Φ −
  − ρ  

α  

 
For the selected observations, d = 1, conditioned on v, the joint density for y and d is the product of 
the marginals since conditioned on v, y and d are independent; 
 
   f(y, d = 1|x,z,v)  =  f(y|x,v) Prob(d = 1|z,v). 
 
We have the second part above.  For the first part, 
 
   y|x,v  =  (β′x + σvv ) - σuu 
 
where u is the truncation at zero of a standard normal variable, so f(u) = 2φ(u), u>0.  The Jacobian of 
the transformation from u to y is 1/σu, so by the change of variable, the conditional density is 
 

   ( )2( | , ) ,( ) 0.v
v

u u

v yf y v v y
′ + σ − ′= φ + σ − ≥ σ σ 

xx xβ
β  

 
Therefore, the joint conditional density is 
 

   
2

( )2( , 1| , , )
1

x zx z v

u u

v y vf y d v
 ′  ′+ σ − + ρ = = φ Φ   σ σ − ρ   
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To obtain the unconditional density, it is necessary to integrate v out of the conditional density.  
Thus, 

  
2

( ))2( , 1| , ) ( )
1

v
v

u u

v y vf y d f v d v
 ′  ′σ − − + ρ = = φ Φ   σ σ − ρ   

∫
x zx z β α . 

 
The relevant term in the log likelihood is log f(y,d=1|x,z).  For the nonselected observations, the 
contribution to the log likelihood is the log of the unconditional probability of nonselection, which is 
 

   Prob(d = 0|z)  =  
2

( )
1
z

v

v f v dv
  ′ + ρ  Φ −

  − ρ  
∫

α
. 

 
The integrals do not exist in closed form, so these terms cannot be evaluated as is.  Before 
proceeding, we note the additional complication, β′x + σvv - y = σuu> 0, so the density f(v) is not the 
standard normal that intuition might suggest; it is a truncated normal. 
 The integrals can be computed by simulation.  By construction, 
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∫
β βα α

 

 
so by sampling from the distribution of v, we can compute the function of v and average to obtain the 
integrals.  In order to sample the draws on v, we note the implied truncation, 
 
   v>  (y - β′x)/σv  or  v>ε/σv. 
 
Draws from the truncated normal can be obtained using result (E-1) in Greene (2011).  Let A equal a 
draw from the uniform (0,1) population.  The desired draw from the truncated normal distribution 
will be 
   vr =  Φ-1 [Φ(ε/σv) + ArΦ(-ε/σv)]. 
 
Collecting all terms, then, the simulated log likelihood will be 
 

 
1 2 2

)1 2log log (1- )
1 1

R v ir ir ir
S i ii r

u u

v y v vL d d
R =

       ′ ′ ′ σ − + ρ ρ       = φ Φ Φ      σ σ   − ρ − ρ         
∑ ∑ x + z z -+β α −α  

 
where the draws on vir are as shown above.  Derivatives of this simulated log likelihood are obtained 
numerically using finite differences. 
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E63: Heteroscedasticity and Truncation in 
Stochastic Frontier Models 

 
E63.1 Introduction 
 
 This chapter develops several extensions of the stochastic frontier model presented in 
Chapter E62.  The four models considered here are as follows: 
 

• Heteroscedasticity in v and/or u 
• Truncated normal with nonzero, heterogeneous mean in the underlying U 
• Heterogeneity in the parameter of the exponential or gamma distribution 
• Amsler et al.’s ‘scaling model’ 

 

E63.2 Heteroscedasticity and Heterogeneity 
 
 In the development of the frontier model, an important question concerns how to introduce 
observed heterogeneity into the specification.  Suppose the vector of variables zi contains the 
information.  For example, in the airline data, we have data on load factor, stage length and number 
of points in the route map, that may also impact production, cost and efficiency.  In the model 
proposed thus far, the only point at which one might introduce zi appears to be in the goal function 
itself, which would become 
 

   yi =  β′xi +  α′zi  +  vi -  ui. 
 
This is a common approach.  (See, e.g., Greene (2004a,b).)  In this chapter, we present two other 
methods of introducing observed heterogeneity in the frontier model, in the variance parameters and 
in the mean of the underlying inefficiency.   
 
E63.2.1 Heterogeneity in the Scale Parameters 
 
 A natural departure point is to allow observable variation in σv

2 and/or σu
2.  For the first of 

these, the term heteroscedasticity is appropriate.  (The papers by Hadri et al. (1999, 2003a,b) develop 
heteroscedasticity models for frontier specifications.)  For the second of these, a result which seems 
routinely to be overlooked in the literature is that allowing σu

2 to vary over observations, call it σu,i
2, 

induces more than just heteroscedasticity.  Unavoidably in all model specifications, when this 
parameter varies over individuals, then both the variance and the mean of ui do also.  For the half 
normal model, regardless of how σu,i varies, 
 
   E[ui]  =  σu,iφ(0)/Φ(0)  =  0.79788σu,i. 
 
A like result emerges in the truncated normal model. In the exponential model, the mean of ui equals its 
standard deviation, while in the gamma model, it is a multiple, P1/2, of it. Thus, in all cases, as regards 
ui, the term heteroscedasticity, while not inappropriate, is nonetheless ambiguous. These models cannot 
be heteroscedastic without also having a heterogeneous mean. In what follows, therefore, we continue 
to use the familiar terminology, but we emphasize the nature of the model as well. 
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 The models of scale heterogeneity may extend either variance parameter with the 
specification of the variance functions 
 
 Var[U|zi] =  σui

2  =  σu
2 exp(γ′zi)     (heteroscedastic) 

 Var[v|zi] =  σv
2  =   σv

2 exp(δ′wi)     (heteroscedastic) 

 Var[u|zi]  =  σu
2 exp(γ′z) and Var[v|zi] = σv

2 exp(δ′wi) (doubly heteroscedastic) 
 
There is no requirement that the same variables enter the two functions, and either or both may be 
heterogeneous.  The model specification is 
 
   ; Heteroscedasticity or  ; Het 
 

and either or both of  
 

   ; Hfv = variables in the variance of v 
   ; Hfu = variables in the variance of u 
 
If either variance is not given, it is assumed to be constant.  The variance function is the exponential 
format used throughout LIMDEP If either variance is unspecified, the implied model is σji

2  =  exp(δ 
or γ) which is the same as  
 
   ; Hfv = one or ; Hfu = one   
 
If both are unspecified, then the implied model  
 
   ; Het ; Hfv = one ; Hfu = one 
 
is the default, normal-half normal stochastic frontier model.  It provides identical estimates.  (Try it.) 
A constant (one) is automatically inserted into both lists if you do not include it.  This form may be 
used with the normal-half normal and normal-truncated normal models. 
 

E63.2.2 Exponential and Gamma Models with Heterogeneity 
 
 The one sided component of the normal-exponential and normal-gamma models is 
parameterized with a scale parameter, θ, which is thus far taken to be a constant.  In these models, 
 
   E[ui]  =  P/θ  =  P×σu 
 
where P = 1 in the exponential model.  The exponential heteroscedasticity model for ui is extended to 
these two models by using 
 
   θi =  θ exp(-δ′zi). 
 
With this parameterization, the estimates from this model will be comparable to those for the half 
normal and truncated normal models.  (See the examples below.)  To request this form, use 
 
   ; Het ; Hfu = the list of variables. 
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The list should not contain a constant term, one.  This may be used in all implementations of the 
exponential gamma model.  Note, however, that in the panel data settings, the parameter is assumed 
to be time invariant.  The values for zi are taken from the data record for the last period for firm i.  
We will return to this subject below.  The symmetric component, v, may also be heteroscedastic, as 
in the other models, with 
 
   ; Hfv = list of variables. 
 
E63.2.3 Efficiency Estimation with Heteroscedasticity 
 
 This extension does not change the computation of measures of efficiency or inefficiency.  
The central results are the JLMS estimators, 
 

   
2

( )ˆ[ | ] ,
1 1 ( )

wE u w v u
w

 σλ φ
ε = − ε = − + λ − Φ 

 , w =Sελ/σ 

 
for the half normal models and 
 

   ( )ˆ[ | ]
1 ( )v

wE u w
w

 φ
ε = σ − − Φ 

, w = (Sε/σv + θσv) 

 
for the exponential models.   These functions are evaluated for each observation at 
 
   λi  =  σu,i / σv,i 

and   σi
2  =  σu,i

2 + σv,i
2  

 
for the half normal model and σv,i and θi likewise in the exponential and gamma models. 
 
E63.2.4 Application 
 
 The estimates below show a production frontier based on the six inputs.  The second set of 
results presents the heteroscedastic model, with the variance of v a function of the log of the average 
stage length and the variance of u depending on the load factor and the log of the number of points 
served.  We examine the efficiency results, then compute the average partial effects of the 
environmental variables on technical efficiency. 
 

FRONTIER ; Lhs = lq ; Rhs = one,ll,lp,lf,le,lm,lk ; Techeff = eu $ 
FRONTIER ; Lhs = lq ; Rhs = one,ll,lp,lf,le,lm,lk ; Techeff = euhet 

; Het ; Hfv = lstage ; Hfu = loadfctr,points $ 
 PARTIALS  ; Effects: lstage / loadfctr / points ; Summary $ 

KERNEL ; Rhs = eu,euhet 
; Title = Kernel Estimators for Technical Efficiency $ 

PLOT   ; Lhs = eu ; Rhs = euhet ; Rh2 = eu ; Fill ; Grid 
; Title = Estimates of Technical Efficiency 
; Vaxis = exp(-E[u|e]) for Heteroscedastic Model $ 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       108.43918 
Estimation based on N =    256, K =   9 
Variances: Sigma-squared(v)=     .01902 
           Sigma-squared(u)=     .01692 
           Sigma(v)        =     .13791 
           Sigma(u)        =     .13007 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .18957 
Gamma = sigma(u)^2/sigma^2 =     .47074 
Var[u]/{Var[u]+Var[v]}     =     .24425 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =     .730 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -2.98823***      .72136    -4.14  .0000    -4.40206  -1.57439 
      LL|    -.42909***      .06315    -6.79  .0000     -.55287   -.30530 
      LP|     .44533***      .09498     4.69  .0000      .25917    .63149 
      LF|     .37257***      .07038     5.29  .0000      .23463    .51052 
      LE|    2.09473***      .68790     3.05  .0023      .74647   3.44299 
      LM|     .69910***      .07580     9.22  .0000      .55054    .84766 
      LK|   -2.09806***      .76556    -2.74  .0061    -3.59853   -.59759 
        |Variance parameters for compound error 
  Lambda|     .94309***      .16870     5.59  .0000      .61244   1.27373 
   Sigma|     .18957***      .00064   297.81  .0000      .18832    .19082 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       149.30854 
Estimation based on N =    256, K =  12 
Inf.Cr.AIC  =   -274.6 AIC/N =   -1.073 
Variances: Sigma-squared(v)=     .01292 
           Sigma-squared(u)=     .03575 
           Sigma(v)        =     .11367 
           Sigma(u)        =     .18907 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .22061 
Gamma = sigma(u)^2/sigma^2 =     .73450 
Var[u]/{Var[u]+Var[v]}     =     .50132 
Variances averaged over observations 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  2 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  3 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =   82.468 
Kodde-Palm C*: 95%: 8.761,  99%: 12.483 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -3.29243***      .72664    -4.53  .0000    -4.71662  -1.86824 
      LL|    -.47507***      .08890    -5.34  .0000     -.64932   -.30083 
      LP|     .50435***      .10452     4.83  .0000      .29950    .70920 
      LF|     .53204***      .07550     7.05  .0000      .38406    .68003 
      LE|    2.36654***      .69245     3.42  .0006     1.00936   3.72372 
      LM|     .53413***      .08670     6.16  .0000      .36419    .70406 
      LK|   -2.43136***      .77258    -3.15  .0016    -3.94558   -.91713 
        |Parameters in variance of v (symmetric) 
Constant|   -3.97891***      .86601    -4.59  .0000    -5.67626  -2.28155 
  LSTAGE|    -.06406         .13359     -.48  .6315     -.32590    .19777 
        |Parameters in variance of u (one sided) 
Constant|    9.96191**      4.51238     2.21  .0273     1.11781  18.80600 
LOADFCTR|   -25.9711***     9.37571    -2.77  .0056    -44.3471   -7.5950 
  POINTS|    -.00353         .01288     -.27  .7840     -.02877    .02171 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 The figure below displays the kernel density estimators for the two sets of estimated 
inefficiencies.  The upper one is for the heteroscedastic model.  The figure shows clearly the 
influence of the heterogeneity.  The means of the two distributions are virtually the same, but the 
variance in the heteroscedastic model is considerably higher. 
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Figure E63.1  Kernel Estimators for Density of E[u|ε] with and without Heteroscedasticity 

 

 
Figure E63.2  Plot of Estimated Inefficiencies, Heteroscedastic vs. Homoscedastic 

 
--------------------------------------------------------------------- 
Partial Effects for JLMS Estimator in Normal/het SF Model 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      LSTAGE       -.00034     .00071     .48     -.00174      .00105 
      LOADFCTR      .62934     .17576    3.58      .28485      .97382 
      POINTS        .00009     .00031     .28     -.00052      .00069 
--------------------------------------------------------------------- 
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E63.2.5 Technical Details 
 
 For the models with heteroscedasticity, we revert to the original structural form of the model 
to form the log likelihoods.  For the normal-half normal model, for example, we use 
 
   log Li =  - log(2/π) - logσi - ½(εi/σi)2 + logΦ[-Sεiλi/σi] 

where   σi =  22
uiui σ+σ  

   λi =  σui / σvi 

   σui
2 =  exp(γ′zi) 

   σvi
2 =  exp(δ′wi), 

 
where S = +1 for a production frontier and -1 for a cost frontier.  Likewise, for the truncation model, 
 
   log Li =  - ½log2π -logσi - ½[(Sεi + µ)/σi]2 

        + logΦ[(µ/λi - Sεiλi)/σi] - logΦ(µ/σu.i ). 
 
We build the structure of the model with two freely varying variance parameters, σu,i and σv,i, rather 
than the reduced form parameters λ and σ.  The use of λi as a free parameter would not be 
appropriate because the numerator and denominator of λi must be allowed to vary freely and 
independently.  A like consideration rules out the composed parameter σi.  The formulation of the 
log likelihood and its derivatives follows the results given earlier for the homogeneous cases.  Where 
the derivatives with respect to γ and δ emerge, we use the chain rule to differentiate with respect to 
σu,i and σv,i first. Note that the independent parameter σu and σv have been absorbed into the 
exponential functions.  Thus, σv is exp(γ0).  This ensures that the variances are always positive.  
 The normal-gamma and normal-exponential models are not reparameterized.  The log 
likelihood for the exponential model with variance heterogeneity is 
 
   log Li =  logθi+ ½θi

2σi,v
2 + θiSεi+ logΦ[-Sεi/σi,v - θiσi,v] 

where   θi =  θ exp(-γ′zi) 

and   σi,v =  σv exp(δ′wi). 
 
The sign change in θi is used to make the normal-exponential model comparable to the normal-half 
normal model, since Var[ui] = 1/θi

2. 
 
  



E63: Heteroscedasticity and Truncation in Stochastic Frontier Models   E-1559 

E63.3 The Normal-Truncated Normal Model 
 
 The normal-truncated normal model relaxes an implicit restriction in the normal-half normal 
model, that the mean of the underlying inefficiency variable is zero.  The extended model is obtained 
by allowing µ, the mean of U, to be nonzero; 
 
   y =  β′x  +  v  -  u, u = |U| 

   U ~  N[µ,σu
2] 

   v ~  N[0,σv
2] 

 
(With a constant term in the model, no similar parameter can be introduced into the distribution of v.)  
The command for estimating this model is 
 
 FRONTIER ; Lhs = dependent variable 
   ; Rhs = one, other independent variables 
   ; Model = Truncated Normal $ (or ; Model = T) 
 
The specification of the cost frontier and the estimator of technical inefficiency are requested in the 
same fashion, 
   ; Cost 
and   ; Eff = variable name 
 
Other optional parts of the command are the same as that for the normal-half normal model. 
 We note, this model is extremely volatile, owing to the rather weak identification of the 
parameter µ.  It is difficult to distinguish the mean from the variance parameter in this model.  In the 
truncation model, 
   E[ui]  =  µ  +  σuφ(µ/σu)/Φ(µ/σu). 
 
This implies that σu and µ can covary so as to produce little or no variation in the expectation of ui.  
The likelihood is not a function of the square of ui, so this mean is the only source of information 
about these two parameters.  (By totally differentiating the expected value, one can solve for the 
implicit relationship, dµ/dσu that produces dE[ui] = 0.)  The example below suggests how this aspect 
of the model influences (or fails to) the estimates of inefficiency.  For purposes of the JLMS 
estimator for the half normal model, when the mean of U is a nonzero µ, the argument to the 
function is replaced with 
 
   w  =  Sελ/σ  -  µ/(σλ). 
 
The remaining part of the computation is the same. 
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E63.3.1 Application 
 
 The results below show estimates of a stochastic cost frontier with the half normal then the 
truncated normal specifications.  The additional parameterization appears to have had a large impact 
on the results; the estimates are noticeably different.  The plot of the two sets of inefficiency 
estimates suggest that the effect of the new specification has been little more than to double the 
estimated values from the model – the dashed line in the figure shows the function uTN = 2uHN.  The 
extremely large estimates of µ and the standard error do suggest that something is amiss with the 
model, however.   

The commands are: 
 

FRONTIER ; Lhs = lq ; Rhs = one,ll,lp,lf,le,lm,lk ; Techeff = u $  
FRONTIER ; Lhs = lq ; Rhs = one,ll,lp,lf,le,lm,lk ; Techeff = ut  ; Model = T $ 

 PLOT  ; Lhs = u ; Rhs = ut ; Rh2 = u ; Fill ; Grid  
   ; Title = Truncated Normal Inefficiencies vs. Half Normal $ 
 DSTAT ; Rhs = u,ut $ 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       108.43918 
Variances: Sigma-squared(v)=     .01902 
           Sigma-squared(u)=     .01692 
           Sigma(v)        =     .13791 
           Sigma(u)        =     .13007 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .18957 
Gamma = sigma(u)^2/sigma^2 =     .47074 
Var[u]/{Var[u]+Var[v]}     =     .24425 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =     .730 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -2.98823***      .72136    -4.14  .0000    -4.40206  -1.57439 
      LL|    -.42909***      .06315    -6.79  .0000     -.55287   -.30530 
      LP|     .44533***      .09498     4.69  .0000      .25917    .63149 
      LF|     .37257***      .07038     5.29  .0000      .23463    .51052 
      LE|    2.09473***      .68790     3.05  .0023      .74647   3.44299 
      LM|     .69910***      .07580     9.22  .0000      .55054    .84766 
      LK|   -2.09806***      .76556    -2.74  .0061    -3.59853   -.59759 
        |Variance parameters for compound error 
  Lambda|     .94309***      .16870     5.59  .0000      .61244   1.27373 
   Sigma|     .18957***      .00064   297.81  .0000      .18832    .19082 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       109.49695 
Estimation based on N =    256, K =  10 
Variances: Sigma-squared(v)=     .01896 
           Sigma-squared(u)=    2.48813 
           Sigma(v)        =     .13771 
           Sigma(u)        =    1.57738 
Sigma = Sqr[(s^2(u)+s^2(v)]=    1.58338 
Gamma = sigma(u)^2/sigma^2 =     .99244 
Var[u]/{Var[u]+Var[v]}     =     .97946 
Stochastic Production Frontier, e = v-u 
Half Normal:u(i)=|U(i)|; frontier model 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =    2.845 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -3.11541***      .77143    -4.04  .0001    -4.62739  -1.60343 
      LL|    -.44532***      .07797    -5.71  .0000     -.59814   -.29249 
      LP|     .46908***      .11368     4.13  .0000      .24628    .69188 
      LF|     .37437***      .07465     5.02  .0000      .22807    .52068 
      LE|    2.20830***      .73883     2.99  .0028      .76023   3.65637 
      LM|     .67741***      .09341     7.25  .0000      .49433    .86048 
      LK|   -2.20620***      .82402    -2.68  .0074    -3.82126   -.59115 
        |Offset [mean=mu(i)] parameters in one sided error 
      Mu|   -31.5468       5061.203     -.01  .9950  -9951.3228  9888.2292 
        |Variance parameters for compound error 
  Lambda|    11.4545       907.8501      .01  .9899  -1767.8991  1790.8081 
   Sigma|    1.58338       124.7546      .01  .9899  -242.93113  246.09790 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|       Mean       Std.Dev.     Minimum      Maximum     Cases Missing 
--------+--------------------------------------------------------------------- 
       U|      .902312      .035500      .703534      .963108      256       0 
      UT|      .925474      .039335      .608274      .972355      256       0 
--------+--------------------------------------------------------------------- 
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Figure E63.3  Inefficiency Estimates from Truncated Normal Model 

 
E63.3.2 Battese and Coelli (1995) Formulation 
 
 There are (apparently) two formulations of the normal – truncated normal model in the 
literature.  The formulated above, 
 
   y =  β′x  +  v  -  u, u = |U| 

   U ~  N[µ,σu
2] 

   v ~  N[0,σv
2] 

 
is due to Stevenson (1980).  Note that the inefficiency term is the absolute value of a normally 
distributed variable with a nonzero mean.  Battese and Coelli proposed an apparently different 
formulation of the truncation model;  
 
   u  =  µ  +  w 
 
where w is a truncated normal, such that 
 
   w  > -µ. 
 
This is actually the same model.  You can obtain the estimates using this alternative formulation with 
 
   ; Model = BC95 
 
in place of ; Model = T.  The log likelihood for this formulation involves a one to one 
reparameterization of the Stevenson model, which has slightly different numerical properties.  You 
can see this in the application below.  The estimated inefficiency and efficiency values produced by 
the two models are the same to five or six digits, however. 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       109.48819 
Variances: Sigma-squared(v)=     .01918 
           Sigma-squared(u)=    2.25705 
           Sigma(v)        =     .13850 
           Sigma(u)        =    1.50235 
Sigma = Sqr[(s^2(u)+s^2(v)]=    1.50872 
Gamma = sigma(u)^2/sigma^2 =     .99157 
Var[u]/{Var[u]+Var[v]}     =     .97715 
Stochastic Production Frontier, e = v-u 
Battese/Coelli 1995 truncated normal model 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     1 
Deg. freedom for inefficiency model:  2 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =    2.828 
Kodde-Palm C*: 95%: 5.138,  99%:  8.273 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -3.09929***      .76919    -4.03  .0001    -4.60687  -1.59172 
      LL|    -.44370***      .07771    -5.71  .0000     -.59600   -.29140 
      LP|     .46535***      .11351     4.10  .0000      .24288    .68781 
      LF|     .37430***      .07432     5.04  .0000      .22863    .51997 
      LE|    2.18991***      .73664     2.97  .0030      .74613   3.63369 
      LM|     .67921***      .09322     7.29  .0000      .49651    .86191 
      LK|   -2.18647***      .82171    -2.66  .0078    -3.79700   -.57594 
        |Offset [mean=z(i)*delta] parameters in one sided error 
Constant|   -29.6062       4821.053     -.01  .9951  -9478.6972  9419.4848 
        |Variance parameters for compound error 
   Gamma|     .99157        1.34377      .74  .4606    -1.64216   3.62531 
SigmaSqd|    2.27624       363.5754      .01  .9950  -710.31839  714.87086 
--------+-------------------------------------------------------------------- 
 (Stevenson formulation) 
Log likelihood function        94.86417 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -3.11541***      .77143    -4.04  .0001    -4.62739  -1.60343 
      LL|    -.44532***      .07797    -5.71  .0000     -.59814   -.29249 
      LP|     .46908***      .11368     4.13  .0000      .24628    .69188 
      LF|     .37437***      .07465     5.02  .0000      .22807    .52068 
      LE|    2.20830***      .73883     2.99  .0028      .76023   3.65637 
      LM|     .67741***      .09341     7.25  .0000      .49433    .86048 
      LK|   -2.20620***      .82402    -2.68  .0074    -3.82126   -.59115 
        |Offset [mean=mu(i)] parameters in one sided error 
      Mu|   -31.5468       5061.203     -.01  .9950  -9951.3228  9888.2292 
        |Variance parameters for compound error 
  Lambda|    11.4545       907.8501      .01  .9899  -1767.8991  1790.8081 
   Sigma|    1.58338       124.7546      .01  .9899  -242.93113  246.09790 
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E63.3.3 Technical Details on the Truncated Normal Model 
 
 The individual term in the log likelihood for the normal-truncated normal model is 
 
 log Li  =  - ½log2π -logσ - ½[(Sεi + µ)/σ]2 - logΦ(µ/σu ) + logΦ[(µ/λ - Sεiλ)/σ]. 
 
The definitions above imply that  
 

   σu = σλ/ 21 λ+ .   
 
Using this and the reparameterization  
 
   α = µ/(λσ)  
 
produces the log likelihood for this model, 
 

 Log Li  =  - ½log2π -logσ - ½(dεi/σ + αλ)2 - logΦ(α 21 λ+ ) + logΦ(α - dεiλ/σ). 
 
The function is then maximized with respect to β, σ, λ and α.  After optimization, the structural 
parameter µ is recovered from the result µ = ασλ.  For the model with heterogeneity in the mean 
presented in Section E63.3.4, 
 
   µi  =  θ′zi 
 
we simply replace α with αi= α′zi, then recover the parameter vector θ from the same transformation 
as before, θ = σλα. 
 For purposes of the JLMS estimator for the half normal model, when the mean of U is a 
nonzero µ, the argument to the function is replaced with 
 
    w  =  Sελ/σ  -  µ/(σλ). 
 
The remaining part of the computation is the same. 
 
E63.3.4 Heterogeneity in the Mean in the Truncation Model 
 
 The models listed above are all ‘homogeneous.’  Both the means and the variances of the 
underlying disturbance distributions are constant.  There are several models of heterogeneity 
available as well.  Use 
 
   ; Model = T ; Rh2 = list of variables that enter the mean 
 
to specify the heterogeneity in mean model, Ui ~ N[α′zi, σu

2].  In formulating this model, though it is 
not required, you should include a constant in zi (the Rh2 variables) so that the homogeneous model 
becomes a special case.  Also, if you are fitting a panel data version of this, note that the assumption 
underlying the model is that the same ui occurs in every period.  Therefore, the α′zi should be the 
same in every period.  LIMDEP will assume this is the case, and only use the Rh2 variables provided 
for the first period. 
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E63.3.5 Truncation and Heteroscedasticity 
 
 The doubly heteroscedastic model is also available for the truncated normal stochastic 
frontier model.  In 
   yi  =  β′xi  +  vi-  ui 
 
you may specify ; Model = Truncated Normal; Rh2 = list of variables 
 
and    Var[ui]  =  σu

2 exp(δ′zi) with  
 
   ; Het ; Hfu = list of variables in zi 
 
and/or    Var[vi]  =  σv

2 exp(γ′wi) with 
 
   ; Het ;  Hfv = list of variables in wi 
 
Note that since both variance functions have a free multiplicative constant, you should not include 
one in either variable list.  
 In the absence of the Rh2 list, the mean of the underlying truncated variable is taken to be a 
constant to be estimated. This formulation encompasses all of Stevenson (1980), Reifschneider and 
Stevenson (1991), Huang and Liu (1994), and Battese and Coelli (1995).  (Notwithstanding the 
assertion in the Battese and Coelli paper, the latter is not a panel data treatment as observations are 
still assumed to be independent.) 
 To illustrate the truncated normal estimator, we have refit the stochastic frontier production 
function with a complete set of firm dummy variables (less the last one) and the load factor variable 
in the mean of the underlying distribution.  In the second model below, we have made the variance 
of v a function of the log of the average stage length.  The command set begins with a small repair to 
the data set.  One of the firms has no observations for the load factor, stage length or points served 
variables – they are coded as zero in the data.  These observations are bypassed, then the firm 
dummies for the fixed effects model are assembled. 
 

SAMPLE ; All $ 
REJECT  ; loadfctr = 0 $ 
CREATE  ; i = Seq(firm) $ 
CREATE ; Expand(i,0) $ 
CREATE ; lk = Log(k) $ 
NAMELIST ; xp = one,lf,lm,le,ll,lp,lk $ 
FRONTIER ; Lhs = lq ; Rhs = xp ; Model = T ; Rh2 = loadfctr,_i_ $ 
FRONTIER ; Lhs = lq ; Rhs = xp ; Model = T ; Rh2 = loadfctr,_i_ 

; Het ; Hfv = lstage $ 
 
(These are ‘true fixed effects’ models.) 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       196.20748 
Estimation based on N =    256, K =  34 
Inf.Cr.AIC  =   -324.4 AIC/N =   -1.267 
Model estimated: Aug 22, 2011, 22:29:09 
Variances: Sigma-squared(v)=     .00960 
           Sigma-squared(u)=     .00389 
           Sigma(v)        =     .09799 
           Sigma(u)        =     .06241 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .11618 
Gamma = sigma(u)^2/sigma^2 =     .28856 
Var[u]/{Var[u]+Var[v]}     =     .12845 
Stochastic Production Frontier, e = v-u 
Half Normal:u(i)=|U(i)|; frontier model 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:    25 
Deg. freedom for inefficiency model: 26 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =  176.266 
Kodde-Palm C*: 95%:38.301,  99%: 45.026 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -2.92400***      .68225    -4.29  .0000    -4.26118  -1.58682 
      LF|     .31938***      .09026     3.54  .0004      .14246    .49629 
      LM|     .81647***      .08387     9.73  .0000      .65209    .98086 
      LE|    1.99934***      .64368     3.11  .0019      .73776   3.26092 
      LL|    -.42790***      .10954    -3.91  .0001     -.64260   -.21321 
      LP|     .42291***      .10529     4.02  .0001      .21654    .62929 
      LK|   -2.07145***      .72267    -2.87  .0042    -3.48786   -.65503 
        |Offset [mean=mu(i)] parameters in one sided error 
LOADFCTR|    -.83124        6.87337     -.12  .9037   -14.30280  12.64031 
     I01|     .63250        4.90139      .13  .8973    -8.97405  10.23904 
     I02|     .58118        4.27763      .14  .8919    -7.80282   8.96519 
(Firms 3-21 omitted) 
     I22|     .45249        4.00889      .11  .9101    -7.40480   8.30977 
     I23|     .64687       99.45841      .01  .9948  -194.28803  195.58176 
     I24|    -.19804        7.26011     -.03  .9782   -14.42760  14.03152 
        |Variance parameters for compound error 
  Lambda|     .63686**       .28984     2.20  .0280      .06879   1.20494 
   Sigma|     .11618***      .01008    11.53  .0000      .09643    .13593 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       215.58601 
Estimation based on N =    256, K =  35 
Variances: Sigma-squared(v)=     .00634 
           Sigma-squared(u)=     .01037 
           Sigma(u)        =     .10183 
           Sigma(v)        =     .07961 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .12926 
Variances averaged over observations 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:    25 
Deg. freedom for inefficiency model: 26 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =  215.023 
Kodde-Palm C*: 95%:38.301,  99%: 45.026 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -1.98442*       1.05055    -1.89  .0589    -4.04346    .07463 
      LF|     .45669***      .11002     4.15  .0000      .24105    .67233 
      LM|     .59013***      .10421     5.66  .0000      .38589    .79437 
      LE|    1.11856        1.00928     1.11  .2677     -.85959   3.09671 
      LL|    -.29237***      .10923    -2.68  .0074     -.50646   -.07827 
      LP|     .31311**       .14333     2.18  .0289      .03220    .59402 
      LK|   -1.14743        1.10875    -1.03  .3007    -3.32054   1.02568 
        |Mean of underlying truncated distribution 
LOADFCTR|   -2.20067***      .42161    -5.22  .0000    -3.02701  -1.37433 
     I01|    1.44767***      .25736     5.63  .0000      .94326   1.95208 
     I02|    1.39624***      .22401     6.23  .0000      .95718   1.83529 
(Firms 3-22 omitted) 
     I24|    1.29355***      .24998     5.17  .0000      .80360   1.78349 
        |Scale parms. for random components of e(i) 
ln_sgmaU|   -2.28443***      .02100  -108.79  .0000    -2.32559  -2.24328 
ln_sgmaV|   -3.22203***     1.20573    -2.67  .0075    -5.58522   -.85884 
        |Heteroscedasticity in variance of symmetric v(i) 
  LSTAGE|     .11855         .19755      .60  .5485     -.26865    .50574 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E63.4 Alvarez et al. – Equality Constrained Scaling Model 
 
 Alvarez, Amsler, Orea and Schmidt (2006) have suggested a form of the truncation model 
which encompasses a number of ideas in stochastic frontier modeling.  Their formulation is a 
normal-truncated normal frontier model with 
 
   µi  =  µ×δ′zi  and  σu,i  =  σu×δ′zi. 
 
The mean and standard deviation of the underlying truncated normal variable ui are scaled by the 
same linear function of the data.  We are skeptical of the linear scaling of the variance, and propose 
our usual exponential form instead.  The linear form may be natural for the mean, but it allows the 
variance to be negative, which is unacceptable.  The model used here is 
 
   µi  =  µ×exp(δ′zi)  and  σu,i  =  σu× exp(γ′zi). 
 
The Alvarez model results if δ = γ.  Otherwise, we allow these to be free and to produce another 
variant of the frontier model.  Note that as stated, this model is now merely a change of the normal-
truncated normal model with heteroscedasticity in which the variables enter the truncation mean 
function in the exponential function rather than linearly. 
 The equality constrained scaling model is requested with 
 
 FRONTIER ; Lhs  = y ; Rhs = one, x... 
   ; Model = Scaling  
   ; Heteroscedasticity 
   ; Rh2 = variables in mean of truncated distribution 
   ; Hfu = the same list of variables $ 
 
Note in this case, Rh2 and Hfu give the same list.   To obtain the scaling model without forcing the 
equality of δ and γ, use 
 
 FRONTIER ; Lhs = y ; Rhs = one, x... 
   ; Model = S  
   ; Heteroscedasticity 
   ; Rh2 = variables in mean of truncated distribution 
   ; Hfu = the same list of variables $ 
 
Note, ; Model = Scaling in the equality constrained case and ; Model = S when the equality 
constraint is relaxed.  (In this formulation, the variable lists could differ.)  To constrain δ = 0, which 
just produces the heteroscedasticity model, use 
 
 FRONTIER ; Lhs  = y ; Rhs = one, x... 
   ; Model = T  
   ; Heteroscedasticity 
   ; Hfu = list of variables $ 
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To constrain γ = 0, you would use the available setup for the truncated normal form, but ; Model = S 
rather than ; Model = T to obtain the exponential scaling of the mean. 
 
 FRONTIER ; Lhs = y ; Rhs = one, x... 
   ; Model = S  
   ; Rh2 = variables in mean of truncated distribution $ 
 
Finally, with both δ = 0 and γ = 0, this is just the standard normal-truncated normal model. 
 
Technical Details 
 
 The implementation of the scaling model in LIMDEP is just a version of the truncation 
model with heteroscedasticity.  The modifications of that model are: 
 

• The constant terms in the mean and variance are enforced by the program. 
• The mean function is exponential. 
• In the first form of the model, a constraint is imposed that the coefficients in the mean and 

variance functions are the same. 
 
As Alvarez et al. note in their paper, this model is not supported by any particular theory of the 
frontier framework.  They suggest it as a natural extension of the familiar model with truncation. 
Rather, they argue that the unnatural form of the model would be the one with different scaling 
factors in the mean and variance functions. 
 
Application 
 
 To illustrate the scaling model, we use the airlines cost data.  The cost function is fit with 
truncation mean and variance functions that depend on the load factor and (log of) the average stage 
length.  The equality constraint is imposed in the first model and relaxed in the second. 
 
 FRONTIER ; Lhs  = lc ; Cost ; Rhs  = x 
   ; Model = Scaling ; Het 
   ; Rh2 = loadfctr,lstage  
   ; Hfu = loadfctr,lstage $ 
 FRONTIER ; Lhs = lc ; Cost ; Rhs = x 
   ; Model = S ; Het 
   ; Rh2 = loadfctr,lstage  
   ; Hfu = loadfctr,lstage $ 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LC 
Log likelihood function       172.27160 
Estimation based on N =    256, K =  13 
Variances: Sigma-squared(v)=     .01528 
           Sigma-squared(u)=     .00000 
           Sigma(v)        =     .12361 
           Sigma(u)        =     .00169 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .12363 
Stochastic Frontier Scaling Model 
Mean scale factor for E[u] =        .6996 
Mean scale factor for V[u] =        .6996 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  2 
Deg. freedom for truncation mean:     2 
Deg. freedom for inefficiency model:  5 
LogL when sigma(u)=0          157.91523 
Chi-sq=2*[LogL(SF)-LogL(LS)] =   28.713 
Kodde-Palm C*: 95%:10.371,  99%: 14.325 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    18.9477       27.00668      .70  .4829    -33.9844   71.8798 
      LY|     .95234***      .02117    44.98  .0000      .91084    .99383 
     LY2|     .07740***      .01534     5.04  .0000      .04733    .10747 
    LPKP|    1.50434        1.86479      .81  .4198    -2.15058   5.15926 
    LPLP|     .12682         .08328     1.52  .1278     -.03640    .29003 
    LPMP|    -.16640        1.21907     -.14  .8914    -2.55574   2.22294 
    LPEP|    -.52809         .60356     -.87  .3816    -1.71105    .65488 
    LPFP|     .00151         .02141      .07  .9436     -.04045    .04348 
        |Mean of Truncated Distribution, Mu then scale 
    Mu_0|    2.50985       11.12070      .23  .8214   -19.28633  24.30603 
LOADFCTR|    -.56559        3.85231     -.15  .8833    -8.11597   6.98479 
  LSTAGE|    -.00823         .05624     -.15  .8837     -.11845    .10200 
        |Standard Deviation of u: Sigma(u) then scale 
Sigmau_0|     .00241        9.18604      .00  .9998   -18.00191  18.00673 
LOADFCTR|    -.56559        3.85231     -.15  .8833    -8.11597   6.98479 
  LSTAGE|    -.00823         .05624     -.15  .8837     -.11845    .10200 
        |Standard deviation of v 
Sigma(v)|     .12361         .08711     1.42  .1559     -.04713    .29435 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LC 
Log likelihood function       173.52520 
Estimation based on N =    256, K =  15 
Variances: Sigma-squared(v)=     .01334 
           Sigma-squared(u)=     .00121 
           Sigma(v)        =     .11551 
           Sigma(u)        =     .03476 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .19230 
Stochastic Frontier Scaling Model 
Mean scale factor for E[u] =        .3459 
Mean scale factor for V[u] =        .2261 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  2 
Deg. freedom for truncation mean:     2 
Deg. freedom for inefficiency model:  5 
LogL when sigma(u)=0          157.91523 
Chi-sq=2*[LogL(SF)-LogL(LS)] =   31.220 
Kodde-Palm C*: 95%:10.371,  99%: 14.325 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    11.6452       24.94703      .47  .6406    -37.2501   60.5405 
      LY|     .94078***      .02140    43.97  .0000      .89884    .98272 
     LY2|     .06680***      .01579     4.23  .0000      .03585    .09776 
    LPKP|     .85146        1.94378      .44  .6614    -2.95828   4.66120 
    LPLP|     .16345**       .07956     2.05  .0399      .00751    .31939 
    LPMP|     .25417        1.26886      .20  .8412    -2.23275   2.74109 
    LPEP|    -.34167         .62932     -.54  .5872    -1.57511    .89178 
    LPFP|     .00164         .02164      .08  .9395     -.04078    .04406 
        |Mean of Truncated Distribution, Mu then scale 
    Mu_0|    1.92288***      .44030     4.37  .0000     1.05991   2.78584 
LOADFCTR|   -1.74305        4.08382     -.43  .6695    -9.74720   6.26110 
  LSTAGE|    -.01930         .04649     -.42  .6781     -.11042    .07182 
        |Standard Deviation of u: Sigma(u) then scale 
Sigmau_0|     .15374        1.11571      .14  .8904    -2.03301   2.34049 
LOADFCTR|   -14.5014       10.21457    -1.42  .1557    -34.5216    5.5188 
  LSTAGE|    1.02454        1.26499      .81  .4180    -1.45479   3.50388 
        |Standard deviation of v 
Sigma(v)|     .11551***      .00793    14.56  .0000      .09996    .13106 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E64: Panel Data Stochastic Frontier Models 
 
E64.1 Introduction 
 
 The stochastic frontier model as it appears in the current literature was originally developed 
by Aigner, Lovell, and Schmidt (1977). The canonical formulation that serves as the foundation for 
other variations is their model, 
 
   y  =  β′x  +  v  -  u, 
 
where y is the observed outcome (goal attainment), β′x + v is the optimal, frontier goal (e.g., 
maximal production output or minimum cost) pursued by the individual, β′x is the deterministic part 
of the frontier and v ~ N[0,σv

2

   u  = |U| and U ~ N[0,σu
2

] is the stochastic part.  The two parts together constitute the 
‘stochastic frontier.’  The amount by which the observed individual fails to reach the optimum (the 
frontier) is u, where 

 
] 

(change to v + u for a stochastic cost frontier or any setting in which the optimum is a minimum).  In 
this context, u is the ‘inefficiency.’  This is the normal-half normal model which forms the basic 
form of the stochastic frontier model.  Chapters E62 and E63 developed several versions of the 
stochastic frontier model suitable for cross section and pooled data sets.  This chapter will develop 
versions of the model constructed specifically for panel data.  
 

E64.2 Panel Data Estimators for Stochastic Frontier Models 
 
 The stochastic frontiers literature has steadily evolved since the developments of basic 
random and fixed effects models by Pitt and Lee (1981) and by Cornwell, Schmidt and Sickles 
(1990).  All of the generally used forms of panel data models are supported in LIMDEP.  The 
following will document them in detail.  These sections are arranged as follows: 
 
 •  Pitt and Lee – Time Invariant Inefficiency, Random Effects, 
 •  Cornwell, Schmidt and Sickles – Time Invariant Inefficiency, Fixed Effects, 
 •  Battese and Coelli – Time Dependent Inefficiency Models, 
 •  True Fixed Effects Models with Time Varying Inefficiency, 
 •  True Random Effects Models with Time Varying Inefficiency, 
 •  Random Parameters Stochastic Frontier Models, 
 •  Alvarez et al. – Fixed Management (Random Parameters) Model, 
 •  Latent Class Stochastic Frontier Models. 
 
The panel models developed here will share features with other panel models in LIMDEP, as 
presented in Chapters R22-R25. As in other settings, panels in all models may be unbalanced. Panels 
are identified by  
   SETPANEL ; … $ 
 
then   ; Panel 
in the command, or ; Pds = group count 
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Nearly all of the models to be presented here actually require panel data, but a few will work, albeit 
not as well as otherwise, with ; Pds = 1, i.e., with a cross section.  This will be specifically noted 
below when it is the case.  Second, in all models, the cost form as opposed to the production form is 
requested with 
   ; Cost 
 
This and other model specifications are generally the same as the cross sectional cases. 
 
E64.3 Pitt and Lee – Time Invariant Inefficiency, Random 
Effects 
 
 The panel data, random effects specifications based on the model of Pitt and Lee (1981) are 
 
   yit  =  α  +  β′xit  +  vit  -  Sui 
 
with S = +1 for a production model and -1 for a cost model.  The inefficiency component is assumed 
to be time invariant.  The base case is the normal-half normal model 
 
   ui  =  |Ui|, Ui ~ N[0,σ2]. 
 
This is a direct extension of the cross section variant discussed earlier.  Several model formulations 
are grouped in this class.  The command for the Pitt and Lee group of models is given by changing 
the base case specifications to 
 
 FRONTIER ; Lhs = y ; Rhs = one, ... ; Panel $ 
 
Pitt and Lee is the default panel data model.  The only necessary change for the default case is 
specification of the panel with ; Panel.  As in the cross section case, the normal-exponential case is 
requested with 
   ; Model = Exponential 
 
while the normal-truncated normal is requested with 
 
   ; Rh2 = one or ; Rh2 = one, additional variables 
 
(The ; Model = T is not needed.)  The truncation model may not be combined with the exponential 
specification; it is only supported for the normal-truncated normal form. 
 
NOTE:  The gamma model does not have a random effects (panel data) version.  The model 
extensions, such as the scaling model and sample selection described in Chapter E63 likewise do not 
support a Pitt and Lee style random effects version. 
 
 There is an important consideration for the truncation version with heterogeneous mean.  If 
you are fitting a panel data version of this model, note that the assumption underlying the model is 
that the same ui occurs in every period.  Therefore, the α′zi must be the same in every period.  
LIMDEP will assume this is the case, and only use the Rh2 variables provided for the first period. 
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 When the random effects model is estimated, maximum likelihood estimates of the cross 
section models are always computed first to obtain the starting values.  This will produce a full set of 
results which will ignore the panel nature of the data set.  A second full set of results will then follow 
for the random effects model. 
 The model estimates retained for all cases are 
 
   b =  regression parameters, α,β 
   varb =  asymptotic covariance matrix. 
 
Use ; Par to retain the additional parameters in b and varb.  As seen in the applications below, the 
parameters estimated in each case will differ depending on the model formulation.  The ancillary 
parameters that are estimated for the various models are the same ones saved by the cross section 
versions.  All models save sy, ybar, nreg, kreg, and logl as well as s, b, varb, etc. 
 
WARNING:  Numerous experiments and applications have suggested that the normal-truncated 
normal model is a difficult one to estimate.  Identification appears to be highly variable, and small 
variations in the data can produce large variation in the results.  The model often fails to converge 
even when convergence of the restricted model with zero underlying mean is routine. 
 
E64.3.1 Model Specifications 
 
 There are many different combinations of the components of the random effects model listed 
above.  The following shows the different possibilities for the Pitt and Lee model.  (There are also 
many combinations of these that do not use the panel data random effects form.):  
 
  NAMELIST  ; x = one, … $ 
  CREATE ; y = the outcome variable $ 
  SETPANEL ; … $ 
 Model 1 = pooled   
  FRONTIER ; Lhs = y ; Rhs = x $ 
 Model 2 = random effects half normal 
  FRONTIER ; Lhs = y ; Rhs = x ; Panel  $ 
 Model 3 = random effects exponential 
  FRONTIER ; Lhs = y ; Rhs = x ; Panel  ; Model = Exponential $ 
 Model 4 = random effects normal heteroscedastic in u or  v only 
  FRONTIER ; Lhs = y ; Rhs = x ; Panel  ; Het ; Hfv = … $ 
  FRONTIER ; Lhs = y ; Rhs = x ; Panel  ; Het ; Hfu = … $ 
 Model 5 = random effects normal doubly heteroscedastic 
  FRONTIER ; Lhs = y ; Rhs = x ; Panel ; Het ; Hfv = … ; Hfu = … $ 
 Model 6 = random effects truncated normal 
  FRONTIER ; Lhs = y ; Rhs = x ; Panel  ; Rh2 = one, … $ 
 Model 7 = random effects truncated normal, singly or doubly heteroscedastic 
  FRONTIER ; Lhs = y ; Rhs = x ; Panel  ; Rh2 = one, …  
   ; Het ; Hfv = … ; Hfu = … $ 
 
 The Pitt and Lee model forms assume that the inefficiency is time invariant.  Thus, the 
estimate of ui is repeated for each observation in the group.  An example below illustrates.  
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E64.3.2 Applications 
 
 The following illustrates a few of the numerous formats of the random effects frontiers.  The 
data set used is the Swiss railroad data used in Greene (2011, Table F19.1).  These data are provided 
with the program as Swiss-railroads.lpj. The variables used here are 
 
 ct = total cost 
 pk = capital price 
 pe = electricity price 
 pl = labor price 
 q2 = passenger output – passenger km 
 q3 = freight output – ton km 
 rack = dummy variable for ‘rack rail’ in network 
 tunnel = dummy variable for network with tunnels over 300 meters on average 
 virage = dummy variable for networks with narrow radius curvature 
 narrow_t  = dummy variable for narrow track (1m as opposed to standard 1.435m). 
 
Preparing the data set includes bypassing one firm for which there is only a single year of data.  For 
the remaining 49 firms, Ti is a mixture 3, 7, 10, 12 or 13.  Figure E64.1 details the distribution of 
group sizes. 
 

 
Figure E64.1  Groups Sizes for Swiss Railroad Sample 

 
 Descriptive statistics for the data are shown below.  Variables with names beginning with ‘M’ are 
firm means, repeated for each year for the firm. 
 We fit four models to illustrate the estimator, the pooled normal-half normal, pooled normal- 
truncated (heterogeneous), basic Pitt and Lee and a full model with time invariant inefficiency, 
truncation (heterogeneous) and double heteroscedasticity.   
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The commands are as follows: 
 

SETPANEL ; Group = id ; Pds = ti $ 
REJECT ; ti = 1 $ 
CREATE ; lple = Log(pl/pe) ; lpke = Log(pk/pe) ; lnc = Log(ct/pe)$ 
NAMELIST ; x = one,lnq2,lnq3,lple,lpke $ 
FRONTIER ; Lhs = lnc ; Cost ; Rhs = x ; Costeff = eusfpool $ 
FRONTIER ; Lhs = lnc ; Cost ; Rhs = x $ 
FRONTIER ; Lhs = lnc ; Cost ; Rhs = x ; Panel ; Costeff = eusfp_l $ 
FRONTIER ; Lhs = lnc ; Cost ; Rhs = x ; Rh2 = rack,tunnel 

; Het ; Hfu = virage ; Hfv = virage ; Costeff = eushet_t $ 
FRONTIER ; Lhs = lnc ; Cost ; Rhs = x ; panel ; Rh2 = rack,tunnel 

; Het ; Hfu = virage ; Hfv = virage ; Costeff = fullmodl $ 
 
--------+--------------------------------------------------------------------- 
Variable|       Mean       Std.Dev.     Minimum      Maximum     Cases Missing 
--------+--------------------------------------------------------------------- 
      ID|     25.48760     14.60037          1.0         51.0      605       0 
    YEAR|     90.91570     3.692372         85.0         97.0      605       0 
      NI|     12.58347     1.305259          1.0         13.0      605       0 
   STOPS|     20.42479     18.48285          4.0        121.0      605       0 
 NETWORK|     39431.66     56642.38       3898.0     376997.0      605       0 
LABOREXP|     12801.95     26232.69        951.0     173549.0      605       0 
   STAFF|     170.3810     333.0317         11.0       1934.0      605       0 
 ELECEXP|     968.1521     1944.830         14.0      14737.0      605       0 
     KWH|     7602.221     15608.39         82.0     104923.0      605       0 
 TOTCOST|     22470.44     42283.57       1534.0     280871.0      605       0 
NARROW_T|      .676033      .468375          0.0          1.0      605       0 
    RACK|      .234711      .424169          0.0          1.0      605       0 
  TUNNEL|      .188430      .391379          0.0          1.0      605       0 
       T|     5.915702     3.692372          0.0         12.0      605       0 
      Q1|     813914.0      1083923      61000.0      6409000      605       0 
      Q2|  .308145D+08  .550599D+08     409000.0  .311000D+09      605       0 
      Q3|  .101934D+08  .527303D+08        150.0  .477000D+09      605       0 
      CT|     26728.37     49883.51     2120.968     307433.4      605       0 
      PL|     86051.77     6484.535     60932.91     104930.4      605       0 
      PE|      .157485      .022766      .076344      .265182      605       0 
      PK|     4534.491     2128.307     1040.323     14466.06      605       0 
  VIRAGE|      .715702      .451452          0.0          1.0      605       0 
   LABOR|     52.40245     9.598136     20.03025     73.11581      605       0 
    ELEC|     4.044504     1.422098      .568412     9.311660      605       0 
 CAPITAL|     43.55305     9.461303     23.88916     77.33154      605       0 
    LNCT|     11.30622     1.101691     9.462956     14.57019      605       0 
    LNQ1|     13.06322     1.010039     11.01863     15.67321      605       0 
    LNQ2|     16.31759     1.339167     12.92147     19.55500      605       0 
    LNQ3|     12.49439     2.716709     5.010635     19.98343      605       0 
   LNNET|     3.200860      .908512     1.360464     5.932237      605       0 
    LNPL|     13.21935      .163565     12.60449     13.77599      605       0 
    LNPE|    -1.859557      .152870    -2.572503    -1.327338      605       0 
    LNPK|     10.17950      .438886     8.740266     11.37466      605       0 
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  LNSTOP|     2.775052      .655071     1.386294     4.795791      605       0 
   LNCAP|     3.137572      .328311     2.123893     3.850147      604       1 
   MLNQ1|     13.06322     1.005089     11.16747     15.59433      605       0 
   MLNQ2|     16.31759     1.333346     13.20185     19.45679      605       0 
   MLNQ3|     12.49439     2.648475     7.734539     19.68075      605       0 
  MLNNET|     3.200860      .906363     1.360464     5.927817      605       0 
   MLNPL|     13.21935      .126548     12.89796     13.61620      605       0 
   MLNPK|     10.17950      .396797     8.938699     11.03543      605       0 
 MLNSTOP|     2.775052      .651059     1.386294     4.789402      605       0 
    LPLE|     13.21943      .163692     12.60449     13.77599      604       1 
   LPKPE|     10.16419      .576094          1.0     11.37466      605       0 
     LNC|     11.30305     1.099836     9.462957     14.57019      604       1 
--------+--------------------------------------------------------------------- 
 

This is the pooled normal-half normal model. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LNC 
Log likelihood function      -209.42340 
Estimation based on N =    604, K =   7 
Inf.Cr.AIC  =    432.8 AIC/N =     .717 
Variances: Sigma-squared(v)=     .07332 
           Sigma-squared(u)=     .12333 
           Sigma(v)        =     .27077 
           Sigma(u)        =     .35119 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .44345 
Gamma = sigma(u)^2/sigma^2 =     .62716 
Var[u]/{Var[u]+Var[v]}     =     .37937 
Stochastic Cost Frontier Model, e = v+u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0         -210.45352 
Chi-sq=2*[LogL(SF)-LogL(LS)] =    2.060 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LNC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -10.0907***     1.14284    -8.83  .0000    -12.3306   -7.8507 
    LNQ2|     .64179***      .01371    46.80  .0000      .61491    .66867 
    LNQ3|     .06855***      .00655    10.46  .0000      .05570    .08139 
    LPLE|     .53971***      .08858     6.09  .0000      .36610    .71333 
    LPKE|     .26045***      .03260     7.99  .0000      .19655    .32435 
        |Variance parameters for compound error 
  Lambda|    1.29697***      .13854     9.36  .0000     1.02545   1.56850 
   Sigma|     .44345***      .00056   789.05  .0000      .44235    .44455 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This is the original Pitt and Lee normal-half normal model with time invariant inefficiency.  
In comparison to the pooled model above, σu has tripled and σv has decreased by two thirds.  The 
assumption of time invariance of the inefficiency produces a large reallocation of the random 
components between noise and inefficiency.  This is evident in the kernel estimate below as well. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LNC 
Log likelihood function       527.11659 
Estimation based on N =    604, K =   7 
Inf.Cr.AIC  =  -1040.2 AIC/N =   -1.722 
Stochastic frontier based on panel data 
Estimation based on      49 individuals 
Variances: Sigma-squared(v)=     .00621 
           Sigma-squared(u)=     .92297 
           Sigma(v)        =     .07879 
           Sigma(u)        =     .96071 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .96394 
Gamma = sigma(u)^2/sigma^2 =     .99332 
Var[u]/{Var[u]+Var[v]}     =     .98183 
Stochastic Cost Frontier Model, e = v+u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0         -210.45352 
Chi-sq=2*[LogL(SF)-LogL(LS)] = 1475.140 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LNC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -7.25643***      .24767   -29.30  .0000    -7.74185  -6.77101 
    LNQ2|     .36259***      .01503    24.12  .0000      .33312    .39205 
    LNQ3|     .01902***      .00240     7.94  .0000      .01432    .02372 
    LPLE|     .64148***      .02112    30.38  .0000      .60009    .68287 
    LPKE|     .30842***      .00700    44.08  .0000      .29471    .32214 
        |Variance parameters for compound error 
  Lambda|    12.1932**      5.55909     2.19  .0283      1.2975   23.0888 
Sigma(u)|     .96071***      .13303     7.22  .0000      .69998   1.22145 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This is the pooled normal-truncated and doubly heteroscedastic normal model. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LNC 
Log likelihood function       -63.43402 
Estimation based on N =    604, K =  11 
Inf.Cr.AIC  =    148.9 AIC/N =     .246 
Variances: Sigma-squared(v)=     .07144 
           Sigma-squared(u)=     .00074 
           Sigma(u)        =     .02720 
           Sigma(v)        =     .26729 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .26867 
Variances averaged over observations 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  1 
Deg. freedom for truncation mean:     2 
Deg. freedom for inefficiency model:  4 
LogL when sigma(u)=0         -210.45352 
Chi-sq=2*[LogL(SF)-LogL(LS)] =  294.039 
Kodde-Palm C*: 95%: 8.761,  99%: 12.483 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LNC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -13.4218***     1.01232   -13.26  .0000    -15.4059  -11.4377 
    LNQ2|     .62859***      .01404    44.79  .0000      .60108    .65610 
    LNQ3|     .09670***      .00669    14.46  .0000      .08359    .10981 
    LPLE|     .68419***      .07646     8.95  .0000      .53433    .83405 
    LPKE|     .39946***      .03301    12.10  .0000      .33476    .46415 
        |Mean of underlying truncated distribution 
    RACK|     .62333***      .05632    11.07  .0000      .51293    .73372 
  TUNNEL|    -.35607***      .05500    -6.47  .0000     -.46387   -.24828 
        |Scale parms. for random components of e(i) 
ln_sgmaU|   -2.54850***      .96756    -2.63  .0084    -4.44488   -.65212 
ln_sgmaV|   -1.36799***      .06507   -21.02  .0000    -1.49551  -1.24046 
        |Heteroscedasticity in variance of truncated u(i) 
  VIRAGE|   -1.47329        2.86559     -.51  .6072    -7.08975   4.14316 
        |Heteroscedasticity in variance of symmetric v(i) 
  VIRAGE|     .06774         .08094      .84  .4026     -.09090    .22638 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 This is the same model as immediately above, with the additional assumption that the 
inefficiency is time invariant.  Compared to the previous specification, σu has now increased by a 
factor of 30 while σv has nearly vanished, falling from 0.27 to 0.005, that is, by a factor of 50. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LNC 
Log likelihood function       532.94237 
Estimation based on N =    604, K =  11 
Inf.Cr.AIC  =  -1043.9 AIC/N =   -1.728 
Variances: Sigma-squared(v)=     .00003 
           Sigma-squared(u)=     .76238 
           Sigma(u)        =     .87314 
           Sigma(v)        =     .00543 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .87316 
Variances averaged over observations 
Stochastic frontier based on panel data 
Estimation based on      49 individuals 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  1 
Deg. freedom for truncation mean:     2 
Deg. freedom for inefficiency model:  4 
LogL when sigma(u)=0         -210.45352 
Chi-sq=2*[LogL(SF)-LogL(LS)] = 1486.792 
Kodde-Palm C*: 95%: 8.761,  99%: 12.483 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LNC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -7.26117***      .25317   -28.68  .0000    -7.75738  -6.76496 
    LNQ2|     .36162***      .01558    23.20  .0000      .33107    .39216 
    LNQ3|     .01947***      .00257     7.58  .0000      .01444    .02451 
    LPLE|     .64342***      .02165    29.72  .0000      .60099    .68584 
    LPKE|     .30730***      .00727    42.24  .0000      .29305    .32156 
        |Mean of underlying truncated distribution 
    RACK|     .81356         .52427     1.55  .1207     -.21399   1.84112 
  TUNNEL|    1.46353***      .47072     3.11  .0019      .54094   2.38613 
        |Scale parms. for random components of e(i) 
ln_sgmaU|    -.17921         .21781     -.82  .4106     -.60611    .24769 
ln_sgmaV|   -4.94678***      .20426   -24.22  .0000    -5.34711  -4.54644 
        |Heteroscedasticity in variance of truncated u(i) 
  VIRAGE|     .06076         .04703     1.29  .1964     -.03142    .15294 
        |Heteroscedasticity in variance of symmetric v(i) 
  VIRAGE|    -.37544         .44206     -.85  .3957    -1.24185    .49097 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 The kernel estimator compares the estimated cost efficiency distributions for the pooled and 
basic Pitt and Lee model.  The pattern suggested earlier is clearly evident.  The same comparison 
appears for the truncated normal/heteroscedasticity models.  (The estimated cost efficiency results 
for the basic Pitt and Lee model and the expanded one are the same to three or four digits.)  The 
partial listing below shows the estimates for the four models, noting the time invariance of the Pitt 
and Lee estimates. 
 

 
Figure E64.2  Kernel Estimators for Cost Efficiency 

 

 
Figure E64.3  Estimated Cost Efficiency 
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E64.3.3 Technical Details 
 
 For the three forms of the normal mixture models, we use the following:  Let 
 
   γ = σu

2 / σv
2 

   τi =  µi/σu  

   µi =  θ′zi for the heterogeneous mean model 

   µ,  =  a constant (0) for the simple truncated (half) normal model  

   Ai =  1 + γTi 

   hi =  τi / Ai–  SγTi iε /(σu Ai) 

   iε  =  ( )∑ =
−iT

t ititi xyT
1

')/1( β . 
 
Then, the contribution of individual i to the log likelihood function for the normal-half normal model 
is 
   log Li =  – (Ti/2)log 2π–Ti logσu– ½ log Ai – (Ti/2) log γ 

          – ½(γ / σu
2) 2

1 it
T
t

i ε∑ =
  + ½ Aihi

2  +  ½ logΦ(hi iA )– ½ τi
2– logΦ(τi) 

For the normal-exponential model, let 
 
   hi =  – (θσv/Ti + d iε /σv) 

Then,   log Li =  – ½  log Ti– (Ti– 1)log 2π + logθ– (Ti – 1)logσv 

        – ½(1/σv
2) 2

1 it
T
t

i ε∑ =
  +  ½ Ti hi

2  +  logΦ(hi iT ) 
 
The Jondrow estimator, as formulated in Battese and Coelli (1988) in as follows:  Let 
 
   γi =  1 / (1 + λ2Ti), 

   ψi
2 =  σu

2γi, 

   Ei =  γiµ  +  (1 - γi)( – iε ), 

and   iε  =  (1/Ti)Σtεit. 

Then,   E[ui|εi1,εi2,...]  =  Ei  +  ψi[φ(Ei/ψi) / Φ(Ei/ψi)]. 
 
For the exponential model, replace ψi with σv and Ei with  iT (– iε – θσv

2/Ti).   
 



E64: Panel Data Stochastic Frontier Models   E-1583 

E64.4 Cornwell, Schmidt and Sickles – Time Invariant 
Inefficiency, Fixed Effects 
 
 Cornwell, Schmidt and Sickles (1990) suggested a modification of the familiar fixed effects 
linear regression, 
   yit =  αi  +  β′xit  +  vit. 
 
The estimated model is 
 
   yit =  ai +  b′xit +  vit 

    =  max(ai)  +  b′xit  +  vit+  [ai– max(ai)] 

    =  a  +  b′xit  +  vit  -  ui 

where   ui =  max(ai)  -  ai  >  0. 
 
(To change this to a cost frontier, change ui  to [ai - min(ai)]  This bears resemblance to a stochastic 
frontier model, though in fact, it is a ‘deterministic’ frontier model.  The signature feature is that ui 
equals zero for the ‘most efficient’ firm in the sample.  A natural interpretation of this is that what 
we measure with the model is not the absolute inefficiency, but inefficiency of firm i relative to the 
other firms in the sample.  From the modeler’s point of view, this approach has several substantive 
advantages and disadvantages:  The main advantage is 
 

• It is distribution free.  It requires only the assumptions of the linear model. 
 
The disadvantages are: 
 

• It does not allow any time invariant variables in the model. 
• It labels as inefficiency any and all omitted time invariant effects. 
• It can only measure firms relative to each other. 

 
 As illustrated in the results below, this approach tends to produce very large estimates of ui.  
The invariance assumption about ui has been criticized elsewhere. Attempts to relax this assumption 
are a recurrent theme in the literature, including the Battese and Coelli and true fixed and random 
effects approaches described later.  Other early work on the model suggested direct manipulation of 
the fixed effects, for example, 
 
   αit =  θi0  +  θi1t  +  θi2t2. 
 
Other more recent research (Han, Orea and Schmidt (2005)) has proposed factor analytic forms for 
αit.  The sections to follow will include several of these different approaches. 
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Application 
 
 This Cornwell, Schmidt and Sickles (CSS) approach requires only a linear fixed effects 
regression and a few instructions to manipulate the fixed effects.  The following analyzes the airline 
data with this approach.   The following computes the CSS estimates and compares them to the 
unstructured pooled estimates (using the normal-half normal model from Chapter E62) and the Pitt 
and Lee model introduced above.  The commands for the analysis are as follows: 
 

SAMPLE ; All $ 
CREATE  ; Railroad = id $ 
CREATE  ; If(railroad > 20)railroad = railroad - 1 $ (There is a gap in the data) 
HISTOGRAM ; Rhs = railroad 

; Title = Number of Observations for Firms in Swiss Railroad Sample $ 
SETPANEL  ; Group = id ; Pds = ti $ 

 REJECT  ; ti = 1 $  
FRONTIER ; Lhs = lnc ; Cost ; Rhs = x ; Costeff = eusfpool $ 
CREATE  ; pooled = Group Mean(eusfpool, Pds = ti) $ 
FRONTIER ; Lhs = lnc ; Cost ; Rhs = x ; Panel ; Costeff = pittlee $ 

 REGRESS  ; Lhs = lnc ; Rhs = x ; Panel ; Fixed Effects $ 
 CREATE  ; ai = alphafe(railroad) $ 
 CALC    ; minai = Min(ai) $ 
 CREATE  ; css = Exp((minai - ai)) $ 

CREATE  ; Period = Ndx(id,1) $ 
REJECT  ; period#1 $ 

 PLOT   ; Lhs = railroad ; Rhs = pooled,css ; Grid ; Fill ; Limits = 0,1 
   ; Vaxis = Estimated Cost Efficiency 
   ; Title = Half Normal vs. Cornwell, Schmidt, Sickles FE Cost Efficiencies $  
 PLOT   ; Lhs = railroad ; Rhs = css,pittlee ; Grid ; Fill ; Limits = 0,1 
   ; Vaxis = Estimated Cost Efficiency 
   ; Title = Pitt and Lee RE vs. Cornwell, Schmidt, Sickles FE Cost Efficiencies $ 
 
The results below show the considerable differences in the parameter estimates produced by the 
three models.  Figure E64.4 demonstrates the expected quite large differences between the time 
varying estimates (using the group means) and the time invariant results based on the CSS model.  
Figure E64.5 also shows a striking, albeit commonly observed result – the CSS and Pitt and Lee 
estimates are virtually identical. 
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----------------------------------------------------------------------------- 
LSDV         least squares with fixed effects .... 
LHS=LNC      Mean                 =       11.30305 
             Standard deviation   =        1.09984 
             No. of observations  =            604  Degrees of freedom 
Regression   Sum of Squares       =        726.000          52 
Residual     Sum of Squares       =        3.41179         551 
Total        Sum of Squares       =        729.412         603 
             Standard error of e  =         .07869 
Fit          R-squared            =         .99532  R-bar squared =   .99488 
Model test   F[ 52,   551]        =     2254.77325  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      706.21504  Akaike I.C.   = -5.00084 
             Restricted (b=0)     =     -914.01557  Bayes  I.C.   = -4.61443 
             Chi squared [ 52]    =     3240.46122  Prob C2 > C2* =   .00000 
Estd. Autocorrelation of e(i,t)   =        .668792 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data       49 
             Smallest   3,     Largest          13 
             Average group size in panel     12.33 
Variances    Effects a(i)         Residuals e(i,t) 
              .423441                      .006192 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LNC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    LNQ2|     .29374***      .02850    10.31  .0000      .23789    .34959 
    LNQ3|     .01612***      .00543     2.97  .0030      .00547    .02676 
    LPLE|     .66452***      .03580    18.56  .0000      .59434    .73469 
    LPKE|     .31777***      .01863    17.05  .0000      .28125    .35430 
--------+-------------------------------------------------------------------- 
  (These are the estimated parameters in the estimated pooled stochastic frontier model.) 
Constant|   -10.0907***     1.14284    -8.83  .0000    -12.3306   -7.8507 
    LNQ2|     .64179***      .01371    46.80  .0000      .61491    .66867 
    LNQ3|     .06855***      .00655    10.46  .0000      .05570    .08139 
    LPLE|     .53971***      .08858     6.09  .0000      .36610    .71333 
    LPKE|     .26045***      .03260     7.99  .0000      .19655    .32435 
        |Variance parameters for compound error 
  Lambda|    1.29697***      .13854     9.36  .0000     1.02545   1.56850 
   Sigma|     .44345***      .00056   789.05  .0000      .44235    .44455 
  (These are the estimated parameters in the estimated Pitt and Lee model.) 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -7.25643***      .24767   -29.30  .0000    -7.74185  -6.77101 
    LNQ2|     .36259***      .01503    24.12  .0000      .33312    .39205 
    LNQ3|     .01902***      .00240     7.94  .0000      .01432    .02372 
    LPLE|     .64148***      .02112    30.38  .0000      .60009    .68287 
    LPKE|     .30842***      .00700    44.08  .0000      .29471    .32214 
        |Variance parameters for compound error 
  Lambda|    12.1932**      5.55909     2.19  .0283      1.2975   23.0888 
Sigma(u)|     .96071***      .13303     7.22  .0000      .69998   1.22145 
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Figure E64.4  Cornwell et al. Estimates vs. Normal-Half Normal 

 

 
Figure E64.5  Estimated Inefficiencies from Cornwell et al. and Pitt and Lee Models 
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E64.5 Battese and Coelli  – Time Dependent Inefficiency 
Models 
 
 Battese and Coelli (1992) proposed a series of models that can be collected in the general 
form 
   yit   =  β′xit  +  vit  -  uit 

   uit   =  g(zit) |Ui| where Ui is half normal or truncated normal. 
 
Several formulations are available.  In Battese and Coelli’s original formulation, the distribution was 
half normal and the base specification was 
 
   g(zit)  =  exp[-η(t – T)] 
 
where T is the number of periods in their balanced panel.  (Here it would be Ti.)  They also suggested 
 
   g(zit)  =  exp[-η1(t – T) + -η2(t – T)2]. 
 
The first (linear) form is taken to be the default case for this model.  The second is not provided in 
this package.  The BC92 model is requested with 
 
 FRONTIER ; Lhs = ... ; Rhs = one,... 
   ; Model = BC   
   ; Panel $ 
 
A truncated normal version is requested by adding 
 
   ; Rh2 = list of variables which may (generally should) include one 
 
(The ; Model = T is not needed here.)   
 
 We note a warning to practitioners.  When the data are very consistent with the model, the 
Battese and Coelli model produces quite satisfactory results. The framework has been employed in 
many recent empirical applications.   But, when the data are not of particularly good quality, or this 
is the wrong model, extreme results can emerge.  The airline data examined in Chapter E63 (and the 
WHO data), for example, are a poor fit to this model.   
 We have labeled this model as ‘time dependent’ rather than time varying.  While the 
inefficiency component in the model does vary through time, the variation is systematic with respect 
to time.  A question pursued in the ongoing literature is the extent to which this model actually 
moves away from the time invariant specification of Pitt and Lee.  Since there is actual variation, the 
result is clearly somewhere between Pitt and Lee and what we have labeled the unstructured ‘pooled’ 
model.  If η equals zero, Pitt and Lee emerges, so it depends entirely on this parameter.  We have 
found in some investigations that the end result is actually closer to Pitt and Lee than it is to the 
pooled model – that is, there is quite a lot of structure involved in the BC92 model.  The example 
below illustrates. 
 



E64: Panel Data Stochastic Frontier Models   E-1588 

E64.5.1 Application 
 
 To illustrate the Battese and Coelli models, we return to the railroad data used previously. 
The base case is the pooled data stochastic cost frontier.  This is followed by the Pitt and Lee model 
and, finally, by the original Battese Coelli ‘time decay’ model, 
 

g(zit)  =  exp[-η(t - Ti)].  
 
The commands are 
 

SAMPLE ; All $ 
REJECT  ; ti = 1 $ 
FRONTIER  ; Lhs = lnc ; Cost ; Rhs = x ; Costeff = eusfpool $ 
FRONTIER  ; Lhs = lnc ; Cost ; Rhs = x ; Model = BC ; Panel ; Costeff = eucbc92 $ 
DSTAT ; Rhs = eucbc92,eusfpool $ 
KERNEL ; Rhs = eucbc92,eusfpool 

; Title = Estimated Cost Efficiencies - Battese-Coelli 1992 vs. Pooled $ 
KERNEL ; Rhs = eucbc92,pittlee 

; Title = Estimated Cost Efficiencies - Battese-Coelli 1992 vs. Pitt and Lee $ 
 
The kernel density estimators are used to compare the efficiency estimates from the pooled data 
model to the Battese and Coelli model.  The estimates of exp(-E[uit|εi]) from the Battese and Coelli 
model are far larger than those from the pooled model.  The assumption of time invariance of the 
random term is a major component of this model.  The second kernel estimator below compares 
Battese-Coelli to Pitt-Lee.  The correspondence of the two results is striking, albeit to be expected 
given the small estimated value of η. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LNC 
Log likelihood function      -209.42340 
Estimation based on N =    604, K =   7 
Inf.Cr.AIC  =    432.8 AIC/N =     .717 
Variances: Sigma-squared(v)=     .07332 
           Sigma-squared(u)=     .12333 
           Sigma(v)        =     .27077 
           Sigma(u)        =     .35119 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .44345 
Gamma = sigma(u)^2/sigma^2 =     .62716 
Var[u]/{Var[u]+Var[v]}     =     .37937 
Stochastic Cost Frontier Model, e = v+u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0         -210.45352 
Chi-sq=2*[LogL(SF)-LogL(LS)] =    2.060 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LNC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -10.0907***     1.14284    -8.83  .0000    -12.3306   -7.8507 
    LNQ2|     .64179***      .01371    46.80  .0000      .61491    .66867 
    LNQ3|     .06855***      .00655    10.46  .0000      .05570    .08139 
    LPLE|     .53971***      .08858     6.09  .0000      .36610    .71333 
    LPKE|     .26045***      .03260     7.99  .0000      .19655    .32435 
        |Variance parameters for compound error 
  Lambda|    1.29697***      .13854     9.36  .0000     1.02545   1.56850 
   Sigma|     .44345***      .00056   789.05  .0000      .44235    .44455 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LNC 
Log likelihood function       530.16177 
Estimation based on N =    604, K =   8 
Inf.Cr.AIC  =  -1044.3 AIC/N =   -1.729 
Stochastic frontier based on panel data 
Estimation based on      49 individuals 
Variances: Sigma-squared(v)=     .00613 
           Sigma-squared(u)=     .97581 
           Sigma(v)        =     .07828 
           Sigma(u)        =     .98783 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .99093 
Gamma = sigma(u)^2/sigma^2 =     .99376 
Var[u]/{Var[u]+Var[v]}     =     .98301 
Stochastic Cost Frontier Model, e = v+u 
Battese-Coelli Models: Time Varying uit 
Time dependent uit=exp[-eta(t-T)]*|U(i)| 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0         -210.45352 
Chi-sq=2*[LogL(SF)-LogL(LS)] = 1481.231 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LNC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -6.83502***      .27362   -24.98  .0000    -7.37130  -6.29873 
    LNQ2|     .35459***      .01636    21.68  .0000      .32254    .38665 
    LNQ3|     .02183***      .00238     9.17  .0000      .01716    .02649 
    LPLE|     .61516***      .02092    29.40  .0000      .57415    .65617 
    LPKE|     .30931***      .00701    44.09  .0000      .29556    .32306 
        |Variance parameters for compound error 
  Lambda|    12.6195***      .01188  1062.18  .0000     12.5962   12.6428 
Sigma(u)|     .98783***      .15275     6.47  .0000      .68845   1.28721 
        |Eta parameter for time varying inefficiency 
     Eta|    -.00248***      .00086    -2.89  .0039     -.00416   -.00080 
--------+-------------------------------------------------------------------- 
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--------+--------------------------------------------------------------------- 
Variable|       Mean       Std.Dev.     Minimum      Maximum     Cases Missing 
--------+--------------------------------------------------------------------- 
 EUCBC92|      .514566      .231680      .085140      .982112      604       0 
EUSFPOOL|      .760991      .095229      .478178      .906348      604       0 
--------+--------------------------------------------------------------------- 
 

 
Figure E64.6  Kernel Density Estimates for Inefficiencies from Battese and Coelli Model 

 

 
Figure E64.7  Kernel Density Estimates for Inefficiencies 
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E64.5.2 Technical Details 
 
 To form the log likelihood function for the model, we use Battese and Coelli’s 
parameterization of the model.  The contribution of the ith individual (firm, group, etc.) to the log 
likelihood is 
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Derivatives of this function are complicated in the extreme, and are omitted here.  (Some useful 
results for obtaining them are found in Battese and Coelli (1992, 1995).)  
 The Jondrow estimator of uit is 
 
   E[uit | εi1,εi2,...]   =  git E[ui | εi1,εi2,...] 
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E64.6 Time Varying Inefficiency in the Battese Coelli Model 
 
 The general form of the Battese and Coelli model is,  
 
   yit =  β′xit  +  vit  -  uit 

   uit   =  g(zit) |Ui| where Ui is half normal or truncated normal. 
 
The default form used earlier is g(zit)  =  exp[-η(t – Ti)].  You may also use a more general form, 
 

g(zit) =  exp(η′zit)  
 
where zit contains any desired set of variables.  For this extension, use 
 
 FRONTIER ; Lhs = ... ; Rhs = one,... 
   ; Model = BC ; Hfu = the variables in z 
   ; Pds = the panel specification $ 
 
As before, the truncated normal version of the model is also supported.  For an example, we have 
used 
 

FRONTIER  ; Lhs = lnc ; Cost ; Rhs = x ; Model = BC ; Panel ; Costeff = eucbc92h  
  ; Hfu = rack,virage,tunnel $ 

 
The estimates of cost efficiency produced by this model are identical to those from the base model in 
the previous section. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  LNC 
Log likelihood function       529.63533 
Stochastic frontier based on panel data 
Estimation based on      49 individuals 
Variances: Sigma-squared(v)=     .00615 
           Sigma-squared(u)=     .94808 
           Sigma(v)        =     .07840 
           Sigma(u)        =     .97369 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .97685 
Gamma = sigma(u)^2/sigma^2 =     .99356 
Var[u]/{Var[u]+Var[v]}     =     .98247 
Stochastic Cost Frontier Model, e = v+u 
Battese-Coelli Models: Time Varying uit 
Time varying uit=exp[eta*z(i,t)]*|U(i)| 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  3 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  4 
LogL when sigma(u)=0         -210.45352 
Chi-sq=2*[LogL(SF)-LogL(LS)] = 1480.178 
Kodde-Palm C*: 95%: 8.761,  99%: 12.483 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LNC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -6.89845***      .32923   -20.95  .0000    -7.54374  -6.25316 
    LNQ2|     .35751***      .01591    22.47  .0000      .32632    .38870 
    LNQ3|     .02149***      .00236     9.10  .0000      .01686    .02613 
    LPLE|     .61741***      .02430    25.40  .0000      .56977    .66504 
    LPKE|     .30892***      .00759    40.71  .0000      .29405    .32380 
        |Variance parameters for compound error 
  Lambda|    12.4202***      .01108  1120.76  .0000     12.3984   12.4419 
Sigma(u)|     .97369***      .13513     7.21  .0000      .70884   1.23855 
        |Coefficients in u(i,t)=[exp{eta*z(i,t)}]*|U(i)| 
    RACK|     .00024         .01743      .01  .9889     -.03392    .03441 
  VIRAGE|    -.02096         .01321    -1.59  .1126     -.04685    .00493 
  TUNNEL|     .00219         .01625      .14  .8926     -.02966    .03405 
--------+-------------------------------------------------------------------- 
(Parameter estimates from base case Battese and Coelli) 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -6.83502***      .27362   -24.98  .0000    -7.37130  -6.29873 
    LNQ2|     .35459***      .01636    21.68  .0000      .32254    .38665 
    LNQ3|     .02183***      .00238     9.17  .0000      .01716    .02649 
    LPLE|     .61516***      .02092    29.40  .0000      .57415    .65617 
    LPKE|     .30931***      .00701    44.09  .0000      .29556    .32306 
        |Variance parameters for compound error 
  Lambda|    12.6195***      .01188  1062.18  .0000     12.5962   12.6428 
Sigma(u)|     .98783***      .15275     6.47  .0000      .68845   1.28721 
        |Eta parameter for time varying inefficiency 
     Eta|    -.00248***      .00086    -2.89  .0039     -.00416   -.00080 
--------+-------------------------------------------------------------------- 
 
E64.7 True Fixed Effects Models 
 
 The received applications of fixed effects to the stochastic frontier model, primarily 
Cornwell, Schmidt and Sickles have actually been reinterpretations of the linear regression model 
with fixed effects, not frontier models of the sort considered here.  The estimators described below 
apply the fixed effects to the stochastic frontier.  We label these ‘true fixed effects models’ to 
distinguish them from the linear regression models as discussed in Section E64.3.  (This is not meant 
to apply that these are ‘false fixed effects models.’  Had we used ‘real fixed effects models,’ then the 
contrasting ‘unreal fixed effects models’ would arise which is likewise problematic.  We use this 
purely as a concise term of art, not a characterization of the types of estimators considered.) 
 The stochastic frontier model with fixed effects may be fit in several forms.  The base case 
applies the heterogeneity to the normal-half normal production function model; 
 
   yit  =  αi + β′xit  +  vit  -  Suit,   
 
where S = +1 for a production frontier and -1 for a cost frontier, and 
 
   ui =  | N[0, σu

2] |. 
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This model (as are the others) is fit by maximum likelihood, not least squares.  The normal-half 
normal model is applied to the stochastic part of the model.  Note that the inefficiency term in this 
model is time varying.  The heterogeneity may appear in Stevenson’s truncated normal model as 
follows.  This is a true fixed effects, normal-truncated normal model. 
 
   yit =  αi+ β′xit  +  vit  -  uit, 

   ui =  | N[µi, σu
2] | 

   µi =  δ′zi. 
 
In this form, the heterogeneity is still retained in the production function part of the model.  Another 
possibility is to allow the heterogeneity to enter the mean of the inefficiency distribution rather than 
the production function – this seems the most natural of the three forms.  In this case, 
 
   yit =  β′xit  +  vit  -  uit, 

   uit =  | N[µit , σu
2] | 

   µit =  αi +  µ (nonzero) or  δ′zi. 
 
The mean of the inefficiency distribution shifts in time, but also has a firm specific component.  
Finally, the heterogeneity may be shifted to the variance of the inefficiency distribution.  In this 
form, we have 
   yit =  β′xit  +  vit  -  uit, 

   uit =  | N[0, σui
2] | 

   σuit
2 =  σu

2 × exp(αi +δ′zit). 
 
The variables in the variance term may be omitted if only a groupwise heteroscedastic model is 
desired.  Note this is a half normal model.  A model with nonzero underlying mean and variation in 
the variance appears to be inestimable. Note that in order to secure identification, this model must 
have time varying inefficiency, induced by time variation in the variance. 
 
NOTE:  We have had extremely limited success with the second and third forms of the model.  The 
likelihood function is quite volatile in the parameters of the underlying mean of the truncated 
distribution with the result that the estimated variance parameters λ and σ generally become negative 
in the early iterations and estimation must be halted.  This occurs even when very good starting 
values are used, which suggests that estimation of this model as stated is likely to be extremely 
problematic in all but the most favorable of cases.  An alternative approach which is simple, but can 
be used only with small panels (up to 100 groups), is suggested below. 
 
 In terms of implementation, we note that these forms of the models, though they are new 
with LIMDEP, have long been feasible.  The panels typically used by researchers in this setting are 
often fairly small – our airline data for example have only 25 units and the Swiss railroad data has 49 
firms.  It would always have been possible to create these models simply by adding dummy variables 
to the familiar model.  However, LIMDEP’s implementation of the model obviates this by using the 
methodology described in Chapter R23.  In principle, this allows up to 100,000 firms in the data set. 
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 Results that are kept for this model are 
 
 Matrices: b =  estimate of β 
   varb =  asymptotic covariance matrix for estimate of β. 
   alphafe =  estimated fixed effects (if ; Par is in the command) 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 
 
The upper limit on the number of groups is 100,000. 
 
E64.7.1 Commands for the Fixed Effects Stochastic Frontier Model 
 
 The command for fitting the normal-half normal model with fixed effects is as follows: 
 
 FRONTIER ; Lhs = ... ; Rhs = one,... $ 
 FRONTIER ; Lhs = ... ; Rhs = one,...  
   ; FEM ; Pds = specification $ 
 
The model must be fit twice.  The first model is a pooled data model which provides the starting values 
for the second.  The second command is identical to the first save for the addition of the panel data 
specification.  In order to set up the initial values correctly, it is essential that your initial model include 
the constant term first in the Rhs list and that the second model specification be identical to the first.  
Other options and specifications for the fixed effects models are the same as in other applications.  (See 
Chapter R23 for details.)  The fixed effects command also contains the constant term, but this will be 
removed by the command processor later.  See the example below for the operation of the command. 
 
NOTE: Starting values must be provided by the first estimator. The specification ; Start = list of 
values is not available for this model. You must fit both models each time you fit an FEM.  The 
starting values are not retained after the FEM is estimated. 
 
 All fixed effects forms are estimated by maximum likelihood.  You may also fit a two way 
fixed effects model 
    yit  =  αi+ γt +  β′xit  +  vit  -  ui,  (change to v + u for a stochastic cost frontier), 

    ui  =  | N[0, σu
2] | 

 
where γt is an additional, time (period) specific effect.  The time specific effect is requested by adding 
 
   ; Time 
 
to the command if the panel is balanced, and  
 
   ; Time = variable name 
 
if the panel is unbalanced.   
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 For the unbalanced panel, we assume that overall, the sample observation period is                
t = 1,2,..., Tmax  and that the time variable gives for the specific group, the particular values of t that 
apply to the observations.  Thus, suppose your overall sample is five periods.  The first group is three 
observations, periods 1, 2, 4, while the second group is four observations, 2, 3, 4, 5.  Then, your 
panel specification would be 
 
   ; Pds = Ti,  for example, where Ti = 3, 3, 3, 4, 4, 4, 4 
and   ; Time = Pd,  for example, where Pd = 1, 2, 4, 2, 3, 4, 5. 
 
E64.7.2 Model Specifications for Fixed Effects Stochastic Frontier 
Models 
 
 This is the full list of general specifications that are applicable to this model estimator.    
 
Controlling Output from Model Commands 
 

; Par  keeps ancillary parameter σ in main results vector b. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg[ = value] sets convergence value for gradient. 
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set  keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
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E64.7.3 Application of the True Fixed Effects Model 
 
 We have fit the fixed effects model with the airline data used in the previous chapter.  These 
are simple models that do not use the observed heterogeneity in load factor, stage length or number 
of points served.  Additional variables which vary over time can also be included in the function. The 
commands employed for the example are 
 

SETPANEL  ; Group = firm ; Pds = ti $ 
FRONTIER ; Lhs = lq ; Rhs = one,lf,lm,le,ll,lp,lk$ 
FRONTIER ; Lhs = lq ; Rhs = one,lf,lm,le,ll,lp,lk, 

   ; FEM ; Panel ; Techeff = euitfe ; Par $ 
REGRESS  ; Lhs = lq ; Rhs = one,lf,lm,le,ll,lp,lk 

   ; Panel ; Fixed Effects $  
CREATE  ; ai = alphafe(firm) $ 
CALC    ; maxai = Max(ai) $ 
CREATE  ; euicss = exp(-(maxai - ai)) $ 
CREATE ; meuitfe = Group Mean(euitfe, Pds = ti) $ 
SAMPLE ; All $ 
CREATE  ; Period = Ndx(firm,1) $ 
PLOT  ; For[period=1] ; Lhs = firm ; Rhs = euitfe,euicss  

; Fill ; Symbols ; Limits = 0,1 ; Grid 
; Title = Technical Efficiency Estimates, CSS vs. True Fixed Effects 

 (Group Means) 
; Vaxis = Estimated Technical Efficiency $ 

 
This command recovers the estimated fixed effects from the Cornwell et al. model. then replicates 
them for each year in the data set.  This is used to create the plot of the two sets of estimates of ui 
shown below. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       108.43918 
Estimation based on N =    256, K =   9 
Inf.Cr.AIC  =   -198.9 AIC/N =    -.777 
Model estimated: Aug 17, 2011, 06:36:42 
Variances: Sigma-squared(v)=     .01902 
           Sigma-squared(u)=     .01692 
           Sigma(v)        =     .13791 
           Sigma(u)        =     .13007 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .18957 
Gamma = sigma(u)^2/sigma^2 =     .47074 
Var[u]/{Var[u]+Var[v]}     =     .24425 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =     .730 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -2.98823***      .72136    -4.14  .0000    -4.40206  -1.57439 
      LF|     .37257***      .07038     5.29  .0000      .23463    .51052 
      LM|     .69910***      .07580     9.22  .0000      .55054    .84766 
      LE|    2.09473***      .68790     3.05  .0023      .74647   3.44299 
      LL|    -.42909***      .06315    -6.79  .0000     -.55287   -.30530 
      LP|     .44533***      .09498     4.69  .0000      .25917    .63149 
      LK|   -2.09806***      .76556    -2.74  .0061    -3.59853   -.59759 
        |Variance parameters for compound error 
  Lambda|     .94309***      .16870     5.59  .0000      .61244   1.27373 
   Sigma|     .18957***      .00064   297.81  .0000      .18832    .19082 
--------+-------------------------------------------------------------------- 
 
Normal exit from iterations. Exit status=0. 
----------------------------------------------------------------------------- 
FIXED EFFECTS Frontr Model 
Dependent variable                   LQ 
Log likelihood function       205.05799 
Estimation based on N =    256, K =  33 
Inf.Cr.AIC  =   -344.1 AIC/N =   -1.344 
Model estimated: Aug 17, 2011, 06:36:46 
Unbalanced panel has     25 individuals 
Skipped    0 groups with inestimable ai 
Half normal stochastic frontier 
Sigma( u) (1 sided)  =           .11713 
Sigma( v) (symmetric)=           .08347 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Production / Cost parameters 
      LF|     .20090**       .09879     2.03  .0420      .00727    .39453 
      LM|     .78173***      .07495    10.43  .0000      .63483    .92863 
      LE|     .56626         .62357      .91  .3638     -.65591   1.78843 
      LL|    -.16687         .11488    -1.45  .1464     -.39204    .05830 
      LP|     .17273*        .09414     1.83  .0665     -.01177    .35724 
      LK|    -.29167         .69055     -.42  .6728    -1.64513   1.06179 
        |Variance parameter for v +/- u 
   Sigma|     .14383***      .00045   317.51  .0000      .14294    .14472 
        |Asymmetry parameter, lambda 
  Lambda|    1.40326***      .21468     6.54  .0000      .98248   1.82403 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
LSDV         least squares with fixed effects .... 
LHS=LQ       Mean                 =       -1.11237 
             Standard deviation   =        1.29728 
             No. of observations  =            256  Degrees of freedom 
Regression   Sum of Squares       =        426.103          30 
Residual     Sum of Squares       =        3.04876         225 
Total        Sum of Squares       =        429.152         255 
             Standard error of e  =         .11640 
Fit          R-squared            =         .99290  R-bar squared =   .99195 
Model test   F[ 30,   225]        =     1048.21999  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =      203.84835  Akaike I.C.   = -4.18825 
             Restricted (b=0)     =     -429.37729  Bayes  I.C.   = -3.75896 
             Chi squared [ 30]    =     1266.45126  Prob C2 > C2* =   .00000 
Estd. Autocorrelation of e(i,t)   =        .575211 
-------------------------------------------------- 
Panel:Groups Empty      0,     Valid data       25 
             Smallest   2,     Largest          15 
             Average group size in panel     10.24 
Variances    Effects a(i)         Residuals e(i,t) 
              .030410                      .013550 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
      LF|     .14860         .09677     1.54  .1259     -.04107    .33828 
      LM|     .80497***      .07843    10.26  .0000      .65125    .95868 
      LE|     .68672         .67075     1.02  .3069     -.62792   2.00136 
      LL|    -.15977         .11829    -1.35  .1780     -.39162    .07208 
      LP|     .16227         .09973     1.63  .1050     -.03320    .35774 
      LK|    -.37897         .74689     -.51  .6123    -1.84284   1.08490 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

 Figure E64.8 plots the Jondrow estimates of exp(-E[uit|εit]) from the true fixed effects model 
and the estimates of ui from the Cornwell, Schmidt and Sickles model of Section E64.4 for each 
firm.  Since the true FE estimates vary by period, we have plotted the group means.  The implication 
of the regression based model is clear in the figure.  The estimates of technical efficiency from the 
true FEM are generally considerably larger than those from the deterministic model. 
 

 
Figure E64.8  True Fixed Effects vs. Fixed Effects Estimates of ui 
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E64.7.4 Fixed Effects in the Normal-Truncated Normal Model 
 
 The preceding may be extended to the truncated normal (with earlier caveats) as follows: For 
a model with heterogeneity appearing in the production (or cost) function, 
 
   yit =  αi +   β′xit  +  vit  -  uit, 

   uit =  | N[µit , σu
2] | 

   µit =  µ (nonzero) or δ′zit, 
 
use FRONTIER ; Lhs = ... ; Rhs = one, ... ; Rh2 = one, ...  
   ; Model = T $ 
 FRONTIER ; Lhs = ... ; Rhs = one, ... ; Rh2 = one, ...  
   ; FEM      ; Panel $ 
 
The Rh2 is optional in the first equation if you have only a constant term in the mean of the truncated 
distribution.  But, you should include it nonetheless so as to insure the match between the first and 
second commands.  Also, it is essential that both Rhs and Rh2 include constant terms in the first 
positions. 
 To move the heterogeneity to the mean of the underlying truncated normal distribution,  
 
   yit =  β′xit  +  vit  -  uit, 

   ui =  | N[µitσu
2] | 

   µit =  αi +   δ′zit, 
 
use FRONTIER ; Lhs = ... ; Rhs = one, ... ; Rh2 = one, ...   
   ; Model = T $ 
 FRONTIER ; Lhs = ... ; Rhs = one, ... ; Rh2 = one, ...   
   ; Model = T 
   ; FEM ; Panel $ 
 
Note that this version differs from the earlier one only in the presence of ; Model = T in the second 
form and its absence in the first.  Again, the variable specifications in the two commands must be 
identical, and both must include constant terms in the first position in both lists.  As before, you may 
use ; Rh2 = one if you do not require variables zit in the mean.  (This constant term will be removed 
from the fixed effects model, but this common value is used as the starting value for the firm specific 
estimates.) 
 We note, we have had scant success with this model even with a carefully constructed data 
set and good starting values.  The problem appears to be Newton’s method, which must be used for 
the general fixed effects program which this is part of.  If you have a small panel with no more than 
100 groups, an alternative approach appears to work better.  You may provide a stratification 
variable in the cross section template to request that a set of dummy variables be inserted directly 
into the function.   
  



E64: Panel Data Stochastic Frontier Models   E-1601 

To fit a model of the first form above, use 
 
 FRONTIER ; Lhs = ... ; Rhs = one,...  
   ; Model = T [ ; Rh2 = list is optional ] 
   ; Str = a variable which provides a group indicator for the panel $ 
 
The stratification variable must take the full set of values from 1 to N up to 100 and all groups must 
have at least two observations.   For the second form, with the heterogeneity embedded in the mean 
of the truncated normal distribution, add 
 
   ; Mean 
 
to the command.   
 This provides four possible forms of the model, which we illustrate with the airline data: 
 
 NAMELIST ; x = one,lf,lm,le,ll,lp,lk $ 
 
This is a true fixed effects model with normal-truncated normal structure for uit. 
 
 FRONTIER ; Lhs = lq ; Rhs = x  
   ; Model = T   
   ; Str = firm $ 
 
This model is the same as the preceding one except now µi= δ1 + δ2loadfctri. 
 
 FRONTIER ; Lhs = lq ; Rhs = x  
   ; Model = T  
   ; Rh2 = one,loadfctr  
   ; Str = firm $ 
 
This is a true fixed effects model with the fixed effects appearing in µi rather than in the production 
function.   
 
 FRONTIER ; Lhs = lq ; Rhs = x  
   ; Model = T   
   ; Mean  
   ; Str = firm $ 
 
This model is the same as the preceding model except that loadfctr now also appears in the mean of 
the truncated variable. 
 
 FRONTIER ; Lhs = lq ; Rhs = x  
   ; Model = T  
   ; Rh2 = one,loadfctr ; Mean 
   ; Str = firm $ 
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E64.7.5 Fixed Effects in the Heteroscedasticity Model 
 
 The firmwise heteroscedasticity model, 
 
   yit =  β′xit  +  vit  -  uit, 

   uit =  | N[0, σuit
2] | 

   σuit
2 =  σu

2 × exp(αi +δ′zit) 
 
is requested in the same fashion as the normal-truncated normal model, using a stratification variable 
in the cross section formulation.  (This likelihood function is likewise quite ill behaved, though less 
so than the truncation form.)  The command is 
 
 FRONTIER ; Lhs = ... ; Rhs = one, ...  
   ; Het 
   ; Hfu = list of variables ; Hfv = one 
   ; Str = stratification variable $ 
 
This model also allows for the doubly heteroscedastic form, 
 
   yit =  β′xit  +  vit  -  uit, 

   uit =  | N[0, σuit
2] | 

   σuit
2 =  σu

2 × exp(αi +δ′zit) 

   vit ~  N[0,σvit
2] 

   σvit
2 =  σv

2× exp(γ′wit) 
 
The command would be 
 
 FRONTIER ; Lhs = ... ; Rhs = one, ...  
   ; Het 
   ; Hfu = list of variables ; Hfv = list of variables 
   ; Str = stratification variable $ 
 
 To continue the earlier example, the following fits a model of heteroscedasticity to the 
airline data.  The first model has heteroscedasticity and the fixed effects in the variance of ui.  The 
second is doubly heteroscedastic, again with the fixed effects in the variance of ui.   
 

NAMELIST ; x = one,lf,lm,le,ll,lp,lk $ 
 FRONTIER ; Lhs = lq ; Rhs = x  
   ; Het ; Hfu = one,loadfctr ; Hfv = one ; Str = firm $  
 FRONTIER ; Lhs = lq ; Rhs = x  
   ; Het ; Hfu = one,loadfctr ; Hfv = one,loadfctr ; Str = firm $ 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       182.50025 
Variances: Sigma-squared(v)=     .00876 
           Sigma-squared(u)=     .04920 
           Sigma(v)        =     .09357 
           Sigma(u)        =     .22182 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .24075 
Gamma = sigma(u)^2/sigma^2 =     .84892 
Var[u]/{Var[u]+Var[v]}     =     .67126 
Variances averaged over observations 
Stochastic Production Frontier, e = v-u 
Stratified by FIRM    ,  25 groups 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -3.70847***      .75902    -4.89  .0000    -5.19612  -2.22081 
      LF|     .38142***      .08642     4.41  .0000      .21204    .55079 
      LM|     .57659***      .09175     6.28  .0000      .39676    .75642 
      LE|    2.78934***      .72692     3.84  .0001     1.36459   4.21408 
      LL|    -.41646***      .08641    -4.82  .0000     -.58582   -.24710 
      LP|     .59190***      .11704     5.06  .0000      .36251    .82129 
      LK|   -2.87861***      .80566    -3.57  .0004    -4.45767  -1.29956 
        |Parameters in variance of v (symmetric) 
Constant|   -4.73798***      .21921   -21.61  .0000    -5.16764  -4.30833 
        |Parameters in variance of u (one sided) 
Constant|    8.11346        7.80244     1.04  .2984    -7.17903  23.40596 
LOADFCTR|   -23.6678***     6.88328    -3.44  .0006    -37.1588  -10.1768 
 FIRM001|    1.35540        7.37739      .18  .8542   -13.10403  15.81482 
 FIRM002|     .25791        7.25149      .04  .9716   -13.95476  14.47057 
 FIRM003|     .68176        7.22190      .09  .9248   -13.47290  14.83643 
(Firms 4-20 omitted) 
 FIRM021|     .73089        7.21226      .10  .9193   -13.40488  14.86666 
 FIRM022|    -.38963        7.46091     -.05  .9584   -15.01274  14.23347 
 FIRM023|    -.63171        7.53984     -.08  .9332   -15.40952  14.14610 
 FIRM024|   -7.77451       41.07339     -.19  .8499   -88.27688  72.72786 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       190.29998 
Estimation based on N =    256, K =  35 
Inf.Cr.AIC  =   -310.6 AIC/N =   -1.213 
Model estimated: Aug 22, 2011, 22:57:54 
Variances: Sigma-squared(v)=     .00906 
           Sigma-squared(u)=     .04124 
           Sigma(v)        =     .09519 
           Sigma(u)        =     .20307 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .22427 
Gamma = sigma(u)^2/sigma^2 =     .81986 
Var[u]/{Var[u]+Var[v]}     =     .62318 
Variances averaged over observations 
Stochastic Production Frontier, e = v-u 
Stratified by FIRM    ,  25 groups 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -3.00340***      .65319    -4.60  .0000    -4.28364  -1.72316 
      LF|     .24071***      .07721     3.12  .0018      .08938    .39204 
      LM|     .60992***      .07600     8.03  .0000      .46096    .75887 
      LE|    2.19046***      .62677     3.49  .0005      .96202   3.41890 
      LL|    -.38679***      .07314    -5.29  .0000     -.53015   -.24344 
      LP|     .49345***      .09820     5.03  .0000      .30098    .68591 
      LK|   -2.09638***      .69385    -3.02  .0025    -3.45631   -.73646 
        |Parameters in variance of v (symmetric) 
Constant|   -13.5487***     2.64897    -5.11  .0000    -18.7406   -8.3569 
LOADFCTR|    15.5221***     4.48367     3.46  .0005      6.7343   24.3099 
        |Parameters in variance of u (one sided) 
Constant|    8.01865        5.60084     1.43  .1522    -2.95879  18.99609 
LOADFCTR|   -23.3031***     6.88508    -3.38  .0007    -36.7976   -9.8086 
 FIRM001|     .88200        5.06220      .17  .8617    -9.03972  10.80373 
 FIRM002|    -.83198        4.67591     -.18  .8588    -9.99660   8.33264 
 FIRM003|    -.18608        4.65296     -.04  .9681    -9.30573   8.93356 
(Firms 4-20 omitted) 
 FIRM021|     .35047        4.63405      .08  .9397    -8.73210   9.43303 
 FIRM022|    -.68781        4.83235     -.14  .8868   -10.15903   8.78342 
 FIRM023|    -.96206        4.88186     -.20  .8438   -10.53033   8.60622 
 FIRM024|   -2.86357        4.82675     -.59  .5530   -12.32383   6.59670 
--------+-------------------------------------------------------------------- 
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E64.8 True Random Effects Models 
 
 We call the stochastic frontier model with a random as opposed to a fixed effect term a ‘true 
random effects’ model.  The structure is the normal-half normal stochastic frontier model, 
 
   yit  =  wi+  α  +  β′xit +  vit  +  uit 

   vit  ~  N[0,σv
2] 

   uit  =  |Uit|, Uit ~ N[0,σu
2] 

   wi ~  N[0,σw
2]. 

 
At first look, this appears to be a model with a three part disturbance, which would surely be 
inestimable.  But, that is incorrect.  It is a model with a traditional random effect, but with the 
additional feature that the time varying disturbance is not normally distributed.  Specifically, the 
model may be written in our familiar form for the stochastic frontier model, 
 
   yit =  α  +  β′xit  +  εit  + wi 

   εit  ~  (2/σ)φ(εit/σ)Φ(-εitλ/σ) 

   wi ~  N[0,σw
2]. 

 
The model is estimable by maximum simulated likelihood, as shown below.  Contrast this to the Pitt 
and Lee form, 
   yit=  α  +  β′xit  +  vit  + ui 

   vit~  N[0,σv
2] 

   ui =  |Ui|, Ui ~ N[0,σu
2]. 

 
In this form, ui, the time invariant effect, is the inefficiency.  In the true random effects model, uit is 
the inefficiency, and it is time varying.  The latent heterogeneity, the random effect, is wi.  Thus, in 
the Pitt and Lee model, the ‘inefficiency’ term also contains all other time invariant unmeasured 
sources of heterogeneity.  In the true random effects model, these effects appear in wi, and uit picks 
up the inefficiency.  By this interpretation, we will expect (and always find) that estimated 
inefficiencies from the Pitt and Lee are larger than those from the true random effects model, 
sometimes far larger.  The same result is at work in the difference between the Cornwell et al. fixed 
effects model and the true fixed effects model.  Figure E64.8 clearly shows the effect at work. 
 The true random effects model is estimated as a form of random parameters (RP) model, in 
which the only random parameter in the model is the constant term.  Thus, we write the model in the 
canonical RP form  
   yit  =  αi  +  β′xit  +  vit  +  uit 

   vit ~  N[0,σv
2] 

   uit  =  |Uit|, Uit~ N[0,σu
2] 

   αi  =  α  + wi 

   wi ~  N[0,σw
2] 
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Details on estimating random parameters models appear in Chapter R24, so they will be omitted 
here.   
 The command structure for the true random effects model is similar to that for the true fixed 
effects model.  The frontier model must be fit twice, first with no effects to generate the starting 
values, then with the effect specified.  The commands are 
 
 FRONTIER ; Lhs = ... ; Rhs = one,... ; Par $ 
 FRONTIER ; Lhs = ... ; Rhs = one,... 
   ; RPM ; Fcn = one(n) $ 
 
If desired, the Jondrow estimates are requested as usual with 
 
   ; Eff = the variable name 
 
The computation of random parameters models is fairly time consuming because of the simulations. 
You can control this in part with 
 
   ; Pts = the number of replications 
 
For exploratory work (or for examples in program documentation), small values such as 25 or 50 are 
sufficient.  For final results destined for publication, larger values, in the range of several hundred 
are advisable.  Also, we advise using Halton sequences rather than pseudorandom numbers for the 
simulations (see Chapter R24).  The parameter is 
 
   ; Halton 
 
The random parameters formulation also allows a variety of specifications for the mean of the 
underlying uit – the normal-truncated normal model – and for heteroscedasticity.  These are 
discussed in Section E64.9. 
 
Application 
 
 To illustrate the true random effects model, we continue the analysis of the airline data.  The 
commands below estimate the pooled model, then the true RE model.  In like fashion to the analysis 
of fixed effects, we then compare the true random effects estimates of inefficiency to the Pitt and Lee 
estimates.  Figure E64.8 illustrates the general result that the estimated inefficiencies in the true fixed 
effects model will differ considerably from those produced by the Cornwell et al. approach to fixed 
effects.  Figure E64.9 shows the same result for the two approaches to random effects.  Numerous 
studies in the literature (see Greene (2005) for discussion) have documented the similarity of the 
random and fixed approaches – when the same overall structure is used.  Thus, Figure E64.10 shows 
similar results for the true fixed and random effects models and for the Pitt and Lee and Cornwell et 
al. models. 
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The commands used for this application are as follows: 
 
 NAMELIST ; x = one,lf,lm,le,ll,lp,lk $ 
 FRONTIER ; Lhs = lq ; Rhs = x ; Panel ; Eff = uplre $ 
 FRONTIER ; Lhs = lq ; Rhs = x ; Par $ 
 FRONTIER    ; Lhs = lq ; Rhs = x ; Panel ; RPM ; Eff  = utre 
   ; Fcn = one(n) ; Pts = 50 ; Halton $ 
 FRONTIER ; Lhs = lq ; Rhs = x ; Par $ 
 FRONTIER    ; Lhs = lq ; Rhs = x ; Panel ; FEM ; Eff = utfe $ 
 DSTAT ; Rhs = uplre,utre $ 
 CREATE  ; utrebar = Group Mean(utre, Str = firm) $ 
 PLOT   ; Lhs = uplre ; Rhs = utrebar ; Grid 
   ; Title = Group Means of u(i,t) vs. Time Invariant u(i) $ 
 PLOT   ; Lhs = utfe ; Rhs = utre ; Grid 
   ; Title = Time Varying FE u(i) vs. Time Varying RE u(i) $ 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       156.04955 
Estimation based on N =    256, K =   9 
Stochastic frontier based on panel data 
Estimation based on      25 individuals 
Variances: Sigma-squared(v)=     .01342 
           Sigma-squared(u)=     .06529 
           Sigma(v)        =     .11582 
           Sigma(u)        =     .25552 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .28054 
Gamma = sigma(u)^2/sigma^2 =     .82955 
Var[u]/{Var[u]+Var[v]}     =     .63879 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =   95.950 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -1.70327***      .41761    -4.08  .0000    -2.52176   -.88477 
      LF|     .19534**       .09759     2.00  .0453      .00407    .38662 
      LM|     .81312***      .06954    11.69  .0000      .67682    .94941 
      LE|    1.12741***      .34589     3.26  .0011      .44947   1.80534 
      LL|    -.32931***      .07230    -4.55  .0000     -.47102   -.18760 
      LP|     .22206***      .06265     3.54  .0004      .09927    .34485 
      LK|    -.86072**       .42646    -2.02  .0436    -1.69657   -.02488 
        |Variance parameters for compound error 
  Lambda|    2.20605*       1.31249     1.68  .0928     -.36639   4.77849 
Sigma(u)|     .25552**       .10148     2.52  .0118      .05661    .45442 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       108.43918 
Estimation based on N =    256, K =   9 
Variances: Sigma-squared(v)=     .01902 
           Sigma-squared(u)=     .01692 
           Sigma(v)        =     .13791 
           Sigma(u)        =     .13007 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .18957 
Gamma = sigma(u)^2/sigma^2 =     .47074 
Var[u]/{Var[u]+Var[v]}     =     .24425 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          108.07431 
Chi-sq=2*[LogL(SF)-LogL(LS)] =     .730 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -2.98823***      .72136    -4.14  .0000    -4.40206  -1.57439 
      LF|     .37257***      .07038     5.29  .0000      .23463    .51052 
      LM|     .69910***      .07580     9.22  .0000      .55054    .84766 
      LE|    2.09473***      .68790     3.05  .0023      .74647   3.44299 
      LL|    -.42909***      .06315    -6.79  .0000     -.55287   -.30530 
      LP|     .44533***      .09498     4.69  .0000      .25917    .63149 
      LK|   -2.09806***      .76556    -2.74  .0061    -3.59853   -.59759 
        |Variance parameters for compound error 
  Lambda|     .94309***      .16870     5.59  .0000      .61244   1.27373 
   Sigma|     .18957***      .00064   297.81  .0000      .18832    .19082 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 These are the estimates of the true random effects model.  Note that the variation of the 
random terms in the model has been rearranged.  In the pooled model, sv = 0.138 and su = 0.130.  In 
the random effects model, we have sv = .099 and su= .100.  But, sw = .140.  The proportional 
allocation of the total to u and v has stayed roughly the same, but some additional variation is now 
attributed to the random effect.  Note that the production function parameters have changed 
substantially as well. 
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----------------------------------------------------------------------------- 
Random Coefficients  Frontier Model 
Dependent variable                   LQ 
Log likelihood function       160.58066 
Restricted log likelihood        .00000 
Chi squared [   1 d.f.]       321.16131 
Significance level               .00000 
Estimation based on N =    256, K =  10 
Inf.Cr.AIC  =   -301.2 AIC/N =   -1.176 
Model estimated: Aug 22, 2011, 23:15:44 
Unbalanced panel has     25 individuals 
Stochastic frontier (half normal model) 
Simulation based on     50 Halton draws 
Sigma( u) (1 sided)   =          .09962 
Sigma( v) (symmetric) =          .09857 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Production / Cost parameters, nonrandom first 
      LF|     .20387***      .05183     3.93  .0001      .10229    .30545 
      LM|     .79450***      .04660    17.05  .0000      .70318    .88583 
      LE|    1.10745***      .33573     3.30  .0010      .44943   1.76547 
      LL|    -.32691***      .04277    -7.64  .0000     -.41074   -.24308 
      LP|     .22812***      .05403     4.22  .0000      .12223    .33401 
      LK|    -.84947**       .38344    -2.22  .0267    -1.60101   -.09794 
        |Means for random parameters 
Constant|   -1.83727***      .35442    -5.18  .0000    -2.53191  -1.14263 
        |Scale parameters for dists. of random parameters 
Constant|     .11729***      .00934    12.56  .0000      .09898    .13559 
        |Variance parameter for v +/- u 
   Sigma|     .14015***      .01373    10.21  .0000      .11325    .16705 
        |Asymmetry parameter, lambda 
  Lambda|    1.01064**       .43792     2.31  .0210      .15234   1.86895 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|       Mean       Std.Dev.     Minimum      Maximum     Cases Missing 
--------+--------------------------------------------------------------------- 
   UPLRE|      .221170      .117670      .016992      .435912      256       0 
    UTRE|      .078815      .031677      .026405      .305595      256       0 
--------+--------------------------------------------------------------------- 
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Figure E64.9  Time Varying vs. Time Invariant Estimates of u(i) 

 

 
Figure E64.10  Comparison of Time Varying Fixed and Random Effects Estimates 
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E64.9 Random Parameters Stochastic Frontier Models 
 
 The random parameters stochastic frontier model in LIMDEP is very general, and embodies 
all three of the formulations discussed in the preceding sections on fixed and random effects. 
 
   yit =  βi′xit  +  vit  -  uit, 

   ui =  | N[µit, σuit
2] | 

   µit =  δi′mit. 

   σuit
2 =  σu

2 × exp(γi′wit). 
 
The model allows, all at once, half normal or truncated normal distribution for ui and firmwise and/or 
timewise heteroscedasticity in uit.  The model form allows parameters to be random in all three parts 
of the specification with the single restriction noted below.  (Only the variance of the ‘disturbance,’ 
vit is assumed to be constant.  In addition, this model form does not accommodate heteroscedasticity 
in vit.)  As will be clear in what follows, the true random effects model developed in the previous 
section is a special case of this model with nonrandom parameters in µit and σuit

2 and  
only a random constant term in βi. 
 
NOTE:  The random parameters normal-truncated normal model with heteroscedasticity (in uit) at 
the same time is not identified.  Only one of these two should be specified.  The command parser 
will not prevent you from specifying such a model, but it will ultimately be impossible to obtain the 
parameter estimates. 
 
 The general structure of the random parameters stochastic frontier model is based on the 
conditional density 
   f(yit| xit, βi) =  f(βi′xit), i = 1,...,N, t = 1,...,Ti 

where    βi =  β  +  ∆zi + Γvi 
 
and f(.) is the density for the stochastic frontier regression model.  The model assumes that 
parameters are randomly distributed with possibly heterogeneous (across individuals) means 
 
   E[βi| zi]  =  β  +  ∆zi,   
 
(the second term is optional – the mean may be constant), and 
 
   Var[βi| zi]   =  Σ. 
 
As noted earlier, the heterogeneity term is optional.  In addition, it may be assumed that some of the 
parameters are nonrandom by placing rows of zeros in the appropriate places in ∆and Γ.  The general 
form of random parameter vector βi is also extended to δi and γi.  The general aspects of random 
parameters model estimation in LIMDEP are described in Chapter R24. 
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Command for the Random Parameters Model 
 
 The model command for the random parameters form of the stochastic frontier model is as 
follows.  The first FRONTIER command is mandatory, and is needed to obtain the starting values. 
This is a pooled data version of the model.  Note that it does not include the heteroscedasticity or 
truncation specification, even if the second command does. 
 
 FRONTIER ; Lhs = dependent variable ; Rhs = independent variables 
   ; Parameters  $ 

FRONTIER ; Lhs = dependent variable 
; Rhs = independent variables 
[ ; Rh2 = list is optional for the truncated normal model ] 
[ ; Hfn = list is optional for the heteroscedasticity model ] 
; Pds = fixed periods or count variable 
; RPM (may include = variables in z) 
; Fcn = random parameters specification $ 

 
(Note, again, only one of the two optional specifications noted should be specified.) 
 
NOTE:  For this model, your Rhs list must include a constant term.  Though not strictly necessary, 
you should also include constants in Rh2 or Hfn if they are specified. 
 
Specifying Random Parameters 
 
 The ; Fcn = specification is used to define the random parameters.  It is constructed from 
the list of Rhs names as follows:  Suppose your model is specified by 
 
   ; Rhs = one, x1, x2, x3, x4 
 
This involves five coefficients.  Any or all of them may be random; any not specified as random are 
assumed to be constant.  For those that you wish to specify as random, use the following for 
production (cost, profit) function parameters,  
 
   ; Fcn = variable name (distribution),  
    variable name (distribution), ... 
 
There are two other sets of parameters in the model, in the mean of and variance of the one sided 
disturbance.  To specify random parameters in the underlying mean of the truncated normal variable, 
use the following: 
 
   ; Fcn = variable name [distribution],  
    variable name [distribution], ... 
 
(Note square brackets designate the terms in µit.) For parameters in the computation of the variance 
of uit, use 
   ; Fcn = variable name <distribution>,  
    variable name <distribution>, ... 
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The difference in the three formulations is in the enclosures, ( ) for production function, [ ] for mean 
of the truncated distribution, and <>  for the variance of the one sided disturbance.  This distinction 
is necessary because the lists might have variables in common, and this is the only way to distinguish 
them.  In particular, it is likely that all three lists would include one, so this device is used to 
distinguish the three functions. 
 Three distributions may be specified  All random variables have mean 0. 
 
   n =  standard normal distribution, variance = 1, 
   t =  triangular (tent shaped) distribution in [-1,+1], variance = 1/6, 
   u =  standard uniform distribution [-1,1], variance = 1/3. 
 
Note that each of these is scaled as it enters the distribution, so the variance is only that of the 
random draw before multiplication.  (See Chapter R23 for discussion of this computation and for 
other distributions that can be specified.)  The latter two distributions are provided as one may wish 
to reduce the amount of variation in the tails of the distribution of the parameters across individuals 
and to limit the range of variation.  (See Train (2010) for discussion.)  For example, to specify that 
the constant term and the coefficient on x1 are normally distributed with fixed mean and variance, 
and a normally distributed constant in the mean of the truncated distribution, you might use 
 
   ; Fcn = one(n), x1(n), one[n]  
 
This specifies that the first and second coefficients are random while the remainder are not. The 
parameters estimated will be the mean and standard deviations of the distributions of these two 
parameters and the fixed values of the other three.   
 
NOTE:  If you use the wrong enclosures for the variables, a diagnostic will appear that the program 
does not recognize a variable.  For example: 
 

FRONTIER ; Lhs = lq ; Rhs = one,lf,lm,le,ll,lp 
  ; Hfn = one,lf ; RPM ; Pds = ni 

   ; Fcn = one(n),lf(n),lf[n] $ 
 

Variable in FCN=name[type] is not in RHS/RH2/HFN list. 
 
The reason for the diagnostic is that the lf[n] would indicate a specification for the truncation model, 
using ; Rh2 = list.  But, this command specifies only heteroscedasticity, which is denoted with <> 
enclosures.  Hence, when the lf[n] is encountered, LIMDEP searches for lf in an Rh2 list, and finding 
no such list, issues the diagnostic. 
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Correlated Random Parameters 
 
 The stochastic frontier model does not support correlated random parameters.  The model is 
not identified with this extension. 
 
Heterogeneity in the Means 
 
 The preceding examples have specified that the mean of the random variable is fixed over 
individuals.  If there is measured heterogeneity in the means, in the form of 
 
   E[βki]  =  βk  +  Σmδkmzmi 
 
where zmi is a variable that is measured for each individual, then the command may be modified to
  
   ; RPM  =  list of variables in z 
 
In the data set, these variables must be repeated for each observation in the group.  Since the 
coefficients are assumed to be time invariant, the variables in zi must be also. 
 
The Parameter Vector and Retained Results 
 
 The variances of the underlying random variables are given earlier, 1 for the normal 
distribution, 1/3 for the uniform, and 1/6 for the tent distribution.  The σk parameters are only the 
standard deviations for the normal distribution.  For the other two distributions, σk is a scale 
parameter.  The standard deviation is obtained as σk / 3  for the uniform distribution and σk / 6  for 
the triangular distribution.  When the parameters are correlated, the implied covariance  matrix is 
adjusted accordingly.  The correlation matrix is unchanged by this. 
 Results saved by this estimator are: 
 
 Matrices: b =  estimate of θ 
   varb =  asymptotic covariance matrix for estimate of θ. 
   beta_i =  individual specific parameters, if ; Par is requested. 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
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Standard Model Specifications for the Stochastic Frontier Random Parameters 
Model 
 

This is the full list of general specifications that are applicable to this model estimator.    
 
Controlling Output from Model Commands 
 

; Par  keeps individual specific parameter estimates.  
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 ; Robust requests a ‘sandwich’ estimator or robust covariance matrix for TSCS 
    and several discrete choice models. 
 
Optimization Controls for Nonlinear Optimization 
 

; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set   keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 
Application 
 
 We continue the earlier application by fitting the stochastic frontier model with random 
parameters.  The random parameters truncation model appears to be unidentified in these data, so the 
second model fit is with heteroscedasticity.  In the first model, the constant and one of the production 
coefficients is specified to be random.  In the second, these two coefficients and the parameter on the 
variable that enters the variance function are all taken to be random.  The kernel density estimators 
compare the efficiency estimates from the random parameters model to those from the simplest 
pooled estimator. 
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The commands are:  
 
 NAMELIST ; x = one,lf,lm,le,ll,lp,lk $ 
 FRONTIER  ; Lhs  = lq ; Rhs = x ; Eff = u $ 
 FRONTIER ; Lhs  = lq ; Rhs = x 
   ; RPM ; Panel ; Pts = 50 ; Halton; Fcn = one(n),lf(n) ; Eff = urp1 $ 
 KERNEL  ; Rhs = urp1,u $ 
 FRONTIER ; Lhs  = lq ; Rhs = x $ 
 FRONTIER ; Lhs  = lq ; Rhs = x ; Hfn = one,loadfctr   
   ; RPM ; Panel ; Pts = 50 ; Halton 
   ; Fcn  = one(n),lf(n),loadfctr<n> $ 
 
----------------------------------------------------------------------------- 
Random Coefficients  Frontier Model 
Dependent variable                   LQ 
Log likelihood function       161.33196 
Restricted log likelihood        .00000 
Chi squared [   2 d.f.]       322.66392 
Significance level               .00000 
Estimation based on N =    256, K =  11 
Inf.Cr.AIC  =   -300.7 AIC/N =   -1.174 
Model estimated: Aug 22, 2011, 23:28:18 
Unbalanced panel has     25 individuals 
Stochastic frontier (half normal model) 
Simulation based on     50 Halton draws 
Sigma( u) (1 sided)   =          .10598 
Sigma( v) (symmetric) =          .09399 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Production / Cost parameters, nonrandom first 
      LM|     .81447***      .04526    18.00  .0000      .72577    .90317 
      LE|    1.16342***      .31391     3.71  .0002      .54817   1.77867 
      LL|    -.33712***      .04111    -8.20  .0000     -.41769   -.25654 
      LP|     .24213***      .04782     5.06  .0000      .14841    .33585 
      LK|    -.94502***      .35520    -2.66  .0078    -1.64119   -.24886 
        |Means for random parameters 
Constant|   -1.89056***      .33140    -5.70  .0000    -2.54009  -1.24103 
      LF|     .21430***      .05277     4.06  .0000      .11088    .31773 
        |Scale parameters for dists. of random parameters 
Constant|     .12526***      .00926    13.53  .0000      .10711    .14341 
      LF|     .04979***      .00823     6.05  .0000      .03366    .06592 
        |Variance parameter for v +/- u 
   Sigma|     .14165***      .01265    11.20  .0000      .11686    .16645 
        |Asymmetry parameter, lambda 
  Lambda|    1.12768***      .42335     2.66  .0077      .29792   1.95743 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Figure E64.11 shows the distributions of the estimates of inefficiencies from the random parameters 
model and the simple, pooled fixed parameters model.  The figure suggests that the RP formulation 
is moving some of the variation of the outcome variable out of the inefficiency term and into the 
production model, in the form of parameter variation. 
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Figure E64.11  Kernel Density Estimator for Random Parameters Model Inefficiencies 

 
----------------------------------------------------------------------------- 
Random Coefficients  FrntrTrn Model 
Dependent variable                   LQ 
Log likelihood function       199.14429 
Estimation based on N =    256, K =  13 
Unbalanced panel has     25 individuals 
Stochastic frontier, truncation/hetero. 
Simulation based on     50 Halton draws 
Estimated parameters of efficiency dstn 
s(u)  =     .189842  s(v)=       .07165 
avgE[u|e]=   .10986  avgE[TE|e]= .90303 
Lambda  = su/sv =               2.64974 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
      LM|     .62243***      .04223    14.74  .0000      .53966    .70521 
      LE|     .38353         .28063     1.37  .1717     -.16649    .93355 
      LL|    -.36579***      .03589   -10.19  .0000     -.43614   -.29544 
      LP|     .15282***      .04217     3.62  .0003      .07017    .23547 
      LK|    -.16125         .31392     -.51  .6075     -.77652    .45401 
   suONE|    9.05239***     1.65934     5.46  .0000     5.80014  12.30464 
        |Means for random parameters 
Constant|   -1.17144***      .29799    -3.93  .0001    -1.75549   -.58739 
      LF|     .49011***      .04904     9.99  .0000      .39398    .58623 
suLOADFC|   -16.4160***     3.47560    -4.72  .0000    -23.2281   -9.6039 
        |Scale parameters for dists. of random parameters 
Constant|     .12591***      .00859    14.65  .0000      .10906    .14275 
      LF|     .01186**       .00593     2.00  .0456      .00023    .02350 
suLOADFC|    1.47653***      .36192     4.08  .0000      .76718   2.18589 
        |Sigma(v) from symmetric disturbance. 
Sigma(v)|     .07165***      .00670    10.69  .0000      .05851    .08478 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 



E64: Panel Data Stochastic Frontier Models   E-1618 

E64.10 Alvarez et al. – Fixed Management Model 
 
 Alvarez, Arias and Greene (2006) suggested a production model in which an unobserved 
factor enters as a latent variable.  The core production model  is 
 
   yit  =  f(xit,1,xit,2,...,xit,K, mi) 
 
where the unobservable, time invariant factor, ‘mi’ is labeled ‘management’ in their paper.  By 
treating the unobserved factor as a random component in the model, the authors develop a stochastic 
frontier model in which the resultant functional form is such that all random parameters are functions 
of the same single random effect, vi, and the vi appears in squared form in the equation as well.  In 
generic terms, this model is a random parameters stochastic frontier model with random constant 
term and first order terms, and nonrandom second order terms in a translog model.  The functional 
form is 
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This model is specified simply by creating the necessary variables, then building a random 
parameters model with the two additional specifications, 
 
   ; Common ; Mgt 
 
The ; Common specification alone is generic, and applies to all random parameters models.  Use it 
to specify that the same random component appears in all random parameters.  The ; Mgt 
specification has no function outside the frontier model.  It is used only with the frontier model to 
specify this particular form.  For example, consider the following three factor translog model: 
 
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x11,x12,x13,x22,x23,x33 $ 
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x11,x12,x13,x22,x23,x33  
   ; RPM ; Pds = the panel specification ; Halton 
   ; Fcn = one(n),x1(n),x2(n),x3(n) 
   ; Common ; Mgt $ 
 
(It is always necessary to fit the frontier model with fixed parameters first to generate the starting 
values.)   
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 An extension of this model that the authors considered was intended to ameliorate the 
probable correlation between the random effect wi and the independent variables (factors).  The 
Mundlak approach to this problem is to incorporate the group means of the variables in the model.  
For this model, they proposed 
 
   log K

i k i,k ik=1
w =τ x + f∑  

 
where fi is now the structural random variable that drives the random parameters.  This extension is 
requested with 
   ; Means 
 
(The program deduces internally which variables are nonconstant and should be used.) 
 
Application 
 
 The following is the Alvarez, Arias and Greene application.  The data consists of six years of 
observations on 247 Spanish dairy farms.  The output, yit is milk production.  The four inputs, x1, x2, 
x3 and x4 are feed, land, labor and cows.  Commands for fitting the model are as follows:  (We have 
restricted the number of iterations and the number of replications for purpose of this numerical 
illustration.)  Both models (with and without the Mundlak adjustment) are shown. 
 
 FRONTIER  ; Lhs  = yit  
   ; Rhs = one,x1,x2,x3,x4,x11,x12,x13,x14,x23,x24,x34,x44 ; Par $ 
 FRONTIER  ; Lhs  = yit  
   ; Rhs = one,x1,x2,x3,x4,x11,x12,x13,x14,x23,x24,x34,x44  
   ; RPM ; Halton ; Pts = 25 ; Pds = 6 ; Maxit = 25 ; Common ; Mgt 
   ; Fcn  = one(n),x1(n),x2(n),x3(n),x4(n) $ 
 FRONTIER  ; Lhs  = yit  
   ; Rhs = one,x1,x2,x3,x4,x11,x12,x13,x14,x23,x24,x34,x44 ; Par $ 
 FRONTIER  ; Lhs  = yit  
   ; Rhs = one,x1,x2,x3,x4,x11,x12,x13,x14,x23,x24,x34,x44  
   ; RPM ; Halton ; Pts = 25 ; Pds = 6 ; Maxit = 25  
   ; Common ; Mgt ; Means 
   ; Fcn  = one(n),x1(n),x2(n),x3(n),x4(n) $ 
 
 The first set of results is the pooled stochastic frontier model with no extensions or 
modifications. 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  YIT 
Log likelihood function       851.16734 
Estimation based on N =   1482, K =  15 
Variances: Sigma-squared(v)=     .00876 
           Sigma-squared(u)=     .02831 
           Sigma(v)        =     .09359 
           Sigma(u)        =     .16825 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .19253 
Gamma = sigma(u)^2/sigma^2 =     .76371 
Var[u]/{Var[u]+Var[v]}     =     .54012 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          829.23705 
Chi-sq=2*[LogL(SF)-LogL(LS)] =   43.861 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    11.6942***      .00529  2209.86  .0000     11.6838   11.7046 
      X1|     .60483***      .02133    28.35  .0000      .56302    .64664 
      X2|     .02246**       .01140     1.97  .0489      .00011    .04480 
      X3|     .02336*        .01245     1.88  .0606     -.00104    .04776 
      X4|     .44945***      .01172    38.34  .0000      .42647    .47242 
     X11|     .59297***      .13525     4.38  .0000      .32789    .85806 
     X12|    -.17183***      .04842    -3.55  .0004     -.26673   -.07693 
     X13|     .20033***      .06903     2.90  .0037      .06502    .33563 
     X14|    -.32993***      .07299    -4.52  .0000     -.47297   -.18688 
     X23|     .00386         .04203      .09  .9268     -.07852    .08624 
     X24|     .06473**       .03009     2.15  .0314      .00576    .12369 
     X34|    -.07096*        .03853    -1.84  .0655     -.14648    .00455 
     X44|     .20854***      .04328     4.82  .0000      .12373    .29336 
        |Variance parameters for compound error 
  Lambda|    1.79780***      .10292    17.47  .0000     1.59608   1.99951 
   Sigma|     .19253***      .00011  1715.95  .0000      .19231    .19275 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This is the fixed management model without the Mundlak correction. 
 
+---------------------------------------------+ 
| Random Coefficients  Frontier Model         | 
| Dependent variable                  YIT     | 
| Log likelihood function      1327.58807     | 
| Estimation based on N =   1482, K =  21     | 
| Sample is  6 pds and    247 individuals     | 
+---------------------------------------------+ 
----------------------------------------------------------------------------- 
All parameters have the same random effect 
Alvarez/Arias/Greene Fixed Mgt. SF Model 
Stochastic frontier (half normal model) 
Simulation based on     25 Halton draws 
Sigma( u) (1 sided)   =          .09355 
Sigma( v) (symmetric) =          .05799 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Production / Cost parameters, nonrandom first 
     X11|     .19550**       .08392     2.33  .0198      .03101    .35999 
     X12|    -.00410         .02903     -.14  .8876     -.06100    .05279 
     X13|    -.03972         .04116     -.96  .3346     -.12039    .04095 
     X14|    -.08681**       .04220    -2.06  .0397     -.16952   -.00410 
     X23|     .02377         .02534      .94  .3483     -.02590    .07344 
     X24|    -.01893         .01743    -1.09  .2775     -.05310    .01524 
     X34|     .02550         .02305     1.11  .2684     -.01967    .07067 
     X44|     .09988***      .02339     4.27  .0000      .05403    .14572 
        |Means for random parameters 
Constant|    11.6506***      .00445  2620.80  .0000     11.6418   11.6593 
      X1|     .65048***      .01227    53.03  .0000      .62643    .67452 
      X2|     .03525***      .00681     5.17  .0000      .02190    .04861 
      X3|     .04531***      .00759     5.97  .0000      .03043    .06019 
      X4|     .40147***      .00646    62.16  .0000      .38881    .41413 
        |Coefficients on unobservable fixed management 
Constant|     .12579***      .00238    52.96  .0000      .12114    .13045 
      X1|    -.02248*        .01218    -1.85  .0649     -.04635    .00139 
      X2|     .00767         .00851      .90  .3676     -.00902    .02436 
      X3|     .00794         .00939      .85  .3979     -.01047    .02635 
      X4|    -.00967         .00657    -1.47  .1410     -.02255    .00320 
Alpha_mm|    -.02835***      .00414    -6.85  .0000     -.03646   -.02024 
        |Variance parameter for v +/- u 
   Sigma|     .11007***      .00289    38.04  .0000      .10439    .11574 
        |Asymmetry parameter, lambda 
  Lambda|    1.61332***      .11959    13.49  .0000     1.37893   1.84771 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+---------------------------------------------+ 
| Random Coefficients  Frontier Model         | 
| Dependent variable                  YIT     | 
| Log likelihood function      1273.63070     | 
| Sample is  6 pds and    247 individuals     | 
+---------------------------------------------+ 
----------------------------------------------------------------------------- 
All parameters have the same random effect 
Alvarez/Arias/Greene Fixed Mgt. SF Model 
Stochastic frontier (half normal model) 
Simulation based on     25 Halton draws 
Sigma( u) (1 sided)   =          .12577 
Sigma( v) (symmetric) =          .05376 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Production / Cost parameters, nonrandom first 
     X11|    -.06957         .08521     -.82  .4142     -.23658    .09743 
     X12|     .00164         .02989      .05  .9562     -.05693    .06022 
     X13|     .31592***      .04339     7.28  .0000      .23087    .40097 
     X14|    -.08946*        .04767    -1.88  .0606     -.18289    .00398 
     X23|    -.02088         .02784     -.75  .4533     -.07545    .03369 
     X24|    -.04357**       .01912    -2.28  .0227     -.08103   -.00610 
     X34|    -.15581***      .02350    -6.63  .0000     -.20187   -.10975 
     X44|     .16310***      .02763     5.90  .0000      .10895    .21725 
        |Means for random parameters 
Constant|    11.6829***      .00449  2601.72  .0000     11.6741   11.6917 
      X1|     .60260***      .02198    27.41  .0000      .55951    .64569 
      X2|     .05221***      .01636     3.19  .0014      .02015    .08427 
      X3|     .10728***      .02775     3.87  .0001      .05290    .16166 
      X4|     .39780***      .01047    38.00  .0000      .37728    .41832 
        |Coefficients on unobservable fixed management 
Constant|     .11398***      .00235    48.52  .0000      .10937    .11858 
      X1|    -.05393***      .01134    -4.76  .0000     -.07616   -.03171 
      X2|     .03061***      .00916     3.34  .0008      .01265    .04857 
      X3|     .01309         .01202     1.09  .2760     -.01046    .03665 
      X4|     .01621**       .00707     2.29  .0218      .00236    .03007 
Alpha_mm|    -.03575***      .00368    -9.72  .0000     -.04296   -.02855 
        |Variance parameter for v +/- u 
   Sigma|     .13678***      .00368    37.19  .0000      .12957    .14399 
        |Asymmetry parameter, lambda 
  Lambda|    2.33925***      .14491    16.14  .0000     2.05524   2.62326 
        |Variable Means in Unobserved Management 
  X1_bar|    -.12466         .22073     -.56  .5722     -.55728    .30796 
  X2_bar|     .00045         .15758      .00  .9977     -.30839    .30930 
  X3_bar|     .01632         .25437      .06  .9489     -.48224    .51487 
  X4_bar|     .15107         .11332     1.33  .1825     -.07102    .37316 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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E64.11 Latent Class Stochastic Frontier Models 
 
 The latent class framework discussed in Chapter E20 is available for the stochastic frontier 
model.  The structural equations of the basic model are 

 
   yit | j = βj′xit  +  vit  -  uit, 

   vi | j = N[0, σvj
2] 

   ui | j = | N[σuj
2] | 

 
where ‘j’ indicates class j.  The truncation and heteroscedasticity models are not supported by this 
estimator.  However, the Battese and Coelli model, in which 
 
   uit | j = g(zit)| j× |Ui| 
 
is available for both forms of g(zit). 
 The estimation command for the latent class stochastic frontier model is 
 
 FRONTIER ; Lhs  = dependent variable  
   ; Rhs = one, remaining variables ; Parameters $ 

FRONTIER ; Lhs  = dependent variable 
; Rhs = one, remaining variables 
; Pds = fixed periods or count variable 
; LCM ; Pts = number of classes (2, 3, ..., 9)  $ 

 
(As in other panel data settings, it is necessary to fit the pooled model first to compute the starting 
values.)   
 The Battese and Coelli models may be specified here with 
 
   ; Model = BC 
 
for the decay model and 
 
   ; Model = BC  

; Hfu = one, heteroscedasticity variables 
 
For this model, you must fit the identical Battese and Coelli model without the latent class 
specification first.  The application below demonstrates. 
 The basic form of the latent class model assumes that the class probabilities are fixed values.  
You may make them dependent on time invariant variables, wi with 
 
   ; LCM = list of variables in w 
 
Do not include one in the list.  
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 Some particular variables computed for the latent class model are 
 
   ; Group = the index of the most likely latent class 
   ; Cprob = estimated probability for the most likely latent class 
 
You can obtain a listing of these two results by using 
 
   ; List 
 
An example appears below.  You can also use the ; Rst = list option to structure the latent class 
model so that different variables appear in different classes or that certain coefficients are equal 
across classes.  Examples are given in Chapter E20. 
 Estimates retained by this model include: 
 
 Matrices: b =  full parameter vector, [β1′λ1σ1, β2′,λ2σ2, ... F1,...,FJ] 
   varb =  full covariance matrix 
   beta_i =  individual specific parameters, if ; Par is requested 

 
Note that b and varb involve J×(K+2) estimates.  Two additional matrices are created, 

  
   b_class =  a J×K matrix with each row equal to the corresponding βj 

  class_pr =  a J×1 vector containing the estimated class probabilities 
 

Scalars: kreg =  number of variables in Rhs list 
   nreg =  total number of observations used for estimation 
   logl =  maximized value of the log likelihood function 
   exitcode =  exit status of the estimation procedure 
 
Standard Model Specifications for the Latent Class Stochastic Frontier Model 
 

This is the full list of general specifications that are applicable to this model estimator.  
 

Controlling Output from Model Commands 
  

; Par  keeps individual specific parameter estimates.  
; Partial Effects displays marginal effects, same as ; Marginal Effects. 
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc.  

 ; Robust requests a ‘sandwich’ estimator or robust covariance matrix for TSCS and 
    several discrete choice models. 
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Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg [ = value] sets convergence value for gradient. 
; Tlf [ = value] sets convergence value for function. 
; Tlb [ = value] sets convergence value for parameters. 
; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
; Set   keeps current setting of optimization parameters as permanent. 

 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Fill   fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 
Application 
 
 The airline data used in the preceding examples are clearly not compatible with this model; 
no configuration of the equation produces meaningful results.  To illustrate the estimator, we have 
borrowed the Spanish dairy data used in the previous section.  The following commands fit a two 
class, Battese and Coelli decay model. 
 
 NAMELIST  ; x  = one,x1,x2,x3,x4 $ 
 FRONTIER  ; Lhs = yit ; Rhs = x  
   ; Model = BC  
   ; Pds = 6 $ 
 FRONTIER  ; Lhs = yit ; Rhs = x  
   ; Model = BC 
   ; LCM ; Pts = 2 ; Pds = 6 ; List $ 
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These are the initial results from the first command. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  YIT 
Log likelihood function      1390.20024 
Stochastic frontier based on panel data 
Estimation based on     247 individuals 
Variances: Sigma-squared(v)=     .00549 
           Sigma-squared(u)=     .03940 
           Sigma(v)        =     .07413 
           Sigma(u)        =     .19848 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .21187 
Gamma = sigma(u)^2/sigma^2 =     .87759 
Var[u]/{Var[u]+Var[v]}     =     .72263 
Stochastic Production Frontier, e = v-u 
Battese-Coelli Models: Time Varying uit 
Time dependent uit=exp[-eta(t-T)]*|U(i)| 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          809.67610 
Chi-sq=2*[LogL(SF)-LogL(LS)] = 1161.048 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    11.7882***      .00716  1646.05  .0000     11.7742   11.8022 
      X1|     .62230***      .01365    45.59  .0000      .59555    .64905 
      X2|     .06001***      .01069     5.61  .0000      .03905    .08096 
      X3|     .05708***      .01454     3.93  .0001      .02858    .08557 
      X4|     .35510***      .00700    50.69  .0000      .34137    .36883 
        |Variance parameters for compound error 
  Lambda|    2.67761***      .02351   113.88  .0000     2.63152   2.72369 
Sigma(u)|     .19848***      .00060   332.72  .0000      .19731    .19965 
        |Eta parameter for time varying inefficiency 
     Eta|     .08030***      .00432    18.60  .0000      .07184    .08877 
--------+-------------------------------------------------------------------- 
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Warning   141: Iterations:current or start estimate of sigma is nonpositive 
Normal exit from iterations. Exit status=0. 
----------------------------------------------------------------------------- 
Latent Class / Panel Frontier Model 
Dependent variable                  YIT 
Log likelihood function      1462.93500 
Estimation based on N =   1482, K =  17 
Sample is  6 pds and    247 individuals 
Stoch. frontier (B&C,time varying U) 
Ineff=u(i,t)=exp(-eta*(t-T))|U(i)| 
Model fit with  2 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    11.8355***      .02201   537.84  .0000     11.7923   11.8786 
      X1|     .60324***      .03499    17.24  .0000      .53467    .67181 
      X2|     .13327***      .04014     3.32  .0009      .05459    .21195 
      X3|     .10581***      .03248     3.26  .0011      .04216    .16947 
      X4|     .33560***      .01392    24.11  .0000      .30832    .36288 
        |Square root of variance sum, sqr(s2u + s2v) 
   Sigma|     .71161**       .35935     1.98  .0477      .00730   1.41591 
        |Asymmetry parameter in compound distn, su/sv 
  Lambda|     .02071         .02565      .81  .4194     -.02956    .07098 
        |Scale factor in time varying inefficiency 
     Eta|     .19551***      .01986     9.84  .0000      .15658    .23444 
        |Model parameters for latent class 2 
Constant|    11.7611***      .01279   919.62  .0000     11.7360   11.7862 
      X1|     .61866***      .01873    33.04  .0000      .58196    .65536 
      X2|     .05041***      .01289     3.91  .0001      .02514    .07567 
      X3|     .06232***      .01830     3.40  .0007      .02645    .09820 
      X4|     .30614***      .01029    29.76  .0000      .28598    .32631 
        |Square root of variance sum, sqr(s2u + s2v) 
   Sigma|     .92839***      .02938    31.60  .0000      .87081    .98597 
        |Asymmetry parameter in compound distn, su/sv 
  Lambda|     .05084         .22185      .23  .8187     -.38398    .48566 
        |Scale factor in time varying inefficiency 
     Eta|     .07059***      .00475    14.87  .0000      .06129    .07990 
        |Estimated prior probabilities for class membership 
Class1Pr|     .30612***      .05178     5.91  .0000      .20463    .40760 
Class2Pr|     .69388***      .05178    13.40  .0000      .59240    .79537 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+---------------------------------------------------+ 
| Stochastic Frontier Model Variance Parameters     | 
| Class     Lambda      Sigma   Sigma(u)   Sigma(v) | 
|     1    .020709    .711607    .014734    .711454 | 
|     2    .050840    .928393    .047139    .927195 | 
+---------------------------------------------------+ 
============================================================================= 
Predictions computed for the group with the largest posterior probability 
Obs.  Periods Estimated inefficiencies, E[u|v -/+ u] 
============================================================================= 
Ind.=    1  J* = 1  P(j)=  .889  .111 
       01-06  .3105  .2554  .2100  .1727  .1421  .1168 
Ind.=    2  J* = 2  P(j)=  .295  .705 
       01-06  .0813  .0757  .0706  .0657  .0613  .0571 
Ind.=    3  J* = 2  P(j)=  .012  .988 
       01-06  .2254  .2100  .1957  .1824  .1699  .1584 
Ind.=    4  J* = 1  P(j)=  .955  .045 
       01-06  .1778  .1463  .1203  .0989  .0814  .0669 
Ind.=    5  J* = 1  P(j)=  .650  .350 
       01-06  .2453  .2018  .1659  .1365  .1122  .0923 
Ind.=    6  J* = 2  P(j)=  .138  .862 
       01-06  .0517  .0482  .0449  .0418  .0390  .0363 
Ind.=    7  J* = 1  P(j)=  .985  .015 
       01-06  .3010  .2476  .2036  .1674  .1377  .1132 
Ind.=    8  J* = 2  P(j)=  .165  .835 
       01-06  .0561  .0523  .0487  .0454  .0423  .0394 
Ind.=    9  J* = 2  P(j)=  .450  .550 
       01-06  .0134  .0125  .0116  .0108  .0101  .0094 
Ind.=   10  J* = 1  P(j)=  .999  .001 
       01-06  .1039  .0855  .0703  .0578  .0475  .0391 
 (Farms 11-247 omitted) 
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E65: Data Envelopment Analysis 
 
E65.1 Introduction 
 

 There are two broad paradigms used by researchers to analyze efficiency in production, 
stochastic frontier analysis (SFA) and data envelopment analysis (DEA).  No formulation has yet 
been devised that unifies SFA and DEA in a single analytical framework.  Arguably, the former is a 
fully parameterized model whereas the latter is ‘nonparametric,’ albeit also atheoretical in nature.  
DEA is currently the conventional approach to deterministic frontier estimation.  This is usually 
handled with linear programming techniques.  The analysis assumes that there is a frontier 
technology (in the same spirit as the stochastic frontier production model) that can be described by a 
piecewise linear hull that envelopes the observed outcomes.  Some (efficient) observations will be on 
the frontier while other (inefficient) individuals will be inside. The technique produces a 
deterministic frontier that is generated by the observed data, so by construction, some individuals are 
‘efficient.’  This is one of the fundamental differences between DEA and SFA.  This chapter presents 
LIMDEP’s programs for data envelopment analysis (DEA).   
 

E65.2 Data Envelopment Analysis 
 

 Stochastic frontier modeling is based on maximum likelihood or other classical or Bayesian, 
parametric econometric techniques.  In contrast, DEA is based on nonparametric, linear programming 
methods.  Both paradigms are based on an underlying construct of the efficient production frontier that 
relates maximal output to inputs for the ‘firm’ (decision making unit, or DMU).  Using SFA methods, 
the analyst defines, then estimates a continuous, regular relationship that defines the frontier.  DEA 
uses linear programming methods to fit a piecewise linear ‘hull’ around the data, under the assumption 
that the hull adequately approximates the underlying frontier, the more so as the number of 
observations increases. (Since the technique is nonstatistical, this is difficult to establish analytically.)  
There is a vast literature on the two techniques and comparisons, none of which will be reviewed here.  
Our purpose here is only to document the estimator. We recommend, as a departure point in the 
literature, a working paper by Coelli (1996a), which describes the techniques documented here and 
introduces some of the theoretical notions. He also provides several useful citations. 
 
E65.2.1 Input and Output Oriented Efficiency 
 

 The discussion of DEA efficiency measurement begins with the notion of a measure of the 
ratio of outputs to inputs for firm ‘i,’ 
 

   Ratioi =  α′yi / β′xi, i = 1,..,N, 
 

where yi is the vector of M outputs and xi is the vector of K inputs.  The optimal weights are defined 
by the programming problem, 
 

   Maximize wrt α,β:  α′yi / β′xi 

   Subject to α′ys / β′xs < 1, s = 1,...,N 

    αm > 0, m = 1,...,M 

    βk > 0, k = 1,...,K 
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The optimization program seeks the optimal weights to maximize the ‘efficiency’ of firm s subject to 
the restriction that the efficiencies of all firms are less than or equal to one, and that all weights are 
nonnegative.  Because the objective function is homogeneous of degree zero – any multiple of the 
weights produces the same solution – it is normalized with a restriction such as α′xi = 1.  
Transforming and simplifying the problem a bit produces the equivalent program, 
 
   Maximize wrt α,β:  α′yi  
   Subject to β′xi = 1 
     α′ys - β′xs < 0, s = 1,...,N 
     α > 0 
     β > 0 
 
An equivalent form of the problem is the envelopment form (hence the name), 
 
   Minimize wrt θi, λ: θi 

   Subject to Σs λsys – yi  >  0 

     θi xi - Σ λsxs  >  0 

     λs  >  0. 
 
The value of θi is the input oriented technical efficiency score for the ith firm 
 
   TEINPUT,i  =  θi. 
 
It measures the extent to which the firm could reduce inputs to obtain the same output – relative to 
other firms in the sample.  Note that the program is solved for each firm in the sample – an efficiency 
score θi is generated for each firm.  For some firms in the sample, the efficiency score will be 1.0.  
This indicates firms deemed to be technically efficient.  Otherwise, θi < 1. 
 The preceding formulation includes an implicit assumption of constant returns to scale 
(CRS). The assumption is relaxed to variable returns to scale (VRS), by adding a restriction 
 
   Σs λs  =  1. 
 
Variable returns to scale is the standard assumption in contemporary applications.  This provides a 
means by which the ‘scale efficiency’ of the firm can be measured.  Let θiC denote the technical 
efficiency measure obtained assuming constant returns and θiV  be the variable returns to scale 
counterpart.  Then, the ‘scale efficiency’ may be measured by 
 
   SEi  =  θiC / θiV. 
 
This can be computed using the results of the two different programs after computation. A 
‘nonincreasing returns to scale’ (NRS) version of the program can be obtained by changing the adding 
up restriction to 

Σs λs  <  1. 
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 An alternative view of the optimization process is to consider the extent to which outputs 
could conceivably be increased using the same inputs – again relative to the standard of other firms 
in the sample.  The linear program which produces this solution is 
 
   Maximize wrt φi, λ: φi 

   Subject to Σs λsys – φi yi  >  0 

     xi - Σ λsxs  >  0 

     λs  >  0. 
 
Once again, this assumes constant returns to scale.  The variable returns to scale form is obtained by 
adding the constraint Σsλs  =  1.  In this solution, 1 < φi < ∞.  The technical efficiency measure is 
 
   0  <  TEOUTPUT,i  =  1/φi  <  1 
 
As before, some firms in the sample (the same firms) will be found to be technically efficient by this 
output oriented efficiency measure.  
 

E65.2.2 Economic and Allocative Efficiency 
 
 With input price information, wi, (and assuming cost minimization) a cost minimization 
program to find the optimal inputs given the input prices is 
 
   Minimize wrt χi, λ: wi′ χi 

   Subject to Σs λsys – yi  >  0 

     χi - Σ λsxs  >  0 

     λs  >  0. 
 
As before, to allow for variable returns to scale (VRS), we add Σs λs = 1.  In this program, χi gives the 
cost minimizing vector of inputs for output yi and input prices wi.  The cost efficiency for the ith firm is 
then the ratio 
   0  <  CEi  =  wiχi / wi′xi < 1. 
 
Allocative efficiency may be measured using 
 
   0  <  AEi  =  CEi / TEINPUT,i  < 1. 
 

E65.2.3 Solutions to the Optimization Problems 
 
 We note briefly the mathematical form of LIMDEP’s solutions to the linear programs above.  
The programming problem is defined in terms of  
 

• Activity vector, γ = the solution vector 
• Coefficient vector, c so that the objective function is c′γ 
• Constraint matrix, A 
• Lower and upper limits for constraints, bL and bU 
• Lower and upper limits for activities, dL and dU 
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The linear program solution, in general is, then, 
 
   Optimize wrt γ: c′γ 

   Subject to bL < Aγ  < bU 

     dL <  γ   <  dU. 
 
We will define the components for the three programs defined earlier.  Note, first, for convenience, 
we define the data matrices, Y and X.  Y is an N×M matrix of outputs whose ith row is the vector of 
outputs for firm i; X is the N×K matrix of inputs, defined likewise.  For an individual firm, we define 
yi to the M×1 column vector of outputs for firm i; thus, yi is the transpose of the ith row of Y. 
Likewise, xi is the column vector of K inputs for firm i, the transpose of the ith row of X.   Finally, 
the column vector of weights is λ = (λ1,...,λN)′.  Thus, 
 
   Σs λs ys  =  Y′λ  and  Σs λs xs  =  X′λ. 
 
Finally, we note once again, the programs about to be defined are solved for each firm to obtain the 
efficiency scores.  (In fact, λ should be indexed by firm, since it is recomputed each time.  For 
convenience, we have omitted this subscript.)  We use the symbol ∞K and ∞M to indicate a vector 
whose each element equals infinity (or sometimes minus infinity) and boldface 1 or 0 to indicate a 
vector of ones or zeros with a subscript to indicate the number of elements.  Finally, our tableaus 
include the VRS restriction, which may be suppressed by the user for the CRS form. 
 With all this in place, we can define the solutions to the optimization problems just by 
identifying the components of the linear programming problems.  These are as follows: 
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Allocative Efficiency 
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  One final note, DEA requires a fair amount of computation.  The linear program involves 
M+K+1 constraints and N+1 activities, and it is computed once for each of the N firms in the sample.  
The amount of computation increases with the square of N.  The particular computations are quite 
fast, however  
 
E65.3 Confidence Limits for Efficiency Scores 
 
 A major shortcoming of the DEA approach to modeling production is the absence of a 
statistical underpinning.  One approach that has been used to try to produce some statistical 
characterization of the estimator is to use bootstrapping to obtain confidence limits for the estimated 
efficiency scores. A popular method used is that of Simar and Wilson (1998).  In brief, their method 
amounts to the following:  We have in hand for each firm a θi estimated using the linear program 
defined above.  To carry out the bootstrap, we use the following experiment.  The data on xm for all 
firms, including this one, are proportionally scaled using a randomly generated (see their paper for 
the algorithm) scale factor, θi/τmb for replication b.  Then, θi,b is recomputed using the revised data, 
with the same method.  The experiment is repeated B times.  The 5th and 95th percentiles of the B 
observations provide the confidence limits.  This is repeated B times for each firm.  To obtain 
bootstrapped confidence use the command syntax described below, with the simple addition of the 
request for the number of bootstrap replications. 
 It should be noted, bootstrapping adds considerably to the amount of computation.  In 
general, the analysis requires the computation of 2N linear programs, two for each firm, to compute 
the input and output oriented efficiency scores, plus one more if input prices are supplied for the 
allocative efficiency computation.  Bootstrapping adds B×N more programs.  Each program involves 
N+1 activities and K+M+1 constraints, so overall, the amount of computation is considerable.  
Nonetheless, each component of each linear program is very fast.  In the example below, we have 
123 observations.  We requested 50 bootstrap replications, so we computed altogether 53×123 = 
6,519 programs, each with 123 activities.  The LP computations plus all the ancillary computations 
and the display took altogether only 3.84 seconds on our desktop computer. 
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E65.4 Command Structure 
 
 The command for the data envelopment analysis routine is simply 
 
 FRONTIER ; Lhs  = output variables 
   ; Rhs = input variables  (will never include one) 
   ; Alg  = DEA $ 
 
The following is the full list of specifications for this command. 
 The default specification uses the variable returns to scale form.  If you wish to use the 
constant returns to scale form, add 
 
   ; CRS 
 
to the command.  The nonincreasing returns to scale form (Σi λi < 1) is requested with 
 
   ; NRS 
 
Nondecreasing returns to scale is requested with ; NDS. 

If you wish to analyze input price data, add 
 
   ; Rh2 = input price variables 
 
The program computes the DEA efficiency scores (input and output oriented, and economic 
efficiency), and stores them as variables and as matrices.  (See the description in the next section.)  If 
you would like to see a listing of the scores on your screen, in the output window, add 
 
   ; List 
 
to the command.  The list of ‘peer’ firms for each observation (see Section E65.5.1 below) may be 
requested by adding 
 

   ; Peers  
 
to the command.  Finally, to obtain bootstrapped confidence limits for the estimator, add 
 
   ; Nbt = the desired number of replications 
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E65.5 DEA Results 
 
 This estimator by default computes both the input and output oriented technical efficiency 
scores.  Descriptive statistics for the results are the visible output from the estimator.  The following 
shows an example, using the sample of 1,482 observations on Spanish dairy farms that was 
examined in Chapter E64.  This is a one output, four input process.  
 
 FRONTIER  ; Lhs  = milk  
   ; Rhs = cows,land,labor,feed  
   ; Alg  = DEA $ 
 
+---------------------------------------------------------------------------+ 
| Data Envelopment Analysis                                                 | 
| Output Variables:  MILK                                                   | 
| Input Variables:   COWS     LAND     LABOR    FEED                        | 
| Underlying Technology assumes VARIABLE Returns to Scale.                  | 
+---------------------------------------------------------------------------+ 
| Estimated Efficiencies:     Mean     Std.Deviation     Minimum   Maximum  | 
| Technical Efficiency     =======     =============     =======   =======  | 
|      Input Oriented        .8301          .1416          .4823    1.0000  | 
|     Output Oriented        .7388          .1268          .3875    1.0000  | 
| Sample Size:            1482 Observations.    1482 Complete observations  | 
| Efficiencies saved as variables DEAEFF_O, DEAEFF_I and DEAEFF_E           | 
| Efficiencies saved as matrices  DEA_EFFO, DEA_EFFI and DEA_EFFE           | 
| Incomplete observations are filled with zeros for efficiency values.      | 
+---------------------------------------------------------------------------+ 
 
As noted, the computed efficiency scores are saved in two places, in the data area, as variables 
deaeff_i and deaeff_o and deaeff_e if you provide input prices for the economic efficiency analysis.  
The same results are saved as matrices, dea_effo, dea_effi, dea_effe.  Note that in both occurrences, 
the estimator is bypassing missing and bad (nonpositive) data.  If any of the variables used in the 
analysis are missing, the observation is assigned an efficiency score of 0.0.  The matrices will have 
row dimension equal to the original sample size, before the bypass of missing values. 
 The example below includes a listing of the efficiency scores.  The observation identifier 
shows I = the sequence number of the observation used in the analysis.  The R = value shows, 
instead, the actual location of the observation in the raw data set.  I will not equal R if you have used 
a subset of the data (e.g., with SAMPLE or REJECT), or if the program has bypassed missing data 
– the listing will only show the complete observations.  If you have included observation labels, e.g., 
firm names, in your data set, these observation and row identifiers will be replaced with the 
observation names for your data set. 
 For a second example, the following analyzes the Christensen and Greene (1976) electricity 
generation data.  For these data, we have the input prices, so we do the full analysis. 
 
 FRONTIER  ; Alg  = DEA ; List ; Nbt = 50 
   ; Lhs = output 
   ; Rhs = labor,capital,fuel 
   ; Rh2 = lprice,cprice,fprice $ 
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+---------------------------------------------------------------------------+ 
| Data Envelopment Analysis                                                 | 
| Output Variables:  OUTPUT                                                 | 
| Input Variables:   LABOR    CAPITAL  FUEL                                 | 
| Price Variables:   LPRICE   CPRICE   FPRICE                               | 
| Underlying Technology assumes VARIABLE Returns to Scale.                  | 
+---------------------------------------------------------------------------+ 
| Estimated Efficiencies:     Mean     Std.Deviation     Minimum   Maximum  | 
| Technical Efficiency     =======     =============     =======   =======  | 
|      Input Oriented        .7692          .1390          .3464    1.0000  | 
|     Output Oriented        .7657          .1467          .2960    1.0000  | 
| Economic Efficiency        .4331          .1965          .1411    1.0000  | 
| Allocative Effic.          .5473          .1754          .1796    1.0000  | 
| Sample Size:             123 Observations.     123 Complete observations  | 
| Efficiencies saved as variables DEAEFF_O, DEAEFF_I and DEAEFF_E           | 
| Efficiencies saved as matrices  DEA_EFFO, DEA_EFFI and DEA_EFFE           | 
| Incomplete observations are filled with zeros for efficiency values.      | 
| Compute allocative efficiency as technical divided by economic efficiency | 
+---------------------------------------------------------------------------+ 
  
Estimated Efficiency Values for Individual Decision Making Units 
(Results are listed only for complete observations) 
=============================================================================== 
Observation     | Input Oriented| Output Oriented|    Economic   | Allocative 
Sample   Data   | Rank     Value| Rank      Value| Rank     Value| Rank   Value 
================+===============+================+===============+============= 
I=     1 R=    1|     1  1.00000|     1   1.00000|    1   1.00000|    1 1.00000 
I=     2 R=    2|    13   .98446|    16    .92501|   53    .43644|   87  .44333 
I=     3 R=    3|    16   .96243|    28    .88393|  119    .17287|  123  .17962 
I=     4 R=    4|    46   .79469|    83    .73593|   96    .29127|  103  .36652 
I=     5 R=    5|   115   .57426|   118    .44224|   47    .44703|   15  .77845 
I=     6 R=    6|   120   .44307|   122    .35608|  103    .26194|   43  .59120 
I=     7 R=    7|    80   .73356|   100    .64826|  101    .26996|  102  .36801 
I=     8 R=    8|   123   .34637|   123    .29601|  121    .15388|   85  .44425 
I=     9 R=    9|   106   .62517|   110    .57829|  109    .21689|  111  .34692 
I=    10 R=   10|   103   .63852|   107    .59578|   66    .38812|   39  .60783 
 (Remaining observations are omitted.) 
---------------------------------------------------------------------------- 
Results of Bootstrap analysis of technical efficiency.       50 replications 
---------------------------------------------------------------------------- 
                  Technical  Estimated  Corrected  Standard   Confid. Limits 
Observation_____  Efficiency    Bias    Tech.Eff.  Deviation  Lower    Upper 
I=     1 R=    1    1.0000      .0000     1.0000      .0000   1.0000  1.0000 
I=     2 R=    2     .9845     -.0634     1.0479      .1008    .6583  1.0000 
I=     3 R=    3     .9624     -.0898     1.0522      .1391    .5023  1.0000 
I=     4 R=    4     .7947      .1091      .6856      .0953    .7222  1.0000 
I=     5 R=    5     .5743      .3006      .2737      .1215    .6007  1.0000 
I=     6 R=    6     .4431      .4318      .0113      .1246    .5785  1.0000 
I=     7 R=    7     .7336      .1086      .6250      .1131    .6609  1.0000 
I=     8 R=    8     .3464      .5317     -.1853      .0979    .6977  1.0000 
I=     9 R=    9     .6252      .2154      .4097      .1265    .5131  1.0000 
I=    10 R=   10     .6385      .2267      .4118      .1062    .6645  1.0000 
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 It is always interesting to compare the DEA results with those obtained using the stochastic 
frontier model.  The following fits a translog stochastic frontier production function for the 
Christensen and Greene data, computes the technical efficiencies, and plots them against the DEA 
efficiency scores.  As has been widely documented, the results are not so close to each other as one 
might hope. 
 

FRONTIER  ; Lhs = logq 
; Rhs = one,logcap,loglabor,logfuel, 
  loglsq,logksq,logfsq,logklogl,logklogf,logllogf 
; Techeff = tesf $ 

PLOT  ; Lhs = tesf ; Rhs = deaeff_i   
; Grid ; Title = DEA Efficiencies vs. Stochastic Frontier JLMS $ 

 

 
Figure E65.1  Comparison of SFA and DEA Efficiency Estimates 

 
E65.5.1 Analysis of Peers 
 
 Part of the solution for the technical efficiency is the set of activity multipliers, λi,m for the ith 
firm.  The vector of N values, λi,m will give the weights that produce the point on the efficient frontier 
for this firm.  The firms with nonzero values of λi,m – there will typically only be a few or one of them – 
will define the ‘peers’ for firm i.  The listing of the peer firms can be requested by adding ; Peers to the 
command.  The first few observations for the sample above are shown below. 
 
=============================================================================== 
Peers - By Firm 
=============================================================================== 
Firm                   Orient.  TechEff  Peers 
---------------------  -------  -------  -------------------------------------- 
   1                   Inputs   1.00000   3  14 101 
                       Outputs  1.00000   1  14 101 
   2                   Inputs    .98446   4  71 
                       Outputs   .92501   1  71 
   3                   Inputs    .96243   3  71 
                       Outputs   .88393   1  71 
   4                   Inputs    .79469   4  14 
                       Outputs   .73593   1  14 
   5                   Inputs    .57426   4  71 118 
                       Outputs   .44224   1  71 
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E65.5.2 Application   
 
 The following uses all the features of the routine save for the Malmquist TFP computation 
and the allocative efficiency routine.  The sample data are in an Excel spreadsheet: 
 
 IMPORT ; File = … testdea.csv $ 
 FRONTIER ; Lhs = cameras,video,warranty 
   ; Rhs = floor,staff 
   ; Alg = DEA ; CRS 
   ; Peers  
   ; Nbt = 50 $ 
 

 
Figure E65.2  Sample Data for Data Envelopment Analysis 

 
+---------------------------------------------------------------------------+ 
| Data Envelopment Analysis                                                 | 
| Output Variables:  CAMERAS  VIDEO    WARRANTY                             | 
| Input Variables:   FLOOR    STAFF                                         | 
| Underlying Technology assumes CONSTANT Returns to Scale.                  | 
+---------------------------------------------------------------------------+ 
| Estimated Efficiencies:     Mean     Std.Deviation     Minimum   Maximum  | 
| Technical Efficiency     =======     =============     =======   =======  | 
|      Input Oriented        .9132          .1270          .6387    1.0000  | 
|     Output Oriented        .9132          .1270          .6387    1.0000  | 
| Sample Size:              11 Observations.      11 Complete observations  | 
| Efficiencies saved as variables DEAEFF_O, DEAEFF_I and DEAEFF_E           | 
| Efficiencies saved as matrices  DEA_EFFO, DEA_EFFI and DEA_EFFE           | 
| Incomplete observations are filled with zeros for efficiency values.      | 
+---------------------------------------------------------------------------+ 
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Estimated Efficiency Values for Individual Decision Making Units 
=============================================================================== 
Observation     | Input Oriented| Output Oriented|    Economic   | Allocative 
Sample   Data   | Rank     Value| Rank      Value| Rank     Value| Rank   Value 
================+===============+================+===============+============= 
 Bury           |     9   .79126|     9    .79126|    0    .00000|    0  .00000 
London          |     1  1.00000|     1   1.00000|    0    .00000|    0  .00000 
Glasgow         |     7   .95227|     7    .95227|    0    .00000|    0  .00000 
Bath            |     1  1.00000|     1   1.00000|    0    .00000|    0  .00000 
Chippenham      |    11   .63869|    11    .63869|    0    .00000|    0  .00000 
Liverpool       |     1  1.00000|     1   1.00000|    0    .00000|    0  .00000 
Tunbridge       |     8   .90635|     8    .90635|    0    .00000|    0  .00000 
Leicester       |     1  1.00000|     1   1.00000|    0    .00000|    0  .00000 
Malmesbury      |     1  1.00000|     1   1.00000|    0    .00000|    0  .00000 
Kendal          |    10   .75714|    10    .75714|    0    .00000|    0  .00000 
Bristol         |     1  1.00000|     1   1.00000|    0    .00000|    0  .00000 
=============================================================================== 
Peers - By Firm 
Firm                   Orient.  TechEff  Peers 
---------------------  -------  -------  -------------------------------------- 
   1  Bury             Inputs    .79126   6  11 
                       Outputs   .79126   6  11 
   2 London            Inputs   1.00000   2 
                       Outputs  1.00000   2 
   3 Glasgow           Inputs    .95227   2   6  11 
                       Outputs   .95227   2   6  11 
   4 Bath              Inputs   1.00000   2   4   8   9 
                       Outputs  1.00000   2   4 
   5 Chippenham        Inputs    .63869   6  11 
                       Outputs   .63869   6  11 
   6 Liverpool         Inputs   1.00000   6  11 
                       Outputs  1.00000   6 
   7 Tunbridge         Inputs    .90635   4   8   9 
                       Outputs   .90635   4   8   9 
   8 Leicester         Inputs   1.00000   2   8   9 
                       Outputs  1.00000   2   8 
   9 Malmesbury        Inputs   1.00000   4   6   9 
                       Outputs  1.00000   2   6   9 
  10 Kendal            Inputs    .75714   2   4 
                       Outputs   .75714   2   4 
  11 Bristol           Inputs   1.00000   2  11 
                       Outputs  1.00000   2  11 
=============================================================================== 
---------------------------------------------------------------------------- 
Results of Bootstrap analysis of technical efficiency.       50 replications 
---------------------------------------------------------------------------- 
                  Technical  Estimated  Corrected  Standard   Confid. Limits 
Observation_____  Efficiency    Bias    Tech.Eff.  Deviation  Lower    Upper 
Bury                 .7913      .0404      .7509      .0374    .7931   .9074 
London              1.0000      .0000     1.0000      .0000   1.0000  1.0000 
Glasgow              .9523      .0353      .9170      .0143    .9570  1.0000 
Bath                1.0000      .0000     1.0000      .0000   1.0000  1.0000 
Chippenham           .6387      .0392      .5995      .0309    .6411   .7293 
Liverpool           1.0000      .0000     1.0000      .0000   1.0000  1.0000 
Tunbridge            .9064      .0630      .8433      .0333    .9138  1.0000 
Leicester           1.0000      .0000     1.0000      .0000   1.0000  1.0000 
Malmesbury          1.0000      .0000     1.0000      .0000   1.0000  1.0000 
Kendal               .7571      .0389      .7183      .0551    .7614   .9307 
Bristol             1.0000      .0000     1.0000      .0000   1.0000  1.0000 
---------------------------------------------------------------------------- 
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E65.6 Comparing Efficiency Values and Rankings – SFA vs. 
DEA  
 
 In many settings, the efficiency ratings themselves are less interesting than the ranks of the 
observations.  The WHO study used in numerous examples throughout this chapter is an example, in 
which the objective of the efficiency analysis was to rank the countries in terms of their measured 
efficiency.  A perennial question in the efficiency analysis literature focuses on whether one obtains 
the same qualitative results with the two methodologies.  We return to the WHO data to provide an 
illustration.   
 The data used are the country means of the output, dale, and two inputs, health expenditure, 
hexp, and education, educ.  After the raw data are input, we use the following 
 
 SAMPLE ; All $ 
 REJECT ; Small > 0 $ 
 CREATE ; dalebar = Group Mean(dale, Str = country) $ 
 CREATE ; hexpbar = Group Mean(hexp,  Str = country) $ 
 CREATE ; educbar = Group Mean(educ,  Str = country) $ 
 REJECT ; year # 1997 $ 
 CREATE ; logdbar = Log(dalebar) $ 
 CREATE ; loghbar = Log(hexpbar) $ 
 CREATE ; logebar = Log(educbar) $ 
 FRONTIER ; Lhs = logdbar ; Rhs = one,loghbar,logebar ; Techeff  = effsfa $ 
 FRONTIER ; Lhs = dalebar ; Rhs = hexpbar,educbar ; Alg = DEA$ 
 DSTAT ; Rhs = effsfa,deaeff_i,deaeff_o ; Output = 2 $ 
 PLOT  ; Lhs = effsfa ; Rhs = deaeff_i ; Grid  
   ; Title = SFA Efficiencies vs. DEA Input Efficiencies $ 
 PLOT  ; Lhs = effsfa ; Rhs = deaeff_o ; Limits=.4,1.1 ; Grid 
   ; Title = SFA Efficiencies vs. DEA Output Efficiencies $ 
 CREATE ; sfarank = Rnk(effsfa) $ 
 CREATE ; dearanki = Rnk(deaeff_i) $ 
 CREATE ; dearanko = Rnk(deaeff_o) $ 
 CALC   ; List ; Rkc(sfarank,dearanki)  
    ; Rkc(sfarank,dearanko)  
    ; Rkc(dearanki,dearanko) $ 
 PLOT  ; Lhs = sfarank ; Rhs = dearanki  
   ; Endpoints = 0,200 ; Limits = 0,200 ; Grid 
   ; Title = Ranks of SFA Efficiencies vs. DEA Input Efficiencies $ 
 PLOT  ; Lhs = sfarank ; Rhs = dearanko  
   ; Endpoints = 0,200 ; Limits = 0,200 ; Grid 
   ; Title = Ranks of SFA Efficiencies vs. DEA Output Efficiencies $ 
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Normal exit:  11 iterations. Status=0, F=   -133.3834 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable              LOGDBAR 
Log likelihood function       133.38343 
Estimation based on N =    191, K =   5 
Inf.Cr.AIC  =   -256.8 AIC/N =   -1.344 
Variances: Sigma-squared(v)=     .00140 
           Sigma-squared(u)=     .04405 
           Sigma(v)        =     .03744 
           Sigma(u)        =     .20989 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .21320 
Gamma = sigma(u)^2/sigma^2 =     .96915 
Var[u]/{Var[u]+Var[v]}     =     .91947 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          114.81039 
Chi-sq=2*[LogL(SF)-LogL(LS)] =   37.146 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 LOGDBAR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|    3.57889***      .04980    71.87  .0000     3.48129   3.67649 
 LOGHBAR|     .06480***      .00824     7.86  .0000      .04864    .08096 
 LOGEBAR|     .15292***      .01852     8.26  .0000      .11662    .18923 
        |Variance parameters for compound error 
  Lambda|    5.60534***     1.46657     3.82  .0001     2.73091   8.47977 
   Sigma|     .21320***      .00101   211.97  .0000      .21123    .21517 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+---------------------------------------------------------------------------+ 
| Data Envelopment Analysis                                                 | 
| Output Variables:  DALEBAR                                                | 
| Input Variables:   HEXPBAR  EDUCBAR                                       | 
| Underlying Technology assumes VARIABLE Returns to Scale.                  | 
+---------------------------------------------------------------------------+ 
| Estimated Efficiencies:     Mean     Std.Deviation     Minimum   Maximum  | 
| Technical Efficiency     =======     =============     =======   =======  | 
|      Input Oriented        .6138          .2089          .2059    1.0000  | 
|     Output Oriented        .8794          .1124          .5061    1.0000  | 
| Sample Size:             191 Observations.     191 Complete observations  | 
| Efficiencies saved as variables DEAEFF_O, DEAEFF_I and DEAEFF_E           | 
| Efficiencies saved as matrices  DEA_EFFO, DEA_EFFI and DEA_EFFE           | 
| Incomplete observations are filled with zeros for efficiency values.      | 
+---------------------------------------------------------------------------+ 
 
 DSTAT ; Rhs = effsfa,deaeff_i,deaeff_o ; Output = 2 $ 
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Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|       Mean       Std.Dev.     Minimum      Maximum     Cases Missing 
--------+--------------------------------------------------------------------- 
  EFFSFA|      .882053      .059219      .801579      .982272      191       0 
DEAEFF_I|      .613836      .208905      .205870          1.0      191       0 
DEAEFF_O|      .879363      .112447      .506133          1.0      191       0 
--------+--------------------------------------------------------------------- 
 
--------+-------------------------- 
Cor.Mat.|  EFFSFA DEAEFF_I DEAEFF_O 
--------+-------------------------- 
  EFFSFA| 1.00000   .70610   .75911 
DEAEFF_I|  .70610  1.00000   .72559 
DEAEFF_O|  .75911   .72559  1.00000 
 

 
 

 
Figure E65.3  Plot of SFA Efficiency Values vs. DEA Values 
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Figure E65.4  Plot of Ranks of SFA Efficiency Scores vs. Ranks of DEA Scores 
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E65.7 Malmquist Index of Total Factor Productivity 
 
 (Once again, the user is referred to the relevant literature, such as the numerous papers by 
Fare and Grosskopf) for background details.  Fare’s 1994 output based Malmquist productivity 
change may be written 
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where TE(r|s) indicates the earlier defined output oriented technical efficiency index for firm i, using 
inputs xi,r and producing outputs yi,r relative to production (and input usage) for firms based in period 
s.  This index is computed using the following program: 
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This uses the constant returns to scale form.  Also, since the period r output and input vectors for 
firm i will not appear in Ys and Xs when r does not equal s, φir need not be larger than one.  Note that 
this requires solution of four linear programs for each firm in each period, so the total number of 
programs to solve will be 4×N×T.  Each is quite fast, so overall, the computations do not take long.  
In the sample of 247 firms and six periods, the nearly 6,000 programs, each involving 248 activities 
and six constraints, took about 10 seconds. 
 These computations are carried out for each firm in each period save the last one, and 
produce an N×T matrix of TFP values, one row for each firm, one column for each period.  The TFP 
value for the last period is recorded as 1.0, though this is just a space filler. 
 To compute the Malmquist TFP indices, you will require a panel of data, at least two 
periods, for each of N firms.  Unlike other panel data routines in LIMDEP, this computation always 
requires a balanced panel.  Every firm must be observed in the same T periods.  Also, this routine 
has no procedures for avoiding missing or invalid data such as zero values for inputs or outputs.  The 
balanced panel must be ‘clean’ before computation begins.  To request the computations, just add 
 
   ; Pds = t, the fixed number of periods.  
 
Nothing else need be changed. There is no bootstrap feature (; Nbt = 0); the computations assume 
constant returns to scale (; CRS is the default and cannot be changed) and no allocative efficiency (; 
Rh2 is ignored). 
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Malmquist TFP Index Application 
 
 To illustrate the Malmquist computations, we reexamine the sample of 247 Spanish dairy 
farms observed for six years.  The output is milk production.  Inputs are cows, land, labor and feed. 
 
 FRONTIER ; Lhs  = milk  
   ; Rhs = cows,land,labor,feed 
   ; Alg  = DEA ; Pds = 6  
   ; List $ 
 
The following results are displayed.  In addition, a matrix containing the full table, named 
malmquist, is created. 
 
 
============================================================================== 
Malmquist TFP Index for Productivity Change 
Panel contained  247 firms each observed in   6 periods 
Full Results saved as matrix MALMQIST 
============================================================================== 
Average results across firms, by period: 
============================================================================== 
Period:           1       2       3       4       5 
TFP               1.0476  1.0233  1.0247  1.0298  1.0349 
============================================================================== 
Individual calculations by firm 
(Only 8 periods can be displayed.  TFP for the final period is not computed.) 
============================================================================== 
Observation       1       2       3       4       5       6       7       8 
Firm =     1      1.1301  1.1002   .9736  1.0291  1.0901  1. 
Firm =     2      1.0528  1.0343  1.0212  1.0109  1.0416  1. 
Firm =     3      1.0525  1.0383   .9477  1.0465  1.0395  1. 
Firm =     4      1.1418  1.0129  1.0079   .9829  1.0476  1. 
Firm =     5      1.1192  1.0240  1.0082  1.0245  1.0641  1. 
Firm =     6       .9871  1.0073   .9785  1.0322  1.0464  1. 
Firm =     7       .9851  1.1484  1.1599   .8054  1.1110  1. 
Firm =     8      1.0746   .9796   .9636  1.0671   .9753  1. 
Firm =     9       .8977  1.1496   .9818  1.0500   .9867  1. 
Firm =    10      1.0105  1.1507   .9751  1.0055  1.0469  1. 
Firm =    11      1.1276   .9867   .9636  1.0826   .9873  1. 
Firm =    12      1.0310  1.1020   .9822  1.0438   .9914  1. 
Firm =    13      1.0549  1.1263   .9221  1.0723  1.1945  1. 
Firm =    14       .9408  1.0740   .9938   .9739  1.0336  1. 
Firm =    15       .8952   .7156  1.5056   .8614   .9204  1. 
(Rows 66 – 247 omitted). 
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E66: MAXIMIZE – Nonlinear Optimization  
 
E66.1 Introduction 
 
 Chapters E14 and E21 presented programs for computing nonlinear least squares, nonlinear 
two and three stage least squares and GMM estimators.  The discussion continued in Chapter E25 
with a discussion of NLSUR for estimation of nonlinear systems of equations.  The NLSQ and 
NLSUR procedures are parts of a package that allows you to define your own minimization or 
maximization problem.  This will allow you to set up your own maximum likelihood problems for 
models which are not included in the program already. 
 The estimation criteria defined in Chapters E14 and E21 are: 
 

 Nonlinear Least Squares Minimizeβ =1
N
i∑ wi × [yi - f(β,xi)]2  =  =1

N
i∑ wi εi

2 
 
 Nonlinear IV   Minimizeβ ε′Z(Z′Z)-1Z′ε where εi = yi - f(β,xi) 
 
 GMM    Minimizeβ M(β)  =  ε(β)′Z(Z′ΩZ)-1Z′ε(β) 
 

 GMME    Minimizeβ  q  =  1' ,m W m−  

                       1
1 ( , ), a weighting matrixm m x  WN

iiN == =∑ β  

 
MAXIMIZE/MINIMIZE adds to these a general program that allows you to optimize: 
 
 Single Function of a Set of Parameters Minimize or maximize β F(β)  
 

 Sum of Terms    Minimize or maximize β  =1
N
i∑ wi × F(β,xi) 

 
LIMDEP’s MINIMIZE/MAXIMIZE procedure will allow you to set up your own log likelihood or 
method of moments criterion functions. Most of the necessary information about 
MINIMIZE/MAXIMIZE was given in Chapters E14 and E21.  Users will find it useful to review 
these chapters with the discussion below.  
 
NOTE:  This program may be used to estimate up to 150 parameters. 
 
NOTE:  Use MAXIMIZE to create new models that are not in the menu of available models in the 
program.  An example appears in Section E66.8.3. 
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E66.2 The MINIMIZE/MAXIMIZE Commands 
 
 For convenience, we will assume at this point that you wish to MAXIMIZE a function.  (If 
appropriate, change the command to MINIMIZE.)  The MAXIMIZE command is the same as 
NLSQ discussed in Chapter E14, 
 
 NLSQ    ; Lhs = y  
   ; Fcn = ...  
   ; Labels = ...  
   ; Start = starting values $ 
 
with two exceptions.   To maximize a general function, the command is MAXIMIZE and there is no 
Lhs variable.  The basic command is, then, 
 
 MAXIMIZE ; Labels = list of labels for parameters being computed 
   ; Fcn = function definition 
   ; Start = list of starting values  $ 
 
The basic format of the command, as shown above, is used to maximize a sum of terms.  The 
function definition defines a function that is summed over the sample observations.  Here is an 
example that computes maximum likelihood estimates of the parameters of a probit model using 500 
artificially generated observations that conform exactly to the assumptions of the model.   
 
 CALC  ; Ran(12345) $ 
 SAMPLE ; 1-500 $ 
 CREATE ; x = Rnu(-.5,.5) ; y = (.2  - .2*x + Rnn(0,1)) > 0 $ 
 CREATE ; q = 2*y - 1 $ 
 MAXIMIZE ; Fcn = Log(Phi(q * (b0 + b1*x))) ; Labels = b0,b1 ; Start = 0,0  
   ; Output = 3 $ 
 PROBIT ; Lhs = y ; Rhs = one,x ; Output = 3 $ 
 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg   .0000D+00 chg.F   .0000D+00 max|dB|   .1000D-05 
Nodes for quadrature: Laguerre=20;Hermite=64. 
Replications for GHK simulator= 100 
Start values:   .00000D+00   .00000D+00 
1st derivs.    -.71810D+02   .11154D+02 
Parameters:     .00000D+00   .00000D+00 
Itr  1 F=  .3466D+03 gtHg=  .7267D+02 chg.F=  .3466D+03 max|db|=  .7181D+08 
1st derivs.     .13095D+01   .87780D+01 
Parameters:     .23105D+00  -.35889D-01 
Itr  2 F=  .3381D+03 gtHg=  .8875D+01 chg.F=  .8474D+01 max|db|=  .2446D+03 
1st derivs.    -.10851D+02   .16194D+01 
Parameters:     .18685D+00  -.33218D+00 
Itr  3 F=  .3368D+03 gtHg=  .1097D+02 chg.F=  .1330D+01 max|db|=  .5807D+02 
1st derivs.    -.10851D+02   .16194D+01 
Parameters:     .18685D+00  -.33218D+00 
Itr  1 F=  .3368D+03 gtHg=  .1097D+02 chg.F=  .3368D+03 max|db|=  .5807D+02 
1st derivs.     .18603D+00   .13083D+01 



E66: MAXIMIZE - Nonlinear Optimization   E-1648 

Parameters:     .22217D+00  -.33745D+00 
Itr  2 F=  .3366D+03 gtHg=  .1323D+01 chg.F=  .1959D+00 max|db|=  .3946D+01 
1st derivs.    -.17467D-01   .49557D-03 
Parameters:     .22067D+00  -.39051D+00 
Itr  3 F=  .3365D+03 gtHg=  .9902D-03 chg.F=  .3483D-01 max|db|=  .2532D-03 
1st derivs.    -.32705D-08   .44429D-05 
Parameters:     .22073D+00  -.39052D+00 
Itr  4 F=  .3365D+03 gtHg=  .8938D-06 chg.F=  .4916D-06 max|db|=  .4604D-06 
                                                           * Converged 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit:   4 iterations. Status=0, F=    336.5390 
Function=  .34657359028D+03, at entry,  .33653903385D+03 at exit 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function      -336.53903 
Estimation based on N =    500, K =   2 
Inf.Cr.AIC  =    677.1 AIC/N =    1.354 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|     .22073***      .05678     3.89  .0001      .10945    .33201 
      B1|    -.39052*        .20368    -1.92  .0552     -.78972    .00869 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Nonlinear Estimation of Model Parameters 
Method=NEWTON; Maximum iterations=100 
Convergence criteria:gtHg   .0000D+00 chg.F   .0000D+00 max|dB|   .1000D-05 
Nodes for quadrature: Laguerre=20;Hermite=64. 
Replications for GHK simulator= 100 
Start values:   .58680D+00  -.15056D+00 
1st derivs.     .11038D+03   .41954D+01 
Parameters:     .58680D+00  -.15056D+00 
Itr  1 F=  .3574D+03 gtHg=  .6515D+01 chg.F=  .3574D+03 max|db|=  .1614D+01 
1st derivs.    -.28665D+01  -.30959D-01 
Parameters:     .21147D+00  -.39358D+00 
Itr  2 F=  .3366D+03 gtHg=  .1632D+00 chg.F=  .2085D+02 max|db|=  .4378D-01 
1st derivs.    -.12484D-02   .13273D-03 
Parameters:     .22073D+00  -.39051D+00 
Itr  3 F=  .3365D+03 gtHg=  .7438D-04 chg.F=  .1332D-01 max|db|=  .1787D-04 
1st derivs.    -.37516D-09   .10573D-09 
Parameters:     .22073D+00  -.39052D+00 
Itr  4 F=  .3365D+03 gtHg=  .2927D-10 chg.F=  .2766D-08 max|db|=  .1036D-10 
                                                           * Converged 
Normal exit:   4 iterations. Status=0, F=    336.5390 
Function=  .35739976440D+03, at entry,  .33653903385D+03 at exit 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function      -336.53903 
Restricted log likelihood    -338.42927 
Chi squared [   1 d.f.]         3.78048 
Significance level               .05185 
McFadden Pseudo R-squared      .0055853 
Estimation based on N =    500, K =   2 
Inf.Cr.AIC  =    677.1 AIC/N =    1.354 
Model estimated: Aug 24, 2011, 12:17:51 
Hosmer-Lemeshow chi-squared =  13.43761 
P-value=  .09765 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .22073***      .05680     3.89  .0001      .10941    .33205 
       X|    -.39052*        .20125    -1.94  .0523     -.78496    .00393 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
E66.2.1 Function Definitions 
 
 The following describes the various components of the function definition.  The next section 
describes a very important variation of this specification, the use of subfunctions.  Users should be 
sure to read all of both these sections before using this program. 
 
Labels for Parameters 
 
 The labels definition is optional.  If you do not provide labels, the defaults are b1, b2, ..., bk.  
The number of parameters in the model, k, is the number of starting values you provide.  Thus, for 
example, a linear regression could be requested with 
  
 MINIMIZE  ; Fcn = (y - b1 - b2*x) ^ 2 ; Start = 0,0 $ 
  
Because there are a variety of named entities which can appear in the function, you should use the  
 
   ; Labels = list of labels 
  
part of the command to identify which of them are the parameters being estimated.  You must then 
use these labels in the function you specify.  Labels may be anything you like, up to eight characters.   
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WARNING:  Use new names!  Do not use program names that are in use otherwise, such as s, rho, 
sigma, b, etc., and the names of existing scalars or matrices.  Such labels would be accepted when 
your command is translated, because you are free to use these entities in your function definition to 
supply specific values.  But, later, when LIMDEP scans your expression to see what you have 
specified, it checks all other tables first, and your label list last.  For example, if you use s as a label, 
and this command is the first model command that you have given, s will simply be taken as the as 
yet undefined result of a regression.  The actual value would, in fact, always be fixed at 0.  An 
attempt is made to prevent you from doing this at the time your function definition is translated.  For 
example, here is what happens if we try to use s instead of b0 in the probit model estimator above 
 
 MAXIMIZE  ; Fcn = Log(Phi(q * (s + b1*x))) ; Labels = s,b1 ; Start = 0,0 $ 
 
 Conflict: param. and scalar have the same name: S. 
 
 For large problems, you may use a shortcut for the labels definition, 
  
   ; Labels = number_label 
  
produces ‘number’ sequentially numbered repetitions of the label.  For example, 5_b gives 
b1,b2,b3,b4,b5.  The number may be a literal value or a scalar.  With this device, you can make your 
model command independent of the size of the model, and you can accommodate a model of any 
size.  For example: 
 

NAMELIST   ; xa = ... (up to 100 names)  
  ; xb = ... (up to 100 names) $ 
CALC  ; ka = Col(xa) ; kb = Col(xb) $ 
MATRIX ; ca = Init(ka,1,0.) ; cb = Init(kb,1,0.0) $ 
MINIMIZE ; Start = ca,cb, ... any other parameters 
  ; Labels = ka_ba, kb_bb, any other labels 
  ; Fcn = Index = ba1’xa  +  bb1’xb | ... the rest of the function $  

 
This template could be used for a model of any size.  Only the namelists would have to be changed 
from one specification to another. 
 LIMDEP will ensure that there is a correspondence between your labels and your starting 
values.  However, it is not possible for the program to ensure that you have used all of the parameters 
in your function specification.  If you define a parameter, but you do not use it in your function 
definition, then one of two things will occur.  Either the iterations will never converge and they will 
exit on maximum iterations, with one of the parameters not changing from its initial value, or what 
appears to be convergence will be reached, but the estimated covariance matrix of the estimated 
parameters will be singular, as it will contain a row and column of zeros corresponding to the unused 
parameter.   
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 Here is an example. Note that the defined model parameter c3 does not appear in the function. 
 
 MINIMIZE  ; Fcn = (y - c0 - c1*x1 - c2*x2)^2   
   ; Start = 0,0,0,0  
   ; Labels = c0,c1,c2,c3 $ 
 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg   .1000D-05 chg.F   .0000D+00 max|dB|   .0000D+00 
Nodes for quadrature: Laguerre=40;Hermite=20. 
Replications for GHK simulator= 100 
Start values:   .00000D+00   .00000D+00   .00000D+00   .00000D+00 
1st derivs.     .13962D+01   .26612D+01  -.31547D+01   .00000D+00 
Parameters:     .00000D+00   .00000D+00   .00000D+00   .00000D+00 
Itr  1 F=  .5325D+02 gtHg=  .4357D+01 chg.F=  .5325D+02 max|db|=  .3155D+07 
1st derivs.    -.47552D+00   .17547D+00  -.62430D-01   .00000D+00 
Parameters:    -.20089D-01  -.38291D-01   .45391D-01   .00000D+00 
Itr  2 F=  .5311D+02 gtHg=  .5107D+00 chg.F=  .1366D+00 max|db|=  .2367D+02 
1st derivs.     .13412D-01   .25228D-01  -.31252D-01   .00000D+00 
Parameters:    -.15250D-01  -.40076D-01   .46027D-01   .00000D+00 
Itr  3 F=  .5311D+02 gtHg=  .4234D-01 chg.F=  .1327D-02 max|db|=  .8795D+00 
1st derivs.     .13412D-01   .25228D-01  -.31252D-01   .00000D+00 
Parameters:    -.15250D-01  -.40076D-01   .46027D-01   .00000D+00 
Itr  1 F=  .5311D+02 gtHg=  .4234D-01 chg.F=  .5311D+02 max|db|=  .8795D+00 
1st derivs.    -.45648D-02   .19336D-02  -.39819D-03   .00000D+00 
Parameters:    -.15443D-01  -.40439D-01   .46476D-01   .00000D+00 
Itr  2 F=  .5311D+02 gtHg=  .4973D-02 chg.F=  .1290D-04 max|db|=  .2836D+00 
1st derivs.     .31087D-05   .91316D-05   .87055D-05   .00000D+00 
Parameters:    -.15398D-01  -.40463D-01   .46485D-01   .00000D+00 
Itr  3 F=  .5311D+02 gtHg=  .1299D-04 chg.F=  .1271D-06 max|db|=  .2261D-03 
1st derivs.     .67446D-12   .86003D-11  -.18233D-10   .00000D+00 
Parameters:    -.15398D-01  -.40463D-01   .46485D-01   .00000D+00 
Itr  4 F=  .5311D+02 gtHg=  .2425D-11 chg.F=  .8811D-12 max|db|=  .5445D-11 
                        * Converged 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit from iterations. Exit status=0. 
Function=  .53247681205D+02, at entry,  .53109768475D+02 at exit 
Models - estimated variance matrix of estimates is singular 
Current estimated covariance matrix for slopes is singular. 
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Algebraic Form of the Function 
 
 The ; Fcn specification is written using the rules and operators of algebra (+, -, *, / ),  ^ (for 
raise to the power), and @ (for the Box-Cox transformation). The usual rules are observed; ^ and @ 
are computed first, then * and /, and finally + and -.  Two additional operators which have the same 
precedence as multiplication are ! for maximum (5 ! 6 = 6) and ~ for minimum (5 ~ 6 = 5).  
Parentheses may be used freely to force the order of evaluation of expressions.  Use as many levels 
of parentheses as required.  Entities which may appear in the specification include: 
 

• numbers, 
• variable names, 
• namelists, 
• any existing scalars, 
• matrix elements, 
• your parameters, using your labels. 

 
 To use a subscripted matrix element, enclose the subscript in curled brackets, { }, not 
parentheses.  I.e., gamma(1,1)  will confuse the compiler, use gamma{1,1}.   
 
NOTE:  This construction, with curled brackets, is specific to the function definition part of the 
NLSQ, NLSUR, MAXIMIZE, MINIMIZE and GMME commands.  Elsewhere, such as in CALC 
and CREATE, matrix subscripts are indicated with ordinary parentheses. 
 
 The function is evaluated by ‘looping’ through your current sample, computing the function 
at each observation, and summing the terms.  Let Z(i) denote all the variables in your data set where 
‘i’ denotes a specific observation.  It is assumed that some variables appear in your function 
definition, so the function is computed by summing all observations.  If no variables actually appear 
in the function, then the same function will simply be summed N times.  Thus, in the preceding 
probit example, the function evaluated is 
 

   F  =  =1
N
i∑ Log ( Phi ( (2yi - 1) * (β0 + β1xi)))  =  =1

N
i∑ g[Z(i)]. 

 
An example that appears below is a four dimensional Rosenbrock function, 
 
   F(c)  =  (c1+10c2)2 + 5(c3 - c4)2 + (c2 - 2c3)4 + 10(c1 - c4)4. 
 
The function definition for this minimization problem would be 
 

  ; Fcn = (c1+10*c2)^2 + 5*(c3-c4)^2 + (c2-2*c3)^4 + 10*(c1-c4)^4  
 
Since this function does not involve any variables, the function value each time this is calculated 
would be just N times the value shown in the actual function.  Since this would be a waste of time 
and effort, one would normally precede this kind of optimization problem with 
 
 SAMPLE  ; 1 $ 
 
so that it would be evaluated only once. 
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Functions that May Appear in the Definition 
 
The following functions may be used in your function definition 
 
 Abs(z)  = absolute value, |z| 
 Atn(z)  =  arctangent, atan(z) 
 Cos(z)  =  cosine, cos(z) 
 Exp(z)    =  exponent, exp(z) 

 Gma(z)   =  gamma, Γ(z) = 1
0

z tt e dt∞ − −∫  
 Inp(z)  = inverse normal probability = Φ-1(z), 0 < z < 1 
 Lgd(z)    =  logit density  =  Lgp*(1-Lgp) 
 Lgm(z)   =  log of gamma  
 Lgt(z)    =  logit  =  log(z/(1-z)), 0 < z < 1 
 Lgp(z)    =  logit probability = Exp(z)/(1+Exp(z)) = Prob(Z < z) 
 Lmm(z)  = -N01(z)/Phi(z)  = E[z | z < 0] for z ~ N[0,1] 
 Lmp(z)  =  N01(z)/Phi(-z) = E[z | z > 0] for z ~ N[0,1], Lmp(-z)=φ(z)/Φ(z) 
 Log(z)    =  natural logarithm, log(z) 
 N01(z)   =  standard normal density, φ( z) 
 Phi(z)    =  standard normal CDF, Φ( z) 
 Psi(z)    =  log derivative of Gma, Ψ(z) = Γ′( z)/Γ( z), (digamma function) 
 Psp(z)    =  Ψ′( z) = Γ′′( z)/Γ( z) - Ψ2(z), (trigamma function) 
 Sgn(z)  = signum(z) = -1,0,+1 if z <, =, > 0 
 Sin(z)  =  sine, sin(z) 
 Tvm(z)  =  1 - Lmm × (z + Lmm) = Var[z | z < 0] for z ~ N[0,1] 
 Tvp(z)    =  1 - Lmp  × (z + Lmp)  = Var[z | z < 0] for z ~ N[0,1] 
 Bds(z,a,c)   =  incomplete beta function; (Bds(0,a,c) = 0,  Bds(1,a,c) = 1) 
 Gmp(z,p,a) =  incomplete gamma integral, normalized to the probability 
 Bvn(z1,z2,ρ)  =  bivariate normal CDF 
 Bvd(z1,z2,ρ) =  bivariate normal density 
 Min(z1,z2) = minimum of z1 and z2 
 Max(z1,z2) = maximum of z1 and z2 
 Ash(z)  = hyperbolic arc sin(z) = log(z + (1 + z2)1/2) 
 As1(z)  = derivative of Ash(z) = (1 + z2)-1/2  
 Ach(z)  = hyperbolic arc cos(z) = log(z + (z2 – 1)) 
 Ac1(z)  = derivative of Ach(z) = (z2 – 1)-1/2 
 Ath(z)  = hyperbolic arc tan(z) = .5log((1 + z)/(1 – z)) 
 At1(z)  = derivative of Ath(z) = (1 – z2)-1 
 Hsn(z)  = hyperbolic sin(z) = .5(exp(2z)-1)/exp(z) 
 Hs1(z)  = derivative of Hsn(z) = Hcs(z) 
 Hcs(z)  = hyperbolic cos(z) = .5(exp(2z)+1)/exp(z) 
 Hc1(z)  = derivative of Hcs(z) = Hsn(z) 
 Htn(z)  = hyperbolic tan(z) = Hsn(z)/Hcs(z) 
 Ht1(z)  = derivative of Htn(z) = 1/Hcs2(z) 
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The incomplete beta function is 
 

   Bds(z,a,c)  =  [Γ(a)Γ(c)/Γ(a+c)]  
 0
z

∫
 

ta-1(1-t)b-1dt for 0 < z < 1. 

The normalized incomplete gamma function is 
 

   Gmp(z,p,a) =  [ap / Γ(p)]  
 0
z

∫ tP-1 e-at dt. 
 
Note that this returns a probability; Limz →0 Gmp(z,p,a) = 0, Limz →∞ Gmp(z,p,a) = 1, 0 < Gmp < 1, 
∂Gmp/∂z > 0.  To get the unnormalized gamma integral, you may use the construction 
 

   Gma(p) / a^p * Gmp(z,p,a)  =   
 0
z

∫ tp-1 e-at dt. 
 
Do note, however, that this integral can become very large.  This function is a generalization of p! 
for noninteger p.  Some particular values to note, Gmp(z,p,a) = 0 if z < 0; Gmp(z,p,a) = 1 if p < 0, 
and Gmp(z,p,a) = 0 if a < 0 and, finally, Gma(.5) = π . 
 In the beta, gamma and bivariate normal functions, if any of the parameters separated by 
commas are expressions, it is necessary to enclose them in parentheses.  E.g., use Bvn((1+x’b),z,r), 
not Bvn(1+x’b,z,r).  The list may contain variables, labels, scalars, and expressions contained in 
parentheses.  Functions may be nested to any depth and expressions may appear as arguments in the 
functions, as in 
   Log (Phi ( a1 + a2 * (x/y)^2 )). 
 
This would be a valid expression and would evaluate exactly as given. 
 
Linear Functions and Dot Products 
 
 Many expressions in econometric models will involve dot products of parameters and 
variables.  For example, a model built as an extension of a probit model will likely involve an 
expression of the form Phi(b’x).  Dot products may appear in exactly this form in your function 
definitions.  Typically, the ‘x’ would be a namelist.  To use the parameter vector, use the first name 
in your labels list.  For example, in 
 
 NAMELIST ; x = one,x1,z,p  $ 
 MAXIMIZE ; ... ; Labels = b0,b1,b2,b3  
           ; Fcn = ... Phi(b0’x) $ 
  
the term b0’x is evaluated as b0×one + b1×x1 + b2×z + b3×p.  Once again, in a dot product, the sum 
is evaluated from left to right using your list of labels in the order in which they appear in                  
; Labels = list. 
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NOTE:  If the namelist and the labels list do not have the same number of elements, then the dot 
product is simply evaluated out to the shorter of the two lists.  In the example, if there were 
additional names in x, they would not change b0’x because starting at b0, there are only four 
parameters. 
 
NOTE:  This replaces the function Dot[.] used in earlier versions of LIMDEP.  The Dot[.] function 
is retained for backwards compatibility, but you will find it easier to use the more natural syntax.  
Also, the operation described above does allow a bit more flexibility.  For completeness, we note the 
counterparts to the constructions described above are Dot[x] = b0’x and Dot[b3,second] = 
b3’second.  You may use either form. 
 
 Suppose you want to pick up just a few of the parameters in a dot product.  For example, 
suppose your parameters are ; Labels = b1,b2,b3,b4,b5,b6,b7 and as part of your function, you want 
b3*x14 + b4*xyz + b5*wvs.  You could first define the namelist for the dot function, with, say, 
NAMELIST ; second = x14,xyz,wvs $.  Then, to obtain that function, just begin the dot product 
with b3 instead of b1.  Thus, b3’second evaluates exactly to the sum given above. 
 It is also possible to skip over parameters in dot products, by putting columns of zeros in 
your namelists.  This may be convenient in specifying your function, especially if it involves many 
parameters.  For example, using the list above, you could obtain b2×x14 + b5×xyz 
 
 CREATE ; zero = 0 $ 
 NAMELIST ; second = x14,zero,zero,xyz $ 
 MAXIMIZE ; ... b2’second ... 
  
 Dot products need not be only a mix of variables and parameters.  They may also include 
vectors (matrices) that do not appear elsewhere in the function, and they may be products of 
variables or parameters.  When you are specifying your functions, there are several ways you can 
shorten your commands by making use of the dot product notation, and using lists.  The following 
constructions can all be used in specifying your functions:  Let 
 
 a,d =  the names of any vectors in your matrix work area 
 x,y =  the names of any namelists 
 cj =  any of the labels in your ; Labels = ... specification 
 
Then, any of the following can appear in your function 
 
 a’a =  inner product of the vector 
 a’d =  dot product of two vectors 
 a’x =  linear combination of variables, at the ith observation 
 x’y =  sum of cross products of the variables, at ith observation 
 x’x =  sum of squares 
 cj’a =  product of vector elements and parameters 
 cj’x =  the familiar product of coefficients and variables. 
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This product can be computed beginning with any of the parameters in the list.  For example, 
consider fitting a probit model: 
  
 MAXIMIZE ; Labels = a1,a2,a3  
   ; Start = 0,0,0 
   ; Fcn = Log(Phi((2*y-1)*(a1+a2*x1+a3*x2))) $ 
 
Alternatively, if you define a namelist with 
 
 NAMELIST ; xa = one,x1,x2  ; xb = x1,x2 $ 
 
Then,    ; Fcn = Log(Phi((2*y-1) * a1’xa)) 
 
is the same as  ; Fcn = Log(Phi((2*y-1) * (a1 + xb’a2))). 
 
Bilinear and Quadratic Forms 
 
 Bilinear and quadratic forms may also appear in function definitions.  Suppose that c and d 
indicate elements of the parameter vector, which point to specific parts of the vector, and z is a 
namelist and A is a matrix.  The following forms may appear in your function definition 
 
 (bilinear)   c’[z]d =  Σj cj dj zj,   

   c’[z]c   =  Σj cj
2zj 

 
 (quadratic)  c’[A]c =  ΣjΣl cj cl Ajl 
 
In the quadratic form, A may denote a namelist.  In this case, you must indicate how many rows and 
columns are to appear in the matrix.  Thus, suppose the namelist contains 12 variables.  These could 
be arranged in a 2×6, 3×4, 4×3, or other matrix.  To indicate how many rows the matrix has, you 
append the number of rows in the name between backslashes.  For example, if 
 
 NAMELIST ; x = x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12 $ 
 

then, c’[X \ 4\]d is the bilinear form   ( )

1 2 3
1

4 5 6
1 2 3 4 2

7 8 9
3

10 11 12

x x x
d

x x x
c c c c d

x x x
d

x x x

 
  
  
       

 

. 

 
Each observation is inserted in turn into the matrix in order to set up the computation.  The function 
evaluation then involves summing (possibly functions of) the quadratic forms. 
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E66.2.2 Gauss-Hermite and Gauss-Laguerre Quadrature in Functions 
 
 The function optimization programs such as MAXIMIZE or MINIMIZE may use functions 
that contain integrals of the form 
 

   F(β) =   2
 exp( ) ( , )v G v dv∞
−∞

−∫ β   
 
by using Gauss-Hermite quadrature.  This is a very accurate approximation which is computed using 
 
   F(β)  ≈  w G zhh

H
h( , )β

=∑ 1
 

 
where H is the number of points for the quadrature, wh is the weight and zh is the node at point h of 
the quadrature. You set the number of points, H for the quadrature. The G(.) function is unrestricted 
– it can be any function that is allowable in MINIMIZE/MAXIMIZE.  The variable of the 
integration, v, may or may not actually appear in the function.   You can also include functions of the 
form 
   F(β)   =   

 0 exp( ) ( , )v G v dv∞
−∫ β .  

 
(Notice that the exponent is exp(-v) rather than exp(-v 2), and the range of integration is from 0 to 
+∞ rather than from -∞ to ∞.  Integrals of this form are accurately approximated using Gauss-
Laguerre integration, rather than Gauss-Hermite integration.)  Commands that use quadrature are 
of the form 
 
 MAXIMIZE ; Fcn = name = Ntg(the function to be integrated) |   
       the rest of the function, which will probably involve ‘name’  
   ; Hrq = the name of the variable over which integration is done  
       for Hermite integration 
  or ; Glq = the name of the variable over which integration is done  
       for Gauss-Laguerre integration 
 
The accuracy of the quadrature is directly a function of the number of quadrature points, the more 
the better.  You may set the number of points with 
 
 ; Hpt = one of 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 32, 48, 96 for the Hermite quadrature 
and ; Lpt = one of 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 40, 68  for the Laguerre quadrature 
 
As noted, more points are better than less.  However, the amount of computation varies linearly 
with the number of quadrature points, so if time is a consideration, you may wish to choose a 
lower number.  The default values for the numbers of quadrature points are 20 for Hermite and 40 
for Laguerre. 
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 To use one of these integrals in your function to be maximized, you must set up the 
operation as follows:  The command will include 
 
   ; Hrq = the name of the variable over which the integration is done 
     for integration by Hermite quadrature 
or   ; Glq = the name of the variable over which the integration is done 
       for integration by Laguerre quadrature 
 
and   ; Start = parameter values, as usual 
   ; Labels = labels for parameters in the model, as usual   
   ; other options  $ 
 
Note the following requirements: 
 

• You can have more than one integral in the final function, but each must be a named 
subfunction.  If you specify ‘Ntg(...)’ within a function definition, an error will occur 
during compilation claiming that you have an unidentified symbol. 

 
• Integrals should not be functions of other integrals.  The results will be unpredictable, but 

almost certainly incorrect.   
 

• You may have only one kind of integral in your function definition.  Each Hrq, Glq, (or 
Sim, see below) which appears in a command overrides previous ones. 

 
 Two examples follow.  Note that neither of these are ‘good models,’ and unless the data 
actually do satisfy the assumptions of the model, estimation of these will not produce very appealing 
results. For the first one, in particular, for a cross section formulation, without multiplying v by x, the 
variance term diverges; it is not identified.) The examples are intended only to illustrate use of the tools. 
 
Heterogeneity in a Probit Model  
 
 Consider a probit model in which there is normally distributed, unobserved individual 
heterogeneity which multiplies one of the variables in the model, 
 
   y  =  0 or 1, 

   Prob[ y = 1 | v ]  =  Φ( β′z  +  θ x v)  where v is standard normally distributed. 
 
(A nonunitary standard deviation of v would be absorbed into the free parameter θ.)  The probability 
that enters the log likelihood is Prob[y = j] = Ev [Prob[ y = j | v ]], j = 0,1. The expectation is exactly 
equal to 

   Prob [ y = j ]  =  2(1/ 2 )exp( / 2) [(2 1)( ' )]v j xv dv
∞

−∞
π − Φ − + θ∫ zβ   =  P(y). 

 
In the integral, let u = v/√2, so v = u√2 and the Jacobian is dv/du = √2.  Make the change of variable 
in the integral, to produce 
 

   Prob [ y = j ]  =  2(1/ )exp( ) [(2 1)( ' 2 )]u j xu du
∞

−∞
π − Φ − + θ∫ zβ   =  P(y). 
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This is now exactly in the form noted earlier for Hermite quadrature.  (It can be simplified a bit more 
by defining γ = 2 θ.)  The following commands simulate and estimate this model:  (The command 
uses a subfunction, which is described in the next section.) 
 

CALC  ; Ran(12345) $ 
SAMPLE ; 1-200 $ 
CREATE ; z1 = Rnn(0,1) ; z2 = Rnn(0,1) ; v = Rnn(0,1) ; x = Rnu(-.5,.5) $ 
CREATE ; y = ( .2 + z1 + z2 + v*x + Rnn(0,1) ) > 0 ; q = 2*y - 1 $ 

 NAMELIST ; z = one,z1,z2$ 
 CALC  ; kz = Col(z) $ 
 PROBIT ; Lhs = y ; Rhs = z $ 
 MAXIMIZE ; Fcn = Prob = Ntg(1/Sqr(pi) * Phi(q*(b1’z + t*u*x))) | Log(Prob) 
   ; Start = b,.1 
   ; Labels = kz_b,t 
   ; Hrq = u ; Hpt = 20 ; Output = 3 $ 
 
The following output results.  (The probit results for the starting values are omitted.) 
 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg   .0000D+00 chg.F   .0000D+00 max|dB|   .1000D-05 
Nodes for quadrature: Laguerre=20;Hermite=20. 
Replications for GHK simulator=  10 
Start values:   .36125D+00   .99240D+00   .10483D+01   .10000D+00 
1st derivs.    -.21423D-02  -.37952D-02  -.84224D-02  -.30909D-01 
Parameters:     .36125D+00   .99240D+00   .10483D+01   .10000D+00 
Itr  1 F=  .8173D+02 gtHg=  .3233D-01 chg.F=  .8173D+02 max|db|=  .3091D+00 
1st derivs.     .27562D-01  -.21212D-01   .13418D+00  -.35863D-01 
Parameters:     .36217D+00   .99404D+00   .10519D+01   .11333D+00 
Itr  2 F=  .8173D+02 gtHg=  .1432D+00 chg.F=  .2248D-03 max|db|=  .3164D+00 
1st derivs.     .73291D-02   .71339D-01   .25074D-03  -.35622D-01 
Parameters:     .36170D+00   .99440D+00   .10496D+01   .11394D+00 
Itr  3 F=  .8173D+02 gtHg=  .8007D-01 chg.F=  .1755D-03 max|db|=  .3126D+00 
1st derivs.     .73291D-02   .71339D-01   .25074D-03  -.35622D-01 
Parameters:     .36170D+00   .99440D+00   .10496D+01   .11394D+00 
(Iterations omitted) 
Itr  9 F=  .8115D+02 gtHg=  .2698D-02 chg.F=  .6202D-03 max|db|=  .1173D-02 
1st derivs.    -.26627D-03  -.78866D-03  -.41065D-03   .15565D-03 
Parameters:     .42901D+00   .11749D+01   .12798D+01   .33647D+01 
Itr 10 F=  .8115D+02 gtHg=  .2211D-03 chg.F=  .4468D-05 max|db|=  .4763D-04 
1st derivs.    -.33513D-05  -.59476D-04   .65059D-04  -.13674D-05 
Parameters:     .42901D+00   .11750D+01   .12798D+01   .33645D+01 
Itr 11 F=  .8115D+02 gtHg=  .9649D-05 chg.F=  .2507D-07 max|db|=  .8219D-06 
                                                           * Converged 
Normal exit:  11 iterations. Status=0, F=    81.14638 
Function=  .81730029251D+02, at entry,  .81146377711D+02 at exit 
 
************************************************** 
* Hermite  quadrature with  10 nodes (points)    * 
************************************************** 
  



E66: MAXIMIZE - Nonlinear Optimization   E-1660 

----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function       -81.14638 
Estimation based on N =    200, K =   4 
Inf.Cr.AIC  =    170.3 AIC/N =     .851 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|     .42901**       .18477     2.32  .0202      .06686    .79116 
      B2|    1.17495***      .33368     3.52  .0004      .52095   1.82895 
      B3|    1.27978***      .40403     3.17  .0015      .48790   2.07165 
       T|    3.36454        3.06312     1.10  .2720    -2.63907   9.36815 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
A Gamma Integral 

 
(This is, admittedly, a bit contrived.)  The gamma integral is 

 

   Γ(P)  =  exp( )−
∞ −∫ v v dvP

0

1   =  (P-1)! if P is a positive integer. 
 
Consider the following trivial modification of a probit log likelihood function: 
 

   F  =  Σ {  log Φ( q * β’x)  +  1
0

1

Γ( )
exp( )

P
v v dvP−

∞ −∫ }. 

 
Since the second term is exactly equal to one, the end result of maximizing the function shown above 
should be identical to the simple probit estimates, though the function value will equal the probit log 
likelihood plus the sample size.  This could be done with MAXIMIZE as follows: 
 

CALC  ; Ran(12345) $ 
SAMPLE ; 1-200 $ 
CREATE ; z1= Rnn(0,1) ; z2 = Rnn(0,1) $ 

 NAMELIST  ; z = one,z1,z2 $ 
CREATE ; y = ( .2 + z1 + z2 + Rnn(0,1) ) > 0 ; q = 2*y - 1 $ 

 CALC  ; p = 2 ; k = Col(z)  $ 
 MAXIMIZE ; Fcn = gamma = Ntg(u^(p-1)) | Log(Phi(q * b1'z)) - gamma/Gma(P) 
   ; Start = k_0 ; Labels = k_b ; Glq = u ; Pts = 24 $ 
 PROBIT ; Lhs = y ; Rhs = z $ 
 
To illustrate this program, we used the data from the previous example, and set P = 2 in the gamma 
function.  As expected, the coefficients are identical to the probit model and the function differs by 
200.  (Our maximizer translates the problem into a minimization, so the sign changes.) 
 
Normal exit:   6 iterations. Status=0, F=    261.8135 
************************************************** 
* Laguerre quadrature with  20 nodes (points)    * 
************************************************** 
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----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function      -261.81346 
Estimation based on N =    200, K =   3 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|     .04754         .12831      .37  .7110     -.20394    .29901 
      B2|    1.44294***      .19271     7.49  .0000     1.06525   1.82064 
      B3|    1.33166***      .18350     7.26  .0000      .97200   1.69132 
--------+-------------------------------------------------------------------- 
Binomial Probit Model 
Log likelihood function       -61.81346 
--------+-------------------------------------------------------------------- 
Constant|     .04754         .12751      .37  .7093     -.20237    .29744 
      Z1|    1.44294***      .19664     7.34  .0000     1.05753   1.82836 
      Z2|    1.33166***      .18499     7.20  .0000      .96909   1.69424 
--------+-------------------------------------------------------------------- 
 
E66.2.3 Integration by Simulation 
 
 You can include functions that include expectations of the form 
 
   F(β)   =  Ev [F(β,v)] 

    =  
2 / 21 ( , )

2
ve F v dv

∞ −

−∞
β

π∫  

 
where v is distributed as standard normal.  These can be approximated reasonably accurately by 
simulation, by using 

   F(β)  ≈  (1/R) ∑ =

R

r 1
F(β,vr)  

 
where vr is one of R random draws from the standard normal distribution.    To replace the Hermite 
integration with this integration by simulation, change ; Hrq = name to 
 
   ; Sim = name 
 
To set R, the number of points for the approximation, you will use (as with other applications) 
 
   ; Pts = number of points for simulations. 
 
NOTE:  The seed for the random number generator is set to the same value each time a computation 
is done for a specific individual.  Thus, you can replicate a computation done earlier by setting the 
main seed for the program before estimation. 
 
 Consider the first example above.  A second way to approximate the expected value would 
be by simulation and averaging.  That is, the probability can be approximated by averaging the 
probabilities obtained with a sample of random draws from the distribution of v.  The change in the 
preceding would be only to the method of integration.   
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 The commands are:  
 

CALC  ; Ran(12345) $ 
SAMPLE ; 1-200 $ 
CREATE ; z1 = Rnn(0,1) ; z2 = Rnn(0,1) $ 

 NAMELIST ; z = one,z1,z2 $ 
CREATE ; y = ( .2 + z1 + z2 + Rnn(0,1) ) > 0 ; q = 2*y - 1 $ 

 PROBIT ; Lhs = y ; Rhs = z $ 
 MAXIMIZE ; Fcn = Prob = Ntg(Phi(q*(b1'z + t*u*x))) | Log(Prob) 
   ; Start = b,.1 ; Labels = kz_b,t ; Sim = u ; Pts = 50 ; Output = 3 $ 
 
We also drop the scaling in the integral by 1/π1/2, since that is specific to the change of variable for 
the Hermite integration.  The results are shown below. 
 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg   .0000D+00 chg.F   .0000D+00 max|dB|   .1000D-05 
Nodes for quadrature: Laguerre=20;Hermite=64. 
Replications for GHK simulator=  50 
Start values:   .47536D-01   .14429D+01   .13317D+01   .10000D+00 
1st derivs.     .66861D-02  -.16079D-01  -.24850D-01  -.12111D-01 
Parameters:     .47536D-01   .14429D+01   .13317D+01   .10000D+00 
Itr  1 F=  .6181D+02 gtHg=  .3267D-01 chg.F=  .6181D+02 max|db|=  .1407D+00 
1st derivs.    -.15593D-01  -.16631D-01   .12701D-01  -.12525D-01 
Parameters:     .47194D-01   .14438D+01   .13329D+01   .10062D+00 
Itr  2 F=  .6181D+02 gtHg=  .2895D-01 chg.F=  .2728D-04 max|db|=  .3304D+00 
1st derivs.     .20610D-02   .22397D-02  -.68093D-02  -.12445D-01 
Parameters:     .47478D-01   .14441D+01   .13327D+01   .10085D+00 
Itr  3 F=  .6181D+02 gtHg=  .1451D-01 chg.F=  .7628D-05 max|db|=  .1234D+00 
1st derivs.     .20610D-02   .22397D-02  -.68093D-02  -.12445D-01 
Parameters:     .47478D-01   .14441D+01   .13327D+01   .10085D+00 
Itr  1 F=  .6181D+02 gtHg=  .1451D-01 chg.F=  .6181D+02 max|db|=  .1234D+00 
1st derivs.    -.58554D-02  -.14640D-01   .15903D-01  -.12306D-01 
Parameters:     .47355D-01   .14439D+01   .13331D+01   .10159D+00 
Itr  2 F=  .6181D+02 gtHg=  .2555D-01 chg.F=  .6290D-05 max|db|=  .5011D+00 
1st derivs.    -.17754D-01   .38005D-01   .22105D-01  -.83349D-02 
Parameters:     .47183D-01   .14464D+01   .13348D+01   .11786D+00 
Itr  3 F=  .6181D+02 gtHg=  .4867D-01 chg.F=  .1051D-03 max|db|=  .1639D+01 
1st derivs.     .54207D-01   .87991D-02   .25379D-01  -.35629D-02 
Parameters:     .48345D-01   .14456D+01   .13345D+01   .13189D+00 
Itr  4 F=  .6181D+02 gtHg=  .6060D-01 chg.F=  .8614D-04 max|db|=  .2299D+01 
1st derivs.     .71268D-03  -.69440D-03  -.32695D-03  -.23829D-04 
Parameters:     .47457D-01   .14448D+01   .13336D+01   .14114D+00 
Itr  5 F=  .6181D+02 gtHg=  .2135D-03 chg.F=  .5609D-04 max|db|=  .9703D-03 
1st derivs.    -.11707D-04   .14852D-05  -.11693D-05  -.10977D-05 
Parameters:     .47446D-01   .14449D+01   .13336D+01   .14128D+00 
Itr  6 F=  .6181D+02 gtHg=  .2485D-05 chg.F=  .2324D-07 max|db|=  .2519D-04 
1st derivs.    -.55376D-07  -.26099D-07  -.67956D-08   .36571D-08 
Parameters:     .47446D-01   .14449D+01   .13336D+01   .14129D+00 
Itr  7 F=  .6181D+02 gtHg=  .1080D-07 chg.F=  .3112D-11 max|db|=  .6844D-07 
                                                           * Converged 
Normal exit:   7 iterations. Status=0, F=    61.81036 
Function=  .61810647342D+02, at entry,  .61810358837D+02 at exit 
************************************************** 
* Integration by simulation using   50 draws.   * 
************************************************** 
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----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function       -61.81036 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
(Results obtained by Monte Carlo simulation) 
      B1|     .04745         .12868      .37  .7123     -.20476    .29965 
      B2|    1.44488***      .19721     7.33  .0000     1.05836   1.83140 
      B3|    1.33361***      .19775     6.74  .0000      .94603   1.72120 
       T|     .14129        3.46202      .04  .9674    -6.64415   6.92672 
--------+-------------------------------------------------------------------- 
 (Results obtained by maximum likelihood estimation) 
Log likelihood function       -61.81346 
--------+-------------------------------------------------------------------- 
Constant|     .04754         .12751      .37  .7093     -.20237    .29744 
      Z1|    1.44294***      .19664     7.34  .0000     1.05753   1.82836 
      Z2|    1.33166***      .18499     7.20  .0000      .96909   1.69424 
--------+-------------------------------------------------------------------- 
 
Note the results are nearly the same as those computed using Hermite quadrature.  The difference in 
the fourth coefficient results from the scaling by √2.   The differences across the other coefficients 
can be partly explained by the relatively small number of simulation points (50).  Of course, the 
Hermite integral is also only an approximation. 
 
E66.2.4 Maximum Simulated Likelihood Estimation 
 
 The simulation procedure described above can be extended to a vector of up to five standard 
normally distributed variables.  The function is defined as 
 

   F(β)  =  1 21
1
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(M may be up to five.)  The variables in the simulated function may be freely correlated.  The 
specification is as follows: 
 
 MAXIMIZE ; Labels = the list of labels for the parameters 
   ; Start = the starting values for the parameters 
   ; Sim = a symbol for the draws 
   ; Sdv = M specifications for the standard deviations of the vs 
   ; Pts = the number of draws, R 
   ; Fcn = the function definition 
   ; ... any other options  $ 
 
The number of variables simulated will equal the number of specifications you provide in the ; Sdv 
list.  Use a ‘1’ for a fixed (at 1.0) standard deviation or a ‘*’ for a free standard deviation, to be 
estimated.  The names for the variables will then be the symbol you place in the ; Sim specification 
plus the integer index.   
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 For example, 
 

   ; Sdv = *,*,* 
   ; Sim = uab 
 
produces a vector of three random draws with unrestricted standard deviation, named uab1, uab2, 
uab3.  Optional features include 
 
   ; Cor  to allow the M variables to be freely correlated 
   ; Halton      to use Halton draws (see Chapter R24) instead of uniform 
    random numbers to power the simulation 
   ; Antithetic  to use pairs of draws, v and -v. 
 

E66.3 Subfunctions in Functions 
 
 Functions for MINIMIZE may be built up recursively by using subfunctions.  The ; Fcn 
part of the command will consist of 
  
   ; Fcn =   name1 = expression  | 
                 name2 = expression ...  | 
                 expression $ 
  
The last expression is the one being minimized, so it does not have a name.  Any expression can use 
the name of any previous expression, as many times as desired.  For examples: 
  
   ; Fcn = bx = c0 + c1*x  |  (y-bx)^2  
   ; Fcn = bx = c0 + c1*x  |  e = y - bx  | e^2 
   ; Fcn = bx = c0 + c1*x  |  e = y - bx  | e^2 + e^4 
   ; Fcn = d = (2*y-1)*b’x |  Log(Phi(d))  (log likelihood for a probit model). 
 
This may bring enormous gains in simplifying expressions.  Functions often involve repeated use of 
the same function.  For an example, consider the probit model, which might be inefficiently set up as 
 
   ; Fcn = y*Log(Phi (b’x)) + (1-y)*Log(1 - Phi(b’x)) 
 

This can be written  
   ; Fcn = bx = b’x | 
    fbx = Phi(bx) | 
    lfbx = Log(fbx)  | 
    y * lfbx + (1-y)*(1-lfbx)  
 
(Obviously, there are yet more efficient ways to do this, but this illustrates the point.)  This feature 
will never increase the amount of computation, and will usually decrease it.  It reduces the chance for 
error in lengthy functions.  And, it will reduce overall the length of your commands.  You should 
take advantage of this feature of the command whenever possible. 
 Note that functions are compiled from left to right (or, top to bottom).  That means if you try 
to use a name which is defined after the function you are defining, an error will occur in which the 
name you are using does not appear to be defined. 
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E66.4 Supplying Derivatives for Functions 
 
 All optimizations for user defined problems (NLSQ, NLSUR, MINIMIZE, MAXIMIZE, 
GMME) use first difference approximations to obtain derivatives of the functions.  This provides 
sufficient accuracy to obtain appropriate solutions to most problems.  However, it is relatively slow 
(sometimes extremely so) compared to using analytic derivatives and, for some problems, may not 
be sufficiently accurate. 
 The subfunctions defined as above may be the derivatives of the function you are 
optimizing.  This can speed up the computations.  To indicate that a subfunction is a derivative, you 
just precede the name with an underscore, then the name of the parameter.  For example: 
  
 MINIMIZE  ; Start = 0,0  
   ; Labels = c0,c1 
   ; Fcn = e = y - c0 - c1*x | 
        _c0 = -2*e | 
       _c1 = -2*e*x | 
       e^2 $ 
 
NOTE: If the derivatives you provide do not match the function, the optimization procedure will 
eventually break down, claiming to be unable to minimize the function.  The optimizer cannot check 
your differentiation for you by any other way.  However, if you have not differentiated the function 
correctly, the optimization will break down eventually. 
 
Any derivatives that you do not provide are evaluated numerically as usual. 
 For an example, the following shows three ways to estimate the parameters of a simple 
probit model. 
 
 TIMER $ 
 CALC  ; Ran(12345) $ 

SAMPLE ; 1-2000 $ 
CREATE     ; x = Rnn(0,1) ; y = x + Rnn(0,1) ; y = y>0 ; q = 2*y-1 $ 
PROBIT ; Lhs = y ; Rhs = one,x $ 
MAXIMIZE   ; Labels = b0,b1 ; Start = 0,0  
  ; Fcn = Log(Phi(q*(b0+b1*x))) $ 
MAXIMIZE   ; Labels = b0,b1 ; Start = 0,0  
                  ; Fcn =  bx = q*(b0+b1*x)  | 
               d = q*N01(bx)/Phi(bx) | 
                    _b0 = d | 
                    _b1 = d*x | 
                    Log(Phi(bx)) $  

 
Absolute timings are not particularly meaningful as they are specific to computers.  But, for the three 
methods shown, on the same machine, we find identical results to six decimal places, while the 
formal probit estimator requires 0.04 seconds, the solver with numerical derivatives took 0.33 
seconds, and the analytical derivatives reduced this to 0.23 seconds.  On a comparable basis, the time 
savings could be substantial. 
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Normal exit:   5 iterations. Status=0, F=    1003.258 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function     -1003.25797 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.03852         .03222    -1.20  .2319     -.10166    .02463 
       X|    1.02181***      .04376    23.35  .0000      .93604   1.10757 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Elapsed time:     0 hours,  0 minutes,   .04 seconds. 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit:   3 iterations. Status=0, F=    1003.258 
----------------------------------------------------------------------------- 
User Defined Optimization 
Log likelihood function     -1003.25797 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|    -.03852         .03228    -1.19  .2328     -.10179    .02476 
      B1|    1.02181***      .04223    24.19  .0000      .93903   1.10458 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Elapsed time:     0 hours,  0 minutes,   .33 seconds. 
Normal exit:   3 iterations. Status=0, F=    1003.258 
----------------------------------------------------------------------------- 
User Defined Optimization 
Log likelihood function     -1003.25797 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|    -.03852         .03228    -1.19  .2328     -.10179    .02476 
      B1|    1.02181***      .04223    24.19  .0000      .93903   1.10458 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Elapsed time:     0 hours,  0 minutes,   .23 seconds. 
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Derivatives for an Index Function 
 
 If your function contains an ‘index’ function, such as the β′x that appears in a probit model, 
then there is a shortcut whereby you can give a full set of derivatives with a very small amount of 
programming.  To illustrate, consider the following example which uses this ‘trick’ for a probit 
model: 
 
 NAMELIST ; xvars = a namelist of  up to 100 variable names $ 
 CREATE ; y = the dependent variable $ 
 CREATE ; q = 2*y-1 $ 
 CALC  ; kvars = Col(xvars) $ 
 MAXIMIZE ; Labels = kvars_c ? labels are c1,c2,...,c100 
   ; Start = the set of starting values (might be a matrix) 
   ; Fcn = index = q*c1’xvars   | 
    _d(c1’xvars) = q*N01(index)/Phi(index) | 
    Log(Phi(index)) $ 
 
This MAXIMIZE command specifies the log likelihood function.  The middle specification of the 
function definition provides analytic derivatives for all 100 variables in the model.  The specification 
_d(c1’xvars) contains the label of the desired first parameter for which the derivatives are provided, 
then an apostrophe, followed by a namelist.  An expression appears after the equals sign.  This 
shorthand states that the analytic derivatives are obtained by multiplying the variables in the namelist 
by the expression.  This produces derivatives for as many parameters as there are variables in the 
namelist.  A small, specific example would be 
 
 NAMELIST ; x = one,x1,x2,x3 $ 
 MAXIMIZE ; Labels = b1,b2,b3,b4 
   ; Start = 0,0,0,0 
   ; Fcn = bx = q*b1’x     | 
    _d(b1’x) = q*N01(bx)/Phi(bx) | 
    Log(Phi(bx)) $ 
 
The second line is equivalent to the four lines 
 
   _dc1 = q*N01(bx)/Phi(bx) * 1 
   _dc2 = q*N01(bx)/Phi(bx) * x1 
   _dc1 = q*N01(bx)/Phi(bx) * x2 
   _dc1 = q*N01(bx)/Phi(bx) * x3 
 
  



E66: MAXIMIZE - Nonlinear Optimization   E-1668 

E66.5 Model Specifications for the MAXIMIZE Command 
 

This is the full list of general specifications that are applicable to this model estimator. 
 
Controlling Output from Model Commands 
 

; Table = name saves model results to be combined later in output tables. 
 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
Optimization Controls for Nonlinear Optimization 
 

; Start = list gives starting values for a nonlinear model. 
 ; Tlg [ = value] sets convergence value for gradient. 
 ; Tlf [ = value] sets convergence value for function. 
 ; Tlb [ = value] sets convergence value for parameters. 

; Alg = name requests a particular algorithm, Newton, DFP, BFGS, etc.  
; Maxit = n sets the maximum iterations. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 ; Lpt = n  sets the number of points to use Laguerre quadrature. 
 ; Hpt = n sets the number of points to use for Hermite quadrature. 
 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 
Hypothesis Tests and Restrictions 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; CML: spec defines a constrained maximum likelihood estimator. 
; Rst = list specifies equality and fixed value restrictions. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
 
Predictions requested with ; List, ; Keep and ; Fill are the individual values of the function.  There 
are no residuals.  You may also compute a weighted log likelihood (or any other function) with 
 
   ; Wts = weighting variable 
 
Parameters may be fixed at the starting values with  
 
   ; Fix = list of labels 
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E66.6 Output from MINIMIZE/MAXIMIZE 
 
 The results from this procedure consist of the minimized function value, and, if a sum of 
terms was minimized, estimates of the standard errors and asymptotic ‘t ratios’.  If you have 
computed a simple function, not a sum of terms, LIMDEP reports 1.0 for the estimated standard 
errors.  The asymptotic covariance matrix is estimated by the BHHH method if BFGS, DFP or 
steepest descent is used, or with the estimated Hessian if you request Newton’s method.  The latter 
can occasionally be problematic because the second differencing method used to estimate the 
Hessian does not insure positive definiteness.  
 Results saved by the MINIMIZE procedure are: 
 
 Matrices: b and varb   for all parameters, including those fixed, 
   gradient  = the first derivative vector. 
 
 Scalars: logl   = function value, 
   nreg and kreg  = the dimensions of the problem, 
   exitcode = the termination status for the procedure. 
 
 Last Model: The labels in your ; Labels = list specification. 
 
 Last Function: Your function as defined. 
 
You can obtain simulations of the function you have maximized, or functions of the parameters you 
have computed as well as partial effects of any function based on those parameters using 
SIMULATE and PARTIALS.  An example appears in Section E66.8.3. 
 
E66.7 Types of Optimization Problems 
 
 There are broadly two types of functions, one that does not require summing over a sample 
of observations and one that does, in the manner of a log likelihood function.  You can also use 
MAXIMIZE to find the zeros of an equation and to solve a linear programming problem. 
 
E66.7.1 Simple Function of Parameters 
 
 If the function you are minimizing or maximizing is not a sum of terms, just specify it as 
described above.  Then, be sure to precede your command with 
 
 SAMPLE  ; 1 $ 
 
For instance, one of the examples, from Goldfeld and Quandt (1972) is this four dimensional 
Rosenbrock function: 
 
   F(β) = (β1+10*β2)2 + 5*(β3 - β4)2 + (β2 - 2*β3)4 + 10*(β1 - β4)4. 
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The correct function minimizing values of all four parameters are 0.0.  The ; Fcn part of the 
command is exactly as it is shown above.  The commands for minimizing this function are: 
 
 SAMPLE        ; 1 $ 
 MINIMIZE    ; Labels = b1,b2,b3,b4 ; Start = .1,-.1,.3,.05 
             ; Fcn = (b1+10*b2)^2 + 5*(b3-b4)^2 + (b2-2*b3)^4 + 10*(b1-b4)^4 $ 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function          .00000 
Estimation based on N =      1, K =   4 
Inf.Cr.AIC  =      8.0 AIC/N =    8.000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|-.20178D-05    .....(Fixed Parameter)..... 
      B2| .20178D-06    .....(Fixed Parameter)..... 
      B3|-.83743D-06    .....(Fixed Parameter)..... 
      B4|-.83743D-06    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
 If you forget to set the sample, you can still get the right answer.  But, it will take longer 
because you will be minimizing 
 
   FN  =  

=1

N

i∑ F(β) = N×F(β) 
 
where N is your current sample size.  This would be (wastefully) computed by summation, so the 
function and derivatives would be computed N separate times to obtain the identical function. 
However, the program will not actually report the results in the normal output table.  You will 
receive a message of the sort 
 
Normal exit:  44 iterations. Status=0, F=    .2774660E-24 
Error   143: Models - estimated variance matrix of estimates is singular 
Error   447: Current estimated covariance matrix for slopes is singular 
 
which is produced by the example above when we change SAMPLE ; 1 $ to SAMPLE ; 1-200 $.  
The covariance matrix truly is singular.  It is a 4×4 matrix that has rank 1, equal to 200 times the 
outer product of the derivative vector. 
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E66.7.2 Solutions to Equations 
 
 The preceding suggests a method of finding a solution to an equation or the set of solutions 
to a set of equations.  If the equation in one variable can be written in the form ‘f(x) = c’ then, one 
way to find the value of x is to use 
 
 SAMPLE ; 1 $ 
 MINIMIZE ; Start = a guess such that f(x) is computable 
   ; Labels = x 
   ; Fcn = (f(x) -  c )^2  $ 
 
(where you insert the definition of the function in the last line).  The solution to the equation occurs 
where the squared difference equals zero.  (Note that this need not be unique.)  If there is a second 
equation, ‘g(z) = d,’ you could use 
 
   ; Labels = x,z 
   ; Fcn = (f(x) - c)^2 + (g(z) - d)^2 $ 
 
The extension to M equations is direct. The equations may also be simultaneous, as in the example 
below. 
 The following example appears in Greene (2011, p. 460).  For random sampling from a 
gamma population with parameters λ and P and observations xi, i = 1,...,N, E[xi] = P/λ and E[1/ xi] = 
λ/(P-1).  Thus, one (admittedly inefficient) way to estimate P and λ would be to equate these sample 
moments to their population counterparts.  Thus, we wish to solve the two equations 
 
   (1/N) 

=1

N

i∑ xi  =  P/λ 

and   (1/N) 
=1

N

i∑ 1/xi =  λ/(P-1). 
  
One might proceed as follows, assuming the variable x already exists: 
  
 CALC  ; Ran (12345) $ 
 SAMPLE ; 1-100 $ 
 CREATE ; x = Rni(5) $ 
 CREATE ; x1 = 1/x $ 
 CALC  ; m1 = Xbr(x) ; m0 = Xbr(x1) $ 
 SAMPLE  ; 1 $ 
 MINIMIZE ; Labels = l,p   
   ; Start = 1,10 
   ; Fcn = (m1 - p/l)^2 + (m0 - l/(p-1))^2  

; Output = 3 $ 
 
(Note, this is not the optimal way to solve this problem.  The sufficient statistics based on the log 
likelihood are Σi xi and Σi logxi, so the efficient estimator will be a function of these two moments.) 
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Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg   .0000D+00 chg.F   .0000D+00 max|dB|   .1000D-05 
Nodes for quadrature: Laguerre=20;Hermite=64. 
Replications for GHK simulator= 100 
Start values:   .10000D+01   .10000D+02 
1st derivs.    -.10071D+03   .10071D+02 
Parameters:     .10000D+01   .10000D+02 
Itr  1 F=  .2536D+02 gtHg=  .1012D+03 chg.F=  .2536D+02 max|db|=  .1007D+03 
1st derivs.    -.71513D+01   .11996D+01 
Parameters:     .16659D+01   .99334D+01 
Itr  4 F=  .7276D-07 gtHg=  .1115D-02 chg.F=  .5612D-06 max|db|=  .3168D-01 
1st derivs.    -.17561D-04   .35871D-05 
Parameters:     .10307D+01   .51186D+01 
Itr  5 F=  .4081D-10 gtHg=  .3857D-05 chg.F=  .7272D-07 max|db|=  .3320D-04 
1st derivs.    -.76351D-07   .16354D-07 
Parameters:     .10307D+01   .51185D+01 
Itr  6 F=  .1703D-10 gtHg=  .5898D-07 chg.F=  .2378D-10 max|db|=  .6762D-06 
                                                           * Converged 
Normal exit:   6 iterations. Status=0, F=    .1703079E-10 
Function=  .25360805597D+02, at entry,  .17030790377D-10 at exit 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function          .00000 
Estimation based on N =      1, K =   2 
Inf.Cr.AIC  =      4.0 AIC/N =    4.000 
Model estimated: Aug 24, 2011, 15:05:17 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|    1.03071    .....(Fixed Parameter)..... 
       P|    5.11845    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
NOTE:  The SOLVE command described in Chapter E68 may also be used to search for the roots 
of an equation using a grid search rather than the type of minimization used here. 
 
E66.7.3 Sum of Terms 
 
 Optimizing a sum of terms is identical to the preceding except that your ; Fcn expression 
will involve one or more variables, and you will not reset the sample to just one observation.  For 
example, the following sets up the log likelihood function for a probit model, where y is the 
dependent variable and x1 and x2 are the independent variables. 
 
 MAXIMIZE ; Labels = a1,a2,a3 ; Start = 0,0,0 
   ; Fcn = Log(Phi((2*y-1)*(a1+a2*x1+a3*x2))) $ 
 
NOTE:  The number of observations in the current sample always controls the number of terms in a 
sum.  Function values are summed over the sample, even if no variables actually appear in the function. 
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E66.7.4 Linear Programming 
 

MINIMIZE and MAXIMIZE will also solve a linear programming problem.  The general 
form of the problem is 
 

MINIMIZE or MAXIMIZE   c’x 
 

Subject to xl  < x < xu 

  and  bl < Ax < xu 
 
where all terms are vectors save for A which is a conformable matrix of coefficients (some of which 
may be zero).  The necessary command is 
 

MAXIMIZE ; Alg  = Simplex 
  ; Lhs  = c 
  ; Rhs = a 

; Limits = xl,xu $ 
 
The vectors c, xl and xu and matrix a must be created with MATRIX.  Any element in a can be zero.  
For one sided limits, you may use large values such as 1.D15 in xl or xu. Matrix a has the same 
number of columns as there are activities to be solved for.  There is one row for each constraint.  The 
first element in the jth row is bl(j).  This is followed by the row of a.  The last element in each row is 
bu(j).  There are no other options for this procedure.  An example appears below. 
 Results from this procedure are the solution itself and retained values 
 
 Matrices:   b  =  the solution vector, x 
    lpweight =  the vector c 
 
 Scalars:   lpfunctn =  the value of the criterion 
    klp  =  the number of activities 
    exitcode =  0 if the problem is solved 
         3 if the problem cannot be solved 
         5 if an error occurs in setting up the problem 
 
For example, we solve the problem 
 

Maximize  F  =   x1 + 3x2        
Subject to       0   <  x1  < 

0   <  x2  <  1 
 1 

                      x1  + x2  < 1.5 
                .5  <  x1  + x2 
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The command syntax is 
 

MATRIX ; xl  = [        0,     0         ] 
         ; xu = [        1,     1         ] 
        ; c = [        1,     3         ] 
        ; a = [-1.d15,     1,     1,         1.5  / 
                          .5,         1,     1,      1.d15  ] $ 
MAXIMIZE  ; Lhs = c ; Rhs = a 
           ; Limits = xl, xu 
           ; Alg = Simplex $ 

 
The solution is x1 = .5, x2 = 1, function = 3.5 
 
===================================================== 
Linear Programming Solution by Simplex Method ======= 
Maximized function value =       3.50000      ======= 
(* indicates the constraint is binding)       ======= 
===================================================== 
Activity               Lower Limit      Upper Limit 
-----------------    ---------------  --------------- 
X01        .50000           .00000          1.00000 
X02       1.00000           .00000          1.00000 * 
----------------------------------------------------- 
Constraint             Lower Limit      Upper Limit 
-----------------    ---------------  --------------- 
Row 01               *************          1.50000 * 
Row 02                      .50000    ************* 
 
E66.8 Applications 
 
 We show several applications that use MAXIMIZE or MINIMIZE to optimize a user 
defined function. 
 
E66.8.1 Simple Function 
 
 The following set of commands demonstrates several features of the MINIMIZE program. 
The technical output from the program is omitted.  We show only the final results of each command. 
The first is from Goldfeld and Quandt (1972). 
 
   F(c)  = (c1+10c2)2 + 5(c3-c4)2 + (c2-2c3)4 + 10(c1-c4)4. 
 
The correct values of all four parameters are 0.0. The Fcn part is exactly as it is shown above. The 
unrestricted optimum is found using 
 
 SAMPLE   ; 1 $ 
 MINIMIZE  ; Labels = c1,c2,c3,c4 ; Start = .1,-.1,.3,.05 

          ; Fcn = (c1+10*c2)^2 + 5*(c3-c4)^2 + (c2-2*c3)^4 + 10*(c1-c4)^4 $ 
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----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function          .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|-.20178D-05    .....(Fixed Parameter)..... 
      B2| .20178D-06    .....(Fixed Parameter)..... 
      B3|-.83743D-06    .....(Fixed Parameter)..... 
      B4|-.83743D-06    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
We now repeat the preceding while holding two of the parameters fixed at the starting values. 
 
 MINIMIZE  ; Labels = c1,c2,c3,c4  ; Start = .1,-.1,.3,.05 ; Fix = c2,c4 

          ; Fcn = (c1+10*c2)^2 + 5*(c3-c4)^2 + (c2-2*c3)^4 + 10*(c1-c4)^4 $ 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function          .50309 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      C1|     .36642    .....(Fixed Parameter)..... 
      C2|    -.10000    .....(Fixed Parameter)..... 
      C3|     .04458    .....(Fixed Parameter)..... 
      C4|     .05000    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 

E66.8.2 Sum of Terms 
 
For the sum of terms functions, we create some data. 
 
 CALC  ; Ran (12345) $ 
 SAMPLE  ; 1-25 $ 
 CREATE  ; z1 = Rnn(0,1)                       ? correlated regressors 
        ; z2 = .5*(z1+Rnn(0,1))  
          ; z3 = (z1 + z2 + Rnn(0,1))/3 
          ; ys =  z1 + z2 + z3 + Rnn(0,2)       
         ; d = ys > 0                         ? probit dependent variable 
          ; t = (d=1) * ys $          ? tobit dependent variable 
 NAMES   ; z = one,z1,z2,z3 $ 
 
We now estimate a tobit and a probit model.  Starting values are based on OLS.  We use Olsen’s 
formulation for the tobit model.    
 
 REGRESS   ; Lhs = t ; Rhs = z $ 
 CALC      ; thet = 1/s   $ 
 MATRIX    ; beta = thet * b $ 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=T        Mean                 =         .96086 
             Standard deviation   =        1.29997 
             No. of observations  =             25  Degrees of freedom 
Regression   Sum of Squares       =        1.87929           3 
Residual     Sum of Squares       =        38.6787          21 
Total        Sum of Squares       =        40.5580          24 
             Standard error of e  =        1.35715 
Fit          R-squared            =         .04634  R-bar squared =  -.08990 
Model test   F[  3,    21]        =         .34011  Prob F > F*   =   .79654 
Diagnostic   Log likelihood       =      -40.92863  Akaike I.C.   =   .75641 
             Restricted (b=0)     =      -41.52168  Bayes  I.C.   =   .95143 
             Chi squared [  3]    =        1.18610  Prob C2 > C2* =   .75634 
Model was estimated on Aug 24, 2011 at 03:15:22 PM 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       T|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .97289***      .27790     3.50  .0021      .42822   1.51757 
      Z1|    -.20356         .55036     -.37  .7152    -1.28224    .87512 
      Z2|     .26792         .50149      .53  .5988     -.71497   1.25081 
      Z3|     .39646         .80823      .49  .6288    -1.18764   1.98057 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
We now fit the probit model using MAXIMIZE and PROBIT to verify the result.  
 
 PROBIT    ; Lhs = d ; Rhs = z $ 
 MATRIX    ; bp = b $ 
 CREATE ; q = 2 * d - 1 $ 
 MAXIMIZE  ; Start = 0,0,0,0  
   ; Labels = b1,b2,b3,b4  
   ; Fcn = Log(Phi(q*b1’z)) $ 
 MATRIX    ; List ; check = b - bp  $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Log likelihood function       -14.72268 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       D|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .22863         .27473      .83  .4053     -.30983    .76708 
      Z1|     .31490         .54573      .58  .5639     -.75471   1.38452 
      Z2|     .16081         .50783      .32  .7515     -.83452   1.15614 
      Z3|     .42252         .81342      .52  .6035    -1.17175   2.01680 
--------+-------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function       -14.72268 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|     .22863         .28778      .79  .4269     -.33541    .79266 
      B2|     .31490         .63550      .50  .6202     -.93065   1.56045 
      B3|     .16081         .59396      .27  .7866    -1.00334   1.32495 
      B4|     .42252         .90251      .47  .6397    -1.34636   2.19140 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
   CHECK|             1 
--------+-------------- 
       1|   .191626E-10 
       2|  -.514560E-09 
       3|   .151578E-09 
       4|   .594567E-09 
 
The tobit model is a little more complicated.  Once again, the output from the internal tobit estimator 
is omitted. Vector bt scales the tobit coefficients. 
 
 TOBIT     ; Lhs = t ; Rhs = z  $ 
 MATRIX    ; bt = 1/s * b $    
 MAXIMIZE  ; Start = beta, thet  
   ; Labels = b1,b2,b3,b4,tt 

          ; Fcn = bx = b1’z | (1-d)*Log(Phi(-bx))+d*Log(tt)-d/2*(tt*t-bx)^2 $ 
 MATRIX    ; List ; check = bt - b(1:4) $ 

 
(The difference in the log likelihoods occurs because the MAXIMIZE function does not include 
-.5*log(2π) in the term multiplied by d.) 
 
Normal exit:   5 iterations. Status=0, F=    37.44973 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    T 
Log likelihood function       -37.44973 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       T|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|     .35849         .44082      .81  .4161     -.50549   1.22248 
      Z1|    -.05698         .80711     -.07  .9437    -1.63889   1.52492 
      Z2|     .50113         .73716      .68  .4966     -.94367   1.94593 
      Z3|     .73428        1.18243      .62  .5346    -1.58325   3.05180 
        |Disturbance standard deviation 
   Sigma|    1.83412***      .36275     5.06  .0000     1.12315   2.54509 
--------+-------------------------------------------------------------------- 
Normal exit:   9 iterations. Status=0, F=    23.66565 
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----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function       -23.66565 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|     .19546         .27971      .70  .4847     -.35276    .74368 
      B2|    -.03107         .57506     -.05  .9569    -1.15816   1.09603 
      B3|     .27323         .52699      .52  .6041     -.75966   1.30611 
      B4|     .40034         .83489      .48  .6316    -1.23600   2.03669 
      TT|     .54522***      .11417     4.78  .0000      .32146    .76899 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
   CHECK|             1 
--------+-------------- 
       1|  -.776470E-09 
       2|   .255819E-09 
       3|  -.553323E-09 
       4|  -.794429E-10 
 
E66.8.3 Model Estimator – Canonical NB Regression Model 
 
 The following uses MAXIMIZE to create a new count data model in LIMDEP that is not in 
the menu of supported, built in specifications.   
 Hilbe (2011) recommends an alternative form of the negative binomial that he labels the 
‘canonical negative binomial’ model.  The signature feature of the model is that it applies to a 
discrete random variable with a formal negative binomial distribution – it is not obtained by 
integrating heterogeneity out of a mixed distribution.  Hence the name ‘canonical’ – it derives from 
first principles.  The conditional (on xi) density of the random variable is  
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The conditional mean function for this model is 
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The resemblance to the more familiar NB2 model is only superficial.  It can be seen from the 
conditional mean function that the parameters in the models are very different.  A more transparent 
way to examine the difference is to examine the partial effects.  In the NB2 model,  
 

∂E[yi|xi]/∂xi  =  λiβ  =  E[yi|xi] β. 
 
In the CNB model, 
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This is a completely different scaling of the parameter vector.  The implication seems likely to be 
that the parameters themselves from the two models will differ substantially if, as is common, the 
differences tend to even out in the partial effects.  We will explore this in an example below. 
 The canonical NB model is not a built in procedure in LIMDEP.  However, it is a very 
straightforward application of the MAXIMIZE command to obtain the estimates followed by 
PARTIALS and SIMULATE to obtain the partial effects and model simulations.  The program 
below is written in the form of a template that requires only the specification of the dependent 
variable and the namelist containing the regressors.  A substantive complication for this estimator is 
the starting values.  The ordinary NB estimates might seem natural, but as the analysis above 
suggests, the parameters in the NB2 and the CNB models are likely to be quite different.  Hilbe 
suggests - 1 for the constant term, zeros for the slopes, and 2 for θ (i.e., .5 for α = 1/θ).   
 The procedure is generic save for a single line that is modified for the specific application 
 

PROC = CNBModel(y,x) $ 
CALC   ; k = Col(x) $ 
? MAXIMIZE Estimates the model parameters 
MAXIMIZE ; Start = -1,k_0,2 

; Labels = b0,k_b,theta 
; Fcn = bx = b0+b1'x  | 
 lambdai = Exp(bx)  | 

y*bx + theta*Log(1-lambdai)  
+ Lgm(y+theta) - Lgm(y+1) - Lgm(theta) $ 

 ? PARTIALS computes the partial effects for the variables in the namelist 
PARTIALS ; Parameters = b 

; Labels = b0,k_b,theta 
; Covariance = varb 
; Function = bx = b0+b1'x  |  

lambdai = exp(bx)  |  
-theta*lambdai/(lambdai-1) 

; Effects: x ; Summary $ 
 ? We compare the results to the NB2 model. Partials are comparable APEs 

NEGBIN ; Lhs = y ; Rhs = one,x $ 
PARTIALS ; Effects: x ; Summary $ 
ENDPROC $ 

To execute the procedure, we use the health care data, and commands 
 
 SAMPLE ; All $ 
 NAMELIST ; x = age,educ,hhninc,female$ 

EXECUTE ; Proc = CNBModel(docvis,x) $ 
 
The results are as follows:  Notice that they begin with several warnings about the computation of 
the function.  Unlike other models that we have examined thus far, this model does involve a 
computation that is quite likely to produce this result.  One of the terms in the log likelihood is  
log(1-λi).  The implication is that λi must be between zero and one.  Since λi = exp(β′xi), there is no 
constraint that can be placed on the parameters that will enforce this boundary.  It is not unlikely that 
for some observations, this error will occur.  The solver will draw the iterations on the parameters 
away from these values as it gets closer to a solution. 
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  Error   590: Obs.=     1 Cannot compute function: Logminus 
Warning   137: Iterations: function not computable at crnt.trial estimates 
  Error   590: Obs.=    96 Cannot compute function: Logminus 
  Error   590: Obs.=    94 Cannot compute function: Logminus 
  Error   590: Obs.=    94 Cannot compute function: Logminus 
  Error   590: Obs.=    94 Cannot compute function: Logminus 
 
Normal exit:  19 iterations. Status=0, F=    60207.36 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function    -60207.36401 
Estimation based on N =  27326, K =   6 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|    -.23013***      .00867   -26.54  .0000     -.24712   -.21313 
      B1|     .00272***   .9967D-04    27.28  .0000      .00252    .00291 
      B2|    -.00435***      .00063    -6.87  .0000     -.00559   -.00311 
      B3|    -.06643***      .00747    -8.89  .0000     -.08107   -.05179 
      B4|     .03904***      .00220    17.77  .0000      .03474    .04335 
   THETA|     .52343***      .00545    96.04  .0000      .51275    .53411 
--------+-------------------------------------------------------------------- 
 
--------------------------------------------------------------------- 
Partial Effects for User Specified Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .06788     .00324   20.97      .06153      .07422 
      EDUC         -.10864     .01603    6.78     -.14007     -.07722 
      HHNINC      -1.65817     .19003    8.73    -2.03061    -1.28572 
   *  FEMALE        .91204     .05373   16.97      .80672     1.01736 
--------------------------------------------------------------------- 
 (Intermediate results for Poisson regression omitted) 
----------------------------------------------------------------------------- 
Normal exit:  10 iterations. Status=0, F=    60164.22 
----------------------------------------------------------------------------- 
Negative Binomial Regression 
Dependent variable               DOCVIS 
Log likelihood function    -60164.22014 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .62857***      .05457    11.52  .0000      .52162    .73553 
     AGE|     .02042***      .00070    29.07  .0000      .01904    .02179 
    EDUC|    -.03539***      .00378    -9.36  .0000     -.04281   -.02798 
  HHNINC|    -.48779***      .04520   -10.79  .0000     -.57637   -.39921 
  FEMALE|     .32673***      .01588    20.58  .0000      .29561    .35784 
        |Dispersion parameter for count data model 
   Alpha|    1.90309***      .01984    95.94  .0000     1.86421   1.94197 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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--------------------------------------------------------------------- 
Partial Effects for Loglinear, Exponential Mean 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .06514     .00246   26.44      .06031      .06996 
      EDUC         -.11290     .01213    9.31     -.13668     -.08913 
      HHNINC      -1.55610     .14504   10.73    -1.84037    -1.27183 
   *  FEMALE       1.03372     .05259   19.66      .93065     1.13680 
--------------------------------------------------------------------- 
Maximum repetitions of PROC 
 
 We note, finally, a possible extension of the model.  In the NB1 and NB2 formulations, we 
allow for heterogeneity in the scale parameter, θ.  In particular, the generalized model specifies 
 
   θi  =  θ exp(δ′zi). 
 
It is straightforward to incorporate the same extension in the canonical model, as shown in the 
revised procedure below: 

 
PROC = CNBModel(y,x,z) $ 
CALC  ; k = Col(x) ; m = Col(z) $ 
? MAXIMIZE  Estimates the model parameters 
MAXIMIZE ; Start = -1,k_0,2, m_0 

; Labels = b0,k_b,theta,m_d 
; Fcn = bx = b0+b1'x | 
 lambdai = Exp(bx)  | 

    vh = Exp(d1’z)  | 
  y*bx + theta*vh*Log(1-lambdai)  

+ Lgm(y+theta*vh) - Lgm(y+1) - Lgm(theta*vh) $ 
 ? PARTIALS computes the partial effects for the variables in the namelist 
 NAMELIST ; xz = x,z $ 

PARTIALS ; Parameters = b 
; Labels = b0,k_b,theta,m_d 
; Covariance = varb 
; Function = bx = b0+b1'x |  

lambdai  = Exp(bx) |  
vh = Exp(d1’z)  |  

             -theta*vh*lambdai/(lambdai-1) 
; Effects: xz ; Summary  $ 

ENDPROC$ 
 SAMPLE ; All $ 
 NAMELIST ; z = hhkids $ 
 NAMELIST ; x = age,educ,hhninc,female$ 
 EXEC  ; Proc = CNBModel(docvis,x,z) $ 
 
The results of the computation of this extended model are shown below. 
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----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function    -60147.26561 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B0|    -.20971***      .00879   -23.86  .0000     -.22693   -.19248 
      B1|     .00233***      .00010    22.58  .0000      .00213    .00253 
      B2|    -.00459***      .00063    -7.23  .0000     -.00583   -.00335 
      B3|    -.06695***      .00747    -8.96  .0000     -.08159   -.05231 
      B4|     .03939***      .00220    17.91  .0000      .03508    .04370 
   THETA|     .55914***      .00670    83.40  .0000      .54600    .57228 
      D1|    -.17037***      .01569   -10.86  .0000     -.20112   -.13961 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
--------------------------------------------------------------------- 
Partial Effects for User Specified Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .05720     .00306   18.71      .05121      .06320 
      EDUC         -.11267     .01579    7.14     -.14362     -.08172 
      HHNINC      -1.64338     .18613    8.83    -2.00818    -1.27858 
   *  FEMALE        .90849     .05293   17.16      .80474     1.01224 
   *  HHKIDS       -.52822     .04754   11.11     -.62139     -.43504 
--------------------------------------------------------------------- 
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E67: GMM Estimation 
 
E67.1 Introduction 
 
 LIMDEP can be used for GMM estimation of econometric models.  Although the 
methodology is common to all of them, we provide several approaches.  The nonlinear least squares 
estimator presented in the Chapter E14 is based on the least squares criterion 
 
   M(β)  =  ε(β)′ε(β) 
 
which minimizes the simple sum of squares of a set of residuals.  As noted earlier, different 
weighting schemes and the use of instrumental variables extends this to more general GMM 
interpretations.  Thus, the more general estimation criterion, 
 
   M(β)  =  ε(β)′Z(Z′ΩZ)-1Z′ε(β) 
 
allows for instrumental variables and a weighting matrix.  Depending on the choice of the weighting 
matrix, this will produce GMM estimators of various sorts.   Section E21.5 and Chapter E25 extend 
this nonlinear least squares or instrumental variables approach to multiple equations.  Finally, 
consider the less structured GMM criterion: 
 
   q  =  m  m Σ'  

where   m   =  ),(1
1∑ =

n
i iin

xm β  

 
based on a set of L ‘orthogonality conditions,’ 
 
   E[mi(β,xi)]  =  0. 
 
E67.2 General Specifications of the GMM Estimator 
 
 The GMM estimation procedure departs from a set of ‘orthogonality conditions,’ 
 
   E[mil (β,xi)]  =  0 
 
where β is the vector of parameters to be estimated, xi is a set of variables that is assumed to be in the 
set of information that defines the ‘moment condition,’ and mil(.) is one of L expectations that the 
model specifies to equal zero.  The GMM estimator is obtained by finding the estimator, b, that 
makes the empirical moment, 
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mimic the population expectation as closely as possible.   
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 There are three possible cases: 
 
• If there are L functionally independent conditions specified and K = L parameters to be 

estimated, it will generally be possible to find a b that makes the empirical moments match 
the population expectations. 

 
• If L > K, then it will generally not be possible to make the moments all equal zero, and we 

will have, instead, to minimize some criterion which makes the moments ‘close’ to zero.  
This is the GMM estimation problem. 

 
• If L < K, then there are more parameters to be estimated than there are moment conditions 

specified, and, since they are functionally independent, the L moment conditions will not be 
sufficient to identify the parameters, and estimation will be impossible. 

 
E67.3 GMM Estimation 
 
 Collect the L moment specifications in the column vector 
 

   m   =  ),(1
1∑ =

n
i iin

xm β . 

 
The GMM estimator is the minimum distance estimator which minimizes the quadratic form 
 
   q  =  m ′ Σ m  
 
for some choice of positive definite matrix Σ.  Different choices of Σ will produce different 
estimators.  At this point, we turn to formulating the command for the GMM estimator.  A brief 
application will be shown next, then the remaining details of using the estimator will be given. Some 
technical details will follow. 
 The essential command structure for the GMM estimator is 
 
 GMME ; Fn1  =  definition of the first moment condition 
   ; Fn2  =  definition of the second moment condition 
   ; ...   up to 50 orthogonality conditions 
   ; Labels =  the symbols used for the parameters, 
   ; Start  =  starting values for the optimization  $ 
 
This basic command – note that Σ is not specified, requests minimization of the simple sum of 
squares.  The default specification, therefore, is Σ = I.  Notice that the number of parameters may not 
exceed the number of functions.  The function definitions can make use of all the tools discussed 
earlier for specifying nonlinear regressions.  They may also specify instrumental variables, as shown 
in the examples below. 
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Example 1: 
 
 Suppose y1...,yn are a sample of n independent observations from the gamma distribution, 
 

   f(y)  =  1

)(
−λ−

Γ
λ Py

P
ye

P
, y > 0, λ,P > 0. 

 
Then, the following expectations hold 
 
   E[y]   =  P/λ 

   E[y2]   =  P(P+1)/λ2 

   E[1/y] =  λ/(P-1), P > 1 

   E[logy] =  Ψ(P) - logλ 
 
where Ψ(P) is the Psi function, dlogΓ(P)/dP.  Any two moments could be used for estimation of the 
parameters.  To use the two which, it turns out, define the maximum likelihood estimator, consider 
the first and the fourth.  The command would be 
 
 GMME ; Fn1 = y - p/lambda 
   ; Fn2 = Log(y) - Psi(p) + Log(lambda) 
   ; Start = ... the starting values 
   ; Labels = p,lambda  $ 
 
Example 2:  (This example is from Ruud (2000) 
 
 Hansen and Singleton’s classic (1982) paper on consumption and asset pricing suggests the 
moment equations 
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for a set of instrumental variables ztj where t indexes periods, Ct is consumption, rt is return, and δ 
and γ are the parameters to be estimated.  Ruud suggests the instrumental variables obtained by 
differentiating the function in brackets with respect to 1/(1+δ) and γ, which produces, 
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We could set this up for estimation as follows: 
 
 SAMPLE ; 1 - whatever is appropriate $ 
 CREATE  ; ct1 = c / c[-1]  
   ; lagct1 = ct1[-1] 
   ; If(_obsno > 2) loglag = Log(lagct1) 
   ; r1 = 1+r 
   ; lagr1 = r1[-1] $ 
 SAMPLE ; 3 - whatever is appropriate 
 GMME ; Labels = delta,gamma 
   ; Start = 0,0 
   ; Fn1 = (r/(1+delta) * ct1^(gamma-1) - 1) * lagr1 * ctl^(gamma-1) 
   ; Fn2 = (r/(1+delta) * ct1^(gamma-1) - 1) * lagr1 * ctl^(gamma-1) * loglag $ 
 
We note, this can be made simpler to specify and to estimate by slightly reparameterizing the function. 
Let θ = 1/(1+δ) and τ = γ - 1. Making the substitutions, we would obtain the same results with 
 
 GMME ; Labels = delta,gamma 
   ; Start = 0,0 
   ; Fn1 = ( r1 * theta * ct1^tau-1) * lagr1 * ctl^tau 
   ; Fn2 = ( r1 * theta * ct1^tau-1) * lagr1 * ctl^tau * loglag $ 
 WALD  ; Fn1 = 1/theta - 1 
   ; Fn2 = tau + 1 $ (We do this to see our original parameters.) 
 
E67.4 The Weighting Matrix  
 
 The GMM estimator defined earlier is consistent regardless of what matrix Σ is used in the 
minimization.  (Indeed, if the problem is ‘exactly identified,’ that is, if there are the same number of 
equations as parameters), than, as has been widely documented elsewhere, the identical solution will 
be obtained for all matrices Σ.  However, in terms of the efficiency of the estimator, not all choices 
are the same – in this discussion, we now consider only ‘overidentified’ problems, in which there are 
more equations than parameters.  You may specify any matrix you like to be used in the optimization 
by adding 
   ; Sigma = the name of the matrix 
 
to the command.  The name given must be that of a positive definite matrix with number of rows and 
columns equal to the number of moment equations. 
 
The Optimal Weighting Matrix  
 
 As noted, you may specify any matrix you wish for the weighting in the criterion function.  
For GMM estimation, the ‘optimal’ weighting matrix is 
 
   Σ*  =  {Var[ m ]}-1 
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This matrix can be estimated if one has in hand any consistent estimator of the model parameters. 
Thus, let b be that estimator.  Then, the estimator would be 
 

   S*  =  )',(),(11
1 ii

n
i iinn

xbmxbm∑ =













  

 
A natural way to proceed, then, would be to use two steps: 
 
Step 1. Use the default Σ = I to obtain the initial consistent estimates of the parameters, 
 
Step 2. After computing S*, redo the estimation while specifying Σ to be the inverse of this estimate. 
 
 When you use the GMME command, LIMDEP automatically saves S* for you as a matrix 
named sigma.  So, to do the two steps, you would proceed as follows: 
 
 GMME ; Fn1  = definition of the first moment condition 
   ; Fn2  =  definition of the second moment condition 
   ; ...      up to 20 orthogonality conditions 
   ; Labels =  the symbols used for the parameters, 
   ; Start  =  starting values for the optimization  $ 
 MATRIX ; optimalw = <sigma> $ 
 GMME ; Fn1  = definition of the first moment condition 
   ; Fn2  =  definition of the second moment condition 
   ; ...      up to 20 orthogonality conditions 
   ; Labels =  the symbols used for the parameters, 
   ; Start   =  starting values for the optimization   
   ; Sigma  =  optimalw $ 
 
E67.5 Output – Displayed Results 
 
 The GMME command is a particular form of MINIMIZE, so the results and displays are 
almost identical.  The initial table of results will contain additional results that are specific to GMM 
estimation, as shown in the example below.  The value of the GMM criterion is displayed as the 
function value.  The ‘degrees of freedom’ is the difference between the number of moment equations 
specified and the number of parameters estimated. If this is positive, so that the model is 
overidentified, then a chi squared statistic can be computed to test the overidentifying restrictions – 
this equals the criterion function.  This test is reported as part of the output. 
 
----------------------------------------------------------------------------- 
User Defined Optimization 
Generalized Method of Moments Estimator 
Log likelihood function          .00180 
Estimation based on N =     20, K =   2 
Inf.Cr.AIC  =      4.0 AIC/N =     .200 
GMM Criterion function           .00180 
Degrees of freedom = #eqn-#parms =    2 
Significance level               .99910 
Covariance matrix for moments kept as SIGMA 
--------+-------------------------------------------------------------------- 
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E67.6 Other Options  
 
 GMME is an optimization command that is largely the same as NLSQ and MINIMIZE.  
All other options that are available for the nonlinear optimization procedures, including output 
display and convergence are useable here as well.  Moreover, the full range of specification options 
are available for defining the moment equations; that is, all functions, using quadrature, linear, 
bilinear, and quadratic forms, use of namelists, and so on, may all be used as they are in other 
optimization problems.   
 
E67.7 Application 
 
 The following example appears in Chapter 18 of Greene (2011).  It is based on 20 
observations on a random variable ‘y’ to which we fit a gamma distribution with parameters λ and P 
(see Example 1 above).  The data are 
 
 y  =  20.5, 31.5, 47.7, 26.2, 44, 8.28, 30.8, 17.2, 19.9, 9.96, 55.8, 25.2, 29, 85.5, 15.1, 28.5,  
         21.4, 17.7, 6.42, 84.9 
 
We first obtain the maximum likelihood estimates by maximizing the log likelihood function 
directly: 
 

MAXIMIZE  ; Fcn = p*Log(l) - Lgm(p) - l*y + (p-1)*Log(y) 
            ; Labels = l,p 
            ; Start = .1,2 $ 
 
The GMM estimator based on the first and fourth moments will replicate the maximum likelihood 
estimator.  
 

GMME ; Labels = l,p 
; Start =.1,2 
; Fn1 = p/l - y  ? We changed the sign of this, for convenience. 
; Fn2 = Log(y) - Psi(p) + Log(l) $ 

 
Note, however, that the asymptotic covariance matrix will differ – a finite sample difference 

– because of the different formulas used to do the computations.  It seems useful to pursue that 
difference here, as we can derive the results in full detail for this simple problem.  We use the BHHH 
estimator for the asymptotic covariance matrix for the MLE.  For the gamma model above, 
 
   ∂logL/∂λ  =  Σi (P/λ  -  y) 

   ∂logL/∂P  =  Σi (logλ - Ψ(P) + logy). 
 
Note that the first order conditions for the MLE are n m   =  0.  Let M be the 20×2 matrix whose ith 
row is the derivative shown above for the ith observation.  Then, the estimator of the asymptotic 
covariance matrix for the MLE is 
 
   Est.Asy.Var[MLE]  =  (M′M)-1. 
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For the GMM estimator, Σ = I while G turns out to be a sum of constants, so the n disappears; 
 

   G  =  












Ψ−λ
λλ−

)('/1
/1/ 2

P
P . 

 
Inserting these in the formula for the asymptotic covariance matrix of the GMM estimator, we obtain 
after canceling 
   Est.Asy.Var[GMM]  =  (G′G)-1G′M′MG(G′G)-1. 
 
As can be seen, this differs from the formula for the MLE.  Since G’G and (1/n)M′M converge to 
the same matrix, we see that the difference is due to finite sample variation.  Finally, we obtain the 
full GMM estimator, using all four moment equations, and two steps to obtain the efficient estimator 
at the second step. 
 This is the maximum likelihood estimator 
 

MAXIMIZE  ; Fcn = p*Log(l) - Lgm(p) - l*y + (p-1)*Log(y) 
            ; Labels = l,p     

; Start = .1,2 $ 
 
Normal exit:   5 iterations. Status=0, F=    85.37567 
----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function       -85.37567 
Estimation based on N =     20, K =   2 
Inf.Cr.AIC  =    174.8 AIC/N =    8.738 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|     .07707***      .02708     2.85  .0044      .02400    .13014 
       P|    2.41060***      .87683     2.75  .0060      .69206   4.12915 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
This is the GMM estimator based on the same two moments as used by the maximum likelihood 
estimator.   
 

GMME ; Labels = l,p 
; Start =.1,2 
; Fn1 = p/l - y  ? We changed the sign of this, for convenience. 
; Fn2 = Log(y) - Psi(p) + Log(l) $ 

 
Note: DFP and BFGS usually take more than 4 or 5 
iterations to converge.  If this problem was not 
structured for quick convergence, you might want 
to examine results closely. If convergence is too 
early, tighten convergence with, e.g., ;TLG=1.D-9. 
Normal exit:   5 iterations. Status=0, F=    .1203629E-14 
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----------------------------------------------------------------------------- 
User Defined Optimization 
Generalized Method of Moments Estimator 
Log likelihood function          .00000 
Estimation based on N =     20, K =   2 
Inf.Cr.AIC  =      4.0 AIC/N =     .200 
GMM Criterion function           .00000 
Degrees of freedom = #eqn-#parms =    0 
Significance level              1.00000 
Covariance matrix for moments kept as SIGMA 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|     .07707***      .02555     3.02  .0026      .02698    .12716 
       P|    2.41060***      .60848     3.96  .0001     1.21800   3.60321 
--------+-------------------------------------------------------------------- 
The following uses two different moments. 
 

GMME ; Labels = l,p ; Start = .1,2    
; Fn1 = y-p/l    
; Fn2 = 1/y - l/(p-1) $ 

 
Normal exit:   7 iterations. Status=0, F=    .4554736E-17 
----------------------------------------------------------------------------- 
User Defined Optimization 
Generalized Method of Moments Estimator 
Log likelihood function          .00000 
Estimation based on N =     20, K =   2 
Inf.Cr.AIC  =      4.0 AIC/N =     .200 
GMM Criterion function           .00000 
Degrees of freedom = #eqn-#parms =    0 
Significance level              1.00000 
Covariance matrix for moments kept as SIGMA 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|     .08862***      .02677     3.31  .0009      .03616    .14109 
       P|    2.77198***      .58599     4.73  .0000     1.62346   3.92050 
--------+-------------------------------------------------------------------- 
 
These are the GMM estimators based on all four moments.  The first pass uses the identity matrix for 
the weighting matrix. 
 

GMME ; Labels =  l,p ; Start = .1,2 
; Fn1 = y-p/l 
; Fn2 = 1/y - l/(p-1) 
; Fn3 = y^2 - p*(p+1)/l^2 
; Fn4 = Log(y) - Psi(p) + Log(l) $ 
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Normal exit:   6 iterations. Status=0, F=    .9017024E-03 
----------------------------------------------------------------------------- 
User Defined Optimization 
Generalized Method of Moments Estimator 
Log likelihood function          .00180 
Estimation based on N =     20, K =   2 
Inf.Cr.AIC  =      4.0 AIC/N =     .200 
GMM Criterion function           .00180 
Degrees of freedom = #eqn-#parms =    2 
Significance level               .99910 
Covariance matrix for moments kept as SIGMA 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|     .06580***      .01890     3.48  .0005      .02876    .10284 
       P|    2.05830***      .50345     4.09  .0000     1.07156   3.04504 
--------+-------------------------------------------------------------------- 
 
For the second step of GMM, we use the optimal weighting matrix, based on the previous results. 
 

MATRIX  ; optimalw = <sigma> $ 
GMME ; Labels = l,p ; Start = .1,2 ; Sigma = optimalw 

; Fn1 = y-p/l 
; Fn2 = 1/y - l/(p-1) 
; Fn3 = y^2 - p*(p+1)/l^2 
; Fn4 = Log(y) - Psi(p) + Log(l) $ 
 

Normal exit:   9 iterations. Status=0, F=    .9876078 
----------------------------------------------------------------------------- 
User Defined Optimization 
Generalized Method of Moments Estimator 
Log likelihood function         1.97522 
Estimation based on N =     20, K =   2 
Inf.Cr.AIC  =       .0 AIC/N =     .002 
GMM Criterion function          1.97522 
Degrees of freedom = #eqn-#parms =    2 
Significance level               .37247 
Covariance matrix for moments kept as SIGMA 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       L|     .12449***      .03403     3.66  .0003      .05780    .19118 
       P|    3.35894***      .64628     5.20  .0000     2.09225   4.62563 
--------+-------------------------------------------------------------------- 
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E67.8 Technical Details for the GMM Estimator 
 
 The underlying theory for the GMM estimator is well documented in the current literature, 
including the current textbooks such as Greene (2011), Ruud (2000), and Hayashi (2000), so it will 
be omitted here, and only final results will be shown. 
 The estimation criterion used is 
 
   q   = (1/2) m ′ Σ m . 
 
(The 1/2 is purely for convenience – it allows the ‘2’ to disappear from the derivatives.)   
 
NOTE:  The output displayed by the program reports 2q, not q.  That is, your final results will report 
the value of the quadratic form, not one half times it. 
 
The first order conditions for minimizing q are 
 

   
β∂

∂q
 =  G′ Σ m   =  0,  where  G =  

'β∂
∂m . 

 
Note that there are L equations and K parameters and L > K.  Thus, G is an L×K matrix of partial 
derivatives.  (Note, as well, that G is a sample mean.)  If there are K moment equations used to 
identify the K parameters, then assuming that Σ is positive definite and that the moment equations 
are functionally independent so that G has an inverse, then we can premultiply the first order 
condition by (G′ Σ)-1 and obtain the simpler necessary condition, m  = 0.  The solution to this is 
independent of Σ, which establishes the earlier claim that Σ is irrelevant to the solution to an exactly 
identified problem. 
 The asymptotic covariance matrix is computed using the estimated parameters, and 
 
   Est.Var[b]  =  [G′ Σ G]-1 G′ Σ S* Σ G [G′ Σ G]-1 
 
where S* was defined earlier.  Note that if you have specified the optimal weighting matrix,   
Σ = (S*)-1, then the estimated variance reduces to the familiar result, 
 
   Est.Var[b]  =  [G′ (S*)-1 G]-1. 
 
 If the model is exactly identified, then q is minimized at zero.  (See the example above.)  If 
not, then q will be positive.  The theoretical result that 2q will have a limiting chi squared 
distribution with degrees of freedom equal to the number of overidentifying restrictions (equations 
minus parameters) can be used to test restrictions in this framework.  (The multiplier, 2, appears 
because in our formulation of the problem, we initially divided by 2.)  For two nested models, with 
q0 being the unrestricted one and q1 embodying the restrictions, 2(q1 - q0) can be used to test the 
restrictions – refer this statistic to the chi squared table with degrees of freedom equal to the number 
of restrictions. 
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E68: Numerical Analysis 
 
E68.1 Introduction 
 
 This chapter describes some features for examining nonlinear functions. The six commands 
described here are: 
 
 WALD  for obtaining variances and covariances for nonlinear functions, 
 FPLOT  for plotting a nonlinear function, 
 MINIMIZE  for computing first and second derivatives of a function, 
 FINTEGRAL for obtaining the integral of a function 
 SOLVE for finding the zeros of a function, 
 FUNCTION for evaluating a function. 
 
All of these features are modifications of the MINIMIZE command.  Relevant information which 
you should examine before using these features is given in Chapter E66 (the MINIMIZE and 
MAXIMIZE commands), Chapter E14 (the NLSQ command and most of the information needed to 
use MINIMIZE), and in Section R14.4 which describes the WALD command in full detail. 
 
NOTE:  After the estimation programs, we would expect the WALD command to be one of the 
most useful tools that you will find in LIMDEP.  Analysts often devote large amounts of time and 
effort to obtaining standard errors and confidence intervals for functions of things that they estimate 
(such as parameters).  WALD automates this entire procedure.  In particular, you will not have to 
obtain and program any derivatives for applying the delta method.  This is all done automatically. 
 
E68.2 Variances for Nonlinear Functions 
 
 The WALD command for analyzing nonlinear functions of parameters is described in full in 
Chapter R14.  It is provided primarily for testing hypotheses, but you can use WALD simply to 
compute the variances and covariances of a set of functions (or, just the functions themselves).  To 
avoid duplication, we will merely reproduce the essential format of the command here: 
  
 WALD  ; Fn1 =  first nonlinear function 
   ; Fn2 = second function  
   ; ... up to 50 functions of 100 parameters 
   ; Labels = list of labels 
   ; Start = values of underlying parameters 
   ; Var = covariance matrix for parameters  $ 
  
WALD computes the sample averages of the functions if the command contains 
 
   ; Average 
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You would use this, for example, for analyzing average partial effects.  (You might use PARTIALS 
instead for this function, however WALD might be simpler for a general function of the model 
parameters that is not a conditional mean.) 
 Output from this command is the set of function values, estimates of their standard errors, 
asymptotic ‘t ratios’ and the probability that a standard normal variable would exceed that value in 
absolute value.  LIMDEP will also attempt to compute a Wald statistic for the null hypothesis that all 
the functions are zero, which would be 
 
   Wald  =  f ′ [Var(f)]-1f 
  
where f is the set of functions, and the covariance matrix is that of the estimated functions.  If the 
matrix is not positive definite, a warning will be issued.  This can be ignored if your only intent is to 
compute a set of nonlinear functions.  In this case, there is no requirement that the functions be 
independent, so singularity of the estimated covariance matrix should not be taken as indicative of 
any problem.  In addition to the display, LIMDEP retains matrices waldfns containing the matrix of 
functions and varwald with the estimated asymptotic covariance matrix.  If the Wald statistic is 
computable, a scalar named wald will contain the value. 
 Kmenta’s (1967) method of estimating the CES production provides a useful example. The 
production function is 
 
   logy = log γ - (ν/ρ)log[δK-ρ + (1-δ)L-ρ]. 
 
Kmenta derives the approximation 
 
   Logy ≈ β1 + β2 logK + β3 logL + β4 log2(K/L) + ε, 

where   β1 = logγ,  γ = eβ1, 

   β2 = νδ,   δ = β2 / (β2 + β3 ), 

   β3 = ν(1 - δ),  ν = β2 + β3, 

   β4 = -ρνδ(1-δ)/2, ρ = -2β4 (β2 + β3 ) / (β2 β3 ). 
 
The results below show the application of Kmenta’s estimator to Greene’s (Table A7.1) data on the 
SIC 33, primary metals.  Note that WALD requires nothing more than the formulas for the nonlinear 
functions.  Everything else needed for the computation is found internally. 
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 The commands are: 
 
 IMPORT $ 
 

     i,y,k,l 
     1    657.29   162.31    279.99 
     2    935.93   214.43    542.50 
     3   1110.65   186.44    721.51 
     4   1200.89   245.83   1167.68 
     5   1052.68   211.40    811.77 
     6   3406.02   690.61   4558.02 
     7   2427.89   452.79   3069.91 
     8   4257.46   714.20   5585.01 
     9   1625.19   320.54   1618.75 
    10   1272.05   253.17   1562.08 
    11   1004.45   236.44    662.04 
    12    598.87   140.73    875.37 
    13    853.10   145.04   1696.98 
    14   1165.63   240.27   1078.79 
    15   1917.55   536.73   2109.34 
    16   9849.17  1564.83  13989.55 
    17   1088.27   214.62    884.24 
    18   8095.63  1083.10   9119.70 
    19   3175.39   521.74   5686.99 
    20   1653.38   304.85   1701.06 
    21   5159.31   835.69   5206.36 
    22   3378.40   284.00   3288.72 
    23    592.85   150.77    357.32 
    24   1601.98   259.91   2031.93 
    25   2065.85   497.60   2492.98 
    26   2293.87   275.20   1711.74 
    27    745.67   137.00    768.59 

 
CREATE  ; ly = Log(y) ; lk = Log(k) ; ll = Log(l) ; lkl = (Log(k/l))^2 $ 

 
Compute the regression coefficients. 
 

REGRESS  ; Lhs = ly ; Rhs = one,lk,ll,lkl $ 
 
There are two ways to specify the command.  The first is the generic method, in which you supply all 
the information needed to do the analysis: 
 

WALD  ; Fn1 = gamma = Exp(b1) ?  Functions to analyze 
         ; Fn2 = delta = b2/(b2+b3) 
          ; Fn3 = nu  = b2+b3 
          ; Fn4 = rho_kl =  -2*b4*(b2+b3)/(b2*b3) 
          ; Start = b   ? Values of the parameters 
          ; Var = varb   ? Asymptotic covariance matrix 
          ;  Labels = b1,b2,b3,b4 $ ? Labels for the parameters. 
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If the analysis is based on the most recently fit model, then all the information needed has been saved 
as b, varb, and the last model names.  All you must provide is the functions.   
 

WALD  ; Fn1 = gamma = Exp(b_one) 
          ; Fn2 = delta = b_lk / (b_lk+b_ll) 
          ; Fn3 = nu = b_lk + b_ll 
          ; Fn4 = rho_kl =  -2 * b_lkl * (b_lk + b_ll) / (b_lk * b_ll) $ 

 
The second set of results is identical to the first, so it is not presented. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LY       Mean                 =        7.44363 
             Standard deviation   =         .76115 
             No. of observations  =             27  Degrees of freedom 
Regression   Sum of Squares       =        14.2614           3 
Residual     Sum of Squares       =        .801802          23 
Total        Sum of Squares       =        15.0632          26 
             Standard error of e  =         .18671 
Fit          R-squared            =         .94677  R-bar squared =   .93983 
Model test   F[  3,    23]        =      136.36447  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =        9.16451  Akaike I.C.   = -3.22043 
             Restricted (b=0)     =      -30.43298  Bayes  I.C.   = -3.02846 
             Chi squared [  3]    =       79.19498  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LY|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.46773***      .40823     3.60  .0015      .66761   2.26784 
      LK|    1.10023**       .43422     2.53  .0186      .24917   1.95128 
      LL|    -.11150         .41620     -.27  .7912     -.92723    .70423 
     LKL|     .15225         .12734     1.20  .2440     -.09734    .40184 
--------+-------------------------------------------------------------------- 
 
Note that the ‘Wald’ statistic in the listing below should be ignored, as we are not interested in the 
joint hypothesis that all four functions are zero. 
 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
Wald Statistic             =  93486.36534 
Prob. from Chi-squared[ 4] =       .00000 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   GAMMA|    4.33936**      1.77146     2.45  .0143      .86736   7.81135 
   DELTA|    1.11277***      .41944     2.65  .0080      .29069   1.93485 
      NU|     .98872***      .06259    15.80  .0000      .86605   1.11139 
  RHO_KL|    2.45416        8.08604      .30  .7615   -13.39419  18.30251 
--------+-------------------------------------------------------------------- 
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E68.2.1 The Delta Method 
 
 Suppose b is an estimator of parameter vector β, with asymptotic covariance matrix Σ, and 
g(b) is an estimator of J continuous, differentiable functions of β.  We make the following 
assumptions about the estimators: 
 

• The estimator b is asymptotically normally distributed with mean vector β and asymptotic 
covariance matrix Σ, 
 

• The vector function g(β) is continuous and continuously differentiable, 
 

• The vector function g(β) is not a function of the sample size, 
 

• The conditions underlying the Slutsky theorem are met so that plim g(b) = g(β). 
 
Then, the vector g(b) is asymptotically normally distributed with mean g(β) and asymptotically 
normally distributed with asymptotic covariance matrix 
 
   Asy.Var[g(b)]  =  Γ(β) Σ Γ(β)′ 
 
where   Γ(β)  =  ∂g(β) / ∂β′. 
 

The empirical estimators of β and Σ are b and S, the results of estimation.  The Jacobian, 
Γ(b) is estimated with Γ(b), the matrix of derivatives computed at the estimator of β.  This is 
precisely the set of computations done with WALD described in the preceding section.  Your             
; Start = b provides the estimated parameters, ; Var = varb provides S and the list of functions 
defines g(b).  The matrix of derivatives is estimated by two sided numerical derivatives, which we 
compute using 

 
( ) ( )

2
j j k k j k k

k k

g g g
b

∂ + δ − − δ
=

∂ δ

b e b e
   

 
where   δk   =  max(.0001, .00001|bk|) 
 
and ek is a vector with zeros save for a one in the kth position. 
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E68.2.2 Krinsky and Robb Simulation Method 
 

The method of Krinsky and Robb (1986, 1990) is based on the claimed asymptotic normality 
of the estimator.  The technique involves simply simulating draws from the distribution of the 
structural parameters, then using the empirical variance of the functions of the draws to estimate the 
desired variances.  Thus, the Krinsky and Robb estimator is 

 

  Est.Asy.Var[g(b)]  =  
1

1 [ ( ) ( )][ ( ) ( )]R
r rrR =

′− −∑ g b g b g b g b . 

 
We simulate the draws by drawing R primitive K variate standard normal vectors, vr, then computing 
 
   br  =  b  +  Cvr 

 
where C is the Cholesky square root of S. 

Request this with the following addition to the WALD command: 
 

; K&R ; Pts = number of draws 
 
The ; Pts specification is optional. The default is 1,000 draws.  Replicability of Krinsky and Robb 
results can be obtained by setting the seed for the random number generator before the WALD 
command with 
 
 CALC  ; Ran (value) $ 
 
 We repeated the computations of the previous example using the Krinsky and Robb method.  
The results are below.  In two of the cases, the standard errors change substantially.  (We note for 
users of this technique, the second, apparently lesser known Krinsky and Robb paper cited above 
reports that the large differences found in the first paper could be mostly attributed to a programming 
error.  As the estimates below show, differences do arise.  Whether they are substantive enough to 
warrant reconsideration of the delta method remains to be settled.) 
 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
Wald Statistic             =   1333.98675 
Prob. from Chi-squared[ 4] =       .00000 
Krinsky-Robb method used with 1000 draws 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   GAMMA|    4.71091**      2.12590     2.22  .0267      .54421   8.87760 
   DELTA|    1.09630***      .41582     2.64  .0084      .28131   1.91130 
      NU|     .98757***      .06337    15.58  .0000      .86336   1.11178 
  RHO_KL|     .07203       20.12783      .00  .9971   -39.37780  39.52185 
--------+-------------------------------------------------------------------- 
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E68.3 Plotting a Function 
 
 The FPLOT command is used to examine a general function G(x,β).  The function may be a 
simple function (i.e., not a sum of terms), the minimand of a MINIMIZE command, or some other 
kind of sum of terms.  FPLOT is used to plot the function when one of the parameters varies and the 
remaining parameters stay fixed at the preset values.  One use of this feature might be to examine the 
slope of a likelihood surface. 
 Setup for this command is identical to MINIMIZE or NLSQ.  Specify the function to be 
plotted exactly as if it were to be optimized with one of these commands.   (Note, though, that it is 
not necessary that this actually be a minimization problem, or even that the function you define have 
a minimum.)  With the problem fully specified, add: 
 
   ; Plot(one of the parameters in ; Labels) 
   ; Limits = range of the parameter over which to plot the function 
   ; Pts = number of points to plot 
 
Two values must be specified for ; Limits.  Starting values must be given for all parameters of the 
function which appear in the ; Labels list.  The ; Limits values must bracket the starting value for 
the variable being plotted.  The function will be evaluated at the starting values to ensure that this is 
possible.   
 We illustrate with two examples.  In the first, we plot the normal CDF over -4 to 4 using 100 
points.  Since the function does not involve any data, and is not a sum, we set the sample to one 
observation for the plot.  (Otherwise, the function is Σi fi = Nf as f does not vary with i.) 
 
 SAMPLE  ; 1 $ 
 FPLOT  ; Fcn = Phi(x) ; Title = Standard Normal CDF  
   ; Labels = x ; Start = 0 
        ; Plot(x) ; Limits = -4,4 ; Pts = 100 $ 
 

 
Figure E68.1  Normal CDF Produced with FPLOT 
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 For the second example, we plot the sum of squared residuals from a regression after 
REGRESS, varying one of the  slopes between -2 and +2 estimated standard errors of that slope.  
Note in the experiment below, the sum of squares is computed varying b1, the slope on x1.  The 
function plotted is the sum of squares for the 100 observations – the ; Fcn specification defines a 
computation that is summed over the current sample. 
 
 CALC  ; Ran (123579) $ 
 SAMPLE  ; 1-100 $ 
 CREATE  ; x1 = Rnn(0,1) ; x2 = x1 + Rnn(0,1)  
   ; x3 = .5*x1 + 1.5*x2 + Rnn(0,1) $ 
 CREATE  ; y = x1 - x2 + .5*x3 + Rnn(0,3) $ 
 REGRESS ; Quietly ; Lhs  = y ; Rhs= x1,x2,x3,one $ 
 CALC    ; Lower = b(1)  - 2*Sqr(varb(1,1)) 
         ; Upper = b(1) + 2*Sqr(varb(1,1)) $  
 FPLOT   ; Fcn = b1 * x1 + b2 * x2 + b3 * x3 + b4 
   ; Lhs = y   
   ; Start = b ; Labels = b1,b2,b3,b4 
     ; Plot(b1) ; Pts = 200 ; Limits = Lower,Upper $ 
 
NOTE: Specifying a function and an Lhs variable requests a sum of squared residuals.  When there 
is an Lhs variable specified, the function is computed as Σi (yi - functioni)2.  The function need not be 
linear; it can be any function definition you like.  
 
Also, the preceding does not recompute the least squares slopes with the new values of b1.  That is, 
the sum of squares is not the minimum sum of squares with each b1 at the set value and the others 
recomputed.  It is the sum of squares which results when b1 is varied and the other slopes remain at 
their original least squares values.  Thus, the minimum in the figure below occurs where b1 equals 
the original least squares value. 
 

 
Figure E68.2  Function Plot of OLS Sum of Squared Residuals 
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E68.3.1 Retaining the Results from FPLOT 
 
 Two options for keeping the results are 
 
   ; Keep = name to retain the function values 
and   ; Res = name  to keep the values of the changing variable. 
 
E68.3.2 Application – Plotting a Log Likelihood Function 
 
 For another illustration of FPLOT, we use a small data set based on the Poisson model.   

   IMPORT $ 
 
      y,x1,x2,x3 
   1  -0.545   0.160   0.033   
   0   0.892   0.125   1.476 
   2   1.647   0.619  -0.262   
   2   1.749  -1.446   0.310 
   2   0.362  -0.589  -1.404 
   0   0.531  -0.606   0.777 
   2   0.003  -0.800  -0.897 
   0   0.260   0.597  -0.640 
   3   1.502  -0.309   0.112 
   0   0.613   0.273  -0.845 
   0  -1.028  -0.307  -1.170 
   2   0.155  -0.262  -0.534 
   1  -1.795  -2.051  -0.398 
   0  -1.007   1.974   0.189 
   1   0.596  -0.493  -1.369 
   ENDDATA 

 
   NAMELIST ; x = one,x1,x2,x3 $ 

 
The log likelihood for the Poisson model is 
 
   logL = Σi –logΓ(yi + 1) - λi + yi β′xi,  λi = exp(β′xi), Γ(yi + 1) = yi!. 
 
The log likelihood function is maximized.  We then plot the function for various values of β4. The 
maximizing value of  b4 is -.46, which is at the top of the hill below. 

 
MAXIMIZE  ; Start = 0,0,0,0  
         ; Labels = b1,b2,b3,b4 
           ; Alg = N  
           ; Fcn = -Lgm(y+1) - Exp(b1’x) + y*b1’x $ 
FPLOT     ; Start = b  
           ; Labels = b1,b2,b3,b4  
           ; Plot(b4)  
           ; Limits =  -1,0  
           ; Pts = 100 
           ; Fcn = -Lgm(y+1) -Exp(b1’x) + y*b1’x 
  ; Title = Poisson Log Likelihood $ 
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----------------------------------------------------------------------------- 
User Defined Optimization 
Dependent variable             Function 
Log likelihood function       -16.92002 
Estimation based on N =     15, K =   4 
Inf.Cr.AIC  =     41.8 AIC/N =    2.789 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
UserFunc|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      B1|    -.59537         .45909    -1.30  .1947    -1.49518    .30444 
      B2|     .58869*        .30551     1.93  .0540     -.01010   1.18748 
      B3|    -.53499         .35309    -1.52  .1297    -1.22703    .15705 
      B4|    -.45956         .37586    -1.22  .2214    -1.19623    .27711 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

 
Figure E68.3  Poisson Log Likelihood Profile 
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E68.4 Evaluating a Function 
 
 The command 
 
 FUNCTION ; Labels = list of labels 
   ; Start = list of values to use to evaluate function 
   ; Fcn = the function definition 
   ; Keep = variable name $ 
 
will evaluate the function you define and store the function values in the variable named.  You can 
also save the derivatives of the function with respect to the named parameters as follows:  Before the 
FUNCTION command, define the place to store the derivatives with  
 
 NAMELIST ; name = a list of variables to store the derivatives in $ 
 
The namelist must contain the same number of variables as there are parameters in the ; Labels 
definition in the FUNCTION command.  Then, you can add 
 
   ; Derivatives = namelist 
 
to store the derivatives. 
 As an example, we use the function in the previous application. 
 

MAXIMIZE  ; Start = 0,0,0,0 ; Labels = b1,b2,b3,b4 ; Alg = N  
           ; Fcn = -Lgm(y+1) - Exp(b1’x) + y*b1’x $ 
CREATE ; dfdb1 = 0 ; dfdb2 = 0 ; dfdb3 = 0 ; dfdb4 = 0 $ 
NAMELIST ; dfdb = dfdb1, dfdb2, dfdb3, dfdb4 $ 
FUNCTION ; Labels = b1,b2,b3,b4 ; Start = b ; Fcn = Exp(b1’x)  
  ; Keep = condmean ; Derivatives = dfdb $ 

 
This produces the following results: 
 
==== [Evaluation of User Specified Function] ==== 
Function values were saved in variable  CONDMEAN 
Derivatives were saved in variable list DFDB 
     Parameter  Derivative 
   1 B1          DFDB1 
   2 B2          DFDB2 
   3 B3          DFDB3 
   4 B4          DFDB4 
 
NOTE: This procedure produces the same results as SIMULATE for the function evaluation, and 
has some overlap with the differentiation routine described for MAXIMIZE in the next section.  The 
difference here is that the derivatives saved here are observation specific whereas the next section 
shows how to obtain the gradient of the function which will usually be a sum of terms. 
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E68.5 Function Differentiation 
 
 If you wish only to obtain the derivatives of a function, set up MINIMIZE or MAXIMIZE 
exactly as if you were going to optimize that function even if the function is not one which could be 
optimized. You can set it up as a simple function or as a sum of terms.  The function will be 
evaluated at the points you specify with ; Start = list.  To obtain the first and second derivatives, add 
 
   ; Fix    
   ; Alg = N 
 
with no other specification to the command.  Note that ; Fix all and ; Fix = list are alternative forms 
that request different computations.  With ; Fix as above, the output from this command will be as 
follows:  The usual output for MINIMIZE or MAXIMIZE will be given.  With the exception of the 
reported function value, this output can be ignored.  The function and derivatives are found in scalar 
logl which contains the function value, matrix gradient which contains the vector of first derivatives, 
and varb which contains the Hessian, not a covariance matrix. 
 For example, to obtain the derivatives of the sum of squares for a nonlinear regression 
model, you might proceed as follows: 
  
 MINIMIZE ; Fcn = (y - the function) ^ 2 
   ; Labels = ...  
   ; Start = ... list  
   ; Fix   
   ; Alg = N $ 
 
 Another example to illustrate the computation is shown below for a Poisson regression 
model in the previous section.  The function is first maximized.  Then, the first and second 
derivatives are computed at the maximizing values.  The results confirm what we would know about 
the derivatives – they are zero at the maximum.  The function and Hessian are also listed.  The log 
likelihood is maximized first. 
 

MINIMIZE  ; Start = 4_0 ; Labels = b1,b2,b3,b4 ; Alg = N 
       ; Fcn = Exp(b1’x) - y*b1’x $ 
 
The results of this step appear above Figure E68.3 above.  The next command computes the function, 
gradient and Hessian.  Since b is already the MLE, the main results are identical to those shown 
above. 
 

MINIMIZE  ; Start = b ; Labels = b1,b2,b3,b4 ; Alg = N 
       ; Fcn = Exp(b1’x) - y*b1’x ; Fix $ 
 
We now display the first derivatives (essentially zero) and the Hessian.  The ; Stat command below 
verifies that varb is the inverse of the matrix used in the first output to obtain the standard errors of 
the estimated parameters. 
 

MATRIX   ; List ; gradient ; varb $ 
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GRADIENT|             1 
--------+-------------- 
       1|   .478281E-09 
       2|   .190823E-08 
       3|   .547061E-09 
       4|   .435193E-09 
 
 
    VARB|             1             2             3             4 
--------+-------------------------------------------------------- 
       1|       16.0000       10.5946      -8.26667      -6.97172 
       2|       10.5946       20.4281      -5.22819       .228849 
       3|      -8.26667      -5.22819       12.5434       2.34921 
       4|      -6.97172       .228849       2.34921       12.0844 
 

MATRIX  ; Stat (b,<varb>,x) $ 
 
----------------------------------------------------------------------------- 
Number of observations in current sample =      15 
Number of parameters computed here       =       4 
Number of degrees of freedom             =      11 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.59537         .45909    -1.30  .1947    -1.49518    .30444 
      X1|     .58869*        .30551     1.93  .0540     -.01010   1.18748 
      X2|    -.53499         .35309    -1.52  .1297    -1.22703    .15705 
      X3|    -.45956         .37586    -1.22  .2214    -1.19623    .27711 
--------+-------------------------------------------------------------------- 
 
E68.6 Integration 
 
 You can compute integrals of the form 
 

   F  =  
U

L∫ f(x)dx. 
 
The function may be any function that you can set up with the MINIMIZE/MAXIMIZE command, 
which would include 
 

   F  =  
U

L∫ f(θ1 ,θ2 ,...,x)dx, 
  
where we pull one of the variables out of the list and name it x, or, even 
 

   F  =  
L

U

∫ Σi wi F(xi ,θ1 ,θ2 ,...,z)dz. 

 
In this case, we simply set up the sum of terms, and name one of the variables in the function ‘z.’ 
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 Integration is set up essentially the same as FPLOT. The command is 
 
 FINTEGRATE ; Fcn = the function 
   ; Labels = ... the full set of labels for function arguments 
   ; Start = the values of all the parameters 
   ; Limits = L,U 
   ; Pts = number of points in grid (see below) 
   ; Vary (variable) $ 
 
The last part specifies the variable of integration.  This must be one of the variables in your ; Labels 
list.  The starting values given provide values for all the variables in the function.  One of them will 
be an interior value for the variable being varied.  Suppose, for example, your function is over x1,x2 
and x3, with x1 = 9, x2 ranging from 0 to 1 and x3 = -.7.  Then you might use ; Start = 9,.5,-.7.  The 
value for the changing variable is given so that it can be assessed before the computation is done 
whether the function evaluation is possible at all. 
 
E68.6.1 The Trapezoid Rule 
 
 The method used is the trapezoid rule with first order correction (which is also the Newton-
Cotes method).  The integral is approximated as follows:  We divide the range from L to U into N-1 
equal length intervals.  The interval length is 
 
   ∆  =  (U - L) / (N-1). 

Then,   F  =  
L

U

∫ f(x)dx  ≈ 1
2

∆[f(L) + f(U)]  + 
1

2
( )N

i
f L i−

=
∆ + ∆∑  

 
For example, a moderately accurate method of obtaining probabilities for the normal distribution would 
be 
 SAMPLE ; 1 $ 
 FINTEGRATE ; Fcn = N01(x) 
   ; Labels = x 
   ; Start = some intermediate value 
   ; Limits = Lower,Upper ; Vary(x) 
   ; Pts = 100 $ 
 
The result of the calculation will be displayed in your output and kept in a scalar named integral. 
 The accuracy of the approximation improves with the number of points.  However, the 
amount of computation does as well.  If the function is a simple function which is not a sum of 
terms, several hundred points may not be overly time consuming.  But, if you are summing functions 
of many observations, you may want to limit the number of points. 
 To continue the example above, using 
 
 CALC  ; List ; Phi(1) - Phi(-1) $ 
 
produces an answer of .68269.  Using the method above with 100 points and limits of -1,1 produces 
a value of .68267. 
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 The commands are:  
 
 SAMPLE ; 1 $ 
 FINTEGRATE ; Fcn = N01(t) 
   ; Labels = t  

; Start = 0  
; Limits = -1,1 ; Vary(t) 

   ; Pts = 100 $ 
 
+---------------------------------------------------+ 
| Function integration:                             | 
| Grid is  100 points in [    -1.000 to      1.000] | 
| Value of the integral is          .68267          | 
+---------------------------------------------------+ 
 
E68.6.2 Quadrature 
 
For some integrals which are improper in both tails and of the form 

 

f x x dx( )e−
−∞

+∞

∫
2

 

 
the value can be well approximated by Hermite quadrature: 
 

1, 1 1

2
( )e ( )[ ( ( ))]K

s m
xf x dx w m f s z m

+∞

=− + =−∞

− ≈ ×∑ ∑∫      
 
where w(m) is a weight and z(m) is the abscissa of the Hermite polynomial. (See Abramovitz and 
Stegun(1971).)  A 20 point quadrature is used (K=10) by default. For integrals which can be written 
 

0
( )e   xf x dx

∞ −∫  

 
we can use Gauss-Laguerre quadrature, instead, 
 

f x xdx w m f z m
m

K
( ) ( ) ( ( ))e− ≈

+∞

=∫ ∑0 1
    . 

 
For this procedure, a 40 point quadrature is used.  To request these procedures, the commands are 
 

FINTEGRAL ; Fcn = ... as before 
                    ; Start = ... as before 

; Labels = ... as before 
; Vary (variable that is varying) 

                    ; [integral type] $ 
 
where [integral type] is HR1 for the Hermite quadrature or GL1 for the Gauss-Laguerre quadrature.  
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You can set the number of points for the Hermite quadrature by including 
 
   ; Hpt = n 
 
where n is one of (4,6,8,10,12,14,16,18,20,24,32,40,64,96).  You can reset the number of points for 
the Gauss-Laguerre quadrature to one of (2,3,4,5,6,7,8,9,10,12,15,20,40,68) by using 
 
   ; Lpt = n 
 
More points provides a more accurate approximation, but takes longer to compute.  If you are not 
summing over a sample to compute the function, the difference will be trivial, and you should use a 
large value. 
 To illustrate the procedure, we will approximate the gamma function over the range 0.5 to 
2.5 with a 40 point Gauss-Laguerre quadrature.  We compute the function at 21 points, then list and 
plot the results.  For comparison, the value of the function computed with the internal program is 
given as well.  (Note that for small P, the function is not very well approximated.) 
 

SAMPLE  ; 1 $ 
CALC    ; i = 0 $ 
MATRIX  ; gammafn = Init(21,1,0) ; p = gammafn $ 
PROCEDURE 
CALC   ; ap = .5 + i * .1 $ 
FINTEGRAL ; Fcn = x^(ap - 1) ; Labels = x ; Start = 1 ; GL1 ; Vary(x) $ 
CALC  ; i = i + 1 ; List ; ap ; integral ; Gma(ap) $ 
MATRIX  ; p(i) = ap ; gammafn(i) = integral $ 
ENDPROCEDURE 
EXECUTE  ; n = 21 $ 
MPLOT     ; Lhs = p ; Rhs = gammafn ; Grid ; Fill  

; Title = Gamma Function Values $ 
 
Each execution of the procedure produces a result such as the following: This is the first one.  
 
+---------------------------------------------------+ 
| Function integration:                             | 
| Laguerre quadrature; 40 pts from    0 to +inf     | 
| Value of the integral is         1.63524          | 
+---------------------------------------------------+ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 AP      =       .500000 
 INTEGRAL=      1.635238 
 Result  =      1.772454 
 
This is an interior value. 
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+---------------------------------------------------+ 
| Function integration:                             | 
| Laguerre quadrature; 40 pts from    0 to +inf     | 
| Value of the integral is          .88788          | 
+---------------------------------------------------+ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 AP      =      1.400000 
 INTEGRAL=       .887879 
 Result  =       .887264 
 
For brevity, the displays are omitted below.  Following each integration report are the reported values 
of the quadrature approximation and the (better) internal function value for the gamma function. 
 
[CALC] AP      =       .5000000 [CALC] INTEGRAL=      1.5790359 
[CALC] *Result*=      1.7724539 
[CALC] AP      =       .6000000 [CALC] INTEGRAL=      1.3979428 
[CALC] *Result*=      1.4891922 
[CALC] AP      =       .7000000 [CALC] INTEGRAL=      1.2568597 
[CALC] *Result*=      1.2980553 
[CALC] AP      =       .8000000 [CALC] INTEGRAL=      1.1475006 
[CALC] *Result*=      1.1642297 
[CALC] AP      =       .9000000 [CALC] INTEGRAL=      1.0635047 
[CALC] *Result*=      1.0686287 
[CALC] AP      =      1.0000000 [CALC] INTEGRAL=      1.0000000 
[CALC] *Result*=      1.0000000 
[CALC] AP      =      1.1000000 [CALC] INTEGRAL=       .9532685 
[CALC] *Result*=       .9513507 
[CALC] AP      =      1.2000000 [CALC] INTEGRAL=       .9204909 
[CALC] *Result*=       .9181688 
[CALC] AP      =      1.3000000 [CALC] INTEGRAL=       .8995511 
[CALC] *Result*=       .8974707 
[CALC] AP      =      1.4000000 [CALC] INTEGRAL=       .8888876 
[CALC] *Result*=       .8872638 
[CALC] AP      =      1.5000000 [CALC] INTEGRAL=       .8873809 
[CALC] *Result*=       .8862270 
[CALC] AP      =      1.6000000 [CALC] INTEGRAL=       .8942694 
[CALC] *Result*=       .8935153 
[CALC] AP      =      1.7000000 [CALC] INTEGRAL=       .9090861 
[CALC] *Result*=       .9086387 
[CALC] AP      =      1.8000000 [CALC] INTEGRAL=       .9316136 
[CALC] *Result*=       .9313838 
[CALC] AP      =      1.9000000 [CALC] INTEGRAL=       .9618524 
[CALC] *Result*=       .9617658 
[CALC] AP      =      2.0000000 [CALC] INTEGRAL=      1.0000000 
[CALC] *Result*=      1.0000000 
[CALC] AP      =      2.1000000 [CALC] INTEGRAL=      1.0464398 
[CALC] *Result*=      1.0464858 
[CALC] AP      =      2.2000000 [CALC] INTEGRAL=      1.1017376 
[CALC] *Result*=      1.1018025 
[CALC] AP      =      2.3000000 [CALC] INTEGRAL=      1.1666450 
[CALC] *Result*=      1.1667119 
[CALC] AP      =      2.4000000 [CALC] INTEGRAL=      1.2421099 
[CALC] *Result*=      1.2421693 
[CALC] AP      =      2.5000000 [CALC] INTEGRAL=      1.3292927 
[CALC] *Result*=      1.3293404 
Maximum repetitions of PROC 
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Figure E68.4  Gamma Function 

 
E68.6.3 Monte Carlo Integration 
 
 Consider an integral that is of the form of an expected value of a function 
 
   f(.) = ( ) ( )

u
g u f u d u∫  

 
where f(u) is the density of the random variable u.  In particular, a case typically of interest arises 
when u has a normal distribution with mean zero and variance σ2, in which case the preceding can be 
written 
   f(.) = ( ) ( )

u
g v v dvσ φ∫  

 
where v ~ N[0,1].  The ‘Monte Carlo’ integration method amounts to replacing the integration above 
with averaging over a set of draws from the assumed population; 
 

   
1

1ˆ (.) ( )R
rr

f g u
R =

= ∑ . 

 
So long as the function is smooth and well behaved, an appeal to the law of large numbers will 
produce plim ˆ(.) (.)f f= .  You can use this method of integration by using 
 
   ; Simulation (or just ; Sim) 
   ; Pts = the number of draws, R 
 
in your FINTEGRAL command.  The number of points may be from 10 to 10,000.  Since you are 
not integrating over a range, you may omit the  ; Limits = Lower, Upper from the command when 
you do Monte Carlo integration. 
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 As an example, consider the integral 
 

   ( ) ( ) ( )f u u u du
∞

−∞
= Φ φ∫ . 

 
If we randomly draw values of u, the values of Φ(u) should vary randomly in the interval from zero 
to one, with center at one half.  The expected value should be one half. (That is the exact theoretical 
result.)  We use the command 
 
 SAMPLE ; 1 $ 
 CALC  ; Ran (12347) $ 
 FINTEGRAL  ; Labels = z ; Start = 0 ; Vary(z) ; Simulation 
   ; Pts = 3000 ; Fcn = Phi(z) $ 
 
            +---------------------------------------------------+ 
            | Function integration:                             | 
            | Monte Carlo integral with 3000 draws              | 
            | Value of the integral is          .50013          | 
            +---------------------------------------------------+ 
 
E68.7 Finding the Roots of a Function 
 
 To find the zeros of a function, use 
 
 SOLVE ; Labels = list of labels for parameters 
   ; Start = an interior point of the function for nonvarying parameters 
   ; Fcn = the function definition 
   ; Vary  (the label of the parameter that varies) 
   ; Limits = low, high = the range over which the function is computed 
   ; Pts = the number of points in the range to evaluate 
   ; Plot    this is optional  $ 
 
The last specification will produce a plot of the function in the dimension of the label of the varying 
parameter holding the others fixed at their start values.  This procedure uses a simple grid search to 
search the range from low to high for the values at which f(x) = 0.  When two points in the grid 
search bracket a zero value, several Newton iterations are used to find the actual x at which f(x)=0. 
 The following builds on the earlier example to create a function to analyze: 
 

MAXIMIZE  ; Start = 0,0,0,0  
         ; Labels = b1,b2,b3,b4 
           ; Alg = N  
           ; Fcn = -Lgm(y+1) - Exp(b1'x) + y*b1'x $ 

 SOLVE ; Labels = b1,b2,b3,b4 
   ; Start = b 

  ; Fcn =  -Lgm(y+1) -Exp(b1'x) + y*b1'x + 18/15 
   ; Vary (b1)  ; Limits = -1.2,.1 ; Pts  = 500 ; Plot $ 
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 The function is the one plotted in Figure E68.3 plus 18/15 which produces two zeros in the 
range specified.  (Your function will be better defined – we have put this together to produce an 
uncomplicated example.)  The search locates two roots in the range specified. 
 
Newton iterations to search for any root near    -.595370 
Iteration  B1        Function   Newton Step 
Iteration  B1        Function   Newton Step 
Found  2 roots in the range B1      =   -1.2000 to      .1000 
    -.986736    -.249137 
 
The figure shows the results of the search. 
 

 
Figure E68.5  Roots of a Function 
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