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Preface 
 
 LIMDEP is a flexible computer package for estimating the sorts of models most frequently 
analyzed with cross section and panel data.  Its range of capabilities include basic linear regression 
and descriptive statistics, the full set of techniques normally taught in the first year of a graduate 
econometrics sequence, and many advanced techniques such as parametric duration models, Poisson 
regressions with right censoring, nonlinear regressions estimated by instrumental variables and the 
generalized method of moments (GMM) and nonlinear panel data models with random parameters 
and fixed effects.  LIMDEP’s menu of options is as wide as that of any other general purpose 
program available.  LIMDEP is best suited to the analysis of cross sections, panels, and relatively 
standard problems of time series analysis.  In addition, LIMDEP has provided many recent 
innovations in econometrics, including cutting edge techniques in panel data analysis, frontier and 
efficiency estimation and discrete choice modeling.  The package also provides a programming 
language to allow the user to specify, estimate and analyze models that are not contained in the built 
in menus of model forms. 
 This program has developed since 1980, initially to provide an easy to use tobit estimator – 
hence the name, ‘LIMited DEPendent variable models.’  It has spun off a major suite of programs 
for the estimation of discrete choice models.  This program, NLOGIT, builds on the Nested LOGIT 
model.  NLOGIT has now grown to a self standing superset of LIMDEP. 
 Version 10 of LIMDEP continues our efforts to produce major upgrades to the program while 
maintaining full compatibility with earlier versions.  Version 10 features numerous new estimation 
programs and further refinements of the interface.  This release coincides with the release of NLOGIT 
Version 5, a superset of LIMDEP Version 10 which extends the standard discrete choice (multinomial 
logit) model contained in LIMDEP to many modifications and alternative specifications.   
 In addition to many new estimation programs, Version 10 includes a long list of enhancements 
to its user interface, additions to MATRIX, CALC, CREATE and the other data manipulation 
commands, including, for example, recoding character data during READ, and improvements in the 
internal workings of the mathematical parts of the program.   
 To the best of our knowledge, the code of this program is correct as described.  However, no 
warranty is expressed or implied.  Users assume responsibility for the selection of this program to 
achieve their desired results and for the results obtained. 
 
Econometric Software, Inc. 
Plainview, NY  11803 
2012 
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What’s New in Version 10? 
 
 LIMDEP 10 contains estimators for over 30 new models, many extensions of the present 
models and major additions to the kit of tools for data analysis.  The new SIMULATE and PARTIAL 
EFFECTS (or just PARTIALS) commands will change the way you analyze your data.  These 
capabilities apply to every model that you can estimate including those you design yourself with 
MAXIMIZE or any function you choose to specify even if it is not a component of a model.  There are 
also hundreds of extensions of existing models and commands as well as enhancements to basic tools 
such as panel data handling, data transformations, matrix algebra, import of data, and so on.  
 The list of new features and program extensions described here is as follows.  In some cases, 
the new features are integrated into a more general description of the program feature.  The list 
begins with general features that affect operation of the entire program and narrows as it proceeds to 
particular features that are of interest in specific settings such as a new feature of a particular model 
or additional ways to generate random samples. 
 
WN1 Model Specification with Interactions, Nonlinearities and Categorical Variables 

  
WN2 Post Estimation Analysis 

 
• Simulation of Outcomes and Model Results 
• Partial Effects  
• Difference in Differences Analysis 
• Oaxaca Decompositions 

 
WN3 Multiple Imputation 

 
WN4 Hypothesis Tests 

 
• Chi Squared Tests for Linear Restrictions 
• Likelihood Ratio Tests of Homogeneity of Groups 
• Specification Tests for the Linear Regression Model 

 
WN5 Model Extensions for Random Parameters and Latent Class Models 

 
WN6 New Models and Features 

 
• Descriptive Statistics 
• Plotting 
• Linear Models and Nonparametric Regression 
• Count Data  
• Stochastic Frontiers 
• Binary Choice 
• Ordered Choice 
• Limited Dependent Variables 
• Nonlinear Optimization and Numerical Analysis 
• WALD Command 
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WN7 Random Sampling 
 
• Bootstrapping 
• Random Sampling 
• Sampling Panel Data 
• New Random Number Generators 
 

WN8 Data Handling 
 
• File Import and Export 
• Panel Data 
• Transformations in CREATE 

 
WN9 Programming Tools 

 
• Matrix Algebra 
• Scientific Calculator 
• Optimization 
• Executing Procedures 

 
WN10 Program Display of Results 

 
• DISPLAY Command 
• Program Output 
• CLIST Command for Label Lists 

 
WN11 Technical Program Settings 
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WN1 Model Specification with Interactions, Nonlinearities 
and Categorical Variables 
 
WN1.1 Interactions and Nonlinearities Built Directly into Model 
Commands 
 
 Recent analysis involving the types of intricate nonlinear models that LIMDEP and NLOGIT 
are best known for is complicated by the difficulty of obtaining appropriate simulations and partial 
effects – simple coefficients are far from adequate.  Scaled coefficients, average partial effects and 
decompositions of effects that are in multiple parts are now the norm in empirical research.  The 
analysis is made yet more complicated when the functions involved include interactions and 
nonlinearities in the variables.  Consider a Poisson regression for a count (hospital visits) involving 
age, female and income: 
 

E[visits | age, income, gender] = exp(β1 + β2age + β3age2
  + β4income + β5female×income) 

 
Obtaining estimates of the coefficients is fairly straightforward.  Interpreting them is not.  None of 
the coefficients in this model, even after scaling, provide a meaningful measure of the effects of a 
variable on the expected visits.  For example, 
 
 ∂E[visits|x]/∂age = E[visits] × (β2 + 2β3age), 

 ∆E[visits|x]|∆gender = E[visits|gender=1] – E[visits|gender=0]. 
 
Setting up the model to begin with, including the interactions, then obtaining the partial effects and 
obtaining standard errors and confidence intervals is a major undertaking even for a simple model 
such as this one.  The entire process is now automated in LIMDEP 10. 

A common feature in fitting models such as these is the need to provide the program with the 
information about the equation specification.  For example, the general approach to interactions and 
nonlinearities has been (in LIMDEP and other programs) to build them into the data.  To include the 
square of age in the equation, we computed agesq = age×age and includes agesq in the equation.  
The problem is that the program does not know that agesq is the square of age when it computes the 
partial effects and simulations.  (See the now famous comment in Economics Letters by Ai and 
Norton (2003) on this subject.)  For the partial effects programs will dutifully report the scaled 
coefficients for age and for agesq.  Neither of them is meaningful.  This problem is overcome in 
LIMDEP 10 by building interactions and nonlinearities into the equation.  For the application above, 
this approach is replaced with 
 
 POISSON  ; Lhs = visits ; Rhs = one, age, age*age, income, female*income $ 
 
This is a major change in the program.  When this command is followed with 
 
 PARTIALS ; Effects : age / female $ 
 
the full set of partial effects is computed accounting for all the nonlinearities and for the fact that 
female is a dummy variable.  The results of these two commands using our healthcare data set is as 
follows: 
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----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               VISITS 
Log likelihood function     -2299.65925 
Restricted log likelihood   -2318.94391 
Chi squared [   4 d.f.]        38.56931 
Significance level               .00000 
McFadden Pseudo R-squared      .0083161 
Estimation based on N =   4481, K =   5 
Inf.Cr.AIC  =   4609.3 AIC/N =    1.029 
Chi- squared = 20702.97630  RsqP= .1046 
G  - squared =  3671.04173  RsqD= .0104 
Overdispersion tests: g=mu(i)  :  2.751 
Overdispersion tests: g=mu(i)^2:  3.065 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  VISITS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.40582         .60490     -.67  .5023    -1.59140    .77976 
     AGE|    -.08002***      .02923    -2.74  .0062     -.13731   -.02273 
 AGE*AGE|     .00099***      .00033     3.02  .0025      .00035    .00163 
  INCOME|    -.59626**       .27889    -2.14  .0325    -1.14287   -.04964 
        |Interaction FEMALE*INCOME 
Intrct02|    1.00741***      .20796     4.84  .0000      .59982   1.41500 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------------------------------------------------------------------- 
Partial Effects for Exponential Regression Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00117     .00062    1.88     -.00005      .00239 
   *  FEMALE        .05131     .01059    4.85      .03056      .07207 
--------------------------------------------------------------------- 
 
Several of the new features described below make use of this extension of the model specification in 
LIMDEP.  
    The detailed feature for model specification is as follows:  Interactions may be specified in 
all model commands in the Lhs, Rhs, Rh2, Inst, and Eqn specifications, and all forms of variance 
lists, Hfr, Hfu, etc. Interactions and transformations are of the form 
 

variable1 * variable2  Example:  ; Rhs = one,age,female,age*female 
variable1 /  variable2  Example:  ; Rhs = one,age,income/famsize  
variable1 * variable2 ^ power Example:  ; Rhs = one, female, age, female*age^2 
variable1 ^ power  Example:  ; Rhs = one,logk,logl,logk^2,logk^2,logk*logl 
log(variable1)   Example:  ; Lhs = Log(q) ; Rhs = one,Log(k),Log(l) 
 

This helps in two ways.  First, you do not have to create the extra variables. Second, this setup works 
with the new SIMULATE, PARTIALS and other features so that you can compute partial effects 
for interaction terms and categorical variables correctly. 
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WN1.2 Interaction Terms Included in Namelists 
 
 The constructions described above may be included in namelists for all purposes.  The 
earlier model could be specified using 
 
 NAMELIST ; x = one, age, age*age, income, income*female $ 
 POISSON ; Lhs = visits ; Rhs = x $ 
 
This even extends to using namelists in matrix algebra.   
 
 MATRIX ; xxi = <x’x> $ 
 
computes the inverse of the cross products matrix that includes the interaction and square of age. 
 
WN1.3 Definitions of Interaction Terms Stored in Project Files 
 
These definitions of compound variables are stored with the namelist definitions in your project file, 
so they will still be available, like simpler namelists, if you leave then reenter the program. 
 
WN1.4 Categorical Variables Expanded Inline in Model Commands 
 

A categorical variable is a discrete indicator of group or type membership, such as education 
= 1,2,3,4 for hs, college, masters, phd.  This is usually entered in a regression model in the form of a 
set of three dummy variables – with one omitted for the base case.  Categorical variables may appear 
in any list of variables as listed above, in the form 
 
   Expand(variable)  
For example, 
   ; Rhs = one,age,sex,Expand(educ) 
 
You may also abbreviate this as #variable, as in #educ.   In our data, the variable educ gives years of 
schooling, including part years.  We used the following to obtain the results below: 
 
 CREATE ; yrseduc = Int(educ) $ 
 PROBIT ; Lhs = doctor ; Rhs = one,age,#yrseduc $ 
 
(Education ranges from 7 to 18 in the data.  The expansion function automatically drops the dummy 
variable for the highest category.) 

The specification creates a temporary internal namelist, such as yrsed = xx with a set of up to 
99 dummy variables of the form yrsed = 07, yrsed = nn….  Your categorical variable need not be a 
sequence of integers, but it must be composed of integers that are somewhere in 1,...,100.  Thus, 
yrsed could be coded 12,16,18,20 (number of years).  The last dummy variable is always omitted, so 
this can create up to 99 dummy variables.  They are temporary. The names will show up in the 
output by name, but never show up in the data set.  The variables and the temporary namelist vanish 
after the model is executed.   
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There is a special case, if the variable is named year, we assume it is up to 100 years starting 
in 1921 and ending in 2020. 

The following restrictions apply.  
 

1. This form may only be used for Rhs, Rh1, Rh2, Inst, Hfn, Hf1, Hfu, Hfn. 
 

2. It may not be used in any form of multinomial choice model, such as DISCRETE, 
NLOGIT, or any of the sub forms such as RPLOGIT, etc. 
 

3. It may not be combined with the interaction terms described earlier. 
 

4. Categorical variables cannot be expanded in namelists. 
 
These categorical variables are temporary, so they will not be available to use in subsequent 
PARTIALS or SIMULATE commands.  When the equation contains constructions such as               
; Rhs = Expand(yrseduc), there will be no conditional mean function stored for the post estimation 
commands.  You can program around this restriction by using CREATE to compute the set of 
dummy variables.  For example, the following is equivalent to the previous PROBIT command: 
 
 CREATE ; Expand(yrseduc,0) $ 
 PROBIT ; Lhs = doctor ; Rhs = one, age, _yrsedu_ $ 
 
WN2 Post Estimation Analysis 
 

Several new commands are used for model simulation and partial effects. 
 
WN2.1 Simulation of Outcomes and Model Results 
 
 Every model that you fit with LIMDEP has an associated outcome function, such as the 
conditional mean function or prediction function for the dependent variable.  In most cases, this is 
the expected value of the dependent variable.  The post estimation command SIMULATE provides 
a simulation of this function for the current sample of observations.  To continue the earlier example, 
the model simulation would be 
 
--------------------------------------------------------------------- 
Model Simulation Analysis for Exponential Regression Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avrg. Function      .14885     .00576   25.83      .13755      .16015 
 
There are many settings that you can use to examine scenarios in your simulation.  These are 
provided as options on the simulate command.  Here is an example:  For this model, we wish to 
simulate the model over values of age from 25 to 64 using only female headed households.   
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The following computes the simulation and plots the results. 
 
 SIMULATE ; Set: female = 1 ; Scenario: & age = 25(5)65 ; Plot $ 
 
--------------------------------------------------------------------- 
Simulation and partial effects are computed with fixed settings 
FEMALE   =                        1.0000 
--------------------------------------------------------------------- 
--------------------------------------------------------------------- 
Model Simulation Analysis for Exponential Regression Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avrg. Function      .14885     .00576   25.83      .13755      .16015 
AGE     = 25.00    1.07184     .92069    1.16     -.73271     2.87640 
AGE     = 30.00     .71840     .51231    1.40     -.28574     1.72253 
AGE     = 35.00     .48150     .27322    1.76     -.05402     1.01702 
AGE     = 40.00     .32272     .13621    2.37      .05575      .58970 
AGE     = 45.00     .21630     .06003    3.60      .09865      .33396 
AGE     = 50.00     .14498     .01978    7.33      .10621      .18374 
AGE     = 55.00     .09717     .00525   18.49      .08687      .10747 
AGE     = 60.00     .06513     .01127    5.78      .04303      .08722 
AGE     = 65.00     .04365     .01378    3.17      .01663      .07067 
 

 
 
 The program provides the function to be simulated associated with each model.  However, 
you can provide any function you wish to be simulated, based on a set of parameters that you have 
estimated in any context.  For example, in the following, we examine the probability of zero hospital 
visits for the same scenario as above, female headed households with age varying from 25 to 65 
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SIMULATE may use ; List and ; Keep to list in your output or store individual results for the 
simulation scenario in the data set. 
 
WN2.2 Partial Effects 
 
 The analysis shown above is also provided for computing partial effects, for the estimated 
model or for any other function.  The PARTIALS command can be used to compute partial effects 
for any variable in any model or function no matter how complicated.  You need only provide the 
function, the parameters and the covariance matrix for the parameters.  For models that you 
estimated, these are all stored automatically when the model is estimated.  All interactions and 
nonlinearities are accounted for in the computations.  Dummy variables are identified by the 
processor.  A simple example appears below.   
 
 NAMELIST ; x = one,age,age*age,income,income*female $ 
 POISSON ; Lhs = visits ; Rhs = x $ 
 PARTIALS  ; Effects: female | age = 20,30,40,50 $ 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for Exponential Regression Function 
--------------------------------------------------------------------- 
Effects on function with respect to FEMALE 
Results are computed by average over sample observations 
Partial effects for binary var FEMALE   computed by first difference 
--------------------------------------------------------------------- 
df/dFEMALE         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function       .05131     .01059    4.85      .03056      .07207 
--------------------------------------------------------------------- 
AGE     = 20.00 ----------------------------------------------------- 
Average effect      .06811     .01862    3.66      .03162      .10460 
--------------------------------------------------------------------- 
AGE     = 30.00 ----------------------------------------------------- 
Average effect      .05013     .01079    4.64      .02898      .07129 
--------------------------------------------------------------------- 
AGE     = 40.00 ----------------------------------------------------- 
Average effect      .04496     .00943    4.77      .02649      .06344 
--------------------------------------------------------------------- 
AGE     = 50.00 ----------------------------------------------------- 
Average effect      .04913     .01023    4.80      .02907      .06919 
 
Scenarios can be provided that examine the effects over a range of values of a variable or set the 
variables to specific values, or even partition the sample.  For example, the following commands 
trick the program into using only those households headed by males (gender = 0) and sets gender 
equal to one in the simulation – this scenario answers the question, what would be the partial effects 
of age on hospital visits for male headed households if they were female instead? 
 

CREATE  ; gender = female $ 
PARTIALS  ; Set: female = 1 ; Effects: age @ gender = 0 & age = 25(5)65 $ 

 
As shown earlier for the simulation, partial effects can be computed for the conditional mean 

function or for any other function you wish to analyze.   By changing the PARTIALS command to  
 

PARTIALS  ; Set: female = 1 ; Effects: age @ gender = 0 & age = 25(5)65  
; function = Exp(-Exp(beta1'x)) 
; parameters = b 
; Labels = 5_beta  
; variance = varb $ 

 
we analyze the probability of zero visits, rather than the conditional mean. 

The PARTIALS command operates as follows:  After you fit a model (any model), a 
template for computing a fitted value or some other useful function is left behind.  This may not be a 
conditional mean function. For example, for stochastic frontier models, the template function is the 
estimator of technical or cost efficiency for the firm.  When you compute any kind of linear model, 
the function is βʹx, the linear function.  For a probit model, it is Φ(βʹx), the probability of a one.  And 
so on.  We then use this function to compute either the fitted values (with SIMULATE) or the 
partial effects (with PARTIALS).  All interaction terms and built in transformations (powers and 
logs) are evaluated correctly.  So, for example, if your probit model is 
 
 PROBIT  ; Lhs = y ; Rhs = one,age,age*age, income,income*female $ 
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this program computes the partial effects for, e.g., age (two terms), income (two terms) and female 
(recognizing that it is a dummy variable), all correctly.  Effects and simulations can be computed at 
the data means or averaged over the observations.  They can be computed as one or two other 
variables vary, and plots of traces of the effects can be produced as well.  The sample can be 
partitioned with effects computed separately for particular groups.  The function is in place until it is 
replaced by another model, so you can compute a sequence of scenarios or analyses under different 
assumptions. 
 The PARTIALS command computes a variety of different functions, not only the simple 
partial effects.  These begin with the partial derivatives (marginal, or partial effects), ∂F/∂x or ∆F/∆x 
(for dummy variables) for each observation or for the average observation, then can be modified to 
obtain elasticities, ∂ln F/∂lnx, semi elasticities, ∂ln F/∂x and log derivatives, ∂F/∂ln x.  The program 
figures out internally if you are analyzing a dummy variable and computes effects accordingly.  If 
the variable in question is a category, such as hs, college, masters, phd, you can specify which 
category the individual shifts to so as to compute the effect.  For example, suppose your model were 
 
   E[y|x] = F(age,age*age, hs, college, masters, phd, married). 
 
You can determine the difference between college and masters with 
 
 PARTIALS ; Effects: college,masters $ 
 
The program will deduce the presence of the two categories and obtain the partial effect 
appropriately as the impact of the switch from the first category to the second.  
 The following are computed: 
 

• Standard errors for each observation and for the average observation, 
• Average partial effect and standard errors for APEs, 
• Individual observation means and standard deviations as variables,  
• Average partial effects and standard errors as elements in a matrix. 

 
Generally, partial effects are computed at the observations and averaged. The effect and standard 
error and confidence intervals are computed for each observation.  You can request, instead, that the 
whole set of computations be done just once for the average individual in the sample.  The model 
analyzed may be either the previous model estimated, which will be one of about 50 different model 
specifications, or it can be any model or function that you can write down, linear or not, using a set 
of coefficients and any variables, matrices or scalars that exist in the project.  For the multinomial 
logit and ordered choice models, you can examine probabilities associated with particular outcomes, 
or tabulate a full set of results for all of the outcomes.  The PARTIALS command can request a 
single simple partial effect, or multiple effects and multiple complicated scenarios. 
 The PARTIALS command will produce a table of partial effects for a set of variables in a 
model. The following illustrates. Note that the variables that are analyzed are the structural variables 
that appear in the probit model, not the constructed variables (which are not useful separately). 
 

NAMELIST  ; x = one,age,age*age,income,income*female $ 
NAMELIST  ; z = age,income,female $ 
PROBIT    ; Lhs = doctor ; Rhs = x $ 
PARTIALS  ; Effects: z ; Summary $ 
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--------------------------------------------------------------------- 
Partial Effects for Probit Probability Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00506     .00024   21.22      .00459      .00553 
      INCOME       -.03008     .01642    1.83     -.06227      .00211 
   *  FEMALE        .11179     .00510   21.92      .10180      .12179 
--------------------------------------------------------------------- 
 
 The following analyzes the partial effect of female on the probability of having at least one 
doctor visit, computed for age varying from 20 to 65.  The partial effects are tabulated than plotted 
with 95% confidence limits. 
 

NAMELIST  ; x = one,age,age*age,income,income*female $ 
PROBIT    ; Lhs = doctor ; Rhs = x $ 
PARTIALS  ; Effects: female & age = 20(3)65 ; Plot(ci) $  
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WN2.3 Difference in Differences Analysis 
 

There is a limitless variety of models and specifications for examining treatment effects – 
the contemporary literature is vast.  There is little way to obtain generality, however, one particular 
approach is used reasonably often.  Let pre- and post treatment periods be denoted t = 0 and t = 1 and 
let the treated individuals be denoted ‘T’ and controls be denoted ‘C.’  Let the outcome variable be 
y(t,T) or y(t,C) – the outcome is generated by the conditional mean function of any model you 
specify, or a particular function that you specify such as in our examples above.  We assume that 
there are three dummy variables that play some role in the model, post_t = 1(t = 1 and T), post_c = 
1(t = 1 and C) and pre_t = 1(t = 0 and T).  Pre treatment controls are the base case.  We assume that 
these dummy variables appear in the model somewhere so that treatment and status impact the 
outcome variable.  The SIMULATE command can now be modified with 
 
   ; did = post_t, post_c, pre_t 
 
to produce an analysis of the difference in differences of the average outcomes.  All other features of 
the SIMULATE command can be used with this extension.   
 To continue the earlier example, we construct a purely fictitious set of treatment and status 
variables and examine the difference in differences at ages 25, 24, 45 and 55. 
 

CREATE ; pret = Rnd(2)-1 ; post = Rnd(2)-1 ; postc = Rnd(2)-1 $ 
POISSON ; Lhs = hospvis ; Rhs = x,postt,postc,pret $ 

 SIMULATE ; did = postt,postc,pret ; Scenario: & age = 25(10)55 $ 
 
------------------------------------------------------------------------------ 
Simulation is computing difference in difference 
Specified settings for simulation 
POSTT    = post effect treatment dummy 
POSTC    = post effect controls  dummy 
PRET     = pre  effect treatment dummy 
Base category is pre-effect controls 
D-i-D result is 
{E[outcome|post treatment - E[outcome|post controls]} - 
{E[outcome|pre  treatment - E[outcome|pre  controls]} 
------------------------------------------------------------------------------ 
Model Simulation Analysis for Exponential Regression Function 
------------------------------------------------------------------------------ 
Simulations are computed by average over sample observations 
------------------------------------------------------------------------------ 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avrg. Function     -.02053     .01794    1.14     -.05569      .01464 
AGE     = 25.00    -.16078     .19954     .81     -.55189      .23033 
AGE     = 35.00    -.07021     .07400     .95     -.21525      .07483 
AGE     = 45.00    -.03066     .02831    1.08     -.08614      .02482 
AGE     = 55.00    -.01339     .01171    1.14     -.03634      .00956 
------------------------------------------------------------------------------ 
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WN2.4 Oaxaca Decompositions 
 
 The Oaxaca decomposition is a methodology for studying the different average outcomes of 
two groups.  The underlying theory is based on the following specification.  Let g = 0 or 1 signify the 
observations in two distinct groups.  Let E(βg,Zg) denote the average outcome from a model that is 
fit separately for the two groups (and once for the pooled sample).  The question pursued with this 
analysis is which feature explains the greater part of the difference, E(β1,Z1) – E(β0,Z0), differences 
in the parameters, β or the data, Z.  Even in the linear regression case, the analysis is complicated.  
For nonlinear models, it is yet more intricate.  The new command DECOMPOSE will carry out the 
Oaxaca decomposition for any outcome from any model, or a model or function that you specify in 
the command.  Like the simulations or partial effects described earlier, Oaxaca decompositions may 
be done for any model that you specify, or any function that you provide in the command as an 
alternative to the most recently estimated model.  Several layers of the analysis are provided. 
 The following shows an example.  The decomposition is provided in two steps, estimation 
and analysis.  The commands below show the form of the specification. 
 

POISSON  ; For[female=*,1,0] ; Lhs = docvis ; Rhs = one,age,educ $ 
DECOMPOSE $ 

 
------------------------------------------------------------------- 
Decomposition of Changes in Average Functions 
Model Used in Computations = Exponential Regression Function 
------------------------------------------------------------------- 
               Sample is FEMALE  = 1         FEMALE  = 0     Sample 
Estimates Based on                (1)                 (0)      Size 
FEMALE   = 1 (a)        3.79080 (a,1)       3.61850 (a,0)     13083 
FEMALE   = 0 (b)        2.92255 (b,1)       2.62571 (b,0)     14243 
Weighted =** (*)        3.31769 (*,1)       3.07208 (*,0)     27326 
------------------------------------------------------------------- 
Wald Test of Difference in the Two Coefficient Vectors 
Chi squared[  3] = 2352.2131        , P Value =  .0000 
------------------------------------------------------------------- 
Total Change in Function    (a,1) - (b,0) =      1.16509 ( 100.00%) 
------------------------------------------------------------------- 
Oaxaca    | Due to data is  (a,1) - (a,0) =      .172296 (  14.79%) 
Blinder   | Due to beta is  (a,0) - (b,0) =      .992790 (  85.21%) 
------------------------------------------------------------------- 
Daymont   | Due to data is  (b,1) - (b,0) =      .296837 (  25.48%) 
Andrisani | Due to beta is  (a,1) - (b,1) =      .868250 (  74.52%) 
------------------------------------------------------------------- 
Daymont   | Due to data is  (b,1) - (b,0) =      .296837 (  25.48%) 
Andrisani | Due to beta is  (a,0) - (b,0) =      .992790 (  85.21%) 
(3 Fold)  | Due to function (a,1) - (b,1) + 
          |                 (a,0) + (b,0) =     -.124540 ( -10.69%) 
------------------------------------------------------------------- 
Ransom    | Due to data is  (*,1) - (*,0) =      .245609 (  21.08%) 
Oaxaca    | Due to beta is  (a,1) - (*,1) +      .919478 (  78.92%) 
Neumark   |                 (*,0) - (b,0) 
------------------------------------------------------------------- 
 
(The benchmark coefficients in the weighted results are the pooled estimator.  One can, instead, 
specify that the benchmark be a specified theta weighted mixture of the coefficients for the two 
groups.) 
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WN3 Multiple Imputation 
 
WN3.1 Multiple Imputation for Data Sets with Missing Values 
 

LIMDEP provides routines for multiple imputation for data sets with missing values.  The 
multiple imputation program provides a looping procedure within which missing values of variables 
that you designate are filled with predictions from fitted models. 
 The following features are not included in the multiple imputation program:  
 

1. Examine and act on missing data ‘patterns,’ such as ‘monotone missing values’ and so on.  It 
fills the missing values in the variables, one variable at a time, independently. 
 

2. Make exotic corrections to degrees of freedom for the linear model.  (How a data set with a 
few dozen observations can be claimed to contain thousands of degrees of freedom after a 
handful of multiple imputation iterations remains mysterious to us. We have not attempted to 
replicate this feature of the methodology.) 
 

3. Any special data management, such as saving the imputed data set(s) as separate files.  This 
is because we do not create replicated data sets with imputations. Imputations are done on 
the fly, and fill in the existing data set, in place.  The need to replicate the whole data set is 
the Achilles heel of received implementations of this technique – they are limited to a small 
handful of iterations – 3 to 5 is the standard.  The advantage of our approach is that if you 
want to compute a thousand imputations with a huge data set, you can do it. 

 
WN3.2 Technical Details  
 

We use a two step method. (It could not be done any other way.) 
 
Step 1. You create the imputation equations.  You may have up to 30 of these active at any time.  An 

imputation equation is associated with a specific variable in your data set. 
 

Step 2. You fit a model (or many models) that uses the variables that appear in the imputation list 
(and others).  You specify how many imputations you want to do.  In a ‘loop’ the program 
imputes all variables that are to be filled.  Then, it fits as many models as you wish to specify 
using these variables (and any others). 

 
Details about the imputation engines: 
 

You may have up to 30 definitions of the following type – these are the types of variables for 
which missing values may be imputed: 
 
 M (for measurement)  = continuous variable, uses linear regression, 
 B (for binary)   = binary variable, uses logit binary choice equation, 
 C (for count)   = count variable, uses Poisson, 
 O (for ordered)   = ordered discrete variable, uses ordered probit, 
 F  (for fractional)  = proportion between zero and one, uses a logit model, 

T (for type)   = an unordered choice, uses multinomial logit model. 
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As you issue imputation equation instructions, you will see the names accumulate in the imputation 
equations list in the project window.  You can inspect the equations by double clicking the 
imputation name in the window. 
 
How to use the imputation engines after they are created: 
 
 The estimation in the multiple imputation environment is done with these steps: 
 
1. Set the sample. 

 

2. Set up a procedure that contains the models that involve variables on the Rhs that need 
imputation. 
 

3. The EXECUTE command specifies what is to be imputed and how many times. 
 
The following shows a complete example of a multiple imputation estimation. 

 
IMPUTE  ; Lhs = xc ; Rhs = one,z1,z2,... ; Type =  Count $ 
PROCEDURE $ 
PROBIT  ; Lhs = ... ; Rhs = ... xc... ; Imputation = ProbitA $ 
LOGIT  ; Lhs = ... ; Rhs = ... xc... ; Imputation = LogitA $ 
POISSON  ; Lhs = ... ; Rhs = ... xc... ; Imputation = PoissonA $ 
ENDPROC 
EXECUTE  ; N = number of imputations ; Imputation = ProbitA,LogitA,PoissonA $ 

 
Note that xc appears in all four models.  

There are no restrictions on what models may appear in the procedure. Every model in 
LIMDEP and NLOGIT that computes a parameter vector and covariance matrix is supported.  (The 
reason is that the imputation is created before the model command is carried out. The EXECUTE 
command, itself, fills in the missing values for each iteration, then any model that appears in the 
procedure can use the filled variables, as they are the names of variables that all exist in the data set. 

Final results are computed as follows: The coefficient vector in the model is the average over 
the imputations.  The estimated covariance matrix is the average of the estimated covariance 
matrices plus 1+1/M times the sample variance of the estimated coefficient vectors, where M is the 
number of replications. 

Imputations use Rubin’s methods, with modifications for some of the types that he (and others) 
have not written about.  In all cases, for each observation within each replication, we draw a random set 
of parameters from the posterior normal population. We then insert the prediction in place of the 
missing value.  The original data set, with missing values, is restored after each iteration concludes. 

Here is a constructed example.  The variable marr is the marital status dummy variable.  We 
have injected about 10% missing values into this binary variable.  We create an imputation equation 
for marr with the IMPUTE command.  The procedure fits a probit model that uses marr and several 
other variables.  The missing values are imputed using age, education and income in each of 10 
iterations.  The final displayed results reports that 10 imputation iterations have been computed.  The 
second set of results is the simple probit results using casewise deletion rather than imputation.  The 
multiple imputation procedure does not appear to have helped much.  It should be noted that the 
benefits of having the extra observations in the sample used are at least partially offset by the chatter 
of the simulation itself.  That is the implication of the second term noted above in the computation of 
the covariance matrix. 
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The commands are: 
 
CREATE  ; pick = Rnu(0,1) < .1 $ 
CREATE  ; marr = married $ 
CREATE  ; If(pick=1)marr = -999 $ 
IMPUTE  ; Lhs = marr ; Rhs = one,age,educ,hhninc ; Type = Binary $ 
PROC $ 
PROBIT ; Lhs = doctor ; Rhs = one,marr,age,hhkids,public  

; Imputation = Probita $ 
ENDPROC$ 
EXECUTE ; N = 10 ; Imputation = Probita $ 
SKIP $ 
PROBIT ; Lhs = doctor ; Rhs = one,marr,age,hhkids,public $ 
 

WN4 Hypothesis Tests 
 

 Several new features have been added for hypothesis tests.  The general format of Wald chi 
squared tests has been replaced to make it more convenient to specify the restrictions.  Several tests 
have been automated, including the maximum likelihood counterpart to the Chow test for 
homogeneity. This is useable with any model that is fit by maximum likelihood.  Several specific 
tests for the linear model have also been built into the commands.  Finally, the Kolmogorov-Smirnov 
test of normality is available as a built in CALC function.  For example, the following computes the 
K-S statistic for the income variable, and saves it as a scalar named kst. 
 

CALC  ; kst = Kst(hhninc) $ 
 
-------------------------------------- 
Kolmogorov-Smirnov test of F(HHNINC  ) 
vs. Normal[     .00000,      .17691^2] 
******* K-S test statistic =  .2224614 
******* 95% critical value =  .0082272 
******* 99% critical value =  .0098605 
Normality hyp. should     be rejected. 
-------------------------------------- 
 

WN4.1 Chi Squared Tests for Linear Restrictions 
 

The current format for hypothesis tests about coefficients in models (not for imposing 
restrictions) is 
   ; Test: a1 b(1) + or – a2 b(2) + … = c 
 
where subscripts in coefficients are keyed to the location of the parameter in the model and a1, a2,… 
are numbers.  This allows testing one restriction.  More than one restriction may be tested 
simultaneously (jointly) by separating restrictions with commas, for example, 
 
   ; Test: b(1) + b(2) + b(3) = 1, b(4) = 0.  
 
Two new shortcuts are provided.  First, additional sets of restrictions may be provided by separating 
the sets with vertical bars.  Thus, 
 
   ; Test: b(1) + b(2) + b(3) = 1, b(4) = 0  |  b(5) = 1.5. 
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This command tests the two restrictions before the bar, then the third restriction after the vertical bar, 
separately.   

The disadvantage of this format is that the coefficients are specified with reference to their 
location in the parameter vector.  If the list of variables in the model changes, the subscripts in these 
restrictions must change as well.  A second form of the restriction will be much more convenient in 
that it is not tied to the location of the parameter in the parameter vector.  Instead of a parameter 
name, you can use the name of the variable that is multiplied by the coefficients.  For example, 
 
 REGRESS  ; Lhs = y ; Rhs = one,x1,x2,x3,x4,x5 
   ; Test: x1+x2+x3 = 1, x4 = 0 | 3*x5 + 3.219*x1 = 1.732 $ 
 
This format is available for all model commands in all settings – it is a global change in the way that 
model commands may be specified.  The ; CLS: specification that is used for the linear model may 
also use this format.  However, multiple sets of restrictions separated by the vertical bar cannot be 
specified with ; CLS: (because the model is only estimated once). 
 A shortcut is provided for testing a joint hypothesis that several variables are zero.  The 
following illustrates by showing how to test the joint hypothesis that a set of coefficients on time 
dummies are simultaneously zero.  The general format of this test (which can be used in any model) 
is 
 NAMELIST  ; listname = … $ 
 Model  ; Lhs = … ; Rhs = …, listname, … ; Test: listname = 0 $ 
 
 SAMPLE ; All $ 

CREATE ; t = year - 1983 $ 
CREATE  ; Expand(t,0) $ 
REGRESS ; Lhs = income ; Rhs = one,age,age^2,educ,female,_t_ 

       ; Test : _t_ = 0 $ 
 
T        was expanded as _T_     . 
Largest value =  11.   6 New variables were created. 
Category 
  1  New variable = T01         Frequency=    3874 
  2  New variable = T02         Frequency=    3794 
  3  New variable = T03         Frequency=    3792 
  4  New variable = T04         Frequency=    3666 
  5  New variable = T05         Frequency=    4483 
  8  New variable = T08         Frequency=    4340 
Note, the last category was not expanded. You may use 
this namelist as is in a regression with a constant. 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=INCOME   Mean                 =         .35208 
             Standard deviation   =         .17691 
----------   No. of observations  =          27326  DegFreedom   Mean square 
Regression   Sum of Squares       =        150.105          10      15.01048 
Residual     Sum of Squares       =        705.073       27315        .02581 
Total        Sum of Squares       =        855.178       27325        .03130 
----------   Standard error of e  =         .16066  Root MSE          .16063 
Fit          R-squared            =         .17552  R-bar squared     .17522 
Model test   F[ 10, 27315]        =      581.51599  Prob F > F*       .00000 
Wald Test:   Chi-squared [  6]    =     2395.40350  Prob C2 > C2* =   .00000 
F Test:      F ratio[ 6,27315]    =      399.23392  Prob F  > F*  =   .00000 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  INCOME|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.32083***      .01639   -19.57  .0000     -.35296   -.28871 
     AGE|     .02598***      .00073    35.48  .0000      .02455    .02742 
 AGE^2.0|    -.00029***   .8268D-05   -34.69  .0000     -.00030   -.00027 
    EDUC|     .01889***      .00043    43.75  .0000      .01805    .01974 
  FEMALE|     .00068         .00198      .34  .7332     -.00321    .00456 
     T01|    -.14386***      .00379   -37.97  .0000     -.15129   -.13644 
     T02|    -.13406***      .00381   -35.23  .0000     -.14152   -.12660 
     T03|    -.11949***      .00381   -31.40  .0000     -.12695   -.11203 
     T04|    -.10719***      .00384   -27.95  .0000     -.11471   -.09967 
     T05|    -.09738***      .00366   -26.59  .0000     -.10455   -.09020 
     T08|    -.03809***      .00369   -10.33  .0000     -.04532   -.03087 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
WN4.2 Likelihood Ratio Tests of Homogeneity of Groups 
 
 The likelihood ratio test of homogeneity of the model coefficients across groups is computed 
using this statistic: 
   LR =  2[(Σgroups logL)  -  logLpooled] 
 
where logL indicates the log likelihood function.  Previously, this statistic was computed by placing 
the model in a loop in a procedure and accumulating the statistic as the model is fit for the groups.  
The following shows how to automate this computation in the model command: 
 
 Model   ; For [ (test) variable ] ; … the rest of the model $ 
 
The variable in the test specification is assumed to be coded with integer values that separate the 
groups.  The following example tests whether the coefficients in a probit model are the same for men 
and women: 
 
 PROBIT  ; For [ (test) female ] 
   ; Quietly ; Lhs = doctor ; Rhs = one,age,married,hhkids $ 
 
----------------------------------------------------- 
Setting up an iteration over the values of FEMALE 
The model command will be executed for     2 values 
of this variable.  In the current sample of    4481 
observations, the following counts were found: 
Subsample   Observations    Subsample  Observations 
FEMALE   =   1      2170    FEMALE  =   0      2311 
FEMALE   =****      4481 
---------------------------------------------------- 
Actual subsamples may be smaller if missing values 
are being bypassed.  Subsamples with 0 observations 
will be bypassed. 
---------------------------------------------------- 
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----------------------------------------------------------------------- 
Subsample analyzed for this command is FEMALE   =       1 
Subsample analyzed for this command is FEMALE   =       0 
Full pooled sample is used for this iteration. 
----------------------------------------------------------------------- 
Homogeneity Test for Estimated Model 
----------------------------------------------------------------------- 
The model was estimated for  2 subsamples and the full sample 
The likelihood ratio statistic is 2[Sum(g=1...G)logL(g) - logL(pooled)] 
Chi squared =     77.8436   Estimated degrees of freedom =   4 
Estimated P value for this test is  .0000 
----------------------------------------------------------------------- 
 
WN4.3 Specification Tests for the Linear Regression Model 
 
 Ramsey’s RESET test has been automated in the linear regression model. Two additional 
specification tests for the linear panel data regression have also been built into the command.  The Wu 
test is an alternative way to compute Hausman’s statistic. The Moulton/Randolph form of the LM 
statistic is part of the standard results for the random effects model.  Finally, The Breusch and Pagan 
test for heteroscedasticity is built into the command. The test can be carried out using the Rhs variables 
specified in the regression or using a different set of variables provided in the request for the test. 
 
WN5 Model Extensions for Random Parameters and Latent 
Class Models 
 
 LIMDEP includes estimators for random parameters, latent class and fixed and random 
effects specifications for nearly 50 different models.  We continue to develop the features of the 
estimators and new model specifications.  Among the new developments are elasticities and partial 
effects for most specifications, and weights and robust covariance estimators.  The latent class 
models now provide an option to retain the estimated posterior class probabilities as variables in the 
data set that can then be analyzed later.  The following describe some specific features added to the 
random parameters (mixed, multilevel) and latent class models. 
 
WN5.1 Random Parameter Models   
 
 Conditional estimates of individual specific parameters (these are the counterparts to the 
posterior means in Bayesian environments) are saved in the matrix work area and can be analyzed 
after estimation.  Both means and standard deviations are retained. 
 Several new distributions are provided for the random parameters including triangular and 
log gamma.  The triangular distribution can be employed when the range of the parameter is 
expected to be restricted. 
 
WN5.2 Latent Class models  
 
 Posterior class probabilities for each individual are saved as matrices or variables in the 
active data set.  Weighted averages of class specific parameters provide a ‘posterior’ estimate of the 
model parameters that apply to each individual.  These are also retained in matrices. 
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WN6 New Models and Features 
 
 New models and analysis tools are a large part of this version of LIMDEP.  There are about 
30 new model specifications, and a variety of new tools (such as PARTIALS and SIMULATE) that 
can be used to extend the model results. 
 
WN6.1 Descriptive Statistics 
 
 One way analysis of variance for a variable is requested by specifying the panel in the 
DSTAT command.  For example: 
 
 SETPANEL ; Group = id ; Pds = ti $ 

DSTAT ; Rhs = hhninc ; Panel $ 
 
 Specifying that the variables in DSTAT are clustered using the general specification 
requests the appropriately constructed standard error of the mean.  For example, 
 
 DSTAT ; Rhs = hhninc ; Cluster = id $ 
 
produces 
 
--------+--------------------------------------------------------------------- 
Variable|       Mean       Std.Dev.     Minimum      Maximum     Cases Missing 
--------+--------------------------------------------------------------------- 
  HHNINC|      .352084      .176908          0.0     3.067100    27326       0 
        | SE(mean) =     .00186   95% CI = [      .34845,.35572      ] 
--------+--------------------------------------------------------------------- 
Clusters|  Cluster corrected std. deviations:    7293 clusters. 
--------+--------------------------------------------------------------------- 
 
WN6.2 Kernel Density Estimators 
 
 Several options have been added for kernel density estimation. 
 

• Multiple estimators may be placed in the same figure by providing up to five names in the  
command.   
 

• The data for the kernel estimator may be provided as columns in a matrix rather than as 
variables in the data area.  This works well with the posterior estimates of parameters from 
the random parameters and latent class models.   

 
• A normal distribution with the same mean and variance as the variable being plotted can be 

superimposed over the kernel estimator. 
 

• Kernel estimators can be provided for data that are segregated by groups.  For example, the 
following compares the distributions of household incomes for male and female headed 
households for the first wave of our seven wave panel data set.  (There does not seem to be 
much difference.) 
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KERNEL ; For[t=1] ; Rhs = hhninc ; Group = gender ; Labels = male,female $ 
 

 
 
WN6.3 Histograms 
 
 Histograms may be of several types, for integer valued variables such as counts, or 
continuous variables such as income.  Many different configurations are provided.  We now allow 
comparison to a normal distribution for either type.  For example, the following describes the 
household incomes in wave one of our panel for households less a handful of outliers which greatly 
distort the figure: 
 

HISTOGRAM ; If[t=1 & hhninc <= 1] ; Rhs = hhninc ; Normal  
; Title = Household Incomes in Wave 1$ 

 

 
  

Histograms may have up to 300 bars.  The one below has 150. 
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WN6.4 Graphs and Plotting 
 

 Several options have been added to the PLOT command.  A new command, CPLOT for 
contour plots has been added. 
 

• Tail areas or interior areas in function plots may be shaded. 
• Scatter plots may be mixed with function plots. 
• Up to five plots may be produced in the same field.  
• Plots have been sharpened to improve readability of scatter plots. 
• Plots may be annotated with titles and headers on both axes and labels in the legend box. 

 
A new command, CPLOT, is used to produce contour plots for a pair of variables and a 

function of them.  The following shows an example. 
 
SAMPLE  ; 1 $ 
CPLOT  ; Fcn = ro*Log(beta) - Lgm(ro) - 3*beta + ro – 1 ; Labels = beta,ro  

; Plot(beta,ro) ; Start = 2,5 ; Limits = .1,5,1,16 ; Pts = 150 
; Title = Contour Plot of Log Likelihood $ 
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WN6.5 Linear, Semiparametric and Nonparametric Regression 
Model  
 
 The RESET test for specification error and Breusch and Pagan test for heteroscedasticity 
have both been built into the REGRESSION command.  The Breusch and Pagan test may be based 
on the variables on the right hand side of the regression or on a different set of variables specified in 
the command. 
 Two estimators have been added for linear systems in which estimation is based on 
instrumental variables, limited information maximum likelihood (LIML) and Ackerberg and 
Devereux’s jackknife instrumental variable estimator (JIVE).  LIML is a new command.  The 
jackknife estimator is added as an option for 2SLS. 
 
Fixed and Random Effects Linear Regression 
 
 Robust covariance matrices are computed for both random and fixed effects estimators.  We 
do note, while the latter might be a natural approach in some settings, the former would seem to 
contradict the appropriateness of the generalized least squares estimator used to obtain the equations.  
Nonetheless, experts remain divided on the calculation.  It is provided here for completeness. 
 The two way fixed effects estimator is expanded to allow up to 1,000 periods (or groups).  
Note that if the panel is unbalanced, the two way fixed effects model must be fit by ‘brute force’ in 
the smaller dimension – it is necessary actually to include the dummy variables in the regression.  
We have developed a method that makes this feasible for up to 1,000 periods. 
 The one way random effects model is made a bit more flexible by allowing only a constant 
term to accommodate the analysis of variance. 
 
Semiparametric Regression 
 
 QREG and QCREG (for count data) compute quantile regression estimates.  Both can 
request estimates for up to 7 quantiles.  The command is specified as usual.  Multiple quantiles are 
requested by 

; Qnt = list of up to 7 values... 
 
The estimator computes the regression for each quantile, with a full set of results and produces a 
summary table for the set.  Saved results are for the last quantile in the list (b, varb, scalars, etc.) 
 
Nonparametric Regressions 
 
 A new command, LOWESS, is provided for nonparametric, locally polynomial regression.  
The method is locally weighted least squares for a polynomial regression of y on a single x, or a 
locally linear regression on a set of regressors.  LOWESS produces an n×K matrix of coefficients, 
one row for each individual.  The following illustrates 
 

LOWESS  ; For[t=1] ; Lhs = hhninc ; Rhs = one,age,educ,married $ 
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WN6.6 Poisson and Negative Binomial Regressions for Count Data  
 
 Numerous new count data models have been added to the already long list. In addition, some 
specific features have been added to the model specifications.  New count data model specifications 
are as follows:   
 

• NBE is Englin and Shonkwiler’s negative binomial (or Poisson) model with endogenous (on 
site) stratification and truncation.  The outcome is always positive due to the nature of the 
observation.  All count model features and panel data versions (RP, LC, FE) are provided. 

 

• NBX is a version of the negative binomial model in which the outcome is represented as a 
stopped sum.  

 

• GPP is a generalized Poisson model that allows for both over and underdispersion.  The GPP 
model is parameterized with a scale parameter, P, similarly to the NBP model.  GP1 (P = 1) 
and GP2 (P = 2) forms are provided for this model.   Zero inflation for the GPP models may 
also be specified. 

 

• QCREG is a quantile regression approach for the Poisson model.   
 

• Canonical NB regression, developed by Hilbe (2011) is an alternative (somewhat less 
flexible) form of the negative binomial model.  
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Endogenous treatment effects in a Poisson or negative binomial model are accommodated by using 
LIMDEP’s generic treatment effects approach. The model specifies an endogenous treatment dummy 
variable in 
 

 PROBIT  ; Lhs = d ; Rhs = w ; Hold  $ 
POISSON  ; Lhs = y ; Rhs = x,d  
or NEGBIN ; Selection ; MLE ; Treatment $ 

 

The Poisson and negative binomial two part models, hurdle and ZIP, have been expanded to allow for 
both individual specific heterogeneity and endogenous participation.  In addition, both models have 
been included in the random parameters (RP) suite of models to provide a panel data formulation. 

Extensions to the count models are as follows: 
 

• The model parameter, P, in the NBP model may be fixed with ; Scale = P. 
 

• Censoring in all count models may be observation specific by adding a second Lhs variable 
in the model such that the censoring is ‘lower’ if the variables equals -1, none if the variable 
equals 0, and upper censoring if the variable equals +1. 

 

• Censoring and truncation in all models may be observation specific by providing a variable 
name rather than a constant in ; Limit = C. 

 

• All panel data estimators, random parameters, latent class and fixed effects allow truncation 
at zero by adding ; TPM to the model command.  The cross section versions of all count 
models allow censoring and truncation at any value. 

 

WN6.7 Stochastic Frontiers 
 

 LIMDEP contains the most extensive menu of tools for stochastic frontier models available.  
We have added a new semiparametric SF model and some useful tools for analyzing technical and 
cost efficiency. 
 Some users of Coelli’s (1996b) Frontier 4.1 program for the normal-half normal have 
inquired about the different methods used to obtain the asymptotic covariance matrix for the 
parameter estimator.  Frontier 4.1 uses an approximation to the Hessian that is accumulated during 
the estimation iterations.  LIMDEP uses the Hessian recomputed after estimation is complete.   The 
method used in Frontier 4.1 works reasonably well, but does not necessarily provide a good 
approximation.  LIMDEP’s estimator is appropriate as long as the solver has found the MLE.  For 
purposes of comparability, LIMDEP now provides a method of obtaining Coelli’s approximation.   
 LIMDEP is the only software that provides both data envelopment analysis (DEA) and 
stochastic frontier modeling (SFA).  Development of DEA is ongoing in LIMDEP.  Two 
modifications are provided in Version 10.  The solver may now specify nondecreasing returns to 
scale (; NDS).  The bootstrap computations for DEA have been a bit unstable in some data sets.  The 
computations have been modified to improve the performance and to avoid some of the apparent 
instability of the program. 
 A parametric test of the presence of inefficiency based on a one sided test, using the Kodde 
and Palm (1986) critical values is now provided with the model results.  An example appears below. 
 Three model specifications have been added to the set of frontier estimators.  Corrected OLS 
(COLS) is often an intermediate step in stochastic frontier modeling.  The ‘correction’ step is done 
ad hoc by manipulating the least squares results.  The analysis is automated in LIMDEP 10 (by 
adding ; Model = COLS to the FRONTIER command). 
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A second new estimator is based on the LOWESS nonparametric regression approach.  For 
the frontier model, we fit the goal function (cost, production, etc.) using a nonparametric method, 
then analyze the residuals for technical or cost inefficiency. 
 There are several different forms of the normal-truncated normal stochastic frontier model in 
LIMDEP.  We have (more or less) completed the set by adding the 1995 version of Battese and 
Coelli’s model. 
 We have added a feature to the analysis step of the stochastic frontier modeling.  Technical 
or cost inefficiency are standard calculations; in the model context, ui is estimated from the residual 
ei.  These values are, in turn, analyzed to learn about technical or cost inefficiency.  Computation of 
the corresponding efficiency measure, Ei = exp(-ui) is now automated by adding either ; Techeff = 
name or ; Costeff = name to the command.  Upper and lower confidence limits for the efficiency 
measure based on Bera and Sharma’s (1999) results are obtained by adding  
 
   ; Techeff = name ; CI(95) = lower,upper 
 
(The confidence limit may be 90 or 99.)  The variables will then appear in the data set. 
 In the stochastic frontier model, the main object of estimation is the inefficiency, not the model 
parameters.  The goal function (usually cost or production) is typically linear (in the parameters), so 
partial effects on it are generally not of particular interest either.  However, one might be interested in 
the effects of environmental variables (or the factors of production) on efficiency.  In the model (fit by 
COLS) above, there are three variables, load factor, stage length and points served, that might be of 
interest.  We have installed the PARTIALS command for stochastic frontier models to analyze the 
efficiency measures.  (The program analyzes the JLMS efficiency measure.)   

An example appears below. 
 

FRONTIER ; Lhs = lq ; Rhs = one,lk,lf,ll,lp,loadfctr,stage,points $ 
PARTIALS ; Effects: loadfctr & loadfctr = .2(.02).7 ; Plot(ci) $ 

 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                   LQ 
Log likelihood function       164.81744 
Estimation based on N =    246, K =  10 
Inf.Cr.AIC  =   -309.6 AIC/N =   -1.259 
Variances: Sigma-squared(v)=     .01258 
           Sigma-squared(u)=     .00762 
           Sigma(v)        =     .11215 
           Sigma(u)        =     .08729 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .14212 
Gamma = sigma(u)^2/sigma^2 =     .37727 
Var[u]/{Var[u]+Var[v]}     =     .18043 
Stochastic Production Frontier, e = v-u 
LR test for inefficiency vs. OLS v only 
Deg. freedom for sigma-squared(u):    1 
Deg. freedom for heteroscedasticity:  0 
Deg. freedom for truncation mean:     0 
Deg. freedom for inefficiency model:  1 
LogL when sigma(u)=0          164.73025 
Chi-sq=2*[LogL(SF)-LogL(LS)] =     .174 
Kodde-Palm C*: 95%: 2.706,  99%:  5.412 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      LQ|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Deterministic Component of Stochastic Frontier Model 
Constant|   -1.69727***      .10762   -15.77  .0000    -1.90819  -1.48634 
      LK|     .34481***      .05810     5.94  .0000      .23095    .45868 
      LF|     .78355***      .06540    11.98  .0000      .65538    .91173 
      LL|    -.27036***      .05695    -4.75  .0000     -.38198   -.15875 
      LP|     .10790***      .02655     4.06  .0000      .05587    .15993 
LOADFCTR|    2.76228***      .17512    15.77  .0000     2.41905   3.10550 
   STAGE|     .00021***   .4951D-04     4.22  .0000      .00011    .00031 
  POINTS|     .00071*        .00041     1.74  .0818     -.00009    .00150 
        |Variance parameters for compound error 
  Lambda|     .77835***      .17238     4.52  .0000      .44050   1.11621 
   Sigma|     .14212***      .00047   299.60  .0000      .14119    .14305 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------------------------------------------------------------------- 
Partial Effects  Analysis for JLMS Efficiency estimator in SF Model 
--------------------------------------------------------------------- 
Effects on function with respect to LOADFCTR 
Results are computed by average over sample observations 
Partial effects for continuous LOADFCTR computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dLOADFCTR       Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function      -.45539     .15723    2.90     -.76355     -.14724 
LOADFCTR=   .20    -.03934     .00267   14.76     -.04457     -.03412 
LOADFCTR=   .22    -.04407     .00267   16.53     -.04930     -.03885 
LOADFCTR=   .24    -.04963     .00272   18.27     -.05495     -.04430 
LOADFCTR=   .26    -.05618     .00294   19.11     -.06194     -.05042 
LOADFCTR=   .28    -.06394     .00354   18.08     -.07087     -.05701 
LOADFCTR=   .30    -.07317     .00471   15.54     -.08240     -.06394 
LOADFCTR=   .32    -.08416     .00663   12.70     -.09715     -.07117 
LOADFCTR=   .34    -.09728     .00946   10.28     -.11582     -.07873 
LOADFCTR=   .36    -.11295     .01345    8.40     -.13931     -.08659 
LOADFCTR=   .38    -.13167     .01890    6.97     -.16872     -.09462 
LOADFCTR=   .40    -.15398     .02619    5.88     -.20531     -.10264 
LOADFCTR=   .42    -.18044     .03570    5.05     -.25041     -.11046 
LOADFCTR=   .44    -.21154     .04776    4.43     -.30516     -.11792 
LOADFCTR=   .46    -.24765     .06258    3.96     -.37031     -.12499 
LOADFCTR=   .48    -.28887     .08012    3.61     -.44591     -.13183 
LOADFCTR=   .50    -.33495     .10001    3.35     -.53097     -.13893 
LOADFCTR=   .52    -.38520     .12146    3.17     -.62326     -.14714 
LOADFCTR=   .54    -.43844     .14333    3.06     -.71936     -.15751 
LOADFCTR=   .56    -.49308     .16431    3.00     -.81514     -.17103 
LOADFCTR=   .58    -.54735     .18319    2.99     -.90641     -.18828 
LOADFCTR=   .60    -.59941     .19908    3.01     -.98960     -.20921 
LOADFCTR=   .62    -.64762     .21143    3.06    -1.06203     -.23321 
LOADFCTR=   .64    -.69057     .21994    3.14    -1.12166     -.25948 
LOADFCTR=   .66    -.72708     .22434    3.24    -1.16679     -.28737 
LOADFCTR=   .68    -.75624     .22437    3.37    -1.19600     -.31647 
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WN6.8 Binary Choice Models 
 
 LIMDEP presently supports five functional forms for binary choice models, probit, logit, 
burr, complementary log log and Gompertz.  We have added a sixth, arctangent.  The arctangent 
model is based on a latent variable distribution that has fatter tails than the normal, but less fat than 
the logistic. This is a new model command, ARCTAN.  All optional features and modeling 
environments (random parameters, etc.) that are provided for the other forms are extended here as 
well.  This functional form is also added to the ordered choice modeling environment and to the 
random parameters, latent class and fixed effects modeling environments 
 Some specific changes in the binary choice estimators are as follows: 
 

• Partial effects requested within the command with ; Partials produces average partial 
effects, rather than partial effects at the sample means.  Dummy variable effects are 
computed as first differences. 

 
• Correlations between a binary variable and a continuous variable (known as the biserial 

correlation coefficient) can be computed using the ordinary correlation with CALC                
; Cor(continuous, binary) $ 

 
• To reduce the amount of output, some of the tables previously produced by PROBIT and 

LOGIT have been made optional.  Use ; Summarize to request all fit measure and analysis.  
 

• The random effects probit model is included in the SIMULATE and PARTIALS 
environments. 
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Bivariate Probit, Multivariate Probit, Multinomial Logit 
 

• The correlation between two binary variables (the tetrachoric correlation) can be obtained as 
the correlation coefficient in a bivariate probit model that contains only constant terms.  This 
is now provided in a specific command, 
 

 TCOR  ; Lhs = d1 ; Rhs = d2 $ 
 

• The program now automatically detects the specification of a recursive bivariate probit 
model.  Output and computation of partial effects are adjusted accordingly.  Partial effects 
will show the decomposition between direct and indirect effects. 

 

• The number of bootstrap replications for the partial effects in the multivariate probit model 
may now be specified with ; Nbt = number.  Previously this was fixed by default at 50. 

 

• Partial effects are now provided for the multinomial logit model with random effects.  
 
Fractional Response 
 

The fractional response for panel data developed by Papke and Wooldridge (2008) is a built in 
command, 

FRACTIONAL ; Lhs = y ; Rhs = x ; Pds = panel $ 
 

This model provides the usual post estimation results including predictions and average partial 
effects.  Note that FRACTIONAL is an alternative to the PROBIT and LOGIT models for 
aggregated (grouped) binary data.  These two models with a dependent variable measured as a 
proportion are provided for all cross sectional and panel data environments, so FRACTIONAL and 
these two models should be viewed as alternatives when modeling panel data. 
 

WN6.9 Ordered Choice 
 
 We have added four new ordered choice specifications and several features to the existing 
estimators. The new models are discussed below. Modifications to the present programs are as follows: 
 

• Frequency tables for the outcomes have been added to the output.  An example appears below. 
 

• The algorithm used to fit the bivariate ordered probit model has been greatly improved.  
Computation of any model is now several times faster than previously. 

 

• The correlation between two ordinal outcomes (the polychoric correlation) is the correlation 
coefficient in a bivariate ordered probit model with only constant terms.  This has been 
automated in a single command,  
 

 PCOR ; Lhs = d1 ; Rhs = d2 $  
 

where at least one of the variables is an ordinal outcome. One of them may be binary. (If both 
are binary, use TCOR.) 

 

• Partial effects are now provided for the ordered probit with sample selection model. 
 

• Partial effects in the ordered probit/logit model are voluminous.  We have compressed the 
output a bit.  For an example, the following set of results are given for a model for a variable 
with five outcomes: 
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The commands are: 
 

SAMPLE ; All $ 
REJECT  ; hsat < 6 $ 
CREATE  ; health = hsat-6$ 
NAMELIST ; x = one,age,educ,married,hhkids,hhninc $ 
ORDERED ; Lhs = health ; Rhs = x ; Partials $ 

 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable               HEALTH 
Log likelihood function    -29579.28152 
Restricted log likelihood  -29885.18950 
Chi squared [   5 d.f.]       611.81596 
Significance level               .00000 
McFadden Pseudo R-squared      .0102361 
Estimation based on N =  19186, K =   9 
Inf.Cr.AIC  =  59176.6 AIC/N =    3.084 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.53100***      .05377    28.47  .0000     1.42560   1.63639 
     AGE|    -.01478***      .00077   -19.22  .0000     -.01628   -.01327 
    EDUC|     .02080***      .00333     6.25  .0000      .01427    .02733 
 MARRIED|    -.02538         .02012    -1.26  .2072     -.06481    .01406 
  HHKIDS|     .04575***      .01762     2.60  .0094      .01121    .08029 
  HHNINC|    -.05554         .04453    -1.25  .2123     -.14283    .03174 
        |Threshold parameters for index 
   Mu(1)|     .74557***      .00830    89.85  .0000      .72931    .76183 
   Mu(2)|    1.59255***      .00912   174.54  .0000     1.57467   1.61044 
   Mu(3)|    2.11606***      .01094   193.46  .0000     2.09462   2.13750 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------------------------+ 
|                CELL FREQUENCIES FOR ORDERED CHOICES                | 
+--------------------------------------------------------------------+ 
|               Frequency        Cumulative  < =    Cumulative  > =  | 
|Outcome      Count    Percent   Count    Percent   Count    Percent | 
|----------- ------- ---------  ------- ---------  ------- --------- | 
|HEALTH=00      2570   13.3952     2570   13.3952    19186  100.0000 | 
|HEALTH=01      4191   21.8441     6761   35.2392    16616   86.6048 | 
|HEALTH=02      6172   32.1693    12933   67.4085    12425   64.7608 | 
|HEALTH=03      3061   15.9543    15994   83.3629     6253   32.5915 | 
|HEALTH=04      3192   16.6371    19186  100.0000     3192   16.6371 | 
+--------------------------------------------------------------------+ 
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----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HEALTH|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
     AGE|     .00311***     1.01277    18.94  .0000      .00279    .00344 
    EDUC|    -.00438***     -.39017    -6.23  .0000     -.00576   -.00301 
*MARRIED|     .00531         .04106     1.27  .2039     -.00288    .01350 
 *HHKIDS|    -.00961***     -.07431    -2.60  .0092     -.01684   -.00238 
  HHNINC|     .01171         .03272     1.25  .2123     -.00669    .03011 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
     AGE|     .00236***      .44899    19.13  .0000      .00212    .00260 
    EDUC|    -.00332***     -.17297    -6.24  .0000     -.00437   -.00228 
*MARRIED|     .00407         .01841     1.26  .2089     -.00228    .01042 
 *HHKIDS|    -.00732***     -.03311    -2.59  .0095     -.01286   -.00179 
  HHNINC|     .00888         .01451     1.25  .2124     -.00507    .02282 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
     AGE|    -.00018***     -.02310    -4.71  .0000     -.00025   -.00011 
    EDUC|     .00025***      .00890     3.83  .0001      .00012    .00038 
*MARRIED|    -.00026        -.00079    -1.46  .1435     -.00061    .00009 
 *HHKIDS|     .00051**       .00157     2.40  .0166      .00009    .00093 
  HHNINC|    -.00068        -.00075    -1.21  .2268     -.00177    .00042 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
     AGE|    -.00167***     -.44016   -16.78  .0000     -.00187   -.00148 
    EDUC|     .00235***      .16957     6.13  .0000      .00160    .00311 
*MARRIED|    -.00286        -.01790    -1.27  .2054     -.00728    .00157 
 *HHKIDS|     .00516***      .03233     2.59  .0095      .00126    .00907 
  HHNINC|    -.00628        -.01422    -1.25  .2125     -.01616    .00359 
        |--------------[Partial effects on Prob[Y=04] at means]-------------- 
     AGE|    -.00362***     -.94096   -18.73  .0000     -.00400   -.00324 
    EDUC|     .00510***      .36250     6.24  .0000      .00350    .00670 
*MARRIED|    -.00626        -.03867    -1.25  .2101     -.01606    .00353 
 *HHKIDS|     .01125***      .06949     2.59  .0097      .00273    .01978 
  HHNINC|    -.01362        -.03040    -1.25  .2125     -.03503    .00779 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Cross tabulation of predictions and actual outcomes 
+------+-----+-----+-----+-----+-----+-----+ 
|y(i,j)|  0  |  1  |  2  |  3  |  4  |Total| 
+------+-----+-----+-----+-----+-----+-----+ 
|   0  |    0|    0| 2570|    0|    0| 2570| 
|   1  |    0|    0| 4191|    0|    0| 4191| 
|   2  |    0|    0| 6172|    0|    0| 6172| 
|   3  |    0|    0| 3061|    0|    0| 3061| 
|   4  |    0|    0| 3192|    0|    0| 3192| 
+------+-----+-----+-----+-----+-----+-----+ 
| Total|    0|    0|19186|    0|    0|19186| 
+------+-----+-----+-----+-----+-----+-----+ 
Row = actual, Column = Prediction, Model = Probit 
Prediction is number of the most probable cell. 
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Cross tabulation of outcomes and predicted probabilities. 
+------+-----+-----+-----+-----+-----+-----+ 
|y(i,j)|  0  |  1  |  2  |  3  |  4  |Total| 
+------+-----+-----+-----+-----+-----+-----+ 
|   0  |  383|  592|  825|  387|  384| 2570| 
|   1  |  583|  936| 1350|  652|  670| 4191| 
|   2  |  814| 1346| 1991|  983| 1037| 6172| 
|   3  |  374|  647|  990|  503|  547| 3061| 
|   4  |  408|  687| 1031|  515|  551| 3192| 
+------+-----+-----+-----+-----+-----+-----+ 
| Total| 2562| 4208| 6186| 3040| 3189|19186| 
+------+-----+-----+-----+-----+-----+-----+ 
Row = actual, Column = Prediction, Model = Probit 
Value(j,m)=Sum(i=1,N)y(i,j)*p(i,m). 
Column totals may not match cell sums because of rounding error. 
 
A more detailed report for the partial effects is added to the results above by including ; Full.  
 
+----------------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Model (probit)   | 
| Effects computed at means.  Effects for binary variables (*) are     | 
| computed as differences of probabilities, other variables at means.  | 
| Binary variables change only by 1 unit so s.d. changes are not shown.| 
| Elasticities for binary variables=partial effect/probability = %chgP | 
+----------------------------------------------------------------------+ 
|           Continuous Variable AGE         Changes in AGE        % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00     .00311     .00311     .00000     .03466     .12146    1.01277 
Y = 01     .00236     .00548    -.00311     .02628     .09208     .44899 
Y = 02    -.00018     .00530    -.00548    -.00200    -.00702    -.02310 
Y = 03    -.00167     .00362    -.00530    -.01861    -.06520    -.44016 
Y = 04    -.00362     .00000    -.00362    -.04032    -.14132    -.94096 
+----------------------------------------------------------------------+ 
|           Continuous Variable EDUC        Changes in EDUC       % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00438    -.00438     .00000    -.01050    -.04823    -.39017 
Y = 01    -.00332    -.00771     .00438    -.00796    -.03656    -.17297 
Y = 02     .00025    -.00745     .00771     .00061     .00279     .00890 
Y = 03     .00235    -.00510     .00745     .00564     .02589     .16957 
Y = 04     .00510     .00000     .00510     .01222     .05611     .36250 
+----------------------------------------------------------------------+ 
|          Binary(0/1) Variable MARRIED     Changes in *MARRIED   % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00     .00531     .00531     .00000       -        .00531     .04106 
Y = 01     .00407     .00938    -.00531       -        .00407     .01841 
Y = 02    -.00026     .00912    -.00938       -       -.00026    -.00079 
Y = 03    -.00286     .00626    -.00912       -       -.00286    -.01790 
Y = 04    -.00626     .00000    -.00626       -       -.00626    -.03867 
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+----------------------------------------------------------------------+ 
|          Binary(0/1) Variable HHKIDS      Changes in *HHKIDS    % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00961    -.00961     .00000       -       -.00961    -.07431 
Y = 01    -.00732    -.01693     .00961       -       -.00732    -.03311 
Y = 02     .00051    -.01642     .01693       -        .00051     .00157 
Y = 03     .00516    -.01125     .01642       -        .00516     .03233 
Y = 04     .01125     .00000     .01125       -        .01125     .06949 
+----------------------------------------------------------------------+ 
|           Continuous Variable HHNINC      Changes in HHNINC     % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00     .01171     .01171     .00000     .00211     .03591     .03272 
Y = 01     .00888     .02058    -.01171     .00160     .02722     .01451 
Y = 02    -.00068     .01991    -.02058    -.00012    -.00208    -.00075 
Y = 03    -.00628     .01362    -.01991    -.00113    -.01928    -.01422 
Y = 04    -.01362     .00000    -.01362    -.00245    -.04178    -.03040 
------------------------------------------------------------------------ 
 
 The arctangent functional form discussed earlier for binary choices is also provided for 
ordered choices.  This is added to the list that previously included probit, logit, Gompertz and 
complementary log log.  (The ordered choice estimator does not support the Burr distribution.)  This 
form is requested with ; Model = arctangent. 
 An ordered probit model with endogenous treatment effects is obtained using the standard 
formulation, 
 

PROBIT  ; Lhs = T ; ... ; Hold $ 
OPROBIT   ; Lhs = y ; Rhs = ,...,T ; Selection ; All $ 

 
 The following is a generalized ordered probit model with random parameters and thresholds: 
 

yit* =  βi′xit + εit 

βi   =  β + Γwi, wi ~ N[0,I], Γ = diagonal matrix of standard deviations 

εit   ~  N[0,σi
2],  

σi   =  exp[γ′zi + τvi] vi ~ N[0,1] 
 
The thresholds for the ordered choice model are allowed to be individual specific, and vary with 
observable and unobservable heterogeneity; 
 

µj   =  µj-1 + exp[αj + δ′hi + θj uij]  uij ~ N[0,1], 

µ0   =  0, (because the model contains a constant). 
 

Note that the model parameters are random and the disturbance is heteroscedastic and varies 
randomly across individuals as well.  This model allows a cross section or panel data treatment. The 
random components apart from εit are fixed over all periods. Nothing else need be time invariant.   
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The command for fitting this very elaborate ordered choice model is 
 

ORDERED  ; Lhs = ... 
   ; Rhs = one,...  (β) 
   ; RTM (α, θ) 
   ; RPM to request random betas  (Γ) 
   ; RVM to request random element in σ(i)  (τ) 
   ; Limits = list of variables for thresholds  (δ) 
   ; Het ; Hfn = list of variables $ (γ) 
 
Using SETPANEL and adding ; Panel to the command allows a panel data treatment.  (The model 
is treated as a random parameters specification in any event.) 
 
WN6.10 Limited Dependent Variables 
 
 LIMDEP 10 includes several new variants on the tobit framework and two additional model 
frameworks. 
 Powell’s (1986) robust symmetrically trimmed censored least squares estimator is a 
semiparametric regression approach for censored data.  We have implemented it with a command 
stream that uses the program command language. 
 A second new model, a switching regressions specification with endogenous switching is 
also implemented with the program command language. 
 The basic two equation endogenous treatment effects regression model has previously been 
implemented as a type of sample selection model.  It is now a separate procedure implemented with 
new command, TREATMENT.  (This is the same as the earlier form, SELECT ; All.) 
 Several different extensions of the tobit model are provided.  The double hurdle model adds 
a behavioral equation to the model.  (Yen and Jones (1997) is a standard reference for this model.)  
The two equation model contains a participation equation, 
 
   c*  =  z′α + u, c = 1(c* > 0) 
 
and an intensity equation which corresponds to the usual regression part of the model, 
 
   y*  =  x′β  +  ε. 
 
The observation mechanism is 
 
   y   =  y*  if  y* > 0 and c = 1 and y = 0 otherwise. 
 
With the stochastic assumption of bivariate normality of u and ε, we construct a full information 
maximum likelihood estimator for the full model.  A modification that is intended to deal with 
nonnormality is the inverse hyperbolic sine (IHS) transformation, 
 
   T(y*) =  x′β  +  ε,  where T(y*)  =  log[γy*  +  (1 + (γy*)2)1/2] / γ 

   y       =  T(y*) if T(y*) > 0. 
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The tobit double hurdle model with inverse hyperbolic sine transformation and heteroscedasticity is 
implemented as a modification of the TOBIT command.  The full model is also extended to the 
random parameters and latent class panel data frameworks.  The IHS transformation may be used for 
the tobit model without the hurdle specification.  All specifications also allow the exponential 
heteroscedasticity used in many other models in LIMDEP. We have also developed an 
implementation of the IHS double hurdle model that includes both random effects and latent classes. 
 

WN6.11 WALD Command 
 

The WALD command now allows using data in functions.  This is a major change in the 
operation of this feature.  In previous versions of LIMDEP, WALD would be used only for functions 
that did not involve summing observations.  For example, using WALD to obtain partial effects 
would be done using the means of the observations in the sample.  If the name of a variable appeared 
in the function definition, it would be unpredictable which single observation would be used to 
compute the function unless WALD were preceded with a specific SAMPLE ; observation 
number $ such as SAMPLE ; 1 $ 

In LIMDEP 10, if a variable name appears in the function definition in WALD, the datum 
used will be the mean value of the nonmissing values for that variable in the current sample. 
However, if the command contains ; Average, then the functions in WALD are averaged over the 
observations in the current sample.  Missing values are automatically skipped.  This allows 
computation of average partial effects and computes the standard errors correctly with average 
Jacobians.  This provides a method of computing average values of arbitrary functions with standard 
errors and confidence intervals.  The PARTIALS command expands this idea.  This feature may be 
used with the delta method or with the Krinsky and Robb method. 
 There have also been several extensions of the existing command. 
 

• Function definitions may provide names and use the names in subsequent functions. For 
example, 

 

 WALD ; Parameters = coefficients 
   ; Covariance = the covariance matrix 
   ; Labels = the set of labels 
   ; Fn1 = direct = definition 
    ; Fn2 = indirect = definition  
   ; Fn3 = total = direct + indirect $ 
 

The output from the command will label the functions with these descriptives. 
 

• WALD can analyze up to 50 functions in each command. 
 

• For self documentation, ; Start may be replaced with ; Parameters and ; Var may be 
replaced with ; Covariance in the command. 

 
• WALD creates three matrices, jacobian contains the matrix of derivatives of the functions 

with respect to the parameters, waldfncn contains the function values and waldfnse contains 
the vector or standard errors of the computed functions. 

 
• The individual observations on the function values may be saved as a variable when               

; Average is used.  This also saves the estimated standard errors as a variable in the data set. 
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WN6.12 Nonlinear Optimization 
 

MAXIMIZE and MINIMIZE have been fine tuned to operate somewhat more simply.  In 
prior implementations, if a function to be maximized did not involve summation over the data set, it 
was necessary to use SAMPLE ; 1 $ to prevent the program from recomputing the same function N 
times.  (The maximizer of Nf(x) is the same as that of f(x), but it takes N times as long to find it.)  
LIMDEP will now detect at the time it parses the command whether a loop through the data set is 
needed for the optimization, and adjust the setup accordingly.  A useful extension will be the 
expansion of the number of subfunctions from 20 to 50.  Three new functions are provided for the 
optimization commands, Min(a,b), Max(a,b) and Sgn(x).  (Users note, none of these are continuous, 
so it may be problematic to use them as functions of the parameters in commands.) 

MAXIMIZE and MINIMIZE now allow random parameters and panel data.  Separate 
commands, RPMIN and RPMAX are provided for the purpose.  The function maximized or 
minimized is optimized by simulation based estimation.  The criterion function is 

 
f(β,∆,σ,Γ) =  log [(1/R) Σr  Πt g(xit, βir)   where βir  =  β  +  ∆zi  +  σ.vi  +  Γvi 

 
vi  = random draws from user specified distribution, 
σ  = vector of scale factors for random parameters, 
Γ  = Cholesky matrix to allow correlated random parameters, 
zi  = observed heterogeneity, 
∆  = parameter matrix, 
β  = constant terms in distributions of random parameters, 
xit = vector of variables that enter the function. 

 
The procedure is set up with a command that includes the following: 
 
   ; Fcn = function definition using rules set up for MAXIMIZE 
   ; Labels = specification   
   ; Labels = name (start value) for a nonrandom parameter 
             or name [start value] for a parameter that is fixed at value 
             or name (start value | type) for random parameter 
     type = n for normal 
      c for constant (nonrandom) 
      t for triangular ranges from -1 to +1 
      u for uniform ranges from -1 to +1 
      o for one sided triangle. Ranges = 0 to 2β 
      z for truncated normal (-1.96 to +1.96) 
         (use z if you plan to have exp(name) in the function 
   ; Pds = specification if panel data estimation 
 
The specification of zi = for ∆zi in the parameter definition is optional and provided with  
 

; RPM = list of variables in zi.   
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Random parameter specifications may also contain a pattern, name (start | value | pattern), 
where the pattern is a string of 1s and 0s to indicate that the respective variable in z appears or does 
not appear in the distribution of the particular parameter.  Some other options for this procedure are 
 

; Cor  to allow for nonzero Γ 
; Draws  to provide the number of draws (R) – the default is 250 
; Par to save conditional means of parameters 
; Halton  to use Halton sequences rather than random draws. 

 
WN6.13 Numerical Analysis 
 
 Two new commands, FUNCTION and SOLVE are provided for analyzing functions that 
you define.  The specifications of the FUNCTION command are: 

 
    FUNCTION  ; Labels = names to be used for the function parameters,  

; Parameters = list of values to be used for parameters, 
; Fcn = the definition of the function 
; Keep = a variable in which function values are stored $ 
 

The FUNCTION command evaluates the function at the parameter values for each observation in 
the current sample and stores the results in variable named.  The function may be anything that can 
be specified for MAXIMIZE.  The sample may be any group of observations, and need not be the 
sample used to compute the parameter values.  This procedure will also save the N×K matrix of 
derivatives in a namelist by using the subcommand 
 

; derivatives = namelist. 
 

The SOLVE command is used to find the roots, or zeros of a function in one dimension.  
The numerical problem is to find the set of x values for which the function f(x,β,z) = 0.  The function 
can involve parameters, variables, matrices, etc., as well as the argument x, which is the object of the 
search.  The program uses a grid search and Newton’s method to find the roots of f(.) in the specified 
range of x.  The command is 
 

SOLVE  ; Labels = label(s) in the function 
; Fcn = function definition 
; Start = interior point in function and fixed values for the nonvarying 

  parameters 
; Vary (the label of the x to be analyzed) 
; Limits = low,high to specify the range 
; Pts = number of points to scan 
[; Plot if the function is to be plotted as a function of x] $ 

 
The following locates the values between -10.0 and +10.0 at which cos(x) = 0.  

 
SOLVE    ; Fcn = cos(x) ; Start = 1 ; Limits = -10,10 ; Labels = x  

; Pts = 1000 ; Vary(x) $ 
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Newton iterations to search for any root near    1.000000 
Iteration  X         Function   Newton Step 
    1    1.000000     .540302       .642093 
    2    1.642093    -.071236      -.071417 
    3    1.570675     .000121       .000121 
    4    1.570796     .000000       .000000 
Found  6 roots in the range X       =  -10.0000 to    10.0000 
|---Interval Limits---|    Root=Midpoint      F(root) 
  -7.85786     -7.83784       -7.85398        .00000153 
  -4.71471     -4.69469       -4.71238       -.00000893 
  -1.57157     -1.55155       -1.57080       -.00000370 
   1.55155      1.57157        1.57080       -.00000370 
   4.69469      4.71471        4.71238       -.00000893 
   7.83784      7.85786        7.85398        .00000153 
 
WN7 Random Sampling and Bootstrapping 
 
 LIMDEP 10 introduces two extensions of its procedures for random sampling and several 
new distributions in the set of random number generators. 
 

• The default random number generator in previous versions has been L’Ecuyer’s generator, 
which passes all randomness tests, and has a period of about 2130.  This is essentially infinite 
for practical purposes.  We have now added a second, recently developed generator, the 
Mersenne Twister, which has been adopted in several other well known mathematics and 
statistics packages.  The Mersenne Twister is also a ‘bulletproof’ generator that has a period 
that apparently approaches 210000.  No conceivable application could approach this boundary. 

 
• Bootstrap procedures may now use ‘block’ bootstraps for sampling from panel data sets.   

Sampling groups from panels, with or without replacement, is no more complicated than the 
estimation procedures.  Once the panel is defined with a SETPANEL command, a random 
sample from the panel is drawn with 

 
      DRAW  ; N = desired number of groups  

; Panel $ 
 

Bootstrapping with panel data is equally simple.  The command builds on the basic form 
 
      EXECUTE  ; N = desired number of iterations 
   ; Bootstrap = the entity being studied (scalar or vector) 
   ; Panel $ 
 

• Random number generators have been installed for inverse gauss, multivariate normal and 
triangular populations.  More than 20 distributions are now supported. 
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WN8 Panel Data Handling 
 
 LIMDEP’s data input and output features have been improved in several directions.  Panel data 
sets have become more convenient for analysis.  We have also added a number of transformation 
functions specifically for panel data sets.  Input formats have been added.  The default ASCII file 
format is now more convenient – the input requires only identification of the file name. 
 

WN8.1 Panel Data Setting 
 

Panel data estimators are set up by adding the correct ; Pds = specification to an existing model 
command. It is necessary to be careful at all points that the specification actually matches the sample in 
use. This can break down if you change the sample between model commands. The new command   
 

SETPANEL  ; Group = group identification variable 
; Pds = a variable to use for the group counts $ 

 
takes care of the internal accounting and eliminates this complication.  After issuing this instruction, 
you will just use ; Panel in any panel data command.  For example, the data are input as an 
unbalanced panel data set.  The SETPANEL command defines the panel parameters with respect to 
the full data set.  The REJECT command appears to interrupt the panel definition, however, the 
appropriate arrangement is maintained for the REGRESS command using the subset of observations 
 
 … input of health care data set … 
 SAMPLE ; All $ 
 SETPANEL ; Group = id ; Pds = groupti $ 
 REJECT  ; working = 0 $ 
 REGRESS ; Lhs = hhninc ; Rhs = one,age,educ ; Panel $ 
 
This setting is embedded in the project file, so after you make the definition, it will remain in force 
when you reload your project.  (It can be reset at any time with another SETPANEL command.) 
 

WN8.2 Transformations for Panel Data 
 
 The following new functions are available for transforming panel data with CREATE.  The  
functions provided for manipulating panel data are 
 

Function Syntax    Function Result 
Group Size (id variable)     Count variable   
Group Nmbr (count variable)     ID variable 
Group Time (id variable)    Internal counter, 1,2,3,…Ti, 
Group Mean (variable, Pds = count variable) Group means, repeated in each cell 
Group Sums (x, Pds = count variable)  Group sums, repeated in each cell 
Group Devs (variable, Pds = count variable) Deviations from group means 
Group Lags (variable, Pds = count variable) Lagged values within group 
Group Diff (variable, Pds = count variable) First difference within group 
Group Prod (variable, Pds = count variable) Within group product of cells 
Group Obs1 (variable, Pds = count variable) First observation in group, repeated 

 
The Group Time function is replicated as Prd (id variable). 
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WN8.3 Spreadsheets and Panel Data 
 
 The READ command 
 

READ  ; File = … xls 
; Format = xls or csv 
; Nobs = the number of observations 
; Group = panel specification, either fixed number or group size variable $ 

 
will interleave the variables in the file into the panel.  For example, suppose a panel contains 100 
groups of five observations.  The first file read contains 500 observations on time varying variables, 
including a group identifier.  Since the group size is fixed at five, the file read by the READ 
command contains 100 observations.  Each of the 100 observations is replicated five times in the 
data set. 
 
WN9 Data Import and Export 
 
 Import of specific types of data files has been streamlined. 
 
WN9.1 Default Formats 
 
 A data file that contains a single line of names at the top and data in the following rows 
separated by commas, tabs, or spaces (this would cover almost any ASCII file) can be imported with 
the simple 
 
 IMPORT ; File = the name of the file $ 
 
The full READ command should rarely be necessary. 
 LIMDEP cannot read Excel’s .xlsx format directly.  However, two single click options in 
Excel allow you to export data files from Excel to LIMDEP easily.  Use Save As to save the file as a 
.csv file.  LIMDEP can read these directly, using the IMPORT command as shown above, just by 
providing the path to the file.  Alternatively, you can use Save As and save the data in the 1997-
2003 .xls format.  We note, the files created by Excel 2007 with this format do not actually conform 
to Microsoft’s own (BIFF8) format for .xls files, so they usually cannot be read by LIMDEP.  The 
same files written by Excel 2010 are in the correct format, and generally can be read.  However, 
readers are warned that .xls files cannot exceed 16,384 observations, so this may still be problematic.  
The .csv files are unlimited.  We strongly recommend this format. 
 
WN9.2 Stata’s .dta Format   
 
 LIMDEP can import a data file in Stata’s native .dta format by using ; Format = dta in a 
READ command.  Users are warned, this format is changed from time to time.  We know it works 
with Stata up to Version 10.  We cannot guarantee results with versions after Version 10. 
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WN9.3 Documentation in Project Files  
 
 Data contained in a project file can be documented in the file by using the following device:  
Before saving the project file, use 
 
 DATA 
 … up to 255 lines of text each containing up to 80 characters 
 ENDATA 
 
This script embeds the documentation in the project file.  When it is reloaded, the documentation is 
displayed in the output window. 
 
WN9.4 Exporting Data 
 
 The new command  
 

EXPORT ; list of variables ; File = file name $ 
 
creates a .csv file that can be imported into Excel and other spreadsheets as well as other 
applications.  The .csv format is a generic ASCII format that is used in most applications.  The new 
command, IMPORT reads .csv files just as easily.  Only the file name is needed. 
 
WN9.5 Export to the Output Window 
 
 For creating small data files, one convenient method is to write them in the output window 
first, then copy them to some other destination.  Use  
 

WRITE  ; list of variables $ without a file name. 
 

WN10 Transformation Functions for CREATE 
 
 Numerous new functions, in addition to the panel data features, have been added to 
CREATE.  In addition, a few extensions have been added to the general command. 
 
WN10.1 Clearing Columns in the Data Area 
 
 The generic command 
 

CREATE  ; var1,var2, … varM $   
 
which contains only a list of variable names separated by commas clears columns in the data matrix 
with these names and fills them with missing values. 
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WN10.2 Using NAMELIST to Create a Template for a Data Matrix 
 

This form of the NAMELIST command will create a set of empty variables and collect 
them in a namelist.  It is equivalent to a series of CREATE commands followed by a NAMELIST 
command.  The command form is 
 

 NAMELIST  ; (new) ; new name = a list of new names $ 
 

The new variables are filled with missing values (-999).  Alternatively, (new) may also be (new = 0), 
(new = N) or (new = U) for filling with zeros, normal random values or  uniform random values, 
instead of missing values.  
 
WN10.3 SORT 
 

SORT now allows 250,000 observations 
 
WN10.4 CREATE Functions 
 
 The following new functions are provided for CREATE, and are all added to CALC and 
MAXIMIZE/MINIMIZE as well. 
 

Abs(z)  =  absolute value of z, 
Sgn(z)   =  -1, 0, +1 if z is less than, equal to or larger than zero, 

 Min(z1,z2) =  minimum of z1 and z2, 
 Max(z1,z2) =  maximum of z1 and z2, 
 Ash(z)  =  hyperbolic arc sin(z) = log(z + (1 + z2)1/2), 
 As1(z)  =  derivative of Ash(z) = (1 + z2)-1/2 , 
 Ach(z)  =  hyperbolic arc cos(z) = log(z + (z2 – 1)), 
 Ac1(z)  =  derivative of Ach(z) = (z2 – 1)-1/2, 
 Ath(z)  =  hyperbolic arc tan(z) = .5log((1 + z)/(1 – z)), 
 At1(z)  =  derivative of Ath(z) = (1 – z2)-1, 
 Hsn(z)  =  hyperbolic sin(z) = .5(exp(2z)-1)/exp(z), 
 Hs1(z)  =  derivative of Hsn(z) = Hcs(z), 
 Hcs(z)  =  hyperbolic cos(z) = .5(exp(2z)+1)/exp(z), 
 Hc1(z)  =  derivative of Hcs(z) = Hsn(z), 
 Htn(z)  =  hyperbolic tan(z) = Hsn(z)/Hcs(z), 
 Ht1(z)  =  derivative of Htn(z) = 1/Hcs2(z), 
 Bvn(z1,z2,ρ)  =  bivariate normal CDF, 
 Bvd(z1,z2,ρ) =  bivariate normal density, 
 Bv1(z1,z2,ρ) =  bivariate normal derivative wrt x1. 
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WN10.5 Stacking Variables with CREATE 
 
 The function Stk(…) is used to stack variables in the data set.  This is similar to the 
NAMELIST command which (virtually, not physically) arranges columns of data in a matrix.  
Stk(…) operates as shown in the example below, which creates a 75×1 data vector and a 75×9 data 
matrix from a data set with 25 observations. 
 

SAMPLE ; 1-25 $ 
CREATE  ; zeros = 0 ; ones = 1 $ 
CREATE  ; shares = Stk(sk / sl / se ) $ 

 
+--------------------------------------------+ 
| Stack operation created namelist SHARES    | 
| The  1 variables are SHARES01...           | 
| There are  3 blocks of observations.       | 
| The total number of observations is    75  | 
| The sample has been reset to   1 -     75  | 
+--------------------------------------------+ 

 
CREATE  ; xmat = Stk (ones,zeros,zeros,km,lm,em,zeros,zeros,zeros / 

                                   zeros,ones,zeros,zeros,km,zeros,lm,em,zeros / 
                                                         zeros,zeros,ones,zeros,zeros,km,zeros,lm,em) $ 
 

+--------------------------------------------+ 
| Stack operation created namelist XMAT      | 
| The  9 variables are XMAT01  ..., XMAT09   | 
| There are  3 blocks of observations.       | 
| The total number of observations is    75  | 
| The sample has been reset to   1 -     75  | 
+--------------------------------------------+ 

 
WN11 Programming Tools 
 
 The main programming tools are EXECUTE for procedures, MAXIMIZE and 
MINIMIZE, and CREATE, MATRIX and CALC.  New capabilities have been added for each of 
these. 
 
WN11.1 Executing Procedures 
 
 The EXECUTE command can set the current sample for the duration of the procedure in the 
following ways: 

  ; Sample = current  
  ; Sample = the name of a dummy variable – the observations are those 
   with the variable equal to one 
  ; Sample = i1,i2 to use a range of observations 
  ; Sample = all to set the sample to the full data set 
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Execution of procedures modifies variables, matrices and scalars globally.  You can define 
matrices, scalars and variables to exist within the context of the procedure.  For example, 

 
PROCEDURE 
LOCAL ; scalar = rhoab $ 
LOCAL ; variable = y1 $ 
LOCAL ; matrix = b1, vb1 $ 
… commands that modify these entities … 
ENDPROC 
EXECUTE 

 
The local variables, matrices and scalars are used only by the procedure.  If entities with the same 
name(s) exist outside the procedure, they are not changed.  For example, if there were already a 
scalar named rhoab before the procedure were defined and executed, then the external rhoab would 
not be changed by the procedure, and the local rhoab would disappear after the procedure is carried.  
Local entities are exported from the procedure just by equating them to external entities.  For 
example, if the procedure above contained  
 

CALC  ; newrhoab = rhoab $  
 
then after the EXECUTE command is finished, newrhoab would survive with the value of rhoab 
computed during the procedure. 
 
WN11.2 Matrix Functions 
 

The following are new matrix functions:  This function initializes vectors: 
 
Ones(n)  = column of n ones 
 

The Ktau function creates a matrix of correlations coefficients using Kendall’s τ rather than the 
familiar Pearson correlation coefficient;   
 

Ktau(list of variables)  =  Kendall’s tau matrix form 
 
This function constructs a block diagonal matrix from the list of square matrices (or scalars).   
 

Blkd(matrix, matrix, scalar, ...) 
 
The following four functions transform matrices into vectors: 
 

Runr(matrix) =  row vector formed from rows 
Runc(matrix) =  row vector formed from columns 
Stkr(matrix) =  column vector formed from rows 
Stkc(matrix) =  column vector formed from columns 
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The Vech function is used to extract the unique elements from a symmetric matrix, 
 

Vech(square matrix) forms a vector from the lower triangle of a matrix. 
 
The following are scalar valued functions of square matrices: 
 

2nrm(matrix)  =  matrix 2 norm = largest singular value 
Norm(namelist) =  square root of trace(x’x) 

 
A general syntax for forming central moment matrices is 
 

x’[1]x or x’[1]x or x’[1]z. 
 
The elements x, y and z are namelists or a single variable.  The following forms are used to extract 
parts of a matrix 
 

vector(-j)  =  vector without element j 
matrix(-j,-m)  =  matrix without row j and column m 
matrix(j,-m)    =  row j without element m 
matrix(-j,m)  =  column m without element j 

 
WN11.3 New CALC functions 
 
 CALC has been extended to include the new functions in MATRIX and CREATE and 
several additional scalar valued results.  The following functions are the same as used by CREATE: 
 
 Sgn(z)  =  signum(z) = -1,0,+1 if z <, =, > 0 
 Min(z1,z2) =  minimum of z1 and z2 
 Max(z1,z2) =  maximum of z1 and z2 
 Ash(z)  =  hyperbolic arc sin(z) = log(z + (1 + z2)1/2) 
 As1(z)  =  derivative of Ash(z) = (1 + z2)-1/2  
 Ach(z)  =  hyperbolic arc cos(z) = log(z + (z2 – 1)) 
 Ac1(z)  =  derivative of Ach(z) = (z2 – 1)-1/2 
 Ath(z)  =  hyperbolic arc tan(z) = .5log((1 + z)/(1 – z)) 
 At1(z)  =  derivative of Ath(z) = (1 – z2)-1 
 Hsn(z)  =  hyperbolic sin(z) = .5(exp(2z)-1)/exp(z) 
 Hs1(z)  =  derivative of Hsn(z) = Hcs(z) 
 Hcs(z)  =  hyperbolic cos(z) = .5(exp(2z)+1)/exp(z) 
 Hc1(z)  =  derivative of Hcs(z) = Hsn(z) 
 Htn(z)  =  hyperbolic tan(z) = Hsn(z)/Hcs(z) 
 Ht1(z)  =  derivative of Htn(z) = 1/Hcs2(z) 
 Bvn(z1,z2,ρ)  =  bivariate normal CDF 
 Bvd(z1,z2,ρ) =  bivariate normal density 
 Bv1(z1,z2,ρ) =  bivariate normal derivative wrt x1 
 Bv2(z1,z2,ρ) =  bivariate normal derivative wrt x2 
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These functions are specific to CALC: 
 

Bdd(z,a,b)  =  beta density 
Inp(z)   =  inverse normal (same as Ntb) 
Pnl(pds variable) =  returns average group size for a panel 
Kst(variable)  =  Kolmogorov – Smirnov test for normality 

 Kp1 (degrees of freedom)  =  1% Kodde-Palm critical value for d.f. 
 Kp5 (degrees of freedom)  =  5% Kodde-Palm critical value for 1 d.f. 
 
The following scalar valued functions of a matrix replicate some MATRIX functions 
 

Rnk(matrix) =  rank of matrix 
Trc(matrix) =  trace of matrix 
Det(matrix) =  determinant of matrix 
Nrm(matrix) =  norm of matrix = trace of matrix’matrix 
2nr(matrix) =  2 norm of matrix = largest singular value 
Cnm(matrix) =  condition number of matrix 
Lmd(matrix) =  log determinant of matrix 

 
The following functions operate on variables in the data set: 
 
 Cnc(variable1,variable2) =  coefficient of concordance 
 Ktr(variable1,variable2) =  Kendall’s tau 
 Sku(variable) =  skewness coefficient, third moment 
 Krt(variable) =  kurtosis coefficient, fourth moment 
 Rb1(variable) =  Sku(variable) / s3 
 Rb2(variable) =  Krt(variable) / s4. 
 

WN12 Program Results 
 
 General program output has been slightly reformatted.  The following results are produced 
for a probit model: 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -17701.08500 
Restricted log likelihood  -18019.55173 
Chi squared [   3 d.f.]       636.93347 
Significance level               .00000 
McFadden Pseudo R-squared      .0176734 
Estimation based on N =  27326, K =   4 
Inf.Cr.AIC  =  35410.2 AIC/N =    1.296 
FinSmplAIC  =  35410.2 FIC/N =    1.296 
Bayes IC    =  35443.0 BIC/N =    1.297 
HannanQuinn =  35420.8 HIC/N =    1.296 
Model estimated: Jan 09, 2012, 17:51:41 
Hosmer-Lemeshow chi-squared = 131.33234 
P-value=  .00000 with deg.fr. =       8 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .02159         .05307      .41  .6842     -.08243    .12560 
     AGE|     .01532***      .00071    21.70  .0000      .01394    .01671 
    EDUC|    -.02793***      .00348    -8.02  .0000     -.03475   -.02111 
  HHNINC|    -.10204**       .04544    -2.25  .0247     -.19109   -.01298 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
There are several differences from the counterpart in Version 9.  The most prominent difference is 
the replacement of the means of the covariates in the rightmost column with a confidence interval for 
the estimated value.  The default level is 95%.  This can be changed by adding  
 
   ; Clevel = value  
 
to the (any) estimation command.  The value may be any desired from 0.10 to 0.99.  The standard 
results generally do not include the last three lines of variants on the information criteria.  The extra 
results were obtained by setting 
 
   ; Output = IC 
 
in the command.  (The command may have ; Output = some other setting for some other purpose 
as well, for example, ; Output = IC ; Output = 3.)  The additional information criteria can be 
suppressed with ; Output = noic. 
 The embedded matrix of results reported as a blue rectangular icon, 
 

 
 
is no longer reported automatically.  You may request it specifically with any model by adding           
; Matrix to the command. 
 The following two changes are provided for self documentation in command streams: 
 

; Covariance is the same as ; Printvc.  
 It may be abbreviated ; Cov 
 
; Partial Effects is the same as ; Marginal Effects. 
 It may be abbreviated ; Part 
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The MATRIX function Stat(vector,matrix,namelist) has been used to display estimation 
results produced by user written procedures.  A new command, DISPLAY, is provided to give 
access to the standard output format.  The general command is 
 
 DISPLAY  ; Parameters = vector 
   ; Covariance = matrix  may be a vector of variances 
   ; Labels = namelist or list of labels  $ 
 
The basic form provides a standard table in the same format as the built in estimation commands.  
For the example above, we could use 
 

NAMELIST  ; x = one,age,educ,hhninc$ 
DISPLAY ; Parameters = b  

; Covariance = varb  
; Labels = x $ 

 
User Specified Model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 LHSVar.|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .02159         .05307      .41  .6842     -.08243    .12560 
     AGE|     .01532***      .00071    21.70  .0000      .01394    .01671 
    EDUC|    -.02793***      .00348    -8.02  .0000     -.03475   -.02111 
  HHNINC|    -.10204**       .04544    -2.25  .0247     -.19109   -.01298 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Note the use of NAMELIST to provide the names to be used for the estimates.   There are some 
additional options that may be added to the DISPLAY command:  
 

; Title = a title string  
; Test: the usual setup, using the labels 
; Logl = a log likelihood  

 
These will add information to the output produced by DISPLAY. 
 
WN12.1 New Use for Namelists 
 
 The functionality of NAMELIST has been extended.  Note in the example above, the 
namelist x is used to provide a set of names for the display of results.  The use of namelist in that 
context is only to provide a set of names – the names of the variables in the list.  Namelists may now 
be used in any context where a set of labels is desired.  The usual place for that usage will be in the 
DISPLAY command and in the MATRIX Stat function shown earlier.  However, there will be other 
cases as well. 
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WN12.2 New CLIST Command to Define a List of Labels 
 

The command has narrow scope. It will be used in some graphics commands such as 
constructing histograms.  The form is 
 

CLIST   ; name = a set of labels $ 
 
Two alternative forms are 
 
   ; name = _obs_ 
and   ; name = _group_ 
 
The second is used with panel data.  The  CLIST command creates a set of labels (text strings) that 
are used in some specific settings: 
 
    ; Labels = name in optimization 
   ; Labels = list in histogram 
   ; Labels = list in crosstab 
   ; Choices = list in NLOGIT and CLOGIT 
 
The CLIST command can manage the lists in the same fashion as NAMELIST.  
 
 CLIST   ; List name $ 
 CLIST   ; Delete name $ 
 
The character lists appear as a new data item in the project window. 
 
WN13 Technical Program Settings 
 
 There are numerous technical program settings, such as the convergence criteria for the 
solver.  You can obtain a listing of these with the command DEFAULT.  For example, at the time of 
the estimation of the probit model in the preceding example, we obtain the following listing 
 
Current Settings of Program Defaults for Estimation 
--------------------------------------------------- 
Convergence criteria for optimization program 
            Change in function       .0000000 
            Change in parameters     .0000000 
            Derivative criterion     .0000010 
Maximum iterations                        100 
Technical output during iterations          0 
Information criteria beyond AIC             0 
Hermite quadrature points                  40 
Gauss Laguerre quadrature points           20 
Number of draws for simulations           100 
Confidence level in confidence intervals  95% 
Maximum utility in multinomial choice   100.0 
--------------------------------------------------- 
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These settings can be changed by various settings described in this reference guide.  They are 
generally changed during estimation of an estimation command, then they revert back to the defaults.  
The specific commands can be set permanently by an estimation command by adding ; Set to the 
command.  The settings will remain in place for the duration of the current session. 
 The settings above are the program defaults that are set when LIMDEP is started.  You can 
embed a different set of defaults in a project file by the three steps: 
 
 Model Command ; … ; Set $ 
 DEFAULT ; … $ 
 SAVE  ; … $ 
 
The second command puts the technical settings in the project.  The third command saves the 
settings in the project.  When you start up LIMDEP, the original defaults will be installed.  When 
you then load the project, the settings embedded in the project will replace the program defaults. 
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R1: Introduction to LIMDEP Version 10 
 
 The documentation for LIMDEP is divided into two parts:  this Reference Guide and a 
separate Econometric Modeling Guide. The LIMDEP Reference Guide describes how to use 
LIMDEP to read a data set, establish the current sample, compute transformations of variables, and 
carry out other functions that get your data ready to use for estimation purposes.  Several important 
tools, such as the matrix algebra program, scientific calculator and program editor are described here 
as well.  The LIMDEP Reference Guide also describes general features of the program used in most 
model frameworks, including computing partial effects, general tools for testing hypotheses, panel 
data models and using multiple imputation for filling missing data.  The second part of the manual, 
the Econometric Modeling Guide describes specific modeling frameworks and instructions to be 
used for fitting these models.  For NLOGIT Version 5 users, there is a separate manual, the NLOGIT 
Reference Guide dedicated to the special features of NLOGIT.  
 
R1.1 The LIMDEP Program 
 
 LIMDEP is oriented toward cross section and panel data.  But, many standard techniques for 
time series analysis are supported as well.  LIMDEP’s basic procedures for data analysis include: 
 

• descriptive statistics (means, standard deviations, minima, etc.), with stratification, 
• kernel density estimation, histograms, and other broad descriptive tools, 
• univariate tests such as equality of means, 
• cross tabulations, histograms, and scatter plots of several types, 
• multiple linear regression, 
• nonparametric regression, 
• time series identification, autocorrelations and partial autocorrelations, 
 

You can also model the sorts of extensions of the linear regression model normally needed for 
teaching and research, such as: 
 

• heteroscedasticity with robust standard errors, 
• autocorrelation with robust standard errors, 
• multiplicative heteroscedasticity, 
• groupwise heteroscedasticity and cross sectional correlation, 
• the Box-Cox regression model, 
• one and two way random and fixed effects models for balanced or unbalanced panel data, 
• distributed lag models, ARIMA, and ARMAX models, 
• time series models with GARCH effects, 
• dynamic linear models for panel data, 
• nonlinear single and multiple equation regression models, 
• seemingly unrelated linear and nonlinear regression models, 
• simultaneous equations models. 

 



R1: Introduction to LIMDEP Version 10 R-52 

 LIMDEP is best known for its extensive menu of programs for estimating the parameters of 
nonlinear models for qualitative and limited dependent variables.  (We take our name from LIMited 
DEPendent variables.)  No other package supports a greater variety of nonlinear econometric 
models.  Among LIMDEP’s more advanced features, each of which is invoked with a single 
command, are: 
 

• univariate, bivariate and multivariate probit models, probit models with partial observability, 
sample selection, heteroscedasticity and random effects, 

• Poisson and negative binomial models for count data, with fixed or random effects, sample 
selection, underreporting, and numerous other models of over- and underdispersion, 

• two part models such as hurdle and zero inflation, 
• tobit and truncation models for censored and truncated data, 
• models of sample selection with one or two selection criteria, 
• parametric and semiparametric duration models with time varying covariates, 
• stochastic frontier regression models, 
• ordered probit and logit models, with censoring and sample selection, 
• switching regression models, 
• nonparametric and kernel density regression, 
• fixed effects models, random parameters models and latent class models for over 25 

different linear and nonlinear model classes, 
 
and over fifty other model classes.  Each of these allows a variety of different specifications.  Most 
of the techniques in wide use are included.  Among the aspects of this program which you will notice 
early on is that regardless of how advanced a technique is, the commands you use to request it are 
the same as those for the simplest regression.   
 NLOGIT Version 5 includes all the features of LIMDEP Version 10 and offers in addition: 
 

• FIML estimation of nested logit models with up to four levels including several formats that 
build in assumptions of utility maximization, 

• LIML estimation of conditional and multinomial logit models, 
• heteroscedastic extreme value models, 
• covariance heterogeneity in nested logit models, 
• random parameters logit models for cross sections and panel data, 
• multinomial probit and multiperiod multinomial probit models for panel data, 
• generalized nested logit models with overlapping nests, 
• kernel logit models with several different formats of individual effects, 
• heteroscedastic random parameters models, 
• the random regret form of the multinomial logit model, 
• multinomial choice models with nonlinear utility functions, 
• numerous forms of latent class multinomial logit models, including random parameters, 
• generalized mixed logit models. 
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 LIMDEP also provides numerous programming tools, including an extensive matrix algebra 
package and a function optimization routine, so that you can specify your own likelihood functions 
and add new specifications to the list of models.  All results are kept for later use.  You can use the 
matrix program to compute test statistics for specification tests or to write your own estimation 
programs.  (The manual contains numerous examples.)  The structure of LIMDEP’s matrix program 
is also especially well suited to the sorts of moment based specification tests suggested, for example, 
in Pagan and Vella (1989) – all the computations in this paper were done with LIMDEP.  The 
programming tools, such as the editor, looping commands, data transformations, and facilities for 
creating ‘procedures’ consisting of groups of commands will also allow you to build your own 
applications for new models or for calculations such as complicated test statistics or covariance 
matrices.  A new package of programs allows analysis of partial effects of any number of interaction 
terms and any degree of complexity, for any variable in any model, or in any modification of a 
model that you can formulate yourself. 
 Most of your work will involve analyzing data sets consisting of externally generated 
samples of observations on a number of variables.  You can read the data, transform them in any way 
you like, for example, compute logarithms, lagged values, or many other functions, edit the data, 
and, of course, apply the estimation programs. You may also be interested in generating random 
(Monte Carlo) samples rather than analyzing ‘live’ data.  LIMDEP contains random number 
generators for 15 discrete and continuous distributions including normal, truncated normal, Poisson, 
discrete or continuous uniform, binomial, logistic, Weibull, and others.  A facility is also provided 
for random sampling or bootstrap sampling from any data set, whether internal or external, and for 
any estimation technique you have used, whether one of LIMDEP’s routines or your own estimator 
created with the programming tools.  LIMDEP also provides a facility for bootstrapping panel data 
estimators, a feature not available in any other package. 
 
R1.2 Econometric Techniques 
 
 This manual is devoted to use of this program.  As such, there is relatively little instructional 
material on the econometric models and techniques.  Where possible, we have included sources to 
refer to and a small amount of background material.  For those users not already experienced in 
empirical econometrics, some references to consider are as follows:  
 
Two widely used textbooks that discuss many of the procedures in LIMDEP are 
 

• Greene, W., Econometric Analysis, 7th Edition, Prentice Hall, 2011. 
 

• Wooldridge, J., Econometric Analysis of Cross Section and Panel Data, 2nd Edition, MIT 
Press, 2011. 
 

On the subject of limited and qualitative dependent variables, some useful sources are: 
 

• Maddala, G. S., Limited Dependent and Qualitative Variables in Econometrics, Cambridge 
University Press, 1983. 
 

• Long, S., Regression Models for Categorical and Limited Dependent Variables, Sage, 1997. 
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• DeMaris, A., Regression with Social Data: Modeling Continuous and Limited Response 
Variables, John Wiley and Sons, 2004. 
 

• Greene, W. and Hensher, D., Modeling Ordered Choices, Cambridge University Press, 2010. 
 
More generally, on the subjects of microeconometrics, we recommend: 
 

• Cameron, C. and Trivedi, P., Microeconometrics: Methods and Applications, Cambridge 
University Press, 2005. 

 
Two specialized works on count data which are particularly rich in detail and variety are: 
 

• Cameron, C. and Trivedi, P., Regression Analysis of Count Data, Cambridge University 
Press, 1998. 
 

• Winkelmann, R., Econometric Analysis of Count Data, 5th Edition, Springer Verlag, 2008. 
 
A useful theoretical volume and an applications oriented survey on stochastic frontier estimation are 
 

• Kumbhakar, S. and Lovell, K., Stochastic Frontier Analysis, Cambridge University Press, 
2000. 
 

• Greene, W., ‘The Econometric Approach to Efficiency Analysis,’ Chapter 2 in Fried, H., 
Lovell, K. and Schmidt, S. (eds.), The Measurement of Efficiency, Oxford University Press, 
2008. 

 
For those using LIMDEP and NLOGIT for discrete choice modeling, the primer 
 

• Hensher, D., Rose, J. and Greene, W., Applied Choice Analysis, Cambridge University 
Press, 2005,  

 
is specifically devoted to techniques provided by NLOGIT and develops many applications using 
LIMDEP and NLOGIT. 
 
There are numerous survey articles on some of the other topics relevant to LIMDEP, particularly in 
the Journal of Econometrics, the Journal of Applied Econometrics, and Foundations and Trends in 
Econometrics.   Rather than assemble them here, we shall note the relevant sources in the chapters on 
the models to which they apply. 
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R1.3 Summary of What’s New in Version 10 
 
 Version 10 has been in development for four years.  The new features include major 
extensions of the way the program operates and over 20 new models.  Previous users will find the 
following: 
 
Major new features embedded into all estimation and analysis areas, including: 
 

• Multiple imputation:  Our implementation of this set of techniques is supported in every 
model that you will fit with the program.  We built the technique into the data handling level 
of the program, not into specific models.  This means you can use any number of 
replications without having to create copies of the data set specifically for the particular 
model you are fitting. 

 
• Interaction terms are becoming much more common in empirical models.  Every model 

that you can fit with LIMDEP that is defined by a list of variables can include any number of 
interaction and nonlinear terms, such as age*educ, Log(income), and female*educ + 
female*educ^2. Categorical variables can also be expanded in line in the model instruction 
rather than being created permanently in the data set.  

 
• Partial effects are an essential post estimation step in model development.  With our new 

PARTIAL EFFECTS program, you can compute appropriate (average) partial effects for 
any variable in any model regardless of how complex.  Interaction terms and nonlinear 
functions of variables are all handled by the program.  Complex models that involve direct 
and indirect effects are easily handled as well.  Partial effects and models can be simulated at 
numerous settings of several variables to produce multiple plots of partial effects (with 
confidence intervals)  – again, in any model that you can specify. 

 
• Decompositions of overall model differences across data segments (e.g., male/female, by 

country, etc.) are often analyzed by using Oaxaca-style decompositions of model 
predictions.  We have implemented the Oaxaca decomposition and several variants in a 
procedure that can be used with any linear or nonlinear model. 

 
• Panel data models are provided for nearly all frameworks supported by LIMDEP.  We have 

streamlined the handling of panel data with a single setup (declaration) command that 
automates setting up the appropriate sample for a panel data analysis. 

 
• Multiple hypothesis tests can now be built into every model command.  We have also 

updated the command syntax to simplify specifying hypotheses. 
 

• The WALD command for computing standard errors will now compute the ‘average 
nonlinear function’ and an appropriate standard error for any function that you specify in the 
command.  It will also retain in the data set function values and estimated standard errors for 
each observation in the sample.  Either the delta method or Krinsky and Robb’s method may 
be used. 

 
• Bootstrapping of standard errors and confidence intervals can be carried out with any 

model and any statistic (scalar or vector) that you compute with any part of the program. 
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Over 20 new built-in models and analysis frameworks, including:  
 

• Nonparametric regression for continuous and count variables 
• Numerous new forms of the stochastic frontier model 
• Count data models and several new forms of ordered choice and binary choice models 
• New features added to MAXIMIZE for programs that estimate user defined models. 

 
Streamlined appearance of output throughout the program:   
 
 In some cases, results have been reduced.  In general output has been reformatted to improve 
readability.  New tools are provided for displaying tables of your own results such as estimates from 
a model that you program with MATRIX or MAXIMIZE. 
  
R1.4 Documentation 
 
 This manual is arranged so that the functions you are most likely to use are the ones you will 
find documented first.  First time users should take the time to read the first three chapters and skim 
the first few paragraphs of subsequent chapters before beginning serious use.  The tutorial contains a 
few examples which will get you started.  On the basis of these, you will be able to do a considerable 
amount of analysis using LIMDEP.   
 The two parts of this manual are as follows: 
 
LIMDEP Reference Guide  
 
 The LIMDEP Reference Guide provides program usage, basic econometric methods, such as 
estimation techniques and how to test hypotheses, and technical material on program functions.  
Chapter and section numbers in the LIMDEP Reference Guide are preceded by the letter ‘R.’  

 
Econometric Modeling Guide 
 
 The Econometric Modeling Guide describes specific modeling frameworks, such as linear 
regression, binary choice, stochastic frontier models and survival models. Chapter and section 
numbers in the Econometric Modeling Guide are preceded by the letter ‘E.’  
 
 



R2: Basics of Operation R-57 

R2: Basics of Operation 
 
R2.1 Introduction to the LIMDEP Desktop  
 
 Start LIMDEP as you would any other program, for example from the LIMDEP icon on your 
desktop.  The LIMDEP desktop is shown in Figure R2.1. The open window is the project window.  
The project window contains a listing of the data you will analyze (the variables), results of your 
analyses (matrices, etc.) and procedures you have used. Right now, you don’t have any data in your 
work area, so the project is empty. This is where you will begin your LIMDEP session.   
 

 
Figure R2.1  LIMDEP Desktop Window 

 

R2.1.1 LIMDEP Desktop Menus 
 

LIMDEP is operated by menus and dialog boxes as well as by typed instructions (program 
commands) that you will compose.  The menus will mainly be used for management functions such 
as reading a data set into the program from a file. The program commands will be used for data 
manipulation such as computing statistics or running a regression.   

The menus are at the top of the desktop window. The Project menu and Project:New 
secondary menu are shown in Figure R2.2. The Project menu is used for reading or writing data and 
some other operations related to setting up your data set. The menus are described in detail in 
Section R2.13.2.  
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Figure R2.2  The LIMDEP Desktop Menus 

 
We will frequently use the following shorthand throughout the manual to reference main 

menu options:  Menu Name:Menu Item.  For example, the instruction select ‘Project:New’ 
indicates select (click) Project from the main menu, then select New from the Project menu. If 
there are additional options such as in a secondary menu or dialog box, they will be indicated with a 
forward slash after each option. For example, select ‘File:New/Variables’ indicates select Project 
from the main menu, select New, then select Variables. This will open a dialog box where you can 
select new variables. 
 

R2.1.2 The LIMDEP Toolbar and Command Bar 
 

The desktop also includes the toolbar and the command bar below the toolbar. If the toolbar 
or command bar is not showing, select Tools:Options, select the View tab, then check Display Tool 
Bar or Display Command Bar and click OK. See Figure R2.3. 

The LIMDEP toolbar contains 14 buttons for shortcuts to various program features. The 
toolbar buttons are equivalent to certain menu entries. For example, the leftmost opens a new file, the 
second opens a saved file. Section R2.13.3 contains a description of the toolbar buttons. 

The command bar provides a convenient way to submit a short, single line command. It also 
retains a history of commands submitted from it (like the history kept in the window of a web browser). 
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Figure R2.3  The LIMDEP Toolbar and Command Bar 

 
R2.1.3 Components of a LIMDEP Session  
 
 When you are operating LIMDEP, you are accumulating a project that consists of at least 
four components:  
 

• The internal components of the project, including your data, matrices, scalars, the 
environment, etc.  The window associated with this information is the project window.   

• The commands that you have accumulated on the screen in an editing window. 
• The output that you have accumulated in the output window. 
• LIMDEP’s session trace that documents the session. 

 
Each of these components will be discussed in more detail throughout the chapter. 
 
R2.2 LIMDEP File Types  
 

When you exit, LIMDEP will prompt you with a dialog box to ask if you wish to save the 
contents of the editing, project, and output windows.  In each case, you may save the component as a 
named file.  

The project file contains your data. It is LIMDEP’s ‘save’ file and provides a way for you to 
reenter the program, retrieve your data conveniently and resume your earlier work. The extension for 
a saved project file is .lpj. 

  Command Bar 
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The editing or text window contains the commands that you have accumulated.  A saved editing 
window is referred to as a command or input file.  The extension for a saved command file is .lim.  

You may also save the contents of the output window. The extension for an output file is 
also .lim.  

 

WARNING:  Output files and command files are both saved with the .lim extension.  You will need 
to make careful note of which files you save are which type. 

 
When you use LIMDEP’s dialog box to save the project, editing or output windows, 

LIMDEP will remember the name of the file.  When you return, you will be able to select the file 
from those listed in the File menu.  The files listed 1 to 4 are the last four editing or output window 
files saved by LIMDEP, and the files listed 5 to 8 are the last four project files.  (See Figure R2.4.)  
Just click the file name in the File menu to open the file.   

 

 
Figure R2.4  The File Menu 

 
During a session, LIMDEP accumulates a trace file (trace.lim) that documents the session.  

The trace file will contain a complete list of your commands exactly as you entered them, all 
diagnostic messages that were caused by errors in your commands, all diagnostics produced during 
estimation of models, such as a report of multicollinearity, useful notes about model estimation, such 
as by what rule an iterative estimator converged. This file is overwritten each time it is created.  If 
you wish to preserve the trace from a session, you should copy it to another file immediately upon 
leaving your session. 
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R2.3 Beginning the LIMDEP Session 
 

When you begin your LIMDEP session, the initial screen will show a project window entitled 
‘Untitled Project 1’ and an empty desktop as shown in Figure R2.1. For a new session in which you 
intend to analyze a data set that you have not already saved, you should not open a new project at this 
point. The new session already has open project, and you may just proceed to build it. However, at any 
time during a session, if you wish to open a new project file, you can select File:New/Project/OK. 
Opening a project file that you have already saved is described in the next section.  
 
R2.3.1 Opening a Project File  
 
There are several ways to retrieve a project file:  
 

• Select File:Open or File:Open Project. This will open a dialog box where you can 
navigate to the project file you wish to open. Project files have an .lpj ending.  
 

• The four previous projects you opened will be shown as items 5 to 8 in the File menu. You can 
retrieve any of these files just by clicking the file name in this list, as shown in Figure R2.4.  

 

• You can also open a project and launch LIMDEP at the same time. When you double click a 
file name with the suffix .lpj anywhere on your computer, such as your desktop or an email 
attachment, Windows will launch LIMDEP and then LIMDEP will open the project file. 

 
NOTE:  In order to operate LIMDEP, you must have a project open.  This may be the default 
untitled project or a project that you created earlier.  You will know that a project is open by the 
appearance of a project window on your desktop.  Most of LIMDEP’s functions will not operate if 
you do not have a project open. 
 
R2.3.2 Opening an Editing Window 
 

The usual way to submit instructions to LIMDEP is by typing program commands (verbs) in 
an editing window (the text editor or command editor.). To open the editing window, click File:New, 
select Text/Command Document in the dialog box, and click OK, as shown in Figure R2.5.  

 
TIP: You can press Ctrl-N at any time to bring up the ‘New’ dialog box. 
 

 
Figure R2.5  The New Dialog Box to Open an Editing Window 
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The editing window will appear to the right of the project window, as shown in Figure R2.6. 
You can begin to enter your commands in the editing window as we have done in an example in the 
figure. The editing window operates as an ordinary text editor, using basic text entry, copy, cut and 
paste editing features.  

 

 
Figure R2.6  Project Window and Editing Window 

 
Note that the editing window shown in Figure R2.6 is labeled ‘Untitled 1.’  This means that 

the contents of this window are not associated with a file; the commands in an untitled window are 
just added to the window during the session.  When you open a ‘.lim’ file, the file will be associated 
with the window, and its name will appear in the window banner.  The ‘*’ in the title means that the 
contents of this window have not yet been saved. 

There are other ways to open an editing window: 
  

• If you have created a text file (.txt) that contains LIMDEP commands you will be using, 
instead of creating a new set of commands, you can use File:Open to open that file.  LIMDEP 
will automatically open an editing window and place the contents of the file in the window.   
 

• You can open a editing window and launch LIMDEP at the same time. When you double 
click a command file name with the suffix .lim anywhere on your computer, such as your 
desktop, Windows will launch LIMDEP and then LIMDEP will open an editing window for 
this command file. Note, however, that when you do this, you must then either open an 
existing project file or a new project.  
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R2.4 Using the Editing Window  
 
 LIMDEP’s editing window is a standard text editor.  Enter text as you would in any other 
Windows based text editor. The Edit menu provides standard editing options such as Undo, Cut, 
Paste, Copy, Replace, and so on. You can also use the Windows clipboard functions to move text 
from other programs into this window, or from this window to your other programs.  You can, for 
example, copy text from any word processor, such as Microsoft Word , and paste it into the editing 
window.  The LIMDEP editing window will inherit all the features in your word processor, including 
fonts, sizes, boldface, italic, colors, math objects, etc.  However, once you save, then retrieve this 
window, these features will be lost, and all that will remain will be the text characters, in Courier font. 
 
TIP: The text editor uses a Courier, size 9 font.  If you are displaying information to an audience or 
are preparing materials for presentation, you might want to have a larger or different font in this 
window. You can select the font for the editor by using the Tools:Options/Editor:Choose Font 
menu.  You may then choose a different font and size for your displays.  This font will be used in the 
text editing window, and in the output window.   
 

 
Figure R2.7  Editing Window and the Edit Menu 
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R2.4.1 Using the Insert Menu in the Editing Window  
 
 There are additional features that you can use with the editing window.  The Insert menu 
allows you to place specific items on the screen in the editor (see Figure R2.8): 
 

• Insert:Command (or the button marked fx in the upper left corner of the editing window) 
will place a specific LIMDEP command (verb) at the insertion point.  A dialog box will 
allow you to select the command from a menu or build a model command from a full listing 
of the options available.  

 
• Insert:File Path will place the full path to a specific file at the insertion point.  Several 

LIMDEP commands use files.  The dialog box will allow you to find the full path to a file on 
your disk drive, and insert that path in your command.  

 
• Insert:Text File will place the full contents of any text file you select in the editor at the 

insertion point.  You can merge command files or create command files, using this tool.   
You can then navigate to, and insert any text file you like.  
 

 
Figure R2.8  The Insert Menu 
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TIP:  File names must often be enclosed in double quotes for the operating system to find the file 
that you wish to use.  Insert:File Path will include the double quotes when it locates a file name.  If 
you find that LIMDEP is unable to find a file that you thought you had specified correctly, make sure 
that you have included the double quotes. 
 
 There are other means to enter names of entities such as variables, matrices, etc. The small 
‘Insert Name’ window at the top of the editing window contains a complete list of the names of 
variables, matrices, etc. that appear in the project window.  Click the  button at the right end of the 
window to see the menu of available names.  You can select names from this menu to add to 
commands as you construct lists in the editing window.  You can also drag any name from the 
project window into the editing window.   
 
R2.4.2 Executing Commands from the Editing Window  
 
 When you are ready to execute commands, highlight the ones you wish to submit. Then, to 
execute the commands you may do either of the following: 
 

• Click GO on the LIMDEP toolbar.  (If the toolbar is not showing on your screen, select the 
Tools:Options/View tab, then select Display Tool Bar.) 

 
• Select Run:Run Line (or Run Selection if multiple lines are highlighted) to execute the 

selected commands once. 
 

• Select Run:Run Line Multiple Times (or Run Selection Multiple Times if multiple lines 
are highlighted) to specify that the selected commands are to be executed more than one 
time.  The dialog box queries you for the number of times. 

 
 The commands you have selected will now be carried out.  In most cases, this will produce 
some output.  LIMDEP will now automatically open a third window, your output window, discussed 
in Section R2.10. 
 If your commands fit on a single line – many of LIMDEP’s commands do not, you can 
submit a single line of text in editing window just by placing the cursor anywhere on that line 
(beginning, middle or end), and then clicking the GO button.  The single line does not have to be 
highlighted for this. 
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R2.4.3 The Editing Window Right Mouse Button Menu   
 
 The right mouse button invokes a small menu that combines parts of the Edit and Insert 
menus, as shown in Figure R2.9.  As in the Edit menu, some entries (Cut, Copy) are only active 
when you have selected text, while Paste is only active if you have placed something on the 
clipboard with a previous Cut or Copy.  Run Line is another option in this menu.  Run Line 
changes to Run Selection when one or more lines are highlighted in the editing window.  If you 
make this selection, those lines will be submitted to the program.  If no lines are highlighted, this 
option is Run Line, for the line which currently contains the cursor. 
 

Figure R2.9  Editing Window Right Mouse Menu 
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R2.5 A Short Tutorial 
 
1.  Start the program. 
 
 Start LIMDEP, for example, by double clicking the shortcut icon on your desktop or from 
the Start:Programs menu.  The desktop will appear as shown in Figure R2.10, with a new project 
window open, and no other windows active. 
 

 
Figure R2.10  Initial LIMDEP Desktop 

 
2.  Open an editing window. 
 
 Select File:New, then select Text/Command Document in the dialog box, then click OK,  
to open an editing window, exactly as discussed in Section R2.3.2.  
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3.  Place commands in the editing window. 
 
 Type the commands shown in the editing window of Figure R2.11.  These commands will 
do the following: 
 

1. Instruct LIMDEP to base what follows on 100 observations. 
2. Create two samples of random draws from the normal distribution, a ‘y’ and an ‘x.’ 
3. Compute the linear regression of y on x. 

 
Spacing and capitalization do not matter – type these three lines in any manner you find convenient.  
But, do use three lines. 
 

 
Figure R2.11   Editing Window 
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4.  Submit the first two commands. 
 
 Highlight the first two lines of this command set, and click the GO button on the toolbar. 
Note that a new window appears, your output window, as shown in Figure R2.12. (You may have to 
resize it to view the output.) 
 Notice that the top half of the output window has the Trace tab selected. If you click the 
Status tab, this will change the appearance of the top half of the window, as you’ll see later. The 
status feature in the output window is useful when you execute iterative, complicated nonlinear 
procedures that involve time consuming calculations.  The status window will help you to see how 
the computation is progressing, and if it is near completion.  
 

 
Figure R2.12  Output Window with Command Echo 

 
The output window will always contain a transcript of your commands.  Since you have not 
generated any numerical results, at this point, that is all it contains. 
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5.  Compute the regression. 
 
 Now, select the last line in your command set, the REGRESS command, and click the GO 
button.  The regression output appears in the lower half of the window, and you can observe the 
accumulating trace in the upper half of the window.  This trace in the top half of the window will be 
recorded as the trace file, trace.lim, when you exit the program. 
 

 
Figure R2.13  Regression Output in Output Window 
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6.  The project window. 
 
 Note in Figure R2.10, in the project window, that the topics Matrices and Scalars have  
symbols next to them, indicating that the topic can be ‘expanded’ to display its contents.  But, the 
Variables entry is not marked.  After you executed your second line in your editing window, and 
created the two variables x and y, the Variables topic is now marked with .  Click this symbol to 
expand the topic.  The REGRESS command created another variable, logl_obs.  It also created three 
matrices, as can be seen in Figure R2.14.  (These three actually exist before you do anything, but 
they do not contain any values before you fit a model.) 
 

 
Figure R2.14  Project Window 

 
Some other features you might explore in the project window:  
 

• Click the  symbol next to the Matrices and/or Scalars topics. 
• Double click any name that you find in the project window in any of the three topics. 
• Single click any of the matrix or scalar names, and note what appears at the bottom of the 

window. 
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7. Modifying Commands. 
 
 You can return to the editing window and modify the commands and execute them again, in 
any order.  To see an example, move back into the editing window and add ; Plot to the REGRESS 
command after the ‘x’ before the $.  After you have changed the REGRESS command, resubmit it 
by clicking the GO button.  A new window containing the residual plot you just requested will now 
appear, as shown in Figure R2.15.   
 

 
Figure R2.15  Plot Window in Output 
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8.  Exiting the program and saving your files. 
 
 To leave LIMDEP, select File:Exit or simply close the LIMDEP desktop window.  
Whenever you exit a session, you should save your work.  At any time in any session, you can save 
all of LIMDEP’s active memory, tables, data matrices, etc. into a file, and retrieve that file later to 
resume the session. Just select File:Save to save your work during a session.  
 When you exit, LIMDEP will ask if you wish to save the contents of the editing, project, 
output and other open windows, such as graphs.  In each case, you may save the component as a 
named file.  The query in each case is 
 
   ! Save changes to …<name>… 
 
where <name> is the name that appears in the title banner of each of the active windows.  See Figure 
R2.16 for an example.  
 

 
Figure R2.16  Exiting LIMDEP – Saving Editor Window Contents 

 
 If you click Yes, LIMDEP will prompt you for a file name in the Save As dialog box.  The 
extension for a saved project file is .lpj.  The extension for a saved editing window command file or 
output file is .lim.  Output files and command files are both saved with the .lim extension.  You will 
need to make careful note of which files you save are which type. For this tutorial, there is no need to 
save any of these windows, so answer no to the four queries about saving your results. 



R2: Basics of Operation R-74 

R2.6 Commands 
 
 There are numerous menus and dialog boxes provided for giving instructions to LIMDEP.  
(They are described in detail at the end of this chapter.)  But, ultimately, the large majority of the 
instructions you give to the program will be given by commands that you enter in the text editor.  
This section will describe the LIMDEP command language. We begin by describing the general form 
and characteristics of LIMDEP commands.  
 
R2.6.1 Syntax 
 
 Commands are of the form: 
 

VERB   ; specification ; specification ;  ... ; specification $ 
 
The verb is a unique four character string which identifies the function you want to perform or the 
model you wish to fit.  If the command requires additional information, the necessary data are given 
in one or more specifications separated by semicolons (;).  Commands always end with a dollar sign 
($).  The set of commands in LIMDEP consists generally of data setup commands such reading a 
data file, data manipulation commands such as transforming a variable, programming commands 
such as matrix manipulation and scientific calculation commands, and model estimation commands.  
All are structured with this format.  Examples of the four groupings noted are: 
 
 READ   ; File = “C:\work\frontier.dat” ; Nobs = 27 ; Nvar = 4 $ 
 CREATE  ; logq = Log(output) $ 
 MATRIX  ; identity = Iden(5) $ 
 FRONTIER  ; Lhs = logq ; Rhs = one, Log(k), Log(l) ; Model = Exponential $ 
 
Notice that several of the verbs are more than four characters.  Only the first four are strictly 
necessary, but using the full names helps to document the feature you are using.  Thus, READ 
and READFILE are the same verb.  The following command characteristics apply: 
 

• You may use upper or lower case letters anywhere in any command.  All commands are 
translated to upper case immediately upon being read by the program, so which you use 
never matters.  (Certain labeling and title features for graphs will be exceptions to this.) 

 
• You may put spaces anywhere in any command.  (You may also use tabs in an input file.)  

LIMDEP will always ignore all spaces and tabs in any command. 
 
• Every command must begin on a new line. 
 
• The number of nonblank characters which precede the ending $ must not exceed 10,000. 

 
• In any command, the specifications may always be given in any order.  Thus, 

 
  READ ; Nobs = 100 ; File = data.prj $ and 

 READ ; File = data.prj ; Nobs = 100 $  
 
are exactly the same. 
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• You may use as many lines as you wish to enter a command.  Just press Enter when it is 
convenient. Blank lines in an input file are also ignored 
 

• Most of your commands will fit on a single line.  However, if a command is particularly 
long, you may break it at any point you want by pressing Enter.  The ends of all commands 
are indicated by a $.  LIMDEP scans each line when it is entered.  If the line contains  a $, 
the command is assumed to be complete.  

 
HINT:  Since commands must generally end with a $, if you forget the ending $ in a command, it 
will not be carried out.  Thus, if you submit a command from the editor and ‘nothing happens,’ check 
to see if you have omitted the ending $ on the command you have submitted.  Another problem can 
arise if you submit more than one command, and one of them does not contain a $.  The subsequent 
command will be absorbed into the offending line, almost surely leading to some kind of error 
message.  For example, suppose the illustrative commands we used above were written as follows:  
Note that the ending $ is missing from the second command. 
 
 SAMPLE  ; 1-100 $ 
 CREATE  ; x = Rnn(0,1) ; y = x + Rnn(0,1)  
 REGRESS  ; Lhs = y ; Rhs = one,x $ 
 
This command sequence produces a string of errors: 
 
Error   623: Check for error in ONE,X 
Error   623: Look for: Unknown names, pairs of operators, e.g., * 
Error    61: Compilation error in CREATE. See previous diagnostic. 
 
The problem is that the REGRESS command has become part of the CREATE command, and the 
errors arise because this is now not a valid CREATE instruction. 
 
R2.6.2 Naming Conventions and Reserved Names 
 
 Most commands refer to entities such as variables, groups of variables, matrices, procedures, 
and particular scalars by name.  Your data are always referenced by variable names.  The 
requirements for names are: 

 
• They must begin with a letter.  Remember that LIMDEP is not case sensitive. Therefore, you 

can mix upper and lower case in your names at will, but you cannot create different names 
with different mixes. E.g., GwEn is the same as GWEn, gwen and GWEN. 

 
• You should not use symbols other than the underscore (‘_’) character and the 26 letters and 

10 digits in your names. Other punctuation marks can cause unexpected results if they are 
not picked up as syntax errors. 

 
• Names may not contain more than eight characters. 

 
There are a few reserved words which you may not use as names for variables, matrices, scalars,  
namelists, or procedures.  These are: 
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 one  (used as a variable name, the constant term in a model), 
 b, varb, sigma (used as matrices, to retain estimation results from all models), 
 n  (always stands for the current sample size), 
 pi  (the number 3.14159...), 
 _obsno  (observation number in the current sample, used by CREATE), 
 _rowno  (row number in data set, used by CREATE), 
 s, sy, ybar, degfrdm, kreg, lmda, logl, nreg, rho, rsqrd, ssqrd, sumsqdev 
   (scalars retained after regressions are estimated), 
 exitcode (used to tell you if an estimation procedure was successful). 
 
Several of the reserved names are displayed in the project window.  Note in Figure R2.14 that there 
are ‘keys’ next to the three matrix names b, varb and sigma.  These names are ‘locked,’ i.e., 
reserved.  You may not change these entities – for example, you may not create a matrix named b.  
That name is reserved for program use. 
 You are always protected from name conflicts which would arise if you try to give an entity 
such as a variable a name which is already being used for something else, such as a matrix or scalar, 
or if you try to use one of the reserved names.  For example, you may not name a variable ‘s’; this is 
reserved for the standard deviation of the residuals from a regression.  LIMDEP will give you a 
diagnostic if you try to do so, and decline to carry out the command. 
 
R2.7 Input Files – Entering Commands from a File 
 
 Instead of using your text editor, you may submit a set of commands that have previously 
been placed in a file on your computer. An input (command) file is used to enter commands from a 
file.  Any command may appear in an input file.   
 There are a few controls that will be useful in an input file.  When you use an input file, output 
such as model results that it produces will come to your screen in normal fashion just as if you had used 
the editor.  (The commands submitted from the editor are, in fact, treated as if they were an input file.)   
 Normally, you would want to type as little as possible to complete a command. However, for 
purposes of documenting your commands in an input file or in your trace file, for example, so that 
you can review a session later, you might want to add commentary to your commands.  There are 
several ways to do so. 
 Although a verb has a minimum of four characters, you may put any text you like between a 
verb and the first semicolon or the end of the command if there are no specifications.  You may also 
put comments after the ending $ in a command.  Everything on a line after a $ is ignored. Thus, to 
specify a probit model, you might use 
 
 PROBIT Model ; Lhs = moved ; Rhs = one, age $ Migration model 
 
You may also mark parts of your command lines as comments with a question mark (?).  On any 
line, any text which follows a ? is treated as comment and ignored, as is the ?.  For example, 
 
 LOGIT  ; Lhs = occupatn ? Job choices coded 0,1,2 
            ; Rhs = one, age, region $  
 
Note, however, that if the $ appeared at the end of the first line, after the ?, LIMDEP would not find 
it because it would have appeared as part of a comment. You may also put blank lines anywhere you 
wish in an input file. 
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 Finally, you may block out a range of lines in an input file as commentary by beginning the 
first line with ‘/*’ and the last line with ‘*/.’ An example of an input file using these devices follows. 
 
/*   This is an example of a LIMDEP input file. The commentary       
     is assumed to continue until we end it with a star then a slash.     
     (Not yet.)  The first command in this file is going to open a        
     file for the program output.                                 */    
     OPEN   ;  Output  =  demo.out $                                       
 /*  The next line will read a data file.                         */    
     READ   ; File  = demo\demo.dat  ? Read is for files on disk          
            ; Nvar  = 3              ? Number of variables                
            ; Nobs  = 50             ? Number of observations             
            ; Names = 1 $              Names at the top of the file       
     SAMPLE ; 1-50 $                                                      
 /*  Compute some transformed  variables.                         */ 
     CREATE ; x1x2 = x1*x2 ; x1sq = x1^2 ; x2SQ = x2^2  $          
 /*  Now, we fit the 2 regressions. First linear, then loglinear. */   
     REGRESS, linear    ; Lhs = y ; Rhs = one,x1,x2,x1sq,x2sq,x1x2  $     
     REGRESS, loglinear ; Lhs = Log(y) ; Rhs = one, Log(x1), Log(x2)$ 
 

 To submit an input file as a series of commands to be executed, select Run:Run File to open 
a dialog box such as the one in Figure R2.17. The file you select is then submitted to LIMDEP, as if 
it were a series of commands that you had submitted from the editor. 
 

 
Figure R2.17  Run File Dialog Box 

 

TIP:  The dialog box shown in Figure R2.17 is a Windows miniexplorer.  You can launch a program, 
move a file, or delete a file or a folder by operating on the entries in the box.  To see the items in the box 
in details mode rather than in list mode, click the button at the upper right of the dialog box.      
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R2.8 Work Areas and Projects 
 
 When you operate LIMDEP, your primary purpose will be to analyze a data set. LIMDEP 
provides a number of ‘work areas’ in memory. One of them is the ‘array’ where your data are stored. 
However, whether you make explicit use of them or not, there are a number of other work areas 
being maintained for you.  It is useful to know about them while you use the program, especially 
when you approach the limits of their capacity.  To summarize, the various entities that you will 
accumulate and use as you operate LIMDEP include: 
 

• Raw data: The data area. 
• Matrices: Your matrix work area.  Your models keep matrix results. 
• Scalars: A bank of named scalars, created by you or by model estimation. 
• Namelists: A set of names that can be used to represent up to 150 other names. 
• Procedures: Possibly large groups of commands that can be submitted at once. 
• Imputation Equations: A set of equations used to impute missing data. 
• Tables: The results of previous models that you have estimated. 

 
In each of these cases, there is a set amount of information that can be stored.  You can navigate the 
project window to find out what entities you have defined and how much room you have left in each 
of your work areas.  
 
R2.8.1 Work Areas 
 
Data Area 
 
 The initial setting is 500,000 cells (values) when you start LIMDEP.  With 900 variables, 
this allows 555 observations.  This is a global setting that you can change if necessary.  There are 
two cases to consider, as shown in Figures R2.18a and R2.18b: 

 
1. To reset the data area size just for the current session, select Project:Settings/Data Area. 

You can set the dimensions of your data area as needed.  In the discussion below, the total 
size of the data area is referred to as NKMAX.  You are not limited by the physical size of 
the computer, as Windows can swap data from disk to memory as necessary.  Note that 
setting this parameter brings a global program reset.  All data are erased.  But, this setting is 
only for the current session. 

 
2. To set the data area size permanently, select Tools:Options/Projects.  This sets the default 

data area size permanently (or until you change it again), so that this will be the setting every 
time you start LIMDEP. 

 
NOTE:  In previous versions of LIMDEP, if a project (.lpj) file contained an internal data allocation 
that was larger than the current setting in the program, the LOAD command would abort, and the 
user would be requested to expand the data area before processing could continue.  This is now done 
automatically by the program as part of the LOAD operation. 
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       Figure R2.18a  Project Settings Data Area      Figure R2.18b  Tools Options Default Data Area 
 
Rows and Observations 
 
 The number of rows in the data area is the integer part of NKMAX/900.  This is only the 
default.  If you need more rows, the adjustment is made at the time you READ your data.   The 
number of columns that can be accommodated in the now fixed NKMAX can be adjusted downward 
if the number of rows is excessive.  (900 is a hard upper limit, however.)  You can also adjust this 
setting ‘by hand.’  You would want to do this, for example, if your data were experimental, to be 
created using a random number generator, and you wanted to analyze more than the default number 
of observations. 
 
Data Type 
 
 This is Undated for a cross section.  You may specify monthly, quarterly, or yearly for time 
series data instead.  Two ways are to use the DATA command or to select Project:Settings/Data 
Type, and choose the type you wish in the dialog box shown in Figure R2.19.  When you choose one 
of the time series options, only one of the initial date entries is provided. 
 

 
Figure R2.19 Project Settings Data Type 
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Variables 
 
 You may have up to 900 variables, including one, which LIMDEP reserves for itself.  
 
Namelists 
 
 You may define up to 25 of these, each standing for up to 150 names. See the documentation 
of the NAMELIST command in Section R6.4 for details. 
 
Matrices 
 
 You may have up to 100 matrices in a work area that contains 500,000 cells.  LIMDEP 
reserves three of these, and 25,000 cells for your model results.  This may seem small for possibly 
large X matrices, but, in fact, given the way LIMDEP does matrix algebra, you will find it difficult to 
approach this limit, even if you are manipulating tens of thousands of observations. 
 
Imputation Equations 
 
 You may have up to 30 of these stored in a work area.  You are unlikely to need more than a 
small handful; the upper limit should be far more than needed. 
 
Scalars 
 
 You may define up to 100 of these, though LIMDEP reserves 14 for itself. 
 
Procedures 
 
 You may define up to 11 of these, 10 in a library and one as the ‘current procedure.’ 
 
Tables 
 
 You may store for later output to a file the results of 10 models.  These may be examined by 
using the REVIEW command. 
 
R2.8.2 The Project Window 
 
 Your project window is the leftmost window in Figures R2.1.  At any time, you can find an 
inventory of all of the preceding in the project window. Figure R2.20 shows an example based on the 
editing window in the figure. There is an inventory of the existing data entities and a display of some 
of them.  Clicking the scalar rsqrd displays it at the bottom of the project window.  Double clicking 
the matrix varb displays it in a matrix editing window, shown to the right of the project window.  
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Figure R2.20  Project Window and Output Window 

 
 There is a tremendous amount of functionality built into the project window.  There are four 
major groupings in the project window, shown in Figure R2.21a   Their titles and contents are: 
 

Data:  Variables, namelists, matrices, scalars, labellists, imputation equations 
Strings: A set of three character strings that you can define 
Procedures: Up to 10 named and one unnamed groups of commands 
Output: Output window, model table 

 
Note in Figure R2.21a, that some titles are shown preceded by , indicating that by double clicking 
this title or clicking the , it will be expanded to reveal its contents.  Some are shown with a  to 
indicate that they are already expanded, and one (procedures) has neither  nor  which indicates 
that there are no procedures to display by expanding this topic.  Figure R2.21b shows a more detailed 
example.  Two groupings are expanded in this project window.  The following lists the functions 
available in the project window:   
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     Figure R2.21a  Project Window Groupings     Figure R2.21b  Expanded Project Window  
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Data Group 
 

• Data:  Double click the group title to display the six folders in this group. 
• Variables:  Click the group title to see how many variables currently exist and how many 

columns there are in your data area.  
• Any Variable:  Double click any variable name to open the data editor to edit that variable 

and others that exist at that time. 
• Namelists:  Click the group title to see how many of the 25 available namelist definitions 

have been used. 
• Any Namelist:  Double click any namelist name to enter the namelist editor which will allow 

you to edit this namelist by adding or deleting variables. 
• Labellists:  Click the group title to see how many labellists have been defined. 
• Any Labellist:  Double click the name of a labellist to see the list of labels it defines. 
• Imputation Equations:  Click the group title to see the names of the variables that can be 

imputed with the imputation equations. 
• Any Imputation Equation:  Double click a name in the list to see details of the variables that 

are used in the imputation equation and what type of equation it is. 
• Matrices:  Click the group title to see how many of the 100 available matrices have been 

defined. 
• Any Matrix:  Click any matrix name to see the dimensions of that matrix displayed at the 

bottom of the project window. 
• Any Matrix:  Double click any matrix name to enter an editing window that shows the full 

matrix and allows you to edit it and save the changes. (b and varb cannot be changed.) 
• Scalars: Click the group title to show how many of your changeable scalars remain 

available. 
• Any Scalar:  Click any scalar name, and the value it currently takes will be displayed at the 

bottom of the project window. 
• Any Scalar:  Double click any scalar name to enter an editing window which will allow you 

to replace the value of the scalar.  Note, the first 14 scalars are read only. 
• Any Variable, Matrix, Scalar, or Namelist:  Highlight the name of the entity, then press Del 

to delete the item from the work area.  This may be necessary to clear space. 
 

NOTE:  There are various items in the project that are ‘read only.’  These correspond to the reserved 
names listed earlier.  You will know that an item in the project is read only by its identifying key 
marker, .  This marker indicates an item that you can view in one of the various editors, but cannot 
change. 
 
Strings Group 
 

• Strings:  Double click the group title to open the list of strings. 
• Strings:  Double click any of the string names to enter an editing window that allows you to 

define the character string. (See Chapter R19 for use of these strings.) 
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Procedures Group 
 

• Procedures:  Click the group title to see how many of the 10 procedures are available. 
• Procedures:  Double click the group title (or open the folder) to display the names of the 

defined procedures. 
• Any Procedure:  Click a procedure name to display how many lines of commands are in this 

procedure, of 50 that can be used. 
• Any Procedure:  Double click any procedure name to open an editing window in which you 

can edit that procedure and, if you wish, change its parameter list. 
 
Output Group 
 

• Output:  Double click the group title to display the two items in the group, tables and output 
window. 

• Tables:  Click the group title to display the names (up to 10) of the models that you have 
stacked in the results table work area. (Nothing happens here if you have not stacked any 
model results in the table.) 

• Any Table Name:  Double click any name in the tables grouping to open the editing window 
where you can construct output tables for model results. 

• Output Window:  Double click this window entry to activate the output window. 
 

TIP:  You can select (highlight) any name in the project window, then drag that name into the 
editing window if you would like to use the name in constructing commands.  Another way to copy a 
name from the project window into the editing window is to use Ctrl-Click – that is, put the mouse 
cursor on the name you wish to copy, press and hold down the Ctrl key and click the left button on 
your mouse.  This will allow you to assemble a list of names in the editing window quite quickly. 
(You will have to add commas to separate the names.) 
 
Other Functions in the Project Window 
 
 Many other editing features are built into the project window.  By selecting any name in this 
window with a right mouse click, you obtain a menu of features.  These are: 

 
• Variable:  Data editor, rename the variable, sort the variable, copy the name to the editing 

window, delete the variable. 
• Namelist:  Namelist editor, copy the name to the editing window, delete the namelist. 
• Matrix:  Matrix editor window, copy the name to the editing window, delete the matrix. 
• Scalar:  Scalar editor/new entry, copy the name to the editing window, delete the scalar.  

(When in a scalar editing window, right click invokes an editing menu.) 
• String:  String editor, copy the name to the editing window. 
• Procedure:  Edit the procedure, run the procedure, copy the name to the editing window. 
• Table:  Editor, review output tables, add tables to output. 

 
We’ll revisit these features at appropriate points later in this manual. 
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The Insert:Item into Project Menu 
 
 The Insert menu includes an option, Item into Project, that offers dialog boxes for creating 
most of the major data entities that exist in your session, variables, scalars, matrices, namelists, and 
procedures.  Each of these is an editor that allows you to edit an existing entity or to create a new 
one.  See Figure R2.22.  
 

 
Figure R2.22  Insert Item into Project 

 
R2.9 Restarting During a Session  
 
 A large amount of information is accumulated during a session.  If you wish to begin a new 
session, with a different data set, for example, it is best to ‘sweep’ the memory before doing so.  The 
best way is to select File:Exit and restart.  It may be more convenient just to clear the memory by 
selecting Project:Reset (or use the LIMDEP RESET command). After your confirmation, all 
memory is cleared and a new session begins. 
  
NOTE:  This is a complete reset.  All data information is lost.  Use File:Save if necessary, first.   
 
Project:Reset clears all the program memory.  But, it does not clear the output window nor does it 
sweep the text editing window.  If you want a completely new session, you should either select 
File:Exit and restart, or use Edit:Select All then Edit:Clear in each of the two remaining windows. 
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R2.10 Program Output and the Output Window 
 
 LIMDEP will automatically open an output window and use it for the display of results 
produced by your commands.  Figure R2.23 shows an example.  The output window is split into two 
parts.  In the lower part, an echo of the commands and the actual statistical results are accumulated.  
The upper part of the window displays the trace.lim file as it is being accumulated.  Note that there 
are two tabs in the upper window.  You have two options for display in this window.  The Trace 
display is as shown below.  If you select the Status tab, instead, this window will display technical 
information during model estimation, such as the iterations, line search, and function value during 
maximum likelihood estimation, and execution time if you have selected this option from the 
Project:Project Settings/Execution tab as well.  We will review the Status tab in Chapter R26 
where we discuss the optimization procedures. 
 

Figure R2.23  Output Window 
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R2.10.1 Opening an Output File 
 
 You can open an output file if you wish – see Section R9.7.  The command is 
 
 OPEN   ; Output = the desired filename $ 
 
All the model results that are sent to your output window will be echoed to this file.  One difference 
is that the file will not contain the interleaved commands, as appear in the example above. 
 
HINT:  It is not necessary to open an output file to retain your results during your session.  As you 
exit LIMDEP, you will be asked if you wish to ‘Save changes to <title of output window>?’ At this 
point, if you answer yes, you will be able to create an output file.  You will be queried for the name.  
The file will contain all of the results that have been accumulated during your session. 
 
R2.10.2 Editing Your Output 
 
 The output window provides limited capability for editing.  You can select, then delete any 
of the results in the window.  You can also highlight, then use cut or copy in the output window.  
(The right mouse button also brings up a limited menu for editing the output window.) 

But, there is a way to get full editing capability.  You can select, then cut or copy any 
material from the output window and paste it into an editing window (or into any other program, 
such as a word processor, that you might be using at the same time).  The editing window then 
provides full editing capability, so you can place any annotation in the results that you like.  You can 
save the contents of the editing window as an ordinary text file when you exit LIMDEP. 
 
TIP:  If you wish to extract from your output window a little at a time, one approach is to open a 
second editing window, and use it for the output you wish to collect.  You may have several editing 
windows open at any time. 
 
R2.10.3 Printing 
 
 Printing with LIMDEP is handled by your Windows print manager.  Also, you will generally 
do relatively little printing during your LIMDEP session, and, probably, relatively little printing with 
LIMDEP at all – most results will go to a file on your disk, or can be pasted into word processing 
programs that can be used to process results for final output. 
 The File menu does give you some control over how LIMDEP results are to be printed from 
the program. The option File:Page Setup generates a dialog box where you can adjust the page 
orientation and margins.  
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R2.11 Help  
 
 LIMDEP offers an extensive Help file.  Select Help:Help Topics from the menu to bring up 
the help editor.  LIMDEP’s Help file is divided into seven parts, or ‘books,’ as shown in Figure 
R2.24.  In the first book, you will find a selection of Topics that discuss general aspects of operating 
the program.  In Figure R2.24, for example, the Help material on Marginal Effects is displayed.  The 
second book is the Commands list. This contains a list of the essential features and parts of all of 
LIMDEP’s commands.  The third book contains an expanded version of the desktop summary that 
appears in Section R2.13. The fourth book contains descriptions of new features in LIMDEP.  
Finally, there are three books of useful ancillary material: a collection of LIMDEP programs, some 
of which appear in this manual, a collection of data sets that can be used for learning how to use 
LIMDEP and for illustrating the applications – these include the data sets used in the applications in 
this manual, and, finally, some of the National Institute of Standards accuracy benchmark data sets.  
The files in the last three books are also available in a resource folder created when LIMDEP is 
installed.  The location for the folder is C:\LIMDEP10, and there are three subfolders, Data Files, 
Command Files, and Project Files.   
 
NOTE:  All sample data files referenced in the documentation, as well as many of the NIST datasets 
and sample command and project files may be found in these folders and also in the Help file books.   
 

 
Figure R2.24  Help Books 
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 Many of LIMDEP’s features include context sensitive access to the Help file.  You can 
access this information by clicking the ? button when available in a window.  For example, the 
editing window includes a function button, fx, to the left of the window, as shown in Figure R2.25. 
 

 
Figure R2.25  Editing Window with Function Button 

 
Click the fx button to open the Insert Command dialog box that allows you to insert any of the 
LIMDEP commands in the editing window. See Figure R2.26.   
 

 
Figure R2.26  Insert Command Dialog Box 

 
This dialog box offers a full list of the LIMDEP commands broadly grouped by function.  Highlight 
a command category and a specific verb in that category.  Then, click the ? button at the lower left 
corner of the window to open the Help file Commands section describing that specific command.   
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R2.12 Summary of Commands 
 
 This section will summarize the functions and commands available in LIMDEP.  The listing 
given will suggest the range of procedures available. Most of the procedures listed here have 
numerous options, so this is merely an overview.   
 
File System 
 
CLOSE  Close an output file before opening a different output file. 
LOAD  Retrieve saved data set to reactivate program. Use File:Open. 
  (LOAD ; File = filename $ may also be used.) 
SAVE   Store all data currently active in a file; used with LOAD.  Use File:Save.  
 
Managing the Work Areas 
 
DELETE Delete variables. Clear space in the data work area.  This can also be done by  
  highlighting a variable in the project window and pressing the Del key.  You  
  can also delete matrices, scalars, and namelists this way. 
LIST   Display variables on the screen.  Inspect columns of data.  This can also be done 
  by double clicking a variable name in the project window to open the data editor. 

The data editor can also be opened by clicking the data editor button in the 
LIMDEP toolbar (grid/spreadsheet icon). 

NAMELIST  Identify a list of variables with a name.  The namelist editor can be opened from  
  the project window by double clicking any namelist name. 
RENAME  Change the names of one or more variables. 
RESET  Delete all data of all types and restart session.  This can also be done by selecting 
  Project:Reset. 
 
Creating and Executing Procedures 
 
 Procedures can be edited in a procedure editor by double clicking any procedure name in the 
project window.  You can also begin entry of a new procedure in the procedure editor by selecting 
Run:New Procedure. 
 
DOFOR Execute a procedure for certain values of a variable. 
DOUNTIL Execute a procedure until a certain condition is true. 
DOWHILE Execute a procedure while a certain condition is true. 
ENDDO End of target procedure for DOWHILE, DOFOR, and DOUNTIL. 
ENDPROC End entry of commands in a procedure. 
EXECUTE  Execute stored procedure.  You can also execute a library procedure. 
GO TO    Redirect the flow of execution of a set of commands. 
LABEL  Mark a point in a set of commands. Use with GO TO. 
PROC  Begin entry of commands in a procedure. 
SILENT  Execute a procedure without displaying results. 
NOSILENT Turn off SILENT switch. 
STRING Define ‘macros’ for routines. Shorthand for a string of text. 
LOCAL Define certain matrices, variables and scalars that are local to the procedure  
  rather than global in the general work areas. 
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Creating New Variables 
 
CREATE  Transformations of variables.  You can also enter transformations interactively. 
  In the data editor, click the right mouse button and select New Variable from the  
  menu. This opens a dialog box which allows you to enter CREATE commands  
  interactively. 
RECODE  Replace values of a variable with other values. 
SORT   Sort a variable, possibly carrying others.  (You can request a sort by highlighting 
  the name in the project window, then right clicking.) 
 
Manipulating Numeric Entities – Matrices and Scalars 
 
CALCULATE Compute scalar result. 
MATRIX  Matrix algebra package. 
 
These two procedures can be accessed from the main menu with Tools:Scalar Calculator or Matrix 
Calculator.  Once in one processor, you can also switch directly to the other. 
 
Entering and Documenting a Data Set 
 
APPEND Add additional observations to existing variables. 
DATA  Create a text file that is embedded in the project. The text generally describes 
  the data in the file.  A previous usage of DATA was to access the data editor. The 
  data editor may be opened by double clicking any variable name in the project 

window, selecting Project:Data Editor, or clicking the data editor button in the 
LIMDEP toolbar. 

READ  Read a data set into the data work area from a file.  You can also read a data 
  set by entering the data editor, then clicking the right mouse button. In the  
  menu, select Import Variables. 
ROWS  Configure number of rows in data area.  Use Project:Settings/Data Area. 
WRITE  Write a data set in a disk file.  You may also use Project:Export:Variables. 
 
Labeling and Storing Statistical Output 
 
REVIEW Examine previous statistical results and create tables.  Review can be reached 
  by clicking any of the tables in the project window or by selecting 
  Tools:Review Tables. 
TABLE Create tables of results in an output file. 
TEXT   Send text to an output file. 
TIMER  Display elapsed time for each model command.  The switch can also be set with 
  Project:Settings/Execution. 
TITLE  Define page header for model commands. 
TYPE   Send a message to screen and output file. 
DISPLAY Create a table of estimated model results from a vector of estimates and an 
  estimated covariance matrix. 
CLIST  Define a set of labels that can be used in several output functions. 
LASTMODEL Define a set of model results to be used in the PARTIAL EFFECTS program. 
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Defining the Sample to be Used for Estimation 
 
SETPANEL Global setting for a panel data set. 
DATES Define type of time series data, quarterly, yearly, etc.  Use the command or 
  Project:Settings/Data Type. 
DRAW  Draw a random sample.  Also allows bootstrap sampling. 
INCLUDE  Add observations to sample.  INCLUDE and REJECT can also be specified 
  by using Project:Set Sample. 
NOSKIP Turn off SKIP switch.  Can also be reached by Project:Settings/Execution. 
  SKIP switch can also be turned on this way. 
PERIOD  Define sample period for time series data.  Can also be done with 
  Project:Set Sample. 
REJECT  Delete observations from sample. 
SAMPLE  Specify observations in the sample by observation number. 
SKIP   Set switch so LIMDEP automatically skips missing data. 
 
Model Commands 
 
 There are now well over 100 model commands supported in LIMDEP (and NLOGIT).  A 
few of these are: 
 
ARMAX   Box-Jenkins ARIMA models. 
BIVARIATE PROBIT  Bivariate probit models. 
CROSSTAB   Cross tabulation. Frequency counts and contingency tables. 
DISCRETE CHOICE or CLOGIT Random utility models. 
DSTATS   Descriptive statistics. 
FPLOT   Plot values of a function of a variable. 
FRONTIER REGRESSION  Stochastic frontier. 
GMME Generalized method of moments estimation. 
GOMPIT Gompertz model for binary choice. 
GROUPED DATA REGRESSION  Completely censored data. 
HISTOGRAM 
MAXIMIZE   Maximize a user defined function. 
MIMIC Model for multiple indicators and multiple causes of a latent variable. 
MINIMIZE   Minimize a function or compute nonlinear least squares estimates. 
MPLOT   Plot elements of one matrix against those of another. 
MPROBIT  Multivariate probit model. 
NLSQ  Nonlinear least squares regression. 
ORDERED PROBIT  Ordered probit or logit models. 
PROBIT   Univariate probit model. 
TOBIT   Censored regression. 
QREG  Quantile regression. 
REGRESS  Linear least squares regression. 
SELECTIVITY  Sample selection models. 
SPECTRAL  Plot and compute spectral density function. 
SURE    Seemingly unrelated and multivariate regression. 
3SLS    Three stage least squares. 
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R2.13 Summary of the LIMDEP Desktop 
 
 When you operate LIMDEP, you will generally be using the set of windows shown in Figure 
R2.27, which is a somewhat abbreviated composite of the various features that you will find on your 
screen.  This section of the documentation will briefly describe the different parts of the desktop. In 
the sections to follow, we will describe 
 

• The three main windows, plus the calculator window, 
• The main menus shown at the top of  the screen, 
• The toolbar shown below the main menus, 
• The command window or command bar below the toolbar, 
• The correspondence between the menu items and the commands listed earlier. 

 

 
Figure R2.27  LIMDEP Desktop 
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R2.13.1 The LIMDEP Windows 
 
 There are three main windows on the desktop.  Operation begins in the project window, 
which is at the upper left of the desktop.  The project window contains a complete inventory of the 
data, matrices, procedures, and so on, that you have created during your session.  By clicking the 
different topics in the project window, you can review the variables, matrices, etc. that exist at any 
time.  In addition, you can launch many different operations from the project window. 
 Most of your command input is done from the editing window, which is at the upper center 
of the desktop.  Model commands and data manipulation commands will usually be placed on the 
screen in this window, then executed by one of several methods.  The simplest way to proceed until 
you are ready to use the more advanced features is to place the commands you wish to execute in the 
window, highlight them, then click the green GO button.  There are many options available for 
editing in this window, including two of the main menus, Edit and Insert. 
 Your statistical results and a trace of your session are accumulated in your output window.  
This is the larger window at the lower right of the desktop.  We have compressed it for the display.  
The output window is a split screen.  The statistical results are shown in the lower half.  The upper 
part has two tabs.  If you choose Trace, a continuing trace of your commands, diagnostics and error 
messages that your commands produce, and other useful information are listed in the top half of the 
window.  This information is also saved at the end of your session in the LIMDEP trace file, 
trace.lim.  If, instead, you have chosen the Status tab, the top half of the window will display certain 
technical output generated during model estimation, such as values of the log likelihood, 
convergence criteria, and timing information. The trace will continue to accumulate in the 
background. 
 The smaller window at the left of the desktop is a calculator window.  You can open a 
calculator or matrix window by selecting Tools:Scalar Calculator or Tools:Matrix Calculator.  
You may, in fact, have more than one of these open at any time, though typically, using just one is 
best.  The calculator window is an interactive session with CALCULATE and/or MATRIX.  
Results that you wish to obtain interactively rather than as part of a command in a procedure, can be 
obtained by entering one of these windows.  The window contains its own input field, at the top, 
labeled ‘Expr’ for expression.  You can enter any valid CALC or MATRIX command in this field. 
The result will be shown in the lower field.  The window shown in the figure is being used for 
CALC.  You can switch over to MATRIX by clicking the  button at the right of the top row, next 
to the window containing ‘Scalar.’  Thus, you can accumulate both matrix and scalar results in this 
window.  (Matrix results are shown as an object, rather than the full matrix, itself.  By clicking the 
object, you can enter a display of the matrix, itself.)  Finally, the fx button will open the Insert 
Function dialog box containing a selection of functions that you can insert into your expressions for 
both CALC and MATRIX. 
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R2.13.2 The Main Menus 
 

The nine menus at the top of the desktop provide the following functions: 
 
File Menu 
 
File    Opens and closes files for your LIMDEP session. 

New...      Ctrl+N   Opens a new editing window (Text/Command Document) or 
a new project window (Project). 

   Open        Ctrl+O  Opens a file into project, editing, or output window. 
   Close             Closes the active window.  (You are asked for confirmation.) 
 
   Save        Ctrl+S   Saves the active window (project, editing, output). 
   Save As...           Same as Save. 
   Save All                   Saves all windows. 
  
   Open Project...      Opens window to find a project file.   

    Same as LOAD ; File = filename $ 
   Save Project As...   Same as SAVE ; File = filename $ 
   Close Project         Same as RESET $ 
 
   Page Setup...        Sets up printing for output window – size, portrait/landscape,  

      margins, printer identity, port.  Also sets up graphics output. 
   Print Preview        Displays on the screen what printed output will look like. 
   Print...      Ctrl+P  Standard Windows print operation, to print output window. 
   
  1  Names of previous Opens this .lim file.  Names of previous command, data or  
  2  .lim files used (data, output files that were opened by file name will appear here, 
  3  command, or output in the order in which they were used. 
  4  files) 
 
  5  Names of recent  Opens the most recently used project file.  Lists up to four  
  6  project files used  recent projects. 
  7 
  8 
 
  Exit          Alt+F4  Exits LIMDEP.  You are queried to save project, output, and 

editing windows (.lpj and .lim file types) and any 
calculator, matrix, and plotting windows that are still open. 
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Edit Menu 
 

Edit     Standard editing features when in the editing window. 
  Undo            Ctrl+Z      Undoes the last operation, for example, replaces deleted text. 
  Cut            Ctrl+X      Removes selected text and puts it in the clipboard. 
  Copy            Ctrl+C  Copies selected text to the clipboard, without deletion. 
  Paste           Ctrl+V      Copies last cut or copied text to insertion point. 
  Clear            Del         Erases selected text in the output window or the trace window. 
  Delete             (Not used.) 
  Select All Ctrl+A      Selects (highlights) entire editing or output window. 

These editing features also operate in the output window. Del (key) also deletes a selected item in 
the project window. 

 
  Include Observations Ctrl+add  Sets up an INCLUDE command in a window. 
  Reject Observations   Ctrl+subtract  Sets up a REJECT command in a window. 
 
  Find  Ctrl+F  Finds a particular character string in the editing window. 
  Find Next    F3  Repeats the last find operation.  Finds next occurrence. 
  Replace   Replaces a character string with another character string. 
  Go To...        Ctrl+G  Moves insertion point to a particular line (by line number). 
  Object             (Not used.) 
 
Insert Menu 
 
Insert    Inserts items at the insertion point in the editing window. 

These features operate on the text editing window to help build 
commands. You can insert verbs (command names), file paths, 
or entire ASCII text files at the insertion point. 

  Command   Inserts a command (verb only) at the insertion point.  A 
window presents the list of verbs to select from. 

  File Path...             Inserts the full path to a file on your hard disk at the insertion 
point. Used in commands such as OPEN and WRITE. 

  Text File...          Inserts a text file at the insertion point.  You can put the entire 
    contents of a file in the editing window. The file can be added 

to the existing text or put into an empty screen for editing or 
for execution as an input file. 

 
  Rows     Opens up rows at insertion point in the data editor (not the 

text editor).  This puts one or more empty rows at the insertion 
point in the data editor.  Data are pushed off the stack. 

  Columns          (Not used.) 
 
  Item into Project…  Inserts an item into project.   
 Variable   CREATE a new variable. 
 Namelist  NAMELIST command for a new namelist. 

Matrix   MATRIX command for a new matrix. 
 Scalar   CALCULATE command for a new scalar. 
 Procedure  Enters a procedure editor to create a procedure. 
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Project Menu 
 
Project    Use for several functions of managing the data as well as a 
    number of other features of the program. 
  Settings…         Offers a window with tabs for parameter and switch settings. 

 Data Area         Memory allocation: chooses number of cells in data area. 
                             Dimensions: chooses number of rows in data area. Same as 

ROWS command. 
            Data Type     Observations:  Chooses data type, cross section (undated) 

or time series (dated).  Same as DATES command.  
Initial Date: yearly, quarterly, or monthly if  time series data. 

Execution    Models:  Turns SKIP switch on or off. 
Output   Turns SILENT switch on or off to suppress output. 

Turns TIMER switch on or off to display time used in estimation. 
 
  New              Creates five new entities (variables, etc.).  These open windows 

that operate like the individual commands, but in interactive, 
rather than command mode. 

  Variable…      Interactive create window. 
 Namelist…   Interactive namelist editor. 
  Matrix…     Interactive matrix window. 
  Scalar…        Interactive calculator window. 
  Procedure…  Interactive procedure editing window. 

  Import        Variables    Finds a data file by opening a search window. Same as READ. 
  Export        Variables    Writes variables in a data file. Formats include .xls, .wk1,  

   .dat, and binary (.bin).  Same as WRITE. 
  Data Editor                     Goes to data editor – spreadsheet style display. 
 
  Sort Variable...  Sorts a variable, carrying one or more other variables.  Same 
    as SORT ; Lhs = variable to sort  

          ; Rhs = variables to carry $ ; Ascending optional. 
 
  Set Sample  Sets the current sample. 

All   Same as  SAMPLE ; All $ 
  Range...     Observation rows:  Queries for observations to be in the 

current sample.  Same as SAMPLE ; Range $ for cross section 
data or PERIOD ; First - Last $ for time series data. 

Include...   Queries for ; New and enters command (expression).  Same as 
INCLUDE ; Expression $ with ; New optional. 

Reject...    Queries for ; New and enters command (expression).  Same as 
REJECT ; Expression $ with ; New optional. 

 Draw...   Draws random samples from your data set. Same as DRAW ; Nobs 
[; Replacement] $ 

 
  Reset...                         Erases all variables and matrices.  Same as RESET $ 
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Model Menu 
 
 Model is used to invoke a dialog which helps beginning users set up model definitions. The 
initial menu offers a grouping of the available LIMDEP modeling frameworks.  Each of these 
contains a number of more specific model commands.  The complete Model menu and specific 
Linear Models options are shown in Figure R2.28.  
 

 
Figure R2.28  Model Menu and Linear Model Options 

 
Each specific model has associated with it a ‘command builder’ which you can use to specify a 
model in a dialog box.  The dialog then produces two or three windows which offer the options 
available for that modeling framework.  For example, the Regression command builder shown in 
Figure R2.29 offers main, options, and output selections. The main and options dialog boxes (pages) 
are shown below.  The command builder will be discussed further in Chapter R8. 
 

 
Figure R2.29  Regression Command Builder Dialog Boxes 
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Run Menu 
 
  Run    Executes groups of commands highlighted in the editing  
    window. 
  Run             Ctrl+R        Executes highlighted commands.  Same as GO button. 
  Run Multiple Times...           Executes highlighted lines more than one time. 
  Run File…                        Executes the commands in a file.  Same as 

OPEN ; Input = filename $ Queries for filename. 
  Run Procedure  Executes a procedure stored in the procedure library. 
 
 
  Stop Running Ctrl+Break Interrupts input of a file or execution of commands from the  
    editing window. 
 
  New Procedure     Opens procedure editor. Saves procedure on exit.  Procedures 

may be named and have adjustable, replaceable parameters. 
 
Tools Menu 
 
Tools    Interactive execution of certain commands such as CALC 

and MATRIX. 
  Scalar Calculator    Opens a calculator window for scalar calculations.  Same as 

   CALCULATE command.  You can toggle to the matrix  
calculator from this window.  Results are shown on the screen. 

  Matrix Calculator  Opens a calculator window for matrix calculations.  Same as 
   MATRIX.  You can toggle to the scalar calculator window from 

this window.  Results are displayed on the screen. 
  Review Tables...              Constructs tables of statistical results.  Model commands that 

   contain ; Table = name accumulate results in the model stack 
that are reviewed here and can be grouped in tables in the output 
window. 

 
  Options...    Several settings for program execution and display. 

View    Displays toolbar at top of desktop. 
Displays program status bar at bottom of desktop. 
Displays command bar at top of desktop. 

Editor     Chooses font for editing and output windows.  
Automatic word selection handles highlighting in editing window. 
Show Editor Tool Bar displays fx button and small Insert Name 
window at top of editing window.  

Projects    Main memory allocation for data area.  Same as RESET. 
Execution  Output window moves to front during execution. 

Shows error message dialog boxes during execution.  
Preferences:  faster execution or greater user interface 

     responsiveness. 
 Trace   Indicates where to save trace file trace.lim. 
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Window Menu 
 
Window   Handles display of windows on the desktop. 
  Split                            Sets sizes of parts of split output window. 
 
  Cascade                         Arranges active windows in cascade display format. 
  Tile            Arranges active windows in tile display format. 
  Arrange Icons                   Arranges icons at bottom of desktop. 
 
  Output                          Activates output window. 
 
  1  Names of recent open  Activates any of these windows. 
  2  windows (project, editing,  
  3  output, calculator, etc.) 
  4   
 
Help Menu 
 
Help 
   Help Topics   Activates LIMDEP Help program.  
   Tip of the Day…  Suggestions for operating LIMDEP. 
   LIMDEP Web Site…       If you have a web browser active, sends web browser to 

   LIMDEP home page. 
   About LIMDEP…     Information box. 
 
Other menus include the following: 
 
Icon Menu 
 
Clicking the icon at upper left corner of an active window produces the following menu:  
 
   Restore   Restores window after it has been minimized. 
   Move   Repositions window on screen. 
   Size    Changes size of window. 
   Minimize   Reduces window to icon on taskbar. 
   Maximize   Expands window to fill desktop. 
   Close  Ctrl+F4 Closes window.   
   Next    Moves cursor to next open window. 
 
Right Mouse Button Menu 
 
Clicking the right mouse button when mouse cursor is not in a window opens this menu: 
 

   New…   Same as File:New. 
   Open…   Same as File:Open. 
   Project   Activates project window. 
   Data Editor   Activates data editor window. 
   Output   Activates output window. 
   Options…   Same as Tools:Options. 
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R2.13.3 The LIMDEP Toolbar 
 
 There are fourteen tools shown in the LIMDEP toolbar (located below the main menu).  If 
the toolbar is not showing on your screen, select the Tools:Options/View tab, then turn on the 
Display Tool Bar option. 
 

 
                                 1    2     3     4       5    6     7      8      9    10   11    12   13   14 

Figure R2.30  The LIMDEP Toolbar 
 
These are equivalent to certain other menu entries, as follows.  The buttons are listed below in the 
order from left to right: 
 

1. Open a new editing or project window.  (File:New) 
2. Open an existing file.  (File:Open) 
3. Save.  (File:Save) 
4. Print.  (File:Print) 
5. Cut selection to clipboard.  (Edit:Cut) 
6. Copy selection to clipboard.  (Edit:Copy) 
7. Paste selection from clipboard to insertion point.  (Edit:Paste)  
8. Insert an item into the project window.  (Insert:Item into Project…) 
9. Execute selected commands.  (Run:Run) 

10. Stop commands.  (Run:Stop Running) 
11. Pause commands (from file or editing window).   
12. Activate project window. 
13. Activate data editor. 
14. Activate (and open if necessary) output window. 

 
R2.13.4 The Command Bar 
 
 The command bar (or command window) appears below the toolbar.  If the command bar is 
not showing on your screen, select the Tools:Options/View tab, then turn on the Display 
Command Bar option.  By placing the insertion point in this window, you can enter your 
commands one at a time.  This is for one line commands.  The command is submitted when you 
press Enter.  The window accumulates a menu of your commands, which is recalled by clicking the 
 button at the right end of the command window. The fx button opens the Insert Command 
window (same as the Insert:Command). 
          

 
Figure R2.31  The LIMDEP Command Bar 
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R2.13.5 Commands and Menu Items 
 
 Several commands are equivalent to the menu items listed earlier. Also, in some cases, there 
is more than one menu item which corresponds to the particular command.  The correspondences are 
listed below. 
 

CALC     Tools:Scalar Calculator or toggle from the matrix calculator window 
CREATE   In data editor, right button, New variable.  Project:New Variable 
DATES    Project:Settings/Data Type 
DELETE   Highlight name in project window then press Del 
INCLUDE  Project:Set Sample/Include or Edit:Include Observations 
LOAD     File:Open or File:Open Project (any project shown in submenu) 
MATRIX Tools:Matrix Calculator or toggle from the scalar calculator window 
NAMELIST  Double click existing namelists in project window to edit a namelist, or 
   Project:New/Namelist 
OPEN   Output file, automatically saves output window at exit 
PERIOD    Project:Set Sample/Range (set dates for time series first) 
READ      Project:Import/Variables 
REJECT    Project:Set Sample/Reject, Edit:Reject Observations 
RESET     Project:Reset 
REVIEW    Tools:Review Tables 
SAMPLE    Project:Set Sample/Range 
SAVE      File:Save, Save As, Save Project As 
SILENT    Project:Settings/Output, disable Show output 
SKIP/NOSKIP Project:Settings/Execution, enable/disable Skip missing data 
STRING    Double click any string in project window to open string editing window 
TIMER     Project:Settings/Output, enable Show model execution time in output 
WRITE     Project:Export/Variables 
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R3: Importing and Reading Data Files 
 
R3.1 Importing and Reading Data 
 
 Step one of your analysis is getting your data into LIMDEP.  Externally created data, such 
as public data bases and data sets assembled from external sources are imported via disk files, 
downloaded from the internet or, for very small data sets, prepared for LIMDEP using the text and 
data editors.  Internally created data for simulations and experiments are produced using LIMDEP’s 
random number generators. This chapter is about importing externally created data.  The CREATE 
command described in Chapter R4 is used to produce internally created data. 
 There are two very similar operations used for getting your data into the program, the 
IMPORT and READ commands. IMPORT is used for standard forms of ASCII data files, including 
CSV files such as those created with Microsoft Excel.  Data files sometimes come in other forms, such 
as binary files, files with other structures, or files produced by other programs. LIMDEP can read many 
kinds of files that do not fit the standard format. The operation for these files is READ. IMPORT will 
be described first in this chapter in Section R3.2. READ will follow in Section R3.5. 
 In almost all cases, you will import your data into a data area that is created for storage of 
the data while they are being analyzed.  There are two alternative forms of importing that you may 
use on occasion.  The APPEND operation is used when you wish to read additional observations on 
variables that you have already imported.  APPEND is described in Section R3.10.  The MERGE 
operation is used to interleave two files for a panel data set, in which one contains observations on 
variables that vary within a single ‘group,’ and a second which contains variables that are only 
observed once for each individual.  MERGE is described in Chapter R5. 
 Data are stored in an area of memory that we will refer to as the ‘data array.’   The number 
of cells in this area may vary as you use LIMDEP – you can change its size if you need to.  The 
initial setting of the data array is 5,000,000 cells, which is large enough that you will probably never 
need to adjust it.  Procedures for doing so for very large data sets are noted in Section R3.4.  Once 
the data have been imported, no distinction is maintained between integer and noninteger values, and 
there is no need to maintain any consideration of how many digits a number contains.  All numbers 
are treated the same.  Operations that are based on integer values are handled internally. 
 LIMDEP provides two commands, EXPORT and WRITE for creating data files to be 
exported to other programs.  EXPORT is used to create a standard ASCII, CSV file.  WRITE is 
used for some other formats. These commands are discussed in Section R3.9. 
 
R3.2 Import a Standard Formatted ASCII File 
 

IMPORT can be used to input a standard ASCII data file with the following form: 
  

• The file is ASCII text.  You can see the contents in a text editor or word processor. 
• Observations on sets of variables are on a single line in the file with items separated by 

commas. 
• Variable names, if given in the data file, are provided in the first row, separated by commas,  

and must appear on a single line only 
• Observation labels, if provided, are in the first column and include a column heading. 
• If observation labels are provided, the numeric data must be given on one line. 
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NOTE:  CSV files such as those created with Microsoft Excel follow this format and can be input 
with IMPORT. (When a CSV file is viewed in Excel, the data and variables appear in cells, rather 
than separated by commas.)  

 
The basic case of a standard data file is a rectangular ASCII text shown in Figure R3.1. This 

example has variable names in a single row at the top of the file.  
 
 
 
 
 
 

Figure R3.1  Sample Data File 
 
To import a data file of this form, you need only tell LIMDEP where it is. You can use menu options 
or the command mode. For the menu option, select Project:Import, then select Variables, to open 
the Import dialog box, as shown in Figures R3.2 and R3.3.  
 

 
Figure R3.2 Project:Import/Variables Menu 

 
In the Import dialog box, select All Files (*.*) in the ‘Files of type’ window, then locate and select 
your data file and click Open.   
 

ID  Year  Age,   Educ 
1   1960   23    16 
2,  1975, 44, 12.5 
3   1990   14   11.5 
4   1993 missing  20 
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Figure R3.3  Import Dialog Box 

 
The IMPORT command for importing a data file is 
 
 IMPORT ; File = … < the name of the file, including the path>… $ 
 

The IMPORT command is submitted from the text editing window. As described in Chapter R2, to 
open an editing window, click File:New, then Text/Command Document, then OK. Once you 
have entered your commands, just highlight the commands and click GO on the toolbar to submit 
your commands to LIMDEP.  
 
TIP: When you use the IMPORT command, you need to specify the full path to a file.  Sometimes 
this is hard to locate.  You can obtain the full path to a file by using Insert:File Path. The file path will 
be inserted where the cursor is in the open editing window. Select Insert:File Path to open a dialog 
box where you can locate the file you wish to open. When you click Open, the full path to the file will 
be placed in double quotes in the editor window. An example is shown Figures R3.4 and R3.5. 

 

 
Figure R3.4  Insert File Path Dialog Box  
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Figure R3.5  Editing Window with Insert File Path 

 
There is no other information that needs to be provided with the IMPORT command. When 

you read a file of this type, LIMDEP determines the number of variables to be read by counting the 
number of names that appear in the first line of the file.  The number of observations in the file is 
determined by reading until the end of the file is reached.  The sample data set shown in Figure R3.1 
illustrates several degrees of flexibility.   
 

• Variable names in a file may be separated by spaces and/or commas or tabs. 
• Names need not be capitalized in the file. LIMDEP will capitalize them as they are read. 
• The numbers need not be lined up in neat columns in a data file. 
• Values in the data set may be separated by spaces and/or commas or tabs. 
• There is no need to distinguish numeric types, integers (44) and reals (12.5). 
• Missing values in a data set may be indicated by anything that is not a number. (But, they 

must be indicated by something.  A blank is not understood to be a missing value.) 
• If the file contains observation labels with the data, the number of variables is automatically 

adjusted.  See Section R3.2.1 for details. 
 
NOTE:  You can import a data file that does not contain variable names. See Section R3.2.2.  

 
R3.2.1 Observation Labels and Variable Names in the Data File 
 
 Data files often contain observation labels as well as variable names.  The data set in Figure 
R3.6 shows the typical arrangement. 
 

State          ValueAdd     Capital     Labor        NFirm 
Alabama         126.148       3.804     31.551          68 
California     3201.486     185.446    452.844        1372 
Connecticut     690.670      39.712    124.074         154 
Florida          56.296       6.547     19.181         292 
Georgia         304.531      11.530     45.534          71 
... (20 more observations) 

Figure R3.6  Data File with Observation Labels 
 
Use the IMPORT command or menu option exactly as before. The observation labels will be 
noticed and read separately.  The following are required: 
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• The labels must appear in the first column.  If they appear in a different column, then you 
will use the READ command to import the data.  READ is discussed in Section R3.5. 

• The labels column is an extra column in the data.  It is not a variable. 
• If there are names in the first line of the data file, then you must include a name for the 

labels.  Note that the name ‘State’ is used for the labels, not for one of the variables. 
• The labels must not contain spaces. ‘West Virginia’ is not a valid label – it will ultimately 

translate to ‘West’ for the label and a missing value for the first variable. 
• Data may not be ‘transposed.’  (See Section R3.5.5.) 
• The file may not be ‘formatted.’  (See Section R3.5.7.) 
• The maximum number of observations in a labeled file is 65,536. 
• Labels may contain up to 16 characters. 

  
R3.2.2 Data Files that Contain Only Numeric Data 
  
 It is probably unlikely, but it is possible that your data file does not contain any variable 
names.  For example, the data in a small file might appear as in Figure R3.7. 
 
 

 1   2   5  
 3   4   6  
 2   5   4  
 3   6   7  

 
Figure R3.7  Small Data File 

 
Use IMPORT exactly as before.  The variables will be automatically named x1, x2, x3.  This is 
likely to be a bit cumbersome – you may want to provide names for the variables.  This can be done 
with the READ command as discussed in Section R3.5.  However, a better solution would be to 
simply add the names to the data file and read in the names with IMPORT. 
 
R3.2.3 Observation Labels without Variable Names in the Data File 
 
 Another possibility, probably also unlikely, is a data file with observation labels, but no 
variable names.  Figure R3.8 shows the appearance. 
 
 

Alabama         126.148       3.804     31.551          68 
California     3201.486     185.446    452.844        1372 
Connecticut     690.670      39.712    124.074         154 
Florida          56.296       6.547     19.181         292 
Georgia         304.531      11.530     45.534          71 
... (20 more observations)  

 

Figure R3.8  Data File with Observation Labels and without Variable Names 
 
You can use IMPORT exactly as before to read this data file.  The variables will be named with the 
default names, x1, …  To provide the variable names explicitly, use the READ command.  Again, 
the preferable solution is likely to be to edit the file and add the variable names as a first row, and 
use IMPORT to read the file. 
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R3.2.4 Reading a Spreadsheet File from Excel 
 
 A sample data set read into Excel is shown in Figure R3.9. (This is Table F7.2 from Greene 
(2011), which contains 25 statewide observations on output and inputs in the transportation sector.)  
The data in this file are typical. In addition to the variable identifiers, the state names are part of the 
data set.   
 

 
Figure R3.9 Sample Excel Data Set 
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 You can import a file created by Excel. However, LIMDEP cannot read the default .xlsx 
format file that later versions of Excel use to save a spreadsheet.  First, you need to save the file in 
another file format. As shown in Figure R3.10, click the Microsoft Office button, then click Save As. 
(You can also scroll down the list of Save As options and click Other Formats.)  This will open a 
dialog box that lets you select an alternative file format.  
 

 

 
Figure R3.10  Save As Menu in Excel 

 
In the Save As dialog box shown in Figure R3.11, click the down arrow in the ‘Save as type’ 

window to view the file types. Then select the ‘CSV (comma delimited) (*.csv)’ format. Excel presents 
a warning dialog box that the file may contain features that are not compatible with the CSV format. 
Just click Yes to proceed. 
 
NOTE ON FILE FORMATS:  LIMDEP can read .xls files written by Excel 2003. This is one of 
the formats available when you use Save As in Excel 2007 or 2010. However, an Excel 2007 or 
2010 .xlsx file saved as an Excel 97-2003 .xls file cannot be read by LIMDEP. The .xls file created 
by this choice is compatible with earlier versions of Excel, but usually not with other software.  If 
you have an existing .xls or .xlsx file that contains your data for export to LIMDEP, open the file in 
Excel and use Save As to save the file in the .csv format. You should always use CSV files to export 
data from Excel to LIMDEP. 
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Figure R3.11  Saving an Excel File in CSV format 
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If your Excel file follows the standard format described in Section R3.2, you can simply read 
in the .csv file using the Import menu option or the IMPORT command. (Be sure to remove any 
commas in the cells and any spaces in the variable names.) If your Excel file does not follow the 
standard format, then you may use the READ command to input the file, described in Section R3.5. 

 
NOTE ON SPREADSHEET DIMENSIONS:  An advantage of the generic format is that it has 
relaxed the constraints on spreadsheet sizes that were built into the .xls format.  In versions of Excel 
before 2007, the limits were 255 columns and 65536 rows.  The new limits are 65536 columns and 
1,048,576 (220) rows. 
 
NOTE ON FORMULAS IN CELLS:  Another advantage of the CSV format is that it is not 
affected by whether the cells in your spreadsheet contain values or formulas.  The item that Excel 
puts in the CSV file will always be the number that you see on your screen even if that number is 
placed there by a formula in the background.  You don’t have to worry about formulas vs. values in 
your spreadsheet file. 
 
TIP:  If you regularly use other programs to create data sets to transport to LIMDEP or NLOGIT, 
including Excel, SAS, Stata, SPSS, or vice versa, you will find the utility program StatTransfer a 
worthwhile acquisition.  StatTransfer is discussed in Section R3.5.6. 
 
R3.2.5 Missing Values in Data Files 
 
 LIMDEP will catch nonnumeric or missing data codes in most types of data sets.  In general, 
any value not readable as a number is considered a missing value and given the value -999.  
 
In all settings, -999 is LIMDEP’s internal missing data code. 
 
Since -999 is a distinctive, but otherwise legitimate value, no account is taken of missing data in 
estimation. It is up to you to REJECT observations for which the missing value has been inserted. 
(REJECT is discussed in Chapter R7.  A convenient, global means of handling missing data is also 
discussed in Chapter R7.)  Some things to remember about missing data are: 
 

• A blank in a data file is normally not a missing value; it is just a blank.  Since a data file 
imported or read without a format can be arranged any way you want, LIMDEP has no way 
of knowing that a blank is supposed to be interpreted as a missing value.  But, all other 
nonnumeric, nonblank entries are treated as missing. This includes  SAS’s ‘.’ character, the 
word ‘missing,’ or any other code you care to use.  A method is provided in Section R3.5.7 
for you to tell LIMDEP to treat blank fields as missing data. 

 
• There will be occasions when LIMDEP claims it found missing values when you did not 

think there were any.  The cause is usually an error in a READ command or some other 
problem in the file. For example, you can provide data in a file on more than one line.  But, 
you must not end a line with a comma.  This particular error will lead to missing values 
showing up unexpectedly. 
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R3.2.6 Missing Values in the Comma Delimited (CSV) Files 
 
 IMPORT is used for reading any text file that has comma, tab, or space separated values. 
This includes CSV files, text files, or any other ASCII formatted file. The flexibility of this 
arrangement makes it impossible to determine that a space is meant to indicate a missing value.  
However, the CSV format in particular (and not other types of files) has a distinctive, easily 
detectable method of indicating missing values.  In a CSV file, missing values, and only missing 
values, are shown as blanks.  This means that when you specifically tell LIMDEP that your data file 
is in the CSV format, it can find the missing values by locating the blanks in the data.  In a CSV file, 
missing values at the beginning, middle, and end of a line of data are indicated by ‘blank then 
comma,’ ‘comma, then blank, then comma,’ and ‘comma then blank.’  Because of the last of these, 
you must be sure that you never use a comma at the end of a line in a CSV file unless you intend for 
that comma to be followed by a missing value. Programs that create this type of file will respect this 
convention, so the potential error will only arise if you yourself manipulate the contents of the file.  
This special case is handled with the READ command.  See Section R3.5. 
 
R3.2.7 Data Files that Are Not Formatted for IMPORT 
 
 Since you do not provide any information with the IMPORT command except for the name 
of the file, LIMDEP must try to determine from the file itself what the appropriate layout is, that is, 
whether there are labels and/or names in the file, how many variables there are, and so on.  In most 
cases, this will be transparent, and your file will be imported the way you expected.  If you find that 
the imported data have missing values where you did not expect them, or if variables seem to be in 
the wrong columns, then the file is probably not arranged appropriately for IMPORT. (You can use 
the data editor described in the next section to view your data.) In this case, you should reset the 
project (with Project:Reset), and try again to read the data, this time with the READ command, 
which is discussed in Section R3.5. 
 Note, finally, there are cases in which the data are explicitly not arranged the way IMPORT 
would expect them.  For example, if you have observation labels in the file and the numeric data are 
given on more than one line, then the data will not be imported properly.  In these cases, you must 
use READ, not IMPORT.  (If you do not have observation labels, then IMPORT can handle data 
on more than one line.  However, with IMPORT, if the first row is variable names, then regardless 
of how the numeric data are arranged, the variable names must appear on a single line.) 
 
R3.3 The Data Editor 
  
 LIMDEP’s data editor contains data that you import or read and any new variables that you 
create.  The data editor resembles familiar spreadsheet programs, such as Microsoft Excel. You can 
reach the data editor in several ways: 
 

• Click the data editor (grid) icon on the LIMDEP toolbar.       
• Double click any variable name in the project window. 
• Select the menu option Project:Data Editor. 
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Figure R3.12  Active Data Editor 

 
The display shows you precisely what appears in the data array. The chevrons (››) next to the 
observation numbers or labels indicate that these observations are in the current sample. See Chapter 
R7. 
 
NOTE:  The data editor can only display 5,000 rows, regardless of how many actual rows of data 
you have.  If you have read more than 5,000 observations, and you go to the data editor, it will still 
only show 5,000 rows.  This does not mean that your data were not read completely.  To verify the 
import of a data set, you can use CALC ; List ; N $ or DSTAT ; Rhs = * $ to show you the actual 
observation count.  The current sample length will also appear at the top of the project window at all 
times. The CALC command is discussed in Chapter R17.  
 
 You need not have read a data set to access the data editor.  The data editor appears as 
shown in Figure R3.13, with an empty editing area when no variables exist.  
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Figure R3.13  Data Editor and ‘Right Mouse’ Menu 

 
The functions of the data editor are shown in the smaller menu, which you obtain by clicking the right 
mouse button, as displayed in Figure R3.13. The functions of the data editor menu are described below. 
 
New Variable 
  
 You can enter a small data set by typing in the data in the editor.  First, it is necessary to 
create the columns.  To do so, select New Variable in the menu to open the dialog box shown in 
Figure R3.14. 
 

 
Figure R3.14  Entering New Variables in New Variable Dialog Box 
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Just enter the names of the new variables in the window and click OK.  For our example, the 
variables names are year, age, educ.  Variable names may have up to eight characters, must begin 
with a letter, and must be composed from only letters, numbers and the underscore character.  
Variable names will be converted to upper case with spaces removed. After clicking OK, the window 
changes to that in Figure R3.15, and you can begin typing in the data. 
 

 
Figure R3.15  Data Editing Window with New Variables 

  
NOTE:  If your data have missing values, they will appear as blank cells in the data editor. Although 
a missing value is displayed as a blank, internally, the cell contains -999. 
 
HINT:  The data editor does not reset the current sample. After you enter a data set with it, the 
current sample is unchanged.  If you enter a data set initially in the data editor, you should use Set 
Sample or a SAMPLE command to set the sample appropriately. (See Chapter R7.) 
 

When there are data already stored in the data area, the New Variable dialog box can be used 
to compute transformed variables.  This is equivalent to the CREATE command described in 
Chapter R4.  For example, in Figure R3.16, the dialog box is being used to create a variable named 
loginc using the existing variable named hinc and the built-in log function.   
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Figure R3.16  Transforming Variables in New Variable Dialog Box 

   
  After you create and enter new variables, the project window is updated, and the data, 
themselves, are placed in the data area.  Figure R3.17 illustrates.   
 
HINT:  The New Variable dialog box will allow you to replace the existing values of a variable.  For 
example, in Figure R3.16, if ‘loginc’ were ‘hinc’ in the Name window, then the values of hinc would 
simply be replaced with their logarithms. 
 

 
Figure R3.17  Data Editor and Project Window  
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Import Variables 
 

Click Import Variables to open a dialog box that allows you to import a spreadsheet or 
other data file.  This is the same as selecting Project:Import/Variables or the IMPORT command 
described in Section R3.2. 
 
Export Variables 
 

Click Export Variables to open a dialog box that allows you to write variables in a data file.  
You can create a .csv file.  This is the same as the EXPORT command. EXPORT and an extension, 
WRITE, are discussed in Section R3.9. 
 
Sort Variable 
 
 Click Sort Variable to open a dialog box that allows you to sort a variable carrying other 
variables with it (optionally).  The dialog box for this operation, which is the same as the SORT 
command (see Chapter R4) is shown in Figure R3.18. 
 

 
Figure R3.18  Dialog Box for Sort Variable 

 
Set Sample 
 

Click Set Sample to obtain a menu of options for setting the current sample.  This uses the 
All, Range, Include, Reject and Draw options discussed in Chapter R7 to set the current sample.  
(This option is not available until data have been read into the data area.)  
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R3.4 The Data Area  
 
 Your data are stored in an area of memory that we will refer to as the data array.  The data 
area is originally configured with 5,000,000 cells.  This should be sufficient for most applications.  
However, the program allows you to analyze at least 3,000,000 observations (or more).  It is 
conceivable that your data set might be too large for the original setting.  If so, you need to reset the 
size of the data area.  This is not done automatically because although the program can figure out 
how many cells you need to import your data, it cannot guess how many more cells you need for 
new variables you might create.  This section shows you how to adjust the data area. 
 
R3.4.1 Temporary Expansion of the Data Area 
 
 To see the current size of the data array, select Project:Settings, then click the Data Area 
tab, as shown in Figure R3.19. This dialog box allows you to adjust the number of cells in the data 
area for the session you are currently using. The memory requirement displayed is the number of 
megabytes, determined as (8×number of cells)/(1024×1024).  (Each number requires eight bytes.)  
Thus, the 76.294 megabytes required is 80 million divided by 10242.  
 

 
Figure R3.19  Project:Settings/Data Area 

 
TIP:  Do not use this feature after you import or read a data set. In order to expand the data area, it 
must be cleared of all existing data.  Use this feature before you import or read your data. 
 
As noted, this setting is only for the current session.  When you exit LIMDEP and come back later, 
the data area will once again be set to what it was before you made this change (probably 5,000,000 
cells). 
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R3.4.2 Permanently Setting the Number of Cells in the Data Area 
 
 You can change the size of the data area permanently (until you change it again) by using 
Tools:Options/Projects to change the default setting.  The dialog box shown in Figure R3.20 shows 
how to make this setting.  You may change this at any time. 
 

 
Figure R3.20 Tools:Options/Projects 

 
Modern computers generally have plenty of memory.  You will probably find a permanent setting 
such as 10,000,000 to be sufficient for your needs without placing excessive demands on your 
system. 
 
R3.4.3 Setting the Number of Rows in the Data Area 
 
 The data array is initially configured as a rectangle with 900 columns and NKMAX/900 
rows where NKMAX is the number of cells in your data area.  When you enter data, they are placed 
at the top of this array moving down the rows, in the natural fashion.  When you read a data set, if 
you require more than the default number of rows, the data array is automatically reconfigured with 
more rows and fewer columns if necessary.  However, if you are using the random number 
generators to produce random samples, rather than analyzing an externally produced data set, you 
may wish to change the number of rows yourself to allow you to have a larger number of 
observations.  To change the number of rows in the data area, use the Project:Settings/Data Area 
dialog box shown in Figure R3.19.  You will be reminded when you do this that changing the 
configuration of your data area erases all existing data.   Note, the dialog box in R3.19 will not allow 
you to reduce the number of rows from its current setting.  You can use the SAMPLE command to 
do that. 
 You can also reconfigure the data array (without resizing it) by using the ROWS command: 
 

ROWS  ; the value  $ 
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(If you give the unmodified command, ROWS $, you will be offered the dialog box in Figure R3.21 
in which you can provide the desired number of rows.) When you use this command, existing data 
are erased.   
 

 
Figure R3.21  ROWS Dialog Box 

 
HINT:  If you are reading more than one data file, read the longest one first.  Once the data area  has 
been reconfigured to accommodate a data set, it cannot be reconfigured again without losing the first 
data set. 
 
NOTE:  You are limited to 900 variables in your active data set when you operate LIMDEP.   The 
900 variable limit is always effective so you cannot reduce the default number of rows. 
 
R3.5 The READ Command for Nonstandard Data Files 
 
 The IMPORT command shown in Section R3.2 will succeed for most types of data files 
that you will use.  But, there are many kinds of data files, and many ways for data files to differ from 
the standard format assumed for IMPORT.  This section will describe different strategies for 
importing your data. The general command for reading a data file is that is not read properly by 
IMPORT is 
 
 READ  ; Nvar   = number of variables 
   ; Nobs   = number of observations 
   ; Names = list of names for the variables 
   ; File = the full file name, including path   
   ; Format = identifier for certain types of files 
   ; Labels = position in the file where labels are found  
   ; By Variables for a certain arrangement of data $ 
 
Several of the specifications listed are optional and are used only for specific situations. The READ 
command is submitted from the text editing window, just like the IMPORT command. It is helpful 
to use Insert:File Path to obtain the full path for the file name.    
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R3.5.1 ASCII Numeric Data Files 
 
 This assumes that the file is an ASCII file (not binary, not a spreadsheet, etc.) with numbers 
arranged in rows, separated by blanks and/or commas.  Numbers in the file need not be neatly 
arranged vertically.  If there are missing values, there must be placeholders for them since blanks just 
separate values, they cannot be interpreted as missing data.  Use as many lines as needed for each 
observation to supply all of the values. 
 If the data appear on a single line for each observation, then you can use IMPORT to read 
the data file.  That case is shown in Figure R3.7.  The variables will be automatically named x1,x2,…  
In order to provide the names, you must use READ as described in this section. 
 The situation considered here is that in which the data in the file appear on more than one 
line per observation.  The data in Figure R3.22 are an example – there are four observations on three 
variables. 
 

1    
2   5  
3   4   6  
2   5   4  
3   6    
7  

 
Figure R3.22  Data on Multiple Lines 

 
The reason this file cannot be read with IMPORT is that there is no way to determine how many 
variables it contains, since observations can be on more than one line.  This would be true even if 
each observation were on a single line, since it would be valid for it to have two observations on six 
variables rather than four on two. 
 
TIP:  IMPORT is clever.  The obstacle is the first line.  If your data set has a full set of observations 
on the first line, but later observations take more than one line, then IMPORT will read the file 
correctly if the numeric data are in the expected format (comma or space delimited), since it will 
guess correctly that the number of variables in the file is the number that appear on the first line.  
This section is about files that generally require more than one line per observation, including the 
first observation. 
 
 To read this file, you can use READ with 
 
 READ   ; File = filename ; Nobs = 4 ; Nvar = 3 $ 
 
If you omit the names, the variables will be named x1, x2, x3. You must generally provide ; Nobs 
and ; Nvar. 
 
TIP:  If this file had three names on a single row in the first line, IMPORT would read the file 
correctly if the observations to follow take the usual format (comma or space delimited). The names 
would suffice to identify the shape of the data file.  
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HINT:  If you do not know the exact number of observations in your data set, give ; Nobs a number 
that you are sure will be larger than the actual value.  LIMDEP will just read to the bottom of the file 
and adjust the number of observations appropriately. 
 
R3.5.2 Variable Names Not Provided in the Data File 
 
 The most convenient way to supply variable names is in the first line of the data file, itself.  
This is the common approach used by IMPORT.  But, if your data file contains only the data, and 
not the names, then you can provide them.  
 The normal way to enter variable names is in the command. 
 

; Names = name_1,...,name_nvar 
 
The variables in the file in Figure R3.22 can be named bill, jim, bob with 
 
 READ   ; File = filename ; Nobs = 4 ; Nvar = 3 ; Names = bill,jim,bob $ 
 
Variable names may have up to eight characters, must begin with a letter, and must be composed 
from only letters, numbers, and the underscore character.  Remember that names are always 
converted to upper case.  Reserved names are listed in Section R2.6.2. 
 
R3.5.3 Variable Names in the Data File 
  
 The more convenient way to provide names is in the data file.  If this file had three names on 
a single row in the first line, IMPORT will read the file correctly. However, if the variable names 
are on more than one line, you cannot use the IMPORT command. Figure R3.23 continues the 
earlier example 
 

bill, jim,  
bob 
1    
2   5  
3   4   6  
2   5   4  
3   6    
7  

Figure R3.23 Variable Names Provided with Data on Multiple Lines 
 
In this case, the variable names are on two lines. To indicate that the variable names are in the file, use 
 
   ; Names = n 
 
in your READ command, where n is the number of lines you need to list the names.  Then, at the 
absolute beginning of the data file, include exactly n lines containing the variable names, separated 
by any number of spaces and/or commas. The command to read the data set in Figure R3.23 would be 
 
 READ  ; File = filename ; Nvar = 3 ; Nobs = 4 ; Names = 2 $ 
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R3.5.4 Observation Labels  
  
 IMPORT can read a data file with the observations labels in the first column only. If your 
data file has observation labels in any other column, use the following format to read your file:  
 
 READ  ; File = filename ; Nobs = ... ; Nvar = ...   
   ; Labels = the column in the data file that contains the labels $ 
 
NOTE: If your observation labels are not in the first column and your data file has variable names, 
you must also include ; Names = n, even if the variables names are on a single line, which you 
would indicate with ; Names = 1.  
 
The data file in Figure R3.24 contains labels for the individual observations in the second column, as 
well as variable names.   
 
 

ValueAdd     State          Capital      Labor    NFirm 
 126.148     Alabama          3.804     31.551       68 
3201.486     California     185.446    452.844     1372 
 690.670     Connecticut     39.712    124.074      154 
  56.296     Florida          6.547     19.181      292 
 304.531     Georgia         11.530     45.534       71 
... (20 more observations) 

 
Figure R3.24  Data File with Observation Labels 

 
To read the file in Figure R3.24, you would use 
 
 READ   ; File = … ; Nvar = 4 ; Nobs = 25  

; Names = 1 ; Labels = 2 $ 
 
The following rules apply to the syntax: 
 

• The maximum number of observations in a labeled file is 65,536. 
• The labels column is an extra column in the data.  It is not a variable. 
• Nvar does not include the labels. 
• You must include a name for the labels.  Note that the name ‘State’ is used for the labels, 

but not for the data. 
• Data may not be ‘transposed.’  (See Section R3.5.5.) 
• The file may not be formatted.  (See Section R3.5.7.) 

 
The situation that this form of READ is provided for is that in which the observation labels are not in 
the first column (or the data are nonstandard formatted). 
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R3.5.5 Transposed Data Files – Reading by Variables 
  
 There are two ways to arrange a data set, ‘by observation’ and ‘by variable.’  When data are 
read by observation, each line (or, possibly, group of lines) is a single observation, perhaps a year or 
individual, on one or more variables.  This is how the preceding examples have been arranged.  
When you enter data ‘by variables,’ you will provide the full set of observations on a variable, then 
proceed to the next variable, and so on. 
 You may find it more convenient to enter data one variable at a time instead of one row at a 
time. If your data are arranged by variables, instead of by observations, you can READ them in 
transposed form just by adding  
 
   ; By Variables  
 
to the READ command.  If you use this option, you must also include an accurate value for 
 
   ; Nobs = number of observations 
 
This is no longer optional. Also, if you specify ; By Variables, you must include ; Names = n, even 
if the names are on a single line.  For example, two ways to READ the following data matrix are:  
(The names are not part of either data set.) 

 
  Arranged by Observations        or    Arranged by Variables 
  (year) (gdp)  (cons)              (year)    1975   1976 
  1975   1267  1003               (gdp)     1267   1386 
  1976   1386  1110               (cons)    1003   1110 
 

Figure R3.25  Data File Arranged by Observations or by Variables 
 
You would read the one on the left using 
 
 READ   ; Nobs = 2 ; Nvar = 3 ; File = ... ; Names = … $  
 
and the one on the right using 
 
 READ   ; By Variables ; Nobs = 2 ; Nvar = 3 ; File = ... ; Names = ... $ 
 
The data file would have three rows and two columns as on the right.  The first row would be  ‘1975 
1976’ and so on. 
 Regardless of the actual arrangement of the data file, Nobs is the number of observations, 
not necessarily the number of physical rows in the data set. 
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R3.5.6 Binary Files and Files from Other Programs 
 
 Most researchers use more than one program, and create data in a variety of environments. 
Every statistical program can read data files written by a few other programs – LIMDEP can read the 
several formats listed in this section – but none is able to read the data files written by every other 
program.  This inability to pass data between some programs does place a constraint on some users, 
as there are several dozen statistical packages in use, and numerous data processing packages such as 
Excel.  A partial solution is provided by packages that are designed specifically to convert data from 
a large variety of programs to any of them in turn.   
 Each of the major statistical packages in general use has its own ‘native’ system format.  For 
LIMDEP, that is the .lpj project file described in Chapter R2; for Microsoft Excel, it is the .xls or 
.xlsx worksheet or workbook file; SPSS has its own .sav format, and so on.  Software programs such 
as StatTransfer by Circle Systems, Inc. (http://www.stattransfer.com) can be used to convert system 
files from and to the native formats of many programs.  This program can greatly facilitate your use 
of other packages with LIMDEP.  With StatTransfer, you can convert native files from SPSS, SAS, 
Stata, Excel, SYSTAT, and about 25 other formats, to and from LIMDEP project files.  The menu of 
file types supported by StatTransfer is shown in Figure R3.26. 
 

 
Figure R3.26  StatTransfer File Types 

 

http://www.stattransfer.com/�
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LIMDEP can read the following file formats: 
 
Stata Files 
  
 LIMDEP can read the native file format (.dta) of Stata Versions 10 and 11. To read a Stata 
file, use 
 

 READ  ; File = … ; Format = DTA $ 
 
If the file contains a column of descriptors or labels, add 
 
   ; Labels = the column number 
 
to the READ command, even if the observation labels are in the first column. 
 
NOTE:  The DTA format has changed over time.  LIMDEP Version 10 supports the file format for 
Stata Versions 10 and 11.  We cannot guarantee that this will continue to work with later versions of 
Stata (and we are aware that it does not work with some earlier versions). 
 
Excel XLS Files 
 
 You can read a file written by Excel 2003 or earlier in the .xls format with 
 
 READ  ; File = … ; Format = XLS $ 
 
Add ; Labels = the column number if the file contains observation labels, even if the labels are 
included in the first column.   

Note, once again, the .xls compatible files that Excel 2007 or later writes are not readable.  
You should generally not use the .xls format.  If you have access to Excel (any version), open the file 
in Excel and use Save As to convert the file to the .csv format.  (The only situation we see in which 
you will require this format is if you need to open the .xls file, but you do not have access to Excel.)
  
Binary Data Files  
 
 (If you are unsure if this is the right format for your data set, then almost certainly it is not.) 
If you are using a data set written in binary format, you must read it with 
 
   ; Format = Binary 
 
The other parts of the READ command are unchanged. 
 No other changes are necessary.  But, note that the initial input of this file will be into an 
array of eight byte words. You must know in advance whether your file contains single or double 
precision (four or eight byte) values.  The default file format is assumed to be four byte, single 
precision input, with conversion to double precision when the data are read.  You can inform 
LIMDEP that your binary file is double precision with 
 
   ; Double 
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 You can extract a subset of the variables in a binary file.  To put this in context, consider 
analyzing the data stored in a very large binary file, say 10,000 observations on 500 variables.  You 
can extract selected variables from the master file. To extract a subset of variables from a binary file, 
use 
    READ   ; Nvar = nvar ; Names = ... ; File = name 
   ; Format = Binary 
   ; Size = width  
   ; Cols = cols to read $ 
 
The specification of the particular columns to read may be an item by item list or ranges of columns, 
or a mix, as in 
 
   ; Size = 500 ; Cols = 1, 4, 10-55, 60-100, 121, 129 $ 
 
R3.5.7 Formatted ASCII Files 
 
 You may be using data which are formatted in the file according to some uniform structure, 
particularly if the data set is large.  Such files may require a detailed set of instructions for how to 
read them.  For example, each of the two observations in the small file below could be a single 12 
digit variable or 12 one digit variables, two six digit numbers, etc.  Without further instructions, there 
is no way to tell. 
 
     197512671003  
     197613861110  
 
 
A formatting code is used to lay out what data are contained in this file.  Formatting allows you to 
save space by not having to include blanks or commas.  You can read data according to a format by 
adding the specification 
 
   ; Format = (format codes)  
 
to the READ command.  The format must be enclosed in parentheses.  For example, the file above 
might be read with  
 
 READ   ; Names = ... ; Nvar = 3 ; Nobs = 2 ; Format = (F6.0,2F3.0) ; File = ... $ 
 
Details on the syntax of formatting codes are given below. 
 
Format Codes 
 
 A format is used to describe how your data are arranged in each observation, character by 
character.  For example, the data record 
 

1234.56121213.4AC567 
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consists of 20 characters which can be grouped in many different ways to produce different sets of 
numbers.  The format description is used to tell LIMDEP how to group the data in a set of values.  Its 
general appearance is 
 
   (code, code, code, ...). 
 
The format codes, or descriptors which you will normally use are 
 

• Fw.d – the field is w characters wide, place d digits after the decimal point. 
• X – ignore the character in this position. 
• nX or nFw.d – n is a repetition factor.  The X format must always be preceded by a 

repetition, even if it is 1. 
• n(group of codes) – group of codes repeated n times. 

 
 To read the preceding string as the set of values ‘1.23  4.56  1.21  2  13  .4  567’ and skip 
over the AC, which is not a number and therefore cannot be read by LIMDEP, you would use 
 
   (F3.2,F4.2,F3.2,F1.0,F2.0,F2.1,2X,F3.0) 
 
Notice that the 1.23 is created by placing a decimal point between the 1 and the 2, while the 4.56 is 
read directly, and already contains a decimal point. 
 Repetition and grouping can save a lot of space.  Note how the repetition of 2 is used to skip 
over the two letters.  For another example, suppose you wanted to read the string 561212 as 
56,1,21,2.  This is a pair of two digit then one digit sequences.  You could format it as 
 
   (...,2(F2.0,F1.0),...). 
 
 A useful result is that if the number in a field actually contains a decimal point, then the ‘.d’ 
part of the format code is overridden.  Thus, in the first example, while 13, .4 was read as 13 and .4 
using F2.0,F2.1, it could have been read as 2F2.0.  The presence of the decimal point in the second 
value would have overridden the specification of 0 digits after the decimal point in the format code. 
(But, using 2F2.1 would not be correct because though the second value would be correct, the first 
would be read as 1.3, not 13.) 
 Another useful descriptor is the slash format, ‘/.’  You may need this if your data require 
more than one line per observation.  This code means ‘go to the next line and continue reading.’  For 
example, 
      1234567812 
   3456     
 
could be read as the numbers 123.456, 78.12, and 345.6 with the format (F6.3,F4.2 / F4.1). 
 There are settings in which you do not need to provide the ‘/’ format even if your 
observations take more than one line.  Consider, for example, reading the preceding as a set of two 
digit numbers, 12, 34, 56, 78, 12, 34, and 56.  The effect of the format (5F2.0) would be as follows: 
You are trying to read seven numbers, but you have only provided five format codes.  The reader 
gets to the end of the five format codes and finds that it has two values yet to read.  It drops to the 
next line of data and begins reading with the code at the beginning of the format statement. 
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WARNING:  In specifying the format, use only real format codes, Fw.d. Never use integer formats 
– Iw – or character formats – Aw – for reading data.  If data are coded with an exponential format, 
Ew.d, you can use the Fw.d code in LIMDEP.  It handles exponential data as well. 
 
Specifically Converting Blanks to Missing Values  
 
 Formatted READ commands always convert blanks to 0s.  Since 0 is a legitimate value, if 
your blanks represent missing data (-999s), you need a method of requesting LIMDEP to make the 
conversion.  This operation can be requested by using 
 
   ; Blanks 
 
in your formatted READ command.  You must provide the format statement.  If you use this option, 
your READ will be slower than otherwise, but the READ need never be done more than once.  (Use 
SAVE.) This option also makes specifying the format codes a little easier.  You can usually omit the 
‘.d’ in your specifications.  For example: 
 
   To Read As        Without option   With option 
   1234    1234       F4.0                 F4 
   1.23       1.23       F4.2                 F4 
   1234       12.34       F4.2                 F4.2 
 
If the decimal point is implicit, as in the third row, you must tell LIMDEP where to put it.  The 
earlier example would be (F4,2(1X,F4)).  With this option on, all blanks, nonnumeric data such as 
the word ‘missing,’ and fields containing only a period are converted to -999.  Finally, if you require 
certain numeric values, such as -7, to be read as missing values, (i.e., converted to -999), simply 
READ them as they are, then use RECODE to do the conversion.  (See Chapter R4.) 
 
R3.5.8 Recoding Character Data 
 
 LIMDEP has a limited capability to manipulate character data.  On input, you can recode a 
character symbol to a useable numeric value by using ; Recode in your READ command.  The 
setting involves a variable that is coded with a specific alphanumeric code which is converted to a 
numeric one.  For example: 
 
   Northeast  1 
   South   2 
   Midwest  3 
   West   4 
 
The recoding scheme is indicated on the READ command with 
 
 READ   ;  Recode: variable(string = value, string = value, … ) / 
         variable(string = value, string = value, … )  
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and so on.  Note that the specification ; Recode is followed by a colon; variable recodings are 
separated by a slash, and the transformations are separated by commas.  You may recode as many 
variables as you like in this fashion.  Character strings may be up to 20 characters.  As always, upper 
case is the same as lower case, so you cannot use case to form different character strings.  Any 
strings found in the data set that are not given in the list for the variable are converted to a missing 
value.  For example, with a transformation of sex from ‘female’ to 1 and ‘male’ to 0, we might have 
 
 READ   ; Nobs  = … 
   ; Nvar  = … 
   ; File    = … 
   ; Names  = … , region,sex, … 
   ; Recode: region(Northeast = 1, South = 2, Midwest = 3, West = 4) / 
        sex (female = 1, male = 0) $ 
 
This option may be used with ASCII text files such as .csv and .txt. 
 
R3.6 Using the Text Editor as a Data File  
 
 Your text/command editor (editing window) is actually a ‘file’ that LIMDEP reads when you 
click the GO button, so you can create data files in the text editor.  Figure R3.27 shows a text editor 
in which we have entered a small data file with a READ command.  (The data are Table F1.1 from 
Greene (2011).) 
 

 
Figure R3.27  Data in Text Editor 

 
The data are in the text editor, but they are not in the program’s data area yet.  To read them, you 
would just highlight all the lines in the editor screen and click GO.  (See Figure R3.28.)  Note the 
base structure of the operation.  The command is READ $ which, without other information says 
that some data will follow, in the form of a row of names, followed by several rows of data.  (In the 
data set above, the data are neatly lined up in columns.  This is done here only for readability. It is 
not necessary.)  Note, for present purposes, READ is the same as IMPORT, and you could use 
IMPORT as the command in the editor above. 
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Figure R3.28  Reading Data from the Text Editor 

 
R3.6.1 Use the Text Editor to Avoid Creating a Data File 
 

In addition to reading data off the screen in the editor, you can you can pull data directly out of 
documents, such as Word or PDF files, and import them into LIMDEP without having to put them in 
a data file first.  To import the data into LIMDEP, do the following:  
 

1. Open a text editing window and place the command READ $ in the first line.  
2. Highlight the data you wish to copy including column headers and use Edit:Copy to place 

them on the clipboard.  
3. Return to the text editor in LIMDEP and use Edit:Paste to paste the data under the READ  

command.  
4. Highlight the READ command, the column header names and the data (or use Edit:Select All) 

and click GO.   
 
Figures R3.29 and R3.30 below show this operation with a PDF file. You may import any data set 
this way, though for more than a few hundred observations, it may be a bit cumbersome. 
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Figure R3.29  Data in a PDF File 

 

 
Figure R3.30  Data Transported to the Text Editor 

 
R3.6.2 Exporting from Excel to the Text Editor  
 
 As we examined above, you can copy/paste data directly from other programs into 
LIMDEP’s text editor.  This is a quick way to read a small data set.  You can also copy/paste data 
from a spreadsheet program into the text editor.  Figure R3.31 shows an example.  We have copied 
the cells from Excel that contain the full transportation data set shown in Figure R3.9, including 
labels and variable names, and pasted them into the LIMDEP text editor under the READ command.  
Note that the READ command does not specify a file name. To import these data just highlight all 
the lines including the READ command (or select Edit/Select All) and click GO.  Figure R3.32 
shows the result.  (Note that the editor inherits the cell boundary lines.  These are ignored as the data 
are read.  They will also disappear if the text editor contents are written to a .lim file and later read 
back into the editor.) 
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Figure R3.31  Excel Spreadsheet Data Copied to the Text Editor 
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Figure R3.32  Excel File Read into LIMDEP from the Text Editor 

 
 You can also copy/paste a portion of a spreadsheet data set into the text editor.  Figure R3.33 
shows an example.  We have selected part of the transportation data. The highlighted range is just 
copied in Excel and pasted into the LIMDEP text editor, with the result shown in Figure R3.34.  The 
data are then read into LIMDEP just by highlighting the READ command and the table, and clicking 
GO.   
 We note one possible advantage of this procedure. When you use Save As (or Save), Excel 
saves the entire spreadsheet, not a selected piece of it. This device provides a shortcut to exporting a 
part of a spreadsheet.  The alternative within Excel is to open another spreadsheet, paste the cells into 
that new spreadsheet and save it as a separate file.  Then you would import that smaller spreadsheet.  
This saves you a step. 
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Figure R3.33  Data in Excel 

 

   
Figure R3.34  Excel Cells Copied to Text Editor 
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R3.7 Documenting the Contents of a Data/Project File 
 

 After you have imported your data, it is a good idea to save it immediately as a project file.  
(See Section R2.2.)  You need only import the data set once.  Thereafter, when necessary, you 
should reload the data just by opening the project file.  This is a much faster way to import the data 
into a new session.  Saving the project is LIMDEP’s ‘Save’ operation. 

It may be useful to carry documentation of the data set in a project permanently with the file.  
For example, Figure R3.35 shows some text information about the Koop and Tobias data set used in 
our example in Section R5.4.  The text description is saved permanently in the project file.  You can 
set this up as follows:  In any text editing window, place the following text information 
 

DATA 
…   Up to 255 lines containing up to 80 characters on each line.  … 
ENDATA 

 
Use Edit/Select All or just highlight the entire script and click GO to execute it.  Later, when you 
save the project file, this information is saved with it, permanently.  When you reload the project, 
your codebook information will be displayed in the output screen.   
 

 
Figure R3.35  Data Documentation Saved in Project File 
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R3.8 Listing Data in Your Output Window 
 
 The LIST command is used to send a listing of the current sample of observations on a 
particular set of variables to the screen. The command is 
 
 LIST    ;  ... list of variables $   
 
Figure R3.36 shows an example. 
 

 
Figure R3.36  Output from LIST 

 
The listing of the data includes the observation number in the current sample and the row number in 
the actual data set.  These will be the same unless you have selected a subsample to list.  For 
example, if you selected for observation only those states with value added greater than 500, the 
listing of states in Figure R3.36 would have had lines numbered 1,2,3,4 but observation numbers 
2,3,6,7. 
 If your data were read with observation labels, then the labels will replace the line numbers 
shown.  For the data above, for example, we would have the display in Figure R3.37. 
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Figure R3.37  Data Listing with Observation Labels 

 
 You can request that your listed data be sorted by a particular variable by using 
 
 LIST   ; ... list of variables ; Key = a variable $ 
 
The ‘Key’ variable is sorted carrying the listed variables with it, then the listing is produced with the 
sorted data.  Figure R3.38 shows an example based on Figure R3.37.  Two important notes: 
 

• The sorting does not affect the data in your data area.  The data to be listed are copied, 
then sorted, then the sorted copies are displayed.  The original data are untouched.  The 
SORT command may be used if you wish to sort your data. 
 

• The key variable does not have to be one of the variables being listed. 
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Figure R3.38  Data Listing Sorted by Key Variable 

 
R3.9 Exporting and Writing Data Files 
 
 The essential commands to create a new data file are EXPORT and WRITE.  EXPORT is 
used to create a  CSV file that can be imported directly into Excel or other programs that recognize 
this format. WRITE is used to produce a simple text file with numbers stacked in columns, possibly 
using a format that you specify. 
 
R3.9.1 How to EXPORT a CSV File 
 
 The command for exporting a file is 
 
 EXPORT ; list of variables ; File = filename $ 
 
No other information is given with this command.  The observations written in the file are those 
defined by the current sample.  (The current sample is discussed in Chapter R7.)  The file will have 
the CSV format and will be named filename.csv.  If you have put an extension on the filename, it 
will be replaced.  Other formatting conventions are 
 
 •  Variable names and observation labels will be exported as well as the data. 
 •  Missing values will appear appropriately as blanks in the file. 
 •  Integers will be exported as integers, though they are stored as reals inside LIMDEP. 
 •  Noninteger values are written with seven significant digits. 
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To export a data file using the menu option, first select Project:Export/Variables in the project 
menu to select the file, as shown in Figure R3.39. (You can also select Export Variables from the 
right mouse menu in the data editor to open the same dialog box). The next step is to select the 
variables to be written in the file, either by selecting Select All or by selecting the variables by name 
in the window.  (Select None is used if you wish to undo your selections and start over.)  Figure 
R3.40 shows an example.  
 

 
Figure R3.39  Project:Export Menu 

 

 
Figure R3.40  Project:Export Variables Specification 

 
TIP:  You can transfer data directly between LIMDEP and your spreadsheet programs, such as 
Excel.  In the data editor, you can select a block of values by highlighting them, then use Edit:Copy 
in LIMDEP and Edit:Paste in Excel to replicate the block in Excel.  This does not move the names, 
so you should begin your transfer in Excel in the second row, then enter the names in the first. 
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R3.9.2 How to WRITE a Data File 
 
 WRITE  ; list of variables  

; File = filename ; Format = the type desired $ 
 
NOTE:  The observations written in the file are those defined by the current sample.  The current 
sample is discussed in Chapter R7. 
 
The data file written will contain only the numeric values from the data area.  If you would like to 
include the variable names in the top row of the file, add 
 
   ; Names 
 
to the WRITE command.  This command will write the variables listed in the file named using 
(6G14.6) format.  The G14.6 format code provides a 14 column field, and six significant digits in the 
number.  If the number written is too large or too small to write in this fashion, this format reverts to 
a scientific notation format, ±0.nnnnnnnE±ee. 
  
NOTE:  Missing values are given the numeric value -999. 
 
 If you would prefer some other format for the file, you can specify one with 
 
   ; Format = (your own format) 
 
If, for example, you are writing binary variables, allowing 14 columns for a one digit number is a bit 
wasteful.  LIMDEP cannot check the syntax of this format for you, so you may induce an error if you 
provide an improper format.  Do remember to include the parentheses.  The WRITE command will 
fail if your format contains an error. 
 You can also extend the formatting of a WRITE command to integers and at the same time, 
convert the missing values to the ‘.’ convention used by other programs such as SAS.  The  
alternative format specification 
 
   ; Format = [… format …] 
 
with the specification enclosed in square brackets instead of parentheses allows you these 
specifications: 
 

   Iw = an integer of width w, 
   Fw.d = real value, width w, d digits after the decimal point, 
   Ew.d = exponential format (scientific notation), 
   nX = skip n spaces. 
 
This format may not have any embedded parentheses.  When you use this option, missing values are 
automatically converted to dots in the file. 
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R3.10 Adding Observations – The APPEND Command 
 
 The IMPORT and READ commands are used to add variables, i.e., columns to your data 
set.  If you wish to add observations, i.e., rows, you use the APPEND command, instead.  The 
command structure is the same as READ, i.e., (optional parts are in brackets)  
 
 APPEND           ; File = name of file 
                       ; Nvar = number of variables 
                 ; Nobs = number of observations 
               [; Format = Fortran format, CSV, XLS or Binary] 
               [; Names = number or list of names] 
               [; By Variables]  $ 
 
The command works as follows: LIMDEP keeps a pointer which indicates where the next data file to 
be read should be placed.  Thus, before you READ any data, the pointer equals 1.  If you initially 
READ your first data set of, say, 25 observations, the pointer is reset to 26.  Each time you 
APPEND a data set, the pointer is advanced. It is also advanced if you READ a longer data set after 
a shorter one.  The pointer always points to the row after the bottom of your data.  Your first READ 
is equivalent to an APPEND.  Thereafter, if your command is APPEND instead of READ, the data 
are read as usual, but placed in the data area in the rows beginning at the pointer, instead of at the 
top. 
 Columns are handled as follows:  Suppose you READ 25 observations on x, y, and, z.  Now, 
the command 
 
 APPEND  ; File = ... ; ...  ; Names = x,y,w ; Nobs = 15 $  
 
will add 15 observations to x and y.  Since w doesn’t exist yet, a new variable is created for it.  Since 
we are using the APPEND command, not READ, the 15 observations on this new variable are 
placed in rows 26-40, not 1-25.   Rows 1-25 of w and rows 26-40 of z will contain missing values 
after this command is carried out. 
 Given the preceding, there are two ways an APPEND command can go wrong.  If the data 
are stored internally, you may run out of rows.  You can run out of columns either way.  LIMDEP 
will take as much data as it can fit when an APPEND command is given.  If the full data set doesn’t 
fit, you will be warned.  Finally, because of the way it is handled internally, you may only APPEND 
a total of 200,000 numbers at a time. 
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R4: Data Transformations 
 
R4.1 Data Transformations 
 

 You will usually need to transform your data, for example to obtain logarithms, differences, 
or any number of other possibilities.  LIMDEP provides all of the algebraic transformations you are 
likely to need with the CREATE command.  It is often useful to recode a continuous variable into 
discrete values or to combine discrete values into a smaller number of groups, for example to prepare 
data for contingency tables.  The RECODE command is provided for this purpose.  You can use 
SORT to arrange one or more variables in ascending or descending order.  The five commands 
described in this chapter are as follows: 
 
 CREATE  ; variable name = expression $  to create a transformed variable 
 DELETE  ; list of variables $ to delete variables from the data set 
 RECODE ; variable ; range of values = new value ... $ to recode a variable 
 RENAME  ; old name = new name $ to change the name of a variable 
 SORT    ; Lhs = key variable [ ; Rhs = variables to carry ] $ 
 
CREATE also provides functions for rearranging data to create partitioned data matrices and 
random number generators for generating random samples. 
 

R4.2 The CREATE Command 
 

 The CREATE command is used to modify existing variables or compute new ones. The 
essential syntax of the command is  
 
 CREATE ; name = expression  $ 
 
Commands may be grouped in a single instruction, with 
 
 CREATE  ; name = expression  ;  name = expression ; ...  $ 
 
If you have a very large data set, the second form is preferable because each CREATE requires a 
single loop over the sample observations regardless of the number of subcommands.  Unless you 
have hundreds of thousands of observations, however, the difference in computation speed will 
probably not be discernible. 
 Transformations may also be made conditionally, as in  
 

 CREATE  ; If ( ... ) ... expressions $  
 

The various forms of the conditional transformations are described in Section R4.2.2. 
 You may also enter your command in a dialog box, as shown in Figure R4.1.  The dialog 
box is invoked by selecting Project:New/Variable or by going to the data editor and clicking the 
right mouse button which will bring up a menu that includes New Variable.  You may now enter the 
name for the new or transformed variable in the Name window.  If you click OK at this point without 
entering an expression for the variable, the new variable is created with all observations treated as 
missing.  The equivalent command to the one in the dialog box would be 
 

 CREATE ; logx1x2 $ 
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You can create more than one empty variable this way as well by giving a list of names separated by 
commas either in the dialog box or in a command.  For example, 
 
 CREATE ; logx1x2, logx1x3, logx2x3 $ 
 
 You may enter an expression for the new or transformed variable in the Expression window.  
Two other features to note in the dialog box are the query (?) button at the lower left, which will 
invoke the online Help file for CREATE, and the function insertion button at the right of the 
Expression window.  You can select a function from the list in the window at the right of the dialog 
box, then insert that function in the Expression window by clicking the function insertion button.  
This allows some convenience in copying the function name into the small editing window, and also 
shows a listing of the function names you can use. 
 

 
Figure R4.1  New Variable Dialog Box 

 
 A CREATE command operates on the ‘current sample.’  (See Chapter R7.)  If this is a 
subset of the data, remaining observations will not be changed.  If you are creating a new variable for 
the subset of observations, remaining observations will be undefined (missing).  You can override 
this feature by using 
 
 CREATE   ; Fill  ;  ... the rest of the command $  
 
in your command.  With this additional setting, the transformations listed will be applied to all 
observations in the data set, whether in the current sample or not.  This is the Data fill option that 
appears at the bottom center of the dialog box in Figure R4.1. 
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R4.2.1 Algebraic Transformations 
 
 An algebraic transformation is of the form ; name = expression.  Name is the name of a 
variable. It may be an existing variable or a new variable.  Name may have been read in or 
previously created.  
 The expression can be any algebraic transformation of any complexity. You may nest 
parentheses, functions, and operations to any level.  Functions that may appear in expressions are listed 
in Section R4.3. The operators that may appear in CREATE commands are the standard ones, +, -, *, 
and / for addition, subtraction, multiplication, and division, as well as the special operators listed below: 
 
 ^ =  raise to the power;  a ^ b =  ab 
 @ =  Box-Cox transformation; a @ b  =  (ab - 1) / b or loga if b = 0 and a > 0 
 !  =  maximum;      a ! b  =  max(a,b) 

(The maximum of a string of operands is obtained just by writing the set 
separated by !s.  For example, 5 ! 3 ! 6 ! 0 ! 1   =   6.) 

 ~ =  minimum;      a ~ b    =  min(a,b) 
 % =  percentage change;    a % b   =  100(a/b - 1)  E.g., 5 % 4  =  25 
 
The following operators create binary variables: 
 
 > =  binary variable;   a >  b =  1 if a > b and 0 else. 
 >= =  binary variable;   a >= b =  1 if a ≥ b and 0 else. 
    <    =  binary variable;   a <  b =  1 if a < b and 0 else. 
 <=   =  binary variable;   a <= b =  1 if a ≤ b and 0 else. 
 =    =  binary variable;   a =  b  =  1 if a = b and 0 else. 
 #    =  binary variable;   a  #  b =  1 if a is not equal to b. 
 
For example,  
 
 CREATE  ; a = x > 0 * Phi(y)  creates a equal to Phi(y) if x is positive and 0 else 
   ; p = z > 0         creates p = 1 if z is positive and 0 otherwise 
   ; zeq1 = z = 1 $        equals 1 if z equals 1 and 0 otherwise. 
 
To avoid ambiguity, it is often useful to enclose these operations in parentheses, as in  
 
 CREATE  ; a = (x = 1) * Phi(z) $   
 
This set of tools can be used in place of conditional commands, and sometimes provides a 
convenient way make conditional commands.  For example ‘and’ conditions result from products of 
these relational operators. Thus, 
 
 CREATE  ; v = (x >= 8) * (x <= 15) * Log(q) $ 
 
creates v equal to the log of q if x is greater than or equal to 8 and less than or equal to 15.  You can 
also produce an ‘or’ condition using addition, though the conditional command construction shown 
below may be more convenient.  For example: 
 
 CREATE  ; v = ( ( (x = 8) + (x = 15) )  >  0 )* Log(q) $ 
 
does the transformation if x equals 8 or 15. 
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 The following algebraic order of precedence is used to evaluate expressions: 
 

• First:  functions, such as Log(.) are evaluated. 
 
• Second: ^ and @, which have equal precedence are computed. 
 
• Third:  *,  /,  !,  ~,  %,  > , >=,  <,  <=,  =,  # are computed. 

 
• The special operators, !, %, etc. are evaluated from left to right with the same precedence as  

* and /. Thus, for example, y * x > 0  equals 1 if y*x is greater than 0 and equals 0 otherwise.  
It will usually be useful to use parentheses to avoid ambiguities in these calculations. 

 
• Fourth:   + and -  (addition and subtraction) are computed. 

 
NOTE:  LIMDEP does not give the unary minus highest precedence.  The expression -x^2 evaluates 
to the negative of the square of x (which would be negative) not the square of negative x (which 
would be positive).  This is the current standard in software, but it is not universal. 
 
 You may use as many levels of parentheses as necessary in order to group items in an 
expression or to change the order of evaluation.  For example, 
 
 CREATE  ; ma = (pz + pz[-1] + pz[-2] + pz[-3]) / 4 $ 
 
computes a moving average of a current and three lagged values. Parentheses may also be nested to 
any depth.  
 
 CREATE  ; ratio = ((x + y)^2-(a + c)^2)^2/((a + x)*(c + y))$  
 

is a valid command which computes ratio  =  
2 2 2(( ) ( ) )

( )( )
x y a c

a x c y
+ − +

+ +
.   

 
NOTE:  Implied multiplication of expressions in parentheses is allowed, but you should be very 
careful when you use this feature to avoid ambiguity.  The use of the ‘*’ to indicate multiplication 
will help to clarify exactly what the expression should be.  Nonetheless, you can use products such as  
(a + x) (c + y) which will evaluate correctly.  In the CREATE command above, the ‘*’ in the 
denominator could be omitted, since with implied multiplication, the expression is correct without it. 
 
 You may also nest functions.  For a few examples, consider the inverse probability 
distributions in the discussion of ‘other distributions for survival models’ in Chapter E60.  The 
expressions shown there can be created exactly as they are listed. Thus, 
 
 Gompertz: CREATE ; t  = Log(1 - w*Log(a)/p) / w $ 
 Weibull:   CREATE ; t  = (-Log(a))^(1/p) / w $ 
 Normal:    CREATE ; t  = Exp(-Inp(a)/p) / w $ 
 Logistic:  CREATE ; t  = ((1 - a) / a ) ^ (1/p) / w $ 
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Functions may be nested to any depth, and expressions may appear in the parentheses of a function.  
Consider, for example, the following which creates the terms in the log likelihood function for a tobit 
model 
 
 CREATE  ; loglik = (1 - d)  *  Log(Phi(-x’b/sigma)) 
    + d  *  Log((1/sigma)*N01((y-x’b)/sigma)) $ 
 
Four Cautions: 
 

• Any transformation that involves a missing value (-999) at any point returns a missing value. 
 

• It is unlikely to be necessary, but if you should require expressions in the parameter list of a 
two parameter function, put them in parentheses.  The Trn function which computes trend 
variables is such a function.  Thus,  

 
  CREATE  ; trend = Trn( a+b’x , step ) $    

 
would confuse the compiler.  Instead, you should use  

 
  CREATE  ; trend = Trn( (a+b’x) , step ) $ 
 

• In specifying lags, if the lag is an expression, for example, in a loop, enclose the expression 
in parentheses.  Thus,  
 

  CREATE  ; looplag = x [ i + 2*j ] $  
 
 will not work, but, you could use 
 
  CREATE  ; looplag = x [ (i + 2*j) ] $  
 

• Many operations allow you to access particular observations of a variable by using an 
observation subscript enclosed in parentheses.  If you will be using this construction, you 
must avoid variable names which are the same as the function names listed in Section R4.3.  
For example, if you have a variable named phi, then Phi(1) could be the first observation on 
phi or the standard normal CDF evaluated at 1.0.  (CREATE will translate it as the latter.)  
Function names all have three letters.   

 
 Variables may appear on both sides of the equals sign as long as they already exist, and 
transformations may be grouped in a single command.  In a multiple CREATE command, later 
transformations may make use of variables created in earlier ones.  For example, 
 
 CREATE  ; sam = x1 * x2   
   ; bob = x2 + x3  
   ; this = sam * bob  
   ; that = Log(this)  
   ; that = 1 / that $  
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is the same as five consecutive CREATE commands.  Grouping commands in this fashion is more 
efficient when it is possible to do so.  Each CREATE command requires a pass through the data set.  
Thus, the preceding requires only a single pass, whereas if you were to write it as five separate 
commands, you would require five passes.   For moderate sized samples (less than 10,000), this 
won’t make much difference.  But, if your sample size is huge, you will want to make use of this 
result.  On the other hand, combining transformations, such as eliminating the first two commands 
and making this = (x1*x2)*(x2+x3), within a single CREATE command generally does not save any 
time, as the same amount of computation must be done either way.  For this consideration, you 
should write your transformations so that they are as ‘self documenting’ as possible – that is, so that 
they are as easy to understand as possible. 
 
R4.2.2 Conditional Transformations 
 
 Any transformation may be made conditional.  The essential format is 
 
 CREATE   ;  If (logical expression) name = expression $ 
 
Logical expressions are any desired expressions that provide the condition for the transformation to 
be carried out.  They may include any number of levels of parentheses and may involve 
mathematical expressions of any complexity involving variables, lagged variables of the form 
name[lag], named scalars, matrix or vector elements, and literal numbers.  The operators are the 
same as above with a few exceptions:  The ones that may be used are the math and relational 
operators: +, -, *, /, ^, >, >=, <, <=, =, #.  The special operators, @, !, %, and ~ are not used here.   
 
NOTE:  Logical expressions may not involve functions such as Log, Exp, etc. 
 
 Concatenation operators which can be used for transformations are & for ‘and,’ and | for 
‘or.’ A simple example might be: CREATE ; If ( x > 0 ) ... expression $  For a more complex 
example, we compute an expression for observations which are not inside a ball of unit radius.  
 
 CREATE  ; If (x1^2  +  x2^2  +  x2^2 >= 1) ... expression ... $   
 
For a third example with no obvious interpretation: 
 
  CREATE  ; If ((r/s)*((c+7)*(x+2) * y^2 + z^3) > 1  |  x+y < 0 ) ... expression ... $ 
 
The hierarchy of operations is  ^,  (*, /) (+,-), (>,>=,<,<=,=,#), &, |.  Operators in parentheses have 
equal precedence and are evaluated from left to right.  When in doubt, add parentheses.  There is 
essentially no limit to the number of levels of parentheses.  (They can be nested to about 20 levels.) 
 
Comparisons to the Missing Value Code 
 
 Although you may not transform missing values in algebraic expressions, you may base 
comparisons on them.  Thus, you may use If (name = -999)... to base a computation on missing data. 
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If / Else Transformations 
 
 An ‘If/Else’ construction may also be specified as follows: 
 
 CREATE   ; If (...) name = expression  ; (Else) name = expression $ 
 
The condition is tested first.  If it is false and ‘name’ does not already exist, a value of 0.0 is returned 
for the expression.  If it is false and name does already exist, then the current value is left unchanged 
for that observation. If it is true, the expression is evaluated and its actual value is returned.  In a 
succeeding (Else), if the preceding If (...) was false, the expression is computed.  Any valid 
CREATE expression may appear in either place; the second (after the (Else)) may, if desired, be 
unrelated to the first.  For example: 
 
 CREATE  ; If (age > 21 & ftjob = 1 ) adult = 1 ; (Else) child = 1 $ 
 
Conditions Applied to Groups of Transformations 
 
 A condition may be applied to a group of commands by using 
 
 CREATE ; If (condition)   | a set of transformations $ 
 
An alternative set of transformations may also be computed using (Else), as follows: 
  
 CREATE  ; If (condition) | a set of transformations 
       ;     (Else)   | a different set of transformations $ 
 
The second set of transformations need not be related to the first, though it could be.  For example, 
 
 CREATE  ; If (x = 1)  |  z1 = Log(z1) ; z2 = Log(z2)  
       ;     (Else)   |  z1 = Exp(z1) ; z2 = Exp(z2) ; z4 = z1*z2 $ 
 
Note that z4 is only computed if x is not equal to 1.  The value given to z4 when x equals 1 depends 
on whether z4 existed prior to the command;  if yes, it is unchanged, if no, it equals 0.  This is 
LIMDEP’s usual convention.  Finally, you may switch off the batch control with 
 
 CREATE  ; If (condition)  | a set of transformations 
       ;     (Else)        | a different set of transformations  
       ;     (Endif)        | more transformations  $ 
 
Those transformations which follow the Endif are always carried out.  The If/Else conditions are no 
longer controlling.  Note that this is the same as 
 
 CREATE  ; If (condition)   | a set of transformations 
       ;     (Else)          | a different set of transformations $ 
 CREATE  ; more transformations  $ 
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The reason for using the first construction instead of the second is for speed.  The first construction 
requires one pass through your data while the second requires two.  If you have a small sample, you 
will not notice the difference.  But, if you have tens of thousands of observations, the first form of 
the two commands might bring a noticeable time savings. 
 
WARNING:  You can have conditional transformations under the control of these If/Else setups in 
a command.  For example: CREATE ; If (x = 1) | z = 3 ; If (y > 0) y = Log(y) $.  But, this probably 
will not produce the desired results, since the second condition will not be tested if the first fails.  
Also, using (Else) while inside an (Else) | block will produce unpredictable results, and should be 
avoided.  It is better to break up the CREATE command into more than one command. 
 
Logical Expressions 
 
 It is important to note that in evaluating expressions, you get a logical result, not a 
mathematical one.  The result is either true or false.  An expression which cannot be computed 
cannot be true, so it is false.  Therefore, any subexpression which involves missing data or division 
by zero or a negative number to a noninteger power produces a result of false.  But, that does not 
mean that the full expression is false.  For example:  If (x/0 > 0 | x > y) expression $ could be true.  
The first expression is false because of the zero divide, but the second might be true, and the or in 
the middle returns true if either expression is true.  Also, we adopt the C++ language convention for 
evaluation of the truth of a mathematical expression.  A nonzero result is true, a zero result is false.  
Thus, your expression need not actually make logical comparisons. For example:  Suppose x is a 
binary variable (zeros and ones).  CREATE ; If (x) expression $ will compute the expression for 
observations for which x equals one and not compute it when x equals zero, since the expression has 
a value of ‘true’ when x is not zero. Therefore, this is the same as CREATE ; If (x # 0) expression $. 
 This syntax produces vast flexibility.  However, there is one possible ambiguity as a result.  
Numbers in exponential format must be in the form ‘snnnnn.D+ee’ or ‘snnnnn.E+ee,’ where ‘s’ 
may be a minus sign (do not include superfluous ‘+’ signs), and ‘ee’ is a one or two digit exponent.  
I.e., although 1.2D+2 and 12.D+1 are the same number, the first will produce an unexpected result – 
use the second.  The first form might produce a syntax error, depending on the rest of the command, 
but more likely, would just produce a result that was not calculated the way you expect. 
 
Making the Entire Command Conditional 
 
 A way to make the entire CREATE command conditional is 
 
 CREATE  ; If [condition as usual] | a set of transformations  $ 
 
Note the use of square brackets.  The condition is tested.  If it is true, all of the following 
transformations are carried out.  If false, none are.  For example, 
 
 CREATE  ; If [j = 1] | z1 = Log(z1) ; z2 = Log(z2) $ 
 
The two transformations are computed if j equals 1.  If not, neither is carried out.  The difference 
between this form and 
 
 CREATE  ; If (condition as usual) | a set of transformations  $ 
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is that the form with parentheses is evaluated during a data loop.  The transformation is evaluated for 
each observation. It might be carried out for some observations and not for others.  For example, 
 
 CREATE ; If (Sex = Male) | a set of transformations $ 
 
will be carried for some observations and not for others.  But, in the form with square brackets, the 
condition is evaluated before anything else is done in the transformation program.  If the condition is 
false, the entire CREATE command that follows is ignored.  Thus, you might use 
 
 REGRESS ; Lhs = y ; Rhs = x $ 
 CREATE ; If [sumsqdev > 100] | a set of transformations $ 
 
Note that you would not want to use a variable in such a condition, though it would not cause 
problems for the command processor – the condition is only evaluated once, so the result would be 
unpredictable. 
 
R4.3 CREATE Functions 
 
 The expressions in CREATE may involve the following functions: 
 
R4.3.1 Common Algebraic Functions 
 
 Log(x)   = natural logarithm, 
 Exp(x)   = exponent, 
 Abs(x)  = absolute value, 
 Sqr(x)    = square root, 
 Sin(x)   = sine, 
 Rsn(x)    = arcsine (operand between -1 and 1), 
 Cos(x)    = cosine, 
 Rcs(x)    = arccosine (operand between -1 and 1), 
 Tan(x)   = tangent, 
 Ath(x)  = hyperbolic arctangent = ½ log((1+x)/(1-x)), -1 < x < 1, 
 Ati(x)  = inverse hyperbolic arctangent = [exp(2x)-1]/[exp(2x)+1], 
 Gma(x)   = gamma function = (x-1)! if x is an integer, 
 Psi(x)   = digamma = log-derivative of gamma function = Γ′/Γ = Ψ(x), 
 Psp(x)    = trigamma = log-2nd derivative of gamma = (ΓΓ′′-Γ′2)/Γ2 = Ψ′(x), 
 Lgm(x)   = log of gamma function (returned for Gma if x > 50), 
 Sgn(x)   = sign function = -1,0,1 for x <, =, > 0, 
 Fix(x)  = round to nearest integer, 
 Int(x)  = integer part of operand, 
 Min(x,y) = minimum, 
 Max(x,y) = maximum. 
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R4.3.2 Univariate Normal Distribution 
 
 Phi(x)   = CDF of standard normal, 
 N01(x)    = PDF of standard normal, 
 Lgf(x)  = log of standard normal PDF = -.5(log2π + x2) = Log(N01(x)), 
 Lmm(x)  = -N01/Phi = E[x | x < operand], x ~ N(0,1), 
 Lmp(x)   = N01/(1-Phi) = E[x | x > operand], 
 Lmd(x,z) = (z-1)Lmp(x) - zLmm(x) where z = 0/1 (selectivity variable), 
 Tvm(x)   = [1 - Lmm(Lmm+z)] = Var[x | x < operand], 
 Tvp(x)     = [1 - Lmp(Lmp+z)] = Var[x | x > operand], 
 Tvr(x,z)  = (1-z)Tvm(x) + zTvp(x) where z = 0/1 (selected variance), 
 Inp(x)   = inverse normal CDF, 
 Inf(x)  = inverse normal PDF (operand is CDF, returns density). 
 
R4.3.3 Logistic Distribution 
 
 Lgt(x)  = logit = log[z/(1-z)], 
 Lgp(x)   = logistic CDF = exp(x)/(1 + exp(x)), 
 Lgd(x)   = logistic density = Lgp(1-Lgp). 
 
R4.3.4 Trends and Seasonal Dummy Variables 
 
 Trn(x1,x2)    = trend = x1+(i-1) x2 where i = observation number. 
 
There are two forms of the Trn function that are useful for panel data. 
 
 Trn(T,0) = 1,1,…,2,2,…,3,3,…,N,N,… 
 
where each block repeats the sequence number T times.  The function 
 
 Trn(-T,0) = 1,2,…,T, 1,2,…,T, 1,2,…,T … 
 
Each of the N blocks in the data contains a sequence of integers from 1 to T. 
 
     Ind(i1,i2)    = 1 if  i1 ≤ observation number ≤ i2, 0 else, 
     Dmy(p,i1)     = 1 for each pth observation beginning with i1, 0 else. 
 
The Dmy function is used to create seasonal dummy variables.  The Ind function operates on specific 
observations, as in 
 
 CREATE  ; eighties = Ind(22,31) $ 
 
If your data are time series and have been identified as such with the DATES command (see Chapter 
R7), then you may use dates instead of observation numbers in the Ind function, as in 
 
 CREATE  ; eighties = Ind(1980.1,1989.4) $ 
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NOTE:  The Ind function is oblivious to centuries.  You must provide four digit years to this 
function, so there is no ambiguity about 19xx vs. 20xx. 
 
 The trend function, Trn is used to create equally spaced sequences of values, such as 
1,2,3,...,  which is Trn(1,1).  There are two additional variants used primarily with panel data. These 
are discussed in Chapter R5. 
 
R4.3.5 Ranks of Observations 
 
 Rnk(x)  = ranks of sorted x. 
 
For example, if the current sample of x contains values 8,2,0,3,1, then the transformed variable 
 
 CREATE   ; Ranks = Rnk(x) $ 
 
creates a variable which equals 5,3,1,4,2.  
 
R4.3.6 Box-Cox Function and its Derivatives 
 
 The Box-Cox function is x@c = (ac - 1)/b or loga if c = 0. The derivatives of this function 
obey the differential equation 
 
 di(x@c)/dci = (1/c)(xc(logx)i - id i-1(x@c)/dci-1) or (logx)i+1/(i+1) if c = 0. 
 
The functions Bx1(x,c) and Bx2(x,c) may be used to obtain the first and second derivatives. 
 
R4.3.7 Bivariate and Multivariate Normal Probabilities 
 

You may obtain bivariate normal probabilities using the following construction: 
 

Bvn(x1.x2, r) =  bivariate normal CDF, 
Bvd(x1.x2, r) =  bivariate normal density, 
Bv1(x1.x2, r) =  partial derivative of Φ2 (z1, z2, ρ) with respect to z1, 
Bv2(x1.x2, r) =  partial derivative of Φ2 (z1, z2, ρ) with respect to z2. 

 
Previous versions of LIMDEP required the x1,x2 pair to be in a namelist.  That syntax may still be 
used – all commands are forward compatible.  However, this new form allows x1 and/or x2 to be 
numbers or scalars instead of variables, which the old one did not.  Note that r need not be a number;  
it may also be a variable and vary by observation.  For example, the following replicates the 
probabilities computed by a bivariate probit model: 
 
 CREATE ; q1 = 2*y1-1 ; q2 = 2*y2-1 $ 
 CREATE ; bivprob = Bvn((q1*b1’x1), (q2*b2’x2, (q1*q2*rho)) $ 
 
(If you need this function for scalars instead of variables, use CALC.) 
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HOW IT’S DONE:  See the appendix to this chapter for details on this computation. 
 
 For multivariate normal probabilities, use 
 
 CREATE      ; prob = Mvn(x,w) $ 
 
in which x is a namelist of M variables.  Each row (observation) in namelist (matrix) x is the 
counterpart to the x in the CALCULATE function.  The namelist, x includes M variables and the 
matrix, w is the M×M covariance matrix.  Note, variables may be repeated in x.  For example, if x1 
and x2 are free, but x3 - x6 are all 0, then you could use 
 
              CREATE         ; zero = 0 $ 
              NAMELIST ; x = x1, x2, zero, zero, zero $ 
              CREATE        ; p = Mvn(x,w) $ 
 
This creates a variable p with each element equal to the M-variate normal CDF evaluated at w and 
the ith observation in p.  The Mvn function may be used as you would any other function in 
CREATE. The function Mvd(x,w) returns the density instead of the CDF. 
 
HOW IT’S DONE:  See the appendix to this chapter for details on this computation. 
 
R4.3.8 Leads and Lags 
 
 You can use a lagged or leaded variable with the operand  
 
 variable [n] = observation on the variable n periods prior or ahead. 
 
The use of square brackets is mandatory; ‘n’ is the desired lag or lead. If n is negative, the variable is 
lagged; if it is positive, it is leaded.  For example, Nerlove’s ‘universal filter’ is (1 - .75L)² where L is 
the lag operator.  This would be  
 
 CREATE  ; filterx = x - 1.5 * x[-1] + .5625 * x[-2] $ 
 
A value of -999 is returned for the operand whenever the value would be out of the range of the 
current sample.  For example, in the above command, filterx would equal -999 for the first two 
observations. You can change this default value to something else, like zero, with  
 
 CREATE  ; [lag] = the desired value  $ 
 
For example, 
 
 CREATE  ; [lag] = 0 $ 
 
would change the default value for noncomputable lags to zero.  This must be used in isolation, not 
as part of some other command.  
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 If you use lags or leads, you should modify the applicable sample accordingly when you use 
the data for estimation.  LIMDEP makes no internal note of the fact that one variable is a lagged 
value of another one. It just fills the missing values at the beginning of the sample with -999s at the 
time it is created. 
 Moving average and autoregressive sequences can easily be constructed using CREATE, 
but you must be careful to set up the initial conditions and the rest of the sequence separately. Also, 
remember that CREATE does not reach beyond the current sample to get observations.  A special 
read-only variable named _obsno (note the leading underscore) is provided for creating recursions. 
Consider computing the (infinite) moving average series 
 
   yt  =  xt + θxt-1 + θ ² xt-2 + ... + θ t-1 xt-1. 
 
To do the computation, we would use the autoregressive form, yt  =  xt + θyt-1 with y1 = 0.  The 
following could be used: 
 
 CREATE  ; If (_obsno = 1) y = 0  
   ;     (Else) y = x + theta * y[-1] $ 
 
 Second, consider generating a random sample from the sequence  yt  =  θyt-1  +  et,  where et 
~N[0,1].  Simply using CREATE ; y = theta*y[-1] + Rnn(0,1) $ will not work, since, once again, 
the sequence must be started somewhere.  But, you could use the following 
 
  CREATE  ; If (_obsno = 1) y = Rnn(0,1) / Sqr(1 - theta^2)  
       ;     (Else)  y = theta * y[-1] + Rnn(0,1) $ 
 
R4.3.9 Matrix Functions 
 
 Two transformations based on matrix algebra are used to create linear and quadratic forms 
with the data.  Linear combinations of variables are obtained with 
 
 CREATE  ; name = b’x $ 
 
where x is a namelist of variables (see Chapter R6) and b is any vector with the same number of 
elements. It creates the vector of values from the linear combination of the variables in the namelist 
with coefficients in the row or column matrix.  Dot products may also be used with other 
transformations.  For example,  
 
 CREATE  ; bx12 = x1’b1 / x2’b2 ; p = Phi(x’b/s) $  
 
(The order is not mandatory.  d’z is the same as z’d.)  Also, if you need this construction, a dot 
product may be used for two vectors or two namelists.  In the latter case, the result is the sum of 
squares of the variables.  (See the Xmt function described in Section R4.3.12.) 
 Quadratic forms are computed with the Qfr function: 
 
   ; Qfr (namelist, matrix) 
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This computes q = x′Ax where x is a column vector and A is a matrix.  A matrix function Qfrm is 
available for this computation for a single vector.  There are occasions when you might wish to 
obtain this result for each row in a set of data.  For example, if you have a vector of  parameters, b, 
and an estimated covariance matrix for them, V, you  might compute, for each observation in a data 
set, a fitted value,  yfiti = b′xi.  To obtain a standard error for each of these values, you would require 
sfi = Sqr[xi′Vxi] for each observation, i.  This can be obtained with the Qfr function in CREATE.  
To use this function, you must first define the namelist containing the names of the variables in xi.  
The matrix must be square with number of rows equal to the number of variables. The command is 
then as shown above.  For example, to obtain the fitted values and forecast standard errors for the 
most recent regression, you might use 
 
 NAMELIST  ; x = one, gnp, prices $ 
 REGRESS   ; Lhs = cons ; Rhs = x $ 
 CREATE    ; cfit  = x’b ; scfit = Sqr(s^2 + Qfr(x,varb)) $ 
 
This uses two matrices and a scalar automatically saved by the regression command.  For another 
example, in linear regression analysis, the ‘hat’ matrix, 
 
   H  =  I - X(XʹX)-1Xʹ. 
 
is useful for computing regression diagnostics.  The matrix H is n x n, which might be huge – n 
could be hundreds of thousands – but typically, only the diagonal elements are useful.  The following 
can be used to obtain hii, the diagonal elements, in a variable: 
 
 NAMELIST ; x = the list of variables $ 
 MATRIX ; xxi = <x’x> $ 
 CREATE ; hii = 1 - Qfr(x,xxi) $ 
 
R4.3.10 Moving a Matrix 
 
 There are occasions when you want to move a matrix computed with the MATRIX 
command to a place where you can manipulate it as if it were a set of data, instead.  Normally, you 
can do all of this with MATRIX, but it might be useful to change a ‘matrix’ into a ‘variable.’  (The 
necessary distinction is discussed in Chapter R16.)  For an example, when you fit a fixed effects 
model with REGRESS, the vector of group specific constants is saved as a matrix.  You might be 
interested in using these fixed effects as a variable, for example, in computing regressions with them 
as observations on the ‘dependent variable.’ 
 You can move a vector to a variable just by equating them.  To continue our example, 
 
 REGRESS  ; ... ; Panel ; Fixed Effects $ 
 CREATE   ; va =  alphafe  $ 
 
does the required transformation.  You can also move a matrix to a namelist, column by column.  
Just use 
 
 CREATE  ; x = a $ 
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where x is defined by a namelist and a is a matrix which has number of columns equal to the number of 
variables in x.  (The namelist may not contain one.  See Chapter R8 for discussion of using one as the 
constant term in a model.)  You may move a matrix to a variable, with CREATE ; z = a $ which 
moves the first column of matrix a to variable z.  You can also copy one namelist in to another.  Use 
 
 CREATE  ; y = x $ 
 
to copy all variables in x into y (as many as possible if they have different numbers of columns). 
 
R4.3.11 Means, Deviations, Standardized Variables 
 

 The matrix functions Mean, Xdev and Xstd are used to obtain sample means, to center 
(subtract the mean) and standardize a set of variables listed in a data matrix (namelist).  For some 
purposes, and if you are using just a single variable, it may be more convenient to use the CREATE 
command directly to operate on the variable.  The functions Xbr, Dev, and Std are provided for this 
purpose.  Thus,  CREATE ; y = Dev(x) $ creates the variable y by subtracting x’s mean from each 
observation.  An equivalent command would be CREATE ; y = x - Xbr(x) $.   Likewise, the means 
of both y and z in 
 
 CREATE  ; y = x * Dev(x) ; z = Dev(x) ^ 2 $ 
 
are equal to the variance of x.  Standardized data are obtained with the Std function.  For example, 
after the following:  CREATE ; y = Std(x) ; w = Std(x) * Std(q) $ y has mean 0 and standard 
deviation 1 while the mean of the variable w is the correlation between x and q.  (There is an easier 
way to compute this.) 
 
HOW IT’S DONE:  See Appendix R4A.8 to this chapter for details on the computation of sample 
variances.  
 
The standard deviation of a variable, defined with Sdv(x), may be used in other functions in 
CREATE.  For example, to standardize a variable (the hard way) 
 
 CREATE  ; stdx = (x - Xbr(x)) / Sdv(x) $ 
 
R4.3.12 Moments for a Set of Variables – the Xmt Function 
 
 All of the preceding discussion describes operations on the set of observations on a variable.  
Another possibility is operation on a set of variables.  (The dot product operation and Qfr function 
are such operations.)  If namelist x is a set of at least two variables, the CREATE function 
 
 Xmt(x,j)  =  jth moment of the set of observations defined by a row of namelist x, 
 
computes a statistic for the K variables, once for each observation.  ‘x’ must be the name of a 
namelist, not a variable and not a set of variables;  J must be an integer ranging from one to ten.  For 
 
                j = 1,           Xmt(..)  =  mean of variables 
                j = 2,           Xmt(..)  =  standard deviation 
                j = 3,...,10,    Xmt(..)  =  centered and scaled moment. 
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For example, Xmt(x,3) computes the standardized skewness measure 
 
 Xmt(x,3)i  =  (1/K)Σk=variables [xik  -  x i,]3/si

3, i = observations 1,...,N, 
 
where x i is the mean and si is the standard deviation of the set of K variables at observation i.  
Powers up to 10 are available (the interpretation is left to the user).  Note that this is computed for 
each observation. 
 For example, if x contains 10 variables, e.g., test scores, and the sample contains 50,000 
observations, the sum is over the 10 variables, for each observation.  For example, for a sample of 
175,000 observations on a battery of tests, 
 
 NAMELIST  ; tests = math, reading, physics, history, algebra, golf $ 
 CREATE  ; skewness = Xmt(tests,3)  
   ; kurtosis = Xmt(tests,4) $ 
 
computes two new variables in the data set; skewness is the sample of 175,000 observations on the 
skewness of the sample of six test scores for each observation while kurtosis is the kurtosis. 
 The sum across variables of a set of variables can be obtained with 
 
 CREATE   ; name = x’1 $  or  1’x 
 
where x is a namelist and 1 is the literal, number one.  Note that this sums across variables, not 
observations.  Each observation is the sum of the variables for that observation. 
 
R4.3.13 Multiple of a Set of Variables – the Scl Function 
 
 If x is a set of variables defined by a namelist and v is a variable, the command 
 
 CREATE  ; newx = Scl(x,v) $ 
 
creates a replica of the entire set of variables in x with each observation on each variable in x 
multiplied by the corresponding observation of variable v. 
 
NOTE: This function creates a new namelist and a new set of variables. 
 
The function operates as follows:  The new namelist is given the name that appears on the Lhs of the 
equation.  The new variables created have names constructed from the namelist name by appending 
the number of the variable.  These variables may already exist, in which case they are just 
overwritten.  A simple example would be as follows:  (We consider a more substantive example 
later.) 
 
 CREATE   ; x1 = 2 ; x2 = 3 ; ten = 10 $ 
 NAMELIST ; x = x1,x2 $ 
 CREATE ; tenx = Scl(x,ten) $ 
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The first command creates three variables, x1, x2, and ten equal to 2, 3, and 10, respectively, at every 
observation.  The Scl function creates two new variables, tenx1, and tenx2, which equal 20 and 30, 
respectively, at every observation.  It also creates a namelist named tenx which contains tenx1 and 
tenx2.  The last command is equivalent to 
 
 CREATE ; tenx1 = ten * x1 
   ; tenx2 = ten * x2 $ 
 NAMELIST ; tenx   = tenx1, tenx2 $ 
 
TIP:  A namelist can contain up to 150 names, so this function can combine a very large number of 
commands. 
 
NOTE:  The name for the namelist in the Scl function must have six or fewer characters. 
 
The Scl transformation must be the only one on the command line.  Any other transformations will 
be ignored.  For example, if the first and third commands in the example above were combined in 
 
 CREATE ; ten = 10 ; tenx = Scl(x,ten) $ 
 
The first transformation would not be carried out. 
 Scl could be used for setting up some specification tests which require the derivatives of a 
log likelihood.  But, there is a more efficient way of doing this.  See Chapter R16 for an extensive 
application. 
 
HINT:  This command can produce a huge amount of data and can easily exhaust your data array if 
x has many variables.  Use carefully.  This should rarely if ever be necessary.  In most situations in 
which you would use this function, what you will actually need is a moment matrix built up from 
newx′newx.  There will always be a more efficient way to obtain this result than actually replicating 
the data matrix, x. 
 
R4.3.14 Expanding a Categorical Variable into a Set of Dummy 
Variables 
 
 It is often useful to transform a categorical variable into a set of dummy variables  For 
example, a variable, educ, might take values 1, 2, 3, and 4, for less than high school, high school, 
college, post graduate.  For purposes of specifying a model based on this variable, one would 
normally expand it into four dummy variables, say underhs, hs, college, postgrad.  This can easily be 
done with a set of CREATE commands, involving, for example, hs = (educ = 2) and so on.  
LIMDEP provides a single function for this purpose, that simplifies the process and also provides 
some additional flexibility.   The categorical variable is assumed to take values 1,2,...,C.    
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 The command 
 
 CREATE  ; Expand(variable) = name for category 1, ... name for category C $ 
 
does the following: 

 
• A new dummy variable is created for each category.  (If the variable to be created already 

exists, it is overwritten). 
• A namelist is created which contains the names of the new variables.  The name for the 

namelist is formed by appending an underscore both before and after up to six characters of 
the original name of the variable. 

• A tabulation of the transformation is produced in the output window. 
 
 The example suggested earlier might be simulated as  follows, where the commands and the 
resulting output are both shown: 
 
 CREATE  ; educ = Rnd(4) $ 
 CREATE  ; Expand(educ) = underhs, hs, college, postgrad $ 
 

EDUC     was expanded as _EDUC_  . 
Largest value =   4.   4 New variables were created. 
Category 
1 New variable = UNDERHS     Frequency=      28 
2 New variable = HS          Frequency=      22 
3 New variable = COLLEGE     Frequency=      30 
4 New variable = POSTGRAD    Frequency=      20 
Note, this is a complete set of dummy variables.  If 
you use this set in a regression, drop the constant. 

 
As noted, the transformation begins with the value 1.  Values below 1 are not transformed and no 
new variable is created for the missing category.  Also, the transformation does not collapse or 
compress the variable.  If you have empty categories in the valid range of values, the variable will 
simply always take the value 0.0.  Thus, if educ had been coded 2, 4, 6, 8, then the results of the 
transformation might have appeared as shown below 
 
       EDUC     was expanded as _EDUC_  . 

Largest value =   8.   4 New variables were created. 
Category 
1 New variable = UNDERHS     Frequency=       0  <--- ! 
2 New variable = HS          Frequency=      23 
3 New variable = COLLEGE     Frequency=       0  <--- ! 
4 New variable = POSTGRAD    Frequency=      29 
5 New variable = EDUC05      Frequency=       0  <--- ! 
6 New variable = EDUC06      Frequency=      22 
7 New variable = EDUC07      Frequency=       0  <--- ! 
8 New variable = EDUC08      Frequency=      26 
Note, this is a complete set of dummy variables.  If 
you use this set in a regression, drop the constant. 
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The Expand specification works as follows:  
 

• The empty cells are flagged in the listing, but the variable is created anyway.   

• If your list of names is not long enough, the remaining names are built up from the original 
variable name and the category value. 

• The program warns you that this has computed a complete set of dummy variables.  If you 
use this set of variables in a regression or other model, you should not include an overall 
constant term in the model because that would cause perfect collinearity – the ‘dummy 
variable trap.’  Thus, a model which contained both one and _educ_  would contain five 
variables that are perfectly collinear. 

 
 You may want to avoid the last of these without having to choose one of the variables to 
omit from the set.  You can direct the transformation to drop one of the categories by adding ‘,0’ 
after the variable name in the parentheses.  
 
 CREATE  ; Expand(variable,0) = list of names $ 
 
For our previous example, this modification would change the results as follows: 
 
 CREATE  ; Expand(educ,0) = underhs, hs, college, postgrad $ 
 

EDUC     was expanded as _EDUC_  . 
Largest value =   4.   0 New variables were created. 
Category 
1 New variable = UNDERHS     Frequency=      27 
2 New variable = HS          Frequency=      26 
3 New variable = COLLEGE     Frequency=      21 
Note, the last category was not expanded. You may use 
this namelist as is in a regression with a constant. 

 
The note at the end of the listing reminds you of the calculations done.  The last category is the one 
dropped.  (Note that ‘0 new variables were created.’  The reason is that these variables already 
existed after our earlier example.) 
 Finally, the list of names for the new variables is optional.  If it is omitted, names are built 
up as in the second example above.  Continuing the example, we might have 
 
 CREATE  ; educ = Rnd(4) $ 
 CREATE  ; Expand(educ) $ 
 

EDUC     was expanded as _EDUC_  . 
Largest value =   4.   4 New variables were created. 
Category 
1 New variable = EDUC01      Frequency=      28 
2 New variable = EDUC02      Frequency=      22 
3 New variable = EDUC03      Frequency=      30 
4 New variable = EDUC04      Frequency=      20 
Note, this is a complete set of dummy variables.  If 
you use this set in a regression, drop the constant. 
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NOTE:  This transformation will refuse to create more than 100 variables.  If it reaches this limit, 
you have probably tried to transform the wrong variable. Thus, the variable must be coded 1,2,..., up 
to 99. 

 
NOTE:  This function for CREATE actually creates the set of dummy variables and the namelist 
associated with them.  Your main use of categorical variables will be in specifying models with 
categorical variables.  You will often use this computation without actually needing the dummy 
variables in the data set or the namelist.  LIMDEP provides a way to do this directly in a command.  
To consider an example, (based on the health care data used in several examples in Greene (2011), 
consider a probit model which contains a variable hsat (health satisfaction) coded 1 to 11.  The 
following three commands will produce the identical results: 
 
     CREATE  ; Expand(hsat) $ 
     PROBIT  ; Lhs = public ; Rhs = one, age, educ, _hsat_ $ 
 
     PROBIT  ; Lhs = public ; Rhs = one, age, educ, Expand(hsat) $ 
 
     PROBIT  ; Lhs = public ; Rhs = one, age, educ, # hsat $ 
 
The third shows an abbreviation that can be used for the second.  The second and third differ from 
the first in that they do not add variables to the data set.  The inline expansion of categorical 
variables in a model command is shown in Chapter R8. 
 
R4.3.15 Stacking Data to Create Data Matrices 
 
 The stacking operation is used to create specific kinds of data matrices.  Consider an 
example – this would be used to set up generalized least squares of a particular regression model.  
The sample contains N observations on y1, y2, y3, x1, x2, x3, x4.  We need a data matrix (data set) 
with 3N observations that appears as 
 

  
1 1 2 3 4

2 2 4

3 3 4

1
,  = 1 .

1

   
   =    
      

y x x x x
y y X x 0 0 x

y x 0 0 x
 

 
The commands that can be used to create these are 
 
 CREATE ; y = Stk(y1 / y2 / y3) $ 
 CREATE ; x = Stk(1,x1,x2,x3,x4 / 1,x2,0,0,x4 / 1,x3,0,0,x4) $ 
 
 
Note that the stacking operations replicates a number N times, or otherwise stacks N observations. 
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 The general form of the function is 
 
   Stk ( row definition  /  row definition / … ) 
  
The operation creates N observations for each row definition, so when done, the sample will contain 
N*Nrows observations.  Within a row, you may have variables, namelists and scalars, either numbers 
or named scalars created by CALC or any other means.  The row definitions must all contain the 
same number of entities.  They may be a mixture of numbers, namelists and scalars.  For example, in 
the example above, if the definition 
 
 NAMELIST ; x = x1,x2,x3,x4 $ 
 
had already been declared, then the stacking definition given earlier could be 
 
 CREATE ; x = Stk(1,x / 1,x2,0,0,x4 / 1,x3,0,0,x4) $ 
 
R4.3.16 Group Functions for Panel Data 

 
To create a new variable that replicates for each observation in a group the mean of that 

group, use the group means function,  
 
 CREATE  ; y = Group Mean (x, Str = name or number) 
or CREATE  ; y = Group Mean (x, Pds = name or number) 
 
The function requires a panel data specification, the same sort as used to specify panels in the model 
commands. This is discussed in Chapter R5. This function produces a report when computed, such 
as: 

Computed Variable Y  Group means  of INVC     
Number of groups found in current sample was      10  
Max group =     84, Min =     84, Average =     84.0  

 
This function must be used in isolation, not as part of another command nor in a compound function.  
Use a new CREATE command for each variable.  Other available panel data functions are 
 

Group Sums (x, Str = spec or Pds = spec) = group sum within group  
Group Prod (x, Str = spec or Pds = spec) = group product within group  
Group Devs (deviations from own group means) = group deviations        
Group Lags (the first observation becomes missing) = group lagged value   
Group Diff (the first observation becomes missing) = group first difference    
Group Obs1 (x, Str = spec or Pds = spec) = first observation in group   

 
In these four functions, you can do the calculations for a set of variables contained in a namelist.  To 
do this, you must create the empty columns first and declare them in a namelist.  The new namelist 
and the one being transformed must have the same numbers of variables.  For example, 
 
 CREATE  ; xb1,xb2,xb3 $  (creates three empty variables) 
 NAMELIST  ; xbar = xb1,xb2,xb3 ; x = x1,x2,x3 $ (assuming x1, x2, x3 all exist) 
 CREATE ; xbar = Group Mean (x, Pds = ti) $ 
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Three functions are provided for configuring a panel data set.   
 

Group Size (panel id)  = group sizes    
Group Time (panel id)  = internal period indicator      
Group Nmbr (count variable)  = sequential group number      

 
Group Size (id) works on any unique identifier within the panel, such as a person id, to create a 
variable that contains, within the group, the number of observations in the group.  For example, 
suppose the panel contains two groups, one with three observations and one with two, and, initially, 
variables personid, x1 and x2. 
 
        personid x1 x2 ti time 
   1  3 13 3   1 
   1  9 22 3   2 
   1  8 14 3   3 
   2  4  9 2   1 
   2  0 11 2   2 
 
The command CREATE ; ti = Group Size (personid) $ would create the variable ti shown above. 
 
NOTE:  This form of group count variable is used in all panel data estimators in LIMDEP to specify 
the panel.  In earlier versions, a superficial regression command, 
 
 REGRESS ; Lhs = one ; Rhs = one ; Str = personid ; Panel $ 
 
would be used to create the variable _groupti, which would be identical to ti above.  The regression 
form can still be used, but the preceding is likely to be simpler.  In addition, in this version of 
LIMDEP, you can set the panel dimensions globally with a single ‘SET’ command, and the program 
will create the group count variables at the time they are needed.  Panel data operations are discussed 
in Chapter R5. 
 
 The variable time shown above can be created internally with two functions 
 
 Group Indx (id, Pds = variable)  = sequence number from 1 to Ti within a panel,  
 Prd (id variable)  = sequence number from 1 to Ti within a panel. 
 
Seq and Group Nmbr produce the same result, but they are based on different input variables.  
Referring to the example above, time could be created using Group Nmbr(ti) or using Seq(personid). 

The first of these could be used to compute your own fixed effects estimator by transforming 
data to deviations from group means.  Thus, for example, the following would produce identical 
results: 
 
 REGRESS  ; Lhs = y ; Rhs = x ; Pds = 4 ; Panel ; Fixed Effects $ 
and CREATE    ; dy = Group Devs (y, Pds = 4) $ 
 CREATE    ; dx = Group Devs (x, Pds = 4) $ 
 REGRESS  ; Lhs = dy ; Rhs = dx $ 
 
(The standard error produced by the second regression will be smaller because it does not correct for 
the degrees of freedom lost in computing the constants while the first one does.) 
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R4.4 Random Number Generators 
 

 Many operations that you and LIMDEP do involve random number generation. This includes 
bootstrapping, mixed model estimation, model simulation, and any number of types of experimental 
operations that you will perform with the program.  At the heart of all of these calculations is the 
random number generator (RNG) – every modern computer program contains one.  LIMDEP has 
two, one by L’Ecuyer (1999) and a second named the Mersenne Twister, both discussed in Appendix 
R4A.3.  Both RNGs have excellent properties (such as periods up to 210000).  The Mersenne Twister 
has recently been built into other mathematical programs such as MATLAB.  We do not have a 
preference for either of these; L’Ecuyer’s is the default.  You can switch between the two by using 
the CALC command 
 

 CALC  ; Rng(1) $ to set the RNG to be L’Ecuyer’s 
 CALC  ; Rng(2) $ to set the RNG to be the Mersenne Twister. 
 

Once the generator is set, all subsequent draws for all purposes are produced by the chosen 
generator.  (It would not be natural to do so, but you can switch back and forth between these two 
RNGs at will.  The properties of a sequence of values are not affected by which generator you use, or 
even if some draws are taken with one RNG and the rest with the other.) 
 The central function of a (pseudo) RNG is to creates series of values that appear to be 
random strings of draws from the standard uniform distribution.  Random draws from other 
distributions are obtained by transforming the U[0,1] values.  To draw a sample from a continuous 
uniform distribution in the indicated range, 
 

 CREATE ; name = Rnu(0,1) $ 
 

As noted, this is the ‘primitive’ operation of random number generation.  LIMDEP provides roughly 
20 different functions for generating random samples from different distributions. 
 

R4.4.1 Setting the Seed for the Random Number Generator 
 

 Given your choice of RNG, a second consideration for you as user is the seed of the RNG.  
Random number generators generate strings of pseudorandom numbers – they are not really random, 
and it is possible to generate the same string twice (which establishes the nonrandomness of the 
string).  But, the string of values generated will look enough like a set of random numbers that they 
can reliably be used for the calculations for which we need them for.  An RNG produces a 
deterministic string of NP values, then the NP+1 value is equal to the first, and it starts over and 
repeats.  NP is the period of the generator.  Early primitive generators such as IBM’s scientific 
subroutine package, had a period of 231-1, which relates to the use of a 32 bit word inside the digital 
computer. This period is unsatisfactory for modern research.  The L’Ecuyer generator has a period of 
about 2132.  The Mersenne Twister has a period about 210000 – for practical purposes, it never repeats.  
The seed of an RNG is a pointer to where in its period of values the cycle begins.  The usefulness of 
this feature is that if one can set the seed, they can reproduce the string of values (regardless of how  
long that string is).  For you to replicate any results using random numbers, you need to be able to set 
the seed of the RNG.  To set the seed for the random number generator, use the command 
 

 CALC   ; Ran(seed) $  
 

In this fashion, you can replicate a sample from one session to the next.  Use a large (e.g., seven 
digit) odd number for the seed.  The value does not matter as long as it is a large number. 
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 An RNG works by using the seed to compute the pseudorandom value, then it resets the seed 
(pseudorandomly) for the next value.  You can find out what the current seed is with 
 
 CALC  ; Peek ; Ran(0) $ 
 
We’re not sure this is useful, since it only tells you where you are going, nothing about where you 
have been.  You can’t use this value to reproduce any calculations already done – it’s too late.  But, 
we expect that users will find uses that we have not thought of, so the preceding is made available. 
 
R4.4.2 Basic Random Number Generation 
 
 After generation of primitive U[0,1] draws, there are two essential functions, general 
uniform and general normal random variable sampling.  The first of these generates values 
distributed uniformly from lower to upper by 
 
   U[lower,upper]  =  lower  +  (upper – lower) x U[0,1]. 
 
This is done internally.  The command for this is 
 
 CREATE  ; name = Rnu(lower limit, upper limit) $ 
 
The second essential function is random draws from the standard normal distribution.  The function 
is 
 CREATE  ; name = Rnn(0,1) $ 
 
HOW IT’S DONE:  Draws from the normal distribution are generated many ways, using draws 
from U[0,1].  A common method also used for other distributions is the inverse probability 
transformation;  x(normal[0,1])  =  Φ-1(U[0,1]) where Φ-1 is the inverse of the standard normal CDF.  
LIMDEP uses a transformation of a pair of random draws developed by Box, Muller and Marsaglia  
See the appendix to this chapter for details on this computation. 
 
The next essential step is producing values from the general normal population, N[μ,σ2].   This is 
obtained by 
   N[μ,σ2]  =  μ  +  σN[0,1]. 
 
The command syntax for this normal simulation is 
 
 CREATE ; name = Rnn(mean, standard deviation) $  
 
which will create a variable containing a sample from the indicated normal distribution. 
 The next section details the 20+ different distributions from which random samples may be 
drawn.  The general command is 
 
 CREATE ; name = Rng(parameters) $ 
 
where Rng is the three letter symbol for the distribution and parameters are values such as (μ,σ) 
needed to do the simulation.  The sample is placed with the observations in the current sample.  If 
you want to draw more than the default number, you might want to use the ROWS command (See 
Section R3.4) before you draw the sample. 



R4: Data Transformations R-167 

 Random draws may also appear anywhere in an expression as operands whose values are 
random draws from the specified distribution.  For example, a random sample from a chi squared 
distribution with one degree of freedom could be drawn with  
 
 CREATE  ; name = Rnn(0,1) ^ 2 $  
 
(There is an easier way, though.)  Random samples can be made part of any other transformation.  
For example, the following shows how to create a random sample from a regression model in which 
the assumptions of the classical model are met exactly: 
 
 CREATE  ; x1 = Rnu(10,10)  
   ; x2 = Rnn(16,10) 
   ; y   = 100 + 1.5 * x1 + 3.1 * x2 + Rnn(0,50) $ 
 
The regression of y on x1 and x2 would produce estimates of  β1 = 100, β2 = 1.5, and β3 = 3.1 and a 
residual standard deviation, se, close to 50.  
 In addition to the Rnn(m,s) (normal with mean m and standard deviation s) and Rnu(l,u) 
(continuous uniform between l and u), you can generate random samples from continuous, discrete 
and multivariate normal distributions.  There are described in the following sections.  
 
R4.4.3 Random Samples from Continuous Distributions 
 
 Rng(m,s)  = lognormal with parameters m and s 
 Rnt(n)  = t with n degrees of freedom 
 Rnx(d)  = chi squared with d degrees of freedom 
 Rnf(n,d) = F with n numerator and d denominator degrees of freedom 
 Rne(q)   = exponential with mean q 
 Rnw(a,c) = Weibull with location a and scale c.  If c = 1, use Rnw(a) 
 Rnh(a,c) = Gumbel (extreme value) with location a, scale c.  If c = 1, use Rnh(a) 
 Rni(a,c) = gamma with scale a and shape c.  If a = 1, use Rni(c) 
 Rna(a,b) = beta with parameters a and b 
 Rnl(0)  = logistic 
 Rnc(0)  = Cauchy 
 Rno(0)  = symmetric triangular [-1,+1], (1) = [0,2], (-1) = [-2,0], (c,x) = [-x*c,+x*c] 
 Rns(0)  = inverse Gauss 
 
For sampling from the noncentral chi squared population, use the function is Rnx(d,a), where d is the 
degrees of freedom and a is the noncentrality parameter.  This could be done with 
 
   Rnx(d-1) + Rnn(a,1)^2, 
 
so this automates the noncentrality parameter.  Sampling from the singly (numerator only) 
noncentral F is done with 
 
   (Rnx(n,a)/n)/(Rnx(d)/d). 
 
A doubly noncentral F variable can also be created by having noncentral chi squared variables in 
both numerator and denominator.  One would not normally use this in econometric work, however. 



R4: Data Transformations R-168 

R4.4.4 Random Samples from Discrete Distributions 
 
 Rnp(q)  = Poisson with mean q, 
 Rnd(n)  = discrete uniform, x=1,...,n, 
 Rnb(n,p) = binomial, n trials, probability p, 
 Rnm(p)  = geometric with success probability p. 
 
For sampling from the binomial distribution, The limits on n and p are nlog(p), and nlog(1-p) must 
both be greater than -264 to avoid numerical overflow errors. 
 
HOW IT’S DONE:  See the appendix to this chapter for details on this computation. 
 
You must provide the ‘a’ in the Weibull and Gumbel and the ‘0’, logistic, and Cauchy functions.  
You may also sample from the truncated standard normal distribution. Two formats are 
 
 Rnr(lower)   = sample from the distribution truncated to the left at ‘lower,’ 
 Rnr(lower,upper) = distribution with both tails truncated.  
 
HOW IT’S DONE:  See the appendix to this chapter for details on this computation. 
 
E.g., Rnr(.5) samples observations greater than or equal to .5 
 Parameters of all requests for random numbers are checked for validity.  For the truncated 
normal, you must have 
 
   lower  ≤  1.5,upper  ≥  -1.5,  upper - lower ≥  .5 
 
If ‘upper’ is not provided, it is taken as +∞.  If you need upper truncation, a transformation which 
will produce the desired result is -Rnr(-lower). 
 The parameters of any random number generator can be variables, other functions, or 
expressions, as well.  For example, you might simulate draws from a Poisson regression model with 
 
 CREATE ; x1 = Rnn(0,1) 
   ; x2 = Rnu(0,1) 
   ; y   = Rnp(Exp (.2 + .3 * x1 - .05 * x2 )) $ 
 
R4.4.5 Sampling from the Multivariate Normal Distribution 
 
 To sample from the multivariate normal distribution, it is necessary to generate a set of 
random variables.  We do this by using the following theoretical result. 
 

If  x = (x1,...,xK) are distributed with joint normal distribution with mean vector 0 and 
covariance matrix I, then Ax + µ is distributed multivariate normally with mean 
vector µ and covariance matrix AA′. 
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You can use this result to generate a multivariate sample from the normal distribution with mean 
vector µ and covariance matrix Σ by simply decomposing Σ into AA′, and using this and the desired 
µ in the theoretical result.  We use the Cholesky decomposition in which A is a lower triangular 
matrix.  The operation will create a multivariate sample – that is K variables where K is the number 
of elements in x and N observations, where N is the number of observations in the current sample.  
You can sample from the distribution with up to 100 elements, in which case, you will create 100 
new variables in your data area.  Collectively, these K variables are a multivariate sample from the 
specified multivariate normal distribution. 
 The command for generating a sample from the multivariate normal distribution is 
 
 CREATE ; name = Rmn(vector µ,  matrix Σ) $ 
 
You must provide the vector µ and matrix Σ.  However, if you want µ to equal zero, omit it.  Thus, 
 
 CREATE ; name = Rmn(matrix Σ) $ 
 
samples from the multivariate normal population with mean vector zero and covariance matrix Σ.  
Alternatively, you can force Σ to be an identity matrix by using 
 
 CREATE ; name = Rmn(vector µ) $ 
 
to sample from the multivariate normal population with mean vector µ and covariance matrix I.  
Finally, if you want to sample from the standard normal population with mean vector zero and 
covariance matrix I, use 
 
 CREATE ; name = Rmn(K) $ 
 
where K is the number of elements in the random vector. In this case, K must either be an integer 
from 1 to 100 or the name of scalar which contains an integer from 1 to 100.  LIMDEP detects what 
kind of sample you want to by examining what appears in the parentheses.  A vector and a matrix 
implies the first case, just a matrix implies the second, just a vector implies the third, and just a 
number implies the fourth. 
 The ‘; name = ’ specifies the name of a namelist that will be created.  This may be a new 
namelist or you can replace an existing one.  The variables in that namelist will be constructed as if 
the command were 
 
 NAMELIST  ; name = name00,name01,... $ 
 
For example, if you use 
 
 CREATE  ; xran = Rmn(mu,v) $ 
 
where mu is a 10×1 vector and v is a 10×10 covariance matrix, then there will be a new namelist 
created in your data area:  
 
   xret = xran00,xran01,xran02,...,xran09. 
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This routine creates the variables, and issues a report of what it has computed.  The following shows 
an example of sampling 1,000 observations from a 4-variate normal distribution. 
 

 
Figure R4.2  Sampling from the Multivariate Normal Population 

 
Note in the report in the output window, the theoretical and empirical means and variances are both 
reported.  The actual mean and standard deviations of the drawn sample will not equal the theoretical 
ones, since the data are a random sample – they are not constrained.  Also, the report shows the seed 
for the random number generator.  It does not equal the seed that appears in the command in the 
editing window.  The CALC ; Ran(seed) $ function allows you to set a specific seed for the random 
number generator.  The actual value used internally is a transformation of the one you give.  The 
point of the function is to enable you to reset the seed to the same value, not a particular value.  
Specific values of the seed are meaningless.  But, your ability to reset the seed to a specific value 
allows you to replicate random sampling results. 
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 This procedure creates several results: 
 

• The namelist as specified in the command. 
• The variables (up to 100 of them) which are the random sample. 
• Matrices mean_rmn which is the matrix of means of your sample, and var_rmn which is 

the sample covariance matrix.   
 
The latter two matrices could be created immediately after the sampling command with 
 
 MATRIX  ; mean_rmn = Mean(namelist)  
   ; var_rmn = Xvcm(namelist) $ 
 
 All of the elements of the setup for this computation are checked internally before any 
computation is done.  The following conditions will generate diagnostics: 
 

• Your matrices mu and v are not currently in the matrix names table. 
• Your parentheses contain more than two names. 
• The matrix is not square. 
• The vector is not conformable with the matrix.  Mu may be a row or a column, but it must 

be the same size as v, whichever applies. 
• Your computation implies more than 100 variables. 
• You are out of space for new namelists or variables. 
• Your matrix v is not symmetric. 
• Your matrix v is not nonnegative definite. 

 
If none of these failures occur, the computation will proceed.  For the last of these conditions, 
LIMDEP checks the characteristic roots of your matrix. If none are negative, we proceed.  (A zero 
root, indicating singularity is OK.  If your matrix were [1,1/1,1], this is singular but it is nonnegative 
definite. 
 
R4.5 Compound Names for Variables 
 

The names of variables and scalars may be of the form aaaa:ssss where ssss is the name of a 
scalar.  The scalar must take an integer value from 00 to 99.  The value is appended to the name to 
make a variable with the compound name.  This feature will be useful for looping in procedures.  For 
example: 
 

CALC   ; index = 1 $ 
PROC $ 
CREATE  ; x : index = 1 / index $   
ENDPROC $ 
EXECUTE  ; index = 1,10 $ 
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creates 10 variables, x1 = 1, x2 = 1/2, x3 = 1/3, x4 = 1/4, ..., x10 = 1/10..  The Brant test for 
homogeneity in an ordered logit model provides another example – in this program, both matrices 
and variables are being given compound names. The commands below show only the part of the 
program that uses the feature described here. The full procedure with the remaining analysis and 
additional comments appears in Chapter R16. 
 
?=========================================================================+ 
? This is an analysis of an ordered choice variable y=0,1,...maxy. 
? Here, we are generating artificial data. 
?=========================================================================+ 
 SAMPLE   ; 1-1000 $ 
 CALC     ; Ran (12345) $ 
 CREATE   ; y=Rnd(6)-1 ; xa=Rnn(0,1); xb=Rnn(0,1); xc=Rnn(0,1)$ 
 NAMELIST ; x = xa,xb,xc $  x does not include a constant term. 
 NAMELIST ; x1= x,one $ 
 CALC     ; k = Col(x)$ 
 CALC     ; ymax = max(y) ; y1 = ymax-1 ; kj = ymax* k ; k1j=y1*k$ 
 MATRIX   ; i = Iden(k) ; z = Init(k,k,0) ; mi=-1*i $ 
 MATRIX   ; bt = Init(kj,1,0.) ; d = Init(k1j,kj,0.)$ 
?=========================================================================+ 
? This procedure computes the individual logit equations. To reduce the   | 
? number of commands, it makes heavy use of compound names.               | 
? Loop index y1 takes values 1,2,...,ymax.  j = y1 – 1 = 0,1,2,...ymax-1  | 
? The procedure is creating variables z0, z1, ... each equal to a binary  | 
? variable that equals 1 when y > j.  It is creating coefficient vectors  | 
? b0, b1, ... then injecting (stacking) them in the large vector bt.      | 
? Each LOGIT command creates a variable with fitted probabilities, p0,... | 
? After each b:j is computed, a vector of derivatives, w0=p0(1-p0), w1=   | 
? p1(1-p1),... is computed. We are creating matrices v0, v1,... as        | 
? inverses of moment matrices. Finally, the large matrix D is a           | 
? partitioned matrix in which block row j contains I on the diagonal and  | 
? –I at the end of the row.                                               | 
?=========================================================================+ 
 PROC    = LOGITS$ 
    CALC     ; j = y1 - 1 ; jy = j*k+1 ; jyk=jy+k$ 
? This command creates variables z0, z1, ...  
    CREATE   ; z:j = y > j $ 
? The probabilities kept by this procedure are p0, p1, ... 
    LOGIT    ; Lhs = z:j ; Rhs = x1 ; Prob = p:j $ 
? The capability is also available in MATRIX. This creates b0, b1, ... 
    MATRIX   ; b:j = b(1:k) ; bt(jy)=b:j $ 
? The previously created p0, p1,... are used to create w0, w1, ... 
    CREATE   ; w:j = p:j*(1-p:j) $ 
    CALC     ; jy = min(jy,((ymax-2)*k+1)) ; jyk=jy+k$ 
? This MATRIX command computes v0, v1, ... 
    MATRIX   ; v:j = <x1'[w:j]x1> ; vt=v:j ; vt=part(vt,1,k,1,k);v:j=vt $ 
    MATRIX   ; d(jy,1)=I ; d(jy,jyk)=mi$ 
 ENDPROC $ 
 EXECUTE     ; y1 = 1,ymax ; Silent $ 
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R4.6 Changing Particular Observations of a Variable 
 
 Once a column of data has been entered, there are several ways to edit it, if necessary.   The 
data editor discussed in Chapter R3 can be used directly to change values of a variable.   Note, 
though, that the data editor can only access the first 5,000 rows of the data area. You can also use the 
command 
 
 CREATE  ; variable (observation) = new value ; ... $ 
 
to replace any specific observations.  Up to 50 replacements may appear in a single CREATE 
command.  If the data are time series data, specified with the DATES command, the observation 
number will be a date, instead.  For example, 
 
 CREATE  ; gnp ( 1976.1 ) = 2105.729 $ 
 
R4.7 Recoding Variables – The RECODE Command 
 
 The RECODE  command allows you to change the values taken by one or more variables to 
a set of other values.  This can replace up to 50 If (...) then, (Else) ... sorts of CREATE commands 
with a single instruction.   The syntax of the RECODE command is 
 
 RECODE  ; variable(s) to recode  (same recoding is applied to each) 
   ; old values = new value  
   ; old values = new value 
   ; ... (up to 50 of these) ... 
   ; * = default value $  
 
‘Old values’ are as many as 20 particular values, such as 1,2,3,4,5  =  77.77. This would transform 
all occurrences of any of the five values on the left to 77.77.  Ranges of values may be specified as 
 
   lower / upper = new value  
 
which transforms any value found in the range lower to upper, inclusive, to the new value.  For 
example, -5.234 / 1.297 = 9  transforms any value from -5.234 to 1.297 to 9.  The last specification 
(* = default) is optional and specifies the default value to be used if the value found for that 
observation is not in any of the recode specifications.  If no default is given, the original value is left 
intact.  For example, 
 
 RECODE  ; a ; 1 / 10 = 10 $ 
 
changes any observation on a from 1 through 10 to 10.  All other values of a remain unchanged. 
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 For example, suppose income is given in dollar figures, with values -1, -2, and -3, indicating 
missing data for three different reasons.  We convert these all to -999, the income ranges to a simple 
grouped coding, and all values not found in the given ranges to 0; 
 
 RECODE  ; income  
   ; -1,-2,-3 = -999 
   ; 0 / 15000 = 1; 15001 / 35000 = 2 
   ; 35001 / 9999999 = 3 ; * = 0 $ 
 
 Lists of values and ranges of values may not both appear in the same specification.  But, 
since recodings need not have different values on the right, you can just give a separate specification 
for each.  RECODE specifications are processed sequentially and later ones can override earlier 
ones.  For example, 1,2,3 = 88 ; 3,4,5 = 99 transforms the value 3 to 99, not 88.  The three parts of 
the command must be given in the order shown above.  In particular, all specifications after a            
; * = default are ignored. 
 The original variable is lost after the recoding.  If you want to keep a copy of it, precede the 
RECODE command with 
 
 CREATE  ; copy = variable to be recoded $  
 
R4.8 Sorting Variables – The SORT Command 
 
 You can sort a variable while carrying any number of other variables. The command is 
 
 SORT   ; Lhs = key variable [; Rhs = variables to carry] $  
 
The key variable in the Lhs is sorted in ascending order.  To obtain a sort in descending order, add    
; Descending at the beginning of the command. To sort just one variable, omit the ; Rhs = list part 
of the command.  This command produces no output except for a simple message which indicates 
that the sort was completed successfully. 
 As with most other data manipulation commands, the SORT command is applied to the 
current sample, not the entire data set.  If you wish to sort the entire data set, you can either reset the 
sample or just add ; All to the SORT command.  For example, if your current sample is 1-10, 21-40 
and you give a SORT command followed by a LIST command, the listed data will be sorted.  But, if 
you follow your SORT with SAMPLE ; All $, then list, observations 1-10 and 21-40 will be sorted, 
but others will not.  To sort your entire data set keying on a variable, you should use 
 
 SAMPLE  ; All $ 
 SORT  ; Lhs = key variable ; Rhs = * $ 
 
 SORT may be invoked from the Project:Sort Variable menu or by selecting, then right 
clicking any variable name in the project window.  The maximum number of observations that can 
be sorted is 250,000. The dialog box for SORT is shown in Figure R4.3. 
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SORT does not automatically carry the observation labels with the variable being sorted.  
(See Section R3.5.4.)  In order to do so, add 
 
   ; Labels 
 
to the sort command.  Do note, however, that unless you carry all variables with the sort key, the 
labels will be inconsistent with the observations, either those sorted if you do not carry the labels, or 
those not sorted if you do. 
 

 
Figure R4.3   Dialog Box for SORT 

 
 You want to keep in mind, when you sort a variable, the correspondence between it and 
other variables in your sample is lost.    There are two ways to avoid this.  One way is simply to carry 
the rest of the sample with the variable of interest.  Use 
 
 SORT    ; Lhs = the interesting variable ; Rhs = * $ 
 
This reorders the entire data set according to this variable.  Another way that may be more attractive 
is to carry an index variable that will allow you to undo the sort later.  Consider an example: 
 
 FRONTIER ; Lhs = logy ; Rhs = logx ; Eff = ui $ 
 CREATE ; index = Trn(1,1) $  Observation index 
 SORT  ; Lhs = ui ; Rhs = index ; Labels $ 
   
Operate on Plot, List, etc. using your ui variable, now sorted. 
 
 SORT  ; Lhs = index ; Rhs = ui ; Labels $  This undoes the sort. 
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R4.9 The DELETE and RENAME Commands 
 
 Two commands which should rarely be necessary are 
 
 DELETE   ; list of variables $ 
 
and RENAME  ; old name  =  new name  $ 
 
Use the second to change the name of a variable.  The first may be useful if you have many 
observations and are running out of space in your data area as you create variables. 
 Both DELETE and RENAME can be invoked by right clicking any variable name in the 
project window, as shown in Figure R4.4. 
 

 
Figure R4.4   Rename and Delete Options from Project Window 

 
If you select Rename, the variable name will be framed in a box, and can be edited or replaced, in 
place. To delete a variable you can select Delete in the menu or just highlight the variable (or 
matrix, namelist, or scalar) name in the project window, then press the Del key on your keyboard. 
You will be asked for confirmation. 
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Appendix R4A Numerical Methods 
 

R4A.1 Computing Bivariate Normal Probabilities 
 

 Standardized (zero means, unit variances) bivariate normal probabilities B(x,y,ρ) are 
computed using a 15 point Gauss-Laguerre quadrature.  The integration is done in one dimension by 
rewriting the bivariate distribution as the product of the marginal distribution of x times the 
conditional distribution of y given x.  During the integration, we use the error function to restrict the 
range of integration to [0,∞), and use the in line Φ(.) function – integral of the univariate standard 
normal distribution as the integral within the integral.  Let wi denote the Laguerre weights and hi 
denote the nodes.  The formulation used is as follows: 
 
   d1 = 1 (x < 0), d3 = 1 - 2d1 
   d2 = 1 (y < 0), d4 = 1 - 2d2 

   
15 2

31

1 12 ( ) exp ( )
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V w a h h d x
=

  = Φ − +    
∑  

   ai  =  d4 (d3 ρhi + ρx - y) / (1 - ρ2)1/2 

   Prob[X > x, Y > y]  =  d3d4V - d1d2 + d1Φ(-y) + d2Φ(-x). 
 
Nodes and weights for the quadrature are as follows: 
 
h1,...,h15  = 0.02110687265306352, 0.11122304843701245,  0.27339875290117911, 
  0.50775546039766938, 0.8144213676108329,   1.193559990964792, 
  1.645373297397144,   2.1701027938568,      2.7680303764366516, 
  3.4394792198475525,  4.1848147744876557,   5.0044458955656313, 
  5.8988261184898432,  6.8684550925062301,   7.9138801847749976. 
w1,...,w15  = 0.05303709733976105, 0.11284582465517608,  0.15082452315872363, 
  0.16279133631194213, 0.15185641060466367,  0.12593625823209979, 
  0.094198393058496453,0.0640788141334108,   0.0398456458245284, 
  0.02272413644209539, 0.01191223548930554,  0.005748310643806657, 
  0.00255593490701438, 0.001047812282114606, 0.000396170048170894. 
 

R4A.2 Computing Multivariate Normal Probabilities 
 
 We use the GHK simulator for this computation.  The full method is detailed in Greene 
(2011), so we provide only a sketch here.  The desired probability is Prob[ai < xi < bi, i = 1,...,K], 
where the K variables have zero means and covariance matrix Σ.  (Nonzero means are 
accommodated just by transformation to simple deviations.)  The probability is approximated by  
 

   P  =  ∑ ∏= =

R
r

K
k rkQ

R 1 1
1  

 

where R is the number of points used in the simulation.  The Cholesky factorization of Σ is LL′ where 
L = [l]km is lower triangular.  Note lkm = 0 if m > k.  The recursive computation of P is begun with Qr1 = 
Φ(b1/l11) - Φ(a1/l11), where Φ(t) is the standard normal CDF evaluated at t.  Using the random number 
generator, εr1 is a random draw from the standard normal distribution truncated in the range Ar1 = a1/l11 
to Br1 = b1/l11.  The draw from this distribution is obtained using Geweke’s method.  For a draw from 
the N[µ,σ2] distribution truncated in the range A to B, we obtain u = a draw from the U[0,1] 
distribution.  Then, the desired draw is z = µ + σΦ-1[(1-u)Φ((B-µ)/σ)  + uΦ((A-µ)/σ)].   
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 For k = 2,...,K, use the iteration  
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   Qrk = Φ(Brk) - Φ(Ark). 
 
Then, P is then the average of the R draws of products of K probabilities.  Numerical properties and 
efficiency of this simulator are discussed at many places in the literature.  References are given in 
Greene (2003). 
 You can set the number of draws globally (that is, for all uses of the simulator) with the 
command CALC ; Rep(R) $ where R is the number you desire.  The model specification ; Rep = R 
on any model command has the same effect. 
 
R4A.3 Uniform Random Number Generation 
 
 The core of LIMDEP’s (and every other program’s) routines for generating random numbers 
is the one used to generate standard uniform random numbers.  Users are referred to standard sources 
for theoretical background.  LIMDEP’s default random number generator is the L’Ecuyer’s (1999) 
method.  The specific generator used is his MRG32K3A multiple recursive generator.  This 
generator has been shown to have excellent properties and has a period of about 2191 draws before 
recycling.  The specific method used is as follows:  
 
Define: norm = 2.328306549295728e-10, 
  m1 = 4294967087.0, m1 = 4294944443.0, 
  a12 = 140358.0,   a13n = 810728.0, 
  a21 = 527612.0,  a23n = 1370589.0, 
Initialize s10 = the seed,  s11 = 4231773.0, 
  s12 = 1975.0,  s20 = 137228743.0, 
  s21 = 98426597.0, s22 = 142859843.0. 
 
Setting the seed for the generator is done by initializing s10 at the desired value and the remaining 
five values at the values shown.  The six values constitute the seed for the generator, but to simplify 
the process, we chose the five values above, according to L’Ecuyer’s recommendations, and the user 
or the program needs only to set s10.  Now, the generator which produces u = one draw from U(0,1) 
is: 
 p1 = a12*s11 - a13n*s10, k = int(p1/m1), p1 = p1 - k*m1 
 if p1 < 0, p1 = p1 + m1, s10 = s11, s11 = s12, s12 = p1; 
 p2 = a21*s22 - a23n*s20, k = int(p2/m2), p2 = p2 - k*m2 
 if p2 < 0, p2 = p2 + m2, s20 = s21, s21 = s22, s22 = p2; 
 u = norm*(p1 - p2) if p1 > p2,  
         = norm*(p1 - p2 + m1) otherwise. 
 
 The alternative RNG provided in LIMDEP is the Mersenne Twister.  This generator was 
developed in 1997 by Makoto Matsumoto and Takuji Nishimura.  It has been employed recently in 
numerous packages.  The documentation is much too opaque to be laid out here. Details can be 
found in the authors’ original article (Matsumoto and Nishimura (1998)). Random numbers drawn 
from other nonuniform populations are produced by transformations of the U(0,1) values, as 
discussed below. 
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R4A.4 Standard Normal Random Number Generation 
 
 Standard normal values are obtained using a method by Marsaglia.  Let u1 and u2 be two 
standard uniform draws.  The L’Ecuyer method noted above is used to obtain u1 and u2.  Then, z = 
one draw from N(0,1) is obtained as follows: 
 
 x1 = u1+u1-1, x2 = u2+u2-1, s = x1*x1+x2*x2; 
 if s > 1, get two new draws and start over; 
 v = log(s), v = sqr(-(v+v)/s); 
 z = x1*v 
 
R4A.5 Random Number Generation from Other Distributions 
 
Let z denote a draw from the standard normal distribution and u denote a draw from the standard 
uniform distribution.  Draws from the other distribution are created as follows: 
 
 Rnn(m,s)  = m + s × z 
 Rng(m,s)  = Exp(m + s × z) 

 Rnt(n)  = z / ∑ =

d

i izd
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 Rnc(0)  = z1/z2 
 Rna(a,b) = uses an intrinsic IMSL subroutine 
 Rnf(n,d) = [Rnx(n)/n] / [Rnx(d)/d], 
 Rni(a,c) = a times a draw computed with an IMSL intrinsic subroutine 
 Rne(q)  = -q × log u 
 Rnl(0)  =  log [u/(1 - u)] 
 Rnu(a,b) = a + u × (b - a) 
 Rnw(a,c) = (1/a)[-log(u)]1/c 

 Rnh(a,b) = a - blog(-log(u)) 
 Rnp(m)  = i such that ∑ =

i
j j1 )Pr(  < u  and  ∑ +

=
1
1 )Pr(i

j j  > u 

 Rnd(d)  = Int( d × u + 1) 
 Rnm(p)  = Int[log(u)/log(1-p) - 1] 
 Rns(0)  = 1/z 
 Rnb(n,p) = i such that ∑ =

i
j j1 )Pr(  < u  and  ∑ +

=
1
1 )Pr(i

j j  > u 
 Rns(0)   = 1/normal 
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R4A.6 Sampling from the Truncated Normal Distribution 
 
 Let u denote a draw from the standard uniform distribution, and let L and U denote the lower 
and upper limits of truncation respectively.  Then, the single draw on u is transformed by 
 
   z*  =  Φ-1 { Φ(L) + u × [ Φ(U) - Φ(L)]} 
 
so that z* is a draw from the standard normal distribution truncated between L and U.  For truncation 
only in the lower tail, Φ(U) = 1. 
 
R4A.7 Random Sampling from the Multivariate Normal Distribution 
 
 A random draw, v, from the K-variate normal population with mean vector µ and covariance 
matrix, Σ, is obtained by using the L’Ecuyer or Mersenne Twister method detailed above to obtain a 
K variate normal draw, u.  Then, v = µ + Av, where A is the Cholesky square root of Σ; Σ = AA′. 
 
R4A.8 Sample Variances 
 
 Throughout LIMDEP, sample variances are always computed in two passes using the sum of 
squared deviations, not the mean square minus the square of the mean.  Thus,  
 

   V(x)  =  ( )∑ =
−

n
i i xx

n 1

21  

 
is always computed by computing the mean first, then going back and computing the sum of squared 
deviations. 
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R5: Panel Data and Data for Discrete Choice 
Models 

 
R5.1 Estimation Using Panel Data 
 
 There are many routines and estimators in LIMDEP that operate on panel data sets, i.e., 
those consisting of multiple rows of data per observation.  This chapter describes the calculations 
and instructions needed to inform the program of the configuration of the data set.  Descriptions of 
the specific model commands will extend these general parameters where needed for the particular 
application. 
 
R5.2 Programs that Use Panel Data 
 
 Nearly every estimation program supported by LIMDEP supports a form of the model for 
panel data.  Some of these are: 
 

• regression – fixed and random effects and random coefficient models, 
• binary logit and probit – fixed and random effects models, 
• ordered probit and logit models with fixed and random effects and coefficients, 
• tobit – fixed and random effects models, 
• Poisson and negative binomial regressions – fixed and random effects models, 
• stochastic frontier – fixed and random effects models, 
• survival models – parametric models with time varying covariates, 
• multinomial, multiperiod, random effects probit model, 
• repeated observations, multiperiod random parameters logit model with random effects, 

 
and the large number of programs that fit fixed effects, random parameters, and latent class models.  
These include the ones listed above as well as numerous others.  The full list is roughly 50 different 
applications. 
 Panel data sets may be balanced or unbalanced.  A balanced panel is one in which the group 
size, Ti, is the same for all i.  An unbalanced panel has a varying group size.  You can conveniently 
use either, but the second requires a bit of manipulation to be able to define the nature of the panel 
for estimation purposes. 
 No estimator in LIMDEP requires panels to be ‘balanced’ – the balanced panel is the special 
case.  The program assumes that all panels are unbalanced. But, the set of observations must be 
‘contiguous.’  That is, for all panel data models, the set of observations for a particular individual 
(group) must be a consecutive set of observations in the data set. 
 
NOTE:  Much of the econometrics literature on panel data models focuses on the balanced panel 
case and treats the unbalanced panel as in inconvenient extension.  This is what is necessary to keep 
the mathematics manageable.  (See, e.g., Baltagi (2005).)  However, this a point at which theory and 
practice diverge.  In LIMDEP all panels are treated as unbalanced.  The balanced panel is the special 
case, though only in a trivial way that will be invisible to you. 
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R5.3 Panel Data Arrangement 
 
 Your estimation command for a panel data model must provide some means of determining 
the nature of the panel and how many observations are in a group.  There is some variation across 
estimators that is discussed in detail with the specific descriptions of the models in the chapters to 
follow.  But, most of these will use one of the conventions described here, or ones similar to them. 
 When the number of observations is fixed for each observation, as in TSCS, the command 
will generally include the specification ; Pds = T  as in 
 
 PROBIT  ; Lhs = y ; Rhs = x ; Pds = 5 $. 
 
NOTE:  Many of these models (e.g., probit, logit, tobit) will usually be estimated with data sets with 
one observation per individual.  In that case, you must omit the ; Pds = 1 which would apply. The 
presence of ; Pds = anything in the command usually does more than just provide a count; it 
invokes an altogether different estimation program.  In LIMDEP, a cross section is generally not a 
panel with one observation per individual. 

 
 When the number of observations varies by individual LIMDEP requires you to provide a 
variable which gives the number of rows for that observation, in each row of the observation.  For 
example, suppose your data consist of a panel of two individuals.  The first has three observations 
(periods), the second has two.  This data set has five rows, which could appear as 
 
   y x ni 
   4 2 3 
   5 0 3 
   2 5 3 
   7 1 2 
   3 9 2 
 
The group size variable, ni, is then provided as the Pds identifier. The command would generally 
appear like the one for the frontier model below, 
 
 FRONTIER  ; Lhs = y ; Rhs = one,x ; Pds = ni $ 
 
Estimators almost always allow either type of data set.  Suppose, instead, that the first individual had 
two observations as well.  The command might then be 
 
 FRONTIER  ; Lhs = y ; Rhs = one,x ; Pds = 2 $ 
 
The same arrangement is used in all of the other models except those fit by the CLOGIT command.  
The two elements of a panel data specification are this group count variable and a group indicator. 
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R5.3.1 Group Indicators and Within Group Observation Numbers 
 
 A stratification variable or group indicator is simply an indicator that shows which group an 
individual belongs to. Panel data sets generally contain this type of variable.  Every unbalanced panel 
must have one or there would be no way to distinguish the groups.  This is usually an ID variable of 
some sort, typically named id or personid.  Figure R5.1 shows an example. 
 

 
Figure R5.1  Unbalanced Data Set with Household ID 

 
 The panel data estimators in the regression program use the stratification variable to 
construct group sizes and group means.  The group sizes in the data set in Figure R5.1 are 
3,4,4,1,3,5. The next section describes some commands for creating index, group size, and 
stratification variables.  There are simple functions provided for creating group count variables from 
stratification indicators, and for creating a stratification variable when the group count is given, 
instead. 
 
NOTE:  In all cases where a stratification variable is used, except the linear regression with fixed or 
random effects, the stratification variable must take the values 1,2,...,Ng for some set of Ng groups.  
Commands for creating this variable are described below. 
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TIP:  A frequently asked question concerns LIMDEP’s claim that a panel data set has an ‘empty 
cell,’ that is, a panel in which a group has no observations.  A few estimators cannot proceed if this 
occurs.  The problem is usually the values taken by the stratification indicator, and the most frequent 
cause is that the sample has been changed after the indicator was created.  If you reduce your sample 
by rejecting observations or by skipping missing data, you may ‘punch a hole’ in your stratification 
indicator.  Consider a sample consisting of strata [1,1,1,2,2,2,3,3,3,4,4,4].  If you set up your data, 
then give SAMPLE ; 1-6, 10-12 $, your remaining observations are [1,1,1,2,2,2,4,4,4], and the third 
cell is empty.  The way to avoid this is to use the global setting described in Section R5.3.3 below.  
In general, you should 
 
    •    Set the sample before creating your stratification indicator. 
    •    Do not use SKIP with panels; use REJECT explicitly. 
 
Some of the estimation programs described later, such as those in CLOGIT, have specific procedures 
for handling this situation.  These are described in context.  Moreover, most of the panel data model 
estimation programs handle missing data on their own, and you need not take any actions to deal 
with them.  Again, this is discussed in context below. 
 
 In the example in Figure R5.1, the ID variable is the most convenient form of group 
indicator, consecutive integers.  But, you might have some other form of identifier – for LIMDEP’s 
purposes, the indicator can be anything, so long as it is not the same for two consecutive groups.  
This could be something simple, such as a firm ID number, or something difficult such as a 
telephone number.  All that is required is that the number be unique to the specific group and the 
same for all members of the group.  Two functions are provided to create the type of indicator shown 
in the figure: 
 
 CREATE  ; id = Seq (identification variable) $ 
 CREATE  ; id = Group Nmbr (period count variable) $ 
 
(Note that the second of these works with balanced panels as well.  In each case, we will create  
 
 id  =  1,1,1,…, 2,2,2,…, …, N,N,N… 
 
For either case, as long as there is an ID variable, the command 
 
 CREATE ;  id = Seq (identification variable) $ 
 
Creates the unique, sequential group indicator.  (Thus, for balanced panels which contain the ID 
variable, there are three functions that compute the group sequence ID.) 
 
 It is also useful to have an internal variable that indexes the observations in a group.  This 
would be a variable that takes values 1,2,…,Ti within the group.  These can be created using 
 
 Balanced panels: CREATE ; t = Trn (-T,0) $ 
 Unbalanced panels: CREATE ; t = Ndx (identification variable, 1) $ 
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TIP:  The stratification variable used in these functions does not have to be sorted in the data.  It is 
only an identifying code, and its actual numerical value and rank are not used.  If you reset the 
sample after using Ndx, you will need to recreate the index variable. 
 
 The descriptive statistics program, regression model with fixed effects, the survival routines, 
the ordered probit model, and a few others use stratification variables directly.  Where this 
information is needed, it is provided with the command specification 
 
   ; Grp = name of the variable 
 
NOTE:  Previous versions of LIMDEP used ; Str = name of the variable for this feature. You may 
still use that syntax. 
 
 

R5.3.2 Group Size Variables for Panel Data 
 
 The group size variable or constant group size is used in all panel data estimators in 
LIMDEP.  The general syntax is 
 
 Model   ; … ; Pds = group size variable $ 
 
There are different ways to create this variable for unbalanced panels.  For balanced panels it is 
trivial: 
  

 CREATE  ; ni = 5 $ 
 
defines a panel data set with five observations for each individual.  For unbalanced panels, you can use 
 
 CREATE ; ni = Group Size (stratification variable) $ 
 
Group Size (id) works on any unique identifier within the panel, such as a person id, to create a 
variable that contains, within the group, the number of observations in the group.  For example, 
suppose the panel contains two groups, one with three observations and one with two, and, initially, 
variables personid, x1 and x2. 
 
         personid x1 x2 ti time 
   1  3 13 3   1 
   1  9 22 3   2 
   1  8 14 3   3 
   2  4  9 2   1 
   2  0 11 2   2 
 

The command  
 
CREATE  ; ti = Group Size (personid) $  

 
would create the variable ti shown above. 
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NOTE:  This form of group count variable is used in all panel data estimators in LIMDEP to specify 
the panel.  In earlier versions, an artificial regression command, 
 
 REGRESS ; Lhs = one ; Rhs = one ; Str = personid ; Panel $ 
 
Would be used to create the variable _groupti which would be identical to ti above.  The regression 
form can still be used, but the preceding is likely to be simpler.  In addition, in this version of 
LIMDEP, you can set the panel dimensions globally with a single ‘SET’ command described in the 
next section, and the program will create the group count variables at the time they are needed.  
 
 The variable time shown above can be created internally with two functions 
 
 Group Nmbr (pds variable)  = sequence number from 1 to Ti within a panel, 
 Seq (id variable)  = sequence number from 1 to Ti within a panel. 
 
Seq and Group Nmbr produce the same result, but they are based on different input variables.  
Referring to the example above, time could be created using Group Nmbr(ti) or using Seq(id). 
 

R5.3.3 Permanent Global Setting for Panel Data 
 
 Once you have the group identifier variable in place (or if it is part of the original data set), 
you can create a permanent setting for panel data that will free you from having to worry about the 
group count variable.  Use 
 
 SETPANEL ; Group = the identification variable 
   ; Pds = name of a variable that the program will create $ 
 
After you set the panel in this fashion, you need only add ; Panel to the commands that you use to fit 
panel data models.  The very large advantage of this feature is that the group count variable is 
recreated at the time the model is fit.  So, if you change the sample, it is not necessary to recompute 
the group count variable.  The following example is based on the data set that appears in Figure 
R5.1.  There are 7,293 observations in the full data set.  The first model, a fixed effects probit model, 
uses the entire data set.  Then, a second model is fit after removing from the sample all female 
headed households and all observations with hsat = 10.  The first of these does not change the group 
count variable, since female is always the same through the panel.  But, hsat varies over time, so by 
rejecting observations that have hsat = 10, we are reducing the sizes of some of the groups.  The 
commands are 
 

SETPANEL  ; Group = id ; Pds = grpti $ 
PROBIT  ; Lhs = public ; Rhs = one,age,educ ; Fem ; Panel $ 
REJECT  ; female = 1 | newhsat = 10$ 
PROBIT  ; Lhs = public ; Rhs = one,age,educ ; Fem ; Panel $ 
 

The output is shown below.  (Some of the results are not shown.) 
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--> PROBIT ; lhs = public ; rhs = one,age,educ ; fem ; panel $ 
+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| GRPTI      Group sizes  ID         7293      7      1       3.7 | 
+-----------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable               PUBLIC 
Log likelihood function     -1354.42890 
Estimation based on N =  27326, K =1233 
Inf.Cr.AIC  = 5174.858 AIC/N =     .189 
Model estimated: Feb 07, 2011, 23:17:29 
Unbalanced panel has   7293 individuals 
Skipped 6062 groups with inestimable ai 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  PUBLIC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|    -.06012***      .01027    -5.85  .0000     -.08025   -.03998 
    EDUC|    -.30781***      .08242    -3.73  .0002     -.46934   -.14628 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--> Reject ; female = 1 | newhsat=10$ 
--> probit ; lhs = public ; rhs = one,age,educ ; fem; panel $ 
+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| GRPTI      Group sizes  ID         3514      7      1       3.6 | 
+-----------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable               PUBLIC 
Log likelihood function      -617.43315 
Estimation based on N =  12504, K = 782 
Inf.Cr.AIC  = 2798.866 AIC/N =     .224 
Model estimated: Feb 07, 2011, 23:17:44 
Unbalanced panel has   3514 individuals 
Skipped 2734 groups with inestimable ai 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  PUBLIC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|    -.11372***      .01607    -7.07  .0000     -.14522   -.08221 
    EDUC|    -.24249**       .11312    -2.14  .0321     -.46420   -.02079 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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R5.4 Merging Invariant Variables into a Panel Data Set 
 
 Some panel data sets contain variables that do not vary across the observations in a group.  A 
common example is the data for the CLOGIT (discrete choice) model used in numerous examples in 
this and the NLOGIT manual.  The first 12 rows of this data set are shown in Figure R5.2.  These 
data take the form of a panel (with four observations per person), in which the household income 
variable, hinc, is the same for each of the four rows. Some variables in the data set will be attributes 
of the choices, and, as such, will be different for each choice.  Others may be characteristics of the 
individual, and will, therefore, be repeated on each record in the panel.  LIMDEP allows you to keep 
separate data files for the variable and invariant data.  This may result in a large amount of space 
saving.  The data may be merged when they are read into LIMDEP, rather than in the original data 
set.   
 

 
Figure R5.2  Panel Data with Invariant Variables 

 
 The command MERGE, which is similar to READ discussed in Chapter R3, will be used to 
combine two data sets.  MERGE is used to interleave two files for a panel data set, in which one 
contains observations on variables that vary within a single ‘group,’ and a second contains variables 
that are only observed once for each individual.  In a standard case, the larger file contains T 
observations for each of N individuals while the second contains one observation for each individual.  
In the merged data set, the values in the second data set are replicated as they are read.  
 There are two specifications that may be used to merge data.  Both require a variable that is 
used to match the file to be expanded to the one that is already in memory. 
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R5.4.1 Using an ID Variable to Merge Data 
 
NOTE:  This feature is new in LIMDEP Version 10. 
 
 Panel data sets typically have an ID number or some other identifying variable that is used to 
keep track of groups in the data set.  For an example, the following description is provided for the 
data used in an application in Greene (2011) 
 

Gary Koop and Justin L. Tobias, ‘Learning about Heterogeneity in Returns 
to Schooling’, Journal of Applied Econometrics, Vol. 19, No. 7, 2004, 
pp. 827-849. This panel data set consists of NT=17,919 observations from  
N=2,178 individuals. The data are taken from the National Longitudinal 
Survey of Youth. The data set is broken into two parts. The first part, 
‘time_var.dat’, contains the time-varying characteristics together with the 
individual-identification vector (denoted person_id). This file contains 
17,919 observations on 5 variables. These variables are:  
Column 1: Person_id (Ranging from 1-2,178).  
Column 2: Education  
Column 3: Log Hourly Wage  
Column 4: Potential Experience  
Column 5: Time Trend  
The second part, ‘time_invar.dat,’ contains the time-invariant variables. 
It contains 2,178 observations on 5 variables. These are: 
Column 1: Ability    
Column 2: Mother's Education 
Column 3: Father's Education 
Column 4: Dummy for Residence in Broken Home  
Column 5: Number of Siblings  

 
The syntax used to input such a data set is:  
 

1. Read the original panel data set. 
 
  READ  ; File = var.dat  
   ; Nobs = …  ; Nvar = …  ; Names = … $ 
 

2. Expand the invariant data. 
 
  MERGE  ; File = invar.dat  
   ; Nobs = … ; Nvar = … ; Names = …  
   ; Group(id) = ni $ 
 
We downloaded the authors’ data from the Journal of Applied Econometrics website, extracted the 
two files and read them into LIMDEP as shown in Figure R5.3.  The results are shown in Figure 
R5.4. 
 There are two restrictions on using MERGE to combine data sets.  The procedure cannot be 
used with spreadsheet files (.xls) and it cannot be used with data sets arranged by variables (see 
Section R3.5.5).  In addition, you cannot use APPEND to merge data sets.  (See Section R3.10.) 
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Figure R5.3  Commands for Merging Time Varying and Time Invariant Data Sets 

 

 
Figure R5.4  Merged Data Sets 

 
R5.4.2 Using a Group Count Variable to Merge Data 
 
 A second form of the key variable can be used if you have already created the type of group 
count variable used by LIMDEP in the panel data model estimation programs.  The count variable 
gives group sizes for each observation in a group in a panel data set.  For example, consider a panel 
with three individuals, and a variable number of observations per individual, two, then three, then 
two.  The two data sets might look like 
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       File=var.dat         File=invar.dat 
       Variable data        Invariant data 
          x   y  ni                    z 
  ind=1  1.1  4  2          ind=1   100.7 
         1.2  2  2          ind=2    93.6 
  ind=2  3.7  8  3          ind=3    88.2 
         4.9  3  3 
         5.0  1  3 
  ind=3  0.1  2  2 
         1.2  5  2 

 
Note the usual count variable, ni, for handling panels.  To merge these files, use this setup 
 
 READ   ; File = var.dat ; Nobs = 7 ; Nvar = 3  ; Names = x,y,ni $ 
 
This reads the original panel data set.  Now, to expand the invariant data, the syntax is 
 
 MERGE  ; File = invar.dat ; Nobs = 3 ; Nvar = 1 ; Names = z ; Group = ni $ 
 
The specification is the ; Group = ... specification. The ; Group specifies either a count variable, as 
above, or a fixed group size, as usual for LIMDEP’s handling of panel data sets.  The resulting data 
will be 
 
                 x    y  ni    z 
          ind=1  1.1  4  2  100.7 
                 1.2  2  2  100.7 
          ind=2  3.7  8  3   93.6 
                 4.9  3  3   93.6 
                 5.0  1  3   93.6 
          ind=3  0.1  2  2   88.2 
                 1.2  5  2   88.2 
 
 
Note the difference from the previous specification, where instead of ; Group = ni, we used                  
; Group (id) = personid.  The ‘(id)’ is the only difference between the two. 
 
Checks and errors for this form of the command include:  
 

• ; Nobs must be given on the second READ. 
• ; Nobs must match exactly the number of groups in the existing data set. 
• The existing panel must be properly blocked out by the groups variable or by a constant 

group size. 
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R6: Variable Lists and Label Lists 
 
R6.1 Namelists and Labellists 
 

 As part of estimation, it is necessary to define two sets of information, the variables to be 
used and the observations.  LIMDEP’s data handling and estimation programs are written to handle 
large numbers of variables with simple, short commands.  Two methods are provided to reduce the 
amount of typing involved in giving a list of names, the NAMELIST and a wildcard character.  You 
can also define sets of text labels with the CLIST command.  These are used to label displays of 
results that you compute with your own user written programs and to label the output of some 
descriptive routines such as histograms and crosstabulations. 
 

R6.2 Lists of Variables in Model Commands 
 

 Lists of variables are used in every model estimation command and a large number of other 
commands, such as WRITE.  Nearly all model commands are of the form 
 
 Model Command ; Lhs = a variable 
    ; Rhs = a list of variables   
    ; Rh2 = a list of variables $ 
 
Some model commands (such as SURVIVAL)  have only the Lhs, others (such as DSTAT and 
KERNEL) only the Rhs, most have both Lhs and Rhs, BIVARIATE PROBIT has Lhs, Rh1 and 
Rh2, and SURE may have up to 50 lists for equations.  Each of the lists may, in principle, have 150 
or more names in it.  As such, some shorthands will be essential. 
 

R6.3 Wildcard Characters in Variable Lists 
 

 One simple shorthand for lists of variable names is the wildcard character, ‘*.’  You may use 
the ‘*’ character to stand for lists of variables in any variable list.  There are three forms: 
 

• * stands for all variables. 
 

  LIST  ; * $ requests a list of all existing variables. 
  DELETE  ; * $ is a global erasure of all data. (You should use RESET.) 
 

• aaaa* stands for all variables whose names begin with the indicated characters, any 
number from one to seven.  For example:  If you have variables x1, x2, xa, xxx, xxy, 

 

  x*    = all five variables, 
  xx*  = xxx and xxy, 
 

 then the following command requests simultaneous scatter plots of all variables whose 
 names begin with x, 
 

  SPLOT  ; Rhs  = x* $  
 

• *aaaa stands for variables whose names end with the indicated characters.  For example, 
if you have xa, ya, and, y, 

 

  REGRESS ; Lhs = y ; Rhs = one, *a $ regresses y on one, xa, and ya. 



R6: Variable Lists and Label Lists R-193 

R6.4 Defining Namelists 
 

 The NAMELIST command defines a single name that is synonymous with a group of 
variables.  It can be used in any model command and applies to the entire set of variables currently in 
the data array, regardless of how they got there.  The command to define a namelist is 
 

 NAMELIST  ; name = list of variable names $ 
 

Several namelists may be defined with the same NAMELIST command by separating the 
definitions with semicolons, e.g., 
 

 NAMELIST  ; w1 = x1,x2  
   ; w2 = x3,x4,x5 $ 
 

For another example, 
 

 NAMELIST ; job = butcher,baker,cndlmakr 
   ; place = north,south,east,west 
   ; person = job,place,income $ 
 

Note that in the example, the namelist person will contain eight variables, as the other two namelists 
are expanded and included with the eighth variable, income. 
 The lists of variables defined by separate namelists may have names in common.  For example, 
 

NAMELIST   ; w1 = x1,x2  
  ; w2 = x2,x3 $ 

 
 The restrictions on namelists are: 
 

• The name must follow the usual rules for valid names. 
• The list may not contain more than 150 names. 
• The listed variables must already exist in the data set. 
• A total of 25 namelists can be stored at any time. 

 

R6.4.1 Combining Namelists 
 

 Namelists may also contain the names of other namelists.  This is a useful construction when 
you are building large models.  For example: 
 
 NAMELIST   ; w1 = x1,x2  
   ; w2 = x2,x3 $ 
 NAMELIST   ; w12 = w1,x3 
             ; ww = w1,w2 $ 
 

WARNING:  Namelist definitions are ‘static.’  When a namelist definition contains another 
namelist, the full list of variables is expanded when the namelist is defined.  This means that 
namelists are not updated when they are built up from other namelists, and these latter lists are 
changed.  For example, if the preceding command were followed by NAMELIST ; w3 = z,w2 $, 
then the list in w3 would be z,x2,x3.  But, if later, w2 were redefined to contain c1,c2,q, then w3 
would still contain the variables z,x2,x3.  It would not be updated to be consistent with the new 
definition of w2. 
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Note that ww contains the name of x2 twice.  If you were to use this namelist in a model, you 
would find a problem of multicollinearity, as the same variable would appear twice.  Some specific 
functions are provided to help you avoid this problem: 
 

 NAMELIST ; name = OR (namelist1, namelist2, … ) $ 
 

produces the union of the set of namelists given in parentheses; 
 
 NAMELIST  ; name = AND (namelist1, namelist2, … ) $ 
 
produces the intersection of the set of namelists given in parentheses; 
 
 NAMELIST  ; name = XOR (namelist1, namelist2, … ) $ 
 
produces the exclusive union of the namelists, that is, those variables that appear in the union, but not 
in the intersection.  The exclusive union of the sets of variables is all those variables that appear in 
exactly one of the namelists. 
 Consider constructing a simultaneous equations model.  Each equation contains some 
endogenous variables and some exogenous variables.  For computing the two stage least squares 
estimator, you require the union of the sets of exogenous variables.  Thus, 
 
 NAMELIST  ; x1 = one,x11,x12,x13,x14,z1,z2  
   ; x2 = one,x11,       x13,      ,z1,    ,z3 
   ; x3 = one,       x12,       x14,z1,        ,q $ 
 NAMELIST ; x = OR (x1,  x2,  x3) $ 
 
The last of these is the same as 
 
 NAMELIST ; x = one,x11,x12,x13,x14,z1,z2,z3,q $ 
 

R6.4.2 Deleting Namelists 
 

 If you run out of room for namelists, you can delete them with 
 

 NAMELIST ; Delete name , name , ... $ 
 

Note that there is no semicolon between Delete and the names of the namelists being deleted.  Also, 
you may delete more than one namelist in the command and you may delete and define namelists 
with a single command.  For example, 
 

 NAMELIST  ; Delete states ; industry = agr, mfg $ 
 

You may also delete a namelist by selecting its name in the project window and pressing the Del key.  
In all these cases, you are only deleting the namelist definition, not the variables that are in the 
namelist.  However, if you delete a variable that is contained in a namelist, then you are disabling 
every namelist that contains that variable.  As a consequence, this does automatically delete the 
namelist.  Consider the example in Figure R6.1.  If we follow this definition by selecting the variable 
ttme in the project window and pressing Del, the following output results in the output window: 
 

 NAMELIST  ; x = one,gc,ttme,invc,invt $ 
 DELETE       ; ttme $ 
 

Namelist X        is no longer defined. 
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R6.4.3 Editing Namelists 
 
By double clicking or right clicking the name of a namelist in the project window, you can enter an 
editor that allows easy modification of namelists.  See Figure R6.1 for the setup. 
 You can also define new namelists with the New Namelist editor.  There are several ways 
to reach this editor: 
 

• Select New/Namelist from the Project menu, 
• Select Item into Project/Namelist from the Insert menu, 
• Right click the Namelists header in the project window, and select New Namelist. 

 
All these will invoke the dialog box shown in Figure R6.2. 
 

 
Figure R6.1  Editing a Namelist 
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Figure R6.2  New Namelist Dialog Box 

 
R6.5 Using Namelists 
 
 Namelists are used for several purposes.  The primary uses are for defining variables in 
model instructions and in defining data matrices for MATRIX.  They are also used for labeling 
statistical results from your estimation programs and for creating looping procedures that iterate over 
sets of variables. 
 
R6.5.1 Using Namelists in Commands 
 
 The namelist is used in place of a list of names in a model command.  For example, the 
following uses two namelists to set up an ordered probit model. 
 
 NAMELIST ; demogrfc = age,sex,educ $ 
 NAMELIST ; family     = haskids,married 
 OPROBIT ; Lhs = hsat ; Rhs = one,demogrfc,family,income $ 
 
The namelist can be used in any setting that calls for a list of variables.  For example, after the 
preceding, 
 
 LIST  ; family $ 
 
Will produce a listing in the output window of the variables in family.  The observations listed will 
be what is defined by the current sample.  (See Chapter R7 for discussion of the current sample.)  
You can also use namelists with WRITE, as in 
 
 WRITE ; family,demogrfc ; File=…<filename>… ; Format = CSV $ 
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R6.5.2 Using Namelists in Matrix Algebra 
 
 The second major use of namelists is to define data matrices for matrix computations.  This 
feature is shown in detail in Chapter R16, so we note it only briefly here.  A namelist defines the 
columns of a data matrix.  The current sample defines the rows.  Thus, the following commands, 
 
 READ ; …  ; the clogit data set with 840 rows $ 
 NAMELIST  ; x = one,gc,ttme,invc,invt $ 
 MATRIX ; xx = x’x ; invxx = <xx> ; b_ols = <x’x>*x’mode $ 
 
Compute an X’X, its inverse, and a least squares coefficient vector.  The sample used is the 840 
observations in the data set.  If we now issue the command 
 
 SAMPLE ; 1-200 $ 
 
Then the same MATRIX command will compute the three matrices using only the first 200 
observations. 
 
R6.5.3 Using Namelists to Display Model Results 
 

 Namelists are used with the DISPLAY command to provide labels for statistical results.  
The following illustrates by continuing the earlier example: 
 
 NAMELIST  ; x = one,gc,ttme,invc,invt $ 
 MATRIX ; xx = x’x ; invxx = <xx> ; b_ols = <x’x>*x’mode $ 
 CALC  ; s2 = Ess(x,mode) / (n – Col(x)) $ 
 MATRIX ; vb = s2 * invxx $ 
 DISPLAY ; Parameters = b_ols 
   ; Covariance = vb 
   ; Labels = x 
   ; Title = Linear Probability Model $ 
 
In the DISPLAY command, the namelist is used in the ; Labels = x to provide a set of names for the 
parameters that are to be shown.  The results are shown in Figure R6.3.  Note that the same 
numerical results would be produced by the following: 
 
 NAMELIST  ; x = one,gc,ttme,invc,invt $ 
 REGRESS ; Lhs = mode ; Rhs = x $ 
 DISPLAY ; Parameters = b 
   ; Covariance = varb 
   ; Labels = x 
   ; Title = Linear Probability Model $ 
 
The matrices b and varb are automatically computed by the REGRESS command. The DISPLAY 
command will simply replicate the results produced (and shown) by the REGRESS command. 
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Figure R6.3  Output Display Using Namelist for Variable Labels 

 
R6.5.4 Using Namelists in CREATE  
 
 There are numerous computations done in CALC and CREATE that are based either on 
matrix algebra results or on treating an observation on a set of variables as a row vector.  The 
NAMELIST definitions are essential for these computations.  For an example, the following 
instructions create a variable hii that is computed as 
 
   hiii  =  1 - xi (XʹX)-1 xiʹ 
 
where X is an n×K data matrix and xi is the ith row of X.  That is, xi is the ith observation on the set 
of variables. 
 
 NAMELIST ; x = the list of variables $ 
 MATRIX ; xxi = <x’x> $ 
 CREATE ; hii = 1 – Qfr(x,xxi) $ 
 
Namelists are also used to compute index functions.  For example, the following commands compute 
the probabilities used to obtain the log likelihood function for a probit model 
 
 NAMELIST ; x = one,gc,ttme,invc,invt $ 
 PROBIT ; Lhs = mode ; Rhs = x $ 
 CREATE ; probi = Phi((2*mode-1)*b’x) ; logp = Log(probi) $ 
 CALC  ; List ; loglp = Sum(logp) $ 
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The CALC command computes the log likelihood function by adding the observations contained in 
the variable logp that is calculated by the CREATE command.  (The value of loglp is identical to 
that reported by the PROBIT command.) 
 
R6.5.5 Using NAMELIST to Create a Data Matrix 
 
 NAMELIST may be combined with CREATE to create a template for a data matrix.  The 
basic syntax is 
 
 NAMELIST ; (new) ; listname = list of variables $ 
 
Both the listname and the variables must be new – they must not already exist.  For example, 
 
 NAMELIST ; (new) ; newz = znew1,znew2 $ 
 
The command shown does the following: 
 

• Creates znew1 and znew2 as new variables; 
• Fills znew1 and znew2 with missing values (-999); 
• Defines a new namelist, newz. 

 
This NAMELIST command is equivalent to two commands 
 
 CREATE ; znew1,znew2 $ 
 NAMELIST ; znew = znew1,znew2 $ 
 
 The NAMELIST command can be instructed to fill the new data matrix either with zeros 
instead of missing values, with 
 
   ; (new = 0) … 
 
or with random draws from the standard normal distribution with ; (new = N) or with random draws 
from the standard uniform distribution with ; (new = U). 
 
R6.5.6 Indexing Variables in Namelists 
 
 Variables in namelists may be indexed in any command in which they are used.  The format is 
 
   listname : index to indicate the ith variable. 
 
For example, in NAMELIST ;  x = yabc,ydef,y123 $ 
 
   x:1  is yabc, 
    x:2  is ydef, etc. 
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The index can be any numeric entity.  For example, 
 
 CALC   ; i = 1 $ 
 DSTAT ; Rhs = x : i  $ 
 
produces descriptive statistics for yabc.  This construction can be extended to looping procedures.  
For a simple example, 
 
 NAMELIST  ; yvars = yabc,ydef,y123 $ 
 PROC 
 REGRESS  ; Lhs = yvars : i ; Rhs = one,x1,x2,x3$ 
 ENDPROC 
 EXECUTE  ; i = 1,3 $ 
 
Variables, yabc, ydef and y123 are regressed in turn on one, x1, x2, x3. 
 
R6.6 Labellists 
 
 A labellist is a list of text labels that you can use to label your results in several settings.  The 
list is defined the same way a namelist is defined. The verb is CLIST.  The command is 
 
 CLIST  ; labellistname = list of labels $ 
 
For example, to continue our example, we might define 
 
 CLIST  ; xvars = intrcept,gencost,termtime,invcost,invtime $ 
 
CLIST provides the two editing functions List and Delete. 
 
 CLIST  ; List clist name $ 
 
displays the list of labels.  Note there is no semicolon after List.  For example, 
 
 CLIST  ; List xvars $ 
 
will show the current contents of xvars in the output window.  To delete a character list, use 
 
 CLIST  ; Delete clist name $ 
 
Once again, there is no semicolon before the name of the list to be deleted. 

Labellists are part of the project and are displayed in the project window as shown in Figure 
R6.4.  If you double click the name of a labellist in the project window, a listing of the contents of 
the list is shown in the output window. 
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Figure R6.4  Labellist in Project and Output Windows 

 
 The following shows the earlier example, using a character list rather than a namelist to 
provide the labels for the parameters.  The display would be the same as shown in Figure R6.3 save 
for the parameter labels at the left of the output table. 
 
 DISPLAY ; Parameters = b_ols 
   ; Covariance = vb 
   ; Labels = xvars 
   ; Title = Linear Probability Model $ 
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R7: The Current Sample and Missing Data 
 
R7.1 The Current Sample 
 
 In most cases, you will read in a data set and use the full set of observations in your 
computations.  But, it is quite common to partition the sample into subsamples and use its parts in 
estimation instead.  You will also frequently want to partition the data set to define data matrices for 
use in the MATRIX commands.  
 
NOTE:  The ‘current sample’ is the set of observations, either part or all of an active data set, which 
is designated to be used in estimation and in the data matrices for MATRIX, CREATE, etc.   
 
 The commands described in this chapter are used to designate certain observations either ‘in’ 
or ‘out of’ the current sample.  With only a few exceptions, operations which use your data, such as 
model estimation and data transformation, operate only on the current sample.  For example, if you 
have initially read in 10 observations on x and y, but then set the sample to include only observations 
1-3, 6, and 8-10, nearly all commands will operate on or use only these seven observations.  Thus, if 
you compute log(x), only seven observations will be transformed. 
 To define the current sample, LIMDEP uses a set of switches, one for each observation in 
the data set.  Thus, when you define the sample, you are merely setting these switches.  As such, the 
REJECT command does not actually remove any data from the data set, it merely turns off some of 
these switches.  The data are not lost.  The observations are reinstated with SAMPLE ; All $.  Figure 
R7.1 shows the process.  The sequence of instructions in the editing window creates a sample of 
draws from the standard normal distribution.  The SAMPLE command chooses the first 12 of these 
observations, then the REJECT command removes from the sample observations that are greater 
than 1.0 or less than -1.0.  This turns out to be observations 6 and 12, as can be seen in the data 
editor.  The chevron to the right of the row number in the data editor is the switch discussed above. 
 There are two sets of commands for defining the current sample, one appropriate for cross 
section data and the other specifically for time series.  Once the current sample is defined, you may 
further reduce it by random sampling observations from it.  The DRAW command is used for this 
purpose.  LIMDEP also provides methods of bootstrapping, which involve random sampling from 
the current sample with replacement. 
 
NOTE:  Section R7.5 discusses handling missing values in the data set.  The missing values are 
taken to be part of the data set.  Chapter R20 describes ‘multiple imputation’ procedures that are 
used to replace missing values with predictions from estimating equations that are built separately 
from a model that is being estimated.  We will defer discussion of multiple imputation until after 
model setups are described in Chapters R8 and R9 and procedures are documented in Chapter R19.  
Multiple imputation methods rely on both of these. 
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Figure R7.1  Current Sample and the REJECT Command 
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R7.2 Cross Section Data 
 
 Initially, observations are defined with respect to ‘rows’ of the data matrix, which are simply 
numbered 1 to whatever is the current setting of ROWS.  (See Section R3.4 for the definition of 
ROWS.) 
 

R7.2.1 Defining the Current Sample with the SAMPLE Command 
 
 Designate particular observations to be included in the current sample with the command 
 
 SAMPLE  ; range, range, range, ..., range $ 
 
A ‘range’ is either a single observation number or a range of observations of the form lower-upper.  
For example, 
 
 SAMPLE  ; 1, 12-35, 38, 44-301, 399 $  
 
You can set the sample in this fashion, do the desired computations, then reset the sample to some 
other definition, at any time.  To restore the sample to be the entire data set, use 
 
 SAMPLE  ; All $ 
 
Because of the possibility of missing data being inadvertently added to your data set, LIMDEP 
handles this command as follows:  ‘All’ observations are rows 1 to N where N is the last row in the 
data area which is not completely filled with missing data.  In most cases, this will be the number of 
observations in the last data set you read.  But, you can go beyond this last row by giving specific 
ranges on the command.  For example, suppose you begin your session by reading a file of 100 
observations.  Thereafter,  SAMPLE ; All $ would be equivalent to SAMPLE ; 1-100 $.  But, you 
could then do the following: 
 

SAMPLE  ; 1-250 $ 
CREATE  ; x = Rnn(0,1) $  (random sample)  

 
Now, since there are 250 rows containing at least some valid data, SAMPLE ; All $ is equivalent to 
SAMPLE ; 1-250 $. 
 

R7.2.2 Removing and Adding Observations with REJECT/INCLUDE 
 
 These commands are used to delete observations from or add observations to the currently 
defined sample.  They have the form 
 
 VERB   ; logical expression $ 
 
 ‘VERB’ is either REJECT or INCLUDE.  ‘Logical expression’ is any desired expression 
that provides the condition for the observation to be rejected or included. It may include any number 
of levels of parentheses and may involve mathematical expressions of any complexity involving 
variables, named scalars, matrix or vector elements, and literal numbers. The operators are as follows: 
 
 Math and relational operators are  +, -, *, /, ^, >, >=, <, <=, =, #. 
 Concatenation operators are & for ‘and’, | for ‘or.’ 
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A simple example appears in Figure R7.1.  Another might be: 
 
 REJECT  ; x > 0  $ 
 
For a more complex example, we compute an expression for observations which are not inside a ball 
of unit radius. 
 
 REJECT  ; x^2  +  y^2  +  z^2  >= 1 $ 
 
For a third example with no obvious interpretation: 
 
 INCLUDE  ; (r/s)*((c+7)*(x+2) * y^2 + z^3) > 1  |  x +y < 0  $ 
 
The hierarchy of operations is  ^,  (*, /) (+,-), ( >, >=, <, <=, =, #), &, |.  Operators in parentheses 
have equal precedence and are evaluated from left to right.  When in doubt, add parentheses.  There 
is essentially no limit to the number of levels of parentheses.  (They can be nested to about 20 
levels.) 
 It is important to note that in evaluating expressions, you get a logical result, not a 
mathematical one.  The result is either true or false.  An expression which cannot be computed 
cannot be true, so it is false.  Therefore, any subexpression which involves missing data or division 
by zero or a negative number to a noninteger power produces a result of false.  But, that does not 
mean that the full expression is false.  For example:  (x / 0) > 0 | x > y  could be true.  The first 
expression is false because of the zero divide, but the second might be true, and the ‘or’ in the middle 
returns ‘true’ if either expression is true.  Also, we adopt the C++ language convention for 
evaluation of the truth of a mathematical expression.  A nonzero result is true, a zero result is false.  
Thus, your expression need not actually make logical comparisons. For example: Suppose x is a binary 
variable (zeros and ones). REJECT ; x $ will reject observations for which x equals one, since the 
expression has a value of ‘true’ when x is not zero.  Therefore, this is the same as REJECT ;  x # 0 $. 
 REJECT deletes observations from the currently defined sample while INCLUDE adds 
observations to the current sample. You can use either of these to define the current sample by 
writing your command as 
 
 REJECT or INCLUDE ; New ; … expression … $ 
 
For a REJECT command, ; New has the result of first setting the sample to all observations, then 
rejecting those observations which meet the condition specified in the expression. For an INCLUDE 
command, this has the effect of starting with no observations in the current sample and selecting for 
inclusion only those observations which meet the condition.  In the latter case, this is equivalent to 
‘selecting cases,’ as may be familiar to users of SAS or SPSS. 
 

TIP:  If your REJECT or INCLUDE ; New command has the effect of removing all observations 
from the current sample, LIMDEP takes this as an error, gives you a warning that this is what you 
have done, and ignores the command. 
 
 You may submit REJECT and INCLUDE commands from the dialog box shown in Figure 
R7.2.  The dialog box is invoked by selecting Include or Reject in the Project:Set Sample menu 
or by right clicking in the data editor, clicking Set Sample, then selecting Reject or Include from 
the Set Sample menu.  Note in the dialog box, the ‘Reject observations from the current 
sample’ option at the top is the ; New specification in the command.  Also, by clicking the query (?) 
button at the lower left, you can obtain information about these commands from the online Help file. 



R7: The Current Sample and Missing Data R-206 

 
Figure R7.2  REJECT Dialog Box 

 
 The same Set Sample menu offers All, which just generates a SAMPLE ; All $ command 
and Range which produces the dialog box shown in Figure R7.3. 
 

 
Figure R7.3  Set Sample Range Dialog Box 

 

R7.2.3 Interaction of REJECT/INCLUDE and SAMPLE 
 

 REJECT and INCLUDE modifies the currently defined sample unless you include ; New.  
But, SAMPLE always redefines the sample, in the process discarding all previous REJECT, 
INCLUDE, and SAMPLE commands.  Thus, 
 
 SAMPLE  ; 1-50,200-300 $ 
and SAMPLE  ; 1-50 $ 
 SAMPLE  ; 200-300 $  
 
are not the same. 
 Any of these three commands may appear at any point, together or separately.  Before any 
appear, the default sample is SAMPLE ; All $. 
 

TIP:  If you are using lagged variables, you should reset the sample to discard observations with 
missing data after you compute the lagged values.  This is generally not done automatically. 
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R7.3 Time Series Data 
 
 When you are using time series data, it is more convenient to refer to rows of the data area 
and to observations by date, rather than by observation number.  Two commands are provided for 
this purpose. 
 To give specific labels to the rows in the data area, use 
 
 DATES  ; initial date in sample $ 
 
The initial date may be one of: 
 
 Undated same as before. (Use this to undo a previous DATES command.) 
   DATES ; Undated $ 
 YYYY  year for yearly data, e.g., 1951. 
   DATES ; 1951 $ 
 YYYY.Q  year.quarter for quarterly data. Q must be 1, 2, 3, or 4. 
   DATES ; 1951.1 $ 
 YYYY.MM  year.month for monthly data. MM is 01 02 03 ... 12. 
   DATES ; 1951.04 $ 
 
Note that .1 is a quarter, and .5 is invalid.  The fifth month is .05, and the tenth month is .10, not .1. 
Once the row labels are set up, the counterpart to the SAMPLE command is 
 
 PERIOD  ; first period  -  last period  $ 
 
For example,    
 
 PERIOD  ; 1964.1 - 1977.4 $ 
 
 These two commands do not change the way that any computations are done with LIMDEP.  
They will change the way certain output is labeled.  For example, when you use the data editor, the 
row markers at the left will now be the dates instead of the observation numbers. 
 
NOTE:  You may not enter a date using only two digits.  Your dates must contain all four digits.  No 
computation that LIMDEP does or command that you submit that involves a date of any sort, for any 
purpose, uses two digits.  Therefore, there is no circumstance under which LIMDEP could mistake 
20xx for 19xx.  Any two digit date submitted for any purpose will generate an error, and will not be 
processed. 
 
 The DATES command may be given from the Project:Settings/Data Type dialog box, 
shown in Figure R7.4.  
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Figure R7.4  Dialog Box for the DATES Command 

 
 The SAMPLE and PERIOD commands may be given from the Project:Set Sample 
Range dialog box.  See Figure R7.5. 
 

 
Figure R7.5  Dialog Box for the PERIOD Command 
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NOTE:  The current data type, Data:U, Data:Y, Data:Q, or Data:M is displayed at the top of the 
project window.  The data editor will also be changed to show the time series data.  Figure R7.5 
shows an example using quarterly data.  The top of the project window displays the ‘Q’ which 
indicates quarterly data.  The data editor has also automatically adjusted following the setting in 
Figure R7.4 for quarterly data beginning in 1961.4. 
 
R7.4 Using the DRAW Command to Obtain Random Samples 
 
 You can draw a random sample from the current sample of observations with the DRAW 
command.  This might be useful for bootstrap sampling, for example.  (See Chapter R21 for 
applications and discussion.)   
 
R7.4.1 Random Sampling from a Cross Section 
 
 The procedure is as follows:  First, set the parent population to whatever is desired with 
READ, SAMPLE, REJECT, and INCLUDE.  This results in Nobs observations.  The command to 
draw a random sample is 
 
 DRAW  ; N = number $ 
 
to sample ‘number’ observations without replacement. N must be less than Nobs.  Use 
 
 DRAW  ; N = number ; Rep $ 
 
to sample with replacement.  In this case, Nobs can be anything and number can be up to 100,000.  
For example: 
 
 SAMPLE  ; 1-100 $ 
 CREATE  ; i = Trn(1,1) $  numbers from 1 to 100. 
 LIST   ; i $ will display numbers from 1 to 100 in order. 
 DRAW  ; N = 200 ; Rep $ 
 LIST   ; i $ will display 200 random draws from i. 
 
The original data are not changed, only the sample pointers are.  Restore the original sample with 
 
 DRAW  ; N = 0 $ 
 
You can enter a DRAW random sample command dialog, as shown in Figure R7.6, by choosing 
Draw Sample from the Project Set Sample menu. 
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Figure R7.6  Dialog Box for the DRAW Command 

 
All commands which modify the sample turn off the random sample and restore the original data set.  
These are REJECT, INCLUDE, SAMPLE, DATES, PERIOD. 
 
WARNING:  Do not do any operation which modifies your existing data while this sampling 
procedure is in effect. The results will be unpredictable and can be severely problematic. This affects 
all operations that use the data. 
 
WARNING:  Do not use SKIP (see the next section) with bootstrapped samples or random samples.  
SKIP generates an internal REJECT command which will then automatically produce a DRAW       
; N = 0 $ command even if no observations get skipped. 
 
R7.4.2 Random Sampling from a Panel Data Set 
 
 If you are using panel data and you want to sample randomly from the panel data set, the 
operation in the preceding section is probably not what you need.  Assume for the moment that you 
have a balanced panel with, say, 1,000 individuals and five observations per individual for a total of 
5,000 observations.  If you use, say, DRAW ; N = 1000 $, you will draw a panel data set in which, 
now, some individuals will no longer have five observations.  More likely, you would prefer to draw 
a sample of individuals from the original 1,000, so that the drawn sample is still a balanced panel of 
individuals randomly drawn so that each is still observed five times.  In order to sample randomly 
from a panel in this fashion, use 
 
 DRAW   ; N = the number of individuals to draw 
   ; Pds = either the fixed number of periods or the group size variable $ 
 
Note that the syntax allows you to draw a random sample of individuals from an unbalanced panel as 
well.  Other parameters of this operation are: 
 

• The full sample from which the sample is drawn may not be more than 500,000 
observations. 

• You may sample with replacement. The replacement is over individuals, not the individual 
observations. 

• The bootstrapped sample may contain up to 20,000 groups in total. 
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R7.4.3 Simulating a Random Sample with Panel Data 
 

You can simulate an unbalanced panel using the procedure described below. This uses some 
features that will be described in more detail in the chapters to follow, but this is a convenient place 
to introduce them.  The  procedure will create a sample for a balanced panel as well as an unbalanced 
one just by replacing the Rnd(m) in the first CREATE command with the fixed m that you want. 
 

CALC   ; ni = ... the number of groups you want in your panel $ 
SAMPLE ; 1 - ni $ 
CREATE ; ti = Rnd(m) $  Set m to the largest group size you want. 
MATRIX ; mti = ti $ 
CALC  ; i1 = 1 ; i = 1 ; sumti = 0 $ 
PROCEDURE $ 
CALC  ; i2 = i1 + mti(i) – 1 $ 
SAMPLE ; i1 - i2 $ 
CREATE ; ... < the variables you want to simulate> ...  
    ...   $ 
CREATE ; groupti = mti(i) ; groupid = i $ 
CALC  ; sumti = sumti + mti(i) ; i1 = i1 + 1 ; i = i + 1 $ 
ENDPROCEDURE $ 
EXECUTE ; N = ni $ 
SAMPLE ; 1 - sumti $ 

 
You can now analyze these panel data.  Use ; Pds = groupti for group size counts.  Groupid is a 
simple (1,2,...) group identifier. 
 

R7.5 Missing Data 
 

 This section presents the information you will need to keep track of missing data when you 
operate LIMDEP.  Section R7.5.5 describes the SKIP command, a particularly important device for 
handling missing data.  Procedures for filling missing values with predictions from other models are 
described in Chapter R20. 
 

R7.5.1 Reading Missing Data 
 
 When a data set contains missing values, you must indicate this in some way at the time the 
data are read.  How you do this depends on the type of file you are reading: 
 

Worksheet file from a spreadsheet program:  Blank cells in a worksheet file are sufficient to 
indicate missing values.  When LIMDEP writes a worksheet file for export, it, too will indicate 
missing data by a blank cell. It is not necessary to put any alphabetic indicator in the cell. 
 
Formatted ASCII file:  To indicate missing data in a formatted file, that is one that must be 
read with the ; Format = (...) specification in the READ command, leave the fields blank.  
Then, add ; Blanks to your READ command when you read the file. 
 
Unformatted ASCII file:  Any nonnumeric data in the field, such as the word ‘missing’ will 
suffice. Alternatively, a simple period surrounded by blanks will suffice.  Note that in such a 
file, a blank will not be read as missing, since blanks just separate numbers in the data file. 
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CSV file:  Missing values in a comma delimited CSV file are indicated by a single blank, 
which may appear as the first character in a line, between two commas in the middle of a 
line, or as a single blank after a comma at the end of a line.  When you read such a file into 
LIMDEP, you must use ; Format = CSV in your READ command. 
 
DIF file:  DIF files specifically contain alphanumeric data for missing values.  Any 
nonnumeric value will suffice.  ; Format = DIF will pick these up appropriately. 
 
Binary file:  Missing data in a binary file must be indicated by the numeric value -999.   

 
 The internal code for a missing datum is -999.  You may use this numeric value in any type 
of file to indicate a missing value.  Upon reading the data, LIMDEP immediately converts any 
missing data encountered to the numeric value -999. 
 

R7.5.2 Missing Data in Transformations 
 

 Any transformation (see Chapter R4) that requires a value which turns out to be a cell 
containing missing data will return a missing value, not 0.  Thus, if you compute y = Log(x), and some 
values of x are missing, the corresponding values of y will be also.  Conditions are treated as follows:  
Suppose your transformation were CREATE ; If (z = 5) y = Log(x) $, and suppose for some 
observation, z is missing.  If the variable named y already exists and this command is transforming y, 
then the condition would automatically be false, and y would not be set equal to Log(x), even if x were 
not missing.  If this transformation is creating y for the first time, that is, if does not already exist, then 
the condition is, once again, automatically false, but now y is returned as the missing value, -999. 
 When computing a column of predictions, LIMDEP returns a missing value for any 
observations for which any of the variables needed to compute the prediction are missing, even if the 
variable which will contain the predictions already exists at the time.  This results because when you 
request a model to produce a set of predictions, LIMDEP begins the process by ‘clearing’ the column 
in the data area where it will store the predictions.  Data areas are cleared by filling them with the 
missing value code. 
 

R7.5.3 Missing Data in Scalar and Matrix Algebra 
 
 The treatment of missing values by CALCULATE is as follows: 
 

• Dot products involving variables:  The procedure is aborted, and -999 is returned. 
• Max and Min functions: Missing data are skipped. 
• Lik, Rsq, etc. (regression functions):  Same as dot products. 

 
 The matrix algebra program that directly accesses the data in several commands, including 
x’x, for sums of squares and cross products, <x’x> for inverses of moment matrices, and many 
others will simply process them as if the -999s were legitimate values.  Since it is not possible to 
deduce precisely the intention of the calculation, LIMDEP does not automatically skip these data or 
abort to warn you.  It should be obvious from the results.  You can specifically request this.  If you 
do have the ‘SKIP switch’ set to ‘on’ (see Section R7.5.5) during matrix computations, LIMDEP 
will process MATRIX commands such as x’x and automatically skip over missing values.  But, in 
such a case,  the computation is usually erroneous, so your output will contain a warning that this has 
occurred, and you might want to examine closely the calculations being done to be sure it is really 
how you want to proceed. 
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 Figure R7.7 illustrates the results discussed in the previous paragraph.  The commands are 
shown in the editing window.  (We have selected the Mersenne Twister RNG and set the seed 
explicitly so you can replicate the results.)  Variables x and y are random samples of 100 observations 
from the standard normal distribution.  The CREATE command changes a few observations in each 
column to missing values – the observations are not the same for x and y.  The NAMELIST defines zx 
to be x and a column of ones – a two column matrix, and zy likewise.  With SKIP turned on, the 2×2 
matrix product zx′zy shows that there are 73 observations in the reduced sample (see the 73 that is 1′1 
at the upper left corner) and a warning is issued.  With SKIP turned off, in the first computation, the 
missing values are treated as -999s, and the resulting matrix has values that appear to be inappropriate. 
 There are also some MATRIX commands which return new variables, computed as linear 
combinations of existing variables. When missing data are encountered here, a missing value will be 
returned for the observation being computed, but no warning will be issued (as this might be 
deliberate).  
 

 
Figure R7.7  Matrix Computations Involving Missing Data 
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R7.5.4 Missing Data in Estimation Routines 
 
 Unless you request it as described in the next section, LIMDEP will not account for the 
presence of missing data in estimation programs.  That is, if the current sample contains rows of 
missing data, when you estimate a model or compute a moment matrix, the missing values will be 
included as if the value -999 were simply valid data.  (See the first matrix in Figure R7.7.)  This will, 
of course, seriously affect your results.  Before using your data in estimation programs, you should 
use REJECT to delete observations which contain missing values. 
 
TIP:  If your estimator fails to converge, or the results look strange, or you get a diagnostic that the 
dependent variable is not coded correctly, you have probably failed to reject some observations 
which contain missing values.  The descriptive statistics (means, standard deviations) will likely 
reveal some discrepancies. 
 
NOTE:  DSTAT, the descriptive statistics command, automatically bypasses missing values.  
Descriptive statistics for each variable are computed separately, based only on the valid values for 
that variable.  Covariances and correlations are based only on complete full rows of the data.  The 
results show the resulting sample sizes.  Most panel data estimators also bypass missing values, but 
most other estimation routines do not. 
 
R7.5.5 Automatically Bypassing Missing Data – The SKIP Command 
 
 LIMDEP will skip missing data if you turn on the SKIP switch.  This feature is controlled 
with the commands 
 
 SKIP (to turn it on)  and  NOSKIP (to turn it off). 
 
SKIP can also be turned on and off with Project:Settings/Execution.  See Figure R7.8. 
 

 
Figure R7.8  SKIP Switch from Project Settings/Execution 
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 SKIP works as follows:  At the time you give the command, the current sample is taken to 
be the ‘master sample.’  Note that this may or may not be the entire data set; the current sample may 
already be a subset of your data.  With this setting ‘on,’ when you give a command to estimate a 
model, LIMDEP inspects only the variables in the model command and temporarily rejects 
observations for which any of these variables are missing.  After the model is estimated, the sample 
is once again restored to the master sample.   
 For example:  suppose the data consist of 
 

 Obs.  1   2   3   4   5   6   7   8   9  10  11  12 
 X     1   2   3   1   5   .   8   2   .   .   9   5 
 Y     .   8   2   .   1   3   4   5   6   7   6   1 

 
The sequence of commands 
 
 REJECT  ; New ; x > 8 $ 
 SKIP 
 REGRESS ; Lhs = y ; Rhs = one,x $ 
 
First deletes observation 11. The master sample is then 1-10,12. The regression uses observations 2, 
3, 5, 7, 8, and 12.  After it is run, the current sample is restored to 1-10,12.  Any subsequent 
SAMPLE, REJECT, INCLUDE, or PERIOD resets the master sample.  Turn this feature off with 
the command NOSKIP. 
 
NOTE:  If you are fitting any of the following models with panel data (this is almost all of the 
models LIMDEP supports):  
 
 Probit with random or fixed effects 
 Logit with random or fixed effects 
 Ordered probability with random effects 
 Poisson with random or fixed effects 
 Negative binomial with random or fixed effects 
 Frontier with random effects 
 Tobit with random effects 
 Parametric survival models  
 CLOGIT estimator and all estimators in NLOGIT 5 (treat the NALT rows of data as a panel) 
 All fixed effects estimators specified with FEM  
 All random parameters estimators 
 All latent class estimators 
 
LIMDEP will automatically bypass the full group of observations for any individual in a panel if any 
of the observations contain missing data on any of the variables that are being used to fit the model.  
You do not have to make any adjustments to enable this feature; it is handled internally.  For these 
cases, you should not have the SKIP switch on.  If you wish to restrict the sample before estimation 
in these settings, use REJECT. 
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R7.5.6 Nonlinear Optimization Programs and Using SKIP Generally 
 
 SKIP cannot operate on estimators that you define with MAXIMIZE, MINIMIZE, 
GMME, NLSQ or NLSURE.  The reason is that when SKIP is turned on, LIMDEP inspects the 
data contained in lists of variables, ; Rhs, ; Rh2, ; Inst, and so on.  The function definitions in these 
commands do not contain lists; they contain variables intermingled with other entities such as 
parameters and scalars.  You can request that SKIP be applied to a set of variables that you specify 
by adding 
   ; Skip  =  any list of variables 
 
to your command.  You should include variables that appear in the function definitions but are not in 
explicit lists.  (See Chapters E15, E18, E20 and E44 for discussion of nonlinear function optimizers.) 
 
HINT:  You may use this with any estimation command.  It will usually be redundant in other 
models, but the feature is provided generally since we assume that we cannot anticipate every 
possible model specification or usage. 
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R8: Commands for Estimating Models 
 
R8.1 Model Specifications of Variables and Weights 
 
 This chapter will describe the common form of all model estimation commands.  Equation 
specifications are described in Sections R8.3-R8.7.  Using weights in estimation is discussed in 
Section R8.8.   
 Chapters R9-R13 contain general discussions on the important statistical features of the 
model estimators, such as output of model results, interpreting results and obtaining partial effects.  
Chapters R11 and R12 also describe procedures that are generally used after a model is estimated, 
such as testing hypotheses, retrieving and manipulating results, and analyzing restrictions on model 
parameters.  In terms of your use of LIMDEP for model estimation and analysis, Chapters R8-R12 
are the most important general chapters in this part of the manual.   
 
NOTE: Section R8.3 describes a major new feature in LIMDEP 10, incorporation of interaction 
effects and nonlinear functions explicitly in model commands.  These are part of a program wide 
expansion in your ability to obtain model simulations and partial effects for any model specification. 
 
R8.2 Model Commands 
 
 All model commands are built from the basic form 
 
 Model Command  ; Lhs = dependent variable  
    ; Rhs = list of independent variables 
    ; ... other parts specific to the model ; ... $ 
 
The 100 or so different models are specified by changing the model name or by adding or subtracting 
specifications from the template above.  At different points, other specifications, such ; Rh2 = a 
second list, are used to specify a list of variables.  These will be described with the particular 
estimators in the Econometric Modeling Guide.  Different models will usually require different 
numbers and types of variables to be specified in the lists above.  You may always use namelists at 
any point where a list of variables is required.  Also, a list of variables may be composed of a set of 
namelists. 
 
NOTE ON CONSTANT TERMS IN MODELS:  Of the over 100 different models that LIMDEP 
estimates, only one, the linear regression model estimated by stepwise regression, automatically 
supplies a constant term in the Rhs list.  If you want your model to contain a constant term, you must 
request it specifically by including the variable ‘one’ among your Rhs variables.  You should notice 
this in all of our examples below.  The variable one is provided by the program; you do not have to 
create it. You can, however, use one at any point, in any model where you wish to have a constant 
term, and any MATRIX command based on a column of ones as a variable in the analysis of data. 
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ADVICE ON MODEL SPECIFICATION:  It is fairly rare that a model would be explicitly 
specified without a constant.  In almost all cases, you should include the constant term.  Omitting the 
constant amounts to imposing a restriction that will often distort the results, sometimes severely.  
(We recall a startling exchange among some of our users in reaction to what appeared to be drastic 
differences in the estimates of a probit model produced by LIMDEP and Stata.  The difference 
turned out to be due to the omitted constant term in the LIMDEP command.)  In a few cases, though 
it is not mandatory by the program, you definitely should consider the constant term essential – these 
would include the stochastic frontier and the ordered probit models.  However, in a few other cases, 
you should not include a constant term.  These are certain fixed effects, panel data estimators, such 
as regression, logit, Poisson and so on.  (In most cases, if you try to include an overall constant term 
in a fixed effects model, LIMDEP will automatically remove it from the list.) 
 
 In addition to the specifications of variables, there are over 200 different specifications of the 
form 
   ; sss  [= additional information] 
 
which are used to complete the model command.  These specifications are specific to the model 
being estimated.  In some cases, these are mandatory.  
 
 SETPANEL ; Group = id ; Pds = ti $ 
 REGRESS  ; Lhs = ... ; Rhs = ... ; Panel ; Random Effects $ 
 
This is the model command for a random effects linear regression model.  The last specification is 
necessary in order to request the particular panel data model.  Without the last two specifications, the 
command simply requests linear least squares.  Another example 
 
 REGRESS ; Lhs = … ; Rhs = … ; Heteroscedasticity $ 
 
Requests a robust, heteroscedasticity corrected covariance matrix.  In other cases, specifications will 
be optional, as in 
 
 REGRESS  ; Lhs = ... ; Rhs = ... ; Keep = yf $ 
 
which requests LIMDEP to fit a model by linear least squares, then compute a set of predictions and 
keep them as a new variable named yf.  The regression is computed regardless, ; Keep = name is 
added to request the additional step of putting the predictions in the data area as a new variable 
named yf. 
 Some model specifications are general and are used by most, if not all, of the estimation 
commands.  For example, the ; Keep = name specification in the command above is used by all 
single equation models, linear or otherwise, to request LIMDEP to keep the predictions from the 
model just fit.  In other cases, the specification may be very specific to one or only a few models.  
For example, the ; Cor in 
 
 SWITCHING REGRESSION ; Lhs = ... ; Rh1 = ... ; Rh2 = ... ; Cor $ 
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is a special command used to request a particular variant of the switching regression model, that with 
correlation across the disturbances in the two regimes.  The default is to omit ; Cor, which means no 
correlation. 
 Figure R8.1 shows a model command and the resulting output window using the basic form 
of model command. 
 

 
Figure R8.1  Basic Model Estimation Command and Results 

 
R8.3 Interaction Terms and Nonlinear Functions of Variables 
 
 Models are usually specified with interaction terms, squares of variables, and so on.  In 
general, it is necessary to create these variables separately in the data set and then include the 
transformed variables in the model.  To continue the example above, a model that includes the 
square of age and different impacts of education by gender would be obtained by adding 
 
 CREATE ; agesq = age * age  ;  fem_educ = female * educ $ 
 PROBIT ; Lhs = doctor ; Rhs = one, age, agesq, educ, female, fem_educ $ 
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You can include these transformed variables directly in the model command, rather than first adding 
them to the data set.  Figure R8.2 shows the command and results. 
 

 
Figure R8.2  Estimating a Model with Interaction Terms 

 
R8.3.1 Interaction Terms and Logs of Variables in Commands 
 
 Any term in a model command may appear as follows: 
 
 variable1 * variable2    such as  female * educ 
 variable1 * variable2 ^ power  such as  educ * age^2 
 variable1 / variable2    such as  gdp / pricelvl 
 variable1 / variable2 ^ power  such as  income / price^2 
 variable1 ^ power   such as  age^2 
 log(variable)    such as log(wage) 
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Note variable1 may be same as variable2, so age*age is the same as age^2.  These variables may 
appear in any list in a model, that is, ; Rhs, ; Lhs, ; Rh1, ; Rh2, and so on.  The only restrictions are 
that only the forms above are supported and the exponent in the power functions must be positive 
and of the form n, .n or n.n.  That is, they must be explicit numbers.  A square root, for example is 
obtained with power = .5.  Note as well, the formulation also allows you to do division.  There is a 
potential for complications here.  You will be protected from dividing by zero.  However, the result 
of your attempt to divide by zero will be to return a missing value.  Since this calculation is being 
done ‘on the fly’ during manipulations of the data, it is not possible to stop execution and take some 
corrective action.  A zero divide can turn an observation with no missing values into one in which a 
variable in the model does contain a missing value.  You should be careful at the outset if you will 
use this feature, and ensure that you will not be dividing by zero at any time.  There is also a second 
possible (less probable, however) complication in this procedure.  In general, the procedure will not 
allow you to raise a negative number to a power.  In principle, it is possible to raise a negative 
number to an integer power, but LIMDEP is not checking for this possibility.  An attempt to raise a 
negative number to a nonzero power produces a missing value.  Finally, the log function returns a 
missing value if the variable is not positive. 

In addition to the obvious convenience of streamlining the model commands and making it 
unnecessary to compute the additional variables in your data set, this new feature provides a 
significant capability to work with the PARTIAL EFFECTS command described in Chapter R11.  
Consider a probit model with the square of age in it.  The probability is 
 
 Prob(doctor=1|x) = Φ(β1 + β2educ + β3female + β4age + β5age2). 
 
The partial effect of age in this model is 
 
 ∂Φ(.)/∂age  =  φ( β1 + β2educ + β3female + β4age + β5age2) × (β4 + 2β5age). 
 
If we request partial effects in the usual way with a simple probit command 
 
 CREATE  ; agesq = age^2 $ 
 PROBIT   ; Lhs = doctor ; Rhs = one, educ, female, age, agesq  

; Partial Effects $ 
 

The response is 
 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    EDUC|    -.00571***     -.10285    -4.58  .0000     -.00816   -.00327 
  FEMALE|     .13036***      .09924    22.38  .0000      .11894    .14177   # 
     AGE|    -.02186***    -1.51297   -10.10  .0000     -.02610   -.01762 
   AGESQ|     .00031***     1.00074    12.66  .0000      .00026    .00036 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Elasticity for a binary variable is marginal effect/Mean. 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 



R8: Commands for Estimating Models R-222 

This looks convincing, but it is not what we wanted.  The program has computed a separate partial 
effect for age and agesq.  The problem is that the program has no way of knowing that agesq is the 
square of age; it could be anything.  It is just another variable in the equation.  (This is the point 
made by the now famous paper of Ai and Norton (2003).) 

The PARTIAL EFFECTS feature described in Chapter R11 makes use of the in line 
interaction and nonlinear functions and computes the partial effects correctly.  For the example 
shown, if we change the commands to 

 
 PROBIT    ; Lhs = doctor ; Rhs = one, educ, female, age, age^2 $ 
 PARTIAL EFFECTS ; Effects: age $ 
 
the results are 
 
--> PARTIALS ; Effects : age $ 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Probit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to AGE 
Results are computed by average over sample observations 
Partial effects for continuous AGE      computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dAGE            Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect      .00467     .00024   19.30      .00420      .00514 
 
The in line statement of the relationship between age and age squared enables the partial effects 
program to compute the appropriate derivatives. 
 
NOTE: This new capability is built into nearly all the models that are fit by LIMDEP, including the 
linear regression model, probit, tobit, and dozens of other. 
 
 In any statistical command (DSTAT, REGRESS, SURE, and so on), logs of any variables 
may be specified directly in the command instead of being created beforehand.  For example, the 
commands 
 
 CREATE ; ly = Log(y) ; lx = Log(x) $ 
 DSTAT    ; Rhs = ly, lx $  
 REGRESS  ; Lhs = ly ; Rhs = one, lx $ 
 
could be replaced with the commands 
 
 DSTAT    ; Rhs = Log(y), Log(x) $ 
 REGRESS  ; Lhs = Log(y) ; Rhs = one, Log(x) $ 
 
Remember, though, in the second case, the logs of the variables are not kept in your data area; they 
are retained only for the current regression or model. 
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R8.3.2 Interaction Terms and Nonlinear Terms in Namelists 
 
 Namelist definitions may contain any number of interactions, logs, and so on, as defined in 
the preceding section.  For example,  
 
 NAMELIST  ; translog = one, lnx1, lnx2, lnx1^2, lnx2^2, lnx1*lnx2 $ 
 
might be used for convenience to specify a production function.  Then,  
 
 REGRESS  ; Lhs = Log(y) ; Rhs = translog $ 
 
could be used to estimate the model.  It is important to note a difference between placing interactions 
in a namelist and in a model command.  When interactions are placed in your model command, they 
replace the internal table that defines the constructed variables.  Each model command defines its 
own new set of variables.  The list is replaced by the next model command.  But, NAMELIST 
defines a permanent set of definitions, since the namelist, itself is permanent.  To continue the 
example, the commands, 
 
 NAMELIST ; cobbdgls = one, lnx1, lnx2 $ 
 NAMELIST  ; translog = one, lnx1, lnx2, lnx1^2, lnx2^2, lnx1*lnx2 $ 
 REGRESS ; Lhs = Log(y) ; Rhs = translog $ 
 CALC  ; lt = logl $ 
 REGRESS ; Lhs = Log(y) ; Rhs = cobbdgls $ 
 CALC  ; lc = logl ; chisq = 2*lt - lc) $ 
 
will set up a likelihood ratio test of the null Cobb-Douglas model against the alternative translog 
model. 
 
R8.3.3 Managing Constructed Variables in the Data Set 
 
 Namelists that contain interaction terms are accumulated in a table.  This set of information 
is part of the project you are working on.  When you save your project, the namelist definitions are 
saved in it, so the definitions will be intact when you reload your project.   
 The accumulated table accounts for cases when namelists use the same constructions.  For 
example, the following creates three namelists.   
 

SAMPLE ; 1-1000 $ 
CREATE  ; x1 = Rnu(0,1) ; x2 = Rnu(0,1) ; x3 = Rnu(0,1) $ 
CREATE  ; lnx1 = Log(x1) $ 
CREATE  ; lnx2 = Log(x2) $ 
NAMELIST  ; cobbdgls = one, lnx1, lnx2 $ 
NAMELIST  ; hybrid = one, lnx1, lnx2, lnx1*lnx1, lnx2*lnx2 $ 
NAMELIST  ; translog = one, Log(x1), Log(x2), lnx1*lnx1, lnx2*lnx2, lnx1*lnx2 $ 

 
The hybrid and translog lists share two interactions, so these do not create separate table entries.  
You can see what is contained in the table with 
 
 LIST   ; [*] $ 
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This is a special single purpose command that is used to obtain a listing of the internal table of 
interactions defined by your namelist commands.  For the preceding, we would obtain 
 
Constructed Variables Specified in Namelists and in Selection Equation 
Variable  Variable   Variable ^ Power  Used by Namelist      Selection 
---------------------------------------------------------------------- 
_ntrct01  LNX1     * LNX1              HYBRID   TRANSLOG 
_ntrct02  LNX2     * LNX2              HYBRID   TRANSLOG 
logX1          Log   X1                TRANSLOG 
logX2          Log   X2                TRANSLOG 
_ntrct05  LNX1     * LNX2              TRANSLOG 
 
The internal names at the left are not necessarily meaningful.  They will show up in some sets of 
results, however, so you may find the LIST command useful.  When the variables needed to create 
an interaction term are deleted for any reason, then it is no longer possible to construct a namelist 
that uses that variable.  You will receive a warning when this has occurred. 
 There is one table with up to 50 entries in it for namelists, so it is possible for you to 
overflow if you use too many interactions.  As noted, it is possible to overflow the table if you have 
too many complicated namelists.  You can clear the table with 
 
 DELETE  ; [*] $ 
 
This special command is used only to clear the namelists interaction terms definitions table.  For our 
example, the DELETE command produces 
 
Cleared internal table of constructed variables 
Namelist HYBRID   is no longer defined. 
Namelist TRANSLOG is no longer defined. 
 
R8.4 Categorical Variables in Model Commands 
 

Categorical variables may be expanded in line in a model command with 
 
 Expand(variable) or #variable  such as  expand(ethnic) or #ethnic. 
 
For example, the following commands first obtain the variable sah (self assessed health).  Hsat is 
coded 0 – 10.  The RECODE command collapses it to three categories.  The PROBIT command 
then fits the model shown above with the expanded sah variable in the model. There are three 
categories, so one of them (the last one) is omitted. 
 

CREATE  ; sah = hsat $ 
RECODE  ; sah ; 0/4=1 ; 5/7=2 ; 8/10=3 $ 
PROBIT  ; Lhs = doctor 

; Rhs = one, age, age^2, educ, female, female*educ, #sah$ 
 
The resulting output is shown in Figure R8.3. 
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Figure R8.3  Probit Model with Interaction Terms and Categorical Variable 
 
The specification creates a temporary internal namelist, such as educ = xx with a set of up to 

99 dummy variables of the form educ = 01, educ = nn…,  Your categorical variable need not be a 
sequence of integers, but it must be composed of integers that are somewhere in 1,...,100.  Thus, 
educ could be coded 12,16,18,20 (number of years).  The last dummy variable is always omitted, so 
this can create up to 99 dummy variables.  They are temporary. The names will show up in the 
output by name, but will not show up in the data set or the project window. The variables and the 
temporary namelist vanish after the model is executed.   

There is a special case, if the variable is named year, we can assume it is up to 100 years 
starting in 1921 and ending in 2020.  Other restrictions: 

 
1. This form may only be used for Rhs, Rh1, Rh2, Inst, Hfn, Hf1, Hfu, Hfv. 
2. It may not be used in any form of multinomial choice model DISCRETE, NLOGIT, or any 

of the sub forms such as RPLOGIT, etc. 
3. It may not be combined with the interaction terms in Section R8.3.1. 

 
Note that the construction mimics CREATE ; name = Expand(variable) but does not put any new 
variables or namelists in the data set. 
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R8.5 Lags and Partial Differences in Model Commands 
 
 Models involving lagged variables may also be specified directly in terms of the lags, instead 
of using previously created variables.  For example, a regression of yt on one and yt-1 could be 
obtained with 
 
 CREATE   ; lagy = y[-1] $ 
 REGRESS  ; Lhs = y ; Rhs = one, lagy $ 
 
But, these two lines could be replaced by the single command 
 
 REGRESS  ; Lhs = y ; Rhs = one, y[-1] $ 
 
Leads and lags are specified using LIMDEP’s usual format with square brackets.  Leads can be 
specified with positive values in the brackets; the ‘+’ is optional.  I.e., y[1] and y[+1] are the same.  
 Lags and leads may be specified in this fashion in any Rhs, Rh1, Rh2, Inst, Eqn, or any other 
variable list in any model command.  Note, however that an invalid attempt to use a lagged variable 
results in the diagnostic ‘Variable list contains a name not in the expected table’ followed by the 
offending name.  For example,  
 
 LIST  ; x[-1] $ 
 
is invalid since LIST is not a model command. 
 
TIP:  Namelists may not contain logs or lags.  These variables are computed ‘on the fly,’ and do not 
exist permanently in your data set unless you create them.  If you attempt to include a lagged variable 
in a namelist, a diagnostic warning of an unidentified name, ‘not in the expected table’ will be given. 
 
 Logs and lagged variables can be mixed in any list of names, along with other variables, but 
not with each other.  Thus, Log(x[-1]) in a model command would be invalid.  If a log cannot be 
computed, because of a nonpositive value, a -999 is returned, BUT, NO WARNING IS ISSUED.  
Lags or leads which extend beyond the limits of the data are returned as 0.0.  You should set the 
sample carefully before you use either of these operations. By and large, LIMDEP is not able to 
account for your missing data here, even if SKIP is turned on. 
 If you are using an iterative procedure with a large data set, embedding lags and logs in the 
command will be a slower and much less efficient way to proceed, since the logs are recomputed 
during each pass through the data set.  In this instance, you should compute the logs of the variables 
before calling for the procedure. 
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 The following computes two step generalized least squares estimates for a classical 
regression with an AR(3) (third order autoregressive) disturbance.  The CREATE command uses the 
coefficient vector that is automatically saved by the second regression. In the second regression, 
where residuals are regressed on three lagged values, the out of sample values are replaced with zeros. 
 

SAMPLE  ; 1-127 $ 
 CREATE ; y = Rnn(0,1) ; x = Rnn(0,1) $ 
 REGRESS ; Lhs = y ; Rhs = one,x ; Res = e $ 
 REGRESS ; Lhs = e ; Rhs = e[-1], e[-2], e[-3],one $ 
 CREATE  ; ygls = y - b(1)*y[-1] - b(2)*y[-2] - b(3)*y[-3] 
       ; xgls = x - b(1)*x[-1] - b(2)*x[-2] - b(3)*x[-3] $ 
 
At this point, the first three rows of xgls and ygls are undefined. 
 

SAMPLE ; 4-127 $ 
 REGRESS ; Lhs = ygls ; Rhs = one,xgls $ 
 
A similar procedure could be used for other autoregressive schemes.  But, for some applications, 
there is a simpler way to compute the last regression.  The following option would normally be used 
mainly with the classical regression model but, in fact, can be used in any model command.  If your 
model contains the specification 
 
   ; Dfr = r1,r2,...,rp 
 
where there may be any number of coefficients, then every observation on every variable in your 
data set, zt (except one, of course) is used as if it had been transformed to 
 
   zt*  =  zt  -  r1zt-1  -  ...  -  rpzt-p. 
 
(The data are not actually transformed; observations are differenced as they are used.)  For example, 
suppose you wish to regress yt*= yt - r1 yt-1 - r2 yt-2 - rp yt-3 on the same transformation of a set of 
variables contained in a namelist, x.  It is not necessary to compute the transformed variables.  Use 
 
 REGRESS   ; Lhs = y ; Rhs = x ; Dfr = r1, r2, r3 $  
 
Note that this could be applied to the example that embeds the lagged values in the regression.  We 
could use 
 
 REGRESS ; Lhs = y ; Rhs = one, x ; Dfr = b(1), b(2), b(3) $ 
 
and omit the preceding CREATE commands.  The coefficients may take any value, including 1.0, so 
you can use this device to compute a regression in first differences; 
 
 REGRESS ; Lhs = y ; Rhs = x ; Dfr = 1 $ 
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R8.6 Command Builders 
 
 LIMDEP contains a set of dialog boxes and menus that you can use to build up your model 
commands in parts, as an alternative to laying out the model commands in the text editor.  Figure 
R8.4 shows the top level model selection.  The menu items, Data Description, etc., are subsets of 
the modeling frameworks that LIMDEP supports.  We’ve selected Linear Models from the menu, 
which produces a submenu offering Regression, 2SLS, and so on.  From here, the command 
builder contains specialized dialog boxes, specific to a particular model command. 
 

 
Figure R8.4  Model Command Builder with Linear Models Menu 

  
We’ll illustrate operation of the command builder with a familiar application, Grunfeld’s panel data 
set, 10 firms, 20 observations per firm, on three variables, investment, i, profit, f, and capital stock, c.  
The data are contained in the project shown in Figure R8.5.  The variables, firm1, form2,… are 
dummy variables for the 10 firms. (The project files can be found in the resource folder created with 
installation: C:\LIMDEP10\Project Files.) 
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Figure R8.5  Project Window for the Grunfeld Data 

 
Figure R8.6 shows the main model specification dialog box (Main page), which will be quite similar 
for most of the models.  The main window provides for specification of the dependent variable, the 
independent variables, and weights if desired.  (Weights are discussed in Chapter R8.)  We will not 
be using them in this example.  If desired, the model is fully specified at this point.  Note that the 
independent variables have been moved from window at the right, which is a menu, to the 
specification at the left.  The highlighted variables D3 – D9 will be moved when we click the ‘<<’ 
button to select them.  You may also click the query (?) button at the lower left of the dialog box to 
obtain a Help file description of the REGRESS command for linear models that is being assembled 
here.  The Run button allows you now to submit the model command to the program to fit the 
model.  There is also a box on the Main page for the REGRESS command for specifying the 
optional extension, the GARCH model.  Since the main option box for this specification is not 
checked, this option will not be added to the model command. 
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Figure R8.6  Main Page of Command Builder for Linear Regression Model 

 
 The other two tabs in the command builder provide additional options for the linear 
regression model, as shown in Figures R8.7 and R8.8.  For this example, we’ll submit the simple 
command from the Main page with none of the options.  Clicking the Run button submits the 
command to the program, and produces the output shown in Figure R8.9. 
 

 
Figure R8.7  Options Page for Linear Regression Model 
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Figure R8.8  Output Page for Linear Regression Model 

 
 The regression command that was assembled by the command builder can be seen in the 
output window directly above the regression output in Figure R8.9: 
 

 
Figure R8.9  Regression Results from Command Builder 
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 The command builder has done the work of constructing the command and sending it to the 
program.  Although the command builders do not remember their previous commands, the 
commands are available for you to reuse if you wish. You can use Edit:Copy and Edit:Paste to 
copy commands from your output window into your editing window, then just submit them from the 
editing window.  The advantage of this is that you now need not reenter the dialog box to reuse the 
command.  For example, if you wanted to add a time trend, year, to this equation, you could just 
copy the command to the editor, add year to the list, then select the line and click GO.  
 
TIP:  Commands that are ‘echoed’ to the output window are always marked with the leading ‘-- >.’ 
The command reader will ignore these, so you can just copy and paste the whole line, or block of 
lines to move commands to your editing window. 
 
 The command builders are not complete for all models that can be specified by LIMDEP.  
Many features, such as the newer panel data estimators, are not contained in the command builders.  
In fact, you will probably ‘graduate’ from the dialog boxes fairly quickly to using the text editor for 
commands.  The editors provide a faster and more flexible means of entering program instructions. 
 
R8.7 Conditional Model Commands   
 
 There are several features available for conditioning model estimation for certain subsamples 
or for estimating models when some conditions are met, for example, based on some result from a 
previous model. 
 
R8.7.1 Estimation Conditioned on a Scalar Test Value   
 

Any model command may be conditional using   
 
   ; (scalar = value) or # (# means not equal) or < or > 
 
If the condition is met, everything continues. If it is not met, a diagnostic comes back and the model 
is not computed.  The following shows an example for a regression model:  The mean of a variable 
named gcb is computed.  If this mean is greater than 200, the regression is computed.  Since the 
mean is 110.9 which is less than the condition, the diagnostic is issued and the regression is not 
computed.  Then, the same sequence is carried out with the condition that the mean is greater than 
100.  The mean passes this condition, and the regression is computed.  
 

CALC    ; List ; gcb = Xbr(gc) $   
 GCB = .11087976190476190D+03 

 
REGRESS  ; (gcb > 200) ; Lhs = gc ; Rhs = one,invt,invc $ 

 Error 999: GCB is not > 200.00000. Model is not estimated. 
 

REGRESS  ; (gcb > 100) ; Lhs = gc ; Rhs = one,invt,invc $ 
 
The CALC command obtains a value for gcb of 110.9.  The first REGRESS command conditions 
on gcb > 200, which is not true, so the regression command is bypassed with a diagnostic.  The 
second regression is computed, since 110.9 is greater than 100. 
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R8.7.2 Setting the Sample Temporarily for a Model 
 

Any model instruction can be specified for a subset of the sample defined by any condition 
that can be used for an INCLUDE command.  The syntax is 
 
 Model (any) ; If [any condition that can be used for an INCLUDE command]  
               ; ... the rest of model command $ 
 
The current sample is temporarily set to what is in the condition, relative to the current sample at the 
time.  A standard case would be when one wishes to select on a binary variable, as in the following 
which computes separate regressions for men and women. 
 
 REGRESS ; Lhs = wage ; Rhs = one,age,educ ; If [sex = 1]  $ 
 REGRESS  ; Lhs = wage ; Rhs = one,age,educ ; If [sex = 0]  $ 
 
The command may be used more generally, as in the following in which the sample is set to include 
the observations for which a certain variable is less than the sample average. 
 
 CALC   ; gcb = Xbr(gc)$ 
 REGRESS  ; If [gc < gcb] ; Lhs = gc ; Rhs = one,invc,invt $ 
 
R8.7.3 Looping over Strata for a Model Command   
 

You may extend the If [...] feature above to request a model estimator to loop through a set 
of strata defined for a variable in the data set.  The syntax is  
 
 Model (any) ; For [variable] ; … the rest of the model $  
 
This command executes once for each unique integer value of variable.  To continue the earlier 
example, 
 
 REGRESS  ; For [firm] ; Lhs = i ; Rhs = one,f,c $ 
 
would fit a linear regression model for the subsamples firm=1, firm=2, and so on.  This feature 
works for any set of integers – they need not be 1,2,...  Data need not be sorted.  The processor 
simply works through the data set and picks out the subsamples one at a time.  You may narrow the 
definition with 
 
 Model (any)  ; For [variable = i1,i2,… list of integers] ; … $ 
as in 
 POISSON  ; For [educ = 9,12,16]  
   ; Lhs = visits ; Rhs = one,age,income,educ $ 
 
(This feature corresponds to the ‘by variable’ types of construction in other commercial packages.) 
 To continue our earlier example, the Grunfeld data contain 20 years of data on each of 10 
firms. The variable firm indexes the firms.  To carry out the same regression for the 10 firms, we used  
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--> REGRESS ; for[firm] ; Lhs = i ; Rhs = one,f,c$ 
+-----------------------------------------------------+ 
| Setting up an iteration over the values of FIRM     | 
| The model command will be executed for  10 values   | 
| of this variable.  In the current sample of     200 | 
| observations, the following counts were found:      | 
| Subsample   Observations    Subsample  Observations | 
| FIRM     =   1        20    FIRM    =   2        20 | 
| FIRM     =   3        20    FIRM    =   4        20 | 
| FIRM     =   5        20    FIRM    =   6        20 | 
| FIRM     =   7        20    FIRM    =   8        20 | 
| FIRM     =   9        20    FIRM    =  10        20 | 
+-----------------------------------------------------+ 
| Actual subsamples may be smaller if missing values  | 
| are being bypassed.  Subsamples with 0 observations | 
| will be bypassed.                                   | 
+-----------------------------------------------------+ 
******************************************************************* 
*       Subsample analyzed for this command is FIRM     =       1 * 
******************************************************************* 
 
(The output includes individual estimation results for the 10 firms.) 
 
R8.8 Using Weights in Estimation 
 
 Any procedure which uses sums of the data, including descriptive statistics and all 
regression and nonlinear models can use a weighting variable by specifying 
 
   ; Wts = name 
 
where name is the name of the variable to be used for the weighting. 
 Any model based on least squares of any sort or on likelihood methods can be estimated 
with weights.  This includes REGRESS, PROBIT, all LOGIT models, and so on.  The only 
substantive exceptions are the nonparametric and semiparametric estimators, MSCORE, NPREG, 
and the Cox proportional hazard model. 
 
NOTE:  In computing weighted sums, the value of the variable, not its square root is used.  As such, 
if you are using this option to compute weighted least squares for a heteroscedastic regression, name 
should contain the reciprocals of the disturbance variances, not the standard deviations. 
 
In maximum likelihood estimation, the terms in the log likelihood and its derivatives, not the data 
themselves, are multiplied by the weighting variable.  That is, when you provide a weighting 
variable, LIMDEP computes a sum of squares and cross products in a matrix as X′WX  =  Σiwixix′ 
and a log likelihood Log L  =  Σiwilog(fi), where wi is an observation on your weighting variable. 
 The weighting variable must always be positive.  The variable is examined before the 
estimation is attempted.  If any nonpositive values are found, the estimation is aborted. 
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 During computation, weights are automatically scaled so that they sum to the current sample 
size.  The variable, itself, is not changed, however.  If you specify that variable w is to be the 
weighting variable in ; Wts = w, the weight actually applied is wi*  =  [N/Σiwi] × wi.  This scaling 
may or may not be right for a selected sample in a sample selection model.  That is, after selection, 
the weights on the selected data points may or may not sum to the number of selected data points.  
As such, the weights in SELECT with univariate and bivariate probit criterion equations are rescaled 
so that they sum exactly to the number of selected observations. 
 
TIP:  The scaling will generally not affect coefficient estimates.  But, it will affect estimated 
standard errors, sometimes drastically. 
 
 To suppress the scaling, for example for a grouped data set in which the weight is a 
replication factor, use ; Wts = name,noscale or just ; Wts = name,n.  
 
WARNING:  When this option is used with grouped data qualitative choice models, such as logit, it 
often has the effect of enormously reducing standard errors and  blowing up t-ratios. 
 
The ‘noscale’ option would most likely be useful when examining proportions data with a known 
group size.  For example, consider a probit analysis of county voting returns.  The data would consist 
of N observations on [ni, pi, xi], where ni is the county size, pi is the proportion of the county 
population voting on the issue under study, and xi is the vector of covariates.  Such data are 
heteroscedastic, with the variance of the measured proportion being proportional to 1/ni.  We 
emphasize, once again, when using this option with population data, standard errors tend to become 
vanishingly small, and call upon the analyst to add the additional measure of interpretation. 
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R9: Output 
 
R9.1 Standard Output from Estimation Programs 
 
 Results produced by an estimation commands will vary from model to model.  The display 
below that would appear in the output window would be typical.  These are the results produced by 
estimation of a basic tobit model using the Mroz.lpj data provided with the program. (The project 
files can be found in the resource folder created with installation: C:\LIMDEP10\Project Files.)  The 
display begins with an echo of the estimation command followed by a statement of the exit status.  
Status=0 means that the model was successfully estimated.  (Something other than zero will indicate 
a problem and will be accompanied by a diagnostic message.  The sign on the log likelihood in the 
status line is reversed because the optimizer minimizes the negative of the log likelihood.) 
 
--> TOBIT ; Lhs = Whrs ; Rhs = one,wa,we,ww,kl6,k618$ 
Normal exit:   5 iterations. Status=0, F=    3817.300 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                 WHRS 
Log likelihood function     -3817.29976 
Estimation based on N =    753, K =   7 
Inf.Cr.AIC  = 7648.600 AIC/N =   10.158 
Model estimated: Feb 14, 2011, 08:13:12 
Threshold values for the model: 
Lower=     .0000     Upper=+infinity 
LM test [df] for tobit=    316.766[  6] 
Normality Test, LM    =     40.989[  2] 
ANOVA  based fit measure =    .225490 
DECOMP based fit measure =    .236441 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    1702.85***    444.9422     3.83  .0001      830.78   2574.93 
      WA|   -33.9421***     7.09484    -4.78  .0000    -47.8477  -20.0364 
      WE|   -9.39496       22.09910     -.43  .6707   -52.70840  33.91847 
      WW|    199.156***    15.52898    12.82  .0000     168.719   229.592 
     KL6|   -837.633***    118.4994    -7.07  .0000   -1069.888  -605.379 
    K618|   -103.922***    39.42369    -2.64  .0084    -181.191   -26.653 
        |Disturbance standard deviation 
   Sigma|    1158.25***    42.96400    26.96  .0000     1074.04   1242.46 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 
 Most of the models estimated by LIMDEP (including the tobit model above) are single 
equation, ‘index function’ models.  There is a dependent variable, which we’ll denote ‘y,’ a set of 
independent variables, ‘x,’ and a model, consisting, in most cases, of either some sort of regression 
equation or a statement of a probability distribution, either of which depends on an index function, 
x′β and a set of ‘ancillary’ parameters, θ, such as a variance term, σ2 in a regression or a tobit model.  
The parameters to be estimated are [β,θ].  Some notes about the output: 
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• Results always include the coefficients, standard errors, and ratios of coefficients to standard 
errors.  In the index function models, the coefficients are named by the variable that 
multiplies them in the index function.  In models which do not use an index function 
(NLSQ,  MINIMIZE, CLOGIT, and a several others), the parameter label that you provide 
will appear with the estimate instead. Note that ‘one’ becomes ‘Constant’ in the table. 
 

• The prob value shown, ‘Prob[|z| > z*],’ is the value for a two tailed test of the hypothesis that 
the coefficient equals zero.  The probability shown is based on the standard normal 
distribution in all cases except the linear regression model, when it is based on the ‘t’ 
distribution with degrees of freedom that will be shown in the table.  When you fit a linear 
regression, the table will list values of ‘t’ and Prob[|t|>t*] 
 

• The diagnostics table for the model reports some statistics which will be present for all 
models usually including: 
 

1. left hand side variable, 
2. number of observations used and the number of parameters estimated 
3. the date and time the model was estimated, 
4. log likelihood function or other estimation criterion function. 

 
• Some results will be computable only for some models.  The following results listed for the 

Poisson model will not appear when there is no natural, nested hypothesis to test.  (For 
example, they will not normally appear in the output for the tobit model.) 
 

1. log likelihood at a restricted parameter estimate, usually zero, 
2. chi squared test of the restriction, 
3. significance level, 
4. degrees of freedom. 

 
• Finally, there are usually some statistics or descriptors which apply specifically to the model 

being estimated.  For the tobit model, the output contains the threshold values used for the 
censoring.  There are also two Lagrange multiplier based specification test statistics that are 
specific to the tobit model. 
 

• Footnotes to the table will explain specific features of the output.   This will usually include 
a legend about reports of statistical significance, such as in the previous example.  But, other 
information might be included as well.  For example, the result below shows the standard 
display of partial effects for a probit model based on our earlier example.  (The Lhs variable 
in the tobit equation is hours worked. In the probit model that produced the results below, it 
is 1[hours > 0]. 
 

The footnotes for this table indicate how the elasticity is computed for a binary variable and notes 
that the ‘#’ indicates a dummy variable in the model, for which the partial effect is computed by first 
difference rather than differentiation. 
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----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
     LFP|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      WA|    -.00724***     -.54202    -2.78  .0055     -.01235   -.00213 
      WE|     .03956***      .85514     5.17  .0000      .02455    .05457 
    KIDS|    -.11704***     -.14330    -2.65  .0080     -.20355   -.03053   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Elasticity for a binary variable is marginal effect/Mean. 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
R9.1.1 Changing the Confidence Level for the Confidence Intervals 
 
 The default level of confidence for the confidence intervals is the universal standard 95%.  
You can change this by adding 
 
   ; Clevel = the value. 
 
Acceptable values are from .10 to .99.  For example, by adding ; Clevel = .90 to the TOBIT 
command in the first example above, we revise the results to obtain the following output.  The results 
are the same as before save for the narrower (now 90% level) confidence intervals. 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      90% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    1702.85***    444.9422     3.83  .0001      970.99   2434.72 
      WA|   -33.9421***     7.09484    -4.78  .0000    -45.6120  -22.2721 
      WE|   -9.39496       22.09910     -.43  .6707   -45.74474  26.95481 
      WW|    199.156***    15.52898    12.82  .0000     173.613   224.699 
     KL6|   -837.633***    118.4994    -7.07  .0000   -1032.547  -642.719 
    K618|   -103.922***    39.42369    -2.64  .0084    -168.769   -39.076 
        |Disturbance standard deviation 
   Sigma|    1158.25***    42.96400    26.96  .0000     1087.58   1228.92 
--------+-------------------------------------------------------------------- 
 
 The setting for the confidence level is temporary, only for that model, when it is embedded 
in a model command.  You can make the change permanent with the full command 
 
 DEFAULT ; Clevel = the value $ 
 
The setting will be the new default for all models from that point on. 
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R9.1.2 Information Criteria for Maximum Likelihood Estimators 
 
 As seen in the first set of model results, LIMDEP reports the Akaike Information Criterion, 
or AIC with all maximum likelihood estimates.   For the example,  
 

Inf.Cr.AIC  = 7648.600 AIC/N =   10.158 
 
AIC is computed as -2LnL + 2K where lnL is the log likelihood function and K is the number of 
parameters.  AIC is similar to adjusted R2 in regression, but in general, a lower AIC is better.  Some 
AIC grows with the sample size, N. LIMDEP also reports AIC/N, for convenience. 
 Other authors have suggested similar measures with different corrections for the model size.   
A ‘finite sample’ version of AIC that may have better small sample properties is 
 

   FSAIC =  AIC + ( 1)2
1

K K
N K

+
− −

. 

 
The Bayes Information Criterion is 
 
   BIC =  -2lnL + KlnN 
 
While the Hannan and Quinn Information Criterion is 
 
   HQIC = -2lnL + 2K Ln Ln N 
 
You can request to display these additional measures by adding 
 
   ; Output = IC 
 
To your model command.  For our example, the single line of information criterion results will be 
replaced by 
 

Inf.Cr.AIC  = 7648.600 AIC/N =   10.158 
FinSmplAIC  = 7648.750 FIC/N =   10.158 
Bayes IC    = 7680.968 BIC/N =   10.200 
HannanQuinn = 7661.069 HIC/N =   10.174 

 
The switch remains on until you turn it off with ; Output = NoIC. 
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R9.1.3 Timing Model Estimation 
 
 You can display the time required to estimated your models with the command 
 
 TIMER $ 
 
This is a switch that will remain on until you turn it off with 
 
 NOTIMER $ 
 
For example, if we issued a TIMER $ command before our TOBIT command in the first example 
above, the additional line 
 
 Elapsed time:     0 hours,  0 minutes,   .06 seconds. 
 
will appear after the results.  (Note that this result might differ from one computer to another for 
identical models using the same data set.) 
 The timer will usually just help you see how very fast modern computers are.  However, 
there is one use for the execution timer that is likely to be very useful.  LIMDEP contains many 
simulation based estimators that do require a very large amount of time.  Using TIMER with a small 
pilot execution can help in planning for estimation of a full model.  To continue the earlier example, 
we fit a random parameters tobit model with a random constant term and random coefficient on the 
wage variable.  We used 100 Halton draws for the simulations. The command is 
 

TOBIT  ; Lhs = whrs ; Rhs = one,wa,we,ww,kl6,k618 
; Rpm ; Fcn = one(n),ww(n) 
; Pts = 100 ; Halton $ 

 
After the results return, we are informed 
 
 Elapsed time:     0 hours,  0 minutes, 27.27 seconds. 
 
The data set used in this example is one third of the full data set.  When we will fit the full 
specification of this model using the entire data set, and allowing all six coefficients to be random, 
we will use 1,000 Halton draws rather than 100.  How long will it take?  The time needed for the 
simulation based estimator is roughly linear in the number of draws, the number of observations and 
the number of random parameters.  Based on the preceding, the estimated time it will take is 
10×3×3×27.27 seconds, or about 41.4 minutes.  If you are doing this style of estimation with very 
large data sets, it can be useful to plan on how long the estimation will take. 
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R9.2 Initial Model Results 
 
 Nearly all models fit by LIMDEP are nonlinear and estimation requires an iterative 
optimization.  Starting values for the iterations are usually obtained by estimating a simpler model, 
often using ordinary least squares, but sometimes by using maximum likelihood or some other 
technique. 
 
R9.2.1 Displaying Initial Least Squares Estimates 
 
 Ordinary least squares (OLS) will frequently be used to obtaining the default starting values 
for the iterations.  However, the OLS estimator is occasionally an interesting entity in its own right.  
To see the initial OLS outputs when they are computed for a nonlinear model, add  
 
   ; OLS  
 
to your model command. 
 
NOTE:  In order to reduce the amount of superfluous output, OLS results are not reported 
automatically except for the linear regression model.   
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=WHRS     Mean                 =      740.57636 
             Standard deviation   =      871.31422 
             No. of observations  =            753  Degrees of freedom 
Regression   Sum of Squares       =    .131978E+09           5 
Residual     Sum of Squares       =    .438932E+09         747 
Total        Sum of Squares       =    .570910E+09         752 
             Standard error of e  =      766.54595 
Fit          R-squared            =         .23117  R-bar squared =   .22603 
Model test   F[  5,   747]        =       44.92158  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -6066.79538  Akaike I.C.   = 13.29173 
             Restricted (b=0)     =    -6165.77240 
             Chi squared [  5]    =      197.95404  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    WHRS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1567.05***    267.1143     5.87  .0000     1043.51   2090.58 
      WA|   -18.3965***     4.21727    -4.36  .0000    -26.6622  -10.1308 
      WE|   -7.49913       13.16210     -.57  .5688   -33.29638  18.29811 
      WW|    104.457***     9.26340    11.28  .0000      86.301   122.612 
     KL6|   -392.617***    60.66255    -6.47  .0000    -511.513  -273.721 
    K618|   -78.6937***    23.23463    -3.39  .0007   -124.2327  -33.1546 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
  
TIP:  The OLS estimator is almost never a consistent estimator of the parameters of the nonlinear 
models estimated by LIMDEP. 
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R9.2.2 Intermediate Model Estimates 
 
 Occasionally, obtaining estimates of the parameters of a nonlinear model begins with 
estimation of a restricted version of that model.  For examples: Estimation of a negative binomial 
model begins with estimation of a Poisson regression model, again to obtain the starting values.  
Estimation of the linear sample selection model by MLE begins with Heckman’s two step least 
squares estimator.  In cases like these, your results will often contain full sets of output for both the 
initial, restricted model and the final model that you specified in your command. 
 The following results are based on the ship accident data used in Greene (2011, Table F18.3 
– it is table F25.4 in the 6th Edition, 2008).  (The data are ship-accidents.lpj in the program provided 
data sets.)  (Some of the model results are not reported.)  The intermediate Poisson results might be 
useful, however, the second set of results are the main results for the command.  (The OLS estimator 
was also computed before the Poisson estimator, but not reported.) 
 

CREATE  ; logmth = Log(months) $ 
NAMELIST ; x = one,ta,tc,td,te,t6064,t6569,t7074,o7579 $ 
SKIP $ 

 NEGBIN ; Lhs = num ; Rhs = x,logmth $ 
 
--------------------------------------------------------------- 
Deleted      6 observations with missing data. N is now     34 
--------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable                  ACC 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     ACC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -5.61566***      .98586    -5.70  .0000    -7.54791  -3.68341 
  ... 
  LOGMTH|     .90617***      .10175     8.91  .0000      .70675   1.10559 
--------+-------------------------------------------------------------------- 
Line search at iteration 43 does not improve fn. Exiting optimization. 
----------------------------------------------------------------------------- 
Negative Binomial Regression 
Dependent variable                  ACC 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     ACC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -5.61780***     1.24854    -4.50  .0000    -8.06489  -3.17070 
  ... 
  LOGMTH|     .90633***      .12617     7.18  .0000      .65903   1.15362 
        |Dispersion parameter for count data model 
   Alpha| .44618D-04         .02567      .00  .9986 -.50276D-01  .50365D-01 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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R9.3 Using DISPLAY to View Estimation Results 
 
 When your own program computes an estimate of a parameter vector and an asymptotic 
covariance matrix, you can use DISPLAY to show the results in the standard format.  The general 
form of the instruction is 
 
 DISPLAY ; Parameters = the vector of estimated parameters 
   ; Covariance = the estimated covariance matrix $ 
 
The instruction constructs  a table of results with standard errors, ‘z’ ratios and confidence intervals 
in the same form of the standard output.  For example, 
 

TOBIT     ; Lhs = y ; Rhs = x $ 
DISPLAY ; Parameters = b ; Covariance = varb $ 

 
would display the set of estimates for the tobit model twice.  There are four optional specifications: 
 
   ; Labels = appropriate list of labels 
   ; Title = a title to use in the results 
   ; Logl = a log likelihood to be displayed with the results 
   ; Test: hypothesis tests (This feature is discussed in Chapter R13.) 
 
 The command that appears at the end of the SCLS program, 
 

DISPLAY   ; Labels = x  
; Parameters = bj      
; Covariance = v 

           ; Title = Symmetric Censored Least Squares $ 
 
produces the results below. 
 
----------------------------------------------------------------------------- 
Symmetrically Censored Least Squares 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      YS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2076.64***    492.0428     4.22  .0000     1112.25   3041.02 
      WA|   -31.0198***     8.74809    -3.55  .0004    -48.1657  -13.8738 
      WE|   -4.53505       28.42455     -.16  .8732   -60.24615  51.17606 
      WW|    101.108***    34.08620     2.97  .0030      34.300   167.915 
     KL6|   -869.048***    191.9083    -4.53  .0000   -1245.181  -492.914 
    K618|   -135.082***    46.39106    -2.91  .0036    -226.007   -44.157 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Note the use of the namelist to provide the labels.  Namelists are discussed in Chapter R6. 
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R9.4 Covariance Matrices, Predictions and Hypothesis Tests 
 
 There are several additional sets of results that can be reported with the estimation output, 
including plots, lists of fitted values, hypothesis tests, and so on. 
 
R9.4.1 Displaying Covariance Matrices 
 
 The output display generally does not is the estimate of the asymptotic covariance matrix of 
the estimates.  Since models can have up to 150 parameters, this part of the output is potentially 
voluminous.  Consequently, the default is to omit it.  You can request that it be listed by adding 
 
   ; Covariance Matrix  
 
to the model command.   (Previous versions of LIMDEP and NLOGIT used ; Printvc for this switch. 
This syntax is still supported.)  Since covariance matrices can be extremely large, this is handled two 
ways.  If the resultant matrix is 5×5 or smaller, it is included in the output listing.  The earlier tobit 
equation had six independent variables plus the estimate of σ.  If we remove the last two variables 
from the namelist, the displayed results are as follows.  (Some of the results are omitted.) 
 
--> NAMELIST ; x = one,wa,we,ww$ 
--> TOBIT    ; Lhs = y ; Rhs = x ; Covariance Matrix $ 
Normal exit:   5 iterations. Status=0, F=    3846.188 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    370.181       397.0084      .93  .3511    -407.942  1148.303 
      WA|   -7.82602        6.15057    -1.27  .2032   -19.88091   4.22887 
      WE|   -22.7934       22.69898    -1.00  .3153    -67.2826   21.6958 
      WW|    221.558***    16.14246    13.73  .0000     189.920   253.197 
        |Disturbance standard deviation 
   Sigma|    1212.37***    45.20887    26.82  .0000     1123.76   1300.98 
--------+----------------------------------------------------------------------- 
Cov.[b^]|           ONE            WA            WE            WW         Sigma 
--------+----------------------------------------------------------------------- 
     ONE|       157616.      -1767.45      -6642.98       749.481      -801.367 
      WA|      -1767.45       37.8295       14.4632      -2.85004      -11.2469 
      WE|      -6642.98       14.4632       515.244      -118.841      -16.7283 
      WW|       749.481      -2.85004      -118.841       260.579       220.413 
   Sigma|      -801.367      -11.2469      -16.7283       220.413       2043.84 
 
If the matrix has more than five columns, then it is offered as an additional embedded matrix with 
the output, as shown in Figure R9.1 for a larger tobit model. When estimation is done in stages,         
; Covariance will only produce an estimated covariance matrix at the final step. Thus, no covariance 
matrix is displayed for initial least squares results.   
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Figure R9.1  Regression Output with Embedded Covariance Matrix 

 
R9.4.2 Listing and Saving Model Predictions and Residuals 
 
 Most estimated models produce several results based on the results of estimation.  
Predictions from estimated models are saved in the data set as new variables and/or listed with the 
output.  In some cases, residuals are also computed.  The additional variables will vary from one 
model to the next.  In some cases, such as ordered probit models, neither fitted values nor residuals 
are meaningful.  In other cases, such as the binary probit model, there is a meaningful model 
prediction, but ‘residuals’ are not meaningful.  To obtain a listing of model predictions with the 
estimation results, add 
 
   ; List 
 
to the model command. 
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 The following are added to the model results for the tobit model fit earlier when the 
command contains ; List. 
 
Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual        x(i)b   Pr[Nonlim] 
        1          1610.0000    648.34116    961.65884    334.30377     .6135671 
        2          1656.0000    851.31070    804.68930    640.61548     .7098988 
        3          1980.0000    545.36992    1434.6301    158.00438     .5542540 
        4          456.00000    653.49932   -197.49932    342.69169     .6163354 
        5          1568.0000    681.84104    886.15896    388.12603     .6312240 
        6          2032.0000    895.19098    1136.8090    701.65938     .7276738 
        7          1440.0000    1781.6688   -341.66884    1748.4578     .9344232 
        8          1020.0000    1392.7813   -372.78129    1319.2411     .8726474 
        9          1458.0000    555.67710    902.32290    176.49569     .5605569 
       10          1600.0000    1117.9592    482.04082    992.07176     .8041467 
 
WARNING:  You might prefer not to use this feature if you have a very large sample.. 
 
 The observed data are shown as they were used in estimation.  The prediction will vary from 
model to model.  When shown, a prediction is generally the conditional mean function. But, each 
model described in the Econometric Modeling Guide will include details about the form of the 
conditional mean function.  Note, for example, in the tobit model, although it is a single index 
model, the prediction is not equal to the index function, as can be seen above.  Listings such as this 
one will usually also contain a variable that is specific to the model being estimated.  The listing for 
the tobit model shows the index function and the estimated probability that the dependent variable is 
positive.  If the model were fit as a linear regression model, then the listing would appear as 
 
Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual     95% Forecast Interval 
        1          1610.0000    846.10168    763.89832   -662.93686    2355.1402 
        2          1656.0000    912.85679    743.14321   -594.93618    2420.6498 
        3          1980.0000    679.29119    1300.7088   -828.64375    2187.2261 
        4          456.00000    730.03419   -274.03419   -776.47476    2236.5431 
        5          1568.0000    821.40877    746.59123   -685.62023    2328.4378 
        6          2032.0000    978.99270    1053.0073   -527.41754    2485.4029 
        7          1440.0000    1479.4728   -39.472813   -29.413349    2988.3590 
        8          1020.0000    1302.9123   -282.91233   -206.24767    2812.0723 
        9          1458.0000    658.73631    799.26369   -845.82208    2163.2947 
       10          1600.0000    1091.8489    508.15111   -412.84736    2596.5452 
 
The last two columns now contain a 95% forecast interval based on the linear regression model. 
 To retain the model predictions as a new variable in the data set, include 
 
   ; Keep = the name for the new variable. 
 
Continuing our tobit example, we added ; Keep = yfittobt to the command.  Figure R9.2 shows the 
changed project window and the new variable in the data area. 
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 This feature computes predictions for the observations in the current sample.  (The current 
sample is described in Chapter R7.)  If this is not the full sample, then observations in the data set 
that were not used in estimation are left as missing values, -999.  You can use the model to fill these 
missing values by adding 
 
   ; Fill 
 
to the command.  LIMDEP will use the model to predict as many of these observations as possible.  
If there are missing values among the independent variables, then the observation will be left as 
missing.  Missing values of the dependent variable do not prevent filling the observations, however. 
 

 
Figure R9.2  Predicted Values Added to the Data Set 
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R9.4.3 Listing Basic Partial Effects  
 
 In most of LIMDEP’s models, the coefficients are not the partial effects of interest.  These 
are computed separately after estimation.  Most estimators provide a basic set of results for partial 
effects by adding 
 

   ; Partial Effects 
 
to the model command.  These will be provided in a second set of results.   (In previous versions of 
LIMDEP and NLOGIT, the command was ; Marginal Effects.  This form is still supported, and has 
the same meaning in the current versions of LIMDEP and NLOGIT.) 

For our tobit model from Section R9.1, the following additional output is presented after the 
main model results: 
 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point 613.5799 
Scale Factor for Marginal Effects   .5944 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
       Y|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      WA|   -20.1760***     4.20411    -4.80  .0000    -28.4159  -11.9361 
      WE|   -5.58460       13.13702     -.43  .6708   -31.33268  20.16348 
      WW|    118.383***     9.00549    13.15  .0000     100.733   136.033 
     KL6|   -497.910***    69.32012    -7.18  .0000    -633.775  -362.045 
    K618|   -61.7740***    23.47397    -2.63  .0085   -107.7821  -15.7659 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
 The partial effects computed with this feature are appropriate for single index models such 
as the probit, logit and tobit models that do not contain nonlinear terms or interaction terms.  For 
more intricate models, and to obtain simulations and analyses of partial effects, you will use the post 
estimation command PARTIAL EFFECTS.  This command is detailed in Chapter R11. 
 
UPDATE NOTE:  LIMDEP now provides a large set of tools for obtaining appropriate partial 
effects in models, for example that contain interaction terms and nonlinear parts, and for functions 
that you define instead of using the conditional mean.   
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R9.4.4 Hypothesis Tests and Restrictions 
 
 You can test hypotheses as part of the model command.  The model results will contain the 
results of the test with the other output.  Chapter R13 describes how to specify hypothesis tests and 
restrictions in model commands.  The following shows two simple examples: 
 
Example 1:  Joint test of two restrictions.  The tobit model command is modified as follows: 
 

NAMELIST  ; x = one,wa,we,ww,kl6,k618 $ 
TOBIT     ; Lhs = y ; Rhs = x  

; test: wa = 0, we = 0 $ 
 
The command specifies two restrictions to be tested jointly, the coefficient on wa equals zero and the 
coefficient on we equals zero. The request for a joint test is indicated by separating the specifications 
with a comma.  The model output result is as follows (the estimation results are not changed, so they 
are omitted). 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
Log likelihood function     -3817.29976 
Estimation based on N =    753, K =   7 
Inf.Cr.AIC  = 7648.600 AIC/N =   10.158 
Model estimated: Feb 14, 2011, 12:14:51 
Threshold values for the model: 
Lower=     .0000     Upper=+infinity 
LM test [df] for tobit=    316.766[  6] 
Normality Test, LM    =     40.989[  2] 
ANOVA  based fit measure =    .225490 
DECOMP based fit measure =    .236441 
Wald test of  2 linear restrictions 
Chi-squared =      22.89, P value =  .00001 
--------+-------------------------------------------------------------------- 
 
In addition to the standard results, the results of the Wald test of the two restrictions are shown.  This 
is one hypothesis of two restrictions. 
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Example 2:  Separate test of two restrictions.  The tobit model command is modified as follows: 
 

NAMELIST  ; x = one,wa,we,ww,kl6,k618 $ 
TOBIT     ; Lhs = y ; Rhs = x  

; test: wa = 0, we = 0 | kl6 = 0, k618 = 0 $ 
 
The command specifies two joint restrictions.  The first is the joint restriction specified earlier. The 
second specifies that the coefficients on the two household size variables are zero.   The request for a 
pair of restrictions to be tested separately is made by separating the specifications with a vertical bar.  
The model output result is as follows:  The separate hypothesis tests are now displayed after the 
other results. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
... 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Chi squared tests of linear restrictions. Degrees of freedom shown 
in [.]. Equals zero is implied if no specific value was given. 
 1. Restriction:WA=0,WE=0 
    Chi squared[ 2] =       22.891, P value =  .0000 
 2. Restriction:KL6=0,K618=0 
    Chi squared[ 2] =       53.877, P value =  .0000 
----------------------------------------------------------------------------- 
 
UPDATE NOTE:  There are several optional features and model extensions for testing and 
imposing restrictions.   These features are described in Chapter R13.   
 
R9.4.5 Graphical Results 
 
 Some models and commands produce graphical as well as text output.  For example, to 
obtain a plot of residuals with a linear regression model, we would use 
 

NAMELIST  ; x = one,wa,we,ww,kl6,k618 $ 
REGRESS   ; Lhs = y ; Rhs = x ; Plot $ 

 
The results shown in Figure R9.3 would result.  The graphical output is displayed in a separate 
window.  The contents of the window can be copied and moved to a document or spreadsheet.  The 
type of output shown will vary from model to model, so they are detailed in the specific contexts in 
the Econometric Modeling Guide. 
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Figure R9.3  Graphical Results Produced by a Model Command 

 

R9.5 Suppressing Results 
 

 Model estimation commands often appear as part of iterative or repetitive calculations.  
Bootstrapping is a common example.  In these cases, although estimation requires computation of a 
model, you will not be interested in seeing the results of these intermediate steps.  LIMDEP provides 
two methods of suppressing output, one ‘local,’ that is specific to a particular model command and 
one ‘global,’ that applies to all commands submitted as a group. 
 

R9.5.1 Suppressing Estimation Results with Quietly 
 

 You can suppress model estimation results by adding 
 

   ; Quietly 
 

to your command.  This might seem counterproductive.  But, you would use this if your model 
command were part of an iteration in which the estimation results were only to be collected and used 
in a later computation.   

The command set below illustrates use of ; Quietly in an estimation procedure. LIMDEP 
does not contain a built in estimator for Powell’s (1986) symmetrically censored least squares 
(SCLS) estimator for the tobit model.  But, the computations for the estimator are so simple that they 
can be done with a small number of basic commands.  The initial NAMELIST and CREATE 
commands define the Rhs and Lhs variables in the model.  The program can be adapted to a different 
application just by changing these definitions correspondingly for the data set. The rest of the 
commands are generic; they can be used for any data set.  We have used the same specification as in 
the first example above.  The TOBIT command is used to obtain starting values.  It contains ; 
Quietly as this is just for starting values.  We will examine them more closely later.  The 
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PROCEDURE will be executed many times – this is the iteration. (Procedures are discussed in 
Chapter R19.)  It computes a least squares regression that is not of separate interest in each cycle, so 
the REGRESS command in the procedure is also modified to produce no visible output with ; Quietly. 
 

?=========================================================== 
? Powell's (1986) symmetrically censored least squares estimator 
?=========================================================== 
? This is the only part of the estimator that is specific to the problem. Here, the 
? user defines the list of regressors and the dependent variable. 
?------------------------------------------------------------------------------------------------------ 
NAMELIST  ; x = one,wa,we,ww,kl6,k618 $ 
CREATE    ; y = whrs $ 
?------------------------------------------------------------------------------------------------------ 
? Use the tobit MLE as starting values for beta. 
?------------------------------------------------------------------------------------------------------ 
SAMPLE ; All $ 
TOBIT     ; Quietly ; Lhs = y ; Rhs = x $ 
MATRIX    ; bj = b ; btobit = b ; vtobit = varb $ We compare later. 
CALC      ; deltab = 1 $  Start delta large enough to begin. 
?------------------------------------------------------------------------------------------------------ 
PROCEDURE $   This procedure computes the SCLS estimator iteratively 
SAMPLE    ; All $ 
CREATE    ; bx = x'bj ; bx2 = 2*bx ; ts = bx > 0 ; ys = Min(y,bx2) $ 
REJECT    ; ts = 0 $ 
REGRESS   ; Quietly ; Lhs = ys ; Rhs = x $ 
MATRIX    ; hj = <x'x>; bj1 = b ; db = bj1-bj ; bj = bj1 $ 
? Check for convergence using a scale free measure rather than db. 
CALC      ; List(exec) ; deltab = Qfr(db,hj) $ 
ENDPROCEDURE $  
?------------------------------------------------------------------------------------------------------ 
EXECUTE   ; While deltab > .00001 $ 
?------------------------------------------------------------------------------------------------------ 
? Estimation is finished. Get covariance matrix and show results. 
?------------------------------------------------------------------------------------------------------ 
SAMPLE  ; All $ 
CREATE    ; vs = (y > 0) * (y < bx2) ; u2 = ts*(ys-bx)^2 $ 
MATRIX    ; c = x'[vs]x ; d = x'[u2]x  ; v = <c>*d*<c> $ 
DISPLAY   ; Labels = x  

; Parameters = bj      
; Covariance = v 

           ; Title = Symmetrically Censored Least Squares $ 
DISPLAY   ; Labels = x ; Parameters = btobit ; Covariance = vtobit 
           ; Title = Maximum Likelihood Tobit Estimates $ 
?============================================================ 

 
The only results produced by this program up to the EXECUTE command are the trace of the 
convergence criterion shown below.  (EXECUTE is discussed in Chapter R19.)  Note that the 
iteration ends when deltab falls below .00001, which takes 17 iterations. 
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--> EXECUTE  ; while deltab > .00001 $ 
[CALC:Iteration=0001] DELTAB  =  15409.0245374 
[CALC:Iteration=0002] DELTAB  =  15953.2498107 
[CALC:Iteration=0003] DELTAB  =   4105.9964315 
[CALC:Iteration=0004] DELTAB  =    803.3354609 
[CALC:Iteration=0005] DELTAB  =    153.0440572 
[CALC:Iteration=0006] DELTAB  =     33.2735713 
[CALC:Iteration=0007] DELTAB  =      6.8368188 
[CALC:Iteration=0008] DELTAB  =      1.4082200 
[CALC:Iteration=0009] DELTAB  =       .3063135 
[CALC:Iteration=0010] DELTAB  =       .0687631 
[CALC:Iteration=0011] DELTAB  =       .0157467 
[CALC:Iteration=0012] DELTAB  =       .0036514 
[CALC:Iteration=0013] DELTAB  =       .0008487 
[CALC:Iteration=0014] DELTAB  =       .0002000 
[CALC:Iteration=0015] DELTAB  =       .0000475 
[CALC:Iteration=0016] DELTAB  =       .0000114 
[CALC:Iteration=0017] DELTAB  =       .0000027 

 
R9.5.2 Suppressing All Results with SILENT  
 

If you are using a bootstrap estimator, or searching over a parameter value as you estimate a 
model repeatedly, you may want to suppress the model results while you accumulate a statistic or a 
matrix in the background. In the previous example, the trace in CALC is the only visible result, and 
we might have been uninterested in this as well.  

The command SILENT is used in the editor, in a procedure or in an input file for this 
purpose.  In the SLCS example above, we used ; Quietly in the two model commands to suppress 
the intermediate estimation results.  We could have used 

 
SILENT  
EXECUTE   ; while deltab > .00001 $ 
 

instead to suppress all results including the trace produced by the CALC command. 
For example, consider the following set of commands which tests whether the set of 

coefficients in a regression model are the same across 10 firms using a likelihood ratio test.  (This is 
based on the Grunfeld.lpj data set provided with the program.) For the homogeneity test, we compute 
the regression model for all 200 observations, then for each of 10 firms. The test statistic is two times 
the sum of the log likelihoods for the subsamples minus two times the log likelihood for the pooled data. 
 
 SILENT 
 SAMPLE     ; 1-200 $ 
 REGRESS     ; Lhs = i ; Rhs = one,f,c $ 
 CALC        ; sumlogl = -2 * logl ; company = 0 $ 
 PROCEDURE 
 CALC  ; i1 = 20 * (company - 1) + 1 ; i2 = i1 + 19 $ 
 SAMPLE ; i1 - i2 $ 
 REGRESS    ; Lhs = i ; Rhs = one,f,c $ 
 CALC   ; sumlogl = sumlogl + 2 * logl $ 
 ENDPROCEDURE 
 EXECUTE ; company = 1, 10 $ 

CALC              ; List ; chisq = sumlogl $ 
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This procedure estimates 11 regression models.  Our only interest is in the statistic sumlogl that is 
accumulated.  So, before executing the block of commands, we use SILENT to suppress all of the 
output from the commands.  When we are finished, we use CALC to retrieve the statistic.   
 Note that silent execution is only for the duration of the current block of commands being 
executed.  A block of commands is executed by highlighting it in the editing window then clicking 
GO.  Once the block is finished, the switch is automatically turned off.  This prevents you from 
leaving the switch on.  Do note what this implies for execution.  Suppose that these two lines are on 
the screen in your editor: 
 
 SILENT 
 REGRESS  ; Lhs = … etc. $ 
 
If you highlight only the SILENT command, click GO, then highlight the REGRESS command and 
click GO a second time, the REGRESS command will not be executed silently.  If you highlight 
both lines then click GO once, the REGRESS command will be executed silently.  We will examine 
EXECUTE in a later chapter.  For now, note that you can localize the SILENT command by using 
 
 EXECUTE  ; Silent ; … the rest of the setup $ 
 
R9.6 The Review Window – Tables of Model Results 
 
 In normal usage, model results are displayed one at a time.  They may be recovered later 
from the output file (or window) in a word processor if you wish to collect them in tables.  You can 
also assemble tables of results as you do your estimation, and send tables that combine results to the 
output file.  You can retain a ‘stack’ of up to 10 model results at a time by adding 
 
   ; Table = up to eight character label 
 
to any model command.  This adds the model results to a stack of the last 10 tabled models. 
Additional models push the stack downward.  Thus, if you table an 11th model, it pushes model 1 off 
the stack, and this one becomes model 10.  To review the results in the stack, select Tools:Review 
Tables or double click any of the models listed in the Output:Tables group in the project window. 
You can then select any of the model results listed to open the Review Tables dialog box.  This 
feature allows you to review the model results.  
 For an example, consider the following sequence of commands: 
 

TOBIT  ; Lhs = whrs ; Rhs = one,wa,we,ww,kl6,k618 ; Table = Full $ 
TOBIT  ; Lhs = whrs ; Rhs = one,wa,we,ww ; Table = Nokids $ 

 TOBIT  ; Lhs = whrs ; Rhs = one,we,ww ; Table = Nokds_wa $ 
 
The project window is updated after estimation as shown in Figure R9.4.  Double clicking any of the 
names in the Tables folder invokes the model review dialog box shown in Figure R9.5.  You can 
produce brief summary tables with your command processor.  The command is 
 
 REVIEW   ; Title = … the title you’d like to give the table 
   ; Model = list of up to three model names $ 
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You may have one, two, or three model specifications in the command. An example is shown below. 
 

REVIEW ; Title = Three Tobit Specifications  
  ; Model = Full,NoKids,NoKds_We $ 
 

 
Figure R9.4  Project Window with Model Table 

 

 
Figure R9.5  Review Tables Dialog Box 
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+----------------------------------------------------------------------------+ 
 |                         Three Tobit Specifications                         | 
 +----------+---------------------+---------------------+---------------------+ 
 |          |          FULL       |         NOKIDS      |        NOKDS_WA     | 
 +----------+---------------------+---------------------+---------------------+ 
 | Variable |  Parameter|  t-ratio|  Parameter|  t-ratio|  Parameter|  t-ratio| 
 +----------+-----------+---------+-----------+---------+-----------+---------| 
 | Constant |  1702.8550|    3.827|   370.1806|     .932|     2.4064|     .009| 
 | WA       |   -33.9421|   -4.784|    -7.8260|   -1.272|           |         | 
 | WE       |    -9.3950|    -.425|   -22.7934|   -1.004|   -19.8272|    -.878| 
 | WW       |   199.1557|   12.825|   221.5582|   13.725|   221.3327|   13.712| 
 | KL6      |  -837.6332|   -7.069|           |         |           |         | 
 | K618     |  -103.9224|   -2.636|           |         |           |         | 
 | Sigma    |  1158.2500|   26.959|  1212.3680|   26.817|  1212.8740|   26.816| 
 | Log-L    | -3817.3000|         | -3846.1880|         | -3847.0000|         | 
 +----------+-----------+---------+-----------+---------+-----------+---------+ 
 
R9.7 Output Files 
 
 All of your model results are being accumulated in the output window, which will be 
prominent on your desktop.  When you exit LIMDEP to end your session, you will be asked if you 
wish to save the contents of the output window in a file – the query will typically appear as shown in 
Figure R9.6.  You can at this point create an output file for the session just by clicking Yes.  You 
will have an opportunity to name the file with any filename you choose. 
 
WARNING:  Output files and command files are both saved with the .lim extension.  You will need 
to make careful note of which files you save are which type. 
 

 
Figure R9.6  Query to Save Output Window 

 
 You may also open a separate output file for a session or a part of a session at any time with 
the command 
 
 OPEN   ; Output = filename $ 
 
Once an output file is opened, all output that appears in the output window is duplicated in the file.  
You may close the current output file at any time either by opening a new one or with the command  
 
 CLOSE  
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 You may add a title that will appear at the top of each ‘page’ in the output file with 
 
 TITLE  ; any string of up to 72 characters $ 
 
This title will appear at the top of each page in the output file until you give a new title command.  
(Pages in the output file are only relative.  At certain points, the output is delimited with a banner 
that displays useful information about changes in the sample, beginning of a model estimation 
procedure, etc.) 

A title string may insert the value contained in a scalar with the syntax 
 
 TITLE  = … \sname  ... 
 
The ‘\sname’ signifies that the current value contained in the scalar with that name is to be inserted 
into the title at that point.  For an example, you might be plotting a function of a few values; 
 
 CALC   ; theta = 0.545 $ 
 FPLOT  ; ... ; Title = Function Plot for Theta = \theta $ 
 CALC   ; theta = 0.875 $ 
 FPLOT  ; ... ; Title = Function Plot for Theta = \theta $ 
 
A similar device may be used to insert a variable name in an indexed namelist with 
 
 TITLE  = …\namelist:index 
 
You might use this in a loop with indexing over variables in a list.  For example, the following 
computes the same regression for several variables, and plots the residuals: 
 
 NAMELIST  ; y = y1,y2,y3 $ 
 PROCEDURE $ 
 REGRESS  ; Lhs = y:i ; Rhs = x ; Res = e $ 
 PLOT   ; Rhs = e ; Title = Residuals for Regression of \y:i on x $ 
 ENDPROCEDURE $ 
 EXECUTE  ; i = 1,3 $ 
 
R9.7.1 Transporting Output Results to Word Processors 
 
 You can lift blocks text from LIMDEP’s output window and drop it into any word 
processing program (or the reverse).  You can then edit the output in your word processor. 
 
TIP: When you copy from the output window into Word, LIMDEP’s font formatting is typically 
lost. We find the best results by changing the font to Courier New, size 9 after it is ‘pasted.’ 
 
You cannot edit the text in the output window – you can highlight and delete it, but that is the only 
direct editing function in the output window.  But, you can copy text from the output window to any 
text editing window.  You can also have multiple text editing windows open.  It might be convenient 
to have one text window open for commands and another for editing output. 
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R9.7.2 Exporting Statistical Results from LIMDEP 
 
 You can export your statistical results to other packages.  The preceding shows how to 
produce output files in text format that can be copied directly into word processing programs.  With 
copy/paste, you can extract matrix results and drop them directly into spreadsheet programs.  You 
can also export your results more formally to any program that can accept the ‘comma separated 
values,’ or CSV format, such as Excel.  The file that LIMDEP creates can be read directly, without 
any further manipulation on your part.  Setting it up requires a few steps, as shown below. 
 
Step 1. Open the file that will contain the results to be exported.   
 

This will be a .csv (comma separated values) file. Use the following LIMDEP OPEN 
command: 
 
 OPEN  ; Export = …<filename>.csv $ 

 
You must open the file with extension .csv for this operation to succeed. LIMDEP does not 
check this file setup for you – the program assumes that the file is opened correctly.  

 
Step 2. Use the ; Export specification in your model commands. 
 

In specific model commands that you wish to export, use the model option ; Export to put a 
table of coefficients, etc. in the export file.  You may also use  ; Title = up to 80 characters 
to put a line of text at the top of the results.  For some other specific commands, you can use 

 
 MATRIX ; Export = list of matrices $  puts a list of matrices in the file. 
 DSTAT ; Export ; Rhs = ... $   copies the results to the CSV file. 
 CALC ; Export = list of scalars $  copies scalars to the file. 
 

Step 3. Close the file before you try to use it. 
 

When you are finished exporting results to the file, use 
 
 CLOSE  ; Export $  

 
to end accumulation of results in the file.  

 
 After this file is created, you can now export your results to Excel just by double clicking the 
file name in any context, such as Windows Explorer.  There are two possible conflicts to be wary of: 
 

• The file cannot be reopened.  If you repeat an OPEN ; Export = name $ command, the 
original file is erased and a new one with that name is created. 
 

• Do not use this file, e.g., by Excel, until you exit LIMDEP, even if you have used a CLOSE 
command to close the file. 
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An example follows:  We create the file in LIMDEP. 
 

OPEN  ; Export = “C:\...\tobitmodels.csv” $ 
TOBIT  ; Lhs = whrs ; Rhs = one,wa,we,ww,kl6,k618 ; Export $ 
TOBIT  ; Lhs = whrs ; Rhs = one,wa,we,ww ; Export $ 
CLOSE  ; Export $  

 
We then open the file in Excel: 
 

 
Figure R9.7  LIMDEP Results Exported to Excel 
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R9.7.3 The Last Model Output 
 
The results in Figure R9.8 are produced by the command 
 

TOBIT  ; Lhs = whrs ; Rhs = one,wa,we,ww,kl6,k618  
; Matrix $ 

 
The ; Matrix specification requests the embedded matrix object Matrix:LastOutp, which is shown 
at the lower left of the window in Figure R9.8.  Double clicking the object opens the 
Matrix:LastOutp window containing the output.  If the ; Matrix switch is omitted from the 
command, this extra matrix output does not appear in the output. 
 

 
Figure R9.8  Last Model Output as an Embedded Matrix 

 
By clicking the upper left (blank) cell in this or any other matrix that LIMDEP displays, you 

will highlight the entire matrix.  You can then use edit copy/paste to export this output to another 
program, such as Excel.  The material that is moved to Excel is the same as that produced by              
; Export in the previous section. 
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R10: Robust Covariance Matrices and 
Clustering 

 
R10.1 Robust Covariance Matrix for Pooled Models 
 
 Robust covariance matrices are used to estimate asymptotic covariance matrices for 
estimators when model assumptions may not be met. Familiar examples include the White estimator 
(see Chapter E5) for heteroscedasticity in regression and the Newey-West estimator (see Chapter E9) 
for autocorrelation.  For cross sections and ‘pooled’ maximum likelihood estimators, the counterpart 
to White is the ‘sandwich’ estimator, 
 
   V  =  H-1 OPG H-1 
 
Where H is the negative of the second derivatives and OPG is the sum of the outer products of the 
gradients of the terms in the log likelihood function, 
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In some settings, V can overcome a misspecification of the model, for example, in the presence of 
unmeasured heterogeneity in the conditional mean function of the Poisson regression model.  In 
other cases, researchers routinely use this estimator under the assumption that it compensates for 
other unspecified types of misspecification. 
 The robust covariance matrix is provided explicitly for a few models in LIMDEP, such as 
LOGIT and POISSON, by placing 
 
   ; Robust 
 
in the command.  For those for which is not explicitly provided, there is a way to ‘trick’ LIMDEP 
into computing it anyway.  The ‘clustering’ estimator discussed in the next section is provided for all 
estimators in LIMDEP (that are based on the likelihood function).  The cluster estimator when every 
cluster has one observation is identical to this sandwich estimator.  So, you can use 
 
   ; Cluster = 1 
 
with any MLE to obtain this robust estimator. 
 To illustrate, we obtain the standard estimator and compare it to the robust estimator for a 
probit model.  The application is based on Mroz.lpj.  The basic model command is 
 

PROBIT  ; Lhs = lfp ; Rhs = one,wa,we,kl6,k618 $ 
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The Lhs variable is the binary variable for labor force participation. The Rhs variables are age, 
education, kids under six and kids six to eighteen.  The standard results are shown below.  (Some 
results are omitted.) 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
... 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LFP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .62379         .46637     1.34  .1810     -.29028   1.53786 
      WA|    -.03827***      .00746    -5.13  .0000     -.05288   -.02366 
      WE|     .12003***      .02219     5.41  .0000      .07655    .16351 
     KL6|    -.88612***      .11242    -7.88  .0000    -1.10646   -.66577 
    K618|    -.05569         .04009    -1.39  .1647     -.13426    .02287 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
When ; Robust is added to the command, the parameter estimates are the same, since the correction 
only adjusts the standard errors. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
... 
Robust VC=<H>G<H> used for estimates. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     LFP|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .62379         .45877     1.36  .1739     -.27538   1.52297 
      WA|    -.03827***      .00742    -5.16  .0000     -.05281   -.02373 
      WE|     .12003***      .02216     5.42  .0000      .07659    .16347 
     KL6|    -.88612***      .11650    -7.61  .0000    -1.11445   -.65779 
    K618|    -.05569         .04106    -1.36  .1750     -.13617    .02479 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
  
If ; Cluster = 1 is added to the command, instead, the results are the same, but the indicator of the 
‘Robust VC’ is replaced by a line of text before the results, 
 
+---------------------------------------------------------------------+ 
| Robust covariance matrix, <H>*OPG*<H> is used for the estimator.    | 
+---------------------------------------------------------------------+ 
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R10.2 Using Clustering for Robust Covariance Matrices 
 
 A robust estimator based on sample clustering is available for nearly all models estimated by 
LIMDEP.  The estimator that LIMDEP computes for the asymptotic covariance matrix of the MLE is 
 

   Est.Asy.Var ˆ 
 θ =  V × '

1 1 cc
C
cC

C gg∑ =−
 × V 

 
where V is the usual asymptotic covariance matrix estimator ignoring the clustering, C is the number 
of clusters, and 
 

   gc =  icclustertheinnsobservatioi
g

   ∑ =
 

 
This is the outer product estimator in which observations are the sums of observations in the cluster.  
See below for technical details on this estimator.  In order to use this estimator, it is necessary only to 
identify the cluster in the model command.  Use one of the following 
 
   ; Cluster  =  nc where nc is the fixed number of observations in each cluster. 
 
Use this form if every cluster has the same number of observations.  Alternatively, if the number of 
observations in the clusters is different, you must provide some sort of identification variable (not a 
count variable), such as might be used in the panel data estimator for the linear model.  This form is 
 
   ; Cluster = name of ID variable 
 
This arrangement resembles a panel data setup.  The variable may be any distinct (numeric) indicator 
of the group; it need not be a consecutive set of integers.  A third possibility is that you have a 
variable which gives the number of observations per group, as in most of LIMDEP’s panel 
estimators, but you do not have the group ID number that you need.   You can create the ID variable 
with 
  

 CREATE ; groupID = Group Nmbr (count variable) $ 
 
 The option for clustering is offered in the command builders for all the nonlinear model 
routines in the Model Estimates submenu.  This will differ a bit from model to model.  The one for 
the probit model is shown below in Figure R10.1.  The Model Estimates dialog box is selected at 
the bottom of the Output page, then the clustering is specified in the next dialog box. 
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Figure R10.1  Command Builder for a Probit Model 

 
R10.2.1 Models for Which the Clustering Estimator is Supported 
 
 This procedure may be used with any model in LIMDEP,  but the estimator is not supported 
for any of the panel data specifications.  For some applications in LIMDEP, the estimator V is based 
on the first derivatives of the log likelihood and not the second.  This aspect is discussed further in 
the technical notes to follow and noted in the documentation for specific models.  In cases where the 
BHHH estimator is used to compute V, the assumptions that underlie the cluster estimator may not 
be met.  In particular, there must be a presumption that the BHHH estimator and the negative inverse 
Hessian estimator converge to the same matrix.  For the kinds of applications for which this cluster 
estimator appear to be designed, that seems very likely to be the case.  It would not be the case where 
users sought to protect themselves against model misspecification, but that is a different issue from 
clustering.  On the other hand, in most such cases, the parameter estimator will be inconsistent, so 
robust covariance matrix estimation is a moot point. 
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R10.2.2 An Example of the Clustering Estimator 
 
 The following compute the corrected covariance matrix for a probit estimator.  The sample is 
the health care data healthcare.lpj.  There are 27,326 observations in the data, and 7,293 groups 
ranging in size from one to seven.  The commands are 
 
 PROBIT ; Lhs = doctor ; Rhs = one,age,educ,married,hsat $ 
 PROBIT ; Lhs = doctor ; Rhs = one,age,educ,married,hsat ; Cluster = id $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -16639.15794 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2760.78759 
Significance level               .00000 
McFadden Pseudo R-squared      .0766053 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33288.316 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  20.38745 
P-value=  .00897 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.35413***      .06315    21.44  .0000     1.23036   1.47791 
     AGE|     .00849***      .00075    11.30  .0000      .00702    .00996 
    EDUC|    -.01544***      .00346    -4.46  .0000     -.02223   -.00866 
 MARRIED|     .00818         .01905      .43  .6678     -.02917    .04552 
    HSAT|    -.17506***      .00396   -44.25  .0000     -.18281   -.16730 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Binomial Probit Model 
... (this part is identical) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.35413***      .08506    15.92  .0000     1.18742   1.52085 
     AGE|     .00849***      .00100     8.49  .0000      .00653    .01045 
    EDUC|    -.01544***      .00485    -3.18  .0015     -.02495   -.00593 
 MARRIED|     .00818         .02523      .32  .7459     -.04128    .05763 
    HSAT|    -.17506***      .00490   -35.71  .0000     -.18467   -.16545 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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R10.2.3 Technical Details on the Clustering Estimator 
 
 The literature contains a variety of robust covariance matrices for maximum likelihood 
estimators.  Most of these take the form of the ‘sandwich estimator,’ 
 

   Est.Var ˆ 
 θ  =  (-H)-1 × (G′G) × (-H)-1 

 

where H is an estimator of the second derivatives matrix of the log likelihood function and G is an 
n×K matrix whose ith row is the vector of partial derivatives of the log density for the ith observation 
with respect to the K parameters.  (Thus, the gradient of the log likelihood for independent 
observations is G′i where i is a column of ones.)  The White estimator for least squares in the 
presence of unspecified heteroscedasticity is a well known application.  The following describes an 
application to ‘clustered’ data in which a sample of n observations is composed of C ‘clusters,’ each 
of which contains nc observations, c = 1,...,C – the number may differ across clusters.  This is 
somewhat related to panel data treatments, though users should not take the analogy very far, as none 
of the treatment described here takes formal account of a panel structure in a data set.  Our technical 
presentation is fairly brief.  (The settings in which data might be ‘clustered’ but are not appropriate 
for a formal panel data treatment are discussed there.) 
 The robust ‘sandwich’ estimator used in many applications arises in the following manner:  
The asymptotic distribution of the maximum likelihood estimator derives from the following 
fundamental results for a regular estimator: 
 

 1
1

1 1ˆ ˆ ˆn
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n n
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     = −        
∑H gθ − θ  +  higher order terms which vanish as n → ∞, 

 
where H is the negative second derivatives matrix, which will be a sum, gi is the ith term in the first 
derivative vector and the carats indicate computation at the MLE.  Under the assumptions of the 
model, the matrix in square brackets, which is the mean of a sample, converges to its population 
counterpart, a finite positive definite matrix, while the mean in rounded brackets converges in 
probability to zero.  The limiting distribution of the statistic on the left hand side of the equation is 
normal (see Greene (2011) for discussion) with mean zero and variance equal to the variance of the 
product on the right hand side.  The asymptotic variance of the MLE, θ̂  will then be 1/n times the 
resulting limiting variance (assuming it exists, which we are doing here).  As noted, the matrix in 
square brackets converges to something, a matrix we’ll call B-1.  The mean in round brackets is 
assumed to be (at least as the sample increases in size) the mean of a random sample with a finite 
variance.  In fact, for regular ML problems, that matrix is B, but rather than assume that the problem 
is properly specified, we will leave this true variance unspecified, and use a consistent estimator of it.  
The sum in the round brackets is the derivative of the log likelihood which we have equated to zero 
to obtain the MLE.  Dividing it by n, we obtain g , the mean of a sample.  Since the true mean is 
known to be zero, we can estimate the variance of the mean by 1/n times the sample variance, which 
would be 1/n times 1/n times the sum of squares.  (Whether this should be divided by n-1 rather than 
n is debatable.  The result which would dictate this only holds as n → ∞.)  Since this is a vector of 
variables, rather than just one, we use the sum of outer products.  Thus, combining our results, we 
obtain the estimator 
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Combining terms, we obtain our asymptotic variance estimator, 
 

    Est.Asy.Var ( ) ( )21 1
1

1 1 1 1ˆ ˆ ˆˆ ˆn
i ii

n n
n n n n

− −
=

     ′= − −        
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If the model is properly specified, the center term converges to the inverse of each of the outer terms, 
which leaves the usual result for the asymptotic variance of the MLE, namely the inverse of the 
negative of the Hessian.  Our estimator of the asymptotic variance of the MLE, itself, is obtained by 
dividing the resulting expression by n.  After several cancellations, this produces the familiar 
sandwich estimator for maximum likelihood estimators, 
 

   Est.Asy.Var. ˆ 
 θ   =  

1ˆ −
 − H ( )1

ˆ ˆn
i ii=

′∑ g g
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 − H . 
 

It is a valid estimator under the following assumptions: 
 

1. The original expansion is valid; that is the first derivatives really do converge to zero. 
2. The mean of the sample estimated second derivatives – the matrix in square brackets – 

does converge to a finite matrix. 
 

 Finally, the clustering estimator discussed in this section is based on the idea that there is a 
grouping of the observations in the data set into larger observations which are connected in some 
fashion (correlated seems inappropriate).  In this instance, the estimator is modified to produce 
 

 Clustered Est.Asy.Var. ˆ 
 θ   =  

1ˆ −
 − H 








− ∑ =
'

1 1 cc
C
cC

C gg
1ˆ −

 − H .  

 

Note that if there are very few clusters, this can produce very large standard errors. Note also the 
important result that this estimator does not require the MLE to converge to the parameters of 
interest. It only requires the MLE to converge to something.  Consider for an example, the probit 
model with heteroscedasticity: 
 
   yi*  =  β′xi + εi, εi ~ N[0, exp(γ′zi)]  (latent structure) 

   yi =  1 if yi* > 0, 0 otherwise. 
 
Suppose one ‘estimates’ β by standard probit analysis, ignoring the heteroscedasticity.  Then, if γ is 
not zero, this estimator is not consistent for β.  Depending on the remaining structure of the model, 
and the nature of the data, it may not be consistent for anything.  But, in most circumstances, this 
‘MLE’ will converge to something; let’s call it δ.  Though it is less than obvious, under this 
assumption, the conditions of the estimator above are met, but the simple Hessian will not give the 
appropriate asymptotic covariance matrix.  The sandwich estimator will.  It must be remembered, 
however, that this estimator is an appropriate estimator for the asymptotic covariance matrix of an 
inconsistent parameter estimator.  There are cases in which the probability limit of the MLE, δ will 
equal the β of interest, such as in the Poisson model with latent heterogeneity, but there will not be 
very many such cases. 
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R10.3 Stratified and Grouped Data  
 

This extension adds features to the ; Cluster feature described in Section R10.2.  The base 
case invoked by ; Cluster changes the computation of the asymptotic covariance matrix for an 
estimator.  The main application is maximum likelihood estimators, for which the conventional 
estimator of the asymptotic covariance matrix of the estimator is 
 
   V  =  [Σi Hi]-1 
 
where Hi is the sample estimate of the second derivatives matrix for the contribution of observation i 
to the log likelihood function.  The so-called ‘cluster estimator’ uses 
  
   V × G × V = V ×[ (C/(C-1)Σc (Σi=1,Nc gic) (Σi=1,Nc gic′)] × V 
 
where C is the number of groups (clusters), Nc is the number of observations in group c and gic is the 
first derivative of the contribution of individual i in group c to the log likelihood. 
 We have extended this to include stratum level grouping, where a stratum includes one or 
more clusters and weighting to allow finite population correction. We suppose that there are a total 
of S strata in the sample.  Each stratum, ‘s,’ contains Cs clusters. The number of observations in a 
cluster is Ncs. Neglecting any other weighting considerations mentioned below, the full corrected 
covariance matrix is now 
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where gics is the derivative of the contribution to the log likelihood of individual i in cluster c in 
stratum s.  The remaining detail in the preceding is the weighting factor, ws.  The stratum weight is 
computed as 
   ws = fs × hs × d 
 
where   fs  = 1  or a finite population correction, 1 - Cs/Cs* where Cs* is the true 

number  of clusters in stratum s, where Cs* > Cs. 

   hs = 1 or Cs/(Cs - 1) 

   d  = 1 or (N-1)/(N-K) where N is the total number of observations in the 
entire sample and K is the number of parameters (rows in V). 

 
  



R10: Robust Covariance Matrices and Clustering R-269 

Requesting this computation requires use of several switches and specifications in the model  
command.  Use 
 
 ; Cluster =  the number of observations in a cluster (fixed) or the name of the 
   identification variable which gives the cluster an identification. This 
   is the setup that is described above. 
 ; Stratum =  the number of observations in a stratum (fixed) or the name of a  

stratification variable which gives the stratum an identification. 
 ; Wts = the name of the usual weighting variable for model estimation if 
   weights are desired.  This defines wics.  This is the usual weighting 
   setup that has been used in all previous versions of LIMDEP. 
 ; Fpc = the name of a variable which gives the number of clusters in the 
   stratum.  This number will be the same for all observations in a 
   stratum – repeated for all clusters in the stratum.  If this number is 
   the same for all strata, then just give the number. 
 ; Huber = Use this switch to request hs.  If omitted, hs = 1 is used. 
 ; Dfc = Use this switch to request the use of d given above.  If omitted, 
   d = 1 is used. 
 
You may request a summary of the group and stratum sizes to be given after estimation by adding 
 
   ; Describe 
 
to the command.  Note, ; Describe produces a line of description for each stratum, so if you have a 
very large number of strata in your sample, you may want to avoid this option. 
 This sampling setup may be used with any estimator in LIMDEP.  One note, however, you 
should not use it with panel data models.  The so called ‘clustering’ corrections are already built into 
panel data estimators. 
 The following shows the setup for a sample that contains 6,350 observations.  This is a panel 
with five observations per individual.  We have also artificially divided the sample into five strata, 
each with 1,270 observations, then fit a probit model.  The information below would appear with a 
model command that used this configuration of the data to construct a robust covariance matrix. 
 

PROBIT ; Lhs = ip ; Rhs = x  
; Cluster = 5  
; Stratum = 1270  
; Describe $ 

 
These results appear before any results of the probit command. They are produced by the ; Describe 
specification in the command. 
 To continue the example in the previous section, we artificially divided the data set into four 
levels with 
 

CREATE  ; level = 1 + (id > 2000) + (id > 4000) + (id > 6000) $ 
 
The estimation command that accounts for this second level of grouping is 
 

PROBIT  ; Lhs = doctor; Rhs = one,age,educ,married,hsat  
; Cluster = id ; Stratum = level ; Describe $ 
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======================================================================== 
 Summary of Sample Configuration for Two Level Stratified Data 
======================================================================== 
 Stratum #   Stratum    Number Groups          Group Sizes 
            Size (obs)  Sample   FPC.       1       2       3 ...   Mean 
==========  ==========  =============  ================================= 
         1        7617    2000 1.0000       3       4       4 ...    3.8 
         2        7963    2000 1.0000       4       1       7 ...    4.0 
         3        7796    2000 1.0000       7       6       3 ...    3.9 
         4        3950    1292 1.0000       6       1       3 ...    3.1 
Normal exit:   4 iterations. Status=0, F=    16639.16 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
| Sample of  27326 observations contained      4 strata defined by    | 
| variable LEVEL    which identifies by a value a stratum ID.         | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -16639.15794 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2760.78759 
Significance level               .00000 
McFadden Pseudo R-squared      .0766053 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33288.316 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  20.38745 
P-value=  .00897 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.35413***      .14134     9.58  .0000     1.07711   1.63115 
     AGE|     .00849***      .00164     5.18  .0000      .00528    .01170 
    EDUC|    -.01544*        .00820    -1.88  .0598     -.03152    .00063 
 MARRIED|     .00818         .04168      .20  .8445     -.07352    .08987 
    HSAT|    -.17506***      .00812   -21.56  .0000     -.19097   -.15914 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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R11: Partial Effects 
 
R11.1 Partial Effects for Estimated Models 
 
 After model estimation is completed, the model results will generally be used for three ‘post 
estimation’ functions: 
 

• Estimation and analysis of partial effects, 
• Prediction, decomposition of predictions, and simulation, 
• Hypothesis testing. 

 
This chapter will show how to estimate and analyze partial effects.  Predictions and model 
simulations are detailed in Chapter R12.  Hypothesis tests are discussed in Chapter R13.  Each of 
these functions is a general feature of all of the models that you will fit with LIMDEP.  These three 
chapters will discuss the overall functions.  Aspects of the particular models will be given in the 
Econometric Modeling Guide.   

This chapter describes two tools for analyzing partial effects, the ; Partial Effects 
specification in model commands and a separate post estimation command PARTIAL EFFECTS 
which is used to analyze the effects in greater detail. 

The partial effects in a model are implications of the model, itself.  To consider an example, 
suppose we have fit a binary logit model, which specifies 
 

Prob(y = 1|x) = Λ(β′x); Prob(y = 0|x) = Λ(-β′x)  
where  

Λ(β′x) = exp(β′x)/[1+exp(β′x)]. 
In particular, 

Prob[doctor = 1|age,income]   = Λ(β1 + β2age + β3 income)  
where 

doctor = 1[visits to doctor > 0 in observation year]. 
 
The estimation step produces estimates of β, which are reported by the program as described in 
Chapter R9.  In a nonlinear model such as this one, β does not measure the impact of x on a feature 
of the relationship between y and x.  In the logit model, the regression function is 
 
   E[y|x] = 0Λ(β′x) + 1Λ(β′x) = Λ(β′x). 
 
The effect of changes in x on the expected value of y|x is given by the partial effect, 
 

 ∂E[y|x]/∂
Age

Income
 
 
 

 =  Λ(β′x)Λ(-β′x)β = [ ] 2

3
( ) = ( ) ( ) ,

β 
′ ′ ′ ′Λ × Λ Λ −  β 

x x xβ β β β  

 
which is estimated separately after estimates of β are obtained and it is determined what value of x 
will be used.   The partial effects are a multiple of the coefficients.  The model specification 
 
   ; Partial Effects 
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is used to request this specific computation.  This general specification is discussed in Section R11.5.  
There are also model specific aspects of this computation discussed in the Econometric Modeling 
Guide.   
 
NOTE: Previous versions of LIMDEP used the specification ; Marginal Effects for this request.  
That usage is still supported.  You may use either. We now use ; Partial Effects to be consistent 
with the new PARTIAL EFFECTS command discussed in Section R11.4. 

 
Analysis of the partial effects is a useful device for using the model to understand its 

behavioral implications.  Continuing the earlier example, interesting questions that might follow  
include: 
 

• How does the partial effect of age on the probability change as individuals get older? 
• Does the effect of changes in income on the probability change as age increases? 
• Is the income effect substantively different for women and men? 

 
None of these are revealed by using a simple scaling of the coefficients.  These sorts of issues and 
scenarios are analyzed with the PARTIAL EFFECTS command discussed in Section R11.4. The 
differences between the two ways of requesting partial effects are discussed in Section R11.2.  Some 
modeling and computation issues are discussed in Section R11.3. 
 
NOTE:  PARTIAL EFFECTS is a major new extension of the modeling capabilities in LIMDEP 
10.  The features described here are used with every model fit by the program.  This command, with 
the SIMULATION command discussed in Chapter R12 will greatly extend the reach of every 
model that you can fit with LIMDEP, including the linear regression model, every nonlinear model, 
and models that you program yourself. 
 
R11.2 Command vs. Model Specification 
 
 The following shows estimates of the model suggested in Section R11.1: 
 
 LOGIT ; Lhs = doctor ; Rhs = one, age, income  

; Partial Effects $ 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.17978         .13989    -1.29  .1987     -.45395    .09439 
     AGE|     .02358***      .00284     8.31  .0000      .01802    .02915 
  INCOME|    -.64782***      .18979    -3.41  .0006    -1.01979   -.27584 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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As noted, partial effects are scaled versions of the coefficients.  We can estimate these with ; Partial 
Effects added to the command, which produces the results below. 
 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00529***      .00477     8.37  .0000      .00405    .00653 
  INCOME|    -.14527***     -.00094    -3.42  .0006     -.22859   -.06195 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
----------------------------------------------------------------------------- 
 

The partial effects for the two variables in the model can also be computed using the command, 
 
 PARTIAL EFFECTS  ; Effects: age / income $ 
 
which produces 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to AGE 
Results are computed by average over sample observations 
Partial effects for continuous AGE      computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dAGE            Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect      .00529     .00062    8.55      .00408      .00650 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to INCOME 
Results are computed by average over sample observations 
Partial effects for continuous INCOME   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dINCOME         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect     -.14527     .04236    3.43     -.22829     -.06225 
 
 The two approaches produce the same answer.  (The very small differences in the confidence 
intervals arise because ; Partial Effects uses an analytic expression for the derivatives used for the 
delta method while PARTIAL EFFECTS uses numerical approximations to these derivatives.) To 
illustrate how larger differences will arise, consider a model with an quadratic term and an 
interaction term: 
 

Prob[doctor = 1|age,income,sex] = Λ(β1 + β2age + β3age2 + β4income + β5sex + β5sex*income) 
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The familiar approach to analysis would be 
 
 CREATE ; agesq = age^2 ; sex_incm = sex*income $ 
 LOGIT  ; Lhs = doctor ; Rhs = one, age, agesq, income, sex, sex_incm 
   ; Partial Effects $ 
which produces 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    2.06138***      .52067     3.96  .0001     1.04089   3.08187 
     AGE|    -.10040***      .02531    -3.97  .0001     -.15001   -.05079 
   AGESQ|     .00141***      .00029     4.88  .0000      .00085    .00198 
  INCOME|    -.49829*        .26152    -1.91  .0567    -1.01086    .01429 
     SEX|     .46495***      .15131     3.07  .0021      .16839    .76150 
SEX_INCM|     .21012         .38785      .54  .5880     -.55005    .97028 
--------+-------------------------------------------------------------------- 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|    -.02206***     -.07649    -3.97  .0001     -.03295   -.01118 
   AGESQ|     .00031***      .03798     4.89  .0000      .00019    .00044 
  INCOME|    -.10950*       -.00421    -1.91  .0567     -.22211    .00312 
     SEX|     .10302***      .00142     3.09  .0020      .03766    .16838   # 
SEX_INCM|     .04617         .00032      .54  .5880     -.12087    .21322 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The processor has produced the scaled coefficients as requested, but these are not the partial effects.  
In particular, with this specification, 
 

∂Prob(doctor = 1|x)/∂age  =  Λ(βʹx)Λ(-βʹx)(β2 + 2β3age). 
 
(Note, the problem has arisen because LIMDEP does not know from this command that agesq is the 
square of age.  It could be anything; it is just a name in a list.)  It is possible to program the right 
result, but it is a bit cumbersome.  We could proceed as follows: 
 
 NAMELIST  ; x = one, age, agesq, income, sex, sex_incm $ 
 WALD  ; Labels = b1,b2,b3,b4,b5,b6 
   ; Start = b ; Var = varb  
   ; Fn1 = age_efct = Lgp(b1’x)*Lgp(-b1’x)*(b2 + 2*b3*age) 
   ; Average $ 
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----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =     53.98486 
Prob. from Chi-squared[ 1] =       .00000 
Functions of data are averaged over the obs. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
AGE_EFCT|     .00428***      .00058     7.35  .0000      .00314    .00542 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The PARTIAL EFFECTS command is provided to automate this calculation.  First, the quadratic 
term and interaction are built into the command, so LIMDEP can find them later.  Then, the 
PARTIAL EFFECTS command does the rest. 
 
 LOGIT  ; Lhs = doctor  
   ; Rhs = one, age, age^2, income, sex, sex*income $ 
 
The estimated model is identical, though the estimates are now labeled to show the built in structure. 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    2.06138***      .52067     3.96  .0001     1.04089   3.08187 
     AGE|    -.10040***      .02531    -3.97  .0001     -.15001   -.05079 
 AGE^2.0|     .00141***      .00029     4.88  .0000      .00085    .00198 
  INCOME|    -.49829*        .26152    -1.91  .0567    -1.01086    .01429 
     SEX|     .46495***      .15131     3.07  .0021      .16839    .76150 
        |Interaction SEX*INCOME 
Intrct02|     .21012         .38785      .54  .5880     -.55005    .97028 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The partial effect for age is calculated using the analytic result, not as a scaled coefficient. 
 
 PARTIAL EFFECTS  ; Effects: age $ 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to AGE 
Results are computed by average over sample observations 
Partial effects for continuous AGE      computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dAGE            Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect      .00428     .00058    7.35      .00314      .00542 
 
 To this point, PARTIAL EFFECTS has merely provided a useful shortcut for obtaining 
partial effects for a variable when there is a nonlinear term in the model.  But, you can go far beyond 
just automating the partial effects.  To consider a final example, ‘does the partial effect of income on 
the probability of visiting the doctor vary by sex?  And, does it vary systematically by age as well?’  
The following computes the partial effect of income at ages 20, 25, …, 80, separately for men and 
women, and plots the two sets of results to reveal the extent and nature of the difference. 
 
 PARTIAL EFFECTS ; Effects: income & age = 20(5)80   

     | sex = 0,1 (male,female) 
; Plot $ 

 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to INCOME 
Results are computed by average over sample observations 
Partial effects for continuous INCOME   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dINCOME         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect     -.08905     .04308    2.07     -.17348     -.00462 
--------------------------------------------------------------------- 
SEX     = MALE     -------------------------------------------------- 
--------------------------------------------------------------------- 
AGE     = 20.00    -.11841     .06254    1.89     -.24099      .00417 
AGE     = 25.00    -.12226     .06412    1.91     -.24795      .00342 
AGE     = 30.00    -.12368     .06472    1.91     -.25053      .00318 
AGE     = 35.00    -.12401     .06485    1.91     -.25113      .00310 
AGE     = 40.00    -.12380     .06471    1.91     -.25063      .00304 
AGE     = 45.00    -.12267     .06407    1.91     -.24825      .00291 
AGE     = 50.00    -.11942     .06233    1.92     -.24159      .00275 
AGE     = 55.00    -.11229     .05866    1.91     -.22726      .00268 
AGE     = 60.00    -.09980     .05240    1.90     -.20251      .00291 
AGE     = 65.00    -.08194     .04371    1.87     -.16762      .00373 
AGE     = 70.00    -.06101     .03375    1.81     -.12716      .00514 
AGE     = 75.00    -.04077     .02410    1.69     -.08800      .00646 
AGE     = 80.00    -.02444     .01592    1.53     -.05565      .00677 
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--------------------------------------------------------------------- 
SEX     = FEMALE   -------------------------------------------------- 
--------------------------------------------------------------------- 
AGE     = 20.00    -.05707     .05825     .98     -.17123      .05710 
AGE     = 25.00    -.06162     .06249     .99     -.18410      .06086 
AGE     = 30.00    -.06414     .06484     .99     -.19123      .06295 
AGE     = 35.00    -.06501     .06562     .99     -.19363      .06361 
AGE     = 40.00    -.06442     .06498     .99     -.19179      .06294 
AGE     = 45.00    -.06224     .06278     .99     -.18529      .06080 
AGE     = 50.00    -.05811     .05866     .99     -.17308      .05686 
AGE     = 55.00    -.05170     .05231     .99     -.15423      .05083 
AGE     = 60.00    -.04310     .04385     .98     -.12905      .04285 
AGE     = 65.00    -.03316     .03409     .97     -.09997      .03366 
AGE     = 70.00    -.02328     .02437     .96     -.07104      .02448 
AGE     = 75.00    -.01484     .01598     .93     -.04616      .01648 
AGE     = 80.00    -.00860     .00964     .89     -.02751      .01030 
 

 
 
 There is obviously a great deal more that you can do with the command than with the model 
specification.  To sum up: 
 

Use ; Partial Effects as a model specification to obtain partial effects in the form of scaled 
coefficients, in a single convenient table.  Other results that this approach will produce are 
discussed in Section R11.5. 
 
Use PARTIAL EFFECTS as a post estimation command for detailed analyses of variables 
in models, such as the exercise above. 

 
NOTE:  When your model includes nonlinear functions and interaction terms built into the 
specification, as in the example above, then you must use the post estimation command PARTIAL 
EFFECTS to get the appropriate computation of partial effects. 
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R11.3 Partial Effects Issues 
 
 In single index equation models in which there exists a conditional mean, such as the logit 
model shown in Section R11.1, the usual choice for a partial effect is the regression function, E[y|x].  
The effect is 
 

δ = ∂E[Lhs variable]/∂Rhs variables.   
 
This derivative is what one usually has in mind for the partial effect.  In a linear regression model, 
this is simply the vector of regression coefficients.  In many other nonlinear models, it will be a 
vector of scaled coefficients.  The Poisson regression model provides a familiar example;  
 

E[y|x] = exp(β′x) = λ(β′x),  
so that  

δ = λ(β′x)×β.  
 

In many models, particularly multiple equation models, there is no obvious choice for what 
function to analyze.  Consider the bivariate probit model, which models the joint probability 
distribution of two binary outcome variables.  To produce ‘partial effects,’ we must first determine 
what the margin is.  There are at least three candidates, the joint probability, Prob[y1=1,y2=1|x], a 
general conditional mean function, E[y1|y2,x] and a particular conditional mean function, E[y1|y2 = 1,x], 
and there are others.  For another example, in an ordered probit or ordered logit model, the 
specification provides 
 
   Prob[y = j|x]  =  Hj(β,μ.x), j = 0,1,…,J. 
 
The health satisfaction model analyzed in Greene and Hensher (2010) involves a response variable 
that takes values 0,1,…,10, eleven values.  So, there are eleven different probability functions that 
can be differentiated and, more to the point, there is no regression function.  (An example with three 
outcomes appears in Section R11.5.1.)  In general, LIMDEP does provide an answer for such 
models, which will be fully documented, but we emphasize, it might not be precisely what you are 
looking for, and you may have to do some additional computation to get the precise result you seek.  
The PARTIAL EFFECTS command described in Section R11.4 will allow you to obtain partial 
effects for any function of interest. 
 There is a long list of issues that you want to be aware of in computing, reporting and 
analyzing partial effects:  For an example, in the logit model suggested earlier,  

 
Prob[doctor = 1|age,sex,income]    

= Λ(β1 + β2age + β3age2  + β4 income + β5 sex + β6 sex×income)  
= Λ(β′x), 

 
three partial effects are 
 
 ∆Prob[doctor = 1|x]/∆sex  = Λ(β′x|sex=1) - Λ(β′x|sex=0) 
 ∂Prob[doctor = 1|x]/∂age = Λ(β′x)Λ(-β′x) × (β2 + 2β3 age) 
 ∂Prob[doctor = 1|x]/∂income = Λ(β′x)Λ(-β′x) × (β5 + β6 sex) 
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The following example shows the typical approach to estimation of this model, with data 
transformation and partial effects, using the health care data used in the earlier examples: 
 

CREATE  ; agesq = age*age ; sex_incm = sex*income $ 
LOGIT ; Lhs = doctor  

; Rhs = one, age, agesq, income, sex, sex_incm 
; Partial Effects $ 

 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    2.06138***      .52067     3.96  .0001     1.04089   3.08187 
     AGE|    -.10040***      .02531    -3.97  .0001     -.15001   -.05079 
   AGESQ|     .00141***      .00029     4.88  .0000      .00085    .00198 
  INCOME|    -.49829*        .26152    -1.91  .0567    -1.01086    .01429 
     SEX|     .46495***      .15131     3.07  .0021      .16839    .76150 
SEX_INCM|     .21012         .38785      .54  .5880     -.55005    .97028 
--------+-------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with respect to the vector of  
characteristics. Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|    -.02206***     -.07649    -3.97  .0001     -.03295   -.01118 
   AGESQ|     .00031***      .03798     4.89  .0000      .00019    .00044 
  INCOME|    -.10950*       -.00421    -1.91  .0567     -.22211    .00312 
     SEX|     .10302***      .00142     3.09  .0020      .03766    .16838   # 
SEX_INCM|     .04617         .00032      .54  .5880     -.12087    .21322 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
In obtaining partial effects, the following are issues to be considered: 
 

1. What is the function that to be analyzed?  There is no single ‘right’ answer to this question. 
Researchers are usually interested in the slopes of the conditional mean function.  But, some 
other function might be of interest. And, in many models, such as the ordered probit and 
multinomial logit models, there is no conditional mean function.  In the example above, we 
are analyzing the probability, or the conditional mean function. 

 
2. Partial effects can be computed at the means of the variables, some other specific values of 

the variables, or averaged over the sample observations on the variables.  As noted in the 
footnotes to the first table, the example above provides partial effects averaged over the 
sample observations. This is more or less the norm in the recent literature. 
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3. Partial effects for binary variables such as sex should generally be computed using first 
differences, as shown above, not by scaling coefficients.  The results above indicate that the 
program has noticed that sex is a dummy variable, and adjusted the computations 
accordingly. 

 
4. Qualitative variables can produce an ambiguity.  For example, if schooling in a model is 

coded using two dummy variables representing high school (base case, E1=0, E2=0), trade 
school or college (E1 = 1, E2 = 0) and post graduate (E1 = 0, E2 = 1), then how should the 
‘effect’ of the third category, E2, be measured?  Treating E2 as a dummy variable the same 
as sex compares post graduate education to high school.  But, since one normally attends 
college before going to graduate school, the interesting comparison might be between E2 
and E1.  This can be handled by manipulating the partial effects, or by recoding E2 as E2′ = 
E1+E2.  But, either way, one wants to maintain the distinction. 

 
5. Compound models such as two part models or heteroscedasticity models may have variables 

that  appear at more than one place in the equation.  For example, the conditional mean 
function in the zero inflated Poisson regression model is of the form F(γ′z)×λ(β′x)/[1-exp(-
λ(β′x)].  Not only does this model contain two sets of covariates to analyze, z and x, but in 
most cases, some variables would appear in both z and x.  Partial effects involve variables in 
both parts of the model. The partial effect of a common variable, w, would be the sum of the 
two parts. It is worth noting, this compound effect might be quite different from the 
coefficients, in sign and magnitude. 

 
6. In the model above that contains both age and age2, the partial effect is not a simple scaling 

of the coefficient.  In general, a partial effects calculation that reports a scaled coefficient 
vector for an index function model will not do this calculation correctly – it will incorrectly 
compute separate effects for ‘age’ and ‘age2.’  The results in the preceding example are not 
correct – the partial effect for age is not -0.02206 and the effect reported for agesq makes no 
sense.  The problem is that the logit estimator has no way to know that agesq is the square of 
age; they are just two variables in the model.  (The PARTIAL EFFECTS procedure 
described below solves this problem.) 

 
7. The partial effects for sex and income in the model above are determined partly by the 

interaction term.  This is not computed correctly by a scaled coefficient.  The results above 
do not make the connection, again because the program has no way to know that the variable 
named sex_incm is equal to sex times income. 

 
8. The interaction term, itself, creates an ambiguity in the interpretation of the model.  What is 

the ‘interaction effect?’ 
 

9. Researchers differ on whether standard errors and hypothesis tests about partial effects 
should be computed. 
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LIMDEP provides two settings for computing partial effects, the ; Partial Effects 
calculations built into the model commands and a separate program, the PARTIAL EFFECTS 
command. 

Some of the problems listed above are handled automatically by ; Partial Effects when you 
estimate the model.  In general, ; Partial Effects produces a convenient table of scaled coefficients 
for all of the variables in the model at the same time.  The results are appropriate for models that do 
not contain interaction or nonlinear terms and when the set of scaled coefficients is your desired 
result. For the items listed above, ; Partial Effects works as follows: 

 
1. A specific choice, usually the conditional mean function or the probability in the model is 

analyzed. 
2. The usual calculation is the average partial effect. The ; Means option is provided to request 

the calculation at the means. 
3. Binary variables are usually automatically detected.  
4. Qualitative variables are not handled directly. 
5. Compound models are generally handled automatically. 
6. Nonlinearities in the variables are generally not handled correctly. 
7. Interaction effects are not handled correctly. 
8. Interaction effects must be analyzed separately. 
9. Standard errors and confidence intervals are provided with the estimates. 

10. Nearly all models, including all panel data models, display elasticities with partial effects. 
 

All of these issues are handled directly and completely by the PARTIAL EFFECTS 
command.  You will use PARTIAL EFFECTS to do detailed analysis of a particular variable, 
rather than all variables simultaneously.  The PARTIAL EFFECTS command provides the 
following: 

 
1. There is a default function assumed for each model, but you can specify a different function 

to be analyzed. 
2. Effects can be averaged across observations, computed at the means, or at specified values 

of particular variables. 
3. Binary variables are always handled appropriately. 
4. The switch between categories for a categorical variable can be built into the calculation. 
5. Effects in compound models are automatically accounted for. 
6. All nonlinearities are accounted for in computed effects. 
7. All interaction effects are accounted for in computed effects. 
8. Effects and interaction terms can be analyzed numerically or graphically. 
9. Standard errors and confidence intervals are provided for all computed effects. 

 
 You should use ; Partial Effects for simple index function models such as a basic probit 
model with a simple specification.  You should use PARTIAL EFFECTS for more involved model 
specifications and to analyze in more detail the implications of your model for the interactions of all 
of its components. 
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R11.4 The PARTIAL EFFECTS Command 
 
 The PARTIAL EFFECTS (or just PARTIALS) command is structured to work with the 
new model syntax described in Section R8.3. An example will help to fix ideas. The logit model 
examined in Section R11.3 was specified using 
 

CREATE  ; agesq = age*age ; sex_incm = sex*income$ 
LOGIT ; Lhs = doctor  

; Rhs = one, age, agesq, sex, income, sex_incm 
; Partial Effects $ 

 
The same model can be specified by building the quadratic and interaction terms into the equation, as 
 

LOGIT ; Lhs = doctor  
; Rhs = one, age, age^2, sex, income, sex*income 
; Partial Effects $ 

 
The estimation results produced by this alternative command are the same as the first, though the 
labeling is slightly different – the program notices the quadratic and interaction terms: 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    2.06138***      .52067     3.96  .0001     1.04089   3.08187 
     AGE|    -.10040***      .02531    -3.97  .0001     -.15001   -.05079 
 AGE^2.0|     .00141***      .00029     4.88  .0000      .00085    .00198 
     SEX|     .46495***      .15131     3.07  .0021      .16839    .76150 
  INCOME|    -.49829*        .26152    -1.91  .0567    -1.01086    .01429 
        |Interaction SEX*INCOME 
Intrct02|     .21012         .38785      .54  .5880     -.55005    .97028 
--------+-------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|    -.02206***     -.07649    -3.97  .0001     -.03295   -.01118 
 AGE^2.0|     .00031***      .03798     4.89  .0000      .00019    .00044 
     SEX|     .10302***      .00142     3.09  .0020      .03766    .16838   # 
  INCOME|    -.10950*       -.00421    -1.91  .0567     -.22211    .00312 
        |Interaction SEX*INCOME 
Intrct02|     .04617         .00032      .54  .5880     -.12087    .21322 
--------+-------------------------------------------------------------------- 
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As we noted earlier, none of the partial effects in this table are actually correct.  Regardless of the 
model specification, ; Partial Effects reports the scaled coefficient vector.  The age effect does not 
account for the quadratic term, the sex effect does not account for the interaction with income and the 
income effect does not account for its interaction with sex.  The basic post estimation command 
 
 PARTIAL EFFECTS ; Effects: income / sex / age $ 
 
produces the following three sets of results: 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Results are computed by average over sample observations 
Partial effects for continuous INCOME   computed by differentiation 
--------------------------------------------------------------------- 
df/dINCOME         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect     -.08905     .04308    2.07     -.17348     -.00462 
--------------------------------------------------------------------- 
Partial effects for binary var SEX      computed by first difference 
--------------------------------------------------------------------- 
Partial effect      .11932     .01403    8.50      .09183      .14682 
--------------------------------------------------------------------- 
Partial effects for continuous AGE      computed by differentiation 
--------------------------------------------------------------------- 
Partial effect      .00428     .00058    7.35      .00314      .00542 
--------------------------------------------------------------------- 
 
All of the effects built into the model command are accounted for in the partial effects.  These are the 
correct estimates of the average partial effects for these three variables in this model. 
 
NOTE:  The list of variables in the PARTIAL EFFECTS command may be in a namelist. The 
following produce the same results for the preceding example: 
 
 NAMELIST  ; x = income, sex, age $ 
 PARTIAL EFFECTS ; Effects: x $ 
 

The descriptions of the results are more detailed in this case.  There are several options 
available for changing the computation. Sections R11.4.1-R11.4.6 describe in detail the 
specifications and options used with the PARTIAL EFFECTS command.  To suggest how this new 
feature extends the reach of your model analysis, here is a more detailed example. The first table 
above shows that the average partial effect of age on the probability of visiting the doctor is 0.00428, 
averaged over the sample.  But, the model contains a nonlinearity in age. The partial effect with 
respect to age varies with age, both because the probability is a nonlinear function and because of 
this quadratic term.  We can analyze this in more detail as follows: 
 

PARTIAL EFFECTS ; Effects: age & age = 20(5)80 ; Plot(ci) $  
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--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to AGE 
Results are computed by average over sample observations 
Partial effects for continuous AGE      computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dAGE            Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect      .00428     .00058    7.35      .00314      .00542 
AGE     = 20.00    -.00957     .00262    3.66     -.01470     -.00444 
AGE     = 25.00    -.00682     .00242    2.82     -.01156     -.00208 
AGE     = 30.00    -.00365     .00193    1.89     -.00744      .00013 
AGE     = 35.00    -.00032     .00134     .24     -.00296      .00231 
AGE     = 40.00     .00302     .00083    3.66      .00140      .00465 
AGE     = 45.00     .00624     .00073    8.58      .00481      .00766 
AGE     = 50.00     .00909     .00109    8.31      .00695      .01124 
AGE     = 55.00     .01122     .00143    7.86      .00842      .01402 
AGE     = 60.00     .01220     .00144    8.50      .00939      .01501 
AGE     = 65.00     .01175     .00103   11.37      .00972      .01377 
AGE     = 70.00     .01000     .00049   20.48      .00904      .01096 
AGE     = 75.00     .00752     .00061   12.38      .00633      .00871 
AGE     = 80.00     .00502     .00088    5.68      .00328      .00675 
 

 
 
Note that the partial effect varies with age, peaks at 60, and changes sign at about 38.  Thus, the 
aging process implied is that the probability of doctor visitation decreases with age until (individual 
in this sample) age about 38, then it begins to increase.  Although one might suspect this from the 
different signs of the linear and quadratic terms, the more detailed description is not obvious from 
the numbers alone.  
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R11.4.1 Last Model Used for Partial Effects 
 
 The model used for the PARTIAL EFFECTS operation is the last one that you estimated.  
This will be obvious from the results in your output window, though it is necessary to be specific 
about which function is being used.  That is, what function is being used to compute the effects.  For 
example, the preceding examples are based on a logit model, fit with 
 

LOGIT ; Lhs = doctor  
; Rhs = one, age, age^2, sex, income, sex*income $ 

 
The function used for the partial effects is the logit probability, 
 
 Last model = Λ(βʹx)  =  Prob(Lhs variable = 1). 
 
There is a specific function used for each model for which you can use PARTIAL EFFECTS.  
These are documented in the Econometric Modeling Guide for the particular models.  At any time, 
you can find out what function is being used for the PARTIAL EFFECTS command by using the 
command 
 
 LAST MODEL $ 
 
For our logit example, the response would be 
 
--> LAST MODEL $ 
The last estimated model is Logit Probability Function 
 
In most cases, the function used is the conditional mean function.  But, in some cases, such as the 
ordered probit or logit models, there are numerous probability functions.  For this particular case, the 
default function is the probability of the highest outcome, for example, 
 
--> OPROBIT ; Lhs = hsat ; Rhs=one,age,educ $ 
--> LAST MODEL $ 
The last estimated model is Ordered Probit     Probability Y =10 
 
The ordered probit models are a special case.  The highest category is usually the one of interest.  
You can change this by using 
 
   ; Outcome = value (0,1,…) 
  
NOTE:  There is a default function for each model that PARTIAL EFFECTS may be used with.  
However, you can specify a different function to be analyzed.  The alternative function need not 
even be a model. It can be any function you can specify with the command language.  PARTIAL 
EFFECTS can analyze any variable in any function that is computed using data and parameters.  
Section R11.4.6 describes how to supply your own function to be analyzed. 
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R11.4.2 Sample Used for PARTIAL EFFECTS 
 
 The observations used to compute partial effects are whatever happen to be in the current 
sample.  These need not be the observations used to compute the model.  The current sample can be 
a subset of the estimation sample, a completely different set of observations, or even a single 
observation.  The computation of the partial effects is not dependent on the sample used for the 
estimation. 
 
R11.4.3 Types of Variables in Partial Effects 
 
 The central part of the PARTIAL EFFECTS command is the request itself and the variable 
that is changing.  (The function to be analyzed is supplied by the previous model command or a 
specification described in Section R11.4.6.)  The simplest form would be 
 
 PARTIAL EFFECTS ; Effects: X variable $ 
 
This specification requests analysis of 
 
   δX  =  ∂f( last model function ) / ∂X 
 
For example,  in the logit model estimated earlier, the partial effect for age is obtained below. 
 
--> PARTIAL EFFECTS ; Effects: age $ 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to AGE 
Results are computed by average over sample observations 
Partial effects for continuous AGE      computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dAGE            Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect      .00428     .00058    7.35      .00314      .00542 
 

• The X variable, age is noted. 
• The processor detects if the X variable is a dummy variable and changes the computation 

accordingly. 
 
In the results below, the partial effect with respect to sex is reported. 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to SEX 
Results are computed by average over sample observations 
Partial effects for binary var SEX      computed by first difference 
--------------------------------------------------------------------- 
df/dSEX            Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect      .11932     .01403    8.50      .09183      .14682 
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R11.4.4 Types of Partial Effects 
 
 The default calculation in partial effects is a derivative, 
 
   δX  =  ∂f( last model function ) / ∂X 
 
But, there are other functions that might be of interest.  You may specify any of the following: 
 

• Elasticity  df(X)/dX Use  ; Effects: [ X variable ] 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to INCOME 
Results are computed by average over sample observations 
Partial effects for continuous INCOME   computed by differentiation 
Effect is computed as elasticity     = dlnf(.)/dlnx 
--------------------------------------------------------------------- 
df/dINCOME         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect     -.05294     .02559    2.07     -.10310     -.00278 
 

• Semielasticity  dlnF(X)/dX Use ; Effects: < X variable > 
 

• Partial elasticity  dF(X)/dlnX Use ; Effects: { X variable } 
 
The semielasticity might be used for a conditional mean function for a continuous variable and a 
discrete X variable such as time.  The partial elasticity might be used for a discrete variable and a 
continuous regressor.  For example, the function might be a predictor of the number of visits to the 
hospital or doctor, or recreation site, etc. while the regressor might be something like income.  
Finally, if you have a set of categories in your model, you can specify that the margin be the switch 
from one category to another.  The specification requires both variables, 
 

• Category switch  f(Cat. A = 1, Cat. B = 0) - f(Cat. A = 0, Cat. B = 1). 
 
For example, to compare two regions of the country, you might use 
 
   ; Effects: Midlands, Cotswalds 
 
Where midlands and cotswalds are two (among a set of) dummy variables that indicate region of the 
country.  Finally, there is special code used to deal with an ambiguous case.  Suppose X is a dummy 
variable for which you wish to compute the partial effect.  If you are using ; Means, it is not possible 
to see from the data that the variable is binary.  To cover this case, use 
 

• Dummy variable mean f(X = 1) – f(X = 0)   Use ; Effects: (variable) 
 
The two category case is handled likewise with (X_A, X_B). 
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R11.4.5 Scenarios in the PARTIAL EFFECTS Command 
 

 The basic syntax for the PARTIAL EFFECTS command is 
 

 PARTIAL EFFECTS ; Effects: variable  …  scenario  / 
      variable  …  scenario / … $ 
 

You may provide a scenario for each variable specified.  The variable(s) in the scenario can be the 
same from one to the next or different.  The scenario, itself, is optional.  The simplest form of the 
command would be 
 

 Model   ; Lhs = … ; Rhs = … ; other specifications $ 
 PARTIAL EFFECTS ; Effects:  an X variable that appears in the model  $ 
 

To obtain a set of partial effects for the variables in a model, separate the names with slashes. 
For example, 
 

 LOGIT  ; Lhs = …  ; Rhs = one,age,income,sex $ 
 PARTIAL EFFECTS ; Effects:  age / income / sex $ 
 

The scenarios are specified as follows: 
 

Discrete Values of a Variable:  The ‘|’ Specification 
 

 This specification computes the partial effect of the X variable while setting the Z variable 
equal to the specified values for every observation.  The partial effects are computed for each value 
of Z specified.  
 

 Xvariable | Zvariable = value, value, value … up to 10 values 
 

The Z variable may be the same as the X variable or a different variable.  For example, 
 

 Effects: income | educ = 12, 16, 20 
 

The variable that is changing may be the one that is being analyzed, as in 
 

 Effects: educ | educ = 12, 16, 20 
 

You may provide labels in parentheses for the values, as in 
 

 Effects: income | sex = 0, 1 (male, female)  
 / educ = 12,16,20 (hs, college, graduate) 

 

The values of the Z variable can be any specified values. They need not be values that occur in the 
sample. For example, even though sex is coded 0,1 in the sample, you could specify  ‘| sex = 0,1,2,3’ 
 
Range of Values in Steps:  The ‘&’ Specification 
  

 This specification computes the partial effects for the sequence of 
 

 Xvariable  &  Zvariable = lower limit (step length) upper limit. 
 
For example, as in the application above, 
 
 Effects: income & age = 20(5)80 
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Combining Scenarios 
 

 You can combine the two types of scenarios in a single analysis.  The general form of the 
scenario would be 
 

 Effects: X variable | Z variable = z1, z2, … & W variable = lower(delta) upper 
 

In a compound scenario, the W variable changes inside the Z variable.  That is, the values of W are 
computed for each value of Z in turn.  In the example below, we have sex = 0,1 and age = 20(5)80.  
The string of effects is computed for (sex = 0 (male), age = 20, 25,…,80) then for (sex = 1 (female), 
age = 20, 25, …, 80).  The command and results are 
 

 PARTIAL EFFECTS ; Effects: income & age = 20(5)80   
    | sex = 0,1 (male,female) $ 

 

--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to INCOME 
Results are computed by average over sample observations 
Partial effects for continuous INCOME   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dINCOME         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect     -.08905     .04308    2.07     -.17348     -.00462 
--------------------------------------------------------------------- 
SEX     = MALE     -------------------------------------------------- 
--------------------------------------------------------------------- 
AGE     = 20.00    -.11841     .06254    1.89     -.24099      .00417 
AGE     = 25.00    -.12226     .06412    1.91     -.24795      .00342 
AGE     = 30.00    -.12368     .06472    1.91     -.25053      .00318 
AGE     = 35.00    -.12401     .06485    1.91     -.25113      .00310 
AGE     = 40.00    -.12380     .06471    1.91     -.25063      .00304 
AGE     = 45.00    -.12267     .06407    1.91     -.24825      .00291 
AGE     = 50.00    -.11942     .06233    1.92     -.24159      .00275 
AGE     = 55.00    -.11229     .05866    1.91     -.22726      .00268 
AGE     = 60.00    -.09980     .05240    1.90     -.20251      .00291 
AGE     = 65.00    -.08194     .04371    1.87     -.16762      .00373 
AGE     = 70.00    -.06101     .03375    1.81     -.12716      .00514 
AGE     = 75.00    -.04077     .02410    1.69     -.08800      .00646 
AGE     = 80.00    -.02444     .01592    1.53     -.05565      .00677 
--------------------------------------------------------------------- 
SEX     = FEMALE   -------------------------------------------------- 
--------------------------------------------------------------------- 
AGE     = 20.00    -.05707     .05825     .98     -.17123      .05710 
AGE     = 25.00    -.06162     .06249     .99     -.18410      .06086 
AGE     = 30.00    -.06414     .06484     .99     -.19123      .06295 
AGE     = 35.00    -.06501     .06562     .99     -.19363      .06361 
AGE     = 40.00    -.06442     .06498     .99     -.19179      .06294 
AGE     = 45.00    -.06224     .06278     .99     -.18529      .06080 
AGE     = 50.00    -.05811     .05866     .99     -.17308      .05686 
AGE     = 55.00    -.05170     .05231     .99     -.15423      .05083 
AGE     = 60.00    -.04310     .04385     .98     -.12905      .04285 
AGE     = 65.00    -.03316     .03409     .97     -.09997      .03366 
AGE     = 70.00    -.02328     .02437     .96     -.07104      .02448 
AGE     = 75.00    -.01484     .01598     .93     -.04616      .01648 
AGE     = 80.00    -.00860     .00964     .89     -.02751      .01030 
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R11.4.6 Plotting Partial Effects 
 

 You can produce two types of plots with PARTIAL EFFECTS.  When the figure has a set 
of values for a single scenario, for example, 
 

PARTIAL EFFECTS ; Effects: age & age = 20(5)80 ; Plot $  
 
You can request a plot of the partial effects against the specified values of the Z variable.  For our 
logit model, the command produces 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
df/dINCOME         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect     -.08905     .04308    2.07     -.17348     -.00462 
AGE     = 20.00    -.08872     .04365    2.03     -.17428     -.00317 
AGE     = 25.00    -.09290     .04538    2.05     -.18185     -.00395 
AGE     = 30.00    -.09484     .04628    2.05     -.18554     -.00414 
AGE     = 35.00    -.09543     .04654    2.05     -.18664     -.00422 
AGE     = 40.00    -.09504     .04624    2.06     -.18566     -.00441 
AGE     = 45.00    -.09341     .04524    2.06     -.18208     -.00474 
AGE     = 50.00    -.08974     .04323    2.08     -.17448     -.00501 
AGE     = 55.00    -.08298     .03983    2.08     -.16105     -.00491 
AGE     = 60.00    -.07239     .03488    2.08     -.14075     -.00403 
AGE     = 65.00    -.05838     .02868    2.04     -.11459     -.00217 
AGE     = 70.00    -.04279     .02202    1.94     -.08596      .00037 
AGE     = 75.00    -.02826     .01577    1.79     -.05918      .00266 
AGE     = 80.00    -.01680     .01050    1.60     -.03739      .00379 
 

 
 
You can also add confidence bounds to the figure by changing ‘; Plot’ to ‘Plot(ci)’   
 
   ; Plot(ci) for confidence interval 



R11: Partial Effects  R-291 

For this example, we obtain: 
 

 
 

(Note that the limits of the window have been adjusted to accommodate the confidence limits.) 
  

The confidence limits are those shown in the table of results.  These limits are based on the 
estimate of the standard error of the average partial effect.  In particular, the average partial effect is 
 

   δX  =  ( ),1

1 ˆ ,
N

X i iiN =
δ∑ xβ  

 

The standard error for the estimated δK is computed using the delta method, 
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( ) ( ), ,
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The partial effect, δX and the square root of VX is computed for each value Z  Those are the values in 
the table above.  You can decorate the figure a bit by changing the title at the top and the label for the 
vertical axis with 
 
   ; Title = title for the figure, 
   ; Vaxis = descriptor for the vertical axis. 
 
A second type of figure can be produced when you combine & Z variable with | W variable.  In this 
case, up to five plots can appear in the same figure.  The example below compares the income effects 
for men and women. 
 

PARTIAL EFFECTS ; Effects: income  
| sex = 0,1 (male,female) 
& age = 20(5)80  

; Plot $  
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R11.4.7 Sample Partitioning: The ‘@’ Specification 
 
 Up to this point, we have used the entire current sample in computing the partial effects, 
either in computing the average partial effects or in computing the sample means.  You can partition 
the current sample with the following syntax: 
 
 X variable @ F variable 
 
 X variable @ F variable = value1, value2, … up to 10 values 
 
The F variable is a discrete variable that may take up to 10 values.  In the first form, the variable is 
inspected and the sample is partitioned according to the values found.  In the second case, specific 
values are used – this case might exclude some of the sample.  For example, suppose educ were 
coded 12, 16, 20 and you specified ; Effects: income @ educ = 26,20.  Then, the analysis would be 
done for the two parts of the sample with educ = 16 and 20 while observations with educ = 12 would 
not be used in the analysis.   
 This specification operates differently from the | specification.  Using | Z variable, you 
manipulate the values in the sample.  Using @ F variable, you select observations, but do not change 
the actual values used in the data. All three specifications may be combined to produce 
counterfactuals.  For example, the following specification 
 
   ; Effects: income @ sex = 1 | sex = 0 & age = 20(5)80 
 
selects the part of the sample that is female and computes the partial effects for that subsample while 
assuming that they are male.  That is, the @ sex = 1 specification specifies the subsample for which 
sex = 1 (female) and computes the partial effect of income for ages from 20 to 80 by 5, while setting 
the sex dummy variable to 0 (male).  The results produced are 
 



R11: Partial Effects  R-293 

===================================================================== 
Subsample for this iteration is SEX      =  1   Observations:    2170 
===================================================================== 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to INCOME 
Results are computed by average over sample observations 
Partial effects for continuous INCOME   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dINCOME         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect     -.05791     .05847     .99     -.17251      .05669 
--------------------------------------------------------------------- 
SEX     =     0    -------------------------------------------------- 
--------------------------------------------------------------------- 
AGE     = 20.00    -.11832     .06245    1.89     -.24073      .00408 
AGE     = 25.00    -.12221     .06407    1.91     -.24779      .00337 
AGE     = 30.00    -.12365     .06469    1.91     -.25044      .00315 
AGE     = 35.00    -.12399     .06483    1.91     -.25106      .00308 
AGE     = 40.00    -.12377     .06468    1.91     -.25054      .00301 
AGE     = 45.00    -.12262     .06402    1.92     -.24810      .00286 
AGE     = 50.00    -.11934     .06224    1.92     -.24133      .00266 
AGE     = 55.00    -.11217     .05853    1.92     -.22688      .00255 
AGE     = 60.00    -.09964     .05224    1.91     -.20203      .00275 
AGE     = 65.00    -.08177     .04354    1.88     -.16711      .00356 
AGE     = 70.00    -.06086     .03359    1.81     -.12669      .00498 
AGE     = 75.00    -.04065     .02397    1.70     -.08764      .00633 
AGE     = 80.00    -.02436     .01584    1.54     -.05540      .00668 
 
R11.4.8 Fixing Variables for the Entire Analysis 
 
 You might want to fix certain extraneous variables during the analysis, apart from the 
analysis.  Use the specification(s) 
 
   ; Fix = name [value], name [value], … 
 
For example, if the model were expanded to 
 
 LOGIT  ; Lhs = doctor  
   ; Rhs = one, age, age^2, income, sex, sex*income, hsat $ 
 
Where hsat is health satisfaction, and we then wish to analyze the partial effects in the model 
assuming for the present that everyone in the sample reported 10 (the highest value) for hsat, we 
could use something like 
 
 PARTIAL EFFECTS ; Fix = hsat[10] ; Effects: income & educ = 20(5)80 $ 
 
We note, there is potential for conflicts among these specifications.  For example,  
 
   ; Fix = hsat [10] ; Effects: income | hsat  = 8,9,10 
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has an inconsistency.  This will produce a diagnostic, 
 

Conflict between ;Fix=... and scenario 
 
However, it is not possible to catch all possible conflicts.  It is necessary to be cautious when using 
the global setting to fix some variables. 
 
R11.4.9 Saving Individual Partial Effects 
 
 You can save the individual specific partial effects computed when they are averaged by 
adding 
   ; Save  
 
to the command.  If you have a compound scenario, the value that is saved is the first one computed.  
It is best to use this only with a simple partial effects computation.   The operation creates a new 
variable named partlfct.  The estimated standard error is also saved, as se_partl.  For example, 
 
--> PARTIAL EFFECTS ; Effects: income  ; save $ 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to INCOME 
Results are computed by average over sample observations 
Partial effects for continuous INCOME   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
Effects are saved as variable PARTLFCT. Std.Errors as SE_PARTL 
--------------------------------------------------------------------- 
df/dINCOME         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect     -.08905     .04308    2.07     -.17348     -.00462 
 
 If you now use DSTAT ; Rhs = partlfct $ the sample mean reported will be -0.08905.  
However, the sample standard deviation will not equal 0.04308.  The value above is the standard 
deviation computed using the delta method, not the sample standard deviation of the computed 
values. 
 
R11.4.10 Computing Partial Effects at Sample Means 
 

The default form of effect is the ‘average partial effect.’  The effect is computed by 
computing the derivative function for each observation in the sample.  The alternative approach is to 
compute the effect at the means of the data by adding 
 
   ; Means  
 
to the command.  This changes the results to those below. Note, the second line of the legend in the 
example below indicates how the effects are computed. 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to AGE 
Results are computed at sample means of all variables 
Partial effects for continuous AGE      computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dAGE            Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect      .00535     .00070    7.66      .00398      .00672 
 
When you use the ‘@’ specification, the sample means are recomputed for the various subsamples.   
For example, 
 

   ; Effects: educ @ female = 0,1 (male,female) | age = 20,30,40 ; Means 
 
computes the partial effect and the scenario at the sample means for males, then for females. 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to EDUC 
Results are computed at sample means of all variables 
Partial effects for continuous EDUC     computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dEDUC           Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Subsample for this iteration is FEMALE   =  0   Observations:    2311 
Partial effect     -.00084     .00322     .26     -.00715      .00546 
--------------------------------------------------------------------- 
AGE     = 20.00 ----------------------------------------------------- 
Effect at means    -.00090     .00345     .26     -.00766      .00585 
--------------------------------------------------------------------- 
AGE     = 30.00 ----------------------------------------------------- 
Effect at means    -.00088     .00336     .26     -.00746      .00570 
--------------------------------------------------------------------- 
AGE     = 40.00 ----------------------------------------------------- 
Effect at means    -.00085     .00325     .26     -.00722      .00552 
--------------------------------------------------------------------- 
Subsample for this iteration is FEMALE   =  1   Observations:    2170 
Partial effect     -.00083     .00315     .26     -.00700      .00535 
--------------------------------------------------------------------- 
AGE     = 20.00 ----------------------------------------------------- 
Effect at means    -.00090     .00342     .26     -.00761      .00581 
--------------------------------------------------------------------- 
AGE     = 30.00 ----------------------------------------------------- 
Effect at means    -.00087     .00333     .26     -.00739      .00565 
--------------------------------------------------------------------- 
AGE     = 40.00 ----------------------------------------------------- 
Effect at means    -.00084     .00321     .26     -.00713      .00544 
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R11.4.11 Weighted Observations 
 
 Sample means and averages of partial effects (and simulations) are obtained by simple 
averages of the sample observations.  You may supply sample weights as usual with 
 
   ; Wts = weighting variable 
 
(See Section R8.6.)  When the scenario specifies a partitioning of the sample using ‘@specification,’ 
the weights are scaled to sum to the number of observations in the subsample. 
 
R11.4.12 Robust Covariance Matrices 
 
 PARTIAL EFFECTS does not compute a covariance matrix.  It uses the one provided by  
the last model estimated, or provided by you in your function definition.   If your estimated model 
included a robust (e.g., cluster corrected) covariance matrix, then the standard errors and confidence 
intervals will be similarly robust. 
 
R11.4.13 Changing the Model Analyzed by PARTIAL EFFECTS 
 
 The function that LIMDEP uses for PARTIAL EFFECTS is the model left behind by the 
previous model command.  The model will remain in place until another fitted model changes its 
place.  However, you can specify your own model, or function – it need not be a model; this can be 
any function that you wish to analyze.  The additional information in the command is 
 
   ; Function  = any user defined function 
   ; Covariance = matrix 
   ; Parameters = set of values 
   ; Labels  = names of parameters 
 
The function definition is any function that you wish to specify using the same form as 
MAXIMIZE, NLSQ, WALD, etc.  The function is assumed to involve an estimated parameter 
vector for which you also have in hand an estimated covariance matrix.  The labels are provided so 
that you can differentiate between parameters and all the other numeric entities that can appear in the 
function. 
 To consider a perhaps contrived example, suppose we had fit a probit model and were 
interested in examining the behavior of the hazard function.  The model is 
 
   Prob(y = 1 | x) = Φ(βʹx). 
 
The hazard function is 
 
   h(βʹx)  =  -dlnΦ(-βʹx)/d(βʹx)  =  φ(βʹx)/[1 – Φ(βʹx)]. 
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This is not a conditional mean function, but it might nonetheless be interesting.   To continue our 
example, we will employ this template and examine the partial effect of income on the hazard 
function for a probit model.  The income variable in our model enters the function nonlinearly in 
several terms.  Step 1 is definition and estimation of the model. 
 
 NAMELIST  ; xprobit = one, age, educ, income, income^2, age*income, hsat $ 

PROBIT  ; Lhs = doctor ; Rhs = xprobit $ 
 
 
Normal exit:   4 iterations. Status=0, F=    2727.435 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -2727.43478 
Restricted log likelihood   -2908.96085 
Chi squared [   6 d.f.]       363.05212 
Significance level               .00000 
McFadden Pseudo R-squared      .0624024 
Estimation based on N =   4481, K =   7 
Inf.Cr.AIC  = 5468.870 AIC/N =    1.220 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .86475***      .23176     3.73  .0002      .41050   1.31899 
     AGE|     .01642***      .00422     3.89  .0001      .00815    .02469 
    EDUC|    -.00166         .00872     -.19  .8494     -.01875    .01544 
  INCOME|     .83966         .59137     1.42  .1557     -.31941   1.99874 
        |Constructed variable INCOME^2.0 
_ntrct01|    -.06449         .25065     -.26  .7970     -.55576    .42678 
        |Interaction AGE*INCOME 
_ntrct02|    -.02484**       .01176    -2.11  .0346     -.04789   -.00179 
    HSAT|    -.15719***      .00985   -15.95  .0000     -.17650   -.13787 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Step 2 is estimation of the partial effects. 
 
 PARTIAL EFFECTS ; Labels = b1,b2,b3,b4,b5,b6,b7 

; Parameters = b 
; Covariance = varb 
; Function = bx = b1'xprobit | 

      cdf = Phi(bx)     | 
      pdf = N01(bx)     | 
      pdf/(1-cdf) 

; Effects: income & age = 20(5)65  
; Plot(ci) $ 
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The function is defined recursively purely for convenience.  The same results would be produced by 
; Function = N01(b1’x)/(1 - Phi(b1’x)); we decomposed it above to illustrate how to compute a 
complicated function in parts.  The estimated effects and a plot with 95% confidence limits are as 
follows: 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for User Specified Function 
--------------------------------------------------------------------- 
Effects on function with respect to INCOME 
Results are computed by average over sample observations 
Partial effects for continuous INCOME   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dINCOME         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Partial effect     -.20970     .10857    1.93     -.42250      .00310 
AGE     = 20.00     .20150     .21357     .94     -.21709      .62009 
AGE     = 25.00     .11880     .18163     .65     -.23719      .47479 
AGE     = 30.00     .03423     .15207     .23     -.26382      .33228 
AGE     = 35.00    -.05212     .12736     .41     -.30175      .19751 
AGE     = 40.00    -.14019     .11170    1.26     -.35912      .07874 
AGE     = 45.00    -.22990     .10988    2.09     -.44527     -.01452 
AGE     = 50.00    -.32117     .12325    2.61     -.56273     -.07960 
AGE     = 55.00    -.41393     .14828    2.79     -.70455     -.12331 
AGE     = 60.00    -.50813     .18059    2.81     -.86209     -.15417 
AGE     = 65.00    -.60368     .21729    2.78    -1.02957     -.17779 
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R11.4.14 Technical Details 
 
 PARTIAL EFFECTS accounts for all interactions and nonlinearities built into the model or 
function specification.  The feature is available for every model fit by the program.  Based on the 
formulation in Section R11.4.10, you can use this process with any function that you can compute 
with the data in your sample, whether the function is a model or anything else.  It is also independent 
of the sample used to fit the model.  The parameter vector and associated covariance matrix are used 
to compute functions of your data.  No connection is assumed between the estimation sample and 
functions you compute.  You can, for example, fit a model with a given sample, then change to a 
different set of observations and analyze the partial effects with respect to that second sample. 
 The computations proceed as follows: 
 
Step 1. Set subsamples:  This is defined by @ values in Section R11.4.7 

 
Step 2. Do for observations in the subsample: 

 
Step 3. Obtain full observation x(i) from raw data set. 
 

• Fix any values in x(i) as prescribed by Section R11.4.8. 
• Fix any specific values by | or & specified by Section R11.4.5. 
• Compute any interactions defined by the model. 
• Perturb the original x(i) then recompute the interactions. 
• Compute derivatives of functions with respect to x(i); partial effects. 
• Perturb parameters and compute Jacobian for delta method. 
• Accumulate average function, average derivatives, average Jacobian. 

 
Step 4. Obtain appropriate asymptotic covariance matrix using covariance matrix and average 

Jacobian. 
 
The structure of the iteration implies that the interaction terms are computed after the data are 
perturbed.  Thus, if the model contains x and x2, the derivatives are obtained by evaluating the 
function first at (x,x2), then at [(x+∆x), (x+∆x)2], which produces the right result for the partial effect 
with respect to x.  When the effects is with respect to a dummy variable, the perturbation step 
consists of fixing the variable at 1 then 0.  When there are multiple evaluations of the effects, as in 
our earlier examples, the iteration takes place over Steps 2-4.  The entire operation is carried out with 
the sequence of values specified with | or &. 
 Every parametric model fit by LIMDEP leaves behind a ‘last model function.’  This will 
usually be a prediction function such as a conditional mean.  Familiar examples are the index 
function, βʹx, for the linear regression, the probabilities for the probit model, Φ(βʹx), or the logit 
model, Λ(βʹx), and the conditional mean for the Poisson and negative binomial models, exp(βʹx).  
There are many others, such as the compound conditional mean functions, for the zero inflated 
Poisson model or the sample selection model.  We denote this function generally as H(x,β) where x 
is the observation vector that includes all variables in the model (both dependent and independent 
and β is the full parameter vector.  The specific model functions that apply for each model are 
described in the Econometric Modeling Guide.  Let β̂  be the sample estimate of β, and let Σ̂  be the 
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estimate of the asymptotic covariance matrix of β̂ .  These, with the specification of the model, itself, 
constitute the last model function noted above.  (Note in the process described in Section R11.4.10, 
you provide these explicitly with your command.)  The average partial effects reported by 
PARTIAL EFFECTS are computed as 
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Derivatives for continuous variables are computed numerically.  The Jacobian required to apply the 
delta method is 
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The elements of the Jacobian are computed numerically.  The estimator of the asymptotic variance 
for a particular partial effect is then ˆ ˆˆ ′J JΣ . 
 
METHODOLOGICAL NOTE:  The computation of the asymptotic variance of the partial effects 
used when the delta method is employed assumes that the exogenous data are given – they are 
treated as constants.  That is, the analysis is done conditionally on the data.  No attempt is made to 
correct the variance of the parameter estimator to account for the possibility that the variation in the 
current sample might be different from that in the estimation sample. 
 
R11.5 Partial Effects Estimated with Models 
 
 The model specification is generally of the form 
 
 Model  ; Lhs = … ; Rhs = list of variables, x $ 
 
In most of the index function models such as regressions, probit, tobit, logit and Poisson models, the 
partial effects are of the form 
 
   δ(β′x,θ)  =  ∂E[y| β′x,θ]/∂x  =  g1(β′x,θ) × β, 
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where g1(β′x,θ) is a scale factor that involves the data and all the model parameters.  The unattached 
parameter, θ, might be the standard deviation, σ in a tobit model or a correlation coefficient, ρ, in a 
sample selection model.  These are usually computed by averaging terms across the sample 
observations, but in some cases, at the means of the full sample instead.  The model may also contain 
additional lists of variables.  For example in a model of heteroscedasticity, an additional function 
might appear, such as 
 
   ; Hfn = list of variables z. 
 
The conditional mean or other function that will be analyzed will then be of the form 
 
   g(x,z) = g(β′x, γ′z, θ) 
 
where β, γ and θ are sets of coefficients.  Partial effects will take the form of scaled coefficients 
 
   ∂g(β′x, γ′z, θ)/∂x  =  g1(β′x, γ′z, θ)β, 

   ∂g(β′x, γ′z, θ)/∂z  =  g2(β′x, γ′z, θ)γ. 
 
If a variable, w, appears in both x and z, then the effects are added to get the partial effect of w.  In 
some cases, the two parts might be of interest.  For example, in a recursive bivariate probit model, 
we can identify separate ‘direct’ and ‘indirect’ effects for some variables.   
 Partial effects for nearly all of the regression, discrete choice, and limited dependent variable 
models (including, for example, multinomial logit models) have been hard coded into LIMDEP.  A 
full set of output (estimate, standard error, t-ratio, prob value, confidence interval) is then reported.  
Estimates are computed either by averaging observations or at the overall means of the data set and 
optionally for the group means for a discrete variable that you may provide (with up to 10 levels).  
To obtain the partial effects based on the observations used to fit the model, use 

 
   ; Partial Effects 
 
In most cases, the partial effects are computed by averaging the effects across observations, 
producing ‘average partial effects.’  You can obtain the calculation done specifically at the sample 
means of the data by adding 
 
   ; Means 
 
to the command. 
 
R11.5.1 Partial Effects for Single Index Models 
 
 The first case noted above will apply in most applications.  The following illustrates for a 
Poisson regression model 
 
 POISSON  ; Lhs = docvis ; Rhs = one,age,educ,married  

; Partial Effects $ 
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----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function    -15974.83216 
Restricted log likelihood  -16398.15386 
Chi squared [   3 d.f.]       846.64341 
Significance level               .00000 
McFadden Pseudo R-squared      .0258152 
Estimation based on N =   4481, K =   4 
Inf.Cr.AIC  =31957.664 AIC/N =    7.132 
Chi- squared = 39732.10834  RsqP= .0376 
G  - squared = 23398.01988  RsqD= .0349 
Overdispersion tests: g=mu(i)  :  8.933 
Overdispersion tests: g=mu(i)^2:  8.809 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .65317***      .06526    10.01  .0000      .52526    .78108 
     AGE|     .02043***      .00080    25.50  .0000      .01886    .02200 
    EDUC|    -.03859***      .00411    -9.40  .0000     -.04663   -.03054 
 MARRIED|    -.10357***      .02069    -5.01  .0000     -.14412   -.06301 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
Effects are averaged over individuals. 
Observations used for means are All Obs. 
Conditional Mean at Sample Point   2.8728 
Scale Factor for Marginal Effects  2.8728 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .05870***      .00271    21.70  .0000      .05340    .06400 
    EDUC|    -.11085***      .01242    -8.93  .0000     -.13519   -.08651 
 MARRIED|    -.30588***      .06515    -4.70  .0000     -.43356   -.17819   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 There are cases in which there is no appropriate conditional mean function to differentiate.  
The ordered choice models are a leading case.  In general, for models of probabilities, LIMDEP 
computes partial effects of the implied probabilities.  In the example below, the dependent variable 
in the ordered probit model takes values 0,1,2, so there are three sets of partial effects. 
 
 OPROBIT ; Lhs = hlthsat ; Rhs = one,age,educ,married 
   ; Partial Effects $ 
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----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              HLTHSAT 
Log likelihood function     -3170.58904 
Restricted log likelihood   -3291.50941 
Chi squared [   3 d.f.]       241.84074 
Significance level               .00000 
McFadden Pseudo R-squared      .0367371 
Estimation based on N =   4481, K =   5 
Inf.Cr.AIC  = 6351.178 AIC/N =    1.417 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 HLTHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.54306***      .14140    17.98  .0000     2.26592   2.82019 
     AGE|    -.02164***      .00171   -12.64  .0000     -.02499   -.01828 
    EDUC|     .05600***      .00834     6.71  .0000      .03965    .07234 
 MARRIED|     .03001         .04450      .67  .5000     -.05720    .11723 
        |Threshold parameters for index 
   Mu(1)|    1.99085***      .05104    39.01  .0000     1.89082   2.09088 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
 HLTHSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
     AGE|     .00066***     2.40368     7.68  .0000      .00049    .00083 
    EDUC|    -.00172***    -1.63481    -5.51  .0000     -.00233   -.00111 
*MARRIED|    -.00094        -.07809     -.66  .5081     -.00371    .00184 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
     AGE|     .00765***      .86788    12.72  .0000      .00647    .00883 
    EDUC|    -.01980***     -.59027    -6.72  .0000     -.02557   -.01403 
*MARRIED|    -.01062        -.02773     -.67  .5002     -.04149    .02025 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
     AGE|    -.00831***     -.59691   -12.72  .0000     -.00959   -.00703 
    EDUC|     .02152***      .40597     6.72  .0000      .01524    .02779 
*MARRIED|     .01156         .01910      .67  .5008     -.02209    .04520 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
When partial effects are reported for probability models such as the ordered probit model above, 
LIMDEP also reports the elasticities of the probabilities with respect to the independent variables.  
These are 
 

 Elasticity = ∂lnProb(…)/∂lnX  =  [Mean X/ Mean Prob(…)] × Partial effect. 
 
The footnote indicates that the confidence interval is given for the partial effect, not the elasticity. 
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R11.5.2 Partial Effects for Dummy Rhs Variables 
 
 Models will often involve binary variables.  The marginal effects described in the preceding 
sections are computed by differentiating the expected value function with respect to the variables in 
the model.  But, one cannot actually differentiate with respect to a dummy variable, and an 
appropriate way to compute an effect for a dummy variable is to compare the values of the function 
with the binary variable set to one and zero.  The appropriate effect for dummy variable z is, then 
 
      δ10  =  Effect of dummy variable z   

    =  f(…|other variables, z = 1)  -  f(…|other variables, z = 0) 

    =  f1(β|x, z = 1) – f0(β|x, z = 0). 
 
In order to obtain the appropriate standard error for this estimate, one would then use the delta 
method applied to this function of the parameters, rather than the one shown earlier.  Thus, the 
asymptotic variance for this estimator would be 
 
   Asy.Var[d01]  =  g10Sg10′ 
where 
   g10  = [∂ f1(β|x,z = 1)/∂β′]  -  [∂ f0(β|x,z = 1)/∂β′] (note, a row vector), 
 
and S is as defined earlier.  This computation is automated in a few cases.  The probit, ordered probit 
and Poisson models shown above all contain dummy variables that are autodetected by the partial 
effects program. The PARTIAL EFFECTS command described in Section R11.3 detects this 
automatically in all cases. 
 
R11.5.3 Standard Errors and Confidence Intervals 
 
 Covariance matrices for marginal effects are computed using the delta method.  When the 
estimated effects vector (using the estimated parameters) is d(x,b,q), we use 
 
       Est.Var[d(x,b,q)]  =  {∂ d(x,q,b) / ∂[b′ q′]} × Est.Asy.Var[b,q] × {∂ d(x,q,b) / ∂[b′ q′]′}. 
 
For example, for the Poisson regression model (which has no θ),  
 
   ∂δ( x,β,θ) / ∂β′  =  ∂exp(β′x)β / ∂β′  = exp(β′x) [ I + βx′ ] = Γ, 
 
which is estimated with G by computing Γ at b and the means of the regressors, while the estimated 
asymptotic covariance matrix is 
 
   Est.Asy.Var[b] = (X′ΛX)-1  =  S, Λ = diag[ exp(b′x) ]. 
 
The standard errors for the reported marginal effects are then the square roots of the diagonal 
elements of V = GSG′.  When the partial effects are computed by averaging over the sample 
observations, the preceding is modified by using the sample average, 1(1 / ) ( , ) /N

i iN = ′ ′= Σ ∂ ∂G d b x θ β .  
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R11.5.4 Significance Tests for Partial Effects 
 
 Marginal effects are reported with standard errors and ‘significance tests’ of their difference 
from zero in the same fashion as the coefficients.  Whether one should test for significance in this 
fashion represents a gap in the orthodoxy.  The raw coefficient in a model such as the Poisson 
regression does not represent the ‘effect’ of the respective ‘x’ on ‘y.’  Arguably, the marginal effect 
measures that.  However, the marginal effect is a hodgepodge of all the coefficients (and some data) 
in the model.  Testing for the significance of the effect is a qualitatively different exercise from 
testing the significance of a coefficient. Testing whether a coefficient is zero is equivalent to testing 
whether a variable is influential in the model, but testing whether a marginal effect is zero is not 
equivalent to that same test.  Consider the results for a Poisson model based on the ship accident data 
examined in Greene (2011) given below.  Note that based on the coefficient estimates, variable 
T6064 is a ‘significant determinant’ of acc.  But, the marginal effect of T6064 on E[y|x] is not 
‘significant,’ by the usual standard.  Does this imply that T6064 should be dropped from the model?  
Researchers differ on this question, but we think not. 
 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable                  ACC 
Log likelihood function       -72.82081 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     ACC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -4.39059***      .71812    -6.11  .0000    -5.79808  -2.98310 
 TYPE=01|    -.23881         .24102     -.99  .3218     -.71119    .23358 
 TYPE=02|    -.54185*        .32155    -1.69  .0920    -1.17208    .08839 
 TYPE=03|   -1.02222***      .34039    -3.00  .0027    -1.68937   -.35508 
 TYPE=04|    -.38893         .30562    -1.27  .2032     -.98794    .21008 
   T6064|    -.57984**       .23952    -2.42  .0155    -1.04930   -.11038 
   T6569|     .12025         .20670      .58  .5607     -.28487    .52537 
   T7074|     .28651         .19745     1.45  .1468     -.10048    .67349 
  LOGMTH|     .87296***      .09947     8.78  .0000      .67800   1.06792 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. With respect to the vector of  
characteristics. Effects are averaged over individuals. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
     ACC|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 TYPE=01|   -2.29509        3.65390     -.63  .5299    -9.45660   4.86641   # 
 TYPE=02|   -6.61880       10.05821     -.66  .5105   -26.33253  13.09492   # 
 TYPE=03|   -7.10538***     2.74487    -2.59  .0096   -12.48522  -1.72554   # 
 TYPE=04|   -3.45041        3.94534     -.87  .3818   -11.18313   4.28230   # 
   T6064|   -5.31897        4.25823    -1.25  .2116   -13.66495   3.02701   # 
   T6569|    1.28127        3.88184      .33  .7413    -6.32700   8.88953   # 
   T7074|    3.18697        4.55099      .70  .4838    -5.73280  12.10674   # 
  LOGMTH|    9.14039***     2.81756     3.24  .0012     3.61808  14.66271 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
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 The marginal effect is a function of all the coefficients in the model.  The large standard 
error is a product of the mixture of all the coefficients and the highly nonlinear function, exp(.), 
which produces the relatively large matrix G in V = GSG′.  In most, but far from all cases the 
‘statistical significance’ of the marginal effects will be roughly the same as that of the corresponding 
coefficient.  It turns out that the significance of the marginal effects is not a function of the point at 
which they are computed (whether the mean of the xs or some other point).  (We draw on a useful 
study by Anderson and Newell (2003).)  If the single index model is fit with the data measured in 
deviations from their means, the identical coefficients, but a different constant term, and the same 
asymptotic covariance matrix save for the row and column corresponding to the constant term will 
be produced.  The marginal effects will be of the form d = f(a)b where a is the estimated constant 
term (and is an element of b) because the part of the index function that corresponds to β′x above 
will be zero for all terms save the constant.  If we now expand the expression for the estimator 
asymptotic variance of dk, we will find this to be 
 
 Est.Asy.Var[dk] = [f(a)]2Est.Asy.Var[bk] + (f′(a)bk)2Est.Asy.Var[a] + 2f(a)bk Est.Cov[a,bk]. 
 
The ratio of dk to its estimated standard error would be the same as that for bk were it not for the 
second and third terms.  So, in part, the statistical significance of the marginal effect for xk hangs on 
the significance of the constant term, which seems hardly relevant to the question.  While this 
clarifies the computation, we see this as a negative result. 

So, should one report significance tests with (and for) marginal effects?  This must be up to 
the researcher – we cannot answer the question here.  In our opinion, based on the preceding, no.  
But, researchers still differ on this question.  As such, LIMDEP reports standard errors and 
significance values for marginal effects.  Whether they should be reported is up to the user. 
 

R11.5.5 Partial Effects in Compound Models 
 
 Models are sometimes constructed in which variables enter in more than one place.  
Consider, for example, a probit model with exponential heteroscedasticity.  The conditional mean in 
this model is 
   E[y|x,z]  = Prob[y=1|x,z] = Φ [ β′x / exp( γ′z) ] 
 
where Φ denotes the standard normal CDF.  In this model, the vectors of partial effects are 
 
   ∂ E[y|x,z] / ∂x =  φ[ β′x / exp( γ′z) ] [1/ exp( γ′z)] × β, 
  

   ∂ E[y|x,z] / ∂z = -φ[ β′x / exp( γ′z) ] [β′x / exp( γ′z)] × γ, 
 
where φ denotes the standard normal density.  These can be computed and tabulated separately.  
However, if x and z have any variables in common, then the marginal effect of that variable on the 
conditional mean is the sum of the two terms.  Where this situation arises, LIMDEP computes the 
sum, then reports that value in both places, since the table of marginal effects is identified generally 
by variable.  The following example shows the results for a heteroscedastic probit model.   
 

PROBIT  ; Lhs = doctor ; Rhs = one,age,educ,married 
; Heteroscedasticity ; Hfn = age,hhninc 
; Partial Effects $ 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -2855.43281 
Restricted log likelihood   -2908.96085 
Chi squared [   5 d.f.]       107.05607 
Significance level               .00000 
McFadden Pseudo R-squared      .0184011 
Estimation based on N =   4481, K =   6 
Inf.Cr.AIC  = 5722.866 AIC/N =    1.277 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .08337**       .03597     2.32  .0205      .01287    .15388 
     AGE|     .00020         .00120      .17  .8654     -.00215    .00256 
    EDUC|    -.00213         .00257     -.83  .4067     -.00717    .00291 
 MARRIED|     .02532         .02130     1.19  .2345     -.01642    .06706 
        |Variance function 
     AGE|    -.04000***      .01335    -3.00  .0027     -.06616   -.01383 
  HHNINC|    1.13784***      .37940     3.00  .0027      .39423   1.88146 
--------+-------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
They are computed at the means of the Xs 
Observations used for means are All Obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00531         .36601      .62  .5355     -.01148    .02210 
    EDUC|    -.00308        -.05576     -.97  .3310     -.00928    .00313 
 MARRIED|     .03653**       .04363     2.11  .0344      .00268    .07039 
        |Variance function 
     AGE|     .00531         .36601      .62  .5355     -.01148    .02210 
  HHNINC|    -.14267        -.07900     -.95  .3426     -.43734    .15200 
--------+-------------------------------------------------------------------- 
Elasticity for a binary variable is marginal effect/Mean. 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
R11.5.6 Partial Effects in a Two Equation Model 
 
 In a few cases involving more than one dependent variable, LIMDEP creates an arrangement 
that is specific to the model at hand.   The bivariate probit model is a common application in which 
each of the two equations may or may not have the multiplicative heteroscedasticity described above.  
In this case, there is no obvious conditional mean, and therefore, no obvious marginal effect.  What 
is reported for this model is a conditional expectation, E[y1|y2=1] which is then a function of both β 
vectors and both γ vectors.  The analysis shown in the following example decomposes the total 
partial effect. 
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The same addition is then done to get the total effect.  This is shown in the table below, 
which then obtains the total effect: 
 

BIVARIATE PROBIT ; Lhs = doctor,public 
    ; Rh1 = one,age,educ,married 
    ; Rh2 = one,educ,hhninc,hhkids 
    ; Heteroscedasticity ; hf1 = age,hhninc 
    ; Partial Effects $ 
 
----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable               DOCPUB 
Log likelihood function     -4299.27255 
Estimation based on N =   4481, K =  11 
Inf.Cr.AIC  = 8620.545 AIC/N =    1.924 
Disturbance model is multiplicative het. 
Var. Parms follow   8 slope estimates. 
For e(1),  2 estimates follow HHKIDS 
--------+-------------------------------------------------------------------- 
  DOCTOR|                  Standard            Prob.      95% Confidence 
  PUBLIC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for DOCTOR 
Constant|     .08350**       .03581     2.33  .0197      .01331    .15369 
     AGE|     .00021         .00303      .07  .9442     -.00572    .00615 
    EDUC|    -.00213         .00384     -.55  .5793     -.00965    .00540 
 MARRIED|     .02566         .04256      .60  .5466     -.05776    .10908 
        |Index    equation for PUBLIC 
Constant|    3.73420***      .12547    29.76  .0000     3.48828   3.98012 
    EDUC|    -.17933***      .00983   -18.24  .0000     -.19860   -.16006 
  HHNINC|   -1.14793***      .14861    -7.72  .0000    -1.43920   -.85665 
  HHKIDS|    -.02191         .05326     -.41  .6808     -.12629    .08247 
        |Variance equation for DOCTOR 
     AGE|    -.03982         .03081    -1.29  .1962     -.10020    .02057 
  HHNINC|    1.13974***      .39091     2.92  .0035      .37357   1.90592 
        |Disturbance correlation 
RHO(1,2)|     .03606         .03318     1.09  .2772     -.02898    .10110 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+------------------------------------------------------+ 
|              Partial Effects for Ey1|y2=1            | 
+----------+---------------------+---------------------+ 
|          | Regression Function |  Heteroscedasticity | 
|          +---------------------+---------------------+ 
|          |   Direct | Indirect |   Direct | Indirect | 
| Variable | Efct  x1 | Efct  x2 | Efct  h1 | Efct  h2 | 
+----------+----------+----------+----------+----------+ 
|      AGE |   .00030 |   .00000 |   .00499 |   .00000 | 
|     EDUC |  -.00304 |   .00071 |   .00000 |   .00000 | 
|  MARRIED |   .03663 |   .00000 |   .00000 |   .00000 | 
|   HHNINC |   .00000 |   .00453 |  -.14270 |   .00000 | 
|   HHKIDS |   .00000 |   .00009 |   .00000 |   .00000 | 
+----------+----------+----------+----------+----------+ 
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----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .632895 
Observations used for means are  All Obs. 
Total effects reported = direct+indirect. 
--------+-------------------------------------------------------------------- 
  DOCTOR|     Partial      Standard            Prob.      95% Confidence 
  PUBLIC|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00529***      .00052    10.23  .0000      .00428    .00630 
    EDUC|    -.00233         .00315     -.74  .4590     -.00850    .00384 
 MARRIED|     .03663**       .01709     2.14  .0321      .00312    .07013 
  HHNINC|    -.13817***      .04845    -2.85  .0043     -.23313   -.04321 
  HHKIDS| .86508D-04         .00023      .38  .7023 -.35704D-03  .53006D-03 
--------+-------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .632895 
Observations used for means are  All Obs. 
These  are the  direct marginal  effects. 
--------+-------------------------------------------------------------------- 
  DOCTOR|     Partial      Standard            Prob.      95% Confidence 
  PUBLIC|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00529***      .00052    10.23  .0000      .00428    .00630 
    EDUC|    -.00304         .00306     -.99  .3214     -.00904    .00297 
 MARRIED|     .03663**       .01709     2.14  .0321      .00312    .07013 
  HHNINC|    -.14270***      .04840    -2.95  .0032     -.23756   -.04785 
  HHKIDS|       .000    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .632895 
Observations used for means are  All Obs. 
These are the indirect  marginal effects. 
--------+-------------------------------------------------------------------- 
  DOCTOR|     Partial      Standard            Prob.      95% Confidence 
E[y1|x,z|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|       .000    .....(Fixed Parameter)..... 
    EDUC|     .00071         .00065     1.08  .2789     -.00057    .00199 
 MARRIED|       .000    .....(Fixed Parameter)..... 
  HHNINC|     .00453         .00425     1.07  .2865     -.00380    .01287 
  HHKIDS| .86508D-04         .00023      .38  .7023 -.35704D-03  .53006D-03 
--------+-------------------------------------------------------------------- 
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R11.5.7 Partial Effects in a Model with Direct and Indirect Effects 
 
 Lastly, there are models in which the effects can be identified as being ‘direct’ or ‘indirect.’  
The basic sample selection model is a leading case.  The model is a two equation structure, 
 
   d = 1[γ′z + u > 0] 

   y = β′x + ε 

   E[y|x,z,d=1]  =  β′x  +  (ρσ)λ(γ′z). 
 
where λ(γ′z) is based on the probability of selection into the sample.  In this case, the direct partial 
effect of x on the regression part and the indirect partial effect on the probability part might be of 
separate interest.  The reported effects would appear as in the example below: 
 
----------------------------------------------------------------------------- 
Sample Selection Model............................ 
Two step     least squares regression ............ 
LHS=DOCVIS   Mean                 =        2.99463 
Correlation of disturbance in regression 
and Selection Criterion (Rho)...........   -.75369 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|   -1.64343        1.04388    -1.57  .1154    -3.68940    .40254 
     AGE|     .06510***      .00768     8.47  .0000      .05004    .08016 
    EDUC|     .26222**       .10182     2.58  .0100      .06265    .46178 
 MARRIED|    -.32185         .20265    -1.59  .1122     -.71904    .07534 
  LAMBDA|   -4.29958***     1.23383    -3.48  .0005    -6.71784  -1.88132 
--------+-------------------------------------------------------------------- 
Partial effects of E[y] = Xb + c*L   with respect to the vector of 
characteristics. They are computed at the means of the Xs. Means for direct 
effects are for selected observations. Means for indirect effects are the  
full sample used for the probit. If a variable appears in both Xb and in L 
the second effect shown in the table is b + c*dL/dx = direct+indirect. 
--------+-------------------------------------------------------------------- 
        |     Partial      Standard            Prob.      95% Confidence 
  DOCVIS|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Direct effects in the regression 
     AGE|     .06510***      .00768     8.47  .0000      .05004    .08016 
    EDUC|     .26222**       .10182     2.58  .0100      .06265    .46178 
 MARRIED|    -.32185         .20265    -1.59  .1122     -.71904    .07534 
        |Indirect effects in LAMBDA (means are for all obs.) 
    EDUC|    -.22298***      .07472    -2.98  .0028     -.36943   -.07653 
  HHNINC|   -1.42584***      .45069    -3.16  .0016    -2.30918   -.54251 
  HHKIDS|    -.02788         .07490     -.37  .7097     -.17469    .11892 
        |Total effect for variables in both parts 
    EDUC|     .03924         .12630      .31  .7560     -.20830    .28677 
--------+-------------------------------------------------------------------- 
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R12: Model Predictions, Residuals, 
Simulations and Decompositions  

 
R12.1 Introduction 
 

 This chapter will describe using the estimated model for prediction of the dependent 
variable.  This involves several possible exercises.  Section R12.2 discusses using the estimated 
model in the natural fashion to obtain fitted values for the dependent variable based on the data used 
to fit the model.  Chapter R11 described analyses of scenarios for computing partial effects based on 
the last model estimated.  Sections R12.3 and R12.4 continue that analysis by demonstrating how to 
use the estimated model to make predictions of the dependent variable under assumptions about the 
independent variable.  For example, you might examine how the average prediction of a wage 
equation differs between men and women.  Finally, Section R12.5 extends the analysis of the 
estimated model by showing how to compute the Oaxaca decomposition of differences in model 
predictions across two groups. 
 

R12.2 Creating and Displaying Predictions and Residuals 
 

 Many of the single equation models in LIMDEP, though not all, contain a natural ‘dependent 
variable.’  Model predictions for any such model are easily obtained as discussed below.  What 
constitutes a residual in these settings is ambiguous, but, once again, some construction that typically 
reflects a deviation of an actual from a predicted value can often be retained.  The exact definition of 
a ‘fitted value’ and a ‘residual’ are given with the model descriptions in the Econometric Modeling 
Guide.  The benchmark case is the linear regression model, 
 

   yi  =  βʹxi  +  εi 
 

for which the natural prediction is ˆiy = bʹxi and the residual is ei = yi - ˆiy , where b is the estimated 
parameter vector.  In many other cases, the predictor is only one possible function.  For example, for 
the binary logit model, Prob(yi = 1|xi) = Λ(βʹxi), one possible predictor is the conditional mean 
function, which is the probability, while another is ˆiy  = 1  if Λ(bʹxi) > 0.5 (or some other chosen 
value) and 0 otherwise.  In either case, there is no obvious function to call the residual.  As noted, 
when it is possible to define a candidate for predicting the dependent variable, you can save 
predictions after estimation. 
 There are several options for computing and saving fitted values from the regression models.  
You may request fitted values and/or residuals for almost any model.  (The usual exceptions are, e.g., 
multiple equation models.)  The fitted values are requested by adding 
 

   ; Keep  =  name 
 

to your model command.  The request for residuals is 
 

   ; Res  =  name 
 

In each of these cases, the command will overwrite the variable if it already exists, or create a new one.  
In any model command, the following specification requests a listing of the residuals and several other 
variables:  
   ; List 
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TIP:  To keep fitted values in a text file, you can either use ; List with an output file or use WRITE 
and write the values in their own file or LIST ; variable $. 
 

 If the current sample is not the entire data set, and the data array contains observations on the 
regressors but not the dependent variable, you can produce predicted values for these out of sample 
observations by adding the specification 
 

   ; Fill 
 

to your model command.  The specifications ; Res, ; Keep, and ; Fill do not compute values for any 
observations for which any variable to be used in the calculation is missing (i.e., equals -999).  
Otherwise, a prediction is computed for every row for which data can be found. 
 

TIP:  The specification ; Fill provides a very simple way of generating out of sample predictions. 
 

 To provide an example of the ; Fill feature, we will examine some data on gasoline sales in 
the U.S. before and after the 1973-1974 oil embargo.  The data below are yearly series on gasoline 
sales (g), per capita income (y), and index numbers for a number of prices: pg is the gasoline price, 
pnc, puc, and ppt are price indices for new and used cars and public transportation, and pn, pd, and 
ps are aggregate price indices for nondurables, durables, and services. 
 

IMPORT $ 
year,    g,    pg,    y,  pnc,    puc,   ppt,    pd,    pn,    ps 
1960 129.7   .925  6036  1.045   .836   .810   .444   .331   .302 
1961 131.3   .914  6113  1.045   .869   .846   .448   .335   .307 
1962 137.1   .919  6271  1.041   .948   .874   .457   .338   .314 
1963 141.6   .918  6378  1.035   .960   .885   .463   .343   .320 
1964 148.8   .914  6727  1.032  1.001   .901   .470   .347   .325 
1965 155.9   .949  7027  1.009   .994   .919   .471   .353   .332 
1966 164.9   .970  7280   .991   .970   .952   .475   .366   .342 
1967 171.0  1.000  7513  1.000  1.000  1.000   .483   .375   .353 
1968 183.4  1.014  7728  1.028  1.028  1.046   .501   .390   .368 
1969 195.8  1.047  7891  1.044  1.031  1.127   .514   .409   .386 
1970 207.4  1.056  8134  1.076  1.043  1.285   .527   .427   .407 
1971 218.3  1.063  8322  1.120  1.102  1.377   .547   .442   .431 
1972 226.8  1.076  8562  1.110  1.105  1.434   .555   .458   .451 
1973 237.9  1.181  9042  1.111  1.176  1.448   .566   .497   .474 
1974 225.8  1.599  8867  1.175  1.226  1.480   .604   .572   .513 
1975 232.4  1.708  8944  1.276  1.464  1.586   .659   .615   .556 
1976 241.7  1.779  9175  1.357  1.679  1.742   .695   .638   .598 
1977 249.2  1.882  9381  1.429  1.828  1.824   .727   .671   .648 
1978 261.3  1.963  9735  1.538  1.865  1.878   .769   .719   .698 
1979 248.9  2.656  9829  1.660  2.010  2.003   .821   .800   .756 
1980 226.8  3.691  9722  1.793  2.081  2.516   .892   .894   .839 
1981 225.6  4.109  9769  1.902  2.569  3.120   .957   .969   .926 
1982 228.8  3.894  9725  1.976  2.964  3.460  1.000  1.000  1.000 
1983 239.6  3.764  9930  2.026  3.297  3.626  1.041  1.021  1.062 
1984 244.7  3.707 10421  2.085  3.757  3.852  1.038  1.050  1.117 
1985 245.8  3.738 10563  2.152  3.797  4.028  1.045  1.075  1.173 
1986 269.4  2.921 10780  2.240  3.632  4.264  1.053  1.069  1.224 

 

We will compute simple regressions of g on one, pg, and y.  The first regression is based on the pre-
embargo data, 1960 - 1973, but fitted values are produced for all 27 years.  The second regression 
uses the full data set and also produces predicted values for the full sample.  We then plot the actual 
and both predicted series on the same figure to examine the influence of the later data points. 
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 DATE   ; 1960 $ 
 PERIOD ; 1960 - 1973 $ 
 REGRESS ; Lhs = g ; Rhs = one, pg, y ; Keep = gfit6073 ; Fill $ 
 PERIOD ; 1960 - 1986 $ 
 REGRESS ; Lhs = g ; Rhs = one, pg, y ; Keep = gfit6086  $ 
 PLOT  ; Rhs = g, gfit6073, gfit6086 ; Grid  

; Title = Actual and Predicted Values of Gasoline Sales 
; Vaxis = Predictions and Actual Values $ 

 

 
 

 The modeling guide will detail the formulas used in computing predictions, residuals, and 
accompanying information. When you use ; List, some additional information will be displayed in 
your output.  In some cases, there is no natural residual or prediction to be computed, for example in 
the bivariate probit model. In these cases, an alternative computation is done, so what is requested by 
; Res or ; Keep may not actually be a residual or a fitted value.  Individual model descriptions will 
provide details.  In general, the ; List specification produces the following: 
 

1. An indicator of whether the observation was used in estimating the model.   
If not, the observation is marked with an asterisk, 

2. The observation number or date if the data are time series, 
3. The observed dependent variable when this is well defined, 
4. The ‘fitted value’ = variable retained by ; Keep,  
5. The ‘residual’ = variable retained by ; Res, 
6. ‘variable 1,’ a useful additional function of the model which is not kept, and 
7. ‘variable 2,’ another computation. 

 

 Although the last two variables are not kept internally, they are written to your output window 
and to the output file if one is open, so you can retrieve them later by editing the file with a word 
processor.  In all cases, the formulas for these variables will be given, so if you need to have them at 
the time they are computed, you can use a subsequent CREATE command to obtain the variables. 
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 We illustrate these computations with a Poisson regression and with the out of sample 
predictions generated by the regression above.  The POISSON command would be 
 

 POISSON ; Lhs = …  ; Rhs = … ; List $ 
 

The following table results and items listed for the Poisson model are: 
 

 Actual:     y,  Prediction: E[y]  =  exp(b′x), 
 Residual:  y  -  E[y], Index:  b′x, 
 Probability: Pr[Y = y] = exp(-λ)λy/y!, λ = E[y]. 
 
Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual         x(i)b    Pr[Y*=y] 
        7          1.0000000    1.9798297    -.9798297     .6830109     .2734001 
       11          3.0000000     .5306525    2.4693475    -.6336479     .0146494 
       14          2.0000000     .2027126    1.7972874   -1.5959661     .0167762 
       19          1.0000000     .5892748     .4107252    -.5288626     .3268881 
       22            .000000    1.5780671   -1.5780671     .4562007     .2063736 
       27            .000000    2.7696027   -2.7696027    1.0187039     .0626869 
       30            .000000    2.7215365   -2.7215365    1.0011966     .0657736 
       32            .000000    2.1277174   -2.1277174     .7550497     .1191089 
       36            .000000    3.1435090   -3.1435090    1.1453397     .0431312 
       40            .000000     .2942943    -.2942943   -1.2231751     .7450572 
 

For a linear regression, the listed items are the familiar ones: 
 

 PERIOD ; 1960 - 1973 $ 
 REGRESS ; Lhs = g ; Rhs = one, pg, y ; Keep = gfit6073 ; List ; Fill $ 
 
Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual     95% Forecast Interval 
  1960             129.70000    127.97574    1.7242571    113.55855    142.39293 
  1961             131.30000    129.46848    1.8315196    115.86233    143.07464 
  1962             137.10000    134.79680    2.3032016    121.53562    148.05797 
  1963             141.60000    138.04485    3.5551485    124.97181    151.11789 
  1964             148.80000    148.57831     .2216922    134.92510    162.23151 
  1965             155.90000    160.79099   -4.8909945    147.75083    173.83116 
  1966             164.90000    170.39062   -5.4906219    157.42443    183.35681 
  1967             171.00000    180.10723   -9.1072289    167.41426    192.80019 
  1968             183.40000    187.94904   -4.5490359    175.14474    200.75334 
  1969             195.80000    195.73348     .0665187    182.92095    208.54601 
  1970             207.40000    204.03594    3.3640592    191.12778    216.94410 
  1971             218.30000    210.46229    7.8377141    197.31386    223.61072 
  1972             226.80000    219.00002    7.7999808    205.47309    232.52695 
  1973             237.90000    242.56621   -4.6662105    226.75788    258.37454 
* 1974             225.80000    271.46293   -45.662927    197.85242    345.07343 
* 1975             232.40000    282.81499   -50.414993    193.97954    371.65044 
* 1976             241.70000    295.83796   -54.137957    199.16406    392.51186 
* 1977             249.20000    310.71199   -61.511988    201.13776    420.28621 
* 1978             261.30000    328.38475   -67.084753    210.89623    445.87328 
* 1979             248.90000    388.24798   -139.34798    168.33937    608.15660 
* 1980             226.80000    469.95448   -243.15448    93.674489    846.23447 
* 1981             225.60000    505.76061   -280.16061    67.359617    944.16161 
* 1982             228.80000    486.72655   -257.92655    80.042437    893.41066 
* 1983             239.60000    482.42593   -242.82593    97.683078    867.16878 
* 1984             244.70000    493.02438   -248.32438    122.68188    863.36689 
* 1985             245.80000    499.99091   -254.19091    126.69249    873.28934 
* 1986             269.40000    439.61912   -170.21912    191.30350    687.93473 
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R12.3 The Last Model 
 
 The model used for the PARTIAL EFFECTS operation described in Chapter R11 is the last 
one that you estimated.  This will be obvious from the results in your output window, though it is 
necessary to be specific about which function is being used.  In nearly all cases, that function is a 
predictor for the dependent variable.  Section R12.4 shows how to use that function to produce 
predictions for the model and analyze different scenarios, similar to the partial effects analysis in 
Chapter R11.  In this case, the operation will be to SIMULATE the dependent variable. 

For example, consider a logit model, fit with 
 

LOGIT ; Lhs = doctor  
; Rhs = one, age, age^2, sex, income, sex*income $ 

 
The function used for the simulations will the logit probability, 
 
 Last model = Λ(βʹx)  =  Prob(Lhs variable = 1). 
 
which is the conditional mean function.  There is a specific function used for each model for which 
you can use PARTIAL EFFECTS and SIMULATE.  These are documented in the Econometric 
Modeling Guide for the particular models.  At any time, you can find out what function is being used 
for the SIMULATE command by using the command 
 
 LAST MODEL $ 
 
For our logit example, the response would be 
 
--> LAST MODEL $ 
The last estimated model is Logit Probability Function 
 

In most cases, the function used is the conditional mean function.  But, in some cases, such 
as the ordered probit or logit models, there a numerous probability functions.  For this particular 
case, the default function is the probability of the highest outcome, for example, 
 
--> OPROBIT ; Lhs = hsat ; Rhs = one,age,educ $ 
--> LAST MODEL $ 
The last estimated model is Ordered Probit     Probability Y =10 
 
The ordered probit models are a special case.  The highest category is usually the one of interest.  
You can change this by using 
 
   ; Outcome = value (0,1,…) 
  
NOTE:  There is a default function for each model that SIMULATE may be used with.  However, 
you can specify a different function to be analyzed.  The alternative function need not even be a 
model. It can be any function you can specify with the command language.  SIMULATE can 
analyze any variable in any function that is computed using data and parameters.  Section R12.4.3 
describes how to supply your own function to be analyzed. 
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R12.4 Using SIMULATE with the Last Model 
 
 Use SIMULATE after estimating a model to compute the average prediction of the 
dependent variable (or the average function value for the function saved by the last model).  For 
example, the following fits a logit model, then computes the average predicted probability: 
 
 NAMELIST  ; xprobit = one, age, educ, income, income^2, age*income, hsat $ 
 PROBIT  ; Lhs = doctor ; Rhs = xprobit $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -2727.43478 
Restricted log likelihood   -2908.96085 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .86475***      .23176     3.73  .0002      .41050   1.31899 
     AGE|     .01642***      .00422     3.89  .0001      .00815    .02469 
    EDUC|    -.00166         .00872     -.19  .8494     -.01875    .01544 
  INCOME|     .83966         .59137     1.42  .1557     -.31941   1.99874 
        |Constructed variable INCOME^2.0 
_ntrct01|    -.06449         .25065     -.26  .7970     -.55576    .42678 
        |Interaction AGE*INCOME 
_ntrct02|    -.02484**       .01176    -2.11  .0346     -.04789   -.00179 
    HSAT|    -.15719***      .00985   -15.95  .0000     -.17650   -.13787 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 SIMULATE $ 
 
--------------------------------------------------------------------- 
Model Simulation Analysis for Probit Probability Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avg. function       .64718     .00686   94.33      .63373      .66062 
 
Like PARTIAL EFFECTS, simulations are computed by averaging over the sample observations.  
You can, instead, compute the simulated value at the means of the data by adding 
 
   ; Means 
 
To the SIMULATE command.  Weights may be used with 
 
   ; Wts = the weighting variable 
 
See Section R11.4.11 for further details of weighted observations in simulations. 
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R12.4.1 The Sample Used in the Simulation 
 
 You may use the estimation sample or any other defined sample for the simulations.  After 
the last model is estimated, you may proceed immediately to the simulations using the estimation 
sample, or change the sample in any way with SAMPLE, REJECT or INCLUDE.  The sample 
used for estimating the model need not be related to the sample used for the simulation. 
 You can save the results of the simulation by adding 
 
   ; Keep 
 
to the SIMULATE command.  This will create two variables in your data set, function and se_fnctn 
that contain the predictions and estimated standard errors of the predictions for the observations in 
the current sample.  (Note, once again, the current sample need not be the one used to fit the model.)  
For example, 
 
 INCLUDE ; New ; female = 1 $ 
 PROBIT ; Lhs = doctor ; Rhs = x $ 
 INCLUDE ; New ; female = 0 $ 
 SIMULATE ; Keep $ 
 
fits the model using the observations for which female equals one, then simulates the model for the 
observations for which female equals zero.  The fitted values for the male half of the sample are 
generated using the coefficients computed with the female half of the sample. 
 
R12.4.2 Scenarios in Simulations 
 
 The SIMULATE command operates the same way that PARTIAL EFFECTS does.  The 
command used to examine different scenarios is 
 
 SIMULATE  ; Scenario  
     | variable  = list of values          and/or 
    & variable  = range of values     and/or 
    @ variable = set of discrete values $ 
 
To continue our earlier example, we will simulate the average probability for ages 20, 25, 30, …, 80. 
 
 SIMULATE ; Scenario & age = 20 (5) 80 $ 
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--------------------------------------------------------------------- 
Model Simulation Analysis for Probit Probability Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avg. function       .64718     .00686   94.33      .63373      .66062 
AGE     = 20.00     .50846     .03750   13.56      .43497      .58195 
AGE     = 25.00     .53929     .02966   18.18      .48116      .59742 
AGE     = 30.00     .56990     .02189   26.03      .52700      .61281 
AGE     = 35.00     .60012     .01454   41.28      .57163      .62862 
AGE     = 40.00     .62977     .00856   73.58      .61300      .64655 
AGE     = 45.00     .65868     .00734   89.72      .64429      .67307 
AGE     = 50.00     .68671     .01164   59.02      .66390      .70952 
AGE     = 55.00     .71371     .01718   41.55      .68005      .74738 
AGE     = 60.00     .73957     .02253   32.83      .69542      .78372 
AGE     = 65.00     .76418     .02732   27.97      .71063      .81774 
AGE     = 70.00     .78747     .03144   25.04      .72584      .84910 
AGE     = 75.00     .80937     .03482   23.24      .74112      .87761 
AGE     = 80.00     .82983     .03744   22.17      .75645      .90321 
 
The settings for the scenarios are defined in Sections R11.4.5 and R11.4.8.  You may also use 
 
   ; Plot and ; Plot(ci) 
 
As described in Section R11.4.6.  The preceding scenario shows the effect of age on the average 
probability graphically. 
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R12.4.3 Defining the Model for SIMULATE 
 
 The function that LIMDEP uses for SIMULATE is the model left behind by the previous 
model command.  The model will remain in place until another fitted model changes its place.  
However, you can specify your own model, or function – it need not be a model; this can be any 
function that you wish to analyze.  The additional information in the command is 
 
   ; Function  = any user defined function 
   ; Covariance  = matrix 
   ; Parameters  = set of values 
   ; Labels  = names of parameters 
 
This is the same as described for PARTIAL EFFECTS in Section R11.4.13.  The function 
definition is any function that you wish to specify using the same form as MAXIMIZE, NLSQ, 
WALD, etc.  The function is assumed to involve an estimated parameter vector for which you also 
have in hand an estimated covariance matrix.  The labels are provided so that you can differentiate 
between parameters and all the other numeric entities that can appear in the function. 
 To illustrate, we examine the behavior of the hazard function suggested in Section R11.4.13.  
The model is 
 
   Prob(y = 1 | x) = Φ(βʹx). 
 
The hazard function is 
 
   h(βʹx)  =  -dlnΦ(-βʹx)/d(βʹx)  =  φ(βʹx)/[1 – Φ(βʹx)]. 
 
This is not a conditional mean function, but it might nonetheless be interesting.   To continue our 
example, we will employ this template and simulate the hazard function for a probit model.  The 
income variable in our model enters the function nonlinearly in several terms.  Step 1 is definition 
and estimation of the model 
 
 NAMELIST  ; xprobit = one, age, educ, income, income^2, age*income, hsat $ 

PROBIT  ; Lhs = doctor ; Rhs = xprobit $ 
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Normal exit:   4 iterations. Status=0, F=    2727.435 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -2727.43478 
Restricted log likelihood   -2908.96085 
Chi squared [   6 d.f.]       363.05212 
Significance level               .00000 
McFadden Pseudo R-squared      .0624024 
Estimation based on N =   4481, K =   7 
Inf.Cr.AIC  = 5468.870 AIC/N =    1.220 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .86475***      .23176     3.73  .0002      .41050   1.31899 
     AGE|     .01642***      .00422     3.89  .0001      .00815    .02469 
    EDUC|    -.00166         .00872     -.19  .8494     -.01875    .01544 
  INCOME|     .83966         .59137     1.42  .1557     -.31941   1.99874 
        |Constructed variable INCOME^2.0 
_ntrct01|    -.06449         .25065     -.26  .7970     -.55576    .42678 
        |Interaction AGE*INCOME 
_ntrct02|    -.02484**       .01176    -2.11  .0346     -.04789   -.00179 
    HSAT|    -.15719***      .00985   -15.95  .0000     -.17650   -.13787 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Step 2 is the simulation. 
 
 SIMULATE  ; Labels = b1,b2,b3,b4,b5,b6,b7 
   ; Parameters = b 

  ; Covariance = varb 
  ; Function = bx = b1'xprobit | 
    cdf  = Phi(bx)      | 
    pdf  = N01(bx)     | 
    pdf/(1-cdf) 
  ; Scenario & age = 20(5)65  

   ; Plot(ci) $ 
 
The function is defined recursively purely for convenience.  The same results would be produced by 
; Function = N01(b1’x)/(1 - Phi(b1’x)); we decomposed it above to illustrate how to compute a 
complicated function in parts.  The simulation and a plot with 95% confidence limits are as follows: 
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--------------------------------------------------------------------- 
Model Simulation Analysis for User Specified Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avg. function      1.09003     .01444   75.47     1.06172     1.11834 
AGE     = 20.00     .82799     .06358   13.02      .70336      .95261 
AGE     = 25.00     .88087     .05191   16.97      .77912      .98262 
AGE     = 30.00     .93515     .03975   23.53      .85724     1.01306 
AGE     = 35.00     .99076     .02756   35.95      .93674     1.04478 
AGE     = 40.00    1.04764     .01713   61.17     1.01408     1.08121 
AGE     = 45.00    1.10574     .01544   71.60     1.07547     1.13601 
AGE     = 50.00    1.16499     .02549   45.70     1.11503     1.21496 
AGE     = 55.00    1.22535     .03974   30.84     1.14746     1.30323 
AGE     = 60.00    1.28675     .05544   23.21     1.17808     1.39542 
AGE     = 65.00    1.34914     .07197   18.75     1.20809     1.49020 
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R12.5 Oaxaca-Blinder Decompositions 
 
 The Oaxaca (1973) - Blinder (1973) decomposition is useful for examining the following 
situation:  A model is fit for two groups (male/female, country A/country B, firm 1/firm2, etc.).  The 
average predictions of the two models are Ay and By .  We are interested in explaining the 
difference, Ay  - By .  Much of the applicable literature is in labor economics, where the difference 
pertains to wage differences and the predictors are human capital variables such as age, education 
and experience.  Consistent with the development in Section R12.4, write this difference as 
 
   ( , ) ( , )A B A A B By y h b x h b x− = − . 
 
The question pursued by this technique is whether the difference is better explained, in general terms, 
by the difference between the coefficients, bA - bB or the difference between the covariates, xA - xB.  In 
labor market applications such as Oaxaca’s and Blinder’s, the latter term is attributed to productivity 
and the residual is variously associated with labor market discrimination. 
 Most of the received literature on the decomposition focuses on the linear regression model.  
Our implementation of the method is general, and applies to any model that can be simulated using 
the SIMULATE command described in Section R12.4.  The central idea behind the calculations is a 
term such as ( , )B Ah b x  which is the mean outcome for group A if they had group B’s coefficients, 
and the reverse.  For the Oaxaca-Blinder approach, the difference in mean outcomes can be written 
 

   
( , ) ( , )

             ( , ) ( , ) ( , ) ( , ) .
A B A A B B

A A A B A B B B

y y h b x h b x

h b x h b x h b x h b x

− = −

   = − + −   
 

 
The first bracketed term is attributed to the difference in the data and the second is attributed to 
differences in the coefficients – we label these ‘Due to data’ and ‘Due to beta’ in the results of the 
procedure.  The use of group A (with coefficients bA) as the reference group for the decomposition is 
arbitrary, of course.  Unfortunately, the decomposition is not crisp and symmetric even in the linear 
case.  Several other approaches have been suggested.  Daymont and Andrisani (1984) essentially 
reverse the roles of A and B, changing the viewpoint of the computation from A to B; 
 

   
( , ) ( , )

             ( , ) ( , ) ( , ) ( , )
A B A A B B

B A B B A A B A

y y h b x h b x

h b x h b x h b x h b x

− = −

   = − + −   
 

 
 A third approach, also proposed by Daymont and Andrisani (1984), suggests a three part 
decomposition that recognizes the possibility of an ‘interaction’ between coefficients and 
‘endowments,’ 
 

   

{ }

( , ) ( , )

              ( , ) ( , ) ( , ) ( , )

                + ( , ) ( , ) ( , ) ( , )

A B A A B B

B A B B A B B B

A A B A A B B B

y y h b x h b x

h b x h b x h b x h b x

h b x h b x h b x h b x

− = −

   = − + − +   

   − − −   
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In the linear model, the third part of this ‘three fold decomposition’ can be written as (bA-bB)(xA-xB).  
This neat construction does not carry over to nonlinear models.  Finally, Oaxaca and Ransom (1994, 
1998) and Neumark (1988) suggested basing the calculation on a common reference coefficient 
vector we’ll label b*, so that 
 

   * *

* *

( , ) ( , )

             ( , ) ( , )

                 ( , ) ( , ) ( , ) ( , ) .

A B A A B B

A B

A A A B B B

y y h b x h b x

h b x h b x

h b x h b x h b x h b x

− = −

 = − + 
   − + −   

 

 
There is a pertinent question in this form of the model as to what should be used for the reference 
coefficient vector.  Once again, attention focuses on the linear model, with various suggestions for a 
weighted average of bA and bB by Reimers (1983) (50% each), Cotton (1988) (the proportion of the 
full number of observations in each subsample), a matrix weighted average by Oaxaca and Ransom 
(1994) and the pooled estimator by Neumark (1988).  We have adopted the last of these in our 
implementation in view of the idea that the usual application here will not be for the linear 
regression. 
 In order to compute the decompositions, it is necessary to fit the model three times, once 
with each subsample and then with the pooled sample.  The syntax is 
 
 Model  ; For [variable = *,0,1] ; … the rest of the model $ 
 DECOMPOSE $ 
 
The ‘; For [..]’ part of the model command specifies a discrete variable that takes at least the two 
values shown in your command.  These need not be exhaustive, though typically the variable will be 
a dummy variable, such as female in our example below, that splits the full sample. The ‘*’ indicates 
the pooled sample.  For example, if your sample were grouped into five industries coded industry = 
1,2,3,4,5 and you wished to compare industries 2 and 3, you could use 
 
   ; For [industry = *,2,3] ; … 
 
The model is any model that leaves behind a last model specification that can be used for the 
decomposition.  In general, there are no other specifications for the DECOMPOSE command.  In a 
few cases, it is necessary to provide an additional specification to complete the function definition.  
For example, if you fit an ordered probit model for hsat with, say, 11 categories coded 0,1,…,10, 
then 
 
 ORDERED ; For [female = *,0,1] ; Lhs = hsat ; Rhs = … $ 
 DECOMPOSE $ 
 
the decomposition would be applied to the probability for the last (hsat = 10) category.  You could 
change this to the hsat = 8 category with 
 
 DECOMPOSE ; Outcome = 8 $ 
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The other specific cases are the multinomial logit model and the bivariate probit models. These are 
noted in the applicable chapter in the Econometric Modeling Guide. 
 To illustrate, we start with a fairly involved probit model which we fit with the pooled 
sample, then we examine the average predicted probability for the two subsamples female = 0 and 
female = 1; 
 
 NAMELIST  ; xprobit = one, age, educ, income, income^2, age*income, hsat $ 

PROBIT  ; Lhs = doctor ; Rhs = xprobit $ 
 SIMULATE ; Scenario @ female = 0,1 $ 
 
The simulation seems to suggest that the average probabilities are essentially the same for the two 
groups.  However, as we shall find, this masks a considerable underlying difference. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -2728.93368 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .86533***      .23148     3.74  .0002      .41163   1.31903 
     AGE|     .01648***      .00421     3.91  .0001      .00822    .02474 
    EDUC|    -.00218         .00871     -.25  .8024     -.01924    .01489 
  INCOME|     .85493         .58931     1.45  .1469     -.30010   2.00996 
        |Constructed variable INCOME^2.0 
_ntrct01|    -.06908         .25004     -.28  .7823     -.55915    .42100 
        |Interaction AGE*INCOME 
_ntrct02|    -.02501**       .01175    -2.13  .0332     -.04803   -.00199 
    HSAT|    -.15706***      .00985   -15.94  .0000     -.17637   -.13775 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------------------------------------------------------------------- 
Model Simulation Analysis for Probit Probability Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Subsample for this iteration is FEMALE   =  0   Observations:    2313 
Avg. function       .64008     .00705   90.83      .62627      .65390 
Subsample for this iteration is FEMALE   =  1   Observations:    2170 
Avg. function       .65460     .00690   94.92      .64109      .66812 
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 The next set of instructions fits the models separately for the two groups and compares the 
three coefficient vectors.  There does seem to be a substantive difference across the two groups.  The 
two simulations based on separate coefficient vectors now show that the average predicted 
probabilities differ by about 20% (from 0.59 to 0.71). 
 

INCLUDE  ; New ; year = 1988 & female = 0 $ 
PROBIT  ; Quietly ; Lhs = doctor ; Rhs = xprobit ; Table = Male $ 
SIMULATE   $ 
INCLUDE  ; New ; year = 1988 & female = 1 $ 
PROBIT  ; Quietly ; Lhs = doctor ; Rhs = xprobit ; Table = Female $ 
SIMULATE  $ 
INCLUDE  ; New ; year = 1988 $ 
PROBIT  ; Quietly ; Lhs = doctor ; Rhs = xprobit ; Table = Pooled $ 
REVIEW ; Model = male, female, pooled ; Title = Estimated Probit Models $ 

 
+----------------------------------------------------------------------------+ 
|                          Estimated Probit Models                           | 
+----------+---------------------+---------------------+---------------------+ 
|          |          MALE       |         FEMALE      |         POOLED      | 
+----------+---------------------+---------------------+---------------------+ 
| Variable |  Parameter|  t-ratio|  Parameter|  t-ratio|  Parameter|  t-ratio| 
+----------+-----------+---------+-----------+---------+-----------+---------| 
| Constant |      .8705|    2.810|      .6631|    1.844|      .8655|    3.739| 
| AGE      |      .0161|    2.709|      .0147|    2.371|      .0165|    3.914| 
| EDUC     |     -.0042|    -.361|      .0287|    2.016|     -.0022|    -.249| 
| INCOME   |      .4734|     .611|     1.1573|    1.253|      .8548|    1.450| 
| _ntrct01 |     -.1300|    -.370|     -.0821|    -.227|     -.0691|    -.276| 
| _ntrct02 |     -.0157|    -.982|     -.0308|   -1.713|     -.0250|   -2.129| 
| HSAT     |     -.1731|  -12.719|     -.1437|   -9.925|     -.1571|  -15.947| 
+----------+-----------+---------+-----------+---------+-----------+---------+ 
--------------------------------------------------------------------- 
Model Simulation Analysis for Probit Probability Function 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Subsample for this iteration is FEMALE   =  0   Observations:    2311 
Avg. function       .58558     .00974   60.10      .56648      .60467 
Subsample for this iteration is FEMALE   =  1   Observations:    2170 
Avg. function       .71256     .00943   75.52      .69407      .73105 
 
 Finally, the decomposition is produced by 
 
 PROBIT  ; For [female = *,0,1] ; Lhs = doctor ; Rhs = xprobit $ 
 DECOMPOSE $ 
 
The results shown below decompose the difference by the several methods suggested earlier.  As 
part of the output, a chi squared (Wald) test of the difference between the two coefficient vectors.  In 
this application, the hypothesis that the two coefficient vectors are the same is decisively rejected.  
The decomposition analysis follows.  It appears that for these data and this application, the large 
majority of the difference between the average predictions is explained by variation in the 
coefficients rather than variation in the data. 
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------------------------------------------------------------------- 
Decomposition of Changes in Average Functions 
Model Used in Computations = Probit Probability Function 
------------------------------------------------------------------- 
               Sample is FEMALE  = 0         FEMALE  = 1     Sample 
Estimates Based on                (0)                 (1)      Size 
FEMALE   = 0 (a)        .585578 (a,0)       .602840 (a,1)      2313 
FEMALE   = 1 (b)        .709426 (b,0)       .712562 (b,1)      2170 
Pooled   =** (*)        .640084 (*,0)       .654605 (*,1)      4483 
------------------------------------------------------------------- 
Wald Test of Difference in the Two Coefficient Vectors 
Chi squared[  7] =   79.7955        , P Value =  .0000 
------------------------------------------------------------------- 
Total Change in Function    (a,0) - (b,1) =     -.126984 ( 100.00%) 
------------------------------------------------------------------- 
Oaxaca    | Due to data is  (a,0) - (a,1) =     -.017262 (  13.59%) 
Blinder   | Due to beta is  (a,1) - (b,1) =     -.109723 (  86.41%) 
------------------------------------------------------------------- 
Daymont   | Due to data is  (b,0) - (b,1) =     -.003136 (   2.47%) 
Andrisani | Due to beta is  (a,0) - (b,0) =     -.123848 (  97.53%) 
------------------------------------------------------------------- 
Daymont   | Due to data is  (b,0) - (b,1) =     -.003136 (   2.47%) 
Andrisani | Due to beta is  (a,1) - (b,1) =     -.109723 (  86.41%) 
(3 Fold)  | Due to function (a,0) - (b,0) + 
          |                 (a,1) + (b,1) =     -.014126 (  11.12%) 
------------------------------------------------------------------- 
Ransom    | Due to data is  (*,0) - (*,1) =     -.014521 (  11.44%) 
Oaxaca    | Due to beta is  (a,0) - (*,0) +     -.112463 (  88.56%) 
Neumark   |                 (*,1) - (b,1) 
------------------------------------------------------------------- 
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R13: Testing Hypotheses and Imposing 
Restrictions  

 
R13.1 Introduction 
 

 This chapter describes procedures for testing hypotheses and imposing restrictions on 
estimated parameters.  LIMDEP contains a wide variety of procedures which can be used for 
hypothesis testing, including the familiar trio of tests, Wald, LM, LR as well as Hausman tests and 
other moment based tests of model specification.  Sections R13.2-R13.5 will describe how to carry 
out F tests in linear regressions and Wald, LM and LR tests in other models (including the linear 
regression).   Hausman tests and conditional moment tests are described in Chapter R16.  Models in 
LIMDEP may be estimated subject to linear restrictions.  In most case, these will be used either to 
force coefficients to equal each other or to be fixed at specific values.  The options described in 
Section R13.6 include these and more general linear restrictions.  Tests of hypotheses that involve 
nonlinear functions of the parameters are described in Chapter R14. 
 

R13.2 F Test of Linear Restrictions in Linear Models 
 

 The following applies only to the linear regression models, REGRESS, 2SLS, SURE, 3SLS 
and the fixed effects linear model, REGRESS ; Panel ; Fixed Effects.  In the settings mentioned, the 
parameters of the model are estimated by least squares.  This produces an ‘unconstrained’ least squares 
estimator.  A restricted model can be conveniently estimated and tested in LIMDEP by specifying the 
regression as usual and adding the restrictions as an optional specification.  For the linear models, the 
restrictions are specified by adding the following specification to the model command: 
 
   ; CLS: linear function = value, linear function = value,... 
 
For example, suppose the parameter vector has five elements, and three restrictions to be imposed are 
 
     b2    + 2b3     - b4  = .5 
   3b1  + 1.2b2  -  b4  =  0 
     b4     - b5           =  0 
 
The regression could be specified with 
 
 REGRESS  ; Lhs = y ; Rhs = x1,x2,x3,x4,x5  
        ; CLS: b(2)   +    2b(3) - b(4) = .5, 
    3b(1) + 1.2b(2) - b(4) =  0, 
    b(4)   -      b(5)   =  0 $ 
 
The restrictions are written exactly as they appear in theory.  Note, however, they must be written in 
the form ‘linear function = value.’  Also, separate restrictions with commas, not semicolons. 
 This specification, when used with REGRESS, SURE, 2SLS, or 3SLS produces a full set of 
output for the restricted estimator as well as for the unrestricted one (if it exists).  The appropriate 
test statistic is also presented.  When using the ; CLS : option with one of the systems estimators, 
s²(X′X)-1 is replaced with the variance matrix of the GLS estimator.  The parameter vector in these 
models is obtained by stacking the parameter vectors in the individual equations. 
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HINT:  The results for REGRESS, SURE, 2SLS, and 3SLS which are automatically saved by this 
procedure, for example, matrices b and varb, are the restricted estimates. 
 

NOTE:  This procedure may be used for only one set of restrictions.  If your command contains            
; CLS:... ; CLS:... for a second or more sets of restrictions, only the last one will be carried out.  To 
analyze multiple sets of restrictions, the ; Test form of the command described in Section R13.3 should 
be used.  This will produce several test statistics, but not more than one restricted estimator. 
 

 Restrictions specified as shown in the previous example make it obvious exactly what the 
hypothesis is.  However, there is a bit of inconvenience in that the indexes in the parameters change 
if the equation changes.  For example, in the specification 
 

REGRESS ; Lhs = hhninc ; Rhs = one,age,educ,married,hhkids,health $ 
 

to force the age coefficient to equal 0 and the married and hhkids coefficients to equal each other, we 
would use b(2)=0, b(4)-b(5)=0.  However, if another variable, say female, were added to the equation 
between educ and married, then the second constraint would have to be changed to b(5)-b(6) = 0.  
An alternative syntax may be used to remove this relationship.  To impose the constraint, the 
equation can be specified as 
 

REGRESS ; Lhs = hhninc ; Rhs = one,age,educ,married,hhkids,health 
   ; CLS:  age = 0, married - hhkids = 0 $ 
 

The obvious advantage of this syntax is that it is not tied to the position of the variables in the Rhs 
list. To continue our example, if female is now inserted into the equation between educ and married, 
the restrictions do not have to be changed.  Coefficients in the restrictions are given as before, but 
now must include a ‘*’ for multiplication. For example, the restriction above could be married - 
3.5*hhkids = 0. 

You may use either of these two syntaxes to specify restrictions in any single equation 
model.  When there are multiple equations, there can be multiple appearances of each variable.  As 
such, the syntax based on names will no longer work, and you must use the parameter index form. 
For example, in order to impose equality of the two age coefficients in 

 

SURE  ; Lhs = income,educ ; Eq1 = one,age,married ; Eq2 = one,age,hhkids $ 
 

It would be necessary to use ; CLS: b(2) - b(5) = 0.  The alternative, ; CLS: age - age = 0 (while 
true) would not be useable 

From this point forward, we will use the syntax based on variable names rather than 
parameter names whenever possible. 
 When you specify a constrained linear regression, the output will include the full 
unconstrained results and the constrained estimates.  The constrained results will also contain the F 
statistic and a test of the restrictions as a hypothesis.  The application below carries out the test 
suggested in the earlier example. 
 

NOTE:  The ; CLS and ; Test specifications described in the next section cannot detect interaction 
terms and nonlinear specifications in model commands.  For example, 
 

 REGRESS  ; Lhs = y ; Rhs = one,x1,x2,x1*x2 
                 ; CLS: x1*x2 = 0 $ 
 

will produce an error message.  In order to fit the restricted regression and test the hypothesis about the 
interaction term, it is necessary to create, say, x1x2 = x1*x2, then operate directly on the single variable. 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=HHNINC   Mean                 =         .34890 
             Standard deviation   =         .16405 
             No. of observations  =           4481  Degrees of freedom 
Regression   Sum of Squares       =        14.8647           5 
Residual     Sum of Squares       =        105.709        4475 
Total        Sum of Squares       =        120.573        4480 
             Standard error of e  =         .15369 
Fit          R-squared            =         .12328  R-bar squared =   .12230 
Model test   F[  5,  4475]        =      125.85407  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     2036.69639  Akaike I.C.   = -3.74424 
             Restricted (b=0)     =     1741.91120 
             Chi squared [  5]    =      589.57038  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .06186***      .01882     3.29  .0010      .02497    .09876 
     AGE|    -.00034         .00024    -1.44  .1487     -.00080    .00012 
    EDUC|     .01943***      .00099    19.62  .0000      .01748    .02137 
 MARRIED|     .09572***      .00587    16.30  .0000      .08421    .10724 
  HHKIDS|    -.02954***      .00548    -5.39  .0000     -.04028   -.01880 
  HEALTH|     .00250**       .00105     2.37  .0176      .00044    .00456 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Restricted   least squares regression ............ 
LHS=HHNINC   Mean                 =         .34890 
             Standard deviation   =         .16405 
             No. of observations  =           4481  Degrees of freedom 
Regression   Sum of Squares       =        10.1564           3 
Residual     Sum of Squares       =        110.417        4477 
Total        Sum of Squares       =        120.573        4480 
             Standard error of e  =         .15705 
Fit          R-squared            =         .08423  R-bar squared =   .08362 
Model test   F[  3,  4477]        =      137.26823  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     1939.06322  Akaike I.C.   = -3.70155 
             Restricted (b=0)     =     1741.91120 
             Chi squared [  3]    =      394.30405  Prob C2 > C2* =   .00000 
Restrictions F[  2,  4475]        =       99.65804  Prob F > F*   =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .09931***      .01383     7.18  .0000      .07220    .12641 
     AGE|       .000    .....(Fixed Parameter)..... 
    EDUC|     .01823***      .00100    18.22  .0000      .01627    .02019 
 MARRIED|     .02808***      .00320     8.78  .0000      .02181    .03435 
  HHKIDS|     .02808***      .00320     8.78  .0000      .02181    .03435 
  HEALTH|     .00125         .00105     1.19  .2341     -.00081    .00331 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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R13.3 Testing Linear Restrictions Using the Wald Statistic 
 
 The Wald statistic for linear restrictions is based on the general linear hypothesis, 
 
   H0:  Rβ - q = 0  vs. H1:  Rβ - q ≠ 0, 
 
where β is a set of K coefficients that appear in the specified model, R is a J×K matrix of constants 
that specify the restrictions, and q is a J×1 vector of constants.  (See, e.g., Greene (2011, Chapter 5) 
for discussion.)  It is assumed that you are imposing fewer restrictions than there are parameters, so J 
is strictly less than K.  LIMDEP provides several ways to compute linear functions of parameters and 
associated standard errors, and to compute test statistics for analyzing this form of restriction.  The 
general specification 
 

   ; Test: linear restrictions   
 
can be used with all models that are fit with the program.  The specification can be used to test a 
hypothesis involving one or more restrictions and one or more hypotheses at the same time.  
Individual restrictions within a hypothesis are separated by commas.  Hypotheses are separated by 
the vertical bar character, ‘|.’   
 
NOTE:  In previous versions of LIMDEP, the specification was ; Wald:. This is still usable. 
 
The restrictions are set up in exactly the same fashion as for ; CLS:. The specification produces the 
Wald test statistic and the significance level in the output. 
 In all cases, including the linear regression model, the Wald statistic is computed using the 
results of the estimated model without imposing restrictions.   The computed statistic is  
 

   ( ) ( )1ˆ ˆˆWald
−′  ′= − − R q R R R qβ Σ β  

 

Where β̂  is the estimated parameter vector and Σ̂  is the estimated covariance matrix.  Under the 
assumptions of the model and the hypothesis, this is a chi squared statistic with degrees of freedom 
equal to the number of restrictions (which equals the number of rows in R, or elements in q). 
 
NOTE:  The restricted least squares or maximum likelihood estimator is not computed in order to 
obtain the Wald statistic.  The Wald statistic is based on the unrestricted estimates.  It can be seen in 
the examples below, the reported model estimates are the unrestricted estimates. 
 
 For an example, consider a translog production function 
 
   y = β1 + β2x1 + β3x2 + β4x12 + β5x22 + β6(2x1*x2) + ε, 
 
where the variables are logs of output and the inputs.  The hypothesis of constant returns to scale 
(CRTS) in this model involves two restrictions, β2+β3 = 1 and β4+β5+β6 = 0.  The hypothesis of the 
Cobb-Douglas model as a restriction on the translog model is β4 = 0, β5 = 0, β6 = 0.   
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 Testing for CRTS  in the two model forms could be done as follows: 
 
 REGRESS ; Lhs = y ; Rhs = one,x1,x2,x11,x22,x12 
   ; Test: x1 + x2 = 1, x11 + x22 + x12 = 0   |      ? CRTS translog 
    x1 + x2 = 1, x11 = 0, x22 = 0, x12 = 0  $ CRTS Cobb-Douglas 
 
When your specification tests a single restriction, the test results are embedded in the model results.  
When you specify more than one hypothesis test, a separate table of results is produced.  The 
example below demonstrates. 
 The data listed are statewide measures of inputs and output in the transportation sector from 
Greene (2008, Table F14.1).   After importing the data, we created the transformed variables used in 
the production function 
 

IMPORT $ 
 
State           ValueAdd     Capital     Labor        NFirm 
Alabama         126.148       3.804     31.551           68 
California     3201.486     185.446    452.844         1372 
Connecticut     690.670      39.712    124.074          154 
Florida          56.296       6.547     19.181          292 
Georgia         304.531      11.530     45.534           71 
Illinois        723.028      58.987     88.391          275 
Indiana         992.169     112.884    148.530          260 
Iowa             35.796       2.698      8.017           75 
Kansas          494.515      10.360     86.189           76 
Kentucky        124.948       5.213     12.000           31 
Louisiana        73.328       3.763     15.900          115 
Maine            29.467       1.967      6.470           81 
Maryland        415.262      17.546     69.342          129 
Massachusetts   241.530      15.347     39.416          172 
Michigan       4079.554     435.105    490.384          568 
Missouri        652.085      32.840     84.831          125 
NewJersey       667.113      33.292     83.033          247 
NewYork         940.430      72.974    190.094          461 
Ohio           1611.899     157.978    259.916          363 
Pennsylvania    617.579      34.324     98.152          233 
Texas           527.413      22.736    109.728          308 
Virginia        174.394       7.173     31.301           85 
Washington      636.948      30.807     87.963          179 
WestVirginia     22.700       1.543      4.063           15 
Wisconsin       349.711      22.001     52.818          142 

 
CREATE  ; x1 = Log(capital/nfirm) ; x2 = Log(labor/nfirm)  

; x11 = x1*x1 ; x22 = x2*x2 ; x12 = 2*x1*x2 $ 
CREATE  ; y = Log(valueadd/nfirm) $ 
REGRESS ; Lhs = y ; Rhs = one,x1,x2,x11,x22,x12 

    ; Test: x1 + x2 = 1, x11 + x22 + x12 = 0 $ 
 
The first regression tests the single hypothesis of constant returns to scale in the translog model. 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =         .77173 
             Standard deviation   =         .89931 
             No. of observations  =             25  Degrees of freedom 
Regression   Sum of Squares       =        18.8441           5 
Residual     Sum of Squares       =        .565973          19 
Total        Sum of Squares       =        19.4100          24 
             Standard error of e  =         .17259 
Fit          R-squared            =         .97084  R-bar squared =   .96317 
Model test   F[  5,    19]        =      126.52092  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       11.87760  Akaike I.C.   = -3.30809 
             Restricted (b=0)     =      -32.30989 
             Chi squared [  5]    =       88.37497  Prob C2 > C2* =   .00000 
Wald Test: Chi-Squared( 2) = 3.25567    Significance level =   .19635 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.92982***      .17886    10.79  .0000     1.57925   2.28039 
      X1|    -.02044         .29835     -.07  .9461     -.60520    .56431 
      X2|     .66866         .42676     1.57  .1337     -.16778   1.50510 
     X11|    -.07322         .12540     -.58  .5662     -.31900    .17256 
     X22|     .02341         .19785      .12  .9070     -.36436    .41119 
     X12|    -.03567         .15238     -.23  .8174     -.33434    .26300 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

The second regression tests the CRTS hypothesis in the translog model then imposes the restrictions 
of the Cobb-Douglas model and tests for CRTS in the restricted model. 
 

REGRESS ; Lhs = y ; Rhs = one,x1,x2,x11,x22,x12 
    ; Test:  x1 + x2 = 1, x11 + x22 + x12 = 0            |  

x11 = 0, x22 = 0, x12 = 0 , x1 + x2 = 1 $ 
 

----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =         .77173 
             Standard deviation   =         .89931 
             No. of observations  =             25  Degrees of freedom 
Regression   Sum of Squares       =        18.8441           5 
Residual     Sum of Squares       =        .565973          19 
Total        Sum of Squares       =        19.4100          24 
             Standard error of e  =         .17259 
Fit          R-squared            =         .97084  R-bar squared =   .96317 
Model test   F[  5,    19]        =      126.52092  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       11.87760  Akaike I.C.   = -3.30809 
             Restricted (b=0)     =      -32.30989 
             Chi squared [  5]    =       88.37497  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.92982***      .17886    10.79  .0000     1.57925   2.28039 
      X1|    -.02044         .29835     -.07  .9461     -.60520    .56431 
      X2|     .66866         .42676     1.57  .1337     -.16778   1.50510 
     X11|    -.07322         .12540     -.58  .5662     -.31900    .17256 
     X22|     .02341         .19785      .12  .9070     -.36436    .41119 
     X12|    -.03567         .15238     -.23  .8174     -.33434    .26300 
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--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Chi squared tests of linear restrictions. Degrees of freedom shown 
in [.]. Equals zero is implied if no specific value was given. 
 1. Restriction:X1+X2=1,X11+X22+X12=0 
    Chi squared[ 2] =        3.256, P value =  .1964 
 2. Restriction:X11=0,X22=0,X12=0,X1+X2=1 
    Chi squared[ 4] =       24.905, P value =  .0001 
----------------------------------------------------------------------------- 
 
 The identical syntax is used for nonlinear models and the results will be arranged similarly.  
In the following example, the command first tests the joint hypothesis that all the coefficients in the 
model equal zero, then it tests each of the hypotheses one at a time. 
 

POISSON  ; Lhs = docvis ; Rhs = one,age,educ,public,married,hhkids  
; Test:  age = 0,  educ = 0,  public = 0,  married = 0,  hhkids = 0 | 

age = 0 | educ = 0 | public = 0 | married = 0 | hhkids = 0 $ 
 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function    -15891.44190 
Restricted log likelihood  -16398.15386 
Chi squared [   5 d.f.]      1013.42392 
Significance level               .00000 
McFadden Pseudo R-squared      .0309005 
Estimation based on N =   4481, K =   6 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .42184***      .08261     5.11  .0000      .25994    .58375 
     AGE|     .01673***      .00089    18.75  .0000      .01498    .01848 
    EDUC|    -.02491***      .00438    -5.68  .0000     -.03350   -.01631 
  PUBLIC|     .28806***      .03258     8.84  .0000      .22421    .35191 
 MARRIED|    -.03153         .02198    -1.43  .1515     -.07461    .01156 
  HHKIDS|    -.20139***      .02217    -9.08  .0000     -.24484   -.15793 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Chi squared tests of linear restrictions. Degrees of freedom shown 
in [.]. Equals zero is implied if no specific value was given. 
 1. Restriction:AGE=0,EDUC=0,PUBLIC=0,MARRIED=0,HHKIDS=0 
    Chi squared[ 5] =      992.331, P value =  .0000 
 2. Restriction:AGE=0 
    Chi squared[ 1] =      351.491, P value =  .0000 
 3. Restriction:EDUC=0 
    Chi squared[ 1] =       32.272, P value =  .0000 
 4. Restriction:PUBLIC=0 
    Chi squared[ 1] =       78.181, P value =  .0000 
 5. Restriction:MARRIED=0 
    Chi squared[ 1] =        2.057, P value =  .1515 
 6. Restriction:HHKIDS=0 
    Chi squared[ 1] =       82.500, P value =  .0000 
----------------------------------------------------------------------------- 
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Note that there are two joint tests of the hypothesis that all coefficients are equal to zero in the results 
above.  The Wald statistic is shown in restriction 1 in the lower table of results.  The likelihood ratio 
test of the same hypothesis is shown with the standard results at the top of the table of results. 
 
R13.4 Likelihood Ratio Tests 
 

Most of the models in LIMDEP are estimated using the maximum likelihood estimator.  The 
log likelihood function provides a general approach to testing hypotheses.  In most cases, the general 
test of the hypothesis that all coefficients in the estimated model save for the constant term are equal 
to zero is part of the standard output.  In the Poisson regression example at the end of the previous 
section, the initial model results include a likelihood ratio (chi squared) test of the hypothesis.  The 
general result for the test is based on the likelihood ratio statistic, 

 
LR  =  2[logL(unrestricted) - logL(restricted)]. 

 
Under the assumptions of the model and assuming the test is appropriate, the statistic is a chi squared 
statistic with degrees of freedom equal to the number of restrictions.  LIMDEP automatically saves 
the log likelihood value in a scalar named logl when you fit a model.  This value is replaced each 
time you fit a new model.  Figure R13.1 illustrates this for the Poisson model fit in the previous 
example.   
 

 
Figure 14.1  Project Window with Saved Log Likelihood 
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The general strategy for obtaining the statistic would be 
  
 Model  ; specification with restrictions … $ 
 CALC  ; loglr = logl $ 
 Model  ; specification without restrictions … $ 
 CALC  ; loglu = logl $ 
 
Now, you can compute the likelihood ratio statistic.  For example, the following will display the 
statistic and appropriate critical value from the chi squared table.  (You must provide the degrees of 
freedom – there is no way for the program to figure out the degrees of freedom based on the 
commands or the results.) 
 
 CALC  ; List  ;  lrtest = 2*(loglu - loglr) ; Ctb(.95, … <df>…) $ 
 
The following will show several typical applications. 
 
R13.4.1 Fixed Value Restriction in a Poisson Model 
 
 The following computes an unrestricted probit model, then tests the hypothesis that the 
coefficients on the last two variables are zero.  The initial output is suppressed.  Only the results of 
the test are shown. 
 

PROBIT  ; Quietly  
; Lhs = doctor ; Rhs = one,age,educ,public,married,hhkids $ 

CALC   ; loglu = logl $ 
PROBIT  ; Quietly  

; Lhs = doctor ; Rhs = one,age,educ,public $ 
CALC   ; loglr = logl $ 
CALC   ; List ; lrtest = 2*(loglu - loglr) ; cvalue = Ctb(.95,2) $ 

 
[CALC] LRTEST  =      7.8459659 
[CALC] CVALUE  =      5.9914645 
Calculator: Computed  2 scalar results 

 

R13.4.2 Imposing and Testing Restrictions 
 
 Section R13.6.1 describes a specification that can be used to impose fixed value and equality 
restrictions in any model.  The preceding test could be carried out with this device.  The two probit 
commands could be specified with 
 

PROBIT  ; Lhs = doctor ; Rhs = one,age,educ,public,married,hhkids  
; Rst = b1,b2,b3,b4,b5,b6 $ 

and 
PROBIT  ; Lhs = doctor ; Rhs = one,age,educ,public,married,hhkids 

; Rst = b1,b2,b3,b4,0,0 $ 
 
The second PROBIT command estimates the model subject to the restrictions that the last two 
coefficients equal zero.  (The ; Rst = list specification in the first model is actually redundant since it 
does not specify any restrictions.  It simply names the parameters in the model.) 
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R13.4.3 Homogeneity of Models in a Stratified Data Set 
 
 The following example demonstrates several features of LIMDEP and shows a general 
method of testing whether the same model should be used for all subgroups in a sample.  The 
modeling framework is 
 
 For group i, model fi(.) applies to observations yig, xig, g = 1,…,G groups, i = 1,…,ng. 
 
 H0:  The same model applies to all groups. 

 H1:  The form of the model is the same for all groups, but the parameters differ across 
         groups. 
 
A likelihood ratio test of the null hypothesis is carried out as follows: 
 

 Unrestricted:  log Lu = ∑ =

G
g gL

1
log ; models are fit separately. 

 Restricted: log Lr = the log likelihood for the model with all observations pooled. 
 
The chi squared test statistic has degrees of freedom (G-1)×K where K is the number of parameters 
in the model and is computed as 
 
   χ2  =  2(log Lu – log Lr). 
 
This test is equivalent to a ‘Chow test’ in the linear regression model. 
 The following LIMDEP procedure does this computation.  It assumes that the sample 
stratification is provided by a variable that is coded 1,2,…,G.  (See Chapter R4 if you need to create 
this variable from some other kind of indicator variable.) 
 
 PROC = samemodl(Model, y, x, group)  $ 
 CALC   ; g = Max(group)    ? How many groups? 
              ; loglu = 0         $ Will be accumulated 
 DO FOR ; 100 ; grp = 1,g        $ Execute once for each stratum 
 INCLUDE  ; New ; group = grp     $ Select the observations 
 Model  ; Lhs = y ; Rhs = x ; Quietly   $ Estimate the model 
 CALC  ; loglu = loglu + logl  $ Unrestricted log likelihood = sum 
 ENDDO  ; 100    $ End of repetition block 
 SAMPLE ; All    $ Full sample for restricted model 
 Model  ; Lhs = y ; Rhs = x ; Quietly $ Estimate model using full sample 
 CALC  ; loglr = logl   ? Retrieve restricted log likelihood 
   ; List ; lrtest = 2*(loglu - loglr) ? LR statistic 
   ; df = (g-1)*kreg  ? Degrees of freedom 
   ; prob = 1 - Chi(lrtest,df) $ P value = significance level 
 ENDPROC $ 
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This procedure can be used for any model that is built up simply for a dependent variable and a set of 
independent variables.  If need be, you could modify the model command for some other modeling 
framework.  Note that the model command is generic.  You could use this for a probit model, then 
with exactly the same program change over to a logit model. 
 
TIP:  Note that the model command includes ; Quietly.  This will suppress what might be a huge 
amount of output.  This will often be a good idea. 
 
 To illustrate, the following tests for homogeneity across genders of a probit model. 
 

NAMELIST ; x = one,age,married,hhkids$ 
CREATE  ; sex = female + 1 $ 
EXECUTE  ; proc = samemodl(probit,doctor,x,sex)$ 

 
[CALC] LRTEST  =    584.5646542 
[CALC] DF      =      4.0000000 
[CALC] PROB    =       .0000000 
Calculator: Computed   4 scalar results 
Maximum repetitions of PROC 

 
All other output from the procedure has been suppressed, so it only reports the outcome of the test. 
 
R13.4.4 Testing for Equal Coefficient Vectors 
 
 The test procedure in the previous section was constructed to illustrate using a procedure to 
carry out a repetitive operation – in the application, the same calculations were applied to several 
subsamples.  The particular test carried out there, testing for equality of the coefficients across 
subgroups of the sample, is so common that we have automated the entire computation in a single 
command.  The general syntax for the test is 
 
 Model  ; For [(test) group variable] ; the model specification $ 
 
The specification of the group variable can be a set of values, such as 
 
   ; For [(test) firm = 2,3,4,5] ; …  
 
However, we note a caution, if the list of values does not exhaust the full sample, then the test will 
not be carried out correctly because the null specification uses the entire sample, not the pooled 
sample from the values given.  The way to set this up correctly would be to set the pooled sample at 
the outset.  For this example, suppose the full sample were firms 1,…,8.  Then you would want the 
pooled sample to include firms 2,3,4,5.  The way to proceed would be 
 
 INCLUDE ; New ; firm >= 2 & firm <= 5 $ 
 Model  ; For [(test) firm = 2,3,4,5] ; … $  
 
For the example below, we replicated the test in the previous section with 
 

PROBIT  ; For[(test)female]  
; Quietly ; Lhs = doctor ; Rhs = one,age,married,hhkids $ 
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The results are 
 
+-----------------------------------------------------+ 
| Setting up an iteration over the values of FEMALE   | 
| The model command will be executed for   2 values   | 
| of this variable.  In the current sample of   27326 | 
| observations, the following counts were found:      | 
| Subsample   Observations    Subsample  Observations | 
| FEMALE   =   0     14243    FEMALE  =   1     13083 | 
| FEMALE   =****     27326                            | 
+-----------------------------------------------------+ 
| Actual subsamples may be smaller if missing values  | 
| are being bypassed.  Subsamples with 0 observations | 
| will be bypassed.                                   | 
+-----------------------------------------------------+ 
 
******************************************************************* 
*       Subsample analyzed for this command is FEMALE   =       0 * 
******************************************************************* 
 
******************************************************************* 
*       Subsample analyzed for this command is FEMALE   =       1 * 
******************************************************************* 
 
******************************************************************* 
*       Full pooled sample is used for this iteration.            * 
******************************************************************* 
--------------------------------------------------------------------- 
Homogeneity Test for Estimated Model 
--------------------------------------------------------------------- 
The model was estimated for  2 subsamples and the full sample 
The likelihood ratio statistic is 2[Sum(g=1...G)logL(g)  -logL(pooled)] 
Chi squared =    584.5647   Estimated degrees of freedom =   4 
Estimated P value for this test is  .0000 
--------------------------------------------------------------------- 
 
Note that the built in function does not require the group variable to be coded 1,2,…,G.  It only 
expects to find a set of integer values.  Thus, in the procedure, we used sex = female+1 which is now 
coded 1,2 while in the built in function, we used female = 0,1. 
 
R13.4.5 Two Part Models: Cragg’s Model for a Censored Dependent 
Variable 
 
 The tobit model specifies that  y = max(0,β‘x+ε), ε ~ N(0,σ2).  It follows that the appropriate 
model for d = 0 if y = 0, d = 1 otherwise is a probit model with parameters γ = β/σ.  Cragg’s 
specification allows the parameters in the implied probit equation to differ completely from those in 
the tobit model, so that the complete model is a probit model for d and a separate truncated 
regression model for the positive values of y.  (See Section E45.9.2 for further discussion.)  Since the 
tobit log likelihood is simply the sum of the probit and truncated regression log likelihoods (see 
Greene, 2011), a simple test of the tobit model as a restriction on Cragg’s (1971) model (γ = β/σ) can 
be based on 
   χ2 = 2(logLprobit + logLtruncated regression  -  logLtobit). 
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This will have degrees of freedom equal to the number of variables in x.  The following does the test: 
 
 NAMELIST  ; x = ... your definition $ 
 TOBIT  ; Lhs = y ; Rhs = x $ 
 CALC  ; ltobit  =  logl $ 
 CREATE ; d = y > 0 $ 
 TRUNC ; Lhs = y ; Rhs = x $  This skips points with y = 0. 
 CALC  ; ltrunc = logl $ 
 PROBIT ; Lhs = d ; Rhs = x $ 
 CALC  ; lprobit  = logl ; List 
   ; lr = 2 * (ltrunc + lprobit - ltobit) 
   ; df = Col(x) ; prob = Chi(lr,df) $ 
 
R13.4.6 Likelihood Ratio Tests for Discrete Choice Models 
 
 In many discrete choice models (probit, logit, ordered probit, Weibull, etc.), the log 
likelihood function for a model with only a constant term is  

   log L0  =  jjoutcomesj
pn log∑ =

 
 
where pj is the proportion of the sample observations which have dependent variable equal to choice 
j, n is the sample size, and nj = npj.  In this case, LIMDEP will carry out a likelihood ratio test of the 
hypothesis that all model parameters except the constant term are zero and report the results with 
other model output.  The results below show the leading model output for a probit model, then a logit 
model fit with the same variables.   
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -17715.32374 
Restricted log likelihood  -18019.55173 
Chi squared [   3 d.f.]       608.45598 
Significance level               .00000 
McFadden Pseudo R-squared      .0168832 
Estimation based on N =  27326, K =   4 
Inf.Cr.AIC  =35438.647 AIC/N =    1.297 
Hosmer-Lemeshow chi-squared = 164.02100 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function    -17717.48126 
Restricted log likelihood  -18019.55173 
Chi squared [   3 d.f.]       604.14094 
Significance level               .00000 
McFadden Pseudo R-squared      .0167635 
Estimation based on N =  27326, K =   4 
Inf.Cr.AIC  =35442.963 AIC/N =    1.297 
Hosmer-Lemeshow chi-squared = 168.11271 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
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Note that the restricted log likelihoods for the two models are identical.  This follows from the earlier 
results since the restricted log likelihood is the same function of the sample proportions for both 
models. 
 A similar convenience arises in the Poisson regression model, in which the restricted 
parameter vector in a model with only a constant term is [log y ,0,…], so the log likelihood function 
for a restricted model can be computed at this ‘estimate.’  The output for a Poisson model includes 
 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function   -105449.32913 
Restricted log likelihood -108662.13583 
Chi squared [   3 d.f.]      6425.61341 
Significance level               .00000 
McFadden Pseudo R-squared      .0295669 
Estimation based on N =  27326, K =   4 
Inf.Cr.AIC  =********* AIC/N =    7.718 
Chi- squared =265073.54284  RsqP= .0460 
G  - squared =157860.07745  RsqD= .0391 
Overdispersion tests: g=mu(i)  : 20.807 
Overdispersion tests: g=mu(i)^2: 20.565 
--------+-------------------------------------------------------------------- 
 
The model results show the results of the overall test of model significance. 
 
TIP:  If your model output for the discrete choice model does not contain the results for this test, it is 
probably because you neglected to include a constant term in your Rhs.  If you do omit the constant 
term, it is possible for the log likelihood for your model to be less than that for the model with only a 
constant term.  Moreover, even if it is not, the test given above will be misleading since the model 
being tested is not nested in the larger model.  That is, the model with ; Rhs = x cannot be compared 
to the model with ; Rhs = one, unless x contains one. 
 
R13.4.7 Likelihood Ratio Tests for Nonlinear Models 
 
 In most cases, the model with no coefficients is not a simple function of the sample data.  In 
these cases, no simple test of overall significance is produced, but you can easily compute one.  For 
example, for a tobit model, you can use 
 
 TOBIT  ; Lhs = y ; Rhs = one,… other variables $ 
 CALC  ; loglu = logl ; kr = kreg $ 
 TOBIT  ; Lhs = y ; Rhs = one $ 
 CALC  ; loglr = logl  
   ; lrtest = 2*(loglu - loglr)   
   ; df = kr - 1 
   ; pvalue = 1 - Chi(lrtest,df) $ 
 
For this or any other case, you need only compare the log likelihood for your model with the log 
likelihood for a model which contains only a constant term. 
 The table below shows the output for the logit model of the previous section fit with only a 
constant term: 
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----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function    -18019.55173 
Estimation based on N =  27326, K =   1 
Inf.Cr.AIC  =36041.103 AIC/N =    1.319 
Hosmer-Lemeshow chi-squared =  39.13032 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .52839***      .01252    42.19  .0000      .50385    .55294 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The log likelihood for the model is the one which appears in the earlier model results, so the test 
results will be the same. 
 
R13.5 Lagrange Multiplier Tests 
 

Lagrange multiplier (LM) tests are used similarly to likelihood ratio tests.  These two, in 
contrast to the Wald test, rely specifically on the form of the likelihood function while the Wald 
statistic relies only on the large sample properties of the parameter estimator.  The logic of the LM test 
is as follows: In estimating a model, if we do so without restrictions, the derivatives of the log 
likelihood will equal zero (to within rounding error) at the maximizer of the function.  If we fit the 
model subject to restrictions, the maximized log likelihood will be lower (that is the basis of the LR 
test) and the derivatives of the full log likelihood function will not be zero.  The test is based on 
measuring the extent to which the derivatives differ from zero.  If the difference appears to be within 
the bounds of sampling variability, the hypothesis of the restrictions is not rejected. 

The LM test has a significant shortcoming that weighs against a significant virtue.  The test 
is the generally the most complicated of the three we are considering here, as it requires computation 
of the derivatives (and programming them).  The appeal, however, is that the test is based entirely on 
the restricted model, which is often much simpler than the unrestricted model which is needed for the 
Wald and LR tests.  For an example that we pursue below, the probit model with heteroscedasticity 
is a complicated model to estimate (and interpret).  However, the test for heteroscedasticity can 
(using the LM statistic) be based entirely on a homoscedastic model, which is very simple. 

LIMDEP has a built in feature that automates LM tests for most of the models supported by 
the program.  The sections to follow describe this feature, then work through several examples.. 

 
R13.5.1 LM Tests Based on the Model Specification 
 
 For most of the nonlinear models, you can request LIMDEP to compute an LM statistic by 
treating your starting values as the restricted estimates.  The procedure is then as follows: 
 

1. Obtain the full restricted set of parameter estimates. 
2. Use the following command: 

 
 Model Name    ; ... usual setup ... ; Start = your values ; Maxit = 0 $ 
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When you specify a model, provide starting values, then prevent iterations with ; Maxit = 0, 
LIMDEP does the following: 
 

1. Computes the LM statistic using the starting values. 
2. Reports the usual output, i.e., estimates, standard errors, etc. as if the starting values 

were the maximum likelihood estimates. 
3. Reports the LM statistic with the final output. 

 
TIP: To do a Lagrange multiplier test, therefore, you would obtain the starting values by estimating 
the restricted model, then specifying the unrestricted model as the command, providing as starting 
values the estimates from the restricted model.  This usually includes some fixed values for 
parameters in the unrestricted specification, typically a set of zeros. 
 
Example:  Fixed Value Restriction in a Logit Model 
 
 The following commands fit a logit model with an interaction between age and gender.  We 
are interested in testing the hypothesis that the coefficient on this term equals zero.  The unrestricted 
model is 
 

LOGIT  ; Lhs = doctor  
; Rhs = one,age,educ,hhninc,married,female,age*female $ 

 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function    -17444.88483 
Restricted log likelihood  -18019.55173 
Chi squared [   6 d.f.]      1149.33380 
Significance level               .00000 
McFadden Pseudo R-squared      .0318913 
Estimation based on N =  27326, K =   7 
Inf.Cr.AIC  =34903.770 AIC/N =    1.277 
Hosmer-Lemeshow chi-squared =  80.07335 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.59710***      .09733    -6.13  .0000     -.78786   -.40634 
     AGE|     .02896***      .00159    18.23  .0000      .02585    .03208 
    EDUC|    -.02697***      .00580    -4.65  .0000     -.03834   -.01560 
  HHNINC|    -.18680**       .07571    -2.47  .0136     -.33518   -.03841 
 MARRIED|    -.01076         .03134     -.34  .7313     -.07219    .05066 
  FEMALE|    1.06350***      .10301    10.32  .0000      .86161   1.26539 
        |Interaction AGE*FEMALE 
Intrct01|    -.01141***      .00233    -4.89  .0000     -.01598   -.00684 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The large z statistic (-4.89) attached to the term in the unrestricted model suggests that the hypothesis 
should be rejected.  We will now fit the model subject to the restriction.  The obvious way to proceed 
is to drop the variable from the model, but for our purposes, it is more useful to compute the 
restricted estimator.  The command, which uses the device shown in Section R13.6.1 is 
 

LOGIT  ; Lhs = doctor  
; Rhs = one,age,educ,hhninc,married,female,age*female   
; Rst  = b1,b2,b3,b4,b5,b6,0$ 

 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function    -17456.85932 
Restricted log likelihood  -18019.55173 
Chi squared [   6 d.f.]      1125.38482 
Significance level               .00000 
McFadden Pseudo R-squared      .0312268 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =34925.719 AIC/N =    1.278 
Model estimated: Mar 02, 2011, 13:01:44 
Hosmer-Lemeshow chi-squared =  93.34713 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.42017***      .09018    -4.66  .0000     -.59692   -.24342 
     AGE|     .02382***      .00118    20.13  .0000      .02150    .02614 
    EDUC|    -.02491***      .00578    -4.31  .0000     -.03624   -.01359 
  HHNINC|    -.18201**       .07567    -2.41  .0162     -.33032   -.03371 
 MARRIED|     .00785         .03106      .25  .8005     -.05303    .06873 
  FEMALE|     .57669***      .02614    22.06  .0000      .52545    .62793 
        |Interaction AGE*FEMALE 
Intrct01|       .000    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
The warning in the footnotes indicates that LIMDEP has noticed that a coefficient has a nonpositive 
estimated standard error. This usually results from what we have done, fixing a coefficient to zero.  
But, sometimes this signals a problem with the estimation of the model.   On the basis of the two sets 
of results, we can compute a likelihood ratio test of the hypothesis.  The statistic will be twice the 
difference in the log likelihoods, or 23.949.  The square of the z statistic is 23.912, so thus far the 
results are consistent.  We will now carry out the LM test, with 
 

LOGIT  ; Lhs = doctor  
; Rhs = one,age,educ,hhninc,married,female,age*female   
; Start = b  
; Maxit = 0 $ 

 
The starting value is the result of the previous estimation, which has a zero in the last position. 
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----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
LM Stat. at start values       23.96151 
LM statistic kept as scalar    LMSTAT 
Log likelihood function    -17456.85932 
Restricted log likelihood  -18019.55173 
Chi squared [   6 d.f.]      1125.38482 
Significance level               .00000 
McFadden Pseudo R-squared      .0312268 
Estimation based on N =  27326, K =   7 
Inf.Cr.AIC  =34927.719 AIC/N =    1.278 
Hosmer-Lemeshow chi-squared =  93.34713 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.42017***      .09708    -4.33  .0000     -.61044   -.22990 
     AGE|     .02382***      .00158    15.11  .0000      .02073    .02691 
    EDUC|    -.02491***      .00579    -4.30  .0000     -.03627   -.01356 
  HHNINC|    -.18201**       .07567    -2.41  .0162     -.33033   -.03370 
 MARRIED|     .00785         .03129      .25  .8019     -.05348    .06918 
  FEMALE|     .57669***      .10275     5.61  .0000      .37531    .77807 
        |Interaction AGE*FEMALE 
Intrct01|       .000         .00233      .00 1.0000       -.005      .005 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
NOTE:  When the restrictions are imposed, the estimated asymptotic covariance matrix will account 
for those restrictions, as can be seen in the second set of results.  But, when you use  ; Maxit = 0, 
there is no way to know what the restrictions are, so all parameters are treated as free.  Thus, the 
standard errors are different – generally larger – as we see in the results immediately above.  This 
effect is clearly visible in the results above in a comparison of the two reports of parameter estimates 
and standard errors. 
 
R13.5.2 LM Test of Homoscedasticity in a Probit Model  
 
 The probit model suggested earlier is a natural candidate for the LM test.  The test can be 
carried out as follows: 
 
 NAMELIST  ; x = ... variables in the regression part  
   ; z = ... variables in the heteroscedasticity $  No constant in z. 
          CALC  ; m = Col(z)  $  Number of restrictions. Keep it generic. 
 PROBIT ; Lhs = y ; Rhs = x $  Restricted model. 
 PROBIT ; Lhs = y ; Rhs = x ; Rh2 = z  
   ; Het ?  This is the unrestricted model using restricted coefficients. 
   ; Start = b, m_0 ; Maxit = 0 $  
 CALC  ; List ; lmstat  
   ; 1 - Chi(lmstat,l) $ 
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Note that the restricted estimator in this case is the probit model under H0: homoscedasticity, plus a 
column of zeros for γ.  For our  health care data, an application of the procedure above produces the 
following results:  (The initial model results and some statistics have been omitted.) 
 

NAMELIST ; x = one,age,educ,hhkids 
            ; z = female,married,hhninc $ 

PROBIT   ; Lhs = doctor ; Rhs = x $ 
PROBIT ; Lhs = doctor ; Rhs = x ; Het ; Hfn = z ; Maxit = 0 ; Start = b,0,0,0 $ 

 
Maximum of     0 iterations. Exit iterations with status=1. 
Maxit = 0. Computing LM statistic at starting values. 
No iterations computed and no parameter update done. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
LM Stat. at start values      336.00066 
LM statistic kept as scalar    LMSTAT 
Log likelihood function    -17676.31452 
Restricted log likelihood  -18019.55173 
Chi squared [   6 d.f.]       686.47442 
Significance level               .00000 
McFadden Pseudo R-squared      .0190480 
Estimation based on N =  27326, K =   7 
Inf.Cr.AIC  =35366.629 AIC/N =    1.294 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .15472***      .05643     2.74  .0061      .04412    .26531 
     AGE|     .01337***      .00119    11.24  .0000      .01104    .01570 
    EDUC|    -.03090***      .00391    -7.90  .0000     -.03856   -.02323 
  HHKIDS|    -.12402***      .01797    -6.90  .0000     -.15923   -.08880 
        |Variance function 
  FEMALE|       .000         .04717      .00 1.0000       -.092      .092 
 MARRIED|       .000         .05163      .00 1.0000       -.101      .101 
  HHNINC|       .000         .12116      .00 1.0000       -.237      .237 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

WARNING:  You must provide the correct starting values for this procedure.  Sometimes, the  
parameters that are estimated by the nonlinear procedure are transformations of the original 
parameters.  The specific descriptions of the models describe the parameters that are estimated in 
each case, and indicate exactly the way to provide starting values.  For two examples: 
 
     • Tobit:  The model is parameterized in terms of β and σ.  These are the values reported  
 by the program in the output.  But, the parameters estimated internally are γ = β/σ and  
 θ = 1/σ. These are transformed to produce the output.  LM statistics are based on  
 these transformed parameters. 
     • Parametric Survival Models:  The Weibull, log logistic, etc. models are reported as 
 parameterized in terms of β and σ.  But, the internal variance parameter is P = 1/σ.   
 
As noted, the appropriate starting values to provide are given with the model description. 
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R13.5.3 LM Tests for the Linear Regression Model 
 

 There are a number of cases in which the LM statistic can be computed as a simple function 
of the R2 in a linear regression.  We consider several examples: 
 
Breusch and Pagan’s (1979) Test for Heteroscedasticity in the Classical 
Normal Regression Model 
 

 For testing H0: Var[ε] = σ2 against H1: Var[ε] = f(γ′z), in the classical regression yi = β′xi + εi 
the Lagrange multiplier statistic is one half the explained sum of squares in the regression of ei

 

/(e′e/n) on z.  The residuals are computed from the homoscedastic regression.  The test is applicable 
to linear or nonlinear regression. 

Omitted Variables in Linear Regression 
 

 NAMELIST ; x = ...  ; z = ... $ 
 REGRESS ; Lhs = y  ; Rhs = x  ; Res = e $ 
 CREATE ; e2 = e^2 / (sumsqdev / n) $ 
 CALC      ; lmstat = .5 * Xss(z,e2) $ 
 
The matrix algebra program provides a straightforward method of doing this computation. (See Greene 
(2011).) 
 

 NAMELIST ; x = ... ; z = one,... $ 
 REGRESS ; Lhs = y ; Rhs = x ; Res = e $ 
 CREATE ; gi =  e*e / (sumsqdev / n)  -  1 $ 
 MATRIX ; lmstat = .5 * gi’z * <z’z> * z’gi $ 
 
Nonlinear Regression 
 

 This would be the same as above except that the REGRESS command is replaced with 
 
 NLSQ  ; Lhs = y 
   ; Fcn = the model 
   ; Start = ... ; Labels = ...   
   ; Res = e $ 
 
Godfrey’s (1978) LM Test for Autocorrelation 
 

 For testing for Pth order moving average or autoregression in the disturbance of a classical 
regression, the LM statistic equals nR2 in the regression of et on et-1,...,et-P and X, where et is an OLS 
residual.  Missing values at the beginning of the series are filled with zeros. 
 
 NAMELIST  ; x = ... $ 
 CREATE ; e1 = 0 ; e2 = 0 ; ... ; ep = 0   $   (Do this for p variables) 
 REGRESS ; Lhs = y ; Rhs = x  ; Res = e $ 
 CREATE ; If (_obsno > p) | e1=e[-1]  ; e2=e[-2] ; ...  ; ep = E[-p] $ 
 CALC      ; lmstat = n * Rsq (x,e1,e2,...,ep,e) $ 
 
In this case, we create and fill with zeros the variables e1, e2,... before the second step estimator.  It 
would have been possible simply to regress e on x,e[-1],...  But, if we did so, the missing lagged 
values would be filled with -999s (the missing value code), not zeros as required. 
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R13.5.4 Programming Lagrange Multiplier Tests 
 

 Lagrange multiplier (LM) tests can be carried out by several methods.  The matrix algebra 
package is well suited for this computation.  In addition, several types of LM statistics can be 
computed for you by the estimation program for the model being analyzed.  This section will 
describe and illustrate several approaches to computing LM statistics. 
 The Lagrange multiplier statistic for a test of hypothesis H0 is LM = g0′[H0]-1g0, where g is 
the gradient of the log likelihood function and H is n times a consistent estimator of the expected 
value of the Hessian of the log likelihood.  The subscript ‘0’ indicates that these matrices are to be 
computed at the parameter estimates obtained under the restrictions of the null hypothesis, H0. 
 
Example:  Testing Homoscedasticity in a Probit Model Using Matrix Algebra 
 
 The log likelihood function for a probit model with multiplicative heteroscedasticity is 
 
   log L    =  ΣilnΦ[qi β‘xi × exp(-γ′zi)] 

where   qi     =  2yi - 1  =  sgn(yi). 

The gradient is  ∂logL/∂β   =  Σivixi 

   ∂logL/∂γ   =  Σivizi(-β′xi) 

where   vi  =  qi(φi/Φi)×exp(-γ′zi) 

and   φi, Φi  =  standard normal PDF and CDF at qiβ′xi × exp(-γ′zi). 
 
The hypothesis to be tested is H0: γ = 0.  For convenience, combine the two parts of the gradient into 
gi.  The most convenient estimator to use for the LM test is usually the BHHH estimator of H, 
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With γ = 0, the LM statistic is simple to compute.  The matrix function Bhhh is written specifically for 
this type of calculation. The function Lmm in CREATE simplifies calculation of the first  derivative. 
 
 NAMELIST  ; x = ... ; z = …    $ Note, z must not contain one! 
 CREATE ; y = the dependent variable  $  
 PROBIT ; Lhs = y ; Rhs = x   $ Restricted model 
 CREATE ; qi = 2 * y - 1            ? -1 for y=0, +1 for y=1 
   ; xb  = x’b             ? beta’x 
   ; gi  = -qi * Lmm(qi * xb)   ? qi * N01 / Phi 
   ; vb  = gi              ? d./db’x 
   ; vg  = -gi * xb    $ d./dg’z 
 MATRIX ; gb  = x’vb              ? gradient for beta 
   ; gg  = z’vg              ? gradient for gamma 
   ; g0 = [gb / gg]             ? stack the two vectors 
   ; h0 = Bhhh(x,z,vb,vg)       ? BHHH form of the Hessian 
   ; List 
   ; lm = g0’ <h0> g0   $ LM statistic reported 
 
(A much easier approach for this application is shown in the next section.) 
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Example:  LM Test for Groupwise Heteroscedasticity in Regression 
 
 Some particular Lagrange multiplier statistics have been derived explicitly and have a 
relatively simple form.  The groupwise heteroscedastic regression (Greene (2011)) is an example: 
  
   yi  =  Xiβ + εi, T observations, i=1,...,G groups. 

   H0: εi ~ N(0,σ2I). 
 
The alternative hypothesis is that σ2 differs by group, though β remains the same for all i.  The LM 
statistic is 
   LM  =  (T/2)Σi(si

2/s2 - 1)2, 
 
where si

2  is the group specific least squares residual variance and s2 is the counterpart when the data 
are pooled.  Variances are computed using T and GT as divisors, with no degrees of freedom 
corrections.  The following procedure would compute the test statistic.  In this example, we use 
CALCULATE instead of MATRIX in computing the test statistic.  In the procedure below, the 
symbol ‘g’ is the number of groups, which you would provide specifically.  As usual, ‘y’ is the 
dependent variable.  Within the loop, we reset the sample after each regression. 
 
 NAMELIST ; x = ... $ 
 CREATE ; y = your dependent variable $ 
 SAMPLE ; All observations $ The pooled sample has n = tg observations. 
 CALC  ; g = the appropriate value for the number of groups $ 
 CALC  ; t = n / g  ; first = 1 ; last = t $ 
 CALC  ; s2 = Ess(x,y) / n ;  lmstat = 0 $ 
 PROCEDURE  
 SAMPLE ; first - last $ 
 CALC     ; s2j = Ess(x,y) / t 
      ; lmstat = lmstat + (t / 2) * (s2j / s2  -  1)^2 
       ; first = first + t ; last = last + t $ 
 ENDPROCEDURE 
 EXECUTE ; j = 1,g  $  This says execute the procedure for j = 1 to g. 
 CALC  ; List ; lmstat $ 
 
 The procedure above is a bit more convenient with a fixed subsample size than it would be 
otherwise, but not much.  To modify it to account for variable sample sizes, we will require a 
stratification variable which allows us to partition the sample.  Suppose that variable is named group 
and it takes values 1,2,…,G.   The calculation of G for the program’s purpose is 
 
 CALC   ; g = Max(group) $ 
 
Then, the procedure would be replaced with 
 
 PROCEDURE  
 INCLUDE  ; New ; group = j  $ 
 CALC        ; s2j = Ess(x,y) / n 
        ; lmstat = lmstat + (n / 2) * (s2i / s2  -  1)^2 $ 
 ENDPROCEDURE 
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R13.6 Estimation Subject to Restrictions 
 

Section R13.2 showed how to impose linear restrictions in least squares regression.  You can 
also impose restrictions on other models.  Two procedures are provided.  The first allows you to 
impose fixed value and equality restrictions on any estimated parameter vector in any model.  Most 
applications that involve restrictions on parameters will be covered by this case.  The second case is 
more general linear restrictions, which can also be imposed in most models. 

Before describing these procedures, we note two important general cases, by way of 
practical suggestions. 
 
Nonlinear Restrictions 
 
 Estimation subject to nonlinear restrictions raises a set of practical issues not present with 
linear restrictions. As a general rule, nonlinear restrictions, such as 
 
   β1

2 + β2
2 + β3

2 = c2 

 
which restricts the three parameters to lie on the surface of a ball with radius c, requires more 
elaborate tools than are used in the general model estimation programs in LIMDEP.  For specific 
cases, you might be able to program the restrictions directly into your own likelihood function in 
MAXIMIZE. 
 
Inequality Restrictions 
 
 LIMDEP does contain an estimator for linear regression with inequality restrictions, using 
linear and quadratic programming methods.  These are described in the Econometric Modeling 
Guide.  More generally, however, we will not make use of general inequality restrictions such as 
 
   Rβ – q >> 0. 
 
There are a few common cases that do appear regularly.  Two in particular are models that contain a 
variance parameter, σ, that must be forced to be positive and models that contain a correlation 
coefficient, ρ, that must lie in (-1,1).  The typical way to handle the first of these is to reparameterize 
the model in terms of σ = exp(θ), and estimate θ which is unrestricted.  For the correlation 
coefficient, the standard approach, and the one used here, is to formulate the model in terms of the 
hyperbolic arctangent function, θ = 1/2 ln[(1+ρ)/(1-ρ)].  The structural parameter, θ, is unrestricted, 
and ρ = [exp(2θ)-1]/[exp(2θ)+1], which is bounded in the interval.  We find in general, however, that 
in cases in which this device is employed, the unrestricted estimators of σ and ρ obey the restriction 
anyway. 
 In practical terms, there is an element of this aspect of estimation that the user should be 
mindful of.  Restricting a parameter such as σ and ρ as suggested above does not generally force the 
optimizer to find an interior solution that it would not have found otherwise.  That is why the 
restriction/retransformation is not actually necessary in most cases.  When the restriction tends to be 
binding, as sometimes happens with the bivariate probit model, for example, what you will find is 
that θ will be drifting off to +∞ or -∞, so that ρ will be getting close to -1 or +1.  The force of the 
restriction is to prevent the program from dividing by zero or taking the log of a negative number. It 
does not make the solver find a better solution for the parameter. 
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R13.6.1 Fixed Value and Equality Restrictions 
 

 All models in LIMDEP can be estimated subject to equality and/or fixed value restrictions 
on the parameters.  These can be cross equation restrictions, such as in the multinomial logit model 
or switching regression models, in which you might want to force one coefficient vector to equal 
another, or within equation restrictions, such as in any regression model in which you want to force 
coefficients to equal each other or fixed values (or both). 
 The command structure used to request this feature is 
 
 Model  ; ... ; Rst = the specification 
 
Restrictions are specified by just giving a list of labels for the parameters.  Repetitions of labels 
imply equality restrictions.  Instead of a label, you may give a fixed value.  The parameter which is 
fixed is not reestimated; it is forced to the value you provide. 
 For example, suppose the choice variable in a logit model, y, is explained by a constant, educ, 
and income.  Assume y takes four values. It is desired to force the income coefficient to be the same in 
all three parameter sets.  The model contains nine parameters.  The command could be 
 
 LOGIT ; Lhs = y; Rhs = one,income,educ 
   ; Rst = b1, b2, b3, b4, b2, b5, b6, b2, b7 $ 
 
Note that two constraints are imposed.  If it were desired to force the last coefficient to equal .1, say, 
it would be necessary only to change b7 to .1.  Note, as well, there is nothing implied by the 
consecutive numbers used for the parameters.  The sequence of symbols 
 
   ; Rst = aa,inc,ab,ca,inc,qr,ty,inc,dc 
 
would have exactly the same effect.  The crucial element is that the second, fifth and eighth symbols 
are the same.  The other symbols in the list can be anything, as long as they are different.  That said, 
when we use this feature, we usually choose convenient combinations of numbers and letters that 
make the specification easy to understand.  The list of symbols that you choose in ; Rst are purely 
for internal use by the optimizer.  They will not appear anywhere in your results for the model. 
 
TIP:  Forcing a coefficient to equal a fixed value in a logit model is not the same as forcing the 
corresponding marginal effect to equal a fixed value.  Aside from zero, fixed values in the logit 
model are going to be difficult to interpret.  Of course, using fixed value constraints does provide an 
easy way to test hypotheses. 
 
 In order to use this feature, you will need to know what the precise parameter layout is for 
the model you are estimating.  This will be given with the specific model descriptions in the chapters 
to follow.  One way to find out in many cases is to fit the model without restrictions.  If you provide 
the wrong specification for the Rst list, you will get a diagnostic error about syntax in the 
restrictions.  Here is an example, based on a tobit model: 
 

SAMPLE  ; 1-1000 $ 
CREATE  ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; y = 0!(x1 + x2 + Rnn(0,2)) $ 
CALC  ; Rng(1) $ 
CALC   ; Ran(12345) $ 
TOBIT      ; Lhs = y ; Rhs = one,x1,x2 ; Rst = b0,b1,b1 $ 
 

   Expected   4 specifications in RST/CML list. Found   3. 
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This model command specifies a tobit model with two independent variables, and attempts to force 
the two coefficients to be equal.  The problem with this command is that the tobit model has an 
additional parameter, the standard deviation, σ.  Since the restriction list contains no specification for 
σ, a syntax error is indicated. 
 If the preceding example is respecified correctly, the following output results: 
 

TOBIT   ; Lhs = y ; Rhs = one,x1,x2 ; Rst = b0,b1,b1,v $ 
 
Normal exit:   5 iterations. Status=0, F=    1339.909 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
Log likelihood function     -1339.90941 
Estimation based on N =   1000, K =   3 
Inf.Cr.AIC  = 2685.819 AIC/N =    2.686 
Threshold values for the model: 
Lower=     .0000     Upper=+infinity 
LM test [df] for tobit=     14.513[  3] 
Normality Test, LM    =      1.890[  2] 
ANOVA  based fit measure =    .149337 
DECOMP based fit measure =    .295321 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|     .06266         .08224      .76  .4461     -.09854    .22385 
      X1|     .98991***      .05726    17.29  .0000      .87769   1.10213 
      X2|     .98991***      .05726    17.29  .0000      .87769   1.10213 
        |Disturbance standard deviation 
   Sigma|    2.00750***      .06927    28.98  .0000     1.87174   2.14326 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 There are some shortcuts available for the ; Rst specification: 
 

• k_value means repeat the value k times. Thus, 3 _ .2 = .2, .2, .2. 
• k_label means label1, label2,..., labelk.  Thus, 3_beta = beta1, beta2, beta3.   

 
These can be used to impose multiple restrictions.  Thus, 
 

3_beta, 3_beta = beta1, beta2, beta3, beta1, beta2, beta3 
3_beta, 2_0, beta1 = beta1, beta2, beta3, 0, 0, beta1 

 
If you provide starting values for the iterations for your model, you can use some or all of them as 
fixed values in the model.  The symbol for a starting value is ( ) with nothing in the parentheses.  A 
simple ( ) or k_( )  appears in your list at the corresponding point where the fixed value would 
appear.  Thus, 
   ; Start = .1, .2, .3, .4, 0, -.1, 0, 0, 
   ; Rst = b1, ( ), b3, b4, b5, 3_( ) 
 
fixes the second and sixth to eighth parameters to the values in the starting values list. 
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NOTE:  The labels you use in this specification are temporary, and will not appear anywhere in your 
output. They are used only for the purpose of specifying the restrictions in the command.   
 
 To illustrate this feature, we will fit a Heckman and Singer (1983) specification for a three 
class latent class model.  The Heckman and Singer form of latent class model is one in which the 
parameters for all classes are the same except for the constant term.  In this form, we can think of the 
model as a random effects model in which the random component has a discrete distribution.  The 
base model is a binary logit model.  The following fits the model subject to all the restrictions 
implied by the Heckman and Singer latent class assumption. 
 

LOGIT  ; Lhs = doctor ; Rhs = one,age,educ,married,hhninc,hsat 
; Pds = ti 
; Lcm ; Pts = 3 

         ; Rst = a1, 5_beta, a2, 5_beta, a3, 5_beta, theta1, theta2, theta3 $ 
 
----------------------------------------------------------------------------- 
Logit    Regression Start Values for DOCTOR 
Dependent variable               DOCTOR 
Log likelihood function    -16639.50194 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =33291.004 AIC/N =    1.218 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    2.28258***      .10496    21.75  .0000     2.07685   2.48831 
     AGE|     .01356***      .00123    10.98  .0000      .01114    .01598 
    EDUC|    -.02576***      .00588    -4.38  .0000     -.03728   -.01423 
 MARRIED|     .01395         .03187      .44  .6617     -.04852    .07641 
  HHNINC|    -.01849         .07801     -.24  .8127     -.17139    .13441 
    HSAT|    -.29189***      .00681   -42.87  .0000     -.30524   -.27855 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Latent Class / Panel Logit    Model 
Dependent variable               DOCTOR 
Log likelihood function    -15617.83305 
Restricted log likelihood  -16639.50194 
Chi squared [  15 d.f.]      2043.33778 
Significance level               .00000 
McFadden Pseudo R-squared      .0614002 
Estimation based on N =  27326, K =  10 
Inf.Cr.AIC  =31255.666 AIC/N =    1.144 
Unbalanced panel has   7293 individuals 
LOGIT (Logistic) probability model 
Model fit with  3 latent classes. 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    3.65647***      .20371    17.95  .0000     3.25720   4.05574 
     AGE|     .02231***      .00205    10.88  .0000      .01829    .02633 
    EDUC|    -.02965***      .01015    -2.92  .0035     -.04955   -.00976 
 MARRIED|    -.03666         .04992     -.73  .4627     -.13451    .06119 
  HHNINC|     .11252         .11083     1.02  .3100     -.10471    .32975 
    HSAT|    -.33354***      .00951   -35.07  .0000     -.35219   -.31490 
        |Model parameters for latent class 2 
Constant|    -.22121         .28992     -.76  .4455     -.78945    .34703 
     AGE|     .02231***      .00205    10.88  .0000      .01829    .02633 
    EDUC|    -.02965***      .01015    -2.92  .0035     -.04955   -.00976 
 MARRIED|    -.03666         .04992     -.73  .4627     -.13451    .06119 
  HHNINC|     .11252         .11083     1.02  .3100     -.10471    .32975 
    HSAT|    -.33354***      .00951   -35.07  .0000     -.35219   -.31490 
        |Model parameters for latent class 3 
Constant|    1.79550***      .21675     8.28  .0000     1.37068   2.22031 
     AGE|     .02231***      .00205    10.88  .0000      .01829    .02633 
    EDUC|    -.02965***      .01015    -2.92  .0035     -.04955   -.00976 
 MARRIED|    -.03666         .04992     -.73  .4627     -.13451    .06119 
  HHNINC|     .11252         .11083     1.02  .3100     -.10471    .32975 
    HSAT|    -.33354***      .00951   -35.07  .0000     -.35219   -.31490 
        |Estimated prior probabilities for class membership 
Class1Pr|     .43883***      .04092    10.72  .0000      .35863    .51903 
Class2Pr|     .10707***      .02364     4.53  .0000      .06074    .15340 
Class3Pr|     .45410***      .02793    16.26  .0000      .39936    .50885 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 

 
 You may use the names of scalars rather than literal numbers as fixed values. As such, you 
may also use this feature to loop over coefficients, search for a parameter value, or fit a model at 
many different values.  For example: 
 
 PROCEDURE 
 POISSON  ; Lhs = num ; Rhs = x ; Rst = 8_b, beta9 $ 
 ENDPROCEDURE 
 EXECUTE  ; beta9 = .5 (.1) 1.5 $ 
 
estimates the model of our example with the coefficient on logmth taking fixed values of 0.5, 0.6, ..., 
1.5. 
 You may also use the name of a scalar rather than a fixed number when you specify the 
number of values.  This is useful in models in which you scan over the values of a parameter. For 
example, the BURR model is a logit model that contains an asymmetry parameter.  The following 
would scan over a set of values of the extra parameter. 
 

PROCEDURE $ 
BURR   ; Lhs = doctor ; Rhs = one,age,educ,married,hhninc,hsat  

; Rst = 6_beta, lambda $ 
ENDPROC $ 
EXECUTE  ; lambda = .4(.1).7 $ 
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NOTE ON VERSION 10:  In previous versions of LIMDEP, the list of values provided for this 
kind of looping procedure was assumed to be in the form name = first,last,step.  The syntax used 
above is name = first(step)last.  You may use either syntax in your EXECUTE command. 
 
 Finally, since the value used in Rst may be a variable scalar, you can use this to change the 
size of the model. The following general setup uses that feature 
 
 NAMELIST ; x = a list of variables $ 
 NAMELIST ; z = another list of variables $ 
 CALC  ; k = Col(x) ; m = Col(z) $ 
 Model  ; Lhs = … ; Rhs = x ; Rst = k_beta, m_0 $ 
 
The number of parameters in the model is k + m.  The specified restriction allows k free parameters 
related to x but forces the m parameters related to z to be zero. 
 
R13.6.2 General Linear Restrictions 
 

All nonlinear models estimated by maximum likelihood may be fit subject to linear equality 
restrictions on the parameters.  The syntax is the same as that for restrictions on the linear least 
squares estimator described earlier.  That is: 

 
Model  ; … other setup 
  ; CML: linear restriction, linear restriction, … $ 

 
Linear restrictions are specified as 
 
   a1 b(.) ± a2 b(.) … = q1 , … as many restrictions as desired. 
 
The coefficients a1, a2, … are specific values.  If any are equal to 1.0, they may be omitted.  An 
example appears below.  Model coefficients are indexed by their appearance in the model 
specification and are indexed sequentially, almost always corresponding to a list of right hand side 
variables.  We will examine two examples below.  The restrictions may not be inequality restrictions.  
Thus, this feature can be used to force a set of coefficients to equal zero, but it cannot be used to 
make a sum of coefficients be greater than or equal to zero. 
 For an example, consider a Poisson regression model with conditional mean function, 
 

logE[num] = b(1)   + b(2) × a + b(3) × c + b(4) × d + b(5) × e + b(6) × c67 + b(7) × c72 
        + b(8) × c77 + b(9) × logmth. 
 
The model is fit without restrictions using 
 
 NAMELIST   ; x = one,a,c,d,e,c67,c72,c77,logmth $ 
 POISSON ; Lhs = num ; Rhs = x $ 
 
We can use ; Rst = list to constrain b(9) to equal 1.0.  The same restriction can be imposed with 
 
 POISSON ; Lhs = num ; Rhs = x ; CML: b(9) = 1.0 $ 
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The results produced by this will be identical  Consider a more involved example.  The four type 
dummy variables, a, c, d, and e, are included with an overall constant term; type other is dropped to 
avoid the multicollinearity problem of a complete set of dummy variables.  Suppose, instead, we 
include all five groups, and constrain the coefficients to sum to zero.  The constraint solves the 
identification problem. 
 

CREATE  ; other = 1-a-c-d-e $ 
 NAMELIST   ; x = one,a,c,d,e,other,c67,c72,c77,logmth $ 
 POISSON ; Lhs = num ; Rhs = x  
   ; CML: b(10) = 1, b(2) + b(3) + b(4) + b(5) +b(6) = 0 $ 
 
HOW IT’S DONE:  See Section R13.6.3 for technical details on linearly constrained maximum 
likelihood estimation. 
 
VERSION NOTE:  The specification ; CML: cannot recognize the model specifications used by     
; Test: that are based on variable names rather than parameter numbers. ; CML is meant to apply not 
only to regression style models, but also to settings such as NLSQ in which there is not a necessary 
natural association between parameters and variables. 
 
 Briefly, a final example is provided by the multinomial logit model.  Consider a model with 
four outcomes and four attributes: 
 
   Prob[yi  = j] = eij /[ei0 + ei1 + ei2 + ei3], j = 0,1,2,3; eij = exp(βj′xi). 
 
For identification, this model will be estimated subject to β0 = 0.  Thus, with four attributes 
(including constant terms), β1 is [b(1),b(2),b(3),b(4)], β2 = [b(5),b(6),b(7),b(8)], and so on.  Now, 
suppose for reasons unknown to us, you wished each element in β2 to equal twice its counterpart in 
β1.  Your LOGIT command might appear as follows: 
 
 LOGIT  ; Lhs = yij  
   ; Rhs = one,x1,x2,x3 
   ; CML:  b(5)-2b(1) = 0, b(6)-2b(2) = 0, b(7)-2b(3) = 0, b(8)-2b(4) = 0 $ 
 
R13.6.3 Imposing Linear Constraints on Maximum Likelihood 
Estimators 
 
 The objective is to maximize log L(data, θ) with respect to the parameter vector θ, subject to 
the set of linear constraints, Rθ - q = 0, where 
 
   θ =  K × 1 vector of constrained parameters, 

   R =  J × K matrix of coefficients in J constraints, 

   q =  J × 1 vector of constants. 
 
One approach to solving the maximization problem, which is equivalent to ‘solving out the 
constraints,’ is to partition R and θ so that we may write them as 
 
   R1θ1 + R2θ2 = q 
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such that R1 is J columns of R, R2 is K-J columns, and R1 is nonsingular.  We could then write 
 
   θ1  =  R1

-1(q – R2θ2). 
 
One would then estimate θ2 without constraints and solve for θ1 residually.  The method will be 
effective, but necessitates a possibly cumbersome search for the linearly independent columns of R 
and an inconvenient rearrangement of the elements of θ to accommodate it. 
 The solution method used here, which is equivalent (it would always give the same answer) 
is to maximize the log likelihood function in terms of a (K-J) coefficient vector, γ, such that γ is 
unconstrained, where θ = f(γ), and θ satisfies the constraints.  (The preceding is included in this 
general method.)  Assuming that the constraints are linearly independent, there are K-J free, 
unconstrained parameters in γ.  To reparameterize the objective function in terms of this γ, we begin 
with the spectral decomposition of  
 
   Q  =  I - R′(RR′ )-1R. 
 
Note that Q is a K × K idempotent matrix with rank K-J.  Therefore, Q has K-J unit characteristic 
roots and J zero roots.  Define the matrices Λ1 = IK-J = the K-J unit characteristic roots of Q, and      
Λ2 = 0J = the J zero characteristic roots.  Define C1 = the K × (K-J) matrix whose columns are the 
characteristic vectors of Q corresponding to the unit roots and define C2 = the K × J matrix whose 
columns are the characteristic vectors of Q corresponding to the zero roots. 
 Let γ be the (K-J)×1 vector of free parameters.  Let 
 
   a  =  C2(RC2)-1q. 
 
Then, the constrained parameter vector is 
 
   θ =  C1γ + a. 
 
It remains to show that θ does satisfy the constraints Rθ = q.  By simple multiplication, it is obvious 
that Ra = q, so what remains to show is that RC1 = 0.  By multiplication, RQ = 0.  But, by 
definition, 
   Q =  C1Λ1C1′  + C2Λ2C2′. 
 
Since Λ2 = 0, RC1Λ1C1′ = 0.  Post multiply by C1.  Recall, Λ1 = I and, by construction of characteristic 
vectors, C1′C1 = I.  Of course, 0C1 = 0, so we are left with RC1I I = 0, which completes the proof. 
 The estimation strategy, then, is to estimate γ.  We begin the iterations with any γ0.  When θ 
is to be used in any computation (function, derivatives), we compute θ = C1γ + a.  The function and 
all derivatives are computed as functions of θ.  Then,  
 
   ∂objective/∂γ  =  C1′ × ∂objective/∂θ 

   ∂2objective/∂γ∂γ′ =  C1′ × ∂2objective/∂θ∂θ′ × C1. 
 
If needed, the reverse transformation from θ to γ is γ = C1′θ.  (The equality follows from C1′C1 = I 
and C1′C2 = 0.) 
  



R13: Testing Hypotheses and Imposing Restrictions   R-357 

 Iterative estimation for the constrained procedures consists of the following steps: 
 
Step 1. Obtain starting values for θ, either by the program or user supplied. Sometimes the starting 

vector may not satisfy the constraints.  For the problems analyzed by LIMDEP, this will 
generally not be a problem. 

 
Step 2. Collapse starting vector to obtain γ. 
 
Step 3. Iteration: 
 

a. Enter iteration with γ. 
b. Expand γ to obtain θ.  By construction, θ satisfies the constraints. 
c. Compute the function, gradient, and if needed, the Hessian in terms of θ. 
d. Compute derivatives for γ as shown above. 

 
Step 4. Test for convergence and either exit or update γ and return to Step 3. 
 
Given the way the iterations are constructed, technical output produced during iterations will be for 
the unconstrained optimization problem.  Thus, if your model command includes ; Output = 3, the 
derivatives displayed in the output will be with respect to γ, not θ.  At exit, we recover θ = C1γ + a 
and we estimate the asymptotic covariance matrix for the estimator with C1V C1′ where V is the 
estimated asymptotic covariance for the estimator of γ. 
 
R13.6.4 Restricted Linear Regression with Multicollinearity 
 
 In a linear regression, if the X matrix is multicollinear, the ordinary least squares estimator 
cannot be computed.  However, if restrictions are imposed on the coefficients, the restrictions may 
serve to increase the rank of the problem so that the coefficients can still be computed and the 
coefficient vector is identified.  Consider the model with a complete set of dummy variables 
estimated in Section R13.6.2, where for now, we omit the first constraint: 
 

CREATE  ; other = 1-a-c-d-e $ 
 NAMELIST   ; x = one,a,c,d,e,other,c67,c72,c77,logmth $ 
 REGRESS ; Lhs = num ; Rhs = x  
   ; CLS:  b(2) + b(3) + b(4) + b(5) +b(6) = 0 $ 
 
The ten column data matrix for this model is collinear; a+c+d+e+other = one, so that as stated, the 
model could not be fit by linear least squares.  However, the constraint in the last line turns this into 
a nine dimension problem, and makes it estimable.  Nonetheless, the typical textbook approach to 
estimation in this case would break down, because the standard treatment in most textbooks and 
most software is to fit the unconstrained model first by least squares, then compute the restricted 
least squares estimator based on the unrestricted one.  The textbook formula, 
 
   bc = b – (XʹX)-1Rʹ [R(XʹX)-1Rʹ]-1(Rb – q), 
 
requires inversion of XʹX prior to computation of the constrained estimator.  But, since this matrix is 
singular, the computation stalls at this point.  In computing a linear regression, LIMDEP detects this 
condition and fits the restricted model directly, without attempting to invert XʹX.  Technical details 
of this result appear in Greene and Seaks (1991) and in Chapter E5 on the linear regression model 
where the results are detailed in full. 
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 The results for a model in which this condition emerges are shown below.  No diagnostic 
about multicollinearity would appear in the results, as the more general estimator has been used at 
the outset. 
 
 CREATE ; health = hsat + 1 $  Now coded 1,2,…,11  
 CREATE ; Expand(health) $ 
 
HEALTH   was expanded as _HEALTH_. 
Largest value =  11.  11 New variables were created. 
Category 
  1  New variable = HEALTH01    Frequency=     447 
  2  New variable = HEALTH02    Frequency=     255 
  3  New variable = HEALTH03    Frequency=     642 
  4  New variable = HEALTH04    Frequency=    1173 
  5  New variable = HEALTH05    Frequency=    1390 
  6  New variable = HEALTH06    Frequency=    4233 
  7  New variable = HEALTH07    Frequency=    2530 
  8  New variable = HEALTH08    Frequency=    4231 
  9  New variable = HEALTH09    Frequency=    6172 
 10  New variable = HEALTH10    Frequency=    3061 
 11  New variable = HEALTH11    Frequency=    3192 
Note, this is a complete set of dummy variables.  If 
you use this set in a regression, drop the constant. 
 
The program output includes a warning that _health_ is a complete set of dummy variables so it is 
necessary to drop one of them from a regression. This can be done at the outset by using                     
; Expand(health,0) in the CREATE command, which would produce 
 
HEALTH   was expanded as _HEALTH_. 
Largest value =  11.   0 New variables were created. 
Category 
  1  New variable = HEALTH01    Frequency=     447 
  2  New variable = HEALTH02    Frequency=     255 
  3  New variable = HEALTH03    Frequency=     642 
  4  New variable = HEALTH04    Frequency=    1173 
  5  New variable = HEALTH05    Frequency=    1390 
  6  New variable = HEALTH06    Frequency=    4233 
  7  New variable = HEALTH07    Frequency=    2530 
  8  New variable = HEALTH08    Frequency=    4231 
  9  New variable = HEALTH09    Frequency=    6172 
 10  New variable = HEALTH10    Frequency=    3061 
Note, the last category was not expanded. You may use 
this namelist as is in a regression with a constant. 
 
However, to continue the example, we will proceed with the first form of the result.  We then specify 
the regression, 
 
 REGRESS ; Lhs = hhninc ; Rhs = one,age,educ,married,hhkids,_health_  

; CLS: b(16) = 0 $ 
 
The unrestricted regression cannot be computed because the last 11 columns of the X matrix sum to 
the first column.  However, the command does not generate a warning about collinearity. 
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----------------------------------------------------------------------------- 
Restricted   least squares regression ............ 
LHS=HHNINC   Mean                 =         .35208 
             Standard deviation   =         .17691 
             No. of observations  =          27326  Degrees of freedom 
Regression   Sum of Squares       =        95.6962          14 
Residual     Sum of Squares       =        759.481       27311 
Total        Sum of Squares       =        855.178       27325 
             Standard error of e  =         .16676 
Fit          R-squared            =         .11190  R-bar squared =   .11145 
Model test   F[ 14, 27311]        =      245.80300  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    10180.04000  Akaike I.C.   = -3.58186 
             Restricted (b=0)     =     8558.60603 
             Chi squared [ 14]    =     3242.86795  Prob C2 > C2* =   .00000 
Restrictions F[  1, 27310]        =         .00000  Prob F > F*   =  1.00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .06076***      .00776     7.83  .0000      .04554    .07598 
     AGE|    -.00012         .00010    -1.13  .2578     -.00032    .00009 
    EDUC|     .02067***      .00045    46.45  .0000      .01980    .02154 
 MARRIED|     .08595***      .00260    33.08  .0000      .08086    .09104 
  HHKIDS|    -.02028***      .00238    -8.54  .0000     -.02494   -.01562 
HEALTH01|    -.03547***      .00847    -4.19  .0000     -.05207   -.01886 
HEALTH02|    -.03606***      .01088    -3.31  .0009     -.05739   -.01473 
HEALTH03|    -.02461***      .00726    -3.39  .0007     -.03883   -.01039 
HEALTH04|    -.00741         .00573    -1.29  .1961     -.01865    .00382 
HEALTH05|    -.00113         .00539     -.21  .8345     -.01169    .00944 
HEALTH06|    -.00595         .00395    -1.51  .1321     -.01370    .00180 
HEALTH07|     .01114**       .00447     2.49  .0127      .00238    .01991 
HEALTH08|     .01186***      .00392     3.03  .0025      .00418    .01955 
HEALTH09|     .01610***      .00364     4.42  .0000      .00897    .02324 
HEALTH10|     .01498***      .00423     3.54  .0004      .00670    .02327 
HEALTH11|       .000    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
You might note, this configuration of the problem produces a signature – note the F statistic in the 
model results.  It shows that the restriction is not binding, which will always be the case if the 
restriction is what secures identification of the model.. 
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R14: Functions of Parameters 
 
R14.1 Introduction 
 

 This chapter describes a post estimation procedure for analyzing nonlinear functions of 
parameters.  The starting point is estimation of the parameters of a model, β and computation of an 
estimate of the asymptotic covariance matrix for that estimator, Σ.  Call these β̂  and Σ̂ .  Post 

estimation, we will compute functions of β̂  such as ratios of elements, partial effects, and other 
functions that will be of the form 
 

   ( ) ( ) ( )1

1ˆ ˆ ˆˆ ˆ ˆ   or  ,    or   ,N
iiN =

= = = ∑c c z c zγ β γ β γ β . 
 

The procedures described here will be used for three calculations:  
 

• computing the functions 
• estimating the variances and covariances of the computed functions 
• testing the hypothesis that γ(β) = 0 using the sample statistics.   

 

The command used for all three computations is the WALD command. 
 

R14.2 Covariance Matrices for Nonlinear Functions 
 
 Two methods are used to obtain the estimated covariance matrix for the set of functions.  
The delta method estimates the covariance matrix by computing the covariance matrix of a linear 
approximation to the set of functions.  The method of Krinsky and Robb uses information about the 
asymptotic distribution of the estimator of β.  The logic of Krinsky and Robb is to estimate the 
variance of a function of β̂  by sampling random draws from the asymptotic distribution of β̂  and 
obtaining an empirical estimate of the variance of the functions. 
 
R14.2.1 The Delta Method 
 
 Suppose that b is a vector of parameter estimates of a parameter vector β, computed by any 
procedure (or even, if you wished, by some other program).  Suppose, as well, that Σ is the 
asymptotic covariance matrix of b and that VARB is our sample estimate of Σ.  Let γ1(β), 
γ2(β),...γJ(β) be J, up to 50, nonlinear functions of the form γj(β).  Let the vector γ(β) be the set of 
functions.  Let c(b) denote the sample estimate of γ(β), obtained by computing γ(β) with the sample 
estimate, b and one of the three forms noted in Section R14.1.  Denote by δj the set of partial 
derivatives, 
   ∂γj(β)/∂β′  =  δj. 
 
Note that δj is a row vector.  We estimate δj with dj by inserting our parameter estimates, b into the 
function defined by δj.  Under the usual assumptions about well behaved estimates, the asymptotic 
covariance matrix for c(b) will be 
 
   Γ  =  ∆Σ∆′ 
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where the jth row of ∆ is δj.  The sample estimate of ∆ is D, whose rows are dj.  Our estimate of Γ is 
 
   G  =  D × VARB × D′. 
 
For later purposes, we will call the matrix of derivatives, D, the Jacobian, though formally, the term 
would apply if γ(β) were itself a vector of derivatives, such as partial effects, so that ∆ would then be 
a matrix of second cross partial derivatives.  Here, γ need not be a vector of partial derivatives of a 
conditional mean function; γ(β) can be any set of functions you wish to analyze.  The only 
requirements for the theory of the delta method to work are that γ(β) be continuous and continuously 
differentiable functions that do not involve the sample size.   
 When they involve the sample data, the functions will be of two general forms 
 

   ( ) ( )1

1ˆ ˆˆ ˆ,    or   ,N
iiN =

= = ∑c z c zγ β γ β . 
 

In the first case, the functions are evaluated at the means of the data.  In the second, the functions, 
themselves, are averaged over the sample observations.  The third case noted in the introduction is 

( )ˆˆ = cγ β  in which the estimator is not a function of the sample data.  For the first and third cases, the 

Jacobian is computed as 
 

  ( ) ( )ˆ ,
ˆˆ , ˆ

∂
=

′∂

c z
z

β
∆ β

β
.    

 

That is, the Jacobian, like the functions, is computed at the sample means of the data.  For the second 
case, the appropriate Jacobian (fortunately), is simply 
 

( ) ( )
1

ˆ ,1ˆˆ
ˆ

iN

iN =

∂
=

′∂
∑

c zβ
∆ β

β
.   

 

The remaining part of the theory is the asserted asymptotic normal distribution of γ̂  with asymptotic 
covariance matrix estimated by G. 
 

R14.2.2 The Method of Krinsky and Robb 
 

The method of Krinsky and Robb (1986) departs from b as an estimator of β and V = VARB 
as an estimator of Σ, the covariance matrix of b.  The covariance matrix for the estimator of 

( )ˆˆ ,= c zγ β  is obtained by computing the empirical variance of R observations on γ̂ .  We obtain R 

draws from the distribution of b then compute R draws from c(b).  The draws on b are obtained using 
primitive draws from the multivariate standard normal distribution as follows.  Let L be the Cholesky 
factorization of V, such that LLʹ = V.  Then, a draw from the population of b is obtained as  

 
br = b + Lvr.   

 
Thus, br is a draw from the population which has mean b+L×0 = b and variance LILʹ = V. The draw 
on b is then transformed to a draw from c by computing cr = c(br).  The empirical variance is then 
estimated using 

   ( )( )1

1 ( ) ( ) .R
r rrR =

′= − −∑G c b c c b c  
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R14.3 The Wald Statistic 
 
 WALD is a general command for analyzing linear or nonlinear functions of parameters.  
The Wald statistic for testing the hypothesis γ(β) = 0 is computed as 
 
   W  =  c′G-1c. 
 
This statistic has a limiting chi squared distribution with J degrees of freedom.  As part of the results, 
WALD reports the computed value of W. 
 
R14.4 The WALD Command 
 
 The general command for requesting a Wald statistic is 
 
     WALD  ; Labels = a list of labels for the parameters 
   ; Start = the set of values for the parameters 
   ; Var   = the asymptotic covariance matrix 
   ; Fn1   = the first function 
   ; Fn2   = the second function  
   …        = ... up to 50 functions  
   ; Keep = list of functions  $ 
 
Request the Krinsky and Robb approach with the following addition to the WALD command: 
 

  ; K&R ; Pts = number of draws. 
 
The ; Pts specification is optional. The default is 1,000 draws.  WALD will compute functions that 
involve sample means of the data at the sample means.  If the function you are computing is a 
sample mean of observations, such as an average partial effect, then add 
 
   ; Average 
 
To the command.  The estimated variance is then computed appropriately. 
 
NOTE:  You should not use Krinsky and Robb with ; Average, though the program will not stop 
you from doing so.  LIMDEP will attempt to apply Krinsky and Robb to each term in the sum, which 
could lead to a huge amount of computation.  However, this does not produce the correct covariance 
matrix, because the draws are treated as if they are independent when they are not – they use the 
same parameter vector.  If you are computing a function with ; Average, you should use the delta 
method. 
 
TIP:  There is no theoretical reason to prefer Krinsky and Robb’s method to the delta method.  Their 
1986 paper that claimed otherwise was retracted in their 1990 paper that attributed the earlier finding 
to a software bug. 
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R14.4.1 Components of the WALD Command 
 
 The syntax of the command is such that the first three specifications provide the names, 
values of, and covariance matrix for a set of parameters, then one or more functions to be analyzed.  
 

• The ; Labels = ... specification is optional.  Although they are optional, there is much less 
chance for confusion if you provide your own labels.  If you do not provide the labels, the 
parameters will be labeled b1, b2, ..., bK, where K is the number of values you provide in the 
; Start = ... specification.  Do note that when you define the functions, ; Fn1 = ..., if you 
have not provided labels, you must use the b1,... given above. 
 

• ; Start = ... gives the numeric values for the parameters to be used in computing the 
functions.   These may be given numerically, as in ; Start = 1.3, -.70248, .1114, 4 or they 
may be given symbolically, by using existing scalars and/or estimates from a previous  
model.  For example, ; Start = b(1), b(2), rho, b(15), ssqrd.  You may use ; Parameters = 
the values as a synonym 
 

• ; Var = ... specifies the covariance matrix to be used. The matrix must match the starting 
values in its dimensions.  You may provide it three ways: 
 

° name of a matrix, as in ; Var = varb 
° selected rows and columns as in ; Var = varb[1, 3, 5, 6]. 
° numeric values, provided as a lower triangle, as in ; Var = 1.2, -3., 5.5. 

   
You may use ; Covariance = specification as above as a synonym.  

 
• ; Fnj = ... specifies the function to be analyzed.  The full set of options for this part of the 

command are given in Chapters E15 and E44.  For present purposes, any algebraic function 
of the estimates can be computed.  Up to 50 functions can be defined.  You may define 
names for the functions that will be used in the results table with ; Fnj = name = definition.  
An example appears below. 

 
• ; Keep = ... is optional and specifies that only the specified functions are to be displayed and 

retained in the results.  Use this when some results are intermediate.  Thus, if you were to 
compute Fn1 ... Fn10, but you only were interested in Fn9 and Fn10, you might use ; Keep 
= 9,10 to discard the first eight, intermediate results. 
 

• When you use ; Average ; Keep = name, WALD creates two new variables in the data set, 
waldfncn which contains for each observation, the first function value in the list, and 
waldfnse which contains for each observation an estimate of the standard error. 
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R14.4.2 Results of the WALD Command 
 
 WALD produces a standard table of function values, standard errors, and so on.  In the 
following example, we estimate a probit model, then compute the average partial effects.  (This 
replicates the computations of ; Partial Effects in the command and PARTIAL EFFECTS.) 
 

PROBIT ; Lhs = doctor ; Rhs = one,age,educ,hhninc,married $ 
WALD   ; Covariance = varb 

; Parameters = b 
; Labels = b1,b2,b3,b4,b5 

     ; Fn1 = density  = Phi(b1 + b2*age + b3*educ + b4*hhninc + b5*married) 
; Fn2 = ape_age = density * b2 
; Fn3 = ape_educ = density * b3 
; Fn4 = ape_incm = density * b4 
; Fn5 = ape_marr = Phi(b1 + b2*age + b3*educ + b4*hhninc + b5) - 
    Phi(b1 + b2*age + b3*educ + b4*hhninc) 
; Average $ 

 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =  19344.31753 
Prob. from Chi-squared[ 5] =       .00000 
Functions of data are averaged over the obs. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 DENSITY|     .36520***      .00291   125.45  .0000      .35950    .37091 
 APE_AGE|     .00489***      .00064     7.65  .0000      .00364    .00615 
APE_EDUC|    -.00431         .00312    -1.38  .1663     -.01042    .00179 
APE_INCM|    -.14883***      .04505    -3.30  .0010     -.23713   -.06054 
APE_MARR|     .03920**       .01735     2.26  .0239      .00519    .07321 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 

 
 WALD computes the value of each function you specify, its estimated standard error, the t 
ratio, and so on.  It also computes the Wald statistic for the set of functions.  The Wald statistic 
computed by this procedure is 
 

   W  =  ijJ
j

J
i

ji ][    
11

D VARBD'FnFn ××∑∑ ==
 

 
(The superscript indicates the element of an inverse matrix.)  The statistic, itself, may be of no use to 
you, in which case, it can be ignored.  Conversely, the specific functions may be the superfluous 
information, and the Wald statistic may be the only information that you need.  In this case, the 
function output can be ignored.  After the computation, matrices waldfns, jacobian and varwald will 
be the functions, c, the Jacobian, D, and the covariance matrix, G.  Scalar wald will contain the Wald 
statistic, W. 
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R14.4.3 Recursive Functions 
 
 Functions in the WALD command may use previous functions.  For example: 
 
   ; Fn1 = b’xbar 
   ; Fn2 = N01(Fn1)/Phi(Fn1) 
   ; Fn3 = s*(1 - Fn2*Fn1 - Fn2^2) 
 
Do note, these must be defined recursively.  In the preceding, Fn2 could not be defined as a function 
of Fn3.  We used this capability in the first example above, where density is defined then used in 
three subsequent function definitions.  This feature can be a particularly convenient and powerful 
aspect of the command.  Consider the routine below for computing a marginal effect for a binary 
variable in a tobit model.  The WALD command would be enormously complex and lengthy, if it 
were not specified recursively.  Note, the final line, if included in the command, would indicate that 
only the 11th function is to be displayed and kept in the work areas. 
 

SAMPLE  ; 1-1000 $ 
CREATE   ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; d = Rnu(0,1) > .4 $ 
CREATE  ; ys = 2.5 + .5*x1 + .4 *x2 - .6*d + Rnn(0,2) $ 
CREATE  ; y = ys ; If(ys < 0) y = 0 ; If(ys > 5) y = 5 $ 
NAMELIST  ; x = one,x1,x2 $ 
CALC  ; l = 0 ; u = 5 ; kx = Col(x) $ 
TOBIT  ; Lhs = y ; Rhs = x,d ; Limits = l,u ; Parameters $ 

 WALD      ; Labels = kx_b,alpha,v     ? all parameters 
      ; Start = b ; Var = varb    ? includes sigma 
  ; Fn1  = (L - b1’x)/v  ? (L - b’x1)/s 
  ; Fn2   = (U - b1’x)/v  ? (U - b’x1)/s 
  ; Fn3   = Phi(Fn1  - alpha/v) ? Phi[(L - b’x1)/s] 
  ; Fn4   = Phi(Fn2  - alpha/v) ? Phi[(U - b’x1)/s] 
  ; Fn5   = N01(Fn1 - alpha/v) ? N01[(L - b’x1)/s] 
  ; Fn6   = N01(Fn2 - alpha/v) ? N01[(U - b’x1)/s] 
  ; Fn7   = Phi(Fn1)  ? Phi[(L - b’x0)/s] 
  ; Fn8   = Phi(Fn2)  ? Phi[(U - b’x0)/s] 
  ; Fn9   = N01(Fn1)  ? N01[(L - b’x0)/s] 
  ; Fn10 = N01(Fn2)  ? N01[(U - b’x0)/s] 
  ; Fn11 =   

 ( Fn3 * L + (1 - Fn4) * U + (b1’x+alpha) * (Fn4 - Fn3) + v * (Fn5 - Fn6) ) 
          - ( Fn7 * L + (1 - Fn8) * U + b1’x               * (Fn8 - Fn7) + v * (Fn9 - Fn10) )   
   ; Average  
   ; Keep = 11  $ 
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R14.4.4 Application Based on the Last Model 
 
 The Last Model estimated produces a set of labels that you can use in the WALD command, 
with the parameter vector, b, and covariance matrix, varb.  The labels that apply for the last model 
can be found in the project window.  The labellist lstmodel is replaced each time you compute a new 
model.  To see its current contents, double click the name in the project window, and a list will be 
placed in the output window.  The example below is produced by the TOBIT command in the 
program above. 
 

 
Figure R14.1  Labellist from Last Model 

 
 
You may use the last model labels with b and varb as defaults in your WALD command.  The 
example in Section  R14.4.2 can be simplified a bit as 
 

PROBIT ; Lhs = doctor ; Rhs = one,age,educ,hhninc,married$ 
WALD   ; Fn1 = bx = b_one + b_age*age + b_educ*educ + b_hhninc*hhninc 

       ; Fn2 = density = Phi(bx + b_married*married) 
   ; Fn3 = ape_age = density * b_age 
   ; Fn4 = ape_educ = density * b_educ 
   ; Fn5 = ape_incm = density * b_hhninc 
   ; Fn6 = ape_marr = Phi(bx + b5) - Phi(bx) 
   ; Average $ 

 
Note that the construction above is invariant to how you order the variables in your model.  
Regardless of what else appears on your Rhs and in what order it appears, in the Last Model set, the 
name b_age will refer to the coefficient that multiplied age in the most recently estimated model. 
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R14.4.5 The Number of Parameters 
 
 In specifying a WALD command, you frequently need to know the number of coefficients in 
the coefficient vector.  This will likely depend on the model you have fit or the procedure you have 
used to obtain the functions you are analyzing.  When you fit a model, the number of coefficients in 
the coefficient vector that is produced is stored as a scalar named kreg.  You can use kreg in your 
command.  The preceding could have been 
 

WALD    ; Start = b 
  ; Var = varb 
  ; Labels = kreg _ gamma 

; Fn1 = gamma2 * N01(gamma1’xb) 
            ; Fn2 = gamma3 * N01(gamma2’xb) $ 
 
The advantage in this form is that you can structure your procedures so that they are general and not 
dependent on a specific value or model.  If you are not basing your computation on a previous model 
that stored kreg, you can still obtain the dimension that you need as follows:  CALC provides the 
Row(matrix) function which returns the number of rows in a matrix. (The Col(matrix) function is 
also available.)  Thus, the preceding could also be specified using 
  

CALC  ; numbeta = Row(varb) $ 
WALD      ; Start = b 
  ; Var = varb 

 ; Labels = numbeta _ gamma 
; Fn1 = gamma2 * N01(gamma1’xb) 

            ; Fn2 = gamma3 * N01(gamma2’xb) $ 
 
NOTE:  There is a dot product in the N01 function.  The construction b_one’xb means compute the 
inner product of the coefficient vector with the variables in xb.  The specific coefficient name b_one 
means start the coefficient vector with b_one.  You might have (certainly incorrectly) used b_gc’xb 
which would compute b_gc*one + b_ttme*gc and a third term would be lost.  
 
R14.4.6 Interdependent Sets of Functions 
 
 In some applications, instead of presenting a Wald statistic, the table will give the diagnostic, 
‘VC matrix for the functions is singular.’  This is likely to happen when you compute a set of 
functions which are functionally dependent.  This is deduced by the program attempting to invert the 
covariance matrix.  Assuming the base covariance matrix, varb, is nonsingular, the matrix G will be 
singular if the derivatives matrix does not have full rank, in which case, we infer that the functions 
are functionally dependent.  The application below, which displays the results of the program in  
Section R14.4.3, shows an example. 
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----------------------------------------------------------------------------- 
Limited Dependent Variable Model - CENSORED 
Dependent variable                    Y 
Estimation criterion        -1852.69115 
Estimation based on N =   1000, K =   5 
Threshold values for the model: 
Lower=     .0000     Upper=    5.0000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    2.52695***      .10213    24.74  .0000     2.32678   2.72712 
      X1|     .47633***      .06529     7.30  .0000      .34837    .60429 
      X2|     .35063***      .06434     5.45  .0000      .22454    .47673 
       D|    -.85204***      .13559    -6.28  .0000    -1.11780   -.58628 
        |Disturbance standard deviation 
   Sigma|    2.05626***      .05765    35.67  .0000     1.94328   2.16924 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
VC matrix for the functions is singular. 
Standard errors are reported, but the 
Wald statistic cannot be computed. 
Functions of data are averaged over the obs. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|   -1.22458***      .06032   -20.30  .0000    -1.34280  -1.10636 
 Fncn(2)|    1.20702***      .06013    20.07  .0000     1.08916   1.32488 
 Fncn(3)|     .21866***      .01436    15.23  .0000      .19052    .24680 
 Fncn(4)|     .93997***      .00682   137.82  .0000      .92661    .95334 
 Fncn(5)|     .28275***      .01077    26.25  .0000      .26164    .30387 
 Fncn(6)|     .11431***      .01011    11.30  .0000      .09449    .13414 
 Fncn(7)|     .12024***      .01153    10.43  .0000      .09764    .14283 
 Fncn(8)|     .87638***      .01182    74.14  .0000      .85322    .89955 
 Fncn(9)|     .19195***      .01297    14.80  .0000      .16653    .21736 
Fncn(10)|     .19590***      .01304    15.03  .0000      .17035    .22145 
Fncn(11)|    -.63452***      .10035    -6.32  .0000     -.83120   -.43784 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 If you are only interested in the functions, themselves, the diagnostic can be ignored. 
Nonetheless, you will receive estimates of the functions and standard errors for the individual 
components.  The Wald statistic is of no interest anyway.  The listing below shows the results of 
executing the preceding WALD command for the tobit model.  As might be expected, the functions 
are dependent, and no Wald statistic is computed.  In fact, for this application, the only quantity of 
interest is the last function, which gives the desired partial effect.  As such, all rows save the last one 
in this table are ignored. 
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R14.4.7 Extracting Parts of a Model 
 
 It may be convenient to analyze just part of a model.  Consider another example (a bit 
farfetched, we admit).  We fit a probit model for y using 15 regressors including a constant.  The 
hypotheses to be tested are 
 
   b1b4/(b2 + b5 + exp(b11)  = 1 

   b2 + b3     = 4 
 
The commands are 
 
 PROBIT ; Lhs  = y ; Rhs = x1,x2,...,x15,one $ 
 WALD  ; Labels = b1,b2,b3,b4,b5,b11 
   ; Start  = b(1),b(2),b(3),b(4),b(5),b(11) 
   ; Var  = varb[1,2,3,4,5,11] 
   ; Fn1  = b1*b4 / (b2 + b5 + Exp(b11)) - 1 
   ; Fn2  = b2 + b3 - 4 $ 
 
Note how the constant of each restriction is moved to the left hand side of the expression to conform 
to the convention gj(b) = 0.  Also, as shown above, this procedure can be used for linear as well as 
nonlinear restrictions. 
 
R14.4.8 Application to a Function of the Parameters 
 
 The WALD command can be used to analyze functions of parameters that do not involve the 
data.  To use this feature, you may follow your model command with any number of commands of 
the form 
 
 WALD   ; Labels = a set of names for the parameters 
   ; Parameters = the values of the estimates 
   ; Covariance = the estimated covariance matrix 
   ; Fn1 = function of model parameters  
   ; Fn2 = function of model parameters 
   ; ...  up to 50 functions  $ 
 
The command needs only to provide the desired function.  Each WALD command may give up to 
50 functions, but you may have as many WALD commands as you wish.   To illustrate, we consider 
an extensive example based on Example 6.8 CES Production Function in Greene (2011, p. 167).  
One method of estimating the parameters of the CES production function, 
 
   logy  =  logγ - (ν/ρ)log[δkρ+ (1-δ)lρ] 
 
is to regress logy on one, x1 = logk, x2 = logl, and x3 = log2(k/l). The coefficients thus obtained are 
labeled b1, b2, b3, and b4.  The structural parameters are γ = exp(b1), δ = b2/(b2+b3), ν = (b2+b3), and   
ρ = -2b4(b2+b3)/(b2b3).  The bs are estimated by ordinary least squares.  We then use WALD to 
compute the structural parameters and estimate standard errors for these estimates.  An application 
appears below.   
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IMPORT $  
 
obs,   valueadd,    labor,     capital  
 1    657.29   162.31   279.99     
 2    935.93   214.43   542.50    
 3   1110.65   186.44   721.51     
 4   1200.89   245.83  1167.68    
 5   1052.68   211.40   811.77     
 6   3406.02   690.61  4558.02    
 7   2427.89   452.79  3069.91     
 8   4257.46   714.20  5585.01    
 9   1625.19   320.54  1618.75    
10   1272.05   253.17  1562.08    
11   1004.45   236.44   662.04    
12    598.87   140.73   875.37    
13    853.10   145.04  1696.98    
14   1165.63   240.27  1078.79    
15   1917.55   536.73  2109.34    
16   9849.17  1564.83 13989.55    
17   1088.27   214.62   884.24    
18   8095.63  1083.10  9119.70    
19   3175.39   521.74  5686.99    
20   1653.38   304.85  1701.06    
21   5159.31   835.69  5206.36    
22   3378.40   284.00  3288.72    
23    592.85   150.77   357.32    
24   1601.98   259.91  2031.93    
25   2065.85   497.60  2492.98    
26   2293.87   275.20  1711.74    
27    745.67   137.00   768.59   

  
CREATE ; y = Log(valueadd) 

   ; x1 = Log(capital) ; x2 = Log(labor) ; x3 = (x1-x2)^2 $ 
 REGRESS ; Lhs = y ; Rhs = one,x1,x2,x3 $ 
 WALD  ; Labels = b0,b1,b2,b3 ; Start = b ; Var = varb 
                                     ; Fn1 = gamma = Exp(b0) 
   ; Fn2 = delta    =  b1 / (b1 + b2) 
   ; Fn3 = nu        =  b1 + b2 
   ; Fn4 = ro         = -2 * b3 * (b1 + b2) / (b1 * b2) $ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =        7.44363 
             Standard deviation   =         .76115 
             No. of observations  =             27  Degrees of freedom 
Regression   Sum of Squares       =        14.2614           3 
Residual     Sum of Squares       =        .801802          23 
Total        Sum of Squares       =        15.0632          26 
             Standard error of e  =         .18671 
Fit          R-squared            =         .94677  R-bar squared =   .93983 
Model test   F[  3,    23]        =      136.36447  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =        9.16451  Akaike I.C.   = -3.22043 
             Restricted (b=0)     =      -30.43298 
             Chi squared [  3]    =       79.19498  Prob C2 > C2* =   .00000 
--------+-------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       t    |t|>T*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.46773***      .40823     3.60  .0015      .66761   2.26784 
      X1|    -.11150         .41620     -.27  .7912     -.92723    .70423 
      X2|    1.10023**       .43422     2.53  .0186      .24917   1.95128 
      X3|     .15225         .12734     1.20  .2440     -.09734    .40184 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =  47548.33748 
Prob. from Chi-squared[ 4] =       .00000 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   GAMMA|    4.33936**      1.77146     2.45  .0143      .86736   7.81135 
   DELTA|    -.11277         .41944     -.27  .7880     -.93485    .70931 
      NU|     .98872***      .06259    15.80  .0000      .86605   1.11139 
      RO|    2.45416        8.08604      .30  .7615   -13.39419  18.30251 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The standard least squares results are followed by the output from the WALD command.  The table 
contains the function values, computed at the parameter estimates, standard errors, and ratios of the 
function values to the standard errors.  The standard errors are the square roots of the diagonal 
elements of the estimated asymptotic covariance matrix.  This is computed using the ‘delta’ method, 
i.e., let 
   Fnj  =  cj(b), j = 1,...,J 
 
denote the jth function that you have specified, written only as a function of the full vector of 
parameter estimates, b.  Let 
 
   gj  =  ∂cj(b)/∂b′ 
 
Note that gj is a row vector which will usually contain some zeros, since the functions need not 
involve all of the parameter estimates.  Let G denote the matrix whose jth row is gj, so G is J×kreg.  
Then, the asymptotic covariance matrix for the set of functions is computed using 
 
   varwald  =  G ×varb × G′ 
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 After the functions are computed and reported, WALD retains three retrievable results: 
 
 Matrices: waldfns = a vector containing the J functions 
   varwald  = a J×J estimated asymptotic covariance matrix 
   jacobian = a J×K matrix of derivatives of the functions with 
     respect to the parameters 
 
 Scalar:  wald = c′[varwald]-1 c 
  
Wald is the Wald (chi squared) statistic used to test the hypothesis that all functions are jointly zero. 
It is reported in the box header above the table of function values and standard errors.  See Figure 
R14.2 for the results of the example above. 
 

 
Figure R14.2  Results from WALD Procedure 
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R14.4.9 Application to a Complex Nonlinear Function 
 
 As might be evident, the WALD command is more general than we have suggested, and it 
can be an extremely powerful time saver.  An example which normally involves a large amount of 
computation is the predicted value for the Box-Cox regression.  (The model, and the following 
example, are described in more detail in Chapter E14.)  The prediction for the Box-Cox model when 
the transformation is applied to both Lhs and Rhs variables is 
     

   ( ) 1/
ˆ (( 1) / ) 1 .y b xk k k

λλ = λ − λ +∑    
 
If λ is an estimated parameter whose variation must be included in the computation of the forecast 
standard error, this becomes an exceedingly complex computation.  With WALD, the computation 
can be done as follows, where we use the means of two regressors for the forecast: 
 
 BOXCOX  ; Lhs = y  
   ; Rhs = x1,x2,one  
   ; Model = 3 ; Lambda = ... ; Par $ 
 CALC  ; u1 = Xbr(x1) ; u2 = Xbr(x2) $ 
 WALD  ; Labels = b1,b2,a,L  
   ; Start = b(1),b(2),b(3),b(4) 
    ; Var = varb[1,2,3,4] 
   ; Fn1 = (L*(b1*x1@L + b2*x2@L + a) + 1)^(1/L) $ 
 
Using ; Par with the command saves the ancillary parameters, λ and s2 in b and varb. 
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R15: Retrievable Results 
 
R15.1 Introduction 
 
 When you use LIMDEP (any any other program) to compute estimates of parameters or 
tables of results, you will need to be able to retrieve the results of estimation to do subsequent 
calculations.  Otherwise, you are limited to what the software provides in your tables of results in 
what you can do with those results.  To consider an example, it is common after estimation of 
multinomial choice models to compute a ‘willingness to pay’ result using a ratio of the model 
parameters.  In the following example, 
 

CLOGIT  ; Lhs = mode 
; Choices = air,train,bus,car  
; Rhs = gc,invt,hinca,one $ 

 
the outcome variable is the choice of travel mode and the characteristics are a cost variable, gc, and 
the time spent in the journey, invt.  Hinca is an income variable that applies only in the air choice.  
After estimation of βgc, βinvt and the other parameters, one can measure the willingness to pay (WTP) 
for a shorter journey by the ratio, (-βinvt/-βgc).  Estimation results are shown in Figure R15.1.  At this 
point, in order to compute the WTP, it is necessary to take out pen and paper and a hand calculator.  
In addition, computing a standard error for the result will require the covariance matrix (and a 
calculator) to employ, at considerable inconvenience, the delta method. In order to avoid this 
inconvenience, it is necessary to be able to ‘retrieve’ the results of estimation in a way that they can 
be manipulated using program instructions. (A menu of ‘post estimation’ features is helpful, but will 
be insufficient unless the program has every possible calculation you might want in its menu.) 
 We provide the calculator for you with the CALC command described in Chapter R17.  So 
to begin, you could get the result you need with 
 
 CALC  ; wtp = .00269 / .00861 $ 
 
which will produce the result 0.3127943.  This obviously does not solve the problem, because a 
different specification requires a new pair of values.  What is required is to be able to insert the 
values of the parameters as names of something that the program has computed.  If we can retrieve 
the results of estimation in something that has a name, we can manipulate the names to get the result 
we need.  Estimation results in LIMDEP are always retrievable in a set of named entities (scalars, 
matrices, variables, etc.)  To continue our example, the parameter vector computed by every 
estimation command in LIMDEP is saved as a matrix named b which can be accessed as a matrix or 
one element at a time with the calculator.  Thus, the desired WTP measure is computed by 
 
 CALC   ; List  ; wtp =  -b(2)/(-b(1)) $ 
 

[CALC] wtp  = .3127943 
 
  



R15: Retrievable Results   R-375 

There is a minor additional inconvenience in this computation in that it insists that the two coefficients 
be the first and second in the model.  But, this is not strictly necessary either because the CLOGIT 
command also automatically saves the names of the parameters.  The CALC command below is 
completely generic, and will find the desired result as long as invt and gc appear in the model. 
 

CALC   ; List ; wtp = b_invt / b_gc $ 
 
[CALC] wtp  =   .3127943 

 

 
Figure R15.1  Estimated Travel Mode Choice Model 
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 Suppose we wished to test the hypothesis that travelers did not value their travel time.  That 
would entail a test of the hypothesis that WTP equals zero.  To carry out the test, we could, in principle, 
just test the hypothesis that the coefficient in the numerator of WTP equals zero (which we would 
reject based on the estimation results in Figure R15.1).  Alternatively, we could analyze the WTP result 
itself.  To apply the delta method to that, we would require the covariance matrix, which is also 
retrievable.  The WALD command below shows how to make use of the saved matrices and varb. 
 

WALD  ; Labels = bgc,binvt,chinca,cair,ctrain,cbus 
; Parameters = b 
; Covariance = varb 
; Fn1 = WTP = -binvt/-bgc $ 
 

----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =      1.26306 
Prob. from Chi-squared[ 1] =       .26107 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     WTP|     .31279         .27832     1.12  .2611     -.23271    .85830 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 Estimation results produced by LIMDEP are always retrievable, and the program command 
language provides many convenient ways to manipulate those results.  As shown above, the main 
tools you will use to manipulate the retrievable results are CALC, MATRIX, CREATE and 
WALD.  The PARTIAL EFFECTS, SIMULATE and DECOMPOSE commands also use this 
aspect of estimation.  There are also several numerical analysis tools described in Chapter E43 that 
can retrieve and use previous estimation results. 
 

R15.2 Retrievable Results 
 
 When you estimate a model, the estimation results are displayed on the screen in the output 
window.  In addition, each model produces a number of results which are saved automatically and 
can be used in subsequent procedures and commands.  Retrievable results generally appear in four 
locations in the project, as variables, matrices, scalars and labellists. 
 The CLOGIT command above shows an example.  After the model is estimated, scalars 
named nreg, kreg, and logl are created and set equal to the number of observations, number of 
coefficients estimated, and the log likelihood for the model, respectively.  For another, after you give 
a REGRESS command, the scalar rsqrd is thereafter equal to the R² from that regression.  You can 
retrieve these and use them in later commands.  For example, 
 
 REGRESS  ; ... $ 
 CALC   ; f = rsqrd/(kreg-1) / ((1 - rsqrd)/(nreg - kreg)) $ 
 
computes a standard F statistic. 
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 Although the calculator has 100 cells, the first 14 are ‘read only’ in the sense that LIMDEP 
reserves them for estimation results.  You may use these scalars in your calculations, or in other 
commands (see the example above), but you may not change them.  (The one named rho may be 
changed.) Likewise, the first three matrices are reserved by the program for ‘read only’ purposes. 
The read only scalars are 
 
 ssqrd, rsqrd, s, sumsqdef, degfrdm, ybar, sy, kreg, nreg, logl, exitcode 
 
and two whose names and contents will depend on the model just estimated.  The names used for 
these will be given with the specific model descriptions.  At any time, the names of the read only 
scalars are marked in the project window with the  symbol to indicate that these names are 
‘locked.’ Figure R15.2 illustrates.  This shows the setup of the project window after the clogit 
example developed above. 
 A parameter vector is automatically retained in a matrix named b.  The program will also 
save the estimated asymptotic covariance matrix and name it varb.  The reserved matrices are thus b 
and varb, with a third occasionally used and renamed.  The third, protected matrix name will depend 
on the model estimated.  A few examples are: 
 
 mu   created by ORDERED PROBIT, 
 sigma  created by SURE and 3SLS, 
 pacf    created by IDENTIFY. 
 
 When a model is fit by maximum likelihood, a variable named logl_obs is created.  The 
variable contains the contribution of each observation to the log likelihood that was maximized.  In 
the clogit example above, the log likelihood function reported in the results is -262.55917.  We could 
locate this result with 
 
 CALC   ; List ; Sum(logl_obs)$ 
 
 [CALC] *Result*=   -262.5591744 
 
In many single equation, single index models, such as the probit model or the linear regression 
model, the derivative of the log likelihood function with respect to the β in the index function βʹx 
takes the form 
 

   ∂logL/∂β  =  
1

( , , , ) ,n
i i ii

g y
=∑ x xβ θ  

 
where xi is the set of independent variables, yi is the dependent variable, θ is a vector of ancillary 
parameters, and β is the vector of coefficients on xi in the model.  The function g(.) is often called the 
‘score function.’  It is also the derivative of the log likelihood function with respect to the constant 
term.  This is a residual-like function.  It is the ‘generalized residual’ defined in Chesher and Irish 
(1987).  For examples, gi  =  εi / σ2 in the linear regression model when the disturbances are normally 
distributed, and gi  =  (2yi-1) φ(βʹxi) / Φ[(2yi-1)βʹxi] in the probit model.  (Note that this is the sample 
selection correction term in Heckman’s (1979) two step sample selection estimator.)  This variable 
will be saved in the data area as score_fn.  (The variable is created for every model fit by ML.  When 
there is no natural index function, for example in the bivariate probit model which has two index 
functions, score_fn will be filled with missing values.) 
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 All estimators set at least some of these matrices, variables and scalars.  In the case of the 
scalars, those not saved by the estimator are set to zero.  For example, the PROBIT estimator does 
not save rsqrd.  Matrices are simply left unchanged.  So, for example, if you estimate a fixed effects 
model, which creates the third matrix and calls it alphafe, then estimate a probit model which only 
computes b and varb, alphafe will still be defined. 
 

 
                                                     Figure R15.2  Project Window 
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TIP:  Each time you estimate a model, the contents of b, varb, and the scalars are replaced.  If you 
do not want to lose the results, retain them by copying them into a different matrix or scalar. For 
example, the following computes a Wald test statistic for the hypothesis that the slope vector in a 
regression is the same for two groups (a Chow test of sorts): 
 
 REGRESS  ; Lhs = y ; Rhs = ...  ; If [male = 1] $ 
 MATRIX ; bmale  =  b ; vmale = varb $ 
 REGRESS ; Lhs = y ; Rhs = ...  ; If [female = 1] $ 
 MATRIX ; bfemale = b ; vfemale = varb $ 
 MATRIX ; d = bmale - bfemale  
   ; waldstat = d' * Nvsm(vmale, vfemale) * d $ 
 
 The matrix results saved automatically in b and varb are, typically, a slope vector, b, and the 
estimated asymptotic covariance matrix of the estimator, from an index function model.  For 
example, when you estimate a tobit model, the estimates and asymptotic covariance matrix are 
 

   β
σ









    and   

V V
V V

ββ

σβ σσ

βσ








.  

 
The results kept are β, in b, Vββ in varb, and σ in a scalar named s. The other parts of the asymptotic 
covariance matrix are generally discarded.  We call the additional parameters, such as s, the ancillary 
parameters in the model.  Most of the models that LIMDEP estimates contain one or two ancillary 
parameters.  These are generally handled as in this example; the slope vector is retained as b, the 
ancillary parameters are kept as named scalars, and the parts of the covariance matrix that apply to 
them are discarded. 
 In some applications, you may want the full parameter vector and covariance matrix.  You 
can retain these, instead of just the submatrices listed above, by adding the specification 
 
   ; Parameters 
 
(or, just ; Par) to your model command. (Note, for example, the computation of marginal effects for 
a dummy variable in a tobit model developed in Section R14.4.3.)  Without this specification, the 
saved results are exactly as described above.  The specific parameters saved by each command are 
listed with the model application in the chapters to follow.  You will find an example of the use of 
this parameter setting in the program for marginal effects for a binary variable in the tobit model, 
which is in the previous section. 
 Finally, there is occasional use, particularly in the WALD command, for the labels of the 
parameters of the last model.  Note in the project window in Figure R15.2, the labellist lstmodel is 
shown in the Labellists category.  By double clicking this item, we can see in the output window the 
list of labels that have been assigned to the parameters fit by the previous model command.  For 
example, after the command 
 

LOGIT  ; Lhs = mode ; Rhs = one,gc,ttme,invc,invt $ 
 
Double clicking the lstmodel name in the project window displays the list shown in Figure R15.3. 
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Figure R15.3  Last Model Labellist 
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R16: Using Matrix Algebra 
 
R16.1 Introduction 
 
 The data manipulation and estimation programs described in the chapters to follow are part 
of LIMDEP’s general package for data analysis.  The MATRIX, CREATE, and CALCULATE 
commands provide most of the additional tools.  By using the NAMELIST, SAMPLE, REJECT, 
INCLUDE, PERIOD, and DRAW commands, you can arbitrarily define as many data matrices as 
you want.  Simple, compact procedures using MATRIX commands will then allow you to obtain 
covariance and correlation matrices, condition numbers, and so on.  More involved procedures can 
be used in conjunction with the other commands to program new, possibly iterative, estimators, or to 
obtain complicated partial effects or covariance matrices for two step estimators. 
 To introduce this extensive set of tools and to illustrate its flexibility, we will present several 
examples. The rest of the chapter will provide some technical results on matrix algebra and material 
on how to use MATRIX to manipulate matrices. (Most of these examples are hardwired procedures 
in LIMDEP, so the matrix programs are only illustrative.)   
 
Example 1. Restricted Least Squares 
 

 In the linear regression model, y = Xβ + ε, the linear least squares coefficient vector, b*, and 
its asymptotic covariance matrix, computed subject to the set of linear restrictions Rb* = q are 
 
   b*  =  b - (X′X)-1R′[R(X′X)-1R′]-1(Rb-q),  
 
where    b = (X′X)-1X′y 
 
and   Est.Asy.Var[b*]  =  s2(X′X)-1 - s2(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1. 
 
First, define the X matrix, columns then rows.  We assume the dependent variable is y. 
 
 NAMELIST ; x = ... $  This defines the columns 
 CREATE ; y = the dependent variable $ 
 SAMPLE ; ... as appropriate $ This defines the rows 
 
Next, define R and q.  This varies by the application.  Get the inverse of X’X now, for convenience. 
 
 MATRIX ; r = ... ; q = ... ; xxi = <x’x> $ 
 
Compute the unrestricted least squares coefficients and the discrepancy vector. 
 
 MATRIX        ; bu = xxi * x’y ; d = r * bu - q $ 
 
Compute the restricted least squares estimates and the sum of squared deviations. 
 
 MATRIX ; br = bu - xxi * r’ * Iprd(r,xxi,r’) * d $ 
 CREATE ; u = y - x’br $ 
 
Compute the disturbance variance estimator. 
 

 CALC  ; s2 = (1/(n-Col(x)+Row(r))) * u’u $ 
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Compute the covariance matrix, then display the results. 
 
 MATRIX ; vr = s2 * xxi - s2 * xxi * r’ * Iprd(r,xxi,r’) * r * xxi $ 
 DISPLAY ; Parameters = br ; Covariance = vr ; Labels = x  
   ; Title = Restricted Least Squares Estimates $ 
 
(The MATRIX function, Stat(br,vr,x) produces the same output as DISPLAY.) 
 The preceding gives the textbook formula for obtaining the restricted least squares 
coefficient vector when X′X is nonsingular.  For the case in which there is multicollinearity, but the 
restrictions bring the problem up to full rank, the preceding is inadequate.  (See Greene and Seaks 
(1991).)  The general solution to the restricted least squares problem is provided by the partitioned 
matrix equation: 

   















λ
*b

 
0R
R'XX'

  =  







q

yX'
. 

 
If the matrix in brackets can be inverted, then the restricted least squares solution is obtained along 
with the vector of Lagrange multipliers, λ.  The estimated asymptotic covariance matrix will be the 
estimate of σ2 times the upper left block of the inverse.  If X′X has full rank, this coincides with the 
solution above.  A routine for this more general computation is 
 
 MATRIX ; xx = x’x ; xy = x’y ; r = ... ; q = ... $ 
 CALC  ; k = Col(x) ; j = Row(r) $ 
 MATRIX ; zero = Init(j, j, 0)    
   ; a  = [xx / r,zero] ? Shorthand for symmetric partitioned matrix 
   ; v  = [xy / q]  
   ; ai  = Ginv(a) ; b_l = ai * v  
   ; br = b_l(1:k) ; vr = ai(1:k, 1:k) $ 

CREATE ; u  = y - x’br $ 
MATRIX ; vr =  { u’u  / (n-k+j) } * vr  
  ; Stat(br,vr,x) $ 
 

Example 2. Poisson Model with a Fixed Value Restriction 
 
 In order to compute a Poisson regression model with different exposure rates, the solution is 
to enter the log of the exposure variable in the model with a fixed coefficient equal to 1.0.  The 
restriction can imposed with the ; Rst = option in the POISSON command (or with ; Exposure = 
variable name).  The following is an iterative procedure that would compute the same results for 
this application.  It is necessary to set up the matrix procedure first.  We isolate the last element of b 
to obtain the vector beta;  delta is the update vector, initialized at zero, so the first iteration uses the 
starting values. 
 

NAMELIST ; x = one, … $ 
CREATE ; y = the dependent variable 
CREATE ; logt  = the log of the exposure variable $ 
POISSON ; Lhs  = y ; Rhs = x,logt $ For now, ignore the constraint. 
CALC  ; k = Col(x) ; conv = 1 $ 
MATRIX ; beta = b(1:k) ; delta = [k|0] $  
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This is the iterative procedure: 
 

1. Update beta. 
2. Compute the expected values, imposing slope on Log(months) = 1 and residuals. 
3. Exit rule: conv must be initialized above because it is checked at entry to the iteration,  not at 

exit. I.e., the execute procedure checks conv first, then decides whether or not to execute the 
procedure again.  So, we make sure the check fails the first time it is tested. 

 
PROCEDURE 
MATRIX ; beta = beta - delta $ 
CREATE  ; ey = Exp(x’beta +  logt)  

; uy = ey - y $ 
MATRIX  ; g = x’uy   ? first derivatives vector 
   ; h = <x’[ey]x>   ? negative of second derivatives matrix 
  ; delta = h * g   $ update vector 
CALC     ; List ; conv = g’delta $ This is the scale free convergence measure. 
ENDPROCEDURE 

 
Execute the procedure until convergence, then display final results.  

 
EXECUTE  ; until conv < .00001 $  
MATRIX  ; Stat(beta,h,x) $ 

 
This program produces a trace of the iterations followed by the statistical output: 
 
[CALC] CONV    =  46194.6187903 
[CALC] CONV    =  10427.4732874 
[CALC] CONV    =   1091.7873932 
[CALC] CONV    =     18.9173685 
[CALC] CONV    =       .0067992 
[CALC] CONV    =       .0000000 
CONV<.00001 
 
----------------------------------------------------------------------------- 
Number of observations in current sample =    4481 
Number of parameters computed here       =       4 
Number of degrees of freedom             =    4477 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.99753***      .06572   -15.18  .0000    -1.12634   -.86871 
     AGE|     .02050***      .00081    25.44  .0000      .01893    .02208 
    EDUC|    -.04218***      .00412   -10.23  .0000     -.05025   -.03410 
 MARRIED|    -.11921***      .02070    -5.76  .0000     -.15979   -.07863 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 

 
  



R16: Using Matrix Algebra  R-384 

Example 3. Plotting an Estimation Criterion Function 
 
 In some applications, a direct optimization of a criterion function with a gradient method, 
such as Newton’s method used for the Poisson model in Example 2, is not feasible.  When the search 
is for a single parameter, an alternative is to fix the parameter in a grid of values and plot the values 
of the criterion function over that grid to search for the optimum.  The lag weight in a geometric lag 
model is an example.  The following routine uses nonlinear least squares.  The sum of squares is 
evaluated over an interval of values for λ, then plotted against those values.  The regression model 
ultimately deduced is estimated at the end of the routine.  (Note that for this specific application, the 
covariance matrix listed in that output would not be correct, as it does not correctly adjust for the use 
of nonlinear least squares.) 

First, define matrices to keep the parameters and sums of squares. 
 
 MATRIX  ; ee = [40|0] ; l = ee $ 
 
Set up the initial value of the subscript and estimation criterion. 
 
 CALC    ; i = 1 ; eemin = 9999999 ; best = 0 $ 
 
Define the procedure to estimate the regression and keep the results.  We also retain the optimal 
value of lambda and its sum of squares. 
 
 PROCEDURE 
 CREATE   ; If( _obsno = 1 ) | z = lambda ; xstar = x 
   ; (Else) | z = lambda * z[-1] ; xstar = x + lambda * xstar[-1] $ 
 REGRESS  ; Lhs = y ; Rhs = one,z,xstar ; Quietly $ 
 MATRIX   ; ee(i) = sumsqdev ? Note the use of subscripts for the matrix elements. 
   ; l(i ) = lambda  
         ; If [sumsqdev < eemin] ; best = lambda ; eemin = sumsqdev $ 
 CALC     ; List ; i = i + 1 $ 
 ENDPROCEDURE 
 
Execute the procedure for the 40 values of lambda, then plot the values. 
 
 EXECUTE ; lambda = .01 (.025) .99 $ 
 MPLOT ; Lhs = l ; Rhs = ee ; Fill ; Endpoints = 0,1 $ 
 CALC  ; i = 1 ; List ; best $ 
 EXECUTE ; Lambda = best $ 
 REGRESS ; Lhs = y ; Rhs = one,z,xstar $ 
 
Notice the use of the scalars in the CREATE commands and as subscripts for the matrices. 
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Example 4. Canonical Correlations 
 
 Variables y1, ..., yL and x1,...,xK are arranged in n×L and n×K data matrices Y and X.  The 
canonical variates (y*,x*) are those M = Min(L,K) pairs of linear functions of Y and X that have 
maximum correlation chosen so that all variables with unequal subscripts are uncorrelated.  The 
canonical correlations are their pairwise correlation coefficients, r1*... rM*, ordered from largest to 
smallest.  There are several ways to compute canonical correlations and canonical variates.  The 
following has the useful virtue that it involves only symmetric matrices.  This simplifies the 
computations because we need to compute characteristic roots, and decomposing symmetric matrices 
is simpler in this regard.  Define the matrix product 
 
   R = Ryy

-½RyxRxx
-1RxyRyy

-½, 
 
where Rij, i,j = x,y, is a sample correlation matrix.  The characteristic roots of R are the squared 
canonical correlation coefficients.  The ordered canonical variates are contained in 
 
   y* = YRC = YQ, 
 
where the mth column of C is the characteristic vector of R corresponding to the mth largest nonzero 
root, and 
   x* = XRxx

-1RxyQ = XV.  
 
The columns of Q are normalized to have unit length.  The following program computes the 
canonical correlations and the coefficients of the canonical variates.  It is assumed that y and x are 
namelists defining the sets of variables and that y does not have more variables than x, so that M is 
the number of columns in x.  Also, since this is based on correlations from the outset, neither x nor y 
may contain a column of ones (i.e., a constant term).  
 The following demonstrates how using matrix functions compresses large amounts of 
computation in small numbers of commands.  We have shown the computations with a sampling 
experiment that you can use to demonstrate the procedures.  Some of the intermediate output from 
the procedure is omitted.  The random values for the experiment are produced by generating four 
independent columns of draws from the standard normal to constitute X and three for Y.  Then, a 
linear combination of the seven random variables, with random coefficients, is used to induce some 
intercorrelation of the variables.   
 Define the variables in the computations. 
  

SAMPLE ; 1-1000 $ 
CALC  ; Ran(12347) $  Set the seed so you can replicate the experiment. 
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; x3 = Rnn(0,1) ; x4 = Rnn(0,1) $ 
CREATE ; y1 = Rnn(0,1) ; y2 = Rnn(0,1) ; y3 = Rnn(0,1) $ 
NAMELIST ; x = x1,x2,x3,x4 ; y = y1,y2,y3 
  ; z  = x,y $  Note, z is all seven variables. 
MATRIX ; w = Rndm(7,7) $ Matrix of random numbers 
MATRIX ; z  = Xmlt(w) $ Mixture of all seven variables 
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Compute the simple correlations and cross correlations. 
 
 NAMELIST ; x = list of variables ; y = list of variables $ 

MATRIX ; List ; rxx = Xcor(x)  ; ryy = Xcor(y)  ; rxy = Xcor(x,y)  $ 
 
These MATRIX commands do the following: 
 

1. Compute and display the sample canonical correlations. 
2. Column i of Q is the coefficients of variate y*(i). 
3. Column i of V is the coefficients of variate x*(i). 
4. Squared canonical correlations are the diagonals of R. 

  
MATRIX ; List ; rr = Isqr(ryy) * rxy’ * <rxx> * rxy * Isqr(ryy) $ 
MATRIX ; List ; r = Root(rr) ; r = Diag(r) $ 
MATRIX ; List ; q = r * Cvec(rr) ; norm = Diag(q’q) $ 
MATRIX ; List ; q = q * Isqr(norm) $ 
MATRIX ; List ; v = <rxx> * rxy * q $ 
 

Correlation Matrix for Listed Variables 
--------+----------------------------------------------------------------------- 
        |      X1       X2       X3       X4 
--------+----------------------------------------------------------------------- 
      X1| 1.00000   .66647   .13895   .70138 
      X2|  .66647  1.00000  -.27401   .25449 
      X3|  .13895  -.27401  1.00000  -.05935 
      X4|  .70138   .25449  -.05935  1.00000 
 
Correlation Matrix for Listed Variables 
--------+----------------------------------------------------------------------- 
        |      Y1       Y2       Y3 
--------+----------------------------------------------------------------------- 
      Y1| 1.00000  -.00686  -.15644 
      Y2| -.00686  1.00000   .06252 
      Y3| -.15644   .06252  1.00000 
 
Correlation Matrix for Listed Variables 
--------+----------------------------------------------------------------------- 
        |      Y1       Y2       Y3 
--------+----------------------------------------------------------------------- 
      X1| -.39031   .77714  -.07281 
      X2|  .00490   .74738  -.18534 
      X3| -.17284   .13123  -.08101 
      X4| -.03555   .55156   .10582 
 
RR      |             1             2             3 
--------+------------------------------------------ 
       1|       .724403     .00308662      .0609734 
       2|     .00308662       .838933      -.159083 
       3|      .0609734      -.159083      .0940829 
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R       |             1 
--------+-------------- 
       1|       .872078 
       2|       .729263 
       3|      .0560780 
 
R       |             1             2             3 
--------+------------------------------------------ 
       1|       .872078       .000000       .000000 
       2|       .000000       .729263       .000000 
       3|       .000000       .000000      .0560780 
 
Q       |             1             2             3 
--------+------------------------------------------ 
       1|     -.0559187       .866740     -.0784475 
       2|       .712281      .0590669       .144884 
       3|     -.0114815     .00421263      .0547281 
 
NORM    |             1             2             3 
--------+------------------------------------------ 
       1|       .510604       .000000       .000000 
       2|       .000000       .754745       .000000 
       3|       .000000       .000000      .0301406 
 
Q       |             1             2             3 
--------+------------------------------------------ 
       1|     -.0782555       .997674      -.451859 
       2|       .996804      .0679898       .834536 
       3|     -.0160678     .00484900       .315235 
 
V       |             1             2             3 
--------+------------------------------------------ 
       1|      -.104287      -2.17004       .766933 
       2|       .817439       1.35068      .0842229 
       3|       .410255       .579855      .0759146 
       4|       .440346       1.21526     -.0451223 
 
Example 5. Discriminant Analysis 
 
 A data matrix, X, with n rows consists of two submatrices, X1 in n1 rows and X2 in the other 
n2 rows.  ‘Discriminant analysis’ prescribes the following classification rule for an observation, xi:  
Classify in Group 1 if 
 
   xi′d > ½  [ ]x x1 2+  ′d 

 
where   d = V-1 [ ]x x1 2−  

 
and   V = [X1′X1  + X1′X1]/(n1+n2-2). 
 
The data used to compute V are in deviations from the respective subsample means. A set of 
commands that could be used for this computation are as follows. (This calculation, with numerous 
extensions, is provided by the model command CLASSIFY.) 
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 These two commands are specific to the application.  Define the data matrix. 
 
 NAMELIST  ; x  = list of names not including one $ 
 CREATE ; d1 = group 1 indicator variable 
  ; d2 = 1 - d1              ?  Group 2 indicator 
   ; group = d1 + 2 * d2 $     Takes values 1 and 2 
 
Obtain the means and variances to obtain V, then compute D. 
 
 MATRIX   ; xbar1 = <d1’1> * x’d1 
   ; xbar2 = <d2’1> * x’d2 
   ; s1 = {d1’d1 - 1} * Xvcm(x,d1) 
   ; s2 = {d2’d2 - 1) * Xvcm(x,d2) 
   ; v = {1/(n-2)} * Msum(s1,s2) 
   ; d =  <v> * Mdif(xbar1,xbar2)  $  
 
Compute the classification variable.  Create a binary variable = 1 if classified in group 1 and 0 if in 
group 2. (2 - this variable) produces the 1s and 2s.  How well does the rule do? Right = 1 if class = 
group. 
 
 CREATE ; class = 2 - (x’d  >  .5 * (xbar1’d + xbar2’d))   
   ; right = (class = group)  $ 
 
Examine the results. 
 
 CALC   ; hit rate = Xbr(right) $ 
 LIST    ; group, class, right $   
 
Is the correct classification rate significant? 
 
 CROSSTAB ; Lhs = group ; Rhs = class $ 
 
Example 6. Partial Effects in a Multinomial Logit Model 
 
 This example is a program to compute marginal effects for a multinomial logit model.  We 
emphasize, this computation is automated in LIMDEP; it requires only for the LOGIT command to 
include the specification ; Partial Effects.  This example is only illustrative. 
 The probabilities in the multinomial logit model are: 
 

   
0

exp( )
Prob[ ] , 0,..., .

exp( )
j i

i j J
j j i

y j P j J
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For convenience in what follows, we shall drop the observation subscript.  For the present, ignore the 
normalization β0 = 0.  The partial effects in the model are 
 
   δj = ∂Pj/∂x =  Pj(βj -  β ),  j = 0,1,...,J. where β =  

0

J
j jj

P
=

β∑ . 
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The asymptotic covariance matrix for dj, an estimator of δj would be computed using 
 
   Asy.Var.[dj]  =  Gj Asy.Var[b]Gj’ 
 
where b is the full estimator of parameter vector β.  It can be shown that 
 
   Asy.Var.[dj ]  =  ΣlΣmVjl Asy.Cov.[bl,bm′]Vjm′, j=0,...,J, 
 
where   Vjl  =  [1(j = l) - Pl ][PjI - δjx′] - Pj δlx′  
 
and   1(j = l)  =  1 if j = l, and 0 otherwise. 
 
 The program listed below does all of these computations.  The only necessary modifications 
for a specific application would be to set up the NAMELIST command for X and the CREATE 
command for the dependent variable at the top of the routine.  It does an enormous amount of 
computation and illustrates usage of many features of LIMDEP’s programming language, including 
nested loops.  Once again, we emphasize, this routine exists internally.    
 
 The user changes only these statements for a particular application: 
 
 NAMELIST  ; x = list of independent variables $ 
 CREATE ; y = dependent variable $ 
 
Obtain the dimensions of the data set, then estimate the model. 
 
 CALC   ; k = Col(x) ; j = Max(y) ; jplus1 = j + 1 ; jk = j*k $ 
 LOGIT ; Lhs = y ; Rhs = x $ (Also creates the matrix b_logit.) 
 
The parameters are in a vector β.  Arrange them in the matrix [β1,β2,...].  Also, include a leading 
column of zeros to account for the normalization β0 = 0.  This has been saved automatically by 
LOGIT.  VB is a partitioned matrix that includes blocks of zeros that correspond to β0 in the 
parameter vector. 
 

MATRIX ; beta = b_logit’ ; ones = Init(jplus1,1,1.0)    
   ; ik = Iden(k) ; xbar = Mean(x)  
   ; zk = Init(k,k,0) ; zkk = Init(jk,k,0)  
    ; vb = [zk / zkk,varb] $  Include zero block.  
 
Compute J+1 probabilities.  The matrix of δs is also computed here. 
 
 MATRIX ; prob = Expn(beta’xbar) ; prob = <prob’1> * prob 
                 ; bbar  = beta * prob 
                 ; delta = beta * Diag(prob) - bbar * ones’ * Diag(prob) $ 
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This is the major loop. The outside loop is over j = 0,...,J for probabilities. This loop index is i = 1 to 
j + 1. 
 PROC $ 
 DO FOR ; 1000 ; i = 1,jplus1 $ 
 
Extract δj from the matrix computed earlier. Initialize VC for summing. 
 
 MATRIX ; deltai = delta(1:k,i:i) ; vardelta = Init(k,k,0) $ 
 
The inner loops are for double summation over l and m = 0,...,J 
 
 CALC   ; k1l = 1 ; k2l = k $ 
 DO FOR ; 500 ; l = 1,jplus1 $ 
 CALC   ; k1m = 1 ; k2m = k $ 
 DO FOR ; 400 ; m = 1,jplus1 $ 
 MATRIX ; deltal = delta(1:k,l:l) ; deltam = delta(1:k,m:m) $ 
 
Extract the corresponding block in the covariance matrix. Set up and compute Vl and Vm. Compute 
the asymptotic covariance matrix. 
 
 CALC   ; sl = Prob(i) * (Eql(i,l) - Prob(i))  
   ; sm = Prob(i) * (Eql(i,m) - Prob(m)) $ 
 MATRIX ; clm = vb(k1l:k2l, k1m:k2m)  
   ; vl = sl * ik + sl * deltai * xbar’ - Prob(i) * deltal * xbar’ 
         ; vm = sm * ik + sm * deltai * xbar’ - Prob(i) * deltam * xbar’  
   ; vardelta = vardelta + vl * clm * vm’ $ 
 
Recycle points for the two inner loops. Increment the counters and pointers for VC. 
 
 CALC   ; k1m = k1m + k ; k2m = k2m + k $ 
 ENDDO  ; 400 $ 
 CALC   ; k1l = k1l + k ; k2l = k2l + k $ 
 ENDDO  ; 500 $ 
 
Display results for each set of marginal effects. 
 
 MATRIX ; Stat(deltai,vardelta,x) $ 
 ENDDO  ; 1000 $ 
 ENDPROC $ 
 EXECUTE $ 
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Example 7. Hausman Test for Fixed vs. Random Effects 
 
 The Hausman (1978) test is used in the following setting:  There are two estimators of the 
parameter vector β, b0 and b1.  Under H0, b0 is consistent and efficient, but b1 is inconsistent.  Under 
H1, both estimators are consistent, but b0 is inefficient.  The statistic is computed using 
 
 H = (b0 - b1)′[Est.Asy.Var(b0) - Est.Asy.Var(b1)]-1(b0 - b1). 
 
A common application of the test is to distinguish fixed vs. random effects in a linear regression 
model. 
 

 H0:  The fixed effects model is appropriate.  The preferred estimator is least squares 
  with dummy variables.  This is b0. 

 H1: The random effects model is appropriate.  The preferred estimator is generalized 
  least squares.  This is b1. 
 
 SETPANEL ; Group = … the identification variable ; Pds = the panel spec. $ 
 NAMELIST ; x = ... not including one $ 
 CALC      ; k = Col(x) $ 
 REGRESS ; Lhs  = y ; Rhs = x ; Panel ; Fixed Effects $ 
 MATRIX ; b0 = b(1 : k)    ? This extracts the first K elements. 
   ; v0 = varb $          LS dummy variable estimator 
 REGRESS ; Lhs  = y ; Rhs = x ; Panel ; Random Effects $ 
 MATRIX ; b1 = b(1 : k)    ? 2 step GLS estimator 
   ; v1 = varb(1:k,1:k)  
      ; d = b0 - b1  
   ; vd = v0 - v1 
   ; List ; hausman = d’ * Sinv(vd) * d  
   ; pvalue = 1 - Chi(hausman, k) $ 
 
Note the following about this test: 
 

1. The Hausman statistic is computed using the Cholesky inversion program for symmetric 
positive definite matrices.  It occasionally occurs that the difference matrix is not positive 
definite (PD).  If you use an ordinary inversion program to compute the inverse, you may get 
a misleading, or even negative result for the Hausman statistic, as the matrix may be 
nonsingular even if it is not positive definite.  When the difference matrix is not PD, you 
should use zero for the Hausman statistic. Also, authors occasionally force the issue by using 
a generalized (G2) inverse for this computation.  Once again, this can produce a misleading 
result.  If the matrix is PD, the G2 inverse is not needed.  If it is not PD, you should obtain 
0.0 for the statistic, not the result of an ad hoc patch for the covariance matrix. 

 
2. This statistic is computed and reported automatically by the panel data estimator if you do 

not specify either ; Fixed or ; Random in the REGRESS command.  See the example 
below.  
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 The following applies the routine to the Cornwell and Rupert labor supply data used in 
Greene (2011, Table F8.1).  Some of the intermediate results are omitted.  The last line redoes the 
computation with LIMDEP’s built-in routines. 
 
 NAMELIST ; x = exp,wks,occ,ind,south,smsa,ms,union,one $ 
 CALC      ; k = Col(x) - 1 $ 
 REGRESS ; Lhs  = lwage ; Rhs = x ; Panel ; Fixed ; Pds = 7 $ 
 MATRIX ; bfe = b(1 : k)   ? This extracts the first K elements. 
   ; vfe = varb $        LS dummy variable estimator 
 REGRESS ; Lhs = lwage ; Rhs = x ; Panel ; Random ; Pds = 7 $ 
 MATRIX ; bre = b(1 : k)   ? 2 step GLS estimator 
   ; vre = varb(1:k,1:k)  
      ; d = bfe - bre  
   ; vd = vfe - vre 
   ; List  ; hausman = d' * Sinv(vd) * d $ 
 CALC  ; List ; pvalue = 1 - Chi(hausman, k) $ 

REGRESS ; Lhs  = lwage ; Rhs = x ; Panel ; Pds = 7 $ 
 

----------------------------------------------------------------------------- 
LSDV         least squares with fixed effects .... 
LHS=LWAGE    Mean                 =        6.67635 
             Standard deviation   =         .46151 
             No. of observations  =           4165  Degrees of freedom 
Regression   Sum of Squares       =        803.281         602 
Residual     Sum of Squares       =        83.6239        3562 
Total        Sum of Squares       =        886.905        4164 
             Standard error of e  =         .15322 
Fit          R-squared            =         .90571  R-bar squared =   .88978 
Model test   F[602,  3562]        =       56.83746  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =     2228.82754  Akaike I.C.   = -3.61859 
             Restricted (b=0)     =    -2688.80603 
Panel:Groups Empty      0,     Valid data      595 
             Smallest   7,     Largest           7 
             Average group size in panel      7.00 
Variances    Effects a(i)         Residuals e(i,t) 
              1.111677                     .023477 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   LWAGE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     EXP|     .09658***      .00119    81.10  .0000      .09424    .09891 
     WKS|     .00114*        .00060     1.89  .0583     -.00004    .00232 
     OCC|    -.02486*        .01389    -1.79  .0734     -.05208    .00236 
     IND|     .02076         .01557     1.33  .1825     -.00976    .05127 
   SOUTH|    -.00320         .03458     -.09  .9263     -.07096    .06457 
    SMSA|    -.04373**       .01958    -2.23  .0256     -.08211   -.00534 
      MS|    -.03026         .01914    -1.58  .1138     -.06777    .00725 
   UNION|     .03416**       .01504     2.27  .0232      .00468    .06364 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
Estimates:  Var[e]              =       .023477 
            Var[u]              =       .128215 
            Corr[v(i,t),v(i,s)] =       .845235 
Lagrange Multiplier Test vs. Model (3) =3847.31 
( 1 degrees of freedom, prob. value =  .000000) 
(High values of LM favor FEM/REM over CR model) 
Baltagi-Li form of LM Statistic =       3847.31 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   LWAGE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     EXP|     .05802***      .00090    64.32  .0000      .05625    .05979 
     WKS|     .00163***      .00060     2.72  .0065      .00046    .00280 
     OCC|    -.11293***      .01280    -8.82  .0000     -.13803   -.08784 
     IND|    -.01361         .01405     -.97  .3326     -.04115    .01392 
   SOUTH|    -.06737***      .02388    -2.82  .0048     -.11418   -.02057 
    SMSA|    -.02141         .01668    -1.28  .1992     -.05410    .01128 
      MS|    -.02516         .01729    -1.46  .1455     -.05905    .00872 
   UNION|     .03968***      .01381     2.87  .0041      .01261    .06674 
Constant|    5.55102***      .04166   133.23  .0000     5.46936   5.63269 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
HAUSMAN |             1 
--------+-------------- 
       1|       2704.39 
[CALC] PVALUE  =       .0000000 
 
This is reported by the last command above, which fits both models. 
 
----------------------------------------------------------------------------- 
Random Effects Model: v(i,t)    = e(i,t) + u(i) 
Estimates:  Var[e]              =       .023477 
            Var[u]              =       .128215 
            Corr[v(i,t),v(i,s)] =       .845235 
Lagrange Multiplier Test vs. Model (3) =3847.31 
( 1 degrees of freedom, prob. value =  .000000) 
(High values of LM favor FEM/REM over CR model) 
Baltagi-Li form of LM Statistic =       3847.31 
Moulton/Randolph form:SLM N[0,1]=         62.94 
Fixed vs. Random Effects (Hausman)     =2704.39 
( 8 degrees of freedom, prob. value =  .000000) 
(High (low) values of H favor F.E.(R.E.) model). 
            Sum of Squares          1977.160321 
            R-squared                 -1.229281 
--------+-------------------------------------------------------------------- 
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R16.2 Entering MATRIX Commands 
 
 MATRIX commands are typically given as parts of programs that perform larger functions, 
such as in the examples in Section R16.1.  You also have a matrix ‘calculator’ that you can access 
occasionally in a window that is separate from your primary desktop windows (project, editing, and 
output). 
 
R16.2.1 The Matrix Calculator 
 
 You may invoke the matrix calculator by selecting  Tools:Matrix Calculator as shown in 
Figure R16.1. 
 

 
Figure R16.1  Tools Menu for Matrix Calculator 

 
The matrix calculator window is shown in Figure R16.2. 
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Figure R16.2  Matrix Calculator Window 

 
 You can leave the matrix calculator window open while you go to some other function.  For 
example, you may find it convenient to interrupt your work in the editing/output windows by 
activating the matrix calculator to check some result which, perhaps, is not emerging the way you 
expected. 
 There are two other ways to enter commands in the matrix calculator window.  You can type 
MATRIX commands in the smaller ‘Expr:’ (expression) window.  In this dialog mode, if your 
command will not fit on one line, just keep typing.  At some convenient point, the cursor will 
automatically drop down to the next line.  Only press Enter when you are done entering the entire 
command.  In this mode of entry, you do not have to end your commands with a $. 
 Alternatively, you can click the fx button to open a subsidiary window that provides a menu 
of the functions (procedures). See Figure R16.3. 
 

 
Figure R16.3  Insertion Window for Matrix Functions 

 
You can select the function you wish to insert in your command.  You must then fill in the 
arguments of the function that are specific to your expression.  (E.g., if you want Chol(sigma), you 
can select Chol(A) from the menu, then you must change ‘A’ to ‘sigma.’ in the command.) 
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R16.2.2 MATRIX Commands 
 
 If your MATRIX command is part of a program, it is more likely that you will enter it ‘in 
line,’ rather than in the matrix calculator.  That is as a command in the text editor, in the format, 
 
 MATRIX   ; ... the desired command ... $ 
 
Commands may be entered in this format from the editor, as part of a procedure, or in an input file. 
All of the applications given elsewhere in this manual are composed of in line commands, as are the 
examples given in Section R16.1 and in many places in the preceding chapters. 
 The essential format of a MATRIX command is 
 
 MATRIX   ; name =  result ; ... additional commands ... $ 
 
If you wish to see the ‘result’ but do not wish to keep it, you may omit the ‘; name =.’  For example, 
you are computing a result and you receive an unexpected diagnostic.  We sometimes come across a 
matrix, say rxx, that we thought was positive definite, but when we try something like MATRIX ; 
Sinv(rxx) $, a surprise error message that the matrix is not positive definite shows up.  A simple 
listing of the matrix shows the problem.  The .001 in the 4,4 element is supposed to be a 1.0.  Now 
we have to go back and find out how the bad value got there – some previous calculation did 
something unexpected. 
 
MATRIX ; Sinv(Rxx) $ 
Error   185: MATRIX - GINV,SINV,CHOL  singular, not P.D. if SINV or CHOL 
MATRIX ; List ; Rxx $ 
Result  |             1             2             3             4 
--------+-------------------------------------------------------- 
       1|       1.00000       .666470       .138950       .701380 
       2|       .666470       1.00000      -.274010       .254490 
       3|       .138950      -.274010       1.00000     -.0593500 
       4|       .701380       .254490     -.0593500     .00100000 
 
If you want only to see a matrix, and not operate on it, you can just double click its name in the 
project window.  That will open a window that displays the matrix. The offending rxx matrix shown 
above is displayed in Figure R16.4. 
 

 
Figure R16.4  Matrix Display from the Project Window 
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 Matrix results will be mixtures of matrix algebra, i.e., addition, multiplication, subtraction, 
and matrix functions, such as inverses, characteristic roots, and so on, and, possibly, algebraic 
manipulation of functions of matrices, such as products of inverses. 
 
R16.2.3 Conditional Commands 
 
 All MATRIX commands may be made conditional, in the same manner as CREATE or 
CALCULATE.  The conditional command would normally appear  
 
 MATRIX  ; If (logical expression) name = expression $ 
 
The logical expression may be any expression that resolves either to ‘true’ or ‘false’ or to a numeric 
value, with nonzero implying true.  The rules for the expression are identical to those for CREATE 
(see Section R4.2.2) and REJECT (see Section R7.2.2), as well as CALCULATE, and all forms of 
DO.  In this setting, if the condition is true, ‘name’ is computed; if it is false, ‘name’ is not 
computed.  Thus, if name is a new matrix, and the condition is false, after the command is given, 
name will not exist.  For example, 
 
 MATRIX  ; If (a(1,1) > rsqrd) q = Dtrm(v) $  
 
 An entire set of MATRIX commands can be made conditional by placing a semicolon after 
the condition, as in  
 
 MATRIX  ; If (condition)  ;  name = result ; result $   
 
If the condition is false, none of the commands that follow it are carried out.  This form of condition 
may appear anywhere in a group of MATRIX commands. 
 You may also make an entire set of matrix calculations conditional with the syntax 
 
 MATRIX ; If (condition) |  a set of matrix results $ 
 
If the condition is false, none of the commands after the bar are carried out.  The test statistic for the 
Brant test in Section R16.4.5 provides an extensive example. 
 
R16.3 Matrix Output 
 
 The results of MATRIX commands can be matrices with up to 50,000 elements, and can 
thus produce enormous amounts of output.  As such, most of the display of matrix results is left up to 
your control.  
 Matrix results are always displayed in the calculator window.  When commands are in line, 
results are generally not shown unless you specifically request the display with ; List.  (See Section 
R16.3.1.)  The figures below demonstrate. 
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Figure R16.5  Matrix Result in the Calculator Window 

 
 When the computed result has more than five columns or more than 20 rows, it will be 
shown in the output window as a place holder (object). 
 

 
Figure R16.6  Matrix Result in the Output Window 

 
If you double click the object, you can display the full matrix in a scalable window. 
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Figure R16.7  Matrix Display Window 

  
You can navigate around any matrix in the display with the editing keys, arrow, PgUp, and so on.   
 
TIP:  If you double click the upper left (blank) box in the window, this will ‘select’ the entire 
window.  You can then use edit copy/paste to bring this (tab delimited) matrix directly into Excel. 
 
R16.3.1 Matrix Results 
 
 When MATRIX commands are given in line, the default is not to display the results of any 
matrix computations on the screen or in the output file.  It is assumed that in this mode, results are 
mostly intermediate computations.  The output file will contain, instead, a listing of the matrix 
expression and either a confirmation that the result was obtained or just a statement of the expression 
with a diagnostic in the trace file.  For example, the command  
 
 MATRIX ; a = Iden(20) $  
 
produces only an echo of the expression. 
 You can request full display of matrices in the output file by placing 
 
   ; List 
 
before the matrix to be listed.  Note how this has been used extensively in the preceding examples in 
Section R16.1.  This is a switch that will now remain on until you turn it off with ; Nolist.  When the 
end of a command is reached, ; Nolist once again becomes the default.  The ; Nolist and ; List 
switches may be used to suppress and restore output at any point.  When the ; Nolist specification 
appears in a MATRIX command, no further output appears until the ; List specification is used.  At 
the beginning of a command, the ; List switch is off, regardless of where it was before.  If you are 
doing many computations, you can suppress some of them, then turn the output switch back on, in 
the middle of a command.  For example: 
 
 MATRIX  ; Nolist ; xxi = <x1’x1> ; List ; Root(xxi) $  
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displays only the characteristic roots of the inverse of a particular X′X matrix.  Neither x1′x1 nor xxi 
are displayed. 
 Displaying matrices that already exist in the matrix work area requires only that you give the 
names of the matrices.  I.e., 
 
 MATRIX  ; List ; abcd ; qed $  (note, separated by semicolons, not commas) 
 
would request that the matrices named abcd and qed be displayed on your screen.  You might also 
want to see the results of a matrix procedure displayed, without retaining the results.  The following 
are some commands that you might type: 
 
 MATRIX ; Root(xx) $ lists characteristic roots of xx. 
 MATRIX ; a* b $  displays the matrix product ab. 
 MATRIX ; Mean(x*) $ displays the means of all variables whose  
     names begin with x. 
 
These commands just display the results of the computations; they do not retain any new results. 
 
R16.3.2 Unformatted Output 
 
 In the cases considered thus far, when a matrix is listed in your output, it is partitioned and 
formatted for convenient viewing.  However, this may make further analysis of the matrix 
inconvenient.  If you would like to produce an unmodified, unformatted copy of one or more 
matrices in your output so that you can manipulate them later, for example, use them in some other 
program, use the command 
 
 WRITE  ; ... desired list of matrices $ 
 
The example below shows the difference in the two types of listings: 
 
MATRIX;List;zz=rndm(6,5)$ 
ZZ      |             1             2             3             4             5 
--------+---------------------------------------------------------------------- 
       1|      -1.44814       1.36184      -.468357      -.622546       .795314 
       2|      -.168379       .104536       .904864    -.00397597       .528702 
       3|      .0952065       1.04398     -.0338957      -.769662      -1.44197 
       4|      .0849252       .243405      -.673963       1.29946       1.20323 
       5|      -.651083       .313592       .999907      .0339046       .104310 
       6|       .679254      -1.55387       .562071      -2.44212       1.35792 
 
WRITE;zz$ 
[    6 by     5] Matrix ; ZZ       =[ 
      -1.448137,       1.361837,      -.4683571,      -.6225460,       .7953138/ 
      -.1683794,       .1045356,       .9048638,  -.3975969E-02,       .5287020/ 
   .9520647E-01,       1.043977,  -.3389574E-01,      -.7696619,      -1.441973/ 
   .8492519E-01,       .2434048,      -.6739631,       1.299464,       1.203225/ 
      -.6510833,       .3135922,       .9999074,   .3390462E-01,       .1043099/ 
       .6792535,      -1.553875,       .5620706,      -2.442124,        1.357922 
]$ 

 
The matrix is displayed as a command, but the body of the matrix is comma and slash delimited. 
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R16.3.3 Technical Output 
 
 All computations in LIMDEP are done in ‘double precision.’  That means that although the 
visible displays of results typically contain anywhere from five to eight significant digits, all internal 
results are computed with 17 significant digits.  For some purposes, for example, for checking the 
accuracy of iterative programs that you write, you may wish to see all of the computed digits for a 
matrix result.  You can request this format by using 
 
   ; Peek 
 
in your MATRIX command at the point at which you wish to begin the technical display.  The 
listing below shows the internal form of the first several values in zz from above. 
 
Display of all internal digits of matrix Result 
Result[1,1]=-.14481369392191410D+01 
Result[1,2]=.13618369140362890D+01 
Result[1,3]=-.46835710105771710D+00 
Result[1,4]=-.62254596617409810D+00 
Result[1,5]=.79531377257669170D+00 
Result[2,1]=-.16837941022982930D+00 
Result[2,2]=.10453556133910670D+00 
Result[2,3]=.90486384151079990D+00 
Result[2,4]=-.39759692924754610D-02 
Result[2,5]=.52870199710107050D+00 
Result[3,1]=.95206471103564530D-01 
Result[3,2]=.10439772152053720D+01 
Result[3,3]=-.33895735151328110D-01 
Result[3,4]=-.76966187735011250D+00 
... 
  
R16.3.4 Exporting Matrix Results from LIMDEP 
 
 You can export your statistical results to other packages.  In Section R16.3, we noted that 
with edit/copy and edit/paste, you can extract matrix results and drop them directly into spreadsheet 
programs.  You can also export your results more formally to any program that can accept the 
‘comma separated values,’ or CSV format, such as Excel.  The file that LIMDEP creates can be read 
directly, without any further manipulation on your part.  Setting it up requires a few steps, as shown 
below. 
 
Step 1. Open the file that will contain the results to be exported.   
 

This will be a CSV (comma separated values) file. Use the following OPEN command:  
 
 OPEN  ; Export = …<filename>.csv $ 
 
You must open the file with extension .csv for this operation to succeed. LIMDEP does not 
check this file setup for you – the program assumes that the file is opened correctly. 
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Step 2. Use the ; Export specification in your model commands. 
 

In specific model commands that you wish to export, use the model option ; Export to put 
a table of coefficients, etc. in the export file.  You may also use ; Title = up to 80 
characters to put a line of text at the top of the results.  For some other specific commands, 
you can use 

 
 MATRIX ; Export = list of matrices $  puts a list of matrices in the file. 
 DSTAT ; Export ; Rhs = ... $  copies the results to the CSV file. 
 CALC ; Export = list of scalars $  copies scalars to the file. 
 

Step 3. Close the file before you try to use it. 
 

When you are finished exporting results to the file, use 
 
 CLOSE  ; Export $  

 
to end accumulation of results in the file.  
 
After this file is created, you can now export your results to Excel just by double clicking the 

file name in any context, such as Windows Explorer.  There are two possible conflicts to be wary of: 
 

• The file cannot be reopened.  If you repeat an OPEN ; Export = name $ command, the 
original file is erased and a new one with that name is created. 

 
• Do not use this file, e.g., by Excel, until you exit LIMDEP, even if you have used a CLOSE 

command to close the file. 
 
An example follows:  We first create the file in LIMDEP.   
 
 OPEN   ; Export = “C:\work\excelresults.csv” $ 

PROBIT ; Export ; Lhs = doctor  
; Rhs = one,age,educ,hsat,hhninc $ 

 DSTAT ; Rhs = hsat,hhninc $ 
 MATRIX ; Export = b,varb $ 
 
We then open the file in Excel with the results shown in Figure R16.8. 
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Figure R16.8  Results Exported to Excel 

 
 As noted earlier, you can also use edit/copy in a matrix window and edit/paste in your 
spreadsheet program to move matrices to other software.   
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R16.3.5 Matrix Statistical Output 
 
 Your matrix procedures will often create coefficient vectors and estimated covariance 
matrices for them.  For any vector, beta, and square matrix, v, of the same order as beta, the 
command  
 
 MATRIX  ; Stat(beta,v) $ 
 
will produce a table which assumes that these are a set of statistical results.  The table contains the 
elements of beta, the diagonal elements of v and the ratios of the elements of beta to the square root 
of the corresponding diagonal element of v (assuming it is positive).  For example, the listing below 
shows how the Stat function would redisplay the model results produced by a LOGIT command. 
 
NOTE:  MATRIX ; Stat(vector,matrix) $ has no way of knowing that the matrix you provide 
really is a covariance matrix or that it is the right one for the vector that precedes it.  It requires only 
that ‘vector’ be a vector and ‘matrix’ be a square matrix of the same order as the vector.  You must 
insure that the parts of the command are appropriate. 
 

The routine to produce model output for a matrix computed set of results can be requested to 
display variable names by adding a namelist with the appropriate variables as a third argument in the 
MATRIX ; Stat(b,v) $ function.  If your estimator is a set of parameters associated with a set of 
variables, x, they are normally labeled b_1, b_2, etc. Adding the namelist to the MATRIX ; 
Stat(b,v,x) $ function carries the variable labels into the function.  An example follows: (Some 
results are omitted.) 
 
Results from logit regression: 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable                 MODE 
Log likelihood function      -419.59809 
Restricted log likelihood    -472.36152 
Chi squared [   4 d.f.]       105.52685 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .29245         .22832     1.28  .2002     -.15504    .73995 
      GC|     .02160***      .00751     2.88  .0040      .00688    .03632 
    TTME|    -.04387***      .00486    -9.03  .0000     -.05340   -.03435 
    INVC|    -.00363         .00760     -.48  .6329     -.01852    .01126 
    INVT|    -.00466***      .00106    -4.37  .0000     -.00674   -.00257 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 MATRIX  ; Stat(b,varb) $ 
 
----------------------------------------------------------------------------- 
Number of observations in current sample =     840 
Number of parameters computed here       =       5 
Number of degrees of freedom             =     835 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     B_1|     .29245         .22832     1.28  .2002     -.15504    .73995 
     B_2|     .02160***      .00751     2.88  .0040      .00688    .03632 
     B_3|    -.04387***      .00486    -9.03  .0000     -.05340   -.03435 
     B_4|    -.00363         .00760     -.48  .6329     -.01852    .01126 
     B_5|    -.00466***      .00106    -4.37  .0000     -.00674   -.00257 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 

 
 MATRIX  ; Stat(b,varb,x) $ 
 
----------------------------------------------------------------------------- 
Number of observations in current sample =     840 
Number of parameters computed here       =       5 
Number of degrees of freedom             =     835 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .29245         .22832     1.28  .2002     -.15504    .73995 
      GC|     .02160***      .00751     2.88  .0040      .00688    .03632 
    TTME|    -.04387***      .00486    -9.03  .0000     -.05340   -.03435 
    INVC|    -.00363         .00760     -.48  .6329     -.01852    .01126 
    INVT|    -.00466***      .00106    -4.37  .0000     -.00674   -.00257 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The DISPLAY command can be used to produce a similar set of results. 
 
 DISPLAY ; Parameters = b ; Covariance = varb ; Labels = x 
   ; Title = Logit Model for Mode Choice $ 
 
----------------------------------------------------------------------------- 
Logit Model for Mode Choice 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .29245         .22832     1.28  .2002     -.15504    .73995 
      GC|     .02160***      .00751     2.88  .0040      .00688    .03632 
    TTME|    -.04387***      .00486    -9.03  .0000     -.05340   -.03435 
    INVC|    -.00363         .00760     -.48  .6329     -.01852    .01126 
    INVT|    -.00466***      .00106    -4.37  .0000     -.00674   -.00257 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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R16.3.6 Descriptive Statistics for the Elements in a Matrix 
 
 The matrix function Dsta computes the mean and standard deviation of the elements in a 
matrix.  The matrix may be any size or shape.  Use 
 
 MATRIX  ; Dsta(list of matrices) $ 
 
The matrices in the list need not be the same size.  The following computes means and standard 
deviations for 5×5 and 10×10 matrices of random draws from the standard normal distribution. 
 
 MATRIX ; a5 = Rndm(5,5) ; a10 = Rndm(10,10) $ 
 MATRIX  ; Dsta(a5,a10) $ 
 
DESCRIPTIVE STATISTICS FOR MATRIX ELEMENTS 
Matrix        Mean     Standard Deviation     Rows    Columns     Elements 
A5         -.13648D+00      .94047D+00           5         5          25 
A10         .55930D-01      .99133D+00          10        10         100 
 
R16.3.7 Plotting Matrices 
 
 The elements of one matrix may be plotted against those of another with 
 
 MPLOT  ; Rhs = matrix1 ; Lhs = matrix2 ; ... $ 
 
The rest of the command is the same as that for PLOT using variables.  The two matrices must have 
the same dimensions, but they need not be vectors.  For this command, the figure drawn is a scatter 
plot of the elements of matrix1 against the corresponding elements of matrix2.  The PLOT 
command and options for PLOT and MPLOT are discussed in Chapter E4.  
 
NOTE:  This is not a matrix function; MPLOT is a separate LIMDEP command.  Example 3 in 
Section R16.1 contains an application which uses MPLOT. 
 
R16.4 Matrix Work Areas 
 
 You have a workspace for the results of matrix computations that contains roughly 500,000 
cells plus another 100,000 for intermediate results of your estimation commands.  Most of your 
matrix computations will take place in this area, either to manipulate matrices already in it or to use 
the data to compute matrices to add to it.  You can define up to 100 named matrices.  The maximum 
size of the result of a matrix computation is 50,000 cells.  Although these dimensions may seem 
limited, because of the way matrices are defined by LIMDEP, it is unlikely that they will ever 
constrain you. 
 If necessary, you can delete matrices to make room in your workspace with 
 
 MATRIX ; Delete name, name, … $  
 
(Note that there is no equals sign or colon after ; Delete.) You can also delete matrices in the project 
window simply by selecting the matrix by name in the project window and pressing the Del key. 
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R16.4.1 Rebuilding the Matrix Work Area 
 
 When you open a project file, you restore your data and results, including the matrix work 
area.  A side effect of this is that if you wish to restore just your matrix work area, you must also 
replace your entire data analysis project.  The MATRIX functions Mput and Mget are provided to 
allow you to save and restore a matrix algebra ‘subsession.’  Mput creates a special file that contains 
the names, dimensions, and contents of all matrices that exist at the moment when it is created.  Mget 
will read that file and restore the matrix work areas to their previous state, without changing anything 
else in your project.  The syntaxes of these commands are 
 
 MATRIX ; Mput = filename $  
 
saves the matrix part of a SAVE (.lpj) file in the indicated file.  The following command 
 

MATRIX ; Mget = filename $  
 
restores a matrix algebra workspace while leaving the rest of the project unchanged.  Recognizing 
the ambiguity of the location of a file in Windows, remember that you can use Insert:File Path to 
locate a matrix file.  Also, though these look like project files, they have several layers of internal 
protection which will prevent them from accidentally overwriting the rest of your project.  
 You can clear all matrices out of the matrix work area with the command 
 
 MATRIX ; Reset $ 
 

R16.4.2 Naming and Notational Conventions 
 
 Every numeric entity in LIMDEP is a matrix, and you will rarely have to make a distinction 
among them.  For example, in the expression, 
 
 MATRIX   ; f = q ’ r $ 
 
q and r could be any mix of: 
 

• variables, 
• data matrices, 
• computed matrices, 
• named scalars, 
• literal numbers, e.g., 2.345, 
• the number (symbol) 1, which has special meaning in matrix multiplication. 
 

The two entities must be conformable for the matrix multiplication, but there is no requirement that 
two matrices be the same type of entity.  (Usually, they will be.)  For convenience, we will 
sometimes make the following definitions: 
 

• Variable names are vnames. 
• Namelists are  xnames. 
• Computed matrices are  mnames. 
• Scalars are  rnames. 
• Numbers are  scalars. 
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At any time, you can examine the contents of the tables of these names in your project workspace, 
just by clicking the particular name in your project window. Whenever you create an entity in any of 
these tables, all of the others are checked for conflicts.  For example, if you try to create a variable 
named q, and there is already a matrix with that name, an error will occur. 
 
NOTE:  There are two reserved matrix names in LIMDEP.  The matrix program reserves the names 
b and varb for the results of estimation programs.  These two names may not appear on the left hand 
side of a matrix expression.  They may appear on the right, however.   
 
There are a few additional names which are read only some of the time.  For example, after you use 
the SURE command, sigma becomes a reserved name.  Model output will indicate if a reserved 
name has been created.   
 In the descriptions of matrix operations to follow, 
 

• xname is the name of a data matrix.  This will usually be a namelist.  However, most data 
manipulation commands allow you merely to give a set of variable names instead. 

• mname is the name of a computed matrix. 
• s is a scalar.  It may be a number or the name of a scalar which takes a value. 
• A matrix has r rows and c columns. 
• Matrices in matrix expressions are indicated with boldfaced uppercase letters. 
• The transpose of matrix in a matrix algebra expression C is denoted C ′. 
• The apostrophe, ’, also indicates transposition of a matrix in LIMDEP commands. 
• The ordinary inverse of matrix C is denoted C-1. 

 
 The result of a procedure that computes a matrix A is denoted a.  Input matrices are  c, d, 
etc.  In any procedure, if a already exists, it may appear on both sides of the equals sign with no 
danger of ambiguity; all matrices are copied into internal work areas before the operation actually 
takes place.  Thus, for example, a command may replace a with its own transpose, inverse or 
determinant.  You can replace a matrix with some function of that matrix which has different 
dimensions entirely.  For example, you might replace the matrix named a with a′a or with a’s rank, 
trace or determinant.   
 Note in these definitions and in all that follows, we will make a distinction between a matrix 
expression (in theory), such as F = (1/n)X′X, and the entities that you manipulate with your LIMDEP 
commands, for example, ‘you have created f = x’x.’  There are thus three sets of symbols.  We will 
use bold upper case symbols in matrix algebra descriptions; we will use bold lower case symbols for 
the parts of LIMDEP commands.  We will use italic lower case symbols when we refer, outside 
LIMDEP commands, to the names of matrices, variables, namelists and scalars you have created.  
Consider, for example, the following:  ‘The sample second moment matrix of the data matrix X is     
F = (1/n)X′X.  You can compute this by defining X with a command such as NAMELIST ; x = 
one,age,income $, then using the command MATRIX ; f = 1/n*x’x $.  After you execute this 
command, you will see the matrix f in your project window listing of matrices.  The namelist x will 
also appear in the project window list of namelists.’  You might note, we have used this convention 
at several points above. 
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R16.4.3 Matrix Dimensions 
 
 The dimensions of all matrices are stored and kept automatically and almost never have to be 
given explicitly.  A 1×1 matrix is usually not treated any differently from any other matrix when it is 
the result of a procedure.  For example, 
 
 MATRIX   ; detc = Dtrm(c) $ 
 
computes a 1×1 matrix which equals the determinant of C. 
 A row vector is rarely the same as a column vector.  LIMDEP will not let you add a 3×1 
vector to a 1×3 vector.  With only a few exceptions that are made explicit below, all matrices used in 
all computations must be strictly conformable. 
 
R16.4.4 Placing Matrix Results in Scalars 
 
 Matrix operations may specify that the result should be placed in an existing scalar instead.  
(See Chapter R17.)  If the result is a 1×1 matrix, the result is placed in the indicated scalar.  If the 
result is a more general matrix, the (1,1) element of the result is placed in the scalar and the 
remaining elements are lost.  For example, suppose x is a five column data matrix.  That is, x would 
be defined with a NAMELIST command.  Then 
 
 CALC  ; varx1 = 0 $   Must already exist to use as a matrix result 
 MATRIX  ; cov = Xvcm(x)   
   ; varx1 = Xvcm(x) $  
 
creates cov, a 5×5 covariance matrix, and places the variance of the first variable in varx1. 
 You can also use an element of a matrix in any later computation just as if it were a scalar. 
Consider the following example:  The MATRIX command computes a K×K  X′X matrix, then turns 
it into a 1×1 matrix equal to its own determinant.  The CALC command then computes the log of 
this determinant by computing the log of the first (and only) element in xx. 
 
 MATRIX  ; xx = Dtrm(x’x) $ 
 CALC    ; logdet = Log(xx) $  
 
TIP:  There are 86 user defined scalars available to you.  But, in view of the preceding, you can 
create up to 100 more by using 1×1 matrices.  We will return to this issue in Chapter R17. 
 
Note, as well, there are many functions that are common in econometrics provided to simplify 
computations such as this.  For example, the computation above is obtained with the simple 
command, MATRIX ; logdet = Logd(x’x) $. 
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R16.4.5 Compound Names for Matrices, Variables and Scalars 
 

The names of matrices, variables and scalars may all be of the form aaaa:ssss where ssss is 
the name of a scalar.  The scalar must take an integer value from 00 to 99.  The value is appended to 
the name to make a variable with the compound name.  This feature will be useful for looping in 
procedures.  For example: 

 

CALC   ; index = 1 $ 
PROCEDURE $ 
CREATE  ; x : index = 1 / index $   
ENDPROCEDURE $ 
EXECUTE  ; index = 1,10 $ 

 

creates 10 variables, x1 = 1, x2 = 1/2, x3 = 1/3, x4 = 1/4, ..., x10 = 1/10.  The Brant test for homogeneity 
in an ordered logit model provides another example – in this program, both matrices and variables are 
being given compound names.  This extensive routine also illustrates many of the matrix computations 
discussed in this chapter.  The discussion surrounding the commands will show the usages. 
 This is the Brant test for preference heterogeneity in an ordered logit model.  The base model 
has Prob[y=j]=F[m(j)-β′x] – F[m(j-1)- β′x]  The test examines whether β is the same for all 
outcomes. It is a Wald test of the hypothesis β(0) = β(1) =... when β is allowed to vary across 
choices. Each β(j) is estimated by the binary choice model Prob[ y > r] for r = 0,1,...,Max(y)-1.  For  
y = 0,1,2,3,4,5, there are five β vectors estimated, and the test then evaluates the J = 4 vector 
equalities. This routine is completely self contained. It requires only that the x and y be set up at the 
beginning.  This procedure is limited to y taking values up to five.  The pattern below shows how it 
could be extended if necessary. Only changes to the CREATE and MATRIX commands are needed 
to allow for more outcomes in the ordered choice model.  
 These commands set up the Lhs variable y and Rhs namelist x. Here, we are generating artificial 
data. 
 SAMPLE    ; 1-1000 $ 
 CALC      ; Ran(12345) $ 
 CREATE    ; y = Rnd(6) - 1 ; xa = Rnn(0,1) ; xb = Rnn(0,1) ; xc = Rnn(0,1) $ 
 NAMELIST  ; x = xa,xb,xc $  x does not include a constant term. 
 

The remainder of the program is generic and need not be changed by the user.  These commands 
compute some values and matrix templates that are used later in the program.  Matrices i and mi are 
an identity and negative of identity, z is a zero matrix;  bt and d are empty here, and will be filled 
during execution of the procedure. 
  
  NAMELIST  ; x1 = x,one $ 
  CALC      ; k = Col(x) $ 
  CALC      ; ymax = Max(y) ; y1 = ymax-1 ; kj = ymax*k ; k1j = y1*k $ 
  MATRIX    ; i = Iden(k) ; z = Init(k,k,0) ; mi = -1*i $ 
  MATRIX    ; bt = Init(kj,1,0) ; d = Init(k1j,kj,0) $ 
 

This procedure computes the individual logit equations. To reduce the number of commands, it 
makes heavy use of compound names.  Loop index y1 takes values 1,2,...,ymax.  j = y1 - 1,  
0,1,2,...ymax-1.  The procedure is creating variables z0, z1, ... each equal to a binary variable that 
equals one when y > j.  It is creating coefficient vectors b0, b1, ... then injecting (stacking) them      
in the large vector bt.  Each LOGIT command creates a variable with fitted probabilities, p0,...       
After each b:j is computed, a vector of derivatives, w0 = p0(1-p0), w1 = p1(1-p1),... is computed.   
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We are creating matrices v0, v1,... as inverses of moment matrices. Finally, the large matrix d is a 
partitioned matrix in which block row j contains i on the diagonal and -i at the end of the row.      
 

  PROC = Logits $ 
 CALC      ; j = y1-1 ; jy = j*k+1 ; jyk = jy+k $ 
     CREATE    ; z:j = y > j $ 
 LOGIT     ; Lhs = z:j ; Rhs = x1 ; Prob = p:j $ 
 MATRIX    ; b:j = b(1:k) ; bt(jy) = b:j $ 
 CREATE    ; w:j = p:j*(1-p:j) $ 
 CALC      ; jy = Min(jy,((ymax-2)*k+1)) ; jyk = jy+k $ 
 MATRIX    ; v:j = <x1'[w:j]x1> ; vt = v:j ; vt = Part(vt,1,k,1,k) ; v:j = vt $ 
 MATRIX    ; d(jy,1) = i ; d(jy,jyk) = mi $ 
 ENDPROC $ 
 EXECUTE   ; y1  = 1,ymax ; Silent $ 
 

Conditional CREATE commands compute derivatives for estimated models. These use the probabilities 
computed by the LOGIT commands in the procedure. The commands are conditional. They only 
compute the variables needed, depending on the number of outcomes in the ordered choice model 
 

 CREATE    ; If[j >= 1] | w01=p1-p0*p1  $ 
 CREATE    ; If[j >= 2] | w02=p2-p0*p2 ; w12=p2-p1*p2 $ 
 CREATE    ; If[j >= 3] | w03=p3-p0*p3 ; w13=p3-p1*p3 ; w23=p3-p2*p3 $ 
 CREATE    ; If[j >= 4] | w04=p4-p0*p4 ; w14=p4-p1*p4  
     ;                    w24=p4-p2*p4 ; w34=p4-p3*p4 $ 
 

These are the partitioned covariance matrices.  V is a partitioned matrix.  The number of blocks 
depends on the number of outcomes in the choice model. 
 

MATRIX   ; If(j >= 1) | v01=x1'[w01]x1 ; v01=v01(1:k,1:k) 
; v01=v0*v01*v1; v10=v01' $ 

MATRIX    ; If(j >= 2) | v02=x1'[w02]x1 ; v02=v02(1:k,1:k) 
; v02=v0*v02*v2; v20=v02' 
; v12=x1'[w12]x1 ; v12=v1*v12*v2 ; v12=v12(1:k,1:k) ; v21=v12' $ 

MATRIX    ; If(j >= 3) | v03=x1'[w03]x1 ; v03 = v03(1:k,1:k) 
; v03=v0*v03*v3 ; v30=v03'  
; v13=x1'[w13]x1; v13=v13(1:k,1:k) ; v13=v1*v13*v3; v31=v13' 
; v23=x1'[w23]x1; v23=v23(1:k,1:k) ; v23=v2*v23*v3 ; v32=v23' $ 

MATRIX    ; If(j >= 4) | v04=x1'[w04]x1 ; v04=v04(1:k,1:k) 
; v04=v0*v04*v4; v40=v04' 

    ; v14=x1'[w14]x1; v14=v14(1:k,1:k) ; v14=v1*v14*v4 ; v41=v14' 
; v24=x1'[w24]x1; v24=v24(1:k,1:k) ; v24=v2*v24*v4 ; v42=v24' 
; v34=x1'[w34]x1; v34=v34(1:k,1:k) ; v34=v3*v34*v4 ; v43=v34' $ 

   MATRIX ; If[j >= 1] | v0=v0(1:k,1:k) ; v1=v1(1:k,1:k) ; v=[v0,v01/v10,v1] $ 
MATRIX ; If[j >= 2] | v2=v2(1:k,1:k)  

; v=[v0,v01,v02 / v10,v1,v12 / v20,v21,v2] $ 
MATRIX ; If[j >= 3] | v3 =v3(1:k,1:k) 

; v=[v0,v01,v02,v03/v10,v1,v12,v13/v20,v21,v2,v23/v30,v31,v32,v3] $ 
MATRIX ; If[j >= 4] | v4 =v4(1:k,1:k)  

; v=[v0,v01,v02,v03,v04/v10,v1,v12,v13,v14/ 
                    v20,v21,v2,v23,v24/v30,v31,v32,v3,v34/v40,v41,v42,v43,v4] $ 
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Compute the Wald statistic. 
 
 MATRIX    ; db = d*bt ; dvd = d * v * d' $ 
 MATRIX    ; List ; Brant = db' * <dvd> * db $ 
 CALC      ; List; df = Col(dvd); Ctb(.95, (Col(v))) ; l = Chi(Brant,df) $ 
 
R16.5 Reading Matrices 
 
 You can import matrices from other data sources for example from a spreadsheet program 
such as Excel or as text in an ordinary data file. 
 
R16.5.1 Importing a Matrix as a Data File   
 
 Since a matrix of values looks the same as a data set, you can read one directly from a file or 
from your screen.  The command looks the same as that for reading data into variables in your data 
area but the specifications are for a matrix instead.  Thus, 
 
 IMPORT ; Rows  = the number of rows 
   ; Cols  = the number of columns 
   ; Matrix = the name of the matrix you are reading $ 
 
You can create a new matrix in this way, or you can replace an existing one.  If you replace a matrix, 
the new dimensions can be different from the old one.  An example appears below.  The IMPORT 
command imports the Longley data into the matrix longley.   
 

IMPORT ; Rows = 16 ; Cols = 7 ; Matrix = Longley $ 
1947  83.0 234289 1590 60323 8256 38407 
1948  88.5 259426 1456 61122 7960 39241 
1949  88.2 258054 1616 60171 8017 37922 
1950  89.5 284599 1650 61187 7497 39196 
1951  96.2 328975 3099 63221 7048 41460 
1952  98.1 346999 3594 63639 6792 42216 
1953  99.0 365385 3547 64989 6555 43587 
1954 100.0 363112 3350 63761 6495 42271 
1955 101.2 397469 3048 66019 6718 43761 
1956 104.6 419180 2857 67857 6572 45131 
1957 108.4 442769 2798 68169 6222 45278 
1958 110.8 444546 2637 66513 5844 43530 
1959 112.6 482704 2552 68655 5836 45214 
1960 114.2 502601 2514 69564 5723 45850 
1961 115.7 518173 2572 69331 5463 45397 
1962 116.9 554894 2827 70551 5190 46652 

 
The two limits on the command are 
 

• Rows × Cols must be less than or equal to 50,000. 
• You may only read one matrix in an IMPORT command.  To read more than one matrix, 

just use a separate IMPORT command for each one.  
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R16.5.2 Importing a Matrix as a Block of Cells from Excel   
 

A block of cells in a spreadsheet program such as Excel may be transported directly into a 
named matrix.  Use the text editor as described above and the following steps: 

 
1. Create a template IMPORT command. Put the IMPORT command in the text editor first.  
2. Use edit/copy in Excel to copy the rectangular block of cells. 
3. Use edit/paste in LIMDEP to put the cells in the editor below the IMPORT command. 
4. Submit the command as usual by highlighting it and clicking GO. 

 
Figure R16.9 shows an example.  Note that the grid markers are transferred into the text editor with 
the matrix.  These will be ignored by the command processor when the data are imported. 
 

  
Figure R16.9  Exporting a Matrix to LIMDEP from Excel 
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R16.6 Matrix Expressions 
 
 Most of the operations you do with matrices, particularly if you are constructing estimators, 
will involve expressions, products, sums, and functions such as inverses.  This section will show how 
to arrange such mathematical expressions of matrices.  We have used these procedures at many 
points in our earlier discussion. 
 As noted above, every numerical entity in LIMDEP is a matrix and may appear in a matrix 
expression.  There are very few functions that require data matrices.  These will be noted below.  The 
algebraic operators are  
 
 *  for matrix multiplication, 
 +    for addition, 
 -    for subtraction, 
 ’ (apostrophe) for transposition and also for transposition then multiplication, 
 /    for a type of division (see below), 
 ^    for raising a matrix to a power (several forms, see below). 
 
Thus, c*d equals C × D and c*Ginv(c) (or c*<c>) equals C times its inverse, or I, and c′*Ginv(c)*c 
equals C′.  As will be evident shortly, the apostrophe operator, (’) is a crucial part of this package.   
 When scalars appear in matrix computations, they are treated as scalars for purposes of 
computation, not as matrices.  Thus, AsB′, where s is a scalar, is the same as sAB′.  The 1×1 matrix 
in the middle does not interfere with conformability; it produces scalar multiplication.  1×1 matrices 
which are the result of matrix computations, such as quadratic forms, also become scalars for 
purposes of matrix multiplication.  Thus, in A′ * r’b*r * A will not require conformability of A’ and 
r’ (number columns of A′ equal number of rows of r′) if the quadratic form r’Br is collected in one 
term;  also, A′*r′*B*r*A does require conformability, but the same expression could be written a′ * 
r’[B]r * a to achieve greater efficiency.  If r happens to be a variable, this may be essential. The 
implications of these different forms will be presented in detail below. 
 All syntaxes are available for any entity, so long as conformability is maintained where 
appropriate.  A and B are any matrix; w is any vector, row or column, including, if desired, a 
variable; and, C is any matrix.  (Once again, a matrix is any numeric entity – there is no need to 
distinguish, e.g., variables from previously computed matrices.) 
 Each result in the following table produces a result that, for later purposes, may be treated as 
a single matrix. 

  
 a’b        =  transpose of a times b 
 a’[w]b        =  a’diag(w) b   (Do not create diagonal matrices!) 
 a’< w > b        =  a’[diag(w)]-1 b 
 a’[c] b        =  a’ c b = bilinear form 
 a’< c > b        =  a’ c -1 b  c is any matrix. 
 < a >           =  a -1 
 [a]           =  G-2 inverse of a.  
 < a’ b >         =  (a’ b)-1 
 < a’[w] b >      =  (a’[w] b)-1 
 < a’< w > b >   =  (a’< w > b)-1. 

Table R11.1  Matrix Expressions 
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In a matrix expression, the symbol ‘1’ can be used where needed to stand for a column of ones.  Thus,  
 

  1’a  =  a row of ones times matrix a 
  a’1  =  transpose of matrix a times a column of ones. 

 
Note that in each of these cases, the apostrophe is an operator that connotes multiplication after 
transposition. 
 
NOTE:  You should never need to compute a′ * b.  Always use a′b.  Thus, in the earlier example,  
c′< c > c is better than c ′*Ginv(c)* c or c ′< c >* c. 
 
These functions will be particularly important for using matrix algebra with large amounts of data.  
Section R16.7 gives further details. 
 In any matrix function list, you may use the transpose operator for transposition.  For 
example, two ways to obtain the sum of a matrix and its transpose are 
 
   sum  =  a + a’    and   sum  =  Msum(a, a’). 
 
The transpose of a matrix may appear in an expression simply by writing it with a following 
apostrophe.  For example, 
 
   a’c’c a could be computed with a’ * c’ * c * a 
 
though a’ * c’c * a would be necessary if c were a data matrix. 
 You may string together as many matrices in a product as desired. As in the example, the terms 
may involve other matrices or functions of other matrices.  For example, the following commands will 
compute White’s heteroscedasticity corrected covariance matrix for the OLS coefficient vector. 
 
 NAMELIST ; x = list of Rhs variables $ 
 REGRESS  ; Lhs = y ; Rhs = x ; Res = e $ 
 CREATE   ; esq = e^2 $ 
 MATRIX ; white = <x’x> * x’[esq]x * <x’x> 
 
The CREATE command that computes the squared residuals is actually unnecessary.  The last two 
lines could be combined in 
 
 MATRIX     ; white = <x’x> * Bhhh(x,e) * <x’x> $ 
 
LIMDEP also provides a function to compute the center matrix for the Newey-West estimator; 
 

Nwst(x,e,l)  computes the Newey-West middle matrix for l lags. l = 0 => White.  
                   e is the vector of residuals, x is a namelist defining the set of variables. 

 
 You may also multiply simple matrices that you enter directly.  For example 
 

   















55
42

53
31

   =  [1 / 3,5] * [2,4 / 5,5]. 
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The multiplication operator sorts out scalars or 1×1 matrices in a product.  Consider, for example,    
V = A(r′Ar)-1A′.  If r is a column vector, this is a matrix (AA′) divided by a quadratic form.  To 
compute this, you could use 
 
 MATRIX ; v = a * <r’[a]r> * a’ $ 
 
The scanner will sort out scalars and multiply them appropriately into the product of matrices.  But, 
in all cases, matrices which are not 1×1 must be conformable for the multiplication.  Thus, if r were 
a matrix instead of a vector, it might not be possible to compute V. 
 The ‘+’ operator is used to add matrices.  Thus, to add the two matrices above instead of 
multiply them, we could use 
 

   







+








55
42

53
31

    =  [1 / 3,5] + [2,4 / 5,5]. 

 
The matrix subtraction operator is ‘-.’  Thus,  a - c   gives   A - C (of course). 
 You may also combine the +, -, and * operators in a command.  For example, the restricted 
least squares estimator in a classical regression model, when the linear restrictions are Rb = q, is 
 
   br = bu - (X′X)-1R′[R(X′X)-1R′]-1(Rbu - q). 
 
This could be computed with 
 
 NAMELIST  ; x = list of variables $ 
 MATRIX    ; bu = <x’x> * x’y 
         ; r = ... ; rt = r’ 
   ; q = ...  
   ; d = r * bu - q 
   ; xxi = <x’x> 
           ; br = bu - xxi * r’ * <rt’[xxi]r > * d $ 
 
(Why did we transpose r into rt then use rt’, which is just r,  in the last expression?  Because the 
apostrophe operator is needed to produce the correct matrix multiplication inside the < > operation. 
There are other ways to do this, but the one above is very convenient.)  Notice in the preceding that 
if there is only one constraint, r will be a row vector, and the quadratic form will be a scalar, not a 
matrix. 
 Any of the product arrangements shown in Table R16.1 may appear in any function or 
expression as if it were already an existing matrix.  For example, Root (< x’[w]x >) computes the 
characteristic roots of [Σiwixix]-1. But, longer matrix expressions may not be grouped in parentheses, 
nor may they appear as arguments in other matrix functions.  Expressions which must be used in 
later sums and differences or functions must be computed first.  There will usually be other ways to 
obtain the desired result compactly.  For examples, 
 
 d = Sinv(a + c) is invalid but can be computed with        d = Nvsm(a,c), 
 d = (a + c) * q is invalid but can be computed with         d = Msum(a,c) * q, 
and d = Ginv(a * q * r) is invalid, but can be computed with  d = Iprd(a,q,r). 
 
The functions Msum, Mdif, Nvsm, and Iprd may facilitate grouping matrices if necessary. 
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R16.6.1 Scalar Multiplication of a Result – Using CALCULATE 
 
 You can multiply the result you are obtaining by a scalar by using 
 
   name = value * expression 
 
For example, one way to create a 2×2 identity matrix would be i2 = Iden(2).  Then, 
 
   teni2  =  10 * Iden(2) 
 
would create a multiple of the identity matrix. 
 As with CALC and CREATE, the names n and pi are always interpreted as the current 
sample and the number 3.14159..., respectively.  Thus, you might compute n(X′X)-1 by using            
n * <x’x>.  A scalar multiple may be a number, a scalar value you have computed earlier, or an 
element of an existing matrix, such as r(3,4),  For example, after computing a regression, since ssqrd 
is kept automatically, 
 
   vb  =  ssqrd * <x’x> 
 
would reproduce the calculation of varb done automatically by the regression. As a shortcut, 
LIMDEP also allows simple scalar division of a matrix. The syntax can be of these forms 
 
   name  =  1 / value * expression  or  name  =  <value> * expression. 
 
For example, the following three expressions are equivalent: 
 
   a = .1 * Iden(5)  =  1/10 * Iden(5)  =  <10> * Iden(5). 
 
The method of obtaining more complicated scalar multiples is given below.  Note from the list in 
Table R16.1 that you can use <s> * A for 1/s * A since <s> implies inversion, then the 1×1 is 
detected. 
 You can issue a CALCULATE command from a MATRIX command if you enclose the 
command in curled brackets.  It might look like this:  
 
 MATRIX ; {1 - 2 * Phi(1.96)} $ 
 
which does not save anything since dropping the brackets and changing MATRIX to CALC does 
the same thing.  However, 
 
 MATRIX   ; {p = 1 - 2 * Phi(1.96) ; s2 = sumsqdev/n } * <x’x> $ 
 
is convenient – it computes p, then s2 which is then used to compute the variance of the maximum 
likelihood estimator of the coefficient vector in a regression model. 
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 This gives the same result as giving this command with CALC, instead.  You can put any 
valid CALCULATE command in the brackets.  It can be as complex as necessary, with 
subcommands separated by semicolons.  The advantage of this is that you can use the result as a 
scalar multiple for a matrix result by preceding your MATRIX command with the CALCULATE 
command.  For example, the following computes  n(2π)-1/2 times an (X′X)-1 matrix:  
 
   {n/(Sqr(2*pi))} * Xpxi(one,age,exper). 
 
It is also possible to keep the scalar result at the same time as the matrix result.  For example, the 
preceding could be modified to 
 
   qxxi = {v = n/(Sqr(2*pi))} * Xpxi(one,age,exper). 
 
The scalar v is calculated inside the curled brackets.  When it is obtained, the matrix qxxi is 
computed as v times the inverse of the X′X matrix  This command computes a scalar and a matrix 
result at the same time. 
 If your CALC command has more than one subcommand and you use it for scalar 
multiplication, the value sent back as the scalar in the curled brackets is the last value calculated.  
For example, the following would compute the ‘teni2’ obtained above: 
 
   {1 + 1 ; abc = 3 ; r = 10} * Iden(2) 
 
R16.6.2 Adding the Same Scalar to Every Element of a Matrix 

 
A common operation in econometrics is adding the same value to each element of a matrix.  

Consider, for example, adding one to every element of matrix A.   The general operation is done with 
 
MATRIX   ;  a  =  [value]  +  a  $ 

 
More generally, whenever a 1×1 matrix, or a scalar, is added to another matrix, the operation is taken 
to mean that the scalar should be added to (or  subtracted from) every element of the larger matrix.  
Thus, all of the following are valid commands: 
 

  a  =  [pi]  +  a 
  a  =  b’<varb>b  +  a 

 
(which adds the same quadratic form to every element of a), 
 

  a  =  a  +  [1]   q  +  [2]  
and so on. 
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R16.6.3 Raising a Matrix to a Power 
 

There are several ways to raise a matrix to a power.  Let A denote an r×c matrix, P denote a 
q×s matrix, and d denote a scalar:  The matrices A and P may be the names of existing matrices, or any 
construction of a matrix that produces a matrix result, including functions. Thus, one possibility is 
 
            result  =  Sqrt(<x’[w]x>) ^ 2  (which equals <x’[w]x>). 
 
Matrix to Scalar Power 
 

A ^ d  raises the matrix to the d power.  A must be the name of a square matrix.  The 
following cases are allowed: 

 
1. d = 0 returns identity matrix for all A. 
 
2. d = positive integer.  Repeated multiplication. 

 
3. d = negative integer.  Same as (A-1)d.  A must be nonsingular.   

Thus, a^-2 is the same as Ginv(a)^2 and a^-1 is the same as Ginv(a), the ordinary 
inverse. 
 

4. d = positive real number.  Returns the spectral decomposition,  
Q  =  C Λd C’ where C is the matrix of columns of characteristic vectors and Λ is the 
diagonal matrix of characteristic roots.  A must be symmetric. 
 

5. d = negative real number.  Same as case 4 except that all roots must be positive.   
I.e., A must be positive definite.  This replaces the Sqrt function (now, result = a^.5) and 
the Isqr function (now, result = a^-.5). 

 
Matrix to Matrix Power 
 

 A ^ P.  A and P must have the same dimensions, but need not be square.  Then, element by 
element, this returns A(i,j) ^ P (i,j)  =  [A(i,j) ^ P(i,j)]. 
 
Scalar to Matrix Power 
 

d ^ A.  A is any matrix.  Each element of the result is d raised to the power of the 
corresponding element of A.  Thus, the dimensions of the result are those of A. 
 
Matrix to Scalar Power, Element by Element 

 
A ! d raises each element of a to the d power.  Note that this differs completely from 

A ^ d. For example, the following is valid, if a bit farfetched:  
 
CALC   ; q = Log(Phi(1.2*rsqrd)) $ 
MATRIX ; v = <x’x> ! q $ 
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R16.6.4 Entering, Moving, and Rearranging Matrices 
 
 To define a matrix, use   
 
 MATRIX  ; name  =  [... row 1 / ... row 2 ... / ... ] $ 
 
Elements in a row are separated by commas while rows are separated by slashes.  For example, 
 

 MATRIX  ; a = [1,2,3,4 / 4,3,2,1 / 0,0,0,0] $ creates a = 
















0000
1234
4321

.    

 
To facilitate entry of matrices you can use these two arrangements: 
 
 k | value =  a K×1 column vector with all elements equal to value 
 k_value  =  a 1×K row vector with all elements equal to value 
 
Thus, in the last row above, 0,0,0,0 could be replaced with 4_0. 
 Symmetric matrices may be entered in lower triangular form.  For example, 
 

 MATRIX   ; a = [1  /  2 , 3  /  4 , 5 , 6]  $ creates a = 
1 2 4
2 3 5
4 5 6

 
 
 
  

. 

 
 Matrix elements given in a list such as above may be scalars, or even other matrices and 
vectors.  For example, to compute the column vector, [γ′ , θ] = [(1/σ)β′,(1/σ)]′ after fitting a tobit 
model, you could use 
 
 TOBIT     ; ... $ 
 CALC      ; theta = 1/s $ 
 MATRIX  ; gamma = theta * b ; gt = [gamma / theta] $  
 
Note that the slash used here indicates stacking, not division, and that gt is a column vector. 
 
Partitioned Matrices 
 
 A partitioned matrix may be defined with submatrices.  For example, suppose c1 is a 5×2 
matrix and c2 is 5×4.  The matrix c=[c1,c2] is a 5×6 matrix which can be defined with  
 
 MATRIX  ; c = [c1 , c2] 
 
The two matrices must have the same number of rows.  Matrices may also be stacked if they have 
the same number of columns. For example:  
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To obtain   F  =  








2

1

C
C

    use f = [c1 / c2].    

 

To obtain   M =  








2221

1211

MM
MM

 use m = [m11,m12 / m21,m22].   

 
Symmetric matrices may be specified in lower triangular form.  For example, suppose M were 
symmetric, so that M21 = M12′.  M could be constructed using  
 
   m = [m11 / m21 , m22].   
 
The application of the Brant test in Section R16.4.5 gives an extensive example that uses partitioned 
matrices. 
 
Block Diagonal Matrix 
 
 Form a block diagonal matrix from scalars and/or square matrices with 
 
   a = Blkd(c1, c2, …, ck). 
 
Matrices c1,…,ck may be any mix of scalars and square matrices. 
 
Matrices with Identical Elements 
 
 If a matrix or vector has all elements identical, use a = Init(r,c,s).  This initializes an r×c 
matrix with every element equal to scalar, s.  This is a way to define a matrix for later use by an 
estimation program.  Example 3 in Section R16.1 shows an application.  This method can also be 
used to initialize a row (r=1) or column (c=1) vector.  Alternatively, you could use a = [c_s] for a 
row vector or a  =  [r|s] for a column vector.  The function Ones(r) returns an r×1 column vector of 
ones. 
 
Identity Matrices 
 
 To define an r×r identity matrix, use a = Iden (number of rows).  It may be useful to use a 
scalar for the number of rows.  For example, suppose that x is the name of a namelist of K variables 
which will vary from application to application and you will require a to be a K×K identity matrix, 
where K is the number of variables in x.  You can use the following: 
 
 CALC   ; k  = Col(x) $ 
 MATRIX  ; ik = Iden(k) $   
 
The notation I[r] produces the same matrix as Iden(r).  To extract a specific row or column from an 
identity matrix, use the functions 
 

Iden(k,j)  =  the jth column of K×K identity matrix,  
Iden(k,-j)  =  the jth row of the same matrix. 
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Band Matrices 
 
 Certain applications in time series analysis, for example the calculation of the approximations 
to the distribution of the Durbin-Watson statistic, require a band matrix.  This has zeros everywhere 
except above and below the principal diagonal, which are ones.  To create such a matrix, use 
 
   a = Iden (- number of rows) 
 
For example, 

  Iden (-3)  =  
















010
101
010

. 

 
Also, i[ -r ] may be used for the band matrix with ones on the sub and super diagonal of an r×r 
matrix. This is the same as Iden(-r). 
        
Random Matrices 
 
 The MATRIX command a = Rndm(list) can be used to draw matrices of random numbers 
from the normal distribution.  The following specifications may be used: 
 
 Rndm(m)    =  m×1 random vector from standard normal, 
 Rndm(r,m) =  r×m random matrix from standard normal. 
 
All elements are independent draws.  You may also specify the mean vector and covariance matrix 
for a draw of a random vector from the normal distribution: 
 
 Rndm(mu)   =  r×1 random vector from normal distribution with mean mu and 

    covariance matrix I.  The matrix mu may be a row or column vector,    
    and r is the number of elements in mu. 

 
 Rndm(sigma)   =  r×1 random vector from multivariate normal distribution with mean 
       vector 0  and covariance matrix sigma.  The number of rows in sigma 
       is r.  You must provide a  positive definite sigma matrix. 
 
 Rndm(mu,sigma)  =  r×1 random vector from multivariate normal distribution with mean 
        vector mu and covariance matrix sigma.  The matrix mu must be the  
       name of a row or column vector with r elements, and sigma must be the  
       name of a square matrix with r rows. 
 
Halton draws are discussed in Section R24.7.  You can use CREATE to obtain columns of Halton 
draws.  MATRIX will create the set of Halton draws for the first K prime numbers in each row of a 
matrix using the function Hltn. 
 

Hltn(n,K)  =  n creates a matrix whose n rows are Halton draws.  There are K 
    columns using the first K primes for bases of the Halton sequences 



R16: Using Matrix Algebra  R-423 

Nodes and Weights for Hermite and Laguerre Quadrature 
 
 To obtain a display of the sets of nodes and weights used for Gaussian quadrature, you can 
use the function 
 

Quad(n,H) or Quad(n,L)  to produce a listing of quadrature points, weights and nodes 
     for n points, H = Hermite, L = Laguerre 
 
The 20 point Hermite quadrature values are listed below. 
 
Result  |             1             2 
--------+---------------------------- 
       1|      -5.38748   .222939E-12 
       2|      -4.60368   .439934E-09 
       3|      -3.94476   .108607E-06 
       4|      -3.34785   .780256E-05 
       5|      -2.78881   .228339E-03 
       6|      -2.25497     .00324377 
       7|      -1.73854      .0248105 
       8|      -1.23408       .109017 
       9|      -.737474       .286676 
      10|      -.245341       .462244 
      11|       .245341       .462244 
      12|       .737474       .286676 
      13|       1.23408       .109017 
      14|       1.73854      .0248105 
      15|       2.25497     .00324377 
      16|       2.78881   .228339E-03 
      17|       3.34785   .780256E-05 
      18|       3.94476   .108607E-06 
      19|       4.60368   .439934E-09 
      20|       5.38748   .222939E-12 
 
The Hermite quadrature weights and nodes can be accessed from the matrix and used to compute 
integrals of the form 
 

   2
1

exp( ) ( ) ( )
H

h hh
x f x dx weight f node

+∞

=−∞
− ≈ ∑∫  

 
The weights appear in the first column and the nodes are given in the second.  The counterparts for 
Gauss-Laguerre quadrature are used when the limits of integration are (0,+∞) and the weighting 
function is Exp(-x).  Built in functions that automate these procedures may also be used in 
MAXIMIZE/MINIMIZE.  See Chapter E44. 
 
Multivariate Normal Probabilities 
 
 The matrix function Mvnp produces a column vector of probabilities from the multivariate 
normal CDF.  The syntax is Mvnp(x,w) where w is a J×J covariance matrix of the random vector.  
The mean vector is assumed to be zero.  x is either a matrix or a namelist of variables, either with J 
columns.  Each row is taken as the vector from the multivariate normal distribution.  Thus, if x has K 
rows, the result of Mvnp(x,w) is a K element column vector with kth element equal to the 
multivariate normal CDF evaluated at w and the corresponding row of x.  The function Mvnd(x,w) 
returns the multivariate normal density, rather than the CDF. 
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Editing a Matrix 
 
 Replace an element in a matrix with  
 
   matrixname (i) = value or matrixname (i, j) = value. 
 
The display window for a matrix also allows you to edit the matrix.  In the example in Section R16.2.2, 
we noted that the (4,4) matrix in the matrix in the display window in Figure R16.10  should be  
 

 
Figure R16.10  Matrix Editing Window 

 
1.0.  With the display on the screen, you can change a matrix just by changing the value in the cell in 
the display.  The change will be recorded in the matrix stored in memory.  (The display is the actual 
matrix, not a copy of it.) 
 
Equating One Matrix to Another 
 
 Use a = c to equate a to c.  To equate a to the transpose of c, use a = c’.  You would 
typically use this operation to keep estimation results.  After each model command, the estimated 
parameter vector is placed in the read only matrix, b.  Thus, to avoid losing your coefficient vector, 
you must equate something to b. 
 
Extracting Part of a Matrix 
 
 To extract a submatrix from matrix c, use a = Part (c, r1, r2, c1, c2); a is the submatrix of c 
consisting of rows r1-r2 and columns c1-c2.  If c is a, this will discard some of the rows and 
columns of A.  If C is a vector, you may omit the superfluous pair of subscripts. Thus, 
 
   a = Part (c, 1, 5) 
 
extracts elements 1 through 5 of vector c.  If c is a column vector, a will be also.  If c is a row vector, 
a will be a row vector. 
 The Part function can be abbreviated as follows:  If a is a row or column vector with K 
elements, a (first : last) denotes the subvector of ‘length’ elements of a beginning with the ‘first.’ 
E.g.,  a(4:6) is elements 4, 5, and 6 of a.  The result is always a column vector, even if a is a row 
vector to begin with.  This may be used wherever a set of values is desired, for example, in lists of 
starting values, in initializing or extracting from matrices with the MATRIX command, lists of 
limits for LDV models, etc.  For a two dimensional matrix, you may use a (r1:r2, c1:c2) instead of 
Part (c, r1, r2, c1, c2). 
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To extract parts of rows or columns of a matrix, use 
 

   name = vector (-j)  = vector without element j 
   name = matrix (-j,-m) = matrix without row j and column m 
   name = matrix (j,-m)  = row j without element m 
   name = matrix (-j,m)  = column m without element j 
 

Injecting Vectors into Matrices 
 

  The statement  
 

   name (* ,  j) = vector  
 

replaces column j of the matrix with the elements of the vector.  The ‘*’ indicates ‘replace all rows in 
column j.’  You may also replace a row with 
 

   name (j , *) = vector. 
 

Finally, to replace the diagonal elements of the matrix with the elements of the vector, use 
 

   name (* , *) = vector. 
 

The vector on the right may be a row or column; it is just treated as a string of numbers.  Also, the 
matrices on the left and right need not be conformable.  For example, in the first case, if the vector 
has more elements than there are rows in the matrix, then some elements of vector will be left over 
and discarded.  If, on the other hand, name has more rows than there are elements in vector, then the 
column will only be partially replaced.  The row replacement works the same way.  For the third 
construction, the matrix need not be square, and, once again, may have dimensions different from 
vector.  The replacement is done for the principal diagonal, (i,i) elements, until either there are no 
more rows or columns in the matrix or until the entire vector has been moved.  If name is a vector, 
you may use J = 1 to overlay part of one vector with another.  The row or column indicator may be 
given in a scalar as well as a value.  For example,  
 

 MATRIX  ; sampleb = Init(10,2,0) $ 
 PROC 
 CREATE   ; x = Rnn(0,1) ; y = x + Rnn(0,1) $ 
 REGRESS ; Lhs = y ; Rhs = one, x $ 
 MATRIX  ; sampleb(i,*) = b $ 
 ENDPROC+ 
 EXECUTE ; Silent ; i = 1,10 $ 
 

This places 10 vectors of least squares slopes into the rows of matrix sampleb. 
 

Inserting One Matrix into Another   
 

 The construction   
 

  LhsMatrix (i,j) = RhsMatrix  
 

puts the Rhs matrix into the Lhs matrix with upper left corner of the Rhs matrix at location (i,j) of the 
Lhs matrix.  This may also be used to put vectors into vectors, or vectors into matrices (but not 
matrices into vectors).  Row and column dimensions are strictly enforced.  The operation is ignored 
if either dimension of the Rhs matrix would go past the corresponding boundary of the Lhs matrix. 
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Redimensioning a Matrix 
 
 The function 
 

   a = Vctr(d)  
 
makes r×c matrix d into 1×rc row vector a by running the rows in order into a vector.  Specific forms 
of this operation are 
   a = Runc(d) equivalent to Vctr(d′) 
   a = Stkc(d) equivalent to transpose of Vctr(d) 
   a = Stkr(d) equivalent to transpose of Vctr(d′). 
 
The reverse operation would be 
 

  a = Mvec(d,r,c)  
 
This takes any matrix which has r times c elements in any arrangement, and produces an r by c matrix. 
 
Column Vector from Symmetric Matrix 
 
 The function 
 

   a = Vech(c) 
 
of k×k symmetric matrix c returns k(k+1)/2 × 1 column vector a from the lower triangle of c.  For 
example, 

   
1

1 4
4 .

4 9
9

a Vech
 

   = =      
 

 

 
Diagonal Elements of a Matrix in a Vector 
 
 The function  
 

   a = Vecd(c)  
 
creates column vector a from the diagonal elements of the matrix c. 
 
Diagonal Matrix Created from a Vector 
 
 The command  
 

   a = Diag(c)  
 
creates a square matrix a with diagonal elements equal to those of row or column vector c.  If c is a 
square matrix, the diagonal elements of a will be the same as those of c while the off diagonal 
elements of a will be zero. 
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R16.7 Using MATRIX Commands with Data 
 

 LIMDEP’s matrix package is designed to allow you to manipulate large amounts of data 
efficiently and conveniently.  Applications involving up to three million observations on 150 
variables are possible.  With MATRIX, manipulation of a data matrix with 1,000,000 rows and 50 
columns, which would normally take 400 megabytes of memory just to store, is not only feasible, but 
no more complicated than it would be if the data set had only 100 rows instead!  It is important for 
you to be aware of how this is done in order to use this program successfully. 
 The essential ingredient is the form in which matrix results generally appear in econometrics.  
It is quite rare for an estimator or a procedure to be based upon ‘data matrices,’ per se.  Rather, they 
almost always use functions of those matrices, typically moments, i.e., sums of squares and cross 
products.  For example, an OLS estimator, b = (X′X)-1X′y, can be viewed as a function of X and y.  
But, it is much more useful to view it as a function of X′X and X′y.  The reason is that, regardless of 
the number of observations in the data set, these matrices are K×K and K×1, and K is usually small.  
LIMDEP uses this result to allow you to manipulate your data sets with matrix algebra results, 
regardless of the number of observations.  To underscore the point, consider that currently, most other 
econometrics packages provide a means of using matrix algebra. But, to continue our example, in order 
to do a computation such as that for b directly, some of them must physically move the data that 
comprise X into an entity that will be the matrix, X.  Thus X must be created, even though the data 
used to make X are already in place, as part of the data set currently being analyzed.  It is this step 
which imposes the capacity constraints on some econometrics programs.  Avoiding it allows LIMDEP 
to manipulate data matrices of any length.  The utility of this approach will be clear shortly. 
 It is important to keep in mind the distinction between two kinds of matrices that you will be 
manipulating.  We define them as follows: 
 

• Data matrices:  A data matrix is a set of rows defined by observations and columns defined 
by variables.  The elements of the data matrix reside in your data area which is discussed in 
Sections R2.8 and R3.4. 
 

• Computed matrices:  A computed matrix is the result of an operation that is based on data  
matrices or other computed matrices.  The elements of a computed matrix will reside in your 
matrix work area, which is defined below. 

 

The distinction is purely artificial, since, as will soon be evident, every numeric entity in LIMDEP is a 
matrix.  The important element is that the size of a data matrix is n×K where n is the current sample 
size and K is a dimension that you will define.  The size of a computed matrix is K×L where K and L 
are numbers of variables, or some other small values that you will define with your commands. 
 

R16.7.1 Data Matrices 
 

 To use your data to compute matrices, you will usually define ‘data matrices.’  This amounts 
to nothing more than labeling certain areas of the data array;  you do not actually have to move data 
around (whatever that might mean) to create a data matrix.  For LIMDEP’s purposes, a data matrix is 
any set of variables which you list.  You can overlap the columns of data matrices in any way you 
choose; data matrices may share columns.  An example appears below.  One useful shortcut which 
can be used to ‘create’ a data matrix is simply to associate certain variables and observations with the 
matrix name by using NAMELIST.  The variables are defined with the NAMELIST command. The 
rows or observations are defined by the current sample, with the SAMPLE, REJECT/INCLUDE, 
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DRAW, and PERIOD commands.  If you change the current sample,  the rows of all existing data 
matrices change with it.  If you change the variables in a namelist, you redefine all matrices that are 
based on that namelist. 
 For example, suppose the data array consists of the following:  
 
 YEAR      CONS    INVST      GDP    PRICES  
 1995      1003      425     1821     124.5  
 1996      1047      511     2072     139.2  
 1997      1111      621     2341     154.7  
 1998      1234      711     2782     177.6 
 
Two data matrices, demand and alldata would be defined by the command  
 
 NAMELIST ; demand = cons,invst,gnp   
   ; alldata = year,cons,invst,gdp,prices $ 
 
Notice that these data matrices share three columns.  In addition, any of the 31 possible subsets of 
variables can be a data matrix, and all could exist simultaneously. 
 The number of rows each data matrix has depends on the current sample.  For example, to 
have the matrices consist of the last three rows of the data, it is necessary only to define 
 
 SAMPLE ; 2-4 $ 
 
You can vary the sample at any time to redefine the data matrices.  For example, suppose it is desired 
to base some computations on demand using all four years, and then compute other matrices using 
alldata only for the last three years.  The sequence might appear as follows: 
 
 SAMPLE    ; All $ 
 MATRIX commands using demand 
 SAMPLE    ; 2-4 $ 
 MATRIX commands using alldata 
 
 The reason for the distinction between data and computed matrices is this:  Consider the 
computation of a matrix of weighted sums of squares and cross products 
 
   F  =  (1/n)X′WX 
 
where X is n×K with n being the sample size, and W is an n×n diagonal matrix of weights.  Suppose 
n were 10,000 and K were 20.  In principle, just setting up X and W for this computation would 
require at least 8(10000×20 + 10000×10000), or over 800 million bytes of memory, before 
computation even begins!  But, computations of this size are routine for LIMDEP, because 
 

• F  =  (1/n)Σiwi xi xi′ where xi is a row of X, which is always only 20×20, and 
• The data needed for the sum already exist in your data area. 

 
That is, by treating this sort of computation as a summing operation, not as a formal matrix product, 
we can achieve tremendous efficiencies.  The important feature to exploit is that regardless of n, the 
result will always be K×K. 
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R16.7.2 Computations Involving Data Matrices 
 
 You can manipulate any sized data matrix with MATRIX.  There are two simple rules to 
remember when using large samples: 
 

• Ensure that in any expression, MATRIX ; name = result $, the target matrix (name) is not 
of the order of a data matrix.  That is, neither rows nor columns is n. This will be simple to 
achieve, since the sorts of computations that you normally do will ensure this automatically. 
 

• Ensure that when data matrices appear in an expression, they are either in the form of a 
moment matrix, i.e., in a summing operation, or they appear in a function that does 
summing.  

 
Suppose that x and y are data matrices defined as above with 500,000 rows and 25 columns each 
(i.e., they are very large). Any operation that uses x or y directly will quickly run into space 
problems.  For example, 
 
 MATRIX   ; z = x’ * y $ 
 
(the matrix product equal to the transpose of x times y) is problematic, since copies of both x’ and y 
must be created.  But, the apostrophe is a special operator, and 
 
 MATRIX   ; z = x’y $ 
 
can be computed because in this form LIMDEP knows that the operation is a sum of cross products, 
and will be only 25×25.  An alternative way to obtain the z above is 
 
 MATRIX   ; z = Xdot(x,y) $ 
 
The second rule above, then, amounts to this:  When data matrices appear in matrix expressions, they 
should always be in some variant of x’y, i.e., as an explicit sum, or in one of the special moment 
functions listed in Section R16.9, such as Xdot.  The apostrophe (’) is a special operator in this 
setting.  Although it can be used in multiplying any matrices, it is the device which allows you to 
manipulate huge data matrices, as illustrated by the examples given at the beginning of this chapter. 
All of them work equally well with small samples or huge ones.  The commands are all independent 
of the number of observations. 
 Finally, consider the weighted sum above, F = (1/n)X′WX where there are 10,000 
observations and 20 variables.  Once again, the result is going to be 20×20.  LIMDEP provides many 
different ways to do this sort of computation.  For this case, the best way to handle it is as follows: 
 
 NAMELIST   ; x =  the list of 20 variables $ 
 SAMPLE ; ... set up the 10,000 observations $ 
 CREATE ; w =  the weighting variable  $ 
 MATRIX ; f = 1/n * x’[w]x  $ 
 
This would work with 10 or 10,000,000 observations.  The matrix f is always 20×20. 
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 The following program transcript illustrates the manipulation of a moderately large data set. 
 
--> RESET 
--> LOAD;file="...healthcare.lpj"$ 
    Project file contained   27326 observations. 
--> SAMPLE   ; All $ 
--> NAMELIST ; x = one,age,educ,married$ 
--> CREATE   ; y = married ; Weight = Exp(.23*female) $ 
--> MATRIX   ; bw = <x'[weight]x> * x'[weight]income $ 
--> CREATE   ; ew = y - x'bw $ 
--> MATRIX   ; vw = {ew'ew/(n-col(x))} * <x'[weight]x> $ 
--> MATRIX   ; Stat(bw,vw,x) $ 
 
----------------------------------------------------------------------------- 
Number of observations in current sample =   27326 
Number of parameters computed here       =       4 
Number of degrees of freedom             =   27322 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Matrix|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .04834***      .00676     7.15  .0000      .03509    .06158 
     AGE| .27115D-04      .8686D-04      .31  .7549 -.14312D-03  .19735D-03 
    EDUC|     .02120***      .00042    50.28  .0000      .02038    .02203 
 MARRIED|     .08277***      .00227    36.47  .0000      .07832    .08721 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The data set contains 27,326 observations.  The matrix commands compute a weighted least squares 
linear regression of y on x.  In principle, the weighting matrix in square brackets is 27,327 × 27,326.  
However, the data matrix, X, and two variables, y and weight, are already defined in the data area, so 
the MATRIX commands do not reproduce the data.  None of the matrices produced by the 
MATRIX commands are larger than 4×4. 
 
R16.8 Functions for Manipulating Matrices 
 
 The preceding described how to operate the matrix algebra package.  The examples in 
Section R16.1 also showed some of the more common uses of MATRIX.  This and the following 
sections will now detail the specifics of LIMDEP’s matrix language.  In addition to the basic 
algebraic operations of addition, subtraction, and multiplication, LIMDEP provides nearly 100 
different functions of matrices, most of which can, themselves, be manipulated algebraically.  The  
matrix functions can be combined with the algebraic operators to create matrix expressions.  Some of 
these, such as Nvsm(.) are used to combine algebraic results, while others, such as Root(.) are 
specialized functions that produce complex transformations of matrices.  Any of the constructions in 
Table R16.1 can be used as a standalone matrix. For example, to obtain the determinant of (X′WX)-1, 
where W is a diagonal weighting matrix, you can use Dtrm(<x’[w]x>).  Likewise, several such 
constructions can appear in functions with more than one input matrix.  This should allow you to 
reduce some extremely complex computations to very short expressions.  
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R16.8.1 Functions of One Matrix 
 
Square Roots 
 

 a = Sqrt(c)   -  AA = A2 = C,  same as A ^ .5, 
 a = Isqr(c)   -  AA = A2 = C-1, same as A ^ -.5, 
 a = Orth(c)   -  A = C × Isqr(C′C) (orthonormalizes C, A’A = I), 
 a = Proj(c)   -  A = C(C′C)-1C′. 
 
Characteristic Roots and Vectors 
 

 a = Cvec(c) -  characteristic vectors. 
 
If C is a K×K matrix, A has K columns. The kth column is the characteristic vector which 
corresponds to the kth largest characteristic root, ordered large to small.  C must be a symmetric 
matrix.  If not, only the lower triangle will be used. 
 
 a = Root(c) - characteristic roots of a symmetric matrix. 
 
For symmetric matrix C, A will be a column vector containing the characteristic roots ordered in 
descending order.  For nonsymmetric matrices, use 
 
 a = Cxrt(c) - possibly complex characteristic roots of asymmetric matrix. 
 
The characteristic roots of a nonsymmetric matrix may include complex pairs.  The result of this 
function is a K×2 matrix.  The first column contains the real part.  The corresponding element of the 
second column will be the imaginary part, or zero if the root is real.  The roots are ordered in 
descending order by their moduli.   
 You can use Cxrt to obtain the dominant root for a dynamic system.  Then, the modulus can 
be obtained with CALC.  Let C be the relevant submatrix of the structural coefficient matrix in the 
autoregressive form.  Then, 
 
 MATRIX  ; rt = Cxrt(C) $ 
 CALC    ; check = rt(1,1)^2 + rt(1,2)^2 $  
 
Cxrt(c) gives the same results as Root(c) if C is a symmetric matrix.  But, if C is nonsymmetric, Root(c) 
gives the wrong answer because it assumes that C is symmetric, and uses only the lower triangle. 
 It is always possible to obtain the roots of a symmetric matrix.  But, certain nonsymmetric 
matrices may not be decomposable.  If this occurs, an error message results. 
 The Root function can also be used to find the possibly complex roots of a dynamic 
equation.  If C is a vector of elements [c1 ,c2 ,...,cQ ] instead of a symmetric matrix, then A = Root(c) 
reports in a K×2 matrix the reciprocals of the characteristic roots of the matrix 
 

   C  =  
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These are the roots of the characteristic equation, 1 - c1 z - c2 z2 - ... - cQ zQ = 0, of the dynamic equation 
 
   yt = c1 yt-1 + c2 yt-2 + ... + cQ yt-Q + other terms. 
 
The dominant root of the system is the largest reciprocal reported.  If its modulus is larger than one, 
the equation is unstable. 
 
Cholesky Decomposition 
 

 A positive definite matrix, C, can be factored into the outer product of a lower triangular 
matrix, L.  I.e., C = LL′.  The function 
 
 a = Chol(c) - lower triangular matrix of Cholesky decomposition 
 
returns the matrix L.  An alternative representation is A = L*DL*′, where D is the diagonal matrix of 
Cholesky values. The elements of D are the squares of the diagonal elements in L, so, 
 
   L  =  L* × D1/2 

 
To extract D and L* from L you could use 
 
 MATRIX ; l  = Chol(a) ; d = Diag(l) * Diag(l) ; ls = l * Isqr(d) $ 
 
Singular Value Decomposition 
 

 An m×K matrix C for which m > K may be reduced to its singular value decomposition 
 
   C  =  U × D × V′ 
 
where U is m×m with U′U = I,  V is K×K with V′V = I, and  D is a diagonal matrix containing the 
singular values of C.  Among its other virtues, the singular value decomposition is useful for 
accurate and fast inversion, as (C′C)-1 = V*(D’D)-1 *V′.  Use the function 
 

 a = Svdx(c)  - singular value decomposition, partitioned as 
 
 
 

V
D

 
 

to obtain this decomposition.  This function returns a 2K×K matrix.  The first K rows contain V while 
the second K rows contain the diagonal matrix, D.  The leading matrix, U, is not returned.  (The matrix 
U is m×m.  If you are decomposing a data matrix with, say, 10,000 rows, U would be 10,000×10,000.  U 
is generally not needed in subsequent computations; the useful information about the moments of the 
data matrix will be contained in V and D.)  This function also returns a scalar named svd_rank which 
contains column rank of C.  The rank is simply the number of nonzero singular values. 
 
Element By Element Transformations 
 

 a = Loge(c)  - element by element natural log, 
 a = Expn(c)  - element by element exponent, 
 a = Diri(c)  - direct inverse = element by element reciprocal,  
 a = Esqr(c) - element by element square root, 

a = Sign(c)  - gives matrix of signs of the elements of C, -1,0,1 for -,0,+. 
 

These functions return zero for elements for which they cannot be computed.   



R16: Using Matrix Algebra  R-433 

 The matrix power functions listed earlier can also be used to transform matrices element by 
element.  In particular, 
 
 a = c ! q - element of C raised to the q power. 
 a = c ^ d - if C and D have the same dimensions, Aij = Cij ^ Dij. 
 
Inverse Matrices 
 
 LIMDEP computes three types of inverse matrices.  For a nonsingular and not necessarily 
symmetric matrix, C, you can use 
 
 a  =  Ginv(c)   -  A  =  C-1. 
 
The inverse of a matrix may also be written in the form a = c^-1.  The method used is pivoting and 
row reduction.  If the matrix to be inverted is symmetric and positive definite, a faster procedure 
which uses the Cholesky decomposition is 
 
 a  =  Sinv(c)   -  A  =  C-1. 
 
Use this for regression problems and inversion of moment matrices.  If the matrix to be inverted is 
symmetric but short ranked, two types of generalized inverses are available.  Let C be the matrix to 
be inverted.  A G-2 inverse is the A such that  
 
   A  =  ACA and C = CAC. 
 
For this matrix, you can use 
 
 a  =  G2nv(c) -  G2 inverse of square matrix 
 
The Moore-Penrose inverse is a G-2 inverse which also satisfies the requirement that ACA and CAC 
be symmetric.  To compute it, use 
 
 a =  Mpnv(c) -  Moore-Penrose inverse  
 
The Moore-Penrose inverse is computed as   
 
 Mpnv(c)   =  Σi(1/λi)cici′   
 
where λi is a nonzero characteristic root of C and ci is the  associated characteristic vector. 
 Two additional functions are provided for inverting sums and products.  The matrix function 
Nvsm gives the inverse of the sum of the matrices in the list in parentheses.  Thus, 
 
   ; Nvsm(x1, x2, a, q)  =  (X1+X2+A+Q)-1. 
and   ; Nvsm(<x’x>, <y’[z]y>)  =  [(X′X)-1 + (Y′WY)-1]-1. 
 
Matrices in the sum may also carry minus signs.  Thus, 
 
   ; Nvsm(x1, x2, -a)  =  (X1 + X2 – A)-1. 
 
An inverse of a product of matrices is computed with 
 
   ; Iprd(c1, c2, ...)  =  (C1 × C2...)-1. 
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The computation of the restricted least squares estimator in Example 2 in Section R11.1 gives an 
example in which 
 

   ; Iprd(r, <x’x>, r’)  =  [R(X′X)-1R′]-1. 
 
Scalar Functions 
 
 The following always result in a 1×1 matrix: 
 
 a = Dtrm(c)  - determinant of square matrix, 
 a = Logd(c)  - log-determinant of positive definite matrix, 
 a = Trce(c)  - trace of square matrix, 
 a = Norm(c)  - Euclidean norm of vector C, 
 a = Norm(c)  - norm of matrix C = square root of trace of C′C, 
 a = 2nrm(c) - 2 norm of matrix C = largest singular value of C, 
 a = Rank(c)  - rank of any matrix. 
 
The rank is computed as the number of nonzero characteristic roots of  C’C.  To find the rank of a 
data matrix X (i.e. several columns of data in a namelist, X), you could use 
 
 c = Rank(x). 
 
However, this may not be reliable if the variables are of different scales and there are many 
variables.  You should use, instead, 
 
 MATRIX ; C = Diag(X’X) ; C = Isqr(C) * X’X * Isqr(C) ; Rank(C) $  
 
R16.8.2 Functions of Two or More Matrices 
 
 a = Kron(c, d)   -  A = C ⊗D   (Kronecker product) 
   a = Dirp(c, d, ...)  -  A = [Cij Dij ...]  (direct product). 
 
The direct product, or Hadamard product, A, of two matrices C and D is Aij =  CijDij. C and D may 
be the same matrix.  You may multiply any number of matrices with this command. All must have 
the same dimensions.  For example, c = Dirp(c,c,c,c) replaces each element of C with its own fourth 
power. 
 
 a = Qrow(c, d)    - column vector of quadratic forms. 
 
The Qrow function returns a column vector.  C and D are conformable matrices for the product       
A = CDC’.  Qrow returns the diagonal elements of a in a column vector.  Each element is the 
corresponding quadratic form of the row in C and the matrix D. 
 
 a = Msum(c, d, ...) - matrix sum  (same as C + D ...), 
 a = Mdif(c, d)  - matrix difference, C - D. 
 
Msum and Mdif may be used to group matrices in a sum or difference for multiplication.  I.e., c * 
(d+e) * c is not valid, but c * Msum(d,e) * c is, and would be equivalent. 
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R16.9 Sums of Observations 
 
 There is no obstacle to computing a matrix X′X, even if X has 1,000,000 rows, so long as the 
number of columns in X is not more than 225.  The essential ingredient is that X′X is not treated as 
the product of a K×n and an n×K matrix, it is accumulated as a sum of K×K matrices.  By this device, 
the number of rows, n, is immaterial (except, perhaps, for its relevance to how long the computation 
will take).  Matrix operations that involve C′AC or C′A-1C are, as in all cases, limited to 50,000 
cells.  But, suppose that C is 5,000×2 and A is a diagonal matrix.  Then, the result is only 2×2, but 
apparently it cannot be computed because A requires 25,000,000 cells.  But, in fact, only 5,000 cells 
of A are needed, those on the principal diagonal.  LIMDEP allows you to do this computation by 
providing a vector (in this case, 5,000×1) instead of a matrix, for a quadratic form.  Thus, in c’[a]c, if 
a is a column or row vector, LIMDEP will expand (at least in principle) the diagonal matrix and 
compute the quadratic form C′AC as if A were Diag(a).  This result will be crucial when C is a data 
matrix, X, which may have tens or hundreds of thousands of rows.  The second aspect of the 
computation of matrices that involve your data is that once the data are in place in the data area, in 
fact, there is no need to create A or Diag(a) at all.  The data are just used in place; you need only use 
variables and namelists by name. 
 Invariably, when you manipulate data matrices directly in matrix algebra expressions, you 
will be computing sums of squares and/or cross products, perhaps weighted, but in any event, of 
order K×K.  The simple approach that will allow you to do so is to ensure that when xnames and 
vnames (namelists and variables) appear in matrix expressions, they appear in one of the following 
constructions, where x and y are namelists of variables and w is a variable:  Some data summation 
functions are listed in Table 17.2. 
 

x’x         =  the usual moment matrix. 
x’y         =  cross moments. 
x’[w] x     =  X’diag(w)X, weighted sums. w is a variable.  Or, X’[w]Y. 
x’<w> x     =  X’[diag(w)]-1X, weighted by reciprocals of weights.  
< x’ x >      =  (X’X)-1, inverse of moment matrix.    
< x’y>      =  (X’Y)-1, inverse of cross moments, if it exists .    
< x’[w] x >   =  (X’[w]X)-1, inverse of weighted moments.  Or <X’[w]Y>. 
< x’<w> x >   =  (X’<w>X)-1, inverse, weighted by reciprocals of weights. 

 

Table R16.2  Sums of Observations in Matrix Functions 
 
Again, the use of the apostrophe operator here is important in that it sets up the summing operation 
that allows you to use large matrices.  That is, while logically x’ * y is the same as x’y for LIMDEP’s 
purposes, they are very different operations.  The left hand side requires that copies of x and y be 
made in memory, while the right hand side requires only that the sum of cross products be 
accumulated in memory. 
 
TIP: All sample moments are computed for the currently defined sample.  If the current sample 
includes variables with missing data, you should make sure the SKIP switch is turned on.  Missing 
values in a matrix sum are treated as valid data, and can distort your results.  If you precede the 
MATRIX command(s) with SKIP, then in summing operations, observations with missing values 
will be ignored. 
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 To illustrate, the following extends Example 1 from Section R16.1 to constrained weighted 
least squares. The matrix x is the namelist of right hand side variables, y is the name of the left hand 
side variable, and w is a variable which contains the weights (variances). (Note, 1/wi appears in the 
summations.) 
 
 MATRIX ; xwxi = <x’<w>x> 
   ; bu = xwxi * x’<w>y   
   ; d = r * bu - q 
   ; h = Iprd(r,xwxi,r’) 
   ; br = bu - xwxi * r’ * h * d $ 
 CREATE ; u = y - x’br $ 
 CALC  ; df = n - Col(x) + Row(r) $  
 MATRIX ; s2 = 1/df * u’<w>u  
   ; vr = s2 * xwxi - s2 * xwxi * r’ * h * r * xwxi $ 
 
 The operations described here for manipulating data matrices are logically no different from 
other matrix operations already described.  That is, in your expressions, there is no real need to 
distinguish data manipulations from operations involving computed matrices.  The purpose of this 
section is to highlight some special cases and useful shortcuts. 
 
Sums, Means, and Weighted Sums of Observations and Subsamples 
 
 To sum the rows of a data matrix, use 
 
   ; name  =  x’1  or  x’one 
 
The symbol, 1 is allowable in this context to stand for a column of ones of length n.  This returns a 
K×1 column vector whose kth element is the sum of the n observations for the kth variable in x.  To 
obtain a row vector instead, use 
  
   ; name  =  1’x  or  one’x 
 
Do note, in most applications, this distinction between row and column vectors will be significant.  
You can obtain a sample mean vector with 
 
   ; name  =  1/n * x’1 
 
A matrix function, Mean, is also provided for obtaining sample means, so 
 
   ; Mean(x)  =  1/n * x’1 
 
Note that the Mean function always returns a column vector of means, so if you want a row, you 
must transpose the column after using the function.  (1/n*1’x may be more convenient.)  The Mean 
function provides one advantage over the direct approach.  You can use Mean with a list of variables 
without defining a namelist.  Thus, to obtain the means of z,x,w,log(k), f21, you could use 
 
   ; name  =  Mean(z, x, w, Log(k), f21). 
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To obtain a weighted mean, you can use 
 
   ; name  =  <1’w> * x’w 
 
where w is the weighting variable.  Note that this premultiplies by the reciprocal of the sum of the 
weights.  If the weights sum to the sample size, then you can use 1/n or <n> instead of <1’w>.  A 
related usage of this is the mean of a subsample.  To obtain a mean for a subsample of observations, 
you will need a binary variable that equals one for the observations you want to select and zero 
otherwise.  Call this variable d.  Then, 
 
   ; name  =  <1’d> * x’d 
 
will compute the desired mean.  The Mean function also allows weights, so you can use Mean(x,w) 
or Mean(x,d).  In order to use this construction, the parameters of the Mean function must be a 
namelist followed by a variable. 
 
Covariances, Correlations, and Standard Deviations 
 
 You can use the formulas for variances directly to obtain covariance matrices, but the functions, 
 
 Xvcm(x)  -  covariance matrix for X 
 Xcor(x)   -  correlation matrix for X 
and  Ktau(list of variables) -  Kendall’s tau matrix form 
 
will probably be simpler.  Each of these may be weighted in the same fashion as the Mean function.  
I.e., Xvcm(x,w) and Xcor(x,w) compute the covariances and correlations with a weighting variable.  
As before, w can be replaced with a subsampling indicator (binary variable), d. 
 Another construction allows you to obtain covariances and correlations for two sets of variables: 
 
 Xvcm(x,y) -  cross covariance for X and Y 
 Xcor(x,y) -  cross correlation for X and Y. 
 
Note that Xvcm(x,y)ij = Cov(xi,yj) and likewise for the correlations.  That is, the first namelist defines 
the row variables in the matrix and the second defines the columns. 
 A vector of standard deviations is requested with 
 
 Sdev(x)   - column vector of standard deviations of variables in namelist. 
 
You may also provide weights in Sdev(x,w).  For extracting correlations or standard deviations from 
a covariance matrix, use 
 

Mcor(v)  - converts a covariance matrix V to a correlation matrix.  
Msdv(v)  - creates a diagonal matrix with standard deviations on the diagonal.  
Vsdv(v)  - extracts a column vector of standard deviations from covariance matrix 

     V by arraying in the vector the square roots of the diagonal elements  
     of matrix V. 

Mdcr(x)  - computes the matrix of correlations from a data matrix defined by a 
    namelist x. 
Mdvc(x)  - computes the matrix of covariances from a data matrix defined by a 
    namelist x. 
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The Mdcr and Mdvc functions may also compute cross correlations and covariances for two lists of 
variables by using (x,y) where y is a second namelist. 
 
Sums of Squares and Cross Products 
 
 Matrices of the form X′X are obtained directly, as x’x = Σixixi′ and x’[w]x = Σiwixixi′.  All of 
the other constructions involving inversion, <x’x>, weighting by reciprocals, and so on, apply here.  
These were listed in Table R11.2.  As in the previous cases, the weighting variable may be a binary 
indicator for a subsample. 
 For using a list of variables that is not collected in a namelist, you can use the Xdot function.  
Thus, 
 

   ; Xdot(x) = x’x     
 
and so on for the weighted variants.  But, suppose the data set consists of variables x1,x2,x3.  Then, 
 
   ; Xdot(x*) = Xdot(x1,x2,x3)  =  x’x   
 
might also be used (if there were no other variables).  In addition, xx = Xdot(*) would be the same 
as xx = Xdot(one,x1,x2,x3).  Some other possibilities would be 
 
   ; xxlogs = Xdot(Log(x1), Log(x2), Log(x3)) $   
and    ; auto    = Xdot(x1,x1[-1], x1[-2], x1[-3]) $ 
 
Note that, as earlier, in this format, you cannot use a weighting scheme, as there is no way to 
distinguish a weighting variable from simply the last variable in the list.  Some additional functions 
that may be used are 
 
 Xpxi(...) -  (X’X)-1 

 Xcpm(...) -  1/n X’X 
 Xcpi(...) -  n (X’X)-1 
 
These functions would be useful for computing the moment matrices for a list of variables, but the 
direct formula, e.g., <x’x>, will be preferable for a namelist. 
 Some additional formats may also be specified.  To obtain cross moment matrices, any of the 
preceding may be specified with a pair of namelists instead and/or a weighting variable.  Thus, 
 
   A = Xdot(x,y,w)  =  x’[w]y  =  Σiwixiyi′, 
 
where column vector xi is the transpose of row i of X and, as usual, the first namelist defines the row 
variable. 
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Sums of Squares and Cross Products of Deviations 
 
 Use the shorthands 
 

   x’[1]x  =  
 

 
with matrix X defined by the namelist x, and similarly for x’[1]y for namelist or variable y. 
 
Outer Product Matrices 
 
 Expressions for asymptotic covariance matrices are often of the form A  =  Σizi

2xixi′.  This is 
the usual format for the BHHH estimator.  To obtain A, you can use 
 
 CREATE ; z2  =  z^2 $ 
 MATRIX ; a  =  x’[z2]x  $ 
 
A function that makes the CREATE command unnecessary is  
 
   a = Bhhh(x, z).   
 
For partitioned matrices such as 
 

   A = 
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you can use the function 
 

a = Bhhh(x, y, z, w). 
 
where x and y are namelists and z and w are the weighting variables, to obtain the result without 
constructing the parts separately. 
 This form of moment matrix arises frequently in index function models.  For example, for 
the probit model, the vector of first derivatives of the log likelihood for the ith observation is  
 
   gi  =  zixi where zi = qiφ(β′xi)/ Φ(qiβ′xi) and qi = 2yi - 1. 
 
Thus, the BHHH, or OPG estimator of the asymptotic covariance matrix for the MLE of β is of the 
form above.  Indeed, if the estimate of β is in hand, the OPG estimator could be easily found as 
follows: 
 
 CREATE ; z = Lmd((b’x),(1-y)) $ 
 MATRIX ; opg = Bhhh(x,z)  $ 
 
(Note the necessary sign switch in the Lmd function to obtain the derivatives.) 
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Least Squares Computations 
 
 To obtain a matrix or vector of least squares regression coefficients, you can use 
 
   ; bols = <x’x> * x’y. 
 
y can be a single variable, in which case this produces a column vector of regression coefficients, or 
y can be a namelist to produce a matrix of coefficients whose jth column is the coefficients in the 
regression of the jth column of y on all of the columns of x.  Weights for weighted least squares are 
provided in the usual fashion; 
 
   ; bwls = <x’[w]x> * x’[w]y 
 
and subsamples may be drawn as well with binary variables. 
 The function Xlsq(x,y) or Xlsq(x,y,w) can be used for the same computations.  If a list of 
variable names is given in 
 
   ; bls = Xlsq(list) 
 
the last variable name is taken to be the ‘y’ in a least squares regression.  With this construction, it is 
not possible to use weights. 
 The sum of squares and cross products of the residuals in a regression of y on X is 
 
   e′e  =  y′y - y′X(X′X)-1X′y. 
 
You can obtain this with 
 
   ; ee = y’y - y’x * <x’x> * x’y. 
 
But it will be simpler to use the function 
 
   Rcpm(x,y)  =  y′y - y′X(X′X)-1X′y. 
 
To save a step in some analyses, you can invert this matrix with 
 
   Rcpi(x,y)  = (y′y - y′X(X′X)-1X′y) -1. 
 
 Certain specification tests in econometrics require a matrix of the form Rcpm or Rcpi using 
weights of the form given in the Bhhh function above.  To use this form of weighting in these 
functions, use Rcpm(x,y,z,w) or Rcpi(x,y,z,w).  Note, again, with this form, the weights are squares or 
cross products of zi and wi. 
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 The condition number of a data matrix, X, is the square root of the ratio of the largest to 
smallest characteristic root of the scaled  moment matrix, [diag(X′X)]-1/2 X′X [diag(X′X)]-1/2. Use the 
function 
 

Cnum(x)  - the condition number for data matrix x defined by a namelist. 
 
The 2-norm of a data matrix is the largest singular value, which can be computed using 
 
 2nrm(x) - largest singular value of matrix x. 
 
Least Absolute Deviations 
 
 The matrix function 
 

Ladb(x,y) - median regression (least absolute deviations) estimator, 
 

where x is a namelist and y is a variable, produces the least absolute deviations coefficient vector.  
You can also obtain the coefficient vector for a different quantile with the QREG model command. 
 
Heteroscedasticity and Autocorrelation Robust Covariance Matrices 
 
 The following commands will compute White’s heteroscedasticity corrected covariance 
matrix for the OLS coefficient vector. 
 
 NAMELIST ; x = list of Rhs variables $ 
 REGRESS  ; Lhs = y ; Rhs = x ; Res = e $ 
 CREATE   ; esq = e^2 $ 
 MATRIX ; white = <x’x> * x’[esq]x * <x’x> $ 
 
The CREATE command that computes the squared residuals is actually unnecessary.  The last two 
lines could be combined in 
 
 MATRIX     ; white = <x’x> * Bhhh(x,e) * <x’x> $ 
 
There is a single function that combines both of these.  
 
 Nwst(x,e,l)  computes the Newey-West middle matrix for l lags; e is the vector of 
   least squares residuals and x is a namelist defining the set of variables. 
 
Setting l equal to zero gives the White estimator. Thus, combining results, we have, for the White 
estimator, 
 
 MATRIX     ; white = <x’x> * Nwst(x, e, 0) * <x’x> $ 
 
while the Newey-West estimator for, say, 10 lags is 
 
 MATRIX     ; neweywst  =  <x’x> * Nwst(x, e, 10) * <x’x>  $ 
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R16.10 Matrix Commands that Transform the Data  
 
 The preceding discussion has detailed matrix operations that are functions of other matrices 
and of the data in the data area.  None of the operations described so far actually change your data in 
any way.  Some operations on the data themselves are much more convenient with matrix algebra 
than, for example, with CREATE commands.  The following functions modify the raw data – do 
note, these changes are permanent. 
 
R16.10.1 Linear Transformations of Variables 
 
 The following functions replace x with a transformation of x, where x is a namelist that 
defines a data matrix.  In each case, the original data are lost.  If you wish to retain them, it is 
necessary to create copies of the variables in x.  To use a column of ones in any of these, it is 
necessary to create one. Thus, x must be defined by a NAMELIST command, and may not contain 
the variable one. 
 
 x = Xmlt(s)   -  scalar multiplication of the data matrix. 
 
Every item in the data matrix is multiplied by the scalar, s, either a number, a scalar, or a matrix 
element. 
 
 x = Xmlt(c)   -  linear combination of the variables 
 
In this function, c is a square matrix with the same number of columns as x.  Each variable in x is 
replaced with the linear combination of all of the columns of x defined by the corresponding column 
of c. 
 
 x = Xmlt(v)   -  rowwise multiplication by variable v. 
 
This multiplies all variables in a row by a variable in the row.  Each variable in x is multiplied by the 
corresponding observation of the variable v.  The variable v should not be in x.  Note that this is the 
same as the CREATE function Scl(x,v) except that Xmlt(v) does not create a new namelist. 
 
 x = Indx(y,c)  -  linear function of a data matrix. 
 
Here, y is another data matrix;  c is a matrix with the same number of columns as x and number of 
rows equal to the number of columns in y.  Each column of x is replaced by the linear combination of 
the variables in y defined by the corresponding column of c.  The namelists x and y must already be 
defined as namelists.  If y and x have variables in common, this will produce unpredictable (and no 
doubt, undesirable) results. 
 In general, no parameter list is required for the following functions.  Each operation is 
controlled by the currently defined sample.  As before, x must be defined by a NAMELIST 
command.  In the function, 
 
   ; x = Xstd 
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the columns of x are standardized by subtracting the column mean, then dividing by the standard 
deviation. 
   ; x = Xdev 
 
The columns of x are centered by subtracting the column mean, but are not rescaled. 
 
   ; x = Xorn 
 
The columns of x are orthonormalized. The data matrix, x, is replaced by x* = X(X′X)1/2.  Finally, 
 
   ; x = Pcom 
 
The columns of x are replaced by the principal components of X, ordered by their contribution to the 
total variation in x (the trace of X′X). The linear transformations are the characteristic vectors of 
X′X, normalized to unit length. 
 Keep in mind when using these functions that the variables only appear once in the data 
array.  When you change them, you change all data matrices which contain these variables.  A 
MATRIX command which operates on the data affects (or uses) only those observations included in 
the current sample.  Thus, for example, if you were to use a subset of your observations to compute 
some principal components, the unused rows would be unchanged after the computation. 
 
R16.10.2 Moving a Matrix into the Data Area 
 
 It should never be necessary to move data from your data area to your matrix workspace – 
data matrices are already manipulable as if they were computed matrices.  But, the reverse move 
might be useful.  For example, after you compute a fixed effects regression using panel data, the 
estimated fixed effects are stored in a matrix named alphafe.  You might be interested in regressing 
alphafe on a set of variables, or computing a set of descriptive statistics for some other purposes.  In 
order to do so, you will have to be able to access alphafe as if it were a variable.  A means of doing 
so is to use a simple CREATE command, 
 
 CREATE  ; x = alpha $  
 
(This operation must be the only one done with this CREATE command.  I.e., CREATE ; w = 1 ; x 
= m $ is invalid.)  That is, you simply equate the namelist to the matrix. 
 The operation proceeds as follows:  Suppose x has K columns (i.e., the namelist defining x 
has K variables)  However, K may be one and x may be the name of a variable.  The current sample 
has n observations, so n is the number of rows in x.  Let a be any P×Q matrix in the matrix work 
area.  The command moves as many rows and columns of a into x as possible, starting at the top of 
the sample and at the left in the list of variables.  Note that the rows are as defined by the current 
sample, whatever that may be.  If x is a variable name and a is a matrix, elements of x are replaced 
by the first column of a. If a is a row vector, it has only one row.  A matrix is not transposed by a 
copy.  Thus, you cannot move a row vector into a column of your data array; you must create the 
column vector first by  transposing the matrix to be copied. 
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R16.11 MATRIX Commands for Panel Data 
 

 There are numerous transformations and matrix manipulations that are specifically written 
for panel data. Chapter R5 described some of these.  This section will provide further detail on some 
matrix functions that can be used to manipulate panels.  For most of this, you will require either a 
‘stratification’ variable that identifies groups in a panel with their own code or group number or 
identification, or a ‘group count’ variable such as generally used in ; Pds in the various model 
commands. 
 There are two sets of procedures provided for manipulating panel data.  A number of matrix 
functions are provided for computing group aggregates in panel data sets.  For example, with a panel 
data set with, say, 1,000 individuals each observed 11 times for a sample of 11,000 observations, you 
might want to manipulate the 1000×1 vector of group means.  You might also want to manipulate the 
individual observations in a panel.  For example, for some purposes (e.g., random effects models), 
you might want a variable, zit = iz  that, for individual i, equals the mean of the Ti observations for 
that individual.  That is, the group mean is repeated for the Ti observations.  The CREATE 
commands below are used for that purpose. 
 

R16.11.1 MATRIX Functions for Panel Data 
 

 The index variable described in the previous section gives the group identifiers in a panel data 
set.  In addition to the estimation programs, there are several matrix functions provided specifically for 
panel data.  Each of these requires you to provide a group indicator.  The functions are: 
 
 Grps(variable,index)  = a five column matrix of group sizes, means, standard deviations, 
        minima, and maxima, with one row for each group.  There may 
       be empty rows. 
 Gsiz(index)   = a column vector of group sizes, 
 Gxbr(list,index)  = an N×K matrix of group means; N = number of groups,  
       K = number of variables, 
 Gsdv(list,index)  = an N×K matrix of standard deviations, 
 Gmax(list,index)  = an N×K matrix of group maxima, 
 Gmin(list,index)  = an N×K matrix of group minima. 
 
 You may use these matrices in data transformations.  Generally, this will involve some use 
of the group means.  Suppose your group indicator is named state and you have a panel of 
observations on N states.  You could transform a variable named, say, income to deviations from the 
specific state means with the following commands: 
 
 MATRIX   ; stmean = Gxbr(income,state) $ 
 CREATE   ; incdev  = income - stmean(state) $ 
 
Note how the stratification variable is used as a subscript in the CREATE command.  The two 
commands do the following computations 
 

 ∑ =
= staten

i statei
state

state income
n

stmean
1 ,

1 , state = 1,…,NSTATES, 

 incdevi,state   =  incomei,state  -  statestmean , i = 1,..,nstate, state = 1,…,NSTATES. 
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There is also a built in CREATE command that would do this at once, 
 
 CREATE ; incdev = Group Devs (income, Str = state) $ 
 
 The matrix function 
 
 Gsum(namelist [, variables not in a list], weight, index)   
 
(the additional variables are optional) is a general function that transforms the data set into a matrix 
of weighted sums.  The resulting matrix has number of rows equal to the number of groups in the 
index set.  The number of columns is the number of variables in the namelist and the additional 
variables listed.  The variables in the namelist are weighted by the weighting variable as they are 
summed while the variables in the list of additional variables, if any are specified, are simply 
summed, but not weighted. 
 This function is usually of the form Gsum(x,index)  to compute group sums and the GMM 
weighting matrix.  An alternative form may be used to provide weights for some or all of the 
variables, using 
 
 Gsum(x, v1, v2, ..., weights, index)  
 
(and likewise for Gmmw described below).  In this form, the weights are applied to the individual 
observations, when summing over the variables in x, but not v1, v2, ....   
 
NOTE: Gxbr, Gsdv, etc. automatically bypass missing values rather than exiting when missing 
values show up.  This is a change from earlier versions of LIMDEP. 
 
R16.11.2 GMM Weighting Matrix for Panel Data 
 
 A GMM weighting matrix for a panel data application is created with the function 
 
 Gmmw(list, e, index) = a K×X GMM style weighting matrix. 
 
In this function, the variable e is typically a residual vector and list is a namelist of a set of 
instrumental variables.  This function computes a panel data based weighting matrix of the form 
 
 Gmmw(x, e, index)   = 1 1( )( )N N

i i i i i i i i= =′ ′ ′Σ = ΣX e e X w w   where  wi  =  1
iT

t it ite=Σ x  
  
and xit is the column vector of data on the K variables in Xi for individual i at time t.  Thus, Xi is a 
Ti×K matrix of data for individual i.  This can be adapted to a cross section application simply by 
making the index variable define groups of one.  For example,  
 
 CREATE   ; i = Trn(1,1) $ 
 MATRIX   ; w = 1/n * Gmmw(x,e,i) $ 
 
computes  21

1
N
i i i iN e= ′= ΣW x x  This is the usual weighting matrix for GMM estimation with a cross 

section. 
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R16.11.3 Gsum and Gmmw Functions with Weights for Some or All 
Variables 
 
 The Gsum and Gmmw functions for panel data are usually of the form 
 
   ; Gsum(x, index)  and ; Gmmw(x, e, index) 
 
to compute group sums and a GMM weighting matrix.  An alternative form may be used to provide 
weights for some or all of the variables, using 
 
 Gsum(x, v1, v2, ..., weights, index)  
and Gmmw(x, v1, v2, ..., e, index). 
 
In this form, the weights are applied to the individual observations, when summing over the variables 
in x, but not v1, v2, ....   
 
R16.11.4 Matrix Forms for Computing Moments for Panel Data  
 

These structures are for balanced or unbalanced panel data sets. In the definitions, xxx and 
yyy are namelists of variables or the names if individual variables, u is the name of a variable, 
typically a residual, ‘panel’ is either the fixed number of periods or the variable giving the group 
count as usual for LIMDEP model command.  Note that this differs from the preceding functions, 
which use the equivalent of a stratification variable.  These are strictly based on group counts, either 
fixed and explicit, or in the form of a group count variable. 
 

MATRIX  ; Result = xxx ’ [ e , panel ] yyy $   
 
This computes the sum of moments, 1 1( )( )N N

i i i i i i i i= =′ ′ ′Σ = ΣX e e Y w v .  This computation is similar to the 
Gmmw function discussed above, except here, there may be different sets of variables whereas in 
Gmmw, xxx is the same as yyy.  The result of the computation is ΣiXi′ei × ei′Yi where Xi is Ti×K and 
Yi is Ti×M.  The data in the computation above are untransformed.  To use group mean deviations in 
the same computation, use 
 

MATRIX  ; Result = xxx ’ [ - e , panel ] yyy $  
 
This computes ( )( )0 0

1 1 1 1( )( ) ( )( ) ( )( )i iT TN N
i i i i i i i i t it i it i t it i it ie e e e= = = =′ ′ ′Σ = Σ Σ − − Σ − −X M e e M Y x x y y . 

 
Note that only the minus sign in front of ‘e’ differentiates these two.  To do the summing without 
weighting, we obtain within group moment matrices.  Use 
 

MATRIX  ; Result = xxx ’ [ - , panel ] yyy $   
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This computes ( )0
1 1 1( ) ( )( )iTN N

i i i i i t it i it i= = =′ ′Σ = Σ Σ − −X M Y x x y y .  Note that there is a minus sign without 
a variable name after the opening bracket.  This form just computes within groups sums of squares 
and cross products – i.e., moment matrices based on group mean deviations.  To compute the 
between groups sums of squares,  

 
MATRIX  ; Result = xxx ’ [ + , panel ] yyy $   

 
This computes ( )0

1 1 1( ) iTN N
i i i i i t i i iT= = =′ ′Σ = Σ ΣX (I - M )Y x y , which is the between groups sums of squares 

and cross products.  Note, again, no ‘e’ variable is given.  Finally, the total sum of squares for the 
panel is 
 

MATRIX  ; Result = xxx ’ [ * , panel ] yyy $   
 

This computes ( )1 1 1 1( )( ) ( )( )i iT TN N
i t it it i t it it= = = =′ ′Σ Σ − − = Σ Σ − −x x y y x x y y . 

 
NOTE:  None of these commands modify the input data. They also bypass missing data. 
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R17: Using the Calculator 
 
R17.1 Introduction 
 

 You will often need to calculate scalar results.  The scientific calculator, CALC is provided 
for this purpose. For example, you can use CALC to look up critical points for the normal, t, F, and 
chi squared distributions instead of searching a table for the appropriate value.  (And, CALC will 
give you any value, not just the few in the tables.)  Another case will be calculation of a test statistic 
such as a t ratio or likelihood ratio statistic.  LIMDEP’s calculator can function like a hand 
calculator, but, it is an integral part of the larger program as well.  Results you produce with the 
calculator can be used elsewhere, and results you obtain elsewhere, such as by computing a 
regression, can be used in scalar calculations.  The programs listed in the chapters to follow contain 
numerous examples.  The example below is a simple application. 
 
Example:  Testing for a Common Parameter in a Probit Model 
 
 Suppose a sample consists of 1000 observations in 10 groups of 100.  The subsamples are 
observations 1-100, 101-200, etc. We consider a probit model, y* = β0+β1x+ε, observed y = 1 if y* > 0 
and 0 otherwise.  With ε ~ N[0,1], Prob[y=1]=Φ(β0+β1x).  We are interested in using a likelihood ratio 
statistic to test the hypothesis that the same parameters, β0 and β1, apply to all 10 subsamples against 
the alternative that the parameters vary across the groups. We also want to examine the set of 
coefficients.  
 The first two commands initialize the log likelihood function and define a place to store the 
estimates. 
 

 CALC  ; lu = 0 ; i1 = 1 $ 
 MATRIX ; slopes = Init(10,2,0) $ 
 

The following commands define a procedure to compute probit models and sum unrestricted logL. 
 

 PROC 
 CALC  ; i2 = i1 + 99 $ 
 SAMPLE ; i1 - i2 $ 
 PROBIT ; Lhs = y ; Rhs = one,x $ 
 CALC  ; lu = lu + logl ; i1 = i1 + 100 $ 
 MATRIX ; slopes(i,*) = b $ 
 ENDPROC 
 

Execute the procedure 10 times, resetting the sample each time. 
 

 EXECUTE ; i = 1,10 $ 
 

The next two commands compute the restricted log likelihood. 
 

 SAMPLE ; 1-1000 $ 
 PROBIT ; Lhs = y ; Rhs = one,x $  Computes restricted (pooled) logL. 
 

Now, carry out the likelihood ratio test. 
 

 CALC  ; chisq = 2 * (lu - logl) ; prob = 1 - Chi(chisq,18) $ 
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CALC plays several roles in this example.  It is used to accumulate the unrestricted log likelihood 
function, lu.  The counters i1 and i2 are set and incremented to set the sample to 1-100, 101-200, etc. 
The loop index, i, is also a calculator scalar, and once it is defined, any other command, such as the 
MATRIX command above, can use i like any other number.  Finally, the last CALC command 
retrieves the log likelihood from the unrestricted model, computes the test statistic, then computes 
the tail area to the right of the statistic to determine if the hypothesis should be rejected. 
 
R17.2 Command Input in CALCULATE 
 
 CALCULATE is the same as MATRIX in the two modes of input. Select Tools:Scalar 
Calculator to open the calculator window, shown in Figure R17.1. 
 

 
Figure R17.1  Calculator Window 

 
 There are two ways to enter commands in the calculator window.  You can type 
CALCULATE commands in the smaller ‘Expr:’ window.  If your command will not fit on one line, 
just keep typing.  At some convenient point, the cursor will automatically drop down to the next line.  
Only press Enter when you are done entering the entire command.  In this mode of entry, you do not 
have to end your commands with a $. 
 Alternatively, you can click the fx button to open a subsidiary window, the Insert Function 
dialog box that provides a menu of matrix and calculator functions (see Figure R17.2).  Select 
Scalar to display the calculator functions (described in Section R17.6).  By selecting a function and 
clicking Insert, you can insert a template for the indicated function into your ‘Expr:’ window in the 
calculator window.  You must then change the arguments in the function (e.g., the ‘x’ in the Phi(x) in 
Figure R17.2) to the entity that you desire.  When you have entered your full expression in the 
window, press Enter to display the command in the lower part of the window, as shown above. 
 If your command is part of a program, it is more likely that you will enter it in ‘command 
mode’ or in what we will label the ‘in line’ format.  You will use this format in the editing window. 
That is, in the format, 
 
 CALC   ; ... the desired result ... $ 
 
Commands may be entered in this format from the editor, as part of a procedure, or in an input file. 
See Figure R17.3.  One difference between the calculator window and display in the text editor or 
the output window is that in the latter, you must include ; List in your command to have the result 
actually displayed.  This is the same as MATRIX.  See Section R17.3 for details on the ; List. 
specification. 
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Figure R17.2  Insert Function Dialog Box for Calculator Functions 

 

 
Figure R17.3  CALCULATE Command in Text Editor 
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CALCULATE is similar to CREATE at this point, except that instead of calculating whole 
columns of data, you calculate single, or ‘scalar’ values.  When you give a name to the result, it is 
kept in a work area and you can use it later.  For example, suppose you wanted to have the value of e 
(Euler’s constant) to use later on.  You could, for example, calculate e = Exp(1). You could then 
 
 CREATE  ; etotheax = e ^ (a*x) $   
 
CALC is also similar to MATRIX in that if you wish to see a value without keeping it you may type 
the expression without giving it a name, as in 
 
 CALC   ; 1 + pi * Log(25) + 2.5 / 1.23 $ 
 
or, for the 99% critical value for a two tailed test from the standard normal distribution,  Ntb(.995).  
(Ntb stands for Normal table. You also have a t table, and so on.)  
 
R17.3 Results from CALCULATE 
 
 As shown above, when you are in the calculator window, the result of a calculator expression, 
named or not, is displayed on your screen when it is obtained. When CALC commands are given in 
command mode, the default is not to display the results of any computations in the output window or 
in the output file if one is open.  We assume that in this mode, results are intermediate computations, 
for example, the increments to the counters in the example in Section R17.1.  Commands that you 
give will be listed in your trace file in all cases and in your output window. 
 You can request a full display of results both in the output window and in an output file by 
placing 
   ; List 
 
before the result to be listed.  You can turn this switch off with 
 
   ; Nolist 
 
Thus, the command CALC ; tailprob = Phi(1) $ will create a named scalar, but will not show any 
visible numerical results.  But,  
 
 CALC   ; List ; tailprob = Phi(1) $  
 
will show the result on the screen in the output window.  Once the end of a command is reached,        
; Nolist once again becomes the default.  The ; Nolist and ; List switches may be used to suppress 
and restore output at any point.  When the ; Nolist specification appears in a CALC command, no 
further output appears until the ; List specification is used to restore the listing.  At the beginning of a 
command, the ; List switch is off, regardless of where it was before.  
 To see a result that was computed earlier, there are several ways to proceed.  A CALC 
command can simply ‘calculate’ a name.  Thus, in the command format, you could just give the 
command 
 
 CALC   ; List ; tailprob $ 
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You may also open the calculator window and just type the name of the scalar you want to see. 
Finally, when you obtain a named scalar result, it will be added to the project window.  (You must 
‘open’ the Scalars data group by clicking the .)  When the list of scalars is displayed, click any 
name to display the value at the bottom of the window, in the border.  Double clicking a scalar name 
will open the New Scalar dialog box which may also be used to replace the value of that scalar.  See 
Figure R17.4. 
 As with MATRIX, you can see the full internal 17 digit result for your CALC commands 
by using ; Peek instead of ; List.  For our earlier example, the full value of Phi(1.96) is found by 
 
 CALC   ; Peek ; Phi(1.96) $ 
 
 [CALC] *Result*=  .97500210485177950D+00 
 

 
Figure R17.4  Edit Function of New Scalar Dialog Box 
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R17.4 Forms of CALCULATE Commands – Conditional 
Commands 
 
 The essential format of a CALCULATE command is 
 
 CALC   ; name = result ; ... additional commands ... $ 
 
If you wish to see the ‘result’ but do not wish to keep it, just omit ‘; name = .’  The same applies to 
the dialog mode in the calculator window.  Scalar results will be mixtures of algebraic expressions 
(addition, multiplication, subtraction, and division), functions, such as logs, probabilities, etc., and, 
possibly, algebraic manipulation of functions of scalars or expressions. 
 All calculator commands may be made conditional, in the same manner as CREATE or 
MATRIX.  The conditional command would normally appear  
 
 CALC   ; If (logical expression) name = expression $  
 
The logical expression may be any expression that resolves either to ‘true’ or ‘false’ or to a numeric 
value, with nonzero implying true.  The rules for the expression are identical to those for CREATE 
(see Section R4.2.2) and REJECT (see Section R7.2.2), as well as MATRIX, and all forms of DO.  
In this setting, if the condition is true, ‘name’ is computed; if it is false, name is not computed.  Thus, 
if name is a new scalar, and the condition is false, after the command is given, name will not exist.  
For example, 
 
 CALC   ; If (A(1,1) > rsqrd) q = Log(Dtr(sigma)) $  
 
 An entire set of CALCULATE commands can be made conditional by placing a semicolon 
after the condition, as in 
 
 CALC    ; If (condition) ; name = result ; result $  
 
If the condition is false, none of the commands which follow it are carried out.  This form of 
condition may appear anywhere in a group of CALC commands.  This will be most useful in 
iterative programs to condition your CALC commands. 
 
R17.4.1 Reserved Names 
 
 You can have a total of 100 scalar results stored in your work area.  You can obtain a 
complete list of the names and values assigned to any scalars in the calculator work area by 
navigating the project window.  Fourteen of the scalars are used by the program to save estimation 
results, and are reserved.  The 14 reserved names are 
 
  ssqrd, degfrdm, ybar, logl, kreg, sumsqdev, rsqrd, sy, rho, lmda, nreg, theta, s, exitcode 
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You can see the reserved scalars in the project window in Figure R17.4.  They are the ones marked 
as ‘locked’ with the  symbol,.  These scalars (save for rho – see the hint below) are ‘read only.’ 
You may not change them with your commands. Most of these results apply to the linear regression 
model, but values such as ybar, sy, and logl are saved by nearly all models. Scalars lmda and theta 
will change from model to model, depending on the ancillary parameters in the model.  After you 
estimate a model, you will find these scalars defined automatically with the indicated values.  These 
values can thereafter be used on the right hand side of any command.  The final one, exitcode, is an 
indicator of the success or failure of the most recent estimation command.  Usage is described in 
Section R26.5. 
 
TIP:  When you use EXECUTE ; name = values $ (see Chapter R19), name becomes a ‘read only’ 
scalar while the procedure is being executed.  After the loop is finished, name will still exist, and you 
can modify it any way you wish.  Notice, for instance, in the example in Section R17.1, CALC uses 
the loop index, i to obtain i1 and i2 for the sample setting.  But, that procedure could not change i 
while it is executing. 

 
HINT:  Since it is such a common application, there is an exception to the read only setting of  these 
scalars.  The scalar rho may be set by a loop control.  For example, for scanning in a model of 
autocorrelation, you might EXECUTE ; rho = 0, 1, .025 $.  In general rho is not a protected name. 
However, you cannot delete rho. 
 
R17.4.2 Work Space for the Calculator 
 
 Although there are 100 scalars available, the 14 protected names leave you a total of 86 to 
work with.  If you find yourself running out of room, the command 
 
 CALC   ; Delete name, name, ... $ 
 
can be used to clear space.  Note that there is no comma or semicolon between the ; Delete 
specification and the first scalar name.  You may also delete scalars that are not reserved in the 
project window by highlighting their names and pressing the Del key. 
 
TIP:  You are not really limited to these 86 scalars.  Any 1×1 matrix can be used as if it were a 
named scalar, so the distinction disappears.  This adds nearly 100 named scalars to your capacity.  
To use these additional scalars, you must create them as matrices, which you can do as follows:  
MATRIX ; name = [0] $  For example, 
 
 MATRIX   ; newsclr = [0] $ 
 CALC  ; newsclr = Phi(0.234) $ 
 
Do note, however, that when you list scalars in the project window, these 1×1 matrices will not be 
displayed. (They will be displayed as matrices.)  But, when you give CALC commands, you can use 
the values taken by these 1×1 matrices just as if they were scalars. 
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R17.4.3 Compound Names for Scalars 
 
 The names of scalars may be indexed by other scalars, in the form ssss:iiii where ‘ssss’ is a 
name and ‘iiii’ is an integer valued index scalar.  For example, 
 
 CALC   ; i = 37 ; value : i = pi $ 
 
creates a scalar named value37 and assigns it the value π.  The procedure in the editor window in 
Figure R17.5 shows how one might use this feature.  The data set consists of 10 groups of 20 
observations.  The procedure computes a linear regression model using each subsample.  Then it 
catches the log likelihood function from each regression, and puts it in a correspondingly named 
scalar.  Thus, the loop index, j, takes values 1,2,...,10, so the scalar names are logl:j = logl1,...,logl10. 
 

 
Figure R17.5  Procedure with Indexed Scalar Names 
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R17.5 Scalar Expressions 
 
 The rules for calculator expressions are identical to those for CREATE. The rules of algebra 
apply, with operations ^ and @ (Box-Cox transformation) taking first precedence, * and / next, 
followed last by + and -.  You may also use any of the functions listed below in any expression.  This 
includes the percentage points or critical values from the normal, t, F, and chi squared distributions, 
sums of sample values, determinants of matrices, or any other algebraic functions.  Chapter R16 
describes how to obtain matrix results.  You may also use an element of a matrix with its subscript 
enclosed in parentheses in any scalar calculation.  Finally, any particular observation on any variable 
in your data area may also be used in an expression.  For example, you might 
 
 CREATE  ; x = some function $ 
 CALC   ; q = x(21) * sigma(2,2) $  
 
In evaluating subscripts for variables, the observation refers to rows in the data array, not the 
current sample.  Expressions may also contain any number of functions, other operators, numbers, 
and matrix elements.  A scalar may appear on both sides of the equals sign, with the result being 
replacement of the original value.  For examples: 
 
 CALC ; varsum = b(1)^2 * varb(1,1) + b(2)^2 * varb(2,2) + 2 * b(1) * b(2) * varb(1,2)$ 
 CALC ; messy    = messy^2/pi - Gma(.5)/Gma(.1) * Sum(age)  $ 
 
If it is necessary to change the algebraic order of evaluation, or to group parts of an expression, 
use parentheses nested to as many levels as needed.  For example, 
 
 CALC   ; func = (Gma(3) + Gma(5))^3 + ((x + y)/c) * (f + g) $ 
 
You may also nest functions.  For example, 
 
 CALC   ; q = Log(Phi(a1 + a2 * Exp(a3 + a4 * Gma(z)))) $ 
 
There are two constants which can be used by name without having been set by you.  At all points in 
the program, the name ‘pi’ will be understood to be the number π = 3.14159...  Note that this will 
preempt matrices and scalars named pi, so this name should be avoided in other contexts.  The name 
pi may also appear in MATRIX and CREATE commands, for example, 
 
 MATRIX  ; pii = pi * Iden(5) $ 
 CREATE  ; f = 1/(sg * Sqr(2 * pi)) * Exp(-.5 * ((x - mu)/sg)^2) $ 
 
 When you give a CALC, MATRIX, or CREATE command, the name ‘n’ is always taken 
to mean the current sample size.  You may use n in any scalar calculation.  For example, after you 
compute a regression, the log likelihood function could be computed using 
 
 CALC   ; l = -n/2 * (1 + Log(2 * pi) + Log(sumsqdev/n)) $ 
 
NOTE:  n and pi have the meanings described above everywhere in LIMDEP.  Thus, you could use 
pi in a list of starting values, as part of a model command, or in CALCULATE. 
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R17.6 Calculator Functions 
 
 The functions listed below may appear anywhere in any expression.  The arguments of the 
functions can be any number within the range of the function (e.g., you cannot take the square root of 
-1) as well as matrix elements and names of other scalars.  Function arguments may also be 
expressions, or other functions whose arguments may, in turn, be expressions or other functions, and 
so on.  For example,  
 
   z = Log(Phi(a1 + a2 + Log(a2 + (q + r)^2))) 
 
is a valid expression which could appear in a CALC command.  The depth of nesting functions 
allowed is essentially unlimited.  When in doubt about the order of evaluation, you should add 
parentheses to remove the ambiguity.  Also, in functions which have more than one argument 
separated by commas, such as Eql(x,y) (which equals one if x equals y), include expression(s) in 
parentheses.  For example,  
 

Eql( x+y , (r+c)^2 )  
 
may not evaluate correctly because of the ‘x+y’ term.  But,  
 

Eql( (x+y) , ((r+c)^2) )  
 
will be fine.  The supported functions are listed below: 
 
R17.6.1 Basic Algebraic Functions 
 

Log(x)   = natural log,   
Abs(x)   = absolute value,  
Sin(x)   = sine,    
Tan(x)   = tangent,   
Exp(x)   = exponent, 
Sqr(x)   = square root, 
Cos(x)   = cosine, 
Rcs(x)   = arccosine, 
Rsn(x)   = arcsine,   
Ath(x)  = hyperbolic arctangent = ½ ln[(1+x)/(1-x)], 
Ati(x)  = inverse hyperbolic arctangent = [exp(2x)-1] / [exp(2x)+1]. 

 
R17.6.2 Relational Functions 
 

Eql(x,y)   = 1 if x equals y, 0 if not,  
Neq(x,y)   = 1 - Eql(x,y), 
Sgn(x)   = 1 if x > 0, 0 if x = 0, -1 if x < 0. 
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R17.6.3 Critical Points from the Normal Family of Distributions 
 

In each case, when you enter ‘Fcn(P,...)’ where P is the probability, LIMDEP finds the x 
such that for that distribution, the probability that the variable is less than or equal to x is P.  For 
example, for the normal distribution, Ntb(.95) = 1.645.  The P you give must be strictly between 0 
and 1. 
 

Ntb(P)      = standard normal distribution, 
Inp(P)  = same as Ntb(P), 
Ttb(P,d)    = t distribution with d degrees of freedom, 
Ctb(P,d)    = chi squared with d degrees of freedom, 
Ftb(P,n,d)  = F with n numerator and d denominator degrees of freedom, 
Ntb(P,µ,σ)  = normal distribution with mean µ and standard deviation σ. 
 

R17.6.4 Probabilities and Densities for Continuous Distributions 
 

Phi(x)       = probability that N[0,1]  ≤  x, 
Phi(x,µ,σ)  = probability that N[µ,σ]  ≤  x, 
N01(x)      = density of the standard normal evaluated at x (Note ‘N-zero-one’), 
Lgf(x)  = log of standard normal density = -½ (ln2π + x2). Lgf(0)=.918938542, 
N01(x,µ,σ)  = density of normal[µ,σ] evaluated at x, 
Tds(x,d)    = prob[t with d degrees of freedom   ≤  x], 
Chi(x,d)    = prob[chi squared variable with d degrees of freedom  ≤  x], 
Fds(x,n,d)  = prob[F with n numerator and d denominator degrees of freedom  ≤  x], 
Lgp(x)      = logit probability = exp(x)/(1+exp(x)), 
Lgd(x)      = logit density = Lgp(x)×(1 - Lgp(x)), 
Lgt(P)      = logit of x = Log(P/(1-P)) for 0 < P < 1, 
Xpn(x,θ)    = prob[exponential variable with mean 1/θ  ≤  x], 
Bds(x,α,β)  = prob[beta variable with parameters α,β   ≤  x] 
Bdd(x, α,β) = density function for beta variable x with parameters α,β. 

 
R17.6.5 Moments of the Left Truncated Normal Distribution 
 

Trm(a)   = mean of the truncated normal distribution, left truncated at a, 
Trv(a)   = variance of the left truncated at a normal distribution, 
Trm(a)   = E[z|z>a]  =  φ(a)/Φ(-a), standard normal distribution, 
Trv(a)   = Var[z|z>a]  =  1 - Trm(a)(a + Trm(a)), standard normal, 
Trm(a,µ,σ)  = µ+ σTrm((a-µ)/σ), 
Trv(a,µ,σ)  = σ2Trv((a-µ)/σ). 

 
These last two change the mean and standard deviation from 0 to µ and 1 to σ, respectively.  For 
upper (right) truncation instead of lower, add a ‘1’ as the final argument. 

 
Trm(a,1),  Trm(a,µ,σ,1),  Trv(a,1),  Trv(a,µ,σ,1). 
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R17.6.6 Probabilities and Densities for the Bivariate Normal 
Distribution 
 

Bvn(x1,x2,r)  = cumulative probability from the bivariate standard normal distribution, 
Bvd(x1,x2,r)  = density from the bivariate standard normal, 
Bv1(x1,x2,r) = partial derivative of Bvn with respect to x1 (see Greene, 2011, p. 740), 
Bv2(x1,x2,r) = partial derivative of Bvn with respect to x2. 
 

R17.6.7 Probabilities and Densities for the Multivariate Normal 
Distribution 
 

 In the following, x must be a vector with M elements that was created with a MATRIX 
command or as a byproduct of some estimation program.  W must be a square M×M covariance 
matrix for the distribution.  Then, 
 

Mvn(x,W)  = multivariate normal CDF with mean vector zero, Prob[X ≤≤  x], 
Mvd(x,W)  = multivariate normal PDF.   

 
The multivariate CDF is 
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The lower limits are all Am = -∞.  Thus,  x(.) provides the upper bounds, B1,...,BM.  For instance, one 
of the examples in Breslaw’s contribution to the (1994) ReStat symposium – you can use this to test 
the computation – is 
 

MATRIX ; x = [0/0/0/0] ; w = [1/.2,1/.2,.4,1/.2,.4,.6,1] $ 
CALC     ; p4 = Mvn(x,w) $ 

 
which will produce a value close to 0.15.  If you desire to compute the probability in a rectangle 
defined by finite lower bounds, A1,...,AM, at the lower limits and x1,...,xM at the upper limits, use 
 

CALC   ; Result = Mvn(x,w,a) 
 
If you desire complementary probabilities, that is the probability for the area defined by a lower 
bound of x(.) and upper bounds of +∞, use Mvn(y,W) where y is the negative of x.  If you desire 
some of the xs to be lower bounds and others to be upper bounds, you can use the following trick: 
Create an M×M matrix T in which all off diagonal elements are zero and diagonal element Ti is +1 if 
x(i) is an upper bound and -1 if Ti is a lower bound.  Then, instead of x and W in your Mvn function, 
use 

  xa  =   Tx  and  WA  =  TWT 
 
You must create these with MATRIX before using the Mvn function in CALC.   

Multivariate normal probabilities are computed using the GHK simulator (see Section R8.8).  
The number of replications used for the simulation is set by default at 100 when LIMDEP starts up.  
If you wish to use some other value, use the function 
 

Rep(Nrep)  = number of replications for Mvn functions. 
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R17.6.8 Probabilities for Noncentral Distributions 
 

The right hand tail probabilities for the noncentral chi squared and (singly – numerator only) 
noncentral F distributions may be obtained with CALC by adding the noncentrality parameter to the 
list for the corresponding central distribution. 

 
           Chi(x,d,q)    = prob[noncentral chi square with d degrees of freedom and 

   noncentrality parameter q is ≤ x], 
           Fds(x,n,d,q)  = prob[noncentral F with n numerator degrees of freedom, d 

   denominator degrees of freedom and noncentrality parameter q is ≤ x]. 
 
R17.6.9 Probabilities for Discrete Distributions 
 

Psn(x,λ)    = prob[Poisson with parameter λ  ≤  x], 
Psd(x,λ)    = prob[Poisson with parameter λ equals x], 
Bnm(x,n,π)  = prob[binomial; n trials, success probability π ≤ x], 
Bnd(x,n,π)  = prob[binomial; n trials, success probability π equals x], 
Gep(x,π)    = prob[geometric; success probability π ≤ x], 
Geo(x,π)    = prob[geometric; success probability π equals x]. 

 
R17.6.10 Gamma Function and Gamma Distribution 
 

Gma(x)  = gamma function. Gma(.5) = √π and = (x-1)! if x = integer, 
Psi(x)   = digamma(x) = dlogGamma(x)/dx, 
Psp(x)   = trigamma(x) = d2logΓ(x)/dx2= Psi’(x) (0 ≤ x ≤ 40), 
Lgm(x)   = log of Gma(x).   Note:  Lgm(x+1) = log(x!), 
Bta(x,y)  = beta function.  Bta(x,y) = Γ(x)Γ(y)/Γ(x+y). 

 
R17.6.11 The Incomplete Gamma Function 
 

The gamma density is f(x) = (aP /Γ(P))e-ax xP-1, x ≥ 0, a,P>0. 
 

Gmp(x,P,a)   = cumulative probability = Prob[ X ≤ x], 
Gmp(x,P,1)  = Gmp(x,P).  If a = 1, it may be omitted from the gamma probability. 
Gtb(prob,P,a)  = inverse probability function, i.e., the x such that the CDF at x equals 

   the probability.  As before, if a = 1, it may be omitted.   
 

The normalized incomplete gamma integral is 
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This is the probability given above.  Thus, the integral, itself can be computed with Γ(P)g(x,P) = 
Gma(P) * Gmp(x,P). The counterpart for the nonstandardized distribution is obtained by providing a 
value for a. 
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R17.6.12 Random Numbers 
 

Rnn(µ,σ)          = one draw from the normal distribution, 
Rnu(lower,upper) = one draw from the continuous uniform distribution, 
Ran(seed)         = sets the seed for the random number generator.    

 
If you wish to replicate a set of random draws, set the seed before drawing the sample. By default the 
seed is set by the system clock, so samples will not be replicated unless you do this.  Use an odd 
number for the seed. 
 
R17.6.13 Matrix Dimensions and Functions 
 

If A is the name of a matrix, 
 

Row(A)     = number of rows in matrix A, 
Col(A)      = number of columns in matrix A, 
Rnk(A)  = rank of matrix A, 
Nrm(A)  = norm of A = trace(A′A), 
2nr(A)  = 2-norm of A = largest singular value. 
 

For square matrix A, 
 

Trc(A)  = trace of matrix A, 
Det(A)  = determinant of matrix A, 
Lmd(A)  = log of determinant of matrix A if A is positive definite, 
Cnm(A)  = condition number for matrix A. 

 
If ‘X’ is the name of a namelist, then 
 

Row(X)   = number of observations in current sample = n, 
Col(X)   = number of variables in the namelist. 

 
R17.6.14 Sample Statistics and Regression Results 
 

The observations used in any of the following are the current sample less any missing 
observations.  For the Sum, Xbr, Var, and Sdv functions of a single variable, missing data are 
checked for the particular variable. Thus, Xbr(x1) and Xbr(x2) may be based on different 
observations.  You should keep close track of this if your data have gaps or different sample lengths.  
For the remaining functions, all observations are used without regard to missing data. For example, 
in the covariance function, LIMDEP uses all data points, so some data may be missing.  Be careful 
using these to prevent the -999s from distorting the statistics. 
 
  



R17: Using the Calculator  R-462 

Sample Moments 
 

For any variable in your data area, or namelist which contains only one variable name, the 
functions listed below can be used just like any other function, such as Sqr(2).  If you wish only to 
display the statistic, just calculate it.  Otherwise, these functions can be included in any expression.    
 

Sum(variable)   = sum of sample values, 
Xbr(variable)   = mean of sample values, 
Sdv(variable)   = standard deviation of sample values, 
Var(variable)   = variance of sample values, 
Xgm(variable)   = the geometric mean; Xgm(x) = Exp[1/nΣi log(xi)], 
Xhm(variable,h)  = the harmonic mean using parameter h; Xhm(x,h) = [Σixi

h]1/h 
 

The summing functions (Sum, Var, Sdv, Xbr) can be restricted to a subsample by including a second 
variable in the list.  If a second variable appears, the function is compute for nonzero values of that 
second variable.  Thus, Sum(variable, dummy) is the sum of observations for which the dummy 
variable is nonzero. This allows a simple way to obtain a mean or variance in a subset of the current 
sample.   
 
Covariance and Correlation 
 
For any pair of variables, 
 

Cov(variable,variable)  =  sample covariance, 
Cor(variable,variable)   =  sample correlation.    

 
We note, for obtaining the correlation between a continuous variable, x, and a binary variable, d, one 
would use the ‘biserial’ correlation.  It turns out that the biserial correlation is equal to the ordinary, 
Pearson product moment correlation.  So no special function is created for this. Just use 
 
 CALC   ; List ; Cor (continuous variable x, binary variable d) $ 
 
to obtain a biserial correlation coefficient.     
 
Order Statistics 

 
Med(variable)  = median of sample values 
Min(variable)   = sample minimum, 
Max(variable)   = sample maximum, 
Qnt(quantile,variable) = the indicated quantile for the variable. 

 
To locate the minimum or maximum value in the current sample, use 
 

Rmn(variable)  = observation number where minimum value of variable occurs, 
Rmx(variable)  = observation number where maximum value of variable occurs. 
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Nonparametrics 
 
Rkc(variable1,variable2) = the rank correlation of two variables.  

  ρ = 1 - 6 Σi di
2 /n(n2 - 1), di = variable1i – variable2i  

Cnc(x1,...,xK)   = Kendall’s coefficient of concordance of the K sets of  
    rankings, W = 12Σi(Si - S )2/[nK2(n2 - 1)] where Si = Σkxk,i. 

 
The coefficient of concordance is used to measure the degree of agreement among n individuals each 
of which has a set of K ranks.  For example, consider a panel of n judges, each ranking a panel of K 
= 10 paintings or musicians.  A large sample chi squared test of the null hypothesis that all n 
individuals are in ‘concordance’ may be based on 
 
   χ2[K(n-1)]  =  K(n-1)W. 
 
Dot Products 
 

For any vector (matrix with one row or column),  which we denote c or d, or variable in your 
data set, denoted x or y, 
 

Dot(c,c)   = c′c, 
Dot(c,d)   = c′d, 
Qfr(c,A)   = c′Ac (A is a square matrix conformable with c.). 

 
Two forms of the Dot function are  
 

Dot(x,x)  = x′x, 
Dot(x,y)  = x′y. 
 

You may also use the simpler form with the apostrophe, and may mix variables and vectors in the 
function.  Thus, if x and y are variables, and c and d are vectors, all of the following are admissible 
(assuming they are conformable):   
 

CALC   ; x’y ; c’y ; Dot(x,y) ; d’d $  and so on. 
 
Regression Statistics 
 

The CALC command has several functions which allow you to obtain certain regression 
statistics, such as an R2 in isolation from the rest of the least squares computations.  In the following, 
the list of variables in the parentheses is of the form 
 

list = independent variables, dependent variable. 
 

The dependent variable is always given last in a list.  As always, if you want a constant term, include 
one.  You can use a namelist for the independent variables if you wish, and the wildcard character, *, 
may be used to abbreviate lists of variable names.   
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The following functions can be computed, where X is the list of independent variables: 
 

Rsq(X,y)   = R2 in regression of variable y on X,   R2 =1-e’e/Σi(yi - y )2, 
Xss(X,y)  = explained sum of squares, 
Ess(X,y)   = error, or residual sum of squares, 
Tss(X,y)   = total sum of squares, 
Ser(X,y)   = standard error of regression, 
Lik(X,y)   = log likelihood function. 

 
Count for a Panel 
 

 The number of groups in a panel defined by the stratification variable ‘y’ is given by 
 

 Ngi(y)  = number of sequences of consecutive identical values of variable y. 
 

This examines the sample of values and counts the number of runs of the same value, assuming that 
each run defines a stratum.  In a sample of 10, if i = 1,1,1,2,2,3,4,4,4, the number of runs (groups) is 
four. 

Pnl(pds variable) = average group size for panel defined by pds variable. 
 

R17.7 Fit Measures for a Binary Choice Model 
 

 There are a variety of fit measures for binary choice models.  (These are discussed in more 
detail in Chapter E26).  For any binary variable, y, and variable p containing a column of fitted 
probabilities, the function 
 

 Fit(y,p)  = table of fit measures for p as a model for predicting y. 
 

The results for this function appear as in the following example: 
 

 CALC   ; List ; Fit(mode, pfit) $ 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Observed = CHOICE   Fitted = CHOICEP   | 
+----------------------------------------+ 
|                 Y=0       Y=1     Total| 
| Proportions  .75000    .25000   1.00000| 
| Sample Size    9600      3200     12800| 
+----------------------------------------+ 
| Log Likelihood Functions for BC Model  | 
|              P=0.50    P=N1/N   P=Model| 
| LogL =     -8872.28  -7197.89  -6886.72| 
+----------------------------------------+ 
| Fit Measures based on Log Likelihood   | 
| McFadden = 1-(L/L0)          =   .04323| 
| Estrella = 1-(L/L0)^(-2L0/n) =   .04849| 
| R-squared (ML)               =   .04746| 
+----------------------------------------+ 
| Fit Measures Based on Model Predictions| 
| Efron                        =   .04339| 
| Ben Akiva and Lerman         =   .64204| 
| Veall and Zimmerman          =   .08759| 
| Cramer                       =   .04509| 
+----------------------------------------+ 
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The values reported are 
 
 logL     =  log likelihood  =  Σi yilogpi + (1 – yi)log(1 – pi), 
 P0   =  (1/N)Σi (1 – yi), 
 P1   =  (1/N)Σi yi, 
 N0   =  Σi (1 – yi), 
 N1   =  Σi yi, 
 logL0   =  restricted (constant term only) log likelihood,   

=  N0logP0 + N1logP1, 
 N   =  N0 + N1, 
 Efron   =  1 – [Σi (yi – pi)2]/[Σi (yi – P1)2]  (Note, P1 = the mean of y.), 
 McFadden   =  1 – logL / logL0, 
 Ben-Akiva/Lerman   =  (1/N)Σi yi pi + (1-yi)(1 – pi), 
 Cramer    =  (1/N1)Σi yipi -  (1/N0)Σi pi(1 – yi), 
 Veall and Zimmermann =  [(δ - 1)/(δ - McFadden)] × McFadden, δ = N/(2logL0, 
 RML

2   =  1 – exp[(-2/N)(logL – logL0)]. 
 
R17.8 Hypothesis Tests 
 
Kolmogorov Smirnov Test of Normality 
 
 The Kolmogorov-Smirnov test is a nonparametric statistic used to test a distributional 
assumption.  For the implementation here, we use the normal distribution as the null hypothesis.  The 
statistic is computed as 
 

   
1
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Where F is the theoretical cdf being tested (normal).  For the specified test,  
 

Kst(variable) = Kolmogorov-Smirnov test statistic 
 
The null distribution is assumed to be the normal distribution.  The mean and standard deviation of 
the normal distribution are estimated from the data.  The derivation of the behavior of the test 
statistic, and the critical values, actually assume that the mean and variance of the distribution are 
known, not estimated from the data.  So, the critical values given below should be viewed as 
approximate   If you do know the mean and standard deviation of the distribution, use 
 
 Kst (variable, μ, σ) = Kolmogorov-Smirnov test against N[μ,σ2]. 
 
Critical values of the distribution of the test statistic are as follows: 
 
Sample Size   20    25    30    35        Over 35 

95% .294  .270  .240  .230  1.36/Sqr(N) 
99% .356  .320  .290  .270  1.63/Sqr(N) 
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Testing for Significant Differences Between Two Populations 
 
 The function Tst(x,y) is used to test for equality of means or variances for two variables x 
and y.  The sample used is the current sample.  The function is    
 

CALC   ; Tst (x,y) $  for the means test,  
and  CALC   ; Tst (x,y,2) $  for the variance test.  

 
(You may use Tst(x,y,1) for the means test.)  The names x and y may be two variables, two matrices 
with any number of rows and columns, or one of each, both of which may be any configuration.  
Missing values are automatically bypassed, and the samples may be different sizes, as noted. The 
following shows an application using our discrete choice data.  
 

CALC  ; Tst (invc,gc) $ 
 

Test of equality of    Means. 
F statistic with [    1, 1471] =   999.035; P =   .00000 

 
CALC   ; Tst (invc,gc,2) $ 
 
Test of equality of Variances. 
F statistic with [  839,  839] =     2.197; P =   .00000 

 
Testing Equality of the Means of Two Populations 
 

The means test is requested with 
 
CALC   ; Tst (x,y) $   

or   CALC   ; Tst (x,y,1) $ 
 
The test is based on the standard t statistic, which we square to obtain an F statistic with 1 and D 
degrees of freedom: 
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and likewise for y.  The sample sizes may be unequal.  The inequality of the sample sizes will result 
if one or the other of the variables contains missing values. As such, for the degrees of freedom for 
the denominator, we use the Satterthwaite approximation, 
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Testing Equality of the Variances of Two Populations 
 
 The variance equality hypothesis is tested with the command 
 
 CALC   ; Tst (x,y,2) $ 
 
The test statistic is the standard F ratio with Nx - 1 and Ny – 1 degrees of freedom, 
 

   F[Nx - 1 , Ny - 1 ]  =  2 2/x ys s . 
 
The roles of x and y are reversed if y has the larger variance. (This is merely for convenience in using 
the F table.  It has no bearing on the result of the test.) 
 
Testing Equality of Two Population Proportions 
 
 This test is requested with the command 
 
 CALC   ; Tst (x,y,3) $ 
 
As before, the data may be provided as variables, matrices or vectors, or a mix of the two.  The test is 
based on the underlying model, Prob[eventx] = πx and Prob[eventy] = πy.  The subscripts denote the 
two populations, not different events.  We are interested in testing the null hypothesis 
 
   H0: πx = πy 
 
based on observed samples, x and y.  These two variables are binary variables indicating the event 
has occurred (xi = 1 or yi = 1) or not occurred, (xi = 0 or yi = 0).  The test statistic is 
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and P is the pooled proportion, (Nxpx + Nypy)/(Nx + Ny).  Under the null hypothesis of equality, c2 has 
a limiting chi squared distribution with one degree of freedom. 
 
Testing Based on Summary Statistics 
 
 The test statistics and procedures described above require you to provide the raw data for 
computation of the statistics.  If you have only the summary statistics, such as the means and 
variances, you can easily use CALC to compute the same test statistics.  Three functions are 
provided to simplify the calculation for you.  The three functions are, respectively, 
 

Eqm(xb,yb,Nx,Ny,vx,vy)  =  test for equality of means, 
Eqv(vx,vy,Nx,Ny)  =  test for equality of variances, 
Eqp(px,py,Nx,Ny)  =  test for equality of proportions, 

 
where xb and yb are the means, vx and vy are the variances and px and py are the proportions. 
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R17.9 Calculating Correlation Coefficients 
 
 There are several types of correlation coefficients that one might compute, beyond the 
familiar product moment measure.  The nonparametric measures of rank correlation and of 
concordance are additional examples.  One might also be interested in correlations of discrete 
variables, which are usually not measured by simple moment based correlations.  The following 
summarizes the computations of several types of correlations with LIMDEP.  Some of these are 
computed with CALC, as described earlier, while a few others are obtained by using certain model 
commands. 
 
Pearson Product Moment Correlations for Continuous Variables 
 
For any pair of variables, 

 
Cor(variable,variable)  =  sample correlation, 

 
Biserial Correlation Between Continuous and Binary Variables 
 

For obtaining the correlation between a continuous variable, x, and a binary variable, d, one 
would use the ‘biserial’ correlation.  It turns out that the biserial correlation is equal to the ordinary, 
Pearson product moment correlation.  So no special function is created for this. Just use 
 
 CALC   ; List ; Cor (continuous variable x, binary variable d) $ 
 
to obtain a biserial correlation coefficient. 
 
Tetrachoric Correlation Coefficients for Binary Variables 
 

This is equivalent to the correlation coefficient in the following bivariate probit model: 
 

y1* = µ + ε1, y1 = 1(y1* > 0) 

y2* = µ + ε2, y2 = 1(y2* > 0) 

(ε1,ε2) ~ N2[(0,0),(1,1,ρ)] 
 
The applicable literature contains a number of approaches to estimation of this correlation 
coefficient, some a bit ad hoc.  We proceed directly to the implied maximum likelihood estimator. 
Fit this ‘model’ with 
 
 BIVARIATE PROBIT ; Quietly ; Lhs = y1,y2 ; Rh1 = one ; Rh2 = one $ 
 CALC   ; List ; Rho $ 
 
The reported estimate of ρ is the desired estimate.  LIMDEP notices if your model does not contain 
any covariates in the equation, and notes in the output that the estimator is a tetrachoric correlation.  
If the ;Quietly is omitted from the bivariate probit command, the correlation coefficient will be 
reported in the estimation results.  The results below show an example 
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----------------------------------------------------------------------------- 
FIML Estimation of Tetrachoric Correlation 
Dependent variable                 Y1Y2 
Log likelihood function       -24.70694 
Estimation based on N =     20, K =   3 
Inf.Cr.AIC  =   55.414 AIC/N =    2.771 
Model estimated: Mar 07, 2011, 11:26:20 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for Y1 
Constant|    -.67449**       .30469    -2.21  .0269    -1.27168   -.07730 
        |Index    equation for Y2 
Constant|    -.12566         .28106     -.45  .6548     -.67652    .42520 
        |Tetrachoric Correlation between Y1       and Y2 
RHO(1,2)|     .29207         .35914      .81  .4161     -.41183    .99598 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The preceding suggests an interpretation for the bivariate probit model; the correlation coefficient 
reported is the conditional (on the independent variables) tetrachoric correlation. 
 
Tetrachoric Correlation Matrices   
 

The computation in the preceding can be generalized to a set of M binary variables, y1,...,yM.  
The tetrachoric correlation matrix would be the M×M matrix, R, whose off diagonal elements are the 
ρmn coefficients described immediately above.  There are several ways to do this computation, again, 
as suggested by a literature that contains numerous recipes.  Once again, the maximum likelihood 
estimator turns out to be a useful device. 
 A direct approach would involve expanding the latent model to 
 

y1* = µ + ε1, y1 = 1(y1* > 0) 

y2* = µ + ε2, y2 = 1(y2* > 0) 

... 

yM* = µ + εM, yM = 1(yM* > 0) 

(ε1,ε2,...,εM) ~ NM[0,R] 
 
The appropriate estimator would be LIMDEP’s multivariate probit estimator in which the Rhs for all 
M equations contained only a constant.  MPROBIT can handle up to M = 20. The correlation matrix 
produced by this procedure is precisely the full information MLE of the tetrachoric correlation 
matrix.  However, for any M larger than two, this requires use of the GHK simulator to maximize the 
simulated log likelihood, and is extremely slow. The received estimators of this model estimate the 
correlations pairwise, as shown above. For this purpose, the FIML estimator is unnecessary.  The 
matrix can be obtained using bivariate probit estimates.   
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The following procedure would be useable: 
 

NAMELIST  ; y = y1,y2,...,yM $ 
CALC           ; m = Col(y) $ 
MATRIX      ; r = Iden(m) $ 
PROCEDURE $ 
DO FOR  ; 20 ; i = 2,m $ 
CALC      ; i1 = i - 1 $   
DO FOR  ; 10 ; j = 1,i1 $ 
BIVARIATE ; Quietly ; Lhs = y:i, y:j ; Rh1 = one ; Rh2 = one $ 
MATRIX  ; r(i,j) = rho $ 
MATRIX  ; r(j,i) = rho $ 
ENDDO  ; 10 $ 
ENDDO ; 20 $ 
ENDPROCEDURE $ 
EXECUTE $ 

 
A final note, the preceding approach is not fully efficient.  Each bivariate probit estimates (µm,µn) 
which means that  µm is estimated more than once when m > 1.  A minimum distance estimator could 
be used to reconcile these after all the bivariate probit estimates are computed.  But, since the means 
are nuisance parameters in this model, this seems unlikely to prove worth the effort. 
 
Polychoric Correlation 
 
 The polychoric correlation coefficient is used to quantify the correlation between discrete 
variables that are qualitative measures.  An appropriate description is that the discrete variables are 
discretized counterparts to underlying quantitative measures.  We typically use ordered probit 
models to analyze such data.  The polychoric correlation measures the correlation between          y1 = 
0,1,...,J1 and y2 = 0,1,...,J2.  (Note, J1 need not equal J2.)  One of the two variables may be binary as 
well.  (If both variables are binary, we use the tetrachoric correlation coefficient described above.) 
 To compute the polychoric correlation for a pair of qualitative variables, we use LIMDEP’s 
bivariate ordered probit model.  First, compute the starting values for the first ordered probit model.  
 
 ORDERED ; Lhs = y1 ; Rhs = one $ 
 MATRIX  ; b1 = b ; mu1 = mu $ 
 
Next, compute the starting values for second equation, ordered probit or binary probit,  Use one of 
the following sets of commands. 
 
 ORDERED ; Lhs = y2 ; Rhs = one $ 
 MATRIX ; b2 = b ; mu2 = mu $ 
or 
 PROBIT ; Lhs = y2 ; Rhs = one $ 
 MATRIX ; b2 = b $ 
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Then, fit the model.  
 
 ORDERED ; Lhs = y1,y2 ; Rh1 = one ; Rh2 = one  
   ; Start = b1,mu1,b2,mu2,0 $  Omit mu2 if y2 is binary 
 
The set of starting values includes a zero for ρ.  This may be omitted.  Alternatively, if you have a 
specific value other than zero in hand, you may provide it. 
 For a simple example, we compute the polychoric correlation between self reported health 
status and sex in the health care usage data examined earlier.  Results appear below.  
 

ORDERED  ; Lhs  = hsat ; Rhs = one $ 
MATRIX      ; b1 = b ; mu1 = mu $ 
PROBIT      ; Lhs = female ; Rhs = one $ 
MATRIX      ; b2 = b $ 
ORDERED  ; Lhs = hsat,female  
  ; Rh1 = one ; Rh2 = one ; Start = b1,mu1,b2,0 $ 

 
----------------------------------------------------------------------------- 
Bivariate Ordered Probit Model 
Dependent variable             BivOrdPr 
Log likelihood function    -12561.56607 
Restricted log likelihood  -12563.05400 
Chi squared [  12 d.f.]         2.97586 
Significance level               .99571 
McFadden Pseudo R-squared      .0001184 
Estimation based on N =   4481, K =  12 
Inf.Cr.AIC  =25147.132 AIC/N =    5.612 
Model estimated: Mar 07, 2011, 11:36:35 
--------+-------------------------------------------------------------------- 
 NEWHSAT|                  Standard            Prob.      95% Confidence 
  FEMALE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Mean inverse probability for NEWHSAT 
Constant|    2.17739***      .04831    45.07  .0000     2.08270   2.27208 
        |Mean inverse probability for FEMALE 
Constant|    -.03944**       .01875    -2.10  .0354     -.07620   -.00269 
        |Threshold Parameters for Probability Model for NEWHSAT 
  MU(01)|     .23979***      .03248     7.38  .0000      .17613    .30345 
  MU(02)|     .54536***      .04154    13.13  .0000      .46395    .62677 
  MU(03)|     .86716***      .04543    19.09  .0000      .77812    .95620 
  MU(04)|    1.13200***      .04702    24.07  .0000     1.03984   1.22417 
  MU(05)|    1.65205***      .04865    33.96  .0000     1.55671   1.74740 
  MU(06)|    1.91515***      .04917    38.95  .0000     1.81879   2.01152 
  MU(07)|    2.32040***      .04989    46.51  .0000     2.22262   2.41818 
  MU(08)|    3.00506***      .05156    58.29  .0000     2.90401   3.10610 
  MU(09)|    3.50351***      .05401    64.86  .0000     3.39765   3.60937 
        |Polychoric Correlation for NEWHSAT  and FEMALE 
RHO(1,2)|    -.03288*        .01907    -1.72  .0847     -.07026    .00450 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is NEWHSAT  (Out of range 0-49:      0)             | 
|Number of Rows = 11      (NEWHSAT  =  0 to 10)                   | 
|Col variable is FEMALE   (Out of range 0-49:      0)             | 
|Number of Cols =  2      (FEMALE   =  0 to  1)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[  10] =   14.11593   Prob value =  .16777            | 
|G-squared  [  10] =   14.12122   Prob value =  .16753            | 
+-----------------------------------------------------------------+ 
|                 FEMALE                                          | 
+--------+--------------+------+                                  | 
| NEWHSAT|      0      1| Total|                                  | 
+--------+--------------+------+                                  | 
|       0|     29     37|    66|                                  | 
|       1|     26     26|    52|                                  | 
|       2|     58     54|   112|                                  | 
|       3|    107     89|   196|                                  | 
|       4|    109    128|   237|                                  | 
|       5|    333    347|   680|                                  | 
|       6|    208    226|   434|                                  | 
|       7|    388    330|   718|                                  | 
|       8|    571    501|  1072|                                  | 
|       9|    272    228|   500|                                  | 
|      10|    210    204|   414|                                  | 
+--------+--------------+------+                                  | 
|   Total|   2311   2170|  4481|                                  | 
+-----------------------------------------------------------------+ 
 
Nonparametric Measures of Agreement of Rankings 
 
 These two statistics measure the amount of agreement among sets of ranks.  The first of 
them is used to measure the correlation of a set of ranks. 
 

Rkc(variable1,variable2) = the rank correlation of two variables.  
     ρ = 1 - 6 Σi di

2 /n(n2 - 1), di = variable1i – variable2i  
 
An application that is becoming common in the literature is to measure the agreement of a set of 
efficiency rankings in a study of technical efficiency.  The measures, themselves, often have no 
natural magnitude, but the comparison of firms to each other is useful.  A common exercise is to 
compute the rankings of firms with two different measures, and search for high correlation of the two 
sets of ranks. 
 

Cnc(x1,...,xK)     = Kendall’s coefficient of concordance of the K sets of 
        rankings; W = 12Σi(Si - S )2/[nK2(n2 - 1)] where Si = Σkxk,i. 

 
The coefficient of concordance is used to measure the degree of agreement among n individuals each 
of which has a set of K ranks.  For example, consider a panel of n judges, each ranking a panel of K 
paintings or musicians.  A large sample chi squared test of the null hypothesis that all n individuals 
are in ‘concordance’ may be based on 
 
   χ2[K(n-1)]  =  K(n-1)W -->  χ2 [ K(n-1)] 
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R17.10 Augmented Dickey Fuller Test 
 
 The Adf function automates the Dickey Fuller test for unit roots in time series data.  The 
syntax is 
 

CALC   ; Adf (variable, type, lags for augmentation)  $ 
 
where    variable is the single time series variable to be analyzed, 

type = 1, 2 or 3 for unit root, drift, trend, lags >= 0, 
lags for augmentation is the number of additional lagged values to include 

    
Users are referred to any of the standard texts, e.g., Greene (2011, Chapter 21) for details.  An 
example based on the investment series in the Grunfeld data follows: 
 

CALC   ; Adf (i,1,3) $ 
 

+----------------------------------------------+ 
| Augmented Dickey Fuller Test for I           | 
| Form: Random walk                            | 
| Number of lagged differences in model is   3 | 
| DF(tau) =   -2.32855, DF(gamma) =  -10.96038 | 
| Critical values for   196 observations:      | 
| DF(tau)                                      | 
| 01 is  -2.58, .025 is  -2.23, .05 is  -1.95  | 
| DF(gamma)                                    | 
| 01 is -13.80, .025 is -10.50, .05 is  -8.10  | 
+----------------------------------------------+ 
 
R17.11 Plotting Discrete Distributions 
 
 There are a variety of tools that can be used to display probability distributions.  Precise, 
accurate figures can be drawn by plotting the values of the probability density.  Empirical 
approximations to probability distributions can be obtained by drawing histograms for large random 
samples of the random variable. CALCULATE provides numerous functions for computing 
continuous and discrete probabilities and densities from a variety of distributions.  The following 
additional functions will produce tables and simple character based plots for discrete distributions: 

 
Tbb(p,n)  for binomial probabilities with probability p, n trials, 
Tbp(lambda)  for Poisson with mean lambda, 
Tbg(p)   for geometric with parameter p, 
Tbn(p,n)  for negative binomial with probability p and n successes, 
Tbh(p,m,n)  for hypergeometric with probability p, population size 

m, n successes. 
 
Calculating the function with specified parameters produces the listing and figure, as shown in the 
illustration below.  CALC ; List ; Tbb (.4375,20) $ produces the output in Figure R17.6. 
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Figure R17.6  Calculator Plot of Binomial Distribution 

 
R17.12 Financial Functions 
 
Net Present Value 
 
 The net present value of a stream of K identical payments received at the beginning of each 
period is 
 

   Net present value = Npv (r, stream, k) 
 
where r is the interest rate.  For example, the net present value of a one million dollar lottery paid in 
20 installments of $50,000, the first one right now, at an interest rate of 10% would be computed as 
Npv (.1, 50000, 20),  which is about $468,246.  Note the format.  The interest rate is stated in 
fractional terms; 10% is .1, not 10. 
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 If the payment is different in each period, you need only create a variable in your data area 
which contains those payments and replace the constant value in the above format with the name of 
the variable.  For example, to get the net present value of the five revenue projections, 75, 100, 125, 
150, and 150, you would first create a variable named revenue containing these five values.  Then, 
you could compute Npv (.1, revenue, 5), which is about $484.36.  Since the number of data points 
involved will probably be small, the data editor would probably be the most convenient means of 
setting this up. 
 
Internal Rate of Return 
 
 The internal rate of return for a stream of payments is the interest rate, r, such that 
 
   -C + P0 + P1/(1+r) + P2/(1+r)2 + ... PK-1/(1+r)K-1  =  0.  
 
where C is the initial outlay and K is the number of payments.  This problem does not always have a 
solution, and might have more than one.  LIMDEP seeks a solution by scanning the range of r from 
0.0 to 1.0 in increments of .01.  If a solution exists in that range, it will be between two values of r 
for which the expression above at these values will have different signs.  We then interpolate linearly 
between the two values.  The accuracy of the solution is therefore to .005, or .5% 
 To obtain internal rates of return, the format is the same as for net present value.  The 
function is 
 
   Irr(c, fixed amount, k)   
 
for a fixed payment or  
 
   Irr(c, payments, k) 
 
if the variable payments contains the payment stream.  For the examples, the internal rate of return 
on a $400,000 investment in the lottery ticket described above would be Irr(400000, 50000, 20) or 
about 12.8% per year.  For the revenue figures, suppose the initial outlay were $400.  To get the 
internal rate of return, you would use Irr(400, revenue, 5) which is about 20.6%. 
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R18: Two Step Estimators 
 
 Fitting a two equation model in two steps is a common procedure.  Heckman’s (1979) 
sample selection model is a widely cited example.  There are many other applications.  The typical 
case involves computing a model at the first step, then inserting either a prediction or a residual (see 
Terza, Basu and Rathouz (2008)) in a second equation.  Under the usual assumptions, the second 
step estimator is consistent, but the standard errors usually computed must be corrected for the 
inclusion of a variable that is based on the estimated parameters from the first step.  
 
R18.1 Covariance Matrices for Two Step Estimation 
 
 The essential parts of the two step procedure are 
 
Step 1. A model is estimated by least squares or maximum likelihood.  Denote the parameters 

estimated at this step as θ1. 
 
Step 2. A second model is estimated in which a predicted value or a residual from the model in Step 

1 appears on the right hand side of the equation.  Denote the full set of parameters estimated 
at this step as θ2. 

 
We take it as given that estimation at both steps is consistent – the modeler will have to verify this on 
a case by case basis.  The remaining computation then is the correction of the estimated asymptotic 
covariance matrix for the estimator at Step 2 for the randomness of the estimator from Step 1 which 
has been used in the computation.  We base our results for this computation on the Murphy and 
Topel (1985) paper which presents a general method of doing the calculations.  (See Greene (2011) 
for additional discussion.)  (There are like results for GMM estimation – see Newey (1984) – 
however, we restrict our attention to maximum likelihood estimation in LIMDEP.) 
 The underlying result is as follows (again, from Greene):  Let V2 be the uncorrected 
covariance matrix computed at Step 2, using the parameter estimates obtained at Step 1 as if they 
were known, and V1 be the estimator of the asymptotic covariance matrix for the parameter estimates 
obtained at Step 1.  Both of these estimators are based on the respective log likelihood functions.  In 
addition, define 

   n i2 i2
i 1

2 1

ln f ln f
'=

  ∂ ∂
=   ∂ ∂  

∑C
θ θ

   

and  

   n i2 i1
i 1

2 1

ln f ln f
'=

  ∂ ∂
=   ∂ ∂  

∑R
θ θ

 

 
(Note the derivatives shown are the derivatives of individual terms in the two log likelihoods.)   With 
these in hand, the corrected covariance matrix for the second step estimator is  
 
   V2*  =  V2 + V2[CV1C′ - RV1C′ - CV1R′]V2 
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 Since the variety of combinations of model specifications which can give rise to this 
computation is infinite, it is not possible to automate this generally in LIMDEP.  But, a few special 
cases are automated.  The following will list these cases, then suggest some approaches for doing the 
computation in other cases. 
 
R18.2 Two Step Estimation for an Endogenous Discrete 
Variable 
 
 The general case that has been automated is a model of the form: 
 
 y1  =  a discrete variable specified by a probit, logit, Poisson, or negative binomial model or 
           by a linear regression model, 

 y2  =  a dependent variable whose conditional mean function is a function of E[y1]. 
 
Models of this sort could in principle be estimated by full information maximum likelihood.  We 
consider two step estimation instead, which is usually simpler.  Models for which the second step 
shown above is automated are the following: 
 

• probit and probit with heteroscedasticity, 
• truncated regression, 
• tobit and tobit with heteroscedasticity, 
• Poisson and negative binomial regression, 
• linear regression. 

 
For these models, the estimation procedure is the following two steps: 
 
PROBIT, LOGIT, etc. ; Lhs = y1 ; Rhs = as usual  

; Prob = py    ; Keep for Poisson or negative binomial 
; Hold  $ 

Model name ; Lhs = y2  
; Rhs = as usual,py     Note, py, not y1 
; 2Step = py $ 

 
 In the example shown below, a probit model is estimated and the results are held for the 
second step.  At the second step, linear and Poisson regression models are estimated.  (Results for the 
probit model are omitted.)  The second set of estimates in each example omit the Murphy and Topel 
correction.  The correction seems to be inconsequential in the linear regression results.  However, the 
same correction substantially changes the Poisson regression results. 
 

REGRESS ; Lhs = docvis 
; Rhs = one,hhkids,hhninc,epublic  
; 2Step = epublic $ 
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----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=DOCVIS   Mean                 =        2.87280 
             Standard deviation   =        5.14529 
             Number of observs.   =           4481 
Model size   Parameters           =              4 
             Degrees of freedom   =           4477 
Residuals    Sum of squares       =        116455. 
             Standard error of e  =        5.10019 
Fit          R-squared            =         .01811 
             Adjusted R-squared   =         .01745 
Model test   F[  3,  4477] (prob) =    27.5(.0000) 
Diagnostic   Log likelihood       =   -13657.05554 
             Restricted(b=0)      =   -13698.00656 
             Chi-sq [  3]  (prob) =  81.9(  .0000) 
Info criter. Akaike Info. Criter. =        3.25945 
Covariance matrix corrected for two step using M&T 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.20400*        .72845     1.65  .0984     -.22374   2.63175 
  HHKIDS|    -.97872***      .15719    -6.23  .0000    -1.28680   -.67064 
  HHNINC|   -1.12430**       .55245    -2.04  .0418    -2.20709   -.04152 
 EPUBLIC|    2.78761***      .68587     4.06  .0000     1.44333   4.13190 
--------+-------------------------------------------------------------------- 
Constant|    1.20400*        .72516     1.66  .0969     -.21729   2.62530 
  HHKIDS|    -.97872***      .15710    -6.23  .0000    -1.28663   -.67081 
  HHNINC|   -1.12430**       .54909    -2.05  .0406    -2.20051   -.04810 
 EPUBLIC|    2.78761***      .68296     4.08  .0000     1.44904   4.12619 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

POISSON ; Lhs = docvis 
; Rhs = one,hhkids,hhninc,epublic  
; 2Step = epublic $ 

 
----------------------------------------------------------------------------- 
Poisson Regression 
Dependent variable               DOCVIS 
Log likelihood function    -15988.45468 
Restricted log likelihood  -16398.15386 
Chi squared [   3 d.f.]       819.39836 
Significance level               .00000 
McFadden Pseudo R-squared      .0249845 
Estimation based on N =   4481, K =   4 
Inf.Cr.AIC  =31984.909 AIC/N =    7.138 
Murphy/Topel 2Step VC matrix:P= EPUBLIC 
Chi- squared = 38697.41953  RsqP= .0627 
G  - squared = 23425.26493  RsqD= .0338 
Overdispersion tests: g=mu(i)  : 10.260 
Overdispersion tests: g=mu(i)^2: 10.487 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .18737         .65821      .28  .7759    -1.10269   1.47743 
  HHKIDS|    -.35941***      .04667    -7.70  .0000     -.45087   -.26794 
  HHNINC|    -.41892         .31052    -1.35  .1773    -1.02752    .18968 
 EPUBLIC|    1.27807*        .65511     1.95  .0511     -.00592   2.56207 
--------+-------------------------------------------------------------------- 
Constant|     .18737*        .10037     1.87  .0619     -.00936    .38410 
  HHKIDS|    -.35941***      .01929   -18.63  .0000     -.39722   -.32160 
  HHNINC|    -.41892***      .06919    -6.05  .0000     -.55453   -.28330 
 EPUBLIC|    1.27807***      .09692    13.19  .0000     1.08811   1.46803 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
R18.3 Two Step Estimation for an Endogenous Regression 
Variable 
 
 The same set of procedures described in the previous section may also be used when the first 
step is a linear regression.  Thus, the model is 
 
   y1  =  θ1′x1 + ε1, ε1 ~ N[0,σ2] 

   density function for  y2| y1 =  f ( y2, x2, | θ2 , θ1′x1 ). 
 
The model is estimated by fitting the first equation by linear least squares, then inserting the 
prediction from the linear model into the second equation and estimating θ2 by maximum likelihood, 
including, presumably, the coefficient on E[y1] in the specification for y2.  The Murphy and Topel 
correction is then done at the second step.  The only change will be the first step model command, 
which is changed from PROBIT or LOGIT to REGRESS.  The command sequence would be 
 

REGRESS  ; Lhs = y1 ; Rhs = as usual  
; Keep = fy     Note, ; Keep, not ; Prob 
; Hold  $ 

Model    ; Lhs = y2  
; Rhs = as usual,fy  
; 2Step = fy $ 

 
The template shown immediately above is also the one used when the first step estimator is a Poisson 
or negative binomial regression model. 
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R18.4 Programming a Two Step Estimator 
 
 The preceding includes a fairly large number of possible specifications, given all of the 
different combinations.  (Any of the first step models may be used with any of the second step 
models.)  But, an essentially infinite number of possible different specifications remain.  If you wish 
to use this procedure, you may have to program the second step correction yourself to do so. 
LIMDEP’s various programming features should make this fairly easy.  To illustrate, we will present 
two applications, first an extremely simple case of a probit first step and a linear second one, then  a 
moderately complicated case in detail.  
 The first example has a probit first step equation: 
 
   y1*  =  θ′z + u1, , u1 ~ N[0.1] 

   y1 = 1(y1* > 0),  

   E[y1] = Φ(θ′z) Φ(.) = standard normal CDF 
 
and a second step linear regression model fit by least squares, 
 
   y2 = β′x + αE[y1|z] + ε. N[0,σ2] 
 
At step 1, θ is estimated by maximizing the log likelihood 
 

   log L1 = )|,(log
1 11∑ =

n
i iii yf θz  = ( )ii

n
i

q z'log
1

θΦ∑ =
, where qi = 2y1i – 1. 

At step 2, (β,α) are estimated by least squares regression of y2 on x and ˆ( )′Φ zθ .  The appropriate 
second step log likelihood for the regression is 
 
   LogL2 = n 2 2 21 1 1

22 2 2i 1
ˆlog log 2 (1/ )[ ( ' )]i i iy

=
′− σ − π − σ − − αΦ∑ x zβ θ . 

 
The components of the covariance matrix are V1, the asymptotic covariance matrix estimated for the 
probit model at the first step, V2, the conventional covariance matrix at the second step – without the 
degrees of freedom correction, so V2 = (e′e/n)(X* ′ X*)-1 where X* contains the extra variable 

ˆ( )′Φ zθ i .  From the definitions earlier, 
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 The following program computes this entirely from first principles, without using the 
preprogrammed estimation routines:  The initial NAMELIST and CREATE commands set up the 
specific problem.  The rest of the program is generic. 
 
 NAMELIST ; z = Rhs variables for the probit equation $ 
 CREATE ; y1 = Lhs variable for probit equation $ 
 NAMELIST ; x = Rhs variables for the regression equation $ 
 CREATE ; y2 = Lhs variable for regression $ 
 
 CALC  ; k1 = Col(z) $ 
 CREATE ; qi = 2 * y1 - 1 $ 
 MAXIMIZE ; Start = k1_0 ; Labels = k1_theta  
   ; Fcn = Log(Phi(qi * theta1 ’ z)) $ 
 MATRIX ; v1 = varb ; theta = b $ 
 CREATE ; p1 = Phi(z ’ theta) $ 
 NAMELIST ; xs = x,p1 $ 
 MATRIX ; b_a = <xs ’ xs> * xs ’ y2 $ 
 CREATE ; ei = y2 - xs ’ b_a  $ 
 CALC  ; s2 = ei ’ ei/n ; kplus1 = Col(xs) $ 
 MATRIX ; v2 = s2 * <xs ’ xs> $ 
 CREATE ; ci = 1/s2 * ei * 1/s2 * ei * b_a(kplus1) * N01(z ’ theta) $ 

CREATE ; ri = 1/s2 * ei * qi * N01(qi * z ’ theta)/Phi(qi * z ’ theta) $ 
MATRIX ; c = xs'[ci]z ; r = xs'[ri] z $ 
MATRIX ; v2c = c*v1*c' - r*v1*c' - c*v1*r' ; v2c = v2 + v2*v2c*v2 $ 
MATRIX ; Stat(b_a, v2c, xs) ; Stat(b_a, v2, xs) $ 

 
 For the second example, we consider a multinomial logit model for a y2 which has three 
outcomes and a y1 determined by a probit model.  The model is 
 
 y1*  =  θ′z + ε1, y1 = 1(y1* > 0), E[y1] = Φ(θ′z), ε ~ N[0,σ2], Φ(.) = standard normal CDF, 
 
   Prob[y2 = j]  =    ej / (e0 + e1 + e2), j = 0, 1, 2, 

     e0  = 1 

     e1  =  exp[ β1′x + γ1Φ(θ′z) ] 

     e2  =  exp[ β2′x + γ2Φ(θ′z) ]. 
 
At step 1, θ is estimated by maximizing the log likelihood 
 

   log L1   = )|,(log
1 11∑ =

n
i iii yf θz    

    = ( )ii
n
i

q z'log
1

θΦ∑ =
, where qi = 2y1i – 1. 
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After the first step is complete, the predictions, Φ(θ′z), are computed using the maximum likelihood 
estimates, then the log likelihood for the second model is maximized with respect to β1,γ1,β2,γ2 while 
treating the predictions as if they were observed data.  The second step log likelihood function is 
 

  log L2   = ),,,|)'(,,(log 2211 122 γγΦ∑ =
ββθ

n
i iiii yf zx  

   = ][Probln 2
2

01
jyd ij ij

n
i

=∑∑ ==
, where dij = 1 if y2i = j, j = 0,1,2 

 
 Each step produces its own estimated parameter vector and asymptotic covariance matrix.  
The matrices needed for the correction are: 
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(Derivatives for the logit and probit log likelihoods above appear in greater detail later in this 
manual.) 
 
The first part of the routine is set up for the particular application.  The remainder is general and 
need not be changed. 
 
 NAMELIST  ; x = … define the Rhs for the logit model 
   ; z = … define the Rhs for the probit model  
 CREATE ; y1 = … dependent variable in probit model 
   ; y2 = … dependent variable in logit model  
 
Next, we estimate the probit model.  The IMR = lambda is just for convenience.  It computes the 
q*N01/Phi in the first log likelihood.  We pick up the other terms now. 
 
 PROBIT  ; Lhs = y1 ; Rhs = z ; Prob = prob ; Hold(IMR = lambda) $ 
 CREATE ; den1 = N01(b’z) $ 
 MATRIX  ; v1 = varb $ 
 
Augment the Rhs from the logit model with the fitted probability from the probit model, then fit the 
logit model. 
 
 NAMELIST  ; xp = x,prob $ 
 LOGIT  ; Lhs = y2 ; Rhs = xp $ 
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Get the subvectors of the logit parameter vector and the coefficients on the fitted probability. 
 
 CALC  ; k = Col(xp) ; j21 = k+1 ; j22 = 2*k  
   ; gamma1 = b(k) ; gamma2 = b(j22) $ 
 MATRIX ; b1 = b(1:k) ; b2 = b(j21:j22) $ 
 
Compute the scalars that appear in the summations in the construction of the c and r matrices.   
 
 CREATE ; d0 = (y2=0) ; d1 = (y2=1) ; d2 = (y2=2) 
   ; e1 = Exp(b1’xp) ; e2 = Exp(b2’xp)  
   ; p0 = 1 / (1 + e1 + e2 ) ; p1 = e1 * p0 ; p2 = e2 * p0  
   ; u1 = (d1 - p1 ) ; u2 = (d2 - p2 ) 
   ; dc1 = u1*(u1*gamma1 + u2*gamma2)*den1 ; dr1 = u1*lambda 
   ; dc2 = u2*(u1*gamma1 + u2*gamma2)*den1 ; dr2 = u2*lambda $ 
 
Note the matrix constructions.  The namelist [variable] namelist format is specifically for computing 
matrices of the form of c and r in the expressions above.  We compute both matrices in two parts, 
then stack the parts. 
 
 MATRIX ; cm1 = xp’ [dc1 ] z ; cm2 = xp’ [dc2 ] z   
   ; rm1 = xp’ [dr1 ] z ; rm2 = xp’ [dr2 ] z   
   ; c = [cm1 / cm2 ] ; r = [rm1 / rm2 ]  
 
The last computation computes the corrected covariance matrix, and then displays the results. 
 
   ; t = c * v1 * c’ – c * v1 * r’ – r * v1 * c’  
   ; v2 = varb + varb * t * varb 
   ; Stat(b,v2) $ 
 
R18.5 Theory for Two Step Estimators 
 
 This section will present the theoretical results which underlie the Murphy and Topel (1985) 
estimator for the asymptotic covariance matrix of a two step maximum likelihood estimator.  These 
results are used at many points in this manual. 
 For convenience, we will temporarily suppress explicit references to data and observations. 
We consider maximum likelihood estimation of two parameter vectors, θ1 which appears in the first 
step log likelihood, log L1(θ1), and θ2 which appears with θ1 in the second step log likelihood, log 
L2(θ1,θ2).  The second step of the procedure is to maximize with respect to θ2 the conditional log 
likelihood, 

log log ,L Lc
2 2 1 2= 





∧
θ θ  
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where θ
∧

1  is the first step maximum likelihood estimator computed by maximizing logL1(θ1).  

Maximizing log L2
c with respect to θ2 while inserting the previously obtained MLE, θ

∧

1  is not 
generally equivalent to FIML estimation of θ1 and θ2 by maximizing log L2(θ1,θ2) with respect to θ1, 
and θ2 simultaneously. 

The following useful result appears in Maddala (1983, p. 243) 
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where the symbol ~
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 means ‘has the same asymptotic distribution as.’  The matrix on the left would 

be the asymptotic covariance matrix of θ
∧

2 if θ1 were not present in the log likelihood.  In order to 
generate the population analog of the Murphy and Topel estimator, we now insert two other useful 
results from ‘regular’ maximum likelihood estimation.  First,  
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Second, if θ
∧

1  is the maximum likelihood estimator of θ1 based on logL1(θ1), then  
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Insert these two expressions into Maddala’s result to obtain 
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To find the asymptotic variance, note that this expression is of the form 

θ
∧

2 - θ2  ~
a

 V2[g2 - AV1g1] 
 
where g1 and g2 are random (first derivative) vectors and V2, V1, and A are nonstochastic matrices 
(of expectations).  Thus, the asymptotic variance would be 

Asy.Var[ θ
∧

2 - θ2] =  

V2{AVar[g2] + AV1AVar[g1]V1A′ - AV1ACov[g1,g2] - ACov[g2,g1]V1A′}V2. 
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The two asymptotic variances in the expression are the negatives of the expected Hessians of the 
respective log likelihoods.  V2 is what would normally be computed as the asymptotic covariance 
matrix for 2θ̂ , but this expression corrects it for the presence of 1θ̂ .  Thus, AVar[g2] = V2

-1 and 
Asy.Var[g1] = V1

-1.  The asymptotic covariance of the two gradients is less familiar, but is estimable 
with the sample counterparts of the individual terms in the log likelihoods.  The parts, therefore, can 
be seen to be the population analogs of the Murphy and Topel estimators presented earlier.  We 
estimate V2 with the conventional (albeit incorrect) estimator of the asymptotic variance of 22θ̂ .  We 

estimate V1 with the estimator of the asymptotic covariance matrix of 1θ̂ .  Finally, we have 
estimated A with G′M and ACov[g2,g1] with G′D.  (Factors 1/n have been omitted in several places.) 
 When the second step of the estimation is a least squares regression, we can obtain some 
simplification.  The equation estimated by ordinary least squares is 
 

yi2  =  γh(xi1,θ1) + xi2′θ2 + εi1. 
 
Define the n×(1+K2) matrix Z2 = [zi′]i=1,...,n = [h(xi1,θ1), xi2′]i=1,...,n.  Let V1 denote the K1×K1 estimated 
asymptotic covariance matrix for the first step estimator of θ1 and let V2 denote the estimated 
asymptotic covariance matrix for the second step least squares estimator of [γ,θ1].  Typically, this 

would be s2 Z Z'
∧ ∧ −







1

where s2 = e′e/(n-K1-1).  The degrees of freedom correction is immaterial in what 

follows, as the results are asymptotic.  If the second step is viewed as conditional maximum 

likelihood estimation, then s2 would be replaced with 
∧

σ2 = e′e/n.  For purposes of the corrected 
covariance matrix, we would have 
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(The last is the ith term in the derivative of the log likelihood upon which the first step estimator of 
θ1 is based.)  In constructing the corrected covariance matrix,  
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Assuming that the disturbances are not heteroscedastic to begin with, the large sample behavior of 
this will be the same as that of (γ/σ2)Z′W, so we will insert this in the corrected covariance matrix 
where appropriate.  (A factor 1/n needed to make this converge has been suppressed; it will cancel 
out in the end.)  The other matrix is  
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Combining terms, then, we use 
  

V2*  = σ2(Z′Z)-1 + σ2(Z′Z)-1[(γ/σ2)2(Z′W)V1(W′Z)  

                                   - (γ/σ4)(Z′W) V1( εi i ii

n
d z '

=∑ 1
) - (γ/σ4)( εi i ii

n
z d '

=∑ 1
)V1(Z′W)] σ2(Z′Z)-1. 

A factor (1/σ4) will cancel in the second part of the equation.  If we write the summation as D′EZ 
where E = diag(εi), then the expression reduces to  
 

V2*  = σ2(Z′Z)-1 + (Z′Z)-1[γ2(Z′W)V1(W′Z) -  

             γ(Z′W)V1(D′EZ) - γ(Z′ED)V1(Z′W)](Z′Z)-1. 
 
Finally, in many situations, εi will be uncorrelated with both zi and di and with elements in zidi.′. For 
example, di might be simple multiples of elements in xi2.  In this case, the second and third terms in 
the brackets would become small in large samples, leaving for this special case, 
 

V2*  = σ2(Z′Z)-1 + (Z′Z)-1[γ2(Z′W)V1(W′Z)](Z′Z)-1 

 
= σ2(Z′Z)-1[(Z′Z) + (γ/σ)2(Z′W)V1(W′Z)](Z′Z)-1. 
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R19: Programming with Procedures 
 
R19.1 Introduction 
 
 Your first uses of LIMDEP will undoubtedly consist of setting up your data and estimating 
the parameters of some of the models described in the Econometric Modeling Guide.  The purpose of 
this chapter is to introduce LIMDEP’s tools for extending these estimators and writing new ones. 
The programs described in this and the next two chapters will also help you make more flexible use 
of the preprogrammed estimators, such as in testing hypotheses, analyzing specifications, and 
manipulating the results of the estimation procedures. 
 

R19.2 The Text Editor 
 
 The tools and methods described in this chapter will make heavy use of the editing features 
of the program.  The various menus described earlier and in the model sections to follow will be of 
limited usefulness when you are writing your own programs.  The text editor will be essential. 
 
R19.2.1 Placing Commands in the Editor 
 
 LIMDEP’s editing window shown in Figure R19.1 is a standard Windows text editor.  Enter 
text as you would in any other Windows based text editor.  You may enter as much text as you like 
on the editing screen.  The Edit menu provides standard editing features such as Cut, Copy, Paste, 
Go To, and Find.  
 

 
Figure R19.1  The Editing Window and the Edit Menu 

 
The Insert menu shown in Figure R19.2 can also be used in the editing window.  The Insert menu 
allows you to place specific items on the screen in the editing window: 
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Figure R19.2  Insert Menu for Text Editor 

 
• Insert:Command will place a specific LIMDEP command (verb) at the insertion point 

(where the cursor is).  A dialog box allows you to select the verb from a full listing (with 
explanation) of the commands. 
 

• Insert:File Path will place the full path to a specific file at the insertion point.  Several 
LIMDEP commands use files.  The dialog box will allow you to find the full path to a file on 
your disk drive, and insert that path in your command. 
 

• Insert: Text File will place the full contents of any text file you select in the editor at the 
insertion point.  You can merge command files, or create command files, using this tool. 

 

R19.2.2 Executing the Commands in the Editor 
 
 When you are ready to execute commands, highlight the ones you wish to submit. Then, you 
can execute the commands in one of two ways: 
 

• Click the GO button on the LIMDEP toolbar.  (If the toolbar is not displayed click the 
Tools:Options/View tab, then turn on the Display Tool Bar option. See Figure R19.3.) 
 

• Select the Run menu at the top of your screen.  See Figure R19.4.  When commands are 
highlighted, the first two items in this menu will be: 

° Run selection to execute the selected commands once. 
° Run selection Multiple Times to open a dialog box to specify the number of times 

to run the highlighted commands.   
 

TIP:  If you have not selected any lines in the editor, the two selections in the Run menu will be 
Run Line and Run Line Multiple Times.  In this case, the line in question is the line where the 
cursor is located. 
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Figure R19.3  Tools:Options/View Menu to Set Up Desktop 

 

 
Figure R19.4  Run Menu 
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R19.2.3 Executing Silently 
 
 SILENT execution is useful when you are running an iterative program or executing a set of 
commands several times, and the output from any particular run is not of interest.  You can turn off 
all output from all commands by placing the command SILENT in your editor file at the point where 
you want the output turned off.  For example, suppose you executed the second line in the following 
block of commands once, then the last three commands 100 times.  First, initialize the procedure:  
 
 SILENT 
 MATRIX ; bsum = Init(2,1,0.0) $ 
 
Then, compute the average of 100 sets of least squares estimates. 
 
 CREATE  ; x = Rnn(0,1) ; y = x + Rnn(0,1) $ 
 REGRESS  ; Lhs = y ; Rhs = x $ 
 MATRIX   ; bsum = bsum + .01 * b $ 
 
 This would produce a huge amount of regression output, though, in fact, only the average of 
the 100 estimators is really of interest.  By adding the SILENT command, you can suppress the 
intermediate regression output.  As shown, with SILENT, this program would generate no visible 
output save for a small trace in the status window in the top half of your output window, which will 
show you what command is executing.  The display in your output window will show you what 
command is executing at any point.  The command to resume the visible output is NOSILENT.   
 You might use this at the end of your procedure so that you can see the results that you have 
generated.  For example, the preceding simulation, in full, might be: 
 
 MATRIX ; bsum = Init(2,1,0.0) $ 
 PROCEDURE 
 CREATE  ; x = Rnn(0,1) ; y = x + Rnn(0,1) $ 
 REGRESS  ; Lhs = y ; Rhs = one,x $ 
 MATRIX   ; bsum = bsum + 1/100 * b $ 
 ENDPROCEDURE 
 SILENT 
 EXECUTE ; n = 100 $ 
 NOSILENT 
 MATRIX ; List ; bsum $ 
 
The output window shown in Figure R19.5 shows that even though 100 regressions were computed, 
the SILENT command suppresses everything save for the last command which displays the only 
results of interest 
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Figure R19.5  Results from Silenced Procedure 

 
R19.2.4 Using Text Files with the Editor 
 
Reading a File into the Editor 
 
 You can insert the contents of any ASCII file into the editor.  Just position the cursor in the 
editing window where you want the file inserted, then select Insert:Text File from the Insert menu 
and double click the file name.  You can also insert a file if you right click in the editing window.  
This opens a menu that combines parts of the Edit, Insert and Run menus. From this menu, select 
Insert Text File to place the contents of the file in your editing window.  See Figure R19.6. 
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Figure R19.6  ‘Right Click’ Menu in Editing Window 

 
You can use edit/copy and edit/paste to move anything from your word processor into the text editor 
in LIMDEP, including equations, figures, etc. For example, if you paste MathType equations from a 
Word document, they will be replicated in the editing window. However, nonASCII items, such as 
these equations, will disappear when the contents of the text editor are saved on your computer at the 
end of your session. 
 
Writing a File from the Editor 
 
 You can save the contents of the editor in an ASCII file as well. When the editing window is 
open, you can select Save or Save As from the File menu.  The next dialog box will query you 
where to save the file.  Also, when you leave the program, you will be queried if you wish to save 
the contents of the editor – this is usually called ‘Untitled 1’ unless you have opened an existing file. 
(And, note once again, if the window contains nonASCII items, these will be lost when the file is 
written in text format.) 
 
Executing a File with Run 
 
 To execute the commands in a file, select Run File from the Run menu.  (See Figure R19.4)  
Double clicking the file name will automatically execute the commands in the file. This mode is 
similar to ‘batch mode’ in that commands are read from the file and executed as they are read, but 
they are not read into the text editor at the same time, and there is no interaction between you and the 
program while this is being done. Once the file is read and the commands are executed, the results 
appear in the output window and focus returns to the text editor as LIMDEP awaits your next 
instruction.  The command files that you submit in this fashion may contain any commands or sets of 
commands that might otherwise be placed in the editor. 
 The command 
 
 OPEN  ; input  =  the name of the file $ 



R19: Programming with Procedures  R-493 

is the same as selection of the file from the Run menu.  Insert:File Path will be useful with this 
command.   The dialog box allows you to find the full path on your disk drive and insert that path in 
your command.  Also, file names should be enclosed in double quotes.  Insert:File Path does this 
automatically.  See Figure R19.7 for an application of this device. 
 

 
Figure R19.7  Using Insert File Path in the Text Editor 

 
 You may place a sequence of OPEN commands in your editing window if you wish.  The 
text editor can open as many files as desired, but only one at a time.  (Command files may not open 
other command files.) 
 
R19.3 Estimation Programs and Postprocessing 
 
 For basic estimation purposes, the data setup and model commands, 
 
 READ       to input the data, 
 CREATE      to transform the data, 
 SAMPLE, REJECT, INCLUDE, PERIOD  to define the current sample, and 
 REGRESS, PROBIT, LOGIT ...   to estimate the model, 
 
produce listings of parameter estimates, standard errors, and numerous diagnostic statistics.  But, 
every estimation program also produces an easily ‘retrievable’ set of statistics and results for you to 
use in ‘postprocessing.’  By ‘retrievable,’ we mean that the number or set of numbers is available to 
you to use, symbolically, in a subsequent command.  (This might seem routine, but, in fact, it is not 
at all.  In software which is strictly menu driven, there is usually no means by which earlier results 
can be recovered for any purpose.  This is a critical disadvantage of strictly menu driven statistical 
packages.)  For example, consider testing the hypothesis that a set of coefficients equals zero in a 
probit model, using the likelihood ratio test.  One could proceed as follows:  
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Step 1. Estimate the unrestricted model and write down the log likelihood, logLu. 
Step 2. Estimate the restricted model and write down the log likelihood, logLr. 
Step 3. Using a hand calculator, compute χ2 = -2(logLr - logLu ). 
 
If the log likelihood functions were retrievable within the program, there would be no need to 
employ outside resources such as a calculator or a pencil and paper.  Retrievability brings a second, 
less obvious benefit.  There must be some means of using the result once it is retrieved.  For the 
example above, for the log likelihoods to be useful in further computations, it must be possible to do 
the computation in Step 3 within the program.  A close look at most modern econometrics packages 
reveals that they generally provide some means of manipulating scalar results such as log likelihood 
functions, once they are computed.  This is the crucial function of ‘programmability.’  We have used 
this feature repeatedly in almost every chapter of this manual. 
 Programs do differ in the degree to which one can program and postprocess results. 
Consider, for example, carrying out a Hausman test on a subset of the coefficients estimated by two 
different estimators.  This operation would require: 
  

1. The ability to save, then retrieve both coefficient vectors and covariance matrices, 
2. The ability to extract subvectors and submatrices in a way that leaves them accessible later, 
3. The ability to manipulate simultaneously several matrices and vectors, and, 
4. A means of evaluating the significance of the test statistic. 

  
These require a considerable amount of flexibility.  LIMDEP’s programming tools, notably the 
CALC and MATRIX commands, are written to provide the maximum access to estimation results 
and the greatest ability to manipulate those results.   
 All the estimation programs in LIMDEP produce four types of retrievable results: 
 

1. Column vectors of data, in the form of predictions, residuals, or other functions, 
2. Scalar results, such as log likelihood functions, test statistics, and parameters, 
3. Matrix results, including coefficient vectors and asymptotic covariance matrices, 
4. Coefficient estimates and a set of symbolic labels that facilitate testing hypotheses. 

 
The features described in the next three sections rely heavily on this aspect of LIMDEP.  What is 
referred to above as ‘postprocessing’ is the use of these estimation results in subsequent commands 
to analyze data in the context of a particular model, an extension of the model, or some general 
modeling framework.  For example, LIMDEP provides the full set of tools needed to carry out the 
Hausman test suggested above, say, in the context of the discrete choice or nested logit model. 
 The primary commands for numeric manipulation of data and estimation results are: 
  

1. CREATE which transforms a full column of data at a time, 
2. CALC which computes single results, in standalone expressions or using earlier 

calculations, prior estimation results, columns of data, and so on, and 
3. MATRIX for manipulating estimation results or other matrix valued results. 
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CREATE is described in Chapters R4 and R5.  MATRIX and CALC are detailed in Chapters R16 
and R17. The three commands will often be used at the same time.  For example, as part of the 
analysis of the sample selection model described in Chapter E52, we require a statistic 

   δ
_

  =  (1/n)Σi λi (zi  + λi ) 

where   zi  =  α′wi for a parameter vector α and observation vector wi, and 

   λi  =  φ(zi )/Φ(zi ), where φ and Φ are the standard normal PDF and CDF. 
 
The coefficients are the estimation results from a PROBIT command.  The sequence of commands  
which involves estimation and postprocessing, are 
 
 NAMELIST ; wi = the list of names... $ 
 PROBIT ; ... ; Rhs = wi  $ 
 MATRIX ; alpha = b $    retrieve the coefficients 
 CREATE ; zi = z’alpha ? compute the variable 
   ; lambdai = N01(zi)/Phi(zi) 
   ; deltai = lambdai * (zi + lambdai) $ 
 CALC  ; deltabar = Xbr(deltai) $ 
  
(There are somewhat shorter ways to obtain this result.)  This simple example suggests what most of 
your postprocessing programs will look like.  To continue the example, having computed deltabar, 
you might use it (as we do) in a matrix result such as 
 
   V  =  (s2 +  βk

2 δ )[X′X]-1. 
 
The commands could be 
 
 NAMELIST ; x = ... $ 
 CALC  ; k = Col(x) $   number of columns 
 REGRESS ; ... $    computes retrievable coefficient vector, B. 
 MATRIX ; v = {ssqrd + b(k)^2 * deltabar} * <X’X> $ 
  
and, so on.  Note, once again, how results are carried ‘downstream’ into subsequent commands. 
 
R19.4 Procedures 
 
 LIMDEP operates primarily as an ‘interpreter.’  This means that commands are submitted 
one at a time, and carried out as they are received.  This is as opposed to a ‘compiler’ which would 
assemble a number of commands in some fashion, translate them into its own language, then execute 
them all at once.  ‘Batch’ mode, or batching commands provides a middle ground between these, 
whereby you can submit groups of commands from input files or as streams of commands from the 
editor or in a procedure.  If the use of this is merely to submit a sequence of commands with a small 
number of keystrokes (for which LIMDEP provides several methods), then batching provides 
nothing more than a convenience.  But, LIMDEP also provides batch like capabilities which make it 
operate more like a compiler than an interpreter.  Consider the logic of an iterative program: 
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Step 1. Initial setup. 
Step 2. Compute a result based on current information and previous results. 
Step 3. Decide whether to exit the iteration or return to Step 2, and act on the decision. 
  
In order to carry out such a sequence of commands, you must have several capabilities available.  
First, results of Steps 1 and 2 must be retrievable.  Second, it must be possible not only to submit the 
set of commands in Step 2 in a batch mode, it must be possible to do so repeatedly.  Step 3 may call 
for many repetitions of the same set of commands.  Here is a trivial example: 
 
Step 1. CALC  ;  i = 0 $ 
Step 2. CALC  ;  List ;  i = i + 1 $ 
Step 3. If i <  10, go to Step 2. 
 
If we execute this program, it will display the numbers 1 to 10.  The problem of retrievability is 
obviously solved, assuming, of course, that CALC can compute and define something called ‘i’ in 
such a way that later on, i will exist.  (Certainly it can; see the previous chapter.)  The second step 
will be carried out 10 times.  Obviously, you could simply be the program.  That is, type the 
command and look at i.  If i is less than or equal to 10, type it again.  The point of this discussion is 
to devise a way to make LIMDEP do the repetitions for you. 
 As noted, LIMDEP provides several methods of batching commands.  The example above 
could be handled as follows: 
 
 CALC  ; i = 0 $ 
 PROCEDURE 
 CALC  ; i = i + 1 $ 
 ENDPROCEDURE 
 EXECUTE ; n = 10 $ 
 
This example initializes i, stores the updating command, then executes the stored command 10 times.  
There are other ways to do this, as well.  For example, a shorter way to display the numbers from 1 
to 10 is 
 
 PROCEDURE 
 CALC  ; List ; i $ 
 ENDPROCEDURE 
 EXEC  ; i = 1,10 $ 
 
Yet another way to proceed would program the steps literally.  This would be 
  
 CALC  ; i = 1 $ 
 PROCEDURE 
 LABEL  ; 100 $ 
 CALC  ; List ; i ; i =  i + 1 $ 
 GO TO  ; 100 ; i <= 10 $ 
 ENDPROCEDURE 
 EXECUTE 
  
This procedure is only executed once, but it contains a loop within it.  It displays, then updates i 10 
times.   
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 The device used in each case (and generally) will be the ‘procedure.’  Procedures such as 
these provide a convenient way to store commands.  The EXECUTE command offers numerous 
options for how to carry out the procedure and how to decide to exit from the procedure. 
 LIMDEP is highly programmable.  As shown in numerous examples already, and throughout 
the Econometric Modeling Guide, you can arrange long sequences of commands to perform intricate 
analyses.  Procedures, which are similar to ‘subroutines’ or small programs greatly extend this 
capability.  Procedures will allow you to automate new estimators that are not already present in 
LIMDEP, and to compute certain test statistics that are not routine parts of the standard output.  The 
remainder of this chapter will show you how to write and execute procedures. 
 
R19.5 Defining and Executing Procedures 
 
 To store a set of commands you begin with the command 
 
 PROCEDURE or just PROC 
  
This tells LIMDEP that the commands that will follow are not to be executed at the time, but just 
stored for later use.  The end of a procedure is indicated with 
 
 ENDPROCEDURE or just ENDPROC  
 
Once a set of commands has been entered as a procedure, you can execute it with 
 
 EXECUTE or just EXEC 
  
The EXECUTE command has a number of options which are discussed below. 
 A procedure can be entered at any point, just by submitting it from the editing window.  For 
example 
 
 CREATE ; x = Rnn(0,1) ; y = x + 1 + Rnn(0,2) $ 
 PROC 
 SAMPLE ; first - last $ 
 REGRESS ; Lhs = y ; Rhs = one,x $ 
 ENDPROC 
 CALC  ; first = 1 ; last = 10 $ 
 EXEC 
 
At the time the procedure is created, the sample limits might not exist.  The procedure is defined, the 
sample limits are set, and, finally, the procedure is executed.  The procedure, in turn, sets the sample 
and computes a regression. 
 You can also load a procedure from an input file.  The file must contain the command 
PROCEDURE at the point at which the procedure is to begin, and ENDPROCEDURE at the end 
of the procedure.  These might be the first and last commands in the file if you want only to input a 
procedure.  If you OPEN such an input file, it will simply be loaded into the procedure buffer, 
exactly as if you had typed it.  But, remember, the PROCEDURE cannot OPEN any files itself. 
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 The following apply to procedures: 
 

• The procedure loader is not a compiler.  The commands you type are not checked in any way 
for validity.  If you type nonsense, LIMDEP will dutifully store it for you.  The problems 
will show up when you try to execute the procedure. (But, see below, procedures can be 
edited.) 
 

• A procedure may consist of no more than 10,000 nonblank characters.  When the commands 
are stored, the embedded blanks are removed and comments are stripped off.  Still, it may 
pay to use short names and always use the four letter convention for model commands. 
 

• The procedure may contain up to 50 commands, but remember that you can combine many 
CREATE, CALC, or MATRIX operations in a single command by separating them with 
semicolons.  
 

• Only one active procedure can be defined at a time.  If you issue a PROCEDURE 
command, any procedure which existed before is immediately erased.  But, you can store up 
to 10 more procedures in a library, which is described in the next section.  
 

• Project files (.lpj files) always contain not only the active procedure, but also any procedures 
that you have stored in your procedure library.  They become part of the project. 

 
R19.5.1 The Procedure Library 
 
 The preceding shows how to store an ‘active’ procedure that you can execute with the simple 
command EXECUTE.  We denote this the ‘current procedure.’  You can also store up to 10 
additional procedures, by name, in a library of procedures.  Use 
 
 PROC =  procname $ 
  
to begin storage of a named procedure.  The named procedure is then executed with 
  
 EXECUTE  ; Proc = procname ; ... $ 
  
(There are other options available for the EXECUTE command.)  Therefore, you can have up to 11 
procedures active at any time, the current procedure and up to 10 library routines.  The current 
procedure can be invoked with the EXECUTE command, while the library procedures are executed 
by name.  You will find the names of library procedures in your project window, as shown in the 
example below. 
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Figure R19.8  Project Window with Procedure Library 

 
R19.5.2 Executing a Procedure 
 
 The simplest means of executing a procedure you have stored is the command 
  
 EXECUTE 
  
This will carry out the set of commands you have stored exactly once.  At the end of the last 
command, the message ‘Maximum repetitions’ will appear on your screen.  (You have requested one 
repetition.)  
 You can EXECUTE a procedure as many times as you like, just by repeating this command.  
A library procedure is executed with 
 
 EXECUTE  ; Proc = procname $ 
  
NOTE:  When you execute a library procedure, it becomes the current procedure.  Thus, if you want 
to execute it again, the ‘; Proc = procname’ is not necessary. 
  
The other options for executing procedures in different ways are described in the following sections. 
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R19.5.3 Repeated Execution of a Procedure 
 
 There are several options available for the EXECUTE command that are based on use of the 
PROCEDURE as an iterative routine, such as that shown in the examples below.  Repeated 
execution is obtained with 
 
 EXECUTE  ; n = number of repetitions $  
 
The procedure will be executed the specified number of times unless some other method of exiting it 
is invoked.  For example, consider the following: 
  
 CALC   ; count = 0 $ 
 PROC 

 CALC   ; count = count + 1 $ 
 ENDPROC 
 EXECUTE  ; n = 10 $   

  
This will display the numbers from one to 10, then exit on maximum repetitions of 10. 
 
R19.5.4 Executing a Procedure Silently 
 
 Procedures are often used to produce a final result with many intermediate computations.  
You can suppress intermediate output with 
 
 EXECUTE   ; Silent  $ 
  
This suppresses all output.  When the procedure is completed, the SILENT switches are turned off. 
You can then use MATRIX, CALC, or whatever other means are necessary to inspect the desired 
final result from the procedure.  You might use this in an experiment in which you fit the same 
model many (possibly thousands of) times and accumulate a statistic from the execution.  For 
example, you might investigate whether the mean of a certain statistic is zero with the following 
procedure. The procedure is general – you could replace the application specific part with some 
particular estimation problem. It accumulates a result, then uses the central limit to test the 
hypothesis that the statistic being computed is drawn from a distribution with mean zero.  
 
 CALC    ; meanb = 0 ; sb = 0 ; nrep = 1000 $ 
 PROC 
    … generate the data set for the model command that computes the statistic 
 CALC  ; meanb = meanb + the statistic 
   ; sb = sb + the statistic ^2 $ 
 ENDPROC 
 EXECUTE   ; Silent ; n = nrep $ 
 CALC  ; meanb = meanb / nrep 
   ; sb = Sqr((sb - nrep * meanb^2)/(nrep - 1)) 
   ; List  ; z = Sqr(nrep) * meanb/sb  $ 
 



R19: Programming with Procedures  R-501 

The procedure estimates the same model 1,000 times.  The statistic of interest is z, computed at the 
last line.  Since the model results are not useful, we use ; Silent to suppress them.  The number of 
repetitions is specified generically in a scalar named nrep, so if a larger or smaller sample is desired, 
it is necessary only to change the fixed value in the first line. 
 
R19.5.5 Execution with a Scalar Parameter 
 
 You can execute a procedure while carrying a single value of a parameter into the procedure.  
This would be useful for exploratory work.  The command structure is 
  
 EXECUTE  ; name = value $ 
  
‘Name’ is created as a scalar which can be used (but not changed) by CALC while the procedure is 
executing.  For example, the following computes Box-Cox regressions for different values of the 
transformation parameter: 
  
  PROC 
 BOXCOX  ; Lhs = y ; Rhs = ... ; lambda = ll $ 
  CALC   ; List ; ll $ 
  ENDPROC 
  EXECUTE  ; ll = .35 $ 
  EXECUTE  ; ll = 1.294 $ 
 
and so on.  This is a device that allows you to experiment with model specifications.  For example, 
the following varies the correlation parameter in a bivariate probit model: 
 
 NAMELIST  ; x1 = ... first Rhs for bivariate probit model 
   ; x2 = ... second Rhs for bivariate probit model $ 
 CALC  ; k1 = Col(x1) ; k2 = Col(x2) ; rho12 = 0 $ 
 PROC 
 BIVARIATE PROBIT ; ... variables setup 
   ; Rst = k1_b , k2_c , rho12 $ 
 ENDPROC 
 EXECUTE ; rho12 = value $ 
 

R19.5.6 Query for a Parameter to Use in the Procedure 
 
 Your procedure may use a scalar value which you would like to vary according to the output 
you see on your screen.  Or, you may wish to experiment with different oddly spaced values. For 
example, you might wish just to execute the procedure with different values of the scalar.  The ridge 
regression estimator given in an example below depends on a scalar ‘r’ which we supply to the 
routine each time it is carried out.  This option operates as follows: 
 You give a value to the scalar you wish to use.  Presumably this value appears in your  
procedure. 
 

 CALC   ; name  =  value $ 
 
Your command is: 
 
 EXECUTE  ; Query = name $  
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The procedure is executed first with the value set by the CALC command.  When it is finished, you 
are queried for the parameter.  Figure R19.9 shows operation of this feature.  The number of periods 
for the Newey-West estimator is given by the scalar numpds.  The value of this is set to four, then the 
procedure is executed.  The regression is computed with numpds = 4 (output from the regression is 
not shown).  After execution, a subsidiary window opens which queries you for a new value of 
numpds.  The current value is shown in the window.  At this point, if you wish to execute the 
procedure with a new value of numpds, you would change the value in the window and click OK.  If 
you wish to exit the procedure, instead, you would click Cancel. 
 

 
Figure R19.9  Procedure with Query for a Parameter 

 
 As another simple application, we consider a procedure to compute a ridge regression 
estimator, 
    br  =  (X′X + rI)-1X′y. 
 
Various ancillary computations surrounding the estimator, including the appropriate variance matrix, 
are discussed in Judge, et. al (1985).  Here we show only the computation of the slope vector for 
various values of r.  (The moment matrices are centered but not scaled.) 
 
 NAMELIST ; x = list of variables ; y = Lhs variable $ 
 CALC  ; r = 1 ; k = Col(x) $ 
 MATRIX ; xx = x’[1]x ; xy = x’[1]y $ 
 PROC 
 MATRIX  ; xxr = xx + r * Iden(k) ; br = < xxr > * xy $ 
 ENDPROC 
 EXECUTE ; Query = r $ 
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R19.5.7 Conditional Execution 
 
  The EXECUTE command may be made conditional.   The construction is 
 
  EXECUTE  ; ... (all other options) ; While condition $ 
 
or EXECUTE  ; ... (all other options) ; Until condition $ 
 
The condition is any valid condition for a LIMDEP logical command.  (See Section R19.8.1.)  For 
example: 
 
 EXECUTE  ; Proc = integral(i) ; While i < 10 $ 
 
 or EXECUTE  ; Proc = integral(i) ; Until i*(j+r) > 1234.45  $ 
 
 In Figure R19.10, we have modified the regression example once again, this time to request 
the program to compute the Newey-West estimator for several values of numpds.  In the new 
procedure, the regression is computed, then numpds is incremented. 
 

 
Figure R19.10  Conditional Execution of a Procedure 

 
NOTE:  In this example, numpds is set to four then the procedure is executed.  As it is, numpds is 
incremented.  The condition is checked before the procedure is executed.  As such, for this example, 
the regression is computed for numpds = 4, 5, 6, 7, 8, and 9, but not for numpds = 10. 
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 Here is a second application.  LIMDEP does not contain a built in estimator for Powell’s 
(1986) symmetrically trimmed censored least squares estimator.  But, the estimator involves only 
simple least squares computations and is easily programmed using a procedure with a conditional 
exit rule.  The program is shown in Figure R19.11.  This is generic.  The only changes needed for a 
different application are the definitions of the namelist, x, and variable, y. 
 

 
Figure R19.11  Procedure for SCLS Estimator 
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R19.5.8 Defining Exit (Convergence) Criteria 
 
 Procedures often involve iterations.  For this sort of computation, you will need to automate 
the decision to continue or terminate execution.  You can easily construct your own exit tests, but 
there are three ‘test criteria’ available internally.  In an iterative procedure, one normally repeats a set 
of commands or computations, each time updating some variable(s), until some test criterion is met.  
For purposes of writing such a program, you can use the threshold settings in the EXECUTE 
command and compute the test values with MATRIX commands as follows: 
 

1. Use EXEC to define up to three threshold values with the command  
 

 EXEC  ; t(1) = value ; t(2) = value ; t(3) = value $  
 
Use as many of the three as desired.  ‘Value’ may be any fixed value or the current contents 
of any scalar. 
 

2. Compute the exit values in MATRIX with any of 
 

 MATRIX  ; c(j) = Norm(b1) 
        ; c(j) = Chng(b1) 
          ; c(j) = Chng(b1,b2) 
          ; c(j) = value 

 
for j = 1, 2, or 3.  b1 and b2 must be vectors.  The functions shown above are 

  
 Norm   =  Euclidean norm of the vector. 
  Chng(b1)   =  maximum of the absolute values of b1i. 
  Chng(b1,b2) =  maximum absolute value of (b1i - b2i)/b1i, or 1000 if b1i = 0. 
 
 These test criteria can be used in addition to the ; n = maximum specification.  The EXEC 
command now operates as follows: 
 
Step 1. Execute procedure. 

Step 2. If repetitions = max, exit. (Be sure to set n; the default is one, which is assumed here if  you 
do not reset it.) 

Step 3. If c(j) < t(j) for any j for which both have been defined, then exit procedure. 

Step 4. Else, go to Step 1. 
 
For an example, consider estimation of the Poisson regression model by Newton’s method.  The 
Poisson model and the necessary formulas are discussed in Chapter E41.  Newton’s method for the 
Poisson model is defined by 
 
   bk+1  =  bk  +  [X′ΛX]-1X′[y - vec(Λ)], 
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where ‘k’ indexes iterations, λi = exp(b′xi), Λ is the diagonal matrix of λis, and [y - vec(Λ)] is a 
vector of residuals yi - λi.  The matrix product is taken as the update vector for purposes of our 
iteration.   
 The following procedure and execution would estimate the model (an example is included to 
demonstrate the execution): 
 
 SAMPLE ; 1-1000 $ 
 CALC  ; Ran (12345) $ Set seed so you can replicate this. 
 CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; y = Rnp(4) $ 
 NAMELIST ; x = one,x1,x2 $ 
 CALC  ; k = Col(x)  $ 
 MATRIX ; beta = Init(k,1,0) ; delta = beta $ Just to start. 
 PROC 
 MATRIX ; beta = beta + delta $ 
 CREATE ; l = Exp(x’beta) ; e = y - l $ 
 MATRIX ; g = x’e ; delta = <x’[l]x> * g 
   ; List ; c(1) = Norm(delta) $ 
 CALC  ; List ; Sqr(delta’delta) $ 
 ENDPROC 
 EXECUTE ; n = 25 ; t(1) = .00001 $ 
 
The output is as shown below. The procedure updates the parameter vector, then computes the 
update vector for the next iteration. The EXECUTE command monitors the vector delta.  When the 
norm of delta is small enough or 25 iterations are executed, the procedure is ended.  The listing by 
CALC shows the value of the convergence rule at each iteration.  The last one shown does indeed 
show that convergence has been reached. 
 
[CALC] *Result*=      2.9938850 
[CALC] *Result*=       .7995319 
[CALC] *Result*=       .5546264 
[CALC] *Result*=       .2257010 
[CALC] *Result*=       .0303004 
[CALC] *Result*=       .0005026 
[CALC] *Result*=       .0000002 
Exit criterion 1 met. 
 
Query for Exit from Iterations 
 
 You may request simply to be queried whether to exit or not each time the procedure is 
carried out.  In this case, n is ignored, so the command should be simply 
 
 EXECUTE  ; Query $ 
  
It is not necessary to set the thresholds except for convenience.  Each time the procedure is carried 
out, the current values of C(1)-C(3) and T(1)-T(3) are displayed in your output window, and you are 
asked whether to reenter the iteration or to exit.  Presumably the decision would rest on some 
previous results, including C(1), C(2), and C(3) if you compute them. 
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 Figure R19.12 continues the preceding example by using EXECUTE ; Query $ to run the 
procedure. The threshold values (which we have not set, so they are zero) are displayed in the output 
window.  Then, a dialog comes up to request you to close the procedure or run it again. 
 

[CALC] *Result*=      2.9938850 
+-----------------------------------+ 
|Test values for exit from procedure| 
|# Current Value    Threshold Value | 
|1     2.99389            .00000    | 
|2      .00000            .00000    | 
|3      .00000            .00000    | 
+-----------------------------------+ 

 

 
Figure R19.12  Query for Exit from a Procedure 

 
R19.5.9 Parameters and Character Strings in Procedures 
 
 Procedures may have parameters.  Define the procedure as follows: 
 
 PROC = name (parameter1, ..., up to 15 parameters) $ 
Then,  
  EXECUTE  ; Proc = name (actual1, ...) $ 
 
The actual arguments are substituted for the dummy parameters at execution time.  This is like a 
subroutine call, but more flexible.  For execution, the passed parameters are simply expanded as 
character strings, then the procedure, after creation in this fashion, becomes the current procedure.  
For example, 
 
 PROC = Dstats (x) $ 
 DSTAT  ; Rhs = x $ 
 ENDPROC 
 NAMELIST ; zbc = ... a list of variables 
   ; q123 = a different list of variables $ 
 EXEC   ; Proc = Dstats (zbc) $ 
 EXEC   ; Proc = Dstats (q123) $ 
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Any string may be substituted anywhere in the procedure.  This will allow great flexibility.  For 
example, even models can be changed with the procedure. 
  
 PROC = Modeler (model) 
 Model   ; Lhs = y ; Rhs = one,x $ 
 ENDPROC 
 EXEC   ; Proc = Modeler (probit) $ 
 EXEC   ; Proc = Modeler (logit) $ 
 
Note the following for this modeler routine: 
 

• Your procedures may have up to 15 parameters in the list. 
 

• The number of parameters in the EXEC command is checked against the number in the 
procedure definition at execution time.  But, it is not possible to check the consistency of the 
parameters in the two lists.  Thus, you can’t be prevented from sending a bad command to 
the Modeler routine above. 

 
 With this device, you are free to pass variables, namelists, matrices, model names, or any 
other entities you require.  Also, strings can vary in type from one execution to another, though you 
must be careful to avoid causing conflicts.  For example, assuming that t is a scalar in the named 
procedure, one might use 
 
  PROC = name (t) $ 
then, 
 EXEC   ; Proc = name (x) $ 
 EXEC   ; Proc = name (1.2345) $ 
 
which would not cause a conflict. 
 Such procedures would generally be useful for creating prepackaged subroutines.  For 
example, the following procedure computes LM statistics for a given model using two sets of 
variables: 
 
 PROC = Lmtest (model, y, x1, x2) $  
 Model   ; Lhs = y ; Rhs = x1 $ 
 MATRIX  ; k2 = Col(x2)  
   ; b2 = k2 _ 0 $ 
 Model  ; Lhs = y ; Rhs = x1,x2 
   ; Start = b, b2 ; Maxit = 0 $ 
 ENDPROC 
 
You could execute this with something like the following: 
 
 NAMELIST ; v1 = one,v1a,ddd 
   ; v2 = ll,g123 $ 
 EXEC  ; Proc = Lmtest (probit, y, v1, v2) $ 
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Macros – The STRING Command 
 
 The STRING command provides another way for you to set up variable parameters in your 
procedures.  This feature allows you to define a character string with a name.  This may save you 
some typing.  But, you can also use this command to operate your procedures more like true 
subroutines.  LIMDEP keeps three cells for you to use to store character strings with up to 80 
characters each.  The command to store a character string is 
 
 STRING ; stj = any character string $ 
 
where ‘j’ is 0, 1, or 2.  The only rule that applies is that the string may not be used to give the 
primary verb of a command or the semicolon which follows it.  For example, 
 
 STRING ; st1 = dstat ; Rhs = * $ 
 
is not a valid command, because DSTAT is a primary verb (model name).  But, you might use 
 
 STRING ; st1 =  Rhs = * ; Output = 3 $ 
 
The string is inserted into a command by enclosing its name in double quotes.  To continue the 
example, following the preceding, you could use 
 
 DSTAT ; “st1” $ 
 
Strings can make procedures work like subroutines, as in 
 

PROC 
DSTAT ; “st0” $ 
ENDPROC 
STRING ; st0 = Rhs = c $ 
EXECUTE 
STRING ; st0 = Rhs = y $ 
EXECUTE 
 

This is essentially the same as using a parameter list as shown at the beginning of this section.  The 
advantage would be for cases in which you want to modify longer character strings, rather than just 
names or values.   
 
R19.5.10 Local Variables in Procedures 
 
 Your procedures may contain any commands and use any variables, matrices, etc. that exist 
in your project.  One implication of this flexibility is that to this point, all entities that you use in 
your procedures are ‘global.’  What you compute within your procedure affects your project after the 
procedure is completed.  For example, if your procedure contains the command CALC ; rho = .7 $, 
when the procedure is completed, the value of the scalar rho in your project will equal .7.  You may 
be interested in creating scalars, matrices or variables that are ‘local’ to your procedure.  These 
would typically be intermediate computations that you are not interested in retaining after the 
procedure has been executed.    
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You can declare local variables in a procedure as follows: 
 
 PROCEDURE $ 
 LOCAL ; Scalar = a set of names for the scalars you want to use  
   ; Matrix = a set of matrix names for matrices you want to use 
   ; Variable = a set of variable names that you wish to use $ 
 … commands that use these names and any others … 
 ENDPROCEDURE $ 
 EXECUTE  ; … any options $ 
 
You may use any or all of the three type declarations in the LOCAL command.  The entities that 
they define will exist while the procedure is being executed, but they will disappear after the 
procedure is finished. 
 
Note the following parameters for the LOCAL command: 
 

• The names that you declare may be new names that do not already exist in the project.  In 
this case, these scalars, matrices or variables will vanish after the procedure is executed. 

 
• The names that you declare may be the same as entities that already exist in the project.  In 

this case, the local entity will use that name temporarily, but when the procedure is finished, 
the existing entity is restored.  For example, this procedure 

 
  CALC  ; List ; a1 = pi $ 
  PROCEDURE $ 
  LOCAL ; Scalar = a1 $ 
  CALC ; List ; a1 = Sqr(pi) $ 
  ENDPROC $ 
  EXECUTE $ 
  CALC  ; List ; a1 $ 
 

sets the scalar a1 equal to π.  Within the procedure, a1 is set equal to the square root of π.  
When the procedure is finished, a1 is still equal to its global value, π.  The visible results of 
this procedure are 

 
   [CALC] A1      =      3.1415927 
  [CALC] A1      =      1.7724539 
  [CALC] A1      =      3.1415927. 
 

• The procedure may also use global names.  If they are not declared to be local to the 
procedure, then scalars, matrices and variables that are created within the procedure will 
exist when the procedure is finished. 
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R19.6 Looping with the EXECUTE Command 
  
 The EXECUTE command may be set up in the form of a ‘DO LOOP.’  The syntax would be 
 
 EXECUTE  ; name = first value, last value, increment ; ... other options $ 
  
The command works as follows:  When you give this command, ‘name’ is created as a scalar in your 
calculator work area.  It may already exist or you can create a new scalar this way.  The loop 
parameters may be any values, real or integer, positive or negative.  For example,  
  
   ; rho1 = 0 , 1, .1  
  
creates scalar rho1 and moves it from zero to one in steps of 0.1.  In this case, the procedure would 
be executed 11 times.  You can also decrement, as in   
  
   ; index = 100.781, 20.11, -21.5,  
 
which produces five repetitions.  The increment may be omitted, in which case, it is assumed to be 
one.  Thus, for example,  
 
 EXECUTE  ; i = 1, 10 $   
 
Before executing, LIMDEP determines the number of repetitions using  
 
   repeat count  =  Min(1, |last - first| / |increment|) 
  
so the procedure is always executed at least once.  This setup is similar to  
 
 EXECUTE  ; n = repeat $    
 
except that the looping form creates a scalar entity which you can use in your calculations. 
 The loop index is a scalar which you may use in other commands.  But, you may not change 
it with any other command.  It is ‘read only’ while the loop is executing.  Thereafter, you may 
change it in any way you like. 
 
R19.7 Looping Over an Indexed Set of Variables in a 
Namelist 
 
 Variables in namelists may be indexed.  The format is listname:index to indicate the 
‘indexth’ variable in the list.  For example, in 
  
 NAMELIST ; x = yabc,ydef,y123 $ 
  
x:1 is yabc, x:2 is ydef, and, x:3 is y123.  This indexing scheme can be used in any command at any 
point in a command stream.  It is most likely to be useful in a procedure, however.  
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 For example, the following procedure takes the logs of up to 100 variables: 
 
  NAMELIST ; x = ... $ 
 PROC 
 CREATE   ; z : i = Exp(x : i) $ 
 DSTAT       ; Rhs = x : i, z : i $ 
 ENDPROC 
 CALC  ; x = Col(x) $ 
 EXEC  ; i = 1,k $ 
 
A list of variable names may also be used to control execution of a block of commands, as in the 
block below. 
 
 PROCEDURE 
 
Commands use variable : loopname. 
 
 ENDPROC 
 EXECUTE  ; : loopname = a list of variables $ 
 
This could be useful, for example, for estimating the same model with a set of dependent variables.  
For example: 
 
 PROCEDURE 
 REGRESS  ; Lhs = : shares ; Rhs = x $ 
 ENDPROC 
 EXECUTE  ; : shares = capital,labor,fuel $ 
 
R19.8 Flow Control within Procedures 
 
 The ability to construct loops is one of the most important features of any programming 
language.  The next two sections will give a large amount of detail on how to construct loops and 
iterative programs.  In this section, we focus on one set of commands and techniques.  The LABEL 
and GO TO commands, which we used in Section R19.4, allow the creation of multiple and nested 
loops. Programs may contain multiple labels and several loops, which may be nested or executed one 
after the other.   
 The basic construction is: 
  
 PROCEDURE 
 ... some block of commands ... 
 LABEL  ; number $ 
 ... some other block of commands ... 
 GO TO  ; number ; logical condition $ 
 ENDPROCEDURE 
 EXECUTE 
  
The GO TO instruction is carried out if the logical condition is true.  If no condition is given, then 
the GO TO is unconditional – it is always carried out. 
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R19.8.1 Logical Expressions 
 
 The logical condition can relate any scalar entity to any other scalar entity (i.e., scalars, 
numbers, or matrix elements) and can be as complex as needed to carry out the desired task.  The 
structure to use for this part of the command is the same as that for CREATE (Section R4.2.2), 
CALC (Section R17.4), MATRIX (Section R16.2.3), and REJECT/INCLUDE (Section R7.4). 
Logical expressions are any desired expressions that provide the condition for the transfer of control 
to be carried out (or not).  They may include any number of levels of parentheses and may involve 
mathematical expressions of any complexity involving named scalars, matrix or vector elements, and 
literal numbers.  The operators are: 
  
 Math and relational: +, -, *, /, ^, >, >=, <, <=, =, #. 

 Concatenation:  & for ‘and’, | for ‘or.’ 
  
A simple example is: 
 
 GO TO  ; 100 ;  x > 0 $ 
  
For a second example with no obvious interpretation: 
 
 GO TO  ; 100 ;  (r / s)*((c + 7)*(x + 2) * y^2 + z^3) > 1  |  x + y < 0 $ 
  
The hierarchy of operations is  ^,  (*,/) (+,-), (>,>=,<,<=,=,#), &, |.  Operators in parentheses have 
equal precedence and are evaluated from left to right.  When in doubt, add parentheses.  There is 
essentially no limit to the number of levels of parentheses.  (They can be nested to about 20 levels.) 
 It is important to note that in evaluating expressions, you get a logical result, not a 
mathematical one.  The result is either ‘true’ or ‘false.’  An expression which cannot be computed 
cannot be true, so it is false.  Therefore, any subexpression which involves division by zero or a 
negative number to a noninteger power produces a result of false.  But, that does not mean that the 
full expression is false.  For example:  ‘x / 0 > 0 | x > y’ could be true.  The first expression is false 
because of the zero divide, but the second might be true, and the OR in the middle returns true if 
either expression is true.  Also, we adopt the C++ language convention for evaluation of the truth of 
a mathematical expression.  A nonzero result is true, a zero result is false.  Thus, your expression 
need not actually make logical comparisons. For example:  Suppose x is a scalar which might be 0 or 
1.  GO TO ; 100 ; x $ will make the transfer if x equals 1 and not if x equals 0.  Therefore, this is the 
same as GO TO ; 100 ; x  #  0$ 
 
NOTE:  Using variables in the logical expressions is permissible.  But, except for CREATE, 
REJECT, and INCLUDE, which are being evaluated during a loop through your data set, the values 
taken by variables will be ambiguous, and the results will be unpredictable.  For example, if x is a 
variable, GO TO ; 974 ; x > 1 $ is likely to behave strangely since the value taken by x is generally 
defined only by the last operation to use your data. 
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R19.8.2 Loops within Procedures 
 
 There are two commands which can be used to transfer control in procedures and in editor 
files.  These are 
 
 LABEL   ;  label number  $ 
and  GO TO   ;  label ; condition  $ 
  
As discussed earlier, these commands can be used to add flexibility to procedures.  One usage would 
be to create loops within procedures, or even loops within loops.  The following example (rather 
clumsily) computes recursive residuals for a set of observations.  The procedure itself would be 
executed once, but the loop within the procedure is controlled by the LABEL and GO TO commands. 
 
 NAMELIST   ; x = ... $ 
 PROC = recrsive $ 
 CREATE ; recrsiv = 0 $ 
 CALC   ; i = k $ 
 LABEL  ; 100 $ 
 SAMPLE ; 1 - i $ 
 MATRIX ; bt = Xlsq(x,y) $ 
 CALC  ; i = i + 1  
 SAMPLE ; i $ 
 CREATE ; recrsiv = y - x’bet $ 
 GO TO  ; 100 ; i <= N $ 
 ENDPROC 
  
This routine computes a set of recursive residuals for observations k+1 to n in a sample.  Note that 
the statements which control the loop are the initial value of i, the incrementing of i and the GO TO 
statement. 
 
Examples 
 
 Consider the following example: 
  
 PROCEDURE 
 CREATE ; recrsiv = 0 $ 
 CALC   ; i = 2  
   ; nobs = n $ 
 LABEL  ; 100 $ 
 SAMPLE ; 1 - i $ 
 MATRIX ; bt = Xlsq(one,x,y) $ 
 CALC   ; i = i +1  
   ; laste = y(i) - bt(1) - bt(2)*x(i) $ 
 CREATE ; recrsiv(i) = laste $ 
 GO TO  ; 100 ; i  <= nobs $ 
 ENDPROCEDURE 
 EXECUTE 
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This routine computes a set of recursive residuals for observations 3 - n in a sample.  Note again that 
the statements which control the loop are the initial value of i, the incrementing of i and the GO TO 
statement. 
 As shown above, the loop could have been controlled with a single EXECUTE command. 
But, this new structure allows much greater flexibility.  First, the transfer may be forward or 
backward in the command block.  Thus, one can execute any block of commands conditionally, by 
bypassing it or not depending on a condition.  Second, there may be any number of transfers (up to 
10 altogether) in the code block, and these can be nested.  For example: 
 
 PROCEDURE 
 CALC   ; i = 0 $ 
 LABEL  ; 10 $ 
 CALC   ; i = i + 1 $ 
 CALC   ; j = 0 $ 
 LABEL  ; 20 $ 
 CALC   ; j = j + 1 $ 
 MATRIX  ; matrix (i,j) = pi $ 
 GO TO  ; 20 ; j  < 5 $ 
 GO TO  ; 10 ; i  < 5 $ 
 ENDPROCEDURE 
 EXECUTE 
  
This  loads a 5×5 matrix with π one cell at a time (perhaps a bit clumsily, since MATRIX ; matrix = 
Init(5,5,pi) $ does the identical job). 
 Although our examples have been loop constructions, the GO TO command can operate on 
any scalar comparison.  Thus, one might compute a regression, then do some followup computations 
if the R2 is greater than .5, and so on. 
 
R19.9 Looping with DO Statements 
 
 You may use four forms of DO statements as alternatives to the LABEL and GO TO 
commands in the editor.  The DO command is used to request repetition of a block of commands.  It 
has four forms.  The first is: 
 
 PROCEDURE 
 DO FOR  ; label ; index = a1[,a2,[a3]] $ 
    ... any block of commands ... 
 ENDDO   ; label $ 
 ENDPROCEDURE 
 EXECUTE 
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The label is any character string, name, or number, up to eight characters. This is carried out as follows: 
 

• If only a1 is given, the block of commands is carried out once.  For example, 
 
 DO FOR  ; Ar1model ; rho = .5 $ 
 ... 
 ENDDO   ; Ar1model $  
 

• If a1 and a2 are given, the block of commands is carried out once for each of the values a1, 
a1+1, a1+2, ..., until the incremented value is greater than or equal to a2.  Typically, these 
would be integers, as in 
 

 MATRIX  ; a = Init(10,1,0)$ 
 DO FOR  ; 10 ; i = 1,10 $ 
 MATRIX  ; a(i) = i $ 
 ENDDO   ; 10 $ 

 
• If a3 is given, the execution is the same as in the preceding example except a3 is used as the 

increment instead of 1.  For example, the following computes the Box-Cox model for 
 
 LAMBDA  = -1, -.9, ..., .9, 1.0. 
 DO FOR  ; bc ; m = -1,1,.1$ 
 BOXCOX  ; ... ; lambda = m $ 
 ENDDO   ; bc $ 
 
Three other forms of the DO command are as follows: 
 

• Do while executes the block of commands as long as the condition is true. 
 
 DO WHILE ; label ; logical condition $ 
 ... 
 ENDDO     ; label $ 
 

The block of commands is always executed once.  Then the condition is checked and if true, 
the commands are executed again.  There is potential for problems here.  If your block of 
commands does not change something that can falsify the condition, this block of commands 
will execute forever. 
 

• Do until executes the block of commands until the condition becomes true. 
 
 DO UNTIL ; label ; logical condition $ 
 ...  
 ENDDO     ; label $ 
 

• Do if executes the block of commands once if the condition is true. 
 
 DO IF  ; label ; condition $ 
 ...  
 LABEL  ; label $ 
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 The logical condition in these constructions is set up the same as for the GO TO instruction.  
See Section R19.8.1 for details. For example: 
 
 CALC      ; q = 0 $ 
 DO UNTIL  ; 10 ; q > .5 $ 
 CALC      ; q = ... some operation that increases q $ 
 ENDDO     ; 10 $ 
  
 You can nest loops up to 10 levels.  For example: 
 
 PROCEDURE 
 MATRIX  ; a = Init (3,3,0) $ 
 DO FOR  ; 10 ; i = 1,3 $ 
 DO FOR  ;  5 ; j = 1,3 $ 
 CALC    ; ij = i * j $ 
 MATRIX  ; a(i,j) = ij  $ 
 ENDDO   ;  5 $ 
 ENDDO   ; 10 $ 
 ENDPROCEDURE 
 
There is a limit of 10 loops in one command block, but these may be arranged in any fashion you like. 
 
WARNING:  There are many ways to construct bad loops, and by and large, LIMDEP cannot 
protect you from them.  For instance, in the previous example, if the second to last and the last 
statements were reversed, the loop would be badly nested.  The results might not be what you 
expected.  Also (note carefully!!),  it is possible for you to create infinite loops from which there is 
no escape.  For example, if you decrement instead of increment a counter, there may be no way to 
get out of a loop.  Unfortunately, it is usually not possible for LIMDEP to check such a condition just 
by looking at a set of commands, so it is solely up to you to avoid this.  The next section discusses 
what to do in such a situation. 
 

The DO FOR command must appear within a procedure.  It can be used to set up looping 
procedures based on counters, as in C++ or Fortran.  The general syntax is 
 
 DO FOR  ; label ; index = the specification $ 
 
This command is set up so that loop counters are dynamically computed.  This provides the ability to 
nest loops, and set the counter for an inner loop in an outer one.  For example, 
 
 DO FOR  ; 10 ; k = 1,10 $ 
 DO FOR  ; 5 ; j = 1,k $ 
    CALC       ; sum = j+k $ 
 MATRIX  ; m(j,k) = sum $ 
 ENDDO  ; 5 $ 
 ENDDO  ; 10 $  
 
This block of lines places values in the upper triangle of a matrix.  The lower triangle is unchanged.  
(Note, it might be tempting in the procedure to just use MATRIX ; m(j,k) = j+k $, however, the 
Rhs of this command is not a matrix computation, so it will not be carried out correctly.) 
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R19.10 Escaping from an Infinitely Looping Procedure 
 
 The warning about infinite loops in the preceding section suggests an aspect of operation of 
LIMDEP that it is useful to know a bit about.  Much of the kind of computation that you do with 
LIMDEP involves mathematical calculations that take place in the background, particularly if you 
are using large data sets or simulation based estimators.  As such, there may be long intervals when 
you are waiting passively for results while the program computes.  Unfortunately, the infinite loop 
scenario suggested above would be one of these situations.  LIMDEP has two ways to tell you when 
computation is going on in the background.  First, the Stop button on the LIMDEP toolbar will be 
illuminated red, as shown in Figure R19.13. (At other times, it will be dark.)  Second, there is a ‘busy 
light’ (the black and white spinner at the lower right corner of the desktop) which appears during a 
computation.  If you have created an infinite loop, or some other inescapable situation, the busy light 
will be spinning, but you will be unable to use the Stop button to exit the computation.  There is no 
recourse but to exit the program. 
 If you find yourself having to ‘crash’ LIMDEP, or any other program for that matter, there is 
a tool in Windows that can do this fairly painlessly.  When you need to escape from any program and 
have no other recourse, place your mouse cursor in an empty space in the taskbar at the bottom of 
your screen and right click. From the popup menu, select Start Task Manager. From the 
Applications tab, you can select LIMDEP from the list of running applications and then select End 
Task to get out of your infinite loop.  Unfortunately, as the menu indicates, this terminates the 
program.  However, it is a polite termination. Before the program ends, you will be given an 
opportunity to save your project and editing windows. 
 

 
Figure R19.13 Stop Button and Busy Light Active 
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R19.11 Editing Procedures and Creating New Procedures 
 
 Once you have entered a procedure, there are two ways you can edit it, for example, if it is 
necessary to correct errors.   
 

1. If the procedure is in the text editing window, the easiest way to proceed is just to edit it on 
the screen, then highlight just the procedure, from PROC through ENDPROC, and click the 
GO button on the toolbar.  This will replace the procedure with the modified version.   

2. If you have one or more named procedures, you can also use LIMDEP’s procedure editor to 
edit them. Open the Procedures folder in the project window, then double click the name of 
the procedure.  This will open the procedure editing window. 

 
To create a new procedure, use any of the following:   

 
1. Type your PROCEDURE commands in the editing window, highlight the procedure from 

PROC to ENDPROC and click GO.  

2. From the Project menu, select New, then Procedure.   

3. From the Run menu, select New Procedure. 

4. From the Insert menu, select Item into Project, then Procedure. 
 
The last three options above all open the New Procedure dialog box, shown in Figure R19.14. 

         

 
Figure R19.14  New Procedure Dialog Box 

  
You can then enter the procedure name and any parameters you wish.  This sets up the header for the 
procedure.  When you exit with OK, the editing window will then appear as shown in Figure R19.15, 
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Figure R19.15  Procedure Editing Window 

 
(You will go directly to this window if you are editing an existing procedure.)  Within the procedure 
editing window, you can enter the commands, change existing commands, or modify the parameter 
list. The standard features of the Edit menu (cut, paste, etc.) are all available in this window as well. 
Upon exiting, the procedure will be entered into the library. 
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R20: Multiple Imputation 
  
R20.1 Introduction to Multiple Imputation 
 
 Multiple imputation (MI) is a set of techniques that is used to fill missing values in a data set 
when estimating a model.  The core of the technique is an ancillary model that is used to fit the 
missing values prior to estimation of the model of interest.  To form the basic framework, consider a 
model 
   f(y|x,β,θ)  =  g(y,x,β,θ). 
 
For example, f(y|x,β,θ) might be a normal density with conditional mean function βʹx and 
conditional variance θ = σ2.   Suppose estimation is to be based on N observations, however, nm 
observations on x are missing (and nc observations are complete).  The technique works in three 
steps: 
 
Step 1. Fit imputation equation x̂  = h(available sample information) using complete data. 

 
Step 2. (Repeated M times).  Use the imputation equation to fill the missing values of x, then 

estimate (β,θ) using imputed sample m. 
 

Step 3. Aggregate the M estimates of (β,θ) and the M estimates of the asymptotic covariance matrix 
for the estimates. 

 
Step 1 is preparatory.  Step 2 consists of M repetitions of an ‘imputation step’ followed by an 
‘estimation step.’  The imputation step is based on a Bayesian approach to obtaining an appropriate 
random sample to use to fill the randomly missing observations. 
 The reader is referred to Rubin (1976, 1987, 1996), Little and Rubin (2002), and Royston 
(2004) for some details. There is a large intricate literature on the fine details and various aspects of 
MI that apply when the data do not conform to the multivariate normal conditions that are ideal for 
the techniques.  LIMDEP provides a basic set of procedures for MI for a variety of types of data.  
Among the advantages of this implementation: 
 

• An enormous disadvantage of some implementations of MI is the need to replicate the data 
set for each iteration.  If the base data set is large, this limits the imputation to only a few 
repetitions.  LIMDEP avoids this problem by storing only the formulas needed to do the 
imputation, not the imputed data themselves.  Imputations are created within the existing 
data set, not by replicating the data.  This implies that there is no practical limit to the 
number of iterations that can be performed at Step 2. 

 
• As a consequence of the first advantage, there is no list of specific procedures that MI can be 

used with in LIMDEP.  MI is available for every procedure that uses data in LIMDEP 
including estimators that you create with MAXIMIZE or with any other procedures.  That 
is, Step 2 above is not estimation of a specific model; it is one or more (possibly many more) 
computations using the data set that contains imputed values. 
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R20.2 Methodology   
 
  The template application of MI can be drawn with reference to a model 
 
   y  =  f(x1,x2|β) 
 
where β is the parameter vector to be estimated.  We suppose that there are n observations in the 
sample, nc,1 complete observations on x1, nm,1 missing values for x1, and nc,2 and nm,2 complete and 
missing observations on x2.   The missing and complete observations on x1 and x2 need not coincide.  
We suppose as well that there is additional information in the sample, Z, for which there are 
observations present for at least some observations when there are missing observations on x1 or x2.  
(Though there is mention of it in some of the received literature, we will ignore the case of missing 
values on y.  Prediction of missing values of the dependent variable in an equation could not possibly 
pass the ‘missing at random’ test needed to use MI and could not be exogenous in the model as is 
required for consistent parameter estimation.)  The overall approach of MI is to use available 
information on x2 and Z to predict missing values of x1 and available information on x1 and Z to 
predict missing values of x2.  It is assumed that the missing values are ‘missing at random,’ that is, 
that the data on x2 and Z do not contain information on the probability that x1 is missing, and 
likewise for x1 and Z for x2.  The three steps listed above are carried out as follows: 
 
Step 1. Construct imputation equations 1 1

ˆˆ1 ( 2, , )x h x Z= δ  and 2 2
ˆˆ2 ( 1, , )x h x Z= δ  using available 

complete observations on relevant variables. 
 

Step 2. (M repetitions):  Simulate missing values of x1 from the conditional model h1 and  missing 
values of x2 from the conditional model h2.  For each repetition, we obtain estimates of the 
parameters, ˆ

mβ  and the asymptotic covariance matrix ˆ
mΣ . 

Step 3. (Aggregation).  The estimator of β is 
1

1 ˆM
mmM =

= ∑b β .  The variance estimator is 
 

  ( )( )1 1

1 1 1 ˆ ˆˆ 1
1

M M
m m mm mM M M= =

′ = + + − −  − 
∑ ∑S b bΣ β β  

 
 Steps 1 and 3 are straightforward.  The complication at Step 1 is the choice of imputation 
equation.  The most thoroughly researched case is the linear regression model, which would be used 
if x1 or x2 were a continuous random variables without obvious other complications.  However, 
survey data and large public data sets typically are composed mostly of binary or attitudinal scale 
variables for which linear regression methods are inappropriate.  We note in the next section the 
several types of models that LIMDEP uses for missing data situations.  Step 3 obtains the estimator 
of the asymptotic variance of the MI estimator.  The variance estimator accounts for the essential 
sampling variability of the estimator in the first term – this is the ‘within simulation’ variance – and 
the variability introduced by the simulation itself in the second term – this is the between simulations 
variance. Step 2 is the focus of attention in the received literature.  There are many approaches used 
for the simulation.  The description below details the method used in LIMDEP. 
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R20.3 How It’s Done – Overview 
 
 The implementation of MI in LIMDEP proceeds as follows: 
 
 For Step 1, you will fit as many as 30 equations for variables that contain missing values that 
you intend to impute during your analysis.  For an example, we suppose we will impute missing 
values for doctor, which is binary and for hhninc (household income) which is continuous.  This step 
proceeds as follows: 
 
IMPUTE ; Lhs = doctor ; Rhs = one,age,educ,married ; Type = binary $ 
--------------------------------------------------------- 
Equation stored for imputing missing values of     DOCTOR 
Imputation method: Binary Logistic 
Observations currently in full data set        =    27326 
Complete observations for imputation equation  =    17897 
Missing observations on   DOCTOR in data set   =     2765 
--------------------------------------------------------- 
 
IMPUTE ; Lhs = hhninc ; Rhs = one,age,educ,handper ; Type = measurement $ 
--------------------------------------------------------- 
Equation stored for imputing missing values of     HHNINC 
Imputation method: Linear Regression 
Observations currently in full data set        =    27326 
Complete observations for imputation equation  =    17768 
Missing observations on   HHNINC in data set   =     2839 
--------------------------------------------------------- 

 
The project window is updated to include the information about the imputation equations. 
 

 
Figure R20.1 Imputation Equations in the Project Window 
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By double clicking either of the imputation equations in the project list, we produce a summary table 
of the results of the estimation step for the imputation equations. 
 
IMPUTE ; List $ 
----------------------------------------------------------- 
Imputation Equations 
Equations currently available for multiple imputation 
The full sample contains       27326 observations 
Complete observations counts apply to full sample 
Missing obs for RHS is based on listwise deletion 
Types: LR=linear regression, BR=binary logistic 
       OL=ordered logit,     ML=multinomial logit 
       FL=fractional logit,  PR=Poisson regression 
---------------------+--------------+---------------------+ 
      Equation       |    RHS Vars  |Complete Observations| 
LHS      type missing|Number Missing|   LHS    RHS     Eqn| 
---------------------+--------------+---------------------+ 
DOCTOR    BR     2037|   4      7392| 25289  19934   17897| 
HHNINC    LR     2090|   4      7468| 25236  19858   17768| 
---------------------+--------------+---------------------+ 
 

Step 2 is carried out by defining a procedure as described in Chapter R19.  The template for 
the procedure appears as in the following example: 
 

PROC $ 
PROBIT  ; Lhs = ... ; Rhs = ... x...; Imputation = imputna $ 
LOGIT  ; Lhs = ... ; Rhs = ... x...; Imputation = imputnb $ 
POISSON  ; Lhs = ... ; Rhs = ... x...; Imputation = imputnc $ 
ENDPROC 
EXECUTE  ; N = number of imputations desired 

; Imputation = imputna, imputnb, imputnc $ 
 
The procedure acts as follows:  Each model for which we wish to use the MI procedure is given a 
name – there are three in the procedure.  The EXECUTE command instructs LIMDEP to fit each 
model N times with imputed data each time.  For example, in the preceding, if we set N = 5, then 
there would be five different imputed data sets used to fit the models.  A new data set is created for 
each iteration.  Note, however, that the imputation is independent of the model. It is carried out 
before the model is estimated.  For example, the first model command in the procedure is a PROBIT 
equation. Since this is one of the imputation models, before the probit model is fit, the imputation 
equations are used to fill as many observations as possible.  After each repetition of the procedure, 
the data set is restored to its original state, with the missing values back in place.  Then, the steps are 
repeated for each imputation.  An important implication of this sequencing of the steps is that if the 
model equation contains interactions or nonlinearities, these will be applied correctly to the imputed 
data.  That is, within the procedure, the sample data set, for any and all purposes, is the imputed data 
set for that repetition. 
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R20.4 The Imputation Step  
 

 This section describes creating the imputation equations.  Though we label this the imputation 
step, in fact, the imputation takes place at the same time as the estimation is done.  Your first step in 
this analysis is to create the equations used to compute the imputed values.  Do this as follows: 
 

1. Use SAMPLE ; All $ to use as much information as is in the data as possible. 
2. For each variable that you intend to fill with missing values, create the imputation equation with 

 
  IMPUTE ; Lhs = the variable 
    ; Rhs = one,… the variables that you will use for the imputations 
    ; Type = the type of variable on the Lhs $ 
  
 The types are 
 
   M = measurement – continuous variable, use linear regression 
   B = binary variable, use a logit model to predict 
   C = count variable, use a Poisson regression  
   O = ordered (scale) variable, use an ordered probit model 
   F = fractional variable, use a logit model for proportions data 
   T = type variable – unordered choice, use a multinomial logit model 
 
There are no other optional specifications for the IMPUTE command.  This instruction fits a model 
using as many complete observations as it can find in the current sample.  No estimation results are 
produced.  A summary count of the number of complete and incomplete observations that were 
encountered is produced.  An example appears in Section R20.3.  You may store up to 30 equations 
each with up to 100 Rhs variables including the constant term.  The list of imputation equations, 
identified by the Lhs variables, appears in the project window.  You can inspect the results of this 
step by double clicking any of the names in the project window.   
 To delete an imputation equation, use 
 
 IMPUTE ; Delete name $ 
 
(There is no semicolon before the name.)  You can also delete an equation by right clicking the name 
in the project window and selecting Delete from the menu.  Obtain a summary of the set of 
imputation equations with 
 
 IMPUTE ; List $ 
 
You can use your imputation equations to create simulated values for the missing values in your data 
set as follows:  First, create a template for the simulation with 
 
 CREATE ; new variable name = old variable name $ 
 
The new variable name is any name you wish to use for the variable to be created.  The old variable 
is a Lhs variable whose name appears in the list of imputation equations.  Second, 
 
 IMPUTE ; Lhs = new variable ; Rhs = old variable ; Type = Fill $ 
 
LIMDEP will use the stored imputation equation and the method described in Section R20.7 to fill as 
many missing values as possible. 
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TIP:  Neither the theory nor LIMDEP’s implementation of it will prevent you from using IMPUTE 
to create imputed values of the dependent variable in an equation.  The theory should prevent this, 
however, since the imputed values will be endogenous in the resulting equation.  Any notion of 
consistent estimation of the model parameters would be optimistic at best. 
 

When you use SAVE and LOAD, the specifications and parameter values for the imputation 
equations will be restored with the data. 

 

NOTE: No backwards incompatibilities with earlier versions of LIMDEP are created by this 
addition of  material in the project file.  The format of LIMDEP project files has never changed.  You 
will be able to use SAVE and LOAD of project files across all versions of LIMDEP and NLOGIT. 

 

R20.5 The Estimation Step 
 

The imputation equations are used by placing the estimation step inside a procedure.  You 
should first set the sample to be what you want to use for the estimation step irrespective of the 
missing values.  Use SAMPLE, REJECT, INCLUDE, etc. to determine the current sample before 
doing the estimation.  You will now define a procedure that includes the imputation as follows: 

 
PROCEDURE $ 
Any commands that manipulate data, matrices, scalars, etc. 
Model ; definition ; Imputation = a first imputation name … $ 
Any additional commands $ 
Model ; definition ; Imputation = a second imputation name … $ 
… repeated as many times as desired $ 
ENDPROCEDURE $ 
 

The procedure is then executed with 
 
 EXECUTE  ; N = desired number of imputations 
   ; Imputation = first name, second name, … $ 
 
For a simple example, 
 

 PROCEDURE $ 
 PROBIT ; Lhs = doctor ; Rhs = one,age,educ,income ; Imputation = modela $ 
 ENDPROC $ 
 EXECUTE ; N = 10 ; Imputation = modela $ 
 

The imputation  identifiers act as follows:  Imputation is used in generating the parameter vector and 
covariance matrix for that estimator.  The procedure sets up the model and identifies it as one that 
will be using imputation.  The procedure is unrestricted.  It may contain any commands, including 
model commands.  The ; Imputation = name specification is used to identify those models that will 
be accumulating an average for the mean vector and covariance matrix.  Thus, for example,  
 

 PROCEDURE $ 
 PROBIT ; Lhs = doctor ; Rhs = one,age,educ,income ; Imputation = modela $ 
 POISSON ; Lhs = hospital ; Rhs = one,age,healthy $ 
 ENDPROC $ 
 EXECUTE ; N = 10 ; Imputation = modela $ 
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would be a valid procedure.  The Poisson regression does not use imputation, while the probit model 
does.  (It would actually be a waste of effort to have the Poisson model inside the procedure, since it 
would be estimated the same 10 times, though only the last one would be reported.)  Multiple 
imputation is used for models that produce an estimator and a covariance matrix.  Commands that do 
not produce these may not include ; Imputation. This would include commands such as 
IDENTIFY, PLOT, and DSTAT.  EXECUTE may also include 
 
   ; Report 
 
to produce a line by line report of the progress of the estimation step.  An example appears below. 

There are no restrictions on what models may appear in the procedure. Every model in 
LIMDEP and NLOGIT is supported.  The reason is that the imputation  is created before the model 
command is carried out. The EXECUTE command, itself, fills in the missing values for each 
iteration, then any model that appears in the procedure can use the filled variables, as they are the 
names of variables that all exist in the data set.  Within the procedure, the imputed data set becomes 
the new data set for all operations of the program. 
 Some care is required by this degree of flexibility.  The imputed data set may still contain 
missing values if the imputation equation does not find complete data to fill all observations with 
gaps.  The model commands, such as POISSON above, will be operating with a SKIP command on, 
so they will bypass remaining missing observations.  However, data manipulations such as 
MATRIX will not automatically skip over missing data.  You can use REJECT within the 
procedure, but it is a good idea to restore the sample to what it was at the beginning of the procedure 
if you do so. 
 The following shows an example of setting up a multiple imputation procedure.  The first 
three commands just carry out an experiment.  We randomly set about 30% of the values of variable 
income to -999 (missing). 
 

SAMPLE ; All $ 
CREATE  ; pick = Rnu(0,1) $ 
CREATE  ; If (pick < .3) income = -999 $ 

 
The next instruction sets up the imputation for this variable, using some other variables in the data 
set.  The ; Type = measurement indicates that the variable being filled is continuous, and the 
imputation equation is a linear regression. 
 

IMPUTE  ; Lhs  = income  
; Rhs  = one,age,educ,handper,married,working,bluec  
; Type = measurement $ 

 
The brief summary of the imputation is the only output produced by the IMPUTE command. 
 
--------------------------------------------------------- 
Equation stored for imputing missing values of     INCOME 
Imputation method: Linear Regression 
Observations currently in full data set        =    27326 
Complete observations for imputation equation  =    19126 
Missing observations on   HHNINC in data set   =     8200 
--------------------------------------------------------- 
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A more detailed summary of the imputation equation is obtained with the List instruction.  The 
center column of the summary will indicate how many observations will have to remain unused 
because of missing values among the Rhs variables being used in the imputation equation.  In this 
case, there are complete data for all of these variables (age, educ, handper, married, working, bluec). 
 
 IMPUTE ; List $ 
 
----------------------------------------------------------- 
Imputation Equations 
Equations currently available for multiple imputation 
The full sample contains       27326 observations 
Complete observations counts apply to full sample 
Missing obs for RHS is based on listwise deletion 
Types: LR=linear regression, BR=binary logistic 
       OL=ordered logit,     ML=multinomial logit 
       FL=fractional logit,  PR=Poisson regression 
---------------------+--------------+---------------------+ 
      Equation       |    RHS Vars  |Complete Observations| 
LHS      type missing|Number Missing|   LHS    RHS     Eqn| 
---------------------+--------------+---------------------+ 
HHNINC    LR     8200|   7         0| 19126  27326   19126| 
---------------------+--------------+---------------------+ 
 
The procedure to do the estimation is as follows: 
 
 Proc = BnryChce $ 
 LOGIT  ; Lhs = healthy ; Rhs = one,age,educ,income  
   ; Imputation = impa $ 
 PROBIT  ; Lhs = healthy ; Rhs = one,age,educ,income  
   ; Imputation = impb $ 
 ENDPROC $ 
 EXECUTE  ; Proc = probit ; N = 5 ; Report 
   ; Imputation = impa,impb $ 
 
Note that income appears in both models.  The progress of the imputation based estimation appears 
after the EXECUTE command is submitted. 
 
[Imputation] Begin executing   5 imputation/estimation procs. 
[Imputation]  IMPA    ;   1 of   5. Estimated model with imputed data. 
[Imputation]  IMPB    ;   1 of   5. Estimated model with imputed data. 
[Imputation] Executed imputation/estimation procedure   2 of   5 
[Imputation]  IMPA    ;   2 of   5. Estimated model with imputed data. 
[Imputation]  IMPB    ;   2 of   5. Estimated model with imputed data. 
[Imputation] Executed imputation/estimation procedure   3 of   5 
[Imputation]  IMPA    ;   3 of   5. Estimated model with imputed data. 
[Imputation]  IMPB    ;   3 of   5. Estimated model with imputed data. 
[Imputation] Executed imputation/estimation procedure   4 of   5 
[Imputation]  IMPA    ;   4 of   5. Estimated model with imputed data. 
[Imputation]  IMPB    ;   4 of   5. Estimated model with imputed data. 
[Imputation] Executed imputation/estimation procedure   5 of   5 
[Imputation]  IMPA    ;   5 of   5. Estimated model with imputed data. 
[Imputation]  IMPB    ;   5 of   5. Estimated model with imputed data. 
[Imputation] Executed imputation/estimation procedure   6 of   5 
 Normal exit:   5 iterations. Status=0, F=    17398.41 
 [Imputation] : Completed  5 estimations of IMPA     with imputed data. 
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----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable              HEALTHY 
Log likelihood function    -17398.40698 
Restricted log likelihood  -18279.94994 
Chi squared [   3 d.f.]      1763.08592 
Significance level               .00000 
Estimation based on N =  27326, K =   4 
MI results based on   5 imputed samples 
Likelihood based stats are not reliable 
when using multiple imputation methods. 
Hosmer-Lemeshow chi-squared =  44.99363 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 HEALTHY|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .91855***      .09430     9.74  .0000      .73373   1.10336 
     AGE|    -.03901***      .00116   -33.53  .0000     -.04129   -.03673 
    EDUC|     .10429***      .00610    17.08  .0000      .09233    .11626 
  HHNINC|     .21566**       .10388     2.08  .0379      .01206    .41925 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Normal exit:   4 iterations. Status=0, F=    17400.13 
 [Imputation] : Completed  5 estimations of IMPB     with imputed data. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable              HEALTHY 
Log likelihood function    -17400.12943 
Restricted log likelihood  -18279.94994 
Chi squared [   3 d.f.]      1759.64102 
Significance level               .00000 
Estimation based on N =  27326, K =   4 
MI results based on   5 imputed samples 
Likelihood based stats are not reliable 
when using multiple imputation methods. 
Hosmer-Lemeshow chi-squared =  52.50448 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 HEALTHY|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .58610***      .05684    10.31  .0000      .47470    .69750 
     AGE|    -.02404***      .00071   -33.96  .0000     -.02543   -.02265 
    EDUC|     .06243***      .00361    17.30  .0000      .05536    .06950 
  HHNINC|     .13303**       .06344     2.10  .0360      .00870    .25737 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
[Imputation] Completed   5 imputation/estimation procs. 
 
Maximum repetitions of PROC 
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R20.6 The Aggregation Step and Post Estimation Analysis 
 

Final results are computed as follows for each model identified in the procedure as being 
estimated using imputed data:  The parameter estimator of β is  
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The variance estimator is 
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where M is the number of imputations that are done.  No other results are changed by the imputation.  
The estimation done at each replication treats the imputed data as if they were observed.  In particular, 
 

• No weighting scheme is used to reweight observations that contain imputed values. 
• Account is taken of the possibility that the imputation might introduce a source of 

measurement error in the estimation. 
 

The estimation results contain a warning that statistics such as likelihood ratio statistics 
might be unreliable when the parameter vector reported is an average of several coefficient vectors.  
However, you can use Wald (chi squared) tests as usual when you use multiple imputation.  The tests 
can be included in the estimation command. For example, 
 
 PROBIT  ; Lhs = healthy ; Rhs = one,age,educ,income  
   ; Test: age = 0 | age + income = 0 
   ; imputation = impb $ 
would work as expected.  The tests would be carried out based on the final (averaged) results after 
the imputation loop.  You may also use the post estimation tools, PARTIAL EFFECTS, 
SIMULATE and DECOMPOSE within the imputation loop.  The analyses will be delayed until 
after the imputation steps are completed.  Thus, inference in each command is based on S .  For 
example, the procedure could be 
 
 Proc = logitmdl $ 

LOGIT   ; Lhs = healthy ; Rhs = one,age,educ,income  
    ; Test: age = 0 | age + income = 0  
    ; Imputation = implogit $ 

PARTIAL EFFECTS ; Effects: age & age = 20(5)65 $ 
ENDPROC $ 
EXECUTE   ; Proc = probit ; N = 5 ; Report ; Imputation = implogit $ 
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R20.7 Using Multiple Imputation in Your Own Model 
 
 You will generally produce your own models by using MAXIMIZE/MINIMIZE, NLSQ, 
NLSURE, GMME, etc. or by computing a parameter vector and covariance matrix using MATRIX 
with CREATE, CALC, and other programming commands.  For the optimization commands such 
as MAXIMIZE, just include ; Imputation = name in the command, the same as other model 
estimation commands.  When you compute your own parameter vector and covariance matrix using 
MATRIX, use DISPLAY to show your results.  For example, suppose your parameter vector and 
covariance matrix were named beta and vb.  Then, after computing them, use 
 
 DISPLAY ; Parameters = beta 
   ; Covariance = vb 
   ; Imputation = the name 
   ; … any other options $ 
 
R20.8 Imputation Methods 
 

The imputation methods used here build on Rubin’s methods, with modifications for some 
of the types that he (and others) have not written about.  In all cases, for each observation within 
each replication, we draw a random set of parameters from the posterior normal population.  We then 
insert the prediction in place of the missing value.  The original data set, with missing values, is 
restored after each iteration concludes.   Each of the six estimators depends on an estimated set of 
parameters computed at the estimation step with an estimated asymptotic covariance matrix.  Label 
these generically β̂  and Γ̂ .  Let the Cholesky decomposition of Γ̂ be denoted CCʹ, so that C is a 
lower triangular matrix.  With these in place, the simulations of the missing data are done as follows:  
For each case, a random draw on the parameter vector is generated by 
 

  ˆ ˆ
r r= + Cwβ β  

 
Where wr is a K-variate draw from the multivariate standard normal population.  In each case, an 
applicable index function, zi,r  = ˆ

r i′zβ  is computed from the available data for that observation.  Then, 
the following algorithms are used: 
 
Binary Random Variable 
 
 Probabilities P0 = Λ(-zir) and P1 = Λ(zir) = 1 - P0 are computed.  The unit interval is divided 
into [0,P0] and (P0,1].  A random draw from U[0,1] is taken.  If U is less than or equal to P0 then  

,ˆi rx = 0, otherwise ,ˆi rx =1. 
 
Fractional Random Variable 
 
 The random draw is simply ,ˆi rx  = Λ(zir). 
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Continuous Random Variable 
 
 The random draw is  
 

,ˆi rx = zir + ,2
,

. .ˆ i r
i r

d f w
 

σ  χ 
  

 

where 2
,i rχ  is a random draw from the chi squared population with degrees of freedom equal to those 

that applied to the regression, and wi,r is a random draw from the standard normal population. 
 
Ordered Outcome 
 
 The estimated ordered logit model includes threshold parameters µ̂ .  The estimated values 
are ordered, to insure all predicted probabilities are positive.  The estimated values of µ̂  are used 
directly to maintain the coherence of the model.  For the simulation, the J+1 cell probabilities 
 
   Pj,ir  =  Λ(μj - zir) - Λ(μj-1 - zir), j = 0,1,…,J are computed, 
 
where μ0 = 0 and μ-1 = -∞.  The J + 1 cumulative probabilities are Qj,ir = Λ(μj - zi,r).  The unit interval 
is divided into the J + 1 cells by the values of Qj,ir where Q-1,ir = 0.  A random draw from U[0,1] is 
obtained.  If U > Qj-1,ir and U < Qj,ir then ,ˆi rx = j.  For example, if 0 < U < Λ(-zir) then ,ˆi rx = 0.   
If Λ(-zir) < U < Λ( 1µ̂  - zir) then ,ˆi rx =1, and so on. 
 
Poisson Distributed Count Variable 
 

For a Poisson distributed outcome, we form the mean θir = exp(zir).  We then compute the 
CDF of the implied Poisson distribution Qj = Qj-1 + P(j) where P(j) is the Poisson probability with 
mean θir and Q0 = exp(-θir).  A draw from the population is obtained by drawing a value from U[0,1].  
If Qj < U < Qj+1, then ,ˆi rx = j. 
 
Unordered Outcomes Multinomial Random Variable 
 
 The approach is essentially the same as that for the ordered outcome.  For the multinomial 
logit model with J outcomes, the parameter vector is partitioned into J subvectors, βj where βJ = 0.  
Then, the J probabilities are computed according to 
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The [0,1] interval is partitioned into J parts with length P1, P2,…,PJ.  The intervals [0,P1), [P1,P1+P2) 
and so on are used to partition the unit interval into the J cells identified with j = 1, j = 2, and so on.  
A draw from U[0,1] is then taken.  If U falls in cell j, then ,ˆi rx = j. 
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R20.9 Usage Notes 
 
 The technique of multiple imputation is rooted in the Bayesian method of data augmentation.  
In this framework, missing values in an analysis are treated as unknown parameters to be estimated 
along with structural parameters.  To consider a useful benchmark application, consider the probit 
model, 
   y*  =  βʹx + ε 
   y    =  1[y* > 0]. 
 
If y* were observed directly, β would be estimated efficiently by least squares regression of y* on x.  
However, only y, not y* is observed.  In the classical treatment, under these circumstances, β is 
estimated by maximum likelihood.  A Bayesian treatment (see Greene (2011, pp. 671-672)) can 
proceed by including y* with β in the estimation process, using data augmentation.  In general, the 
Gibbs sampler used in this method is based on estimating y* by taking random draws from the 
distribution of y* conditioned on the observed data and the current estimate of β, then using 
regression of the predicted values of y* on x to reestimate β.  The steps are repeated many times.  
This is essentially the strategy at work in multiple imputation.  Estimation proceeds by estimating the 
missing values using estimates of the conditional model produced at the imputation step.  The use of 
multiple imputations, as opposed to one single imputation, corresponds to the repetitions of the 
Gibbs sampler.  The aggregation step, at which the multiple estimates of β are averaged, corresponds 
to the averaging of the draws on β by the Gibbs sampler. 
 
R20.9.1 Questions on Usage 
 
 The theory of multiple imputation is well developed in great detail for the benchmark case of 
a linear regression of a variable y on a set of continuous variables x, when the K + 1 variables in the 
model are multivariate normally distributed.  The theoretical foundation is less firm for the arguably 
more common cases in which the variables to be imputed are discrete, ordered, count variables, and 
so on, and the dependent variable in the model is likewise, discrete or otherwise not amenable to 
linear regression.  Nonetheless, the underlying motivation is persuasive, and it does appear that some 
advantage can be gained through use of the technique when the data conditions are relatively 
favorable.  We consider some general questions about MI here, but refer the reader to the applicable 
literature for technical details, more in depth analysis, and wisdom about usage. 
 
Should I use multiple imputation instead of listwise deletion? 
 
 If there is any information about the missing values contained in the complete data, then 
listwise deletion obviously ignores this information.  MI is likely to seem more attractive the greater 
is the number of incomplete observations.  However, as the number of incomplete cases increases, 
the number of imputations necessary will increase accordingly.  The danger of having the simulation 
noise taint the estimator increases as the relative presence of missing values increases. 
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Should I use multiple imputation instead of single imputation? 
 
 Single imputation amounts essentially to filling missing values either with a mean of the 
complete observations or with some sort of conditional mean such as an ancillary regression based 
on complete data.  The case for MI instead of single imputation rests on the assumptions that 
motivate MI more generally.  Estimation of standard errors based on a single imputation is likely to 
be more optimistic than appropriate.  The estimated standard errors will not account for the presence 
of the sampling variability in the imputation equation. 
 
How many imputations should I use? 
 
 This depends on many factors, including the model being estimated and the models used for 
the imputation.  Under the most favorable case of multivariate normality and a relatively small 
number of incomplete cases, Rubin (1987) has argued that more than 90% of the advantage of MI 
can be obtained with M = 2.  Since the most favorable case is also likely to be the least common, this 
provides only a floor.  The literature has a focal point at M = 5 or 10.  It is difficult to discern any 
useful rule of thumb for determining M.  The suggestion that the analyst examine the behavior of 
their estimator with different values seems useful. 
 
Should I use MI to impute missing values of the dependent variable? 
 
 Never. 
 
Should I use complete values of the dependent variable in the imputations of 
the independent variables? 
 
 This is likely to invalidate the assumption that the variables on the right hand side of your 
equation are exogenous to the data generating process for the dependent variable.  As a general 
proposition, the answer here would be no if you are interested in consistent estimation of the 
parameters of your model. 
 
Is MI the same as Gibbs Sampling? 
 
 As described above, MI resembles Gibbs sampling.  But, they are not the same thing.  MI is 
not based on a Bayesian type of updating algorithm.  The same imputation equation is used in every 
iteration of MI. 
 
Is MI the same as the EM algorithm? 
 
 The EM algorithm is a method used for maximizing likelihood functions.  It is firmly based 
on the distribution of the dependent variable and on the conditional distribution of the underlying 
unobserved data conditioned on the observed information.  The probit example described in Section 
R20.1 bears resemblance to the EM method.  The EM method also resembles the Gibbs sampler in 
the way that the weights constructed at the E (expectation) step are updated from one iteration to the 
next.  Once again, since MI does not rely on any form of updating algorithm, for this reason and 
others, MI is not the same as the EM method. 
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R20.9.2 Implementation Notes 
 

The MI feature of LIMDEP provides a looping procedure within which missing values of 
variables that you designate are filled with predictions from fitted models.  Logically, internally, the 
program creates a map of the data area that records where missing values appear.  As the iteration 
begins, the imputation equations are executed all at once to fill as many missing values as possible.  
Thus, a data set is prepared for the commands within the procedure to use.  All commands within the 
procedure use the same imputed data set.  At the end of the sequence of commands in the procedure, 
the data set is restored to its initial state, with missing values inserted where they were before.  Each 
iteration of the procedure operates on a new imputed data set.  A consequence of this procedure is 
that you do not have to do any data management of the imputed data at all.  The output report will 
provide some information about how many missing values were filled and how many remained.  But, 
absolutely no action is required of you to deal with the imputed data set. 

You can achieve replicability of your imputation results by setting the seed of the random 
number generator before executing the procedure.  You can also create imputed data sets by using 
the IMPUTE ; Type = Fill… $ procedure described in Section R20.4 then using EXPORT, SAVE 
or WRITE to offload the data set.    

We note a few computations this program does not do: 
 

1. It does not examine and act on missing data ‘patterns,’ such as monotone missing values and 
so on.  It fills the missing values in the variables, one variable at a time, independently.  
Given the way that the imputation step proceeds, patterns of missing data would not be 
useful.  The program uses as many complete observations as it can find at every step.  The 
knowledge that a variable z1 is missing whenever another variable, z2 is missing would not 
be useful. 

 
2. It does not do any exotic corrections to degrees of freedom for the linear model.  These will 

apply only to the linear model in any event, which is likely to be the least frequent case that 
one would use these methods.  Moreover, the typical corrections for degree of missingness 
in the data usually produce values for the degrees of freedom parameter for the t distribution 
that are orders of magnitude beyond the point at which t becomes indistinguishable from 
standard normal.   The inference framework in the MI setting is assumed to be reasonably 
approximated by asymptotic normality.  Test statistics are based on large sample normal 
distributions and the chi squared distribution for Wald statistics.  F ratios, used only in the 
linear model, are assumed to have denominator degrees of freedom large enough to use 
Wald statistics (J*F) instead. 

 
3. We do not do any special data management, such as saving the imputed data set(s) as 

separate files.  This is because we do not create freestanding replicated data sets with 
imputations.  Imputations are done ‘on the fly,’ and fill in the gaps in the existing data set, in 
place.  The advantage of this way of proceeding is that if you want to compute a thousand 
imputations with a huge data set, you can do it. 
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R21: Bootstrapping and Other Sampling 
Experiments 

 
R21.1 Introduction 
 
 This chapter documents two functions available in LIMDEP, bootstrapping which will be 
useful for researchers and students interested in analyzing the properties of certain sample statistics, 
and sampling experiments, which will be primarily of interest to students and those using LIMDEP 
for instructional purposes. 
 
R21.2 Bootstrapping Cross Sections and Panel Data 
 
 Bootstrapping is a technique used to deduce the properties (usually mean and variance) of  the 
sampling distributions of estimators by using the variation in the observed sample under an assumption 
that the pattern of variation in the observed sample mimics reasonably accurately the counterpart in the 
population.  The user is referred to one of the standard sources on this subject for discussion. Useful 
references include Efron (1979, 1998), Efron and Tibshirani (1986), Greene (2011) and other sources 
cited therein.  The mechanics of the procedure are as follows:  An estimator, b of a parameter or vector 
of parameters, β is computed using the data in a sample, X = [x1,...,xn].  We desire to estimate the 
(usually asymptotic) sampling variance of the estimator, Asy.Var[b].  The technique is to compute 
 

   Vbs  =  ( )( )'1
1

bbbb −−∑ = r
R
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where R is the number of replications of the bootstrapping, and br is the estimate of β obtained from 
the rth bootstrap sample, using the same computations used to compute the original estimator, b.  A 
bootstrap sample is obtained by sampling, with replacement, m observations from X (where m is 
generally, though not necessarily, equal to n).  Note that the variation is computed around the 
original estimate, not the mean of the bootstrap estimates.  Also, in what follows, we refrain from 
labeling Vbs the variance matrix, and instead call it the mean squared error.  Under ‘good’ sampling 
conditions, Vbs is a reasonable estimator of Asy.Var[b]. 
 The number of replications, R, needed depends on the quantity being estimated.  For 
statistics with narrow precision, such as a specific quantile of the distribution, several hundred may 
be needed.  For a broader characteristic, such as the asymptotic variance, research has found that 
perhaps 50 or 100 are likely to be sufficient. 
 Several of the preprogrammed estimators in LIMDEP use this technique to estimate the 
asymptotic variance of the estimator: MSCORE; REGRESS with the least absolute deviations 
estimator; QREG and QCREG which computes quantile regressions; the data envelopment analysis 
package in FRONTIER; and MATCHING, the propensity score matching estimator.  You can use 
bootstrapping with any estimator that you compute with any model in LIMDEP, either with the 
preprogrammed commands, or one that you might program yourself using any of the programming 
tools.  The technique is used with the following steps: 
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Step 1. Write a procedure to compute the result.  The result to be bootstrapped must either be a 
vector or a scalar.  The procedure can involve any computation you wish, so long as the 
procedure computes the statistic you are analyzing and gives it a name. 
 

Step 2. Execute the procedure as follows: 
 

 MATRIX or CALC ; initialize the entity being computed, to establish its name $ 
 PROCEDURE   computes the parameter vector or scalar named above 

 EXECUTE  ; N = number of bootstrap replications desired. (This is R.) 
  ; Bootstrap = the name of the statistic as declared above $ 
 
An optional specification in the EXECUTE command is 
 
   ; Draws = number of observations in the bootstrapped sample.   
 
This specifies m.  If you omit this, the default value is the current sample size, n. If you do not 
specify the number of draws, the default is the original sample size. Note that the leading MATRIX 
or CALC is needed to establish what you are bootstrapping, as the output produced by this 
procedures differs in the two cases. 
 
NOTE:  When you use ; Bootstrap, the EXECUTE command is carried out with ; Silent set 
automatically.  Only the original, full sample output is shown.  You should not override this. 
 
Bootstrapping Panel Data 
 
 If your estimator is based on panel data, set up the panel with SETPANEL before any other 
operations.  Then, you can include 
 
   ; Panel  or  ; Pds = specification 
 
in the EXECUTE command.  Rather than drawing individual observations in the bootstrapped 
sample, the procedure will sample groups of observations from the panel. The groups sizes may be 
different; the procedure works for balanced or unbalanced panels. 

If the result your procedure computes is a vector, then the output of the procedure will be a 
statistical table consisting of the original estimate, estimates of the root mean squared errors (around 
the original estimate), t ratios and p values for the estimates.  The latter two of these may be 
questionable, but will nonetheless be suggestive.  If your result is a scalar, output will include a set of 
descriptive statistics, including the original estimate, root mean squared error, skewness, kurtosis, 
minimum, and maximum.  You may also request a histogram of the bootstrapped values by adding 

 
   ; Histogram 
 
to the EXECUTE command. 
 Note, finally, you may use this set of procedures with any computation in any estimation 
program or programming tool.  All that is required is that you  
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1. Declare the name of the vector or scalar before the EXECUTE command with a MATRIX 
or CALCULATE command. 
 

2. Compute the vector or scalar, by name, within the procedure. 
 

3. Bootstrap that specific vector or scalar with the ; Bootstrap specification in the EXECUTE 
command. 

 

Remaining output is handled for you by the program.  How the computation is done within the 
procedure is completely up to you.  There are no restrictions.  All that is required is that the declared 
result be the output of a MATRIX or CALC command.  For the first of these, that MATRIX 
command might do nothing more than simply capture an estimation result.  For example: 
 
 NAMELIST ; x = the variables on the Rhs of some model command $ 
 CALC  ; k = Col(x) $ 
 MATRIX ; bb = Init(k,1,0.0) $   This is the declaration. 
 PROC 
    Model command to fit a model using x for which the coefficient vector is b $ 
 MATRIX ; bb = b  $    This captures the result. 
 ENDPROC 
 EXEC  ; Bootstrap = bb ; N = 100 $ 
 

Two examples follow. 
 

Bootstrapped Estimates of a Vector of Coefficients 
 

 LIMDEP computes standard errors for the marginal effects for its models by using the delta 
method.  It has been argued that in small samples, the delta method may be a bit unreliable. In this 
example, we will examine this issue by doing the same computation using bootstrapping.  The 
example is set up so that you should be able to replicate it exactly: 
 

 CALC  ; Ran(12347.0) $ 
 SAMPLE ; 1-50 $ 
 CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; y = (x1 + x2 + Rnn(0,2)) > 0 $ 
 NAMELIST ; x = x1,x2,one $ 
 MATRIX ; mrgfct = Init(2,1,0) $   Note that this declares vector mrgfct. 
 PROC  
 PROBIT  ; Lhs = y ; Rhs = x ; Partial Effects $ 
 CREATE ; scale = N01(b’x) $ 
 MATRIX ; mrgfct = {Xbr(scale)} * b(1:2) $ This computes vector mrgfct. 
 ENDPROC 
 EXECUTE ; Bootstrap = mrgfct ; N = 100 $   This bootstraps mrgfct. 
 

The CREATE and MATRIX commands after the PROBIT command obtain the average partial 
effects for the two variables.  This experiment produces the following output:  In fact, the standard 
errors computed by the delta method are quite close to the bootstrapped values. The estimated 
marginal effects and estimated standard errors computed by the probit estimator based on the full 
sample are reported after the results of the bootstrap procedure.  Note that the confidence interval 
reported for the bootstrap results is almost the same as that for the probit model which used the delta 
method.  (The effects themselves are identical because the bootstrap procedure reports the original 
coefficients based on the actual sample.  Only the standard errors are bootstrapped.) 
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Completed    100 bootstrap iterations. 
----------------------------------------------------------------------------- 
Results of bootstrap estimation of model. 
Model has been reestimated   100 times. 
Coefficients shown below are the original 
estimates based on the full sample. 
bootstrap samples have   50 observations. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
BootStrp|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
MRGFC001|     .18647***      .05117     3.64  .0003      .08618    .28676 
MRGFC002|     .06452         .05432     1.19  .2350     -.04195    .17099 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function       -29.76776 
Restricted log likelihood     -34.01460 
Chi squared [   2 d.f.]         8.49369 
Significance level               .01431 
--------+-------------------------------------------------------------------- 
        |                                      Prob.      95% Confidence 
       Y|  Coefficient   Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
      X1|     .55286***      .00209     2.63  .0085      .14137    .96434 
      X2|     .19129         .25802     1.08  .2803     -.15598    .53856 
Constant|     .18840        1.00000      .98  .3277     -.18887    .56567 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
       Y|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .18647***      .00067     3.44  .0006      .08032    .29262 
      X2|     .06452         .02861     1.12  .2634     -.04855    .17758 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The Distribution of a Sample Correlation Coefficient 
 
 Applying the delta method to the distribution of a sample correlation coefficient as a 
function of the sample variances and covariance is notoriously unreliable.  A standard 
approximation, Asy.Var[r] = (1 – r2)/n, is known to be problematic in small samples and when ρ is 
close to 1.0.  The following analyzes the correlation between two variables empirically. 
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The commands are: 
 
 CALC  ; Ran(12347.0) $ 
 SAMPLE ; 1-500 $ 
 CREATE ; x1 = Rnn(0,1) ; x2 = x1 + Rnn(0,1)  $ 
 CALC  ; r12 = 0 $ 
 PROC  
 CALC  ; r12 = Cor(x1,x2)  $ 
 ENDPROC 
 EXECUTE ; Bootstrap = r12 ; N = 500 ; Histogram $  
 
Results are shown below.  The true correlation is 1/√2 ≈ 0.702.  The sample estimate is 0.720.  In 
fact, the distribution does look noticeably nonnormal.  The standard approximation, Asy.Var[r] = (1 
– r2)/n would produce an approximation of 0.031 for the asymptotic standard error.  The 
bootstrapped root mean squared deviation is 0.020,  which is quite different.    

 
Completed   500 bootstrap iterations. 
+------------------------------------------+ 
| Results of bootstrap estimation of model.| 
| Model has been reestimated   500 times.  | 
| Statistics shown below are centered      | 
| around the  original estimate  based on  | 
| the original full sample of observations.| 
| Result is R12      =       .71951        | 
| bootstrap samples have  500 observations.| 
| Estimate  RtMnSqDev  Skewness   Kurtosis | 
|     .720       .020     -.314      3.266 | 
| Minimum =      .635  Maximum =      .777 | 
+------------------------------------------+ 
 

 
Figure R21.1  Estimated Distribution of the Sample Correlation Coefficient 
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R21.3 Jackknife Estimation   
 

This procedure computes the variance (matrix) for an estimator by jackknife replications.  In 
a sample of N observations, the estimator is computed N times, dropping one observation from the 
sample each time.  The variance of the resulting estimators is reported with the original estimator.  
The jackknife estimator of the variance of the estimator is 
 

   Vbs  =  ( )( )( ) ( )1
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where b is the full sample estimator of β and b(i) denotes the estimator computed using all 
observations except for observation i. 
 Jackknife estimation may be used with any estimator that you compute using a sample of 
data – that includes all model estimators or any other statistic that is computed with a sample of 
observations – it operates the same as the bootstrap estimator described above.  Any specifications, 
options for the estimator (such as clustering, robust variance matrices), etc. may be used.  The 
jackknife estimator replications are computed using the precisely identical setup as the original.  

The specification ; Jackknife = entity is used for this technique.  The template procedure 
for using the jackknife estimator is: 
 
 PROCEDURE $ 
  any model or other computation that computes the estimator or statistic,  

and gives it a name $ 
 ENDPROCEDURE $ 
 EXECUTE  ; Jackknife = name $ 
 
Note, again, this is otherwise the same as the setup for the bootstrap estimator. 

A small example that computes a variance estimator for the least squares coefficient follows.  
A second example computes a jackknife estimator for the mean of a sample of functions of 
observations drawn from a chi squared distribution. 
 To illustrate the jackknife estimator, we will estimate the coefficients of a probit model using 
a widely used sample of 32 observations on performance by high school students.  (See Greene 
(2011, p. 590).  Variables gpa, tuce, psi and grade are grade point average, a test score, a treatment 
dummy for a type of learning program, and whether grades in an Economics course improved. 
 
 OBS     GPA      TUCE   PSI   GRADE    OBS     GPA      TUCE    PSI    GRADE 
  1      2.66      20     0      0      2      2.89      22     0      0   
  3      3.28      24     0      0      4      2.92      12     0      0   
  5      4.00      21     0      1      6      2.86      17     0      0   
  7      2.76      17     0      0     8      2.87      21     0      0   
  9      3.03      25     0      0    10      3.92      29     0      1   
 11      2.63      20     0      0    12      3.32      23     0      0   
 13      3.57      23     0      0    14      3.26      25     0      1   
 15      3.53      26     0      0    16      2.74      19     0      0   
 17      2.75      25     0      0     18      2.83      19     0      0   
 19      3.12      23     1      0    20      3.16      25     1      1   
 21      2.06      22     1      0    22      3.62      28     1      1   
 23      2.89      14     1      0    24      3.51      26     1      0   
 25      3.54      24     1      1    26      2.83      27     1      1   
 27      3.39      17     1      1    28      2.67      24     1      0   
 29      3.65      21     1      1    30      4.00      23     1      1   
 31      3.10      21     1      0     32      2.39      19     1      1  
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The jackknife estimator is shown below. 
 

PROBIT  ; Lhs = grade ; Rhs = one,gpa,tuce,psi $ 
PROC $ 
PROBIT  ; Lhs = grade ; Rhs = one,gpa,tuce,psi ; Quiet $ 
ENDPROC $ 
EXECUTE  ; Jackknife = b $ 

 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                GRADE 
Log likelihood function       -12.81880 
Restricted log likelihood     -20.59173 
Chi squared [   3 d.f.]        15.54585 
Significance level               .00140 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   GRADE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|   -7.45232***     2.54247    -2.93  .0034   -12.43547  -2.46917 
     GPA|    1.62581**       .69388     2.34  .0191      .26583   2.98579 
    TUCE|     .05173         .08389      .62  .5375     -.11269    .21615 
     PSI|    1.42633**       .59504     2.40  .0165      .26008   2.59259 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Completed    32 jackknife iterations. 
 
----------------------------------------------------------------------------- 
Results of jackknife estimation of model. 
Model has been reestimated    32 times. 
Coefficients shown below are the original 
estimates based on the full sample. 
jackknife samples have   31 observations. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
JckKnife|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    B001|   -7.45232        4.76289    -1.56  .1177   -16.78741   1.88277 
    B002|    1.62581        1.12779     1.44  .1494     -.58463   3.83625 
    B003|     .05173         .10033      .52  .6061     -.14491    .24837 
    B004|    1.42633*        .73717     1.93  .0530     -.01850   2.87117 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

This example considers estimation of E[f(x)] where x has a chi squared distribution with two 
degrees freedom and f(x) = .5*lnx / exp(.2x2).  We draw a sample of 100 observations from the chi 
squared population, compute the functions, the mean of the functions, and the bootstrap estimator of 
the variance of the statistic.   
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For comparison, the conventional estimator, N-1/2 × Std.Dev(f(x)) is reported as well. 
 

CALC   ; Ran(12359) $ 
SAMPLE  ; 1-100 $ 
CREATE  ; x = Rnx(2) $ 
CREATE  ; x = Rnx(2) $ 
CREATE  ; f_x = .5*Log(x)/Exp(.2*x^2) $ 
PROC $ 
CALC    ; meanf_x = Xbr(f_x) $ 
ENDPROC $ 
EXECUTE  ; Jackknife = meanf_x $ 
 

Completed   100 jackknife iterations. 
+------------------------------------------+ 
| Results of jackknife estimation of model.| 
| Model has been reestimated   100 times.  | 
| Statistics shown below are centered      | 
| around the  original estimate  based on  | 
| the original full sample of observations.| 
| Result is MEANF_X  =      -.14928        | 
| jackknife samples have   99 observations.| 
| Estimate  RtMnSqDev  Skewness   Kurtosis | 
|    -.149       .049      .003       .001 | 
| Minimum =     -.152  Maximum =     -.124 | 
+------------------------------------------+ 

Maximum repetitions of PROC 
 

CALC   ; List ; samplesd = 1/Sqr(n) * Sdv(f_x) $ 
 

[CALC] SAMPLESD=       .0483802 
 

The bootstrap value of .049 compares to the empirical estimate of .0483.  As noted, this estimator can 
be employed with any statistic or estimator that you compute with a sample. One exception:  This 
estimator should not be used with panel data estimators. The ‘leave one out’ procedure leaves out an 
observation, not a group of observations.  This is useable for cross sections, but not for panels.  Its 
validity in time series is ambiguous, since the resampling procedure ‘punches a hole’ in the time series. 
 

R21.4 Random Sampling from the Current Sample – DRAW  
 

 One of the important components of the bootstrapping procedure described in the previous 
section is the process of sampling observations from the current ‘master’ sample.  The bootstrap 
feature of EXECUTE does this automatically.  You may wish to draw a random sample from your 
data set for other reasons, for example, to program a different type of bootstrap estimator of your 
own.  You can draw a random sample from the current sample of observations with the DRAW 
command.  The procedure is as follows:  First, set the parent population to whatever is desired with 
READ, SAMPLE, REJECT, and INCLUDE.  This results in nobs observations.  The command to 
draw a random sample is 
 

 DRAW  ; N = number $ 
 

to sample number observations without replacement. N must be less than nobs.  Use 
 

 DRAW  ; N = number ; Rep $ 
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to sample with replacement.  In this case, nobs can be anything and number can be up to 100,000. 
For example: 
 
 SAMPLE  ; 1-100 $ 
 CREATE  ; i = Trn(1,1) $   numbers from 1 to 100 
 LIST   ; i $     will display numbers from 1 to 100 in order 
 DRAW  ; N = 200 ; Rep $ 
 LIST   ; i $     will display 200 random draws from i 
 
The original data are not changed, only the sample pointers are.  Restore the original sample with 
 
 DRAW  ; N = 0 $ 
 
All commands which modify the sample turn off the random sample and restore the original data set.  
These are REJECT, INCLUDE, SAMPLE, DATES, PERIOD. 
 

WARNING:  Do not do any operation which modifies your existing data while this sampling 
procedure is in effect.  The results will be unpredictable and can be severely problematic.  This 
affects all operations that use the data. 
 

WARNING:  Do not use SKIP with bootstrapped samples or random samples.  SKIP generates an 
internal REJECT command which will then automatically produce a DRAW ; N = 0 $ command 
even if no observations get skipped. 
 
 You can also enter a DRAW random sample command by choosing Project:Set Sample  
 

 
Figure R21.2  Dialog Box for DRAW Command 
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R21.5 Random Sampling from Panel Data Sets 
 
 You can draw a sample from a panel data set as easily as a cross section, by using DRAW as 
described above.  However, this will probably not produce the effect you want.  In a sample of data 
{zi,t, t = 1,...,Ti, i = 1,...,N}, one will typically want to sample over i, not over i and t.  The random 
sample will consist of Ns sampled individuals, with group sizes Ti equal to the original group sizes.  
For a concrete example, if you have a sample of 1,000 firms, and five observations on each firm, you 
will generally want to sample Ns firms, then for each firm sampled, the draw consists of all five 
observations for this firm.  Simply using DRAW as defined in the preceding section will interrupt 
this sample configuration.  LIMDEP’s DRAW command provides an option to allow this sort of 
sampling.  To use this, if you have an unbalanced panel, you must have a group count variable 
available, as discussed in Chapter R5.  For balanced panels, you need only provide the fixed group 
size.  In both cases, the command is 
 
 DRAW   ;  N = number of groups to sample 
   ;  Pds  =  the panel specification  
   [ ; Replacement ] $ 
 
The last specification is optional.  If the panel has a fixed group size, then ; Pds = the group size, for 
example, ; Pds = 5.  If the panel is unbalanced, then ; Pds = the name of the group size variable.  
There are internal limits on the size of panel that may be sampled: 
 

• The overall, total sample size must be < 750,000. 
• The number of groups sampled must be < 20,000. 

 
R21.6 Random Number Generators 
 
 The other crucial component of bootstrapping and DRAW, as well as any other sampling 
experimentation you might do, is the set of random number generators.  You can generate random 
numbers from a variety of distributions and with all of CREATE (columns of values in a variable), 
CALC (single random draws) and MATRIX (matrices of random values). 
 
R21.6.1 Setting the Seed for the Random Number Generator 
 
 You can produce replicability for any computation involving random number generation by 
using a particular value of the seed for the generator.  Note, for example, that the two examples 
above begin by setting the seed to a particular value; this way, you can reproduce our results. 
 To reset the seed for the random number generator, use the command 
 
 CALC   ; Ran(seed) $  
 
In this fashion, you can replicate a sample from one session to the next.  Use a large odd number for 
your seed. 
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R21.6.2 Using CREATE to Generate Random Samples 
 
 There are numerous transformations which draw samples using LIMDEP’s random number 
generators.  The basic generators are for the continuous uniform distribution in the indicated range 
and the normal distribution with a specific mean and standard deviation.  The commands are 
 
 CREATE  ; name = Rnu(lower limit, upper limit) $ 
 
and CREATE  ; name = Rnn(mean, standard deviation) $  
 
which will create a variable containing a sample from the indicated normal distribution.  The central 
tool for discrete distributions is the discrete uniform generator, 
 
 CREATE  ; name = Rnd(upper limit) $ 
 
which draws values randomly from the set 1, 2, ..., upper limit.  Thus, for example, to simulate coin 
tosses with heads = 1 and tails = 2, you would use Rnd(2). 
 The sample is placed with the observations in the current sample.  If you want to draw more 
than the default number, you might want to use the ROWS command (See Section R3.4) before you 
draw the sample. 
 Random draws may also appear anywhere in an expression as operands whose values are 
random draws from the specified distribution.  For example, a random sample from a chi squared 
distribution with one degree of freedom could be drawn with  
 
 CREATE  ; name = Rnn(0,1) ^ 2 $  
 
Random samples can be made part of any other transformation.  For example, the following shows 
how to create a random sample from a regression model in which the assumptions of the classical 
model are met exactly: 
 
 CREATE  ; x1 = Rnu(10,10)  
   ; x2 = Rnn(16,10) 
   ; y  = 100 + 1.5 * x1 + 3.1 * x2 + Rnn(0,50) $ 
 
The regression of y on x1 and x2 would produce estimates of  β1 = 100, β2 = 1.5, and β3 = 3.1.  
 In addition to the Rnn(m,s) (normal with mean m and standard deviation s) and Rnu(l,u) 
(continuous uniform between l and u), you may use these additional generators in the same fashion 
to sample from the normal family of distributions: 
 
 Rng(m,s)  = lognormal with parameters m and s, 
 Rnt(d)  = t with d degrees of freedom, 
 Rnx(d)  = chi squared with d degrees of freedom. 
 
Use  
 CREATE  ; F = (Rnx(dn)/dn)/(Rnx(dd)/dd) $   
 
for the F distribution with dn and dd degrees of freedom.   
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In addition, you can use 
 
 Rne(q)   = exponential with mean q, 
 Rnw(0)  = Weibull, 
 Rnl(0)  = logistic, 
 Rnc(0)  = Cauchy, 
 Rnp(q)  = Poisson with mean q, 
 Rnd(n)  = discrete uniform, x = 1,...,n, 
 Rnb(n,p) = binomial, n trials, probability p, 
 Rnh(a,c) = Gumbel (extreme value) with location a, scale c. If c = 1, use Rnh(a). 
 Rni(a,c) = gamma with scale a and shape c.  If a = 1, use Rni(c). 
 Rna(a,b) = beta with parameters a and b. 
 
You must provide the ‘0’ in the Weibull, logistic, and Cauchy functions.  You may also sample from 
the truncated standard normal distribution. Two formats are 
 
 Rnr(lower)  = sample from the distribution truncated to the left at ‘lower,’ 
 Rnr(lower,upper) = distribution with both tails truncated.  
 
E.g., Rnr(.5) samples observations greater than or equal to .5. 
 Parameters of all requests for random numbers are checked for validity.  For the truncated 
normal, you must have 
 
   lower  ≤  1.5, upper  ≥  -1.5,  upper - lower ≥  .5. 
 
If upper is not provided, it is taken as +∞.  If you need upper truncation, a transformation which will 
produce the desired result is -Rnr(-lower). 
 The parameters of any random number generator can be variables, other functions, or 
expressions, as well.  For example, you might simulate draws from a Poisson regression model with 
 
 CREATE ; x1 = Rnn(0,1) 
   ; x2 = Rnu(0,1) 
   ; y   = Rnp(Exp(.2 + .3 * x1 - .05 * x2 )) $ 
 
R21.6.3 Sampling from the Multivariate Normal Distribution 
 
 To sample from the multivariate normal distribution, it is necessary to generate a set of 
random variables.  We do this by using the following theoretical result. 
 

If x = (x1,...,xK) are distributed with joint normal distribution with mean vector 0 and 
covariance matrix I, then Ax + µ is distributed multivariate normally with mean 
vector µ and covariance matrix AA′. 

 
You can use this result to generate a multivariate sample from the normal distribution with mean 
vector µ and covariance matrix Σ by simply decomposing Σ into AA′, and using this and the desired 
µ in the theoretical result.  We use the Cholesky decomposition in which A is a lower triangular 
matrix.  The operation will create a multivariate sample – that is K variables where K is the number 
of elements in x and N observations, where N is the number of observations in the current sample.  
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You can sample from the distribution with up to 100 elements, in which case, you will create 100 
new variables in your data area.  Collectively, these K variables are a multivariate sample from the 
specified multivariate normal distribution. 
 The command for generating a sample from the multivariate normal distribution is 
 
 CREATE ; name = Rmn(vector µ, matrix Σ) $ 
 
You must provide the vector µ and matrix Σ.  However, if you want µ to equal zero, omit it.  Thus, 
 
 CREATE ; name = Rmn(matrix Σ) $ 
 
samples from the multivariate normal population with mean vector zero and covariance matrix Σ.  
Alternatively, you can force Σ to be an identity matrix by using 
 
 CREATE ; name = Rmn(vector µ) $ 
 
to sample from the multivariate normal population with mean vector µ and covariance matrix I.  
Finally, if you want to sample from the standard normal population with mean vector zero and 
covariance matrix I, use 
 
 CREATE ; name = Rmn(k) $ 
 
where k is the number of elements in the random vector. In this case, k must either be an integer from 
1 to 100 or the name of scalar which contains an integer from 1 to 100.  LIMDEP detects what kind 
of sample you want to generate by examining what appears in the parentheses.  A vector and a 
matrix implies the first case, just a matrix implies the second, just a vector, the third, and just a 
number, the fourth. 
 The ‘; name =’specifies the name of a namelist that will be created.  This may be a new 
namelist or you can replace an existing one.  The variables in that namelist will be constructed as if 
the command were 
 
 NAMELIST  ; name = name00, name01,... $ 
 
For example, if you use 
 
 CREATE  ; xret = Rmn(mu,v) $ 
 
where mu is a 10×1 vector and v is a 10×10 covariance matrix, then there will be a new namelist 
created in your data area:  
 
   xret  =  xret00,xret01,xret02,...,xret09. 
 
This routine creates the variables, and issues a report of what it has computed.  The following shows 
an example of sampling 1,000 observations is from a 4-variate normal distribution. 
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Figure R21.3  Sampling from the Multivariate Normal Population 

 
Note in the report in the output window, the theoretical and empirical means and variances are both 
reported.  The actual mean and standard deviations of the drawn sample will not equal the theoretical 
ones, since the data are a random sample – they are not constrained.  Also, the report shows the seed 
for the random number generator.  It does not equal the seed that appears in the command in the 
editing window.  The CALC ; Ran(seed) $ function allows you to set a specific seed for the random 
number generator.  The actual value used internally is a transformation of the one you give.  The 
point of the function is to enable you to reset the seed to the same value, not a particular value.  
Specific values of the seed are meaningless.  But, your ability to reset the seed to a specific value 
allows you to replicate random sampling results. 
 This procedure creates several results: 
 

• The namelist as specified in the command, 
• The variables (up to 100 of them) which are the random sample, 
• Matrices mean_rmn which is the matrix of means of your sample, and var_rmn which is 

the sample covariance matrix.   
 
The latter two matrices could be created immediately after the sampling command with 
 
 MATRIX  ; mean_rmn = Mean(namelist)  
   ; var_rmn = Xvcm(namelist) $ 
 
 All of the elements of the setup for this computation are checked internally before any 
computation is done.  The following conditions will generate diagnostics: 
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• Your matrices mu and v are not currently in the matrix names table. 
• Your parentheses contain more than two names. 
• The matrix is not square. 
• The vector is not conformable with the matrix;  mu may be a row or a column, but it must 

be the same size as v whichever applies. 
• Your computation implies more than 100 variables. 
• You are out of space for new namelists or variables. 
• Your matrix v is not symmetric. 
• Your matrix v is not positive definite. 

 
If none of these failures occur, the computation will proceed. 
 
R21.6.4 Using CALC to Generate Random Draws 
 
 CALC has a limited facility for random sampling.  The Rnn, Rnu, and Rnd functions as 
described for CREATE are also available for CALC.  Thus,  
 
 CALC   ; name = Rnu(lower limit, upper limit) $ 
 CALC   ; name = Rnn(mean, standard deviation) $  
 CALC   ; name = Rnd(upper limit) $ 
 
compute single draws from the continuous uniform, normal, and discrete uniform distributions, 
respectively.  As in CREATE, these may be transformed to sample from other distributions.   
 
R21.6.5 Using MATRIX to Draw Random Matrices 
 
 The MATRIX command ; a = Rndm(list) can be used to draw matrices of random numbers 
from the normal distribution.  The following specifications may be used: 
 
 Rndm(m)    = m×1 random vector from standard normal, 
 Rndm(r,m) = r×m random matrix from standard normal. 
 
All elements are independent draws.  You may also specify the mean vector and covariance matrix 
for a draw of a random vector from the normal distribution: 
 
 Rndm(mu)   = r×1 random vector from normal distribution with mean mu and  

covariance matrix I.  The matrix mu may be a row or column vector, 
and r is the number of elements in mu. 

 
 Rndm(sigma)   = r×1 random vector from multivariate normal distribution with mean 

vector 0 and covariance matrix sigma.  The number of rows in sigma  
is r.  You must provide a positive definite sigma matrix. 

 
 Rndm(mu,sigma) = r×1 random vector from multivariate normal distribution with mean 

vector mu and covariance matrix sigma.  The matrix mu must be the 
name of a row or column vector with r elements, and sigma must be the 
name of a square matrix with r rows. 
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R21.6.6 Simulating Random Effects in a Panel 
 
 The random number generator in MATRIX can be used to simulate random effects models.  
Suppose your panel (real or simulated) has n groups, and each group has T(i) individuals.  You will 
require a stratification indicator that is incremented from one to do this.  You can easily obtain this if 
you do not already have it with 
 
 REGRESS   ; Lhs = one ; Rhs = one ; Pds = group count  or 
   ; Str  = the stratum indicator you have 
    ; Panel $ 
 
This creates _stratum which will be the variable you need.  Now, suppose you know the theoretical 
standard deviation of the common effect, say sd.  Then, you can use 
 
 MATRIX ; v_i = Rndm(your n) $ 
 CREATE ; ui   = sd * v_i ( _stratum) $ 
 
The example in Figure R21.4 computes the random effect for a balanced panel with 10 observations 
per individual. 
 

 
         Figure R21.4  Simulating a Random Effect 
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R21.6.7 Simulating an Unbalanced Panel Data Set 
 

If you are generating random samples using the random number generators, you will want to 
be able to simulate the group sizes for the simulation.  This is a fairly involved operation. The 
following procedure will do it (for a balanced panel as well.) 
 

CALC   ; ni = ... the number of groups you want in your panel $ 
SAMPLE ; 1 - ni $ 
CREATE ; ti = Rnd(m) $  Set m to the largest group size you want.  
MATRIX ; mti = ti $ 
CALC  ; i1 = 1 ; i = 1 ; sumti = 0 $ 
PROC $ 
CALC  ; i2 = i1 + mti(i) - 1 $ 
SAMPLE ; i1 - i2 $ 
CREATE ; ... < the variables you want to simulate> ...  
    ...   $ 
CREATE ; groupti = mti(i) ; groupid = i $ 
CALC  ; sumti = sumti + mti(i) ; i1 = i1 + 1 ; i = i + 1 $ 
ENDPROC $ 
EXECUTE ; N = ni $ 
SAMPLE ; 1 - sumti $ 

 
You can now analyze these panel data.  Use ; Pds = groupti for group size counts.  Groupid is a 
simple (1,2,...) group identifier.  For example, you could use groupid in the calculation of individual 
random effects described in the preceding section. 
 

R21.7 Plotting Distributions 
 

 There are a variety of tools that can be used to display probability distributions.  Precise, 
accurate figures can be drawn by plotting the values of the probability distribution.  Empirical 
approximations to probability distributions can be obtained by drawing histograms for large random 
samples of the random variable. 
 

R21.7.1 CALC Functions that Show Discrete Distributions 
 

CALCULATE provides numerous functions for computing continuous and discrete 
probabilities and densities from a variety of distributions.  The following additional functions will 
produce tables and character based plots for discrete distributions: 

 
Tbb(p,n)  for binomial probabilities with probability p, n trials, 
Tbp(lambda)  for Poisson with mean lambda, 
Tbg(p)   for geometric with parameter p, 
Tbn(p,n)  for negative binomial with probability p and n successes, 
Tbh(p,m,n)  for hypergeometric with probability p, population size m, and n successes. 

 
Calculating the function with specified parameters produces the listing and figure, as shown in the 
illustration below.  CALC ; List ; Tbb(.4375,20) $ produces the following results in the output 
window: 
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Figure R21.5  Binomial Distribution with CALC Functions 

 

R21.7.2 Plotting a Density 
 

 You can plot any function using the FPLOT command.  One use might be to plot a known 
probability density function.  The form of the FPLOT command is 
 
 SAMPLE ; 1 $ 
 FPLOT ; Fcn = the specification of the function as a function of x 
   ; Labels = x 
   ; Plot(x) 
   ; Start = some value in the range of x 
   ; Limits = the range of variation of the variable 
   ; Pts = the number of points to plot (and connect) $ 
 
You may also add a title to the figure with ; Title = the desired title.  Note that the function need 
not simply be a function of x; it can involve other parameters as well. You might, for example, use 
 
 CALC  ; mu = a value ; sigma = a value $ 
 PROC 
 FPLOT ; ... ; Fcn = (1/sigma) * N01((x - mu)/sigma) / Phi((a - mu)/sigma) 
   ; ... $ 
 ENDPROC 
 EXECUTE  ; a = 0, 1.5, .5 $ 
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to plot the density of a truncated normal variable as a function of the mean, mu, the standard 
deviation, sigma, and the upper truncation point, a. 
 The SAMPLE ; 1 $ command is used here because FPLOT will compute the sum over the 
current sample of whatever function is specified.  This will allow you to plot log likelihood 
functions.  For the purpose here, you do not wish to sum, so you reduce the sample to just one 
observation.  The example below plots the density of the logistic random variable.  
 

SAMPLE  ; 1 $ 
FPLOT ; Labels = x 
  ; Plot(x) 
  ; Limits = -4,4 
  ; Start = 0 
  ; Pts = 100 
  ; Fcn = Exp(x) / (1 + Exp(x))^2  

; Title = Logistic Distribution $  
 

SAMPLE  ; 1 $ 
FPLOT ; Labels = x 
  ; Plot(x) 
  ; Limits = -4,4 
  ; Start = 0 
  ; Pts = 100 
  ; Fcn = Exp(x) / (1 + Exp(x))^2  

; Title = Logistic Distribution $  
 

 
Figure R21.6  Density of the Logistic Distribution 
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R21.7.3 Drawing a Distribution by Plotting a Histogram 
 
 The HISTOGRAM command provides sufficient resolution to produce a reasonable 
estimate of a distribution if the sample is large enough.  You need only draw your random sample 
using any of the methods discussed earlier, then use HISTOGRAM to plot the distribution.  For 
example, the application below displays an empirical estimate of the density of a mixture of normal 
distributions, with even mixing of two reasonably widely separated normal distributions: 
 

ROWS  ; 10000 $   Add rows to data area 
CALC  ; Ran(1234567) $  Make exercise replicable 
SAMPLE ; 1-10000 $   Use a large sample 
CREATE ; x1 = Rnn(1,1) ; x2 = Rnn(5,1) $ Two normal distributions 
CREATE ; u = Rnd(2) - 1 $  Mixture, 50/50 
CREATE ; v = u*x1 + (1-u)*x2 $  The mixed variables 
HISTOGRAM ; Rhs = v ; Int = 60 $  60 bar histogram 

 

Figure R21.7  Histogram for Draws from a Bimodal Distribution 
 
R21.7.4 Sampling Experiments 
 
 As the preceding illustrates, the random number generators combined with the 
HISTOGRAM command can be used to produce an empirical estimate of a distribution (density).  
This device could also be used to demonstrate the generation of data through data generating 
processes. Thus, events can be simulated in this fashion.  The following (admittedly pretty basic) 
application illustrates a coin tossing experiment.  Each player tosses a fair coin 10 times.  What does 
the distribution of the number of heads tossed look like?  (We know this is binomial, but we simulate 
it the hard way anyway.)   
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 First, set the number of players. 
 
 CALC  ; players = ... $   How many players?   
 SAMPLE   ;  1 - players $ 
 
Now, toss 10 coins, coding 0 for tails, 1 for heads, and add the 1s. 
 
 SAMPLE ;  1-100 $ 
 CALC  ;  Ran(12345) $ 
 CREATE  ;  toss1 = Rnd(2) - 1  ? (of course, there is an easier way) 
          ;  toss2 = Rnd(2) - 1  ;  toss3 = Rnd(2) - 1   
   ;  toss4 = Rnd(2) - 1  ;  toss5 = Rnd(2) - 1    
   ;  toss6 = Rnd(2) - 1  ;  toss7 = Rnd(2) - 1 
          ;  toss8 = Rnd(2) - 1  ;  toss9 = Rnd(2) - 1  
   ;  toss10 = Rnd(2) - 1 $ 
 CREATE    ;  heads = toss1 + toss2 + toss3 + toss4 + toss5 + 
       toss6 + toss7 + toss8 + toss9 + toss10 $ 
 HISTOGRAM ; Rhs  = heads ; Title = Histogram for Number of Heads $ 
 
The following shows the result of this simulation with 100 players. 
 

 
Figure R21.8  Sampling Experiment for Coin Tosses 
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R21.7.5 The Law of Large Numbers and the Central Limit Theorem 
 
 Demonstrating the central limit theorem always takes a bit of creativity.  The following 
shows one approach.  The procedure shows the effect of increasing n on the observed frequency 
distribution of sample means of n observations drawn from some decidedly nonnormal distribution. 
This program could be modified to compare more than three sample sizes, and can be changed easily 
to apply the result to sampling from any desired distribution.  The annotations describe where 
modifications should be made.  These commands create columns of sample means of three, 10 and 
25 observations. 

 
SAMPLE ; 1-10000 $ desired number of means  
CALC  ; Ran(1234567) $ 
CREATE       ; n1 = Trn(3,0) ; n2 = Trn(10,0) ; n3 = Trn(25,0) ; row = Trn(1,1) $ 

  
This line can be changed to use a different parent distribution 
  
       CREATE       ; c2 = Rnx(2) $ 

MATRIX       ; xb3 = Gxbr(c2,N1) ; xb10 = Gxbr(c2,n2) ; xb25 = Gxbr(c2,n3) $ 
  
To show the force of the result, we now produce histograms for our samples of means, using the 
same scale for all three figures.  The limits are taken from the one known to have the greatest range 
of variation. 
  

SAMPLE       ; 1-400 $ 
CREATE       ; mean1 = xb3(row)  ; mean2 = xb10(row) ; mean3 = xb25(row) $ 
CALC        ; a0 = Min(mean1) ; a1 = Max(mean1) $ 
CREATE       ; z1 = Sqr(3)   * (mean1-2)/Sqr(2) ; z2 = Sqr(10) * (mean2-2)/Sqr(2) 

; z3 = Sqr(25) * (mean3-2)/Sqr(2) $ 
  
These three histograms demonstrate the operation of the law of large numbers. 
  
    HISTOGRAM ; Rhs  = mean1 ; Int = 60 ; Limits = a0,a1  
           ; Title = Means of Samples of 3 $ 
    HISTOGRAM ; Rhs = mean2 ; Int = 60 ; Limits = a0,a1  
           ; Title = Means of Samples of 10 $  
    HISTOGRAM ; Rhs = mean3 ; Int = 60 ; Limits = a0,a1  
           ; Title = Means of Samples of 25 $ 
 
These three histograms demonstrate the force of the central limit theorem. 
  

HISTOGRAM ; Rhs = z1 ; Int = 60 ; Limits = -3,3 $ 
HISTOGRAM ; Rhs = z2 ; Int = 60 ; Limits = -3,3 $ 
HISTOGRAM ; Rhs = z3 ; Int = 60 ; Limits = -3,3 $ 
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Figure R21.9a  Means of Samples of 3 

 

 
Figure R21.9b  Means of Samples of 10 
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Figure R21.9c  Means of Samples of 25 

 
R21.8 Urn Experiments 
 
 The final set of applications we consider is a class of sampling experiments known as ‘urn 
experiments.’  These can become extremely elaborate.  LIMDEP is well suited to make even the 
most complicated of these quite simple to program.  We consider a basic template to carry out the 
following two steps: 
 
Step 1. An ‘urn’ is initialized with a fixed mixture of nb blue and nr red balls.  (This can be 

generalized to more colors without great difficulty.)  Then, n0 = nb + nr. 
 
Step 2. For draws i = n0 + 1 to ntotal, we reach into the urn and draw one of the (i - 1) balls then in 

the urn.  Depending on the color drawn, add another ball to the urn.  The new ball added 
may be blue or red, depending on some decision rule.  At each draw i, watch the behavior 
of the proportion of red balls in the urn. 

 
The following program can be used to carry out these steps.  The only changes needed in the 
program to accommodate a particular experiment are the setting of n0, nblue, and ntotal at the 
beginning to dictate the parameters of the experiment and the augmentation rule for adding the next 
ball (i.e., the CALC command which creates newball).  The program carries out the entire 
experiment and displays the proportion of red balls by plotting it. 
 The application that follows the program is the ‘Polya’ experiment.  In this experiment, the 
augmentation rule is to add a ball that is the same color as the one drawn.  In this experiment, there is 
no fixed limiting value for the proportion.  It depends entirely on the initial conditions and on the 
first few balls drawn.  An interesting aspect of this experiment can be seen by starting it from the 
same initial conditions with a relatively small n0. 
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First, set up the initial conditions:  The n0 in the following command is the number of ‘balls’ 
to be in the urn at the outset.  The CREATE command creates the initial balls, with, say, ‘blue’ 
coded 0 and ‘red’ coded 1.  This then starts the experiment with a fixed number of blue and red balls 
in the urn.   
 

CALC  ; n0 = ... your setting ; nblue = ... ; ntotal = ... $ 
  SAMPLE ; 1 - n0 $ 

CREATE ; ball = 0*Ind(1,nblue) + 1*Ind((nblue+1),n0) $  nred = n0 - nblue  
  
Now, do the experiment of adding balls to the urn according to some rule and, at each step, compute 
the appropriate descriptive statistics.  ntotal = the number of balls that will be in the urn at the end of 
the experiment.  Generally urn experiments involve drawing a ball from the existing stock in the urn, 
then adding one to the urn by a prescribed rule. We create a variable which at observation i points 
randomly to one of the balls that is already in the urn.  For i = n0+1,... pick is a random integer from 
the values 1,2,...,i-1. 
  

SAMPLE ; 1 - ntotal $    Total number of balls at the end of the experiment. 
CREATE ; i = Trn(1,1) - 1 $   Creates i = 0,1,2,... for the whole sample. 
CREATE ; If (_obsno > n0) pick = Rnd(i) $ 

 
We will now create a procedure that will generate a Markov chain of balls added to the urn.  The 
CREATE command carries out the rule for adding a new ball. 
 

PROC $ 
CALC  ; row = pick(obs)      ? CALC picks from the existing balls for  

; oldball = ball(row)  ? observation i. Oldball gives the ball picked. 
                              ; newball = ... some function of oldball $ 

CREATE ; ball(obs) = newball $   Add the ball at this observation. 
ENDPROC $ 

 
For example, if red, toss a coin and add blue if heads, red if tails.  Thus, if the oldball is blue = 0, add 
nothing.  If oldball is red = 1, add a random draw, 0 or 1. This does it.  
 

CALC   ; If [oldball = 1] newball = oldball * (Rnd(2)-1) $ 
 CALC  ; n1 = n0 + 1 $ 

EXEC  ; obs = n1,ntotal $ Fill all cells of the column. 
 
We now compute the proportion of red balls at each observation.  This is done for each just by 
averaging the balls from 1 to i.  This is a ‘partial sum’ computed using the recursion, sum(i) = 
sum(i-1) + x(i). 
 

SAMPLE ; 1 - ntotal $ 
CREATE ; If (_obsno = 1) sum = ball ; (Else) sum = sum[-1] + ball $ 
CREATE ; mean = sum/(i+1) $ 
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We now have a column of means where at observation i, the mean is based on observations 1 to i.  
Presumably, this column of means will converge to something, so we investigate by describing or 
plotting. 
  
 SAMPLE ; n1 - ntotal $ 
 PLOT  ; Lhs = i ; Rhs = mean ; Fill ; Grid ; Endpoints = 0,ntotal $ 
 
This program carries out the Polya experiment.  We begin by placing 10 balls in the urn, three blue 
ones and seven red ones.  We then run the experiment for 500 draws in total. Set the parameters for 
this application. 
  
    CALC   ; n0 = 10 ; nblue = 3 ; ntotal = 500 $ 
  
Set the initial conditions. 
  
    SAMPLE ; 1 - n0 $ 
    CREATE ; ball = 0*Ind(1,nblue) + 1*Ind((nblue+1),n0) $ nred = n0 - nblue  
    SAMPLE ; 1 - ntotal $             Total number of balls at the end of the experiment. 
    CREATE ; i = Trn(1,1) - 1 $   Creates i = 0,1,2,... for the whole sample. 
 
Run the experiment.  
  
    CREATE ; If (_obsno > n0) pick = Rnd(i) $ 
    PROC $ 
      CALC  ; row = pick(obs) ? CALC picks from the existing balls for 

; oldball = ball(row) ? observation i. Oldball is the ball picked. 
; newball = oldball $ 

    CREATE ; ball(obs) = newball $    Add the same ball as picked. 
    ENDPROC $ 
   CALC  ; n1 = n0 + 1 $ 
    EXEC  ; obs = n1,ntotal $      Fill all cells of the column. 
  
Compute and display the results. 
  
    SAMPLE ; 1 $ 
    CREATE ; sum = ball $ 
    SAMPLE ; 1 - ntotal $ 
    CREATE ; If (_obsno > 1) sum = sum[-1] + ball $ 
    CREATE ; mean = sum/(i+1) $ 
    SAMPLE ; n1 - ntotal $ 
    PLOT  ; Lhs = i  
   ; Rhs = mean ; Fill  
   ; Grid ; Endpoints = 0,ntotal $ 
 
We ran this experiment a second time with the same initial conditions, but a different set of picks by 
saving the second set of results in a variable named mean2, then plotting both sets of results in the 
same figure.  The result is shown in the second figure. 



R21: Bootstrapping and Other Sampling Experiments  R-562 

 
Figure R21.10a  Polya Experiment 

 

 
Figure R21.10b  Two Runs of the Polya Experiment 
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R22: Models for Panel Data 
 
R22.1 Introduction  
 

 This chapter will introduce LIMDEP’s collection of programs for analysis of panel data.  
LIMDEP supports by far a larger variety of model formulations for panel data than any other package.  
Nearly all of the models supported by the program, including dozens of linear and nonlinear 
specifications, provide special treatments for panel data including fixed and random effects, 
stratification, latent class models, random parameters, multilevel effects, and ‘cluster’ corrections for 
layered and stratified data sets.  This goes far beyond the familiar fixed and random effects linear 
regression, Poisson and logit models typically found elsewhere, and includes sample selection models, 
multinomial logit, probit, censored and truncated regression, and a large variety of loglinear models. 
 The methods used for estimation of these models have many common features, but will also 
vary a bit from one application to the next.  This chapter will summarize the background theory and 
practical aspects of the estimation methods for LIMDEP’s panel data models.  Subsequent chapters 
in the Econometric Modeling Guide will then describe the specific models and the LIMDEP 
commands used to estimate them.   
 Section R22.5 will describe the basic forms of the commands for these models and the 
results that each will produce.  There are additional features and options with each of the three broad 
groups, fixed effects, random effects and latent class models.  Chapters R23-R25 will give technical 
details as well as additional model commands and features for specific model classes, common 
(fixed and random) effects, random parameters and latent class models.  
 
NOTE: Users of these model forms and programs should consult Chapters R4 and R5 for discussion 
of data sets for panel data models in LIMDEP. 
 

R22.2 Panel Data Models 
 

 Panel data treatments in LIMDEP, broadly defined, are those models and specifications that 
directly use the information that observations are grouped either because of common membership in 
a class (cluster and strata, for example) or because the observations constitute multiple observations 
on the same entity (person, firm, country).  A not quite complete list of the set of programs that 
contain estimators and model forms for these treatments includes the following basic forms that 
support various arrangements of fixed and random effects: 
 

• linear regression, 
° fixed and random effects models, 
° random coefficients models, 
° heteroscedasticity and autocorrelation, 
° time series cross section (TSCS) and SURE models, 
° nested random effects, 
° simultaneous equations models, 
° dynamic panel data models, 

• nonlinear regression with exponential conditional mean, 
• binary logit, probit, Gompertz, complementary log log and arctangent, 
• bivariate probit models and sample selection models for binary choice, 
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• ordered probit, logit Gompertz and complementary log log, 
• generalized ordered probit models and ordered probit models with selection, 
• tobit, censored and truncated regression models, 
• exponential regression model, 
• Weibull, gamma, binomial, geometric, inverse Gaussian, and other loglinear models, 
• Poisson and negative binomial regression models, 
• Nonpoisson count models for over and underdispersion, 
• stochastic frontier models, 
• survival models – parametric models with time varying covariates, 
• sample selection models, 
• multinomial, multiperiod, random effects probit model. 

 
The list will also be extended to include the large number of programs that fit random parameters, 
and latent class models.  These include the ones listed above as well as numerous others. 
 LIMDEP does not require panels to be ‘balanced.  Only TSCS and SURE require that there 
be the same number of rows of data for each individual. But, the set of observations must be 
‘contiguous.’  That is, for all models listed above, the set of observations for a particular individual 
(group) must be a consecutive set of observations in the data set.  Section R22.3.2 discusses an 
operation that can be used when the panels in the original data set are not contiguous. 
 

NOTE:  Much of the econometrics literature on panel data models focuses on the balanced panel 
case and treats the unbalanced panel as in inconvenient extension.  This is what is necessary to keep 
the mathematics manageable.  (See, e.g., Baltagi (2005).)  However, this is a point at which theory 
and practice diverge.  In LIMDEP, all panels are treated as unbalanced.  The balanced panel is the 
special case, though only in a trivial way that will be invisible to you. 
 

R22.3 Data Arrangement and Setup 
 
 Your data are assumed to consist of variables: 
 
   yit, x1it, x2it, ..., xKit, Iit,  i = 1,...,N, t = 1,...,Ti, 

   yit =  dependent variable, 
   xit =  set of independent variables, 
   Iit =  stratification indicator, 
   K   =  number of regressors, not including one, 
   N   =  number of groups, 
   Ti  =  number of observations in group ‘i.’ 
 
The data set for all panel data models will normally consist of multiple observations, denoted             
t = 1,...,Ti, on each of i = 1,...,N observation units, or ‘groups.’  A typical data set would include 
observations on several persons or countries each observed at several points in time, Ti, for each 
individual.  In the following, we use ‘t’ to symbolize ‘time’ purely for convenience.  The panel could 
consist of N cross sections observed at different locations or N time series drawn at different times, 
or, most commonly, a cross section of N time series, each of length Ti.  The estimation routines are 
structured to accommodate large values of N, such as in the national longitudinal data sets, with Ti 
being as large or small as dictated by the study but not directly relevant to the internal capacity of the 
estimator.  (The size of Ti does become relevant in the two way models.) 
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NOTE:  With the current revision of LIMDEP, there is no limit on the number of groups in a panel. 
Earlier versions had an upper limit of 20,000 groups.  This enhancement will come at the cost of 
very slightly slower computation, but if you have less than several hundred thousand observations, 
the difference should not be perceptible. 
 
We define a balanced panel to be one in which Ti is the same for all i, and, correspondingly, an 
unbalanced panel is one in which the group sizes may be different across i. 
 

NOTE:  Panels are never required to be ‘balanced.’  That is, the number of time observations, Ti 
may vary with ‘i.’  The computation of the panel data estimators is neither simpler nor harder with 
constant Ti.  No distinction is made internally.  There are some theoretical complications, though.   
 

R22.3.1 Data Arrangement 
 

 Data for the panel data estimators in LIMDEP are assumed to be arranged contiguously in 
the data set.  Logically, you will have  
 

   Nobs  =  ∑
=

N

i
iT

1
 

 

observations on your independent variables, arranged in a data matrix 
 

T1 observations for group 1 
T2 observations for group 2 
           … 
TN  observations for group N 

 
and likewise for the data on y, the dependent variable.  When you first read the data into your 
program, you should treat them as a cross section with nobs observations.  The partitioning of the 
data for panel data estimators is done at estimation time.  Chapter R5 contains further details on how 
to set up and use panel data sets. 
 

NOTE:  Missing data are handled automatically by this estimator.  You need not make any changes 
in the current sample to accommodate missing values – they will be bypassed automatically.  Group 
sizes and all computations are obtained using only the complete observations.  Whether or not you 
have used SKIP to manage missing values, this estimator will correctly arrange the complete and 
incomplete observations. 
 

R22.3.2 Reordering Balanced Panels 
 

 Panel data may happen to be arranged by period rather than by group.  For example, you 
might have data on 1,000 firms in each of 10 years, with the first 1,000 observations being year 1, 
the second 1,000 year 2, and so on.  For nearly all panel data functions in LIMDEP, you will need to 
rearrange these data so that the first 10 observations are firm 1, the next 10 are firm 2, and so on.  If 
you have no more than 100,000 observations in total, you can request that such a panel be reordered 
by specifying the following artificial linear regression command 
 

 REGRESS ; Lhs = one ; Rhs = one ; Panel  
; Pds = …  or ; Str = …   
; Reorder $  

X  =  
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This reorders the entire data set so that it is properly arranged for the panel data estimators.  Further 
details on this operation are given in Chapter R5.  
 
R22.3.3 CREATE Commands for Panel Data 
 

Data transformation functions and matrix operations for panel data are described in Chapters 
R4 and R5.  One particular function that you are likely to find useful is the device to create a variable 
that contains the group means of a time varying variable in a panel.  To create a new variable that 
replicates for each observation in a group the mean of that group, use the group means function,  
 
 CREATE  ; z = Group Mean (variable, Str = name or number)  $ 
or   CREATE  ; y = Group Mean (variable, Pds = name or number) $ 
 
The function requires a panel data specification, precisely the same sort as used to specify panels in 
the model commands.  The function produces a report when computed, such as 
 
+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| AVGWKS     Group means  WKS         595      7      7       7.0 | 
+-----------------------------------------------------------------+ 
 
The variable is added to the data set, as shown in Figure R22.1. 
 

 
Figure R22.1  Group Means of Weeks 
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This function must be used in isolation, not as part of another command nor in a compound function.  
Use a new CREATE command for each variable.  Other available panel data functions are 
 
Group deviations  Group Devs (deviations from own group means,  zit - iz ) 
Group lagged value       Group Lags (the first observation becomes missing, zi,t-1 ) 
Group first difference    Group Diff (the first observation becomes missing, zit - zi,t-1 ) 
 
R22.4 General Model Forms for Panel Data 
 
 The class of models presented in this chapter are generically denoted 
 
  P(yit) = g(βi, xit, εit)  
where 
  P(.) = the probability density function of the observed random variable, yit. 
 
  i = 1,...,N denotes the ith group or individual.   
 
The number of groups is usually unlimited, but in a few cases is limited.  This generally applies to 
the fixed effects models where the upper limit in some cases is 250,000.  There is no limit on the 
number of groups in the random effects, random parameters or latent class formulations. 
 
  t = 1,...,Ti denotes the tth period, ranging from one to a person or group 

specific Ti. With only one exception that is dictated by the structure of 
the model (TSCS and SURE), LIMDEP always allows Ti to vary across 
groups.  That is, panels may always be unbalanced.   

 
  yit = the observed dependent variable. 
 
  xit = is used to denote an observed vector of independent variables.  This 

may include variables which vary across both groups and periods, and, in 
some applications, may also involve variables which vary across groups 
but are constant across periods, such as group specific dummy variables 
or time invariant effects such as gender in microeconometric 
applications. 

 
  βi = the parameter vector for the ith individual.  This may vary completely 

across individuals, as in the random coefficients models, or it may have a 
fixed component and a subvector which varies across groups, as in the 
usual fixed effects model.  It may also be constant across groups and 
periods, as in the random effects model. 

 
  εit = the stochastic component of the model.  The symbol is used generically 

to indicate the stochastic nature of the model, not necessarily a 
‘disturbance.’ 

 
  g = the density of the observed random variable conditioned on the 

arguments.  
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LIMDEP supports the following general model forms for panel data:  
 
Fixed Effects Models 
 
   g(βi, xit, εit)  =  g(β′xit  +  αi, εit) 
 
The ‘effect’ αi is assumed to be correlated with the included variables, xit.  This model is generally 
estimated by including N group dummy variables in the model.  Familiar results are largely based on 
least squares with the ‘within’ transformation (deviations from group means).  This does not work 
for nonlinear models.  LIMDEP uses maximum likelihood methods instead. 
 
Random Effects Models 
 
   g(βi, xit, εit)  =  g(β′xit  , εit + ui) 
 
The effect ui in this model is assumed to be uncorrelated with the included variables xit.  Familiar 
results are based on generalized least squares in linear models.  In nonlinear models, it is necessary 
to analyze the likelihood function instead.  
 
Random Coefficients Models 
 
   g(βi, xit, εit)  =  g[βi(zi,vi)′xit  , εit] 
 
The individual specific coefficient vector is modeled as the result of a random process that depends 
on observable heterogeneity, zi and unobserved heterogeneity, vi.  There are numerous variants on 
this ‘hierarchical’ (or ‘multilevel’) model.  The random effects model can be viewed as a random 
coefficients model in which only the constant term is random.  But, in this modeling framework as 
discussed below, we view the random coefficients models much more broadly than this.  First, 
coefficients on the other exogenous variables are allowed to be random as well.  Second, the random 
coefficients models fit in LIMDEP also allow for underlying heterogeneity in the distribution of the 
parameters, to be modeled with other individual specific characteristics.  Thus, in the formulation 
above, the mean of the distribution of βi is allowed to vary deterministically across individuals.   
 
Latent Class Models 
 
   g(βi, xit, εit)  =  Eclasses [g((βclass′xit  , εit) | class] 
 
The latent class model characterizes the population that generates the sample more broadly than just 
characterizing the model.  The implication for the model builder is that there is latent heterogeneity 
in model components, similar to the random parameters model.  Here, the distribution across 
individuals is discrete.  In the random parameters model, the variation is continuous. 
 There is some variation across model types regarding which of the three model forms is 
supported.  The list in the Table R22.1 suggests the extent.   
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Model Class   Fixed Effects Random Effects Random Parameters   Latent Class 
Linear Regression a • •  • • 
Nonlinear Reg. (Expon.) • • • • 

Binary Choice 
Probit a • •  • • 
Logit a • •  • • 
Complementary Log Log a • •  • • 
Gompertz a • •  • • 
Bivariate Probit b  •     •      
Bivar. Probit Selection b • •     •   
Partial Observability b  •     •      

Multinomial Choice 
Multinomial Logit c  •  • • 
Multinomial Probit b  •    
Ordered Probability/All a • •  • • 
Generalized Ord. Probit  • •  

Count Data 
Poisson Regression a • •  • • 
Negative Binomial a • •  • • 
Poisson/NegBin ZIP b • •  • • 

Loglinear Models 
Normal (Exp. Regr.) b • • • • 
Exponential b • •  • • 
Gamma b • •  • • 
Weibull b • •  • • 
Inverse Gaussian b • •  • • 
Geometric b • • • • 
Power b • • • • 
Binomial b • • • • 

Limited Dependent Variable 
Tobit a • •  • • 
Censored (Grouped) Dataa • • • • 
Truncated Regression b • •  • • 
Sample Selection b • •  •  

Survival and Frontier Models 
Weibull b • •  • • 
Exponential b • •  • • 
Loglogistic b • •  • • 
Lognormal b • •  • • 
Stochastic Frontier a • •  • • 

Table R22.1  Model Formulations with Panel Data Estimators 
 
a The random effects model can be estimated by standard REM techniques (GLS, quadrature) or by 
    the simulation method with a random parameters formulation;  
b   The random effects model can only be estimated by the simulated random parameters approach. 
c   Multinomial logit with random effects can be fit as a random parameters logit model by NLOGIT 
    Version 5.  The latent class multinomial logit model can also be fit with NLOGIT Version 5. 
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R22.5 Model Commands 
 
 There is a small amount of variation across models in the form of the commands, but in most 
cases, the model formulation will be as follows: 
 
R22.5.1 Specifying the Panel 
 
 Panels may always be balanced or unbalanced.  A balanced panel has the same number of 
observations per group;  Ti is a fixed T.  An unbalanced panel allows Ti to vary across individuals.  
Your model command will generally contain a specification 
 
   ;  Pds = panel specification 
 
which tells which of these is the case.  If the panel is balanced, you will give the specific value as the 
specification, for example as in 
 
   ; Pds = 10 
 
If the panel is unbalanced, you will provide the name of a variable which repeats within a group the 
number of observations in the group, as in 
 
   ; Pds = ti 
 
For example, suppose your panel data set contained 20 observations in total, in six groups with        
Ti = 4, 3, 2, 4, 5, and 2 observations.  Then the variable named ti containing the 20 values 
 
   4,4,4,4, 3,3,3, 2,2 4,4,4,4, 5,5,5,5,5, 2,2 
 
could be used to specify this panel. 
 The general command 
 
 SETPANEL ; Group = id variable ; Pds = name to be used for count variable $ 
 
can be used to set up the group size variable and to install a procedure that will automatically keep 
track of the panel settings for the current sample.  After you use SETPANEL, it is only necessary to 
include 
   ; Panel 
 
in your model command.  Further details on this setting appear in Section R5.3.3. 
 Most of the techniques described here apply to applications involving panel data sets.  
However, in the case of the random parameters models, the techniques can be extended to a 
surprising array of cross section applications.  The model does not require a panel, though in 
practice, the model is not strongly identified by a cross section, and results may be less than ideal.  
Nonetheless, ; Pds = 1 is allowable, though it is superfluous.  If you do not specify ; Pds in your 
command, one period is assumed. 
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NOTE:  The fixed and random effects linear regression models also allow a stratification variable to 
be specified with ; Str = variable. This provides a group identifier. This is specific to this particular 
model. It has the same effect as the periods specification above. But, the ; Str = variable 
formulation may only be used in that setting with the REGRESS command.  See Chapter R5 for 
discussion of panel data indicator variables and Chapter E11 for the panel data estimator used with 
REGRESS. For nonlinear models, ; Str = variable is used only for the clustering estimator for 
robust covariance matrices (Sections R10.1 and E18.2.6) for specifying nested, multilevel random 
effects (Section E18.8). 
 
R22.5.2 Missing Data 
 
 Missing data can sometimes confuse the panel data setups.  In some cases, you must remove 
the observations containing missing values from the sample before issuing the estimation command. 
In the large panel data groupings fixed effects, random parameters and latent classes, the estimator 
will, itself, bypass the missing data, and your observation count can give the group sizes including 
the missing values.  The discussion for each model framework will detail specifically how missing 
values are to be handled.  Please note this in each case for the model you are analyzing. 
 
R22.5.3 Model Type Specifications, Output and Saved Matrices 
 
 There are some common aspects of the major classes of panel data models.  We discuss 
these here.  Later in this chapter, we will provide more extensive details on each of these estimation 
classes, including some of the more specialized formats.  In addition to the model specific results 
that are retained by each estimator, the panel data estimators each create type specific matrices that 
are likely to be useful.  For example, if requested, the general fixed effects estimator creates a matrix 
named alphafe which contains the estimated dummy variable coefficients (up to 50,000 of them). 
 
Fixed Effects Models 
 
A fixed effects model will generally be specified with 
 
 Model  ; Lhs = ...  
   ; Rhs = ...  
   ; Pds = specification  
   ; FEM  $ 
 
NOTE: With two exceptions, ; Fixed Effects may be used instead of ; FEM.  Two models, the 
binary logit and the negative binomial model each support two different approaches to fixed effects 
estimation.  For these cases, ; Fixed invokes the Chamberlain estimator for the logit model and the 
Hausman, Hall and Griliches estimator for the negative binomial model.   LIMDEP’s more general, 
‘true’ fixed effects estimator is invoked with ; FEM.  The differences between the approaches are 
discussed in the respective chapters in the Econometric Modeling Guide. 
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 Other estimation features will usually be available as well, such as optimization parameters, 
fitted values, and so on.  For example, the following presents estimates for a probit model with 1,000 
individual intercepts using simulated data – actually 676 as 324 groups had no within group 
variation.  See Figure R22.2 and Chapter R23 for discussion of this important point. 

 
 CALC   ; Ran (123457) $ 
 SAMPLE  ; 1-5000 $ 
 MATRIX  ; ui = Rndm(1000) $ 
 CREATE  ; x = Rnn(0,1) ; i = Trn(5,0) $ 
 CREATE  ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $ 
 CREATE  ; yit = yits > 0 $ 
 PROBIT ; Lhs = yit ; Rhs = one,x  

; Pds = 5  
; FEM 

   ; Partial Effects  
; Parameters $ 
 

----------------------------------------------------------------------------- 
Probit   Regression Start Values for YIT 
Dependent variable                  YIT 
Log likelihood function     -3154.28695 
Estimation based on N =   5000, K =   2 
Inf.Cr.AIC  = 6312.574 AIC/N =    1.263 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       X|     .34595***      .01912    18.09  .0000      .30847    .38343 
Constant|    -.32119***      .01850   -17.37  .0000     -.35744   -.28494 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Nonlinear Estimation of Model Parameters 
Method=Newton; Maximum iterations=100 
Convergence criteria: max|dB|   .1000D-05, dF/F=  .1000D-08, g<H>g=  .1000D-08 
Normal exit from iterations. Exit status=0. 
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable                  YIT 
Log likelihood function     -1729.82433 
Estimation based on N =   5000, K = 677 
Inf.Cr.AIC  = 4813.649 AIC/N =     .963 
Sample is  5 pds and   1000 individuals 
Skipped  324 groups with inestimable ai 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
       X|     .65919***      .03125    21.10  .0000      .59795    .72043 
--------+-------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]   with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Estimated E[y|means,mean alphai]=    .435 
Estimated scale factor for dE/dx=    .394 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
     YIT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       X|     .25949***      .01523    21.04  .0000      .23531    .28366 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The matrix alphafe contains the estimates of the dummy variable coefficients.  (The large values,  
-1.d20 are filler for cells that correspond to inestimable coefficients.  This occurs when the 
dependent variable in the binary choice model is always zero or one. 
 

 
Figure R22.2  Estimated Fixed Effects 

 
Random Effects Models 
 
 Random effects models will usually be specified similarly, but as noted, there is large 
variation across model types.  The simple specification 
 
   ; Pds = specification 
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will suffice in a few cases, such as the stochastic frontier model, but for the probit, logit, Poisson, 
and others, in which there are several different panel data models, you must specify the type of 
model, with 
 

   ; Pds = specification ; Random Effects 
 

For example, the following small experiment estimates a (properly specified – the data exactly obey 
the assumptions) random effects probit model.  Note that a full set of results is produced for the 
model, as would be in a cross section. 
 

 CALC   ; Ran (123457) $ 
 SAMPLE  ; 1-5000 $ 
 MATRIX  ; ui = Rndm(1000) $ 
 CREATE  ; x = Rnn(0,1) ; i = Trn(5,0) $ 
 CREATE  ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $ 
 CREATE  ; yit = yits > 0 $ 
 PROBIT ; Lhs = yit ; Rhs = one,x  

; Pds = 5  
   ; Random Effects 
   ; Partial Effects  

; Parameters $ 
 
----------------------------------------------------------------------------- 
Random Effects Binary Probit Model 
Dependent variable                  YIT 
Log likelihood function     -2838.62648 
Restricted log likelihood   -3154.28695 
Chi squared [   1 d.f.]       631.32094 
Significance level               .00000 
Estimation based on N =   5000, K =   3 
Inf.Cr.AIC  = 5683.253 AIC/N =    1.137 
Sample is  5 pds and  1000 individuals. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.44895***      .03927   -11.43  .0000     -.52591   -.37199 
       X|     .50151***      .02536    19.78  .0000      .45181    .55122 
     Rho|     .49459***      .02209    22.39  .0000      .45131    .53788 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
They are computed at the means of the Xs 
Observations used for means are All Obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
     YIT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       X|     .13539***      .00514    18.75  .0000      .12124    .14954 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Random Parameters 
 
 The random parameters models are all specified the same way.  The model command is 
 
 Model  ; Lhs  = ... 
   ; Rhs  = ... 
   ; Pds  = specification (this is optional here) 
   ; RPM  (for random parameters model) 
   ; Fcn  = variable name (distribution) ...  $ 
 
(There are numerous optional specifications for this model class.  These are detailed in Chapter 
R24.)  The ; Fcn = name (distribution) specifies the variable in the Rhs list whose coefficient is 
random – they need not all be.  The basic distributions available are normal, uniform, and triangular, 
which you would specify as 
 
   ; Fcn = name(n) or (u) or (t) 
 
(There are a variety of ways to modify and extend this model.)  There are several other parameters 
that are part of this specification.  Estimation is done by simulation, so you may specify the number 
of replications for the simulation with 
 
   ; Pts = the desired number of replications 
 
The default is 100, but you may give any value you like. 
 The parameters specified to be random are assumed in the preceding to be uncorrelated, so 
that for each one, the estimates consist of the mean of the distribution and a scale factor for the 
random term.. You can fit a model in which the random parameters are allowed to be freely 
correlated by adding  
 

   ; Correlation 
 
to the model command. 
 The following simulates and fits a random parameters probit model in an exercise similar to 
the earlier examples.  (Some output is omitted.) 
 
 CALC   ; Ran (123457) $ 
 SAMPLE  ; 1-5000 $ 
 MATRIX  ; ui = Rndm(1000) $ 
 CREATE  ; x = Rnn(0,1) ; i = Trn(5,0) $ 
 CREATE  ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $ 
 CREATE ; yit = yits > 0 $ 
 PROBIT ; Lhs = yit ; Rhs = one,x  
   ; Pds = 5 
   ; RPM ; Fcn = one(n),x(n)  
   ; Correlated ; Pts = 50  
   ; Parameters $ 
 
  



R22: Models for Panel Data  R-576 

----------------------------------------------------------------------------- 
Random Coefficients  Probit   Model 
Dependent variable                  YIT 
Log likelihood function     -2853.67087 
Restricted log likelihood   -3154.28695 
Chi squared [   3 d.f.]       601.23217 
Significance level               .00000 
Estimation based on N =   5000, K =   5 
Sample is  5 pds and   1000 individuals 
PROBIT (normal)  probability model 
Simulation based on  50 random draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Means for random parameters 
Constant|    -.45179***      .02276   -19.85  .0000     -.49640   -.40718 
       X|     .49366***      .02391    20.65  .0000      .44680    .54053 
        |Diagonal elements of Cholesky matrix 
Constant|     .99052***      .02798    35.40  .0000      .93568   1.04537 
       X|     .08259***      .02207     3.74  .0002      .03933    .12585 
        |Below diagonal elements of Cholesky matrix 
  lX_ONE|    -.01478         .02759     -.54  .5922     -.06886    .03930 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
 
Var_Beta|             1             2 
--------+---------------------------- 
       1|       .981138     -.0146412 
       2|     -.0146412     .00703983 
 
Implied standard deviations of random parameters 
 
S.D_Beta|             1 
--------+-------------- 
       1|       .990524 
       2|      .0839037 
 
Implied correlation matrix of random parameters 
 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000      -.176169 
       2|      -.176169       1.00000 
 
The ; Parameters specification in a random parameters model creates several matrices: 
 
 beta_i  = group specific estimates of E[βi | data on individual i] 
 sdbeta_-i = group specific estimates of Std.Dev[βi | data i] 
 gammaprm = estimate of Γ matrix 
 sdrpm  = estimates of σβ for random parameters. 
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Figure R22.3  Matrix Results from Random Parameters Model 

 
NOTE:  The random coefficients model with only the constant term specified to be random is 
equivalent to a random effects model as discussed earlier.  However, these will not give the same 
answer for a given data set because the random effects model will generally be fit by full ML, using 
Hermite quadrature to integrate the random effect out of the terms in the log likelihood function 
while the random parameters (random constant) is estimated by simulation methods.  If the model is 
correctly specified, these two estimators should produce similar answers.  The larger is the sample, 
the closer they will be.  The example below demonstrates using the artificial data generated earlier. 
 
 CALC   ; Ran (123457) $ 
 SAMPLE  ; 1-5000 $ 
 MATRIX  ; ui = Rndm(1000) $ 
 CREATE  ; x = Rnn(0,1) ; i = Trn(5,0) $ 
 CREATE  ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $ 
 CREATE ; yit = yits > 0 $ 
 PROBIT ; Lhs = yit ; Rhs = one,x  
   ; Pds = 5 
   ; RPM ; Fcn = one(n) ; Pts = 100 $ 
 PROBIT ; Lhs = yit ; Rhs = one,x ; Random Effects $ 
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----------------------------------------------------------------------------- 
Random Coefficients  Probit   Model 
Dependent variable                  YIT 
Log likelihood function     -2844.30849 
Restricted log likelihood   -3154.28695 
Chi squared [   1 d.f.]       619.95692 
Significance level               .00000 
McFadden Pseudo R-squared      .0982721 
Estimation based on N =   5000, K =   3 
Inf.Cr.AIC  = 5694.617 AIC/N =    1.139 
Model estimated: Mar 10, 2011, 07:02:51 
Sample is  5 pds and   1000 individuals 
PROBIT (normal)  probability model 
Simulation based on 100 random draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
       X|     .49965***      .02285    21.86  .0000      .45485    .54444 
        |Means for random parameters 
Constant|    -.45470***      .02203   -20.64  .0000     -.49787   -.41153 
        |Scale parameters for dists. of random parameters 
Constant|     .99086***      .02799    35.40  .0000      .93600   1.04572 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Random Effects Binary Probit Model 
Dependent variable                  YIT 
Log likelihood function     -2838.62648 
Restricted log likelihood   -3154.28695 
Chi squared [   1 d.f.]       631.32094 
Significance level               .00000 
McFadden Pseudo R-squared      .1000735 
Estimation based on N =   5000, K =   3 
Inf.Cr.AIC  = 5683.253 AIC/N =    1.137 
Model estimated: Mar 10, 2011, 07:03:49 
Sample is  5 pds and  1000 individuals. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.44895***      .03927   -11.43  .0000     -.52591   -.37199 
       X|     .50151***      .02536    19.78  .0000      .45181    .55122 
     Rho|     .49459***      .02209    22.39  .0000      .45131    .53788 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 The slope parameters differ predictably, but are close as might be expected.  The correlation 
parameter estimated by the REM equals σu

2 / (1 + σu
2).  Computing this ratio with the value 

0.99086268 given for the RPM gives a counterpart to ρ of 0.495409.  The two techniques are clearly 
finding essentially the same point.  Note, as well, that the log likelihoods are similar, but as expected, 
not exactly the same. 
 
Latent Class Models 
 
 Finally the command for the latent class models has a common simple form: 
 
 Model  ; Lhs = ... 
   ; Rhs  = ... 
   ; Pds  = specification 
   ; LCM  (for latent class model) 
   ; Pts  = number of classes, up to 9 $ 
 
The small example below uses exactly the same data used in the preceding examples.  In this case, 
although the results seem reasonable, in fact, the model is misspecified – the data do not conform to 
a latent class model.  The estimator has done its best to partition the continuously variable parameter 
vector (with one nonvarying element) into a discrete distribution with three mass points.  Note that 
the true expected value of the continuously variable constant term in the model is -0.5000. If we 
average the two class specific coefficient vectors with weights equal to the respective class 
probabilities (-.75661,.60010), the results resemble the true mean vector of (-.5,.5).  The ; List 
parameter requests a listing of the posterior class probabilities (defined below) and the actual  
commands.  The example shows the first few observations. 

The ; Parameters specification in the command also creates three matrices: 
 
 b_class  =  coefficient matrix - one column for each class, coefficients for 
       underlying models, 
 class_pr =  estimated class probabilities, 
 beta_i  =  group (individual) specific posterior estimated coefficient vector. 
 
 CALC   ; Ran (123457) $ 
 SAMPLE  ; 1-5000 $ 
 MATRIX  ; ui = Rndm(1000) $ 
 CREATE  ; x = Rnn(0,1) ; i = Trn(5,0) $ 
 CREATE  ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $ 
 CREATE ; yit = yits > 0 $ 
 PROBIT ; Lhs = yit ; Rhs = one,x  
   ; Pds = 5 
   ; LCM  

; Pts = 2  
   ; Parameters  

; List $ 
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----------------------------------------------------------------------------- 
Probit   Regression Start Values for YIT 
Dependent variable                  YIT 
Log likelihood function     -3154.28695 
Estimation based on N =   5000, K =   2 
Inf.Cr.AIC  = 6312.574 AIC/N =    1.263 
Model estimated: Mar 10, 2011, 07:13:59 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.32119***      .01850   -17.37  .0000     -.35744   -.28494 
       X|     .34595***      .01912    18.09  .0000      .30847    .38343 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Normal exit:  10 iterations. Status=0, F=    2859.914 
----------------------------------------------------------------------------- 
Latent Class / Panel Probit   Model 
Dependent variable                  YIT 
Log likelihood function     -2859.91433 
Restricted log likelihood   -3154.28695 
Chi squared [   4 d.f.]       588.74525 
Significance level               .00000 
McFadden Pseudo R-squared      .0933246 
Estimation based on N =   5000, K =   5 
Inf.Cr.AIC  = 5729.829 AIC/N =    1.146 
Model estimated: Mar 10, 2011, 07:14:00 
Sample is  5 pds and   1000 individuals 
PROBIT (normal)  probability model 
Model fit with  2 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    -.98945***      .05685   -17.40  .0000    -1.10089   -.87802 
       X|     .44691***      .03553    12.58  .0000      .37728    .51655 
        |Model parameters for latent class 2 
Constant|     .55354***      .06718     8.24  .0000      .42187    .68522 
       X|     .49469***      .03977    12.44  .0000      .41673    .57264 
        |Estimated prior probabilities for class membership 
Class1Pr|     .60851***      .03119    19.51  .0000      .54738    .66963 
Class2Pr|     .39149***      .03119    12.55  .0000      .33037    .45262 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
============================================================================= 
Predictions computed for the group with the largest posterior probability 
Obs.  Periods Fitted outcomes 
============================================================================= 
Ind.=    1  J* = 2  P(j)=  .009  .991 
       01-05    1.0    1.0    1.0    1.0    1.0 
Ind.=    2  J* = 1  P(j)=  .997  .003 
       01-05    1.0    1.0    1.0    1.0    1.0 
Ind.=    3  J* = 1  P(j)=  .995  .005 
       01-05    1.0    1.0    1.0    1.0    1.0 
Ind.=    4  J* = 2  P(j)=  .015  .985 
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Figure R22.4  Latent Class Model Results 
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R23: Fixed and Random Effects Models for 
Panel Data 

 
R23.1 Introduction 
 
 LIMDEP provides a variety of panel data treatments for about 50 different model 
specifications.  The starting point is the basic common effects model, in the form of fixed and 
random effects.  These versions of each model, such as the linear model, Poisson regression, probit 
model, or ordered choice models, are described in detail in the Econometric Modeling Guide.  In this 
chapter, we will detail some general results about how fixed and random effects are handled in linear 
and nonlinear models. 
 
R23.2 Fixed Effects Models 
 
 The fixed effects linear regression model is fit by ordinary least squares, instrumental 
variables or feasible generalized least squares in the presence of autocorrelation.  For other models, 
fixed effects models are fit by maximum likelihood methods.  Fixed effects nonlinear models have 
heretofore been viewed generally as intractable except in a few special cases.  The problem has been 
that it is generally not possible to transform the data in such a way as to remove the effects from the 
density, so the researcher was faced with the need to fit all the model coefficients.  We have 
developed a method of handling this problem (in collaboration with George Jakubson of Cornell 
University) which essentially estimates the model by brute force, but takes advantage of some 
special characteristics of the fixed effects model.  In a few familiar cases (three), it is possible to 
condition the fixed effects out of the density and estimate the parameters of interest via a conditional 
log likelihood.  For our purposes, this is a partial solution, as it provides a method for some useful 
cases, logit and Poisson, for example, but does not extend to some very important cases, namely the 
tobit and probit models.  The methods we have developed for LIMDEP extend to these three and 
many other interesting cases. 
 
R23.2.1 Least Squares in the Linear Regression Model 
 
 The one way fixed effects linear regression model is described in Chapter E17. The model is 
 
   yit  =  αi  +  β′xit  +  εit 
 
The model is fit by taking advantage of the Frisch-Waugh theorem for partitioned least squares 
regression.  The least squares slope coefficients are obtained by linear regression of  
 

 (yit  -  .iy )  on   (xit  -  .ix )  where  .iy   =  ∑ =
iT

t ity
1

  and  .ix    =  ∑ =
iT

t it1
x  
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Panels may be unbalanced, as usual.  By this construction, a separate constant term is estimated for 
each group, as opposed to an overall constant and ‘contrasts’ for N - 1 of the groups.  The individual 
constant terms are then computed as the group specific residuals, 
 

   ai  =  ∑ =
iT

t 1
(yit  -  .iy )  -  (xit  -  .ix )′b. 

 
 When there is autocorrelation, the model is first partial differenced using the value of rho 
provided from your prior estimation of the model – see Chapter E11.  The fixed effects treatment is 
applied to the transformed model, 
 
   yit  -  r yi,t-1  =  β′(xit  -  r xi,t-1)  +  αi(1 - r)   +  (εit  -  r εi,t-1) 
 
The fixed effects computed for this model are saved in a matrix named alphafe. 
 The basic command (without the other available options) for this linear regression model is 
 
 REGRESS ; Lhs  = the dependent variable 
   ; Rhs  = the independent variables, not including one 
   ; Pds  = the specification of the periods indicator 
   ; Panel 
   ; Fixed Effects $ (or just ; Fixed) 
 
If you have defined your panel data with SETPANEL (see Chapter R5), then the ; Pds = … may be 
omitted. 
 The two way fixed effects linear regression model (see Section E17.3) is 
 
   yit  =  αi  +  γt  +  β′xit  +  εit. 
 
It is usually assumed – this is essential for your purposes – that in a two way fixed model, the 
number of periods in the data set is relatively small – generally less than about 100.  Since panels 
may be unbalanced, there is a large degree of complication in the computation of the estimates.  This 
is handled in LIMDEP by treating the two way fixed effects model as a one way model with a set of 
T* - 1 = Max(Ti) - 1 period specific dummy variables.  Thus, the coefficients in the two way model 
are actually computed by generating the period specific dummy variables.  There is no correction for 
autocorrelation supported in the two factor fixed framework. 
 
NOTE:  The number of periods (or second level groups) may be up to 1,000 in LIMDEP 10. 
 
 There are counterparts to the simple formulas based on the Frisch-Waugh theorem for two 
way panel models.  In particular, the OLS coefficients can be estimated by least squares regression 
of the transformed variables  . . ..it it i tDy y y y y= − − + .  However, this only gives the correct answer 
for a balanced panel.  If the panel is unbalanced, this formula will result in a plausible, but incorrect 
answer for the two way fixed effects model.  Because LIMDEP never restricts you to a balanced 
panel for any model, this formula is not used.  The two way fixed effects model is always fit by 
creating the period dummy variables and including them in a one way fixed effects model. 
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 In the reported output for the two way fixed effects model, the fixed effects are transformed 
so that the model contains an overall constant term and two sets of centered dummy variable 
coefficients.  That is, in the two factor model (not the one factor model), the output will contain an 
overall constant term and group specific coefficients, ai transformed so that Σiai = 0, and period 
specific coefficients, ct transformed so that Σt ct = 0. 
 For the linear regression model – this differs a bit from the nonlinear models – you must 
provide a variable that lists the periods, even if the panel is balanced.  Thus, within each group, the 
variable will take some or all of the values 1,...,T*.  For a balanced panel, you can create this with 
 
 CREATE  ; date = Trn(-t,0) $ 
 
where T is the number of periods.  If the panel is unbalanced, you must create the variable in 
whatever fashion is necessary.  (Some hints appear in Chapter R5.)  The model command is then 
 
 REGRESS ; Lhs = the dependent variable 
   ; Rhs = the independent variables, not including one 
   ; Pds = the specification of the periods indicator 
   ; Time = the time variable  
   ; Fixed Effects $  
 
NOTE:  In previous versions of LIMDEP, the equivalent was ; Period = the time variable.  This is 
still supported.  The form suggested above is provided to maintain consistency with the newer models. 
 
There are other options available for the panel data specifications in the linear model as well.  
Further details appear in Chapter E17.  The linear model with fixed effects and endogenous right 
hand side variables is described in Chapter E22. 
 
Example – Linear Fixed Effects Model 
 
 The listing below demonstrates the results for a linear fixed effects model in a (balanced) 
panel with 595 individuals and seven periods.  The commands are 
 

SETPANEL  ; Group = _stratum ; Pds = ti $ 
REGRESS   ; Lhs = lwage ; Rhs = one,wks,occ,ind,south  

; Panel ; Fixed Effects $ 
 
The standard results include the simple least squares results without fixed effects followed by the 
least squares dummy variable (LSDV) estimates.  The last table of results presents summary analysis 
of variance statistics and the results of hypothesis tests of the null model with no effects against the 
fixed effects model.  For these data, the model of the null hypothesis is decisively rejected based on 
the F statistic and the chi squared results. 
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+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| TI         Group sizes  _STRATUM    595      7      7       7.0 | 
+----------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=LWAGE    Mean                 =        6.67635 
             Standard deviation   =         .46151 
             No. of observations  =           4165  Degrees of freedom 
Regression   Sum of Squares       =        127.319           4 
Residual     Sum of Squares       =        759.586        4160 
Total        Sum of Squares       =        886.905        4164 
             Standard error of e  =         .42731 
Fit          R-squared            =         .14355  R-bar squared =   .14273 
Model test   F[  4,  4160]        =      174.32156  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    -2366.09179  Akaike I.C.   = -1.69930 
             Restricted (b=0)     =    -2688.80603 
             Chi squared [  4]    =      645.42847  Prob C2 > C2* =   .00000 
Panel Data Analysis of LWAGE             [ONE way] 
               Unconditional ANOVA (No regressors) 
Source         Variation  Deg. Free.   Mean Square 
Between        646.25374        594.       1.08797 
Residual       240.65119       3570.        .06741 
Total          886.90494       4164.        .21299 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   LWAGE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     WKS|     .00518***      .00129     4.01  .0001      .00265    .00772 
     OCC|    -.30924***      .01362   -22.70  .0000     -.33595   -.28254 
     IND|     .10092***      .01397     7.22  .0000      .07354    .12830 
   SOUTH|    -.16271***      .01467   -11.09  .0000     -.19146   -.13397 
Constant|    6.59913***      .06126   107.73  .0000     6.47906   6.71919 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
LSDV         least squares with fixed effects .... 
LHS=LWAGE    Mean                 =        6.67635 
             Standard deviation   =         .46151 
             No. of observations  =           4165  Degrees of freedom 
Regression   Sum of Squares       =        647.046         598 
Residual     Sum of Squares       =        239.859        3566 
Total        Sum of Squares       =        886.905        4164 
             Standard error of e  =         .25935 
Fit          R-squared            =         .72955  R-bar squared =   .68420 
Model test   F[598,  3566]        =       16.08638  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =       34.44842  Akaike I.C.   = -2.56678 
             Restricted (b=0)     =    -2688.80603 
Estd. Autocorrelation of e(i,t)   =        .492839 
Panel:Groups Empty      0,     Valid data      595 
             Smallest   7,     Largest           7 
             Average group size in panel      7.00 
Variances    Effects a(i)         Residuals e(i,t) 
              .143678                      .067263 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
   LWAGE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     WKS|     .00111         .00102     1.09  .2766     -.00089    .00311 
     OCC|    -.07139***      .02331    -3.06  .0022     -.11707   -.02571 
     IND|     .02944         .02632     1.12  .2634     -.02215    .08103 
   SOUTH|    -.02694         .05818     -.46  .6433     -.14098    .08710 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood    Sum of Squares  R-squared | 
|(1)  Constant term only    -2688.80597         886.90494     .00000 | 
|(2)  Group effects only       27.58464         240.65119     .72866 | 
|(3)  X - variables only    -2366.09173         759.58557     .14355 | 
|(4)  X and group effects      34.44849         239.85932     .72955 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.   Prob         F   num   denom  P value | 
|(2) vs (1)   5432.78    594  .0000     16.14   594    3570   .00000 | 
|(3) vs (1)    645.43      4  .0000    174.32     4    4160   .00000 | 
|(4) vs (1)   5446.51    598  .0000     16.09   598    3566   .00000 | 
|(4) vs (2)     13.73      4  .0082      2.94     4    3566   .01912 | 
|(4) vs (3)   4801.08    594  .0000     13.01   594    3566   .00000 | 
+--------------------------------------------------------------------+ 
 
R23.2.2 Maximum Likelihood Estimation 
 
 The general (possibly nonlinear) one way fixed effects model is 
 
   zit   =  αi  +  β′xit, i = 1,...,N, t = 1,...,Ti, 

   p(yit) =  g(zit, θ). 
 
where αi is the coefficient on a binary variable, di, which indicates membership in the ith group.  The 
panel is assumed to consist of N groups with Ti observations in the ith group.  The panel need not be 
balanced; Ti may always vary across groups.  Nonlinear models of this form are estimated in two 
ways. A conditional estimator is obtained by using the conditional joint distribution, 
f(yi1,yi2,...,yiT|Σtyit).  (See, for example Griliches, Hall, and Hausman (1984) who develop this for the 
Poisson regression.)  The resulting density is a function of β alone, which is then estimated by 
(conditional) maximum likelihood.  This estimator is available for the binary logit, Poisson, and 
negative binomial models.  Chapters E30 and E44 provide extensive details.  Other models do not 
reduce to a useable closed form through this conditioning, so that the conditional estimator is 
unavailable.  The unconditional estimator is obtained by a direct maximization of the full log 
likelihood function and estimating all parameters including the group specific constants.   
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Maximum Number of Groups   
 
 The estimator described here actually computes the full vector of K+N coefficients, ‘the hard 
way,’ one might say.  This means that your estimated coefficient vector can be huge.   
 

The upper limit on the number of group specific constants that may be estimated is 100,000. 
 
Estimated Coefficients in Fixed Effects Models 
 
 As seen in the example below, the model output does not include the estimated fixed effects 
(dummy variable) coefficients.  These are saved in a matrix named alphafe, but not displayed.  You 
can examine the matrix by double clicking its name in the project window.  The earlier example 
demonstrates. 

Certain models, such as the binary choice models, require that observation groups in which 
there is no variation in the dependent variable be dropped from the sample when estimating fixed 
effects models – there is no MLE for the individual specific constant in this case. (This is not general 
– it only applies to a few models.)  In a probit model, for example, the individual specific coefficient 
cannot be estimated if the Lhs variable is always zero or always one.  The alphafe matrix’s length 
matches the number of groups in all cases. Noncomputable αs, e.g. for logit and probit, are set equal 
to  -1.d20 or +1.d20 when yit = 0 or 1, respectively. 
 
The Incidental Parameters Problem 
 
 Full estimation of the fixed effects model in this fashion generally encounters the ‘incidental 
parameters’ problem.  The estimators of the fixed effects coefficients are inconsistent in a fixed 
effects model, not because they estimate the wrong parameters, but because the variances of the 
estimators of αi are of order 1/Ti which is not assumed to be increasing, not 1/N, which is.  Thus, the 
properties of the slope estimator (and the estimator of θ in the negative binomial model) depend on 
an inconsistent estimator.  It can be shown (see below) that the variance of the slope estimator 
converges to zero.  The mean of the slope estimator converges to a function that deviates from β as a 
function of the extent to which the estimator of αi deviates from αi.  Let ai be the MLE of αi and b be 
the estimator of β. The usual results for the MLE in a multiparameter situation would produce 
consistency from the fact that b = b(a1, a2, ...) and 
 
 plimN→∞ b - β  =  a function of, among other things, plimN→∞ ai - αi, i = 1,...,N. 
 
In the usual case, all terms (including the other estimators) would converge to zero.  In this case, that 
does not hold, though the extent to which the small sample (Ti) affects b is unknown.  (Contrary to 
widespread belief, the bias of the MLE is not always upward.  In the tobit model, there appears to be 
none, though the estimator of σ is biased downward, while in the truncated regression, it appears that 
both the slopes and the estimator of σ are biased toward zero.  Unfortunately, the end result is 
strongly model specific.  See Greene (2004).)  Certainly if your panel contains very small group 
sizes, say Ti less than five or so, then this estimator is shaky.  If you have fairly large group sizes, say 
on the order of 15 or more, then you are in the range of sample sizes that analysts often rely upon to 
assert other asymptotic results.  Users are urged to consider this issue when using the unconditional 
fixed estimators. 
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 Surprisingly, the incidental parameters problem is not present in the Poisson model.  The 
reason for this intriguing result is that in the Poisson model, the first order conditions for estimation 
of the slopes are actually free of the fixed effects – see Winkelmann (2000) for a proof.  You can see 
this effect at work in the application in Chapter E44.  The conditional and unconditional estimators 
are identical.  This is not the case for the negative binomial or binary logit models, however.  It is for 
a few other estimators, such as the exponential regression.  The formal reason for this result is that in 
the cases listed, there exist sufficient statistics, usually the group means of the dependent variable, 
for estimation of the dummy variable coefficients. 
 
Two Way Fixed Effects Models 
 
 LIMDEP’s unconditional estimator can also produce a two way fixed effects model, 
 
   zit  =  αi  + δt +  β′xit. 
  
There will now be MaxTi-1 additional coefficients in the model.  You can request this estimator by 
adding 
 

   ; Time = ti 
 
where the variable ti tells, for each observation, in which period the observation occurred.  This 
variable must take the values 1,2,...,MaxTi.  That is, it must be coded with ‘t,’ the index number of 
the period.  A date will not work – it will be flagged as identifying too many coefficients.  Do note 
that observations may be made at different periods in the different groups.  For example, if you have 
a panel with three observations in the first group and seven in the second, the first three observations 
could have been made at t = 2, t = 4, and t = 7.  The routine assumes that MaxTi is equal to the 
largest group size in the model.  (That way, it is assured that there are no holes in the sequence of 
observations.)  Thus, the largest group in the sample must have this variable coded with the complete 
set of integers, 1,2,...,Tmax. 
 
NOTE:  If you have a balanced panel with ; Pds = t where t is a fixed value, then you can specify 
the time effects with ; Time = one as there can be no variation in the coding of the period in a 
balanced panel. 
 
NOTE:  Our experience has been that this extension produces considerable instability in the 
negative binomial, though it works nicely in the Poisson model. 
 
 The fixed effects model with time effects is estimated by actually creating the time specific 
dummy variables.  You will see a complete set of time effects in the output.  As such, however, if 
you have a large group size in your panel, this extension may create an extremely large model. 
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R23.2.3 How it’s Done 
 
 The unconditional log likelihood is maximized by using Newton’s method. The log 
likelihood is 

 log L    =  
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Assemble the full set of first derivatives in a (K+N)×1 vector, g and the full set of second derivatives 
in a (K+N)×(K+N) matrix, H.  The iteration for Newton’s method is 
 
   γs+1 =  γs  -   Hs

-1gs 

    =  γs  +  ds, 
 
where γ denotes the full (K+N)×1 parameter vector, (β′,α1,α2,...,αN)′ and s indexes iterations.  This 
iteration then, computes a change vector, ds as the product of the matrix and vector of derivatives.  In 
principle, the matrix H is huge, which makes this computation unwieldy.  However, the lower right 
N×N submatrix of H (the very large part) is a diagonal matrix – see above.  Therefore, it is not 
necessary actually to compute the entire matrix.  The change vector can be computed as a sum of 
K×1 vectors which are themselves functions only of the scalar diagonal parts of the submatrix and 
the K×K submatrix at the upper left, all of which is very easily done and requires no more computer 
memory than a conventional estimator, say least squares for a regression. 
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 We use Newton’s method for the computations, so the actual Hessian is available for 
estimation of the asymptotic covariance matrix of the estimators.  Let Hβα′ denote the K×N submatrix 
of H obtained as [hβ1, hβ2, ..., hβN] and let Hαα′ denote the N×N diagonal lower right submatrix of H 
obtained as diag[hii].  Then, the estimator of the asymptotic covariance matrix for the MLE of β is 
the upper left submatrix of -H-1.  Using the partitioned inverse formula, this is 
 
   Asy.Var[b]  =  [-(Hββ′  -  Hβα′ (Hαα′)-1 Hαβ′)]-1 
 
The first matrix is given above.  By inserting the formulas given above, and exploiting the fact that 
Hαα′ is a diagonal matrix, we obtain the simple result 
 

   Hβα′ (Hαα′)-1 Hαβ′ =  )')((1
1 ii

ii

N
i h ββ=∑ hh  

 
This produces a sum of K×K matrices which is of the form of a moment matrix and which is easily 
computed.  Thus, the asymptotic covariance matrix for the estimated coefficient vector is easily 
obtained in spite of the size of the problem. 
 Two considerations remain.  First, it is not possible to store the asymptotic covariance matrix 
for the estimator of the fixed effects (unless there are relatively few of them).  Using the partitioned 
inverse formula once again, we can show that the elements of Asy.Var[a] are contained in 
 
   Asy.Var[a]    =  [-(Hαα′  -  Hαβ‘(Hββ′)-1Hβα′)]-1. 
 
The ijth element of the matrix to be inverted is 
 
   (Hαα′  -  Hαβʹ(Hββ′)-1Hβα′)ij  =  1(i = j)hii  -  hβi ′(Hββ′)-1 hβj 
 
This is a full N×N matrix, and so the model size problem will apply – it is not feasible to manipulate 
this matrix.  On the other hand, one could extract particular parts of it if that were necessary.  For the 
interested practitioner, we will lay out the computational results.  The Hessian to be inverted for the 
asymptotic covariance matrix of a is 
 
   Hαα′  -  Hαβ‘(Hββ′)-1Hβα′ 
 
We keep in mind that Hαα′ is an N×N diagonal matrix.  Using result A-66b in Greene (2011), we 
have that the inverse of this matrix is 
 
 [Hαα′ ]-1  +  [Hαα′ ]-1 Hαβ‘ {(Hββ′)-1 - Hβα′[Hαα′ ]-1 Hαβ‘}-1 Hβα′[Hαα′ ]-1. 
 
This is a messy expression, but the fact that Hαα′ is diagonal simplifies it considerably.  In particular, 
by expanding the summations where needed, we find 
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(Note that the first term is a bit ambiguously defined, as if i ≠ j, this is 0/0 – we define it to be zero.) 
At first glance, this may appear not to have gained anything.  But, it has gained a great deal.  The 
matrix to be inverted is K×K, not N×N, so this can be computed by summation.  It may be a large 
amount of computing, but it is at least straightforward, and easily calculated as it involves only K×1 
vectors and repeated use of the same K×K inverse matrix.  Note that this is the inverse of the 
Hessian, which must be inverted to compute the asymptotic variance or covariance.  Hence the 
leading minus sign at the left of the definition. 
 Likewise, the asymptotic covariance matrix of the slopes and the constant terms can be 
arranged in a computationally feasible format.  Using what we already have and result A-74 in 
Greene (2011), we find that 
 
   Asy.Cov[b,a′]  =  -(Hββ′)-1 Hβα′ × Asy.Var[a] 
 
Once again, this involves N×N matrices, but the expression simplifies.  Using our previous results, 
we can reduce this to 
 

   Asy.Cov[b,ai]  = -(Hββ′)-1  ],[.
1 mii

N
m

aaCovAsyβh∑ =
. 

 
Again, the gain in simplification may not be obvious, but it is substantial.  This asymptotic 
covariance matrix involves a huge amount of computation, but essentially no computer memory – 
only the K×K matrix.  The K×1 vectors would have to be computed ‘in process,’ which is why this 
involves a large amount of computation.  But, once again, it is very feasible.  At no point is it 
necessary to maintain an N×N matrix, which has always been viewed as the obstacle. Finally, we 
note the motivation for the last two results.  One might be interested in the computation of an 
asymptotic variance for a function g(b,ai) such as a prediction for a probit model, Φ(b′xit + ai).  The 
delta method would require a very large amount of computation, but it is feasible with the preceding 
results. 
 Finally, note that in Asy.Var[b], the terms are of order (NT) minus a sum of N order T outer 
products.  Therefore, the end result is the inverse of an order NT matrix, which will converge to zero.   
What this establishes is that b does converge to a parameter in the sense that its asymptotic 
covariance matrix converges to zero.  However, it converges to a function that deviates from β to the 
extent that plim ai deviates from αi. 
 
Example – Nonlinear Fixed Effects Model 
 
 The listing below shows a fixed effects model for an unbalanced with 7,293 groups. 
 

SAMPLE  ; All $ 
SETPANEL  ; Group = id ; Pds = ti $ 
PROBIT  ; Lhs = doctor ; Rhs = age,educ,hhninc,married 

; FEM ; Panel ; Par  
; Partial Effects $ 
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+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| TI         Group sizes  ID         7293      7      1       3.7 | 
+-----------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for DOCTOR 
Dependent variable               DOCTOR 
Log likelihood function    -17700.96342 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =35411.927 AIC/N =    1.296 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01539***      .00072    21.42  .0000      .01398    .01679 
    EDUC|    -.02811***      .00350    -8.03  .0000     -.03497   -.02125 
  HHNINC|    -.09776**       .04626    -2.11  .0346     -.18844   -.00708 
 MARRIED|    -.00931         .01888     -.49  .6220     -.04630    .02769 
Constant|     .02642         .05397      .49  .6244     -.07936    .13221 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Nonlinear Estimation of Model Parameters 
Method=Newton; Maximum iterations=100 
Convergence criteria: max|dB|   .1000D-05, dF/F=  .1000D-08, g<H>g=  .1000D-08 
Normal exit from iterations. Exit status=0. 
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -9454.05945 
Estimation based on N =  27326, K =4251 
Inf.Cr.AIC  =27410.119 AIC/N =    1.003 
Unbalanced panel has   7293 individuals 
Skipped 3046 groups with inestimable ai 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .06334***      .00426    14.87  .0000      .05499    .07169 
    EDUC|    -.07547*        .04063    -1.86  .0632     -.15510    .00416 
  HHNINC|    -.02496         .10713     -.23  .8158     -.23493    .18501 
 MARRIED|    -.04865         .06194     -.79  .4322     -.17004    .07275 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]   with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Estimated E[y|means,mean alphai]=    .621 
Estimated scale factor for dE/dx=    .380 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .02409***     1.66920     6.94  .0000      .01729    .03089 
    EDUC|    -.02871        -.52464    -1.48  .1392     -.06675    .00934 
  HHNINC|    -.00949        -.00540     -.23  .8151     -.08906    .07007 
 MARRIED|    -.01850***     -.02978    -3.34  .0008     -.02935   -.00766   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The vector alphafe contains the estimated fixed effects coefficients for those groups for which it is 
estimable.  The vector shows (rows 4, 8, 18, 19) observations at which there is no within group 
variation in the dependent variable. 
 

 
Figure R23.1 Estimated Fixed Effects 
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R23.3 Random Effects Models 
 
 The random effects model is formulated in the context of an index function model, 
 
   P(yit | xit, ui)  =  g(yit, β′xit  +  ui, θ) 
 
where θ is any ancillary parameters that appear in the model and ui, which is time invariant, is the 
latent unobserved heterogeneity that enters the model in the form of the random effect.   The model 
command will typically be of the form 
 
 Model name such as PROBIT, LOGIT, etc. 
   ; Lhs  = ...  
   ; Rhs  = ...  
   ; Pds  = panel specification   
   ; Random Effects  $ 
 
(There is some variation in the commands for specific models.)  Other options follow the usual 
pattern, and are described for each model in the chapters to follow. 
 All models that support panel data treatments in LIMDEP provide some kind of random 
effects estimator.  In many cases, more than one is available.  In addition, various estimation 
techniques are used in LIMDEP to fit random effects models.  These are summarized in Table R23.1 
below.  The various estimation techniques are described at several points in this manual.  This 
section will collect a few common results.  Some general observations: 
 

• The two step FGLS procedure is specific to the linear regression model, and is described in 
detail in Chapter E18 with other methods for estimation of the linear model with panel data. 

 
• Four models, Poisson, negative binomial, the parametric survival models with heterogeneity 

and several forms of the stochastic frontier models have known closed forms for the 
unconditional distribution of the observed response – that is, the density after ui is integrated 
out.  These are described in detail in the specific chapters devoted to these models. 

 
• The random parameters model is described in lengthy detail in Chapter R24.  As noted, in 

any model included in that framework, a pure random effects model results if the constant 
term is treated as the only random parameter.  In these cases, the simulation estimator 
provides an alternative to the quadrature based estimator that we describe here. 

 
• The linear regression model with random coefficients can be estimated in two ways.  A  

modified generalized least squares procedure due to Hildreth, Houck, and Swamy is 
presented in Section E15.4. Through appropriate restrictions on the model, this can be forced 
to be a random effects model.  However, this is the third best of three approaches to random 
effects in the linear model. (We mention it purely for completeness.) 
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Model Class Two Step 
FGLS 

Random Constant 
in RPM 

ML with 
Quadrature Exact ML 

Linear Regr. 1 & 2 Way • •  • 
Linear Reg. Multilevel  •   

Binary Choice 
Probit  •  •  
Logit  •  •  
Complementary Log Log  •  •  
Gompertz  •  •  
Bivariate Probit  •           
Bivar. Probit Selection  •        
Partial Observability  •           

Multinomial Choice 
Multinomial Logit  •    
Multinomial Probit  •    
Ordered Probability/All  •  •  
Generalized Ord. Probit  •   

Count Data 
Poisson Regression  •  (some forms) • 
Negative Binomial  •   • 
Poisson/NegBin ZIP  •    

Loglinear Models 
Exponential  •    
Gamma  •    
Weibull  •    
Inverse Gaussian  •    
Geometric  •   
Power  •   
Binomial  •   
Normal (Exp Regression)  •   

Limited Dependent Variable 
Tobit  •  •  
Censored (Grouped) Data  •   
Truncated Regression  •    
Sample Selection  •    

Survival and Frontier Models 
Weibull  •   • 
Exponential  •   • 
Loglogistic  •   • 
Lognormal  •   • 
Stochastic Frontier  •   • 

Table R23.1  Random Effects Model Estimators 
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There are additional forms of the random effects model.  The linear regression model 
supports a three level nested random effect model, 
 
   yijkt = β′xijkt + wijk + vij + ui + εijkt, 
 
which is estimated by maximum likelihood (assuming all components are normally distributed).  
This estimator is described in Section E18.8.  The Hausman and Taylor model modifies the one way 
random effects model to accommodate correlation among some of the right hand side variables and 
the random effect.  The formulation is 
 
   yit = β1′x1,it + β2′x2,it + γ1′f1,i + γ2′f2,i + ui + εit, 
 
where x2,it and f2,i are correlated with ui. Discussion appears in Chapter E23.  The Arellano, Bond and 
Bover estimator for dynamic panel data models extends this formulation to add a lagged dependent 
variable, 
 

   yit = yi,t-1 +  β1′x1,it + β2′x2,it + γ1′f1,i + γ2′f2,i + ui + εit, 
 
 Any random parameters model that uses the methods described below in this section may 
also include multilevel (up to 10 levels) random effects, with main linear effects and products.  The 
extension of the model takes the form 
 
   Indexit  =  βi′xit  + cj1 ej1 + cj2 ej2 + ... + cjM ejM 
 
with up to 10 effects in total.  The cjm are ones and zeros simply used to select the effects in the 
model. The effects are up to 10 normally distributed random terms associated with discrete 
indicators.  Effects may appear singly or as products, and may be nested or simply be associated with 
any desired groupings of the data.  Full details appear in Section R24.8. 
 
R23.3.1 Quadrature Based Estimation – The Butler and Moffitt Method 
 
 Write the one way random effects model as 
 
   zit | ui  =  β′xit  +  σuui   

 
where ui ~ N[0,1], and let εit be the stochastic term in the model that provides the conditional 
distribution. Thus, 
 

   P[yit| xit, ui]  =  g(yit, β′xit  +  σui, θ), i = 1,...,N, t = 1,...,Ti. 
 
where g(.) is the density discussed earlier (Poisson, normal, logistic, extreme value, Gompertz, etc.).  
The parameter vector for the random effects model is 
 
   θ  =  [β1,...,βK, σ]′.   
 
The log likelihood function is 
 
   log L =  Σi  log Li 
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where log Li is the contribution of the ith individual (group) to the total.  Conditioned on ui, the Ti 
terms in the contribution to the likelihood for group i are independent.  So, the joint conditional 
probability for the ith group is 
 

   P[yi1,...,yiTi | xi1,...,ui]  =  ∏
=

σ+
iT

t
iuitit uyg

1
)'( xβ,  

 
where now, ui is normalized to unit variance.  Since ui is unobserved, it is necessary to obtain the 
unconditional log likelihood by taking the expectation of this over the distribution of ui.  For 
convenience, write the tth term in the probability above as 
 
   G(yit, β′xit + γui), 
 
where γ = σu, so that 

   Li | ui   =  ∏
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iitit uyG
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NOTE:  It can be seen in the likelihood function that it is necessary actually to compute the product 
of the densities for the group, not the sum of the logs.  For this reason, the number of observations in 
a group cannot be extremely large.  (We are frequently asked about this.)  Since the individual 
density is likely to be on the order of .25 or so, the product of 100 probabilities is on the order of  
10-100.  This means that the end result is more rounding error than result.  In worse cases, the 
computation will ‘overflow’ – that is, exceed the computer’s capacity to compute the value.  For 
example, the correct result for the product of 100 probabilities on the order of .01 cannot be 
computed in the accuracy of the computer, which is about 10+/-380.  The diagnostic that this estimator 
produces mentions a ‘Bad counter...’  When the counter for group size exceeds 100, the estimator 
assumes that you have made some kind of error. 
 
 Finally,   
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The function is maximized by solving the likelihood equations: 
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For convenience below, let θ denote the full parameter vector, [β,γ]′. 
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 The integration is done with Hermite quadrature.  Make the change of variable to vi = ui/ 2 .  
Then, 

   log Li  =  2

1

1log exp( ) ( , ) 
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i it it i i
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v P y v dv
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′− + δ
π
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where δ = γ× 2 .  The integral of the form  
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is approximated by the Hermite quadrature, 
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where wh are the weights and zh are the abscissas for the approximation.  (See Section R23.3.1, 
Butler and Moffitt (1982) and Abramovitz and Stegun (1972) for further details.)  Collecting terms, 
then, the log likelihood is computed with 
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 The derivatives of the log likelihood function are approximated as well 
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Collecting terms once again, we obtain the approximation, 
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Note that Li and its derivatives are approximated separately.  The summation involves two separate 
integrals. We use a 20 point quadrature by default, but you can change the number of quadrature 
points by including ; Hpt = p in the command, where ‘p’ is the desired number of points, (one of 2, 
3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 32, 64, 96).  In most cases, the accuracy of the computations will 
improve with the number of quadrature points.  However, the amount of computation will increase as 
well (linearly).  The asymptotic covariance matrix estimator is based on the first derivatives, using 
the BHHH estimator. 
 As noted, this procedure is used in several models, including the single index binary choice 
models, the count data models, and the tobit and ordered probability models.  The various derivatives 
and underlying transformations of the parameters will differ a bit from model to model.  These are 
discussed in the specific contexts below.  For illustration, consider the common binary choice 
models, probit and logit.  These are single index models that involve only a slope vector, β.  The 
heterogeneity adds a variance parameter to the model, but the variance term, δ, appears linearly in 
the function along with β, so no complication is added by this additional parameter as the summation 
is done over the abscissas.  In each case, the term 
 

   P(yit, β′xit + γzh)  =  [ ] ( )11it h

yy itit F zit hF z
−
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so   log P(yit, β′xit + γzh)  =  yit logFit  +  (1 - yit)log (1 - Fit). 
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The functional forms appear in Section E27.2.1.  Using the functions defined there, the log 
derivatives, g(yit, β′xit + γui) are as follows: 
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   Logit: g(yit, β′xit + γui) =   (2yit - 1){1  -  Λ[(2yit - 1)(β′xit + γui)]} 
 
The asymptotic covariance matrix is estimated by the BHHH estimator, 
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Example – Nonlinear Random Effects Model 
 

 An example of the random effects nonlinear model is shown below.  The data used are the 
same as in the fixed effects model estimated earlier. 
 

SAMPLE  ; All $ 
SETPANEL  ; Group = id ; Pds = ti $ 
PROBIT  ; Lhs = doctor ; Rhs = one,age,educ,hhninc,married 
         ; Random Effects ; Panel ; Par  

          ; Partial Effects $ 
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+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| TI         Group sizes  ID         7293      7      1       3.7 | 
+-----------------------------------------------------------------+ 
Normal exit:   4 iterations. Status=0, F=    17701.08 
 
(Same as for the fixed effects model) 
 
Normal exit:  11 iterations. Status=0, F=    16289.92 
 
----------------------------------------------------------------------------- 
Random Effects Binary Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -16289.42796 
Restricted log likelihood  -17700.96342 
Chi squared [   1 d.f.]      2823.07092 
Significance level               .00000 
McFadden Pseudo R-squared      .0797434 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =32590.856 AIC/N =    1.193 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.09497         .09406    -1.01  .3127     -.27932    .08938 
     AGE|     .02270***      .00125    18.19  .0000      .02025    .02515 
    EDUC|    -.03383***      .00629    -5.38  .0000     -.04616   -.02149 
  HHNINC|     .02166         .06651      .33  .7447     -.10869    .15201 
 MARRIED|    -.04914*        .02934    -1.67  .0940     -.10665    .00838 
     Rho|     .45018***      .01020    44.13  .0000      .43019    .47018 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
They are computed at the means of the Xs 
Observations used for means are All Obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00630***      .42914    18.41  .0000      .00563    .00697 
    EDUC|    -.00939***     -.16632    -5.38  .0000     -.01281   -.00597 
  HHNINC|     .00601         .00331      .33  .7447     -.03017    .04220 
 MARRIED|    -.01364*       -.01619    -1.67  .0941     -.02961    .00233 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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R24: Random Parameter Models 
 
R24.1 Random Parameters Models  
 
 The underlying motivation of the random parameters (RP) model is individual heterogeneity 
in the parameters in a parametric model. We model this generically as 
 
   f(yit | xit, zi)  =  g(yit, xit, zi, αi) 
 
where g(.) is the probability density for the observed response of the  ith individual at time t, yit is the 
observed response, xit and zi are measured covariates, and αi is a person specific parameter vector 
that varies randomly across individuals, with a mean α and covariance matrix Ω.  (The LIMDEP 
implementation does not accommodate heteroscedasticity in the distribution.  Heteroscedasticity is 
supported in the counterpart model for the multinomial logit framework in NLOGIT Version 5.  
Nearly every model supported in LIMDEP is included in this framework.  The following broad 
modeling frameworks support this structure: 
 

• Linear regression 
• Binary choice: probit, logit, complementary log log, Gompertz, bivariate probit models 
• Ordered probability models, probit, logit, Gompertz, complementary log log 
• Count data:  Poisson and negative binomial, ZIP model and several others 
• Censored dependent variable: tobit, grouped data 
• Truncated dependent variable: truncated regression 
• Loglinear dependent variable:  exponential, gamma, inverse Gaussian regression, power, 

binomial, normal exponential, beta 
• Parametric survival models: Weibull, exponential, lognormal, loglogistic, inverse Gauss 
• Stochastic frontier models 
• Sample selection models 
• Discrete choice:  multinomial logit   

 
All of the models listed except the last use the same estimation program and thus have precisely the 
same structure.  The random parameters logit model in NLOGIT Version 5 has a separate program 
for estimation that operates quite similarly, but includes several additional features not contained in 
the others. 
 This section describes a broad class of models in LIMDEP.  This model framework is  
widely used in many fields of statistics and econometrics.  The models described here are also found 
in other literatures under the headings multilevel models, mixed models, and hierarchical models. All 
of these have large intersections – some are completely subsumed – in the set of random parameters 
models described here. 
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R24.2 Mathematical Formulation of the RP Model 
 

The structure of the random parameters model from the point of view of the modeler is 
 
 αi = [β1i′, β2i′, θ′]′ 
 
where θ = ancillary parameters, such as the dispersion parameter in the negative binomial 
   model or σ in a tobit or linear regression model 

 β1i =   β1 = K1 nonrandom parameters 

 x1it = variables multiplied by β1i 

 β2i =   β2
0 + ∆zi  +  Γvi   =  K2

 random parameters 

 
where   β2

0 = the fixed constant terms in the means of the distributions for the random 
  parameters 

   zi = a set of M observed variables which do not vary over time and which  
  enter the means (optional) of the random parameters 

   ∆ = coefficient matrix, K2×M, which forms the observation specific term in  
  the mean 

   vi  = unobservable K2×1 latent random term in the ith observation in β2i.  Each 
  element of vit has zero mean and known variance.  Elements of vit  may be 
  distributed as normal, uniform, triangular, lognormal, or others.  There are 
  numerous options for specifying the means of the distributions.  The 

    distributions of the random parameters need not be the same. Two models 
    are used for the elements of vi: 

       Random Effects:  vi = vi for all t.  This is the usual random effects form. 
       Autocorrelated (AR(1)):  vit = Rvi,t-1 + uit where R is a diagonal matrix  

    of coefficient specific autocorrelation coefficients and uit satisfies the  
    earlier specification for vit. 

   Γ = lower triangular or diagonal matrix which produces the covariance matrix 
of the random parameters, Ω  =  ΓA Γ ′ in the random effects form and  
Ω  =  ΓA1/2 (I-R2)-1 A1/2Γ ′ in the AR(1) model.  A is the diagonal matrix of 
known variances of the elements of vi.  If all parameters are (standard) 
normally distributed, then A = I.  Uniformly distributed random variables 
have variance 1/12.  Other forms have different values. In the final 
specification of the model, these implicit scales are absorbed into Γ – they 
will be invisible to you in your estimated model. 

 x2it =  variables multiplied by β2it 

 βit = [β1′, β2it′]′   
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With autocorrelated vit, βi can vary with t.  For ease of exposition, we will suppress this in what 
follows, and use βi to denote the random parameter vector.  Finally, 
 
 xit = [x1it′, x2it′]′ 

 ait = βit′xit 

 P(yi|xit, zi, vit) =  g(yit, ait, θ)  =  the density for the observed response variable. 
 
R24.3 Commands for Random Parameters Models 
 
NOTE:  There is no command builder for the random parameters models. 
 
 The essential command for the random parameters model is structured as follows, where all 
parts are mandatory: 
 
 Model command such as PROBIT, POISSON, TOBIT, etc. 
   ; Lhs  = dependent variable 
   ; Rhs = all variables in xi,  

 including one if model contains a constant 
   ; RPM  (for random parameters model) 
   ; Fcn = specification of random parameters $ 
 
Panel Data 
 
 A panel is specified as usual; 
 
   ; Pds = specification of number of periods for the panel 
 
The RPM is not strictly for panel data. In principle, the random elements in the parameters serve as 
the random effects in a panel data model.  But, this model can be fit, possibly with less precise 
results, using a cross section. 
 
Heterogeneity in the Means of the Parameters 
 
 As formulated above, the random parameters each have a fixed mean, βk that is estimated. 
The general form of the random parameter thus far is 
 
   βk,i  =  βk

0  +  γk vk,i 
 
where βk is the mean (to be estimated), γk is the scale factor and vk,i is a random variable (defined 
below)  The mean may be specified to depend on observed variables zi with 
 

  ; RPM = list of variables in zi 
 
The random parameter is now 
 
   βk,i  =  βk

0  +  δk′zi + γk vk,i. 
 
The mean vector for the set of random parameters will now be E[βi|zi]  =  β0 + Δzi.   
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Distributions of Parameters 
 

 The ; Fcn list consists of a list of names of variables that appear in x2i, each followed in 
parentheses by one of the following distribution specifications:  The form is ; Fcn = name(dist) 
where dist is one of the following: 
 
    c   for constant (zero variance), vi = 0 
    n   for normally distributed, vi = a standard normally distributed variable 
    u   for uniform, vi = a standard uniform distributed variable in (-1,+1), 
    t    for triangular (the ‘tent’ distribution), see below 
    h   for negative half normal, v = (2π)-1/2  - |u|, 
    e   for centered lognormal, v = Exp(u) – sqr(e) 
    s    for Johnson Sb, v = exp(u) / [1 + exp(u)] 
    l    for lognormal, see below. 
 
The vi above is a random draw from the indicated population.  In cases c, n, h, e, s, and l, the draw vi 
is the indicated transformation of a draw from the standard normal population.  The negative half 
normal is a random variable with half normal density that is constrained to be less than zero.  The 
Johnson Sb random variable ranges from zero to one. The centered lognormal variable ranges from   
-1.649 to +∞.  It has the long tail of the lognormal distribution, but is shifted so as to have mean zero. 
In cases u and t, the draw is a transformation of a standard uniform, U(0,1) variable.  For the tent 
distribution, the transformation is 
 

   vi = 1(u < .5)[(2u)1/2 – 1] + 1(u > .5)[1 – (2(1-u))1/2] 
 

This variable’s density is a symmetric tent shape with mode at zero and which has support -1 to +1. 
For example, as shown earlier, the familiar random effects model is specified with ; Fcn = one(n). 
Note, there is no default distribution.  You must specify one of the preceding (or a modification of it 
as shown below) in parentheses with the name.  This is how you indicate that a parameter is to be 
treated as random in the model.  Note, again, that the specification of the model (thus far) is 
 

   βk,i  =  βk
0  +  γk vk,i 

 

so that your random variable has distribution with the shape of the selected variable, but is not 
constrained to the range of that distribution.  For example, using ; Fcn = x(u) produces a random 
parameter that has a uniform (flat) distribution with center at βk and range βk ± σk.  Likewise, the 
parameter with Sb distribution is not, itself, constrained to be in the 0,1 range. 
 
Fixed Parameters 
 

 You can specify that a ‘random’ parameter has zero variance (is fixed) by using 
 
   ; Fcn = name(c) or name(*)  
 
This form specifies that the variance is zero, that is, only the mean varies. Of course, this is the same 
as not specifying the parameter as random, with one exception.  If you have specified a hierarchical 
structure for the mean, then the covariates will still enter the mean of the variable. This is a way to 
build up a hierarchical structure for any model.  Thus,  

 
  ; Rpm = z1, z2   
  ; Fcn = x(c) 
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specifies that the index function is of the form βix = (β1
0 + δ1,1z1+ δ1,2z2)x. (This builds interaction 

terms.)  Another form of this may be used to fix the mean of the parameter to a fixed value; 
 
   variable name(*,value) = a fixed parameter with zero variance  
    and mean equal to value 
 
(This is the same as (dist|value) in NLOGIT Version 5.)  Thus, the parameter is nonrandom, and is 
fixed at the specified value.  This differs from the previous specification in that with (c), the mean is 
a free parameter and the variance equals zero, while with (*,value), the mean is constrained to the 
given value with the variance also fixed at zero. This device provides a way to fix a parameter in the 
model.  The ; Rst = list specification would normally be used to do that, but ; Rst = list is extremely 
difficult to use in this setting because there are so many parameters and during model setup, the 
parameter vector is reordered in a way that may not be easily predictable in a complicated 
specification. Note that this construction will be problematic if you have specified ; Rpm = 
variables, as the specification is 
 
   βk,i  =  βk

0  +  δk′zi + γk vk,i. 
 
and this form only allows you to fix βk

0 

 
Restricting the Range of a Parameter 
 
 You may specify that the parameter is lognormally distributed.  This variant on the model 
will force a coefficient to be positive, and will also impose a particular form on the distribution of 
parameters across individuals.  Use ; Fcn = name(l) to request a lognormally distributed coefficient. 
In this case, for the particular random parameter βik, we will have 
 
   βik = exp(βk

0  +  δk′zi  +  γkvik). 
 
Do note, if the coefficient is negative in an unrestricted model, forcing it to be positive may not work 
very well, or at all.  This does, however, change the distribution of random parameters across 
individuals.  A caution about this specification; it is often slow to converge, and frequently is 
inestimable.  The assumption of lognormality is a strong one. Also, if the parameter you specified to 
be lognormally distributed tends in the sample to be negative, this will be an invalid restriction that 
will probably be revealed by nonconvergence.  You can anticipate this if you fit the model as a fixed 
parameter model, and this parameter shows up as ‘significantly’ negative.  

The triangular distribution can also be useful for restricting parameters.  A special case of 
the triangular distribution specification is 
 
   variable name(t ,*) = a parameter that ranges from 0 to 2 β. 
 
The triangular distribution is now restricted to one side of zero. The range is 0 to 2β0 in either the 
positive or negative direction, depending on the estimate of β0.   Figure R24.1 shows the implied 
model for the underlying parameter with this specification when the estimated parameter is 1.375. 
(The reported estimated ‘scale factor’ will also equal this value.) 
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Figure R24.1  Estimated Constrained Triangular Distribution 

 
Note that this specification will also be problematic if you have specified ; RPM = variables. 
 
Fixing the Mean 
 
 Other forms for random parameters are 
 
   variable name(type,value)  = parameter with mean fixed at the  
       value but a free variance 
 
This form specifies that the mean of the parameter is fixed at value but the standard deviation is free.  
This forces the distribution of the random parameter to be centered at fixed mean value.  For 
example, an interesting form is 
 
   ; name(n, 0) 
 
which defines a normally distributed parameter with mean zero.  This is a type of random effects 
model. 
 The final two specifications modify the variables that enter the mean, that is the Δzi term in 
βi = β0 +  Δzi + Γvi.  You would have specified ; RPM = z list.  Then, 
 
   variable name(dist | #) = fixed mean parameter 
 
specifies that the zi variables do not appear in the mean of this specific parameter.  This affects only 
the specific parameter of this specification.  Formally, this specification constrains the indicated row 
of ∆ to be a row of zeros.  You may also specify particular variables to appear in the mean with 
 
   variable name(dist | # pattern) 
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The pattern is ones and zeros to put zeros in cells in the row of Δ. (This is the same as in NLOGIT 
Version 5.)  For example, in 
 
   ; RPM = z1,z2 
   ; Fcn = x1(n | # 01), x2 (n | # 10) 
 
the specification makes the mean of the coefficient on x1 a function of z2, but not z1 and the mean of 
the coefficient on x2 a function of z1 but not z2. 
 
Correlated Parameters 
 
 The default specification is for Γ to be a diagonal matrix, which implies that the random 
parameters are uncorrelated.  You can specify correlated parameters with 
 
   ; Cor    
 
Your estimated model will now contain estimates of the triangular matrix as well as the implied 
covariance matrix of the parameters, deduced as ΓΓ′.  Note, although this is permissible with any 
specification of any model, the meaning of the estimated model is ambiguous if you have mixed 
distributions in your specifications. The correlation is induced by creating vi, then using Γvi to create 
the parameters. Without the correlation, your specified parameter has the indicated distribution.  But, 
for example, if you specify one parameter (the first) normal and the second uniform, your second 
parameter will actually be composed as 
 
   β2i  =  β2 + γ12vi1 + γ22vi2, 
 
that is, the sum of a normal and a uniform.  Again, this is not precluded by the program, and you can 
fit such a model, but its meaning is a bit ambiguous.   
 
Time Variation in Parameters 
 
 As noted, you can build some autocorrelation into your model by specifying that model for 
vi.  To request this, use 
   ; AR1   
 
This specification of the model adds an autocorrelation parameter, ρi, for each random parameter.   
The generating mechanism for random parameters with this switch turned on is 
 
   βki,t  =  βk

0 + δk′zi  +  γkvki,t, 
   vik,t  =  ρkvik,t-1 + uik,t 
 
and uik,t takes the distribution specified in the name(dist) specification.  The distribution may be any 
of those listed earlier. 
 The earlier caution about mixing distributions is repeated, more emphatically here.  In the 
autocorrelation model, the vits are generated by the autocorrelation scheme, then mixed by Γ, so the 
same ambiguity arises.  We advise that when using this form, you specify uncorrelated parameters. 
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Draws for the Simulated Log Likelihood – Number and Type 
 

 This model is fit by maximum simulated likelihood, as described below.  The number of 
draws for the simulator is an important element of the estimator.  If you specify too few, it is difficult 
to argue for consistency of the estimator.  A few hundred is the norm.  If you specify a very large 
number, estimation will take a long time.  Estimation time is roughly linear in R.  The default value 
is R = 100.  You can change this with 
 

   ; Pts = R (number of replications) 
 

There is a body of theory relevant to this parameter (see Greene 2011, Chapter 15), but it states only 
that R/N1/2 should diverge – R should increase faster than root-N – for the MSL estimator to be 
consistent.  This does not state what R should be, however.  Also, we note the important alternative 
to random draws, Halton sequences, makes much of this moot.  To request Halton sequences instead 
of pseudorandom draws, use 
 

   ; Halton 
 

Halton sequences are discussed in detail below.  We do suggest, when doing specification searches 
or experimental work, you can set R to a small value such as 25, and the estimator will perform 
satisfactorily.  For ‘production’ work to generate final results, we do suggest several hundred draws. 
 
Common Random Term in Random Parameter Models   
 
 In the RPM model, each random parameter, βik, has associated with it a random term, vik, that 
is specific to that parameter (and individual). It might be desired to have all parameters be functions 
of the same vi.  (That is the central feature of the Alvarez, Arias and Greene (2006) frontier model 
discussed in Section E64.10, for example.)  To request this, you need add only 
 
   ; Common 
 
If you have specified multiple random parameters – this option has no effect unless you have – then 
the first specification in the list controls what the common random term will be. 
 
Other Standard Specifications and Options 
 

 Finally, the following options operate the same as in the fixed parameters cases.  Use 
 
   ; Keep = name  to retain fitted values 
   ; Res = name  to retain residuals 
   ; Prob = name  to retain fitted probabilities for observed outcome 
   ; Partial Effects same as ; Marginal Effects 
   ; List to display of predicted values  (only if Ti is < 10 for all i) 
   ; Maxit = n  to set maximum iterations 
   ; Wts = name to specify weights – assumed the same for all periods if 
    panel data 
 
and other controls of optimization, such as setting the convergence criteria.  Lagrange multiplier 
statistics will be difficult to obtain in some cases because the starting values for the iterations vary 
greatly from model to model, and will often not conform to what one might expect the ‘restricted’ 
model to be.  In general, ; Maxit = 0 will produce ambiguous results at best. 
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R24.4 The Parameter Vector and Starting Values 
 
 Starting values for the iterations are generally obtained by fitting a basic model without 
random parameters – least squares for the linear model, tobit, etc., maximum likelihood probit, logit, 
Poisson, or exponential, and so on.  In some cases, such as the stochastic frontier model, you must 
provide the starting values by fitting the restricted model.  Every model description in the chapters to 
follow will specify how to estimate the RP model for that framework.  Other RP parameters are set 
to zero.  Thus, the initial results in the output for these models will often be the basic models 
discussed in the succeeding sections.  
 You may provide your own starting values for the parameters with 
 
   ; Start = ... the list of values for all parameters in the model 
 
The parameter vector is laid out as follows, in this order (where we introduce the new symbol, φ, to 
avoid some confusion) 
 
 φ1, ..., φK1   are the K1 nonrandom parameters (this is β1), 

 β1
0,...,βK2

0   are the K2 means of the distributions of the random parameters, 

 σ1,σ2,...,σK2  are the K2 scale parameters for the distributions of the random parameters. 
 
These are the essential parameters.  There are three optional parts, some or all of which may also be 
in the parameter vector.  If you have specified that parameters are to be correlated, then the σs are 
followed by the below diagonal elements of Γ.  (The σs are the diagonal elements.)  If there are two 
random parameters, then there is one below diagonal element.  If there are three random parameters, 
then there are three below diagonal elements, and so on.  The number of elements in total in this part 
of the parameter vector will be K2(K2 - 1)/2.  These are supplied rowwise, so that this part of the 
parameter list will be 
 

   Γ   =   γ21, γ31, γ32, ..., γK2,K2-1 
 
If you have specified heterogeneity variables with ; Rpm = z list, then the elements of Γ are 
followed by the K2 rows of ∆, each of which has M elements, 
 
   ∆ =  δ11, δ12, ..., δ1M, ..., δK2,1,...,δK2,M. 
 
Finally, if you have specified the model with autocorrelation, the K2 autocorrelation coefficients will 
follow: 
   ρ =  ρ1, ρ2, ..., ρK2. 
 
 Consider an example:  The model specifies: 
 
   ; RPM = z1,z2 
   ; Rhs = one,x1,x2,x3,x4   ? base parameters β1, β2, β3, β4, β5 
   ; Fcn = one(n),x2(n),x4(n) 
   ; Cor 
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Then, after rearranging to put the nonrandom parameters first, the model becomes 
 

         Variable        Parameter 
      x1  α1 
     x3    α2 
   one  β1

0  +  σ1vi1   +  δ11zi1  +  δ12zi2 
      x2  β2

0  +  σ2vi2  +  γ21vi1   +  δ11zi1  +  δ12zi2 
       x4  β3

0  +  σ3vi3  +  γ31vi1 + γ32vi2   +  δ11zi1  +  δ12zi2 
 

and the parameter vector would be 
 

 θ  =  φ1, φ2, β1
0, β2

0, β3
0, σ1, σ2, σ3, γ21, γ31, γ32, δ11, δ12, δ21, δ22, δ31, δ32. 

 

You may use ; Rst and ; CML to impose restrictions on the parameters.  Use the preceding as a 
guide to the arrangement of the parameter vector. 
 The variances of the underlying random variables are given earlier, 1 for the normal 
distribution, 1/3 for the uniform, and 1/6 for the tent distribution.  The σ parameters are only the 
standard deviations for the normal distribution.  For the other two distributions, σk is a scale 
parameter.  The standard deviation is obtained as σk/ 3  for the uniform distribution and σk/ 6  for 
the triangular distribution.  When the parameters are correlated, the implied covariance  matrix is 
adjusted accordingly.  The correlation matrix is unchanged by this. 
 

R24.5 Individual Specific ‘Estimates’ 
 
 The random parameter models save the matrices, variables and scalars that are usual for the 
particular models – there is some difference across the model types.  An additional result that is 
produced by the RP model for all the models is the conditional estimates of E[βi| datai, θ̂ ] that can 
be produced for each individual (group) in the sample.  Request this matrix with 
 
   ; Parameters  
 
This save matrices  
 

beta_i   with individual specific estimates of E[βi| datai, θ̂ ] 
 sdbeta_i   =  estimates of standard deviations of [βi| datai, θ̂ ]. 
 
Each matrix has one column for each random parameter in the model.  They do not contain the fixed 
parameter estimates.  The next two sections provide details and examples of this computation.  
 The two matrices have 
 
 Rows  =  number of individuals in the sample, 
 Columns =  number of random parameters in the model. 
 
Each matrix is limited to 50,000 cells, so if your model with your sample size exceeds that, the 
matrices are filled by observations until they run out of room.  You can restrict the matrices to retain 
only certain columns from the predicted values as follows:  When you set up the function types with 
; Fcn = list of types, place a dot before the type specifications you wish to save.  For the example 
above, which has 
   ; Fcn = one(n),x2(n),x4(n), 
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this will create three column matrices, with a column for each coefficient.  If it is changed to 
 
   ; Fcn = one(.n), x2(n), x4(.n) 
 
then, the matrices will have only two columns, containing the estimates of the first and third parameters.   
 The matrices can be moved to the data area by setting up a template.  Suppose the matrix has 
N rows and four columns.  If the sample is 1000 individuals, the matrix beta_i will have 1000 rows 
and four columns.  You can use 
 
 CREATE ; b1 = 0; b2 = 0; b3 = 0 ; b4 = 0 $ 
 NAMELIST ; rpbeta = b1,b2,b3,b4 $ 
 CREATE ; rpbeta = beta_i $ 
 
This creates four variables in the first 1,000 rows in the current sample.  This will probably be the 
first 1,000 rows in the data area, but might not be. 
 Before documenting the computation, three notes are important regarding these statistics.  (The 
literature on random parameter models, especially the Bayesian part of it, is particularly loose on these 
points. An exception is Train (2009), to which we refer the interested reader.)  First, the computation is 
performed at the estimated values of the population parameters, θ̂ . As such, the statistics do not take 
into consideration the sampling error in the estimate of θ.  Second, the computation described here 
calculates the mean and standard deviation of the conditional distribution of βi.  That is, we describe 
how to estimate E[βi| datai, θ̂ ] and Std[βi| datai, θ̂ ], where ‘datai’ denotes all the information in hand 
about individual i including the dependent variable and θ̂  is the estimate of the population parameters.  
The conditional distribution for person i is the distribution of β within the subpopulation of people 
who, if they faced the same choice situations as i with the same variables, would make the same 
choices as i. Since individuals with different coefficients can have the same outcomes when they face 
the same situations, there is a distribution of coefficients within this subpopulation of individuals. The 
conditional distribution is this distribution. Third, the conditional mean is a consistent estimator of βi 
only if the number of observations in the group, Ti, rises without bound along with the sample size, N. 
In most situations, the number of outcomes for each sampled individual is naturally limited and cannot 
rise without bound. (For example, if Ti is the number of times a person buys a new car, it is logically 
impossible for Ti to rise without bound.)  In these cases, the conditional mean of βi is not a consistent 
estimator of individual i’s true coefficients.  To focus the idea, consider that two individuals q and r in 
the sample could have identical right hand side variables xi, identical covariates, zi and identical 
outcomes, yi.  (Certainly this could occur in a simple model with only a few variables in it.)  
Nonetheless, being two different individuals, they could (indeed, given the distribution is continuous, 
they would) be characterized by two different parameter vectors, βq and βr.  Given that all the measured 
information is the same for the two, both parameter vectors are draws from the same conditional 
distribution, p(βi| xi, zi,yi, θ̂ ).  We will estimate the mean of this distribution,  E(βi| xi, zi,yi, θ̂ ), which 
will then characterize both individuals the same. This mean is not a consistent estimator of either βq or 
βr.  To the point, increasing sample sizes will produce a better estimate of θ, but as long as the number 
of choice situations faced by each person is fixed, E(βi| xi, zi,yi, θ̂ ) will be the same for i = q and i = r 
even though βq ≠ βr.  On the other hand, if somehow the number of choice situations faced by each 
person rose without bound, then eventually the two people would make different choices when facing 
the same right hand side variables, such that yi would differ for i = q and i = r. With different values of 
yi the conditional means E(βi| xi, zi,yi, θ̂ ) for the two people would differ; and with enough choice 
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situations faced by each person, the conditional means for the two people would converge to each 
person’s own true coefficients. However, as this explanation hopefully makes clear, this convergence 
to the true coefficients for each person only occurs when the number of choice situations faced by each 
person rises without bound. In the vast majority of applications, the number of choice situations faced 
by each person cannot rise without bound and, in fact, is quite small, such that the conditional mean is 
not a consistent estimator of the person’s true coefficients. This line of logic applies both to the 
conditional means estimated here and to the posterior means estimated in Bayesian analysis. 
 
Estimates of Conditional Means 
 
 The estimates of the model parameters provide the unconditional estimates of the parameter 
vectors.  The precise construction differs from one model to the next, but in general, that estimate is 
the prior mean, 

   1
ˆ ˆ ˆˆˆ , ,i i

 = + z0
2α β β ∆ θ  

 

This estimator uses the aggregate of the information in the sample and, if present, information 
contained in zi.  However, we can also form a person specific conditional estimator of the second 
component.  (The first and third are viewed as constants, so prior and posterior are the same.)  
Discussion of this computation may be found in Train (2009).  The estimator of the conditional mean 
of the distribution of the random parameters – conditioned on the person specific data – is 
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where summation over R is the within observation summation over the simulation replications, and 
the weights are the joint densities that enter (in log form) the log likelihood, 
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Use the ; Parameters specification in your model command to request this computation.  This will 
save the matrix named beta_i containing the estimates of the second component, E[β2|datai]. (Since 
the nonrandom components are constant, the averages will just equal those constants.)  Note, this 
matrix may be quite large, as there is one vector for each individual in the sample – each person is a 
row in this matrix.  We also estimate the standard deviation of this distribution by estimating for 
each random parameter, 
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then computing the square root of the estimated variance,  
 

( )22
, ,

ˆ ˆ[ | ] [ | ]i k i i k iE data E dataβ − β .   
 
These are the values that appear in the matrix sdbeta_i.  The application below suggests how one 
might use this information. 
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Random Parameters Fitted Values  
 

The fitted values routines have been changed to use the simulated random parameters rather 
than the global means.  The parameter vector in the random parameters model is 
 

βi = β0 + Δzi + Γvi. 
 
The estimators use the conditional (posterior) estimator, E[βi|datai, θ̂ ].   
 
R24.6 Application 
 
 We will illustrate a few useful features of the RP model with the data set used in several 
earlier applications.  The German health care data examined in Section E2.8 and several later 
examples provides a straightforward panel data set.  For this purpose, we will examine a small 
subsample of the full data set.  The commands for estimating a Poisson regression for number of 
doctor visits are 
 
 SAMPLE ; 1-5000 $ 
 REJECT ; _groupti < 7 $ 
 POISSON  ; Lhs = docvis ; Rhs = one,female,age,hhninc,hhkids,educ 
   ; RPM  
   ; Fcn = one(n),age(n),hhninc(n)  
   ; Correlated parameters 
   ; Pds = 7 ; Pts = 25  
   ; Halton draws  

; Parameters  $ 
 
We obtained the following estimation results.  The initial results are the starting values obtained by 
fitting the model with all nonrandom parameters.  Note that the Rhs variables have been reordered 
before the beginning of estimation. 
 
----------------------------------------------------------------------------- 
Poisson  Regression Start Values for DOCVIS 
Dependent variable               DOCVIS 
Log likelihood function    -11538.30728 
Estimation based on N =   1015, K =   6 
Inf.Cr.AIC  =23088.615 AIC/N =   22.747 
Model estimated: Mar 10, 2011, 22:35:03 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
  FEMALE|     .32063***      .03269     9.81  .0000      .25656    .38470 
  HHKIDS|    -.09901***      .03809    -2.60  .0093     -.17367   -.02436 
    EDUC|    -.11206***      .00984   -11.39  .0000     -.13134   -.09277 
Constant|    1.94456***      .15840    12.28  .0000     1.63410   2.25502 
     AGE|     .01441***      .00215     6.70  .0000      .01020    .01863 
  HHNINC|    -.18130*        .10435    -1.74  .0823     -.38582    .02323 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The next set of results is the estimates of the structural parameters of the random parameters model.  
The parameter estimates given include β1, β2

0, the diagonal elements of Γ, then the below diagonal 
elements of Γ.  The matrix given as var_beta is computed as ΓΓ′.  The matrix s.d_beta is the vector 
of square roots of the diagonal elements of ΓΓ′.  Finally, the correlation matrix is derived from the 
covariance matrix. 
 
Normal exit:  35 iterations. Status=0, F=    2952.749 
 
----------------------------------------------------------------------------- 
Random Coefficients  Poisson  Model 
Dependent variable               DOCVIS 
Log likelihood function     -2952.74858 
Restricted log likelihood  -11538.30728 
Chi squared [   6 d.f.]     17171.11739 
Significance level               .00000 
McFadden Pseudo R-squared      .7440917 
Estimation based on N =   1015, K =  12 
Inf.Cr.AIC  = 5929.497 AIC/N =    5.842 
Model estimated: Mar 10, 2011, 22:35:07 
Sample is  7 pds and    145 individuals 
POISSON regression model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCVIS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
  FEMALE|     .25071***      .02936     8.54  .0000      .19316    .30826 
  HHKIDS|    -.21606***      .02781    -7.77  .0000     -.27057   -.16155 
    EDUC|    -.08131***      .00891    -9.12  .0000     -.09878   -.06384 
        |Means for random parameters 
Constant|     .94045***      .13317     7.06  .0000      .67943   1.20146 
     AGE|     .03588***      .00184    19.55  .0000      .03229    .03948 
  HHNINC|    -.93486***      .09543    -9.80  .0000    -1.12189   -.74783 
        |Diagonal elements of Cholesky matrix 
Constant|    4.63750***      .12811    36.20  .0000     4.38642   4.88858 
     AGE|     .02874***      .00079    36.42  .0000      .02720    .03029 
  HHNINC|    1.29611***      .03842    33.73  .0000     1.22081   1.37142 
        |Below diagonal elements of Cholesky matrix 
lAGE_ONE|    -.05637***      .00260   -21.67  .0000     -.06147   -.05127 
lHHN_ONE|   -1.54333***      .13804   -11.18  .0000    -1.81389  -1.27277 
lHHN_AGE|   -2.46124***      .09005   -27.33  .0000    -2.63773  -2.28475 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
 
Var_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       21.5064      -.261432      -7.15719 
       2|      -.261432     .00400406      .0162620 
       3|      -7.15719      .0162620       10.1195 
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Implied standard deviations of random parameters 
 
S.D_Beta|             1 
--------+-------------- 
       1|       4.63750 
       2|      .0632777 
       3|       3.18111 
 
Implied correlation matrix of random parameters 
 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000      -.890890      -.485154 
       2|      -.890890       1.00000      .0807875 
       3|      -.485154      .0807875       1.00000 
 
The ; Correlated Parameters specification requests computation of the two matrices of conditional 
means.  These appear as follows: 
 

 
Figure R24.2  Estimated Conditional Means 

 
Note, the sample contains 145 individuals, so that is the number of rows in the matrices.  There is a 
considerable amount of variation across individuals in both means and standard deviations.  To 
explore this, we will construct a plot that shows this variation.   
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The following extracts the parts of the two matrices and constructs an interesting figure. 
 
 SAMPLE  ; 1-145 $ 
 MATRIX  ; b_inc = beta_i (1:145, 2:2) $ 
 MATRIX  ; sb_inc = sdbeta_i (1:145, 2:2) $ 
 CREATE  ; beta_inc = b_inc $ 
 CREATE  ; sbeta = sb_inc $ 
 CREATE  ; lower = beta_inc - 2*sbeta  
          ; upper = beta_inc + 2*sbeta $ 
 CREATE  ; person = Trn(1,1) $ 
 PLOT    ; Lhs = person 
          ; Rhs = lower,upper ; Centipede 
         ; Title = 95% Probability Intervals for Beta(Income) 
          ; Yaxis = Range 
        ; Endpoints = 0,150 ; Bars = 0 $ 
 

 
Figure R24.3  Confidence Intervals for Conditional Means 

 
 As noted earlier, the conditional means (the dots in the centipede plot) are not actually 
estimates of βi.  However, βi is a draw from the conditional distribution P(βi|datai,θ).  The spikes in 
the figure above represent estimates of a range of this density that should capture a large proportion 
of the mass of the distribution.  In general, a mean plus two standard deviations will capture at least 
95% of any but the most pathological distribution.  Thus, subject to a couple caveats we’ll note, the 
lines in the figure above do represent confidence regions for βi.  The caveats are: first, the estimates 
are based on the estimates of the structural parameters, θ̂ , not the actual parameters, θ.  Thus, by not 
accounting for this variation, the intervals above are too narrow.  As can be seen in the estimation 
results, the structural parameters are estimated quite precisely. Second, the precise shape of the 
distribution is not known.  If it is asymmetric, then the preceding might be too narrow.  This would 
be a minor consideration, however.  Overall, then, we might reasonably consider the figure above to 
display a confidence interval for the parameter βi. 
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R24.7 Technical Details on Estimation of RP Models by 
Simulation 
 
 For purposes of this presentation, we will change slightly the mathematical form of the 
model.  The log likelihood for the random parameters is formulated and maximized with the steps 
described below.  This derivation will be lengthy.  We have collected the results that are used in 
several modeling frameworks here in one place so that they may be easily accessed in one location in 
the manual.  The identical mathematical results apply to all the models listed earlier. 
 
The Theoretical Likelihood Function and Derivatives 
 
 The structure of the random parameters model is based on the conditional density (slightly 
abbreviated for the moment) 
 
   P(yit | xit, βi)  =  g(yit, βi′xit), i = 1,...,N, t = 1,...,Ti. 
 
where g(.) is the density discussed earlier.  The model assumes that parameters are randomly 
distributed with possibly heterogeneous (across individuals) mean 
 
   E[βi| zi]  =  β  +  ∆zi,   
 
(the second term is optional – the mean may be constant), 
 
   Var[βi| zi]  =  Σ. 
 
By construction, then,  
 
   βi  =  β  +  ∆zi  +  Γvi. 
 
(Note that βi could vary across time as well as individuals.  This follows from the extension of the 
model to allow autocorrelation in the random terms.  This is developed below.)  The third term is 
simply the deviation of βi  from its theoretical mean.  It is convenient to analyze the model in this 
fully general form at this point.  One can easily accommodate nonrandom parameters just by placing 
rows of zeros in the appropriate places in ∆ and Γ.  The actual treatment is discussed in the preceding 
section. 
 
NOTE:  If there is no heterogeneity in the mean, and only the constant term is considered random – 
the model may specify that some parameters are nonrandom – then this model is equivalent to the 
random effects model discussed earlier. 
 
 The true log likelihood function is 
 
   log L =  Σi  log Li 
 
where log Li is the contribution of the ith individual (group) to the total.  Conditioned on vi, the joint 
probability for the ith group is 

   P[yi1,...,yiTi | xit,..., zi,vi, t = 1,...,Ti]  =  
1

( )
iT

it i it
t

g y
=

′∏ x,β  
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Since vi is unobserved, it is necessary to obtain the unconditional log likelihood by taking the 
expectation of this over the distribution of vi.  Thus, 
 

   Li | vi, t=1,...,Ti  =  
1

( )
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it i it
t

g y
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Then,    Li  =  Evi [Li | vi, t=1,...,Ti] =  
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(Note that this is a multivariate integral.)  Then, finally,  
 

   log L =  ∑ =

N
i iL

1
log  

 
 For convenience in what follows, let  Θ = the full vector of all parameters in the model.  The 
likelihood function is maximized by solving the likelihood equations: 
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and note that these derivatives will likewise involve integration.  For this estimator, the integration is 
done by Monte Carlo simulation.  In general, we use the approximation strategy: 
 

   Evi [Li | vi, t=1,...,Ti]  ≈  
1

1 | ( , 1,..., )R
i ir ir

L t T
R =

=∑ v  

 
where vir is a set of Ti K2-variate random draw from the joint distribution of vi.  (I.e., it is a draw of a 
Ti×K2 random matrix.  In the case of no autocorrelation, there is only one K2-variate draw, which is 
then the same in all periods, in the fashion of a random effects model.)  See Brownstone and Train 
(1999), Train (1998, 2009), and Revelt and Train (1998) for discussion. The approximation improves 
with increased R (this is under your control) and with increases in N, though the simulation variance 
which decreases with increases in R does not decrease with N. 
 
Random Draws for the Simulations 
 

The K2 elements of vir are drawn as follows:  We begin with a K2 random vector wir that is 
 

K2  independent draws from the standard uniform [0,1] distribution or 
 
 K2  Halton draws from the mth Halton sequence, where m is the mth prime number 
  in the sequence of K2 prime numbers beginning with 2. 
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The Halton values are also distributed in the unit interval.  They are described in detail below.  This 
primitive draw is then transformed to the distribution specified in the ; Fcn specification, as follows: 
   

Uniform[-1,1]: uk,ir =  2wk,ir  -  1 

 Tent [-1,1] uk,ir =  1(wk,ir  < .5)[ ,2 k irw  - 1]  +  1(wk,ir  > .5)[1 - ,2(1 )k irw−  ] 

 Normal[0,1] uk,ir =  Φ-1(wk,ir) 
 
(Other transformations are listed at the beginning of this section.)  This produces a K2 vector, uir. 
Finally, vir is obtained as follows: 
 

1. No autocorrelation:   vir   =  uir  for all t.   

In this case, wir is drawn once for the entire set of Ti periods, and reused.  This is the 
standard ‘random effect’ arrangement, in which the effect is the same in every period. In 
this case,  
 

     witr  =  wir, uitr = uir, and vitr = vir, 
 

2. AR1 model (autocorrelation): vk,i1r  =  [1/(1 - ρk
2)] uk,i1r 

      vk,itr =  ρk vk,i,t-1,r  +  uk,itr 
 

This is the standard first order autocorrelation treatment, with the Prais-Winsten treatment 
for the first observation to avoid losing any observations due to differencing.  For this case, 
uk,ir has been drawn for each period, uk,itr, then used in the transformation immediately above 
to produce vitr. 

 
In the preceding derivation, it is stated that Ω = ΓΓ′ is the covariance matrix of Γvitr.  This is 

true for the standard normal case.  For the other two cases, a further scaling is needed.  The variance 
of the uniform [-1,1] is the squared width over 12, or 1/3, so its standard deviation is 1/ 3  = .57735.  
The variance of the standardized tent distribution is 1/6.  (Since this is a density with a discontinuous 
derivative, this takes a bit of derivation to show.  It can be shown by partitioning the distribution.  
The density of u in this case is 

 
  f(u)  =  2(1+u) for u < 0 and 2(1-u) for u > 0. 

 
The probability in each section is ½.  The mean is obviously zero (by construction).  The two 
conditional means are -1/3 and +1/3 for the left and right halves.  The conditional variances can be 
found by simple integration to be 1/18 in each half.  The variance equals the variance of the 
conditional mean plus the expected value of the conditional variance, which gives 1/9 for the former 
and 1/18 for the latter, which sum to 1/6.  The standard deviation is therefore .40824.  This implicit 
scaling is undone at the time the results are reported. 
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Controlling the Simulation 
 
 There are two parameters of the simulations that you can change.  The number of points in 
the simulation is R.  Authors differ in the appropriate value.  Train (2009) recommends several 
hundred.  Bhat (2001) suggests 1,000 as an appropriate value.  The program default is 100.  You can 
choose the value with 
   ; Pts  =  number of draws, R 
 
 In order to replicate an estimation, you must use the same random draws.  One implication 
of this is that if you give the identical model command twice in sequence, you will not get the 
identical set of results because the random draws in the sequences will be different.  To obtain the 
same results, you must reset the seed of the random number generator with a command such as 
 
 CALC   ; Ran (seed value) $ 
 
We often use Ran(12345) before each of our examples, precisely for this reason.  The specific value 
you use for the seed is not of consequence; any odd number will do. 
 In this connection, we note a consideration which is crucial in this sort of estimation.  The 
random sequence used for the model estimation must be the same in order to obtain replicability.  In 
addition, during estimation of a particular model, the same set of random draws must be used for 
each person every time.  That is, the sequence vi1, vi2, ..., viR used for each individual must be the 
same every time it is used to calculate a probability, derivative, or likelihood function.  (If this is not 
the case, the likelihood function will be discontinuous in the parameters, and successful estimation 
becomes unlikely.)  One way to achieve this which has been suggested in the literature is to store the 
random numbers in advance, and simply draw from this reservoir of values as needed.  Because 
LIMDEP is able to use very large samples, this is not a practical solution, especially if the number of 
draws is large as well.  We achieve the same result by assigning to each individual, i, in the sample, 
their own random generator seed which is a unique function of the global random number seed, S, 
and their group number, i; 
 
  Seed(S,i)  =  S  +  123.0 × i, then minus 1.0 if the result is even. 
 
Since the global seed, S, is a positive odd number, this seed value is unique, at least within the 
several million observation range of LIMDEP. 
 
Halton Draws and Random Draws for Simulations 
 
 The standard approach to simulation estimation is to use random draws from the specified 
distribution.  As suggested above, good performance in this connection requires very large numbers 
of draws.  The drawback to this approach is that with large samples and large models, this entails a 
huge amount of computation and can be very time consuming.  Some authors have documented 
dramatic speed gains with no degradation in simulation performance through the use of a small 
number of Halton draws instead of a large number of random draws.  Authors (e.g., Bhat (2001)) 
have found that a Halton sequence of draws with only one tenth the number of draws as a random 
sequence is often equally effective.  To use this approach, add 
 
   ; Halton 
 
to your model command. 
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 Conventional simulation based estimation uses a random number to produce a large number 
of draws from a specified distribution.  The central component of the standard approach is draws 
from the standard continuous uniform distribution, U[0,1].  (LIMDEP’s random number generator is 
described in Appendix R4A.3.)  Draws from other distributions are obtained from these draws by 
using transformations.  In particular, where ui is one draw from U[0,1], 
 
 Normal [0,1]: vi  =  Φ-1(ui) 
  

Uniform[-1,1]: vi  = 2ui - 1  
 
 Tent:  vi  =  12 −iu  if ui ≤ 0.5, vi = 1 - 12 −iu  otherwise. 
 
Given that the initial draws satisfy the assumptions necessary, the central issue for purposes of 
specifying the simulation is the number of draws.  Results differ on the number needed in a given 
application, but the general finding is that when simulation is done in this fashion, the number is 
large.  A consequence of this is that for large scale problems, the amount of computation time in 
simulation based estimation can be extremely long.  
 Procedures have recently been devised in the numerical analysis literature for taking 
‘intelligent’ draws from the uniform distribution, rather than random ones.  (See Train (1999, 2009) 
and Bhat (2001) for extensive discussion and further references.)  These procedures appear vastly to 
reduce the number of draws needed for estimation (by a factor of 90% or more) and reduce the 
simulation error associated with a given number of draws.  In one application of the method to be 
discussed here, Bhat (2001) found that 100 Halton draws produced lower simulation error than 1,000 
random numbers. 
 The procedure described here is labeled Halton sequences.  (See Train (1999).)  The Halton 
sequence is generated as follows:  Let r be a prime number larger than two.  Expand the sequence of 
integers g = 1,... in terms of the base r as 
 

   i
i

I
i

rbg ∑ =
=

0
 where by construction, 0 ≤ bi ≤ r - 1 and rI ≤ g < rI+1. 

 
The Halton sequence of values that corresponds to this series is 
 

   1
0

)( −−
=∑= i

i
I
i

rbgH  
 
For example, using base 5, the integer 37 has b0 = 2, b1 = 2, and b3 = 1.  Then  
 
   H(37) = 2×5-1 + 2×5-2 + 1×5-3  =  0.448. 
 
The sequence of Halton values is efficiently spread over the unit interval.  The sequence is not 
random as the sequence of pseudorandom numbers is.  

The figures below show two sequences of Halton draws and two sequences of 
pseudorandom draws.  The Halton draws are based on r = 7 and r = 9.  The clumping evident in the 
first figure is the feature (among other others) that mandates large samples for simulations. We use 
the prime numbers in order beginning with 3.  If a model requires K random draws, we use the first 
K prime numbers to generate the sequences.  Within each series, the first 10 draws are discarded, as 
these draws tend to be highly correlated across different periods. 
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Figure R24.4  Bivariate Distribution of Random Uniform Draws 

 

 
Figure R24.5  Bivariate Distribution of Halton (7) and Halton (9) 

 
 You can draw Halton sequences for your own purposes.  The command 
 
 CREATE ; name = Hlt( prime number) $ 
 
generates a Halton sequence for the n integers, where n is your sample size, beginning at one.  The 
descriptive statistics below show the behavior of the Halton sequences.  Note, they are not random – 
they are not intended to be.  The ACFs and PACFs reflect the underlying construction of the data.  
The descriptive statistics do show how the series covers the uniform distribution, which has mean .5 
and standard deviation 1/ 12  = .288675. 
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Time series identification for H7 
PACF is computed using Yule-Walker equations. 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Lag |  Autocorrelation Function     |Box/Prc|    Partial Autocorrelations   X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
  1 | .264*|           |***         | 69.88*| .264*|            |***        X 
  2 |-.227*|        ***|            |121.60*|-.320*|       **** |           X 
  3 |-.475*|      *****|            |347.03*|-.374*|       **** |           X 
  4 |-.478*|      *****|            |575.07*|-.438*|      ***** |           X 
  5 |-.235*|        ***|            |630.47*|-.485*|      ***** |           X 
  6 | .252*|           |***         |693.93*|-.302*|        *** |           X 
  7 | .978*|           |*********** |*******| .958*|            |***********X 
  8 | .248*|           |***         |*******|-.690*|   ******** |           X 
  9 |-.239*|        ***|            |*******|-.178*|         ** |           X 
 10 |-.484*|      *****|            |*******|-.053 |          * |           X 
 11 |-.486*|      *****|            |*******|-.030 |          * |           X 
 12 |-.245*|        ***|            |*******|-.041 |          * |           X 
 13 | .239*|           |***         |*******|-.068*|          * |           X 
 14 | .962*|           |*********** |*******| .211*|            |**         X 
 15 | .237*|           |***         |*******|-.166*|         ** |           X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Time series identification for H9 
PACF is computed using Yule-Walker equations. 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Lag |  Autocorrelation Function     |Box/Prc|    Partial Autocorrelations   X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
  1 | .406*|           |****        |164.92*| .406*|            |****       X 
  2 |-.040 |          *|            |166.49*|-.245*|        *** |           X 
  3 |-.335*|       ****|            |278.42*|-.277*|        *** |           X 
  4 |-.482*|      *****|            |511.04*|-.317*|        *** |           X 
  5 |-.483*|      *****|            |744.21*|-.365*|       **** |           X 
  6 |-.336*|       ****|            |857.15*|-.417*|      ***** |           X 
  7 |-.042 |          *|            |858.90*|-.428*|      ***** |           X 
  8 | .400*|           |****        |*******|-.166*|         ** |           X 
  9 | .984*|           |*********** |*******| .973*|            |***********X 
 10 | .396*|           |****        |*******|-.611*|    ******* |           X 
 11 |-.046 |          *|            |*******|-.189*|         ** |           X 
 12 |-.338*|       ****|            |*******|-.050 |          * |           X 
 13 |-.484*|      *****|            |*******|-.010 |          * |           X 
 14 |-.485*|      *****|            |*******|-.011 |          * |           X 
 15 |-.339*|       ****|            |*******|-.035 |          * |           X 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Descriptive Statistics 
--------+--------------------------------------------------------------------- 
Variable|    Mean       Std.Dev.     Minimum      Maximum        Cases Missing 
--------+--------------------------------------------------------------------- 
      H7|  .498364      .288477      .832986E-03  .997501         1000       0 
      H9|  .497013      .288833      .152416E-03  .998628         1000       0 
      R1|  .491032      .277905      .201170E-03  .995654         1000       0 
      R2|  .502866      .282573      .943576E-04  .999873         1000       0 
--------+--------------------------------------------------------------------- 
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 To illustrate the technique, we will use 500 observations from a simulated data set, and 
compare estimation with 500 random draws with estimation using 50 Halton draws.  Computation 
time is linear in the number of draws, so the second model takes roughly one tenth as long as the 
first.  (It is not exact as generation of a Halton draw does not take the same amount of time as 
generation of a random number.) 
 
 CALC  ; Ran(12345) $ 
 SAMPLE  ; 1-2000 $ 
 CREATE ; I = Trn(10,0) $ 
 MATRIX ; b1 = Rndm(200)  
   ; b2 = Rndm(200) $ 
 CALC  ; b3 = -1 ; b4 = .5 ; b5 = .2 $ 
 CREATE ; x1 = Rnu(-.5,.5)  
   ; x2 = Rnn(0,1)  
   ; x3 = Rnn(0,1)  
   ; x4 = Rnd(3)-2 $ 
 CREATE ; index =.5*b1(i) + .2*b2(i)*x1 + b3*x2 + b4*x3 + b5*x4 + Rnn(0,4) $ 
 CREATE ; y = index > 0 $ 

SAMPLE ; 1-500 $ 
TIMER $ 
PROBIT ; Lhs = y  
  ; Rhs = one,x1,x2 

; RPM  
; Pts = 500  
; Pds = 10 
; Fcn = one(n),x1(n) $ 

PROBIT ; Lhs = y  
  ; Rhs = one,x1,x2 

; RPM  
; Pts = 50  
; Pds = 10  
; Halton 
; Fcn = one(n),x1(n) $ 

 
The results are strikingly similar, but, the Halton method takes roughly one eighth of the time to 
complete the estimation.  (The computation of the initial estimates is omitted for both models.) 
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----------------------------------------------------------------------------- 
Random Coefficients  Probit   Model 
Dependent variable                    Y 
Log likelihood function      -336.40582 
Restricted log likelihood    -336.41192 
Chi squared [   2 d.f.]          .01218 
Significance level               .99393 
Sample is 10 pds and     50 individuals 
PROBIT (normal)  probability model 
Simulation based on 500 random draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
      X2|    -.26254***      .05998    -4.38  .0000     -.38011   -.14497 
        |Means for random parameters 
Constant|     .05662         .05758      .98  .3254     -.05623    .16948 
      X1|     .06019         .24729      .24  .8077     -.42449    .54488 
        |Scale parameters for dists. of random parameters 
Constant|     .03541         .05708      .62  .5350     -.07647    .14730 
      X1|     .00757         .23486      .03  .9743     -.45274    .46789 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Elapsed time:     0 hours,  0 minutes,  6.02 seconds. 
----------------------------------------------------------------------------- 
Random Coefficients  Probit   Model 
Dependent variable                    Y 
Log likelihood function      -336.36654 
Restricted log likelihood    -336.41192 
Chi squared [   2 d.f.]          .09076 
Significance level               .95564 
McFadden Pseudo R-squared      .0001349 
Estimation based on N =    500, K =   5 
Inf.Cr.AIC  =  682.733 AIC/N =    1.365 
Sample is 10 pds and     50 individuals 
PROBIT (normal)  probability model 
Simulation based on  50 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
      X2|    -.26320***      .06004    -4.38  .0000     -.38087   -.14553 
        |Means for random parameters 
Constant|     .05679         .05841      .97  .3309     -.05769    .17127 
      X1|     .06042         .24702      .24  .8068     -.42374    .54458 
        |Scale parameters for dists. of random parameters 
Constant|     .07584         .05725     1.32  .1853     -.03638    .18805 
      X1|     .02051         .23609      .09  .9308     -.44222    .48324 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Elapsed time:     0 hours,  0 minutes,   .84 seconds. 
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Constructing the Parameter Vector 
 
 In the following, we include all cases by allowing for autocorrelation in the random effects.  
Thus, we write the random parameter vector as βit. Let 
 
 vitr  =  the rth replication (random draw) on the vector of random variables vit 
 
With vitr in hand, we form the rth draw on the random parameter, βitr  as follows: 
 
 β1itr =   β1 (K1  nonrandom parameters – does not change with i, r, or t). 
    This parameter vector is being estimated. 

 β2itr =   β2 +  ∆zi  +  Σvitr  +  Πvitr  (K2
 random parameters) 

  = β2 +  ∆zi  +  Γvitr  where  Γ  =  Σ  +  Π 

where   β2 = the fixed means of the distributions for the random parameters. 
     This parameter vector is being estimated. 

   zi = a set of M observed variables which do not vary over time and which 
     enter the means (optional) 

   ∆ = coefficient matrix, K2×M, which forms the observation specific term in  
     the mean.  If  zi has been specified with ; Rpm = list, then ∆ is a vector  
     of parameters that is being estimated.  Otherwise, ∆ does not appear in  
     the model specification. 

   Σ = diagonal matrix of scale parameters – standard deviations if the random 
             effects are uncorrelated (Π = 0).  Σ is being estimated. 

   Π = lower triangular matrix with zeros on the main diagonal.  Π becomes 
      nonzero only when you specify ; Correlation.  Π is a matrix of 
     parameters to be estimated; otherwise, it does not appear in the model 

   Γ = lower triangular or diagonal matrix which produces the covariance 
     matrix of the random parameters, Ω  =  Γ Γ ′ in the random effects form 
     and Ω  =  Γ(I-R2)-1Γ ′ in the AR(1) model.  The elements of Γ are being 
     estimated.   

   R = Diagonal autocorrelation matrix.  If ; AR1 is specified, then the elements 
     of R are being estimated.  Otherwise, R does not appear in the model 

 x1it = variables multiplied by β1itr.   
 
 Various restrictions, such as zeros in ∆ or Γ, or equality restrictions between means and 
variances, are imposed during the construction.  The parameter vector, βitr  is now in hand.  For 
parameters specified to be lognormally distributed, the respective element of βitr is now 
exponentiated. 
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Forming the Simulated Likelihood 
 

The probability density function is formed by beginning with 
 

   Pitr =  g(yit, βitr′xit, θ) 
 
(Note, if this is the random effects model, then βitr′xit  =  βir′xit.)  The joint conditional probability for 
the ith individual is 
 

   Pir | (vitr, t = 1,...,Ti)  =  ∏ =
iT

t 1
Pitr| vitr. 

 
The unconditional density would now be obtained by integrating the random terms out of the 
conditional distribution.  We do this by simulation: 
 

   Pi =  ∑ =

R
rR 1

1  Pir | (vitr, t = 1,...,Ti)  

 
Note that in the random effects case, we are averaging over R replications in which the Ti 
observations are each a function of the same vir.  Thus, each replication in this case involves drawing 
a single random vector.  In the AR1 case, each replication involves drawing a sequence  of Ti 
vectors, vitr.  Finally, the simulated log likelihood function to be maximized is 
 

   log L =  ∑ =

N
i 1

log Pi 

    =  ∑ =

N
i 1

log ∑ =

R
rR 1

1  Pir | (vitr, t = 1,...,Ti)  

    =  ∑ =

N
i 1

log  ∑ =

R
rR 1

1 ∏ =
iT

t 1
Pitr| vitr 

 
Derivatives of the Simulated Log Likelihood 
 
 The derivatives of the log likelihood function must be approximated as well.  The theoretical 
maximum is based on 
 

   
αα ∂

∂
=

∂
∂ i

i

i L
L

L 1log
     

 

where α is the vector of all parameters in the model.  Then, 
 

   
Range of  

1

( , 1,..., ) ( , , ) ( , 1,..., )
i

it

T
i

it i it it it it i
t

L g t T P y d t T
=

∂ ∂ ′= = =
∂ ∂ ∏∫ v

      v x  vβ θ
α α

 

   
1

1

( , , )( , , )    ( , , )
i

i
T

T it i it
it i it is i itt

t s t

P yP y P y
=

= ≠

′∂∂  ′ ′=  ∂ ∂ 
∑∏ ∏xx xβ θ

β θ β θ
α α

 

                 
1

1

log ( , , )  ( , , )
i

i
T

T it it it
it it it t

t

P yP y
=

=

′∂ ′=  ∂ 
∑∏ xx β θ

β θ
α

 



R24: Random Parameter Models   R-628 

Collecting terms once again, we obtain the approximation, 
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We now consider in finer detail how the derivatives with respect to the low level, structural 
parameters are computed. 

To avoid some involved notation, it is useful to go back and partition the parameter vector.  
Each element of βitr involves its own vector of structural parameters, a βk from the mean vector, a 
row of ∆, a diagonal element of Σ, a row of Π, and an autocorrelation coefficient, ρk.  It is convenient 
to write this explicitly as 
 
  βk,itr =  βk  +  δk′zi  +  σkvk,itr  +   πk′vitr 

  vk,itr =  ρkvk,i,t-1,r  +  uk,itr  or  vk,1tr   =  uk,i1r / 21 kρ−   for the first observation. 
 
Note that the first row of Π has no nonzero elements, the second has only one, the third, two, and so 
on.  Also, for any nonrandom parameters, all terms save the first are zero in the statement above.  It 
is useful, as well, to keep in mind that Γ is a triangular matrix, so the vector γk has one, then two, 
then ... nonzero elements.  Let µk denote the full vector of parameters associated with βk,itr, and 
collect these subvectors in a large, complete vector of parameters, µ.  (At this point, µ is the full 
vector of model parameters except for any ancillary parameters such as θ in the negative binomial or 
the disturbance standard deviation, σ, in the tobit model.)  We seek the gradient,  
 

   
µ∂

∂ Llog   =  ∑ =

N
i 1 µ∂

∂ iPlog  

 
which we will obtain by stacking the gradients with respect to µk.  For the moment, assume that the 
random parameters are uncorrelated, so that the matrix, Π is not in the model – the reason is that 
with nonzero Π and autocorrelation, each βk is a function of the ρm in other parameters.  We turn to 
this complication below.  At various points, we will use analogs to the convenient result 
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Suppressing the conditioning notation, and collecting terms from above, we have 
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The second expression takes us into the primitive, lowest level probabilities.  To evaluate them, we 
can now use the simplification 
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The first term in the product is the familiar one from maximization of the conventional log 
likelihoods for these models.  For example, for the Poisson model, 
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while for the negative binomial model, this is 
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In the absence of cross parameter correlation, the latter derivatives are easy to evaluate: 
 

   1, =
β∂

β∂

k

itrk ,  i
k

itrk z=
∂

β∂

δ
, , itrk

k

itrk v ,
, =

σ∂

β∂
, and, if ; Cor, ,k itr

itr
k

∂β
=

∂
v

π
 

 
Note that the last of these has only k-1 nonzero terms, for k = 1,...,K2.  Finally, for the autocorrelation 
parameters (assuming that the parameters are not correlated), 
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for the first observation. 

One term remains.  If ; Cor has been specified, then βk is a function of ρm for some of the 
other parameters, because the term πk′vitr is a function of some alien components of vitr (and, by 
construction, it is not a function of the kth component).  In particular,  
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The final term is 
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The last derivative above was given previously.  Working backwards from here, we assemble these 
parts to obtain the full gradient of the log likelihood. 
 The common ancillary parameters are a remaining complication.  Consider, for example, the 
negative binomial model.  For the overdispersion parameter, 
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and the latter derivative is 
 

   
θ∂

∂ itrPlog   =  Ψ(θ + yit) - Ψ(θ)  + logqitr +  (1 - qitr)  -  yiitqitr/θ. 

 
Another formulation of the preceding computation is illuminating.  This shows more 

graphically how the preceding are actually carried out – the implementation is actually simpler than 
the derivation might suggest.  We produce this for the group of binary choice models as an 
illustration.  For the binary choice models, we have 
 

   P(yit, βitr′xit)  =  [ ] [ ]( ) ity
ititrFity

ititrF −− 1'1' xx ββ   =  Gitr 

so 
   log P(yit, βitr′xit)  =  yit logFitr  +  (1 - yit)log (1 - Fitr). 
The index is  
 
   witr   =  βitr′xit 

    =  β′xit  +  zi′∆′xit + vitr′Γ′xit 
 
We will need 
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The forms of the particular density functions, git(.), differ among the four models.  The functional 
forms appear at the beginning of Section E18.3.1.  In the vector at the end of the expression, the 
lower term is the result of the term xit′Γvir.  Since Γ is a lower triangular matrix, this term actually 
involves the K2(K2+1)/2 terms that are nonzero in the matrix Γ including σk and nonzero elements of 
Π. 
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Hessians and Asymptotic Covariance Matrix Estimation 
 
 We will only sketch the full derivation of the Hessians here.  Return to the full gradient of 
the ith term in the log likelihood log likelihood – terms are summed over i to get the gradient and 
Hessian – the following is written in terms of the full parameter vector, including any ancillary 
parameters.  The gradient is 
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Let Hi denote the second derivatives matrix.  Then, 
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The only term which has not already appeared is the second derivatives matrix in the third part.  
Consider first the case of no autocorrelation.  This derivative is obtained by differentiation of 
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In the absence of autocorrelation, the random parameters are linear in the underlying parameters, so 
the first of the two second derivatives is zero.  Using this and our previous results, we obtain 
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The only major complication in the preceding arises when there is autocorrelation, as in this case, 
and when the reduced form parameters are not linear in ρk.  In this instance, the square of the first 
derivative is used as an approximation to the second. The BFGS algorithm is always used for 
estimation of this model, so the Hessian is only used at exit for computing the asymptotic covariance 
matrix. 
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R24.8 Multilevel and Multiple Effects RP Models 
 
 The following applies to all random parameters models in LIMDEP – the entire class of 
models estimable with the ; RPM specification with only the exception of the two equation models, 
bivariate probit and sample selection.  It modifies the single index models. 
 The model is based on the single index function 
 
   Indexit  =  β′xit 
 
such as the linear regression model, yit = Indexit + εit or the probit model, in which yit = 1(Indexit+εit > 
0) or the Poisson regression in which the probabilities are functions of exp(Indexit). We add to this  
M = up to 10 ‘effects’ 
 

   Indexit  =  β′xit  + cj1 ωj1,i + cj2 ωj2,i + ... cjM ωjM,i. 
 
The cjM are ones and zeros simply used to select the effects in the model.  The effects are up to 10 
normally distributed random terms associated with discrete group indicators such as strata, clusters, 
etc.  Effects may appear singly or as products, and may be nested or simply be associated with any 
desired groupings of the data. The associated variables can be any desired discrete indicator that 
associates a unique value with a group.  Consider an example based on test scores.  Suppose we have 
nationwide data, arranged by region, state, county, district, school.  That is individual test scores 
observed in five decreasing levels of aggregation.   Then, in addition to the data on test scores 
(presumably individual students) and the covariates in x, we have variables with distinct codes for 
the five levels of aggregation – the only restriction is that codes must be integers from 1,2,...,9999.  
The specification is 
 

   ; REM = name1, name2, ..., nameM 
 
For our example, this would thus be 
 
   ; REM = region,state,county,district,school 
 
This estimator does not require that these ‘effects’ be nested.  The effects can be defined at any level 
of aggregation, and could be a mixture of nested and nonnested groupings.  Suppose, for example, 
you also had indicators of grouping by type of program, which might be one of, say, 10, which varies 
all over the range of observations, without respect to the other five groupings listed. For another 
example, one might also have a party effect in that list, for whether the state in question had a 
Democratic, Republican, or Other Party governor at the time. This could also be included. 
 Effects may also be main or secondary (products).  You can specify secondary effects by 
writing the effects as products, as in 
 
 ; REM = name1, name2, name3*name4, name2*name3*name4, name1*name4 
 
You may define up to 10 effects or combinations of effects in total, using up to 10 basic effects.  To 
continue the example, you might specify an interaction between state and district with 
 
   ; REM = region,state,county,district,school,state*district 
 
; REM can be added to an RPM model or may appear by itself instead of RPM ; Fcn = … 
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R24.8.1 Command  
 
 This estimator uses LIMDEP’s package of random parameter model (RPM) estimators.  The 
essential part of the command is 
 
 Model  ; Lhs = the dependent variable 
   ; Rhs  = the independent variables 
   ; RPM 
   ; Pds  = the correct specification for your panel (see below) 
   ; REM  = the specification of your random effects  $ 
 
This specification may be in addition to other random parameter specifications in the command.  
(See the application below.) 
 Typically, the panel specification in ; Pds = ... would correspond to the structure of one of 
your effects variables.  But, this is not required.  Indeed, you could have ; Pds = 1.  But, if you are 
analyzing a panel, you should specify it as usual.  Note that the command does not contain ; Panel. 
This must be omitted from this command.  The effects are set up as described above.  There is one 
other specification that you should use.  The estimator for this model is maximum simulated 
likelihood.  You may want to control the number of random draws used in the simulations.  This is 
an extremely computation intensive estimator.  The number of random draws is specified with 
 
   ; Pts = the desired number 
 
The default value is 100.  For generating final results in a study, you will probably use several 
hundred.  But, for exploratory work, as in our example below, you might want to choose a small 
value, such as 10 or 25.  Also, as in the case of the RPM, you may gain some speed and smoothness 
of the optimization by using Halton sequences instead of pseudorandom draws to do the integrations 
involved.  This is done by adding 
 
   ; Halton 
 
to the command. 
 
R24.8.2 Application 
 
 We consider a random parameters stochastic frontier model (see Chapter E33) of the form 
 
   yit  =  α  +  βi′xit  + εit - ait + σuui + σwwg + γ(σuui)( σvwg) 
 
The parameter vector is treated as a simple RPM, with βi,k = βk

0 + vi,k.  In the setting of the frontier 
model, ait is the half normally distributed inefficiency term while εit (normally denoted vit) is the 
symmetric noise term.  Note that in this model, we allow these to vary with time.  The common 
effect  σuui is equivalent to a producer specific effect, which is, in turn, also equivalent to a random 
constant term.  In the application below, we fit the model to a sample of farms in a panel data set 
with T = 6 observations per farm.  (The data are discussed in greater detail in Chapter E31.)  We are 
also artificially (for the purpose of our numerical example) grouping farms into clusters of six farms.  



R24: Random Parameter Models   R-634 

(There are 247 farms, so the last cluster has only one farm.)  We allow for separate effects for farm 
and group, and also provide for an interaction of the two effects. 
 The commands are 
 
 CREATE ; group = Trn(36,0) $ 
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4 $ 
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4 
   ; RPM ; Fcn = x1(n),x2(n),x3(n),x4(n) 
   ; Pds = 6 
   ; Pts = 15 
   ; REM = group,farm $ 
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4 $ 
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4 
   ; RPM ; Fcn = x1(n),x2(n),x3(n),x4(n) 
   ; Pds = 6 
   ; Pts = 15 
   ; REM = group,farm,group*farm $ 
 
Three sets of estimates appear below. The first is the pooled, fixed parameter version of the model 
that is used to provide the starting values for the iterations.  The second is the RP model with farm 
and group effects.  The third adds the interaction effect of farm and group.  Since the grouping is 
completely artificial, we would not expect to see any significant effect due to this component.  
Although the coefficient on the effects in the two RE models do appear to be significant, the 
variances due to the grouping effects are very small – one and two orders of magnitude smaller – 
compared to the farm effect which can be clearly seen in any panel data model fit with these two 
data.  We might surmise that the ‘group effect’ here is picking up farm effects that are left over 
beyond the simple linear additive effect of the first random effect.  Note, finally, in the third model, 
the iterative routine exited abnormally with a diagnostic that no improvement in the function could 
be located.  However, this was after 40 iterations, and in fact, the derivatives were quite small at this 
point.  This suggests only that the likelihood is fairly flat at this point, not that the optimization has 
failed, and we take the estimates as given. 
 
----------------------------------------------------------------------------- 
Limited Dependent Variable Model - FRONTIER 
Dependent variable                  YIT 
Log likelihood function       822.68831 
Estimation based on N =   1482, K =   7 
Inf.Cr.AIC  =-1631.377 AIC/N =   -1.101 
Model estimated: Mar 10, 2011, 22:52:57 
Variances: Sigma-squared(v)=     .01075 
           Sigma-squared(u)=     .02425 
           Sigma(v)        =     .10371 
           Sigma(u)        =     .15573 
Sigma = Sqr[(s^2(u)+s^2(v)]=     .18710 
Stochastic Production Frontier, e = v-u 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Primary Index Equation for Model 
Constant|    11.7014***      .00447  2614.87  .0000     11.6926   11.7101 
      X1|     .58369***      .01887    30.93  .0000      .54670    .62068 
      X2|     .03555***      .01113     3.20  .0014      .01375    .05736 
      X3|     .02256*        .01281     1.76  .0783     -.00256    .04768 
      X4|     .44948***      .01035    43.42  .0000      .42919    .46977 
        |Variance parameters for compound error 
  Lambda|    1.50164***      .08748    17.17  .0000     1.33019   1.67310 
   Sigma|     .18710***      .00011  1698.90  .0000      .18688    .18732 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  Frontier Model 
Dependent variable                  YIT 
Log likelihood function      1266.54960 
Restricted log likelihood        .00000 
Chi squared [   6 d.f.]      2533.09921 
Significance level               .00000 
Estimation based on N =   1482, K =  13 
Inf.Cr.AIC  =-2507.099 AIC/N =   -1.692 
Sample is  6 pds and    247 individuals 
Stochastic frontier (half normal) 
Simulation based on  15 random draws 
Model contained  2 random effects. 
Sigma( u) (1 sided)  =      .08573 
Sigma( v) (symmetric)=      .06173 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Production / Cost parameters, nonrandom first 
Constant|    11.6209***      .00389  2988.25  .0000     11.6133   11.6285 
        |Means for random parameters 
      X1|     .63225***      .01001    63.17  .0000      .61264    .65187 
      X2|    -.00627         .00606    -1.03  .3016     -.01815    .00562 
      X3|     .05448***      .00706     7.72  .0000      .04064    .06831 
      X4|     .41693***      .00537    77.63  .0000      .40641    .42746 
        |Scale parameters for dists. of random parameters 
      X1|     .03083***      .00398     7.75  .0000      .02303    .03863 
      X2|     .02501***      .00424     5.89  .0000      .01669    .03332 
      X3|     .03725***      .00554     6.73  .0000      .02640    .04810 
      X4|     .07809***      .00280    27.89  .0000      .07260    .08358 
        |Standard Deviations of Random Effects 
R.E.(01)|     .05930***      .00218    27.14  .0000      .05502    .06358 
R.E.(02)|     .15460***      .00259    59.74  .0000      .14953    .15968 
        |Variance parameter for v +/- u 
   Sigma|     .10565***      .00270    39.13  .0000      .10036    .11094 
        |Asymmetry parameter, lambda 
  Lambda|    1.38874***      .10644    13.05  .0000     1.18013   1.59735 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+-------------------------------------------+--------------+ 
| Random effects in the model are based on  |Random Effect | 
| these expanded qualitative variables.     |     Variance | 
| R.E.(01) = GROUP                          |      .003516 | 
| R.E.(02) = FARM                           |      .023903 | 
+-------------------------------------------+--------------+ 
 
----------------------------------------------------------------------------- 
Random Coefficients  Frontier Model 
Dependent variable                  YIT 
Log likelihood function      1278.51141 
Restricted log likelihood        .00000 
Chi squared [   7 d.f.]      2557.02282 
Significance level               .00000 
Estimation based on N =   1482, K =  14 
Inf.Cr.AIC  =-2529.023 AIC/N =   -1.706 
Sample is  6 pds and    247 individuals 
Stochastic frontier (half normal) 
Simulation based on  15 random draws 
Model contained  3 random effects. 
Sigma( u) (1 sided)  =      .08949 
Sigma( v) (symmetric)=      .06025 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     YIT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Production / Cost parameters, nonrandom first 
Constant|    11.6173***      .00397  2929.12  .0000     11.6095   11.6251 
        |Means for random parameters 
      X1|     .65045***      .01033    62.98  .0000      .63021    .67069 
      X2|     .01572**       .00623     2.52  .0116      .00352    .02793 
      X3|     .02458***      .00738     3.33  .0009      .01011    .03905 
      X4|     .40630***      .00553    73.41  .0000      .39545    .41714 
        |Scale parameters for dists. of random parameters 
      X1|     .01456***      .00421     3.45  .0006      .00629    .02282 
      X2|     .06401***      .00501    12.78  .0000      .05420    .07383 
      X3|     .10801***      .00623    17.34  .0000      .09580    .12022 
      X4|     .07088***      .00271    26.13  .0000      .06557    .07620 
        |Standard Deviations of Random Effects 
R.E.(01)|     .04544***      .00195    23.30  .0000      .04162    .04926 
R.E.(02)|     .12743***      .00239    53.21  .0000      .12273    .13212 
R.E.(03)|     .01908***      .00193     9.87  .0000      .01529    .02287 
        |Variance parameter for v +/- u 
   Sigma|     .10789***      .00271    39.87  .0000      .10258    .11319 
        |Asymmetry parameter, lambda 
  Lambda|    1.48523***      .11417    13.01  .0000     1.26147   1.70899 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+-------------------------------------------+--------------+ 
| Random effects in the model are based on  |Random Effect | 
| these expanded qualitative variables.     |     Variance | 
| R.E.(01) = GROUP                          |      .002065 | 
| R.E.(02) = FARM                           |      .016237 | 
| R.E.(03) = GROUP    FARM                  |      .000364 | 
+-------------------------------------------+--------------+ 
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R24.8.3 Technical Details 
 

The probability density function for the random parameters model, now with the additional 
effects, is formed by beginning with 

 
   Pitr   =  g(yit, βitr′xit + cj1 ωj1,i + cj2 ωj2,i + ... cjM ωjM,i, θ) 
 
The joint conditional probability for the ith individual is 
 

   Pir | (ωj1,i,ωj2,i,...ωjM,i,vitr, t = 1,...,Ti)  =  ∏ =
iT

t 1
Pitr| ωj1,i,ωj2,i,...ωjM,i,vitr. 

 

The unconditional density would now be obtained by integrating the random terms out of the 
conditional distribution.  We do this by simulation, as we did before: 
 

   Pi   =  ∑ =

R
rR 1

1  Pir | (ωj1,ir,ωj2,ir,...ωjM,ir,vitr, t = 1,...,Ti)  
 

Thus, each replication in this case involves drawing a single random vector on vi, but in addition, it 
involves drawing from the population of the common effects, ωj1,i,ωj2,i,...ωjM,i. Finally, the simulated 
log likelihood function to be maximized is 
 

   log L =  ∑ =

N
i 1

log Pi 

    =  ∑ =

N
i 1

log ∑ =

R
rR 1

1  Pir | (ωj1,i,ωj2,i,...ωjM,i,vitr, t = 1,...,Ti)  

    =  ∑ =

N
i 1

log ∑ =

R
rR 1

1 ∏ =
iT

t 1
Pitr|ωj1,i,ωj2,i,...ωjM,i,vitr 

 

The procedure that includes these random effects is essentially the same save for the drawing of the 
effects for the simulations, which is not done in synchronization with the draws for the random 
parameters, but rather, is drawn from a separate reservoir of draws for the effects, themselves. 
Further details on the maximization appear above in Section R24.7.   
 We note one important aspect of the simulation/integration.  Where the common effect is of 
the form σωui – that is, the subscript on the effect matches the index of the product operation, as in 
the familiar random effects model – then the preceding is exactly equivalent to that RE model.  In 
other cases, however, the effect may be varying over a different range than the index in the product.  
Consider a model with both group and time effects.  There are T time effects for each i, since each 
individual is observed in each period.  Thus, 
 
   Indexit,r = βit,r′xit + γ1vi,r + γ2wt,r + γ3vi,rwt,r. 
 
That is, the integral over periods is recomputed for each i, while the integral over vi is only computed 
once.  Moreover, in principle, though wt is a ‘time’ effect, we are treating it as if it were a state 
specific time effect when we integrate it out. (There is a separate random variable wt for each period, 
however.) This means that although state observations are correlated across states because of the 
common time effect, we are treating them as uncorrelated by this procedure.  Thus, it must be treated 
as approximate.  This all comes out appropriately if the effects are nested and Ti corresponds to the 
highest level in the nest (the level that encompasses the lower levels). 
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R25: Latent Class Models 
 
R25.1 Latent Class Models 
 

A model for a panel of data, i = 1,...,N, t = 1,...,Ti  is specified with 
 

  P[yit | xit]   =  F(yit,β′xit)  =  P(i,t). 
 
We use the term ‘group’ to indicate the Ti observations on respondent i in periods t = 1,...,Ti.  We 
emphasize, the latent class, or finite mixture model, does not require panel data, and has been 
widely analyzed in many settings using cross section data.  Indeed, the original finite mixture 
problem was cast in the context of cross section data.  Thus, throughout this discussion, Ti may equal 
one for some or all i. 
 Unobserved heterogeneity in the distribution of yit is assumed to impact the density in the 
form of a random effect.  The continuous distribution of the heterogeneity is approximated by using 
a finite number of ‘points of support.’  The distribution is approximated by estimating the location of 
the support points and the mass (probability) in each interval.  In implementation, it is convenient 
and useful to interpret this discrete approximation as producing a sorting of individuals (by 
heterogeneity) into J classes, j = 1,...,J.  (Since this is an approximation, J is chosen by the analyst.) 

Thus, we modify the model for a latent sorting of yit into J ‘classes’ with a model which 
allows for heterogeneity as follows:  The probability of observing yit given that regime j applies is 
 

  P(i,t|j)  =  P[yit| xit, j] 
 
where the density is now specific to the group.  The analyst does not observe directly which class,     
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model 
 
   P(i,t|j)  =  F[yit, β′xit  +  δj], Prob[class = j]  =  Fj 
 
We might formulate this approximation more generally as, 
 
   P(i,t|j)  =  F[yit, β′xit  +  δj′xit],  

   Fj  =  exp(θj) / Σj exp(θj), with θJ  = 0. 
 
In this formulation, each group has its own parameter vector, βj′ =  β  +  δj,  though the variables that 
enter the mean are assumed to be the same.  (This can be changed by imposing restrictions on the 
full parameter vector, as described below.)  This allows the Heckman and Singer formulation as a 
special case by imposing restrictions on the parameters.  A further generalization is discussed below.  
In general, the latent class model will extend beyond the basic index function formulation. 
 There is a huge literature on latent class modeling.  One particularly useful reference is a 
compendium by McLachlan and Peel (2000). 
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R25.2 Commands for Latent Class Modeling 
 

 The estimation command for this model is 
 
 Model, such as POISSON, PROBIT, TOBIT, LOGIT, etc.  

 ; Lhs  = dependent variable 
 ; Rhs  = independent variables 
 ; LCM  (for latent class model)   
 ; Pds  = panel data specification (optional) 
 ; Pts  = the number of classes  $ 

 
The estimator does not require a panel. You can use ; Pds = 1.  (This is the classic ‘finite mixture’ 
problem, which was not originally specified for panel data.)  This applies to both LIMDEP’s class of 
estimators and to the LCM model in NLOGIT.  The default number of support points is five.  You may 
set J to 2, 3, ..., 9 with 
 

   ; Pts  = the value you wish. 
 

Some particular results computed for the latent class model are 
 

   ; Parameters  to save the individual specific parameter estimates.   
       See Section R25.7 for details. 
   ; Group = name to retain the index of the most likely latent class 
   ; Cprob = name  to retain the estimated probability for the most likely 

  latent class 
 
You can obtain a listing of the predicted class and the probabilities by using 
 

   ; List 
 

An example appears below.  (Computation of these values is described in the technical details.)  You 
can use the ; Rst = list option to structure the latent class model so that different variables appear in 
different classes.  Alternatively, you can use this to force the Heckman and Singer form of the model 
as follows, where we use a three class model as an example: 
 

 NAMELIST ; x = ... one, list of variables $ 
 CALC  ; k1 =  Col(x) - 1 $ 
 POISSON ; Lhs = ...  

; Rhs  = x  
   ; LCM  

; Pts = 3 
   ; Rst = d1,k1_b, d2,k1_b, d3,k1_b, t1,t2,t3 $ 
 

This sequence of instructions computes a three class Poisson regression model in which the slope 
parameters are the same in all three classes – only the constant terms differ across the classes. Latent 
class models can specified as an alternative to random effects models or random parameters models.  
The ; Rst = list specification can be used to impose a variety of kinds of restrictions in the model.  
Note that the last three parameters in the list are for the class probabilities.  LIMDEP, itself, imposes 
a restriction on these – the last parameter is fixed at zero. But, although you must include 
specifications for these parameters in your ; Rst list, you should not impose any restrictions yourself 
on these parameters.  They must remain unrestricted for the estimator to manipulate internally. 
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R25.3 Modeling Frameworks for Latent Class Analysis 
 

The following modeling frameworks may be analyzed in the latent class structure: 
 
 • Linear regression, yit|j = βj′xit + εit|j 

• Exponential regression, yit|j = exp(βj′xit) + εit|j 

•  Binary choice:  probit, logit, complementary log log, Gompertz  
• All ordered probability models, probit, logit, etc. 
• Count data:  Poisson and negative binomial  
• Zero inflated count models, Poisson ZIP, negative binomial ZINB 
• Censored dependent variable: tobit, grouped data 
• Truncated dependent variable: truncated regression 
• Loglinear dependent variable:  exponential, gamma, inverse Gaussian regression, Weibull, 

binomial, power, geometric, beta 
• Stochastic frontier models: half normal, exponential, Battese/Coelli 
• Parametric survival models: Weibull, exponential, lognormal, loglogistic, inverse Gauss 

 
Note that the zero inflation models, Poisson (ZIP), negative binomial (ZINB) and ordered probability 
models (ZIOP) are latent class models in their own right, outside the estimator being considered 
here. 
 
R25.4 Output and Saved Results 
 
 Estimation results for this estimation program will contain initial results for the model 
without the latent class treatment, followed by the full set of results for the latent class model. 
Estimates retained by this model include 
 
 Matrices: b     =  full parameter vector, [β1′, β2′,... F1,...,FJ] 
   varb   =  full covariance matrix 
 

Note that b and varb involve J×(K+1) estimates.  Two additional matrices are created, 
 
   b_class   =  a J×K matrix with each row equal to the corresponding βj 

  class_pr  =  a J×1 vector containing the estimated class probabilities 
 
A third matrix,   

  beta_i   =  an N×K matrix with one row of estimates for each person 
 
is saved if you include ; Parameters in the command.  See below for discussion 

 
Scalars: kreg   =  number of variables in Rhs list 

   nreg   =  total number of observations used for estimation 
  logl   =  maximized value of the log likelihood function 

   exitcode  =  exit status of the estimation procedure. 
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 An example of a four class model based on the German health care data analyzed in    
Chapter E2 and elsewhere appears below. 
 
 SAMPLE ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 PROBIT ; Lhs = doctor 
   ; Rhs = one,hhninc,hhkids,educ 
   ; LCM  

; Pts = 4  
; Maxit = 150  
; Parameters  

   ; Panel $ 
 
+-----------------------------------------------------------------+ 
| Variable = ____________ Variable Groups    Max    Min   Average | 
| TI         Group sizes  ID         7293      7      1       3.7 | 
+-----------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for DOCTOR 
Dependent variable               DOCTOR 
Log likelihood function    -17835.48615 
Estimation based on N =  27326, K =   4 
Inf.Cr.AIC  =35678.972 AIC/N =    1.306 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .89068***      .03921    22.72  .0000      .81383    .96754 
  HHNINC|    -.04608         .04536    -1.02  .3097     -.13497    .04282 
  HHKIDS|    -.22638***      .01576   -14.36  .0000     -.25727   -.19549 
    EDUC|    -.03978***      .00342   -11.62  .0000     -.04650   -.03307 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Latent Class / Panel Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -16383.65581 
Restricted log likelihood  -17835.48615 
Chi squared [  16 d.f.]      2903.66067 
Significance level               .00000 
McFadden Pseudo R-squared      .0814012 
Estimation based on N =  27326, K =  19 
Inf.Cr.AIC  =32805.312 AIC/N =    1.201 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Model fit with  4 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
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        |Model parameters for latent class 1 
Constant|    2.01229***      .23864     8.43  .0000     1.54457   2.48001 
  HHNINC|    -.11883         .27690     -.43  .6678     -.66154    .42388 
  HHKIDS|    -.50878***      .14213    -3.58  .0003     -.78735   -.23020 
    EDUC|    -.01378         .02016     -.68  .4944     -.05330    .02574 
        |Model parameters for latent class 2 
Constant|     .96086***      .21747     4.42  .0000      .53463   1.38709 
  HHNINC|    -.19837         .29576     -.67  .5024     -.77805    .38131 
  HHKIDS|     .13957         .29302      .48  .6339     -.43474    .71387 
    EDUC|    -.05816***      .01569    -3.71  .0002     -.08892   -.02740 
        |Model parameters for latent class 3 
Constant|    1.18089***      .30725     3.84  .0001      .57869   1.78309 
  HHNINC|     .35242         .36659      .96  .3364     -.36609   1.07093 
  HHKIDS|    -.83844*        .44384    -1.89  .0589    -1.70835    .03146 
    EDUC|    -.04909**       .01942    -2.53  .0115     -.08716   -.01103 
        |Model parameters for latent class 4 
Constant|    -.36679*        .18732    -1.96  .0502     -.73393    .00035 
  HHNINC|     .40442**       .17905     2.26  .0239      .05348    .75535 
  HHKIDS|    -.05314         .07418     -.72  .4738     -.19853    .09226 
    EDUC|    -.05407***      .01544    -3.50  .0005     -.08434   -.02381 
        |Estimated prior probabilities for class membership 
Class1Pr|     .28001***      .04017     6.97  .0000      .20127    .35875 
Class2Pr|     .29987*        .17320     1.73  .0834     -.03960    .63935 
Class3Pr|     .22435         .17602     1.27  .2025     -.12065    .56936 
Class4Pr|     .19576***      .02528     7.74  .0000      .14621    .24531 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Elapsed time:     0 hours,  0 minutes, 34.03 seconds. 
 

 
Figure R25.1  Matrix Results for Latent Class Models 

 



R25: Latent Class Models   R-643 

R25.5 Extending the Class Probability Model 
 
 The latent class probabilities are parameterized in the form of a logit model, 
 

   
1

exp( )
,  0

exp( )
j

j JJ
m m

F
=

θ
= θ =

Σ θ
 

 
The latent heterogeneity model can be extended by allowing measured influences in the prior 
probability.  Let zi1, ..., zim denote M time invariant variables (such as sex, marital status, location, 
education) which affect the latent class probabilities.  Then, we extend the model so that prior class 
assignment is formulated as a multinomial logit; 
 

   P[class j | zi]  =   Fij  =  
1

exp( )
,

exp( )
j i

JJ
m im=

′
=

′∑
z

 0
z

θ
θ

θ
 

 
To use this form of the model, change the model command to include the variables 
 
   ; LCM = the list of variables 
 
Do not include one among the variables. 
 To illustrate, we have extended the example above to allow the class probabilities to vary 
with age and sex.  The new command is 
 
 PROBIT ; Lhs = doctor 
   ; Rhs = one,hhninc,hhkids,educ 
   ; LCM = female,age 
   ; Pts = 4    
   ; Pds = _groupti $ 
 
The results now contain two sets of results, the probit equation for each latent class and the 
multinomial logit model for the class probabilities.  There is a well defined likelihood ratio test for 
the demographic effects in the context of a particular latent class model.  The model of the preceding 
section is nested within this one, so one can use an LR test for the effects.  The test statistic in our 
example would be 2×(-16117.8 – (-16383.66)) = 531.72.  There would be eight degrees of freedom.  
This chi squared is far larger than the tabled critical value, so the hypothesis of the model with 
constant class probabilities would be rejected. 
 
----------------------------------------------------------------------------- 
Latent Class / Panel Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -16117.88464 
Restricted log likelihood  -17835.48615 
Chi squared [  24 d.f.]      3435.20301 
Significance level               .00000 
McFadden Pseudo R-squared      .0963025 
Estimation based on N =  27326, K =  25 
Inf.Cr.AIC  =32285.769 AIC/N =    1.182 
Model estimated: Mar 10, 2011, 23:39:26 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Model fit with  4 latent classes. 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    1.07285***      .32627     3.29  .0010      .43337   1.71233 
  HHNINC|    -.39763         .34938    -1.14  .2551    -1.08241    .28714 
  HHKIDS|    -.41370***      .11466    -3.61  .0003     -.63844   -.18896 
    EDUC|     .06894**       .03306     2.09  .0370      .00415    .13373 
        |Model parameters for latent class 2 
Constant|     .61316***      .11051     5.55  .0000      .39655    .82976 
  HHNINC|     .14997         .10850     1.38  .1669     -.06269    .36263 
  HHKIDS|    -.17793***      .03766    -4.73  .0000     -.25173   -.10412 
    EDUC|    -.03110***      .00772    -4.03  .0001     -.04624   -.01597 
        |Model parameters for latent class 3 
Constant|    1.39136***      .35630     3.91  .0001      .69303   2.08969 
  HHNINC|     .23213         .38590      .60  .5475     -.52422    .98848 
  HHKIDS|     .01433         .13113      .11  .9130     -.24267    .27134 
    EDUC|    -.02403         .02580     -.93  .3517     -.07459    .02654 
        |Model parameters for latent class 4 
Constant|    -.51211***      .16401    -3.12  .0018     -.83356   -.19066 
  HHNINC|     .38605**       .16197     2.38  .0172      .06860    .70351 
  HHKIDS|    -.04868         .06313     -.77  .4406     -.17241    .07504 
    EDUC|    -.04087***      .01347    -3.03  .0024     -.06726   -.01448 
        |Estimated prior probabilities for class membership 
   ONE_1|   -4.51574***      .59041    -7.65  .0000    -5.67291  -3.35856 
FEMALE_1|     .90950***      .18200     5.00  .0000      .55278   1.26623 
   AGE_1|     .09563***      .01056     9.06  .0000      .07493    .11632 
   ONE_2|     .67420**       .33444     2.02  .0438      .01871   1.32968 
FEMALE_2|     .58395***      .15575     3.75  .0002      .27869    .88922 
   AGE_2|    -.00244         .00743     -.33  .7429     -.01701    .01213 
   ONE_3|     .81172         .88536      .92  .3592     -.92355   2.54698 
FEMALE_3|    2.66204***      .35274     7.55  .0000     1.97068   3.35340 
   AGE_3|    -.07800***      .03013    -2.59  .0096     -.13706   -.01895 
   ONE_4|        0.0    .....(Fixed Parameter)..... 
FEMALE_4|        0.0    .....(Fixed Parameter)..... 
   AGE_4|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
+------------------------------------------------------------+ 
|  Prior class probabilities at data means for LCM variables | 
|   Class 1     Class 2     Class 3     Class 4     Class 5  | 
|    .23144      .49772      .05760      .21324      .00000  | 
+------------------------------------------------------------+ 
 
Elapsed time:     0 hours,  0 minutes, 43.05 seconds. 
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R25.6 Testing for the Latent Class Model 
 
 In order to test for latent class effects, you must compare a model with the effects to one 
without.  This is not a straightforward parametric restriction on the latent class model.  Note, thus, if 
θj is set equal to zero, this just produces Fj = 1/J.  Alternatively, forcing all coefficient vectors to 
equal zero destroys the identifiability of the latent class probabilities – their standard errors will go to 
+∞.  (Try it.)  Therefore, in order to test for class effects, the restricted and unrestricted models must 
be fit separately.  One can use a likelihood ratio test, based on the following computations:  For the 
latent class model the unrestricted log likelihood is, 
 

   log LU =  ∑ =

N
i 1

log j
J
=∑ 1 Fij 1

iT

t=∏  P(i,t|j). 

 
For example, for the Poisson or negative binomial model with no latent class sorting, the log 
likelihood is 

  log LR =  ∑ =

N
i 1

log 
1

iT

t=∏  P(i,t). 
 
In both models, observations within the groups are assumed to be independent.  Taking logs in the 
second expression produces the conventional log likelihood function for the count model, 
 

  log LR =  ∑ =

N
i 1 ∑ =

iT
t 1

  log P(i,t). 
 
Therefore, it appears that a conventional likelihood ratio statistic can be computed.  The degrees of 
freedom would be (J-1)(Kz+K).  The first (J-1)Kz would be for the free latent class probabilities while 
the latter K(J-1) would be for the additional slope parameters in the last J-1 latent classes.  The 
problem with this approach is that the model is not identified under the restrictions, so this is not a 
conventional LR test.  That is, without the latent class sorting, the extra slope parameters cannot be 
estimated, and without variation across classes in the slope parameters, the class parameters cannot 
be estimated.  The upshot is that if this is a valid LR statistic, then surely the degrees of freedom is 
fewer than (J-1)(Kz+K).  But, whether it is appears not to be conclusively determined in the 
literature.  (See Heckman and Singer for discussion.) 
 A related problem concerns finding the right number of classes.  A simple likelihood ratio 
test of the J class model against the J-1 class model is inappropriate because the degrees of freedom 
for the test is ambiguous.  If two classes have identical parameters, then the model has one less class 
regardless of whether the two class probabilities are equal or not.  So, the degrees of freedom for the 
test is unclear.  In another direction, one cannot test ‘up’ to the number of classes, say starting with J, 
then incrementing to J+1 if the likelihood increases sufficiently.  The reason is that under the 
alternative (J+1), the lower level estimates are inconsistent.  For better or worse, in recent research, 
analysts have often done this specification search by testing ‘down’ from a model believed to be too 
large to a smaller one, using not the likelihood ratio statistic, but one of the information criteria, such 
as the Akaike information measure. 
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R25.7 Individual Specific Estimates 
 

 Among the useful results of this formulation is a posterior estimate of the probabilities of 
particular group membership; using Bayes theorem, 
 

   P(j | i)   =  P(i, j) / P(i)  =  
1

( | )

( | )
ij

J
ijj

P i j F

P i j F
=∑

 

 

Using this result, we can then compute j* = the index of the group with the highest posterior 
probability.  Predicted values, residuals, and predicted probabilities for the observed outcomes are 
then computed as those associated with group j*.  That is, for example, 
 
 Fitted valueit  =  conditional mean function|j*, which will be model specific, 
 
and so on. The ; List request in a model command will produce a listing of these results, such as that 
shown in the small example below for a three class model: 
 
============================================================================= 
Predictions computed for the group with the largest posterior probability 
============================================================================= 
Ind.=    1  Most likely group=2  P(j)= .44531  .55469  .00000 
Ind.=    2  Most likely group=1  P(j)= .61782  .38218  .00000 
Ind.=    3  Most likely group=1  P(j)= .98831  .01169  .00000 
Ind.=    4  Most likely group=1  P(j)= .99278  .00722  .00000 
Ind.=    5  Most likely group=3  P(j)= .00084  .01151  .98765 
Ind.=    6  Most likely group=1  P(j)= .98695  .01305  .00000 
Ind.=    7  Most likely group=1  P(j)= .68889  .31111  .00000 
Ind.=    8  Most likely group=1  P(j)= .74947  .25053  .00000 
Ind.=    9  Most likely group=1  P(j)= .99247  .00753  .00000 
Ind.=   10  Most likely group=1  P(j)= .95551  .04449  .00000 
(Rows 11-25 omitted) 
Ind.=   26  Most likely group=1  P(j)= .82398  .17602  .00000 
Ind.=   27  Most likely group=1  P(j)= .96988  .03012  .00000 
Ind.=   28  Most likely group=2  P(j)= .02913  .97087  .00000 
Ind.=   29  Most likely group=2  P(j)= .16479  .83521  .00000 
Ind.=   30  Most likely group=1  P(j)= .84708  .15292  .00000 
 

 The preceding also suggests a person specific estimate of the parameter vector.  The prior 
estimate would be the one from the most likely class, based only on the estimates parameters.  But, 
using all the information available for the individual, we can compute a conditional mean of the 
posterior distribution using 
 

   
1

ˆ[ | , ] ( | )J
i ji i j

E data P j i
∧ ∧ ∧

=
= = ∑β β θ β  

 

We emphasize, this is an estimator of the mean of a conditional distribution in exactly the same 
fashion as discussed in Section R24.5.  It is not truly an estimator of a person specific parameter 
vector.  For better or worse, perhaps the best estimator of that would be *

ˆ
jβ , the estimated parameter 

vector associated with the most likely class. 
 Use the ; Parameters specification in your model command to request this computation. 
This will save a matrix named beta_i containing the estimates.  Note, this matrix may be quite large, 
as there is one vector for each individual in the sample – each person is a row in this matrix. An 
example appears above in Section R25.4.  See Figure R25.1. 
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R25.7.1 Individual Specific Posterior Class Probabilities 
 
 The posterior probabilities for the latent classes may be saved as variables in the data set 
rather than in a matrix.  To do so, you must have variables in the data set which will be given the 
probabilities.  The following general form will create columns in your data set containing missing 
values, ready to receive the probabilities.  There must then be a namelist to collect the names, such as 
the one below, 
 
 CREATE ; name1,name2,…,nameJ $ 
 NAMELIST  ; probs = name1,...,nameJ $  (Use any name you wish.) 
 
Finally, add 
   ; Classp = the name of the namelist 
 
To the model command.  We changed the example in Section R25.4 by adding 
 
 CREATE ; prob1,prob2,prob3,prob4 $ 
 NAMELIST ; probs = prob1,prob2,prob3,prob4 $ 
 
then added ; Classp = probs to the model command.  The new data shown in Figure R25.2 results. 
 

 
Figure R25.2  Individual Specific Posterior Probabilities 
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R25.7.2 Individual Specific Parameters 
 
 The matrix beta_i that is saved by ;Parameters contains a full set of estimates for each 
individual or group in the sample.  If you have a large number of individuals or a large model or 
both, this may quickly exhaust the 50,000 cell limit on a saved matrix.    You can use the same 
procedure detailed in the previous section to save specific parameters in the data area instead of in a 
matrix.  The procedure is once again to create the template variables and add them to a namelist, then 
add 
   ; Par = namelist (lclist)  
 
To the model command, where the namelist is the one just created and the lclist is the names of the 
specific variables in the model.  For an example, we used 
 
 CREATE ; betainc, betaeduc $ 
 NAMELIST ; betalcm = betainc,betaeduc $ 
 
Then   ; Par = betalcm (hhninc,educ) 
 
The results are shown in Figure R25.3. 
 

 
Figure R25.3  Individual Specific Parameters 
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R25.8 Application 
 
 The preceding displays a fairly detailed example of an estimated latent class model.  To 
illustrate the technique further, we will show an approach for handling the canonical, original problem 
of latent class analysis, separating a mixture of normal distributions.  We consider a sample, y1,...,yN in 
which the data generating mechanism for the data is a pair of latent normal distributions with equal 
variances but different means.  The following procedure can be used to carry out experiments for this 
problem.  The data generation mechanism creates a mixture of normals, N(0,1) with probability prob 
and N(µ,1) with probability 1-prob.  We display a kernel density estimator of the mixed distribution, 
then use a linear regression on a constant to estimate the class probabilities and underlying means.  It 
can be seen by trying different values that the mixture estimator is more successful the more sharply 
defined are the underlying data (of course).  In the first experiment below, the estimator is unable to 
distinguish the two classes.  The second works out much more favorably. 
 
 PROC = LCM(mu,prob) $ 
 SAMPLE  ; 1-1000 $ 
 CALC    ; Ran(123457) $ 
 CREATE  ; mix = Rnu(0,1) $ 
 CREATE  ; If (mix < prob) y = Rnn(0,1)  
          ; (Else)                y = Rnn(mu,1) $ 
 KERNEL  ; Rhs = y $ 
 REGRESS  ; Lhs = y ; Rhs = one  

; LCM  
; Pts = 2 $ 

 ENDPROC $ 
 EXEC  ; Proc = LCM(1.5, .5) $ 
 EXEC    ; Proc = LCM(3,.4) $ 
 

 
Figure R25.4  Kernel Density Estimator for y 
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+---------------------------------------+ 
| Kernel Density Estimator for Y        | 
| Observations       =          1000    | 
| Points plotted     =          1000    | 
| Bandwidth          =       .410767    | 
| Statistics for abscissa values----    | 
| Mean               =      1.839709    | 
| Standard Deviation =      1.816993    | 
| Minimum            =     -2.836608    | 
| Maximum            =      5.727679    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =       .000000    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
Elapsed time:     0 hours,  0 minutes,   .13 seconds. 
 
----------------------------------------------------------------------------- 
OLS Starting values for latent classes model...... 
Ordinary     least squares regression ............ 
LHS=Y        Mean                 =        1.83971 
             Standard deviation   =        1.81699 
             Number of observs.   =           1000 
Model size   Parameters           =              1 
             Degrees of freedom   =            999 
Residuals    Sum of squares       =        3298.16 
             Standard error of e  =        1.81699 
Fit          R-squared            =         .00000 
             Adjusted R-squared   =         .00000 
Diagnostic   Log likelihood       =    -2015.62129 
             Restricted(b=0)      =    -2015.62129 
Info criter. Akaike Info. Criter. =        1.19537 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.83971***      .05746    32.02  .0000     1.72709   1.95233 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Figure R25.5  Kernel Density Estimator for y 

 
Normal exit:  20 iterations. Status=0, F=    1943.114 
 
----------------------------------------------------------------------------- 
Latent Class / Panel LinearRg Model 
Dependent variable                    Y 
Log likelihood function     -1943.11398 
Restricted log likelihood  -17835.48615 
Chi squared [   4 d.f.]     31784.74433 
Significance level               .00000 
McFadden Pseudo R-squared      .8910535 
Estimation based on N =   1000, K =   5 
Inf.Cr.AIC  = 3896.228 AIC/N =    3.896 
Sample is  1 pds and   1000 individuals 
LINEAR regression model 
Model fit with  2 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    3.08638***      .07717    40.00  .0000     2.93513   3.23763 
   Sigma|     .96456***      .05246    18.39  .0000      .86175   1.06738 
        |Model parameters for latent class 2 
Constant|     .01659         .12197      .14  .8918     -.22246    .25565 
   Sigma|    1.07898***      .08190    13.17  .0000      .91846   1.23950 
        |Estimated prior probabilities for class membership 
Class1Pr|     .59389***      .03127    18.99  .0000      .53260    .65518 
Class2Pr|     .40611***      .03127    12.99  .0000      .34482    .46740 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Elapsed time:     0 hours,  0 minutes,   .22 seconds. 
 
Maximum repetitions of PROC 
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R25.9 Technical Details on Estimating Latent Class Models 
 

The sequence of Ti observations for individual i, given group j is y(i|j) = 
[y(i,1|j),y(i,2|j),...,y(i,Ti|j)].  Observations for individual i in different periods are assumed to be 
independent.  Thus, the joint probability of the sequence of  observations [y(i|j)] is 
 
   P(i|j)  =  

1
iT

t=∏ P(i,t|j). 
 
We denote the mass, or probability in interval (group) j as Fij, j = 1,...,J, such that Fi1 + Fi2 + ... + FiJ 
= 1.  Then, the posterior probability of an observed sequence of observations is 
 

  P(i)  =   j
J
=∑ 1  Fj P(i|j) 

 
where Fj is the probability of membership in the jth class.  We parameterize the group  probabilities 
with 
 

   Fij   =  
1

exp( )

exp( )
j i

J
j ij=

′

′∑
z

z

θ

θ
 

 
where θJ   =  0, since  Σj Fij = 1. The log likelihood function for the observed sample is  

 

  log L  = ∑ =

N
i 1

 log[P(i)] 

  =  ∑ =

N
i 1

log j
J
=∑ 1 Fj 1

iT

t=∏  P(i,t|j) 

 
This function is maximized with respect to the vector of parameters β = (β1,...,βJ),  θ1,...,θJ. subject to 
the restriction that θJ = 0.  (Other restrictions may be imposed as well.) 
 Maximization of the log likelihood does not require any unusual techniques or approaches.  
(Some authors, e.g., Cockburn (1999) have used the EM algorithm for a Poisson model of this sort, 
but this is a means to an end, not a necessity.  We have found that the conventional approach used 
here works without problems, and is much simpler.)  The gradient of the log likelihood function is 
 

 |
|1 1

loglog 1 iN T it j
ij i ji t

j i j

PL F P
P= =

∂∂
=

∂ ∂∑ ∑β β
   =  |

|1 1
iN Tij i j

it ji t
i

F P
P= =∑ ∑ g  

 |1 1

log 1 [1( ) ]N J
i m im imi m

j i

L P F j m F
P= =

∂
= = −

∂ ∑ ∑θ
zi =  |

1 1

N J im i j
imi m

i

F P
P= =∑ ∑ r  

 
The gradients in the first term are the ordinary derivatives of the log probabilities that enter the log 
likelihood in the other formulations we have considered.  The asymptotic covariance matrix for the 
estimated parameters is computed from the estimated Hessian of the log likelihood.  The Hessian is 
obtained as follows, where we will sketch the derivation and skip a bit of the algebra.  The mixed 
derivative, ∂2logL/∂βj∂βk′, is simplified by the fact that Pit|j involves only a single parameter vector, 
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so the only second derivatives with respect to model parameters involve products of first derivatives.  
Also, Fij is not a function of βj.  Let Hit|j  be the ‘own’ Hessian, 
 

   Hit|j  =  
2 log

j j

L∂
′∂ ∂β β

. 

 
The gradient above may be written 
 

   
1

log n
ii

L
=

∂
=

∂ ∑      g
δ

 

 
where δ is the full set of parameters in the model.   The BHHH estimator for estimating the 
asymptotic covariance matrix would be based on 
 

   D-1  =  ( ) 1

1

N
i ii

−

=
′∑ g g  

 
The results just cited imply that the Hessian of the log likelihood is equal to D plus a set of terms we 
now define.  The diagonal block ∂2logL/∂βj∂βi′  is  
 

 Hβjβj′ =  Dββ′  +  ( )( )|
| | |1 1 1 1

'i i iN T T Tij i j
it j it j it ji t t t

i

F P
P= = = =

 +  ∑ ∑ ∑ ∑H       g g  

 
The full Hessian for the parameters in the prior probabilities is augmented, in blocks for θj,θm by 
 

 Hθj θm’ = Dθj θm   +  
2

|
1 1

log log logN J ij i j ij ij ij
i j

i j m j m

F P F F F
P= =

  ∂ ∂ ∂ 
+    ′ ′∂ ∂ ∂ ∂    

∑ ∑ θ θ θ θ
 

 
Finally, the cross derivative for βj and θm is 
 

Hβjβj′ = Dθj θm  +  ( )|
|1 1

log
iN Tij i j ij

it ji t
i m

F P F
P= =

 ∂ 
  ′∂   

∑ ∑ g
θ

. 

 
Thus, the Hessian differs from D, and the estimator differs from the BHHH estimator, by the 
augmented terms shown above.  Note that each of these should be close to zero, as within the square 
brackets in the first two cases is the second derivative plus the squared first derivative.  This sum 
should normally have expectation zero if the maximand were the only term in the brackets.  Given 
the structure of the problem, these terms will not be zero.  However, this being a regular maximum 
likelihood problem, the Hessian and the outer products matrix do have the same probability limits.  
We generally use the inverse of the analytical Hessian for the asymptotic covariance matrix.  
However, if the model is overspecified (too many classes), this matrix may fail to be positive definite 
– some roots may become close to zero.  In this case, the program automatically reverts to the 
BHHH estimator, D-1.  For starting values for the iterations, we use the single class estimates for the 
parameters, perturbed slightly (5%) and class probabilities equal to 1/J. 
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R26: Numerical Optimization 
 
R26.1 Numerical Optimization 
 
 Most of LIMDEP’s models are quite nonlinear and require iterative procedures for 
estimating the parameters.  In most cases, how this is done need not concern you any more than does 
the internal method of computing ordinary least squares coefficients.  But, there are a few things 
which will be helpful for you to know about LIMDEP’s internal workings.  This chapter will 
describe those aspects of the nonlinear optimization procedures which you can control and give some 
technical background on the methods that will be useful to you when you need to diagnose why a 
procedure appears to have failed.  Also, Section R26.10 on starting values is especially important, 
since your starting values will be part of one method of testing hypotheses. 
 
R26.2 Technical Display During Optimization 
 
 If your output window has the Status tab selected, then during iterations, you will see on 
your screen a progress report of the sort shown in Figure R26.1 
 

 
Figure R26.1  Technical Output During Optimization 
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The top line reports the model being estimated, the algorithm that is being used and the maximum 
iterations.  There are default algorithms for all procedures, but you can change the algorithm if need 
be.  (This should be rare.)  The iteration reports show the function value (usually the negative of the 
log likelihood function) and the ‘derivative’ which is a rate of change of the gradient.  This is one of 
the convergence criteria discussed below.  The first iteration will remain on the screen on the line 
labeled iteration 1. This shows you the function value at the starting values.  Then subsequent 
iterations are reported on the second line.  Thus, this reports the change in the function value from 
entry to the current iteration.  The line marked ‘changes’ reports two other convergence criteria, the 
rate of change of the function and the maximum proportional change in the parameters.  (These are 
described more fully below.)  If you are using the DFP or BFGS algorithm, the next few lines will 
display the progress of the line search.  
 

R26.3 Technical Output During Iterations 
 
 The technical output described in Section R26.4.1 will normally not appear in your output 
window.  If your estimation problem is well specified and appropriate for your data, you generally 
will not need it.  However, it is helpful to have the technical diagnostic information produced by the 
iterations when the optimization is not going well.  For example, you might want to find out why a 
particular procedure failed to converge.  The specification 
 
   ;  Output = n 
 
added to any model command is used to control the amount of intermediate output produced in the 
output file.  The values of n and the corresponding output produced at each iteration are shown in the 
example below.  The results were all produced by the same well behaved probit model, with only 
changes in this one setting:  In each case, iterations 3 through 6 are omitted.  Note that most of this 
information is actually displayed in the optimization report shown in Figure R26.1, but only in a rolling 
ticker format.  The following shows how to retain this information for inspection after estimation. 
 
n = 0:  No technical information.  Only the exit status is given. 
Normal exit from iterations. Exit status=0. 
 
n > 0:  Starting values, maximum iterations, convergence rules, and algorithm for all cases 
 
n = 1:  Log likelihood only 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB|   .0000D+00 
Nodes for quadrature: Laguerre=40;Hermite=20. 
Replications for GHK simulator= 100 
Itr  1 F=  .5414D+03 gtHg=.2334D+05 chg.F=.5414D+03 max|db|=.2296D+11 
Itr  2 F=  .4957D+03 gtHg=.2203D+04 chg.F=.4569D+02 max|db|=.2583D+07 
Itr  7 F=  .4510D+03 gtHg=.6400D-06 chg.F=.1026D-08 max|db|=.4254D-06 
                        * Converged 
Normal exit from iterations. Exit status=0. 
Function=  .54138770542D+03, at entry,  .45098351283D+03 at exit 
 
n = 2:   1 and first derivative vector 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB|   .0000D+00 
Nodes for quadrature: Laguerre=40;Hermite=20. 
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Replications for GHK simulator= 100 
1st derivs.    -.23291D+03  -.22964D+05  -.41717D+04 
Itr  1 F=  .5414D+03 gtHg=.2334D+05 chg.F=.5414D+03 max|db|=.2296D+11 
1st derivs.    -.68784D+02  -.14430D+04   .16631D+04 
Itr  2 F=  .4957D+03 gtHg=.2203D+04 chg.F=.4569D+02 max|db|=.2583D+07 
1st derivs.    -.47747D-05  -.54975D-04  -.27842D-03 
Itr  7 F=  .4510D+03 gtHg=.6400D-06 chg.F=.1026D-08 max|db|=.4254D-06 
                        * Converged 
Normal exit from iterations. Exit status=0. 
Function=  .54138770542D+03, at entry,  .45098351283D+03 at exit 
 
n = 3:  2 and parameter vector 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB|.0000D+00 
Nodes for quadrature: Laguerre=40;Hermite=20. 
Replications for GHK simulator= 100 
Start values:  -.12459D+01   .00000D+00   .00000D+00 
1st derivs.    -.23291D+03  -.22964D+05  -.41717D+04 
Parameters:    -.12459D+01   .00000D+00   .00000D+00 
Itr  1 F=  .5414D+03 gtHg=.2334D+05 chg.F=.5414D+03 max|db|=.2296D+11 
1st derivs.    -.68784D+02  -.14430D+04   .16631D+04 
Parameters:    -.12459D+01   .35436D-02   .64375D-03 
Itr  2 F=  .4957D+03 gtHg=.2203D+04 chg.F=.4569D+02 max|db|=.2583D+07 
1st derivs.    -.47747D-05  -.54975D-04  -.27842D-03 
Parameters:    -.15539D+00  -.13346D-02  -.11622D-01 
Itr  7 F=  .4510D+03 gtHg=.6400D-06 chg.F=.1026D-08 max|db|=.4254D-06 
                        * Converged 
Normal exit from iterations. Exit status=0. 
Function=  .54138770542D+03, at entry,  .45098351283D+03 at exit 
 
n = 4:  3 and stepsize search (not used for Newton’s method) 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB| .0000D+00 
Nodes for quadrature: Laguerre=40;Hermite=20. 
Replications for GHK simulator= 100 
Start values:  -.12459D+01   .00000D+00   .00000D+00 
1st derivs.    -.23291D+03  -.22964D+05  -.41717D+04 
Parameters:    -.12459D+01   .00000D+00   .00000D+00 
Itr  1 F=  .5414D+03 gtHg=.2334D+05 chg.F=.5414D+03 max|db|=.2296D+11 
Try =  0 F=  .5414D+03 Step=  .0000D+00 Slope= -.2334D+05 
Try =  1 F=  .1829D+05 Step=  .1000D+00 Slope=  .5520D+06 
Try =  2 F=  .1167D+04 Step=  .1660D-01 Slope=  .1095D+06 
Try =  3 F=  .4957D+03 Step=  .3602D-02 Slope= -.1123D+04 
1st derivs.    -.68784D+02  -.14430D+04   .16631D+04 
Parameters:    -.12459D+01   .35436D-02   .64375D-03 
Itr  2 F=  .4957D+03 gtHg=.2203D+04 chg.F=.4569D+02 max|db|=.2583D+07 
Try =  0 F=  .4957D+03 Step=  .0000D+00 Slope= -.2203D+04 
Try =  1 F=  .4979D+03 Step=  .3602D-02 Slope=  .3513D+04 
Try =  2 F=  .4941D+03 Step=  .1425D-02 Slope= -.4192D+00 
1st derivs.    -.47747D-05  -.54975D-04  -.27842D-03 
Parameters:    -.15539D+00  -.13346D-02  -.11622D-01 
Itr  7 F=  .4510D+03 gtHg=.6400D-06 chg.F=.1026D-08 max|db|=.4254D-06 
                        * Converged 
Normal exit from iterations. Exit status=0. 
Function=  .54138770542D+03, at entry,  .45098351283D+03 at exit 
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R26.4 Exit from Iterations and Warning Messages 
 
 Although the problems LIMDEP is programmed to handle are highly nonlinear, they are 
usually straightforward to solve, and convergence of iterative procedures is usually routine.  But, 
optimization procedures sometimes break down.  Unless you have a perfectly collinear data matrix, 
you can always compute the coefficients of a linear regression model.  This is not true of a nonlinear 
model, and the optimizer can break down for various reasons. 
 
R26.4.1 Normal Exit from Iterations 
 
 In theory, one exits the search for a maximizer of a function when the derivatives become 
zero.  But, in digital computing, this never happens – because of rounding error and the way that 
numbers are represented, the practical rule is that one exits when the computed derivatives become 
small enough, or some other quantity becomes close enough to a theoretical target.  Exit criteria – the 
rules for deciding when proper convergence has been achieved – for leaving iterative procedures are 
discussed below.  Normal exit from iterations is marked clearly in the technical output for the model.  
For example, here is a routine estimation log for a probit model: 
 
Nonlinear Estimation of Model Parameters 
Method=NEWTON; Maximum iterations=100 
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB|   .0000D+00 
Start values:  -.12459D+01   .00000D+00   .00000D+00 
1st derivs.    -.23291D+03  -.22964D+05  -.41717D+04 
Parameters:    -.12459D+01   .00000D+00   .00000D+00 
Itr  1 F=  .5414D+03 gtHg=.1400D+02 chg.F=.5414D+03 max|db|=  .1331D+05 
1st derivs.     .29637D+02   .29896D+04   .43932D+03 
Parameters:    -.28762D-01  -.13955D-02  -.13314D-01 
Itr  2 F=  .4524D+03 gtHg=.1675D+01 chg.F=.8899D+02 max|db|=  .4378D+01 
1st derivs.     .22859D+00   .25697D+02   .33154D+01 
Parameters:    -.15467D+00  -.13322D-02  -.11637D-01 
Itr  3 F=  .4510D+03 gtHg=.1329D-01 chg.F=.1410D+01 max|db|=  .4617D-02 
1st derivs.     .18061D-04   .24314D-02   .29542D-03 
Parameters:    -.15539D+00  -.13346D-02  -.11622D-01 
Itr  4 F=  .4510D+03 gtHg=.1159D-05 chg.F=.8836D-04 max|db|=  .4525D-06 
1st derivs.     .16587D-12   .26532D-10   .42846D-11 
Parameters:    -.15539D+00  -.13346D-02  -.11622D-01 
Itr  5 F=  .4510D+03 gtHg=.1221D-13 chg.F=.9663D-12 max|db|=  .7055D-14 
                        * Converged 
Normal exit from iterations. Exit status=0. 
Function=  .54138770542D+03, at entry,  .45098351283D+03 at exit 
 
The theoretical solution to the optimization occurs where all three convergence criteria listed are 0.0. 
The marker after the last iteration shows which criterion indicated the convergence had been 
satisfactorily achieved to within the acceptable tolerance.  The exit code of zero for this procedure is 
shown in the next line.  The last line shows the function value – usually the negative of the log 
likelihood function as it is here – at the starting values, then at the final values.  Standard model 
output consisting of parameter estimates, standard errors, and other statistics will now follow. 
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R26.4.2 Maximum Iterations 
 
 Large numbers of iterations may be a tipoff that something is wrong.  LIMDEP’s models 
usually take no more than 25 iterations to fit, and often take far less.  Exceptions are latent class and 
random parameters, certain sample selection models and other models which involve correlation 
coefficients for two or more normal distributions.  These can take 50 or 75.  But, users have reported 
100, 200, 1,000 and more. It is generally unlikely that any estimator which is going to converge at all 
would ever reach 100 iterations before doing so, and if you find this is the case with yours, you 
should check the diagnostic statistics to see if you really have obtained the optimum the estimator 
was seeking.  When the maximum number of iterations is reached before convergence, you will see 
the following: 
 
Maximum iterations reached. Exit iterations with status=1. 
Abnormal exit from iterations. If current results are shown 
check convergence values shown below. This may not be a 
solution value (especially if initial iterations stopped). 
Gradient value: Tolerance= .1000D-05, current value= .1159D-05 
Function chg. : Tolerance= .0000D+00, current value= .8836D-04 
Parameters chg: Tolerance= .0000D+00, current value= .4525D-06 
Smallest abs. parameter change from start value = .1335D-02 
 
This will be followed by the current set of parameter estimates, with full output as if proper 
convergence had been reached.  You should generally check other results to be sure that this is the 
case – generally, when the maximum number of iterations is reached, the optimizer has not 
converged. 
 
R26.4.3 Unable to Find Function Optimum 
 
 The number of trials in the line search is another indication of imminent failure.  When an 
estimator which uses a line search method is proceeding smoothly toward its optimum, each step in 
the line search will take a small number of ‘tries,’ typically five or less, and usually only two  The 
following shows an example of a smooth, well behaved line search toward a function optimum: 
 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg   .1000D-05 chg.F   .0000D+00 max|dB|   .0000D+00 
Start values:  -.37027D+00   .00000D+00   .00000D+00   .00000D+00 
1st derivs.    -.11632D+05   .17512D+03   .93689D+02  -.21033D+03 
Parameters:    -.37027D+00   .00000D+00   .00000D+00   .00000D+00 
Itr  1 F=  .3680D+05 gtHg=  .1164D+05 chg.F=  .3680D+05 max|db|=  .2103D+09 
Try =  0 F=  .3680D+05 Step=  .0000D+00 Slope= -.1164D+05 
Try =  1 F=  .3579D+05 Step=  .1000D+00 Slope= -.8481D+04 
Try =  2 F=  .3466D+05 Step=  .3660D+00 Slope= -.2831D+02 
1st derivs.    -.31270D+02  -.87580D+02  -.33433D+00   .90024D+02 
Parameters:    -.43298D-02  -.55091D-02  -.29474D-02   .66168D-02 
Itr  2 F=  .3466D+05 gtHg=  .1294D+03 chg.F=  .2139D+04 max|db|=  .1590D+05 
Try =  0 F=  .3466D+05 Step=  .0000D+00 Slope= -.1294D+03 
Try =  1 F=  .3673D+05 Step=  .3660D+00 Slope=  .1139D+05 
Try =  2 F=  .3466D+05 Step=  .4048D-02 Slope= -.6944D+00 
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 Occasionally, more than two tries will occur during a line search, even 10 or 15.  But, again, 
this will be unusual.  When 20 trials are reached, LIMDEP will back up, and try a slightly different 
direction.  But, expect 20 more trials to occur, after which breakdown of the iterations is likely to be 
next.  The next example, which is a deliberately misconstructed optimization problem, illustrates the 
sort of diagnostic output that will result when the optimization is in the process of failing:  (Two 
iterations which preceded the ‘crash’ have been omitted.) 
 
Nonlinear Estimation of Model Parameters 
Method=BFGS  ; Maximum iterations=100 
Convergence criteria:gtHg  .1000D-05 chg.F .0000D+00 max|dB|=.0000D+00 
Start values:   .10000D+01   .10000D+01   .10000D+01 
1st derivs.     .39403D+01   .29861D+03   .97451D+02 
Parameters:     .10000D+01   .10000D+01   .10000D+01 
Itr  1 F= -.2869D+05 gtHg= .3141D+03 chg.F=.2869D+05 max|db|=.2986D+03 
Try =  0 F= -.2869D+05 Step=  .0000D+00 Slope= -.3141D+03 
Try =  1 F= -.2872D+05 Step=  .1000D+00 Slope= -.3415D+03 
Try =  2 F= -.2876D+05 Step=  .2000D+00 Slope= -.3742D+03 
Try =  3 F= -.2884D+05 Step=  .4000D+00 Slope= -.4637D+03 
Try =  4 F= -.2683D+05 Step=  .8000D+00 Slope=  .1341D+05 
Try =  5 F= -.2886D+05 Step=  .4312D+00 Slope= -.4818D+03 
Try =  6 F= -.2887D+05 Step=  .4521D+00 Slope= -.4948D+03 
Try =  7 F= -.2888D+05 Step=  .4685D+00 Slope= -.5055D+03 
Try =  8 F= -.2888D+05 Step=  .4820D+00 Slope= -.5147D+03 
Try =  9 F= -.2889D+05 Step=  .4937D+00 Slope= -.5230D+03 
Try = 10 F= -.2889D+05 Step=  .5039D+00 Slope= -.5304D+03 
Try = 11 F= -.2890D+05 Step=  .5131D+00 Slope= -.5373D+03 
Try = 12 F= -.2890D+05 Step=  .5214D+00 Slope= -.5437D+03 
Try = 13 F= -.2891D+05 Step=  .5290D+00 Slope= -.5497D+03 
Try = 14 F= -.2891D+05 Step=  .5360D+00 Slope= -.5553D+03 
Try = 15 F= -.2892D+05 Step=  .5425D+00 Slope= -.5607D+03 
Try = 16 F= -.2892D+05 Step=  .5486D+00 Slope= -.5658D+03 
Try = 17 F= -.2892D+05 Step=  .5542D+00 Slope= -.5706D+03 
Try = 18 F= -.2892D+05 Step=  .5596D+00 Slope= -.5752D+03 
Try = 19 F= -.2893D+05 Step=  .5646D+00 Slope=  .2016D+03 
Try = 20 F= -.2893D+05 Step=  .5642D+00 Slope= -.5793D+03 
1st derivs.     .74139D+01   .55601D+03   .16343D+03 
Parameters:     .99292D+00   .46368D+00   .82497D+00 
Itr  2 F= -.2893D+05 gtHg= .5796D+03 chg.F=.2365D+03 max|db|=  .1199D+04 
Try =  0 F= -.2893D+05 Step=  .0000D+00 Slope= -.5796D+03 
Try =  1 F= -.2861D+05 Step=  .1000D+00 Slope=  .7339D+04 
Try =  2 F= -.2893D+05 Step=  .8642D-02 Slope=  .1883D+03 
Try =  3 F= -.2893D+05 Step=  .1960D-02 Slope=  .2047D+03 
Try =  4 F= -.2893D+05 Step=  .4751D-03 Slope=  .2083D+03 
Try =  5 F= -.2893D+05 Step=  .1647D-03 Slope=  .2090D+03 
Try =  6 F= -.2893D+05 Step=  .1372D-03 Slope=  .1043D+03 
Try =  7 F= -.2893D+05 Step=  .1274D-03 Slope=  .2392D+02 
1st derivs.    -.12633D+02  -.72807D+02   .16345D+03 
Parameters:     .99292D+00   .46356D+00   .82494D+00 
Itr  3 F= -.2893D+05 gtHg=  .1794D+03 chg.F=  .5362D-01 max|db|=  .1981D+03 
1st derivs.    -.12633D+02  -.72807D+02   .16345D+03 
Parameters:     .99292D+00   .46356D+00   .82494D+00 
Itr  1 F= -.2893D+05 gtHg=  .1794D+03 chg.F=  .2893D+05 max|db|=  .1981D+03 
Try =  0 F= -.2893D+05 Step=  .0000D+00 Slope= -.1794D+03 
Try =  1 F= -.2893D+05 Step=  .1274D-03 Slope=  .8810D+01 
1st derivs.     .74150D+01   .38739D+03   .16346D+03 
Parameters:     .99293D+00   .46361D+00   .82482D+00 
Itr  2 F= -.2893D+05 gtHg=  .4008D+03 chg.F=  .1036D-01 max|db|=  .1187D+04 
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Try =  0 F= -.2893D+05 Step=  .0000D+00 Slope= -.1637D+03 
Try =  1 F= -.2893D+05 Step=  .1274D-03 Slope= -.1637D+03 
Try =  2 F= -.2893D+05 Step=  .2547D-03 Slope= -.1637D+03 
Try =  3 F= -.2893D+05 Step=  .5095D-03 Slope= -.1638D+03 
Try =  4 F= -.2893D+05 Step=  .1019D-02 Slope= -.1638D+03 
Try =  5 F= -.2893D+05 Step=  .2038D-02 Slope= -.1639D+03 
Try =  6 F= -.2893D+05 Step=  .4076D-02 Slope= -.1640D+03 
Try =  7 F= -.2893D+05 Step=  .8151D-02 Slope= -.1643D+03 
Try =  8 F= -.2893D+05 Step=  .1630D-01 Slope= -.1649D+03 
Try =  9 F= -.2893D+05 Step=  .3261D-01 Slope= -.1673D+03 
Try = 10 F= -.2894D+05 Step=  .6521D-01 Slope= -.1698D+03 
Try = 11 F= -.2895D+05 Step=  .1304D+00 Slope= -.1769D+03 
Try = 12 F= -.2897D+05 Step=  .2608D+00 Slope= -.1933D+03 
Try = 13 F= -.2903D+05 Step=  .5217D+00 Slope= -.2384D+03 
Try = 14 F= -.2849D+05 Step=  .1043D+01 Slope=  .2398D+05 
Try = 15 F= -.2912D+05 Step=  .8520D+00 Slope= -.3463D+03 
Try = 16 F= -.2916D+05 Step=  .9545D+00 Slope= -.4082D+03 
Try = 17 F= -.2915D+05 Step=  .9673D+00 Slope=  .2080D+04 
Try = 18 F= -.2916D+05 Step=  .9556D+00 Slope=  .8732D+03 
Try = 19 F= -.2916D+05 Step=  .9553D+00 Slope= -.4088D+03 
Try = 20 F= -.2916D+05 Step=  .9554D+00 Slope= -.4089D+03 
1st derivs.    -.76681D+01   .13325D+03   .40881D+03 
Parameters:     .10480D+01   .46122D+00  -.12901D+00 
Itr  3 F= -.2916D+05 gtHg=  .1001D+04 chg.F=  .2351D+03 max|db|=  .1896D+05 
Try =  0 F= -.2916D+05 Step=  .0000D+00 Slope= -.4089D+03 
Try =  1 F= -.2916D+05 Step=  .1274D-03 Slope=  .8737D+03 
Try =  2 F= -.2916D+05 Step=  .3105D-04 Slope= -.4084D+03 
Try =  3 F= -.2916D+05 Step=  .4441D-04 Slope= -.2954D+03 
Try =  4 F= -.2916D+05 Step=  .5146D-04 Slope=  .5476D+02 
Try =  5 F= -.2916D+05 Step=  .5127D-04 Slope=  .4534D+02 
Try =  6 F= -.2916D+05 Step=  .5112D-04 Slope=  .3764D+02 
1st derivs.    -.76674D+01  -.40340D+03  -.37166D+02 
Parameters:     .10480D+01   .46122D+00  -.12906D+00 
Line search does not improve fn. Exit iterations. Status=3 
Abnormal exit from iterations. If current results are shown 
check convergence values shown below. This may not be a 
solution value (especially if initial iterations stopped). 
Gradient value: Tolerance= .1000D-05, current value= .4842D+03 
Function chg. : Tolerance= .0000D+00, current value= .1337D-06 
Parameters chg: Tolerance= .0000D+00, current value= .1462D+04 
Smallest abs. parameter change from start value = .4793D-01 
Function= -.28691160722D+05, at entry, -.29162843696D+05 at exit 
 
R26.4.4 Too Few Iterations 
 
 LIMDEP is generally not able to discern if something is wrong with your estimation problem 
or, of course, if the specification of your model is incorrect.  Note in the preceding example, the 
failure of the iterations is noted with a message about not finding the function optimum (the problem 
was constructed so that the function had no optimum), followed by a suggestion that something 
appears to be wrong.  Another possible iteration failure is diagnosed when what looks like 
convergence occurs more quickly than might be expected.  Thus, if you fit a model that looks ‘too 
good,’ you might get the following message: 
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Itr  2 F=  .3465D+04 gtHg=.2434D-02 chg.F=.6227D-06 max|db|=.8534D+00 
Try =  0 F=  .3465D+04 Step=  .0000D+00 Slope= -.2432D-02 
Try =  1 F=  .3465D+04 Step=  .1973D-04 Slope=  .6015D-01 
Try =  2 F=  .3465D+04 Step=  .7670D-06 Slope=  .1673D-09 
1st derivs.     .51135D-06  -.43989D-05   .52469D-05  -.82815D-06 
Parameters:    -.26491D-02   .50561D-02  -.15405D-01   .26967D-02 
Itr  3 F=  .3465D+04 gtHg=.6916D-05 chg.F=.9345D-09 max|db|=.8725D-03 
Try =  0 F=  .3465D+04 Step=  .0000D+00 Slope= -.6916D-05 
Try =  1 F=  .3465D+04 Step=  .7670D-06 Slope=  .2358D-02 
Try =  2 F=  .3465D+04 Step=  .2243D-08 Slope=  .7125D-13 
1st derivs.     .33793D-07   .79251D-07   .62163D-07  -.89005D-08 
Parameters:    -.26491D-02   .50561D-02  -.15405D-01   .26967D-02 
Itr  4 F=  .3465D+04 gtHg=.9579D-07 chg.F=.1501D-10 max|db|=.1774D-04 
                        * Converged 
Note: DFP and BFGS usually take more than 4 or 5 iterations to converge. 
If this problem was not structured for quick convergence, you might want 
to examine results closely. If convergence is too early, tighten convergence. 
Normal exit from iterations. Exit status=0. 
 
This is not necessarily an error message, but it might indicate a problem.  For example, if you restart 
an estimation problem using as starting values the values which maximize the function already, then 
convergence will come very quickly.  The particular model which generated the message above was 
extremely well behaved, and it did converge to a true optimum in only three iterations.  But, that is 
relatively unusual, so when you see this message, you should check to insure that the convergence 
was to a true optimum of your function. 
 
R26.4.5 General Failure of Indeterminate Cause 
 
 Finally, another possibility is that apparent convergence of the estimator isn’t convergence at 
all.  The following message was produced by another deliberately badly structured estimation 
problem.  For the particular function we chose, the first derivatives are always identically zero at the 
starting values, but that is not a maximum of the function.  Because zero derivatives is a convergence 
rule, it looks to the optimizer as if an optimum has been found in the first iteration.  But, that is 
definitely not the case.  The signature of this failure is the last line of the output, which states that the 
estimated covariance matrix of the estimates is singular.  In this situation, the ‘estimates’ are 
probably nonsense values. 
 
NOTE: Convergence in initial iterations is rarely 
at a true function optimum.  Check all results. 
check convergence values shown below. This may not be a 
solution value (especially if initial iterations stopped). 
Gradient value: Tolerance= .1000D-05, current value= .0000D+00 
Function chg. : Tolerance= .0000D+00, current value= .3059D+05 
Parameters chg: Tolerance= .0000D+00, current value= .0000D+00 
Smallest abs. parameter change from start value = .0000D+00 
Note:  At least one parameter did not leave start value. 
Normal exit from iterations. Exit status=0. 
Models - estimated variance matrix of estimates is singular 
Current estimated covariance matrix for slopes is singular. 
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R26.4.6 Interrupting the Iterations 
 
 You may find it necessary to stop the iterations.  For example, it may become obvious that 
something is wrong, and this estimation process is not going to work.  When this occurs, especially if 
you are using a very large data set, you can stop the iterations by clicking the red Stop button on the 
LIMDEP toolbar, shown in Figure R26.2.   
 

 
Figure R26.2  Stop Button on the LIMDEP Toolbar 

 
The Stop button operates as a yes/no query.  During iterations or other operations that iterate by 
looping over the data, the Stop button on the toolbar will turn red.  If you click this button during 
computation, LIMDEP will interrupt the computations and ask you if you would like to end the 
iterations at this point, as shown in Figure R26.3.  The query appears after a full pass through the 
data set is complete.  If you have a very large data set, there may be a noticeable lag between when 
you click the Stop button and the dialog box appears. 
 

 
Figure R26.3  Query for Exit from Iterations 

 
If you elect to stop the iterations and enough iterations have been carried out that some progress has 
been made toward a solution, you will be offered a display of the results as they have been obtained 
up to that point.  This is shown in Figure R26.4 
 

 
Figure R26.4  Exit from Iterations to Current Results 

 
The toolbar also contains a Pause button to the right of the Stop button.  You can click this to 
interrupt an ongoing procedure, then click it again to continue. 
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R26.4.7 Warnings During the Iterations 
 
 Certain warnings do occur during optimization, such as for a correlation that strays out of the 
[-1.1] interval.  These warnings only indicate that a trial value of the parameter was not a valid 
estimate.  LIMDEP will then back up and try a new value, and the iterations will continue. So, you 
will often see these diagnostics interspersed with other output. 
 
NOTE:  These warnings should be ignored if the estimator subsequently reaches a normal convergence. 
If convergence is not subsequently reached, the warnings may help you diagnose the problem. 
 

R26.5 Exit Codes 
 

 All estimation procedures produce a scalar named exitcode. The exit status from any model 
routine will be shown in your trace file, trace.lim, or in your output file if you were using one.  The 
exit codes that are reported are 
 

0. Normal exit, everything OK.  The convergence rule that was satisfied will be listed. 
1. Maximum iterations exceeded. 
2. Failure, singular Hessian. 
3. Failure, unable to maximize function.  
4. Unable to compute function value.  (This will be rare.  Bad starting values will cause this.) 
5. General failure at setup time, not during estimation.  Another diagnostic will appear in 

the trace file to explain this. (Almost always an error in your command or data.) 
 

The exitcode is accessible as any other scalar, and can be used for any desired purpose.  For example, 
if you have written a program that fits models in a loop, you may want to skip certain computations 
if exitcode is not 0, since in this case, a certain value that you might want to retrieve may be 
unavailable.  There is a mixture of termination conditions in exitcode, both for model setup and for 
the optimization, itself.  A second indicator is produced by the nonlinear optimization, named 
opt_exit, which gives only the information 0 - 4 above, and only during optimization.  This code is a 
somewhat better indicator of the actual optimization process. 
 

R26.6 Iteration Controls 
 
 You can control several aspects of the iterations with options that can appear in your 
commands. 
 

R26.6.1 Maximum Iterations 
 
 To control the maximum number of iterations taken by the iterative routines use 
 
   ; Maxit = maximum 
 
The defaults are 50 for the algorithms which use a line search (DFP, BFGS, and BHHH) and 25 for 
Newton’s method. 
 

NOTE:  The special case, ; Maxit = 0 is used to carry out LM tests based on the starting values that 
you provide.  ; Maxit = 0 is a specific instruction to do this test.  See Chapter R13 for details. 
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TIP:  If your estimator goes through many iterations, then fails with a singular Hessian after 
apparently converging, reestimate the model, and set Maxit to some value lower than the number 
reached on the previous try.  You may learn something useful about the model this way. 
 
R26.6.2 Algorithms 
 
 All models have a default algorithm.  We have chosen the one most likely to work in most 
cases.  (See the discussion below.)  In most cases, including LIMDEP’s minimization package, an 
alternative algorithm is requested in a command with the specification 
 
   ; Alg = algorithm 
 
The chapters to follow which describe the models in detail list the defaults and available options for 
LIMDEP’s nonlinear models.  Also shown is the method used to compute the estimate of the 
covariance matrix of the coefficients, which is sometimes part of the algorithm.  The choices are 
 
 DFP  Davidon, Fletcher, Powell, 
 BFGS  Broyden, Fletcher, Goldfarb, Shanno, 
 NEWTON Newton’s Method, 
 BHHH  Berndt, Hall, Hall, Hausman, 
 SteDes  Steepest Descent. 
 
Technical material on these methods appears below.  You may choose an algorithm by its first two 
letters. 
 It should be noted, unless the convergence criteria are made fairly tight, the different 
algorithms will often give slightly different answers (i.e., at the fifth or sixth significant digit).  
Which is likely to be most successful is going to depend on the data, and it may pay to try more than 
one.  The defaults chosen have been found to be the most reliable.  Generally, BFGS is most likely to 
be successful when no particular choice is obvious.  However, it can be rather time consuming.  In a 
very large data set, use Newton or BHHH if possible, BFGS or DFP if they fail to find the 
maximum.  Newton’s method is best if the problem is globally concave, but this is somewhat 
unusual.  Our experience has been that using Newton’s method when the BHHH estimator is used to 
estimate the covariance matrix often fails to converge. For example, ; Alg = BHHH will probably 
not work very well for the bivariate probit model, but might be satisfactory for the logit model.  On 
the other hand, for the logit model, Newton’s method will almost always be the best of the group, as 
the log likelihood for this model is globally concave.  Steepest descent is almost always extremely 
slow to converge and will often fail altogether.  We advise against using it at all. 
 
R26.6.3 Convergence Rules 
 
 Convergence can be based on any of three criteria: 
 

• Gradient:  g′Hg < εg  where g is the current derivative vector and H is the inverse of  the 
current Hessian or, in the case of DFP and BFGS, the most recent estimate of it.  This value 
is reported as ‘Derivative’ in the technical display and gtHg in the iteration output. 

 

• Proportional change in all parameters < εb. 
 

• Proportional change in the function value < εf. 
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The default value of εg is 0.00001 and the other two are set to 0.0.  By default, LIMDEP uses only 
the gradient rule. (This is the standard choice in contemporary software.)  In general, convergence 
will be based on any nonzero value for these three rules. 
 You can change the gradient value and/or activate the other two as described below.  Note in 
particular the gradient criterion.  This is not based on the absolute size of the derivatives, as they are 
dependent on the scale of the data.  Rather, the criterion is based on a scale free quadratic form. As 
such, an iteration may converge at a point at which the derivatives are a bit larger than you might 
have expected.  
 To change the values of these settings for a particular model, use  
 
   ; Tlf =  value  to set the function convergence criterion, 
   ; Tlb =  value  to set the parameter convergence criterion, 
   ; Tlg =  value  to set the gradient convergence criterion. 
 
If you omit the ‘= value,’ 0.0 is assumed.  These apply only to the model command in which they 
appear.  On the next model, they will again be set at the default values. 
 For practical purposes, the gradient rule is generally the best of the three.  The least 
satisfactory will usually be the parameter rule.  Convergence on the function might be useful for a 
particularly difficult problem, but it should be noted that the gradient rule is generally more difficult 
to satisfy.  As such, if you have both Tlf and Tlg turned on, Tlg will often be reached first, and thus, 
will often result in fewer iterations to convergence. 
 
NOTE:  When you do reach convergence on the parameters or the function, you should check the 
derivative rule anyway.  It is possible for g′Hg to be too large, even if convergence on the function 
value seems to have been reached. 
 
R26.7 Quadrature 
 
 Several estimators in LIMDEP use Gaussian quadrature to approximate integrals that cannot 
be evaluated analytically.  We use Hermite quadrature when the limits are -∞ to +∞ and Laguerre 
quadrature when the limits are 0 to ∞.  The computation is  
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for Gauss-Laguerre quadrature and likewise for Gauss-Hermite quadrature in which the weight 
function is  exp(-x2) and the range of integration is (-∞,∞).  The values wi are the ‘weights’ for the 
quadrature and zi are the ‘nodes.’  The approximations differ in accuracy based on the number of 
points used.  The more points are used, the more accurate the approximation, but, at the same time, 
the greater is the amount of time needed to do the computation.  Gaussian quadrature is described in 
detail in Abramovitz and Stegun (1972).  (We do note, the approximations are surprisingly accurate 
even for fairly small numbers of nodes.) 
 At the time you start LIMDEP, the default numbers of points for these quadratures are 20 
and 40 points respectively.  This uses an intermediate value for Hermite quadrature; 68 points are 
provided for Laguerre and 96 for Hermite if you wish to choose a higher setting.  More points 
provide greater accuracy, so all else constant, these choices are optimal.  But, the greater number of 
points also increases the amount of computation time, so you may want to reduce these values.   
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 Any model command may contain 
 
   ; Lpt = number of points for Laguerre quadrature, one of 
    2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 40, 68 
  
   ; Hpt = number of points for Hermite quadrature, one of 
    2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 32, 64, 96 
 
(LIMDEP will choose the closest value it can to the value you specify if your value is not in the list.)  
The model need not actually use these techniques.  Once the number of quadrature points is set by a 
model command, it remains set until another model command changes it. 
 You might find it useful to have access directly to these vectors of weights and abscissas for 
example, to approximate an integral of your own specification.  A MATRIX command is provided 
for this purpose; 
 
 MATRIX  ; [name =] Quad (number of points, L or H) $ 
 
(The ‘name =’ is optional.  MATRIX is discussed further in Chapter R16.) An example is shown in 
Figure R26.5 
 

 
Figure R26.5  MATRIX Function to Retrieve Quadrature Weights 
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R26.8 Multivariate Normal Probabilities 
 

LIMDEP contains a simulator for the multivariate normal CDF.  We use the GHK (Geweke, 
Hajivassiliou, Keane) methodology to approximate the CDF.  (See Greene (2011) for details.)  The 
technique produces quite fast and accurate approximations to the M fold integral 
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where f(...) is the M-variate normal density function for x with mean vector zero and M×M positive 
definite covariance matrix, Ω.  The approximation is obtained by averaging a set of R replications 
obtained by transforming draws produced by a random number generator.  (See Appendix R4A.2 for 
details on the computation.)  The simulation estimator of P is consistent in R.  Further details may be 
found in Greene (2011) and in a symposium in the November, 1994 Review of Economics and 
Statistics and the references cited there.  Usage, including how to set R is discussed below.   M may 
be up to 20, though the accuracy for a given R declines with M.  For any M, the accuracy increases 
with R.  Again, the estimated P is consistent in R.  

We have implemented this procedure in four applications in LIMDEP – CALCULATE, 
CREATE, MATRIX, and a multivariate probit model which extends the bivariate probit model – as 
well as the multinomial probit extension of the logit model available in NLOGIT Version 5. Users of 
this technique should be familiar with the theoretical development, including its limitations, as 
discussed in the received literature. 
 The value of R, the number of replications, is set globally, at the time you start LIMDEP, at 
100.  Authors differ on how large R must be to get good approximations.  The default 100 is a 
compromise.  Some have mentioned 500.  You may change R, but be aware that higher R leads to 
greatly increased amounts of computation; estimators which use this technique are slow.  Two ways 
to set R are with CALC and in the estimation  commands.  First, 
 

CALC   ; Rep(r) $ for example, CALC ; Rep(100) $ 
 

sets R permanently.  The model command which uses the simulator is the multivariate (multiple 
equation) probit model.  The command can include a setting for R, which is then permanent until 
changed later, with 
 

MPROBIT  ; ... ; Pts = r ; ... $ 
 

R26.8.1 Model Based on the Multivariate Normal Distribution 
 

The model which use this technique is the multivariate probit model.  The multivariate probit 
model is a multiequation extension of the probit model; 

 

yim*  =  βm′xim  +  εim 
yim    =  1 if yim* > 0, and 0 otherwise, m  =  1,...,M. 

 

The εim, m = 1,...,M have a multivariate normal distribution with variances 1 and correlations ρml. Each 
individual equation is a standard probit model.  This generalizes the bivariate probit model for up to 20 
equations.  Note the difference between the multivariate probit model and the multinomial probit 
model.  The multivariate probit model defines the outcomes of up to 20 dependent variables.   All of 
them obey their own behavioral equation.  In the multinomial probit model, there is a single dependent 
variable and a single outcome.  This is described in greater detail in the NLOGIT Reference Guide 
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R26.8.2 Tools that Calculate Multivariate Normal Probabilities 
 

For computing multivariate normal probabilities to be used in scalars, variables, or matrix 
results, you can use the following:  

For single computations of the multivariate normal CDF in which  Am = -∞, you may use 
 

CALCULATE ; Result = Mvn(x,w) $ 
 
to obtain a single probability from -∞ to xm, m=1,...,M.  The parameters x and w are a vector and a 
matrix, respectively, obtained using MATRIX or as the result of some estimation procedure, where 
x(.) provides the upper bounds.  If you desire to compute the probability in a rectangle defined by 
finite A(.) at the lower limits and x(.) at the upper limits, use 
 

CALCULATE ; Result = Mvn(x,w,a) $ 
 
If you desire complementary probabilities, that is the probability for the area defined by a lower 
bound of x(.) and upper bounds of +∞, use Mvn(y,w) where y is the negative of x.  You may also 
obtain the multivariate normal density, with the function  
 

CALC   ; Result = Mvd(x,w) $   
 
Further details on calculating multivariate normal probabilities appear in Section R17.6.7. 

You may use  
 
CREATE  ; Prob = Mvn(x,w) $  
 

in which x is a namelist of M variables. Each row (observation) in x is the counterpart to the x in the 
CALCULATE function.  As before, x is M variables and w is the M×M covariance matrix.  Note, 
variables may be repeated in x.  For example, if x1 and x2 are free, but x3 - x6 are all zero, then you 
could use 
 

CREATE       ; zero = 0 $ 
 NAMELIST   ; x = x1,x2,zero,zero,zero $ 

CREATE       ; p = Mvn(x,w) $ 
 
This creates a variable p with each element equal to the M-variate normal CDF evaluated at w and 
the ith observation in x.  The Mvn function may be used as you would any other function in 
CREATE.  The function Mvd(x,w)  returns the column vector of densities instead of the CDF. 

You may use  
 
MATRIX  ; Result = Mvnp(x,w) $  

 
Once again, w is the M×M covariance matrix.  Now, x is an N×M matrix or a namelist of M 
variables.  The result is an N×1 column vector of the normal probabilities.  This operates essentially 
the same as the CREATE function – the differences are that x may be a conformable matrix or a 
namelist and the result of the computation is a matrix, not a variable.  The function 

 
MATRIX  ; Result = Mvnd(x,w) $ 

 
returns the density functions instead of cumulative probabilities. 
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R26.9 Default Values of Program Parameters 
 
 As described above, there are a set of program default settings for optimization parameters.  
These are 
 
 Program Parameter  Default  Command Setting 
 Convergence Rules 
  Parameters  0.0  ; Tlb = value (0.0 to 1.d-8) 
  Function  0.0  ; Tlf = value (0.0 to 1.d-8) 
  Gradient  1.d-6  ; Tlg = value (0.0 to 1.d-8) 
 Quadrature Points 
  Hermite  40  ; Hpt = number (2 to 96) 
  Laguerre  20  ; Lpt  = number (2 to 68) 
 Iterations 
  Iterations  100  ; Maxit = number (0 to 1000) 
  Technical Output 0  ; Output = value (0,1,2,3,4,5) 
 Simulation points  100  ; Pts = value (1 to 2000) 
 Model Output 
  Confidence Level  .95  ; CL = value (0.1 to 0.995) 
  Information Criteria 0  ; IC = value (0 or 1) 
 
You may change any of these in a specific model command.  When you do so, the setting is for that 
model only.  After estimation, the values return to their default setting.  You may change the default 
settings by using 
 
 DEFAULT ; parameter setting(s) as shown in the table above $ 
 
The command may change any or all of the defaults.  These will remain in effect going forward from 
that point until you change them again.  Note, however, these settings are now written into a project 
file, so if you exit then restart LIMDEP, the program defaults will be a their original settings.    
You can obtain a listing of the current default settings with 
 
 DEFAULT $ 
 
The listing will appear as shown below. 
 
Current Settings of Program Defaults for Estimation 
--------------------------------------------------- 
Convergence criteria for optimization program 
            Change in function       .0000000 
            Change in parameters     .0000000 
            Derivative criterion     .0000010 
Maximum iterations                        100 
Technical output during iterations          0 
Information criteria beyond AIC             0 
Hermite quadrature points                  40 
Gauss Laguerre quadrature points           20 
Number of draws for simulations           100 
Confidence level in confidence intervals  95% 
Maximum utility in multinomial choice   100.0 
--------------------------------------------------- 
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R26.10 Starting Values 
 
 When you wish to provide your own starting values for any nonlinear model, you will add 
the specification  
 
   ; Start = list of values 
 
to your model command. If starting values are not provided, the program will usually use least 
squares, or some variant, or perhaps zero.   
 
TIP:  With a few exceptions including the MAXIMIZE/MINIMIZE feature and related commands 
in which you specify your own model, and the bivariate ordered probit model, starting values are 
always optional. 
 
The chapters on the specific models will show exactly what is required if you wish to provide 
starting values.  If you do provide starting values, you must usually give a complete set, including 
any ancillary parameters, such as the disturbance standard deviation, σ, for the tobit model.  For 
example, the ML estimator for the selection model requires starting values for α (probit), β 
(regression), σ, and ρ. Your command might look as follows: 
 
 SELECT  ; Lhs = y ; Rhs = x  
   ; MLE 
   ; Start = alpha, beta, sigma11, -0.321 $  
  
where alpha and beta are matrices (vectors), sigma11 is a scalar, and the value for ρ is given 
explicitly.  In any list, you may give values as particular numbers, in calculator scalars, or in matrices 
or any mixture as long as the right number of values, in the right order, are given in total.  A 
convenient device is the repetition factor for multiple occurrences of the same value, 
 
   K_value  =  value,value,...,value K times. 
 
The repetition value may be a literal number or a scalar.  For example, a general routine for starting 
the iterations for a probit model at [0] would be: 
 
 NAMELIST ;  x  =  ... the list of Rhs variables $ 
 CALC  ;  k  =  Col(x) $ 
 PROBIT ;  Lhs = y ; Rhs = x  
   ; Start = k_0 $ 
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R26.11 Hints for Iterative Estimation 
 
 When you give a model command, chances are good that estimation will proceed smoothly 
and, eventually, your estimates will be reported after some intermediate output which may or may 
not be of interest to you.  But, there are a number of things that can go wrong with a nonlinear 
estimator.  The following lists some of the most common problems and how you can react to them 
when they occur. 
 
Model Development 
 
 The paragraphs below will detail several possible problems.  There are many ways that 
estimation of a nonlinear model can fail, and we cannot anticipate all of them here.  One piece of 
advice that we give more than any other is the following:  If estimation of a model breaks down for 
nonobvious reasons, it is often related to the data.  Back up and try fitting an extremely simple 
version of the same model with perhaps only one or two variables in it.  This is not intended to be a 
specification that would be interesting.  But, starting from a very simple formulation will usually 
allow you to get the estimation process started.  Then, add in variables one or two at a time.  At some 
point, presumably before the initial failure occurred, the estimation will break down, revealing to you 
the variable that is causing the problem. 
 
Scaling Data 
 
 This is often crucial.  If you are having convergence problems, the first place to look is at the 
scaling of your data.  Models such as the ordered probit will often fail to converge if your model 
contains variables of very different magnitudes.  For example, a model which includes dummy 
variables (order 1), as well as income in dollars (order 10,000) and income squared (order 
100,000,000) will almost never be estimable.  All you have to do is divide income by 10,000 before 
squaring, and use scaled income and income squared.  In many cases, this is all that is needed to turn 
an ill behaved problem into a well behaved one. 
 One of the indicators of a scaling problem, aside from the statistics for the variables 
themselves, is badly unbalanced derivatives.  If you suspect this problem, try doing the estimation 
with an output file open.  After exiting from the iterations, inspect the file.  The output will list, for 
each iteration, the values of the parameters and the derivatives.  If you find that one or a few of the 
derivatives are very much larger than the others, say 1,000 compared to 1 or .1, then the variable 
associated with that coefficient needs to be scaled. 
 
Model Size 
 
 LIMDEP makes it very easy to specify very large models with very little effort, once the data 
are read.  If you are estimating one of the ‘messier’ models, such as the bivariate probit model or the 
mover stayer model – these are models with very volatile log likelihoods which are difficult to 
maximize – you may find it useful to begin your analysis with a very small model, even if the 
specification is suspect, just to get started.  Choose a small handful of variables, say two or three at the 
most, and estimate the model.  If you find that it works, start building up the model by adding back the 
variables you think should be in the equation(s).  If the procedure should break down somewhere along 
the way, you will be able to single out problematic variables.  On the other hand, if the procedure 
breaks down at the very first step, you should give some thought to whether your specification is 
correct.  A mismatch between the model and the dependent variable may be the issue. 
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Warnings About Parameter Values 
 
 Many of LIMDEP’s models contain parameters which are restricted to a particular range.  
For example, the correlation coefficient which appears in the sample selection, switching 
regressions, and bivariate probit models must be in the range -1 to 1.  The threshold parameters in 
the ordered probit model must be strictly increasing.  Models which contain such parameters are 
estimated by the BFGS method, with its elaborate line search.  So, from time to time you may get a 
diagnostic that, for example, an estimate of a variance parameter is out of range (negative).  There is 
nothing for you to do, and nothing is wrong.  LIMDEP has simply tried out a value of the parameter 
vector which has an invalid value.  The diagnostic is triggered, and LIMDEP will try a smaller step 
size.  The step size will be reduced until the value is no longer invalid.  (It is certain that the step size 
can be reduced enough to produce a valid value; the value from which the steps began must have 
been valid.) 
 On the other hand, if the parameter values are invalid at the very beginning of the iterations, 
LIMDEP will give up immediately.  Internally, LIMDEP makes sure that starting values are always 
valid.  But, you may supply your own values, and if you send in a bad value, rather than attempting 
to patch up the error, LIMDEP quits and waits for you to respecify the model. 
 
Premature Convergence 
 
 Be suspicious of convergence which occurs when the derivatives are large.  The function 
value may be relatively stable even though the derivatives are not close enough to zero if your model 
is not very well specified and as a consequence, LIMDEP is taking very small steps from one 
iteration to the next.  The values of the derivatives of the function at a ‘true’ convergence are 
typically from 1.d-2 to 1.d-6.  If you have convergence at values in the range of 1.d+2 or so, you may 
want to reestimate the model with the function convergence switch turned off with ; Tlf.  Now, the 
opposite may also occur.  For your data, it may simply be impossible to find a satisfactory point at 
which the derivatives are small.  Rather than let LIMDEP give up, you may want to force 
convergence, which you can also do with ; Tlf, using a relatively large value, say .01.  This takes 
some experimenting.  We should note, your best approach would be to leave the convergence rules 
as the program sets them until problems arise. 
 
Appendix R26A Technical Details on Optimization 
 
 Most of the nonlinear optimization programs in LIMDEP use what are called gradient 
methods to maximize log likelihoods.  The class of gradient methods is defined by the iteration 
 
   bt+1 =  bt  -  λtHtgt 
 
where   bt+1 =  the next value of the estimate, 
   bt     =  the current value of the estimate, 
   λt     =  the stepsize, 
   gt     =  the vector of first derivatives, or gradient, 
   Ht    =  a positive definite matrix. 
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The subscript ‘t’ indicates that the quantity is computed using bt.  The iterative procedure begins 
with a ‘starting value,’ b0.  At each iteration, the gradient and H are computed, a decision is made as 
to what is the best stepsize to take, and the next value of b is computed.  At some point, either 
because of ‘convergence,’ too many iterations, or failure of the procedure (by its own determination) 
to locate the optimal parameter value, the iterative procedure is ended and the results are reported.  
Convergence is deemed to occur when one or more stopping rules are met.  Because of rounding and 
approximation error, the search for the best b must end before the derivatives of the log likelihood 
are exactly zero.  Thus, one or more convergence criteria are defined to determine when the 
estimates are ‘close enough’ to the true maximizers of the log likelihood to quit. 
  During its iterations, LIMDEP is minimizing the negative of the log likelihood.  As such, 
when you see function values in your output during iterations, they will have the opposite sign of the 
log likelihood that appears in your output.  In addition, there are a few cases,  such as the constant -
(N/2)log(2π) terms in log likelihood functions built up from the normal density, in which LIMDEP 
does not bother with invariant constants during its iterations. In these cases, the log likelihood 
function reported to you in your final results may not equal the minimized value of the function that 
was minimized to obtain the estimates. 
  An ‘algorithm’ is defined by the particular choice of λ and H.  LIMDEP offers several, but 
chooses a ‘default’ for itself unless you specifically change the choice.  A ‘line search’ is rather like 
an iteration within an iteration.  The line search consists of a search for the best stepsize for a given 
H and g in a given iteration. 
 LIMDEP generally uses one of two algorithms for solving the nonlinear optimization 
problems.  For globally convex problems, such as, tobit, logit and probit, Newton’s method is a 
natural choice.  For details on the algorithm, see, e.g., Greene (2011).  For the less well behaved 
likelihood functions, a form of the method of Broyden et. al (see Fletcher, 1980) is used.  The basic 
algorithm is also described in Greene (2011).  LIMDEP uses a modification of this method suggested 
by Gruvaeus and Joreskog (1970).  The algorithm uses a line search method developed by the 
aforementioned authors in order to determine a stepsize. This is coupled with the formulation of the 
BFGS algorithm as described, e.g., in Greene (2011). The search procedure begins with several 
steepest descent iterations (using the same line search) in order to improve the starting values.  It 
then continues with the BFGS iterations.  Thus, when you see your intermediate output, you will see 
the parameter search in two parts with what appears to be two consecutive sets of iterations. 
 Alternative algorithms may be chosen for fitting most of LIMDEP’s nonlinear models.  The 
following are the algorithms as defined by LIMDEP.  In a few cases, these differ slightly from the 
conventional usage.  In each case,  H is an estimate of the asymptotic covariance matrix of the 
coefficient estimates, or the inverse of the Hessian.  This may use analytic second derivatives or the 
sum of the outer products of the first derivatives depending on the model.  The gradient in all cases is 
denoted ‘g.’  Where it appears, λ is the step length found by the line search.  The number of the 
iteration is denoted ‘t’. 
 
Newton’s Method:  bt+1 = bt - Htgt. 
 
 Most of the routines that use this method use actual second derivatives, not expectations.  
That is, we do not use the method of scoring.  In a number of cases, however, what we call Newton’s 
method is actually that of Berndt, et. al. without a line search.  These cases are those in which we 
construct our estimate of H from first derivatives instead of the analytic second derivatives, that is, 
Ht  =  Σi gtigti′, where ‘i’ indexes observations. 
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BHHH:  bt+1 = bt - λtHtgt. 
 
 Save for the different method of the line search, what we call the BHHH method 
corresponds to the Berndt, et. al. method.  But, for models such as the probit model, with its globally 
concave log likelihood function, what we call BHHH is actually Newton’s method with a line search.  
(These are the cases in which H is built up from the analytic second derivatives rather than from the 
first derivatives as shown above.)  The line search is that of Gruvaeus and Joreskog rather than that 
of Berndt, et. al. 
 
BFGS and DFP:  bt+1 = bt - λtHtgt. 
 
 Ht is accumulated from an initial identity matrix by the rank two (DFP) or rank three 
(BFGS) update described in Gruvaeus and Joreskog (1970) or Greene (2011).  This is used only 
during the iterations; the asymptotic covariance matrix is recomputed at exit from the iteration.  The 
BFGS method is a refinement on DFP which adds another rank one term (thus making it a rank three 
update).   
 
Steepest Descent:  bt+1 = bt - λtgt.  
 
 The steepest descent method uses only the gradient and a stepsize. 
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R27: Summary for LIMDEP Reference Guide  
 
R27.1 Introduction 
 
 The LIMDEP documentation is divided into two parts.  This part, the Reference Guide, 
contains descriptions of the basic program functions – data entry, file manipulation, etc. – and some 
suggested programs and command sets that are likely to be useful in a variety of modeling settings. 
The second part, the Econometric Modeling Guide, presents descriptions of the specific modeling 
frameworks that are built into the software, such as regression models, duration models, and models 
for binary choice.  A separate NLOGIT Reference Guide is written specifically for users of NLOGIT 
Version 5, a suite of programs for modeling discrete choice.   
 This chapter will provide an overview of all of the functions in LIMDEP.  The descriptions 
will include cross references to the more detailed documentations elsewhere in the manual.  The 
purpose here is to summarize the functionality of the LIMDEP program suite.   
 
R27.2 Essential Program Functions 
 
R27.2.1 Startup  
 
 Start LIMDEP as you would any other program, for example, by selecting the program from 
the Start menu or by double clicking the LIMDEP icon on your desktop. (Other ways to invoke 
LIMDEP are described in Chapter R2.)   
 The session is identified as your ‘project,’ which will consist of, ultimately, your data, and 
the various results that you accumulate. Once you have begun a session, you will want to maintain an 
open editing window (the text editor) in which to enter commands. Select File:New, then 
Text/Command Document to open an editing window. 
 
R27.2.2 Operation 
 
 There are two ways to give instructions to LIMDEP. You may use the menu driven dialog 
boxes (command builders), which are described Chapter R8. However, for most (probably nearly all) 
of the analysis you do with LIMDEP, the command format, with commands submitted from the text 
editor, is likely to be a much more convenient way to proceed. You may submit commands to the 
text editor in a variety of ways. You can use the Insert menu options to insert commands, the full 
path to a specific file, or the contents of a text file.  You may execute commands using the Run 
menu options. Operation details are discussed in Chapter R2.   
 This chapter will briefly discuss the command builders and other menus. But, from this point 
forward, and throughout most of the Econometric Modeling Guide, we will rely almost entirely on 
the command driven mode of operation.   
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R27.3 Reading a Data Set 
 
 For most data sets that are stored in ASCII files, the basic instruction 
 
 IMPORT ; file = … the name of the file $ 
 
will be sufficient to import the data into LIMDEP ready to use.  IMPORT and the READ command 
that can be used for unusual file types are described in Chapter R3. 
 The usual way to read a data file is to import variables into the data editor.  You can use the 
menu option, Project:Import/Variables or you can open the data editor (grid icon on the toolbar) then 
place the mouse cursor in the empty (hatched) data field and click the right mouse button to open the 
data editor menu.  Select Import Variables, then double click the file name to import the variables. 
 Once a data set has been read into your project, the variables that exist in the program will be 
listed in your project window.  In order to view the variable listing, you will generally have to click 
the plus box next to the Variables topic in the Data grouping. 
 There are many other formats and optional specifications in READ that allow you to import 
different data sets into your data area (or into a matrix – See Section R16.5).     
 
R27.4 Transforming Data 
 
 There are five basic commands used for data transformations: 
 
 CREATE  ; variable name = expression $   to create a transformed variable, 
 DELETE  ; list of variables $ to delete variables from the data set, 
 RECODE ; variable ; range of values = new value ... $ to recode a variable, 
 RENAME  ; old name  =  new name $ to change the name of a variable, 
 SORT    ; Lhs = key variable [ ; Rhs = variables to carry ] $ 
 
You will rarely need DELETE, and RENAME, and RECODE should be used fairly infrequently.  
The SORT command is sometimes useful for creating index variables, but you should always 
remember that when you use SORT and you do not carry all variables, then the correspondence of 
variables within observations will be lost.  Your data transformations will be almost exclusively 
carried out using CREATE. 
 CREATE is used in two ways.  When you manipulate existing data, your transformations 
will be of the form 
 
 CREATE  ; new variable = some function of existing variables $ 
 
The function on the right hand side can involve the standard mathematical operators (+, -, *, /, ^) as 
well as several others (! for maximum, = for creating binary variables, etc.).  There are also several 
dozen functions, such as Log, Exp, Abs, Phi (normal CDF), and so on.  The second way you will 
manipulate data with CREATE will be to generate random samples using the random number 
generators.  In this case, your command will typically begin with 
 
 CREATE ; new variable = a column of draws from some specified distribution $ 
 

after which you will manipulate the newly created data in the usual fashion. Data transformations are 
described in Chapter R4. Chapter R5 details a number of other considerations for managing panel data.   
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R27.5 Setting the Sample 
 
 The commands used to define the sample in use at a particular time are: 
 
 NAMELIST defines a name to be synonymous with a list of variables. 
 SAMPLE designates specific observations to be included in a subsample. 
 REJECT excludes certain observations from the sample based on an algebraic rule. 
 INCLUDE includes certain observations from the sample based on an algebraic rule. 
 DRAW  draws a subsample of observations from a sample, with or without  
   replacement. 
 SKIP  automatically bypasses observations that contain missing values. 
 DATES establishes the periodicity of time series data. 
 PERIOD designates specific time series observations to be included in a subsample. 
 
Sample setting in its various forms is described in Chapter R7.   
 Prior to estimation, or during your analysis, you will want a shortcut that will enable you to 
equate a particular name with a group of variables.  The command 
 
 NAMELIST ; name = list of variable names $ 
 
is used for this function.  Namelists have several uses in model estimation, matrix algebra, and in 
programming estimators. 
 The commands 
 
 SAMPLE ; first - last $ 
and PERIOD ; beginning date - ending date $ 
 
are used to designate specific contiguous blocks of observations for inclusion in the ‘current sample’ 
for estimation purposes.  The first is used for cross sections; the latter for time series.  The PERIOD 
command must be preceded by  
 
 DATES ; first date in the data set $ 
 
which establishes the label of the first date in the data set and the type of data, monthly, quarterly, or 
yearly.  The preceding are unconditional.  Two commands 
 
 REJECT ; logical condition $ 
and   INCLUDE ; logical condition $ 
 
are used to delete observations from or add observations to the current sample.  These two 
commands operate on cross section data, and are generally not useful for time series data.  (This is 
because in a time series, they would delete observations in the middle of the series, or add 
observations possibly randomly outside the current sample.  LIMDEP is only equipped to analyze 
contiguous time series data.) 
 Observations in a cross section may be drawn randomly for purposes of bootstrapping or 
related analyses by using the 
 
 DRAW  ; N = number of observations $ 
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to draw without replacement, or 
 
 DRAW  ; N = number of observations ; Replacement $ 
 
to sample with replacement. 
 Finally, since samples often include missing observations, a switch is provided for you to 
instruct the program to bypass observations which include missing values during estimation.  The 
command is  
 
 SKIP 
 
This command should generally be used when your data have missing values.  Though it is likely to 
be rare that you would not want to bypass these, LIMDEP usually does not do this automatically.  
The exception is in the panel data estimators, which generally do manage missing values internally. 
 
R27.6 Multiple Imputation 
 
 Multiple imputation involves an imputation step and an estimation step.  A third step, 
aggregation of the imputation results, takes place simultaneously with the estimation step.  The 
imputation step involves fitting imputation equations with 
 
 IMPUTE ; Lhs = the variable to be imputed 
   ; Rhs = independent variables in the equation 
   ; Type = the type of variable being imputed. 
 
The estimation step takes place within a procedure, as in 
 
 PROCEDURE $ 
  … commands for manipulating data, matrices, sample, etc. 
  Model command ; … ; Imputation = label $ 
  … may be repeated 
 ENDPROCEDURE $ 
 EXECUTE ; N = number of imputations 
   ; Imputation = the list of labels that appear in the procedure $ 
 
A trace of the imputation is requested with ; Report in the EXECUTE command.  Details on 
multiple imputation are given in Chapter R20. 
 
R27.7 Econometric Model Estimation 
 
 The definition of a ‘model’ in LIMDEP consists of the modeling framework, the statement 
of the variables in the model, and what role the variables will play in that model.  All model 
specifications, once again, broadly defined, will be of the same form 
 
 Model name ;  variable specification, such as the name of a dependent variable 
   ;  possibly other variable specifications 
   ;  other information needed to complete the model specification $ 
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The ‘Model name’ designates the modeling framework.  In most cases, this defines a broad class of 
models, such as POISSON which indicates that the command is for one of the twenty or so different 
models for count data, most of which are extensions of the basic Poisson regression model.  Many 
model commands provide only the class of models, and further specification is needed to provide the 
specific model.  The form is 
 
   ; Model = spec  
 
that is used by many model commands to specify a particular variant.  An example is LOGLINEAR 
; Model = Weibull… $  The following define large classes of models that are available for nearly all 
specific model specifications in LIMDEP: 
 

; RPM  random parameters model used throughout LIMDEP (note, ; RPL is a 
  random parameters counterpart – random parameters logit model – that 
  is used only in NLOGIT Version 5.)  This specification may include  

 ‘= list’ for an extension of the model to include measured heterogeneity. 
 

; LCM  latent class model. 
 
 The ‘model variables specification’ generally defines the dependent and independent 
variables in a model.  In almost all cases, the model will include one or more dependent variables, 
denoted a Lhs, or ‘left hand side’ variable in LIMDEP’s command structure.  Independent variables 
usually appear on the Rhs, or right hand side, of a model specification.  The various specifications 
that attend the command are used to specify the basic model and to add certain optional features or 
model variations.  Some of these are extremely general.  For example, nearly every model command 
will contain a ; Lhs = variable(s) specification to identify the dependent variable(s).  In contrast,       
; Cost is used only by the frontier model command to request a cost (as opposed to a production) 
frontier model.  The following lists most of the model specifications used with the model commands, 
in decreasing level of generality.  A few specifications which have only one narrow single use in the 
context of only one model are omitted, and presented with the specific model. 
 
R27.7.1 Variable Specifications in Model Commands 
 
 These essential parts of model commands are described in Chapter R8. 
 

; Lhs = names specifies model dependent variable(s). 
; Rhs  = names specifies model independent variable(s). 
; Rh1  = names first list of variables in a two equation model. 
; Rh2  = names second list of variables in a two equation model. 
; Inst  = names list of instrumental variables. 
; Wts  = name weighting variable, [,Noscale] prevents scaling to sum to sample size. 
; Hfn  = names list of variables for variance in heteroscedasticity model. 
; Eqn = names  use with SURE/3SLS/NLSURE, multivariate probit to specify the   
     variables or equations in a multivariate model. 
; Skip = names list of variables that should be inspected for missing values to be 
   skipped in the current sample. 
; Dfr  = values automatic creation of partially differenced values. Use with REGRESS. 
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NOTE: The variable one is a program created variable that always equals 1.0.  Use one to indicate a 
constant term in a model. 
 
R27.7.2 Controlling Output from Model Commands 
 
 These optional features are described in the following sections: ; Par in Section R15.2          
; Partial Effects in Section R9.4.3, ; OLS in Section R9.2.1, and ; Table = name in Section R9.6. 

 
 TIMER command – reports computation time for estimated models. 

; Par  keeps ancillary parameters such as a correlation in main results vector b. 
; Partial Effects displays marginal effects (same as ; Marginal Effects).  
; OLS  displays least squares starting values when (and if) they are computed. 
; Table = name saves model results to be combined later in output tables. 
; Matrix reports embedded covariate matrix objects with outputs. 
; Quietly does not report model output. 
; Clevel  set significance level for confidence intervals in output 
; Export exports results to .csv file for spreadsheet programs (Section R9.7.2.) 

 
R27.7.3 Robust Asymptotic Covariance Matrices 
 
 See Section R9.4.1 for discussion of  ; Covariance Matrix.  The clustering computation for 
robust covariance matrices is described in Section R10.2. Choice based sampling is described at 
several points; a reasonably detailed discussion appears in Section E27.10. Robust estimation also 
appears in the discussion of several models.  General discussion appears in Sections R10.1 and 
R10.2. 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc. 
; Choice uses choice based sampling (sandwich with weighting) estimated matrix. 
; Cluster = spec computes cluster form of corrected covariance estimator. There are 
  several extensions of this estimator. 
; Robust sandwich estimator or robust VC for TSCS and some discrete choice  
  models. 
; Stratum = spec second, higher level of grouping for robust covariance with complex data 
  sets. 
; Huber correction for cluster estimator of robust covariance matrix. 
; Fpc = spec finite population correction in cluster estimator. 
; HC1  heteroscedasticity consistent covariance matrix type used by REGRESS. 
; HC2  same. 
; HC3  same. 
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R27.7.4 Optimization Controls for Nonlinear Optimization 
 
 These optional features are described in detail in Chapter R26. 
 

; Start = list gives starting values for a nonlinear model. 
; Tlg[ = value] sets convergence value for gradient. 
; Tlf[ = value] sets convergence value for function. 
; Tlb[ = value] sets convergence value for parameters. 
; Tln = value sets convergence value for nonlinear least squares. 
; Alg = name algorithm. 
; Maxit = n maximum iterations. 
; Mxit = n restricts number of tries in line search (internal use only). 
; Output = n technical output during iterations. 
; Lpt = n Laguerre quadrature, number of points to use. 
; Hpt = n Hermite quadrature, number of points to use. 
; Set  keeps current setting of optimization parameters as permanent. 
; Nowarn no warnings reported in technical iteration output. 
 

R27.7.5 Setup for Simulation Based Estimators 
 

; Halton use with RPM and NLOGIT 5 RPL model for Halton sequences. 
; Antithetical uses antithetical pairs of random draws in simulations. 
; Pts = n number of replications to use in simulations. 

 

R27.7.6 Execution of Procedures for Model Estimation 
 

 EXECUTE  
 ; optional specifications $ 
 ; Bootstrap = name bootstrap estimation of covariance matrix for estimator. 
 ; Jackknife = name jackknife estimation of covariance matrix for estimator. 
 ; Silent       estimates without reporting results. 
 

R27.7.7 Predictions and Residuals 
 
 Fitted values (predictions) and residuals are described in Chapter R12.   
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
; Res = name keeps residuals as a new (or replacement) variable. 
; Prob = name saves probabilities as a new (or replacement) variable. 
; Fill  fills missing values (outside estimating sample) for fitted values. 

 

R27.7.8 Model Setup for Certain Models 
 

 Two step estimation is described in Chapter R18 and in numerous examples in the 
Econometric Modeling Guide (on censored data). The Harvey model is used in several model 
frameworks, and is described in the specific chapter in the Econometric Modeling Guide.  The           
; Model = type specification modifies the command to request a particular form within the model 
class specified.  
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 Specific forms of this specification appear in the respective chapters in the Econometric 
Modeling Guide. 
 

; Model = name specifies a particular form of a general model class, SURVIVAL, 
 LOGLINEAR, POISSON, TSCS. 

; 2step = name two step estimation used by PROBIT, REGRESS, TOBIT, LOGIT, 
 POISSON. 

; Het  Harvey style model in TOBIT, PROBIT, LOGIT, ORDERED, 
 POISSON, SURVIVAL. 

 ; Hfn = list list of variables for heteroscedastic function. 
 ; Hfu = list same, FRONTIER. 
 ; Hfv = list same, FRONTIER. 
 ; Hf1 = list same, BIVARIATE PROBIT. 
 ; Hf2 = list same, BIVARIATE PROBIT. 
 ; Hfe = list same, random effects linear models. 
 
R27.7.9 Setup for Panel Data Models 
 
 LIMDEP contains an extremely large menu of panel data estimators.  The set of controls 
listed below is used primarily with the nonlinear estimators for panel data.  The data arrangement is 
described in Chapters R5 and in R22.  Chapter R5 is used for ‘one way’ panels, in which the model 
has only a group specific effect.  Models may also have a two way structure, in which there is a time 
specific effect.  Time effects are described in Section R23.2.2.  The controls listed below are 
discussed in numerous sections below, and summarized with the estimators in Chapters R23-R25. 
 
Data Specification for Panel Data 
 

; Pds = spec specifies panel data, fixed number of periods or number given by variable. 
; Time = spec specifies time for two way fixed effects model for panel. 
; Periods = t time specification for panel estimators. 
; Str = name specifies a stratification variable for DSTAT, REGRESS, SURVIVAL. 

 
Panel Data Specifications in Nonlinear Modeling Frameworks 
 

; FEM  fixed effects model. 
; Fixed  fixed effects model – used in a few cases to avoid ambiguity. 
; REM  random effects model. 
; Random  random effects model – used in a few cases to avoid ambiguity. 
; AR1  use with NLOGIT 5 RPL model, and all RPM, autocorrelation models. 
; Cor   use with NLOGIT 5 RPL model and all RPM for correlated random 

 parameters. 
; Cprob = name saves conditional probabilities for panel models and NLOGIT. 
; Group = name use with latent class models, keeps predicted group. 
; Fcn = setup use in setup for RPM panel model and in NLOGIT 5 RPL model. 
; Dpd  dynamic panel data models. 
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R27.8 Post Estimation 
 
 Post estimation analysis includes hypothesis testing, estimation and analysis of partial 
effects, model simulation, and decompositions. 
 
R27.8.1 Hypothesis Tests and Restrictions 
 
 These features are described in Chapter R13. 
 

; CML: spec constrained maximum likelihood. 
; CLS: spec constrained least squares.  
; Test: spec Wald test of linear restrictions. 
; Rst = list specifies equality and fixed value restrictions. 
; Maxit = 0 use with ; Start = list, sets up a Lagrange multiplier test. 
; Wald: spec Wald test of linear restrictions – same as ; Test: spec. 

 
R27.8.2 Partial Effects 
 
 After a model is estimated, 
 
 PARTIAL EFFECTS ; Effects: variable $ 
 
Produces the average partial effect for the variable named.  Additional scenarios allow analysis of 
the behavior of the partial effects.  Use any or all of 
 
   ; Effects: variable  |  variable = discrete set of values 
    & variable = lower (step) upper 
    @ variable = values for sample partitioning  
 
Plots of partial effects are requested with  
 

 ; Plot or ; Plot(ci) for confidence limits. 
 
R27.8.3 Oaxaca Decompositions 
 
 The model is fit to a split sample with 
 
 Model   ; For [variable = *, value, value] ; … the rest of the model $ 
Then, 
 DECOMPOSE $ 
 
There are no options for this command. 
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R27.9 The Command Builders 
 
 An alternative method of submitting commands is to use the interactive dialog boxes which 
for reasons that will be evident shortly, we call the command builders.  (This feature is described in 
detail in Chapter R8.)  Command builders for model commands are produced by selecting Model in 
the main menu.  The Model menu, shown in Figure R27.1, offers  a number of groups of model 
frameworks.  You may then select one of the groupings of models shown, to open a subsidiary menu 
of specific models.   An example for the binary choice models is shown in Figure R27.1.  You may 
then click a model name to open the command builder dialog box for that specific command.  An 
example for the PROBIT command is shown in Figure R27.2. 
 

 
                 Figure R27.1  Selecting the Command Builder from the Model Menu 
 
The Main tab (page) in the command builder dialog box requests the variables part of the commands.  
A few of the optional features will usually appear here as well, including, for example, a weighting 
variable.  Other optional specifications are provided on the other tabs (pages) of the command 
builder window.  As can be seen in Figure R27.2, the probit model command builder has two 
additional pages.  Note, you must provide the essential variable parts of a command on the Main 
page before you may enter the Options page.  The command builder will insist on this. 
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NOTE:  The query (?) button at the lower left of the command builder dialog box is a link to a 
context sensitive Help file that contains a large amount of information about the command. 
        

 
Figure R27.2  Main Page for Command Builder (PROBIT) 

 
 Once you have selected the model specification in the command builder window, click the 
Run button to submit the command to LIMDEP for processing.  This produces two results:  First, the 
command is carried out, and the results appear in the output window, as would result in general when 
a model command is issued.  Second, as its name implies, the command builder ‘builds’ the model 
command, and places a copy of it in the output window with the results.  (See Figure R27.3.) 
 The first line of text above the output is the command generated by this selection in the 
window. You can copy these commands from the output window and paste them into the editing 
window, as we have done in our example in Figure R27.4.  You might find this useful if you wish to 
modify the model and reuse the command.  The editor will usually be more convenient.  Note, as 
well, that the command interpreter will ignore the leading ‘-->’ so there is no absolute need to edit 
these characters out of the editing window. 
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Figure R27.3  Output Window 

 

 
Figure R27.4  Detail from the Editing Window 

 
NOTE:  The command builders are not complete.  Some options and model forms must be specified 
with commands formed in the text editors. The command builders are intended generally for 
development of the more basic forms of the models and for relatively uncomplicated models.  Not all 
optional features in all models are present in the command builder.  Moreover, a few of the model 
frameworks are not contained in the command builder menu.  We anticipate that the command builders 
will be used by those who are becoming accustomed to using LIMDEP.  After a relatively short 
introductory period, you will probably find the text editor more convenient than the command builders. 
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R27.10 Econometric Data Structures and Modeling Tools 
 

 The Econometric Modeling Guide describes the econometric modeling frameworks that are 
specifically built into LIMDEP.  The following overviews these frameworks and describes the 
essential commands that relate to them.  Since each of these provides many options and variants, 
only the essential features and basic command structures are listed. Before listing the modeling 
frameworks, we note in this section the data structures that LIMDEP is designed to analyze. 
 

R27.10.1 Cross Section Data 
 

 Most of the models and techniques that LIMDEP contains are best suited for cross section 
data.  The distinguishing feature of such a data set is independence of the observations.  The data 
will consist of a group of ‘exchangeable’ data points – that is, the order of the observations in the 
sample has no significance.  Thus, regression, nonlinear modeling, optimization, etc., are typically 
based on sums of independent observations. 
 

R27.10.2 Panel Data 
 

 LIMDEP contains the widest array of estimators for panel data sets available in any major 
package.  (A summary of the panel data models in LIMDEP appears in Chapters R22-R25.)  The 
panel of data consists of n groups of Ti observations.  With only the exception of the TSCS model 
framework, whose structure makes a balanced panel necessary, panels in LIMDEP may always be 
unbalanced – no estimator requires that group sizes be equal.  The range of panel data models 
supported by LIMDEP includes models for discrete choice, censored and truncated data, count data, 
limited range dependent variables, survival models and various models for multinomial and ordered 
discrete outcomes. 

The panel data models supported by the program can be described mathematically as 
follows:  The ‘model’ is defined by a probability model for the observed outcome, 
 
 P(yit) = g(βi, xit, εit) where: 
 
 P(.) = the probability density function of the observed random variable, yit. 
 
 i = 1,...,N denotes the ith group or individual.  The number of groups is sometimes 

unlimited, but in many cases is limited.  When it is, the upper limit is 50,000. 
 
 t = 1,...,Ti denotes the tth period, ranging from one to a person or group specific Ti. 

With only one exception that is dictated by the structure of the TSCS model 
LIMDEP always allows Ti to vary across groups.  That is, panels may always be 
unbalanced. 

 
 yit = the observed dependent variable. 
 
 xit = is used to denote an observed vector of independent variables.  This may include  

variables which vary across both groups and periods, and, in some applications, 
may also involve variables which vary across groups but are constant across 
periods, such as group specific dummy variables. 
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 βi = the parameter vector for the ith individual.  This may vary completely across  
individuals, as in the random coefficients models, or it may have a fixed component 
and a subvector which varies across groups, as in the usual fixed effects model.  It 
may also be constant across groups and periods, as in the random effects model. 

 
 εit = the stochastic component of the model.  The symbol is used generically to indicate  

the stochastic nature of the model, not necessarily a ‘disturbance.’ 
 
 g = the density of the observed random variable conditioned on the arguments.  
 
 LIMDEP supports the following general model forms for panel data:  
 
Fixed Effects:  g(βi, xit, εit)  =  g(β′xit  +  αi, εit) 

 
These models contain dummy variables for specific groups.  Techniques that are unique to 

LIMDEP allow tens of thousands of dummy variable coefficients to be estimated in models that were 
previously assumed to be intractable for this approach.  Roughly 50 different models, nearly all of 
them nonlinear, include a fixed effects form. 
 
Random Effects:  g(βi, xit, εit)  =  g(β′xit  , εit + ui) 

 
The econometric interpretation of this variant treats the ‘effect’ as an additive or 

multiplicative random, group specific disturbance in a model.  (Many statistical treatments broaden 
the term to mean what we label ‘random parameters’ in the next paragraph.) 
 
Random Parameters:  g(βi, xit, εit), f(βi) is defined as part of the model. 

 
Most of LIMDEP’s models can be estimated in a random parameters format.  Broadly, this 

approach bridges the Bayesian approach to estimation and the classical fixed parameters approach.  
Further details on this model class appear below. 
 
Latent Class Models:  g(βi, xit, εit) =  Eclasses [g((βclass′xit  , εit) | class] 
 
In a latent class formulation, the continuous distribution of the heterogeneity is approximated by 
using a finite number of ‘points of support.’  The distribution is approximated by estimating the 
location of the support points and the mass (probability) in each interval.  In implementation, it is 
convenient and useful to interpret this discrete approximation as producing a sorting of individuals 
(by heterogeneity) into J classes, j=1,...,J.   
 
Table R27.1 lists the panel data estimators contained in this version of LIMDEP. 
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Model Class Fixed Effects Random Effects Random Parameters c Latent Class 
Linear Regression a,d • •  • • 
MIMICb  • •  

Binary Choice 
Probit a • •  • • 
Logit a • •  • • 
Complementary log log a • •  • • 
Gompertz a • •  • • 
Bivariate Probit b  •     •      
Biv. Probit Selection b • •     •   
Partial Observability b  •     •      

Multinomial Choice 
Multinomial Logit e  •  • • 
Multinomial Probit b  •    
Ordered Probability/All a • •  • • 

Count Data 
Poisson Regression a • •  • • 
Negative Binomial a • •  • • 
Poisson/NegBin ZIP b • •  • • 

Loglinear Models 
Exponential b • •  • • 
Gamma b • •  • • 
Weibull b • •  • • 
Inverse Gaussian b • •  • • 
Power b • •  • • 
Binomial b • •  • • 
Exponential regression b • •  • • 
Geometric b • •  • • 

Limited Dependent Variable 
Tobit a • •  • • 
Truncated Regression b • •  • • 
Grouped Data b • •  • • 
Sample Selection b • •  •  

Survival and Frontier Models 
Weibull b • •  • • 
Exponential b • •  • • 
Loglogistic b • •  • • 
Lognormal b • •  • • 
Stochastic Frontier a • •  • • 

Table R27.1  Model Formulations with Panel Data Estimators 
 

a  The random effects model can be estimated by standard REM techniques (GLS, quadrature) or by 
   the simulation method with a random parameters formulation;  
b  The random effects model can only be estimated by the simulated random parameters approach. 
c   Any random parameters model produces a random effects model by a random constant term.   
d  Linear Regression:  Fixed effects fit by maximum likelihood and least squares, random effects fit 
   by GLS and maximum simulated likelihood. 
e  Multinomial logit with random effects is fit as a random parameters logit model by NLOGIT Version 5. 
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R27.10.3 Fixed Effects Models 
 
 The fixed effects model is 

   zit   =  αidit  +  β′xit, i = 1,...,N, t = 1,...,Ti, 

   p(yit) =  g(zit, θ). 
 
where αi is the coefficient on a binary variable, dit, which indicates membership in the ith group.  
The panel is assumed to consist of N groups with Ti observations in the ith group.  The panel need 
not be balanced; Ti may vary across groups.  Nonlinear models of this form are estimated in two 
ways. The conditional estimator is obtained by using the conditional joint distribution, 
f(yi1,yi2,...,yiT|Σtyit).  See, for example Griliches, Hall, and Hausman (1984) who develop this for a 
Poisson regression.  The resulting density is a function of β alone, which is then estimated by 
(conditional) maximum likelihood.  This estimator is available for the binary logit, Poisson, and 
negative binomial models.  Chapters R22 and R23 provide extensive details.  Most models do not 
reduce to a useable closed form through this conditioning, so that the conditional estimator is 
unavailable.  The unconditional estimator is obtained by a direct maximization of the full log 
likelihood function and estimating all parameters including the group specific constants.   
 
The Incidental Parameters Problem 
 
 Full estimation of the fixed effects model in this fashion generally encounters the ‘incidental 
parameters’ problem.  The estimators of the fixed effects coefficients are inconsistent in a fixed 
effects model, not because they estimate the wrong parameters, but because the variances of the 
estimators of αi are of order 1/Ti with Ti not assumed to be increasing, not 1/N, where N is.  Thus, the 
properties of the slope estimator (and the estimator of θ in the negative binomial model) depend on 
an inconsistent estimator.  The mean of the slope estimator converges to a function that deviates 
from β as a function of the extent to which the estimator of αi deviates from αi.  Let ai be the MLE of 
αi and b be the estimator of β. The usual results for the MLE in a multiparameter situation would 
produce consistency from the fact that b = b(a1, a2, ...) and 
 
 plimN→∞ b - β  =  a function of, among other results, plimN→∞ ai - αi, i = 1,...,N. 
 
In the usual case, all terms (including the ‘other results’) would converge to zero.  In this case, that 
does not hold, though the extent to which the small sample (Ti) affects b is unknown.  Certainly if 
your panel contains very small group sizes, say Ti less than five or so, then this estimator is shaky.  If 
you have fairly large group sizes, say on the order of 30 or more, then you are in the range of sample 
sizes that analysts often rely upon to assert other asymptotic results.  Users are urged to consider this 
issue when using the unconditional fixed estimators. 
 Surprisingly, the incidental parameters problem is not present in the Poisson model.  The 
reason for this intriguing result is that in the Poisson model, the first order conditions for estimation 
of the slopes are actually free of the fixed effects – see Winkelmann (2000) for a proof.  This effect 
is illustrated in the application in Chapter E44.  The conditional and unconditional estimators are 
identical.  This is not the case for the negative binomial or binary logit models, however.  It is for a 
few other estimators, such as the exponential regression. 
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 LIMDEP’s unconditional estimator can also produce a two way fixed effects model, 
 
   zit  =  αi  + δt +  β′xit. 
 
There will now be MaxTi-1 additional coefficients in the model.  You can request this estimator by 
adding 
   ; Time = Ti 
 
where the variable Ti indicates, for each observation the period in which the observation occurred.  
This variable must take the values 1,2,...,MaxTi.  That is, it must be coded with ‘t,’ the index number 
of the period.  A date will not work – it will be flagged as identifying too many coefficients.  Do note 
that observations may be made at different periods in the different groups.  For example, if you have 
a panel with three observations in the first group and seven in the second, the first three observations 
could have been made at t = 2, t = 4, and t = 7.  The routine assumes that MaxTi is equal to the 
largest group size in the model. (That way, it is assured that there are no holes in the sequence of 
observations.)  Thus, the largest group in the sample must have this variable coded with the complete 
set of integers, 1,2,...,Tmax. 
 
NOTE:  If you have a balanced panel with ; Pds = T where T is a fixed value, then you can specify 
the time effects with ; Time = one as there can be no variation in the coding of the period in a 
balanced panel. 
 
NOTE:  Our experience has been that the time effects extension produces considerable instability in 
the negative binomial, though it works nicely in the Poisson model. 
 
 The fixed effects model with time effects is estimated by actually creating the time specific 
dummy variables.  You will see a complete set of time effects in the output.  As such, however, if 
you have a large group size in your panel, this extension may create an extremely large model. 
 The unconditional log likelihood is maximized by using Newton’s method.  A full 
discussion of the method is given in Chapter R23. 
  
R27.10.4 Random Effects and Multilevel Random Effects Models 
 
 The fixed effects model is 

   zit   =  σuui +  β′xit, i = 1,...,N, t = 1,...,Ti, 

   p(yit) =  g(zit, θ) 
 
where the common effect ui has a distribution with mean zero and variance one – the scale of the 
random variable is accommodated by the unknown parameter σu.  The distinction between fixed 
effects (FE) and random effects (RE) models is that while in the fixed effects case, dit may be 
correlated with xit, in the random effects case, ui is not correlated with xit. (Ultimately, what this 
means is that ui is uncorrelated with the group mean ix .)  As before, all panels may be balanced or 
unbalanced.  Estimation of the random effects model is done in three ways in LIMDEP.   
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Two Step FGLS  
 
 For the linear regression case, the simple RE may be fit by two step feasible generalized 
least squares.  The variance components, σu

2 and σε
2 are consistently estimated by using the ordinary 

least squares residuals, then the full model is fit once again by generalized least squares.  This is 
discussed in Section E18.2. 
 
Maximum Likelihood 
 
 With a normality assumption, the log likelihood can be formulated and maximized directly. 
For the linear model, this is done directly, operating on the log likelihood function itself which has a 
closed form.  This is also the case for the nested random effects linear model discussed below.  
Estimation of the model is discussed in Section E18.3.  For several other models, including probit, 
logit, tobit and ordered probit, the log likelihood function is an integral which does not have a closed 
form, but which can be satisfactorily approximated using Hermite quadrature. 
 
Maximum Simulated Likelihood 
 
 Any model that can be fit as a random parameters model – Table R27.1 lists, with all 
variants, over 40 of them – can be fit as a random effects model by allowing only the constant term 
to be random in the model.  This implies that virtually any model that can be fit with LIMDEP can be 
fit as a random effects model. 
 
Multilevel Random Effects Model 
 
 Suppose the data are constructed in levels – we allow up to 10 nested levels, so that the 
structure is 
   vi,t,s,r, i = 1,...,N;  t = 1,...,Ti; s = 1,...,Sit, r = 1,...,Rits 
 
where we use four levels as an example.  Consider, for example, student test performance data in 
which i is school district, t is school, s is teacher, and r is student.  Schematically, the data might 
appear as: 
 
                i=1                  ...              i=N 
|-----------------------------------|...|----------------------------| 
   t=1        t=2             t=T1            t=1              t=TN 
|---------| |-------| ... |---------|   |--------------|...|---------| 
  s=1  s=S11 s=1 s=S12 ... s=1  s=S1,T1      s=1     s=SN1  s=1 s=2 s=SN,TN 
|----| |--| |-| |---|     |-| |-----|   |----------| |-|...|-| |-| |-| 
         r = 1,...,R1,T(1),S(T1)                  r = 1,...,RN,T(N),S(TN) 
....................................    .............................. 
 
With the effects model now defined as 
 
   zitsr = σuui + σvvit + σwwits + σεεitsr + ... 
 
we have a multilevel effects model with a potentially extremely involved correlation structure.  
Again, LIMDEP allows this up to 10 levels.  In addition, the effects may be specified 
multiplicatively as well as additively.  This model is fit by maximum simulated likelihood as a 
random parameters model   Random parameters models are discussed throughout the Econometric 
Modeling Guide and in some detail in Chapter R24. 
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R27.10.5 The Random Parameters Model 
 
 A number of researchers have analyzed a few variants of this model under different names. 
In particular, there is now an extensive literature on ‘mixed logit’ models (Train (1999), et al.).  This 
multinomial logit version of this model has also been used in well known papers by Goldberg (1995) 
and Berry et al. (1995). Researchers, primarily not in economics, have also analyzed ‘multilevel’ 
models and ‘hierarchical’ models applied to linear regression, binary logit and Poisson and negative 
binomial regression models.  These are variants of the random parameters model described here.  To 
our knowledge, this is the first implementation of this technique in a class of models as diverse as the 
one listed in the preceding table. 

The structure of the random parameters model from the point of view of the modeler is 
 
 αi = [β1i′, β2i′, θ′]′ 

where θ = ancillary parameters, such as the dispersion parameter in the negative binomial 
   model – most of the models listed  have no ancillary parameters 

 β1i =   β1  = K1  nonrandom parameters,  x1it  =  variables multiplied by β1i 

 β2it =   β2  + ∆zi  +  Γvit   =  K2
 random parameters,  x2it  = variables multiplied by β2it 

where   β2  = the fixed means of the distributions for the random parameters 

   zi   =  a set of M observed variables which do not vary over time and which 
enter the means 

   ∆   =  coefficient matrix, K2×M, which forms the observation specific term in  
    the mean 

   vit  =  unobservable K2×1 latent random term in the ith observation in β2i.  Each  
element of vit has mean zero and variance one.  Each element of vit  may be 
distributed as normal, uniform, or triangular.  They need not be the same. 

   Γ  = lower triangular or diagonal matrix which produces the covariance matrix  
    of the random parameters, Ω  =  Γ Γ ′ in the random effects form and  
    Ω  =  Γ(I-R2)-1Γ ′ in the AR(1) model.  

 βi = [β1′, β2it′]′ 

 xit = [x1it′, x2it′]′ 

 ait = βit′xit 

 P(yi|xit, zi, vit)  =  g(yit, ait, θ)  =  the density for the observed response. 
 
Two models are used for vit: 
 
 Random Effects:   vit  =  vi for all t.  This is the usual random effects form. 

 Autocorrelated [AR(1)]  vit  =  Rvi,t-1 +  uit  where R is a diagonal matrix of coefficient 
specific autocorrelation coefficients, and uit satisfies the earlier specification for vit. 



R27: Summary for LIMDEP Reference Guide  R-694 

The multilevel random effects model described in the preceding section is also incorporated in this 
model by building the effects model into the random constant term of the random parameters model 
described here. 
 
R27.10.6 Observations About GLIM and GEE Estimation 
 
 A fairly prominent development in the statistical literature, generalized equation estimation 
(GEE) modeling appears to be yet another form of estimator.  (See Liang and Zeger (1986) and 
Diggle, Liang and Zeger, (1994).)  The GEE estimator is not explicitly supported in LIMDEP 
directly as a preprogrammed routine.  However, most of the internally consistent forms of GEE 
models (there are quite a few that are not consistent) are contained in the list in Table R15.1, so you 
can do several forms of GEE modeling with LIMDEP.  As this is a frequently asked question, we 
consider it in detail. 
 
GLIM 
 
 The GEE method of modeling panel data is an extension of Nelder and Wedderburn’s (1972) 
and McCullagh and Nelder’s (1983) Generalized Linear Models (GLIM) approach to specification.  
The generalized linear model is specified by a ‘link’ to the conditional mean function,  
 
   f(E[yit | xit])  = β′xit, 
 
and a ‘family’ of distributions, 
 
   yit | xit ~  g(β′xit, θ) 
 
where β and xit are as already defined and θ is zero or more ancillary parameters, such as the 
dispersion parameter in the negative binomial model (which is a GLIM).  Many of the models 
already discussed in this manual fit into this framework, such as the standard probit model which has 
link function f(.) = Φ-1(P) and Bernoulli distribution family and the classical normal linear regression 
which has link function equal to the identity function and normal distribution family.  More 
generally, for the single index binary choice models estimated by LIMDEP, if Prob[yit = 1] = F(β′xit), 
then this is the conditional mean function, and the link function is simply (by definition) 
 
   f(E[yit | xit])  =  F-1[F(β′xit)]  =  β′xit. 
 
and the distribution family is, again, the Bernoulli distribution.  This form captures the parametric 
binary choice models, including probit, logit, Gompertz, complementary log log and Burr (scobit).  
A like result holds for the count models, Poisson and negative binomial, for which the link is simply 
the log function.  So far, nothing has been added to models that are already familiar. The 
aforementioned authors demonstrate a method by which models which fit in this class can be 
estimated by a kind of iterated weighted least squares. This is one of the reasons that GLIM 
modeling has attracted such interest.  In the absence of a preprogrammed routine, it is easy to do. 
 One can create a vast array of models by crossing a menu of link functions with a second 
menu of distributional families.  Consider, for example, the matrix in Table R15.2 (which does not 
exhaust all the possibilities).  We choose four distributional families to provide models for the four 
most common kinds of random variables:   
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 Link Functions 
Kind of r.v. Family Identity Logit Probit Log Reciprocal 
Binary Bernoulli X • • X X 
Continuous normal • • • • • 
Count Poisson X X X • X 
Nonnegative gamma X X X • X 

Table R15.2   Generalized Linear Models 
 
Nelder et al.’s estimation theory is complete in that there is no theoretical restriction on the mesh 
between link and family.  But, in fact, most of the combinations are internally inconsistent.  For 
example, for the binary dependent variable, only the probit and logit links make sense; the others 
imply a conditional mean that is not bounded by zero and one.  For the continuous random variable, 
any link could be chosen; this just defines a linear or nonlinear regression model.  For the count 
variable, only the log transformation insures an appropriate nonnegative mean.  The logit and probit 
transformations imply a positive mean, but one would not want to formulate a model for counts that 
forces the conditional mean function to be a probability between zero and one, so these make no 
sense either.  The same considerations rule out all but the log transformation for the gamma family.  
The preceding lists many of the commonly used link functions (some not listed are just alternative 
continuous distributions).  More than half of our table is null.  Of the nine combinations that are 
consistent, five are just nonlinear regressions, which is a much broader class than this, and one would 
unduly restrict themselves if they limited themselves to the GLIM framework for nonlinear 
regression analysis. After eliminating internally inconsistent combinations of link functions and 
families, nearly all of the commonly used, internally consistent generalized linear models appear as 
preprogrammed estimators in LIMDEP, though they are calibrated using maximum likelihood rather 
than iteratively reweighted least squares.  The upshot of all this is that LIMDEP does fit ‘generalized 
linear models.’ GLIM is an alternative (albeit, fairly efficient) method of estimating some models 
that are quite routinely handled with conventional maximum likelihood estimation. 
 
GEE Modeling 
 
 All the preceding said, GLIM has not cost anything either.  GLIM provides a clever 
interpretation of some familiar models and an efficient algorithm.  But, GEE provides a potentially 
useful variation of these already familiar models by extending them to panel data settings.  To the 
preceding GLIM interpretation, the GEE approach adds what is essentially a random effects form to 
the panel of observations.  Let us redefine the link function as 
 
   f(E[yit | xit])  =  β′xit  +  εit, t = 1,...,Ti. 
 
Now, consider some different approaches to formulating the Ti×Ti covariance matrix for the 
heterogeneity:  (Once again, we borrow some nomenclature from the GEE literature): 
 
 Independent: Corr[εit, εis]  =  0, t ≠ s 
 Exchangeable: Corr[εit, εis]  =  ρ, t ≠ s 
 AR(1):  Corr[εit, εis]  =  ρ|t-s| , t ≠ s 
 Nonstationary: Corr[εit, εis]  =  ρts , t ≠ s, |t-s| < g 
 Unstructured: Corr[εit, εis]  =  ρts , t ≠ s. 
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The GEE approach to estimation is a form of generalized method of moments. Most of these models 
are already available in other forms.  The first one is obvious - this is just the pooled estimator 
ignoring any group effects.  The second is the random effects model.  We have noted a large number 
of models, including most of those in the valid set of GLIMs that LIMDEP can fit in the random 
effects form.  In addition, all models that are available in the random parameters form can be fit with 
just a random constant term and can thus provide this random effects model.  This includes most of 
the GLIM models and some others, such as the tobit model.  In addition, the random parameters 
model allows an AR(1) format for the random constant term, so all the models that fit in the 
exchangeable case can also be fit as in the AR(1) case.  LIMDEP has no facility for the nonstationary 
or unstructured cases.  We do note, however, these sorts of models are very weakly identified in any 
estimation setting, owing to the large number of parameters that must be estimated to characterize 
the distribution of an unobserved random vector.  A fully unstructured correlation matrix, for 
example, is nearly inestimable as an ancillary parameter in a model fit by maximum likelihood, 
because the log likelihood becomes quite flat in the space of the correlations.  If the panel is at all 
large, users should not be optimistic about fitting models such as the unstructured one above.  (For 
example, LIMDEP’s multinomial probit and multivariate probit models face this difficulty.) 
 In this respect, then, LIMDEP can estimate most GEE models.  The estimation technique 
however, is simulated maximum likelihood, not the method of moments.  By construction, 
LIMDEP’s estimator will be more efficient asymptotically, though in the sizes typical of panel data 
sets, this will probably be a minor consideration. 
 We note, finally, although there are a few GEE models not available in LIMDEP, the ability 
to structure the random parameters model with random coefficients on all variables makes this 
estimator, in fact, far more general than the GEE estimator.  The end result would be, in answer to 
the frequently asked question, yes, LIMDEP does do GLIM and GEE estimation, and considerably 
more with the random parameters model. 
 
R27.10.7 Latent Class Models 
 

A model for a panel of data, i = 1,...,N, t = 1,...,Ti  is specified 
 

  P[yit | xit]   =  F(yit,β′xit)  =  P(i,t). 
 
Henceforth, we use the term ‘group’ to indicate the Ti observations on respondent i in periods            
t = 1,...,Ti.   (In our formulation of this model framework, Ti may equal one – this all applies to cross 
sections as well as panels.)  Unobserved heterogeneity in the distribution of yit is assumed to impact 
the density in the form of a random effect.  The continuous distribution of the heterogeneity is 
approximated by using a finite number of ‘points of support.’  The distribution is approximated by 
estimating the location of the support points and the mass (probability) in each interval.  In 
implementation, it is convenient and useful to interpret this discrete approximation as producing a 
sorting of individuals (by heterogeneity) into J classes, j = 1,...,J.  (Since this is an approximation, J 
is chosen by the analyst.) 

Thus, we modify the model for a latent sorting of yit into J ‘classes’ with a model which 
allows for heterogeneity as follows:  The  probability of observing yit given that regime j applies is 

 
  P(i,t|j)  =  P[yit| xit, j] 
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where the density is now specific to the group.  The analyst does not observe directly which class,     
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model 
 

  P(i,t|j)  =  F[yit, β′xit  +  δj], Prob[class = j]  =  Fj 
 
We formulate this approximation more generally as, 
 

  P(i,t|j)  =  F[yit, β′xit  +  δj′xit], Fj  =  exp(θj) / Σj exp(θj), with θJ  = 0. 
 
In this formulation, each group has its own parameter vector, βj′ =  β + δj, though the variables that 
enter the mean are assumed to be the same.  (This can be changed by imposing restrictions on the 
full parameter vector, as described below.)  This allows the Heckman and Singer formulation as a 
special case by imposing restrictions on the parameters.  (A further generalization is discussed 
below.) 
 The latent heterogeneity model can be extended by allowing measured influences in the prior 
probability.  Let zi1, ..., zim denote M time invariant variables (such as sex, marital status, location, 
education) which affect the latent class probabilities.  Then, we extend the model so that prior class 
assignment is formulated as a multinomial logit; 
 

   P[class j | zi]   =   Fij =   
1

exp( )

exp( )
j i

J
j ij=

′

′∑
z

z

θ

θ
 

 
R27.10.8 Time Series Data 
 
 LIMDEP contains some capabilities for time series data, including Box-Jenkins 
identification, ARMAX and distributed lag models, GARCH models of several sorts, tests for unit 
roots, and a few techniques for estimating dynamic equations.   
 
R27.11 Econometric Model Estimation Templates   
 
 LIMDEP’s preprogrammed estimation routines include a very wide variety of models and 
variants of model forms.  We have arranged the documentation of these estimators in the 
Econometric Modeling Guide by the class of estimation method or the modeling frameworks of 
interest – in the form of an econometric reference – rather than by program command.   The next 
chapter will lay out the essential format of the model estimation commands in LIMDEP.  Only the 
command structures will be presented.  Mathematical details on specific models and techniques are 
given in the indicated places in the Econometric Modeling Guide. 
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R28: Diagnostics and Error Messages 
 
R28.1 Introduction 
 
 The following is a complete list of diagnostics that will be issued by LIMDEP and NLOGIT.  
Altogether, there are well over 1,000 specific conditions that are picked up by the command 
translation and computation programs.  Nearly all of the error messages listed below identify 
problems in commands that you have provided for the command translator to parse and then to pass 
on to the computation programs. 
 Most diagnostics are self explanatory and will be obvious.  For example,  
 

82  ;LHS - variable in list is not in the variable names table. 
 
states that your Lhs variable in a model command does not exist.  No doubt this is due to a 
typographical error – the name is misspelled.  Other diagnostics are more complicated, and in many 
cases, it is not quite possible to be precise about the error.  Thus, in many cases, a diagnostic will say 
something like ‘the following string contains an unidentified name’ and a part of your command will 
be listed – the implication is that the error is somewhere in the listed string.  Finally, some 
diagnostics are based on information that is specific to a variable or an observation at the point at 
which it occurs.  In that case, the diagnostic may identify a particular observation or value.  In the 
listing below, we use the conventions: 
 
 <AAAAAAAA>   indicates a variable name that will appear in the diagnostic, 
 <nnnnnnnnnnnn>  indicates an integer value, often an observation number, that is given, 
 <xxxxxxxxxxxx>  indicates a specific value that may be invalid, such as a ‘time’ that is 
       negative. 
 
The listing below contains the diagnostics and, in some cases, additional points that may help you to 
find and/or fix the problem.  The actual diagnostic you will see in your output window is shown in 
the Courier font, such as appears in diagnostic 82 above. 
 We note it should be extremely rare, but occasionally, an error message will occur for 
reasons that are not really related to the computation in progress.  (We cannot give an example – if 
we knew where it was, we would remove the source before it occurred.)  You will always know 
exactly what command produces a diagnostic – an echo of that command will appear directly above 
the error message in the output window.  So, if an absolutely unfathomable error message shows up, 
try simplifying the command that precedes it to its bare essentials, and by building it up, reveal the 
source of the problem. 
 Finally, there are the ‘program crashes.’  Obviously, we hope that these never occur, but they 
do.  The usual ones are division by zero and exponent overflow.  Once again, we cannot give specific 
warnings about these, since if we could, we would fix the problem.  If you do get one of these and 
you cannot get around it, please contact us at support@limdep.com. 
 
  

mailto:support@limdep.com�
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R28.2 Optimization 
 
 The following messages occur during estimation of a model.  In some cases, estimation must 
stop at that point – the iterative process has broken down.  In a few cases, the error is actually just a 
warning or notification of some temporary condition, in which case, estimation will continue.  In this 
case, you will want to look closely at the final results and the accompanying output to see if any 
further problems have come up during optimization.  Note that some of these warnings occur without 
a diagnostic number. These are denoted ‘wrn’ in the listing below. 
 
NOTE:  Section R26.4 contains lengthy discussion of most of these diagnostics and their causes. 
 
801 Problem with starting values provided.  

Exit status will be 5. Check the command. This means the starting values could not be 
read from the command.  

 
802 Cannot compute function at start values.  

Exit status will be 4.  This is not likely with internal values; it usually happens if you 
give a bad set of starting values.  

 
 Cannot compute function at current values.  

Exit status will be 4, breakdown of the iterations.  For example, if an estimated variance 
becomes negative and it is not possible to retreat to a valid value, iteration is halted with 
this error. 

 
803 Hessian is not positive definite at start values. 
 B0 is too far from solution for Newton method. 

Switching to BFGS as a better solution method. 
You can usually ignore this. Unless the starting values are very good, this is common.  
BFGS does not need the Hessian.  But, this may be a warning of bad things to come. 

 
804 Looks like convergence occurred too quickly. 

NOTE: Convergence in initial iterations is rarely at a true  
function optimum.  Check all results. 
Most problems take more than four or five iterations.  When one does not, it can mean 
that the starting values are already the solutions (OK), or the derivatives are zero at the 
starting values (possibly not OK).  This is application dependent.  It may not be a 
problem. 

 
 Looks like convergence occurred too quickly. 
 Note: DFP and BFGS usually take more than 4 or 5 iterations  

to converge.  If this problem was not structured for quick  
convergence, you might want to examine results closely. If 
convergence is too early, tighten convergence with, e.g., 
;TLG=1.D-9. 

 
805 Initial iterations cannot improve function.   

Exit status will be 3. This may be due to unusable starting values, or the starting values 
are already the solution. 
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Wrn Hessian is not definite at current values. 
 Switching to BFGS (gradient based) method. 

(Not a failure. Just looking for a better algorithm.) 
This is the same as 803, but it occurs after iterations have begun. 

 
806 Line search does not improve fn. Exit iterations.  

Exit status will be 3.  This is usually not an error.  If the likelihood function is fairly flat 
near the maximum, this will occur.  However, for a very badly behaved log likelihood, 
this error will occur, and will give you a warning about the function being optimized.  If 
it happens in the first iteration, the model is probably inappropriate for this data set. 

 
Wrn Maximum iterations reached.  

Exit iterations with status=1. 
 
Wrn Abnormal exit from iterations.  

If current results are shown, check the convergence values shown in the results.  The 
results shown may not be a solution (especially if the initial iterations stopped). This is a 
general failure.  Some other diagnostic will indicate the cause. 

 
Wrn Smallest abs. parameter change from start value = <xxxxxx>. 

Note:  At least one parameter did not leave start value.  
This is a general failure.  If you programmed derivatives in MAXIMIZE, at least one of 
them is always zero.  More generally, if starting values are so bad, it may not be possible 
to make progress toward a solution. 

 
Wrn Iterations aborted by user request.  

Exit status will be minus 1.  You clicked the Stop button. 
 
R28.3 Setup and Runtime Diagnostics 
 
 Most of the diagnostics listed here are produced by errors in commands, not by problems 
that arise during estimation of a model.  Most of these diagnostics are self explanatory.  A few 
suggestions will be added where that may not be the case.  Note, some diagnostic numbers have 
multiple diagnostics, which will be grouped and listed with that number.  In general, diagnostic 
numbers are only meaningful to help you navigate through this listing.  The numbers attached to 
diagnostics are used internally in the program, but not specifically meaningful in this listing.   
 
  1 Unrecognized command.  (Missing ; ?). 

The command is not one of the recognized commands. This can happen if you have a $ 
in the middle of a command and you submit extra lines. For example, the command(s) 

  
PROBIT  ; Lhs = y ; Rhs = x $ 

   ; Het 
 
will cause this error if you submit both lines. The $ in the first makes the second look 
like a new command. 
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  2 Command is more than 10,000 characters. 
This is usually caused by a command file that contains its own data.  It should rarely 
happen. The program is protected internally from this.  However, you might actually be 
trying to execute such a huge command.  If so, it needs to be modified. 

 
 Diagnostics 3 through 14 are produced when you try to read a data file with IMPORT or 

READ. 
 
  3 READ - ; not  NREC,NVAR,FORM,NAME,FILE,STAR,BYVA. 

The READ command has an unrecognized code following a semicolon. 
 
  4 READ - error reading NREC (NOBS) or NREC was not given. 

This should only occur if NOBS specifies a value that cannot be read or is not positive. 
 
  5 READ - error reading NVAR or NVAR not specified.  
 
  6 READ: Syntax error in format.  Missing paren?  Other error?  
 
  7 READ - Data set is too large. Expand data area 
     (Project...).  
 
  8 READ - too many variables. 

This is not likely.  The limit is 899. 
 
  9 READ - error or end of file occurs while reading data set. 

Unexpected end of file will usually not be the problem.  A file with bad data in it, such 
as alphabetic data in a Fortran formatted file can cause this. 

 
 10 READ -error or end of file reading variable names or format. 
 
 11 READ -Converting ;BLANKS. Command must give ;FORMAT=(...).  
 
 12 READ -Names=list or in file. Not enough names were given.   

Check this against NVAR given in the command. 
 
 13 Expected OPEN;INPUT=..., OPEN;OUPUT=..., LOAD/SAVE;FILE=...  
 
 14 READ - unformatted read, a record contains erroneous data.  
 
 15 OPEN - expected = sign not found.                            

The command is supposed to be OPEN ; Input = the name of the file $. 
 
 16 OPEN - expected ; or $ was not found. 

The command must end with a $.  This is an unlikely error, as a $ or ; is going to be 
found eventually. 

 
 17 OPEN - expected to find INPUT=filename or OUTPUT=filename. 
 
 18 READ;...;BLANKS. Maximum line length = 500. Line is too long. 
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 19 OPEN, LOAD, SAVE, READ, or WRITE. Could not open the file. 
This may mean the pointer to the file did not actually locate the file.  Try enclosing a file 
name in double quotes.  This is necessary if the file name has spaces in it.  It may also 
occur if some other program is using the file.  
 

 20 ROWS - The value is too small.  Just use SAMPLE;1-value $. 
 
 21 CALC - Too many subexpressions in parens. Unable to compile. 
 
 22 READ. An invalid name spec was found in file or command. 

Names must begin with a letter and have no more than eight characters. 
 
 23 Warning: F or chi-squared <= 0. Check regression for errors. 
 
 24 File system error.  Cannot OPEN the indicated file.   

The disk drive may be empty, or the file may be in use by other software. 
 
 25 MATRIX;{calc command}expression. Did not find closing },),]. 
 This error often occurs when something else is wrong.  For example, if your MATRIX  
 command contains a variable name where a matrix name is expected, or there is a comma 
 out of place, this error can occur. 
 
 26 REJECT or TVC-Wrong number of operators >, &,... Mismatched.  
 
 27 REJECT or TVC - &, +, or $ was found where >,<,... expected.  
 
 28 REJECT or TVC - >,<,... was found where &, +, or $ expected.  
 
 29 REJECT:0 obs. in resulting sample. Current sample restored. 
 
 30 CREATE/CALC ;...Unmatched parentheses in current subcommand. 
 
 31 Panel model. You have only one group. Check STR/PER variable.  
 
 32 Model command.  Start values. Unreadable or wrong # given.  
 
 33 PROC,EXEC,OPEN,SAVE,LOAD,SHOW in proc.  

These are commands that cannot appear in procedures.   
 
 34 Proc. buffer full, 10,000 characters or > 50 commands in a 
      proc. 
 
 35 REJECT/SAMPLE  -  Maximum sample size for command exceeded.  
 
 36 SAMPLE - did not find ; or $ where expected.              
 
 37 SAMPLE - value given in sample specification not a  number.  
 
 38 SAMPLE - range n1-n2, n1<=0,n2<=0, n1>nrec, n2>nrec, n1>n2. 

A SAMPLE command must have a range of values from low to high.  The maximum  
sample size may be seen at the top of the project window – this is nrec. 
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 39 Poisson.  Invalid limit given for censoring model.       
 
 40 Poisson.  Truncation model requested, but no limit given.   

; Truncation must be accompanied by ; Limit = value. 
 
 41 Error in variable list given for HFN, HF1, or HF2. 

Check the list of variables.  At least one of them does not exist. 
 
 42 MATRIX - in IF[value1 rr value2] - ] precedes value2. 

This is a syntax error.  It looks like the closing bracket is in the wrong place. 
 
 43 ORDERED PROBIT - Current estimates thresholds  not ordered. 

This is only a warning that occurs during estimation.  Results will follow.  It can usually 
be ignored, but if the procedure breaks down, this is likely to have preceded the failure.  
If you have a large sample and your dependent variable almost never takes at least one 
of the interior values, expect this diagnostic.  Note diagnostic 44. 

 
 44 ORDE,Panel,BIVA PROBIT: A cell has (almost) no observations. 

Estimation of the thresholds requires values in all cells.  A (nearly) empty cell makes 
estimation of the thresholds impossible. 

 
 45 LOGNORMAL REGRESSION - nonpositive values for lhs 

variable.  
 
 46 REGR;CLS: - Specified constraints not linearly 

independent.  
 
 47 GROUPED DATA - must have at only 3-18 cells (limit 

values). 
 
 48 NAMELIST name conflict. Could not construct namelist.   

This will be accompanied by an explanation, such as the name you tried to use was 
already in use for a matrix or scalar. 

 
 49 GROUPED Y > # limits + 1. Bad data or too few limit values.  
 
 50 Complex roots: Cannot compute eigenvalues of matrix. 

It was not possible to obtain a solution.  Some matrices produce this.  It is not an error. 
 
 51 CREATE - did not find expected = in expression.    
 
 52 CREATE/DATA or Probit;HOLD. No room for a new variable.    
 
 53 CREATE/REJECT. Expression too complex. Over 50 parentheses.  
 
 54 NTOBIT: You must specify two LHS variables for this model.   
 
 55 HFN, HF1, or HF2. Too many variables. The limit is 75.       
 
 56 Not used.  
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 57 List in DTA function contains an unknown variable. 
This diagnostic is no longer used.  It should not occur. If it does, use CREATE ; 
Namelist name = matrix name $ instead. 

 
 58 CREATE-Data must be alone w/o IF() or other transformation.  

When you move a matrix into a variable or namelist, do not include any sort of 
condition, such as If(...). 

 
 59 Cannot ID the name above.  (Not a Matrix,Variable,Function). 

The transformation in the CREATE command contains an unrecognized name.  Some 
transformations allow any of the types above, so all the tables are searched before this 
error occurs. 

 
 60 CREATE - Arguments in a DOT function are not conformable. 
 
 61 Compilation error in CREATE. See previous diagnostic.       
 
 62 SURE using MLE - Model is too big. # xs  > 100 or # ys  > 20. 
 
 63 SURE w/MLE - Missing or bad Pattern list or bad CLS: list.    
 
 64 CREATE - in parsing IF( ... )... did not find closing ).     
 
 65 MATRIX;name=value*result. Problem interpreting value.       
 
 66 REGR ; PANEL ....  This command must provide ;STR=variable.  
 
 67 Matrix element in an expression has an invalid subscript.    
 
 68 MATRIX;name=result. Name is a reserved MATRIX name (e.g. B).  
 
 69 WALD,NLSQ,MAXIMIZE. Cannot translate the listed string.  
 
 70 Cannot compute TSCS with only one group. 
 
 71 Variable list contains a name not in the expected table.     

This is a general error that can occur in many contexts.  The command involves a list of 
variables, and at least one of them does not exist.  Check the names against the project 
list. 

 
 72 All models. List of names, including namelist is too long. 
 
 73 Expected , or ; or $ in list of names was not found.         
 
 74 NAMELIST - Table is full; can only keep 10 NAMELISTs.  
 
 75 NAMELIST: Syntax error. Expected = or DELETE not found.   
 
 76 EXECUTE - no procedure has been stored yet.           
 
 77 NAMELIST - name in a namelist is not a valid variable name.  
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 78 NAMELIST - Namelist may contain up to 100 variable names.    
 
 79 EXECUTE - specification  not ;N=n or ;T(j)=value or ;QUERY. 
 
 80 EXECUTE;N=value$ value is invalid or unreadable as a number.  
 
 81 Model command - specification aaa in ;aaa not recognized. 
 
 82 ;LHS - variable in list is not in the variable names table. 
 
 83 RHS/RH1 variable or MATRIX in list not in the names table. 
 
 84 INST/RH2/SKIP  variable in list  not in the var. name table. 
 
 85 ;WTS - variable not in table or nonpositive weight found. 
 
 86 Not used. 
 
 87 EXECUTE;T(j)=c$ j is not 1, 2, or 3 or c is erroneous. 
 
 88 QR or LDV model.  Found a bad value for dependent variable. 
 
 89 REGR;ALG=GRID(l,u,d) - one of the values is not readable.  
 
 90 ;MAXIT=n - n is not a valid number.  
 
 91 ;OUTPUT=n - n is not a valid number.  
 
 92 REGR;PLOT(variable) - variable is not in the names table. 
 
 93 REGR;ALG=GRID(l,u,d) - invalid value given for l, u, or d. 
 
 94 Model command must include the ;RHS or ;RH1 specification. 
 
 95 ;SEP=variable name - variable name not in the names table. 
 
 96 ;LIMITS=item,item,.. - item is not a valid name or number. 
 
 97 The model command must include the ;LHS specification. 
 
 98 The model command must include ;RH2 or ;INST specification. 
 
 99 ;PDS/INT/RHO/PTS/PERIODS=n. Bad # or inconsistent if panel. 

In the ; Pds = value form, in a panel, the value must be reasonable, and the full sample 
size must be an even multiple of it. 

 
100 ;HOLD(*) - * not NDX, or IMR; no , or ); or unknown name.  
 
101 LOGIT - one of the cells (outcomes) has no observations. 
 
102 LOGIT - likelihood cannot be computed at current estimates. 
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103 LOGIT - Number of LHS vars is too large. Bad model setup?   
 
104 DISC - Singular Hessian. 

Look for an attribute that does not vary across choices. If you have one, use ; Rh2 for it. 
 
105 ARMAX or other model. Unable to forecast with missing data.  
 
106 DISC - A choice was (almost) never chosen, empty cell.      
 
107 DISC - Observations in data not a multiple of # of choices. 
 
108 DISCRETE CHOICE;CHOICES=list... - Name has > 8 characters.  
 
109 ;CLS/RST - error in syntax.  Check specified constraints.   
 
110 ;RH1=list - a variable in the list is not in names table.   
 
111 ;RH2=list - a variable in the list is not in names table.   
 
112 ;CHOICES=list - DISCRETE CHOICE requires this spec. 
 
113 PROBIT;START=list;LOAD or INCI or BIVA. Check start values. 
 
114 CALC - RAN(seed) - seed is not readable.                    
 
115 CALC ; DOT(z1,z2) must be (var,var) or (matrix,matrix).     
 
116 CALC - Unable to compute result. Check earlier message.     

This is a general diagnostic that is issued after it becomes impossible to translate a 
command or calculation.  An earlier diagnostic will show the error. 

 
117 CALC Vectors in DOT(x,y) have different number of elements. 
 
118 CALC The name used is reserved for estimation results.      
 
119 MATRIX - QFRI or QFII. Inner matrix of q-form is singular.  
 
120 CALC Unable to find a solution for internal rate of return. 
 
121 MATRIX - QFRI or QFII. Quadratic form is singular.          

The quadratic form can be computed, but the result cannot be inverted. 
 
122 CALC - Cannot identify matrix given in ROW or COL command.  
 
123 MATRIX ; name(subscript) = value expected, bad syntax.      
 
124 MATRIX - name=result. Name is a reserved CALC name (e.g. S). 
 
125 CALC ;Rn=fcn(list) too few or bad values given for function. 
 
126 CALC zero divide or function cannot be computed at value(s). 

This error also occurs when the result of a calculation will be infinitely large or small. 
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The following errors arise when computing a set of least squares coefficients.  Many models use this 
program to compute starting values, so these OLS generated errors can arise in the context of almost 
any model. 
 
127 Models - Sample sum of weights is less than or equal to 1.0. 
 
128 Models - Insufficient variation in dependent variable.      
 
129 Models - Variable i (i is given) has no variation.          
 
130 Models - Regression; insufficient degrees of freedom.       
 
131 Models - Regression; regressors are collinear.   
 
132 Models - Regression; sum of weights < number of parameters.  
 
The following errors will occur during estimation of a specific model.  They will precede or occur at 
the same time as the 800+ errors  listed in Section R17.2. 
 
133 MINIMIZE/NLSQ/SURE: Syntax error in or missing LABELS=list.  
 
134 Models - Unusable starting values.  Unable to continue.    
 
135 Models - singular Hessian during Newton iterations.         
 
136 Models - Maximum iterations exceeded by Newton iterations.  
 
137 Iterations: function not computable at crnt. trial estimates. 
 
138 Models - Maximum iterations in Steepest Descent or DFP/BFGS. 
 
139 Line search no longer improving function. Check results.  

The iterations are probably about to terminate. Check the derivatives. This may be near 
enough to the maximum for the results to be useable. If need be, add ; Output = 3 to the 
model command to produce a list of derivatives. 

 
140 Not used. 
 
141 Iterations - current or start estimate of sigma nonpositive.  

This is a warning.  It often happens during iterations, but a solution is obtained anyway.  
Just means a bad trial value.  See Section R8.4 for discussion. 
 

141  Survival scale parameter not positive 
  Selection scale parameter not positive 
 These errors occur during estimation of a survival model subject to sample selection.  
 They are transient warnings, not errors. Estimation will continue 
 
142 Estimated correlation is outside the range -1 < r < 1.   
 Same sort of problem as in error 141.    
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143 Models - estimated variance matrix of estimates is singular. 
This often happens after what looks like successful estimation.  Try reducing the model 
to find out why it occurs. 

 
In the following matrix diagnostics, there are many references to functions that now have simple 
equivalents that will usually avoid the diagnostic.  For example, PART(b,1,value) might now be 
b(1:value) and Xcpm(X) would normally be X’X. 
 
144 MATRIX - INDX - matrix has different # of columns from LHS.  
 
145 MATRIX - INDX - expected namelist or variable name on LHS.  
 
146 MATRIX - C(j)=CHNG(B1,B2). B1,B2 must have same dimensions.  
 
147 MATRIX - C(j)=NORM(B1),CHNG(B1,B2). B1, B2 must be vectors. 
 
148 MATRIX - C(j)=NORM(B1) or C(j)=CHNG(B1) - B1 not defined.    
 
149 MATRIX - C(j)=proc().proc() must be NORM, CHNG, or a number.  
 
150 MATRIX - expected ; or $ or }, ], or )not found.             
 
151 MATRIX - expected =  not found where expected.         
 
152 MATRIX - MATRIX;C(j)=...$ j is not 1, 2, or 3.            
 
153 MATRIX - names table is full (100 names).  Use DELETE.      
 
154 MATRIX - procedure name (name = proc(list)) not recognized.  
 
155 MATRIX - Procedure requires a computed, not a data matrix.   
 
156 MATRIX - Procedure requires a data, not a computed matrix.   
 
157 MATRIX - A=proc(list)$ There is a bad value in list.        
 
158 MATRIX - A=LOAD(list)$ list contains wrong number of values.  
 
159 MATRIX - A=LOAD(list)$ Number rows or columns not positive.  
 
160 MATRIX - A=PART(B...)$ syntax.  , or ; or ) not found.      
 
161 MATRIX - A=PART(B,list)$ list must contain 2 or 4 values.  
 
162 MATRIX - A=PART(B,r1,r2,c1,c2)$ invalid for dimensions of B.  
 
163 MATRIX - A=proc(B...)$ B is not the table of matrix names.  
 
164 MATRIX - A=INIT(r,c,v),IDEN(r),IPDL(r,c). Bad or short list.  
 
165 MATRIX - A=INIT(),IDEN(),IPDL(), row or column invalid.  0?  
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166 MATRIX - A=INDX(B,...), # of columns of A and B must match.  
 
167 MATRIX - matrix name in proc(list) is not in table.         
 
168 MATRIX - namelist in output of proc may not contain ONE.     
 
169 MATRIX - A=[B1/B2]. Matrices must have same number of columns.  
 
170 MATRIX - A=[B1,B2]. Matrices must have same number of rows.    
 
171 MATRIX - GINV, SINV, SQRT, ISQR, DTRM - nonsquare matrix.    
 
172 MATRIX - VECD(B) or RNDM(,sigma) - matrix B is not square.   
 
173 MATRIX - DIAG(B) - matrix B is not a row or column vector.   
174 MATRIX - CVEC(B) - matrix B is not square.                   
 
175 MATRIX - procedure requires two matrices.                    
 
176 MATRIX - QFRM/QROW-B1 and B2 not conformable for QFRM/QROW.  
 
177 MATRIX - MSUM or MDIF, matrices must have same dimensions.   
 
178 MATRIX:MPRD(B1,B2,...) or MPLOT, matrices not conformable.   
 
179 MATRIX - MTPR or MTTP(B1,B2) matrices are not conformable.  
 
180 MATRIX - RNDM(mu,sigma). Mismatch of dimensions of mu&sigma  
 
181 MATRIX - MIPR(B1,B2) - B1*B2 is not square - cannot invert.  
 
182 MATRIX - MPRI(B1,B2) - B1tB2 is not square; cannot invert.  
 
183 MATRIX - MIPR(B1,B2) - B1 and B2 are not conformable.        
 
184 MATRIX - SCLR or REPL - lhs matrix must already exist.       
 
185 MATRIX - GINV,SINV,CHOL  singular, not P.D. if SINV or CHOL.  
 
186 MATRIX - SQRT, ISQR, or, ORTH - nonpositive root.            
 
187 MATRIX - MIPR(B1,B2) - B1 is singular; unable to proceed.    
 
188 MATRIX - MPRI(B1,B2) - B1tB2 is singular.                    
 
189 MATRIX - XDOT,XCPM,XVCM,XCOR,XLSQ - namelist must be first.  
 
190 MATRIX - XDOT,XCPM,XVCM,XCOR,XLSQ:namelist or var. is 2nd.   
 
191 MATRIX - XDOT,XCPM,XVCM,XCOR,XLSQ;variable must be 3rd.      
 
192 MATRIX - XLSQ - columns of specified matrix are collinear.   
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193 MATRIX - result is too large for buffer. (rows*cols> 22500). 
 
194 MATRIX - XMLT,XSTD,XORN,PCOM - LHS namelist does not exist.  
 
195 MATRIX - XMLT - expected matrix name or variable on RHS.     
 
196 MATRIX - XMLT - RHS matrix not square, same # columns as X. 
 
197 MATRIX - XSTD or XORN - a variable in list has no variation.  
 
198 MATRIX - XORN - Correlation matrix has a nonpositive root.  
 
199 MATRIX - PCOM - Invalid matrix name given on RHS.     
 
200 2SLS - Too few instrumental variables or they are collinear.  
 
201 SELECT - selection leaves insufficient degrees of freedom.   
 
202 SELECT - variance matrix for criterion equation is singular.  
 
203 POISSON or NEGBIN: Negative or noninteger value in LHS var.  
 
204 DSTAT;PDS=N...$ - matrix for partial autocors is singular.  
 
205 CREATE;namel=namer[-lag]$  lag is not a valid integer.      
 
206 CREATE;namel=namer[-lag]$Syntax error, [ not where expected.  
 
207 CREATE;namel=namer[-lag]$namer must be an existing variable.  
 
208 MINIMIZE;...$  Start values not given or contain bad values.  
 
209 MINIMIZE; The IV estimator is only for nonlinear 2SLS.      
 
210 MINIMIZE;FIX:...$ Too many fixed values, or bad spec.        
 
211 SURE or 3SLS;.. EQn variable list has an unknown variable. 
 
212 SURE or 3SLS:EQn=list. n is invalid, nonpositive or > 20.    
 
213 SURE or 3SLS;resid. cov. mat. singular;LHS vars. collinear?  
 
214 Not used. 
 
215 Model too large.K>150,>120 for SELE,>100 for 2SLS or MINI.    
 
216 REGR, SURE, or 3SLS.  Params*# of constraints must be < 401.  
 
217 SELECT must be preceded by PROBIT or LOGIT with ;HOLD.  
 
218 MATRIX;STAT(B,VB)  problem with names B or VB.               
 
219 MATRIX;STAT(B,VB)  B or VB has inappropriate dimensions.     
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220 SAVE/LOAD -- Read or write error with binary file.          
 
221 The data on the LHS variable appear not to be coded 0,1,2... 
 
222 Input file: Read error reading command.   
 
223 Any regression: OLS gives a perfect fit; check model.        
 
224 LIMDEP/NLOGIT: FIML not enabled. This feature not available. 
 
225 CREATE;x=DTA(m);...$   DTA must be the only transformation. 
 
226 MATRIX; a list of values is given but not assigned a name.   
 
227 Matrix;[list/list/...] lengths of lists are inconsistent.      
 
228 Matrix loaded with [list/list/...] Bad values or unknown name.  
 
229 Matrix: Unable to translate command. Check for syntax error.  
 
230 PROC=name{...}$ Expected to find }$ to end command. Syntax.  
 
231 Cannot accurately compute probabilities for F(p,1,1),P>.999. 
 
232 Noninteger degrees of freedom given for t, F, or chi-sqrd.   
 
233 Matrix - Out of room. Unable to save result of computation.  
 
234 Matrix - name=QFRI(A,B)... B is not positive definite.       
 
235 NLSURE requires more than one LHS variable/Equation.         
 
236 APPEND - there are insufficient rows to append the data.     
 
237 APPEND - Requires too many new variables to be added.        
 
238 WARNING!! All 3 convergence rules =0. Will never exit iters! 
 
239 Test:... or Cls:... the j in B(j)... is > # of coefficients. 
 
240 ;LIMITS=matrix... bad specification, too many or bad values.        
 
241 Poisson/NegBin: Cannot compute function - extreme values.    
 
242 NLSQ:Wrong number of start values - need one for each label. 
 
243 File system error. Files may not be opened by PROCEDURES     
 
244 SELECT. Corrected s.e. < 0.  Check for bad or missing data. 
 
245 READ: NOBS too large to store.                               
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246 Poisson/NegBin w/ panel. Cannot compute fn at current parms. 
 
247 Not used. 
 
248 2 way panel data, # periods > 20000?? Check ;PERIOD variable. 
 
249 Random effects. Did not find positive estimated component.   
 
250 SURE/3SLS; SIGMA = matrix. Matrix was not in the table.      
 
251 ;STR=variable name (ORDE,SURV,CRMO/PANEL). Name not found. 

Stratification variables are used in several places.  This is a general diagnostic. The error 
is also produced by MATRIX panel data functions, and the ; Sep = variable specification 
in SWITCH. 

 
252 Not used. 
 
253 REGR;DFR=list.  List contains a bad or unreadable value.  
 
254 REGR; robust OLS variance estimator. Model too big. (K>100). 
 
255 MATRIX; Matrices not conformable for operation. Check sizes. 
 
256 CREATE:Internal table overflow. Break command into parts.   
 
257 SURV:...There is insufficient space left in the data array.  
 
258 SURV Stratification variable has too many or invalid values.  
 
 Too many effects: Obs=<NNNNNN> Group=<NNNNNN> Limit=<NNNNNN> 
 Invalid group ID for effects model. I=<NNNNNN> ID=<NNNNNN> 
 No obs. found for group <NNNNNN> in effects model. 

These diagnostics occur with the Cox model with fixed effects.  They will usually occur 
because of a badly coded group identifier or stratification indicator. 

 
259 SURV;PLOT... Unable to find regressor vector(s) for plotting.  
 
260 SURV;PLOT Regressor vectors have wrong number of elements.  
 
261 SURV Maximum of 100000 observations exceeded. Cannot continue. 
 
262 SURV;STR... Invalid stratification. Unable to continue.    
 
263 Not used. 
 
264 ;Keep=name and/or ;Res=name - no room left for new variable.  
 
265 POIS;MODEL=N... No evidence of overdispersion. Use Poisson.  
266 EXEC;rname=F,L[,D]. No repetitions.int(|L-F|[/|D|]) is zero.  
 
267 EXEC;RNAME=F,L,D. One of F<L & D<0 or F>L & D>0 or D=0.  
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268 EXEC;RNAME=F,L,D.  excessive repetitions (over 30000!). 
 
269 EXEC;RNAME=list.No scalars left to create the loop index. 
 
270 Not used. 
 
271 GMM: Covariance matrix for moments or estimates is singular. 
 
272 2SLS or SELECT. Using 2sls. Negative R-squared. (Warning.)  
 
273 SURV ; RH2 = ... $ Inadequate censoring split for model.    
 
274 SURV;RH2... $ Not available for Prop. Haz. Forget MODEL=..?  
 
275 SURV;Log-linear model. Data are not in log-form. Transform.  
 
276 Model...;LIMITS=list.  Too many values.  Limit is 20.      
 
277 WKx/DIF/XLS file has an unexpected format. Cannot continue.   
 
278 WKx/DIF/XLS.Numeric data found where var name was expected.  
 
279 READ. Data input from a WKx file must be stored internally.  
 
280 Box-Cox.  The model cannot be fit with the values provided.  
 The Box-Cox transformation cannot be computed for negative values. 
 
281 OPEN or WRITE error on last command. Disk problem? Missing?  
 
282 LOAD command. Problem with file OPEN or READ.  Restarting.  
 
283 SURVIVAL.  No variation in LHS variable! Cannot compute.     
 
284 Output file is corrupted. Closing to keep current contents.  
 
285 WRITE or READ requires a file name. (WRITE/READ;FILE=...)  
 
286 WRITE command. ;FORMAT=something unidentifiable. Expected (. 
 
287 > 899 variables in project file! StatTransfer or DBMS Copy?  
 
288 RENAME:The NEW name is already in use. Use a different one.  
 
289 Not used. 
 
290 RECODE Error: Syntax, Number of values or Unreadable value.  
  
291 Error in RENAME command. Must be OLD_NAME = VALID_NEW_NAME.  
 
292 Error in STRING command. Must be STj = string, j=1,2, or 3.  
 
293 MATRIX MVEC(name,r,c). name is not the name of a vector.     
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294 MATRIX command contains unbalanced (), <>, [], or {}.        
 
295 MATRIX MVEC(name,r,c). Too few elements to make rxc matrix.  
 
296 MATRIX MVEC(name,r,c). Too many elements for an rxc matrix.  
 
297 Invalid # rows in matrix of quad/bilinear form in MINIMIZE.  
 
298 Quad/bilinear form badly dimensioned. Cannot compute it.  
 
299 READ;...;NKMAX=value.  Value is <200000 or invalid.     
 
300 Not used. 
 
301 LOAD. File too large. Use Project:Settings/Data area to reset.  
 
302 Calc. No room for new scalars. Use DELETE to make space.      
 
303 CREATE. Division by a zero standard deviation.                
 
304 CREATE has too many subcommands (> 100). Break up command.     
 
305 CREATE: Errors occurred which prevented transformations.      
 
306 CALC. NTB. P too close to 0 or 1.  Can’t get X accurately.    
 
307 ;TLF=f ;TLB=b ;TLG=g  Value given, f, b, or g is unreadable.   
 
308 ;SMOOTH=value for MSCORE. Value is not readable.              
 
309 ;TIES=n, ;END=n, ;QNT=q for MSCORE. Value given is bad.       
 
310 Computing restricted least squares. R*VAR(b)*R’ singular.     
 
311 Probit: Data on Y are badly coded. (<0,1> and <=0 or >= 1).   
 
312 Ordered: Bad stratification variable or too many strata.      
 
313 Stepwise. No variables pass selection rule to enter. Y = a.   
 
314 Residual Plot. Too many to residuals to plot.                 
 
315 Stoch. Frontier: OLS residuals have wrong skew. OLS is MLE.   

This is a theoretical issue, not a program problem.  If the OLS residuals are skewed in 
the wrong direction, the MLE for the stochastic frontier is OLS.  This usually means that 
there is no evidence of inefficiency in your data.  We emphasize (since this is a 
frequently asked question), this is a data issue.  When this condition arises, it is because 
the data and the model, at least the current specification of it, are inconsistent.  There is 
no ‘fix’ other than a different model or specification. 

 
316 Crosstab: One of the variables is always <= 0 or >= 50.       
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317 Plot. Number of values is too large for plotter. (> 15000.)   
 
318 Identify ; Rhs = variable. You forgot to include ;PDS = T.    
 
319 Dstat;RHS=LIST ; Quantiles $ Too many observations (>22000). 

This will also arise if the sample is > 4000 for plots  or > 100000 for histogram. 
 
320 ;2Step=NAME. Is NAME OK? Preceded by Probit or Logit?         
 
321 SURV:Proportional Hazards. Fixed values setup is incorrect.   
 
322 MSCORE. Too many observations.(10000 is the limit.)            
 
323 Panel:Sum[N(i)] < K+1. Check STR variable. Use Matr;Gsiz(var)$.   
 
324 READ;FILE=name...$ The data file was not found when expected.   
 
325 MATRIX:Panel. Stratification variable is bad or missing.      
 
326 Work space overflow. Too many lines of names in data file.    
 
327 Closing command file to prevent reading data as commands.     
 
328 FORMAT in READ;BLANKS. Slash format may not be inside parens.   
 
329 FORMAT in READ;BLANKS. Parens may not be nested to 3 levels.   
 
330 FORMAT in READ;BLANKS. Repetition N(...). Error reading N.    
 
331 REGR;PANEL. ONE found in RHS with 2SLS. Redo without ONE.     
 
332 READ. Your data set is too big to fit internally.             
 
333 FORMAT provided for READ command has unbalanced parens.       
 
334 ROWS;max$ The value given is unreadable, < 100, or too big.   
 
335 SURV;...$ Unable to obtain start values for Gompertz model.   
 
336 SELECT w/ 2SLS. Mismatched numbers of RHS & INST variables.   
 
337 SELECT;bivar probit: Unable to find DELTA1 and/or DELTA2.     
 
338 Selection data are incorrectly coded. Unable to continue.  

This is produced by the two treatment model. 
 
339 SURV ; LIMITS ...$ You have given more than 2 limit values.   
 
340 SURV;WTS=matrix for S. The matrix you gave is the wrong size.   
 
341 SURV with TVCs.  (log) Normal model is not available here.    
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342 SURV with TVCs.  Truncation not allowed in this model.        
 
343 SURV with TVCs.  Splitting model not allowed in this model.   
 
344 LOGIT/Fixed effects. Cannot compute P. (Sum(yi) near 0 or T).  
 
345 Note:MAXIT=0 set by user. LM stat. kept in scalar LMSTAT. 

This is not an error.  The program is telling you what it is doing with the statistic. 
 
346 SURVIVAL. Unstable estimates. Unable to plot distribution.    
 
347 ORDERED Probit or Logit. Too many cells. The limit is 50.     
 
348 ORDE;HAZ;ENDPOINTS=list$ Bad vals., wrong number, not ordered.   
 
349 TSCS. Not enough workspace for your problem. K or N too big.   
 
350 TSCS. Inconsistent (or nonexistent) values for T. PDS=????   
 
351 FRON:Cannot have both PDS and an NTIME variable in command.   
 
352 Model with Panel. Sum of N(i) not equal to full sample size.    
 
353 Internal error. Unable to convert a date. Check last command.    
 
354 DATE;YEAR[.mth] or [.qtr]$ Year must be 4 digits. < 1000 ?    
 
355 DATE;YEAR.??$ Expected valid month or quarter not found.      
 
356 DATE;YEAR.Q$ found, but Q is not 1, 2, 3, or 4 as expected.   
 
357 PERIOD command found. Your data are undated. Use DATE first.   
 
358 PERIOD command is not of the form PERIOD ; Begin - End $.      
 
359 PERIOD command specifies invalid date or END before BEGIN.    
 
360 CREATE:Parameter in STD(x),XBR(x),DEV(x) must be a variable.   
 
361 HISTOGRAM:Too many limits (> 39) or intervals (> 38) given.   
 
362 HISTOGRAM:No values found in specified or default ranges.     
 
363 MATRIX:XDOT or other moment matrix. Missing data. No result.   
 
364 FPLOT: Command must include ;PTS = number of points to plot.   
 
365 FPLOT: Command must include ;LIMITS=lower,upper for range.    
 
366 FPLOT: ;LIMITS=L,U. L and U must bracket the start value.     
 
367 FPLOT: Command must include ;PLOT(label).                     
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368 PROBIT;Random Effects. K too big (>40) or T too big (> 75).   
 
369 PROBIT;Panel:Options RH2 and grouped data not allowed.        
 
370 PROBIT;Random Effects: Problem is too big. K x T > 1000.     
 
371 MATRIX: LADB function is limited to K>=1 & K<21 and N<=5000.  
 
372 CALC: You may not change the loop variable of EXEC;loop=..$   
 
373 CALC: Do not use N on the left of an equals sign.(Reserved).   
 
374 MSCORE ... ; TIES $ File error opening work file for ties.    
 
375 Not used.           
 
376 Not used.                 
 
377 Command OPEN;FILE=name$ is not valid. Use INPUT or OUTPUT.    
 
378 EA/LimDep - TSCS models are limited to 20 groups.             
 
379 EA/LimDep - SURE/3SLS are limited to 5 equations.             
 
380 A READ error has occurred while reading from your file.       
 
381 An error occurred opening the file requested.  

The file name is given. 
 
382 An end of file error has occurred reloading from the file.    
 
383 LHS must supply 1 matrix, C, for simplex method.              
 
384 LinProg:No. of limits in Xl or Xu must = no. of values in C.  
 
385 INPUT files cannot open other input files.                     
 
386 LinProg:Limit specifications, ;LIMITS=Xl,Xu needed for LP.     
 
387 SAVE  LOAD  SHOW must be followed by ;FILE=name$.              
 
388 LinearProg:Number of activities is limited to 300 for LP.      
 
389 File conflict. Opening current input for output or vice versa. 
 
390 READ/WRITE;UNIT=number. number was unreadable. Check command.   
 
391 LnPrg:Matrix A must contain NX+2 cols. NX=no. of values in C.  
 
392 WRITE;format=binary... File name must be given for binary.    
 
393 LP: Number of constraints must not exceed 300 (rows in A).    
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394 BOXCOX:Values too large. Model is explosive. Scale your data.   
 
395 BOXCOX:;LAMBDA=value not found or MODEL=3 & no THETA found.   
 
396 BOXCOX:With ;PTS=n, you must give lower,upper or l,u,theta.   
 
397 BOXCOX:Weights for hetero. model must be > 1. Rescale W(i).   
 
398 Bivar.Probit:Hessian not PD. WESML VC not computed. BHHH used.   
 
399 MNAME(first:last). Check syntax. First or last is bad.   

This is produced by extracting part of a matrix. 
 
400 MNAME(first:last).  Matrix size exceeded by this address. 

You have specified bad dimensions.  Check the matrix size. 
 
401 MATRIX. CXRT/complex roots. Nonconvergence. Cannot compute.   
 
402 Name conflict. This will cause some commands not to work.     
 
403 Using default name:YFIT for prediction/RESID for residuals. 
 Either the name you gave was not useable, or no name was given. 
 
404 PROBIT. More than one LHS variable given. Grouped? Use ORDE?  
 
405 WALD test. VC matrix specified is wrong size or not square.   
 
406 Not used. 
 
407 Not used.   
 
408 WALT test. No functions -- FNj=... -- found on command line.   
 
409 Matr;name(*,J)=vec. Not a vector, unknown matrix, or bad J.   
 
410 HREG:Estimates diverging. Variances vanishing or exploding.   
 
411 ARMAX: Moving average terms are explosive. Exit iterations.   
 This tends to happen when you are using the wrong model. 
 
412 ARMAX: Model has too many parameters. Unable to estimate.     
 
413 ARMAX: Model has no MA terms. Use REGRESS to estimate it.     
 
414 ARMAX: Not enough observations to fit model.T-d-p-q-K < 11.   
 
415 ARMAX: Singular derivatives matrix Cannot invert GtG.         
 
416 ARMAX:More than 20 iterations.Cannot find initial MA terms.   
 The model is not consistent with the data.  This is the wrong model for these data. 
 
417 ARMAX: You tried to forecast beyond maximum ROWS of data.     
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418 SURE/3SLS: The AR1 models are not available for 3SLS.         
 
419 Improper function setup. Expected BVN(x,y,r). Ambiguous.      
 
420 DISC: Count variable for number of choices must be wrong.     
 
421 MODEL;... Current sample setting has no observations.        
 
422 PROC=a new name. You already have 10 procs. defined.         
 
423 EXEC ; PROC = name.  PROC does not exist yet. Cannot run.    
 
424 REGR;PANEL;AR1: AR1 is not available with a two way model.   
 
425 REGR;PANEL. Could not invert VC matrix for Hausman test.     
 
426 NLSUR;LHS=list. Number of variables not equal to # of eqns.   
 
427 NLSUR or WALD. You must specify eqns with ;Fn1=...;Fn2=...    
 
428 NLSUR. Unknown name given with ;SIGMA=name.                   
 
429 NLSUR ;SIGMA=name. Wrong dimensions. (R or C not = # eqns.)   
 
430 NLSUR ;SIGMA=name. SIGMA matrix is not positive definite.     
 
431 DISC;nested logit. Not enough work space for VC matrix.      
 
432 Not used.             
 
433 SELECT..;with 2 treatments. Did not find VDELTA (bi-probit).  
 
434 Matrix: [a] or <a> defines diag. matrix > than 150x150.       
 
435 You can use a different setup to avoid huge matrices.    

This is just a tip, not an error.  LIMDEP almost never needs to compute huge matrices. 
 
436 Matrix: <var.> creates vector longer than 22500 elements.    
 
437 Matrix: <matrix> attempts to invert a nonsquare matrix.      
 
438 Matrix: <matrix>. Cannot invert. The matrix is singular.     
 
439 Matrix: <matrix>. No inverse. Zeros on the diagonal.         
 
440 Matrix: [result].  This construction is not meaningful.      
 
441 Matrix:..<..>.. or ..[..].. Did not find closing > or ].     
 
442 Matrix: The expression contains an unknown name.             
 
443 Matrix: ..<..>.. or ..[..].. Term must define a vector.      



R28: Diagnostics and Error Messages  R-720 

444 Matrix: <scalar>. Scalar is 0. Cannot take reciprocal.       
 
445 Matrix: Diagonal middle matrix has wrong number of terms.     
 
446 Matrix: Matrices are not conformable for multiplication.     
 
447 Current estimated covariance matrix for slopes is singular.   
 
448 More than 10 DOxx loops in PROC. Limit is 10.                
 
449 DO... Syntax error. Expected DO..;label;control $.            
 
450 Found NAMELIST:index. Invalid index, < 0; > # of variables.  
 
451 Maximum iterations. Exit status for parameter search = 2. 
 This is a generic diagnostic used by the optimization routine. 
 
 Counters for panel data: 
 Counter <=0:<nnnnnn>. Row=<nnnnn> group=<nnnnn>. 
 Counter variable does not match the sample. 

These diagnostics are produced by the CREATE command for computing moments for 
panel data. 

 
 Could not compute ADF. See previous diagnostic. 
 Unstable equation in lagged differences. Sum is >= 1. 
 Perfect fit in ADF regression equation. EstVar[c]=0. 
 Sample has too few observations to carry out test. 
 Moment matrix for ADF (regression) test is singular. 

These diagnostics are generated by CALC when attempting to compute the augmented 
Dickey Fuller test statistic. 

 
 You must OPEN;EXPORT=file before exporting results. 
 Write error exporting matrices to CSV file. 
 MATRIX and CALC will both check for problems exporting results to a CSV file. 
 
 Number of start values must match # vars. in RHS. 
 Did not find */-+ or > in scenario specification. 
 Unknown variable name in scenario specification. 
 Variable in scenario does not appear in the RHS. 
 Bad value found in scenario specification after = sign. 

These diagnostics are produced by the BINARY CHOICE command used after PROBIT 
or LOGIT to analyze the predicted probabilities. 

 
Using ;PDS=number. NOBS not a multiple of number. 

 Group count variable is mismatched to full sample. 
 The number of variables for TABLES must be less than 11. 
 Invalid weighting variable. Nonpositive values were found. 
 Number of strata > 5000! Tables overflowing. Must exit. 
 Use only one of ;PDS, ;CLUSTER or ;STR in the command. 

These diagnostics are produced by the TABLES command for analyzing panel data on a 
variable. 

 
 Quantile Regression needs nK <= 200,000 and n < 10,000. 
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452 Cannot sample <nnnnnn> from  <nnnnnn> without replacement. 
Your DRAW command specifies more draws than there are observations in the sample.   
 

 Bootstrap sample exceeds 100,000 obs. Must exit. 
DRAW command for panel data. 
Base sample for panel/bootstrap must be < 400,000. 
DRAW ; PDS=spec. Could not identify spec. 
Counter for panel group sizes is nonpositive. 
Sum of counts is > full sample. Check variable. 
Bootstrap sample is > 20000 groups. Must exit. 
These diagnostics are produced by the DRAW command for panel data.  

 
 Cannot compute ROC for N > 375,000 points, for N = ... 
 

Cannot sample <nnnnnn> from <nnnnnn> without replacement. 
Bootstrap sample exceeds 100,000 obs. Must exit. 
Maximum current sample for bootstrap is 780,000. 
These errors occur when using bootstrapping with panel data 

 
453 Expected DRAW;N=number$ (;REP optional). Check syntax. 
 Invalid N for DRAW, < 0 or > 100000 (20000 for panel) 
 
454 This BIVARIATE probit model needs two LHS variables. 
 
455 NAME....: Obs. in sample= nnnnnn, VALUE.   

You have specified a badly coded variable for bivariate probit. 
 
456 Obs= nnnnn Sum of Pij= x.xxxx. Should be 1.   

Proportions data for bivariate probit do not add to 1.0 
 
457 Selection bivar. probit states ;LIMITS=ja,jb.  

The values ja and jb must be 1 or 0. 
 
458 Selection: two treatments, looking for DELTA1 and DELTA2. 

Either the matrices were not found or the ones found are the wrong size.  
 
459 Selection: two treatments, looking for and not finding VDELTA.  
 
460 Expression/eqn is too complex. Too many subexpressions,  

3 value functions, scalars, or operations.   
Simplify. This is from MAXIMIZE.  It means your complicated expression has too 
many components, and an internal table has overflowed.  You must break the function 
into parts, use subfunctions, or use more than one command. 

 
461 LHS variable for binary choice model is not binary! 
 
462 0/1 choice model is inestimable. Bad variable = <AAAAAAAA>. 
 
463 Its values predict 1[<AAAAAAAA> = 0 or 1] perfectly. 
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464 Error in or near ‘FFF...’ 
This is for the CALC command.  The ‘FFF...’ will be the part of the command that could 
not be translated.   

 
465 CALC function, cannot identify a name in expression.  

This depends on the context in terms of what kind of name the expression is looking for. 
 
466 A CALC expression has mix of matrices and other things.   

This diagnostic depends on context. Dot products, for example, must be two matrices or 
two variables. 

 
467 CALC: Dot product, vectors not the same size. 
 
468 AAAAAAAA may not appear in an expression.   

This gives the name of an entity, such as a namelist, that may not appear in the expression. 
 
469 Current Rho = <value given>, using value to compute S2(e).   

The current value of RHO  is not useable.  A recent valid value is being used instead. 
 
Diagnostics 470 - 485 are produced by computations of functions and expressions by CALC. 
 
470 Bad observation for CALC function <1 or too big.   

This depends on the function. 
 
471 Cannot compute  <function given>; Parameter <nn>, is <description>.  

The value might be too small, too large, less than one, etc.  This depends on the function. 
  
472 Did not find a variable in this NGI function.   

This is the group size function in CALC. 
 

 Test of proportions requires binary variables. 
TST(x,y) function requires matrices &/or variables. 
A sample is too small to carry out the test of equality. 
A variable given for TST function has no variance. 
Rank Correlation. 
The function requires one or more variables. 
RKC and CNC require at least two variables. 
Harmonic and Geometric Means. 
Harmonic mean needs a nonzero scale. 
A variable in XGM or XHM is not a set of ranks 1,...,n. 
Cannot compute geo./har. mean with negative values. 
These diagnostics are produced by setups for the Tst function in CALC, used for testing 
equality of means, variances or proportions. 

 
473 Cannot compute matrix function with this parameter.   

This depends on the function. 
 
474 Did not find the variable for MIN, MAX, RMX function. 
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475 Too many observations (>22000) for Med(...) function in CALC. 
 
476 Not able to ID variable in SUM, XBR, SDV, VAR function in CALC. 
 
477 NAMELIST: more than 1 name in SUM, XBR, SDV, VAR function in CALC. 
 
478 REGRESSION function RSQ etc. has a nonvariable in it.   

This is a CALC function. 
 
479 CHK function needs both RHS and LHS of a model.  

This is a CALC function. 
 
480 CALC Computing RSQ, ESS, ... found missing values. 
 
481 Binomial, Geometric, NegBin. Pi must be in [.05,.95].   

This is a CALC function. 
 
482 Binomial, Hypergeometric: n must be in [2,25].  
 Poisson: Lambda must be > 0 and no more than 15.  

Hypergeometric, NegBin., M must be in [1,99]. 
 Hypergeometric, P must be < 100.   

Hypergeometric: m must be less than P.  
These are all CALC functions used for drawing discrete probability distributions. 
 

 Found [ELSE], but no prior IF[...] was set.   
This is a logical condition in CALC. 

 
483 Replications for MVN probabilities, bad or > 2000. 
 
484 NAME on LHS of CALC function is not a valid name. 
 
485 Cannot identify this name: <name is given>.  

This is a matrix function in CALC.   
 
486 TVC <nn> has too many operations (max=15).   

Unable to identify operand <nn> in TVC <n>.   
Cannot compute TVC <nn> Observation=<nnnnnn>.  
This is for the Cox model with TVC.  Check the specification of the TVC.  
 
Data error. Individual <nnnnnn> has <nnnnnn> records? 
Data error, Gompertz. Individual <nnnnn> record <nnn> 
T=<xxxxx>.  
Data error. Individual <nnnnnn> T0=xxxxx, T1=xxxxx. Invalid 
values. 
Data ended expecting <nn> more lines for individual <nnnnnn>.  
Found <nnnnnnn>  records, and <nnnnn> individuals.   
Unexpected data configuration. 
Gompertz model: Observation <nnnnn> duration < 0. 
These diagnostics result from the parametric survival models with a sequence of 
observation specific values per individual, denoted by <nnnnn>. 
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487 <AAAAAAAA> is an invalid name. Names may not contain  
<character given>. 

 
488 <AAAAAAAA> is an invalid name. Names may not begin with 

<character given>. 
 
489 CONFLICT:  <type of name> name  <name is given> already used 

as a <type, e.g., matrix>. 
 
Diagnostics 490 - 495 are generated by specification of the SURE model estimated by MLE. 
 
490 Label  <AAAAAAAA> is repeated in labels list.   
 
491 A name in the pattern is not among the labels.   
 
492 Your pattern list has the wrong number of specifications in it.   
 
493 Col <n> of your parameter matrix is all zeros.   
 
494 Row <n> of your parameter matrix is all zeros.   
 
495 Label  <AAAAAAAA> does not appear in pattern matrix. 
 
496 Namelist  <AAAAAA> is no longer defined.   

This is a warning.  It is the result of deleting a variable. 
 
497 Cannot compute function at current values.   

This occurs during optimization.  See Section R17.2 for related diagnostics.  This may 
stop iterations if no nearby value is known. 

 
498 Skipping <nn> repetitions after error flag set.   

This occurs during bootstrap iterations when invoked by EXECUTE command. 
 
Setup FOR[variable(=values)] missing ]. Cannot continue. 
In FOR[variable...] variable name is not recognized. 
In FOR{variable=list], list is unreadable or > 100 values. 
In FOR[variable=list], list item is not an integer. 
FOR[variable] implies more than 100 repetitions. 
These diagnostics are produced by problems in setting up a model command with the 
conditional MODEL ; For [condition] ; ... $ 
 

498 diag='Cannot use FOR[variable] during bootstrap iterations' 
diag='No nonempty subsamples were found!' 

 
499 DSTAT, Stratification variable value is > 50.   

There are too many strata. 
 
500 Variable  <AAAAAAAA> has no variation. Cannot compute ACF. 
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501 Bootstrap could not find estimated parameter  <AAAAAAAA>. 
Check the EXECUTE command. 
 

501  GROUP=Name. Cannot identify the name. Check vars. 
Histogram can only plot 4 groups at a time. 
Data for multiple histograms must be 0 < x < 40 
Data for multiple histograms must be integers 0-39 

 
502 Matrix specified in bootstrap setup is not a vector. 
 
503 Too few bootstraps were run to finish analysis.   

The estimator wants at least as many replications as there are parameters. 
 
504 Estimated result,  <name given> never changed.   

Bootstrap repetitions did not produce any variation in the item being estimated. 
 
505 Negbin/ZIP/Het is over specified/inestimable. Use POISSON.   

This happens if estimated θ goes to zero. 
 
506 Use POIS ; ZIP ; ... for LOGIT w/o heterogeneity.   

The model specification appears inconsistent.  It looks like a request for a selection 
model, but is not specified correctly. This is a guess. 

 
507 Insufficient selected observations to fit Poisson with selectivity. 
 
508 Matrix panel function, list of vars is not right.  

The specification must be variable(s) followed by a stratification variable.  Either the 
wrong number of variables is given or they do not look right for the function.  This is 
function specific. 

 
509 GSUM( specification ) must begin with a namelist then  

comma....MATRIX function) 
 
510 Did not recognize namelist in GSUM function. 
 
511 Observation= <nnnnnn>,  Variable= <xxx.xxxx>) bad stratum.  

The value for the stratification looks inappropriate. 
 
512 Target name for SCL function must be < 7 characters. 

The value given for the SCL function must not be a variable. 
Did not find opening and closing parens for SCL fn. 
Expected NAMELIST comma VARIABLE in SCL(.) not found  
NAMELIST specified inside SCL function does not exist. 
VARIABLE specified inside SCL function does not exist. 
SCL function creates new NAMELIST. 10 already exist. 
These diagnostics are for the Scl function in CREATE.  
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STR variable has missing values. Cannot continue. 
 Stratum > 200,000 obs. Table has overflowed. 
 Nonsense value for group size. Cannot continue. 
 Panel moments. Cannot ID left side matrix. 
 Variable or list name on RHS of moment is not recognized. 
 Variable name after [ is not recognized. 
 In [residual,panel # or name], cannot ID panel spec. 
 Fixed panel group size given is not positive. 
 Sample size is not a multiple of fixed group size. 
 Sum of variable group sizes is > sample size. 
 Group means fn. must provide variable and panel spec. 
 Data area is full. No room to store group means var. 
 Group means: Variable does not exist in data set yet. 
 Cannot replace variable with own means. Use a new name. 
 Group means panel spec must be ;STR=spec or ;PDS=spec 
 GroupMeans(Variable,pds). Pds is not a # or variable. 
 These diagnostics are for the Group Means function in CREATE. 
 
 Can only RANK one variable per CREATE command. 

Syntax error in CREATE;Name=Rnk(variable). 
Cannot locate variable in Rnk(variable) function. 
Rnk(.) can only be applied up to N = 100,000 obs. 
These diagnostics are for the Rnk(.) function in CREATE 

 
  Create;[Lag]=value$ Could not read value. 
 

Could not compute sample. See preceding diagnostic. 
 This occurs when attempting to use the Mvn function to create a random sample. 
 
513 Cannot identify variable in EXPAND function. 
 
514 MATRIX in CREATE; ... = matrix. Name not in table. 
 
515 Namelist created by matrix move to data: conflict. 
 
516 HISTOGRAM : Bad limits= <nnn> and <nnn>. 
 Histogram can only plot 4 groups at a time. 
 GROUP=Name. Cannot identify the name. Check vars. 
 Data for multiple histograms must be integers 0-39 
 You gave <nn> ;LABELS for <nn> groups. 
 
517 Cannot plot. No variation in LHS variable. 

Cannot plot. No variation in RHS variable. 
Cannot produce centipede plot with > 1 LHS variable 
Multiple plots is only available with PLOT command 
Limits and Endpoints must be determined internally. 
Data must be sorted (internally) for multiple plots. 
;Regression is not available with multiple plots 
Cannot stratify data with multiple plots. 
Multiple plots is limited to 5 LHS and RHS variables. 
Multiple plot needs same number of RHS and LHS vars. 

 
518 Stratified plot must use PLOT for 1 RHS & 1 LHS variable. 
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519 Demonstration program does not support READ or APPEND. 
Sorry, NLOGIT_ACA does not support IMPORT or APPEND. 

 
520 Cannot rearrange a matrix after READ. 

Labels cannot be installed by APPEND.' 
Error in ;LABELS=column. Cannot continue. 

521 Use matrix transpose to rearrange matrix after READ. 
You tried to read your data into a matrix with the By Variables specification.  Just read 
the data into the matrix, then transpose the matrix. 

 
522 Not Used. 
 
523 Cannot merge files into a matrix. 

This diagnostic is produced by the merge feature in READ invoked with GROUP = 
variable.   

 
524 Cannot merge file, no variables exist yet. 

Cannot merge data arranged By Variables. 
APPEND cannot be used to merge data sets. 
Cannot merge data in .WK1/XLS/DIF files. 
Did not find your GROUP variable:  <AAAAAAAA>. 
Data set is not a multiple of group size. 
Bad group counter = <nn>. Row= <nnnnnn>,  group = <nnnnnn>. 
You must specify NOBS to expand GROUPED data. 
Reading only  <nnnnnn> obs into <nnnnnn> groups.   
These diagnostics are also produced by the merge feature in READ invoked with 
GROUP = variable.  There is a mismatch between the two files. 

 
525 Cannot rearrange a binary file into a matrix. 
 
526 Extract from binary file. You must give COLS=... 
 
527 Problem with worksheet file. Nonsense dimensions. 

Found NREC= <nnnnnnnn>,  NVAR= <nnnnnnnn>. 
 
527 DIAG='ByVar,;FORMAT and ;Blanks not supported with Labels=j' 
 
528 Same as 527. 
 
529 RECODE must begin with NAME(...=...,...). 
 
530 Invalid number given for recode. Unable to recode. 
 
531 Closing parenthesis not found where expected.  

This is produced by a format for reading data. 
 
532 Unreadable data encountered at record <nnnnnn>.   

This is usually produced by alphabetic data appearing where a number is expected. 
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533 Warning: <nnnnnn> observations would not fit in data area. 
This is generated by APPEND when you are appending a large number of observations.  
This will usually result in the entire read operation being aborted. 

 
534  The last <nnn> variables specified would not fit.   

This is generated by APPEND. 
 
535 A name requested by READ is invalid.   

The name begins with a number, punctuation mark, etc. 
 
536 A name requested by READ is already in use.   

In this case, a new name, Xnnn is created.  It is better to correct. Default names are 
difficult to keep track of. 

 
537  APPEND: No match found for <AAAAAAAA>.  

This is only a warning. The program is creating a new variable.  You probably did not 
intend this. 

 
538  Warning: Name <AAAAAAAA> was not useable. Replaced with <AAAAAAAA>.  

See diagnostic 536. 
 
539 Variable list: The unidentifiable string is <aaaaaaaaa>.   

A list that is supposed to provide a set of variable names cannot be translated. 
 
 Name range given, values are not low-high 
 A command contains a list of variables AAAnnnn – AAAmmmm.  

 
       Interaction Effects not allowed in this context 

> 20 interactions in command - too complex. Table overflow. 
> 50 interactions in table. Table overflow. Use DELETE 

 
540 Variable list in command is > 150. Too large for models. 

EXPAND(name) is not a valid form in this context. 
 
541 Only DSTAT and WRITE;list... may exceed 150 vars. 
 
542 Only one LHS variable for semiparametric estimator. 

Panel data estimators not available for semiparametric. 
Semiparametric estimator cannot use weights. 
Semiparametric does not support heteroscedasticity. 
Robust VC estimator is not available with semiparametric. 
SCOBIT model not supported by semiparametric. 
Semiparametric estimator cannot fit random effects. 
Cannot use semiparametric for selection model. 
Semiparametric cannot fit with choice based sampling. 
Semiparametric cannot make out of sample predictions. 
These diagnostics are produced by the semiparametric estimator for binary choice. They 
are produced by requests for unavailable options with this model.   
 
Number of GME support points must be one of 2,...,9 
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543 Kernel estimator needs LHS binary or proportions data. 
 
544 Burr model is not available for panel data. 

Burr model is only for binary choices. 
Heteroscedasticity is not available for Burr model. 

 
545 Random Effects Model requires panel data.  (LOGIT). 

Random Effects Model requires individual data.  (LOGIT). 
546 Fixed effects model is only available for binomial Y. (LOGIT). 
 
547  Heteroscedasticity model is only for binary outcomes. 

Heteroscedasticity model may not use panel data. 
Selection model may not be based on het. logit. 
Heteroscedasticity model is only for individual data. 

 
548  Error: N not a multiple of T. N= <nnnnnnn>  T= <nnnn>.   

In a balanced panel, the  full sample size must be an even multiple of the group size.   
 
Bad counter= <nnn>. (>200?) Row= <nnnn>,  group= <nnnnnn>.  
In an unbalanced panel, if a group size seems to be extraordinarily large, the program 
concludes that the counter variable is probably miscoded. 

 
549 Not enough workspace for <nnn> pds. and <nnn> vars.   

This should be unusual.  It would happen with a huge model and large group sizes. 
 
550 Unable to create a new namelist for probs.   

The multinomial logit request for probabilities creates a set of variables. 
 
551 Not enough room in data for new variables (probs).   

The multinomial logit computation of probabilities creates several variables. 
 
552  Data area is <nnnnnn> by <nnnn> WKS cell is  

(<nnnnnnn>,<nnnnnn>). 
A cell in a worksheet file has a strange row, col index. LIMDEP cannot place the value. 

 
553  Same as 552 for placement into a matrix. 
 
554  A label cell is not ascii text. Cannot read file.   

Something peculiar is in the first row of a spreadsheet file.  Make sure it is just rows. 
 
555 Row index in XLS file > 65536. Cannot read it.   

These are bad data in a spreadsheet file.  It should not be possible for Excel to write a 
row number larger than 65536 . 

 
556 Cannot fit exponential model for panel data. 
 
557 Invalid setup (m1,m2) for generalized F model. 
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558 Variance het. model is for Logistic,Weibull,Normal models. 
The variance heterogeneity model is not available for the truncation model. 

 
 SURV cannot have both SELECT and HET/NORMAL 
 SURV with SELECT. Need to fit PROBIT;Hold model first. 
 This model is for MODEL=W, L, N, E, G or P only. 
 SURV with HET or SELECT does not support Variance Het. 
 SURV with HET or SELECT is not available for panels 
 SURV with HET or SELECT does not support truncation. 
 SURV with HET or SELECT does not support splitting. 
 Cannot fit this model with linear restrictions (;RST). 

These diagnostics are produced by specification of a SURVIVAL model with 
heterogeneity. 

 
559 Data error. Individual <nnnn> T0=xxxx, T1=xxxx. 

This is a data error for one of the loglinear survival models with time varying covariates.  
T0 must be less than T1. 

 
560 Data error. Individual,<nnnnn>, has <nnnnn> records?  
 
561 Data ended expecting,<nnnn> more lines for individual <nnnn>. 
 
562 Gompertz model: Obs. <nnnn> duration < 0.  
 
563 Data error: OBS.= I6,’ T= F8.2,’ Limits= 2F8.2). 
 
564 Splitting model producing P=1 for all obs.  
 This is probably the wrong model for these data. 
 
565 IF... or REJECT... Cannot ID string  <string is given>.   

This is probably a name in the string that is not in any of the tables (matrix, variables, 
scalars, etc.). 

 
566 1 x 1 data matrix in use is a missing value. 
 
567 Missing values make matrices nonconformable. 
 
568 Cannot resolve exponent in matrix power. 
 
569 MATRIX Error is in  <string is given>. 
 
570 Expected <nn> parameters for  <proc. name>. Found <nn>.   

Your EXECUTE command for a procedure has the wrong number of parameters in the 
list.  The offending character string is then listed. 
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571 MINIMIZE/MAXIMIZE needs function definition with ;FCN=... 
 

Expected subfunction name to appear in FCN=... 
FUNCTION;... needs to include ;Keep=variable name. 
FUNCTION;...;Derivatives=namelist. Error in list name. 
Number of subfunctions must be less than 51. 
Invalid subfunction name <AAAAAAAA> is a (scalar, etc.) 

  PARTIALS or DECOMPOSE;Function... must provide ;Labels 
FUNCTION;DERIVATIVES=namelist. Wrong # of names in list. 
Derivatives namelist contains ONE or name of KEEP var. 
 

573 Variable name for quadrature equals a variable name. 
Variable name for quadrature equals a matrix name. 
Variable name for quadrature equals a scalar name. 
Variable name for quadrature equals a parameter name. 

 All these are different names from what was expected in this context. 
 
574 GMM estimator unidentified: NPARM > # equations. 
 
575 Conflict:param. and <AAAAAAAA> have the same name: <AAAAAAAA>.  

You are using a label for a parameter in your optimization command that is already in 
use for something else, such as a scalar or matrix. 

 
576 The variable in Plot(label) does not appear among ;Labels. 

CPLOT needs 2 labels in Plot(label1,label2) spec. 
 
577 Observation  <nnnnnn>  variable  <AAAAAAAA> is missing.   

This MATRIX operation does not bypass missing values.  Use REJECT. 
 
578 Incompatible B and RHS=list were given for kernel.  

A simple count of elements in B and variables in Rhs does not match.  It looks like B is 
from a different model. 

 
579 Sample size= <nnnnnn> is too <large or small> for kernel estimator. 
 
580 Error occurred attempting to open file for MGET/MPUT. 
 
581 Error occurred in READ/WRITE during MGET or MPUT. 
 
582 Found [ELSE], but no prior IF[...] was set. (MATRIX command.) 
 
583 Problem with matrix. See previous diagnostic.   

This is generic.  There are several possible conditions.  A previous diagnostic will 
indicate the problem. 

 
584 Expected number in Quad(points,type) not found. 

Expected L or H in Quad(points,type) not found. 
Quad points not one of the available set. 
This is just a request to list the weights and nodes for quadrature.  
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585 Total cells= <nnnnnn>, Space= <nnnnnn>, Cells needed = <nnnnnn>.   
The result of a MATRIX command is too large.  Maximum size is 22,500 cells. 

 
586 Estimated E[y1|y2,...]=0. Cannot compute partials.   

Marginal effects for the multivariate probit model produce an unusable numeric result.  
LIMDEP is unable to continue. 

 
587 You did not define EQ<n> for  <AAAAAAAA>.   

This is the multivariate probit. You have fewer equations defined than there are Lhs 
variables. 

 
588 Error translating function in optimization command. 

The offending character string will be listed. This is usually caused by an unrecognized 
name in the expression.  This will be listed in a previous error message. 

 
589 Error is in  <character string is listed>.   

This is the translation error in WALD or an optimization command. A previous 
diagnostic will show the cause of the problem. 

 
590 Obs.= <nnnnnn>  Cannot compute function:  <a hint is given>.   

This is produced by the optimization programs.  It is data dependent.  The hint may be 
able to show the source of the problem, for example zero divide, number too large for 
gamma function, etc.  You must examine the data to determine the exact cause.  The 
observation that produced the error is given. 

 
591 Cannot censor data with R.E. Model.   

The ordered probit model with random effects cannot also accommodate censoring.  
This is for cross section data only.   

 
 HIOP model does not allow censoring. 
 HIOP model does not allow panel data treatments. 
 HIOP model does not allow selection or zero inflation. 
 HIOP model requires HI1=list or HI2=list, not incl. ONE. 

These diagnostics relate to the hierarchical ordered probit model. 
 
592 Censoring indicator <AAAAAAAA> = <xxxx> at obs <nnnnnn>.   

The censoring indicator for the ordered probit model is supposed to be binary. 
 
593 Not enough uncensored observations to continue. (OProbit.) 
 
594 Stratum <nn> has no observations in it. (Ordered probit.)   

LIMDEP cannot estimate the threshold parameters for this stratum.  
 
595 Warning, NPRD= <nnn>,  P(i) may be inaccurate.   

When you compute a random effects model, the group probability equal to the product 
of the member probabilities is computed, not the sum of logs.  If you have many periods, 
this becomes too inaccurate to compute the log likelihood with it. 

 
Hessian is singular at rho=0. Cannot compute LM test. 
Problem with random effects probit or ordered probit. 
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596 Error: N not a multiple of T. N= <nnnnnn>. T= <nnnnnn>.   
For a balanced panel, the full sample size should be a simple multiple of the group size. 

 
 Bad counter=<nnnnnn>.(>75?)Row= <nnnnnn>, group= <nnnnnn>.   

The counter variable takes a peculiar value, nonpositive or unexpectedly large. 
 
597 Not a matrix save file!  MGET request uses the wrong type of file. 
 
598 You must provide ;NOBS=value to read into matrix. 
 
599 Nobs*Nvar > maximum matrix size of 22500 cells. 
 
600 Simplify expression or separate WALD functions. 
 
601 Obs: <nnnnnn>  <AAAAAA> = <xxxxxx>. Gradient not computable.   

The MLE for the Box-Cox model requires all data to be transformed to be nonnegative.  
The transformation can be computed even for zero, but the derivatives of the log 
likelihood as well as the correct asymptotic covariance matrix require all data to be 
transformed to be positive. 

 
602 Error attempting to convert date: <date string given>.   

This is an internal error that should not occur.  You may be using a date in a CREATE 
function that is out of range.  For example using yearly data from 1960 to 2000, and 
creating with the function Ind (2001) might cause this error since this date is out of 
range. 

 
603 PDS= <nnnnnn> NOBS= <nnnnnn> Panel is not balanced.   

Your REGRESS command suggests the panel is balanced with ; Pds = value, but the 
sample size is not a multiple of the indicated number of periods. 

 
604 No room in data area to create group indicator. (REGRESS ; Panel) 
 
 The nested random effects model is only for regression. 
 Use only ;STRATUM and ;CLUSTER for the nested RE model. 
 Nested random effects model must be unconstrained. 
 Nested random effects model does not support AR(1). 
 Nested random effects model does not support weights. 
 Cannot fit nested RE model with random parameters. 
 Nested RE model cannot do Murphy Topel 2 step VC. 
 These diagnostics all relate to the panel model with nested random effects. 
 
605 PDS variable has missing values. Cannot continue. 

STR variable has missing values. Cannot continue. 
 
606 Stratum <nnnnnn> has > 20000 obs. Is this a panel?   

This does not appear to be a panel. 
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607 Too many groups for noncontiguous panel data.   
When data are arranged haphazardly in the sample, if the sample is small enough, it is 
still possible to create the counters and pointers needed for the regression.  If N is too 
large, however, estimation is not possible. Try sorting the data so they are more 
convenient. 

 
608 AR(1) model cannot be computed with weighting. 
 
609 Bad setup for Haus/Tay estimator.kx1+kx2+kz1+kz2 not =#rhs 

Hausman/Taylor estimator: KX1 must be positive 
Model is not identified. KX1 must be >= KZ2. 
Hausman/Taylor. Must provide s2e,s2u, both positive. 

 
610 A valid observation has a missing PERIOD variable. 
 
611 Outer strat. var takes value > 10000. Recode.  

This is the two way stratification in the random effects model. The outer stratification 
variable must be a complete sequence of integers. 

 
612  Number of bootstraps must exceed K for VC matrix. 
 
613 (N,K) must not exceed (5000,15) for LAD estimator. 
 
614 # RHS variables may not exceed 100 for ICLS. 
 
615 NOBS may not exceed 100,000 for ICLS. 
 
616 Error in specification of equality constraints. 
 
617 Lower bound for X( <nn>) is greater than upper.  

Your linear programming problem is not set up properly. 
 
618 Solution vector has infinite components.  

There is no solution for the linear programming problem. 
 
619 No feasible solution exists. 
 
620 Maximum iterations exceeded. 
 
621 Numerical instability.  Cannot solve problem. 

 
621 Panels for Malmquist indices must be balanced. Fixed T. 
 Cannot bootstrap Malmquist indices. NBT=# is ignored. 
 Cannot compute allocative inefficiency for Malmquist. 
 Number of prices supplied must equal number of inputs. 
 ONE is not a valid OUTPUT (LHS) variable. 
 ONE is not a valid INPUT (RHS) or PRICE (RH2) variable. 
 DEA is limited to 16,000 observations (firms). 
 Peers tabulation is only for small samples - N <= 1000. 
 Panel data must be balanced, no missing, no zeros. 
 Number of bootstraps must be between 10 and 1000. 
 Not enough workspace for the number of bootstrap reps. 
 Solution vector has infinite components. No soln. 

These diagnostics are checks on the data envelopment procedure in FRONTIER. 
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622 Inconsistency found in constraints. 
 This is a problem in setting up a linear programming problem. 
 
623 Check for error in  <string is given>.   

Look for: Unknown names, pairs of operators, e.g., */ 
This is a general diagnostic for the CREATE command.  Something in an expression 
could not be identified.  A character string that contains the error will be included in the 
diagnostic also.  Note, during compilation, strings in parentheses are reduced from the 
inside out, and internally, the reduced string will be given a symbol with a lower case 
letter.  Thus, the string from X=(A+1)*/(C+D) (which contains an error) might appear in 
the diagnostic as ‘aa*/ab’ where the ‘aa’ is the symbol for (A+1), etc.  The internal 
coding with lower case letters is used to break down expressions in parentheses.  The 
first letter indicates the subcommand – subcommands are separated by semicolons.  ‘a’ 
is first, ‘b’ is next, etc.  The next letter indicates the expression in parentheses in the 
order encountered.  Thus, ‘ab’ is the D+1.  Unfortunately, when there are nested 
parentheses, this can become confusing, since the listing just continues in order.  Thus, 
the final expression in ((A+1)*/(C+D))  is ‘ac.’ 

 
624 No valid data found in sample=1 to <nnnnnn>. 
 A SAMPLE command, SAMPLE ; n1 - n2 $ produced a sample with no valid data. 
 
625 2 way F.E.M. No observations in period <nnnn>.   

The period dummy variable coefficient cannot be estimated. (Column of zeros.) 
 
626 Insufficient degrees of freedom for group means regression. 
 
627 You must fit the PROBIT or LOGIT model to use ZIP.  

This is for the Nagin and Land model for counts. 
 
628 A variable name appears more than once in list. 
 This is the setup for the Nagin and Land estimator for the Poisson model. 
 
629 GAMMA count model is unstable when Vy/Ey > 10. 
 LIMDEP terminates.  You might try the negative binomial model. 
 
630 Error: N not a multiple of T. N= <nnnnnn>. T= <nnn>.   

This is for the count data model for panel data.  You are using a balanced panel, but the 
sample size is not a multiple of the group size. 

 
631 Bad counter= <nn>. Row = <nnnnn>  group= <nnnnnn>. 

The group size for a panel data count model took a nonpositive value.  This occurs 
during a data check. 

 
632 Counter variable contains an error. Check values.  

In the count data model for an unbalanced panel, it looks like the counter is out of sync.  
The count took the observations for a group past the end of the current sample. 
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633 Negative LHS value found. Cannot fit the Poisson (count) model. 
Variable  <AAAAAAA> is always zero. 
No variation observed in <AAAAAA>. 
Singular Hessian in  <AAAAAA> model for  <AAAAAA>. 
Maximum iterations fitting  <AAAAAA> model for  <AAAAAA>. 
The program that produces this diagnostic is used to compute starting values for Poisson, 
probit, logit, and several other models.  The diagnostic is specific to the kind of model 
being computed. 

 
Diagnostics 634 - 637 are produced by the Arellano and Bond, dynamic panel data estimator, called 
by REGRESS ; Panel ; Dpd ; ... 
 
634 Unable to read your ;START=LIST specification. 

4 values given in ;START must sum to number of RHS variables.   
4 values given in ;START must be nonnegative.   
;START=list must give KX1,KX2,KF1,KF2[,s2u,s2e].   
Values given for s2u and s2e must be positive.   

 
635 Your model is too large for this pgm. (> 50 RHS vars.)   
636 This estimator is limited to T(i) <= 100 periods. 

You have too many instruments (moment conditions). 
 Invalid values given for First date - Last Date in DATE=... 
 DATE=variable for DPD must give a sequence of integers 
 Date given is not within First - Last as in command. 
 DPD: Looking for DATE=Variable,first date - last date. 
 DATE variable given for DPD/Panel is not in names table. 

Unable to construct model for ZTYPE=P and unbalanced panel 
 
637 Unable to invert moment matrix for model VC matrix.  
 
Diagnostics 638 – 641 are produced by the random coefficients model. 
 
638 Last group: <nnnn>  ID= <nnnnnn>. Only 1 observation. 
 The random coefficients model cannot be computed. 

i= <nnnn>, index= <nnnnnn>,  T(i)= F6.1,’ too small. 
 
639 i= <nnnn>, index= <nnnnnn>, singular moment matrix. 
 
640 i= <nnnn>, index= <nnnnnn>, Perfect fit, s^2=0. 
 
641 Not enough groups (only <nnn> ) to fit model. 
 
642 Heteroscedasticity model does not support control variable.    

This is only for the sample selection model. 
 
643 Heteroscedasticity model does not support instrumental variables.  

This is only for the sample selection model. 
 
644 Cannot select on  <AAAAAAAA> =  <nnn>.   

Sample selection model with multinomial logit selection equation. You used ; Choice = 
jj, but the Lhs variable in the logit model does not take this value. 



R28: Diagnostics and Error Messages  R-737 

645 Hausman and Wise attrition model must be preceded by PROBIT;HOLD... 
Starting value for SIGMA is not positive. 
Start values for r12 and r23 must both be in (-1,1). 

 
646 Starting value for RHO must be in (-1,+1). 

Staring value for SIGMA must be positive. 
 
647 Label  <AAAAAAAA> is used twice in procedure.  
 The parameters in a procedure must each have a unique label. 

Loop index  <AAAAAAAA> used in more than one DO. 
 
648 Execute changes a protected scalar, S etc.   
 EXECUTE ; Name = values $ cannot change the scalars S, RSQRD, etc. 
 
649 Loop index  <AAAAAAAA> was used in EXEC command.   
 Your DO loops must use different index names from the EXECUTE command. 
 
650 ENDDO; <AAAAAAAA> $. No matching DO found. 
 
651 DO...; <AAAAAAAA>;...$ No matching ENDDO found. 
 
652 GROUPED: Obs= <nnnnnn> Limit values are not ordered. 

If the limit values are constants, you can see the problem in the command.  But, if the 
limit values are given by variables, you must look at the data to find this problem. The 
observation number is given for this reason. 

 
653 Marginal effects, stratification variable not in table. 
 ; Margin = name for stratification gives an unknown name. 
 
654 Too many strata in marginal effects setup. > 9. 
 
655 Marginal effects, Variable = <AAAAAAAA> stratum <nn> is empty. 
 
656 EXEC;WHILE or UNTIL... Condition fails on the first try.   

Cannot get started. 
 
657 Invalid value (K > 0 to 15000) given for ;DRAWS=Nb. 
 
658 Error encountered translating ;LCM=list.   

The problem is an unknown variable name. 
 
659 Maximum of 10 variables allowed in ;LCM=list. 
 
660 Not Used.   
 
Diagnostics 661 - 663 are produced by the WRITE command. 
 
661 Problem with format given for WRITE command. 
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662 Cannot process internal ( ) or / in [format].  
Did not find expected ending ] in format.] 
Format type is not X, F, I, D, or E. 
I, F, D, or E format types need field with specification. 
No .d specification was given for D, E, or F format. 
The .d format is not used for X or I format. 
X format code does not allow w.d in spec. 
Error in repeat count of format specification. 
Error in w part of w.d spec. in format code. 
Error in .d part of w.d format specification. 
Dw.d/Ew.d requires w-d > 5, Fw.d, w-d > 1. 
Format does not give enough codes for variable list. 

 
663 Cannot APPEND. You have not opened a file. 

There can only be one line per observation.  The WRITE command writes to the screen 
when you do not give a file name.  This is an error in the WRITE operation.  Check the 
FORMAT or file specification. 

 
664 No observations in stratum <nn>.  
 This is the loglinear survival model or the Cox model.  A stratum is empty. 
 
665 Frontier with ;HET must give ;HFv and/or ;HFu. 
 You must fit PROBIT ; Hold before FRONTIER;SELECT' 
 Battese-Coelli model requires a panel data set.' 
 Battese-Coelli model does not support hetero.' 
 Scaling model requires ;RH2=list. (Else use ;HET;HFu &/or v) 
 Scaling model requires ;RH2=list of variables (not ONE) 
 Scaling can only have HFU. s(v) is a constant. 
 SC form of frontier scaling requires ;HFU=list 
 Basic SF model was inestimable. Trying panel model. 
 
666 Str variable= <AAAAAA>  Obs.= <nnnnnn>,  value= <nnnn> > 100. 

This is the stochastic frontier model using panel data.  A stratum has too many 
observations. 
 
Stratum  <nnn> is empty. Unable to continue.  
This is for the frontier or limited dependent variable with panel data.   
 
Use REGR;Lhs=one ;Rhs=one;Str= <AAAAAAAA>$ to create _STRATUM.   
This is a way to compute a correctly created stratification variable for the panel data 
estimators. 

 
667 Warning, NPRD= <nnnn>; P(i) may be inaccurate. 

To compute the log likelihood it is necessary to compute the product of the densities for 
all observations in the group.  If the group size is large, this is likely to be too small to 
compute accurately. 

 
668 Error: N not a multiple of T. N= <nnnnnn>. T= <nnnn>.  
 In a balanced panel, the sample size must be a multiple of the group size. 
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669 Bad counter= <nn>. Row= <nnnnnn>,  group= <nnnnnn>. 
 The count variable for a panel takes an unusable value, such as zero or negative. 
 
670 Variable  <AAAAAA> has no variation. No regression.  

The error occurs computing a least squares regression, possibly for many different 
models. 

 
671 GARCH model with Q=0 is fit by OLS. 
 
672 Nobs is < # groups. Cannot compute full GLS. 

In the TSCS model, the number of periods must be larger than the number of groups.  If 
not, then Sum(ei ei’) does not have full rank, and GLS cannot be computed. 

 
673 TSCS: Error reading ;GROUP=list... 
 
674 Cannot compute TVC <nn>, Observation=<nnnnnn>. 

This occurs during estimation of the Cox model.  It is data dependent, so the observation 
is given. 

 
675 Found nonpositive LHS variable in loglinear model. 

Data for SURV:inv.gauss must be in log form. Are they? 
Found value of Y outside (0,1). 
These are checks on the values of the dependent variable for the beta regression, gamma 
regression, exponential regression, or inverse Gaussian regression. 

 
676 Fixed effects model requires ;PDS=specification. 
 
677 Counter <=0: <nnnnnn>. Row =  <nnnnn>,  group= <nnnnn>. 

This occurs during a fixed effects model.  There are many different models in the ; Fem 
group.  This occurs during a data check on setup for the panel. 

 
678 Error: N not a multiple of T. N= <nnnnnn>. T= <nnnn>.  
 In a balanced panel, the sample size must be a multiple of the group size. 
 
679 Obs. <nnnnnn> is < 0. Cannot fit Pois/NegBin. 

Obs. <nnnnnn> is <= 0. Cannot fit loglinear model. 
Obs. <nnnnnn> = xxxxxx FEM/probit mdl needs 0/1 or proportion. 
All of these are data checks on appropriate values for the Lhs variable while fitting a 
fixed effects model. 

 
680 Latent Class Model requires a panel to be estimated. 
 You specified ; Lcm without specifying a panel with ; Pds = spec. 
 
681 Did not find positive values of lambda and sigma. 

LIMDEP is looking for starting values for the panel data version of the stochastic 
frontier model.  You must precede the panel data version with an identical cross section 
model command. 
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682 B vector is too short. Did you fit frontier for B0? 
Expected to find B from previous FRON..;PAR command. 
Starting value for LAMBDA=su/sv is not positive. 
Starting value for SIGMA=sqr(s2u+s2v) is not positive. 
LIMDEP is looking for starting values for the panel data version of the stochastic 
frontier model.  You must precede the panel data version with an identical cross section 
model command. 
 

682 This model must be fit first w/o latent classes. 
 This model must be fit first w/o RPM specified. 

Model spec. must be identical to the initial estimator. 
Starting value for LAMBDA=su/sv is not positive. 
Starting value for SIGMA=sqr(s2u+s2v) is not positive. 
These diagnostics are produced by the Battese and Coelli frontier estimator. 

 
683 B vector is too short. Did you fit zip model for B0? 

ZAPTAU not found or wrong size. Did you fit ZIP mdl? 
Expected to find estd. ALPHA. Did you fit ZINB mdl? 
LIMDEP is looking for starting values for the panel data version of the ZIP model.  You 
must precede the panel data version with an identical cross section model command. 

 
684 GROUPED/panel must be preceded by GROUP;Rhs=...,one...$. 

GROUPED requires internal limit values with ;LIMITS= 
 
685 This estimator does not allow ;RST or ;CML. 
 
686 Starting value for theta in negbin must be > 0. 

Starting value for sigma must be > 0. 
Starting value for rho must be in (-1,1). 
All of these are checks on an ancillary parameter for a panel data model.  This will 
generally not occur if the internally generated starting values are used, but can occur if 
you supply your own. 

 
687 Your TIME variable exceeds maximum period from PDS. 
 
688 Iterations aborted by user request. Exit status=-1. 
 
689 Exit from iterative procedure. <nnnnn> iterations completed. 
 
690 This model is inestimable if parms. are correlated. 

The random parameters stochastic frontier model allows parameters in the mean, the 
mean of the truncated distribution and the variance all to be random.  They cannot be 
correlated, however. 

 
691 Biv Prb needs y1,y2, RH1 and RH2. MDL is incomplete. 
 Your bivariate probit random parameters model command is incomplete.  
 
692 Bivariate Probit needs y1,y2, RH1 and RH2.  

Your model command is incomplete. 
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693 For ;MEANS, need ONE in both SELECT and PROBIT.  
In SelectREM, both equations must contain ONE. 

 This is the panel, random parameters (Zabel) form of the sample selection model. 
 
694 FCN for RP model is variable(t) or [t]. t=N,T,or U. 

Did not recognize variable name in FCN setup.   
In the ; Fcn = (name) or [name] specification, the name must be included in the Rhs 
variables. 

 
695 Variable in FCN=name ( < or [ type ] > or > is not in  

RHS/RH2/HFN list.  
Note that if a variable is in an Hfn list, it will usually appear as [name] not (name). 

 
696 There are no complete obs. in the data set! 

If you have a panel that has missing values in every group, the model will be 
inestimable. 

 
697 Previous SELECT model does not match. Was it MLE? 

Did not find sigma>0 and -1<rho<1 in previous MLE. 
SELECT ; Rpm ; ... must be preceded by an identical MLE for the model to produce 
starting values. 

 
698 Unsuccessful initial estimation to get start values. 

This is produced setting up the random parameters, fixed effects, or latent class models 
for any of the model types, probit, tobit, etc.  If this diagnostic occurs for a cross section 
version, then the panel version will not be estimable either. 

 
699 GROUPED requires internal limit values with ;LIMITS=. 
 
700 GROUPED/panel must be preceded by GROUP;Rhs=...,one...$. 

The panel data version requires an identical cross section version to provide the starting 
values. 

 
701 Starting value for RHO must be in (-1,1).   

This is produced while reading your starting values for a panel data version of the 
bivariate probit model. 
 
Start value for RHO must be in (-1,1). 
This is produced while reading your starting values for a panel data version of the 
sample selection model. 

 
702 Starting value for sigma or theta must be > 0. 

Start value for sigma, theta (or lambda) must be > 0. 
This is produced while reading your starting values for a panel data version of the tobit 
or negative binomial or other limited dependent variable model. 

 
703 Cannot list more than 10 outcomes. 
 The panel data models with ; List are limited to group sizes of 10 or less. 
 
  



R28: Diagnostics and Error Messages  R-742 

704 Panel 2sls, # INST vars. must be >= # RHS vars. 
Panel 2sls may have only one of ;FIX,;RAN,;DIF,;MEA 
Panel 2sls, Too few observations to compute estimator 

 
705 NOTE: Analytic Hessian is not PD. Using BHHH for variances.  

The latent class models compute the analytic second derivatives matrix for all models.  
If convergence was not very close to the true function maximum, this matrix may not be 
positive definite.  If so, the BHHH estimator is used instead. 

 
706 Demonstration version does not support SAVE. 

NLOGIT_ACA can only read its own project file. 
 
707 Demonstration program can only load its own file. 
 
708 SAVE file is badly constructed. Cannot read it. 
 
709 Data array in file is < Nmax*Kmax. Cannot store. 
 
710 Unable to load project. Restarting. NKMAX=200000. 
 
711 CREATE  Variable in EXPAND is not an integer from 1 to 100. 
 
712 EXPAND for  <AAAAAAAA> needs <nnn> variables. Only <nnn> are  

available. 
 
713 You already have 10 namelists defined. Cannot EXPAND. 
 
714 Variable specified for recode is not in NAMES=... 
 
715 Both LHS variables are dichotomous. Use BIVARIATE PROBIT. 

Noninteger value found for one of the LHS variables. 
Unable to display frequency table. Both dimensions > 8. 
One of the LHS variables takes a value > 20. 
No starting values were provided. 
Unusable starting vector. Needs B1,MU1,B2,MU2 (RHO opt.) 
The wrong number of starting values was found. 
Absolute value of start value for RHO is greater than 1. 
Exiting from function computation with error. 
Check setup for ;KEEP = name1,name2. Found an error. 
One of the outcomes almost never occurs.  Estimation of the threshold parameters will 
not be possible.  These diagnostics relate to the bivariate ordered probit model. 

 
716 In MATRIX ^ power, MATRIX is not square. 
 
717 MATRIX^matrix power. Not same dimensions. 
 
718 Matrix^power. Exponent is too large, > 10. 
 
719 Cannot raise non positive definite matrix to negative power. 
 
  



R28: Diagnostics and Error Messages  R-743 

720 Raising negative root to noninteger power. 
 
721 Raising large root to power causes overflow. 

Overflow occurs when a number becomes too large for the computer.  This is 
approximately exp(638). 

 
722 Raising negative value to noninteger power.   

A matrix is being raised to a power. 
 
723 Raising large value to power causes overflow. 

Matrix being raised to a power produces a large number being raised to a large power. 
 
724 Expected no more than 5 specifications in ;SDV=list of 1 or *s. 

This is for simulation estimation by MAXIMIZE.  You may either allow free or unit 
constrained variances for the simulation variables. 

 
725 You must specify ONE of ;PDS or ;STR for a panel. 
 
726 Reordering can only be done for balanced panels. 

Your REGRESS ; Panel command requests that the observations be reordered.  This can 
only be done for a balanced panel. 

 
727 Can only reorder up to 100,000 observations. 
 
728 <nnnnnn> is not enough complete observations to continue. 
 You have too many missing values in the data set to fit the model you have specified. 
 
729 Unable to optimize function. Collinearity? 
 
730 Cannot optimize. Constraints are inconsistent. 
 
731 Variable <AAAAAAAA> always = <xxxxxx>. No variation! 

This applies to independent variables in a model.  This is checked at the time an OLS 
regression is computed, usually for starting values.  If it occurs, your model will not be 
estimable. 

 
732 Warning. OLS gives a perfect fit. 

This shows up in many possible contexts.  It usually means that the model you want 
cannot be computed. 

 
733 Cannot fit exponential survival model for panel data. 
 
734 SELECT AND BPROBT  Check setup for fixed effect SELECT model. 
 
735 Tobit and Poisson/FEM cannot keep cprobs. 
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736 Latent class form is not available for this model type. 
 
 The ;RST=list specification is not available for RPM. 

The ;CML=list specification is not available for RPM. 
R.E. is not supported for latent class models. 
 
Latent class form is not available for this model type. 
The REM=spec... is not supported for this model. 
 
Cannot HOLD probit results from an R.E. model. 

 
737 Selection RP model requires PROBIT;...;HOLD as usual for selection 

models. 
 
738 Error in ;TABLE = MODELNAME.  Check syntax. 
 
739 ;KEEP/RES/PROB/GROUP/CPROB, expected = name not found. 
 
740 ;KEEP/RES/PROB/GROUP,CPROB=name, name is too long. 
 
741 ;KEEP/RES/PROB/GROUP,CPROB=name, name is invalid. 
 
742 Cannot identify specification given for ;PDS=.... 
 
743 Cannot identify specification given for cluster.   

This needs ; Cluster = number or ; Cluster = a variable name to give the stratification. 
 
744 Invalid value given for quadrature nodes. Ignored. 
 
745 Panel estimators (;PDS=...) do not support ;CLUSTER=.... 
 
746 Cannot use both WTS and CLUSTER in fitting a model. 
 
747 Sample is too long to sort. N= <nnnnnn>. 
 The limit is 100,000 observations. 
 
748 ;SIGMA=NAME, sigma is supposed to be a matrix in this context. 
 
749 ;sigma=NAME only used for SURE,3SLS,NLSURE,GMME. 
 
750 ;REG/SPIKES/BARS/GRID/NOFILL/BARS only for PLOT and MPLOT. 
 
751 TIME=variable. Variable given not recognized. 
 
752 LIMIT=name or value. Name not recognized or bad value. 
 
753 ;LAGS=value for LSDV estimator. Could not read value. 
 
754 ;NBT=value (bootstraps). Could not read value given. 
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755 ;RHO=value is only for REGRESS and 2SLS. 
 
756 DSP=value (Negbin) or ;THETA=value (Box-Cox). 

The value given is not positive. 
 
757 ; Hold(IMR=...) No room to create IMR variable. Data area is full. 
 
758 ;Spikes or ;Bars=list. Could not read list of values. 
 
759 Name in expr not label,variable,scalar,matrix,list,or FNi. 

This is generated by optimization or WALD. 
 
760 Optimization or WALD. Expression has unmatched square 

brackets. 
 
761 Found \, expected \number\ did not find it. (Optimization or  
 WALD). 
 
762 Obs.<nnnnnn> of <AAAAAAAA> = <xxxxx>, not 0 or 1.   

Data for the multivariate probit model must be binary. 
 
763 Cannot identify namelist in ;UTILITY=namelist. 
 
764 UTILITY=name must specify a namelist of NY names. 
 
765 The namelist in UTILITY=name may not contain ONE. 
 
766 Did not find a valid name in UTILITY=name. 
 
767 CREATE, name in expr is not var.,scalar,matrix, etc. 
 
768 Have been unable to break down the command segment.   

Diagnostic 623 will follow this diagnostic and show the function in question. 
 
769   You must provide ;TRIALS=spec. for binomial model. 
 Fixed number of trials must be a positive integer. 
 Invalid missing value found for LHS variable. 
 Invalid missing value found for number of trials. 
 LHS variable for binomial model must be integer >= 0. 
 Number of trials for all obs. must be integer > 0. 
 Bad data found. Y must always be <= number of trials. 
 Did not find any nonzero values for LHS variable. 
 LHS variable always takes the same value. 
 These are all checks on the loglinear, binomial regression model. 
 
769 Invalid data for geometric model. Must be 0,1,2,... 
 Invalid data. Mean of Y must be positive. 
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770 MATCHing command must be preceded by PROBIT or LOGIT ;Hold. 
 MATCH can only analyze up to 200,000 observations. 
 ONE is not a valid outcome variable. 
 Invalid treatment dummy: Obs/Row=<NNN>/<NNN>= <NNNN>. 
 <NNN> valid obs. is too small for matching analysis. 
 There is no variation in the outcome variable. Check data. 
 There are no control observations in the sample. 
 There are no treated observations in the sample. 
 
771 LOGIT/RPM can only fit with up to 20 outcomes. 
 Data for LOGIT/RPM are not coded 0,1,...,J up to 19. 
 LHS variable for LOGIT must contain all values 0...J. 
 
772 ;Labels=list. Expected <NNN> names. <NNN> were given. 
 CLASSIFY: limit is 1,000 distinct groups. 
 CLASSIFY: Exceeding workspace. Too many variables. 
 CLASSIFY: Bad values given for priors. 
 CLASSIFY: Wrong number of priors given. 
 CLASSIFY: wrong number of labels given. 
 CLASSIFY: Singular covariance matrix for a group. 
 CLASSIFY: Priors must be between 0 and 1. 
 Priors for classes do not sum to 1. Check values. 
 
775 ;CLS can only be done once per command. | is not available 

Cannot read value after = sign in test specification 
Variable name in test specification is not recognized 
Variable in test spec. does not appear in the model 

 
776  Missing data reduce sample to 2 or less. No plot! 
 
778 WARNING. N*(K+1) > 50000. Cannot store matrix beta(i). 

Unable to obtain MLE of lambda for frontier model. 
Estimated lambda < 0. Cannot estimate inefficiency. 
LOWESS regression is limited to 5,000 observations. 
LOWESS can only save predictions for one LHS variable 
LOWESS must be based on a nonconstant x, not ONE. 
Local linear regression is limited to 20 regressors 

 
779 Unusable starting values. Cannot continue. 
 This is produced by the random thresholds ordered choice model. 
 
780 Invalid name specified in LOCAL declaration 

Name in LOCAL declaration is a reserved <AAAAAAAA> name. 
LOCAL;type=list$ Type must be matrix, scalar or variable. 
Insufficient work space to set up local variable. 
LOCAL;=list...$ Did not find equals sign. 
LOCAL;type=list.... Type appears more than once. 
LOCAL;type=list. Too many (> 10) items in list 
Name given in LOCAL;type=list is > 8 characters. 

 
781 The stratification variable must be an integer. 

Can only tabulate up to 99 strata 
Found only one stratum in sample. Use DSTAT 
Found nonpositive value for weighting variable. 
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782 Over 100,000 values for Sqq(.) function. Overflow 
 
783 BINARY CHOICE ANALYSIS requires ;Start = values. 

Number of start values must match # vars. in RHS. 
Model must be LOGIT, PROBIT, GOMPERTZ or COMPLOG. 
Did not find */-+ or > in scenario specification. 
Unknown variable name in scenario specification. 
Variable in scenario does not appear in the RHS. 
Bad value found in scenario specification after = sign 
FORMAT('Cannot compute ROC for > 375,000 points.  

 
783 Name in ;IMPUTATION=name is not in list w/ EXEC 

;Imputation is not useable with LAST MODEL 
;Imputation is only useable inside a procedure. 
LastModel command missing ... = specification. 
Unable to read parameters or covariance in LastModel 
Number of labels does not match number of parameters 
Covariance matrix is the wrong size for parameters 
Covariance matrix is not symmetric 
Covariance matrix is not nonnegative definite 
LastModel must include ;Parameters and ;Covariance 

 
784 DECOMPOSE must be preceded by model setup 

Sample size too small for decomposition 
 
Diagnostics 785 are produced by the PARTIAL EFFECTS and SIMULATE commands. 
 
785  SAVE cannot be used with ;Means. 

Cannot locate X variable for effects 
| variable W = ... is badly specified. 
| variable W ... cannot find the var. 
| variable W = list...  Bad list. 
& variable Z = ... Cannot find Z. 
& variable Z = L(D)U. Bad list found. 
Insufficient observations to get APE. 
Nonpositive increment D in L(D)U 
;PLOT requires & Z = L(D)U in spec. 
Not enough room in data area to SAVE. 
Cannot compute elasticities for binary X 
;Effects: ONE ... is not a valid spec. 
;Effects:...@ D. Cannot find D in table 
in @D=values, unreadable or > 10 values 
In @D=values or @D, not a set of integers 
;Fix:variable =...Cannot identify variable 
;Fix:variable=value. Cannot read value 
;Fix:variable... Variable cannot be fixed 
Cannot do sample splitting if not ;Average 
Conflict between ;Fix=... and scenario 
;Outcome=value in PARTIALS. Value is unreadable or < 0 
Error in construction FN*=label*vector(j1:j2) 
No model has been stored yet. 
PARTIALS or DECOMPOSE w/ ;Function... must provide Labels' 
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786 Did not find list to LIST or DELETE in table. 
No equals sign found in LABELS command. 
LSTMODEL is reserved for program use. Change the name. 
25 label lists already exist. No room for a new one. 
Label list <AAAAAAAA> is full. Unable to store 

 

787 You must open an EXPORT file before exporting matrices 
Matrix <AAAAAAAA> has > 255 columns. Cannot export it to Excel. 
You must OPEN;EXPORT=file before exporting results 

 

788 Block diagonal matrix exceeds 223x223 
Matrix in BLKD list is not in matrix table. 
Matrices in block diagonal list must be square 

 
789 Y must take values 0,1,2,3,4 for GHH SAH model 

RHS for this model must be ONE,... 
Did not find namelists XR and XM for GHH model 
First name in XR and XM namelists must be ONE. 
Did not find right start values from OPROBIT 
Did not find start vector MU with 3 values 
Did not find start vector BR with 1+kr values 
Did not find start vector BM with 1+km values' 

 
790 Singular moment matrix for Xj, X or Yj. Check model spec 

Problem with model spec. Smallest root is < or = 1. 
Y cannot be ONE in this LIML context. 
These diagnostics are produced by the LIML estimator for linear models. 
 

791 All RHS variables are in INST list. Cannot test. 
Not enough instruments provided for Wu test. 
Insufficient observations in sample for Wu test 
Instruments are collinear. Cannot compute Wu test. 
Instruments and X are collinear. Cannot do Wu test  
These diagnostics are associated with the Wu test for 2SLS. 
 

792 No within groups degrees of freedom. N groups! 
There is no within group variation in this X. 
No between groups degrees of freedom. 1 group! 
No valid observations in the sample! 
No variation in this X! All values are identical 

 

793 There is no variation in the LHS variable.! 
In truncation/endogenous model, y must be > 0. 
Exposure var: <AAAAAAAA> = <xxxxxxxx> at row,obs=<nnnnnnnn> 

 
794 RMN(mu,V), unrecognized name given for mu and/or V 

RNM(mu,V), more than 2 matrices given in the list 
Nonsquare V matrix given for RMN function. 
You must give a vector for MU in RMN(mu,V) 
Nonconformable vector MU and matrix V in RMN(MU,V) 
Maximum size of created sample in RMN is 100 variables. 
You already have 25 namelists. Unable to create a new one. 
No room left in data for new variables from RMN 
Matrix V given in RMN(mu,V) is not symmetric 
Matrix V given in RMN(mu,V) has a negative root. 
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798 Interaction variable no longer exists. Last model is unuseable. 
Eqn. kept with ;HOLD no longer useable. Int.varbl missing. 
Namelist <AAAAAAAA> is no longer useable. Int. 
IMPUTE;Lhs= . . . must precede EXEC;Imputation ... 
TYPE must be M, B, F, C, T or O in IMPUTE command 
IMPUTE must contain LHS, RHS and Type specifications 

 
801 LHS var in IMPUTE;fill may not be in an imputation model 
 
801 <Model command> is not used with RPMAX/RPMIN 

RPMAX/RPMIN must provide <Specification> 
RPMAX/RPMIN is not a <Model type> command') 
No derivatives in RPMIN/RPMAX command or ;FCN=... 
Use label[value] to fix parameters 
No multiple equations spec. in RP... 
Start values are given in ;Labels=... 
Panel data are not set up correctly. 
The RPMIN and RPMAX estimators have very specific requirements for the model 
specification. 

 
802 Create ; name = stk(...). Did not find equals sign. 
 Expected to find STK(..). Did not find ( or ). 

Processing STK function. Did not find expected , / or ) 
Cannot make NAME=Stk(... same NAME ...). Change LHS. 
Cannot identify item ',8a1,' in STK(...list...) 
Rows in stacked matrix define different #s of cols. 
Stacked matrix has too many rows for your data area. 
Stacked data matrix is too large; > 250,000 cells. 
You do not have room to create a new variable. 
You have already defined 25 namelists. No room left. 
You do not have room to create a new variable. 

 
802  GLIM command must contain ;MODEL=type. 

Unrecognized model type in GLIM;Model=type. 
You must provide ;TRIALS=spec. for binomial model. 
Fixed number of trials must be a positive integer 
FEM/probit mdl needs 0/1 or proportion 

 
803 Error encountered translating ;LCM/DCEVM=list. 

Maximum of 30 variables allowed in ;LCM/DCEVM=list. 
Unable to identify name in ;CLASSP=namelist 
Cannot save LC parameters in ONE. Use a new variable. 
Unable to identify name in ;PAR=namelist 
CLASSP=list contains ONE. Cannot save P(j|i) in ONE. 
;PAR=namelist(lclist). Error in lclist. 
;PAR=namelist(lclist).Lists must be same length. 
;PAR=nlist(lclist). Vars. in lclist must be in nlist 

 
804 Setup for conditional model command has an error. 

Model ; (scalar reln value) ... $. Scalar unknown 
Model ; (scalar reln value) ... $ Bad value given. 
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805 (NEW);namelist=list redefines an existing namelist 
NAMELIST;(NEW) Cannot use OR/XOR/AND constructions. 
Did not find commas or $ between or after names 
NAMELIST;(NEW) cannot modify existing variables. 

 
807 Too few valid observations to fit model. 

Moment matrix for regression is singular. 
A perfect fit is obtained for the regression part! 
No variation in LHS variable for regression! 

 
808  ADF(.) needs 3 settings: Variable,Type,#lags. 

ADF, type must = 1 (r.w), 2(drift), or 3(trend). 
Lags for ADF test must be one of 0,1,2,...,10 
Could not compute ADF. See previous diagnostic 
Unstable equation in lagged differences. Sum is >= 1 
Perfect fit in ADF regression equation. EstVar[c]=0. 
Sample has too few observations to carry out test. 
Moment matrix for ADF (regression) test is singular 

 
808 Implied or estimated THETA is zero. Cannot compute ME. 
 This is for the Box-Cox model. 
 
809 Fully simultaneous BVP model is not identified 
 
813 Could not evaluate expression in SAMPLE command.' 
 
816 SETPANEL must have both ;GROUP=name and ;PDS=name. 

Did not find variable given in ;GROUP=name. 
;PDS=name gives an invalid name to use for PDS 
Unable to set up GROUP and PDS variables in SETPANEL 
Using ;PDS=number. NOBS not a multiple of number. 
Group count variable is mismatched to full sample. 
Invalid weighting variable. Nonpositive values were found. 
Number of strata > 5000! Tables overflowing. Must exit. 
Use only one of ;PDS, ;CLUSTER or ;STR in TABLES command. 
Counter <=0. Row = <nnnnnn>, group = <nnnnnn> 
Too many periods to fit two way fixed effects models. 
Noncontiguous panel is too large. Cannot store means. 

 
811 ROWS:  You must give a value from 1 to 1000. 
 
812 Title=... \Name or scalar. Cannot match name after \. 

TITLE=string... String may not exceed 80 characters. 
 
818 DEFAULT: Did not find expected equals sign.' 

Unreadable value given in DEFAULT command. 
 
819 Expected <nnn> specifications in RST/CML list. Found <nnn>. 
 
820 EXEC;:name=list..., name > 7 chars or no = sign found. 

EXEC;:name=list. An unknown name appears in the list. 
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821 Quantile Regression needs n <= 100,000.' 
Unable to allocate memory for analysis. Must exit.' 

 
851 Multiple imputation requires M > 1. 

Invalid value given for seed in EXEC command 
;IMPUTATION=label is not supported for this model command 
Name in ;IMPUTATION=name on command not found in list w/ EXEC 
IMPUTE;LHS=.;RHS=.;Type=Fill$ must have 1 var on L and R. 
Imputation models table is full (30 equations) 

 
The following is a generic diagnostic produced when a model command is translated.  The general 
form of the command is  
 
 Model ; ... ; Specification...  $ 
 
Diagnostic 999 occurs when the ‘Specification’ part of the command, such as Rhs, Lhs, Rh2, and so 
on, is not recognized. 
 
999 The specification ; <XXX spec. is listed.> is not recognized. 
 
R28.4 Discrete Choice (CLOGIT) and NLOGIT 
 
 Diagnostics with numbers 1,000 and higher are generated by the CLOGIT command or by 
the command parser or estimators in NLOGIT. 
 
1000 FIML/NLogit is not enabled in this program. 

This error occurs when LIMDEP encounters a model command such as RPLOGIT that is 
only enabled in NLOGIT. 

 
1001 Syntax problem in tree spec or expected ; or $ not found.    
 
1002 Model defines too many alternatives (more than 100).         
 
1003 A choice label appears more than once in the tree specification.      
 
1004 Number of observations not a multiple of # of alternatives.   

This is expected when you have a fixed choice set. 
 
1005 Problem reading labels, or weights for choice based sample.  
 
1006 Number of weights given does not match number of alternatives.  
 
1007 A choice based sampling weight given is not between zero and one. 
 
1008 The choice based sampling weights given do not sum to one. 
 
1009 Expected [ in limb specification was not found.              
 
1010 Expected ( in branch specification was not found.            
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1011 A branch label appears more than once in the tree.           
 
1012 A choice label in a branch spec. is not in ;CHOICES list.     
 
1013 Branch specifications are not separated by commas.           
 
1014 One or more ;CHOICE labels does not appear in the tree.      
 
1015 One or more ;CHOICE labels appears more than once in tree.   
 
1016 The model must have either 1 or 3 LHS variables. Check spec.  
 
1017 Nested logit model must include ;MODEL:... or ;RHS spec.     

Found neither Model: nor RhS/Rh2.  
Your model specification is incomplete. 

 
1018 There is an unidentified variable name in the equation.      

In the ; Model: U (...) part of the command, one of your specified utility functions 
contains a variable name that is not in your data set. 

 
1019 Model specification exceeds an internal limit. See documentation.    
 RANK data can only be used for 1 level (nonnested) models. 

You have specified a nested logit model and requested rank data for the observed 
outcomes.  The nested logit model cannot be estimated with ranks data. 

 
1020 Not used specifically.  
 May show up with a self explanatory message. 
 
1021 Using Box-Cox function on a variable that equals 0? 
 
1022 Insufficient valid observations to fit a model. 
 
1023 Mismatch between current and last models.  

This occurs when you are using the ; Simulation = ... part of NLOGIT.  
 
1024 Failure estimating DISCRETE CHOICE model. 

Since this occurs during an attempt to compute the starting values for other models, if it 
fails here, it won’t succeed in the more complicated model. 

 
1025 Failed to fit model. See earlier diagnostic. 
 
1026 Singular VC may mean model is unidentified. Check tree.   

What looks like convergence of a nested logit model may actually be an unidentified 
model.  In this case, the covariance matrix will show up with at least one column of 
zeros. 

 
1027 Models - estimated variance matrix of estimates is singular.   

Non P.D. 2nd derivatives. Trying BHHH estimator instead. 
This is just a notice.  In almost all cases, the Hessian for a model that is not the simple 
MNL model will fail to be positive definite at the starting values.  This does not indicate 
any kind of problem. 
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1028 In ;SIMULATION=list of alts, a name is unknown. 
 
1029 Did not find closing ] in labels[list]. 
 
1030 Error in specification of list in ;Choices=...labels[list]. 
 
1031 List in ;Choices=...labels[list] must be 1 or NALT values. 
 
1032 Merging SP and RP data. Not possible with 1 line data setup. 

Merging SP and RP data requires LHS=choice,NALTi,ALTij form. 
Check :MERGERPSP(id=variable, type=variable) for an error. 

 
1033  Indiv. <nnnnnn> with ID= <nnnnn> has same ID as another  
 individual. 
 This makes it impossible to merge the data sets. 
 
1034 Specification error. Scenario must begin with a colon. 
 
1035 Expected to find Scenario: specification = value. 
 
1036 Unbalanced parentheses in scenario specified. 
 
1037 Choice given in scenario: attr(choice...) is not in the model. 
 
1038 Cannot identify attribute specified in scenario. 
 
1039 Value after = in scenario spec is > 20 characters. 
 
1040 Cannot identify RHS value in scenario spec. 
 
1041 Transformation asks for divide by zero. 
 
1042 Can only analyze 5 scenarios at a time. 
 
1043 Did not find any valid observations for simulation. 
 
1044 Expected to find ; LIST : name_x ( choices ). Not found. 
 
1045 Did not find matching ( or [ in <scenario specification is given>. 
 
1046 Cannot recognize the name  <AAAAAAAA> in <scenario  
 (specification is given)>. 
 
1047 Same as 1046. 
 
1048 None of the attributes requested appear in the model. 
 
1049 Model has no free parameters among slopes! 

This occurs during an attempt to fit the MNL model to obtain starting values for a nested 
logit or some other model. 
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1050 DISC with RANKS. Obs= <nnnnnn>. Alt= <nn>. Bad rank given = <nnnn>. 
DISC w/ RANKS. Incomplete set of ranks given for obs.<nnnnnn>. 
These are data problems with the coding of the Lhs variable. 

 
1051 Singular VC matrix trying to fit MNL model. 

When the MNL breaks down, it will be impossible to fit a more elaborate model such as 
a nested logit model. 

 
1052 You did not provide ;FCN=label(distn),... for RPL model.   
 
1053  Scaling option is not available with HEV, RPL, or MNP model. 
  Ranks data may not be used with HEV, RPL, or MNP model. 
  Nested models are not available with HEV, RPL, or MNP model. 
  Cannot keep cond. probs. or IVs with HEV, RPL, or MNP model. 
  Choice based sampling not useable in HEV, RPL, or MNP model. 
 
These diagnostics are produced by problems setting up the scaling option for mixed data sets. 
 
1054  Scaling option is not available with one line data setup. 
  Ranks data may not be used with one line data setup. 
  Choice set may not be variable with one line data setup. 
  One line data setup requires ;RHS and/or ;RH2 spec.      
  Nested models are not available with one line data setup. 
  Cannot keep probabilities or IVs with one line data setup. 
 
1055 Did not find closing paren in ;SCALE(list) spec. 

The list of variables to be scaled has an error. 
Only 40 or fewer variables may be scaled. 
You are attempting to scale the LHS variable. 
The list of values given for SCALE grid is bad. 
Grid must = Lo,Hi,N or Lo,Hi,N,N2. Check spec. 
Grid must have Low > 0 and High > low. Check #s. 
Number of grid points must be 2,3,... up to 20. 
 

1056 Unidentified name in IIA list. Procedure omitted. 
 
1057 More than 5 names in IIA list. Limit is 5. 
 
1058 Size variables only available with (Nested) MNL. 
 
1059 Cannot locate size variable specified. 
 
1060 Model is too large: Number of betas up to 90.  

Model is too large: Number of alphas up to 30.  
Model is too large: Number of gammas up to 15.  
Model is too large: Number of thetas up to 10.  

 
1061 Number of RHS variables is not a multiple of # of choices. 
 This occurs when you are using a one line setup for your data. 
 
1062 Expected ;FIX=name[...]. Did not find [ or ]. 
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1063 In ;FIX=name[...], name does not exist: <name is given>. 
 
1064 Error in fixed parameter given for <name is given>. 
 
1065 Wrong number of start values given. 

This occurs with nested logit and other models, not the random parameters logit model. 
 
 Expected ;KERNEL=(...),... Missing parenthesis 
 The limit on latent effects in KERNEL is 10. 
 Willingness to pay computations 
 Error in specification of WTP=name1/name2 
 Can only save up to 5 WTP values per run. 

These diagnostics relate to the kernel model setup. 
 
1066 Command has both ;RHS and Model: U(alts). Inconsistent. 
 
1067 Syntax problem in ;USET:(names list)= list of values. 
 
1068 ;USET: list of parms contains an unrecognized name. 
 
1069 Warning, ;IUSET: # values not equal to # names. 
 
1070 Warning, ;IUSET: # values not equal to # names. 
 
1071 Spec for RPL model is label(type) or [type]. Type=N,C,or L. 
 
1072 Expected ,;$ in COR/SDV/HFN/REM/AR1=list not found. 
 
1073 Invalid value given for correl. or std.dev. in list. 
 
1074 ;COR/SDV=list did not give enough values for matrix. 
 
1075 Error. Expected [ in ;EQC=list[value] not found. 

Error:Value in EQC=list[value] is not a correlation. 
Error. Unrecognized alt name in ;EQC=list[value]. 
Error:List needs more than 1 name in EQC=list[value]. 
Error. A name is repeated in ;EQC=list[value]. 

 
1076 Your model forces a free parameter equal to a fixed one. 
 
1077 Covariance heterogeneity model needs nonconstant variables. 
 
1077 Invalid parameter name (;label) ',a8,' is a ',a8,'.') 
 
1078 Covariance heterogeneity model not available with HEV model. 

Covariance heterogeneity model is only for 2 level models.  
Covariance heterogeneity model needs 2 or more branches. 

 
1079 At least one variance in the HEV model must be fixed.   

In NLOGIT, in the heteroscedastic extreme value, you have specified the model so that 
all the variances are free. But, for identification, one of them must be fixed.  

 
1080 Multiple observation RPL/MNP data must be individual. 
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1081 Mismatch of # indivs. and number implied by groups. 
WARNING   Halton method is limited to 25 random parameters. 

 
1082 Not used. 
 
1083 MODEL followed by a colon was expected, not found. 
 
1084 Expected equation specs. of form U(...) after MODEL. 
 
1085 Unidentified name found in <string is given>. 
 This occurs during translation of ; Model: U (...) specifications. 
 
1086 U(list) must define only choices,branches, or limbs. 
 
1087 An equals sign was not found where expected in utility  

function definition. 
 
1088 Mismatched [ or ( in parameter value specification. 
 
1089 Could not interpret string; expected to find number. 
 
1090 Expected to find ;IVSET:=defn. at this point.  
 
1091 Expected to find a list of names in parens in IVSET. 
 
1092 IVSET:( list ) ... Unidentified name appears in (list). 
 
1093 You have given a spec for an IV parm that is fixed at 1. 
 
1094 You have specified an IV parameter more than once. 
 
1095 Count variable  <nnnnnn> at row <nnnnnn> equals <nnnn>. 

The peculiar value for the count variable has thrown off the counter that keeps track of 
where the estimator is in the data set. 

 
1096 Choice variable  <AAAAAAAA>  at row  <nnnnn>: Choice= <nnnnn>. 
 The most likely cause is a coding error.  Check for bad data. 
 
1097 Obs. <nnnnnn>: Choice set contains <nnnn> <nnnn> times. 

The choice variable for individual data has more than one 1.0 in it.  LIMDEP cannot 
determine which alternative is chosen. 

 
1098 Obs. <nnnnnn> alt. <nnn> is not an integer nor a proportion. 
 
1099 Obs. <nnnnnn> responses should sum to 1.0. Sum is <xxxxxx>. 
 
1100 Cannot classify obs. <nnnnnn> as IND, PROPs, or  FREQs.  

Your data appear to be a mix of individual and frequency data.  This occurs when an 
individual’s Lhs variable data include zeros.  It then becomes difficult to determine what 
kind of data you have.  You can settle the question by including ; Frequencies in your 
command, if that is appropriate. 
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1101 # of parms in < list > greater than # choices in U(list). 
 
1102 RANK data can only be used for 1 level (nonnested) model.  
 
1103 Wrong number of variables given in ;CLASSP=list. 

;CLASSP=list contains ONE. Cannot save P(j|i) in ONE. 
 
1104 Negative value in NLRP;Tau=value is ignored 

Negative value in GMXL;Tau=value is ignored 
Value not in [0,1] in GMXL;Gamma=value 
Unknown name in ;RPASC=list. Spec. ignored.' 

 
1121 User fn. in RPMIN/MAX is nonpositive. Using Log(.)? 
 
1122  Numerical underflow Product of F(i,r,t) is too small. 
 
1123  Numerical overflow Product of F(i,r,t) is too large. 
 
Diagnostics 1121-1144 are produced by the nonlinear random parameters logit model (NLRPLOGIT). 
 
1121 Too many parameters in list (over 150) 
 
1122 num_symbol, num negative or greater than 150 
 
1123 No. of start values must equal no. of labels. 
 
1124 NLRPLogit requires ;Start=starting values. 
 
1125 Error reading starting values for NLRPLogit 
 
1126 Error in ;FIX=list of labels for NLRPLogit. 
 
1127 Invalid parameter name (;label) ',a8,' is a ',a8,'.' 
 
1128 Fn. name conflicts with var. or other name. 
 
1129 Unbalanced parentheses in function defn. 
 
1130 Table overflow. Function is too complex. 
 
1131 Error in function. See earlier error msg. 
 
1132 Expected to find ;Model:U(...) = name / ... 
 
1133 Utility spec uses a function not in the table 
 
1134 ;Fnj=function name=function defnn. 
 
1135 Alternative function name may not equal a label 
 
1136 Expected ending ] in name[...] was not found 
 
1137 Unknown name appears in list in name[list] 
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1138 WTP setup for NLRP must be alt[xvar/xvar]. 
 
1139 Alt name in WTP spec for NLRP is unknown 
 
1140 X var name in Alt[Xvar/Yvar] is unknown. 
 
1141 Y var name in Alt[Xvar/Yvar] is unknown. 
 
1142 Expected ;888:(xname,blabel) colon not found 
 
1143 Expected (xname,bname) found incorrect specs.' 
 
1144 Table full,25 specs for 888:(xname,bname)/... 
 
1151 User fn. in RPMIN/MAX is nonpositive. Using Log(.)? 
 
1152 Numerical underflow Product of F(i,r,t) is too small. 
 
1153 Numerical overflow Product of F(i,r,t) is too large. 
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