

LIMDEP

Version 10

Reference Guide

by

William H. Greene
Econometric Software, Inc.

© 1986 - 2012 Econometric Software, Inc. All rights reserved.

 This software product, including both the program code and the accompanying
documentation, is copyrighted by, and all rights are reserved by Econometric Software, Inc. No part
of this product, either the software or the documentation, may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without prior written permission of Econometric
Software, Inc.

 LIMDEP® and NLOGIT® are registered trademarks of Econometric Software, Inc. All other
brand and product names are trademarks or registered trademarks of their respective companies.

Econometric Software, Inc.
15 Gloria Place
Plainview, NY 11803
USA
Tel: +1 516-938-5254
Fax: +1 516-938-2441
Email: sales@limdep.com
Websites: www.limdep.com and www.nlogit.com.

Econometric Software, Australia
215 Excelsior Avenue
Castle Hill, NSW 2154
Australia
Tel: +61 (0)4-1843-3057
Fax: +61 (0)2-9899-6674
Email: hgroup@optusnet.com.au

mailto:sales@limdep.com�
http://www.limdep.com/�
http://www.nlogit.com/�
mailto:hgroup@optusnet.com.au�

End-User License Agreement

This is a contract between you and Econometric Software, Inc. The software product refers
to the computer software and documentation as well as any upgrades, modified versions, copies or
supplements supplied by Econometric Software. By installing, downloading, accessing or otherwise
using the software product, you agree to be bound by the terms and conditions of this Agreement.
 Subject to the terms and conditions of this Agreement, Econometric Software, Inc. grants
you a non-assignable, non-transferable license, without the right to sublicense, to use the licensed
software and documentation in object-code form only, solely for your internal business, research, or
educational purposes.

Copyright, Trademark, and Intellectual Property

This software product is copyrighted by, and all rights are reserved by Econometric Software,

Inc. No part of this software product, either the software or the documentation, may be reproduced,
distributed, downloaded, stored in a retrieval system, transmitted in any form or by any means, sold or
transferred without prior written permission of Econometric Software. You may not, or permit any
person, to: (i) modify, adapt, translate, or change the software product; (ii) reverse engineer, decompile,
disassemble, or otherwise attempt to discover the source code of the software product; (iii) sublicense,
resell, rent, lease, distribute, commercialize, or otherwise transfer rights or usage to the software
product; (iv) remove, modify, or obscure any copyright, registered trademark, or other proprietary
notices; (v) embed the software product in any third-party applications; or (vi) make the software
product, either the software or the documentation, available on any website.
 LIMDEP® and NLOGIT® are registered trademarks of Econometric Software, Inc. The
software product is licensed, not sold. Your possession, installation and use of the software product
does not transfer to you any title and intellectual property rights, nor does this license grant you any
rights in connection with software product registered trademarks.

Use of the Software Product

 You have only the non-exclusive right to use this software product. A single user license is
registered to one specific individual as the sole authorized user, and is not for multiple users on one
machine or for installation on a network, in a computer laboratory or on a public access computer.
For a single user license only, the registered user may install the software on a primary stand alone
computer and one home or portable secondary computer for his or her exclusive use. However, the
software may not be used on the primary computer by another person while the secondary computer
is in use. For a multi-user site license, the specific terms of the site license agreement apply for scope
of use and installation.

Limited Warranty

 Econometric Software warrants that the software product will perform substantially in
accordance with the documentation for a period of ninety (90) days from the date of the original
purchase. To make a warranty claim, you must notify Econometric Software in writing within ninety
(90) days from the date of the original purchase and return the defective software to Econometric
Software. If the software does not perform substantially in accordance with the documentation, the
entire liability and your exclusive remedy shall be limited to, at Econometric Software’s option, the
replacement of the software product or refund of the license fee paid to Econometric Software for the
software product. Proof of purchase from an authorized source is required. This limited warranty is
void if failure of the software product has resulted from accident, abuse, or misapplication. Some states
and jurisdictions do not allow limitations on the duration of an implied warranty, so the above
limitation may not apply to you. To the extent permissible, any implied warranties on the software
product are limited to ninety (90) days.

Econometric Software does not warrant the performance or results you may obtain by using
the software product. To the maximum extent permitted by applicable law, Econometric Software
disclaims all other warranties and conditions, either expressed or implied, including, but not limited
to, implied warranties of merchantability, fitness for a particular purpose, title, and non-infringement
with respect to the software product. This limited warranty gives you specific legal rights. You may
have others, which vary from state to state and jurisdiction to jurisdiction.

Limitation of Liability

Under no circumstances will Econometric Software be liable to you or any other person for
any indirect, special, incidental, or consequential damages whatsoever (including, without limitation,
damages for loss of business profits, business interruption, computer failure or malfunction, loss of
business information, or any other pecuniary loss) arising out of the use or inability to use the
software product, even if Econometric Software has been advised of the possibility of such damages.
In any case, Econometric Software’s entire liability under any provision of this agreement shall not
exceed the amount paid to Econometric Software for the software product. Some states or
jurisdictions do not allow the exclusion or limitation of liability for incidental or consequential
damages, so the above limitation may not apply to you.

Preface

 LIMDEP is a flexible computer package for estimating the sorts of models most frequently
analyzed with cross section and panel data. Its range of capabilities include basic linear regression
and descriptive statistics, the full set of techniques normally taught in the first year of a graduate
econometrics sequence, and many advanced techniques such as parametric duration models, Poisson
regressions with right censoring, nonlinear regressions estimated by instrumental variables and the
generalized method of moments (GMM) and nonlinear panel data models with random parameters
and fixed effects. LIMDEP’s menu of options is as wide as that of any other general purpose
program available. LIMDEP is best suited to the analysis of cross sections, panels, and relatively
standard problems of time series analysis. In addition, LIMDEP has provided many recent
innovations in econometrics, including cutting edge techniques in panel data analysis, frontier and
efficiency estimation and discrete choice modeling. The package also provides a programming
language to allow the user to specify, estimate and analyze models that are not contained in the built
in menus of model forms.
 This program has developed since 1980, initially to provide an easy to use tobit estimator –
hence the name, ‘LIMited DEPendent variable models.’ It has spun off a major suite of programs
for the estimation of discrete choice models. This program, NLOGIT, builds on the Nested LOGIT
model. NLOGIT has now grown to a self standing superset of LIMDEP.
 Version 10 of LIMDEP continues our efforts to produce major upgrades to the program while
maintaining full compatibility with earlier versions. Version 10 features numerous new estimation
programs and further refinements of the interface. This release coincides with the release of NLOGIT
Version 5, a superset of LIMDEP Version 10 which extends the standard discrete choice (multinomial
logit) model contained in LIMDEP to many modifications and alternative specifications.
 In addition to many new estimation programs, Version 10 includes a long list of enhancements
to its user interface, additions to MATRIX, CALC, CREATE and the other data manipulation
commands, including, for example, recoding character data during READ, and improvements in the
internal workings of the mathematical parts of the program.
 To the best of our knowledge, the code of this program is correct as described. However, no
warranty is expressed or implied. Users assume responsibility for the selection of this program to
achieve their desired results and for the results obtained.

Econometric Software, Inc.
Plainview, NY 11803
2012

LIMDEP 10 Reference Guide Table of Contents vi

Table of Contents
Table of Contents..vi

What’s New in Version 10? ... R-1
WN1 Model Specification with Interactions, Nonlinearities and Categorical Variables R-3

WN1.1 Interactions and Nonlinearities Built Directly into Model Commands R-3
WN1.2 Interaction Terms Included in Namelists .. R-5
WN1.3 Definitions of Interaction Terms Stored in Project Files R-5
WN1.4 Categorical Variables Expanded Inline in Model Commands R-5

WN2 Post Estimation Analysis .. R-6
WN2.1 Simulation of Outcomes and Model Results... R-6
WN2.2 Partial Effects .. R-8
WN2.3 Difference in Differences Analysis ... R-12
WN2.4 Oaxaca Decompositions.. R-13

WN3 Multiple Imputation .. R-14
WN3.1 Multiple Imputation for Data Sets with Missing Values R-14
WN3.2 Technical Details .. R-14

WN4 Hypothesis Tests ... R-16
WN4.1 Chi Squared Tests for Linear Restrictions .. R-16
WN4.2 Likelihood Ratio Tests of Homogeneity of Groups .. R-18
WN4.3 Specification Tests for the Linear Regression Model R-19

WN5 Model Extensions for Random Parameters and Latent Class Models R-19
WN5.1 Random Parameter Models ... R-19
WN5.2 Latent Class models .. R-19

WN6 New Models and Features ... R-20
WN6.1 Descriptive Statistics ... R-20
WN6.2 Kernel Density Estimators .. R-20
WN6.3 Histograms .. R-21
WN6.4 Graphs and Plotting .. R-22
WN6.5 Linear, Semiparametric and Nonparametric Regression Model R-23
WN6.6 Poisson and Negative Binomial Regressions for Count Data R-24
WN6.7 Stochastic Frontiers ... R-25
WN6.8 Binary Choice Models .. R-28
WN6.9 Ordered Choice ... R-29
WN6.10 Limited Dependent Variables ... R-34
WN6.11 WALD Command ... R-35
WN6.12 Nonlinear Optimization .. R-36
WN6.13 Numerical Analysis ... R-37

WN7 Random Sampling and Bootstrapping .. R-38
WN8 Panel Data Handling ... R-39

WN8.1 Panel Data Setting ... R-39
WN8.2 Transformations for Panel Data .. R-39
WN8.3 Spreadsheets and Panel Data .. R-40

WN9 Data Import and Export .. R-40
WN9.1 Default Formats .. R-40

LIMDEP 10 Reference Guide Table of Contents vii

WN9.2 Stata’s .dta Format .. R-40
WN9.3 Documentation in Project Files ... R-41
WN9.4 Exporting Data .. R-41
WN9.5 Export to the Output Window ... R-41

WN10 Transformation Functions for CREATE ... R-41
WN10.1 Clearing Columns in the Data Area .. R-41
WN10.2 Using NAMELIST to Create a Template for a Data Matrix R-42
WN10.3 SORT .. R-42
WN10.4 CREATE Functions .. R-42
WN10.5 Stacking Variables with CREATE .. R-43

WN11 Programming Tools .. R-43
WN11.1 Executing Procedures.. R-43
WN11.2 Matrix Functions ... R-44
WN11.3 New CALC functions ... R-45

WN12 Program Results .. R-46
WN12.1 New Use for Namelists ... R-48
WN12.2 New CLIST Command to Define a List of Labels R-49

WN13 Technical Program Settings .. R-49

R1: Introduction to LIMDEP Version 10 .. R-51
R1.1 The LIMDEP Program ... R-51
R1.2 Econometric Techniques .. R-53
R1.3 Summary of What’s New in Version 10 .. R-55
R1.4 Documentation ... R-56

R2: Basics of Operation .. R-57
R2.1 Introduction to the LIMDEP Desktop .. R-57

R2.1.1 LIMDEP Desktop Menus ... R-57
R2.1.2 The LIMDEP Toolbar and Command Bar ... R-58
R2.1.3 Components of a LIMDEP Session ... R-59

R2.2 LIMDEP File Types ... R-59
R2.3 Beginning the LIMDEP Session .. R-61

R2.3.1 Opening a Project File ... R-61
R2.3.2 Opening an Editing Window ... R-61

R2.4 Using the Editing Window ... R-63
R2.4.1 Using the Insert Menu in the Editing Window .. R-64
R2.4.2 Executing Commands from the Editing Window .. R-65
R2.4.3 The Editing Window Right Mouse Button Menu .. R-66

R2.5 A Short Tutorial ... R-67
R2.6 Commands ... R-74

R2.6.1 Syntax .. R-74
R2.6.2 Naming Conventions and Reserved Names ... R-75

R2.7 Input Files – Entering Commands from a File ... R-76
R2.8 Work Areas and Projects ... R-78

R2.8.1 Work Areas .. R-78
R2.8.2 The Project Window .. R-80

R2.9 Restarting During a Session ... R-85

LIMDEP 10 Reference Guide Table of Contents viii

R2.10 Program Output and the Output Window .. R-86
R2.10.1 Opening an Output File .. R-87
R2.10.2 Editing Your Output .. R-87
R2.10.3 Printing... R-87

R2.11 Help .. R-88
R2.12 Summary of Commands .. R-90
R2.13 Summary of the LIMDEP Desktop .. R-93

R2.13.1 The LIMDEP Windows ... R-94
R2.13.2 The Main Menus .. R-95
R2.13.3 The LIMDEP Toolbar .. R-101
R2.13.4 The Command Bar ... R-101
R2.13.5 Commands and Menu Items .. R-102

R3: Importing and Reading Data Files .. R-103
R3.1 Importing and Reading Data .. R-103
R3.2 Import a Standard Formatted ASCII File ... R-103

R3.2.1 Observation Labels and Variable Names in the Data File R-106
R3.2.2 Data Files that Contain Only Numeric Data .. R-107
R3.2.3 Observation Labels without Variable Names in the Data File R-107
R3.2.4 Reading a Spreadsheet File from Excel ... R-108
R3.2.5 Missing Values in Data Files ... R-111
R3.2.6 Missing Values in the Comma Delimited (CSV) Files R-112
R3.2.7 Data Files that Are Not Formatted for IMPORT ... R-112

R3.3 The Data Editor .. R-112
R3.4 The Data Area .. R-118

R3.4.1 Temporary Expansion of the Data Area .. R-118
R3.4.2 Permanently Setting the Number of Cells in the Data Area R-119
R3.4.3 Setting the Number of Rows in the Data Area ... R-119

R3.5 The READ Command for Nonstandard Data Files ... R-120
R3.5.1 ASCII Numeric Data Files ... R-121
R3.5.2 Variable Names Not Provided in the Data File.. R-122
R3.5.3 Variable Names in the Data File .. R-122
R3.5.4 Observation Labels .. R-123
R3.5.5 Transposed Data Files – Reading by Variables ... R-124
R3.5.6 Binary Files and Files from Other Programs ... R-125
R3.5.7 Formatted ASCII Files ... R-127
R3.5.8 Recoding Character Data ... R-129

R3.6 Using the Text Editor as a Data File .. R-130
R3.6.1 Use the Text Editor to Avoid Creating a Data File .. R-131
R3.6.2 Exporting from Excel to the Text Editor .. R-132

R3.7 Documenting the Contents of a Data/Project File ... R-136
R3.8 Listing Data in Your Output Window.. R-137
R3.9 Exporting and Writing Data Files .. R-139

R3.9.1 How to EXPORT a CSV File .. R-139
R3.9.2 How to WRITE a Data File ... R-141

R3.10 Adding Observations – The APPEND Command ... R-142

LIMDEP 10 Reference Guide Table of Contents ix

R4: Data Transformations ... R-143
R4.1 Data Transformations... R-143
R4.2 The CREATE Command ... R-143

R4.2.1 Algebraic Transformations .. R-145
R4.2.2 Conditional Transformations ... R-148

R4.3 CREATE Functions ... R-151
R4.3.1 Common Algebraic Functions ... R-151
R4.3.2 Univariate Normal Distribution ... R-152
R4.3.3 Logistic Distribution .. R-152
R4.3.4 Trends and Seasonal Dummy Variables .. R-152
R4.3.5 Ranks of Observations ... R-153
R4.3.6 Box-Cox Function and its Derivatives ... R-153
R4.3.7 Bivariate and Multivariate Normal Probabilities ... R-153
R4.3.8 Leads and Lags .. R-154
R4.3.9 Matrix Functions .. R-155
R4.3.10 Moving a Matrix .. R-156
R4.3.11 Means, Deviations, Standardized Variables .. R-157
R4.3.12 Moments for a Set of Variables – the Xmt Function R-157
R4.3.13 Multiple of a Set of Variables – the Scl Function .. R-158
R4.3.14 Expanding a Categorical Variable into a Set of Dummy Variables............. R-159
R4.3.15 Stacking Data to Create Data Matrices .. R-162
R4.3.16 Group Functions for Panel Data .. R-163

R4.4 Random Number Generators ... R-165
R4.4.1 Setting the Seed for the Random Number Generator R-165
R4.4.2 Basic Random Number Generation ... R-166
R4.4.3 Random Samples from Continuous Distributions ... R-167
R4.4.4 Random Samples from Discrete Distributions... R-168
R4.4.5 Sampling from the Multivariate Normal Distribution R-168

R4.5 Compound Names for Variables .. R-171
R4.6 Changing Particular Observations of a Variable .. R-173
R4.7 Recoding Variables – The RECODE Command ... R-173
R4.8 Sorting Variables – The SORT Command .. R-174
R4.9 The DELETE and RENAME Commands ... R-176
Appendix R4A Numerical Methods ... R-177

R4A.1 Computing Bivariate Normal Probabilities .. R-177
R4A.2 Computing Multivariate Normal Probabilities... R-177
R4A.3 Uniform Random Number Generation... R-178
R4A.4 Standard Normal Random Number Generation ... R-179
R4A.5 Random Number Generation from Other Distributions R-179
R4A.6 Sampling from the Truncated Normal Distribution R-180
R4A.7 Random Sampling from the Multivariate Normal Distribution R-180
R4A.8 Sample Variances ... R-180

R5: Panel Data and Data for Discrete Choice Models ... R-181
R5.1 Estimation Using Panel Data ... R-181
R5.2 Programs that Use Panel Data .. R-181
R5.3 Panel Data Arrangement .. R-182

LIMDEP 10 Reference Guide Table of Contents x

R5.3.1 Group Indicators and Within Group Observation Numbers R-183
R5.3.2 Group Size Variables for Panel Data ... R-185
R5.3.3 Permanent Global Setting for Panel Data .. R-186

R5.4 Merging Invariant Variables into a Panel Data Set .. R-188
R5.4.1 Using an ID Variable to Merge Data ... R-189
R5.4.2 Using a Group Count Variable to Merge Data .. R-190

R6: Variable Lists and Label Lists .. R-192
R6.1 Namelists and Labellists .. R-192
R6.2 Lists of Variables in Model Commands .. R-192
R6.3 Wildcard Characters in Variable Lists ... R-192
R6.4 Defining Namelists .. R-193

R6.4.1 Combining Namelists... R-193
R6.4.2 Deleting Namelists ... R-194
R6.4.3 Editing Namelists ... R-195

R6.5 Using Namelists ... R-196
R6.5.1 Using Namelists in Commands .. R-196
R6.5.2 Using Namelists in Matrix Algebra ... R-197
R6.5.3 Using Namelists to Display Model Results ... R-197
R6.5.4 Using Namelists in CREATE .. R-198
R6.5.5 Using NAMELIST to Create a Data Matrix .. R-199
R6.5.6 Indexing Variables in Namelists .. R-199

R6.6 Labellists .. R-200

R7: The Current Sample and Missing Data .. R-202
R7.1 The Current Sample ... R-202
R7.2 Cross Section Data ... R-204

R7.2.1 Defining the Current Sample with the SAMPLE Command R-204
R7.2.2 Removing and Adding Observations with REJECT/INCLUDE R-204
R7.2.3 Interaction of REJECT/INCLUDE and SAMPLE ... R-206

R7.3 Time Series Data .. R-207
R7.4 Using the DRAW Command to Obtain Random Samples .. R-209

R7.4.1 Random Sampling from a Cross Section ... R-209
R7.4.2 Random Sampling from a Panel Data Set .. R-210
R7.4.3 Simulating a Random Sample with Panel Data ... R-211

R7.5 Missing Data .. R-211
R7.5.1 Reading Missing Data .. R-211
R7.5.2 Missing Data in Transformations ... R-212
R7.5.3 Missing Data in Scalar and Matrix Algebra... R-212
R7.5.4 Missing Data in Estimation Routines .. R-214
R7.5.5 Automatically Bypassing Missing Data – The SKIP Command R-214
R7.5.6 Nonlinear Optimization Programs and Using SKIP Generally...................... R-216

R8: Commands for Estimating Models ... R-217
R8.1 Model Specifications of Variables and Weights .. R-217
R8.2 Model Commands .. R-217
R8.3 Interaction Terms and Nonlinear Functions of Variables .. R-219

LIMDEP 10 Reference Guide Table of Contents xi

R8.3.1 Interaction Terms and Logs of Variables in Commands R-220
R8.3.2 Interaction Terms and Nonlinear Terms in Namelists R-223
R8.3.3 Managing Constructed Variables in the Data Set .. R-223

R8.4 Categorical Variables in Model Commands .. R-224
R8.5 Lags and Partial Differences in Model Commands ... R-226
R8.6 Command Builders .. R-228
R8.7 Conditional Model Commands .. R-232

R8.7.1 Estimation Conditioned on a Scalar Test Value .. R-232
R8.7.2 Setting the Sample Temporarily for a Model... R-233
R8.7.3 Looping over Strata for a Model Command .. R-233

R8.8 Using Weights in Estimation ... R-234

R9: Output .. R-236
R9.1 Standard Output from Estimation Programs .. R-236

R9.1.1 Changing the Confidence Level for the Confidence Intervals R-238
R9.1.2 Information Criteria for Maximum Likelihood Estimators R-239
R9.1.3 Timing Model Estimation .. R-240

R9.2 Initial Model Results .. R-241
R9.2.1 Displaying Initial Least Squares Estimates .. R-241
R9.2.2 Intermediate Model Estimates ... R-242

R9.3 Using DISPLAY to View Estimation Results ... R-243
R9.4 Covariance Matrices, Predictions and Hypothesis Tests ... R-244

R9.4.1 Displaying Covariance Matrices .. R-244
R9.4.2 Listing and Saving Model Predictions and Residuals R-245
R9.4.3 Listing Basic Partial Effects ... R-248
R9.4.4 Hypothesis Tests and Restrictions ... R-249
R9.4.5 Graphical Results ... R-250

R9.5 Suppressing Results ... R-251
R9.5.1 Suppressing Estimation Results with Quietly .. R-251
R9.5.2 Suppressing All Results with SILENT .. R-253

R9.6 The Review Window – Tables of Model Results .. R-254
R9.7 Output Files .. R-256

R9.7.1 Transporting Output Results to Word Processors .. R-257
R9.7.2 Exporting Statistical Results from LIMDEP .. R-258
R9.7.3 The Last Model Output .. R-260

R10: Robust Covariance Matrices and Clustering ... R-261
R10.1 Robust Covariance Matrix for Pooled Models .. R-261
R10.2 Using Clustering for Robust Covariance Matrices .. R-263

R10.2.1 Models for Which the Clustering Estimator is Supported R-264
R10.2.2 An Example of the Clustering Estimator ... R-265
R10.2.3 Technical Details on the Clustering Estimator .. R-266

R10.3 Stratified and Grouped Data .. R-268

R11: Partial Effects .. R-271
R11.1 Partial Effects for Estimated Models ... R-271
R11.2 Command vs. Model Specification .. R-272

LIMDEP 10 Reference Guide Table of Contents xii

R11.3 Partial Effects Issues .. R-278
R11.4 The PARTIAL EFFECTS Command .. R-282

R11.4.1 Last Model Used for Partial Effects ... R-285
R11.4.2 Sample Used for PARTIAL EFFECTS ... R-286
R11.4.3 Types of Variables in Partial Effects ... R-286
R11.4.4 Types of Partial Effects .. R-287
R11.4.5 Scenarios in the PARTIAL EFFECTS Command R-288
R11.4.6 Plotting Partial Effects ... R-290
R11.4.7 Sample Partitioning: The ‘@’ Specification .. R-292
R11.4.8 Fixing Variables for the Entire Analysis.. R-293
R11.4.9 Saving Individual Partial Effects ... R-294
R11.4.10 Computing Partial Effects at Sample Means ... R-294
R11.4.11 Weighted Observations .. R-296
R11.4.12 Robust Covariance Matrices .. R-296
R11.4.13 Changing the Model Analyzed by PARTIAL EFFECTS R-296
R11.4.14 Technical Details ... R-299

R11.5 Partial Effects Estimated with Models ... R-300
R11.5.1 Partial Effects for Single Index Models ... R-301
R11.5.2 Partial Effects for Dummy Rhs Variables.. R-304
R11.5.3 Standard Errors and Confidence Intervals ... R-304
R11.5.4 Significance Tests for Partial Effects ... R-305
R11.5.5 Partial Effects in Compound Models ... R-306
R11.5.6 Partial Effects in a Two Equation Model ... R-307
R11.5.7 Partial Effects in a Model with Direct and Indirect Effects R-310

R12: Model Predictions, Residuals, Simulations and Decompositions R-311
R12.1 Introduction .. R-311
R12.2 Creating and Displaying Predictions and Residuals .. R-311
R12.3 The Last Model .. R-315
R12.4 Using SIMULATE with the Last Model.. R-316

R12.4.1 The Sample Used in the Simulation ... R-317
R12.4.2 Scenarios in Simulations .. R-317
R12.4.3 Defining the Model for SIMULATE ... R-319

R12.5 Oaxaca-Blinder Decompositions ... R-322

R13: Testing Hypotheses and Imposing Restrictions ... R-327
R13.1 Introduction .. R-327
R13.2 F Test of Linear Restrictions in Linear Models ... R-327
R13.3 Testing Linear Restrictions Using the Wald Statistic .. R-330
R13.4 Likelihood Ratio Tests ... R-334

R13.4.1 Fixed Value Restriction in a Poisson Model .. R-335
R13.4.2 Imposing and Testing Restrictions ... R-335
R13.4.3 Homogeneity of Models in a Stratified Data Set ... R-336
R13.4.4 Testing for Equal Coefficient Vectors ... R-337
R13.4.5 Two Part Models: Cragg’s Model for a Censored Dependent Variable R-338
R13.4.6 Likelihood Ratio Tests for Discrete Choice Models R-339
R13.4.7 Likelihood Ratio Tests for Nonlinear Models ... R-340

LIMDEP 10 Reference Guide Table of Contents xiii

R13.5 Lagrange Multiplier Tests .. R-341
R13.5.1 LM Tests Based on the Model Specification ... R-341
R13.5.2 LM Test of Homoscedasticity in a Probit Model ... R-344
R13.5.3 LM Tests for the Linear Regression Model ... R-346
R13.5.4 Programming Lagrange Multiplier Tests ... R-347

R13.6 Estimation Subject to Restrictions ... R-349
R13.6.1 Fixed Value and Equality Restrictions... R-350
R13.6.2 General Linear Restrictions ... R-354
R13.6.3 Imposing Linear Constraints on Maximum Likelihood Estimators R-355
R13.6.4 Restricted Linear Regression with Multicollinearity R-357

R14: Functions of Parameters .. R-360
R14.1 Introduction .. R-360
R14.2 Covariance Matrices for Nonlinear Functions ... R-360

R14.2.1 The Delta Method .. R-360
R14.2.2 The Method of Krinsky and Robb ... R-361

R14.3 The Wald Statistic .. R-362
R14.4 The WALD Command ... R-362

R14.4.1 Components of the WALD Command .. R-363
R14.4.2 Results of the WALD Command ... R-364
R14.4.3 Recursive Functions ... R-365
R14.4.4 Application Based on the Last Model .. R-366
R14.4.5 The Number of Parameters .. R-367
R14.4.6 Interdependent Sets of Functions ... R-367
R14.4.7 Extracting Parts of a Model ... R-369
R14.4.8 Application to a Function of the Parameters .. R-369
R14.4.9 Application to a Complex Nonlinear Function .. R-373

R15: Retrievable Results ... R-374
R15.1 Introduction .. R-374
R15.2 Retrievable Results .. R-376

R16: Using Matrix Algebra .. R-381
R16.1 Introduction .. R-381
R16.2 Entering MATRIX Commands .. R-394

R16.2.1 The Matrix Calculator .. R-394
R16.2.2 MATRIX Commands... R-396
R16.2.3 Conditional Commands ... R-397

R16.3 Matrix Output .. R-397
R16.3.1 Matrix Results .. R-399
R16.3.2 Unformatted Output ... R-400
R16.3.3 Technical Output .. R-401
R16.3.4 Exporting Matrix Results from LIMDEP... R-401
R16.3.5 Matrix Statistical Output .. R-404
R16.3.6 Descriptive Statistics for the Elements in a Matrix R-406
R16.3.7 Plotting Matrices .. R-406

R16.4 Matrix Work Areas .. R-406

LIMDEP 10 Reference Guide Table of Contents xiv

R16.4.1 Rebuilding the Matrix Work Area ... R-407
R16.4.2 Naming and Notational Conventions ... R-407
R16.4.3 Matrix Dimensions .. R-409
R16.4.4 Placing Matrix Results in Scalars .. R-409
R16.4.5 Compound Names for Matrices, Variables and Scalars R-410

R16.5 Reading Matrices ... R-412
R16.5.1 Importing a Matrix as a Data File .. R-412
R16.5.2 Importing a Matrix as a Block of Cells from Excel R-413

R16.6 Matrix Expressions .. R-414
R16.6.1 Scalar Multiplication of a Result – Using CALCULATE R-417
R16.6.2 Adding the Same Scalar to Every Element of a Matrix R-418
R16.6.3 Raising a Matrix to a Power... R-419
R16.6.4 Entering, Moving, and Rearranging Matrices .. R-420

R16.7 Using MATRIX Commands with Data ... R-427
R16.7.1 Data Matrices ... R-427
R16.7.2 Computations Involving Data Matrices ... R-429

R16.8 Functions for Manipulating Matrices ... R-430
R16.8.1 Functions of One Matrix .. R-431
R16.8.2 Functions of Two or More Matrices .. R-434

R16.9 Sums of Observations .. R-435
R16.10 Matrix Commands that Transform the Data .. R-442

R16.10.1 Linear Transformations of Variables ... R-442
R16.10.2 Moving a Matrix into the Data Area .. R-443

R16.11 MATRIX Commands for Panel Data... R-444
R16.11.1 MATRIX Functions for Panel Data ... R-444
R16.11.2 GMM Weighting Matrix for Panel Data .. R-445
R16.11.3 Gsum and Gmmw Functions with Weights for Some or All Variables R-446
R16.11.4 Matrix Forms for Computing Moments for Panel Data R-446

R17: Using the Calculator ... R-448
R17.1 Introduction .. R-448
R17.2 Command Input in CALCULATE ... R-449
R17.3 Results from CALCULATE .. R-451
R17.4 Forms of CALCULATE Commands – Conditional Commands R-453

R17.4.1 Reserved Names .. R-453
R17.4.2 Work Space for the Calculator ... R-454
R17.4.3 Compound Names for Scalars ... R-455

R17.5 Scalar Expressions ... R-456
R17.6 Calculator Functions .. R-457

R17.6.1 Basic Algebraic Functions ... R-457
R17.6.2 Relational Functions .. R-457
R17.6.3 Critical Points from the Normal Family of Distributions R-458
R17.6.4 Probabilities and Densities for Continuous Distributions R-458
R17.6.5 Moments of the Left Truncated Normal Distribution R-458
R17.6.6 Probabilities and Densities for the Bivariate Normal Distribution R-459
R17.6.7 Probabilities and Densities for the Multivariate Normal Distribution R-459
R17.6.8 Probabilities for Noncentral Distributions ... R-460

LIMDEP 10 Reference Guide Table of Contents xv

R17.6.9 Probabilities for Discrete Distributions.. R-460
R17.6.10 Gamma Function and Gamma Distribution ... R-460
R17.6.11 The Incomplete Gamma Function ... R-460
R17.6.12 Random Numbers .. R-461
R17.6.13 Matrix Dimensions and Functions ... R-461
R17.6.14 Sample Statistics and Regression Results .. R-461

R17.7 Fit Measures for a Binary Choice Model ... R-464
R17.8 Hypothesis Tests .. R-465
R17.9 Calculating Correlation Coefficients ... R-468
R17.10 Augmented Dickey Fuller Test .. R-473
R17.11 Plotting Discrete Distributions ... R-473
R17.12 Financial Functions .. R-474

R18: Two Step Estimators ... R-476
R18.1 Covariance Matrices for Two Step Estimation .. R-476
R18.2 Two Step Estimation for an Endogenous Discrete Variable .. R-477
R18.3 Two Step Estimation for an Endogenous Regression Variable R-479
R18.4 Programming a Two Step Estimator .. R-480
R18.5 Theory for Two Step Estimators .. R-483

R19: Programming with Procedures .. R-487
R19.1 Introduction .. R-487
R19.2 The Text Editor .. R-487

R19.2.1 Placing Commands in the Editor ... R-487
R19.2.2 Executing the Commands in the Editor ... R-488
R19.2.3 Executing Silently .. R-490
R19.2.4 Using Text Files with the Editor .. R-491

R19.3 Estimation Programs and Postprocessing .. R-493
R19.4 Procedures .. R-495
R19.5 Defining and Executing Procedures ... R-497

R19.5.1 The Procedure Library ... R-498
R19.5.2 Executing a Procedure ... R-499
R19.5.3 Repeated Execution of a Procedure ... R-500
R19.5.4 Executing a Procedure Silently .. R-500
R19.5.5 Execution with a Scalar Parameter .. R-501
R19.5.6 Query for a Parameter to Use in the Procedure ... R-501
R19.5.7 Conditional Execution ... R-503
R19.5.8 Defining Exit (Convergence) Criteria .. R-505
R19.5.9 Parameters and Character Strings in Procedures ... R-507
R19.5.10 Local Variables in Procedures ... R-509

R19.6 Looping with the EXECUTE Command ... R-511
R19.7 Looping Over an Indexed Set of Variables in a Namelist ... R-511
R19.8 Flow Control within Procedures .. R-512

R19.8.1 Logical Expressions ... R-513
R19.8.2 Loops within Procedures.. R-514
Examples ... R-514

R19.9 Looping with DO Statements ... R-515

LIMDEP 10 Reference Guide Table of Contents xvi

R19.10 Escaping from an Infinitely Looping Procedure .. R-518
R19.11 Editing Procedures and Creating New Procedures .. R-519

R20: Multiple Imputation ... R-521
R20.1 Introduction to Multiple Imputation .. R-521
R20.2 Methodology .. R-522
R20.3 How It’s Done – Overview .. R-523
R20.4 The Imputation Step ... R-525
R20.5 The Estimation Step ... R-526
R20.6 The Aggregation Step and Post Estimation Analysis .. R-530
R20.7 Using Multiple Imputation in Your Own Model ... R-531
R20.8 Imputation Methods ... R-531
R20.9 Usage Notes ... R-533

R20.9.1 Questions on Usage ... R-533
R20.9.2 Implementation Notes .. R-535

R21: Bootstrapping and Other Sampling Experiments ... R-536
R21.1 Introduction .. R-536
R21.2 Bootstrapping Cross Sections and Panel Data ... R-536
R21.3 Jackknife Estimation .. R-541
R21.4 Random Sampling from the Current Sample – DRAW ... R-543
R21.5 Random Sampling from Panel Data Sets ... R-545
R21.6 Random Number Generators ... R-545

R21.6.1 Setting the Seed for the Random Number Generator R-545
R21.6.2 Using CREATE to Generate Random Samples ... R-546
R21.6.3 Sampling from the Multivariate Normal Distribution R-547
R21.6.4 Using CALC to Generate Random Draws ... R-550
R21.6.5 Using MATRIX to Draw Random Matrices .. R-550
R21.6.6 Simulating Random Effects in a Panel .. R-551
R21.6.7 Simulating an Unbalanced Panel Data Set ... R-552

R21.7 Plotting Distributions ... R-552
R21.7.1 CALC Functions that Show Discrete Distributions R-552
R21.7.2 Plotting a Density ... R-553
R21.7.3 Drawing a Distribution by Plotting a Histogram ... R-555
R21.7.4 Sampling Experiments ... R-555
R21.7.5 The Law of Large Numbers and the Central Limit Theorem R-557

R21.8 Urn Experiments .. R-559

R22: Models for Panel Data ... R-563
R22.1 Introduction .. R-563
R22.2 Panel Data Models ... R-563
R22.3 Data Arrangement and Setup ... R-564

R22.3.1 Data Arrangement .. R-565
R22.3.2 Reordering Balanced Panels .. R-565
R22.3.3 CREATE Commands for Panel Data ... R-566

R22.4 General Model Forms for Panel Data .. R-567
R22.5 Model Commands .. R-570

LIMDEP 10 Reference Guide Table of Contents xvii

R22.5.1 Specifying the Panel .. R-570
R22.5.2 Missing Data .. R-571
R22.5.3 Model Type Specifications, Output and Saved Matrices R-571

R23: Fixed and Random Effects Models for Panel Data .. R-582
R23.1 Introduction .. R-582
R23.2 Fixed Effects Models ... R-582

R23.2.1 Least Squares in the Linear Regression Model .. R-582
R23.2.2 Maximum Likelihood Estimation .. R-586
R23.2.3 How it’s Done .. R-589

R23.3 Random Effects Models ... R-594
R23.3.1 Quadrature Based Estimation – The Butler and Moffitt Method R-596

R24: Random Parameter Models .. R-601
R24.1 Random Parameters Models .. R-601
R24.2 Mathematical Formulation of the RP Model ... R-602
R24.3 Commands for Random Parameters Models ... R-603
R24.4 The Parameter Vector and Starting Values .. R-609
R24.5 Individual Specific ‘Estimates’ .. R-610
R24.6 Application ... R-613
R24.7 Technical Details on Estimation of RP Models by Simulation R-617
R24.8 Multilevel and Multiple Effects RP Models .. R-632

R24.8.1 Command ... R-633
R24.8.2 Application ... R-633
R24.8.3 Technical Details ... R-637

R25: Latent Class Models .. R-638
R25.1 Latent Class Models ... R-638
R25.2 Commands for Latent Class Modeling .. R-639
R25.3 Modeling Frameworks for Latent Class Analysis .. R-640
R25.4 Output and Saved Results .. R-640
R25.5 Extending the Class Probability Model ... R-643
R25.6 Testing for the Latent Class Model .. R-645
R25.7 Individual Specific Estimates... R-646

R25.7.1 Individual Specific Posterior Class Probabilities ... R-647
R25.7.2 Individual Specific Parameters .. R-648

R25.8 Application ... R-649
R25.9 Technical Details on Estimating Latent Class Models .. R-652

R26: Numerical Optimization .. R-654
R26.1 Numerical Optimization ... R-654
R26.2 Technical Display During Optimization .. R-654
R26.3 Technical Output During Iterations ... R-655
R26.4 Exit from Iterations and Warning Messages .. R-657

R26.4.1 Normal Exit from Iterations ... R-657
R26.4.2 Maximum Iterations ... R-658
R26.4.3 Unable to Find Function Optimum .. R-658

LIMDEP 10 Reference Guide Table of Contents xviii

R26.4.4 Too Few Iterations ... R-660
R26.4.5 General Failure of Indeterminate Cause .. R-661
R26.4.6 Interrupting the Iterations .. R-662
R26.4.7 Warnings During the Iterations .. R-663

R26.5 Exit Codes .. R-663
R26.6 Iteration Controls ... R-663

R26.6.1 Maximum Iterations ... R-663
R26.6.2 Algorithms ... R-664
R26.6.3 Convergence Rules .. R-664

R26.7 Quadrature ... R-665
R26.8 Multivariate Normal Probabilities ... R-667

R26.8.1 Model Based on the Multivariate Normal Distribution R-667
R26.8.2 Tools that Calculate Multivariate Normal Probabilities R-668

R26.9 Default Values of Program Parameters .. R-669
R26.10 Starting Values ... R-670
R26.11 Hints for Iterative Estimation ... R-671
Appendix R26A Technical Details on Optimization .. R-672

R27: Summary for LIMDEP Reference Guide ... R-675
R27.1 Introduction .. R-675
R27.2 Essential Program Functions .. R-675

R27.2.1 Startup .. R-675
R27.2.2 Operation ... R-675

R27.3 Reading a Data Set ... R-676
R27.4 Transforming Data ... R-676
R27.5 Setting the Sample ... R-677
R27.6 Multiple Imputation ... R-678
R27.7 Econometric Model Estimation ... R-678

R27.7.1 Variable Specifications in Model Commands ... R-679
R27.7.2 Controlling Output from Model Commands .. R-680
R27.7.3 Robust Asymptotic Covariance Matrices .. R-680
R27.7.4 Optimization Controls for Nonlinear Optimization R-681
R27.7.5 Setup for Simulation Based Estimators ... R-681
R27.7.6 Execution of Procedures for Model Estimation ... R-681
R27.7.7 Predictions and Residuals .. R-681
R27.7.8 Model Setup for Certain Models .. R-681
R27.7.9 Setup for Panel Data Models ... R-682

R27.8 Post Estimation .. R-683
R27.8.1 Hypothesis Tests and Restrictions ... R-683
R27.8.2 Partial Effects ... R-683
R27.8.3 Oaxaca Decompositions... R-683

R27.9 The Command Builders ... R-684
R27.10 Econometric Data Structures and Modeling Tools .. R-687

R27.10.1 Cross Section Data ... R-687
R27.10.2 Panel Data .. R-687
R27.10.3 Fixed Effects Models ... R-690
R27.10.4 Random Effects and Multilevel Random Effects Models R-691

LIMDEP 10 Reference Guide Table of Contents xix

R27.10.5 The Random Parameters Model ... R-693
R27.10.6 Observations About GLIM and GEE Estimation R-694
R27.10.7 Latent Class Models ... R-696
R27.10.8 Time Series Data .. R-697

R27.11 Econometric Model Estimation Templates .. R-697

R28: Diagnostics and Error Messages ... R-698
R28.1 Introduction .. R-698
R28.2 Optimization .. R-699
R28.3 Setup and Runtime Diagnostics ... R-700
R28.4 Discrete Choice (CLOGIT) and NLOGIT ... R-751

LIMDEP 10 References .. R-759

LIMDEP 10 Reference Guide Index ... R-776

What’s New in Version 10? R-1

What’s New in Version 10?

 LIMDEP 10 contains estimators for over 30 new models, many extensions of the present
models and major additions to the kit of tools for data analysis. The new SIMULATE and PARTIAL
EFFECTS (or just PARTIALS) commands will change the way you analyze your data. These
capabilities apply to every model that you can estimate including those you design yourself with
MAXIMIZE or any function you choose to specify even if it is not a component of a model. There are
also hundreds of extensions of existing models and commands as well as enhancements to basic tools
such as panel data handling, data transformations, matrix algebra, import of data, and so on.
 The list of new features and program extensions described here is as follows. In some cases,
the new features are integrated into a more general description of the program feature. The list
begins with general features that affect operation of the entire program and narrows as it proceeds to
particular features that are of interest in specific settings such as a new feature of a particular model
or additional ways to generate random samples.

WN1 Model Specification with Interactions, Nonlinearities and Categorical Variables

WN2 Post Estimation Analysis

• Simulation of Outcomes and Model Results
• Partial Effects
• Difference in Differences Analysis
• Oaxaca Decompositions

WN3 Multiple Imputation

WN4 Hypothesis Tests

• Chi Squared Tests for Linear Restrictions
• Likelihood Ratio Tests of Homogeneity of Groups
• Specification Tests for the Linear Regression Model

WN5 Model Extensions for Random Parameters and Latent Class Models

WN6 New Models and Features

• Descriptive Statistics
• Plotting
• Linear Models and Nonparametric Regression
• Count Data
• Stochastic Frontiers
• Binary Choice
• Ordered Choice
• Limited Dependent Variables
• Nonlinear Optimization and Numerical Analysis
• WALD Command

What’s New in Version 10? R-2

WN7 Random Sampling

• Bootstrapping
• Random Sampling
• Sampling Panel Data
• New Random Number Generators

WN8 Data Handling

• File Import and Export
• Panel Data
• Transformations in CREATE

WN9 Programming Tools

• Matrix Algebra
• Scientific Calculator
• Optimization
• Executing Procedures

WN10 Program Display of Results

• DISPLAY Command
• Program Output
• CLIST Command for Label Lists

WN11 Technical Program Settings

What’s New in Version 10? R-3

WN1 Model Specification with Interactions, Nonlinearities
and Categorical Variables

WN1.1 Interactions and Nonlinearities Built Directly into Model
Commands

 Recent analysis involving the types of intricate nonlinear models that LIMDEP and NLOGIT
are best known for is complicated by the difficulty of obtaining appropriate simulations and partial
effects – simple coefficients are far from adequate. Scaled coefficients, average partial effects and
decompositions of effects that are in multiple parts are now the norm in empirical research. The
analysis is made yet more complicated when the functions involved include interactions and
nonlinearities in the variables. Consider a Poisson regression for a count (hospital visits) involving
age, female and income:

E[visits | age, income, gender] = exp(β1 + β2age + β3age2
 + β4income + β5female×income)

Obtaining estimates of the coefficients is fairly straightforward. Interpreting them is not. None of
the coefficients in this model, even after scaling, provide a meaningful measure of the effects of a
variable on the expected visits. For example,

 ∂E[visits|x]/∂age = E[visits] × (β2 + 2β3age),

 ∆E[visits|x]|∆gender = E[visits|gender=1] – E[visits|gender=0].

Setting up the model to begin with, including the interactions, then obtaining the partial effects and
obtaining standard errors and confidence intervals is a major undertaking even for a simple model
such as this one. The entire process is now automated in LIMDEP 10.

A common feature in fitting models such as these is the need to provide the program with the
information about the equation specification. For example, the general approach to interactions and
nonlinearities has been (in LIMDEP and other programs) to build them into the data. To include the
square of age in the equation, we computed agesq = age×age and includes agesq in the equation.
The problem is that the program does not know that agesq is the square of age when it computes the
partial effects and simulations. (See the now famous comment in Economics Letters by Ai and
Norton (2003) on this subject.) For the partial effects programs will dutifully report the scaled
coefficients for age and for agesq. Neither of them is meaningful. This problem is overcome in
LIMDEP 10 by building interactions and nonlinearities into the equation. For the application above,
this approach is replaced with

 POISSON ; Lhs = visits ; Rhs = one, age, age*age, income, female*income $

This is a major change in the program. When this command is followed with

 PARTIALS ; Effects : age / female $

the full set of partial effects is computed accounting for all the nonlinearities and for the fact that
female is a dummy variable. The results of these two commands using our healthcare data set is as
follows:

What’s New in Version 10? R-4

Poisson Regression
Dependent variable VISITS
Log likelihood function -2299.65925
Restricted log likelihood -2318.94391
Chi squared [4 d.f.] 38.56931
Significance level .00000
McFadden Pseudo R-squared .0083161
Estimation based on N = 4481, K = 5
Inf.Cr.AIC = 4609.3 AIC/N = 1.029
Chi- squared = 20702.97630 RsqP= .1046
G - squared = 3671.04173 RsqD= .0104
Overdispersion tests: g=mu(i) : 2.751
Overdispersion tests: g=mu(i)^2: 3.065
--------+--
 | Standard Prob. 95% Confidence
 VISITS| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -.40582 .60490 -.67 .5023 -1.59140 .77976
 AGE| -.08002*** .02923 -2.74 .0062 -.13731 -.02273
 AGE*AGE| .00099*** .00033 3.02 .0025 .00035 .00163
 INCOME| -.59626** .27889 -2.14 .0325 -1.14287 -.04964
 |Interaction FEMALE*INCOME
Intrct02| 1.00741*** .20796 4.84 .0000 .59982 1.41500
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Partial Effects for Exponential Regression Function
Partial Effects Averaged Over Observations
* ==> Partial Effect for a Binary Variable

 Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

 AGE .00117 .00062 1.88 -.00005 .00239
 * FEMALE .05131 .01059 4.85 .03056 .07207

Several of the new features described below make use of this extension of the model specification in
LIMDEP.
 The detailed feature for model specification is as follows: Interactions may be specified in
all model commands in the Lhs, Rhs, Rh2, Inst, and Eqn specifications, and all forms of variance
lists, Hfr, Hfu, etc. Interactions and transformations are of the form

variable1 * variable2 Example: ; Rhs = one,age,female,age*female
variable1 / variable2 Example: ; Rhs = one,age,income/famsize
variable1 * variable2 ^ power Example: ; Rhs = one, female, age, female*age^2
variable1 ^ power Example: ; Rhs = one,logk,logl,logk^2,logk^2,logk*logl
log(variable1) Example: ; Lhs = Log(q) ; Rhs = one,Log(k),Log(l)

This helps in two ways. First, you do not have to create the extra variables. Second, this setup works
with the new SIMULATE, PARTIALS and other features so that you can compute partial effects
for interaction terms and categorical variables correctly.

What’s New in Version 10? R-5

WN1.2 Interaction Terms Included in Namelists

 The constructions described above may be included in namelists for all purposes. The
earlier model could be specified using

 NAMELIST ; x = one, age, age*age, income, income*female $
 POISSON ; Lhs = visits ; Rhs = x $

This even extends to using namelists in matrix algebra.

 MATRIX ; xxi = <x’x> $

computes the inverse of the cross products matrix that includes the interaction and square of age.

WN1.3 Definitions of Interaction Terms Stored in Project Files

These definitions of compound variables are stored with the namelist definitions in your project file,
so they will still be available, like simpler namelists, if you leave then reenter the program.

WN1.4 Categorical Variables Expanded Inline in Model Commands

A categorical variable is a discrete indicator of group or type membership, such as education
= 1,2,3,4 for hs, college, masters, phd. This is usually entered in a regression model in the form of a
set of three dummy variables – with one omitted for the base case. Categorical variables may appear
in any list of variables as listed above, in the form

 Expand(variable)
For example,
 ; Rhs = one,age,sex,Expand(educ)

You may also abbreviate this as #variable, as in #educ. In our data, the variable educ gives years of
schooling, including part years. We used the following to obtain the results below:

 CREATE ; yrseduc = Int(educ) $
 PROBIT ; Lhs = doctor ; Rhs = one,age,#yrseduc $

(Education ranges from 7 to 18 in the data. The expansion function automatically drops the dummy
variable for the highest category.)

The specification creates a temporary internal namelist, such as yrsed = xx with a set of up to
99 dummy variables of the form yrsed = 07, yrsed = nn…. Your categorical variable need not be a
sequence of integers, but it must be composed of integers that are somewhere in 1,...,100. Thus,
yrsed could be coded 12,16,18,20 (number of years). The last dummy variable is always omitted, so
this can create up to 99 dummy variables. They are temporary. The names will show up in the
output by name, but never show up in the data set. The variables and the temporary namelist vanish
after the model is executed.

What’s New in Version 10? R-6

There is a special case, if the variable is named year, we assume it is up to 100 years starting
in 1921 and ending in 2020.

The following restrictions apply.

1. This form may only be used for Rhs, Rh1, Rh2, Inst, Hfn, Hf1, Hfu, Hfn.

2. It may not be used in any form of multinomial choice model, such as DISCRETE,
NLOGIT, or any of the sub forms such as RPLOGIT, etc.

3. It may not be combined with the interaction terms described earlier.

4. Categorical variables cannot be expanded in namelists.

These categorical variables are temporary, so they will not be available to use in subsequent
PARTIALS or SIMULATE commands. When the equation contains constructions such as
; Rhs = Expand(yrseduc), there will be no conditional mean function stored for the post estimation
commands. You can program around this restriction by using CREATE to compute the set of
dummy variables. For example, the following is equivalent to the previous PROBIT command:

 CREATE ; Expand(yrseduc,0) $
 PROBIT ; Lhs = doctor ; Rhs = one, age, _yrsedu_ $

WN2 Post Estimation Analysis

Several new commands are used for model simulation and partial effects.

WN2.1 Simulation of Outcomes and Model Results

 Every model that you fit with LIMDEP has an associated outcome function, such as the
conditional mean function or prediction function for the dependent variable. In most cases, this is
the expected value of the dependent variable. The post estimation command SIMULATE provides
a simulation of this function for the current sample of observations. To continue the earlier example,
the model simulation would be

Model Simulation Analysis for Exponential Regression Function

Simulations are computed by average over sample observations

User Function Function Standard
(Delta method) Value Error |t| 95% Confidence Interval

Avrg. Function .14885 .00576 25.83 .13755 .16015

There are many settings that you can use to examine scenarios in your simulation. These are
provided as options on the simulate command. Here is an example: For this model, we wish to
simulate the model over values of age from 25 to 64 using only female headed households.

What’s New in Version 10? R-7

The following computes the simulation and plots the results.

 SIMULATE ; Set: female = 1 ; Scenario: & age = 25(5)65 ; Plot $

Simulation and partial effects are computed with fixed settings
FEMALE = 1.0000

Model Simulation Analysis for Exponential Regression Function

Simulations are computed by average over sample observations

User Function Function Standard
(Delta method) Value Error |t| 95% Confidence Interval

Avrg. Function .14885 .00576 25.83 .13755 .16015
AGE = 25.00 1.07184 .92069 1.16 -.73271 2.87640
AGE = 30.00 .71840 .51231 1.40 -.28574 1.72253
AGE = 35.00 .48150 .27322 1.76 -.05402 1.01702
AGE = 40.00 .32272 .13621 2.37 .05575 .58970
AGE = 45.00 .21630 .06003 3.60 .09865 .33396
AGE = 50.00 .14498 .01978 7.33 .10621 .18374
AGE = 55.00 .09717 .00525 18.49 .08687 .10747
AGE = 60.00 .06513 .01127 5.78 .04303 .08722
AGE = 65.00 .04365 .01378 3.17 .01663 .07067

 The program provides the function to be simulated associated with each model. However,
you can provide any function you wish to be simulated, based on a set of parameters that you have
estimated in any context. For example, in the following, we examine the probability of zero hospital
visits for the same scenario as above, female headed households with age varying from 25 to 65

What’s New in Version 10? R-8

SIMULATE may use ; List and ; Keep to list in your output or store individual results for the
simulation scenario in the data set.

WN2.2 Partial Effects

 The analysis shown above is also provided for computing partial effects, for the estimated
model or for any other function. The PARTIALS command can be used to compute partial effects
for any variable in any model or function no matter how complicated. You need only provide the
function, the parameters and the covariance matrix for the parameters. For models that you
estimated, these are all stored automatically when the model is estimated. All interactions and
nonlinearities are accounted for in the computations. Dummy variables are identified by the
processor. A simple example appears below.

 NAMELIST ; x = one,age,age*age,income,income*female $
 POISSON ; Lhs = visits ; Rhs = x $
 PARTIALS ; Effects: female | age = 20,30,40,50 $

What’s New in Version 10? R-9

Partial Effects Analysis for Exponential Regression Function

Effects on function with respect to FEMALE
Results are computed by average over sample observations
Partial effects for binary var FEMALE computed by first difference

df/dFEMALE Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

APE. Function .05131 .01059 4.85 .03056 .07207

AGE = 20.00 ---
Average effect .06811 .01862 3.66 .03162 .10460

AGE = 30.00 ---
Average effect .05013 .01079 4.64 .02898 .07129

AGE = 40.00 ---
Average effect .04496 .00943 4.77 .02649 .06344

AGE = 50.00 ---
Average effect .04913 .01023 4.80 .02907 .06919

Scenarios can be provided that examine the effects over a range of values of a variable or set the
variables to specific values, or even partition the sample. For example, the following commands
trick the program into using only those households headed by males (gender = 0) and sets gender
equal to one in the simulation – this scenario answers the question, what would be the partial effects
of age on hospital visits for male headed households if they were female instead?

CREATE ; gender = female $
PARTIALS ; Set: female = 1 ; Effects: age @ gender = 0 & age = 25(5)65 $

As shown earlier for the simulation, partial effects can be computed for the conditional mean

function or for any other function you wish to analyze. By changing the PARTIALS command to

PARTIALS ; Set: female = 1 ; Effects: age @ gender = 0 & age = 25(5)65
; function = Exp(-Exp(beta1'x))
; parameters = b
; Labels = 5_beta
; variance = varb $

we analyze the probability of zero visits, rather than the conditional mean.

The PARTIALS command operates as follows: After you fit a model (any model), a
template for computing a fitted value or some other useful function is left behind. This may not be a
conditional mean function. For example, for stochastic frontier models, the template function is the
estimator of technical or cost efficiency for the firm. When you compute any kind of linear model,
the function is βʹx, the linear function. For a probit model, it is Φ(βʹx), the probability of a one. And
so on. We then use this function to compute either the fitted values (with SIMULATE) or the
partial effects (with PARTIALS). All interaction terms and built in transformations (powers and
logs) are evaluated correctly. So, for example, if your probit model is

 PROBIT ; Lhs = y ; Rhs = one,age,age*age, income,income*female $

What’s New in Version 10? R-10

this program computes the partial effects for, e.g., age (two terms), income (two terms) and female
(recognizing that it is a dummy variable), all correctly. Effects and simulations can be computed at
the data means or averaged over the observations. They can be computed as one or two other
variables vary, and plots of traces of the effects can be produced as well. The sample can be
partitioned with effects computed separately for particular groups. The function is in place until it is
replaced by another model, so you can compute a sequence of scenarios or analyses under different
assumptions.
 The PARTIALS command computes a variety of different functions, not only the simple
partial effects. These begin with the partial derivatives (marginal, or partial effects), ∂F/∂x or ∆F/∆x
(for dummy variables) for each observation or for the average observation, then can be modified to
obtain elasticities, ∂ln F/∂lnx, semi elasticities, ∂ln F/∂x and log derivatives, ∂F/∂ln x. The program
figures out internally if you are analyzing a dummy variable and computes effects accordingly. If
the variable in question is a category, such as hs, college, masters, phd, you can specify which
category the individual shifts to so as to compute the effect. For example, suppose your model were

 E[y|x] = F(age,age*age, hs, college, masters, phd, married).

You can determine the difference between college and masters with

 PARTIALS ; Effects: college,masters $

The program will deduce the presence of the two categories and obtain the partial effect
appropriately as the impact of the switch from the first category to the second.
 The following are computed:

• Standard errors for each observation and for the average observation,
• Average partial effect and standard errors for APEs,
• Individual observation means and standard deviations as variables,
• Average partial effects and standard errors as elements in a matrix.

Generally, partial effects are computed at the observations and averaged. The effect and standard
error and confidence intervals are computed for each observation. You can request, instead, that the
whole set of computations be done just once for the average individual in the sample. The model
analyzed may be either the previous model estimated, which will be one of about 50 different model
specifications, or it can be any model or function that you can write down, linear or not, using a set
of coefficients and any variables, matrices or scalars that exist in the project. For the multinomial
logit and ordered choice models, you can examine probabilities associated with particular outcomes,
or tabulate a full set of results for all of the outcomes. The PARTIALS command can request a
single simple partial effect, or multiple effects and multiple complicated scenarios.
 The PARTIALS command will produce a table of partial effects for a set of variables in a
model. The following illustrates. Note that the variables that are analyzed are the structural variables
that appear in the probit model, not the constructed variables (which are not useful separately).

NAMELIST ; x = one,age,age*age,income,income*female $
NAMELIST ; z = age,income,female $
PROBIT ; Lhs = doctor ; Rhs = x $
PARTIALS ; Effects: z ; Summary $

What’s New in Version 10? R-11

Partial Effects for Probit Probability Function
Partial Effects Averaged Over Observations
* ==> Partial Effect for a Binary Variable

 Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

 AGE .00506 .00024 21.22 .00459 .00553
 INCOME -.03008 .01642 1.83 -.06227 .00211
 * FEMALE .11179 .00510 21.92 .10180 .12179

 The following analyzes the partial effect of female on the probability of having at least one
doctor visit, computed for age varying from 20 to 65. The partial effects are tabulated than plotted
with 95% confidence limits.

NAMELIST ; x = one,age,age*age,income,income*female $
PROBIT ; Lhs = doctor ; Rhs = x $
PARTIALS ; Effects: female & age = 20(3)65 ; Plot(ci) $

What’s New in Version 10? R-12

WN2.3 Difference in Differences Analysis

There is a limitless variety of models and specifications for examining treatment effects –
the contemporary literature is vast. There is little way to obtain generality, however, one particular
approach is used reasonably often. Let pre- and post treatment periods be denoted t = 0 and t = 1 and
let the treated individuals be denoted ‘T’ and controls be denoted ‘C.’ Let the outcome variable be
y(t,T) or y(t,C) – the outcome is generated by the conditional mean function of any model you
specify, or a particular function that you specify such as in our examples above. We assume that
there are three dummy variables that play some role in the model, post_t = 1(t = 1 and T), post_c =
1(t = 1 and C) and pre_t = 1(t = 0 and T). Pre treatment controls are the base case. We assume that
these dummy variables appear in the model somewhere so that treatment and status impact the
outcome variable. The SIMULATE command can now be modified with

 ; did = post_t, post_c, pre_t

to produce an analysis of the difference in differences of the average outcomes. All other features of
the SIMULATE command can be used with this extension.
 To continue the earlier example, we construct a purely fictitious set of treatment and status
variables and examine the difference in differences at ages 25, 24, 45 and 55.

CREATE ; pret = Rnd(2)-1 ; post = Rnd(2)-1 ; postc = Rnd(2)-1 $
POISSON ; Lhs = hospvis ; Rhs = x,postt,postc,pret $

 SIMULATE ; did = postt,postc,pret ; Scenario: & age = 25(10)55 $

--
Simulation is computing difference in difference
Specified settings for simulation
POSTT = post effect treatment dummy
POSTC = post effect controls dummy
PRET = pre effect treatment dummy
Base category is pre-effect controls
D-i-D result is
{E[outcome|post treatment - E[outcome|post controls]} -
{E[outcome|pre treatment - E[outcome|pre controls]}
--
Model Simulation Analysis for Exponential Regression Function
--
Simulations are computed by average over sample observations
--
User Function Function Standard
(Delta method) Value Error |t| 95% Confidence Interval

Avrg. Function -.02053 .01794 1.14 -.05569 .01464
AGE = 25.00 -.16078 .19954 .81 -.55189 .23033
AGE = 35.00 -.07021 .07400 .95 -.21525 .07483
AGE = 45.00 -.03066 .02831 1.08 -.08614 .02482
AGE = 55.00 -.01339 .01171 1.14 -.03634 .00956
--

What’s New in Version 10? R-13

WN2.4 Oaxaca Decompositions

 The Oaxaca decomposition is a methodology for studying the different average outcomes of
two groups. The underlying theory is based on the following specification. Let g = 0 or 1 signify the
observations in two distinct groups. Let E(βg,Zg) denote the average outcome from a model that is
fit separately for the two groups (and once for the pooled sample). The question pursued with this
analysis is which feature explains the greater part of the difference, E(β1,Z1) – E(β0,Z0), differences
in the parameters, β or the data, Z. Even in the linear regression case, the analysis is complicated.
For nonlinear models, it is yet more intricate. The new command DECOMPOSE will carry out the
Oaxaca decomposition for any outcome from any model, or a model or function that you specify in
the command. Like the simulations or partial effects described earlier, Oaxaca decompositions may
be done for any model that you specify, or any function that you provide in the command as an
alternative to the most recently estimated model. Several layers of the analysis are provided.
 The following shows an example. The decomposition is provided in two steps, estimation
and analysis. The commands below show the form of the specification.

POISSON ; For[female=*,1,0] ; Lhs = docvis ; Rhs = one,age,educ $
DECOMPOSE $

Decomposition of Changes in Average Functions
Model Used in Computations = Exponential Regression Function

 Sample is FEMALE = 1 FEMALE = 0 Sample
Estimates Based on (1) (0) Size
FEMALE = 1 (a) 3.79080 (a,1) 3.61850 (a,0) 13083
FEMALE = 0 (b) 2.92255 (b,1) 2.62571 (b,0) 14243
Weighted =** (*) 3.31769 (*,1) 3.07208 (*,0) 27326

Wald Test of Difference in the Two Coefficient Vectors
Chi squared[3] = 2352.2131 , P Value = .0000

Total Change in Function (a,1) - (b,0) = 1.16509 (100.00%)

Oaxaca | Due to data is (a,1) - (a,0) = .172296 (14.79%)
Blinder | Due to beta is (a,0) - (b,0) = .992790 (85.21%)

Daymont | Due to data is (b,1) - (b,0) = .296837 (25.48%)
Andrisani | Due to beta is (a,1) - (b,1) = .868250 (74.52%)

Daymont | Due to data is (b,1) - (b,0) = .296837 (25.48%)
Andrisani | Due to beta is (a,0) - (b,0) = .992790 (85.21%)
(3 Fold) | Due to function (a,1) - (b,1) +
 | (a,0) + (b,0) = -.124540 (-10.69%)

Ransom | Due to data is (*,1) - (*,0) = .245609 (21.08%)
Oaxaca | Due to beta is (a,1) - (*,1) + .919478 (78.92%)
Neumark | (*,0) - (b,0)

(The benchmark coefficients in the weighted results are the pooled estimator. One can, instead,
specify that the benchmark be a specified theta weighted mixture of the coefficients for the two
groups.)

What’s New in Version 10? R-14

WN3 Multiple Imputation

WN3.1 Multiple Imputation for Data Sets with Missing Values

LIMDEP provides routines for multiple imputation for data sets with missing values. The
multiple imputation program provides a looping procedure within which missing values of variables
that you designate are filled with predictions from fitted models.
 The following features are not included in the multiple imputation program:

1. Examine and act on missing data ‘patterns,’ such as ‘monotone missing values’ and so on. It
fills the missing values in the variables, one variable at a time, independently.

2. Make exotic corrections to degrees of freedom for the linear model. (How a data set with a
few dozen observations can be claimed to contain thousands of degrees of freedom after a
handful of multiple imputation iterations remains mysterious to us. We have not attempted to
replicate this feature of the methodology.)

3. Any special data management, such as saving the imputed data set(s) as separate files. This
is because we do not create replicated data sets with imputations. Imputations are done on
the fly, and fill in the existing data set, in place. The need to replicate the whole data set is
the Achilles heel of received implementations of this technique – they are limited to a small
handful of iterations – 3 to 5 is the standard. The advantage of our approach is that if you
want to compute a thousand imputations with a huge data set, you can do it.

WN3.2 Technical Details

We use a two step method. (It could not be done any other way.)

Step 1. You create the imputation equations. You may have up to 30 of these active at any time. An

imputation equation is associated with a specific variable in your data set.

Step 2. You fit a model (or many models) that uses the variables that appear in the imputation list
(and others). You specify how many imputations you want to do. In a ‘loop’ the program
imputes all variables that are to be filled. Then, it fits as many models as you wish to specify
using these variables (and any others).

Details about the imputation engines:

You may have up to 30 definitions of the following type – these are the types of variables for
which missing values may be imputed:

 M (for measurement) = continuous variable, uses linear regression,
 B (for binary) = binary variable, uses logit binary choice equation,
 C (for count) = count variable, uses Poisson,
 O (for ordered) = ordered discrete variable, uses ordered probit,
 F (for fractional) = proportion between zero and one, uses a logit model,

T (for type) = an unordered choice, uses multinomial logit model.

What’s New in Version 10? R-15

As you issue imputation equation instructions, you will see the names accumulate in the imputation
equations list in the project window. You can inspect the equations by double clicking the
imputation name in the window.

How to use the imputation engines after they are created:

 The estimation in the multiple imputation environment is done with these steps:

1. Set the sample.

2. Set up a procedure that contains the models that involve variables on the Rhs that need
imputation.

3. The EXECUTE command specifies what is to be imputed and how many times.

The following shows a complete example of a multiple imputation estimation.

IMPUTE ; Lhs = xc ; Rhs = one,z1,z2,... ; Type = Count $
PROCEDURE $
PROBIT ; Lhs = ... ; Rhs = ... xc... ; Imputation = ProbitA $
LOGIT ; Lhs = ... ; Rhs = ... xc... ; Imputation = LogitA $
POISSON ; Lhs = ... ; Rhs = ... xc... ; Imputation = PoissonA $
ENDPROC
EXECUTE ; N = number of imputations ; Imputation = ProbitA,LogitA,PoissonA $

Note that xc appears in all four models.

There are no restrictions on what models may appear in the procedure. Every model in
LIMDEP and NLOGIT that computes a parameter vector and covariance matrix is supported. (The
reason is that the imputation is created before the model command is carried out. The EXECUTE
command, itself, fills in the missing values for each iteration, then any model that appears in the
procedure can use the filled variables, as they are the names of variables that all exist in the data set.

Final results are computed as follows: The coefficient vector in the model is the average over
the imputations. The estimated covariance matrix is the average of the estimated covariance
matrices plus 1+1/M times the sample variance of the estimated coefficient vectors, where M is the
number of replications.

Imputations use Rubin’s methods, with modifications for some of the types that he (and others)
have not written about. In all cases, for each observation within each replication, we draw a random set
of parameters from the posterior normal population. We then insert the prediction in place of the
missing value. The original data set, with missing values, is restored after each iteration concludes.

Here is a constructed example. The variable marr is the marital status dummy variable. We
have injected about 10% missing values into this binary variable. We create an imputation equation
for marr with the IMPUTE command. The procedure fits a probit model that uses marr and several
other variables. The missing values are imputed using age, education and income in each of 10
iterations. The final displayed results reports that 10 imputation iterations have been computed. The
second set of results is the simple probit results using casewise deletion rather than imputation. The
multiple imputation procedure does not appear to have helped much. It should be noted that the
benefits of having the extra observations in the sample used are at least partially offset by the chatter
of the simulation itself. That is the implication of the second term noted above in the computation of
the covariance matrix.

What’s New in Version 10? R-16

The commands are:

CREATE ; pick = Rnu(0,1) < .1 $
CREATE ; marr = married $
CREATE ; If(pick=1)marr = -999 $
IMPUTE ; Lhs = marr ; Rhs = one,age,educ,hhninc ; Type = Binary $
PROC $
PROBIT ; Lhs = doctor ; Rhs = one,marr,age,hhkids,public

; Imputation = Probita $
ENDPROC$
EXECUTE ; N = 10 ; Imputation = Probita $
SKIP $
PROBIT ; Lhs = doctor ; Rhs = one,marr,age,hhkids,public $

WN4 Hypothesis Tests

 Several new features have been added for hypothesis tests. The general format of Wald chi
squared tests has been replaced to make it more convenient to specify the restrictions. Several tests
have been automated, including the maximum likelihood counterpart to the Chow test for
homogeneity. This is useable with any model that is fit by maximum likelihood. Several specific
tests for the linear model have also been built into the commands. Finally, the Kolmogorov-Smirnov
test of normality is available as a built in CALC function. For example, the following computes the
K-S statistic for the income variable, and saves it as a scalar named kst.

CALC ; kst = Kst(hhninc) $

Kolmogorov-Smirnov test of F(HHNINC)
vs. Normal[.00000, .17691^2]
******* K-S test statistic = .2224614
******* 95% critical value = .0082272
******* 99% critical value = .0098605
Normality hyp. should be rejected.

WN4.1 Chi Squared Tests for Linear Restrictions

The current format for hypothesis tests about coefficients in models (not for imposing
restrictions) is
 ; Test: a1 b(1) + or – a2 b(2) + … = c

where subscripts in coefficients are keyed to the location of the parameter in the model and a1, a2,…
are numbers. This allows testing one restriction. More than one restriction may be tested
simultaneously (jointly) by separating restrictions with commas, for example,

 ; Test: b(1) + b(2) + b(3) = 1, b(4) = 0.

Two new shortcuts are provided. First, additional sets of restrictions may be provided by separating
the sets with vertical bars. Thus,

 ; Test: b(1) + b(2) + b(3) = 1, b(4) = 0 | b(5) = 1.5.

What’s New in Version 10? R-17

This command tests the two restrictions before the bar, then the third restriction after the vertical bar,
separately.

The disadvantage of this format is that the coefficients are specified with reference to their
location in the parameter vector. If the list of variables in the model changes, the subscripts in these
restrictions must change as well. A second form of the restriction will be much more convenient in
that it is not tied to the location of the parameter in the parameter vector. Instead of a parameter
name, you can use the name of the variable that is multiplied by the coefficients. For example,

 REGRESS ; Lhs = y ; Rhs = one,x1,x2,x3,x4,x5
 ; Test: x1+x2+x3 = 1, x4 = 0 | 3*x5 + 3.219*x1 = 1.732 $

This format is available for all model commands in all settings – it is a global change in the way that
model commands may be specified. The ; CLS: specification that is used for the linear model may
also use this format. However, multiple sets of restrictions separated by the vertical bar cannot be
specified with ; CLS: (because the model is only estimated once).
 A shortcut is provided for testing a joint hypothesis that several variables are zero. The
following illustrates by showing how to test the joint hypothesis that a set of coefficients on time
dummies are simultaneously zero. The general format of this test (which can be used in any model)
is
 NAMELIST ; listname = … $
 Model ; Lhs = … ; Rhs = …, listname, … ; Test: listname = 0 $

 SAMPLE ; All $

CREATE ; t = year - 1983 $
CREATE ; Expand(t,0) $
REGRESS ; Lhs = income ; Rhs = one,age,age^2,educ,female,_t_

 ; Test : _t_ = 0 $

T was expanded as _T_ .
Largest value = 11. 6 New variables were created.
Category
 1 New variable = T01 Frequency= 3874
 2 New variable = T02 Frequency= 3794
 3 New variable = T03 Frequency= 3792
 4 New variable = T04 Frequency= 3666
 5 New variable = T05 Frequency= 4483
 8 New variable = T08 Frequency= 4340
Note, the last category was not expanded. You may use
this namelist as is in a regression with a constant.

Ordinary least squares regression
LHS=INCOME Mean = .35208
 Standard deviation = .17691
---------- No. of observations = 27326 DegFreedom Mean square
Regression Sum of Squares = 150.105 10 15.01048
Residual Sum of Squares = 705.073 27315 .02581
Total Sum of Squares = 855.178 27325 .03130
---------- Standard error of e = .16066 Root MSE .16063
Fit R-squared = .17552 R-bar squared .17522
Model test F[10, 27315] = 581.51599 Prob F > F* .00000
Wald Test: Chi-squared [6] = 2395.40350 Prob C2 > C2* = .00000
F Test: F ratio[6,27315] = 399.23392 Prob F > F* = .00000

What’s New in Version 10? R-18

--------+--
 | Standard Prob. 95% Confidence
 INCOME| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -.32083*** .01639 -19.57 .0000 -.35296 -.28871
 AGE| .02598*** .00073 35.48 .0000 .02455 .02742
 AGE^2.0| -.00029*** .8268D-05 -34.69 .0000 -.00030 -.00027
 EDUC| .01889*** .00043 43.75 .0000 .01805 .01974
 FEMALE| .00068 .00198 .34 .7332 -.00321 .00456
 T01| -.14386*** .00379 -37.97 .0000 -.15129 -.13644
 T02| -.13406*** .00381 -35.23 .0000 -.14152 -.12660
 T03| -.11949*** .00381 -31.40 .0000 -.12695 -.11203
 T04| -.10719*** .00384 -27.95 .0000 -.11471 -.09967
 T05| -.09738*** .00366 -26.59 .0000 -.10455 -.09020
 T08| -.03809*** .00369 -10.33 .0000 -.04532 -.03087
--------+--
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx.
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

WN4.2 Likelihood Ratio Tests of Homogeneity of Groups

 The likelihood ratio test of homogeneity of the model coefficients across groups is computed
using this statistic:
 LR = 2[(Σgroups logL) - logLpooled]

where logL indicates the log likelihood function. Previously, this statistic was computed by placing
the model in a loop in a procedure and accumulating the statistic as the model is fit for the groups.
The following shows how to automate this computation in the model command:

 Model ; For [(test) variable] ; … the rest of the model $

The variable in the test specification is assumed to be coded with integer values that separate the
groups. The following example tests whether the coefficients in a probit model are the same for men
and women:

 PROBIT ; For [(test) female]
 ; Quietly ; Lhs = doctor ; Rhs = one,age,married,hhkids $

Setting up an iteration over the values of FEMALE
The model command will be executed for 2 values
of this variable. In the current sample of 4481
observations, the following counts were found:
Subsample Observations Subsample Observations
FEMALE = 1 2170 FEMALE = 0 2311
FEMALE =**** 4481
--
Actual subsamples may be smaller if missing values
are being bypassed. Subsamples with 0 observations
will be bypassed.
--

What’s New in Version 10? R-19

Subsample analyzed for this command is FEMALE = 1
Subsample analyzed for this command is FEMALE = 0
Full pooled sample is used for this iteration.

Homogeneity Test for Estimated Model

The model was estimated for 2 subsamples and the full sample
The likelihood ratio statistic is 2[Sum(g=1...G)logL(g) - logL(pooled)]
Chi squared = 77.8436 Estimated degrees of freedom = 4
Estimated P value for this test is .0000

WN4.3 Specification Tests for the Linear Regression Model

 Ramsey’s RESET test has been automated in the linear regression model. Two additional
specification tests for the linear panel data regression have also been built into the command. The Wu
test is an alternative way to compute Hausman’s statistic. The Moulton/Randolph form of the LM
statistic is part of the standard results for the random effects model. Finally, The Breusch and Pagan
test for heteroscedasticity is built into the command. The test can be carried out using the Rhs variables
specified in the regression or using a different set of variables provided in the request for the test.

WN5 Model Extensions for Random Parameters and Latent
Class Models

 LIMDEP includes estimators for random parameters, latent class and fixed and random
effects specifications for nearly 50 different models. We continue to develop the features of the
estimators and new model specifications. Among the new developments are elasticities and partial
effects for most specifications, and weights and robust covariance estimators. The latent class
models now provide an option to retain the estimated posterior class probabilities as variables in the
data set that can then be analyzed later. The following describe some specific features added to the
random parameters (mixed, multilevel) and latent class models.

WN5.1 Random Parameter Models

 Conditional estimates of individual specific parameters (these are the counterparts to the
posterior means in Bayesian environments) are saved in the matrix work area and can be analyzed
after estimation. Both means and standard deviations are retained.
 Several new distributions are provided for the random parameters including triangular and
log gamma. The triangular distribution can be employed when the range of the parameter is
expected to be restricted.

WN5.2 Latent Class models

 Posterior class probabilities for each individual are saved as matrices or variables in the
active data set. Weighted averages of class specific parameters provide a ‘posterior’ estimate of the
model parameters that apply to each individual. These are also retained in matrices.

What’s New in Version 10? R-20

WN6 New Models and Features

 New models and analysis tools are a large part of this version of LIMDEP. There are about
30 new model specifications, and a variety of new tools (such as PARTIALS and SIMULATE) that
can be used to extend the model results.

WN6.1 Descriptive Statistics

 One way analysis of variance for a variable is requested by specifying the panel in the
DSTAT command. For example:

 SETPANEL ; Group = id ; Pds = ti $

DSTAT ; Rhs = hhninc ; Panel $

 Specifying that the variables in DSTAT are clustered using the general specification
requests the appropriately constructed standard error of the mean. For example,

 DSTAT ; Rhs = hhninc ; Cluster = id $

produces

--------+---
Variable| Mean Std.Dev. Minimum Maximum Cases Missing
--------+---
 HHNINC| .352084 .176908 0.0 3.067100 27326 0
 | SE(mean) = .00186 95% CI = [.34845,.35572]
--------+---
Clusters| Cluster corrected std. deviations: 7293 clusters.
--------+---

WN6.2 Kernel Density Estimators

 Several options have been added for kernel density estimation.

• Multiple estimators may be placed in the same figure by providing up to five names in the
command.

• The data for the kernel estimator may be provided as columns in a matrix rather than as
variables in the data area. This works well with the posterior estimates of parameters from
the random parameters and latent class models.

• A normal distribution with the same mean and variance as the variable being plotted can be

superimposed over the kernel estimator.

• Kernel estimators can be provided for data that are segregated by groups. For example, the
following compares the distributions of household incomes for male and female headed
households for the first wave of our seven wave panel data set. (There does not seem to be
much difference.)

What’s New in Version 10? R-21

KERNEL ; For[t=1] ; Rhs = hhninc ; Group = gender ; Labels = male,female $

WN6.3 Histograms

 Histograms may be of several types, for integer valued variables such as counts, or
continuous variables such as income. Many different configurations are provided. We now allow
comparison to a normal distribution for either type. For example, the following describes the
household incomes in wave one of our panel for households less a handful of outliers which greatly
distort the figure:

HISTOGRAM ; If[t=1 & hhninc <= 1] ; Rhs = hhninc ; Normal
; Title = Household Incomes in Wave 1$

Histograms may have up to 300 bars. The one below has 150.

What’s New in Version 10? R-22

WN6.4 Graphs and Plotting

 Several options have been added to the PLOT command. A new command, CPLOT for
contour plots has been added.

• Tail areas or interior areas in function plots may be shaded.
• Scatter plots may be mixed with function plots.
• Up to five plots may be produced in the same field.
• Plots have been sharpened to improve readability of scatter plots.
• Plots may be annotated with titles and headers on both axes and labels in the legend box.

A new command, CPLOT, is used to produce contour plots for a pair of variables and a

function of them. The following shows an example.

SAMPLE ; 1 $
CPLOT ; Fcn = ro*Log(beta) - Lgm(ro) - 3*beta + ro – 1 ; Labels = beta,ro

; Plot(beta,ro) ; Start = 2,5 ; Limits = .1,5,1,16 ; Pts = 150
; Title = Contour Plot of Log Likelihood $

What’s New in Version 10? R-23

WN6.5 Linear, Semiparametric and Nonparametric Regression
Model

 The RESET test for specification error and Breusch and Pagan test for heteroscedasticity
have both been built into the REGRESSION command. The Breusch and Pagan test may be based
on the variables on the right hand side of the regression or on a different set of variables specified in
the command.
 Two estimators have been added for linear systems in which estimation is based on
instrumental variables, limited information maximum likelihood (LIML) and Ackerberg and
Devereux’s jackknife instrumental variable estimator (JIVE). LIML is a new command. The
jackknife estimator is added as an option for 2SLS.

Fixed and Random Effects Linear Regression

 Robust covariance matrices are computed for both random and fixed effects estimators. We
do note, while the latter might be a natural approach in some settings, the former would seem to
contradict the appropriateness of the generalized least squares estimator used to obtain the equations.
Nonetheless, experts remain divided on the calculation. It is provided here for completeness.
 The two way fixed effects estimator is expanded to allow up to 1,000 periods (or groups).
Note that if the panel is unbalanced, the two way fixed effects model must be fit by ‘brute force’ in
the smaller dimension – it is necessary actually to include the dummy variables in the regression.
We have developed a method that makes this feasible for up to 1,000 periods.
 The one way random effects model is made a bit more flexible by allowing only a constant
term to accommodate the analysis of variance.

Semiparametric Regression

 QREG and QCREG (for count data) compute quantile regression estimates. Both can
request estimates for up to 7 quantiles. The command is specified as usual. Multiple quantiles are
requested by

; Qnt = list of up to 7 values...

The estimator computes the regression for each quantile, with a full set of results and produces a
summary table for the set. Saved results are for the last quantile in the list (b, varb, scalars, etc.)

Nonparametric Regressions

 A new command, LOWESS, is provided for nonparametric, locally polynomial regression.
The method is locally weighted least squares for a polynomial regression of y on a single x, or a
locally linear regression on a set of regressors. LOWESS produces an n×K matrix of coefficients,
one row for each individual. The following illustrates

LOWESS ; For[t=1] ; Lhs = hhninc ; Rhs = one,age,educ,married $

What’s New in Version 10? R-24

WN6.6 Poisson and Negative Binomial Regressions for Count Data

 Numerous new count data models have been added to the already long list. In addition, some
specific features have been added to the model specifications. New count data model specifications
are as follows:

• NBE is Englin and Shonkwiler’s negative binomial (or Poisson) model with endogenous (on
site) stratification and truncation. The outcome is always positive due to the nature of the
observation. All count model features and panel data versions (RP, LC, FE) are provided.

• NBX is a version of the negative binomial model in which the outcome is represented as a
stopped sum.

• GPP is a generalized Poisson model that allows for both over and underdispersion. The GPP
model is parameterized with a scale parameter, P, similarly to the NBP model. GP1 (P = 1)
and GP2 (P = 2) forms are provided for this model. Zero inflation for the GPP models may
also be specified.

• QCREG is a quantile regression approach for the Poisson model.

• Canonical NB regression, developed by Hilbe (2011) is an alternative (somewhat less
flexible) form of the negative binomial model.

What’s New in Version 10? R-25

Endogenous treatment effects in a Poisson or negative binomial model are accommodated by using
LIMDEP’s generic treatment effects approach. The model specifies an endogenous treatment dummy
variable in

 PROBIT ; Lhs = d ; Rhs = w ; Hold $
POISSON ; Lhs = y ; Rhs = x,d
or NEGBIN ; Selection ; MLE ; Treatment $

The Poisson and negative binomial two part models, hurdle and ZIP, have been expanded to allow for
both individual specific heterogeneity and endogenous participation. In addition, both models have
been included in the random parameters (RP) suite of models to provide a panel data formulation.

Extensions to the count models are as follows:

• The model parameter, P, in the NBP model may be fixed with ; Scale = P.

• Censoring in all count models may be observation specific by adding a second Lhs variable
in the model such that the censoring is ‘lower’ if the variables equals -1, none if the variable
equals 0, and upper censoring if the variable equals +1.

• Censoring and truncation in all models may be observation specific by providing a variable
name rather than a constant in ; Limit = C.

• All panel data estimators, random parameters, latent class and fixed effects allow truncation
at zero by adding ; TPM to the model command. The cross section versions of all count
models allow censoring and truncation at any value.

WN6.7 Stochastic Frontiers

 LIMDEP contains the most extensive menu of tools for stochastic frontier models available.
We have added a new semiparametric SF model and some useful tools for analyzing technical and
cost efficiency.
 Some users of Coelli’s (1996b) Frontier 4.1 program for the normal-half normal have
inquired about the different methods used to obtain the asymptotic covariance matrix for the
parameter estimator. Frontier 4.1 uses an approximation to the Hessian that is accumulated during
the estimation iterations. LIMDEP uses the Hessian recomputed after estimation is complete. The
method used in Frontier 4.1 works reasonably well, but does not necessarily provide a good
approximation. LIMDEP’s estimator is appropriate as long as the solver has found the MLE. For
purposes of comparability, LIMDEP now provides a method of obtaining Coelli’s approximation.
 LIMDEP is the only software that provides both data envelopment analysis (DEA) and
stochastic frontier modeling (SFA). Development of DEA is ongoing in LIMDEP. Two
modifications are provided in Version 10. The solver may now specify nondecreasing returns to
scale (; NDS). The bootstrap computations for DEA have been a bit unstable in some data sets. The
computations have been modified to improve the performance and to avoid some of the apparent
instability of the program.
 A parametric test of the presence of inefficiency based on a one sided test, using the Kodde
and Palm (1986) critical values is now provided with the model results. An example appears below.
 Three model specifications have been added to the set of frontier estimators. Corrected OLS
(COLS) is often an intermediate step in stochastic frontier modeling. The ‘correction’ step is done
ad hoc by manipulating the least squares results. The analysis is automated in LIMDEP 10 (by
adding ; Model = COLS to the FRONTIER command).

What’s New in Version 10? R-26

A second new estimator is based on the LOWESS nonparametric regression approach. For
the frontier model, we fit the goal function (cost, production, etc.) using a nonparametric method,
then analyze the residuals for technical or cost inefficiency.
 There are several different forms of the normal-truncated normal stochastic frontier model in
LIMDEP. We have (more or less) completed the set by adding the 1995 version of Battese and
Coelli’s model.
 We have added a feature to the analysis step of the stochastic frontier modeling. Technical
or cost inefficiency are standard calculations; in the model context, ui is estimated from the residual
ei. These values are, in turn, analyzed to learn about technical or cost inefficiency. Computation of
the corresponding efficiency measure, Ei = exp(-ui) is now automated by adding either ; Techeff =
name or ; Costeff = name to the command. Upper and lower confidence limits for the efficiency
measure based on Bera and Sharma’s (1999) results are obtained by adding

 ; Techeff = name ; CI(95) = lower,upper

(The confidence limit may be 90 or 99.) The variables will then appear in the data set.
 In the stochastic frontier model, the main object of estimation is the inefficiency, not the model
parameters. The goal function (usually cost or production) is typically linear (in the parameters), so
partial effects on it are generally not of particular interest either. However, one might be interested in
the effects of environmental variables (or the factors of production) on efficiency. In the model (fit by
COLS) above, there are three variables, load factor, stage length and points served, that might be of
interest. We have installed the PARTIALS command for stochastic frontier models to analyze the
efficiency measures. (The program analyzes the JLMS efficiency measure.)

An example appears below.

FRONTIER ; Lhs = lq ; Rhs = one,lk,lf,ll,lp,loadfctr,stage,points $
PARTIALS ; Effects: loadfctr & loadfctr = .2(.02).7 ; Plot(ci) $

Limited Dependent Variable Model - FRONTIER
Dependent variable LQ
Log likelihood function 164.81744
Estimation based on N = 246, K = 10
Inf.Cr.AIC = -309.6 AIC/N = -1.259
Variances: Sigma-squared(v)= .01258
 Sigma-squared(u)= .00762
 Sigma(v) = .11215
 Sigma(u) = .08729
Sigma = Sqr[(s^2(u)+s^2(v)]= .14212
Gamma = sigma(u)^2/sigma^2 = .37727
Var[u]/{Var[u]+Var[v]} = .18043
Stochastic Production Frontier, e = v-u
LR test for inefficiency vs. OLS v only
Deg. freedom for sigma-squared(u): 1
Deg. freedom for heteroscedasticity: 0
Deg. freedom for truncation mean: 0
Deg. freedom for inefficiency model: 1
LogL when sigma(u)=0 164.73025
Chi-sq=2*[LogL(SF)-LogL(LS)] = .174
Kodde-Palm C*: 95%: 2.706, 99%: 5.412

What’s New in Version 10? R-27

--------+--
 | Standard Prob. 95% Confidence
 LQ| Coefficient Error z |z|>Z* Interval
--------+--
 |Deterministic Component of Stochastic Frontier Model
Constant| -1.69727*** .10762 -15.77 .0000 -1.90819 -1.48634
 LK| .34481*** .05810 5.94 .0000 .23095 .45868
 LF| .78355*** .06540 11.98 .0000 .65538 .91173
 LL| -.27036*** .05695 -4.75 .0000 -.38198 -.15875
 LP| .10790*** .02655 4.06 .0000 .05587 .15993
LOADFCTR| 2.76228*** .17512 15.77 .0000 2.41905 3.10550
 STAGE| .00021*** .4951D-04 4.22 .0000 .00011 .00031
 POINTS| .00071* .00041 1.74 .0818 -.00009 .00150
 |Variance parameters for compound error
 Lambda| .77835*** .17238 4.52 .0000 .44050 1.11621
 Sigma| .14212*** .00047 299.60 .0000 .14119 .14305
--------+--
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx.
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Partial Effects Analysis for JLMS Efficiency estimator in SF Model

Effects on function with respect to LOADFCTR
Results are computed by average over sample observations
Partial effects for continuous LOADFCTR computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dLOADFCTR Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

APE. Function -.45539 .15723 2.90 -.76355 -.14724
LOADFCTR= .20 -.03934 .00267 14.76 -.04457 -.03412
LOADFCTR= .22 -.04407 .00267 16.53 -.04930 -.03885
LOADFCTR= .24 -.04963 .00272 18.27 -.05495 -.04430
LOADFCTR= .26 -.05618 .00294 19.11 -.06194 -.05042
LOADFCTR= .28 -.06394 .00354 18.08 -.07087 -.05701
LOADFCTR= .30 -.07317 .00471 15.54 -.08240 -.06394
LOADFCTR= .32 -.08416 .00663 12.70 -.09715 -.07117
LOADFCTR= .34 -.09728 .00946 10.28 -.11582 -.07873
LOADFCTR= .36 -.11295 .01345 8.40 -.13931 -.08659
LOADFCTR= .38 -.13167 .01890 6.97 -.16872 -.09462
LOADFCTR= .40 -.15398 .02619 5.88 -.20531 -.10264
LOADFCTR= .42 -.18044 .03570 5.05 -.25041 -.11046
LOADFCTR= .44 -.21154 .04776 4.43 -.30516 -.11792
LOADFCTR= .46 -.24765 .06258 3.96 -.37031 -.12499
LOADFCTR= .48 -.28887 .08012 3.61 -.44591 -.13183
LOADFCTR= .50 -.33495 .10001 3.35 -.53097 -.13893
LOADFCTR= .52 -.38520 .12146 3.17 -.62326 -.14714
LOADFCTR= .54 -.43844 .14333 3.06 -.71936 -.15751
LOADFCTR= .56 -.49308 .16431 3.00 -.81514 -.17103
LOADFCTR= .58 -.54735 .18319 2.99 -.90641 -.18828
LOADFCTR= .60 -.59941 .19908 3.01 -.98960 -.20921
LOADFCTR= .62 -.64762 .21143 3.06 -1.06203 -.23321
LOADFCTR= .64 -.69057 .21994 3.14 -1.12166 -.25948
LOADFCTR= .66 -.72708 .22434 3.24 -1.16679 -.28737
LOADFCTR= .68 -.75624 .22437 3.37 -1.19600 -.31647

What’s New in Version 10? R-28

WN6.8 Binary Choice Models

 LIMDEP presently supports five functional forms for binary choice models, probit, logit,
burr, complementary log log and Gompertz. We have added a sixth, arctangent. The arctangent
model is based on a latent variable distribution that has fatter tails than the normal, but less fat than
the logistic. This is a new model command, ARCTAN. All optional features and modeling
environments (random parameters, etc.) that are provided for the other forms are extended here as
well. This functional form is also added to the ordered choice modeling environment and to the
random parameters, latent class and fixed effects modeling environments
 Some specific changes in the binary choice estimators are as follows:

• Partial effects requested within the command with ; Partials produces average partial
effects, rather than partial effects at the sample means. Dummy variable effects are
computed as first differences.

• Correlations between a binary variable and a continuous variable (known as the biserial

correlation coefficient) can be computed using the ordinary correlation with CALC
; Cor(continuous, binary) $

• To reduce the amount of output, some of the tables previously produced by PROBIT and

LOGIT have been made optional. Use ; Summarize to request all fit measure and analysis.

• The random effects probit model is included in the SIMULATE and PARTIALS
environments.

What’s New in Version 10? R-29

Bivariate Probit, Multivariate Probit, Multinomial Logit

• The correlation between two binary variables (the tetrachoric correlation) can be obtained as
the correlation coefficient in a bivariate probit model that contains only constant terms. This
is now provided in a specific command,

 TCOR ; Lhs = d1 ; Rhs = d2 $

• The program now automatically detects the specification of a recursive bivariate probit
model. Output and computation of partial effects are adjusted accordingly. Partial effects
will show the decomposition between direct and indirect effects.

• The number of bootstrap replications for the partial effects in the multivariate probit model
may now be specified with ; Nbt = number. Previously this was fixed by default at 50.

• Partial effects are now provided for the multinomial logit model with random effects.

Fractional Response

The fractional response for panel data developed by Papke and Wooldridge (2008) is a built in
command,

FRACTIONAL ; Lhs = y ; Rhs = x ; Pds = panel $

This model provides the usual post estimation results including predictions and average partial
effects. Note that FRACTIONAL is an alternative to the PROBIT and LOGIT models for
aggregated (grouped) binary data. These two models with a dependent variable measured as a
proportion are provided for all cross sectional and panel data environments, so FRACTIONAL and
these two models should be viewed as alternatives when modeling panel data.

WN6.9 Ordered Choice

 We have added four new ordered choice specifications and several features to the existing
estimators. The new models are discussed below. Modifications to the present programs are as follows:

• Frequency tables for the outcomes have been added to the output. An example appears below.

• The algorithm used to fit the bivariate ordered probit model has been greatly improved.
Computation of any model is now several times faster than previously.

• The correlation between two ordinal outcomes (the polychoric correlation) is the correlation
coefficient in a bivariate ordered probit model with only constant terms. This has been
automated in a single command,

 PCOR ; Lhs = d1 ; Rhs = d2 $

where at least one of the variables is an ordinal outcome. One of them may be binary. (If both
are binary, use TCOR.)

• Partial effects are now provided for the ordered probit with sample selection model.

• Partial effects in the ordered probit/logit model are voluminous. We have compressed the
output a bit. For an example, the following set of results are given for a model for a variable
with five outcomes:

What’s New in Version 10? R-30

The commands are:

SAMPLE ; All $
REJECT ; hsat < 6 $
CREATE ; health = hsat-6$
NAMELIST ; x = one,age,educ,married,hhkids,hhninc $
ORDERED ; Lhs = health ; Rhs = x ; Partials $

Ordered Probability Model
Dependent variable HEALTH
Log likelihood function -29579.28152
Restricted log likelihood -29885.18950
Chi squared [5 d.f.] 611.81596
Significance level .00000
McFadden Pseudo R-squared .0102361
Estimation based on N = 19186, K = 9
Inf.Cr.AIC = 59176.6 AIC/N = 3.084
Underlying probabilities based on Normal
--------+--
 | Standard Prob. 95% Confidence
 HEALTH| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| 1.53100*** .05377 28.47 .0000 1.42560 1.63639
 AGE| -.01478*** .00077 -19.22 .0000 -.01628 -.01327
 EDUC| .02080*** .00333 6.25 .0000 .01427 .02733
 MARRIED| -.02538 .02012 -1.26 .2072 -.06481 .01406
 HHKIDS| .04575*** .01762 2.60 .0094 .01121 .08029
 HHNINC| -.05554 .04453 -1.25 .2123 -.14283 .03174
 |Threshold parameters for index
 Mu(1)| .74557*** .00830 89.85 .0000 .72931 .76183
 Mu(2)| 1.59255*** .00912 174.54 .0000 1.57467 1.61044
 Mu(3)| 2.11606*** .01094 193.46 .0000 2.09462 2.13750
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

+--+
| CELL FREQUENCIES FOR ORDERED CHOICES |
+--+
| Frequency Cumulative < = Cumulative > = |
|Outcome Count Percent Count Percent Count Percent |
|----------- ------- --------- ------- --------- ------- --------- |
|HEALTH=00 2570 13.3952 2570 13.3952 19186 100.0000 |
|HEALTH=01 4191 21.8441 6761 35.2392 16616 86.6048 |
|HEALTH=02 6172 32.1693 12933 67.4085 12425 64.7608 |
|HEALTH=03 3061 15.9543 15994 83.3629 6253 32.5915 |
|HEALTH=04 3192 16.6371 19186 100.0000 3192 16.6371 |
+--+

What’s New in Version 10? R-31

Marginal effects for ordered probability model
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0]
Names for dummy variables are marked by *.
--------+--
 | Partial Prob. 95% Confidence
 HEALTH| Effect Elasticity z |z|>Z* Interval
--------+--
 |--------------[Partial effects on Prob[Y=00] at means]--------------
 AGE| .00311*** 1.01277 18.94 .0000 .00279 .00344
 EDUC| -.00438*** -.39017 -6.23 .0000 -.00576 -.00301
*MARRIED| .00531 .04106 1.27 .2039 -.00288 .01350
 *HHKIDS| -.00961*** -.07431 -2.60 .0092 -.01684 -.00238
 HHNINC| .01171 .03272 1.25 .2123 -.00669 .03011
 |--------------[Partial effects on Prob[Y=01] at means]--------------
 AGE| .00236*** .44899 19.13 .0000 .00212 .00260
 EDUC| -.00332*** -.17297 -6.24 .0000 -.00437 -.00228
*MARRIED| .00407 .01841 1.26 .2089 -.00228 .01042
 *HHKIDS| -.00732*** -.03311 -2.59 .0095 -.01286 -.00179
 HHNINC| .00888 .01451 1.25 .2124 -.00507 .02282
 |--------------[Partial effects on Prob[Y=02] at means]--------------
 AGE| -.00018*** -.02310 -4.71 .0000 -.00025 -.00011
 EDUC| .00025*** .00890 3.83 .0001 .00012 .00038
*MARRIED| -.00026 -.00079 -1.46 .1435 -.00061 .00009
 *HHKIDS| .00051** .00157 2.40 .0166 .00009 .00093
 HHNINC| -.00068 -.00075 -1.21 .2268 -.00177 .00042
 |--------------[Partial effects on Prob[Y=03] at means]--------------
 AGE| -.00167*** -.44016 -16.78 .0000 -.00187 -.00148
 EDUC| .00235*** .16957 6.13 .0000 .00160 .00311
*MARRIED| -.00286 -.01790 -1.27 .2054 -.00728 .00157
 *HHKIDS| .00516*** .03233 2.59 .0095 .00126 .00907
 HHNINC| -.00628 -.01422 -1.25 .2125 -.01616 .00359
 |--------------[Partial effects on Prob[Y=04] at means]--------------
 AGE| -.00362*** -.94096 -18.73 .0000 -.00400 -.00324
 EDUC| .00510*** .36250 6.24 .0000 .00350 .00670
*MARRIED| -.00626 -.03867 -1.25 .2101 -.01606 .00353
 *HHKIDS| .01125*** .06949 2.59 .0097 .00273 .01978
 HHNINC| -.01362 -.03040 -1.25 .2125 -.03503 .00779
--------+--
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Cross tabulation of predictions and actual outcomes
+------+-----+-----+-----+-----+-----+-----+
|y(i,j)| 0 | 1 | 2 | 3 | 4 |Total|
+------+-----+-----+-----+-----+-----+-----+
0	0	0	2570	0	0	2570
1	0	0	4191	0	0	4191
2	0	0	6172	0	0	6172
3	0	0	3061	0	0	3061
4	0	0	3192	0	0	3192
+------+-----+-----+-----+-----+-----+-----+						
Total	0	0	19186	0	0	19186
+------+-----+-----+-----+-----+-----+-----+
Row = actual, Column = Prediction, Model = Probit
Prediction is number of the most probable cell.

What’s New in Version 10? R-32

Cross tabulation of outcomes and predicted probabilities.
+------+-----+-----+-----+-----+-----+-----+
|y(i,j)| 0 | 1 | 2 | 3 | 4 |Total|
+------+-----+-----+-----+-----+-----+-----+
0	383	592	825	387	384	2570
1	583	936	1350	652	670	4191
2	814	1346	1991	983	1037	6172
3	374	647	990	503	547	3061
4	408	687	1031	515	551	3192
+------+-----+-----+-----+-----+-----+-----+						
Total	2562	4208	6186	3040	3189	19186
+------+-----+-----+-----+-----+-----+-----+
Row = actual, Column = Prediction, Model = Probit
Value(j,m)=Sum(i=1,N)y(i,j)*p(i,m).
Column totals may not match cell sums because of rounding error.

A more detailed report for the partial effects is added to the results above by including ; Full.

+--+
| Summary of Marginal Effects for Ordered Probability Model (probit) |
| Effects computed at means. Effects for binary variables (*) are |
| computed as differences of probabilities, other variables at means. |
| Binary variables change only by 1 unit so s.d. changes are not shown.|
| Elasticities for binary variables=partial effect/probability = %chgP |
+--+
| Continuous Variable AGE Changes in AGE % chg|
| ------------------------------ ------------------------------
Outcome Effect dPy<=nn/dX dPy>=nn/dX 1 StdDev Low to High Elast
------- ------------------------------ ------------------------------
Y = 00 .00311 .00311 .00000 .03466 .12146 1.01277
Y = 01 .00236 .00548 -.00311 .02628 .09208 .44899
Y = 02 -.00018 .00530 -.00548 -.00200 -.00702 -.02310
Y = 03 -.00167 .00362 -.00530 -.01861 -.06520 -.44016
Y = 04 -.00362 .00000 -.00362 -.04032 -.14132 -.94096
+--+
| Continuous Variable EDUC Changes in EDUC % chg|
| ------------------------------ ------------------------------
Outcome Effect dPy<=nn/dX dPy>=nn/dX 1 StdDev Low to High Elast
------- ------------------------------ ------------------------------
Y = 00 -.00438 -.00438 .00000 -.01050 -.04823 -.39017
Y = 01 -.00332 -.00771 .00438 -.00796 -.03656 -.17297
Y = 02 .00025 -.00745 .00771 .00061 .00279 .00890
Y = 03 .00235 -.00510 .00745 .00564 .02589 .16957
Y = 04 .00510 .00000 .00510 .01222 .05611 .36250
+--+
| Binary(0/1) Variable MARRIED Changes in *MARRIED % chg|
| ------------------------------ ------------------------------
Outcome Effect dPy<=nn/dX dPy>=nn/dX 1 StdDev Low to High Elast
------- ------------------------------ ------------------------------
Y = 00 .00531 .00531 .00000 - .00531 .04106
Y = 01 .00407 .00938 -.00531 - .00407 .01841
Y = 02 -.00026 .00912 -.00938 - -.00026 -.00079
Y = 03 -.00286 .00626 -.00912 - -.00286 -.01790
Y = 04 -.00626 .00000 -.00626 - -.00626 -.03867

What’s New in Version 10? R-33

+--+
| Binary(0/1) Variable HHKIDS Changes in *HHKIDS % chg|
| ------------------------------ ------------------------------
Outcome Effect dPy<=nn/dX dPy>=nn/dX 1 StdDev Low to High Elast
------- ------------------------------ ------------------------------
Y = 00 -.00961 -.00961 .00000 - -.00961 -.07431
Y = 01 -.00732 -.01693 .00961 - -.00732 -.03311
Y = 02 .00051 -.01642 .01693 - .00051 .00157
Y = 03 .00516 -.01125 .01642 - .00516 .03233
Y = 04 .01125 .00000 .01125 - .01125 .06949
+--+
| Continuous Variable HHNINC Changes in HHNINC % chg|
| ------------------------------ ------------------------------
Outcome Effect dPy<=nn/dX dPy>=nn/dX 1 StdDev Low to High Elast
------- ------------------------------ ------------------------------
Y = 00 .01171 .01171 .00000 .00211 .03591 .03272
Y = 01 .00888 .02058 -.01171 .00160 .02722 .01451
Y = 02 -.00068 .01991 -.02058 -.00012 -.00208 -.00075
Y = 03 -.00628 .01362 -.01991 -.00113 -.01928 -.01422
Y = 04 -.01362 .00000 -.01362 -.00245 -.04178 -.03040
--

 The arctangent functional form discussed earlier for binary choices is also provided for
ordered choices. This is added to the list that previously included probit, logit, Gompertz and
complementary log log. (The ordered choice estimator does not support the Burr distribution.) This
form is requested with ; Model = arctangent.
 An ordered probit model with endogenous treatment effects is obtained using the standard
formulation,

PROBIT ; Lhs = T ; ... ; Hold $
OPROBIT ; Lhs = y ; Rhs = ,...,T ; Selection ; All $

 The following is a generalized ordered probit model with random parameters and thresholds:

yit* = βi′xit + εit

βi = β + Γwi, wi ~ N[0,I], Γ = diagonal matrix of standard deviations

εit ~ N[0,σi
2],

σi = exp[γ′zi + τvi] vi ~ N[0,1]

The thresholds for the ordered choice model are allowed to be individual specific, and vary with
observable and unobservable heterogeneity;

µj = µj-1 + exp[αj + δ′hi + θj uij] uij ~ N[0,1],

µ0 = 0, (because the model contains a constant).

Note that the model parameters are random and the disturbance is heteroscedastic and varies
randomly across individuals as well. This model allows a cross section or panel data treatment. The
random components apart from εit are fixed over all periods. Nothing else need be time invariant.

What’s New in Version 10? R-34

The command for fitting this very elaborate ordered choice model is

ORDERED ; Lhs = ...
 ; Rhs = one,... (β)
 ; RTM (α, θ)
 ; RPM to request random betas (Γ)
 ; RVM to request random element in σ(i) (τ)
 ; Limits = list of variables for thresholds (δ)
 ; Het ; Hfn = list of variables $ (γ)

Using SETPANEL and adding ; Panel to the command allows a panel data treatment. (The model
is treated as a random parameters specification in any event.)

WN6.10 Limited Dependent Variables

 LIMDEP 10 includes several new variants on the tobit framework and two additional model
frameworks.
 Powell’s (1986) robust symmetrically trimmed censored least squares estimator is a
semiparametric regression approach for censored data. We have implemented it with a command
stream that uses the program command language.
 A second new model, a switching regressions specification with endogenous switching is
also implemented with the program command language.
 The basic two equation endogenous treatment effects regression model has previously been
implemented as a type of sample selection model. It is now a separate procedure implemented with
new command, TREATMENT. (This is the same as the earlier form, SELECT ; All.)
 Several different extensions of the tobit model are provided. The double hurdle model adds
a behavioral equation to the model. (Yen and Jones (1997) is a standard reference for this model.)
The two equation model contains a participation equation,

 c* = z′α + u, c = 1(c* > 0)

and an intensity equation which corresponds to the usual regression part of the model,

 y* = x′β + ε.

The observation mechanism is

 y = y* if y* > 0 and c = 1 and y = 0 otherwise.

With the stochastic assumption of bivariate normality of u and ε, we construct a full information
maximum likelihood estimator for the full model. A modification that is intended to deal with
nonnormality is the inverse hyperbolic sine (IHS) transformation,

 T(y*) = x′β + ε, where T(y*) = log[γy* + (1 + (γy*)2)1/2] / γ

 y = T(y*) if T(y*) > 0.

What’s New in Version 10? R-35

The tobit double hurdle model with inverse hyperbolic sine transformation and heteroscedasticity is
implemented as a modification of the TOBIT command. The full model is also extended to the
random parameters and latent class panel data frameworks. The IHS transformation may be used for
the tobit model without the hurdle specification. All specifications also allow the exponential
heteroscedasticity used in many other models in LIMDEP. We have also developed an
implementation of the IHS double hurdle model that includes both random effects and latent classes.

WN6.11 WALD Command

The WALD command now allows using data in functions. This is a major change in the
operation of this feature. In previous versions of LIMDEP, WALD would be used only for functions
that did not involve summing observations. For example, using WALD to obtain partial effects
would be done using the means of the observations in the sample. If the name of a variable appeared
in the function definition, it would be unpredictable which single observation would be used to
compute the function unless WALD were preceded with a specific SAMPLE ; observation
number $ such as SAMPLE ; 1 $

In LIMDEP 10, if a variable name appears in the function definition in WALD, the datum
used will be the mean value of the nonmissing values for that variable in the current sample.
However, if the command contains ; Average, then the functions in WALD are averaged over the
observations in the current sample. Missing values are automatically skipped. This allows
computation of average partial effects and computes the standard errors correctly with average
Jacobians. This provides a method of computing average values of arbitrary functions with standard
errors and confidence intervals. The PARTIALS command expands this idea. This feature may be
used with the delta method or with the Krinsky and Robb method.
 There have also been several extensions of the existing command.

• Function definitions may provide names and use the names in subsequent functions. For
example,

 WALD ; Parameters = coefficients
 ; Covariance = the covariance matrix
 ; Labels = the set of labels
 ; Fn1 = direct = definition
 ; Fn2 = indirect = definition
 ; Fn3 = total = direct + indirect $

The output from the command will label the functions with these descriptives.

• WALD can analyze up to 50 functions in each command.

• For self documentation, ; Start may be replaced with ; Parameters and ; Var may be
replaced with ; Covariance in the command.

• WALD creates three matrices, jacobian contains the matrix of derivatives of the functions

with respect to the parameters, waldfncn contains the function values and waldfnse contains
the vector or standard errors of the computed functions.

• The individual observations on the function values may be saved as a variable when

; Average is used. This also saves the estimated standard errors as a variable in the data set.

What’s New in Version 10? R-36

WN6.12 Nonlinear Optimization

MAXIMIZE and MINIMIZE have been fine tuned to operate somewhat more simply. In
prior implementations, if a function to be maximized did not involve summation over the data set, it
was necessary to use SAMPLE ; 1 $ to prevent the program from recomputing the same function N
times. (The maximizer of Nf(x) is the same as that of f(x), but it takes N times as long to find it.)
LIMDEP will now detect at the time it parses the command whether a loop through the data set is
needed for the optimization, and adjust the setup accordingly. A useful extension will be the
expansion of the number of subfunctions from 20 to 50. Three new functions are provided for the
optimization commands, Min(a,b), Max(a,b) and Sgn(x). (Users note, none of these are continuous,
so it may be problematic to use them as functions of the parameters in commands.)

MAXIMIZE and MINIMIZE now allow random parameters and panel data. Separate
commands, RPMIN and RPMAX are provided for the purpose. The function maximized or
minimized is optimized by simulation based estimation. The criterion function is

f(β,∆,σ,Γ) = log [(1/R) Σr Πt g(xit, βir) where βir = β + ∆zi + σ.vi + Γvi

vi = random draws from user specified distribution,
σ = vector of scale factors for random parameters,
Γ = Cholesky matrix to allow correlated random parameters,
zi = observed heterogeneity,
∆ = parameter matrix,
β = constant terms in distributions of random parameters,
xit = vector of variables that enter the function.

The procedure is set up with a command that includes the following:

 ; Fcn = function definition using rules set up for MAXIMIZE
 ; Labels = specification
 ; Labels = name (start value) for a nonrandom parameter
 or name [start value] for a parameter that is fixed at value
 or name (start value | type) for random parameter
 type = n for normal
 c for constant (nonrandom)
 t for triangular ranges from -1 to +1
 u for uniform ranges from -1 to +1
 o for one sided triangle. Ranges = 0 to 2β
 z for truncated normal (-1.96 to +1.96)
 (use z if you plan to have exp(name) in the function
 ; Pds = specification if panel data estimation

The specification of zi = for ∆zi in the parameter definition is optional and provided with

; RPM = list of variables in zi.

What’s New in Version 10? R-37

Random parameter specifications may also contain a pattern, name (start | value | pattern),
where the pattern is a string of 1s and 0s to indicate that the respective variable in z appears or does
not appear in the distribution of the particular parameter. Some other options for this procedure are

; Cor to allow for nonzero Γ
; Draws to provide the number of draws (R) – the default is 250
; Par to save conditional means of parameters
; Halton to use Halton sequences rather than random draws.

WN6.13 Numerical Analysis

 Two new commands, FUNCTION and SOLVE are provided for analyzing functions that
you define. The specifications of the FUNCTION command are:

 FUNCTION ; Labels = names to be used for the function parameters,

; Parameters = list of values to be used for parameters,
; Fcn = the definition of the function
; Keep = a variable in which function values are stored $

The FUNCTION command evaluates the function at the parameter values for each observation in
the current sample and stores the results in variable named. The function may be anything that can
be specified for MAXIMIZE. The sample may be any group of observations, and need not be the
sample used to compute the parameter values. This procedure will also save the N×K matrix of
derivatives in a namelist by using the subcommand

; derivatives = namelist.

The SOLVE command is used to find the roots, or zeros of a function in one dimension.
The numerical problem is to find the set of x values for which the function f(x,β,z) = 0. The function
can involve parameters, variables, matrices, etc., as well as the argument x, which is the object of the
search. The program uses a grid search and Newton’s method to find the roots of f(.) in the specified
range of x. The command is

SOLVE ; Labels = label(s) in the function
; Fcn = function definition
; Start = interior point in function and fixed values for the nonvarying

 parameters
; Vary (the label of the x to be analyzed)
; Limits = low,high to specify the range
; Pts = number of points to scan
[; Plot if the function is to be plotted as a function of x] $

The following locates the values between -10.0 and +10.0 at which cos(x) = 0.

SOLVE ; Fcn = cos(x) ; Start = 1 ; Limits = -10,10 ; Labels = x

; Pts = 1000 ; Vary(x) $

What’s New in Version 10? R-38

Newton iterations to search for any root near 1.000000
Iteration X Function Newton Step
 1 1.000000 .540302 .642093
 2 1.642093 -.071236 -.071417
 3 1.570675 .000121 .000121
 4 1.570796 .000000 .000000
Found 6 roots in the range X = -10.0000 to 10.0000
|---Interval Limits---| Root=Midpoint F(root)
 -7.85786 -7.83784 -7.85398 .00000153
 -4.71471 -4.69469 -4.71238 -.00000893
 -1.57157 -1.55155 -1.57080 -.00000370
 1.55155 1.57157 1.57080 -.00000370
 4.69469 4.71471 4.71238 -.00000893
 7.83784 7.85786 7.85398 .00000153

WN7 Random Sampling and Bootstrapping

 LIMDEP 10 introduces two extensions of its procedures for random sampling and several
new distributions in the set of random number generators.

• The default random number generator in previous versions has been L’Ecuyer’s generator,
which passes all randomness tests, and has a period of about 2130. This is essentially infinite
for practical purposes. We have now added a second, recently developed generator, the
Mersenne Twister, which has been adopted in several other well known mathematics and
statistics packages. The Mersenne Twister is also a ‘bulletproof’ generator that has a period
that apparently approaches 210000. No conceivable application could approach this boundary.

• Bootstrap procedures may now use ‘block’ bootstraps for sampling from panel data sets.

Sampling groups from panels, with or without replacement, is no more complicated than the
estimation procedures. Once the panel is defined with a SETPANEL command, a random
sample from the panel is drawn with

 DRAW ; N = desired number of groups

; Panel $

Bootstrapping with panel data is equally simple. The command builds on the basic form

 EXECUTE ; N = desired number of iterations
 ; Bootstrap = the entity being studied (scalar or vector)
 ; Panel $

• Random number generators have been installed for inverse gauss, multivariate normal and
triangular populations. More than 20 distributions are now supported.

What’s New in Version 10? R-39

WN8 Panel Data Handling

 LIMDEP’s data input and output features have been improved in several directions. Panel data
sets have become more convenient for analysis. We have also added a number of transformation
functions specifically for panel data sets. Input formats have been added. The default ASCII file
format is now more convenient – the input requires only identification of the file name.

WN8.1 Panel Data Setting

Panel data estimators are set up by adding the correct ; Pds = specification to an existing model
command. It is necessary to be careful at all points that the specification actually matches the sample in
use. This can break down if you change the sample between model commands. The new command

SETPANEL ; Group = group identification variable
; Pds = a variable to use for the group counts $

takes care of the internal accounting and eliminates this complication. After issuing this instruction,
you will just use ; Panel in any panel data command. For example, the data are input as an
unbalanced panel data set. The SETPANEL command defines the panel parameters with respect to
the full data set. The REJECT command appears to interrupt the panel definition, however, the
appropriate arrangement is maintained for the REGRESS command using the subset of observations

 … input of health care data set …
 SAMPLE ; All $
 SETPANEL ; Group = id ; Pds = groupti $
 REJECT ; working = 0 $
 REGRESS ; Lhs = hhninc ; Rhs = one,age,educ ; Panel $

This setting is embedded in the project file, so after you make the definition, it will remain in force
when you reload your project. (It can be reset at any time with another SETPANEL command.)

WN8.2 Transformations for Panel Data

 The following new functions are available for transforming panel data with CREATE. The
functions provided for manipulating panel data are

Function Syntax Function Result
Group Size (id variable) Count variable
Group Nmbr (count variable) ID variable
Group Time (id variable) Internal counter, 1,2,3,…Ti,
Group Mean (variable, Pds = count variable) Group means, repeated in each cell
Group Sums (x, Pds = count variable) Group sums, repeated in each cell
Group Devs (variable, Pds = count variable) Deviations from group means
Group Lags (variable, Pds = count variable) Lagged values within group
Group Diff (variable, Pds = count variable) First difference within group
Group Prod (variable, Pds = count variable) Within group product of cells
Group Obs1 (variable, Pds = count variable) First observation in group, repeated

The Group Time function is replicated as Prd (id variable).

What’s New in Version 10? R-40

WN8.3 Spreadsheets and Panel Data

 The READ command

READ ; File = … xls
; Format = xls or csv
; Nobs = the number of observations
; Group = panel specification, either fixed number or group size variable $

will interleave the variables in the file into the panel. For example, suppose a panel contains 100
groups of five observations. The first file read contains 500 observations on time varying variables,
including a group identifier. Since the group size is fixed at five, the file read by the READ
command contains 100 observations. Each of the 100 observations is replicated five times in the
data set.

WN9 Data Import and Export

 Import of specific types of data files has been streamlined.

WN9.1 Default Formats

 A data file that contains a single line of names at the top and data in the following rows
separated by commas, tabs, or spaces (this would cover almost any ASCII file) can be imported with
the simple

 IMPORT ; File = the name of the file $

The full READ command should rarely be necessary.
 LIMDEP cannot read Excel’s .xlsx format directly. However, two single click options in
Excel allow you to export data files from Excel to LIMDEP easily. Use Save As to save the file as a
.csv file. LIMDEP can read these directly, using the IMPORT command as shown above, just by
providing the path to the file. Alternatively, you can use Save As and save the data in the 1997-
2003 .xls format. We note, the files created by Excel 2007 with this format do not actually conform
to Microsoft’s own (BIFF8) format for .xls files, so they usually cannot be read by LIMDEP. The
same files written by Excel 2010 are in the correct format, and generally can be read. However,
readers are warned that .xls files cannot exceed 16,384 observations, so this may still be problematic.
The .csv files are unlimited. We strongly recommend this format.

WN9.2 Stata’s .dta Format

 LIMDEP can import a data file in Stata’s native .dta format by using ; Format = dta in a
READ command. Users are warned, this format is changed from time to time. We know it works
with Stata up to Version 10. We cannot guarantee results with versions after Version 10.

What’s New in Version 10? R-41

WN9.3 Documentation in Project Files

 Data contained in a project file can be documented in the file by using the following device:
Before saving the project file, use

 DATA
 … up to 255 lines of text each containing up to 80 characters
 ENDATA

This script embeds the documentation in the project file. When it is reloaded, the documentation is
displayed in the output window.

WN9.4 Exporting Data

 The new command

EXPORT ; list of variables ; File = file name $

creates a .csv file that can be imported into Excel and other spreadsheets as well as other
applications. The .csv format is a generic ASCII format that is used in most applications. The new
command, IMPORT reads .csv files just as easily. Only the file name is needed.

WN9.5 Export to the Output Window

 For creating small data files, one convenient method is to write them in the output window
first, then copy them to some other destination. Use

WRITE ; list of variables $ without a file name.

WN10 Transformation Functions for CREATE

 Numerous new functions, in addition to the panel data features, have been added to
CREATE. In addition, a few extensions have been added to the general command.

WN10.1 Clearing Columns in the Data Area

 The generic command

CREATE ; var1,var2, … varM $

which contains only a list of variable names separated by commas clears columns in the data matrix
with these names and fills them with missing values.

What’s New in Version 10? R-42

WN10.2 Using NAMELIST to Create a Template for a Data Matrix

This form of the NAMELIST command will create a set of empty variables and collect
them in a namelist. It is equivalent to a series of CREATE commands followed by a NAMELIST
command. The command form is

 NAMELIST ; (new) ; new name = a list of new names $

The new variables are filled with missing values (-999). Alternatively, (new) may also be (new = 0),
(new = N) or (new = U) for filling with zeros, normal random values or uniform random values,
instead of missing values.

WN10.3 SORT

SORT now allows 250,000 observations

WN10.4 CREATE Functions

 The following new functions are provided for CREATE, and are all added to CALC and
MAXIMIZE/MINIMIZE as well.

Abs(z) = absolute value of z,
Sgn(z) = -1, 0, +1 if z is less than, equal to or larger than zero,

 Min(z1,z2) = minimum of z1 and z2,
 Max(z1,z2) = maximum of z1 and z2,
 Ash(z) = hyperbolic arc sin(z) = log(z + (1 + z2)1/2),
 As1(z) = derivative of Ash(z) = (1 + z2)-1/2 ,
 Ach(z) = hyperbolic arc cos(z) = log(z + (z2 – 1)),
 Ac1(z) = derivative of Ach(z) = (z2 – 1)-1/2,
 Ath(z) = hyperbolic arc tan(z) = .5log((1 + z)/(1 – z)),
 At1(z) = derivative of Ath(z) = (1 – z2)-1,
 Hsn(z) = hyperbolic sin(z) = .5(exp(2z)-1)/exp(z),
 Hs1(z) = derivative of Hsn(z) = Hcs(z),
 Hcs(z) = hyperbolic cos(z) = .5(exp(2z)+1)/exp(z),
 Hc1(z) = derivative of Hcs(z) = Hsn(z),
 Htn(z) = hyperbolic tan(z) = Hsn(z)/Hcs(z),
 Ht1(z) = derivative of Htn(z) = 1/Hcs2(z),
 Bvn(z1,z2,ρ) = bivariate normal CDF,
 Bvd(z1,z2,ρ) = bivariate normal density,
 Bv1(z1,z2,ρ) = bivariate normal derivative wrt x1.

What’s New in Version 10? R-43

WN10.5 Stacking Variables with CREATE

 The function Stk(…) is used to stack variables in the data set. This is similar to the
NAMELIST command which (virtually, not physically) arranges columns of data in a matrix.
Stk(…) operates as shown in the example below, which creates a 75×1 data vector and a 75×9 data
matrix from a data set with 25 observations.

SAMPLE ; 1-25 $
CREATE ; zeros = 0 ; ones = 1 $
CREATE ; shares = Stk(sk / sl / se) $

+--+
| Stack operation created namelist SHARES |
| The 1 variables are SHARES01... |
| There are 3 blocks of observations. |
| The total number of observations is 75 |
| The sample has been reset to 1 - 75 |
+--+

CREATE ; xmat = Stk (ones,zeros,zeros,km,lm,em,zeros,zeros,zeros /

 zeros,ones,zeros,zeros,km,zeros,lm,em,zeros /
 zeros,zeros,ones,zeros,zeros,km,zeros,lm,em) $

+--+
| Stack operation created namelist XMAT |
| The 9 variables are XMAT01 ..., XMAT09 |
| There are 3 blocks of observations. |
| The total number of observations is 75 |
| The sample has been reset to 1 - 75 |
+--+

WN11 Programming Tools

 The main programming tools are EXECUTE for procedures, MAXIMIZE and
MINIMIZE, and CREATE, MATRIX and CALC. New capabilities have been added for each of
these.

WN11.1 Executing Procedures

 The EXECUTE command can set the current sample for the duration of the procedure in the
following ways:

 ; Sample = current
 ; Sample = the name of a dummy variable – the observations are those
 with the variable equal to one
 ; Sample = i1,i2 to use a range of observations
 ; Sample = all to set the sample to the full data set

What’s New in Version 10? R-44

Execution of procedures modifies variables, matrices and scalars globally. You can define
matrices, scalars and variables to exist within the context of the procedure. For example,

PROCEDURE
LOCAL ; scalar = rhoab $
LOCAL ; variable = y1 $
LOCAL ; matrix = b1, vb1 $
… commands that modify these entities …
ENDPROC
EXECUTE

The local variables, matrices and scalars are used only by the procedure. If entities with the same
name(s) exist outside the procedure, they are not changed. For example, if there were already a
scalar named rhoab before the procedure were defined and executed, then the external rhoab would
not be changed by the procedure, and the local rhoab would disappear after the procedure is carried.
Local entities are exported from the procedure just by equating them to external entities. For
example, if the procedure above contained

CALC ; newrhoab = rhoab $

then after the EXECUTE command is finished, newrhoab would survive with the value of rhoab
computed during the procedure.

WN11.2 Matrix Functions

The following are new matrix functions: This function initializes vectors:

Ones(n) = column of n ones

The Ktau function creates a matrix of correlations coefficients using Kendall’s τ rather than the
familiar Pearson correlation coefficient;

Ktau(list of variables) = Kendall’s tau matrix form

This function constructs a block diagonal matrix from the list of square matrices (or scalars).

Blkd(matrix, matrix, scalar, ...)

The following four functions transform matrices into vectors:

Runr(matrix) = row vector formed from rows
Runc(matrix) = row vector formed from columns
Stkr(matrix) = column vector formed from rows
Stkc(matrix) = column vector formed from columns

What’s New in Version 10? R-45

The Vech function is used to extract the unique elements from a symmetric matrix,

Vech(square matrix) forms a vector from the lower triangle of a matrix.

The following are scalar valued functions of square matrices:

2nrm(matrix) = matrix 2 norm = largest singular value
Norm(namelist) = square root of trace(x’x)

A general syntax for forming central moment matrices is

x’[1]x or x’[1]x or x’[1]z.

The elements x, y and z are namelists or a single variable. The following forms are used to extract
parts of a matrix

vector(-j) = vector without element j
matrix(-j,-m) = matrix without row j and column m
matrix(j,-m) = row j without element m
matrix(-j,m) = column m without element j

WN11.3 New CALC functions

 CALC has been extended to include the new functions in MATRIX and CREATE and
several additional scalar valued results. The following functions are the same as used by CREATE:

 Sgn(z) = signum(z) = -1,0,+1 if z <, =, > 0
 Min(z1,z2) = minimum of z1 and z2
 Max(z1,z2) = maximum of z1 and z2
 Ash(z) = hyperbolic arc sin(z) = log(z + (1 + z2)1/2)
 As1(z) = derivative of Ash(z) = (1 + z2)-1/2
 Ach(z) = hyperbolic arc cos(z) = log(z + (z2 – 1))
 Ac1(z) = derivative of Ach(z) = (z2 – 1)-1/2
 Ath(z) = hyperbolic arc tan(z) = .5log((1 + z)/(1 – z))
 At1(z) = derivative of Ath(z) = (1 – z2)-1
 Hsn(z) = hyperbolic sin(z) = .5(exp(2z)-1)/exp(z)
 Hs1(z) = derivative of Hsn(z) = Hcs(z)
 Hcs(z) = hyperbolic cos(z) = .5(exp(2z)+1)/exp(z)
 Hc1(z) = derivative of Hcs(z) = Hsn(z)
 Htn(z) = hyperbolic tan(z) = Hsn(z)/Hcs(z)
 Ht1(z) = derivative of Htn(z) = 1/Hcs2(z)
 Bvn(z1,z2,ρ) = bivariate normal CDF
 Bvd(z1,z2,ρ) = bivariate normal density
 Bv1(z1,z2,ρ) = bivariate normal derivative wrt x1
 Bv2(z1,z2,ρ) = bivariate normal derivative wrt x2

What’s New in Version 10? R-46

These functions are specific to CALC:

Bdd(z,a,b) = beta density
Inp(z) = inverse normal (same as Ntb)
Pnl(pds variable) = returns average group size for a panel
Kst(variable) = Kolmogorov – Smirnov test for normality

 Kp1 (degrees of freedom) = 1% Kodde-Palm critical value for d.f.
 Kp5 (degrees of freedom) = 5% Kodde-Palm critical value for 1 d.f.

The following scalar valued functions of a matrix replicate some MATRIX functions

Rnk(matrix) = rank of matrix
Trc(matrix) = trace of matrix
Det(matrix) = determinant of matrix
Nrm(matrix) = norm of matrix = trace of matrix’matrix
2nr(matrix) = 2 norm of matrix = largest singular value
Cnm(matrix) = condition number of matrix
Lmd(matrix) = log determinant of matrix

The following functions operate on variables in the data set:

 Cnc(variable1,variable2) = coefficient of concordance
 Ktr(variable1,variable2) = Kendall’s tau
 Sku(variable) = skewness coefficient, third moment
 Krt(variable) = kurtosis coefficient, fourth moment
 Rb1(variable) = Sku(variable) / s3
 Rb2(variable) = Krt(variable) / s4.

WN12 Program Results

 General program output has been slightly reformatted. The following results are produced
for a probit model:

Binomial Probit Model
Dependent variable DOCTOR
Log likelihood function -17701.08500
Restricted log likelihood -18019.55173
Chi squared [3 d.f.] 636.93347
Significance level .00000
McFadden Pseudo R-squared .0176734
Estimation based on N = 27326, K = 4
Inf.Cr.AIC = 35410.2 AIC/N = 1.296
FinSmplAIC = 35410.2 FIC/N = 1.296
Bayes IC = 35443.0 BIC/N = 1.297
HannanQuinn = 35420.8 HIC/N = 1.296
Model estimated: Jan 09, 2012, 17:51:41
Hosmer-Lemeshow chi-squared = 131.33234
P-value= .00000 with deg.fr. = 8

What’s New in Version 10? R-47

--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .02159 .05307 .41 .6842 -.08243 .12560
 AGE| .01532*** .00071 21.70 .0000 .01394 .01671
 EDUC| -.02793*** .00348 -8.02 .0000 -.03475 -.02111
 HHNINC| -.10204** .04544 -2.25 .0247 -.19109 -.01298
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

There are several differences from the counterpart in Version 9. The most prominent difference is
the replacement of the means of the covariates in the rightmost column with a confidence interval for
the estimated value. The default level is 95%. This can be changed by adding

 ; Clevel = value

to the (any) estimation command. The value may be any desired from 0.10 to 0.99. The standard
results generally do not include the last three lines of variants on the information criteria. The extra
results were obtained by setting

 ; Output = IC

in the command. (The command may have ; Output = some other setting for some other purpose
as well, for example, ; Output = IC ; Output = 3.) The additional information criteria can be
suppressed with ; Output = noic.
 The embedded matrix of results reported as a blue rectangular icon,

is no longer reported automatically. You may request it specifically with any model by adding
; Matrix to the command.
 The following two changes are provided for self documentation in command streams:

; Covariance is the same as ; Printvc.
 It may be abbreviated ; Cov

; Partial Effects is the same as ; Marginal Effects.
 It may be abbreviated ; Part

What’s New in Version 10? R-48

The MATRIX function Stat(vector,matrix,namelist) has been used to display estimation
results produced by user written procedures. A new command, DISPLAY, is provided to give
access to the standard output format. The general command is

 DISPLAY ; Parameters = vector
 ; Covariance = matrix may be a vector of variances
 ; Labels = namelist or list of labels $

The basic form provides a standard table in the same format as the built in estimation commands.
For the example above, we could use

NAMELIST ; x = one,age,educ,hhninc$
DISPLAY ; Parameters = b

; Covariance = varb
; Labels = x $

User Specified Model
--------+--
 | Standard Prob. 95% Confidence
 LHSVar.| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .02159 .05307 .41 .6842 -.08243 .12560
 AGE| .01532*** .00071 21.70 .0000 .01394 .01671
 EDUC| -.02793*** .00348 -8.02 .0000 -.03475 -.02111
 HHNINC| -.10204** .04544 -2.25 .0247 -.19109 -.01298
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Note the use of NAMELIST to provide the names to be used for the estimates. There are some
additional options that may be added to the DISPLAY command:

; Title = a title string
; Test: the usual setup, using the labels
; Logl = a log likelihood

These will add information to the output produced by DISPLAY.

WN12.1 New Use for Namelists

 The functionality of NAMELIST has been extended. Note in the example above, the
namelist x is used to provide a set of names for the display of results. The use of namelist in that
context is only to provide a set of names – the names of the variables in the list. Namelists may now
be used in any context where a set of labels is desired. The usual place for that usage will be in the
DISPLAY command and in the MATRIX Stat function shown earlier. However, there will be other
cases as well.

What’s New in Version 10? R-49

WN12.2 New CLIST Command to Define a List of Labels

The command has narrow scope. It will be used in some graphics commands such as
constructing histograms. The form is

CLIST ; name = a set of labels $

Two alternative forms are

 ; name = _obs_
and ; name = _group_

The second is used with panel data. The CLIST command creates a set of labels (text strings) that
are used in some specific settings:

 ; Labels = name in optimization
 ; Labels = list in histogram
 ; Labels = list in crosstab
 ; Choices = list in NLOGIT and CLOGIT

The CLIST command can manage the lists in the same fashion as NAMELIST.

 CLIST ; List name $
 CLIST ; Delete name $

The character lists appear as a new data item in the project window.

WN13 Technical Program Settings

 There are numerous technical program settings, such as the convergence criteria for the
solver. You can obtain a listing of these with the command DEFAULT. For example, at the time of
the estimation of the probit model in the preceding example, we obtain the following listing

Current Settings of Program Defaults for Estimation

Convergence criteria for optimization program
 Change in function .0000000
 Change in parameters .0000000
 Derivative criterion .0000010
Maximum iterations 100
Technical output during iterations 0
Information criteria beyond AIC 0
Hermite quadrature points 40
Gauss Laguerre quadrature points 20
Number of draws for simulations 100
Confidence level in confidence intervals 95%
Maximum utility in multinomial choice 100.0

What’s New in Version 10? R-50

These settings can be changed by various settings described in this reference guide. They are
generally changed during estimation of an estimation command, then they revert back to the defaults.
The specific commands can be set permanently by an estimation command by adding ; Set to the
command. The settings will remain in place for the duration of the current session.
 The settings above are the program defaults that are set when LIMDEP is started. You can
embed a different set of defaults in a project file by the three steps:

 Model Command ; … ; Set $
 DEFAULT ; … $
 SAVE ; … $

The second command puts the technical settings in the project. The third command saves the
settings in the project. When you start up LIMDEP, the original defaults will be installed. When
you then load the project, the settings embedded in the project will replace the program defaults.

R1: Introduction to LIMDEP Version 10 R-51

R1: Introduction to LIMDEP Version 10

 The documentation for LIMDEP is divided into two parts: this Reference Guide and a
separate Econometric Modeling Guide. The LIMDEP Reference Guide describes how to use
LIMDEP to read a data set, establish the current sample, compute transformations of variables, and
carry out other functions that get your data ready to use for estimation purposes. Several important
tools, such as the matrix algebra program, scientific calculator and program editor are described here
as well. The LIMDEP Reference Guide also describes general features of the program used in most
model frameworks, including computing partial effects, general tools for testing hypotheses, panel
data models and using multiple imputation for filling missing data. The second part of the manual,
the Econometric Modeling Guide describes specific modeling frameworks and instructions to be
used for fitting these models. For NLOGIT Version 5 users, there is a separate manual, the NLOGIT
Reference Guide dedicated to the special features of NLOGIT.

R1.1 The LIMDEP Program

 LIMDEP is oriented toward cross section and panel data. But, many standard techniques for
time series analysis are supported as well. LIMDEP’s basic procedures for data analysis include:

• descriptive statistics (means, standard deviations, minima, etc.), with stratification,
• kernel density estimation, histograms, and other broad descriptive tools,
• univariate tests such as equality of means,
• cross tabulations, histograms, and scatter plots of several types,
• multiple linear regression,
• nonparametric regression,
• time series identification, autocorrelations and partial autocorrelations,

You can also model the sorts of extensions of the linear regression model normally needed for
teaching and research, such as:

• heteroscedasticity with robust standard errors,
• autocorrelation with robust standard errors,
• multiplicative heteroscedasticity,
• groupwise heteroscedasticity and cross sectional correlation,
• the Box-Cox regression model,
• one and two way random and fixed effects models for balanced or unbalanced panel data,
• distributed lag models, ARIMA, and ARMAX models,
• time series models with GARCH effects,
• dynamic linear models for panel data,
• nonlinear single and multiple equation regression models,
• seemingly unrelated linear and nonlinear regression models,
• simultaneous equations models.

R1: Introduction to LIMDEP Version 10 R-52

 LIMDEP is best known for its extensive menu of programs for estimating the parameters of
nonlinear models for qualitative and limited dependent variables. (We take our name from LIMited
DEPendent variables.) No other package supports a greater variety of nonlinear econometric
models. Among LIMDEP’s more advanced features, each of which is invoked with a single
command, are:

• univariate, bivariate and multivariate probit models, probit models with partial observability,
sample selection, heteroscedasticity and random effects,

• Poisson and negative binomial models for count data, with fixed or random effects, sample
selection, underreporting, and numerous other models of over- and underdispersion,

• two part models such as hurdle and zero inflation,
• tobit and truncation models for censored and truncated data,
• models of sample selection with one or two selection criteria,
• parametric and semiparametric duration models with time varying covariates,
• stochastic frontier regression models,
• ordered probit and logit models, with censoring and sample selection,
• switching regression models,
• nonparametric and kernel density regression,
• fixed effects models, random parameters models and latent class models for over 25

different linear and nonlinear model classes,

and over fifty other model classes. Each of these allows a variety of different specifications. Most
of the techniques in wide use are included. Among the aspects of this program which you will notice
early on is that regardless of how advanced a technique is, the commands you use to request it are
the same as those for the simplest regression.
 NLOGIT Version 5 includes all the features of LIMDEP Version 10 and offers in addition:

• FIML estimation of nested logit models with up to four levels including several formats that
build in assumptions of utility maximization,

• LIML estimation of conditional and multinomial logit models,
• heteroscedastic extreme value models,
• covariance heterogeneity in nested logit models,
• random parameters logit models for cross sections and panel data,
• multinomial probit and multiperiod multinomial probit models for panel data,
• generalized nested logit models with overlapping nests,
• kernel logit models with several different formats of individual effects,
• heteroscedastic random parameters models,
• the random regret form of the multinomial logit model,
• multinomial choice models with nonlinear utility functions,
• numerous forms of latent class multinomial logit models, including random parameters,
• generalized mixed logit models.

R1: Introduction to LIMDEP Version 10 R-53

 LIMDEP also provides numerous programming tools, including an extensive matrix algebra
package and a function optimization routine, so that you can specify your own likelihood functions
and add new specifications to the list of models. All results are kept for later use. You can use the
matrix program to compute test statistics for specification tests or to write your own estimation
programs. (The manual contains numerous examples.) The structure of LIMDEP’s matrix program
is also especially well suited to the sorts of moment based specification tests suggested, for example,
in Pagan and Vella (1989) – all the computations in this paper were done with LIMDEP. The
programming tools, such as the editor, looping commands, data transformations, and facilities for
creating ‘procedures’ consisting of groups of commands will also allow you to build your own
applications for new models or for calculations such as complicated test statistics or covariance
matrices. A new package of programs allows analysis of partial effects of any number of interaction
terms and any degree of complexity, for any variable in any model, or in any modification of a
model that you can formulate yourself.
 Most of your work will involve analyzing data sets consisting of externally generated
samples of observations on a number of variables. You can read the data, transform them in any way
you like, for example, compute logarithms, lagged values, or many other functions, edit the data,
and, of course, apply the estimation programs. You may also be interested in generating random
(Monte Carlo) samples rather than analyzing ‘live’ data. LIMDEP contains random number
generators for 15 discrete and continuous distributions including normal, truncated normal, Poisson,
discrete or continuous uniform, binomial, logistic, Weibull, and others. A facility is also provided
for random sampling or bootstrap sampling from any data set, whether internal or external, and for
any estimation technique you have used, whether one of LIMDEP’s routines or your own estimator
created with the programming tools. LIMDEP also provides a facility for bootstrapping panel data
estimators, a feature not available in any other package.

R1.2 Econometric Techniques

 This manual is devoted to use of this program. As such, there is relatively little instructional
material on the econometric models and techniques. Where possible, we have included sources to
refer to and a small amount of background material. For those users not already experienced in
empirical econometrics, some references to consider are as follows:

Two widely used textbooks that discuss many of the procedures in LIMDEP are

• Greene, W., Econometric Analysis, 7th Edition, Prentice Hall, 2011.

• Wooldridge, J., Econometric Analysis of Cross Section and Panel Data, 2nd Edition, MIT
Press, 2011.

On the subject of limited and qualitative dependent variables, some useful sources are:

• Maddala, G. S., Limited Dependent and Qualitative Variables in Econometrics, Cambridge
University Press, 1983.

• Long, S., Regression Models for Categorical and Limited Dependent Variables, Sage, 1997.

R1: Introduction to LIMDEP Version 10 R-54

• DeMaris, A., Regression with Social Data: Modeling Continuous and Limited Response
Variables, John Wiley and Sons, 2004.

• Greene, W. and Hensher, D., Modeling Ordered Choices, Cambridge University Press, 2010.

More generally, on the subjects of microeconometrics, we recommend:

• Cameron, C. and Trivedi, P., Microeconometrics: Methods and Applications, Cambridge
University Press, 2005.

Two specialized works on count data which are particularly rich in detail and variety are:

• Cameron, C. and Trivedi, P., Regression Analysis of Count Data, Cambridge University
Press, 1998.

• Winkelmann, R., Econometric Analysis of Count Data, 5th Edition, Springer Verlag, 2008.

A useful theoretical volume and an applications oriented survey on stochastic frontier estimation are

• Kumbhakar, S. and Lovell, K., Stochastic Frontier Analysis, Cambridge University Press,
2000.

• Greene, W., ‘The Econometric Approach to Efficiency Analysis,’ Chapter 2 in Fried, H.,
Lovell, K. and Schmidt, S. (eds.), The Measurement of Efficiency, Oxford University Press,
2008.

For those using LIMDEP and NLOGIT for discrete choice modeling, the primer

• Hensher, D., Rose, J. and Greene, W., Applied Choice Analysis, Cambridge University
Press, 2005,

is specifically devoted to techniques provided by NLOGIT and develops many applications using
LIMDEP and NLOGIT.

There are numerous survey articles on some of the other topics relevant to LIMDEP, particularly in
the Journal of Econometrics, the Journal of Applied Econometrics, and Foundations and Trends in
Econometrics. Rather than assemble them here, we shall note the relevant sources in the chapters on
the models to which they apply.

R1: Introduction to LIMDEP Version 10 R-55

R1.3 Summary of What’s New in Version 10

 Version 10 has been in development for four years. The new features include major
extensions of the way the program operates and over 20 new models. Previous users will find the
following:

Major new features embedded into all estimation and analysis areas, including:

• Multiple imputation: Our implementation of this set of techniques is supported in every
model that you will fit with the program. We built the technique into the data handling level
of the program, not into specific models. This means you can use any number of
replications without having to create copies of the data set specifically for the particular
model you are fitting.

• Interaction terms are becoming much more common in empirical models. Every model

that you can fit with LIMDEP that is defined by a list of variables can include any number of
interaction and nonlinear terms, such as age*educ, Log(income), and female*educ +
female*educ^2. Categorical variables can also be expanded in line in the model instruction
rather than being created permanently in the data set.

• Partial effects are an essential post estimation step in model development. With our new

PARTIAL EFFECTS program, you can compute appropriate (average) partial effects for
any variable in any model regardless of how complex. Interaction terms and nonlinear
functions of variables are all handled by the program. Complex models that involve direct
and indirect effects are easily handled as well. Partial effects and models can be simulated at
numerous settings of several variables to produce multiple plots of partial effects (with
confidence intervals) – again, in any model that you can specify.

• Decompositions of overall model differences across data segments (e.g., male/female, by

country, etc.) are often analyzed by using Oaxaca-style decompositions of model
predictions. We have implemented the Oaxaca decomposition and several variants in a
procedure that can be used with any linear or nonlinear model.

• Panel data models are provided for nearly all frameworks supported by LIMDEP. We have

streamlined the handling of panel data with a single setup (declaration) command that
automates setting up the appropriate sample for a panel data analysis.

• Multiple hypothesis tests can now be built into every model command. We have also

updated the command syntax to simplify specifying hypotheses.

• The WALD command for computing standard errors will now compute the ‘average
nonlinear function’ and an appropriate standard error for any function that you specify in the
command. It will also retain in the data set function values and estimated standard errors for
each observation in the sample. Either the delta method or Krinsky and Robb’s method may
be used.

• Bootstrapping of standard errors and confidence intervals can be carried out with any

model and any statistic (scalar or vector) that you compute with any part of the program.

R1: Introduction to LIMDEP Version 10 R-56

Over 20 new built-in models and analysis frameworks, including:

• Nonparametric regression for continuous and count variables
• Numerous new forms of the stochastic frontier model
• Count data models and several new forms of ordered choice and binary choice models
• New features added to MAXIMIZE for programs that estimate user defined models.

Streamlined appearance of output throughout the program:

 In some cases, results have been reduced. In general output has been reformatted to improve
readability. New tools are provided for displaying tables of your own results such as estimates from
a model that you program with MATRIX or MAXIMIZE.

R1.4 Documentation

 This manual is arranged so that the functions you are most likely to use are the ones you will
find documented first. First time users should take the time to read the first three chapters and skim
the first few paragraphs of subsequent chapters before beginning serious use. The tutorial contains a
few examples which will get you started. On the basis of these, you will be able to do a considerable
amount of analysis using LIMDEP.
 The two parts of this manual are as follows:

LIMDEP Reference Guide

 The LIMDEP Reference Guide provides program usage, basic econometric methods, such as
estimation techniques and how to test hypotheses, and technical material on program functions.
Chapter and section numbers in the LIMDEP Reference Guide are preceded by the letter ‘R.’

Econometric Modeling Guide

 The Econometric Modeling Guide describes specific modeling frameworks, such as linear
regression, binary choice, stochastic frontier models and survival models. Chapter and section
numbers in the Econometric Modeling Guide are preceded by the letter ‘E.’

R2: Basics of Operation R-57

R2: Basics of Operation

R2.1 Introduction to the LIMDEP Desktop

 Start LIMDEP as you would any other program, for example from the LIMDEP icon on your
desktop. The LIMDEP desktop is shown in Figure R2.1. The open window is the project window.
The project window contains a listing of the data you will analyze (the variables), results of your
analyses (matrices, etc.) and procedures you have used. Right now, you don’t have any data in your
work area, so the project is empty. This is where you will begin your LIMDEP session.

Figure R2.1 LIMDEP Desktop Window

R2.1.1 LIMDEP Desktop Menus

LIMDEP is operated by menus and dialog boxes as well as by typed instructions (program
commands) that you will compose. The menus will mainly be used for management functions such
as reading a data set into the program from a file. The program commands will be used for data
manipulation such as computing statistics or running a regression.

The menus are at the top of the desktop window. The Project menu and Project:New
secondary menu are shown in Figure R2.2. The Project menu is used for reading or writing data and
some other operations related to setting up your data set. The menus are described in detail in
Section R2.13.2.

R2: Basics of Operation R-58

Figure R2.2 The LIMDEP Desktop Menus

We will frequently use the following shorthand throughout the manual to reference main

menu options: Menu Name:Menu Item. For example, the instruction select ‘Project:New’
indicates select (click) Project from the main menu, then select New from the Project menu. If
there are additional options such as in a secondary menu or dialog box, they will be indicated with a
forward slash after each option. For example, select ‘File:New/Variables’ indicates select Project
from the main menu, select New, then select Variables. This will open a dialog box where you can
select new variables.

R2.1.2 The LIMDEP Toolbar and Command Bar

The desktop also includes the toolbar and the command bar below the toolbar. If the toolbar
or command bar is not showing, select Tools:Options, select the View tab, then check Display Tool
Bar or Display Command Bar and click OK. See Figure R2.3.

The LIMDEP toolbar contains 14 buttons for shortcuts to various program features. The
toolbar buttons are equivalent to certain menu entries. For example, the leftmost opens a new file, the
second opens a saved file. Section R2.13.3 contains a description of the toolbar buttons.

The command bar provides a convenient way to submit a short, single line command. It also
retains a history of commands submitted from it (like the history kept in the window of a web browser).

R2: Basics of Operation R-59

Figure R2.3 The LIMDEP Toolbar and Command Bar

R2.1.3 Components of a LIMDEP Session

 When you are operating LIMDEP, you are accumulating a project that consists of at least
four components:

• The internal components of the project, including your data, matrices, scalars, the
environment, etc. The window associated with this information is the project window.

• The commands that you have accumulated on the screen in an editing window.
• The output that you have accumulated in the output window.
• LIMDEP’s session trace that documents the session.

Each of these components will be discussed in more detail throughout the chapter.

R2.2 LIMDEP File Types

When you exit, LIMDEP will prompt you with a dialog box to ask if you wish to save the
contents of the editing, project, and output windows. In each case, you may save the component as a
named file.

The project file contains your data. It is LIMDEP’s ‘save’ file and provides a way for you to
reenter the program, retrieve your data conveniently and resume your earlier work. The extension for
a saved project file is .lpj.

 Command Bar

R2: Basics of Operation R-60

The editing or text window contains the commands that you have accumulated. A saved editing
window is referred to as a command or input file. The extension for a saved command file is .lim.

You may also save the contents of the output window. The extension for an output file is
also .lim.

WARNING: Output files and command files are both saved with the .lim extension. You will need
to make careful note of which files you save are which type.

When you use LIMDEP’s dialog box to save the project, editing or output windows,

LIMDEP will remember the name of the file. When you return, you will be able to select the file
from those listed in the File menu. The files listed 1 to 4 are the last four editing or output window
files saved by LIMDEP, and the files listed 5 to 8 are the last four project files. (See Figure R2.4.)
Just click the file name in the File menu to open the file.

Figure R2.4 The File Menu

During a session, LIMDEP accumulates a trace file (trace.lim) that documents the session.

The trace file will contain a complete list of your commands exactly as you entered them, all
diagnostic messages that were caused by errors in your commands, all diagnostics produced during
estimation of models, such as a report of multicollinearity, useful notes about model estimation, such
as by what rule an iterative estimator converged. This file is overwritten each time it is created. If
you wish to preserve the trace from a session, you should copy it to another file immediately upon
leaving your session.

R2: Basics of Operation R-61

R2.3 Beginning the LIMDEP Session

When you begin your LIMDEP session, the initial screen will show a project window entitled
‘Untitled Project 1’ and an empty desktop as shown in Figure R2.1. For a new session in which you
intend to analyze a data set that you have not already saved, you should not open a new project at this
point. The new session already has open project, and you may just proceed to build it. However, at any
time during a session, if you wish to open a new project file, you can select File:New/Project/OK.
Opening a project file that you have already saved is described in the next section.

R2.3.1 Opening a Project File

There are several ways to retrieve a project file:

• Select File:Open or File:Open Project. This will open a dialog box where you can
navigate to the project file you wish to open. Project files have an .lpj ending.

• The four previous projects you opened will be shown as items 5 to 8 in the File menu. You can
retrieve any of these files just by clicking the file name in this list, as shown in Figure R2.4.

• You can also open a project and launch LIMDEP at the same time. When you double click a
file name with the suffix .lpj anywhere on your computer, such as your desktop or an email
attachment, Windows will launch LIMDEP and then LIMDEP will open the project file.

NOTE: In order to operate LIMDEP, you must have a project open. This may be the default
untitled project or a project that you created earlier. You will know that a project is open by the
appearance of a project window on your desktop. Most of LIMDEP’s functions will not operate if
you do not have a project open.

R2.3.2 Opening an Editing Window

The usual way to submit instructions to LIMDEP is by typing program commands (verbs) in
an editing window (the text editor or command editor.). To open the editing window, click File:New,
select Text/Command Document in the dialog box, and click OK, as shown in Figure R2.5.

TIP: You can press Ctrl-N at any time to bring up the ‘New’ dialog box.

Figure R2.5 The New Dialog Box to Open an Editing Window

R2: Basics of Operation R-62

The editing window will appear to the right of the project window, as shown in Figure R2.6.
You can begin to enter your commands in the editing window as we have done in an example in the
figure. The editing window operates as an ordinary text editor, using basic text entry, copy, cut and
paste editing features.

Figure R2.6 Project Window and Editing Window

Note that the editing window shown in Figure R2.6 is labeled ‘Untitled 1.’ This means that

the contents of this window are not associated with a file; the commands in an untitled window are
just added to the window during the session. When you open a ‘.lim’ file, the file will be associated
with the window, and its name will appear in the window banner. The ‘*’ in the title means that the
contents of this window have not yet been saved.

There are other ways to open an editing window:

• If you have created a text file (.txt) that contains LIMDEP commands you will be using,
instead of creating a new set of commands, you can use File:Open to open that file. LIMDEP
will automatically open an editing window and place the contents of the file in the window.

• You can open a editing window and launch LIMDEP at the same time. When you double
click a command file name with the suffix .lim anywhere on your computer, such as your
desktop, Windows will launch LIMDEP and then LIMDEP will open an editing window for
this command file. Note, however, that when you do this, you must then either open an
existing project file or a new project.

R2: Basics of Operation R-63

R2.4 Using the Editing Window

 LIMDEP’s editing window is a standard text editor. Enter text as you would in any other
Windows based text editor. The Edit menu provides standard editing options such as Undo, Cut,
Paste, Copy, Replace, and so on. You can also use the Windows clipboard functions to move text
from other programs into this window, or from this window to your other programs. You can, for
example, copy text from any word processor, such as Microsoft Word , and paste it into the editing
window. The LIMDEP editing window will inherit all the features in your word processor, including
fonts, sizes, boldface, italic, colors, math objects, etc. However, once you save, then retrieve this
window, these features will be lost, and all that will remain will be the text characters, in Courier font.

TIP: The text editor uses a Courier, size 9 font. If you are displaying information to an audience or
are preparing materials for presentation, you might want to have a larger or different font in this
window. You can select the font for the editor by using the Tools:Options/Editor:Choose Font
menu. You may then choose a different font and size for your displays. This font will be used in the
text editing window, and in the output window.

Figure R2.7 Editing Window and the Edit Menu

R2: Basics of Operation R-64

R2.4.1 Using the Insert Menu in the Editing Window

 There are additional features that you can use with the editing window. The Insert menu
allows you to place specific items on the screen in the editor (see Figure R2.8):

• Insert:Command (or the button marked fx in the upper left corner of the editing window)
will place a specific LIMDEP command (verb) at the insertion point. A dialog box will
allow you to select the command from a menu or build a model command from a full listing
of the options available.

• Insert:File Path will place the full path to a specific file at the insertion point. Several

LIMDEP commands use files. The dialog box will allow you to find the full path to a file on
your disk drive, and insert that path in your command.

• Insert:Text File will place the full contents of any text file you select in the editor at the

insertion point. You can merge command files or create command files, using this tool.
You can then navigate to, and insert any text file you like.

Figure R2.8 The Insert Menu

R2: Basics of Operation R-65

TIP: File names must often be enclosed in double quotes for the operating system to find the file
that you wish to use. Insert:File Path will include the double quotes when it locates a file name. If
you find that LIMDEP is unable to find a file that you thought you had specified correctly, make sure
that you have included the double quotes.

 There are other means to enter names of entities such as variables, matrices, etc. The small
‘Insert Name’ window at the top of the editing window contains a complete list of the names of
variables, matrices, etc. that appear in the project window. Click the button at the right end of the
window to see the menu of available names. You can select names from this menu to add to
commands as you construct lists in the editing window. You can also drag any name from the
project window into the editing window.

R2.4.2 Executing Commands from the Editing Window

 When you are ready to execute commands, highlight the ones you wish to submit. Then, to
execute the commands you may do either of the following:

• Click GO on the LIMDEP toolbar. (If the toolbar is not showing on your screen, select the
Tools:Options/View tab, then select Display Tool Bar.)

• Select Run:Run Line (or Run Selection if multiple lines are highlighted) to execute the

selected commands once.

• Select Run:Run Line Multiple Times (or Run Selection Multiple Times if multiple lines
are highlighted) to specify that the selected commands are to be executed more than one
time. The dialog box queries you for the number of times.

 The commands you have selected will now be carried out. In most cases, this will produce
some output. LIMDEP will now automatically open a third window, your output window, discussed
in Section R2.10.
 If your commands fit on a single line – many of LIMDEP’s commands do not, you can
submit a single line of text in editing window just by placing the cursor anywhere on that line
(beginning, middle or end), and then clicking the GO button. The single line does not have to be
highlighted for this.

R2: Basics of Operation R-66

R2.4.3 The Editing Window Right Mouse Button Menu

 The right mouse button invokes a small menu that combines parts of the Edit and Insert
menus, as shown in Figure R2.9. As in the Edit menu, some entries (Cut, Copy) are only active
when you have selected text, while Paste is only active if you have placed something on the
clipboard with a previous Cut or Copy. Run Line is another option in this menu. Run Line
changes to Run Selection when one or more lines are highlighted in the editing window. If you
make this selection, those lines will be submitted to the program. If no lines are highlighted, this
option is Run Line, for the line which currently contains the cursor.

Figure R2.9 Editing Window Right Mouse Menu

R2: Basics of Operation R-67

R2.5 A Short Tutorial

1. Start the program.

 Start LIMDEP, for example, by double clicking the shortcut icon on your desktop or from
the Start:Programs menu. The desktop will appear as shown in Figure R2.10, with a new project
window open, and no other windows active.

Figure R2.10 Initial LIMDEP Desktop

2. Open an editing window.

 Select File:New, then select Text/Command Document in the dialog box, then click OK,
to open an editing window, exactly as discussed in Section R2.3.2.

R2: Basics of Operation R-68

3. Place commands in the editing window.

 Type the commands shown in the editing window of Figure R2.11. These commands will
do the following:

1. Instruct LIMDEP to base what follows on 100 observations.
2. Create two samples of random draws from the normal distribution, a ‘y’ and an ‘x.’
3. Compute the linear regression of y on x.

Spacing and capitalization do not matter – type these three lines in any manner you find convenient.
But, do use three lines.

Figure R2.11 Editing Window

R2: Basics of Operation R-69

4. Submit the first two commands.

 Highlight the first two lines of this command set, and click the GO button on the toolbar.
Note that a new window appears, your output window, as shown in Figure R2.12. (You may have to
resize it to view the output.)
 Notice that the top half of the output window has the Trace tab selected. If you click the
Status tab, this will change the appearance of the top half of the window, as you’ll see later. The
status feature in the output window is useful when you execute iterative, complicated nonlinear
procedures that involve time consuming calculations. The status window will help you to see how
the computation is progressing, and if it is near completion.

Figure R2.12 Output Window with Command Echo

The output window will always contain a transcript of your commands. Since you have not
generated any numerical results, at this point, that is all it contains.

R2: Basics of Operation R-70

5. Compute the regression.

 Now, select the last line in your command set, the REGRESS command, and click the GO
button. The regression output appears in the lower half of the window, and you can observe the
accumulating trace in the upper half of the window. This trace in the top half of the window will be
recorded as the trace file, trace.lim, when you exit the program.

Figure R2.13 Regression Output in Output Window

R2: Basics of Operation R-71

6. The project window.

 Note in Figure R2.10, in the project window, that the topics Matrices and Scalars have
symbols next to them, indicating that the topic can be ‘expanded’ to display its contents. But, the
Variables entry is not marked. After you executed your second line in your editing window, and
created the two variables x and y, the Variables topic is now marked with . Click this symbol to
expand the topic. The REGRESS command created another variable, logl_obs. It also created three
matrices, as can be seen in Figure R2.14. (These three actually exist before you do anything, but
they do not contain any values before you fit a model.)

Figure R2.14 Project Window

Some other features you might explore in the project window:

• Click the symbol next to the Matrices and/or Scalars topics.
• Double click any name that you find in the project window in any of the three topics.
• Single click any of the matrix or scalar names, and note what appears at the bottom of the

window.

R2: Basics of Operation R-72

7. Modifying Commands.

 You can return to the editing window and modify the commands and execute them again, in
any order. To see an example, move back into the editing window and add ; Plot to the REGRESS
command after the ‘x’ before the $. After you have changed the REGRESS command, resubmit it
by clicking the GO button. A new window containing the residual plot you just requested will now
appear, as shown in Figure R2.15.

Figure R2.15 Plot Window in Output

R2: Basics of Operation R-73

8. Exiting the program and saving your files.

 To leave LIMDEP, select File:Exit or simply close the LIMDEP desktop window.
Whenever you exit a session, you should save your work. At any time in any session, you can save
all of LIMDEP’s active memory, tables, data matrices, etc. into a file, and retrieve that file later to
resume the session. Just select File:Save to save your work during a session.
 When you exit, LIMDEP will ask if you wish to save the contents of the editing, project,
output and other open windows, such as graphs. In each case, you may save the component as a
named file. The query in each case is

 ! Save changes to …<name>…

where <name> is the name that appears in the title banner of each of the active windows. See Figure
R2.16 for an example.

Figure R2.16 Exiting LIMDEP – Saving Editor Window Contents

 If you click Yes, LIMDEP will prompt you for a file name in the Save As dialog box. The
extension for a saved project file is .lpj. The extension for a saved editing window command file or
output file is .lim. Output files and command files are both saved with the .lim extension. You will
need to make careful note of which files you save are which type. For this tutorial, there is no need to
save any of these windows, so answer no to the four queries about saving your results.

R2: Basics of Operation R-74

R2.6 Commands

 There are numerous menus and dialog boxes provided for giving instructions to LIMDEP.
(They are described in detail at the end of this chapter.) But, ultimately, the large majority of the
instructions you give to the program will be given by commands that you enter in the text editor.
This section will describe the LIMDEP command language. We begin by describing the general form
and characteristics of LIMDEP commands.

R2.6.1 Syntax

 Commands are of the form:

VERB ; specification ; specification ; ... ; specification $

The verb is a unique four character string which identifies the function you want to perform or the
model you wish to fit. If the command requires additional information, the necessary data are given
in one or more specifications separated by semicolons (;). Commands always end with a dollar sign
($). The set of commands in LIMDEP consists generally of data setup commands such reading a
data file, data manipulation commands such as transforming a variable, programming commands
such as matrix manipulation and scientific calculation commands, and model estimation commands.
All are structured with this format. Examples of the four groupings noted are:

 READ ; File = “C:\work\frontier.dat” ; Nobs = 27 ; Nvar = 4 $
 CREATE ; logq = Log(output) $
 MATRIX ; identity = Iden(5) $
 FRONTIER ; Lhs = logq ; Rhs = one, Log(k), Log(l) ; Model = Exponential $

Notice that several of the verbs are more than four characters. Only the first four are strictly
necessary, but using the full names helps to document the feature you are using. Thus, READ
and READFILE are the same verb. The following command characteristics apply:

• You may use upper or lower case letters anywhere in any command. All commands are
translated to upper case immediately upon being read by the program, so which you use
never matters. (Certain labeling and title features for graphs will be exceptions to this.)

• You may put spaces anywhere in any command. (You may also use tabs in an input file.)

LIMDEP will always ignore all spaces and tabs in any command.

• Every command must begin on a new line.

• The number of nonblank characters which precede the ending $ must not exceed 10,000.

• In any command, the specifications may always be given in any order. Thus,

 READ ; Nobs = 100 ; File = data.prj $ and

 READ ; File = data.prj ; Nobs = 100 $

are exactly the same.

R2: Basics of Operation R-75

• You may use as many lines as you wish to enter a command. Just press Enter when it is
convenient. Blank lines in an input file are also ignored

• Most of your commands will fit on a single line. However, if a command is particularly
long, you may break it at any point you want by pressing Enter. The ends of all commands
are indicated by a $. LIMDEP scans each line when it is entered. If the line contains a $,
the command is assumed to be complete.

HINT: Since commands must generally end with a $, if you forget the ending $ in a command, it
will not be carried out. Thus, if you submit a command from the editor and ‘nothing happens,’ check
to see if you have omitted the ending $ on the command you have submitted. Another problem can
arise if you submit more than one command, and one of them does not contain a $. The subsequent
command will be absorbed into the offending line, almost surely leading to some kind of error
message. For example, suppose the illustrative commands we used above were written as follows:
Note that the ending $ is missing from the second command.

 SAMPLE ; 1-100 $
 CREATE ; x = Rnn(0,1) ; y = x + Rnn(0,1)
 REGRESS ; Lhs = y ; Rhs = one,x $

This command sequence produces a string of errors:

Error 623: Check for error in ONE,X
Error 623: Look for: Unknown names, pairs of operators, e.g., *
Error 61: Compilation error in CREATE. See previous diagnostic.

The problem is that the REGRESS command has become part of the CREATE command, and the
errors arise because this is now not a valid CREATE instruction.

R2.6.2 Naming Conventions and Reserved Names

 Most commands refer to entities such as variables, groups of variables, matrices, procedures,
and particular scalars by name. Your data are always referenced by variable names. The
requirements for names are:

• They must begin with a letter. Remember that LIMDEP is not case sensitive. Therefore, you

can mix upper and lower case in your names at will, but you cannot create different names
with different mixes. E.g., GwEn is the same as GWEn, gwen and GWEN.

• You should not use symbols other than the underscore (‘_’) character and the 26 letters and

10 digits in your names. Other punctuation marks can cause unexpected results if they are
not picked up as syntax errors.

• Names may not contain more than eight characters.

There are a few reserved words which you may not use as names for variables, matrices, scalars,
namelists, or procedures. These are:

R2: Basics of Operation R-76

 one (used as a variable name, the constant term in a model),
 b, varb, sigma (used as matrices, to retain estimation results from all models),
 n (always stands for the current sample size),
 pi (the number 3.14159...),
 _obsno (observation number in the current sample, used by CREATE),
 _rowno (row number in data set, used by CREATE),
 s, sy, ybar, degfrdm, kreg, lmda, logl, nreg, rho, rsqrd, ssqrd, sumsqdev
 (scalars retained after regressions are estimated),
 exitcode (used to tell you if an estimation procedure was successful).

Several of the reserved names are displayed in the project window. Note in Figure R2.14 that there
are ‘keys’ next to the three matrix names b, varb and sigma. These names are ‘locked,’ i.e.,
reserved. You may not change these entities – for example, you may not create a matrix named b.
That name is reserved for program use.
 You are always protected from name conflicts which would arise if you try to give an entity
such as a variable a name which is already being used for something else, such as a matrix or scalar,
or if you try to use one of the reserved names. For example, you may not name a variable ‘s’; this is
reserved for the standard deviation of the residuals from a regression. LIMDEP will give you a
diagnostic if you try to do so, and decline to carry out the command.

R2.7 Input Files – Entering Commands from a File

 Instead of using your text editor, you may submit a set of commands that have previously
been placed in a file on your computer. An input (command) file is used to enter commands from a
file. Any command may appear in an input file.
 There are a few controls that will be useful in an input file. When you use an input file, output
such as model results that it produces will come to your screen in normal fashion just as if you had used
the editor. (The commands submitted from the editor are, in fact, treated as if they were an input file.)
 Normally, you would want to type as little as possible to complete a command. However, for
purposes of documenting your commands in an input file or in your trace file, for example, so that
you can review a session later, you might want to add commentary to your commands. There are
several ways to do so.
 Although a verb has a minimum of four characters, you may put any text you like between a
verb and the first semicolon or the end of the command if there are no specifications. You may also
put comments after the ending $ in a command. Everything on a line after a $ is ignored. Thus, to
specify a probit model, you might use

 PROBIT Model ; Lhs = moved ; Rhs = one, age $ Migration model

You may also mark parts of your command lines as comments with a question mark (?). On any
line, any text which follows a ? is treated as comment and ignored, as is the ?. For example,

 LOGIT ; Lhs = occupatn ? Job choices coded 0,1,2
 ; Rhs = one, age, region $

Note, however, that if the $ appeared at the end of the first line, after the ?, LIMDEP would not find
it because it would have appeared as part of a comment. You may also put blank lines anywhere you
wish in an input file.

R2: Basics of Operation R-77

 Finally, you may block out a range of lines in an input file as commentary by beginning the
first line with ‘/*’ and the last line with ‘*/.’ An example of an input file using these devices follows.

/* This is an example of a LIMDEP input file. The commentary
 is assumed to continue until we end it with a star then a slash.
 (Not yet.) The first command in this file is going to open a
 file for the program output. */
 OPEN ; Output = demo.out $
 /* The next line will read a data file. */
 READ ; File = demo\demo.dat ? Read is for files on disk
 ; Nvar = 3 ? Number of variables
 ; Nobs = 50 ? Number of observations
 ; Names = 1 $ Names at the top of the file
 SAMPLE ; 1-50 $
 /* Compute some transformed variables. */
 CREATE ; x1x2 = x1*x2 ; x1sq = x1^2 ; x2SQ = x2^2 $
 /* Now, we fit the 2 regressions. First linear, then loglinear. */
 REGRESS, linear ; Lhs = y ; Rhs = one,x1,x2,x1sq,x2sq,x1x2 $
 REGRESS, loglinear ; Lhs = Log(y) ; Rhs = one, Log(x1), Log(x2)$

 To submit an input file as a series of commands to be executed, select Run:Run File to open
a dialog box such as the one in Figure R2.17. The file you select is then submitted to LIMDEP, as if
it were a series of commands that you had submitted from the editor.

Figure R2.17 Run File Dialog Box

TIP: The dialog box shown in Figure R2.17 is a Windows miniexplorer. You can launch a program,
move a file, or delete a file or a folder by operating on the entries in the box. To see the items in the box
in details mode rather than in list mode, click the button at the upper right of the dialog box.

R2: Basics of Operation R-78

R2.8 Work Areas and Projects

 When you operate LIMDEP, your primary purpose will be to analyze a data set. LIMDEP
provides a number of ‘work areas’ in memory. One of them is the ‘array’ where your data are stored.
However, whether you make explicit use of them or not, there are a number of other work areas
being maintained for you. It is useful to know about them while you use the program, especially
when you approach the limits of their capacity. To summarize, the various entities that you will
accumulate and use as you operate LIMDEP include:

• Raw data: The data area.
• Matrices: Your matrix work area. Your models keep matrix results.
• Scalars: A bank of named scalars, created by you or by model estimation.
• Namelists: A set of names that can be used to represent up to 150 other names.
• Procedures: Possibly large groups of commands that can be submitted at once.
• Imputation Equations: A set of equations used to impute missing data.
• Tables: The results of previous models that you have estimated.

In each of these cases, there is a set amount of information that can be stored. You can navigate the
project window to find out what entities you have defined and how much room you have left in each
of your work areas.

R2.8.1 Work Areas

Data Area

 The initial setting is 500,000 cells (values) when you start LIMDEP. With 900 variables,
this allows 555 observations. This is a global setting that you can change if necessary. There are
two cases to consider, as shown in Figures R2.18a and R2.18b:

1. To reset the data area size just for the current session, select Project:Settings/Data Area.

You can set the dimensions of your data area as needed. In the discussion below, the total
size of the data area is referred to as NKMAX. You are not limited by the physical size of
the computer, as Windows can swap data from disk to memory as necessary. Note that
setting this parameter brings a global program reset. All data are erased. But, this setting is
only for the current session.

2. To set the data area size permanently, select Tools:Options/Projects. This sets the default

data area size permanently (or until you change it again), so that this will be the setting every
time you start LIMDEP.

NOTE: In previous versions of LIMDEP, if a project (.lpj) file contained an internal data allocation
that was larger than the current setting in the program, the LOAD command would abort, and the
user would be requested to expand the data area before processing could continue. This is now done
automatically by the program as part of the LOAD operation.

R2: Basics of Operation R-79

 Figure R2.18a Project Settings Data Area Figure R2.18b Tools Options Default Data Area

Rows and Observations

 The number of rows in the data area is the integer part of NKMAX/900. This is only the
default. If you need more rows, the adjustment is made at the time you READ your data. The
number of columns that can be accommodated in the now fixed NKMAX can be adjusted downward
if the number of rows is excessive. (900 is a hard upper limit, however.) You can also adjust this
setting ‘by hand.’ You would want to do this, for example, if your data were experimental, to be
created using a random number generator, and you wanted to analyze more than the default number
of observations.

Data Type

 This is Undated for a cross section. You may specify monthly, quarterly, or yearly for time
series data instead. Two ways are to use the DATA command or to select Project:Settings/Data
Type, and choose the type you wish in the dialog box shown in Figure R2.19. When you choose one
of the time series options, only one of the initial date entries is provided.

Figure R2.19 Project Settings Data Type

R2: Basics of Operation R-80

Variables

 You may have up to 900 variables, including one, which LIMDEP reserves for itself.

Namelists

 You may define up to 25 of these, each standing for up to 150 names. See the documentation
of the NAMELIST command in Section R6.4 for details.

Matrices

 You may have up to 100 matrices in a work area that contains 500,000 cells. LIMDEP
reserves three of these, and 25,000 cells for your model results. This may seem small for possibly
large X matrices, but, in fact, given the way LIMDEP does matrix algebra, you will find it difficult to
approach this limit, even if you are manipulating tens of thousands of observations.

Imputation Equations

 You may have up to 30 of these stored in a work area. You are unlikely to need more than a
small handful; the upper limit should be far more than needed.

Scalars

 You may define up to 100 of these, though LIMDEP reserves 14 for itself.

Procedures

 You may define up to 11 of these, 10 in a library and one as the ‘current procedure.’

Tables

 You may store for later output to a file the results of 10 models. These may be examined by
using the REVIEW command.

R2.8.2 The Project Window

 Your project window is the leftmost window in Figures R2.1. At any time, you can find an
inventory of all of the preceding in the project window. Figure R2.20 shows an example based on the
editing window in the figure. There is an inventory of the existing data entities and a display of some
of them. Clicking the scalar rsqrd displays it at the bottom of the project window. Double clicking
the matrix varb displays it in a matrix editing window, shown to the right of the project window.

R2: Basics of Operation R-81

Figure R2.20 Project Window and Output Window

 There is a tremendous amount of functionality built into the project window. There are four
major groupings in the project window, shown in Figure R2.21a Their titles and contents are:

Data: Variables, namelists, matrices, scalars, labellists, imputation equations
Strings: A set of three character strings that you can define
Procedures: Up to 10 named and one unnamed groups of commands
Output: Output window, model table

Note in Figure R2.21a, that some titles are shown preceded by , indicating that by double clicking
this title or clicking the , it will be expanded to reveal its contents. Some are shown with a to
indicate that they are already expanded, and one (procedures) has neither nor which indicates
that there are no procedures to display by expanding this topic. Figure R2.21b shows a more detailed
example. Two groupings are expanded in this project window. The following lists the functions
available in the project window:

R2: Basics of Operation R-82

 Figure R2.21a Project Window Groupings Figure R2.21b Expanded Project Window

R2: Basics of Operation R-83

Data Group

• Data: Double click the group title to display the six folders in this group.
• Variables: Click the group title to see how many variables currently exist and how many

columns there are in your data area.
• Any Variable: Double click any variable name to open the data editor to edit that variable

and others that exist at that time.
• Namelists: Click the group title to see how many of the 25 available namelist definitions

have been used.
• Any Namelist: Double click any namelist name to enter the namelist editor which will allow

you to edit this namelist by adding or deleting variables.
• Labellists: Click the group title to see how many labellists have been defined.
• Any Labellist: Double click the name of a labellist to see the list of labels it defines.
• Imputation Equations: Click the group title to see the names of the variables that can be

imputed with the imputation equations.
• Any Imputation Equation: Double click a name in the list to see details of the variables that

are used in the imputation equation and what type of equation it is.
• Matrices: Click the group title to see how many of the 100 available matrices have been

defined.
• Any Matrix: Click any matrix name to see the dimensions of that matrix displayed at the

bottom of the project window.
• Any Matrix: Double click any matrix name to enter an editing window that shows the full

matrix and allows you to edit it and save the changes. (b and varb cannot be changed.)
• Scalars: Click the group title to show how many of your changeable scalars remain

available.
• Any Scalar: Click any scalar name, and the value it currently takes will be displayed at the

bottom of the project window.
• Any Scalar: Double click any scalar name to enter an editing window which will allow you

to replace the value of the scalar. Note, the first 14 scalars are read only.
• Any Variable, Matrix, Scalar, or Namelist: Highlight the name of the entity, then press Del

to delete the item from the work area. This may be necessary to clear space.

NOTE: There are various items in the project that are ‘read only.’ These correspond to the reserved
names listed earlier. You will know that an item in the project is read only by its identifying key
marker, . This marker indicates an item that you can view in one of the various editors, but cannot
change.

Strings Group

• Strings: Double click the group title to open the list of strings.
• Strings: Double click any of the string names to enter an editing window that allows you to

define the character string. (See Chapter R19 for use of these strings.)

R2: Basics of Operation R-84

Procedures Group

• Procedures: Click the group title to see how many of the 10 procedures are available.
• Procedures: Double click the group title (or open the folder) to display the names of the

defined procedures.
• Any Procedure: Click a procedure name to display how many lines of commands are in this

procedure, of 50 that can be used.
• Any Procedure: Double click any procedure name to open an editing window in which you

can edit that procedure and, if you wish, change its parameter list.

Output Group

• Output: Double click the group title to display the two items in the group, tables and output
window.

• Tables: Click the group title to display the names (up to 10) of the models that you have
stacked in the results table work area. (Nothing happens here if you have not stacked any
model results in the table.)

• Any Table Name: Double click any name in the tables grouping to open the editing window
where you can construct output tables for model results.

• Output Window: Double click this window entry to activate the output window.

TIP: You can select (highlight) any name in the project window, then drag that name into the
editing window if you would like to use the name in constructing commands. Another way to copy a
name from the project window into the editing window is to use Ctrl-Click – that is, put the mouse
cursor on the name you wish to copy, press and hold down the Ctrl key and click the left button on
your mouse. This will allow you to assemble a list of names in the editing window quite quickly.
(You will have to add commas to separate the names.)

Other Functions in the Project Window

 Many other editing features are built into the project window. By selecting any name in this
window with a right mouse click, you obtain a menu of features. These are:

• Variable: Data editor, rename the variable, sort the variable, copy the name to the editing

window, delete the variable.
• Namelist: Namelist editor, copy the name to the editing window, delete the namelist.
• Matrix: Matrix editor window, copy the name to the editing window, delete the matrix.
• Scalar: Scalar editor/new entry, copy the name to the editing window, delete the scalar.

(When in a scalar editing window, right click invokes an editing menu.)
• String: String editor, copy the name to the editing window.
• Procedure: Edit the procedure, run the procedure, copy the name to the editing window.
• Table: Editor, review output tables, add tables to output.

We’ll revisit these features at appropriate points later in this manual.

R2: Basics of Operation R-85

The Insert:Item into Project Menu

 The Insert menu includes an option, Item into Project, that offers dialog boxes for creating
most of the major data entities that exist in your session, variables, scalars, matrices, namelists, and
procedures. Each of these is an editor that allows you to edit an existing entity or to create a new
one. See Figure R2.22.

Figure R2.22 Insert Item into Project

R2.9 Restarting During a Session

 A large amount of information is accumulated during a session. If you wish to begin a new
session, with a different data set, for example, it is best to ‘sweep’ the memory before doing so. The
best way is to select File:Exit and restart. It may be more convenient just to clear the memory by
selecting Project:Reset (or use the LIMDEP RESET command). After your confirmation, all
memory is cleared and a new session begins.

NOTE: This is a complete reset. All data information is lost. Use File:Save if necessary, first.

Project:Reset clears all the program memory. But, it does not clear the output window nor does it
sweep the text editing window. If you want a completely new session, you should either select
File:Exit and restart, or use Edit:Select All then Edit:Clear in each of the two remaining windows.

R2: Basics of Operation R-86

R2.10 Program Output and the Output Window

 LIMDEP will automatically open an output window and use it for the display of results
produced by your commands. Figure R2.23 shows an example. The output window is split into two
parts. In the lower part, an echo of the commands and the actual statistical results are accumulated.
The upper part of the window displays the trace.lim file as it is being accumulated. Note that there
are two tabs in the upper window. You have two options for display in this window. The Trace
display is as shown below. If you select the Status tab, instead, this window will display technical
information during model estimation, such as the iterations, line search, and function value during
maximum likelihood estimation, and execution time if you have selected this option from the
Project:Project Settings/Execution tab as well. We will review the Status tab in Chapter R26
where we discuss the optimization procedures.

Figure R2.23 Output Window

R2: Basics of Operation R-87

R2.10.1 Opening an Output File

 You can open an output file if you wish – see Section R9.7. The command is

 OPEN ; Output = the desired filename $

All the model results that are sent to your output window will be echoed to this file. One difference
is that the file will not contain the interleaved commands, as appear in the example above.

HINT: It is not necessary to open an output file to retain your results during your session. As you
exit LIMDEP, you will be asked if you wish to ‘Save changes to <title of output window>?’ At this
point, if you answer yes, you will be able to create an output file. You will be queried for the name.
The file will contain all of the results that have been accumulated during your session.

R2.10.2 Editing Your Output

 The output window provides limited capability for editing. You can select, then delete any
of the results in the window. You can also highlight, then use cut or copy in the output window.
(The right mouse button also brings up a limited menu for editing the output window.)

But, there is a way to get full editing capability. You can select, then cut or copy any
material from the output window and paste it into an editing window (or into any other program,
such as a word processor, that you might be using at the same time). The editing window then
provides full editing capability, so you can place any annotation in the results that you like. You can
save the contents of the editing window as an ordinary text file when you exit LIMDEP.

TIP: If you wish to extract from your output window a little at a time, one approach is to open a
second editing window, and use it for the output you wish to collect. You may have several editing
windows open at any time.

R2.10.3 Printing

 Printing with LIMDEP is handled by your Windows print manager. Also, you will generally
do relatively little printing during your LIMDEP session, and, probably, relatively little printing with
LIMDEP at all – most results will go to a file on your disk, or can be pasted into word processing
programs that can be used to process results for final output.
 The File menu does give you some control over how LIMDEP results are to be printed from
the program. The option File:Page Setup generates a dialog box where you can adjust the page
orientation and margins.

R2: Basics of Operation R-88

R2.11 Help

 LIMDEP offers an extensive Help file. Select Help:Help Topics from the menu to bring up
the help editor. LIMDEP’s Help file is divided into seven parts, or ‘books,’ as shown in Figure
R2.24. In the first book, you will find a selection of Topics that discuss general aspects of operating
the program. In Figure R2.24, for example, the Help material on Marginal Effects is displayed. The
second book is the Commands list. This contains a list of the essential features and parts of all of
LIMDEP’s commands. The third book contains an expanded version of the desktop summary that
appears in Section R2.13. The fourth book contains descriptions of new features in LIMDEP.
Finally, there are three books of useful ancillary material: a collection of LIMDEP programs, some
of which appear in this manual, a collection of data sets that can be used for learning how to use
LIMDEP and for illustrating the applications – these include the data sets used in the applications in
this manual, and, finally, some of the National Institute of Standards accuracy benchmark data sets.
The files in the last three books are also available in a resource folder created when LIMDEP is
installed. The location for the folder is C:\LIMDEP10, and there are three subfolders, Data Files,
Command Files, and Project Files.

NOTE: All sample data files referenced in the documentation, as well as many of the NIST datasets
and sample command and project files may be found in these folders and also in the Help file books.

Figure R2.24 Help Books

R2: Basics of Operation R-89

 Many of LIMDEP’s features include context sensitive access to the Help file. You can
access this information by clicking the ? button when available in a window. For example, the
editing window includes a function button, fx, to the left of the window, as shown in Figure R2.25.

Figure R2.25 Editing Window with Function Button

Click the fx button to open the Insert Command dialog box that allows you to insert any of the
LIMDEP commands in the editing window. See Figure R2.26.

Figure R2.26 Insert Command Dialog Box

This dialog box offers a full list of the LIMDEP commands broadly grouped by function. Highlight
a command category and a specific verb in that category. Then, click the ? button at the lower left
corner of the window to open the Help file Commands section describing that specific command.

R2: Basics of Operation R-90

R2.12 Summary of Commands

 This section will summarize the functions and commands available in LIMDEP. The listing
given will suggest the range of procedures available. Most of the procedures listed here have
numerous options, so this is merely an overview.

File System

CLOSE Close an output file before opening a different output file.
LOAD Retrieve saved data set to reactivate program. Use File:Open.
 (LOAD ; File = filename $ may also be used.)
SAVE Store all data currently active in a file; used with LOAD. Use File:Save.

Managing the Work Areas

DELETE Delete variables. Clear space in the data work area. This can also be done by
 highlighting a variable in the project window and pressing the Del key. You
 can also delete matrices, scalars, and namelists this way.
LIST Display variables on the screen. Inspect columns of data. This can also be done
 by double clicking a variable name in the project window to open the data editor.

The data editor can also be opened by clicking the data editor button in the
LIMDEP toolbar (grid/spreadsheet icon).

NAMELIST Identify a list of variables with a name. The namelist editor can be opened from
 the project window by double clicking any namelist name.
RENAME Change the names of one or more variables.
RESET Delete all data of all types and restart session. This can also be done by selecting
 Project:Reset.

Creating and Executing Procedures

 Procedures can be edited in a procedure editor by double clicking any procedure name in the
project window. You can also begin entry of a new procedure in the procedure editor by selecting
Run:New Procedure.

DOFOR Execute a procedure for certain values of a variable.
DOUNTIL Execute a procedure until a certain condition is true.
DOWHILE Execute a procedure while a certain condition is true.
ENDDO End of target procedure for DOWHILE, DOFOR, and DOUNTIL.
ENDPROC End entry of commands in a procedure.
EXECUTE Execute stored procedure. You can also execute a library procedure.
GO TO Redirect the flow of execution of a set of commands.
LABEL Mark a point in a set of commands. Use with GO TO.
PROC Begin entry of commands in a procedure.
SILENT Execute a procedure without displaying results.
NOSILENT Turn off SILENT switch.
STRING Define ‘macros’ for routines. Shorthand for a string of text.
LOCAL Define certain matrices, variables and scalars that are local to the procedure
 rather than global in the general work areas.

R2: Basics of Operation R-91

Creating New Variables

CREATE Transformations of variables. You can also enter transformations interactively.
 In the data editor, click the right mouse button and select New Variable from the
 menu. This opens a dialog box which allows you to enter CREATE commands
 interactively.
RECODE Replace values of a variable with other values.
SORT Sort a variable, possibly carrying others. (You can request a sort by highlighting
 the name in the project window, then right clicking.)

Manipulating Numeric Entities – Matrices and Scalars

CALCULATE Compute scalar result.
MATRIX Matrix algebra package.

These two procedures can be accessed from the main menu with Tools:Scalar Calculator or Matrix
Calculator. Once in one processor, you can also switch directly to the other.

Entering and Documenting a Data Set

APPEND Add additional observations to existing variables.
DATA Create a text file that is embedded in the project. The text generally describes
 the data in the file. A previous usage of DATA was to access the data editor. The
 data editor may be opened by double clicking any variable name in the project

window, selecting Project:Data Editor, or clicking the data editor button in the
LIMDEP toolbar.

READ Read a data set into the data work area from a file. You can also read a data
 set by entering the data editor, then clicking the right mouse button. In the
 menu, select Import Variables.
ROWS Configure number of rows in data area. Use Project:Settings/Data Area.
WRITE Write a data set in a disk file. You may also use Project:Export:Variables.

Labeling and Storing Statistical Output

REVIEW Examine previous statistical results and create tables. Review can be reached
 by clicking any of the tables in the project window or by selecting
 Tools:Review Tables.
TABLE Create tables of results in an output file.
TEXT Send text to an output file.
TIMER Display elapsed time for each model command. The switch can also be set with
 Project:Settings/Execution.
TITLE Define page header for model commands.
TYPE Send a message to screen and output file.
DISPLAY Create a table of estimated model results from a vector of estimates and an
 estimated covariance matrix.
CLIST Define a set of labels that can be used in several output functions.
LASTMODEL Define a set of model results to be used in the PARTIAL EFFECTS program.

R2: Basics of Operation R-92

Defining the Sample to be Used for Estimation

SETPANEL Global setting for a panel data set.
DATES Define type of time series data, quarterly, yearly, etc. Use the command or
 Project:Settings/Data Type.
DRAW Draw a random sample. Also allows bootstrap sampling.
INCLUDE Add observations to sample. INCLUDE and REJECT can also be specified
 by using Project:Set Sample.
NOSKIP Turn off SKIP switch. Can also be reached by Project:Settings/Execution.
 SKIP switch can also be turned on this way.
PERIOD Define sample period for time series data. Can also be done with
 Project:Set Sample.
REJECT Delete observations from sample.
SAMPLE Specify observations in the sample by observation number.
SKIP Set switch so LIMDEP automatically skips missing data.

Model Commands

 There are now well over 100 model commands supported in LIMDEP (and NLOGIT). A
few of these are:

ARMAX Box-Jenkins ARIMA models.
BIVARIATE PROBIT Bivariate probit models.
CROSSTAB Cross tabulation. Frequency counts and contingency tables.
DISCRETE CHOICE or CLOGIT Random utility models.
DSTATS Descriptive statistics.
FPLOT Plot values of a function of a variable.
FRONTIER REGRESSION Stochastic frontier.
GMME Generalized method of moments estimation.
GOMPIT Gompertz model for binary choice.
GROUPED DATA REGRESSION Completely censored data.
HISTOGRAM
MAXIMIZE Maximize a user defined function.
MIMIC Model for multiple indicators and multiple causes of a latent variable.
MINIMIZE Minimize a function or compute nonlinear least squares estimates.
MPLOT Plot elements of one matrix against those of another.
MPROBIT Multivariate probit model.
NLSQ Nonlinear least squares regression.
ORDERED PROBIT Ordered probit or logit models.
PROBIT Univariate probit model.
TOBIT Censored regression.
QREG Quantile regression.
REGRESS Linear least squares regression.
SELECTIVITY Sample selection models.
SPECTRAL Plot and compute spectral density function.
SURE Seemingly unrelated and multivariate regression.
3SLS Three stage least squares.

R2: Basics of Operation R-93

R2.13 Summary of the LIMDEP Desktop

 When you operate LIMDEP, you will generally be using the set of windows shown in Figure
R2.27, which is a somewhat abbreviated composite of the various features that you will find on your
screen. This section of the documentation will briefly describe the different parts of the desktop. In
the sections to follow, we will describe

• The three main windows, plus the calculator window,
• The main menus shown at the top of the screen,
• The toolbar shown below the main menus,
• The command window or command bar below the toolbar,
• The correspondence between the menu items and the commands listed earlier.

Figure R2.27 LIMDEP Desktop

R2: Basics of Operation R-94

R2.13.1 The LIMDEP Windows

 There are three main windows on the desktop. Operation begins in the project window,
which is at the upper left of the desktop. The project window contains a complete inventory of the
data, matrices, procedures, and so on, that you have created during your session. By clicking the
different topics in the project window, you can review the variables, matrices, etc. that exist at any
time. In addition, you can launch many different operations from the project window.
 Most of your command input is done from the editing window, which is at the upper center
of the desktop. Model commands and data manipulation commands will usually be placed on the
screen in this window, then executed by one of several methods. The simplest way to proceed until
you are ready to use the more advanced features is to place the commands you wish to execute in the
window, highlight them, then click the green GO button. There are many options available for
editing in this window, including two of the main menus, Edit and Insert.
 Your statistical results and a trace of your session are accumulated in your output window.
This is the larger window at the lower right of the desktop. We have compressed it for the display.
The output window is a split screen. The statistical results are shown in the lower half. The upper
part has two tabs. If you choose Trace, a continuing trace of your commands, diagnostics and error
messages that your commands produce, and other useful information are listed in the top half of the
window. This information is also saved at the end of your session in the LIMDEP trace file,
trace.lim. If, instead, you have chosen the Status tab, the top half of the window will display certain
technical output generated during model estimation, such as values of the log likelihood,
convergence criteria, and timing information. The trace will continue to accumulate in the
background.
 The smaller window at the left of the desktop is a calculator window. You can open a
calculator or matrix window by selecting Tools:Scalar Calculator or Tools:Matrix Calculator.
You may, in fact, have more than one of these open at any time, though typically, using just one is
best. The calculator window is an interactive session with CALCULATE and/or MATRIX.
Results that you wish to obtain interactively rather than as part of a command in a procedure, can be
obtained by entering one of these windows. The window contains its own input field, at the top,
labeled ‘Expr’ for expression. You can enter any valid CALC or MATRIX command in this field.
The result will be shown in the lower field. The window shown in the figure is being used for
CALC. You can switch over to MATRIX by clicking the button at the right of the top row, next
to the window containing ‘Scalar.’ Thus, you can accumulate both matrix and scalar results in this
window. (Matrix results are shown as an object, rather than the full matrix, itself. By clicking the
object, you can enter a display of the matrix, itself.) Finally, the fx button will open the Insert
Function dialog box containing a selection of functions that you can insert into your expressions for
both CALC and MATRIX.

R2: Basics of Operation R-95

R2.13.2 The Main Menus

The nine menus at the top of the desktop provide the following functions:

File Menu

File Opens and closes files for your LIMDEP session.

New... Ctrl+N Opens a new editing window (Text/Command Document) or
a new project window (Project).

 Open Ctrl+O Opens a file into project, editing, or output window.
 Close Closes the active window. (You are asked for confirmation.)

 Save Ctrl+S Saves the active window (project, editing, output).
 Save As... Same as Save.
 Save All Saves all windows.

 Open Project... Opens window to find a project file.

 Same as LOAD ; File = filename $
 Save Project As... Same as SAVE ; File = filename $
 Close Project Same as RESET $

 Page Setup... Sets up printing for output window – size, portrait/landscape,

 margins, printer identity, port. Also sets up graphics output.
 Print Preview Displays on the screen what printed output will look like.
 Print... Ctrl+P Standard Windows print operation, to print output window.

 1 Names of previous Opens this .lim file. Names of previous command, data or
 2 .lim files used (data, output files that were opened by file name will appear here,
 3 command, or output in the order in which they were used.
 4 files)

 5 Names of recent Opens the most recently used project file. Lists up to four
 6 project files used recent projects.
 7
 8

 Exit Alt+F4 Exits LIMDEP. You are queried to save project, output, and

editing windows (.lpj and .lim file types) and any
calculator, matrix, and plotting windows that are still open.

R2: Basics of Operation R-96

Edit Menu

Edit Standard editing features when in the editing window.
 Undo Ctrl+Z Undoes the last operation, for example, replaces deleted text.
 Cut Ctrl+X Removes selected text and puts it in the clipboard.
 Copy Ctrl+C Copies selected text to the clipboard, without deletion.
 Paste Ctrl+V Copies last cut or copied text to insertion point.
 Clear Del Erases selected text in the output window or the trace window.
 Delete (Not used.)
 Select All Ctrl+A Selects (highlights) entire editing or output window.

These editing features also operate in the output window. Del (key) also deletes a selected item in
the project window.

 Include Observations Ctrl+add Sets up an INCLUDE command in a window.
 Reject Observations Ctrl+subtract Sets up a REJECT command in a window.

 Find Ctrl+F Finds a particular character string in the editing window.
 Find Next F3 Repeats the last find operation. Finds next occurrence.
 Replace Replaces a character string with another character string.
 Go To... Ctrl+G Moves insertion point to a particular line (by line number).
 Object (Not used.)

Insert Menu

Insert Inserts items at the insertion point in the editing window.

These features operate on the text editing window to help build
commands. You can insert verbs (command names), file paths,
or entire ASCII text files at the insertion point.

 Command Inserts a command (verb only) at the insertion point. A
window presents the list of verbs to select from.

 File Path... Inserts the full path to a file on your hard disk at the insertion
point. Used in commands such as OPEN and WRITE.

 Text File... Inserts a text file at the insertion point. You can put the entire
 contents of a file in the editing window. The file can be added

to the existing text or put into an empty screen for editing or
for execution as an input file.

 Rows Opens up rows at insertion point in the data editor (not the

text editor). This puts one or more empty rows at the insertion
point in the data editor. Data are pushed off the stack.

 Columns (Not used.)

 Item into Project… Inserts an item into project.
 Variable CREATE a new variable.
 Namelist NAMELIST command for a new namelist.

Matrix MATRIX command for a new matrix.
 Scalar CALCULATE command for a new scalar.
 Procedure Enters a procedure editor to create a procedure.

R2: Basics of Operation R-97

Project Menu

Project Use for several functions of managing the data as well as a
 number of other features of the program.
 Settings… Offers a window with tabs for parameter and switch settings.

 Data Area Memory allocation: chooses number of cells in data area.
 Dimensions: chooses number of rows in data area. Same as

ROWS command.
 Data Type Observations: Chooses data type, cross section (undated)

or time series (dated). Same as DATES command.
Initial Date: yearly, quarterly, or monthly if time series data.

Execution Models: Turns SKIP switch on or off.
Output Turns SILENT switch on or off to suppress output.

Turns TIMER switch on or off to display time used in estimation.

 New Creates five new entities (variables, etc.). These open windows

that operate like the individual commands, but in interactive,
rather than command mode.

 Variable… Interactive create window.
 Namelist… Interactive namelist editor.
 Matrix… Interactive matrix window.
 Scalar… Interactive calculator window.
 Procedure… Interactive procedure editing window.

 Import Variables Finds a data file by opening a search window. Same as READ.
 Export Variables Writes variables in a data file. Formats include .xls, .wk1,

 .dat, and binary (.bin). Same as WRITE.
 Data Editor Goes to data editor – spreadsheet style display.

 Sort Variable... Sorts a variable, carrying one or more other variables. Same
 as SORT ; Lhs = variable to sort

 ; Rhs = variables to carry $; Ascending optional.

 Set Sample Sets the current sample.

All Same as SAMPLE ; All $
 Range... Observation rows: Queries for observations to be in the

current sample. Same as SAMPLE ; Range $ for cross section
data or PERIOD ; First - Last $ for time series data.

Include... Queries for ; New and enters command (expression). Same as
INCLUDE ; Expression $ with ; New optional.

Reject... Queries for ; New and enters command (expression). Same as
REJECT ; Expression $ with ; New optional.

 Draw... Draws random samples from your data set. Same as DRAW ; Nobs
[; Replacement] $

 Reset... Erases all variables and matrices. Same as RESET $

R2: Basics of Operation R-98

Model Menu

 Model is used to invoke a dialog which helps beginning users set up model definitions. The
initial menu offers a grouping of the available LIMDEP modeling frameworks. Each of these
contains a number of more specific model commands. The complete Model menu and specific
Linear Models options are shown in Figure R2.28.

Figure R2.28 Model Menu and Linear Model Options

Each specific model has associated with it a ‘command builder’ which you can use to specify a
model in a dialog box. The dialog then produces two or three windows which offer the options
available for that modeling framework. For example, the Regression command builder shown in
Figure R2.29 offers main, options, and output selections. The main and options dialog boxes (pages)
are shown below. The command builder will be discussed further in Chapter R8.

Figure R2.29 Regression Command Builder Dialog Boxes

R2: Basics of Operation R-99

Run Menu

 Run Executes groups of commands highlighted in the editing
 window.
 Run Ctrl+R Executes highlighted commands. Same as GO button.
 Run Multiple Times... Executes highlighted lines more than one time.
 Run File… Executes the commands in a file. Same as

OPEN ; Input = filename $ Queries for filename.
 Run Procedure Executes a procedure stored in the procedure library.

 Stop Running Ctrl+Break Interrupts input of a file or execution of commands from the
 editing window.

 New Procedure Opens procedure editor. Saves procedure on exit. Procedures

may be named and have adjustable, replaceable parameters.

Tools Menu

Tools Interactive execution of certain commands such as CALC

and MATRIX.
 Scalar Calculator Opens a calculator window for scalar calculations. Same as

 CALCULATE command. You can toggle to the matrix
calculator from this window. Results are shown on the screen.

 Matrix Calculator Opens a calculator window for matrix calculations. Same as
 MATRIX. You can toggle to the scalar calculator window from

this window. Results are displayed on the screen.
 Review Tables... Constructs tables of statistical results. Model commands that

 contain ; Table = name accumulate results in the model stack
that are reviewed here and can be grouped in tables in the output
window.

 Options... Several settings for program execution and display.

View Displays toolbar at top of desktop.
Displays program status bar at bottom of desktop.
Displays command bar at top of desktop.

Editor Chooses font for editing and output windows.
Automatic word selection handles highlighting in editing window.
Show Editor Tool Bar displays fx button and small Insert Name
window at top of editing window.

Projects Main memory allocation for data area. Same as RESET.
Execution Output window moves to front during execution.

Shows error message dialog boxes during execution.
Preferences: faster execution or greater user interface

 responsiveness.
 Trace Indicates where to save trace file trace.lim.

R2: Basics of Operation R-100

Window Menu

Window Handles display of windows on the desktop.
 Split Sets sizes of parts of split output window.

 Cascade Arranges active windows in cascade display format.
 Tile Arranges active windows in tile display format.
 Arrange Icons Arranges icons at bottom of desktop.

 Output Activates output window.

 1 Names of recent open Activates any of these windows.
 2 windows (project, editing,
 3 output, calculator, etc.)
 4

Help Menu

Help
 Help Topics Activates LIMDEP Help program.
 Tip of the Day… Suggestions for operating LIMDEP.
 LIMDEP Web Site… If you have a web browser active, sends web browser to

 LIMDEP home page.
 About LIMDEP… Information box.

Other menus include the following:

Icon Menu

Clicking the icon at upper left corner of an active window produces the following menu:

 Restore Restores window after it has been minimized.
 Move Repositions window on screen.
 Size Changes size of window.
 Minimize Reduces window to icon on taskbar.
 Maximize Expands window to fill desktop.
 Close Ctrl+F4 Closes window.
 Next Moves cursor to next open window.

Right Mouse Button Menu

Clicking the right mouse button when mouse cursor is not in a window opens this menu:

 New… Same as File:New.
 Open… Same as File:Open.
 Project Activates project window.
 Data Editor Activates data editor window.
 Output Activates output window.
 Options… Same as Tools:Options.

R2: Basics of Operation R-101

R2.13.3 The LIMDEP Toolbar

 There are fourteen tools shown in the LIMDEP toolbar (located below the main menu). If
the toolbar is not showing on your screen, select the Tools:Options/View tab, then turn on the
Display Tool Bar option.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure R2.30 The LIMDEP Toolbar

These are equivalent to certain other menu entries, as follows. The buttons are listed below in the
order from left to right:

1. Open a new editing or project window. (File:New)
2. Open an existing file. (File:Open)
3. Save. (File:Save)
4. Print. (File:Print)
5. Cut selection to clipboard. (Edit:Cut)
6. Copy selection to clipboard. (Edit:Copy)
7. Paste selection from clipboard to insertion point. (Edit:Paste)
8. Insert an item into the project window. (Insert:Item into Project…)
9. Execute selected commands. (Run:Run)

10. Stop commands. (Run:Stop Running)
11. Pause commands (from file or editing window).
12. Activate project window.
13. Activate data editor.
14. Activate (and open if necessary) output window.

R2.13.4 The Command Bar

 The command bar (or command window) appears below the toolbar. If the command bar is
not showing on your screen, select the Tools:Options/View tab, then turn on the Display
Command Bar option. By placing the insertion point in this window, you can enter your
commands one at a time. This is for one line commands. The command is submitted when you
press Enter. The window accumulates a menu of your commands, which is recalled by clicking the
 button at the right end of the command window. The fx button opens the Insert Command
window (same as the Insert:Command).

Figure R2.31 The LIMDEP Command Bar

R2: Basics of Operation R-102

R2.13.5 Commands and Menu Items

 Several commands are equivalent to the menu items listed earlier. Also, in some cases, there
is more than one menu item which corresponds to the particular command. The correspondences are
listed below.

CALC Tools:Scalar Calculator or toggle from the matrix calculator window
CREATE In data editor, right button, New variable. Project:New Variable
DATES Project:Settings/Data Type
DELETE Highlight name in project window then press Del
INCLUDE Project:Set Sample/Include or Edit:Include Observations
LOAD File:Open or File:Open Project (any project shown in submenu)
MATRIX Tools:Matrix Calculator or toggle from the scalar calculator window
NAMELIST Double click existing namelists in project window to edit a namelist, or
 Project:New/Namelist
OPEN Output file, automatically saves output window at exit
PERIOD Project:Set Sample/Range (set dates for time series first)
READ Project:Import/Variables
REJECT Project:Set Sample/Reject, Edit:Reject Observations
RESET Project:Reset
REVIEW Tools:Review Tables
SAMPLE Project:Set Sample/Range
SAVE File:Save, Save As, Save Project As
SILENT Project:Settings/Output, disable Show output
SKIP/NOSKIP Project:Settings/Execution, enable/disable Skip missing data
STRING Double click any string in project window to open string editing window
TIMER Project:Settings/Output, enable Show model execution time in output
WRITE Project:Export/Variables

R3: Importing and Reading Data Files R-103

R3: Importing and Reading Data Files

R3.1 Importing and Reading Data

 Step one of your analysis is getting your data into LIMDEP. Externally created data, such
as public data bases and data sets assembled from external sources are imported via disk files,
downloaded from the internet or, for very small data sets, prepared for LIMDEP using the text and
data editors. Internally created data for simulations and experiments are produced using LIMDEP’s
random number generators. This chapter is about importing externally created data. The CREATE
command described in Chapter R4 is used to produce internally created data.
 There are two very similar operations used for getting your data into the program, the
IMPORT and READ commands. IMPORT is used for standard forms of ASCII data files, including
CSV files such as those created with Microsoft Excel. Data files sometimes come in other forms, such
as binary files, files with other structures, or files produced by other programs. LIMDEP can read many
kinds of files that do not fit the standard format. The operation for these files is READ. IMPORT will
be described first in this chapter in Section R3.2. READ will follow in Section R3.5.
 In almost all cases, you will import your data into a data area that is created for storage of
the data while they are being analyzed. There are two alternative forms of importing that you may
use on occasion. The APPEND operation is used when you wish to read additional observations on
variables that you have already imported. APPEND is described in Section R3.10. The MERGE
operation is used to interleave two files for a panel data set, in which one contains observations on
variables that vary within a single ‘group,’ and a second which contains variables that are only
observed once for each individual. MERGE is described in Chapter R5.
 Data are stored in an area of memory that we will refer to as the ‘data array.’ The number
of cells in this area may vary as you use LIMDEP – you can change its size if you need to. The
initial setting of the data array is 5,000,000 cells, which is large enough that you will probably never
need to adjust it. Procedures for doing so for very large data sets are noted in Section R3.4. Once
the data have been imported, no distinction is maintained between integer and noninteger values, and
there is no need to maintain any consideration of how many digits a number contains. All numbers
are treated the same. Operations that are based on integer values are handled internally.
 LIMDEP provides two commands, EXPORT and WRITE for creating data files to be
exported to other programs. EXPORT is used to create a standard ASCII, CSV file. WRITE is
used for some other formats. These commands are discussed in Section R3.9.

R3.2 Import a Standard Formatted ASCII File

IMPORT can be used to input a standard ASCII data file with the following form:

• The file is ASCII text. You can see the contents in a text editor or word processor.
• Observations on sets of variables are on a single line in the file with items separated by

commas.
• Variable names, if given in the data file, are provided in the first row, separated by commas,

and must appear on a single line only
• Observation labels, if provided, are in the first column and include a column heading.
• If observation labels are provided, the numeric data must be given on one line.

R3: Importing and Reading Data Files R-104

NOTE: CSV files such as those created with Microsoft Excel follow this format and can be input
with IMPORT. (When a CSV file is viewed in Excel, the data and variables appear in cells, rather
than separated by commas.)

The basic case of a standard data file is a rectangular ASCII text shown in Figure R3.1. This

example has variable names in a single row at the top of the file.

Figure R3.1 Sample Data File

To import a data file of this form, you need only tell LIMDEP where it is. You can use menu options
or the command mode. For the menu option, select Project:Import, then select Variables, to open
the Import dialog box, as shown in Figures R3.2 and R3.3.

Figure R3.2 Project:Import/Variables Menu

In the Import dialog box, select All Files (*.*) in the ‘Files of type’ window, then locate and select
your data file and click Open.

ID Year Age, Educ
1 1960 23 16
2, 1975, 44, 12.5
3 1990 14 11.5
4 1993 missing 20

R3: Importing and Reading Data Files R-105

Figure R3.3 Import Dialog Box

The IMPORT command for importing a data file is

 IMPORT ; File = … < the name of the file, including the path>… $

The IMPORT command is submitted from the text editing window. As described in Chapter R2, to
open an editing window, click File:New, then Text/Command Document, then OK. Once you
have entered your commands, just highlight the commands and click GO on the toolbar to submit
your commands to LIMDEP.

TIP: When you use the IMPORT command, you need to specify the full path to a file. Sometimes
this is hard to locate. You can obtain the full path to a file by using Insert:File Path. The file path will
be inserted where the cursor is in the open editing window. Select Insert:File Path to open a dialog
box where you can locate the file you wish to open. When you click Open, the full path to the file will
be placed in double quotes in the editor window. An example is shown Figures R3.4 and R3.5.

Figure R3.4 Insert File Path Dialog Box

R3: Importing and Reading Data Files R-106

Figure R3.5 Editing Window with Insert File Path

There is no other information that needs to be provided with the IMPORT command. When

you read a file of this type, LIMDEP determines the number of variables to be read by counting the
number of names that appear in the first line of the file. The number of observations in the file is
determined by reading until the end of the file is reached. The sample data set shown in Figure R3.1
illustrates several degrees of flexibility.

• Variable names in a file may be separated by spaces and/or commas or tabs.
• Names need not be capitalized in the file. LIMDEP will capitalize them as they are read.
• The numbers need not be lined up in neat columns in a data file.
• Values in the data set may be separated by spaces and/or commas or tabs.
• There is no need to distinguish numeric types, integers (44) and reals (12.5).
• Missing values in a data set may be indicated by anything that is not a number. (But, they

must be indicated by something. A blank is not understood to be a missing value.)
• If the file contains observation labels with the data, the number of variables is automatically

adjusted. See Section R3.2.1 for details.

NOTE: You can import a data file that does not contain variable names. See Section R3.2.2.

R3.2.1 Observation Labels and Variable Names in the Data File

 Data files often contain observation labels as well as variable names. The data set in Figure
R3.6 shows the typical arrangement.

State ValueAdd Capital Labor NFirm
Alabama 126.148 3.804 31.551 68
California 3201.486 185.446 452.844 1372
Connecticut 690.670 39.712 124.074 154
Florida 56.296 6.547 19.181 292
Georgia 304.531 11.530 45.534 71
... (20 more observations)

Figure R3.6 Data File with Observation Labels

Use the IMPORT command or menu option exactly as before. The observation labels will be
noticed and read separately. The following are required:

R3: Importing and Reading Data Files R-107

• The labels must appear in the first column. If they appear in a different column, then you
will use the READ command to import the data. READ is discussed in Section R3.5.

• The labels column is an extra column in the data. It is not a variable.
• If there are names in the first line of the data file, then you must include a name for the

labels. Note that the name ‘State’ is used for the labels, not for one of the variables.
• The labels must not contain spaces. ‘West Virginia’ is not a valid label – it will ultimately

translate to ‘West’ for the label and a missing value for the first variable.
• Data may not be ‘transposed.’ (See Section R3.5.5.)
• The file may not be ‘formatted.’ (See Section R3.5.7.)
• The maximum number of observations in a labeled file is 65,536.
• Labels may contain up to 16 characters.

R3.2.2 Data Files that Contain Only Numeric Data

 It is probably unlikely, but it is possible that your data file does not contain any variable
names. For example, the data in a small file might appear as in Figure R3.7.

 1 2 5
 3 4 6
 2 5 4
 3 6 7

Figure R3.7 Small Data File

Use IMPORT exactly as before. The variables will be automatically named x1, x2, x3. This is
likely to be a bit cumbersome – you may want to provide names for the variables. This can be done
with the READ command as discussed in Section R3.5. However, a better solution would be to
simply add the names to the data file and read in the names with IMPORT.

R3.2.3 Observation Labels without Variable Names in the Data File

 Another possibility, probably also unlikely, is a data file with observation labels, but no
variable names. Figure R3.8 shows the appearance.

Alabama 126.148 3.804 31.551 68
California 3201.486 185.446 452.844 1372
Connecticut 690.670 39.712 124.074 154
Florida 56.296 6.547 19.181 292
Georgia 304.531 11.530 45.534 71
... (20 more observations)

Figure R3.8 Data File with Observation Labels and without Variable Names

You can use IMPORT exactly as before to read this data file. The variables will be named with the
default names, x1, … To provide the variable names explicitly, use the READ command. Again,
the preferable solution is likely to be to edit the file and add the variable names as a first row, and
use IMPORT to read the file.

R3: Importing and Reading Data Files R-108

R3.2.4 Reading a Spreadsheet File from Excel

 A sample data set read into Excel is shown in Figure R3.9. (This is Table F7.2 from Greene
(2011), which contains 25 statewide observations on output and inputs in the transportation sector.)
The data in this file are typical. In addition to the variable identifiers, the state names are part of the
data set.

Figure R3.9 Sample Excel Data Set

R3: Importing and Reading Data Files R-109

 You can import a file created by Excel. However, LIMDEP cannot read the default .xlsx
format file that later versions of Excel use to save a spreadsheet. First, you need to save the file in
another file format. As shown in Figure R3.10, click the Microsoft Office button, then click Save As.
(You can also scroll down the list of Save As options and click Other Formats.) This will open a
dialog box that lets you select an alternative file format.

Figure R3.10 Save As Menu in Excel

In the Save As dialog box shown in Figure R3.11, click the down arrow in the ‘Save as type’

window to view the file types. Then select the ‘CSV (comma delimited) (*.csv)’ format. Excel presents
a warning dialog box that the file may contain features that are not compatible with the CSV format.
Just click Yes to proceed.

NOTE ON FILE FORMATS: LIMDEP can read .xls files written by Excel 2003. This is one of
the formats available when you use Save As in Excel 2007 or 2010. However, an Excel 2007 or
2010 .xlsx file saved as an Excel 97-2003 .xls file cannot be read by LIMDEP. The .xls file created
by this choice is compatible with earlier versions of Excel, but usually not with other software. If
you have an existing .xls or .xlsx file that contains your data for export to LIMDEP, open the file in
Excel and use Save As to save the file in the .csv format. You should always use CSV files to export
data from Excel to LIMDEP.

R3: Importing and Reading Data Files R-110

Figure R3.11 Saving an Excel File in CSV format

R3: Importing and Reading Data Files R-111

If your Excel file follows the standard format described in Section R3.2, you can simply read
in the .csv file using the Import menu option or the IMPORT command. (Be sure to remove any
commas in the cells and any spaces in the variable names.) If your Excel file does not follow the
standard format, then you may use the READ command to input the file, described in Section R3.5.

NOTE ON SPREADSHEET DIMENSIONS: An advantage of the generic format is that it has
relaxed the constraints on spreadsheet sizes that were built into the .xls format. In versions of Excel
before 2007, the limits were 255 columns and 65536 rows. The new limits are 65536 columns and
1,048,576 (220) rows.

NOTE ON FORMULAS IN CELLS: Another advantage of the CSV format is that it is not
affected by whether the cells in your spreadsheet contain values or formulas. The item that Excel
puts in the CSV file will always be the number that you see on your screen even if that number is
placed there by a formula in the background. You don’t have to worry about formulas vs. values in
your spreadsheet file.

TIP: If you regularly use other programs to create data sets to transport to LIMDEP or NLOGIT,
including Excel, SAS, Stata, SPSS, or vice versa, you will find the utility program StatTransfer a
worthwhile acquisition. StatTransfer is discussed in Section R3.5.6.

R3.2.5 Missing Values in Data Files

 LIMDEP will catch nonnumeric or missing data codes in most types of data sets. In general,
any value not readable as a number is considered a missing value and given the value -999.

In all settings, -999 is LIMDEP’s internal missing data code.

Since -999 is a distinctive, but otherwise legitimate value, no account is taken of missing data in
estimation. It is up to you to REJECT observations for which the missing value has been inserted.
(REJECT is discussed in Chapter R7. A convenient, global means of handling missing data is also
discussed in Chapter R7.) Some things to remember about missing data are:

• A blank in a data file is normally not a missing value; it is just a blank. Since a data file
imported or read without a format can be arranged any way you want, LIMDEP has no way
of knowing that a blank is supposed to be interpreted as a missing value. But, all other
nonnumeric, nonblank entries are treated as missing. This includes SAS’s ‘.’ character, the
word ‘missing,’ or any other code you care to use. A method is provided in Section R3.5.7
for you to tell LIMDEP to treat blank fields as missing data.

• There will be occasions when LIMDEP claims it found missing values when you did not

think there were any. The cause is usually an error in a READ command or some other
problem in the file. For example, you can provide data in a file on more than one line. But,
you must not end a line with a comma. This particular error will lead to missing values
showing up unexpectedly.

R3: Importing and Reading Data Files R-112

R3.2.6 Missing Values in the Comma Delimited (CSV) Files

 IMPORT is used for reading any text file that has comma, tab, or space separated values.
This includes CSV files, text files, or any other ASCII formatted file. The flexibility of this
arrangement makes it impossible to determine that a space is meant to indicate a missing value.
However, the CSV format in particular (and not other types of files) has a distinctive, easily
detectable method of indicating missing values. In a CSV file, missing values, and only missing
values, are shown as blanks. This means that when you specifically tell LIMDEP that your data file
is in the CSV format, it can find the missing values by locating the blanks in the data. In a CSV file,
missing values at the beginning, middle, and end of a line of data are indicated by ‘blank then
comma,’ ‘comma, then blank, then comma,’ and ‘comma then blank.’ Because of the last of these,
you must be sure that you never use a comma at the end of a line in a CSV file unless you intend for
that comma to be followed by a missing value. Programs that create this type of file will respect this
convention, so the potential error will only arise if you yourself manipulate the contents of the file.
This special case is handled with the READ command. See Section R3.5.

R3.2.7 Data Files that Are Not Formatted for IMPORT

 Since you do not provide any information with the IMPORT command except for the name
of the file, LIMDEP must try to determine from the file itself what the appropriate layout is, that is,
whether there are labels and/or names in the file, how many variables there are, and so on. In most
cases, this will be transparent, and your file will be imported the way you expected. If you find that
the imported data have missing values where you did not expect them, or if variables seem to be in
the wrong columns, then the file is probably not arranged appropriately for IMPORT. (You can use
the data editor described in the next section to view your data.) In this case, you should reset the
project (with Project:Reset), and try again to read the data, this time with the READ command,
which is discussed in Section R3.5.
 Note, finally, there are cases in which the data are explicitly not arranged the way IMPORT
would expect them. For example, if you have observation labels in the file and the numeric data are
given on more than one line, then the data will not be imported properly. In these cases, you must
use READ, not IMPORT. (If you do not have observation labels, then IMPORT can handle data
on more than one line. However, with IMPORT, if the first row is variable names, then regardless
of how the numeric data are arranged, the variable names must appear on a single line.)

R3.3 The Data Editor

 LIMDEP’s data editor contains data that you import or read and any new variables that you
create. The data editor resembles familiar spreadsheet programs, such as Microsoft Excel. You can
reach the data editor in several ways:

• Click the data editor (grid) icon on the LIMDEP toolbar.
• Double click any variable name in the project window.
• Select the menu option Project:Data Editor.

R3: Importing and Reading Data Files R-113

Figure R3.12 Active Data Editor

The display shows you precisely what appears in the data array. The chevrons (››) next to the
observation numbers or labels indicate that these observations are in the current sample. See Chapter
R7.

NOTE: The data editor can only display 5,000 rows, regardless of how many actual rows of data
you have. If you have read more than 5,000 observations, and you go to the data editor, it will still
only show 5,000 rows. This does not mean that your data were not read completely. To verify the
import of a data set, you can use CALC ; List ; N $ or DSTAT ; Rhs = * $ to show you the actual
observation count. The current sample length will also appear at the top of the project window at all
times. The CALC command is discussed in Chapter R17.

 You need not have read a data set to access the data editor. The data editor appears as
shown in Figure R3.13, with an empty editing area when no variables exist.

R3: Importing and Reading Data Files R-114

Figure R3.13 Data Editor and ‘Right Mouse’ Menu

The functions of the data editor are shown in the smaller menu, which you obtain by clicking the right
mouse button, as displayed in Figure R3.13. The functions of the data editor menu are described below.

New Variable

 You can enter a small data set by typing in the data in the editor. First, it is necessary to
create the columns. To do so, select New Variable in the menu to open the dialog box shown in
Figure R3.14.

Figure R3.14 Entering New Variables in New Variable Dialog Box

R3: Importing and Reading Data Files R-115

Just enter the names of the new variables in the window and click OK. For our example, the
variables names are year, age, educ. Variable names may have up to eight characters, must begin
with a letter, and must be composed from only letters, numbers and the underscore character.
Variable names will be converted to upper case with spaces removed. After clicking OK, the window
changes to that in Figure R3.15, and you can begin typing in the data.

Figure R3.15 Data Editing Window with New Variables

NOTE: If your data have missing values, they will appear as blank cells in the data editor. Although
a missing value is displayed as a blank, internally, the cell contains -999.

HINT: The data editor does not reset the current sample. After you enter a data set with it, the
current sample is unchanged. If you enter a data set initially in the data editor, you should use Set
Sample or a SAMPLE command to set the sample appropriately. (See Chapter R7.)

When there are data already stored in the data area, the New Variable dialog box can be used
to compute transformed variables. This is equivalent to the CREATE command described in
Chapter R4. For example, in Figure R3.16, the dialog box is being used to create a variable named
loginc using the existing variable named hinc and the built-in log function.

R3: Importing and Reading Data Files R-116

Figure R3.16 Transforming Variables in New Variable Dialog Box

 After you create and enter new variables, the project window is updated, and the data,
themselves, are placed in the data area. Figure R3.17 illustrates.

HINT: The New Variable dialog box will allow you to replace the existing values of a variable. For
example, in Figure R3.16, if ‘loginc’ were ‘hinc’ in the Name window, then the values of hinc would
simply be replaced with their logarithms.

Figure R3.17 Data Editor and Project Window

R3: Importing and Reading Data Files R-117

Import Variables

Click Import Variables to open a dialog box that allows you to import a spreadsheet or
other data file. This is the same as selecting Project:Import/Variables or the IMPORT command
described in Section R3.2.

Export Variables

Click Export Variables to open a dialog box that allows you to write variables in a data file.
You can create a .csv file. This is the same as the EXPORT command. EXPORT and an extension,
WRITE, are discussed in Section R3.9.

Sort Variable

 Click Sort Variable to open a dialog box that allows you to sort a variable carrying other
variables with it (optionally). The dialog box for this operation, which is the same as the SORT
command (see Chapter R4) is shown in Figure R3.18.

Figure R3.18 Dialog Box for Sort Variable

Set Sample

Click Set Sample to obtain a menu of options for setting the current sample. This uses the
All, Range, Include, Reject and Draw options discussed in Chapter R7 to set the current sample.
(This option is not available until data have been read into the data area.)

R3: Importing and Reading Data Files R-118

R3.4 The Data Area

 Your data are stored in an area of memory that we will refer to as the data array. The data
area is originally configured with 5,000,000 cells. This should be sufficient for most applications.
However, the program allows you to analyze at least 3,000,000 observations (or more). It is
conceivable that your data set might be too large for the original setting. If so, you need to reset the
size of the data area. This is not done automatically because although the program can figure out
how many cells you need to import your data, it cannot guess how many more cells you need for
new variables you might create. This section shows you how to adjust the data area.

R3.4.1 Temporary Expansion of the Data Area

 To see the current size of the data array, select Project:Settings, then click the Data Area
tab, as shown in Figure R3.19. This dialog box allows you to adjust the number of cells in the data
area for the session you are currently using. The memory requirement displayed is the number of
megabytes, determined as (8×number of cells)/(1024×1024). (Each number requires eight bytes.)
Thus, the 76.294 megabytes required is 80 million divided by 10242.

Figure R3.19 Project:Settings/Data Area

TIP: Do not use this feature after you import or read a data set. In order to expand the data area, it
must be cleared of all existing data. Use this feature before you import or read your data.

As noted, this setting is only for the current session. When you exit LIMDEP and come back later,
the data area will once again be set to what it was before you made this change (probably 5,000,000
cells).

R3: Importing and Reading Data Files R-119

R3.4.2 Permanently Setting the Number of Cells in the Data Area

 You can change the size of the data area permanently (until you change it again) by using
Tools:Options/Projects to change the default setting. The dialog box shown in Figure R3.20 shows
how to make this setting. You may change this at any time.

Figure R3.20 Tools:Options/Projects

Modern computers generally have plenty of memory. You will probably find a permanent setting
such as 10,000,000 to be sufficient for your needs without placing excessive demands on your
system.

R3.4.3 Setting the Number of Rows in the Data Area

 The data array is initially configured as a rectangle with 900 columns and NKMAX/900
rows where NKMAX is the number of cells in your data area. When you enter data, they are placed
at the top of this array moving down the rows, in the natural fashion. When you read a data set, if
you require more than the default number of rows, the data array is automatically reconfigured with
more rows and fewer columns if necessary. However, if you are using the random number
generators to produce random samples, rather than analyzing an externally produced data set, you
may wish to change the number of rows yourself to allow you to have a larger number of
observations. To change the number of rows in the data area, use the Project:Settings/Data Area
dialog box shown in Figure R3.19. You will be reminded when you do this that changing the
configuration of your data area erases all existing data. Note, the dialog box in R3.19 will not allow
you to reduce the number of rows from its current setting. You can use the SAMPLE command to
do that.
 You can also reconfigure the data array (without resizing it) by using the ROWS command:

ROWS ; the value $

R3: Importing and Reading Data Files R-120

(If you give the unmodified command, ROWS $, you will be offered the dialog box in Figure R3.21
in which you can provide the desired number of rows.) When you use this command, existing data
are erased.

Figure R3.21 ROWS Dialog Box

HINT: If you are reading more than one data file, read the longest one first. Once the data area has
been reconfigured to accommodate a data set, it cannot be reconfigured again without losing the first
data set.

NOTE: You are limited to 900 variables in your active data set when you operate LIMDEP. The
900 variable limit is always effective so you cannot reduce the default number of rows.

R3.5 The READ Command for Nonstandard Data Files

 The IMPORT command shown in Section R3.2 will succeed for most types of data files
that you will use. But, there are many kinds of data files, and many ways for data files to differ from
the standard format assumed for IMPORT. This section will describe different strategies for
importing your data. The general command for reading a data file is that is not read properly by
IMPORT is

 READ ; Nvar = number of variables
 ; Nobs = number of observations
 ; Names = list of names for the variables
 ; File = the full file name, including path
 ; Format = identifier for certain types of files
 ; Labels = position in the file where labels are found
 ; By Variables for a certain arrangement of data $

Several of the specifications listed are optional and are used only for specific situations. The READ
command is submitted from the text editing window, just like the IMPORT command. It is helpful
to use Insert:File Path to obtain the full path for the file name.

R3: Importing and Reading Data Files R-121

R3.5.1 ASCII Numeric Data Files

 This assumes that the file is an ASCII file (not binary, not a spreadsheet, etc.) with numbers
arranged in rows, separated by blanks and/or commas. Numbers in the file need not be neatly
arranged vertically. If there are missing values, there must be placeholders for them since blanks just
separate values, they cannot be interpreted as missing data. Use as many lines as needed for each
observation to supply all of the values.
 If the data appear on a single line for each observation, then you can use IMPORT to read
the data file. That case is shown in Figure R3.7. The variables will be automatically named x1,x2,…
In order to provide the names, you must use READ as described in this section.
 The situation considered here is that in which the data in the file appear on more than one
line per observation. The data in Figure R3.22 are an example – there are four observations on three
variables.

1
2 5
3 4 6
2 5 4
3 6
7

Figure R3.22 Data on Multiple Lines

The reason this file cannot be read with IMPORT is that there is no way to determine how many
variables it contains, since observations can be on more than one line. This would be true even if
each observation were on a single line, since it would be valid for it to have two observations on six
variables rather than four on two.

TIP: IMPORT is clever. The obstacle is the first line. If your data set has a full set of observations
on the first line, but later observations take more than one line, then IMPORT will read the file
correctly if the numeric data are in the expected format (comma or space delimited), since it will
guess correctly that the number of variables in the file is the number that appear on the first line.
This section is about files that generally require more than one line per observation, including the
first observation.

 To read this file, you can use READ with

 READ ; File = filename ; Nobs = 4 ; Nvar = 3 $

If you omit the names, the variables will be named x1, x2, x3. You must generally provide ; Nobs
and ; Nvar.

TIP: If this file had three names on a single row in the first line, IMPORT would read the file
correctly if the observations to follow take the usual format (comma or space delimited). The names
would suffice to identify the shape of the data file.

R3: Importing and Reading Data Files R-122

HINT: If you do not know the exact number of observations in your data set, give ; Nobs a number
that you are sure will be larger than the actual value. LIMDEP will just read to the bottom of the file
and adjust the number of observations appropriately.

R3.5.2 Variable Names Not Provided in the Data File

 The most convenient way to supply variable names is in the first line of the data file, itself.
This is the common approach used by IMPORT. But, if your data file contains only the data, and
not the names, then you can provide them.
 The normal way to enter variable names is in the command.

; Names = name_1,...,name_nvar

The variables in the file in Figure R3.22 can be named bill, jim, bob with

 READ ; File = filename ; Nobs = 4 ; Nvar = 3 ; Names = bill,jim,bob $

Variable names may have up to eight characters, must begin with a letter, and must be composed
from only letters, numbers, and the underscore character. Remember that names are always
converted to upper case. Reserved names are listed in Section R2.6.2.

R3.5.3 Variable Names in the Data File

 The more convenient way to provide names is in the data file. If this file had three names on
a single row in the first line, IMPORT will read the file correctly. However, if the variable names
are on more than one line, you cannot use the IMPORT command. Figure R3.23 continues the
earlier example

bill, jim,
bob
1
2 5
3 4 6
2 5 4
3 6
7

Figure R3.23 Variable Names Provided with Data on Multiple Lines

In this case, the variable names are on two lines. To indicate that the variable names are in the file, use

 ; Names = n

in your READ command, where n is the number of lines you need to list the names. Then, at the
absolute beginning of the data file, include exactly n lines containing the variable names, separated
by any number of spaces and/or commas. The command to read the data set in Figure R3.23 would be

 READ ; File = filename ; Nvar = 3 ; Nobs = 4 ; Names = 2 $

R3: Importing and Reading Data Files R-123

R3.5.4 Observation Labels

 IMPORT can read a data file with the observations labels in the first column only. If your
data file has observation labels in any other column, use the following format to read your file:

 READ ; File = filename ; Nobs = ... ; Nvar = ...
 ; Labels = the column in the data file that contains the labels $

NOTE: If your observation labels are not in the first column and your data file has variable names,
you must also include ; Names = n, even if the variables names are on a single line, which you
would indicate with ; Names = 1.

The data file in Figure R3.24 contains labels for the individual observations in the second column, as
well as variable names.

ValueAdd State Capital Labor NFirm
 126.148 Alabama 3.804 31.551 68
3201.486 California 185.446 452.844 1372
 690.670 Connecticut 39.712 124.074 154
 56.296 Florida 6.547 19.181 292
 304.531 Georgia 11.530 45.534 71
... (20 more observations)

Figure R3.24 Data File with Observation Labels

To read the file in Figure R3.24, you would use

 READ ; File = … ; Nvar = 4 ; Nobs = 25

; Names = 1 ; Labels = 2 $

The following rules apply to the syntax:

• The maximum number of observations in a labeled file is 65,536.
• The labels column is an extra column in the data. It is not a variable.
• Nvar does not include the labels.
• You must include a name for the labels. Note that the name ‘State’ is used for the labels,

but not for the data.
• Data may not be ‘transposed.’ (See Section R3.5.5.)
• The file may not be formatted. (See Section R3.5.7.)

The situation that this form of READ is provided for is that in which the observation labels are not in
the first column (or the data are nonstandard formatted).

R3: Importing and Reading Data Files R-124

R3.5.5 Transposed Data Files – Reading by Variables

 There are two ways to arrange a data set, ‘by observation’ and ‘by variable.’ When data are
read by observation, each line (or, possibly, group of lines) is a single observation, perhaps a year or
individual, on one or more variables. This is how the preceding examples have been arranged.
When you enter data ‘by variables,’ you will provide the full set of observations on a variable, then
proceed to the next variable, and so on.
 You may find it more convenient to enter data one variable at a time instead of one row at a
time. If your data are arranged by variables, instead of by observations, you can READ them in
transposed form just by adding

 ; By Variables

to the READ command. If you use this option, you must also include an accurate value for

 ; Nobs = number of observations

This is no longer optional. Also, if you specify ; By Variables, you must include ; Names = n, even
if the names are on a single line. For example, two ways to READ the following data matrix are:
(The names are not part of either data set.)

 Arranged by Observations or Arranged by Variables
 (year) (gdp) (cons) (year) 1975 1976
 1975 1267 1003 (gdp) 1267 1386
 1976 1386 1110 (cons) 1003 1110

Figure R3.25 Data File Arranged by Observations or by Variables

You would read the one on the left using

 READ ; Nobs = 2 ; Nvar = 3 ; File = ... ; Names = … $

and the one on the right using

 READ ; By Variables ; Nobs = 2 ; Nvar = 3 ; File = ... ; Names = ... $

The data file would have three rows and two columns as on the right. The first row would be ‘1975
1976’ and so on.
 Regardless of the actual arrangement of the data file, Nobs is the number of observations,
not necessarily the number of physical rows in the data set.

R3: Importing and Reading Data Files R-125

R3.5.6 Binary Files and Files from Other Programs

 Most researchers use more than one program, and create data in a variety of environments.
Every statistical program can read data files written by a few other programs – LIMDEP can read the
several formats listed in this section – but none is able to read the data files written by every other
program. This inability to pass data between some programs does place a constraint on some users,
as there are several dozen statistical packages in use, and numerous data processing packages such as
Excel. A partial solution is provided by packages that are designed specifically to convert data from
a large variety of programs to any of them in turn.
 Each of the major statistical packages in general use has its own ‘native’ system format. For
LIMDEP, that is the .lpj project file described in Chapter R2; for Microsoft Excel, it is the .xls or
.xlsx worksheet or workbook file; SPSS has its own .sav format, and so on. Software programs such
as StatTransfer by Circle Systems, Inc. (http://www.stattransfer.com) can be used to convert system
files from and to the native formats of many programs. This program can greatly facilitate your use
of other packages with LIMDEP. With StatTransfer, you can convert native files from SPSS, SAS,
Stata, Excel, SYSTAT, and about 25 other formats, to and from LIMDEP project files. The menu of
file types supported by StatTransfer is shown in Figure R3.26.

Figure R3.26 StatTransfer File Types

http://www.stattransfer.com/�

R3: Importing and Reading Data Files R-126

LIMDEP can read the following file formats:

Stata Files

 LIMDEP can read the native file format (.dta) of Stata Versions 10 and 11. To read a Stata
file, use

 READ ; File = … ; Format = DTA $

If the file contains a column of descriptors or labels, add

 ; Labels = the column number

to the READ command, even if the observation labels are in the first column.

NOTE: The DTA format has changed over time. LIMDEP Version 10 supports the file format for
Stata Versions 10 and 11. We cannot guarantee that this will continue to work with later versions of
Stata (and we are aware that it does not work with some earlier versions).

Excel XLS Files

 You can read a file written by Excel 2003 or earlier in the .xls format with

 READ ; File = … ; Format = XLS $

Add ; Labels = the column number if the file contains observation labels, even if the labels are
included in the first column.

Note, once again, the .xls compatible files that Excel 2007 or later writes are not readable.
You should generally not use the .xls format. If you have access to Excel (any version), open the file
in Excel and use Save As to convert the file to the .csv format. (The only situation we see in which
you will require this format is if you need to open the .xls file, but you do not have access to Excel.)

Binary Data Files

 (If you are unsure if this is the right format for your data set, then almost certainly it is not.)
If you are using a data set written in binary format, you must read it with

 ; Format = Binary

The other parts of the READ command are unchanged.
 No other changes are necessary. But, note that the initial input of this file will be into an
array of eight byte words. You must know in advance whether your file contains single or double
precision (four or eight byte) values. The default file format is assumed to be four byte, single
precision input, with conversion to double precision when the data are read. You can inform
LIMDEP that your binary file is double precision with

 ; Double

R3: Importing and Reading Data Files R-127

 You can extract a subset of the variables in a binary file. To put this in context, consider
analyzing the data stored in a very large binary file, say 10,000 observations on 500 variables. You
can extract selected variables from the master file. To extract a subset of variables from a binary file,
use
 READ ; Nvar = nvar ; Names = ... ; File = name
 ; Format = Binary
 ; Size = width
 ; Cols = cols to read $

The specification of the particular columns to read may be an item by item list or ranges of columns,
or a mix, as in

 ; Size = 500 ; Cols = 1, 4, 10-55, 60-100, 121, 129 $

R3.5.7 Formatted ASCII Files

 You may be using data which are formatted in the file according to some uniform structure,
particularly if the data set is large. Such files may require a detailed set of instructions for how to
read them. For example, each of the two observations in the small file below could be a single 12
digit variable or 12 one digit variables, two six digit numbers, etc. Without further instructions, there
is no way to tell.

 197512671003
 197613861110

A formatting code is used to lay out what data are contained in this file. Formatting allows you to
save space by not having to include blanks or commas. You can read data according to a format by
adding the specification

 ; Format = (format codes)

to the READ command. The format must be enclosed in parentheses. For example, the file above
might be read with

 READ ; Names = ... ; Nvar = 3 ; Nobs = 2 ; Format = (F6.0,2F3.0) ; File = ... $

Details on the syntax of formatting codes are given below.

Format Codes

 A format is used to describe how your data are arranged in each observation, character by
character. For example, the data record

1234.56121213.4AC567

R3: Importing and Reading Data Files R-128

consists of 20 characters which can be grouped in many different ways to produce different sets of
numbers. The format description is used to tell LIMDEP how to group the data in a set of values. Its
general appearance is

 (code, code, code, ...).

The format codes, or descriptors which you will normally use are

• Fw.d – the field is w characters wide, place d digits after the decimal point.
• X – ignore the character in this position.
• nX or nFw.d – n is a repetition factor. The X format must always be preceded by a

repetition, even if it is 1.
• n(group of codes) – group of codes repeated n times.

 To read the preceding string as the set of values ‘1.23 4.56 1.21 2 13 .4 567’ and skip
over the AC, which is not a number and therefore cannot be read by LIMDEP, you would use

 (F3.2,F4.2,F3.2,F1.0,F2.0,F2.1,2X,F3.0)

Notice that the 1.23 is created by placing a decimal point between the 1 and the 2, while the 4.56 is
read directly, and already contains a decimal point.
 Repetition and grouping can save a lot of space. Note how the repetition of 2 is used to skip
over the two letters. For another example, suppose you wanted to read the string 561212 as
56,1,21,2. This is a pair of two digit then one digit sequences. You could format it as

 (...,2(F2.0,F1.0),...).

 A useful result is that if the number in a field actually contains a decimal point, then the ‘.d’
part of the format code is overridden. Thus, in the first example, while 13, .4 was read as 13 and .4
using F2.0,F2.1, it could have been read as 2F2.0. The presence of the decimal point in the second
value would have overridden the specification of 0 digits after the decimal point in the format code.
(But, using 2F2.1 would not be correct because though the second value would be correct, the first
would be read as 1.3, not 13.)
 Another useful descriptor is the slash format, ‘/.’ You may need this if your data require
more than one line per observation. This code means ‘go to the next line and continue reading.’ For
example,
 1234567812
 3456

could be read as the numbers 123.456, 78.12, and 345.6 with the format (F6.3,F4.2 / F4.1).
 There are settings in which you do not need to provide the ‘/’ format even if your
observations take more than one line. Consider, for example, reading the preceding as a set of two
digit numbers, 12, 34, 56, 78, 12, 34, and 56. The effect of the format (5F2.0) would be as follows:
You are trying to read seven numbers, but you have only provided five format codes. The reader
gets to the end of the five format codes and finds that it has two values yet to read. It drops to the
next line of data and begins reading with the code at the beginning of the format statement.

R3: Importing and Reading Data Files R-129

WARNING: In specifying the format, use only real format codes, Fw.d. Never use integer formats
– Iw – or character formats – Aw – for reading data. If data are coded with an exponential format,
Ew.d, you can use the Fw.d code in LIMDEP. It handles exponential data as well.

Specifically Converting Blanks to Missing Values

 Formatted READ commands always convert blanks to 0s. Since 0 is a legitimate value, if
your blanks represent missing data (-999s), you need a method of requesting LIMDEP to make the
conversion. This operation can be requested by using

 ; Blanks

in your formatted READ command. You must provide the format statement. If you use this option,
your READ will be slower than otherwise, but the READ need never be done more than once. (Use
SAVE.) This option also makes specifying the format codes a little easier. You can usually omit the
‘.d’ in your specifications. For example:

 To Read As Without option With option
 1234 1234 F4.0 F4
 1.23 1.23 F4.2 F4
 1234 12.34 F4.2 F4.2

If the decimal point is implicit, as in the third row, you must tell LIMDEP where to put it. The
earlier example would be (F4,2(1X,F4)). With this option on, all blanks, nonnumeric data such as
the word ‘missing,’ and fields containing only a period are converted to -999. Finally, if you require
certain numeric values, such as -7, to be read as missing values, (i.e., converted to -999), simply
READ them as they are, then use RECODE to do the conversion. (See Chapter R4.)

R3.5.8 Recoding Character Data

 LIMDEP has a limited capability to manipulate character data. On input, you can recode a
character symbol to a useable numeric value by using ; Recode in your READ command. The
setting involves a variable that is coded with a specific alphanumeric code which is converted to a
numeric one. For example:

 Northeast 1
 South 2
 Midwest 3
 West 4

The recoding scheme is indicated on the READ command with

 READ ; Recode: variable(string = value, string = value, …) /
 variable(string = value, string = value, …)

R3: Importing and Reading Data Files R-130

and so on. Note that the specification ; Recode is followed by a colon; variable recodings are
separated by a slash, and the transformations are separated by commas. You may recode as many
variables as you like in this fashion. Character strings may be up to 20 characters. As always, upper
case is the same as lower case, so you cannot use case to form different character strings. Any
strings found in the data set that are not given in the list for the variable are converted to a missing
value. For example, with a transformation of sex from ‘female’ to 1 and ‘male’ to 0, we might have

 READ ; Nobs = …
 ; Nvar = …
 ; File = …
 ; Names = … , region,sex, …
 ; Recode: region(Northeast = 1, South = 2, Midwest = 3, West = 4) /
 sex (female = 1, male = 0) $

This option may be used with ASCII text files such as .csv and .txt.

R3.6 Using the Text Editor as a Data File

 Your text/command editor (editing window) is actually a ‘file’ that LIMDEP reads when you
click the GO button, so you can create data files in the text editor. Figure R3.27 shows a text editor
in which we have entered a small data file with a READ command. (The data are Table F1.1 from
Greene (2011).)

Figure R3.27 Data in Text Editor

The data are in the text editor, but they are not in the program’s data area yet. To read them, you
would just highlight all the lines in the editor screen and click GO. (See Figure R3.28.) Note the
base structure of the operation. The command is READ $ which, without other information says
that some data will follow, in the form of a row of names, followed by several rows of data. (In the
data set above, the data are neatly lined up in columns. This is done here only for readability. It is
not necessary.) Note, for present purposes, READ is the same as IMPORT, and you could use
IMPORT as the command in the editor above.

R3: Importing and Reading Data Files R-131

Figure R3.28 Reading Data from the Text Editor

R3.6.1 Use the Text Editor to Avoid Creating a Data File

In addition to reading data off the screen in the editor, you can you can pull data directly out of
documents, such as Word or PDF files, and import them into LIMDEP without having to put them in
a data file first. To import the data into LIMDEP, do the following:

1. Open a text editing window and place the command READ $ in the first line.
2. Highlight the data you wish to copy including column headers and use Edit:Copy to place

them on the clipboard.
3. Return to the text editor in LIMDEP and use Edit:Paste to paste the data under the READ

command.
4. Highlight the READ command, the column header names and the data (or use Edit:Select All)

and click GO.

Figures R3.29 and R3.30 below show this operation with a PDF file. You may import any data set
this way, though for more than a few hundred observations, it may be a bit cumbersome.

R3: Importing and Reading Data Files R-132

Figure R3.29 Data in a PDF File

Figure R3.30 Data Transported to the Text Editor

R3.6.2 Exporting from Excel to the Text Editor

 As we examined above, you can copy/paste data directly from other programs into
LIMDEP’s text editor. This is a quick way to read a small data set. You can also copy/paste data
from a spreadsheet program into the text editor. Figure R3.31 shows an example. We have copied
the cells from Excel that contain the full transportation data set shown in Figure R3.9, including
labels and variable names, and pasted them into the LIMDEP text editor under the READ command.
Note that the READ command does not specify a file name. To import these data just highlight all
the lines including the READ command (or select Edit/Select All) and click GO. Figure R3.32
shows the result. (Note that the editor inherits the cell boundary lines. These are ignored as the data
are read. They will also disappear if the text editor contents are written to a .lim file and later read
back into the editor.)

R3: Importing and Reading Data Files R-133

Figure R3.31 Excel Spreadsheet Data Copied to the Text Editor

R3: Importing and Reading Data Files R-134

Figure R3.32 Excel File Read into LIMDEP from the Text Editor

 You can also copy/paste a portion of a spreadsheet data set into the text editor. Figure R3.33
shows an example. We have selected part of the transportation data. The highlighted range is just
copied in Excel and pasted into the LIMDEP text editor, with the result shown in Figure R3.34. The
data are then read into LIMDEP just by highlighting the READ command and the table, and clicking
GO.
 We note one possible advantage of this procedure. When you use Save As (or Save), Excel
saves the entire spreadsheet, not a selected piece of it. This device provides a shortcut to exporting a
part of a spreadsheet. The alternative within Excel is to open another spreadsheet, paste the cells into
that new spreadsheet and save it as a separate file. Then you would import that smaller spreadsheet.
This saves you a step.

R3: Importing and Reading Data Files R-135

Figure R3.33 Data in Excel

Figure R3.34 Excel Cells Copied to Text Editor

R3: Importing and Reading Data Files R-136

R3.7 Documenting the Contents of a Data/Project File

 After you have imported your data, it is a good idea to save it immediately as a project file.
(See Section R2.2.) You need only import the data set once. Thereafter, when necessary, you
should reload the data just by opening the project file. This is a much faster way to import the data
into a new session. Saving the project is LIMDEP’s ‘Save’ operation.

It may be useful to carry documentation of the data set in a project permanently with the file.
For example, Figure R3.35 shows some text information about the Koop and Tobias data set used in
our example in Section R5.4. The text description is saved permanently in the project file. You can
set this up as follows: In any text editing window, place the following text information

DATA
… Up to 255 lines containing up to 80 characters on each line. …
ENDATA

Use Edit/Select All or just highlight the entire script and click GO to execute it. Later, when you
save the project file, this information is saved with it, permanently. When you reload the project,
your codebook information will be displayed in the output screen.

Figure R3.35 Data Documentation Saved in Project File

R3: Importing and Reading Data Files R-137

R3.8 Listing Data in Your Output Window

 The LIST command is used to send a listing of the current sample of observations on a
particular set of variables to the screen. The command is

 LIST ; ... list of variables $

Figure R3.36 shows an example.

Figure R3.36 Output from LIST

The listing of the data includes the observation number in the current sample and the row number in
the actual data set. These will be the same unless you have selected a subsample to list. For
example, if you selected for observation only those states with value added greater than 500, the
listing of states in Figure R3.36 would have had lines numbered 1,2,3,4 but observation numbers
2,3,6,7.
 If your data were read with observation labels, then the labels will replace the line numbers
shown. For the data above, for example, we would have the display in Figure R3.37.

R3: Importing and Reading Data Files R-138

Figure R3.37 Data Listing with Observation Labels

 You can request that your listed data be sorted by a particular variable by using

 LIST ; ... list of variables ; Key = a variable $

The ‘Key’ variable is sorted carrying the listed variables with it, then the listing is produced with the
sorted data. Figure R3.38 shows an example based on Figure R3.37. Two important notes:

• The sorting does not affect the data in your data area. The data to be listed are copied,
then sorted, then the sorted copies are displayed. The original data are untouched. The
SORT command may be used if you wish to sort your data.

• The key variable does not have to be one of the variables being listed.

R3: Importing and Reading Data Files R-139

Figure R3.38 Data Listing Sorted by Key Variable

R3.9 Exporting and Writing Data Files

 The essential commands to create a new data file are EXPORT and WRITE. EXPORT is
used to create a CSV file that can be imported directly into Excel or other programs that recognize
this format. WRITE is used to produce a simple text file with numbers stacked in columns, possibly
using a format that you specify.

R3.9.1 How to EXPORT a CSV File

 The command for exporting a file is

 EXPORT ; list of variables ; File = filename $

No other information is given with this command. The observations written in the file are those
defined by the current sample. (The current sample is discussed in Chapter R7.) The file will have
the CSV format and will be named filename.csv. If you have put an extension on the filename, it
will be replaced. Other formatting conventions are

 • Variable names and observation labels will be exported as well as the data.
 • Missing values will appear appropriately as blanks in the file.
 • Integers will be exported as integers, though they are stored as reals inside LIMDEP.
 • Noninteger values are written with seven significant digits.

R3: Importing and Reading Data Files R-140

To export a data file using the menu option, first select Project:Export/Variables in the project
menu to select the file, as shown in Figure R3.39. (You can also select Export Variables from the
right mouse menu in the data editor to open the same dialog box). The next step is to select the
variables to be written in the file, either by selecting Select All or by selecting the variables by name
in the window. (Select None is used if you wish to undo your selections and start over.) Figure
R3.40 shows an example.

Figure R3.39 Project:Export Menu

Figure R3.40 Project:Export Variables Specification

TIP: You can transfer data directly between LIMDEP and your spreadsheet programs, such as
Excel. In the data editor, you can select a block of values by highlighting them, then use Edit:Copy
in LIMDEP and Edit:Paste in Excel to replicate the block in Excel. This does not move the names,
so you should begin your transfer in Excel in the second row, then enter the names in the first.

R3: Importing and Reading Data Files R-141

R3.9.2 How to WRITE a Data File

 WRITE ; list of variables

; File = filename ; Format = the type desired $

NOTE: The observations written in the file are those defined by the current sample. The current
sample is discussed in Chapter R7.

The data file written will contain only the numeric values from the data area. If you would like to
include the variable names in the top row of the file, add

 ; Names

to the WRITE command. This command will write the variables listed in the file named using
(6G14.6) format. The G14.6 format code provides a 14 column field, and six significant digits in the
number. If the number written is too large or too small to write in this fashion, this format reverts to
a scientific notation format, ±0.nnnnnnnE±ee.

NOTE: Missing values are given the numeric value -999.

 If you would prefer some other format for the file, you can specify one with

 ; Format = (your own format)

If, for example, you are writing binary variables, allowing 14 columns for a one digit number is a bit
wasteful. LIMDEP cannot check the syntax of this format for you, so you may induce an error if you
provide an improper format. Do remember to include the parentheses. The WRITE command will
fail if your format contains an error.
 You can also extend the formatting of a WRITE command to integers and at the same time,
convert the missing values to the ‘.’ convention used by other programs such as SAS. The
alternative format specification

 ; Format = [… format …]

with the specification enclosed in square brackets instead of parentheses allows you these
specifications:

 Iw = an integer of width w,
 Fw.d = real value, width w, d digits after the decimal point,
 Ew.d = exponential format (scientific notation),
 nX = skip n spaces.

This format may not have any embedded parentheses. When you use this option, missing values are
automatically converted to dots in the file.

R3: Importing and Reading Data Files R-142

R3.10 Adding Observations – The APPEND Command

 The IMPORT and READ commands are used to add variables, i.e., columns to your data
set. If you wish to add observations, i.e., rows, you use the APPEND command, instead. The
command structure is the same as READ, i.e., (optional parts are in brackets)

 APPEND ; File = name of file
 ; Nvar = number of variables
 ; Nobs = number of observations
 [; Format = Fortran format, CSV, XLS or Binary]
 [; Names = number or list of names]
 [; By Variables] $

The command works as follows: LIMDEP keeps a pointer which indicates where the next data file to
be read should be placed. Thus, before you READ any data, the pointer equals 1. If you initially
READ your first data set of, say, 25 observations, the pointer is reset to 26. Each time you
APPEND a data set, the pointer is advanced. It is also advanced if you READ a longer data set after
a shorter one. The pointer always points to the row after the bottom of your data. Your first READ
is equivalent to an APPEND. Thereafter, if your command is APPEND instead of READ, the data
are read as usual, but placed in the data area in the rows beginning at the pointer, instead of at the
top.
 Columns are handled as follows: Suppose you READ 25 observations on x, y, and, z. Now,
the command

 APPEND ; File = ... ; ... ; Names = x,y,w ; Nobs = 15 $

will add 15 observations to x and y. Since w doesn’t exist yet, a new variable is created for it. Since
we are using the APPEND command, not READ, the 15 observations on this new variable are
placed in rows 26-40, not 1-25. Rows 1-25 of w and rows 26-40 of z will contain missing values
after this command is carried out.
 Given the preceding, there are two ways an APPEND command can go wrong. If the data
are stored internally, you may run out of rows. You can run out of columns either way. LIMDEP
will take as much data as it can fit when an APPEND command is given. If the full data set doesn’t
fit, you will be warned. Finally, because of the way it is handled internally, you may only APPEND
a total of 200,000 numbers at a time.

R4: Data Transformations R-143

R4: Data Transformations

R4.1 Data Transformations

 You will usually need to transform your data, for example to obtain logarithms, differences,
or any number of other possibilities. LIMDEP provides all of the algebraic transformations you are
likely to need with the CREATE command. It is often useful to recode a continuous variable into
discrete values or to combine discrete values into a smaller number of groups, for example to prepare
data for contingency tables. The RECODE command is provided for this purpose. You can use
SORT to arrange one or more variables in ascending or descending order. The five commands
described in this chapter are as follows:

 CREATE ; variable name = expression $ to create a transformed variable
 DELETE ; list of variables $ to delete variables from the data set
 RECODE ; variable ; range of values = new value ... $ to recode a variable
 RENAME ; old name = new name $ to change the name of a variable
 SORT ; Lhs = key variable [; Rhs = variables to carry] $

CREATE also provides functions for rearranging data to create partitioned data matrices and
random number generators for generating random samples.

R4.2 The CREATE Command

 The CREATE command is used to modify existing variables or compute new ones. The
essential syntax of the command is

 CREATE ; name = expression $

Commands may be grouped in a single instruction, with

 CREATE ; name = expression ; name = expression ; ... $

If you have a very large data set, the second form is preferable because each CREATE requires a
single loop over the sample observations regardless of the number of subcommands. Unless you
have hundreds of thousands of observations, however, the difference in computation speed will
probably not be discernible.
 Transformations may also be made conditionally, as in

 CREATE ; If (...) ... expressions $

The various forms of the conditional transformations are described in Section R4.2.2.
 You may also enter your command in a dialog box, as shown in Figure R4.1. The dialog
box is invoked by selecting Project:New/Variable or by going to the data editor and clicking the
right mouse button which will bring up a menu that includes New Variable. You may now enter the
name for the new or transformed variable in the Name window. If you click OK at this point without
entering an expression for the variable, the new variable is created with all observations treated as
missing. The equivalent command to the one in the dialog box would be

 CREATE ; logx1x2 $

R4: Data Transformations R-144

You can create more than one empty variable this way as well by giving a list of names separated by
commas either in the dialog box or in a command. For example,

 CREATE ; logx1x2, logx1x3, logx2x3 $

 You may enter an expression for the new or transformed variable in the Expression window.
Two other features to note in the dialog box are the query (?) button at the lower left, which will
invoke the online Help file for CREATE, and the function insertion button at the right of the
Expression window. You can select a function from the list in the window at the right of the dialog
box, then insert that function in the Expression window by clicking the function insertion button.
This allows some convenience in copying the function name into the small editing window, and also
shows a listing of the function names you can use.

Figure R4.1 New Variable Dialog Box

 A CREATE command operates on the ‘current sample.’ (See Chapter R7.) If this is a
subset of the data, remaining observations will not be changed. If you are creating a new variable for
the subset of observations, remaining observations will be undefined (missing). You can override
this feature by using

 CREATE ; Fill ; ... the rest of the command $

in your command. With this additional setting, the transformations listed will be applied to all
observations in the data set, whether in the current sample or not. This is the Data fill option that
appears at the bottom center of the dialog box in Figure R4.1.

R4: Data Transformations R-145

R4.2.1 Algebraic Transformations

 An algebraic transformation is of the form ; name = expression. Name is the name of a
variable. It may be an existing variable or a new variable. Name may have been read in or
previously created.
 The expression can be any algebraic transformation of any complexity. You may nest
parentheses, functions, and operations to any level. Functions that may appear in expressions are listed
in Section R4.3. The operators that may appear in CREATE commands are the standard ones, +, -, *,
and / for addition, subtraction, multiplication, and division, as well as the special operators listed below:

 ^ = raise to the power; a ^ b = ab
 @ = Box-Cox transformation; a @ b = (ab - 1) / b or loga if b = 0 and a > 0
 ! = maximum; a ! b = max(a,b)

(The maximum of a string of operands is obtained just by writing the set
separated by !s. For example, 5 ! 3 ! 6 ! 0 ! 1 = 6.)

 ~ = minimum; a ~ b = min(a,b)
 % = percentage change; a % b = 100(a/b - 1) E.g., 5 % 4 = 25

The following operators create binary variables:

 > = binary variable; a > b = 1 if a > b and 0 else.
 >= = binary variable; a >= b = 1 if a ≥ b and 0 else.
 < = binary variable; a < b = 1 if a < b and 0 else.
 <= = binary variable; a <= b = 1 if a ≤ b and 0 else.
 = = binary variable; a = b = 1 if a = b and 0 else.
 # = binary variable; a # b = 1 if a is not equal to b.

For example,

 CREATE ; a = x > 0 * Phi(y) creates a equal to Phi(y) if x is positive and 0 else
 ; p = z > 0 creates p = 1 if z is positive and 0 otherwise
 ; zeq1 = z = 1 $ equals 1 if z equals 1 and 0 otherwise.

To avoid ambiguity, it is often useful to enclose these operations in parentheses, as in

 CREATE ; a = (x = 1) * Phi(z) $

This set of tools can be used in place of conditional commands, and sometimes provides a
convenient way make conditional commands. For example ‘and’ conditions result from products of
these relational operators. Thus,

 CREATE ; v = (x >= 8) * (x <= 15) * Log(q) $

creates v equal to the log of q if x is greater than or equal to 8 and less than or equal to 15. You can
also produce an ‘or’ condition using addition, though the conditional command construction shown
below may be more convenient. For example:

 CREATE ; v = (((x = 8) + (x = 15)) > 0)* Log(q) $

does the transformation if x equals 8 or 15.

R4: Data Transformations R-146

 The following algebraic order of precedence is used to evaluate expressions:

• First: functions, such as Log(.) are evaluated.

• Second: ^ and @, which have equal precedence are computed.

• Third: *, /, !, ~, %, > , >=, <, <=, =, # are computed.

• The special operators, !, %, etc. are evaluated from left to right with the same precedence as

* and /. Thus, for example, y * x > 0 equals 1 if y*x is greater than 0 and equals 0 otherwise.
It will usually be useful to use parentheses to avoid ambiguities in these calculations.

• Fourth: + and - (addition and subtraction) are computed.

NOTE: LIMDEP does not give the unary minus highest precedence. The expression -x^2 evaluates
to the negative of the square of x (which would be negative) not the square of negative x (which
would be positive). This is the current standard in software, but it is not universal.

 You may use as many levels of parentheses as necessary in order to group items in an
expression or to change the order of evaluation. For example,

 CREATE ; ma = (pz + pz[-1] + pz[-2] + pz[-3]) / 4 $

computes a moving average of a current and three lagged values. Parentheses may also be nested to
any depth.

 CREATE ; ratio = ((x + y)^2-(a + c)^2)^2/((a + x)*(c + y))$

is a valid command which computes ratio =
2 2 2(() ())

()()
x y a c

a x c y
+ − +

+ +
.

NOTE: Implied multiplication of expressions in parentheses is allowed, but you should be very
careful when you use this feature to avoid ambiguity. The use of the ‘*’ to indicate multiplication
will help to clarify exactly what the expression should be. Nonetheless, you can use products such as
(a + x) (c + y) which will evaluate correctly. In the CREATE command above, the ‘*’ in the
denominator could be omitted, since with implied multiplication, the expression is correct without it.

 You may also nest functions. For a few examples, consider the inverse probability
distributions in the discussion of ‘other distributions for survival models’ in Chapter E60. The
expressions shown there can be created exactly as they are listed. Thus,

 Gompertz: CREATE ; t = Log(1 - w*Log(a)/p) / w $
 Weibull: CREATE ; t = (-Log(a))^(1/p) / w $
 Normal: CREATE ; t = Exp(-Inp(a)/p) / w $
 Logistic: CREATE ; t = ((1 - a) / a) ^ (1/p) / w $

R4: Data Transformations R-147

Functions may be nested to any depth, and expressions may appear in the parentheses of a function.
Consider, for example, the following which creates the terms in the log likelihood function for a tobit
model

 CREATE ; loglik = (1 - d) * Log(Phi(-x’b/sigma))
 + d * Log((1/sigma)*N01((y-x’b)/sigma)) $

Four Cautions:

• Any transformation that involves a missing value (-999) at any point returns a missing value.

• It is unlikely to be necessary, but if you should require expressions in the parameter list of a
two parameter function, put them in parentheses. The Trn function which computes trend
variables is such a function. Thus,

 CREATE ; trend = Trn(a+b’x , step) $

would confuse the compiler. Instead, you should use

 CREATE ; trend = Trn((a+b’x) , step) $

• In specifying lags, if the lag is an expression, for example, in a loop, enclose the expression
in parentheses. Thus,

 CREATE ; looplag = x [i + 2*j] $

 will not work, but, you could use

 CREATE ; looplag = x [(i + 2*j)] $

• Many operations allow you to access particular observations of a variable by using an
observation subscript enclosed in parentheses. If you will be using this construction, you
must avoid variable names which are the same as the function names listed in Section R4.3.
For example, if you have a variable named phi, then Phi(1) could be the first observation on
phi or the standard normal CDF evaluated at 1.0. (CREATE will translate it as the latter.)
Function names all have three letters.

 Variables may appear on both sides of the equals sign as long as they already exist, and
transformations may be grouped in a single command. In a multiple CREATE command, later
transformations may make use of variables created in earlier ones. For example,

 CREATE ; sam = x1 * x2
 ; bob = x2 + x3
 ; this = sam * bob
 ; that = Log(this)
 ; that = 1 / that $

R4: Data Transformations R-148

is the same as five consecutive CREATE commands. Grouping commands in this fashion is more
efficient when it is possible to do so. Each CREATE command requires a pass through the data set.
Thus, the preceding requires only a single pass, whereas if you were to write it as five separate
commands, you would require five passes. For moderate sized samples (less than 10,000), this
won’t make much difference. But, if your sample size is huge, you will want to make use of this
result. On the other hand, combining transformations, such as eliminating the first two commands
and making this = (x1*x2)*(x2+x3), within a single CREATE command generally does not save any
time, as the same amount of computation must be done either way. For this consideration, you
should write your transformations so that they are as ‘self documenting’ as possible – that is, so that
they are as easy to understand as possible.

R4.2.2 Conditional Transformations

 Any transformation may be made conditional. The essential format is

 CREATE ; If (logical expression) name = expression $

Logical expressions are any desired expressions that provide the condition for the transformation to
be carried out. They may include any number of levels of parentheses and may involve
mathematical expressions of any complexity involving variables, lagged variables of the form
name[lag], named scalars, matrix or vector elements, and literal numbers. The operators are the
same as above with a few exceptions: The ones that may be used are the math and relational
operators: +, -, *, /, ^, >, >=, <, <=, =, #. The special operators, @, !, %, and ~ are not used here.

NOTE: Logical expressions may not involve functions such as Log, Exp, etc.

 Concatenation operators which can be used for transformations are & for ‘and,’ and | for
‘or.’ A simple example might be: CREATE ; If (x > 0) ... expression $ For a more complex
example, we compute an expression for observations which are not inside a ball of unit radius.

 CREATE ; If (x1^2 + x2^2 + x2^2 >= 1) ... expression ... $

For a third example with no obvious interpretation:

 CREATE ; If ((r/s)*((c+7)*(x+2) * y^2 + z^3) > 1 | x+y < 0) ... expression ... $

The hierarchy of operations is ^, (*, /) (+,-), (>,>=,<,<=,=,#), &, |. Operators in parentheses have
equal precedence and are evaluated from left to right. When in doubt, add parentheses. There is
essentially no limit to the number of levels of parentheses. (They can be nested to about 20 levels.)

Comparisons to the Missing Value Code

 Although you may not transform missing values in algebraic expressions, you may base
comparisons on them. Thus, you may use If (name = -999)... to base a computation on missing data.

R4: Data Transformations R-149

If / Else Transformations

 An ‘If/Else’ construction may also be specified as follows:

 CREATE ; If (...) name = expression ; (Else) name = expression $

The condition is tested first. If it is false and ‘name’ does not already exist, a value of 0.0 is returned
for the expression. If it is false and name does already exist, then the current value is left unchanged
for that observation. If it is true, the expression is evaluated and its actual value is returned. In a
succeeding (Else), if the preceding If (...) was false, the expression is computed. Any valid
CREATE expression may appear in either place; the second (after the (Else)) may, if desired, be
unrelated to the first. For example:

 CREATE ; If (age > 21 & ftjob = 1) adult = 1 ; (Else) child = 1 $

Conditions Applied to Groups of Transformations

 A condition may be applied to a group of commands by using

 CREATE ; If (condition) | a set of transformations $

An alternative set of transformations may also be computed using (Else), as follows:

 CREATE ; If (condition) | a set of transformations
 ; (Else) | a different set of transformations $

The second set of transformations need not be related to the first, though it could be. For example,

 CREATE ; If (x = 1) | z1 = Log(z1) ; z2 = Log(z2)
 ; (Else) | z1 = Exp(z1) ; z2 = Exp(z2) ; z4 = z1*z2 $

Note that z4 is only computed if x is not equal to 1. The value given to z4 when x equals 1 depends
on whether z4 existed prior to the command; if yes, it is unchanged, if no, it equals 0. This is
LIMDEP’s usual convention. Finally, you may switch off the batch control with

 CREATE ; If (condition) | a set of transformations
 ; (Else) | a different set of transformations
 ; (Endif) | more transformations $

Those transformations which follow the Endif are always carried out. The If/Else conditions are no
longer controlling. Note that this is the same as

 CREATE ; If (condition) | a set of transformations
 ; (Else) | a different set of transformations $
 CREATE ; more transformations $

R4: Data Transformations R-150

The reason for using the first construction instead of the second is for speed. The first construction
requires one pass through your data while the second requires two. If you have a small sample, you
will not notice the difference. But, if you have tens of thousands of observations, the first form of
the two commands might bring a noticeable time savings.

WARNING: You can have conditional transformations under the control of these If/Else setups in
a command. For example: CREATE ; If (x = 1) | z = 3 ; If (y > 0) y = Log(y) $. But, this probably
will not produce the desired results, since the second condition will not be tested if the first fails.
Also, using (Else) while inside an (Else) | block will produce unpredictable results, and should be
avoided. It is better to break up the CREATE command into more than one command.

Logical Expressions

 It is important to note that in evaluating expressions, you get a logical result, not a
mathematical one. The result is either true or false. An expression which cannot be computed
cannot be true, so it is false. Therefore, any subexpression which involves missing data or division
by zero or a negative number to a noninteger power produces a result of false. But, that does not
mean that the full expression is false. For example: If (x/0 > 0 | x > y) expression $ could be true.
The first expression is false because of the zero divide, but the second might be true, and the or in
the middle returns true if either expression is true. Also, we adopt the C++ language convention for
evaluation of the truth of a mathematical expression. A nonzero result is true, a zero result is false.
Thus, your expression need not actually make logical comparisons. For example: Suppose x is a
binary variable (zeros and ones). CREATE ; If (x) expression $ will compute the expression for
observations for which x equals one and not compute it when x equals zero, since the expression has
a value of ‘true’ when x is not zero. Therefore, this is the same as CREATE ; If (x # 0) expression $.
 This syntax produces vast flexibility. However, there is one possible ambiguity as a result.
Numbers in exponential format must be in the form ‘snnnnn.D+ee’ or ‘snnnnn.E+ee,’ where ‘s’
may be a minus sign (do not include superfluous ‘+’ signs), and ‘ee’ is a one or two digit exponent.
I.e., although 1.2D+2 and 12.D+1 are the same number, the first will produce an unexpected result –
use the second. The first form might produce a syntax error, depending on the rest of the command,
but more likely, would just produce a result that was not calculated the way you expect.

Making the Entire Command Conditional

 A way to make the entire CREATE command conditional is

 CREATE ; If [condition as usual] | a set of transformations $

Note the use of square brackets. The condition is tested. If it is true, all of the following
transformations are carried out. If false, none are. For example,

 CREATE ; If [j = 1] | z1 = Log(z1) ; z2 = Log(z2) $

The two transformations are computed if j equals 1. If not, neither is carried out. The difference
between this form and

 CREATE ; If (condition as usual) | a set of transformations $

R4: Data Transformations R-151

is that the form with parentheses is evaluated during a data loop. The transformation is evaluated for
each observation. It might be carried out for some observations and not for others. For example,

 CREATE ; If (Sex = Male) | a set of transformations $

will be carried for some observations and not for others. But, in the form with square brackets, the
condition is evaluated before anything else is done in the transformation program. If the condition is
false, the entire CREATE command that follows is ignored. Thus, you might use

 REGRESS ; Lhs = y ; Rhs = x $
 CREATE ; If [sumsqdev > 100] | a set of transformations $

Note that you would not want to use a variable in such a condition, though it would not cause
problems for the command processor – the condition is only evaluated once, so the result would be
unpredictable.

R4.3 CREATE Functions

 The expressions in CREATE may involve the following functions:

R4.3.1 Common Algebraic Functions

 Log(x) = natural logarithm,
 Exp(x) = exponent,
 Abs(x) = absolute value,
 Sqr(x) = square root,
 Sin(x) = sine,
 Rsn(x) = arcsine (operand between -1 and 1),
 Cos(x) = cosine,
 Rcs(x) = arccosine (operand between -1 and 1),
 Tan(x) = tangent,
 Ath(x) = hyperbolic arctangent = ½ log((1+x)/(1-x)), -1 < x < 1,
 Ati(x) = inverse hyperbolic arctangent = [exp(2x)-1]/[exp(2x)+1],
 Gma(x) = gamma function = (x-1)! if x is an integer,
 Psi(x) = digamma = log-derivative of gamma function = Γ′/Γ = Ψ(x),
 Psp(x) = trigamma = log-2nd derivative of gamma = (ΓΓ′′-Γ′2)/Γ2 = Ψ′(x),
 Lgm(x) = log of gamma function (returned for Gma if x > 50),
 Sgn(x) = sign function = -1,0,1 for x <, =, > 0,
 Fix(x) = round to nearest integer,
 Int(x) = integer part of operand,
 Min(x,y) = minimum,
 Max(x,y) = maximum.

R4: Data Transformations R-152

R4.3.2 Univariate Normal Distribution

 Phi(x) = CDF of standard normal,
 N01(x) = PDF of standard normal,
 Lgf(x) = log of standard normal PDF = -.5(log2π + x2) = Log(N01(x)),
 Lmm(x) = -N01/Phi = E[x | x < operand], x ~ N(0,1),
 Lmp(x) = N01/(1-Phi) = E[x | x > operand],
 Lmd(x,z) = (z-1)Lmp(x) - zLmm(x) where z = 0/1 (selectivity variable),
 Tvm(x) = [1 - Lmm(Lmm+z)] = Var[x | x < operand],
 Tvp(x) = [1 - Lmp(Lmp+z)] = Var[x | x > operand],
 Tvr(x,z) = (1-z)Tvm(x) + zTvp(x) where z = 0/1 (selected variance),
 Inp(x) = inverse normal CDF,
 Inf(x) = inverse normal PDF (operand is CDF, returns density).

R4.3.3 Logistic Distribution

 Lgt(x) = logit = log[z/(1-z)],
 Lgp(x) = logistic CDF = exp(x)/(1 + exp(x)),
 Lgd(x) = logistic density = Lgp(1-Lgp).

R4.3.4 Trends and Seasonal Dummy Variables

 Trn(x1,x2) = trend = x1+(i-1) x2 where i = observation number.

There are two forms of the Trn function that are useful for panel data.

 Trn(T,0) = 1,1,…,2,2,…,3,3,…,N,N,…

where each block repeats the sequence number T times. The function

 Trn(-T,0) = 1,2,…,T, 1,2,…,T, 1,2,…,T …

Each of the N blocks in the data contains a sequence of integers from 1 to T.

 Ind(i1,i2) = 1 if i1 ≤ observation number ≤ i2, 0 else,
 Dmy(p,i1) = 1 for each pth observation beginning with i1, 0 else.

The Dmy function is used to create seasonal dummy variables. The Ind function operates on specific
observations, as in

 CREATE ; eighties = Ind(22,31) $

If your data are time series and have been identified as such with the DATES command (see Chapter
R7), then you may use dates instead of observation numbers in the Ind function, as in

 CREATE ; eighties = Ind(1980.1,1989.4) $

R4: Data Transformations R-153

NOTE: The Ind function is oblivious to centuries. You must provide four digit years to this
function, so there is no ambiguity about 19xx vs. 20xx.

 The trend function, Trn is used to create equally spaced sequences of values, such as
1,2,3,..., which is Trn(1,1). There are two additional variants used primarily with panel data. These
are discussed in Chapter R5.

R4.3.5 Ranks of Observations

 Rnk(x) = ranks of sorted x.

For example, if the current sample of x contains values 8,2,0,3,1, then the transformed variable

 CREATE ; Ranks = Rnk(x) $

creates a variable which equals 5,3,1,4,2.

R4.3.6 Box-Cox Function and its Derivatives

 The Box-Cox function is x@c = (ac - 1)/b or loga if c = 0. The derivatives of this function
obey the differential equation

 di(x@c)/dci = (1/c)(xc(logx)i - id i-1(x@c)/dci-1) or (logx)i+1/(i+1) if c = 0.

The functions Bx1(x,c) and Bx2(x,c) may be used to obtain the first and second derivatives.

R4.3.7 Bivariate and Multivariate Normal Probabilities

You may obtain bivariate normal probabilities using the following construction:

Bvn(x1.x2, r) = bivariate normal CDF,
Bvd(x1.x2, r) = bivariate normal density,
Bv1(x1.x2, r) = partial derivative of Φ2 (z1, z2, ρ) with respect to z1,
Bv2(x1.x2, r) = partial derivative of Φ2 (z1, z2, ρ) with respect to z2.

Previous versions of LIMDEP required the x1,x2 pair to be in a namelist. That syntax may still be
used – all commands are forward compatible. However, this new form allows x1 and/or x2 to be
numbers or scalars instead of variables, which the old one did not. Note that r need not be a number;
it may also be a variable and vary by observation. For example, the following replicates the
probabilities computed by a bivariate probit model:

 CREATE ; q1 = 2*y1-1 ; q2 = 2*y2-1 $
 CREATE ; bivprob = Bvn((q1*b1’x1), (q2*b2’x2, (q1*q2*rho)) $

(If you need this function for scalars instead of variables, use CALC.)

R4: Data Transformations R-154

HOW IT’S DONE: See the appendix to this chapter for details on this computation.

 For multivariate normal probabilities, use

 CREATE ; prob = Mvn(x,w) $

in which x is a namelist of M variables. Each row (observation) in namelist (matrix) x is the
counterpart to the x in the CALCULATE function. The namelist, x includes M variables and the
matrix, w is the M×M covariance matrix. Note, variables may be repeated in x. For example, if x1
and x2 are free, but x3 - x6 are all 0, then you could use

 CREATE ; zero = 0 $
 NAMELIST ; x = x1, x2, zero, zero, zero $
 CREATE ; p = Mvn(x,w) $

This creates a variable p with each element equal to the M-variate normal CDF evaluated at w and
the ith observation in p. The Mvn function may be used as you would any other function in
CREATE. The function Mvd(x,w) returns the density instead of the CDF.

HOW IT’S DONE: See the appendix to this chapter for details on this computation.

R4.3.8 Leads and Lags

 You can use a lagged or leaded variable with the operand

 variable [n] = observation on the variable n periods prior or ahead.

The use of square brackets is mandatory; ‘n’ is the desired lag or lead. If n is negative, the variable is
lagged; if it is positive, it is leaded. For example, Nerlove’s ‘universal filter’ is (1 - .75L)² where L is
the lag operator. This would be

 CREATE ; filterx = x - 1.5 * x[-1] + .5625 * x[-2] $

A value of -999 is returned for the operand whenever the value would be out of the range of the
current sample. For example, in the above command, filterx would equal -999 for the first two
observations. You can change this default value to something else, like zero, with

 CREATE ; [lag] = the desired value $

For example,

 CREATE ; [lag] = 0 $

would change the default value for noncomputable lags to zero. This must be used in isolation, not
as part of some other command.

R4: Data Transformations R-155

 If you use lags or leads, you should modify the applicable sample accordingly when you use
the data for estimation. LIMDEP makes no internal note of the fact that one variable is a lagged
value of another one. It just fills the missing values at the beginning of the sample with -999s at the
time it is created.
 Moving average and autoregressive sequences can easily be constructed using CREATE,
but you must be careful to set up the initial conditions and the rest of the sequence separately. Also,
remember that CREATE does not reach beyond the current sample to get observations. A special
read-only variable named _obsno (note the leading underscore) is provided for creating recursions.
Consider computing the (infinite) moving average series

 yt = xt + θxt-1 + θ ² xt-2 + ... + θ t-1 xt-1.

To do the computation, we would use the autoregressive form, yt = xt + θyt-1 with y1 = 0. The
following could be used:

 CREATE ; If (_obsno = 1) y = 0
 ; (Else) y = x + theta * y[-1] $

 Second, consider generating a random sample from the sequence yt = θyt-1 + et, where et
~N[0,1]. Simply using CREATE ; y = theta*y[-1] + Rnn(0,1) $ will not work, since, once again,
the sequence must be started somewhere. But, you could use the following

 CREATE ; If (_obsno = 1) y = Rnn(0,1) / Sqr(1 - theta^2)
 ; (Else) y = theta * y[-1] + Rnn(0,1) $

R4.3.9 Matrix Functions

 Two transformations based on matrix algebra are used to create linear and quadratic forms
with the data. Linear combinations of variables are obtained with

 CREATE ; name = b’x $

where x is a namelist of variables (see Chapter R6) and b is any vector with the same number of
elements. It creates the vector of values from the linear combination of the variables in the namelist
with coefficients in the row or column matrix. Dot products may also be used with other
transformations. For example,

 CREATE ; bx12 = x1’b1 / x2’b2 ; p = Phi(x’b/s) $

(The order is not mandatory. d’z is the same as z’d.) Also, if you need this construction, a dot
product may be used for two vectors or two namelists. In the latter case, the result is the sum of
squares of the variables. (See the Xmt function described in Section R4.3.12.)
 Quadratic forms are computed with the Qfr function:

 ; Qfr (namelist, matrix)

R4: Data Transformations R-156

This computes q = x′Ax where x is a column vector and A is a matrix. A matrix function Qfrm is
available for this computation for a single vector. There are occasions when you might wish to
obtain this result for each row in a set of data. For example, if you have a vector of parameters, b,
and an estimated covariance matrix for them, V, you might compute, for each observation in a data
set, a fitted value, yfiti = b′xi. To obtain a standard error for each of these values, you would require
sfi = Sqr[xi′Vxi] for each observation, i. This can be obtained with the Qfr function in CREATE.
To use this function, you must first define the namelist containing the names of the variables in xi.
The matrix must be square with number of rows equal to the number of variables. The command is
then as shown above. For example, to obtain the fitted values and forecast standard errors for the
most recent regression, you might use

 NAMELIST ; x = one, gnp, prices $
 REGRESS ; Lhs = cons ; Rhs = x $
 CREATE ; cfit = x’b ; scfit = Sqr(s^2 + Qfr(x,varb)) $

This uses two matrices and a scalar automatically saved by the regression command. For another
example, in linear regression analysis, the ‘hat’ matrix,

 H = I - X(XʹX)-1Xʹ.

is useful for computing regression diagnostics. The matrix H is n x n, which might be huge – n
could be hundreds of thousands – but typically, only the diagonal elements are useful. The following
can be used to obtain hii, the diagonal elements, in a variable:

 NAMELIST ; x = the list of variables $
 MATRIX ; xxi = <x’x> $
 CREATE ; hii = 1 - Qfr(x,xxi) $

R4.3.10 Moving a Matrix

 There are occasions when you want to move a matrix computed with the MATRIX
command to a place where you can manipulate it as if it were a set of data, instead. Normally, you
can do all of this with MATRIX, but it might be useful to change a ‘matrix’ into a ‘variable.’ (The
necessary distinction is discussed in Chapter R16.) For an example, when you fit a fixed effects
model with REGRESS, the vector of group specific constants is saved as a matrix. You might be
interested in using these fixed effects as a variable, for example, in computing regressions with them
as observations on the ‘dependent variable.’
 You can move a vector to a variable just by equating them. To continue our example,

 REGRESS ; ... ; Panel ; Fixed Effects $
 CREATE ; va = alphafe $

does the required transformation. You can also move a matrix to a namelist, column by column.
Just use

 CREATE ; x = a $

R4: Data Transformations R-157

where x is defined by a namelist and a is a matrix which has number of columns equal to the number of
variables in x. (The namelist may not contain one. See Chapter R8 for discussion of using one as the
constant term in a model.) You may move a matrix to a variable, with CREATE ; z = a $ which
moves the first column of matrix a to variable z. You can also copy one namelist in to another. Use

 CREATE ; y = x $

to copy all variables in x into y (as many as possible if they have different numbers of columns).

R4.3.11 Means, Deviations, Standardized Variables

 The matrix functions Mean, Xdev and Xstd are used to obtain sample means, to center
(subtract the mean) and standardize a set of variables listed in a data matrix (namelist). For some
purposes, and if you are using just a single variable, it may be more convenient to use the CREATE
command directly to operate on the variable. The functions Xbr, Dev, and Std are provided for this
purpose. Thus, CREATE ; y = Dev(x) $ creates the variable y by subtracting x’s mean from each
observation. An equivalent command would be CREATE ; y = x - Xbr(x) $. Likewise, the means
of both y and z in

 CREATE ; y = x * Dev(x) ; z = Dev(x) ^ 2 $

are equal to the variance of x. Standardized data are obtained with the Std function. For example,
after the following: CREATE ; y = Std(x) ; w = Std(x) * Std(q) $ y has mean 0 and standard
deviation 1 while the mean of the variable w is the correlation between x and q. (There is an easier
way to compute this.)

HOW IT’S DONE: See Appendix R4A.8 to this chapter for details on the computation of sample
variances.

The standard deviation of a variable, defined with Sdv(x), may be used in other functions in
CREATE. For example, to standardize a variable (the hard way)

 CREATE ; stdx = (x - Xbr(x)) / Sdv(x) $

R4.3.12 Moments for a Set of Variables – the Xmt Function

 All of the preceding discussion describes operations on the set of observations on a variable.
Another possibility is operation on a set of variables. (The dot product operation and Qfr function
are such operations.) If namelist x is a set of at least two variables, the CREATE function

 Xmt(x,j) = jth moment of the set of observations defined by a row of namelist x,

computes a statistic for the K variables, once for each observation. ‘x’ must be the name of a
namelist, not a variable and not a set of variables; J must be an integer ranging from one to ten. For

 j = 1, Xmt(..) = mean of variables
 j = 2, Xmt(..) = standard deviation
 j = 3,...,10, Xmt(..) = centered and scaled moment.

R4: Data Transformations R-158

For example, Xmt(x,3) computes the standardized skewness measure

 Xmt(x,3)i = (1/K)Σk=variables [xik - x i,]3/si

3, i = observations 1,...,N,

where x i is the mean and si is the standard deviation of the set of K variables at observation i.
Powers up to 10 are available (the interpretation is left to the user). Note that this is computed for
each observation.
 For example, if x contains 10 variables, e.g., test scores, and the sample contains 50,000
observations, the sum is over the 10 variables, for each observation. For example, for a sample of
175,000 observations on a battery of tests,

 NAMELIST ; tests = math, reading, physics, history, algebra, golf $
 CREATE ; skewness = Xmt(tests,3)
 ; kurtosis = Xmt(tests,4) $

computes two new variables in the data set; skewness is the sample of 175,000 observations on the
skewness of the sample of six test scores for each observation while kurtosis is the kurtosis.
 The sum across variables of a set of variables can be obtained with

 CREATE ; name = x’1 $ or 1’x

where x is a namelist and 1 is the literal, number one. Note that this sums across variables, not
observations. Each observation is the sum of the variables for that observation.

R4.3.13 Multiple of a Set of Variables – the Scl Function

 If x is a set of variables defined by a namelist and v is a variable, the command

 CREATE ; newx = Scl(x,v) $

creates a replica of the entire set of variables in x with each observation on each variable in x
multiplied by the corresponding observation of variable v.

NOTE: This function creates a new namelist and a new set of variables.

The function operates as follows: The new namelist is given the name that appears on the Lhs of the
equation. The new variables created have names constructed from the namelist name by appending
the number of the variable. These variables may already exist, in which case they are just
overwritten. A simple example would be as follows: (We consider a more substantive example
later.)

 CREATE ; x1 = 2 ; x2 = 3 ; ten = 10 $
 NAMELIST ; x = x1,x2 $
 CREATE ; tenx = Scl(x,ten) $

R4: Data Transformations R-159

The first command creates three variables, x1, x2, and ten equal to 2, 3, and 10, respectively, at every
observation. The Scl function creates two new variables, tenx1, and tenx2, which equal 20 and 30,
respectively, at every observation. It also creates a namelist named tenx which contains tenx1 and
tenx2. The last command is equivalent to

 CREATE ; tenx1 = ten * x1
 ; tenx2 = ten * x2 $
 NAMELIST ; tenx = tenx1, tenx2 $

TIP: A namelist can contain up to 150 names, so this function can combine a very large number of
commands.

NOTE: The name for the namelist in the Scl function must have six or fewer characters.

The Scl transformation must be the only one on the command line. Any other transformations will
be ignored. For example, if the first and third commands in the example above were combined in

 CREATE ; ten = 10 ; tenx = Scl(x,ten) $

The first transformation would not be carried out.
 Scl could be used for setting up some specification tests which require the derivatives of a
log likelihood. But, there is a more efficient way of doing this. See Chapter R16 for an extensive
application.

HINT: This command can produce a huge amount of data and can easily exhaust your data array if
x has many variables. Use carefully. This should rarely if ever be necessary. In most situations in
which you would use this function, what you will actually need is a moment matrix built up from
newx′newx. There will always be a more efficient way to obtain this result than actually replicating
the data matrix, x.

R4.3.14 Expanding a Categorical Variable into a Set of Dummy
Variables

 It is often useful to transform a categorical variable into a set of dummy variables For
example, a variable, educ, might take values 1, 2, 3, and 4, for less than high school, high school,
college, post graduate. For purposes of specifying a model based on this variable, one would
normally expand it into four dummy variables, say underhs, hs, college, postgrad. This can easily be
done with a set of CREATE commands, involving, for example, hs = (educ = 2) and so on.
LIMDEP provides a single function for this purpose, that simplifies the process and also provides
some additional flexibility. The categorical variable is assumed to take values 1,2,...,C.

R4: Data Transformations R-160

 The command

 CREATE ; Expand(variable) = name for category 1, ... name for category C $

does the following:

• A new dummy variable is created for each category. (If the variable to be created already

exists, it is overwritten).
• A namelist is created which contains the names of the new variables. The name for the

namelist is formed by appending an underscore both before and after up to six characters of
the original name of the variable.

• A tabulation of the transformation is produced in the output window.

 The example suggested earlier might be simulated as follows, where the commands and the
resulting output are both shown:

 CREATE ; educ = Rnd(4) $
 CREATE ; Expand(educ) = underhs, hs, college, postgrad $

EDUC was expanded as _EDUC_ .
Largest value = 4. 4 New variables were created.
Category
1 New variable = UNDERHS Frequency= 28
2 New variable = HS Frequency= 22
3 New variable = COLLEGE Frequency= 30
4 New variable = POSTGRAD Frequency= 20
Note, this is a complete set of dummy variables. If
you use this set in a regression, drop the constant.

As noted, the transformation begins with the value 1. Values below 1 are not transformed and no
new variable is created for the missing category. Also, the transformation does not collapse or
compress the variable. If you have empty categories in the valid range of values, the variable will
simply always take the value 0.0. Thus, if educ had been coded 2, 4, 6, 8, then the results of the
transformation might have appeared as shown below

 EDUC was expanded as _EDUC_ .

Largest value = 8. 4 New variables were created.
Category
1 New variable = UNDERHS Frequency= 0 <--- !
2 New variable = HS Frequency= 23
3 New variable = COLLEGE Frequency= 0 <--- !
4 New variable = POSTGRAD Frequency= 29
5 New variable = EDUC05 Frequency= 0 <--- !
6 New variable = EDUC06 Frequency= 22
7 New variable = EDUC07 Frequency= 0 <--- !
8 New variable = EDUC08 Frequency= 26
Note, this is a complete set of dummy variables. If
you use this set in a regression, drop the constant.

R4: Data Transformations R-161

The Expand specification works as follows:

• The empty cells are flagged in the listing, but the variable is created anyway.

• If your list of names is not long enough, the remaining names are built up from the original
variable name and the category value.

• The program warns you that this has computed a complete set of dummy variables. If you
use this set of variables in a regression or other model, you should not include an overall
constant term in the model because that would cause perfect collinearity – the ‘dummy
variable trap.’ Thus, a model which contained both one and _educ_ would contain five
variables that are perfectly collinear.

 You may want to avoid the last of these without having to choose one of the variables to
omit from the set. You can direct the transformation to drop one of the categories by adding ‘,0’
after the variable name in the parentheses.

 CREATE ; Expand(variable,0) = list of names $

For our previous example, this modification would change the results as follows:

 CREATE ; Expand(educ,0) = underhs, hs, college, postgrad $

EDUC was expanded as _EDUC_ .
Largest value = 4. 0 New variables were created.
Category
1 New variable = UNDERHS Frequency= 27
2 New variable = HS Frequency= 26
3 New variable = COLLEGE Frequency= 21
Note, the last category was not expanded. You may use
this namelist as is in a regression with a constant.

The note at the end of the listing reminds you of the calculations done. The last category is the one
dropped. (Note that ‘0 new variables were created.’ The reason is that these variables already
existed after our earlier example.)
 Finally, the list of names for the new variables is optional. If it is omitted, names are built
up as in the second example above. Continuing the example, we might have

 CREATE ; educ = Rnd(4) $
 CREATE ; Expand(educ) $

EDUC was expanded as _EDUC_ .
Largest value = 4. 4 New variables were created.
Category
1 New variable = EDUC01 Frequency= 28
2 New variable = EDUC02 Frequency= 22
3 New variable = EDUC03 Frequency= 30
4 New variable = EDUC04 Frequency= 20
Note, this is a complete set of dummy variables. If
you use this set in a regression, drop the constant.

R4: Data Transformations R-162

NOTE: This transformation will refuse to create more than 100 variables. If it reaches this limit,
you have probably tried to transform the wrong variable. Thus, the variable must be coded 1,2,..., up
to 99.

NOTE: This function for CREATE actually creates the set of dummy variables and the namelist
associated with them. Your main use of categorical variables will be in specifying models with
categorical variables. You will often use this computation without actually needing the dummy
variables in the data set or the namelist. LIMDEP provides a way to do this directly in a command.
To consider an example, (based on the health care data used in several examples in Greene (2011),
consider a probit model which contains a variable hsat (health satisfaction) coded 1 to 11. The
following three commands will produce the identical results:

 CREATE ; Expand(hsat) $
 PROBIT ; Lhs = public ; Rhs = one, age, educ, _hsat_ $

 PROBIT ; Lhs = public ; Rhs = one, age, educ, Expand(hsat) $

 PROBIT ; Lhs = public ; Rhs = one, age, educ, # hsat $

The third shows an abbreviation that can be used for the second. The second and third differ from
the first in that they do not add variables to the data set. The inline expansion of categorical
variables in a model command is shown in Chapter R8.

R4.3.15 Stacking Data to Create Data Matrices

 The stacking operation is used to create specific kinds of data matrices. Consider an
example – this would be used to set up generalized least squares of a particular regression model.
The sample contains N observations on y1, y2, y3, x1, x2, x3, x4. We need a data matrix (data set)
with 3N observations that appears as

1 1 2 3 4

2 2 4

3 3 4

1
, = 1 .

1

 =

y x x x x
y y X x 0 0 x

y x 0 0 x

The commands that can be used to create these are

 CREATE ; y = Stk(y1 / y2 / y3) $
 CREATE ; x = Stk(1,x1,x2,x3,x4 / 1,x2,0,0,x4 / 1,x3,0,0,x4) $

Note that the stacking operations replicates a number N times, or otherwise stacks N observations.

R4: Data Transformations R-163

 The general form of the function is

 Stk (row definition / row definition / …)

The operation creates N observations for each row definition, so when done, the sample will contain
N*Nrows observations. Within a row, you may have variables, namelists and scalars, either numbers
or named scalars created by CALC or any other means. The row definitions must all contain the
same number of entities. They may be a mixture of numbers, namelists and scalars. For example, in
the example above, if the definition

 NAMELIST ; x = x1,x2,x3,x4 $

had already been declared, then the stacking definition given earlier could be

 CREATE ; x = Stk(1,x / 1,x2,0,0,x4 / 1,x3,0,0,x4) $

R4.3.16 Group Functions for Panel Data

To create a new variable that replicates for each observation in a group the mean of that

group, use the group means function,

 CREATE ; y = Group Mean (x, Str = name or number)
or CREATE ; y = Group Mean (x, Pds = name or number)

The function requires a panel data specification, the same sort as used to specify panels in the model
commands. This is discussed in Chapter R5. This function produces a report when computed, such
as:

Computed Variable Y Group means of INVC
Number of groups found in current sample was 10
Max group = 84, Min = 84, Average = 84.0

This function must be used in isolation, not as part of another command nor in a compound function.
Use a new CREATE command for each variable. Other available panel data functions are

Group Sums (x, Str = spec or Pds = spec) = group sum within group
Group Prod (x, Str = spec or Pds = spec) = group product within group
Group Devs (deviations from own group means) = group deviations
Group Lags (the first observation becomes missing) = group lagged value
Group Diff (the first observation becomes missing) = group first difference
Group Obs1 (x, Str = spec or Pds = spec) = first observation in group

In these four functions, you can do the calculations for a set of variables contained in a namelist. To
do this, you must create the empty columns first and declare them in a namelist. The new namelist
and the one being transformed must have the same numbers of variables. For example,

 CREATE ; xb1,xb2,xb3 $ (creates three empty variables)
 NAMELIST ; xbar = xb1,xb2,xb3 ; x = x1,x2,x3 $ (assuming x1, x2, x3 all exist)
 CREATE ; xbar = Group Mean (x, Pds = ti) $

R4: Data Transformations R-164

Three functions are provided for configuring a panel data set.

Group Size (panel id) = group sizes
Group Time (panel id) = internal period indicator
Group Nmbr (count variable) = sequential group number

Group Size (id) works on any unique identifier within the panel, such as a person id, to create a
variable that contains, within the group, the number of observations in the group. For example,
suppose the panel contains two groups, one with three observations and one with two, and, initially,
variables personid, x1 and x2.

 personid x1 x2 ti time
 1 3 13 3 1
 1 9 22 3 2
 1 8 14 3 3
 2 4 9 2 1
 2 0 11 2 2

The command CREATE ; ti = Group Size (personid) $ would create the variable ti shown above.

NOTE: This form of group count variable is used in all panel data estimators in LIMDEP to specify
the panel. In earlier versions, a superficial regression command,

 REGRESS ; Lhs = one ; Rhs = one ; Str = personid ; Panel $

would be used to create the variable _groupti, which would be identical to ti above. The regression
form can still be used, but the preceding is likely to be simpler. In addition, in this version of
LIMDEP, you can set the panel dimensions globally with a single ‘SET’ command, and the program
will create the group count variables at the time they are needed. Panel data operations are discussed
in Chapter R5.

 The variable time shown above can be created internally with two functions

 Group Indx (id, Pds = variable) = sequence number from 1 to Ti within a panel,
 Prd (id variable) = sequence number from 1 to Ti within a panel.

Seq and Group Nmbr produce the same result, but they are based on different input variables.
Referring to the example above, time could be created using Group Nmbr(ti) or using Seq(personid).

The first of these could be used to compute your own fixed effects estimator by transforming
data to deviations from group means. Thus, for example, the following would produce identical
results:

 REGRESS ; Lhs = y ; Rhs = x ; Pds = 4 ; Panel ; Fixed Effects $
and CREATE ; dy = Group Devs (y, Pds = 4) $
 CREATE ; dx = Group Devs (x, Pds = 4) $
 REGRESS ; Lhs = dy ; Rhs = dx $

(The standard error produced by the second regression will be smaller because it does not correct for
the degrees of freedom lost in computing the constants while the first one does.)

R4: Data Transformations R-165

R4.4 Random Number Generators

 Many operations that you and LIMDEP do involve random number generation. This includes
bootstrapping, mixed model estimation, model simulation, and any number of types of experimental
operations that you will perform with the program. At the heart of all of these calculations is the
random number generator (RNG) – every modern computer program contains one. LIMDEP has
two, one by L’Ecuyer (1999) and a second named the Mersenne Twister, both discussed in Appendix
R4A.3. Both RNGs have excellent properties (such as periods up to 210000). The Mersenne Twister
has recently been built into other mathematical programs such as MATLAB. We do not have a
preference for either of these; L’Ecuyer’s is the default. You can switch between the two by using
the CALC command

 CALC ; Rng(1) $ to set the RNG to be L’Ecuyer’s
 CALC ; Rng(2) $ to set the RNG to be the Mersenne Twister.

Once the generator is set, all subsequent draws for all purposes are produced by the chosen
generator. (It would not be natural to do so, but you can switch back and forth between these two
RNGs at will. The properties of a sequence of values are not affected by which generator you use, or
even if some draws are taken with one RNG and the rest with the other.)
 The central function of a (pseudo) RNG is to creates series of values that appear to be
random strings of draws from the standard uniform distribution. Random draws from other
distributions are obtained by transforming the U[0,1] values. To draw a sample from a continuous
uniform distribution in the indicated range,

 CREATE ; name = Rnu(0,1) $

As noted, this is the ‘primitive’ operation of random number generation. LIMDEP provides roughly
20 different functions for generating random samples from different distributions.

R4.4.1 Setting the Seed for the Random Number Generator

 Given your choice of RNG, a second consideration for you as user is the seed of the RNG.
Random number generators generate strings of pseudorandom numbers – they are not really random,
and it is possible to generate the same string twice (which establishes the nonrandomness of the
string). But, the string of values generated will look enough like a set of random numbers that they
can reliably be used for the calculations for which we need them for. An RNG produces a
deterministic string of NP values, then the NP+1 value is equal to the first, and it starts over and
repeats. NP is the period of the generator. Early primitive generators such as IBM’s scientific
subroutine package, had a period of 231-1, which relates to the use of a 32 bit word inside the digital
computer. This period is unsatisfactory for modern research. The L’Ecuyer generator has a period of
about 2132. The Mersenne Twister has a period about 210000 – for practical purposes, it never repeats.
The seed of an RNG is a pointer to where in its period of values the cycle begins. The usefulness of
this feature is that if one can set the seed, they can reproduce the string of values (regardless of how
long that string is). For you to replicate any results using random numbers, you need to be able to set
the seed of the RNG. To set the seed for the random number generator, use the command

 CALC ; Ran(seed) $

In this fashion, you can replicate a sample from one session to the next. Use a large (e.g., seven
digit) odd number for the seed. The value does not matter as long as it is a large number.

R4: Data Transformations R-166

 An RNG works by using the seed to compute the pseudorandom value, then it resets the seed
(pseudorandomly) for the next value. You can find out what the current seed is with

 CALC ; Peek ; Ran(0) $

We’re not sure this is useful, since it only tells you where you are going, nothing about where you
have been. You can’t use this value to reproduce any calculations already done – it’s too late. But,
we expect that users will find uses that we have not thought of, so the preceding is made available.

R4.4.2 Basic Random Number Generation

 After generation of primitive U[0,1] draws, there are two essential functions, general
uniform and general normal random variable sampling. The first of these generates values
distributed uniformly from lower to upper by

 U[lower,upper] = lower + (upper – lower) x U[0,1].

This is done internally. The command for this is

 CREATE ; name = Rnu(lower limit, upper limit) $

The second essential function is random draws from the standard normal distribution. The function
is
 CREATE ; name = Rnn(0,1) $

HOW IT’S DONE: Draws from the normal distribution are generated many ways, using draws
from U[0,1]. A common method also used for other distributions is the inverse probability
transformation; x(normal[0,1]) = Φ-1(U[0,1]) where Φ-1 is the inverse of the standard normal CDF.
LIMDEP uses a transformation of a pair of random draws developed by Box, Muller and Marsaglia
See the appendix to this chapter for details on this computation.

The next essential step is producing values from the general normal population, N[μ,σ2]. This is
obtained by
 N[μ,σ2] = μ + σN[0,1].

The command syntax for this normal simulation is

 CREATE ; name = Rnn(mean, standard deviation) $

which will create a variable containing a sample from the indicated normal distribution.
 The next section details the 20+ different distributions from which random samples may be
drawn. The general command is

 CREATE ; name = Rng(parameters) $

where Rng is the three letter symbol for the distribution and parameters are values such as (μ,σ)
needed to do the simulation. The sample is placed with the observations in the current sample. If
you want to draw more than the default number, you might want to use the ROWS command (See
Section R3.4) before you draw the sample.

R4: Data Transformations R-167

 Random draws may also appear anywhere in an expression as operands whose values are
random draws from the specified distribution. For example, a random sample from a chi squared
distribution with one degree of freedom could be drawn with

 CREATE ; name = Rnn(0,1) ^ 2 $

(There is an easier way, though.) Random samples can be made part of any other transformation.
For example, the following shows how to create a random sample from a regression model in which
the assumptions of the classical model are met exactly:

 CREATE ; x1 = Rnu(10,10)
 ; x2 = Rnn(16,10)
 ; y = 100 + 1.5 * x1 + 3.1 * x2 + Rnn(0,50) $

The regression of y on x1 and x2 would produce estimates of β1 = 100, β2 = 1.5, and β3 = 3.1 and a
residual standard deviation, se, close to 50.
 In addition to the Rnn(m,s) (normal with mean m and standard deviation s) and Rnu(l,u)
(continuous uniform between l and u), you can generate random samples from continuous, discrete
and multivariate normal distributions. There are described in the following sections.

R4.4.3 Random Samples from Continuous Distributions

 Rng(m,s) = lognormal with parameters m and s
 Rnt(n) = t with n degrees of freedom
 Rnx(d) = chi squared with d degrees of freedom
 Rnf(n,d) = F with n numerator and d denominator degrees of freedom
 Rne(q) = exponential with mean q
 Rnw(a,c) = Weibull with location a and scale c. If c = 1, use Rnw(a)
 Rnh(a,c) = Gumbel (extreme value) with location a, scale c. If c = 1, use Rnh(a)
 Rni(a,c) = gamma with scale a and shape c. If a = 1, use Rni(c)
 Rna(a,b) = beta with parameters a and b
 Rnl(0) = logistic
 Rnc(0) = Cauchy
 Rno(0) = symmetric triangular [-1,+1], (1) = [0,2], (-1) = [-2,0], (c,x) = [-x*c,+x*c]
 Rns(0) = inverse Gauss

For sampling from the noncentral chi squared population, use the function is Rnx(d,a), where d is the
degrees of freedom and a is the noncentrality parameter. This could be done with

 Rnx(d-1) + Rnn(a,1)^2,

so this automates the noncentrality parameter. Sampling from the singly (numerator only)
noncentral F is done with

 (Rnx(n,a)/n)/(Rnx(d)/d).

A doubly noncentral F variable can also be created by having noncentral chi squared variables in
both numerator and denominator. One would not normally use this in econometric work, however.

R4: Data Transformations R-168

R4.4.4 Random Samples from Discrete Distributions

 Rnp(q) = Poisson with mean q,
 Rnd(n) = discrete uniform, x=1,...,n,
 Rnb(n,p) = binomial, n trials, probability p,
 Rnm(p) = geometric with success probability p.

For sampling from the binomial distribution, The limits on n and p are nlog(p), and nlog(1-p) must
both be greater than -264 to avoid numerical overflow errors.

HOW IT’S DONE: See the appendix to this chapter for details on this computation.

You must provide the ‘a’ in the Weibull and Gumbel and the ‘0’, logistic, and Cauchy functions.
You may also sample from the truncated standard normal distribution. Two formats are

 Rnr(lower) = sample from the distribution truncated to the left at ‘lower,’
 Rnr(lower,upper) = distribution with both tails truncated.

HOW IT’S DONE: See the appendix to this chapter for details on this computation.

E.g., Rnr(.5) samples observations greater than or equal to .5
 Parameters of all requests for random numbers are checked for validity. For the truncated
normal, you must have

 lower ≤ 1.5,upper ≥ -1.5, upper - lower ≥ .5

If ‘upper’ is not provided, it is taken as +∞. If you need upper truncation, a transformation which
will produce the desired result is -Rnr(-lower).
 The parameters of any random number generator can be variables, other functions, or
expressions, as well. For example, you might simulate draws from a Poisson regression model with

 CREATE ; x1 = Rnn(0,1)
 ; x2 = Rnu(0,1)
 ; y = Rnp(Exp (.2 + .3 * x1 - .05 * x2)) $

R4.4.5 Sampling from the Multivariate Normal Distribution

 To sample from the multivariate normal distribution, it is necessary to generate a set of
random variables. We do this by using the following theoretical result.

If x = (x1,...,xK) are distributed with joint normal distribution with mean vector 0 and
covariance matrix I, then Ax + µ is distributed multivariate normally with mean
vector µ and covariance matrix AA′.

R4: Data Transformations R-169

You can use this result to generate a multivariate sample from the normal distribution with mean
vector µ and covariance matrix Σ by simply decomposing Σ into AA′, and using this and the desired
µ in the theoretical result. We use the Cholesky decomposition in which A is a lower triangular
matrix. The operation will create a multivariate sample – that is K variables where K is the number
of elements in x and N observations, where N is the number of observations in the current sample.
You can sample from the distribution with up to 100 elements, in which case, you will create 100
new variables in your data area. Collectively, these K variables are a multivariate sample from the
specified multivariate normal distribution.
 The command for generating a sample from the multivariate normal distribution is

 CREATE ; name = Rmn(vector µ, matrix Σ) $

You must provide the vector µ and matrix Σ. However, if you want µ to equal zero, omit it. Thus,

 CREATE ; name = Rmn(matrix Σ) $

samples from the multivariate normal population with mean vector zero and covariance matrix Σ.
Alternatively, you can force Σ to be an identity matrix by using

 CREATE ; name = Rmn(vector µ) $

to sample from the multivariate normal population with mean vector µ and covariance matrix I.
Finally, if you want to sample from the standard normal population with mean vector zero and
covariance matrix I, use

 CREATE ; name = Rmn(K) $

where K is the number of elements in the random vector. In this case, K must either be an integer
from 1 to 100 or the name of scalar which contains an integer from 1 to 100. LIMDEP detects what
kind of sample you want to by examining what appears in the parentheses. A vector and a matrix
implies the first case, just a matrix implies the second, just a vector implies the third, and just a
number implies the fourth.
 The ‘; name = ’ specifies the name of a namelist that will be created. This may be a new
namelist or you can replace an existing one. The variables in that namelist will be constructed as if
the command were

 NAMELIST ; name = name00,name01,... $

For example, if you use

 CREATE ; xran = Rmn(mu,v) $

where mu is a 10×1 vector and v is a 10×10 covariance matrix, then there will be a new namelist
created in your data area:

 xret = xran00,xran01,xran02,...,xran09.

R4: Data Transformations R-170

This routine creates the variables, and issues a report of what it has computed. The following shows
an example of sampling 1,000 observations from a 4-variate normal distribution.

Figure R4.2 Sampling from the Multivariate Normal Population

Note in the report in the output window, the theoretical and empirical means and variances are both
reported. The actual mean and standard deviations of the drawn sample will not equal the theoretical
ones, since the data are a random sample – they are not constrained. Also, the report shows the seed
for the random number generator. It does not equal the seed that appears in the command in the
editing window. The CALC ; Ran(seed) $ function allows you to set a specific seed for the random
number generator. The actual value used internally is a transformation of the one you give. The
point of the function is to enable you to reset the seed to the same value, not a particular value.
Specific values of the seed are meaningless. But, your ability to reset the seed to a specific value
allows you to replicate random sampling results.

R4: Data Transformations R-171

 This procedure creates several results:

• The namelist as specified in the command.
• The variables (up to 100 of them) which are the random sample.
• Matrices mean_rmn which is the matrix of means of your sample, and var_rmn which is

the sample covariance matrix.

The latter two matrices could be created immediately after the sampling command with

 MATRIX ; mean_rmn = Mean(namelist)
 ; var_rmn = Xvcm(namelist) $

 All of the elements of the setup for this computation are checked internally before any
computation is done. The following conditions will generate diagnostics:

• Your matrices mu and v are not currently in the matrix names table.
• Your parentheses contain more than two names.
• The matrix is not square.
• The vector is not conformable with the matrix. Mu may be a row or a column, but it must

be the same size as v, whichever applies.
• Your computation implies more than 100 variables.
• You are out of space for new namelists or variables.
• Your matrix v is not symmetric.
• Your matrix v is not nonnegative definite.

If none of these failures occur, the computation will proceed. For the last of these conditions,
LIMDEP checks the characteristic roots of your matrix. If none are negative, we proceed. (A zero
root, indicating singularity is OK. If your matrix were [1,1/1,1], this is singular but it is nonnegative
definite.

R4.5 Compound Names for Variables

The names of variables and scalars may be of the form aaaa:ssss where ssss is the name of a
scalar. The scalar must take an integer value from 00 to 99. The value is appended to the name to
make a variable with the compound name. This feature will be useful for looping in procedures. For
example:

CALC ; index = 1 $
PROC $
CREATE ; x : index = 1 / index $
ENDPROC $
EXECUTE ; index = 1,10 $

R4: Data Transformations R-172

creates 10 variables, x1 = 1, x2 = 1/2, x3 = 1/3, x4 = 1/4, ..., x10 = 1/10.. The Brant test for
homogeneity in an ordered logit model provides another example – in this program, both matrices
and variables are being given compound names. The commands below show only the part of the
program that uses the feature described here. The full procedure with the remaining analysis and
additional comments appears in Chapter R16.

?===+
? This is an analysis of an ordered choice variable y=0,1,...maxy.
? Here, we are generating artificial data.
?===+
 SAMPLE ; 1-1000 $
 CALC ; Ran (12345) $
 CREATE ; y=Rnd(6)-1 ; xa=Rnn(0,1); xb=Rnn(0,1); xc=Rnn(0,1)$
 NAMELIST ; x = xa,xb,xc $ x does not include a constant term.
 NAMELIST ; x1= x,one $
 CALC ; k = Col(x)$
 CALC ; ymax = max(y) ; y1 = ymax-1 ; kj = ymax* k ; k1j=y1*k$
 MATRIX ; i = Iden(k) ; z = Init(k,k,0) ; mi=-1*i $
 MATRIX ; bt = Init(kj,1,0.) ; d = Init(k1j,kj,0.)$
?===+
? This procedure computes the individual logit equations. To reduce the |
? number of commands, it makes heavy use of compound names. |
? Loop index y1 takes values 1,2,...,ymax. j = y1 – 1 = 0,1,2,...ymax-1 |
? The procedure is creating variables z0, z1, ... each equal to a binary |
? variable that equals 1 when y > j. It is creating coefficient vectors |
? b0, b1, ... then injecting (stacking) them in the large vector bt. |
? Each LOGIT command creates a variable with fitted probabilities, p0,... |
? After each b:j is computed, a vector of derivatives, w0=p0(1-p0), w1= |
? p1(1-p1),... is computed. We are creating matrices v0, v1,... as |
? inverses of moment matrices. Finally, the large matrix D is a |
? partitioned matrix in which block row j contains I on the diagonal and |
? –I at the end of the row. |
?===+
 PROC = LOGITS$
 CALC ; j = y1 - 1 ; jy = j*k+1 ; jyk=jy+k$
? This command creates variables z0, z1, ...
 CREATE ; z:j = y > j $
? The probabilities kept by this procedure are p0, p1, ...
 LOGIT ; Lhs = z:j ; Rhs = x1 ; Prob = p:j $
? The capability is also available in MATRIX. This creates b0, b1, ...
 MATRIX ; b:j = b(1:k) ; bt(jy)=b:j $
? The previously created p0, p1,... are used to create w0, w1, ...
 CREATE ; w:j = p:j*(1-p:j) $
 CALC ; jy = min(jy,((ymax-2)*k+1)) ; jyk=jy+k$
? This MATRIX command computes v0, v1, ...
 MATRIX ; v:j = <x1'[w:j]x1> ; vt=v:j ; vt=part(vt,1,k,1,k);v:j=vt $
 MATRIX ; d(jy,1)=I ; d(jy,jyk)=mi$
 ENDPROC $
 EXECUTE ; y1 = 1,ymax ; Silent $

R4: Data Transformations R-173

R4.6 Changing Particular Observations of a Variable

 Once a column of data has been entered, there are several ways to edit it, if necessary. The
data editor discussed in Chapter R3 can be used directly to change values of a variable. Note,
though, that the data editor can only access the first 5,000 rows of the data area. You can also use the
command

 CREATE ; variable (observation) = new value ; ... $

to replace any specific observations. Up to 50 replacements may appear in a single CREATE
command. If the data are time series data, specified with the DATES command, the observation
number will be a date, instead. For example,

 CREATE ; gnp (1976.1) = 2105.729 $

R4.7 Recoding Variables – The RECODE Command

 The RECODE command allows you to change the values taken by one or more variables to
a set of other values. This can replace up to 50 If (...) then, (Else) ... sorts of CREATE commands
with a single instruction. The syntax of the RECODE command is

 RECODE ; variable(s) to recode (same recoding is applied to each)
 ; old values = new value
 ; old values = new value
 ; ... (up to 50 of these) ...
 ; * = default value $

‘Old values’ are as many as 20 particular values, such as 1,2,3,4,5 = 77.77. This would transform
all occurrences of any of the five values on the left to 77.77. Ranges of values may be specified as

 lower / upper = new value

which transforms any value found in the range lower to upper, inclusive, to the new value. For
example, -5.234 / 1.297 = 9 transforms any value from -5.234 to 1.297 to 9. The last specification
(* = default) is optional and specifies the default value to be used if the value found for that
observation is not in any of the recode specifications. If no default is given, the original value is left
intact. For example,

 RECODE ; a ; 1 / 10 = 10 $

changes any observation on a from 1 through 10 to 10. All other values of a remain unchanged.

R4: Data Transformations R-174

 For example, suppose income is given in dollar figures, with values -1, -2, and -3, indicating
missing data for three different reasons. We convert these all to -999, the income ranges to a simple
grouped coding, and all values not found in the given ranges to 0;

 RECODE ; income
 ; -1,-2,-3 = -999
 ; 0 / 15000 = 1; 15001 / 35000 = 2
 ; 35001 / 9999999 = 3 ; * = 0 $

 Lists of values and ranges of values may not both appear in the same specification. But,
since recodings need not have different values on the right, you can just give a separate specification
for each. RECODE specifications are processed sequentially and later ones can override earlier
ones. For example, 1,2,3 = 88 ; 3,4,5 = 99 transforms the value 3 to 99, not 88. The three parts of
the command must be given in the order shown above. In particular, all specifications after a
; * = default are ignored.
 The original variable is lost after the recoding. If you want to keep a copy of it, precede the
RECODE command with

 CREATE ; copy = variable to be recoded $

R4.8 Sorting Variables – The SORT Command

 You can sort a variable while carrying any number of other variables. The command is

 SORT ; Lhs = key variable [; Rhs = variables to carry] $

The key variable in the Lhs is sorted in ascending order. To obtain a sort in descending order, add
; Descending at the beginning of the command. To sort just one variable, omit the ; Rhs = list part
of the command. This command produces no output except for a simple message which indicates
that the sort was completed successfully.
 As with most other data manipulation commands, the SORT command is applied to the
current sample, not the entire data set. If you wish to sort the entire data set, you can either reset the
sample or just add ; All to the SORT command. For example, if your current sample is 1-10, 21-40
and you give a SORT command followed by a LIST command, the listed data will be sorted. But, if
you follow your SORT with SAMPLE ; All $, then list, observations 1-10 and 21-40 will be sorted,
but others will not. To sort your entire data set keying on a variable, you should use

 SAMPLE ; All $
 SORT ; Lhs = key variable ; Rhs = * $

 SORT may be invoked from the Project:Sort Variable menu or by selecting, then right
clicking any variable name in the project window. The maximum number of observations that can
be sorted is 250,000. The dialog box for SORT is shown in Figure R4.3.

R4: Data Transformations R-175

SORT does not automatically carry the observation labels with the variable being sorted.
(See Section R3.5.4.) In order to do so, add

 ; Labels

to the sort command. Do note, however, that unless you carry all variables with the sort key, the
labels will be inconsistent with the observations, either those sorted if you do not carry the labels, or
those not sorted if you do.

Figure R4.3 Dialog Box for SORT

 You want to keep in mind, when you sort a variable, the correspondence between it and
other variables in your sample is lost. There are two ways to avoid this. One way is simply to carry
the rest of the sample with the variable of interest. Use

 SORT ; Lhs = the interesting variable ; Rhs = * $

This reorders the entire data set according to this variable. Another way that may be more attractive
is to carry an index variable that will allow you to undo the sort later. Consider an example:

 FRONTIER ; Lhs = logy ; Rhs = logx ; Eff = ui $
 CREATE ; index = Trn(1,1) $ Observation index
 SORT ; Lhs = ui ; Rhs = index ; Labels $

Operate on Plot, List, etc. using your ui variable, now sorted.

 SORT ; Lhs = index ; Rhs = ui ; Labels $ This undoes the sort.

R4: Data Transformations R-176

R4.9 The DELETE and RENAME Commands

 Two commands which should rarely be necessary are

 DELETE ; list of variables $

and RENAME ; old name = new name $

Use the second to change the name of a variable. The first may be useful if you have many
observations and are running out of space in your data area as you create variables.
 Both DELETE and RENAME can be invoked by right clicking any variable name in the
project window, as shown in Figure R4.4.

Figure R4.4 Rename and Delete Options from Project Window

If you select Rename, the variable name will be framed in a box, and can be edited or replaced, in
place. To delete a variable you can select Delete in the menu or just highlight the variable (or
matrix, namelist, or scalar) name in the project window, then press the Del key on your keyboard.
You will be asked for confirmation.

R4: Data Transformations R-177

Appendix R4A Numerical Methods

R4A.1 Computing Bivariate Normal Probabilities

 Standardized (zero means, unit variances) bivariate normal probabilities B(x,y,ρ) are
computed using a 15 point Gauss-Laguerre quadrature. The integration is done in one dimension by
rewriting the bivariate distribution as the product of the marginal distribution of x times the
conditional distribution of y given x. During the integration, we use the error function to restrict the
range of integration to [0,∞), and use the in line Φ(.) function – integral of the univariate standard
normal distribution as the integral within the integral. Let wi denote the Laguerre weights and hi
denote the nodes. The formulation used is as follows:

 d1 = 1 (x < 0), d3 = 1 - 2d1
 d2 = 1 (y < 0), d4 = 1 - 2d2

15 2

31

1 12 () exp ()
5.0132564549262001 2i i i ii

V w a h h d x
=

 = Φ − +
∑

 ai = d4 (d3 ρhi + ρx - y) / (1 - ρ2)1/2

 Prob[X > x, Y > y] = d3d4V - d1d2 + d1Φ(-y) + d2Φ(-x).

Nodes and weights for the quadrature are as follows:

h1,...,h15 = 0.02110687265306352, 0.11122304843701245, 0.27339875290117911,
 0.50775546039766938, 0.8144213676108329, 1.193559990964792,
 1.645373297397144, 2.1701027938568, 2.7680303764366516,
 3.4394792198475525, 4.1848147744876557, 5.0044458955656313,
 5.8988261184898432, 6.8684550925062301, 7.9138801847749976.
w1,...,w15 = 0.05303709733976105, 0.11284582465517608, 0.15082452315872363,
 0.16279133631194213, 0.15185641060466367, 0.12593625823209979,
 0.094198393058496453,0.0640788141334108, 0.0398456458245284,
 0.02272413644209539, 0.01191223548930554, 0.005748310643806657,
 0.00255593490701438, 0.001047812282114606, 0.000396170048170894.

R4A.2 Computing Multivariate Normal Probabilities

 We use the GHK simulator for this computation. The full method is detailed in Greene
(2011), so we provide only a sketch here. The desired probability is Prob[ai < xi < bi, i = 1,...,K],
where the K variables have zero means and covariance matrix Σ. (Nonzero means are
accommodated just by transformation to simple deviations.) The probability is approximated by

 P = ∑ ∏= =

R
r

K
k rkQ

R 1 1
1

where R is the number of points used in the simulation. The Cholesky factorization of Σ is LL′ where
L = [l]km is lower triangular. Note lkm = 0 if m > k. The recursive computation of P is begun with Qr1 =
Φ(b1/l11) - Φ(a1/l11), where Φ(t) is the standard normal CDF evaluated at t. Using the random number
generator, εr1 is a random draw from the standard normal distribution truncated in the range Ar1 = a1/l11
to Br1 = b1/l11. The draw from this distribution is obtained using Geweke’s method. For a draw from
the N[µ,σ2] distribution truncated in the range A to B, we obtain u = a draw from the U[0,1]
distribution. Then, the desired draw is z = µ + σΦ-1[(1-u)Φ((B-µ)/σ) + uΦ((A-µ)/σ)].

R4: Data Transformations R-178

 For k = 2,...,K, use the iteration

 kk
k
m rmkmkrk llaA /1

1

 −= ∑ −

=
ε , kk

k
m rmkmkrk llbB /1

1

 −= ∑ −

=
ε ,

 Qrk = Φ(Brk) - Φ(Ark).

Then, P is then the average of the R draws of products of K probabilities. Numerical properties and
efficiency of this simulator are discussed at many places in the literature. References are given in
Greene (2003).
 You can set the number of draws globally (that is, for all uses of the simulator) with the
command CALC ; Rep(R) $ where R is the number you desire. The model specification ; Rep = R
on any model command has the same effect.

R4A.3 Uniform Random Number Generation

 The core of LIMDEP’s (and every other program’s) routines for generating random numbers
is the one used to generate standard uniform random numbers. Users are referred to standard sources
for theoretical background. LIMDEP’s default random number generator is the L’Ecuyer’s (1999)
method. The specific generator used is his MRG32K3A multiple recursive generator. This
generator has been shown to have excellent properties and has a period of about 2191 draws before
recycling. The specific method used is as follows:

Define: norm = 2.328306549295728e-10,
 m1 = 4294967087.0, m1 = 4294944443.0,
 a12 = 140358.0, a13n = 810728.0,
 a21 = 527612.0, a23n = 1370589.0,
Initialize s10 = the seed, s11 = 4231773.0,
 s12 = 1975.0, s20 = 137228743.0,
 s21 = 98426597.0, s22 = 142859843.0.

Setting the seed for the generator is done by initializing s10 at the desired value and the remaining
five values at the values shown. The six values constitute the seed for the generator, but to simplify
the process, we chose the five values above, according to L’Ecuyer’s recommendations, and the user
or the program needs only to set s10. Now, the generator which produces u = one draw from U(0,1)
is:
 p1 = a12*s11 - a13n*s10, k = int(p1/m1), p1 = p1 - k*m1
 if p1 < 0, p1 = p1 + m1, s10 = s11, s11 = s12, s12 = p1;
 p2 = a21*s22 - a23n*s20, k = int(p2/m2), p2 = p2 - k*m2
 if p2 < 0, p2 = p2 + m2, s20 = s21, s21 = s22, s22 = p2;
 u = norm*(p1 - p2) if p1 > p2,
 = norm*(p1 - p2 + m1) otherwise.

 The alternative RNG provided in LIMDEP is the Mersenne Twister. This generator was
developed in 1997 by Makoto Matsumoto and Takuji Nishimura. It has been employed recently in
numerous packages. The documentation is much too opaque to be laid out here. Details can be
found in the authors’ original article (Matsumoto and Nishimura (1998)). Random numbers drawn
from other nonuniform populations are produced by transformations of the U(0,1) values, as
discussed below.

R4: Data Transformations R-179

R4A.4 Standard Normal Random Number Generation

 Standard normal values are obtained using a method by Marsaglia. Let u1 and u2 be two
standard uniform draws. The L’Ecuyer method noted above is used to obtain u1 and u2. Then, z =
one draw from N(0,1) is obtained as follows:

 x1 = u1+u1-1, x2 = u2+u2-1, s = x1*x1+x2*x2;
 if s > 1, get two new draws and start over;
 v = log(s), v = sqr(-(v+v)/s);
 z = x1*v

R4A.5 Random Number Generation from Other Distributions

Let z denote a draw from the standard normal distribution and u denote a draw from the standard
uniform distribution. Draws from the other distribution are created as follows:

 Rnn(m,s) = m + s × z
 Rng(m,s) = Exp(m + s × z)

 Rnt(n) = z / ∑ =

d

i izd
1

2)/1(

 Rnx(d) = ∑ =

d

i izd
1

2)/1(

 Rnf(n,d) = ∑ =

n
i izn

1
2)/1(/ ∑ =

d
i izd

1
2)/1(

 Rnc(0) = z1/z2
 Rna(a,b) = uses an intrinsic IMSL subroutine
 Rnf(n,d) = [Rnx(n)/n] / [Rnx(d)/d],
 Rni(a,c) = a times a draw computed with an IMSL intrinsic subroutine
 Rne(q) = -q × log u
 Rnl(0) = log [u/(1 - u)]
 Rnu(a,b) = a + u × (b - a)
 Rnw(a,c) = (1/a)[-log(u)]1/c

 Rnh(a,b) = a - blog(-log(u))
 Rnp(m) = i such that ∑ =

i
j j1)Pr(< u and ∑ +

=
1
1)Pr(i

j j > u

 Rnd(d) = Int(d × u + 1)
 Rnm(p) = Int[log(u)/log(1-p) - 1]
 Rns(0) = 1/z
 Rnb(n,p) = i such that ∑ =

i
j j1)Pr(< u and ∑ +

=
1
1)Pr(i

j j > u
 Rns(0) = 1/normal

R4: Data Transformations R-180

R4A.6 Sampling from the Truncated Normal Distribution

 Let u denote a draw from the standard uniform distribution, and let L and U denote the lower
and upper limits of truncation respectively. Then, the single draw on u is transformed by

 z* = Φ-1 { Φ(L) + u × [Φ(U) - Φ(L)]}

so that z* is a draw from the standard normal distribution truncated between L and U. For truncation
only in the lower tail, Φ(U) = 1.

R4A.7 Random Sampling from the Multivariate Normal Distribution

 A random draw, v, from the K-variate normal population with mean vector µ and covariance
matrix, Σ, is obtained by using the L’Ecuyer or Mersenne Twister method detailed above to obtain a
K variate normal draw, u. Then, v = µ + Av, where A is the Cholesky square root of Σ; Σ = AA′.

R4A.8 Sample Variances

 Throughout LIMDEP, sample variances are always computed in two passes using the sum of
squared deviations, not the mean square minus the square of the mean. Thus,

 V(x) = ()∑ =
−

n
i i xx

n 1

21

is always computed by computing the mean first, then going back and computing the sum of squared
deviations.

R5: Panel Data and Data for Discrete Choice Models R-181

R5: Panel Data and Data for Discrete Choice
Models

R5.1 Estimation Using Panel Data

 There are many routines and estimators in LIMDEP that operate on panel data sets, i.e.,
those consisting of multiple rows of data per observation. This chapter describes the calculations
and instructions needed to inform the program of the configuration of the data set. Descriptions of
the specific model commands will extend these general parameters where needed for the particular
application.

R5.2 Programs that Use Panel Data

 Nearly every estimation program supported by LIMDEP supports a form of the model for
panel data. Some of these are:

• regression – fixed and random effects and random coefficient models,
• binary logit and probit – fixed and random effects models,
• ordered probit and logit models with fixed and random effects and coefficients,
• tobit – fixed and random effects models,
• Poisson and negative binomial regressions – fixed and random effects models,
• stochastic frontier – fixed and random effects models,
• survival models – parametric models with time varying covariates,
• multinomial, multiperiod, random effects probit model,
• repeated observations, multiperiod random parameters logit model with random effects,

and the large number of programs that fit fixed effects, random parameters, and latent class models.
These include the ones listed above as well as numerous others. The full list is roughly 50 different
applications.
 Panel data sets may be balanced or unbalanced. A balanced panel is one in which the group
size, Ti, is the same for all i. An unbalanced panel has a varying group size. You can conveniently
use either, but the second requires a bit of manipulation to be able to define the nature of the panel
for estimation purposes.
 No estimator in LIMDEP requires panels to be ‘balanced’ – the balanced panel is the special
case. The program assumes that all panels are unbalanced. But, the set of observations must be
‘contiguous.’ That is, for all panel data models, the set of observations for a particular individual
(group) must be a consecutive set of observations in the data set.

NOTE: Much of the econometrics literature on panel data models focuses on the balanced panel
case and treats the unbalanced panel as in inconvenient extension. This is what is necessary to keep
the mathematics manageable. (See, e.g., Baltagi (2005).) However, this a point at which theory and
practice diverge. In LIMDEP all panels are treated as unbalanced. The balanced panel is the special
case, though only in a trivial way that will be invisible to you.

R5: Panel Data and Data for Discrete Choice Models R-182

R5.3 Panel Data Arrangement

 Your estimation command for a panel data model must provide some means of determining
the nature of the panel and how many observations are in a group. There is some variation across
estimators that is discussed in detail with the specific descriptions of the models in the chapters to
follow. But, most of these will use one of the conventions described here, or ones similar to them.
 When the number of observations is fixed for each observation, as in TSCS, the command
will generally include the specification ; Pds = T as in

 PROBIT ; Lhs = y ; Rhs = x ; Pds = 5 $.

NOTE: Many of these models (e.g., probit, logit, tobit) will usually be estimated with data sets with
one observation per individual. In that case, you must omit the ; Pds = 1 which would apply. The
presence of ; Pds = anything in the command usually does more than just provide a count; it
invokes an altogether different estimation program. In LIMDEP, a cross section is generally not a
panel with one observation per individual.

 When the number of observations varies by individual LIMDEP requires you to provide a
variable which gives the number of rows for that observation, in each row of the observation. For
example, suppose your data consist of a panel of two individuals. The first has three observations
(periods), the second has two. This data set has five rows, which could appear as

 y x ni
 4 2 3
 5 0 3
 2 5 3
 7 1 2
 3 9 2

The group size variable, ni, is then provided as the Pds identifier. The command would generally
appear like the one for the frontier model below,

 FRONTIER ; Lhs = y ; Rhs = one,x ; Pds = ni $

Estimators almost always allow either type of data set. Suppose, instead, that the first individual had
two observations as well. The command might then be

 FRONTIER ; Lhs = y ; Rhs = one,x ; Pds = 2 $

The same arrangement is used in all of the other models except those fit by the CLOGIT command.
The two elements of a panel data specification are this group count variable and a group indicator.

R5: Panel Data and Data for Discrete Choice Models R-183

R5.3.1 Group Indicators and Within Group Observation Numbers

 A stratification variable or group indicator is simply an indicator that shows which group an
individual belongs to. Panel data sets generally contain this type of variable. Every unbalanced panel
must have one or there would be no way to distinguish the groups. This is usually an ID variable of
some sort, typically named id or personid. Figure R5.1 shows an example.

Figure R5.1 Unbalanced Data Set with Household ID

 The panel data estimators in the regression program use the stratification variable to
construct group sizes and group means. The group sizes in the data set in Figure R5.1 are
3,4,4,1,3,5. The next section describes some commands for creating index, group size, and
stratification variables. There are simple functions provided for creating group count variables from
stratification indicators, and for creating a stratification variable when the group count is given,
instead.

NOTE: In all cases where a stratification variable is used, except the linear regression with fixed or
random effects, the stratification variable must take the values 1,2,...,Ng for some set of Ng groups.
Commands for creating this variable are described below.

R5: Panel Data and Data for Discrete Choice Models R-184

TIP: A frequently asked question concerns LIMDEP’s claim that a panel data set has an ‘empty
cell,’ that is, a panel in which a group has no observations. A few estimators cannot proceed if this
occurs. The problem is usually the values taken by the stratification indicator, and the most frequent
cause is that the sample has been changed after the indicator was created. If you reduce your sample
by rejecting observations or by skipping missing data, you may ‘punch a hole’ in your stratification
indicator. Consider a sample consisting of strata [1,1,1,2,2,2,3,3,3,4,4,4]. If you set up your data,
then give SAMPLE ; 1-6, 10-12 $, your remaining observations are [1,1,1,2,2,2,4,4,4], and the third
cell is empty. The way to avoid this is to use the global setting described in Section R5.3.3 below.
In general, you should

 • Set the sample before creating your stratification indicator.
 • Do not use SKIP with panels; use REJECT explicitly.

Some of the estimation programs described later, such as those in CLOGIT, have specific procedures
for handling this situation. These are described in context. Moreover, most of the panel data model
estimation programs handle missing data on their own, and you need not take any actions to deal
with them. Again, this is discussed in context below.

 In the example in Figure R5.1, the ID variable is the most convenient form of group
indicator, consecutive integers. But, you might have some other form of identifier – for LIMDEP’s
purposes, the indicator can be anything, so long as it is not the same for two consecutive groups.
This could be something simple, such as a firm ID number, or something difficult such as a
telephone number. All that is required is that the number be unique to the specific group and the
same for all members of the group. Two functions are provided to create the type of indicator shown
in the figure:

 CREATE ; id = Seq (identification variable) $
 CREATE ; id = Group Nmbr (period count variable) $

(Note that the second of these works with balanced panels as well. In each case, we will create

 id = 1,1,1,…, 2,2,2,…, …, N,N,N…

For either case, as long as there is an ID variable, the command

 CREATE ; id = Seq (identification variable) $

Creates the unique, sequential group indicator. (Thus, for balanced panels which contain the ID
variable, there are three functions that compute the group sequence ID.)

 It is also useful to have an internal variable that indexes the observations in a group. This
would be a variable that takes values 1,2,…,Ti within the group. These can be created using

 Balanced panels: CREATE ; t = Trn (-T,0) $
 Unbalanced panels: CREATE ; t = Ndx (identification variable, 1) $

R5: Panel Data and Data for Discrete Choice Models R-185

TIP: The stratification variable used in these functions does not have to be sorted in the data. It is
only an identifying code, and its actual numerical value and rank are not used. If you reset the
sample after using Ndx, you will need to recreate the index variable.

 The descriptive statistics program, regression model with fixed effects, the survival routines,
the ordered probit model, and a few others use stratification variables directly. Where this
information is needed, it is provided with the command specification

 ; Grp = name of the variable

NOTE: Previous versions of LIMDEP used ; Str = name of the variable for this feature. You may
still use that syntax.

R5.3.2 Group Size Variables for Panel Data

 The group size variable or constant group size is used in all panel data estimators in
LIMDEP. The general syntax is

 Model ; … ; Pds = group size variable $

There are different ways to create this variable for unbalanced panels. For balanced panels it is
trivial:

 CREATE ; ni = 5 $

defines a panel data set with five observations for each individual. For unbalanced panels, you can use

 CREATE ; ni = Group Size (stratification variable) $

Group Size (id) works on any unique identifier within the panel, such as a person id, to create a
variable that contains, within the group, the number of observations in the group. For example,
suppose the panel contains two groups, one with three observations and one with two, and, initially,
variables personid, x1 and x2.

 personid x1 x2 ti time
 1 3 13 3 1
 1 9 22 3 2
 1 8 14 3 3
 2 4 9 2 1
 2 0 11 2 2

The command

CREATE ; ti = Group Size (personid) $

would create the variable ti shown above.

R5: Panel Data and Data for Discrete Choice Models R-186

NOTE: This form of group count variable is used in all panel data estimators in LIMDEP to specify
the panel. In earlier versions, an artificial regression command,

 REGRESS ; Lhs = one ; Rhs = one ; Str = personid ; Panel $

Would be used to create the variable _groupti which would be identical to ti above. The regression
form can still be used, but the preceding is likely to be simpler. In addition, in this version of
LIMDEP, you can set the panel dimensions globally with a single ‘SET’ command described in the
next section, and the program will create the group count variables at the time they are needed.

 The variable time shown above can be created internally with two functions

 Group Nmbr (pds variable) = sequence number from 1 to Ti within a panel,
 Seq (id variable) = sequence number from 1 to Ti within a panel.

Seq and Group Nmbr produce the same result, but they are based on different input variables.
Referring to the example above, time could be created using Group Nmbr(ti) or using Seq(id).

R5.3.3 Permanent Global Setting for Panel Data

 Once you have the group identifier variable in place (or if it is part of the original data set),
you can create a permanent setting for panel data that will free you from having to worry about the
group count variable. Use

 SETPANEL ; Group = the identification variable
 ; Pds = name of a variable that the program will create $

After you set the panel in this fashion, you need only add ; Panel to the commands that you use to fit
panel data models. The very large advantage of this feature is that the group count variable is
recreated at the time the model is fit. So, if you change the sample, it is not necessary to recompute
the group count variable. The following example is based on the data set that appears in Figure
R5.1. There are 7,293 observations in the full data set. The first model, a fixed effects probit model,
uses the entire data set. Then, a second model is fit after removing from the sample all female
headed households and all observations with hsat = 10. The first of these does not change the group
count variable, since female is always the same through the panel. But, hsat varies over time, so by
rejecting observations that have hsat = 10, we are reducing the sizes of some of the groups. The
commands are

SETPANEL ; Group = id ; Pds = grpti $
PROBIT ; Lhs = public ; Rhs = one,age,educ ; Fem ; Panel $
REJECT ; female = 1 | newhsat = 10$
PROBIT ; Lhs = public ; Rhs = one,age,educ ; Fem ; Panel $

The output is shown below. (Some of the results are not shown.)

R5: Panel Data and Data for Discrete Choice Models R-187

--> PROBIT ; lhs = public ; rhs = one,age,educ ; fem ; panel $
+---+
| Variable = ____________ Variable Groups Max Min Average |
| GRPTI Group sizes ID 7293 7 1 3.7 |
+---+

FIXED EFFECTS Probit Model
Dependent variable PUBLIC
Log likelihood function -1354.42890
Estimation based on N = 27326, K =1233
Inf.Cr.AIC = 5174.858 AIC/N = .189
Model estimated: Feb 07, 2011, 23:17:29
Unbalanced panel has 7293 individuals
Skipped 6062 groups with inestimable ai
PROBIT (normal) probability model
--------+--
 | Standard Prob. 95% Confidence
 PUBLIC| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
 AGE| -.06012*** .01027 -5.85 .0000 -.08025 -.03998
 EDUC| -.30781*** .08242 -3.73 .0002 -.46934 -.14628
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

--> Reject ; female = 1 | newhsat=10$
--> probit ; lhs = public ; rhs = one,age,educ ; fem; panel $
+---+
| Variable = ____________ Variable Groups Max Min Average |
| GRPTI Group sizes ID 3514 7 1 3.6 |
+---+

FIXED EFFECTS Probit Model
Dependent variable PUBLIC
Log likelihood function -617.43315
Estimation based on N = 12504, K = 782
Inf.Cr.AIC = 2798.866 AIC/N = .224
Model estimated: Feb 07, 2011, 23:17:44
Unbalanced panel has 3514 individuals
Skipped 2734 groups with inestimable ai
PROBIT (normal) probability model
--------+--
 | Standard Prob. 95% Confidence
 PUBLIC| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
 AGE| -.11372*** .01607 -7.07 .0000 -.14522 -.08221
 EDUC| -.24249** .11312 -2.14 .0321 -.46420 -.02079
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R5: Panel Data and Data for Discrete Choice Models R-188

R5.4 Merging Invariant Variables into a Panel Data Set

 Some panel data sets contain variables that do not vary across the observations in a group. A
common example is the data for the CLOGIT (discrete choice) model used in numerous examples in
this and the NLOGIT manual. The first 12 rows of this data set are shown in Figure R5.2. These
data take the form of a panel (with four observations per person), in which the household income
variable, hinc, is the same for each of the four rows. Some variables in the data set will be attributes
of the choices, and, as such, will be different for each choice. Others may be characteristics of the
individual, and will, therefore, be repeated on each record in the panel. LIMDEP allows you to keep
separate data files for the variable and invariant data. This may result in a large amount of space
saving. The data may be merged when they are read into LIMDEP, rather than in the original data
set.

Figure R5.2 Panel Data with Invariant Variables

 The command MERGE, which is similar to READ discussed in Chapter R3, will be used to
combine two data sets. MERGE is used to interleave two files for a panel data set, in which one
contains observations on variables that vary within a single ‘group,’ and a second contains variables
that are only observed once for each individual. In a standard case, the larger file contains T
observations for each of N individuals while the second contains one observation for each individual.
In the merged data set, the values in the second data set are replicated as they are read.
 There are two specifications that may be used to merge data. Both require a variable that is
used to match the file to be expanded to the one that is already in memory.

R5: Panel Data and Data for Discrete Choice Models R-189

R5.4.1 Using an ID Variable to Merge Data

NOTE: This feature is new in LIMDEP Version 10.

 Panel data sets typically have an ID number or some other identifying variable that is used to
keep track of groups in the data set. For an example, the following description is provided for the
data used in an application in Greene (2011)

Gary Koop and Justin L. Tobias, ‘Learning about Heterogeneity in Returns
to Schooling’, Journal of Applied Econometrics, Vol. 19, No. 7, 2004,
pp. 827-849. This panel data set consists of NT=17,919 observations from
N=2,178 individuals. The data are taken from the National Longitudinal
Survey of Youth. The data set is broken into two parts. The first part,
‘time_var.dat’, contains the time-varying characteristics together with the
individual-identification vector (denoted person_id). This file contains
17,919 observations on 5 variables. These variables are:
Column 1: Person_id (Ranging from 1-2,178).
Column 2: Education
Column 3: Log Hourly Wage
Column 4: Potential Experience
Column 5: Time Trend
The second part, ‘time_invar.dat,’ contains the time-invariant variables.
It contains 2,178 observations on 5 variables. These are:
Column 1: Ability
Column 2: Mother's Education
Column 3: Father's Education
Column 4: Dummy for Residence in Broken Home
Column 5: Number of Siblings

The syntax used to input such a data set is:

1. Read the original panel data set.

 READ ; File = var.dat
 ; Nobs = … ; Nvar = … ; Names = … $

2. Expand the invariant data.

 MERGE ; File = invar.dat
 ; Nobs = … ; Nvar = … ; Names = …
 ; Group(id) = ni $

We downloaded the authors’ data from the Journal of Applied Econometrics website, extracted the
two files and read them into LIMDEP as shown in Figure R5.3. The results are shown in Figure
R5.4.
 There are two restrictions on using MERGE to combine data sets. The procedure cannot be
used with spreadsheet files (.xls) and it cannot be used with data sets arranged by variables (see
Section R3.5.5). In addition, you cannot use APPEND to merge data sets. (See Section R3.10.)

R5: Panel Data and Data for Discrete Choice Models R-190

Figure R5.3 Commands for Merging Time Varying and Time Invariant Data Sets

Figure R5.4 Merged Data Sets

R5.4.2 Using a Group Count Variable to Merge Data

 A second form of the key variable can be used if you have already created the type of group
count variable used by LIMDEP in the panel data model estimation programs. The count variable
gives group sizes for each observation in a group in a panel data set. For example, consider a panel
with three individuals, and a variable number of observations per individual, two, then three, then
two. The two data sets might look like

R5: Panel Data and Data for Discrete Choice Models R-191

 File=var.dat File=invar.dat
 Variable data Invariant data
 x y ni z
 ind=1 1.1 4 2 ind=1 100.7
 1.2 2 2 ind=2 93.6
 ind=2 3.7 8 3 ind=3 88.2
 4.9 3 3
 5.0 1 3
 ind=3 0.1 2 2
 1.2 5 2

Note the usual count variable, ni, for handling panels. To merge these files, use this setup

 READ ; File = var.dat ; Nobs = 7 ; Nvar = 3 ; Names = x,y,ni $

This reads the original panel data set. Now, to expand the invariant data, the syntax is

 MERGE ; File = invar.dat ; Nobs = 3 ; Nvar = 1 ; Names = z ; Group = ni $

The specification is the ; Group = ... specification. The ; Group specifies either a count variable, as
above, or a fixed group size, as usual for LIMDEP’s handling of panel data sets. The resulting data
will be

 x y ni z
 ind=1 1.1 4 2 100.7
 1.2 2 2 100.7
 ind=2 3.7 8 3 93.6
 4.9 3 3 93.6
 5.0 1 3 93.6
 ind=3 0.1 2 2 88.2
 1.2 5 2 88.2

Note the difference from the previous specification, where instead of ; Group = ni, we used
; Group (id) = personid. The ‘(id)’ is the only difference between the two.

Checks and errors for this form of the command include:

• ; Nobs must be given on the second READ.
• ; Nobs must match exactly the number of groups in the existing data set.
• The existing panel must be properly blocked out by the groups variable or by a constant

group size.

R6: Variable Lists and Label Lists R-192

R6: Variable Lists and Label Lists

R6.1 Namelists and Labellists

 As part of estimation, it is necessary to define two sets of information, the variables to be
used and the observations. LIMDEP’s data handling and estimation programs are written to handle
large numbers of variables with simple, short commands. Two methods are provided to reduce the
amount of typing involved in giving a list of names, the NAMELIST and a wildcard character. You
can also define sets of text labels with the CLIST command. These are used to label displays of
results that you compute with your own user written programs and to label the output of some
descriptive routines such as histograms and crosstabulations.

R6.2 Lists of Variables in Model Commands

 Lists of variables are used in every model estimation command and a large number of other
commands, such as WRITE. Nearly all model commands are of the form

 Model Command ; Lhs = a variable
 ; Rhs = a list of variables
 ; Rh2 = a list of variables $

Some model commands (such as SURVIVAL) have only the Lhs, others (such as DSTAT and
KERNEL) only the Rhs, most have both Lhs and Rhs, BIVARIATE PROBIT has Lhs, Rh1 and
Rh2, and SURE may have up to 50 lists for equations. Each of the lists may, in principle, have 150
or more names in it. As such, some shorthands will be essential.

R6.3 Wildcard Characters in Variable Lists

 One simple shorthand for lists of variable names is the wildcard character, ‘*.’ You may use
the ‘*’ character to stand for lists of variables in any variable list. There are three forms:

• * stands for all variables.

 LIST ; * $ requests a list of all existing variables.
 DELETE ; * $ is a global erasure of all data. (You should use RESET.)

• aaaa* stands for all variables whose names begin with the indicated characters, any
number from one to seven. For example: If you have variables x1, x2, xa, xxx, xxy,

 x* = all five variables,
 xx* = xxx and xxy,

 then the following command requests simultaneous scatter plots of all variables whose
 names begin with x,

 SPLOT ; Rhs = x* $

• *aaaa stands for variables whose names end with the indicated characters. For example,
if you have xa, ya, and, y,

 REGRESS ; Lhs = y ; Rhs = one, *a $ regresses y on one, xa, and ya.

R6: Variable Lists and Label Lists R-193

R6.4 Defining Namelists

 The NAMELIST command defines a single name that is synonymous with a group of
variables. It can be used in any model command and applies to the entire set of variables currently in
the data array, regardless of how they got there. The command to define a namelist is

 NAMELIST ; name = list of variable names $

Several namelists may be defined with the same NAMELIST command by separating the
definitions with semicolons, e.g.,

 NAMELIST ; w1 = x1,x2
 ; w2 = x3,x4,x5 $

For another example,

 NAMELIST ; job = butcher,baker,cndlmakr
 ; place = north,south,east,west
 ; person = job,place,income $

Note that in the example, the namelist person will contain eight variables, as the other two namelists
are expanded and included with the eighth variable, income.
 The lists of variables defined by separate namelists may have names in common. For example,

NAMELIST ; w1 = x1,x2
 ; w2 = x2,x3 $

 The restrictions on namelists are:

• The name must follow the usual rules for valid names.
• The list may not contain more than 150 names.
• The listed variables must already exist in the data set.
• A total of 25 namelists can be stored at any time.

R6.4.1 Combining Namelists

 Namelists may also contain the names of other namelists. This is a useful construction when
you are building large models. For example:

 NAMELIST ; w1 = x1,x2
 ; w2 = x2,x3 $
 NAMELIST ; w12 = w1,x3
 ; ww = w1,w2 $

WARNING: Namelist definitions are ‘static.’ When a namelist definition contains another
namelist, the full list of variables is expanded when the namelist is defined. This means that
namelists are not updated when they are built up from other namelists, and these latter lists are
changed. For example, if the preceding command were followed by NAMELIST ; w3 = z,w2 $,
then the list in w3 would be z,x2,x3. But, if later, w2 were redefined to contain c1,c2,q, then w3
would still contain the variables z,x2,x3. It would not be updated to be consistent with the new
definition of w2.

R6: Variable Lists and Label Lists R-194

Note that ww contains the name of x2 twice. If you were to use this namelist in a model, you
would find a problem of multicollinearity, as the same variable would appear twice. Some specific
functions are provided to help you avoid this problem:

 NAMELIST ; name = OR (namelist1, namelist2, …) $

produces the union of the set of namelists given in parentheses;

 NAMELIST ; name = AND (namelist1, namelist2, …) $

produces the intersection of the set of namelists given in parentheses;

 NAMELIST ; name = XOR (namelist1, namelist2, …) $

produces the exclusive union of the namelists, that is, those variables that appear in the union, but not
in the intersection. The exclusive union of the sets of variables is all those variables that appear in
exactly one of the namelists.
 Consider constructing a simultaneous equations model. Each equation contains some
endogenous variables and some exogenous variables. For computing the two stage least squares
estimator, you require the union of the sets of exogenous variables. Thus,

 NAMELIST ; x1 = one,x11,x12,x13,x14,z1,z2
 ; x2 = one,x11, x13, ,z1, ,z3
 ; x3 = one, x12, x14,z1, ,q $
 NAMELIST ; x = OR (x1, x2, x3) $

The last of these is the same as

 NAMELIST ; x = one,x11,x12,x13,x14,z1,z2,z3,q $

R6.4.2 Deleting Namelists

 If you run out of room for namelists, you can delete them with

 NAMELIST ; Delete name , name , ... $

Note that there is no semicolon between Delete and the names of the namelists being deleted. Also,
you may delete more than one namelist in the command and you may delete and define namelists
with a single command. For example,

 NAMELIST ; Delete states ; industry = agr, mfg $

You may also delete a namelist by selecting its name in the project window and pressing the Del key.
In all these cases, you are only deleting the namelist definition, not the variables that are in the
namelist. However, if you delete a variable that is contained in a namelist, then you are disabling
every namelist that contains that variable. As a consequence, this does automatically delete the
namelist. Consider the example in Figure R6.1. If we follow this definition by selecting the variable
ttme in the project window and pressing Del, the following output results in the output window:

 NAMELIST ; x = one,gc,ttme,invc,invt $
 DELETE ; ttme $

Namelist X is no longer defined.

R6: Variable Lists and Label Lists R-195

R6.4.3 Editing Namelists

By double clicking or right clicking the name of a namelist in the project window, you can enter an
editor that allows easy modification of namelists. See Figure R6.1 for the setup.
 You can also define new namelists with the New Namelist editor. There are several ways
to reach this editor:

• Select New/Namelist from the Project menu,
• Select Item into Project/Namelist from the Insert menu,
• Right click the Namelists header in the project window, and select New Namelist.

All these will invoke the dialog box shown in Figure R6.2.

Figure R6.1 Editing a Namelist

R6: Variable Lists and Label Lists R-196

Figure R6.2 New Namelist Dialog Box

R6.5 Using Namelists

 Namelists are used for several purposes. The primary uses are for defining variables in
model instructions and in defining data matrices for MATRIX. They are also used for labeling
statistical results from your estimation programs and for creating looping procedures that iterate over
sets of variables.

R6.5.1 Using Namelists in Commands

 The namelist is used in place of a list of names in a model command. For example, the
following uses two namelists to set up an ordered probit model.

 NAMELIST ; demogrfc = age,sex,educ $
 NAMELIST ; family = haskids,married
 OPROBIT ; Lhs = hsat ; Rhs = one,demogrfc,family,income $

The namelist can be used in any setting that calls for a list of variables. For example, after the
preceding,

 LIST ; family $

Will produce a listing in the output window of the variables in family. The observations listed will
be what is defined by the current sample. (See Chapter R7 for discussion of the current sample.)
You can also use namelists with WRITE, as in

 WRITE ; family,demogrfc ; File=…<filename>… ; Format = CSV $

R6: Variable Lists and Label Lists R-197

R6.5.2 Using Namelists in Matrix Algebra

 The second major use of namelists is to define data matrices for matrix computations. This
feature is shown in detail in Chapter R16, so we note it only briefly here. A namelist defines the
columns of a data matrix. The current sample defines the rows. Thus, the following commands,

 READ ; … ; the clogit data set with 840 rows $
 NAMELIST ; x = one,gc,ttme,invc,invt $
 MATRIX ; xx = x’x ; invxx = <xx> ; b_ols = <x’x>*x’mode $

Compute an X’X, its inverse, and a least squares coefficient vector. The sample used is the 840
observations in the data set. If we now issue the command

 SAMPLE ; 1-200 $

Then the same MATRIX command will compute the three matrices using only the first 200
observations.

R6.5.3 Using Namelists to Display Model Results

 Namelists are used with the DISPLAY command to provide labels for statistical results.
The following illustrates by continuing the earlier example:

 NAMELIST ; x = one,gc,ttme,invc,invt $
 MATRIX ; xx = x’x ; invxx = <xx> ; b_ols = <x’x>*x’mode $
 CALC ; s2 = Ess(x,mode) / (n – Col(x)) $
 MATRIX ; vb = s2 * invxx $
 DISPLAY ; Parameters = b_ols
 ; Covariance = vb
 ; Labels = x
 ; Title = Linear Probability Model $

In the DISPLAY command, the namelist is used in the ; Labels = x to provide a set of names for the
parameters that are to be shown. The results are shown in Figure R6.3. Note that the same
numerical results would be produced by the following:

 NAMELIST ; x = one,gc,ttme,invc,invt $
 REGRESS ; Lhs = mode ; Rhs = x $
 DISPLAY ; Parameters = b
 ; Covariance = varb
 ; Labels = x
 ; Title = Linear Probability Model $

The matrices b and varb are automatically computed by the REGRESS command. The DISPLAY
command will simply replicate the results produced (and shown) by the REGRESS command.

R6: Variable Lists and Label Lists R-198

Figure R6.3 Output Display Using Namelist for Variable Labels

R6.5.4 Using Namelists in CREATE

 There are numerous computations done in CALC and CREATE that are based either on
matrix algebra results or on treating an observation on a set of variables as a row vector. The
NAMELIST definitions are essential for these computations. For an example, the following
instructions create a variable hii that is computed as

 hiii = 1 - xi (XʹX)-1 xiʹ

where X is an n×K data matrix and xi is the ith row of X. That is, xi is the ith observation on the set
of variables.

 NAMELIST ; x = the list of variables $
 MATRIX ; xxi = <x’x> $
 CREATE ; hii = 1 – Qfr(x,xxi) $

Namelists are also used to compute index functions. For example, the following commands compute
the probabilities used to obtain the log likelihood function for a probit model

 NAMELIST ; x = one,gc,ttme,invc,invt $
 PROBIT ; Lhs = mode ; Rhs = x $
 CREATE ; probi = Phi((2*mode-1)*b’x) ; logp = Log(probi) $
 CALC ; List ; loglp = Sum(logp) $

R6: Variable Lists and Label Lists R-199

The CALC command computes the log likelihood function by adding the observations contained in
the variable logp that is calculated by the CREATE command. (The value of loglp is identical to
that reported by the PROBIT command.)

R6.5.5 Using NAMELIST to Create a Data Matrix

 NAMELIST may be combined with CREATE to create a template for a data matrix. The
basic syntax is

 NAMELIST ; (new) ; listname = list of variables $

Both the listname and the variables must be new – they must not already exist. For example,

 NAMELIST ; (new) ; newz = znew1,znew2 $

The command shown does the following:

• Creates znew1 and znew2 as new variables;
• Fills znew1 and znew2 with missing values (-999);
• Defines a new namelist, newz.

This NAMELIST command is equivalent to two commands

 CREATE ; znew1,znew2 $
 NAMELIST ; znew = znew1,znew2 $

 The NAMELIST command can be instructed to fill the new data matrix either with zeros
instead of missing values, with

 ; (new = 0) …

or with random draws from the standard normal distribution with ; (new = N) or with random draws
from the standard uniform distribution with ; (new = U).

R6.5.6 Indexing Variables in Namelists

 Variables in namelists may be indexed in any command in which they are used. The format is

 listname : index to indicate the ith variable.

For example, in NAMELIST ; x = yabc,ydef,y123 $

 x:1 is yabc,
 x:2 is ydef, etc.

R6: Variable Lists and Label Lists R-200

The index can be any numeric entity. For example,

 CALC ; i = 1 $
 DSTAT ; Rhs = x : i $

produces descriptive statistics for yabc. This construction can be extended to looping procedures.
For a simple example,

 NAMELIST ; yvars = yabc,ydef,y123 $
 PROC
 REGRESS ; Lhs = yvars : i ; Rhs = one,x1,x2,x3$
 ENDPROC
 EXECUTE ; i = 1,3 $

Variables, yabc, ydef and y123 are regressed in turn on one, x1, x2, x3.

R6.6 Labellists

 A labellist is a list of text labels that you can use to label your results in several settings. The
list is defined the same way a namelist is defined. The verb is CLIST. The command is

 CLIST ; labellistname = list of labels $

For example, to continue our example, we might define

 CLIST ; xvars = intrcept,gencost,termtime,invcost,invtime $

CLIST provides the two editing functions List and Delete.

 CLIST ; List clist name $

displays the list of labels. Note there is no semicolon after List. For example,

 CLIST ; List xvars $

will show the current contents of xvars in the output window. To delete a character list, use

 CLIST ; Delete clist name $

Once again, there is no semicolon before the name of the list to be deleted.

Labellists are part of the project and are displayed in the project window as shown in Figure
R6.4. If you double click the name of a labellist in the project window, a listing of the contents of
the list is shown in the output window.

R6: Variable Lists and Label Lists R-201

Figure R6.4 Labellist in Project and Output Windows

 The following shows the earlier example, using a character list rather than a namelist to
provide the labels for the parameters. The display would be the same as shown in Figure R6.3 save
for the parameter labels at the left of the output table.

 DISPLAY ; Parameters = b_ols
 ; Covariance = vb
 ; Labels = xvars
 ; Title = Linear Probability Model $

R7: The Current Sample and Missing Data R-202

R7: The Current Sample and Missing Data

R7.1 The Current Sample

 In most cases, you will read in a data set and use the full set of observations in your
computations. But, it is quite common to partition the sample into subsamples and use its parts in
estimation instead. You will also frequently want to partition the data set to define data matrices for
use in the MATRIX commands.

NOTE: The ‘current sample’ is the set of observations, either part or all of an active data set, which
is designated to be used in estimation and in the data matrices for MATRIX, CREATE, etc.

 The commands described in this chapter are used to designate certain observations either ‘in’
or ‘out of’ the current sample. With only a few exceptions, operations which use your data, such as
model estimation and data transformation, operate only on the current sample. For example, if you
have initially read in 10 observations on x and y, but then set the sample to include only observations
1-3, 6, and 8-10, nearly all commands will operate on or use only these seven observations. Thus, if
you compute log(x), only seven observations will be transformed.
 To define the current sample, LIMDEP uses a set of switches, one for each observation in
the data set. Thus, when you define the sample, you are merely setting these switches. As such, the
REJECT command does not actually remove any data from the data set, it merely turns off some of
these switches. The data are not lost. The observations are reinstated with SAMPLE ; All $. Figure
R7.1 shows the process. The sequence of instructions in the editing window creates a sample of
draws from the standard normal distribution. The SAMPLE command chooses the first 12 of these
observations, then the REJECT command removes from the sample observations that are greater
than 1.0 or less than -1.0. This turns out to be observations 6 and 12, as can be seen in the data
editor. The chevron to the right of the row number in the data editor is the switch discussed above.
 There are two sets of commands for defining the current sample, one appropriate for cross
section data and the other specifically for time series. Once the current sample is defined, you may
further reduce it by random sampling observations from it. The DRAW command is used for this
purpose. LIMDEP also provides methods of bootstrapping, which involve random sampling from
the current sample with replacement.

NOTE: Section R7.5 discusses handling missing values in the data set. The missing values are
taken to be part of the data set. Chapter R20 describes ‘multiple imputation’ procedures that are
used to replace missing values with predictions from estimating equations that are built separately
from a model that is being estimated. We will defer discussion of multiple imputation until after
model setups are described in Chapters R8 and R9 and procedures are documented in Chapter R19.
Multiple imputation methods rely on both of these.

R7: The Current Sample and Missing Data R-203

Figure R7.1 Current Sample and the REJECT Command

R7: The Current Sample and Missing Data R-204

R7.2 Cross Section Data

 Initially, observations are defined with respect to ‘rows’ of the data matrix, which are simply
numbered 1 to whatever is the current setting of ROWS. (See Section R3.4 for the definition of
ROWS.)

R7.2.1 Defining the Current Sample with the SAMPLE Command

 Designate particular observations to be included in the current sample with the command

 SAMPLE ; range, range, range, ..., range $

A ‘range’ is either a single observation number or a range of observations of the form lower-upper.
For example,

 SAMPLE ; 1, 12-35, 38, 44-301, 399 $

You can set the sample in this fashion, do the desired computations, then reset the sample to some
other definition, at any time. To restore the sample to be the entire data set, use

 SAMPLE ; All $

Because of the possibility of missing data being inadvertently added to your data set, LIMDEP
handles this command as follows: ‘All’ observations are rows 1 to N where N is the last row in the
data area which is not completely filled with missing data. In most cases, this will be the number of
observations in the last data set you read. But, you can go beyond this last row by giving specific
ranges on the command. For example, suppose you begin your session by reading a file of 100
observations. Thereafter, SAMPLE ; All $ would be equivalent to SAMPLE ; 1-100 $. But, you
could then do the following:

SAMPLE ; 1-250 $
CREATE ; x = Rnn(0,1) $ (random sample)

Now, since there are 250 rows containing at least some valid data, SAMPLE ; All $ is equivalent to
SAMPLE ; 1-250 $.

R7.2.2 Removing and Adding Observations with REJECT/INCLUDE

 These commands are used to delete observations from or add observations to the currently
defined sample. They have the form

 VERB ; logical expression $

 ‘VERB’ is either REJECT or INCLUDE. ‘Logical expression’ is any desired expression
that provides the condition for the observation to be rejected or included. It may include any number
of levels of parentheses and may involve mathematical expressions of any complexity involving
variables, named scalars, matrix or vector elements, and literal numbers. The operators are as follows:

 Math and relational operators are +, -, *, /, ^, >, >=, <, <=, =, #.
 Concatenation operators are & for ‘and’, | for ‘or.’

R7: The Current Sample and Missing Data R-205

A simple example appears in Figure R7.1. Another might be:

 REJECT ; x > 0 $

For a more complex example, we compute an expression for observations which are not inside a ball
of unit radius.

 REJECT ; x^2 + y^2 + z^2 >= 1 $

For a third example with no obvious interpretation:

 INCLUDE ; (r/s)*((c+7)*(x+2) * y^2 + z^3) > 1 | x +y < 0 $

The hierarchy of operations is ^, (*, /) (+,-), (>, >=, <, <=, =, #), &, |. Operators in parentheses
have equal precedence and are evaluated from left to right. When in doubt, add parentheses. There
is essentially no limit to the number of levels of parentheses. (They can be nested to about 20
levels.)
 It is important to note that in evaluating expressions, you get a logical result, not a
mathematical one. The result is either true or false. An expression which cannot be computed
cannot be true, so it is false. Therefore, any subexpression which involves missing data or division
by zero or a negative number to a noninteger power produces a result of false. But, that does not
mean that the full expression is false. For example: (x / 0) > 0 | x > y could be true. The first
expression is false because of the zero divide, but the second might be true, and the ‘or’ in the middle
returns ‘true’ if either expression is true. Also, we adopt the C++ language convention for
evaluation of the truth of a mathematical expression. A nonzero result is true, a zero result is false.
Thus, your expression need not actually make logical comparisons. For example: Suppose x is a binary
variable (zeros and ones). REJECT ; x $ will reject observations for which x equals one, since the
expression has a value of ‘true’ when x is not zero. Therefore, this is the same as REJECT ; x # 0 $.
 REJECT deletes observations from the currently defined sample while INCLUDE adds
observations to the current sample. You can use either of these to define the current sample by
writing your command as

 REJECT or INCLUDE ; New ; … expression … $

For a REJECT command, ; New has the result of first setting the sample to all observations, then
rejecting those observations which meet the condition specified in the expression. For an INCLUDE
command, this has the effect of starting with no observations in the current sample and selecting for
inclusion only those observations which meet the condition. In the latter case, this is equivalent to
‘selecting cases,’ as may be familiar to users of SAS or SPSS.

TIP: If your REJECT or INCLUDE ; New command has the effect of removing all observations
from the current sample, LIMDEP takes this as an error, gives you a warning that this is what you
have done, and ignores the command.

 You may submit REJECT and INCLUDE commands from the dialog box shown in Figure
R7.2. The dialog box is invoked by selecting Include or Reject in the Project:Set Sample menu
or by right clicking in the data editor, clicking Set Sample, then selecting Reject or Include from
the Set Sample menu. Note in the dialog box, the ‘Reject observations from the current
sample’ option at the top is the ; New specification in the command. Also, by clicking the query (?)
button at the lower left, you can obtain information about these commands from the online Help file.

R7: The Current Sample and Missing Data R-206

Figure R7.2 REJECT Dialog Box

 The same Set Sample menu offers All, which just generates a SAMPLE ; All $ command
and Range which produces the dialog box shown in Figure R7.3.

Figure R7.3 Set Sample Range Dialog Box

R7.2.3 Interaction of REJECT/INCLUDE and SAMPLE

 REJECT and INCLUDE modifies the currently defined sample unless you include ; New.
But, SAMPLE always redefines the sample, in the process discarding all previous REJECT,
INCLUDE, and SAMPLE commands. Thus,

 SAMPLE ; 1-50,200-300 $
and SAMPLE ; 1-50 $
 SAMPLE ; 200-300 $

are not the same.
 Any of these three commands may appear at any point, together or separately. Before any
appear, the default sample is SAMPLE ; All $.

TIP: If you are using lagged variables, you should reset the sample to discard observations with
missing data after you compute the lagged values. This is generally not done automatically.

R7: The Current Sample and Missing Data R-207

R7.3 Time Series Data

 When you are using time series data, it is more convenient to refer to rows of the data area
and to observations by date, rather than by observation number. Two commands are provided for
this purpose.
 To give specific labels to the rows in the data area, use

 DATES ; initial date in sample $

The initial date may be one of:

 Undated same as before. (Use this to undo a previous DATES command.)
 DATES ; Undated $
 YYYY year for yearly data, e.g., 1951.
 DATES ; 1951 $
 YYYY.Q year.quarter for quarterly data. Q must be 1, 2, 3, or 4.
 DATES ; 1951.1 $
 YYYY.MM year.month for monthly data. MM is 01 02 03 ... 12.
 DATES ; 1951.04 $

Note that .1 is a quarter, and .5 is invalid. The fifth month is .05, and the tenth month is .10, not .1.
Once the row labels are set up, the counterpart to the SAMPLE command is

 PERIOD ; first period - last period $

For example,

 PERIOD ; 1964.1 - 1977.4 $

 These two commands do not change the way that any computations are done with LIMDEP.
They will change the way certain output is labeled. For example, when you use the data editor, the
row markers at the left will now be the dates instead of the observation numbers.

NOTE: You may not enter a date using only two digits. Your dates must contain all four digits. No
computation that LIMDEP does or command that you submit that involves a date of any sort, for any
purpose, uses two digits. Therefore, there is no circumstance under which LIMDEP could mistake
20xx for 19xx. Any two digit date submitted for any purpose will generate an error, and will not be
processed.

 The DATES command may be given from the Project:Settings/Data Type dialog box,
shown in Figure R7.4.

R7: The Current Sample and Missing Data R-208

Figure R7.4 Dialog Box for the DATES Command

 The SAMPLE and PERIOD commands may be given from the Project:Set Sample
Range dialog box. See Figure R7.5.

Figure R7.5 Dialog Box for the PERIOD Command

R7: The Current Sample and Missing Data R-209

NOTE: The current data type, Data:U, Data:Y, Data:Q, or Data:M is displayed at the top of the
project window. The data editor will also be changed to show the time series data. Figure R7.5
shows an example using quarterly data. The top of the project window displays the ‘Q’ which
indicates quarterly data. The data editor has also automatically adjusted following the setting in
Figure R7.4 for quarterly data beginning in 1961.4.

R7.4 Using the DRAW Command to Obtain Random Samples

 You can draw a random sample from the current sample of observations with the DRAW
command. This might be useful for bootstrap sampling, for example. (See Chapter R21 for
applications and discussion.)

R7.4.1 Random Sampling from a Cross Section

 The procedure is as follows: First, set the parent population to whatever is desired with
READ, SAMPLE, REJECT, and INCLUDE. This results in Nobs observations. The command to
draw a random sample is

 DRAW ; N = number $

to sample ‘number’ observations without replacement. N must be less than Nobs. Use

 DRAW ; N = number ; Rep $

to sample with replacement. In this case, Nobs can be anything and number can be up to 100,000.
For example:

 SAMPLE ; 1-100 $
 CREATE ; i = Trn(1,1) $ numbers from 1 to 100.
 LIST ; i $ will display numbers from 1 to 100 in order.
 DRAW ; N = 200 ; Rep $
 LIST ; i $ will display 200 random draws from i.

The original data are not changed, only the sample pointers are. Restore the original sample with

 DRAW ; N = 0 $

You can enter a DRAW random sample command dialog, as shown in Figure R7.6, by choosing
Draw Sample from the Project Set Sample menu.

R7: The Current Sample and Missing Data R-210

Figure R7.6 Dialog Box for the DRAW Command

All commands which modify the sample turn off the random sample and restore the original data set.
These are REJECT, INCLUDE, SAMPLE, DATES, PERIOD.

WARNING: Do not do any operation which modifies your existing data while this sampling
procedure is in effect. The results will be unpredictable and can be severely problematic. This affects
all operations that use the data.

WARNING: Do not use SKIP (see the next section) with bootstrapped samples or random samples.
SKIP generates an internal REJECT command which will then automatically produce a DRAW
; N = 0 $ command even if no observations get skipped.

R7.4.2 Random Sampling from a Panel Data Set

 If you are using panel data and you want to sample randomly from the panel data set, the
operation in the preceding section is probably not what you need. Assume for the moment that you
have a balanced panel with, say, 1,000 individuals and five observations per individual for a total of
5,000 observations. If you use, say, DRAW ; N = 1000 $, you will draw a panel data set in which,
now, some individuals will no longer have five observations. More likely, you would prefer to draw
a sample of individuals from the original 1,000, so that the drawn sample is still a balanced panel of
individuals randomly drawn so that each is still observed five times. In order to sample randomly
from a panel in this fashion, use

 DRAW ; N = the number of individuals to draw
 ; Pds = either the fixed number of periods or the group size variable $

Note that the syntax allows you to draw a random sample of individuals from an unbalanced panel as
well. Other parameters of this operation are:

• The full sample from which the sample is drawn may not be more than 500,000
observations.

• You may sample with replacement. The replacement is over individuals, not the individual
observations.

• The bootstrapped sample may contain up to 20,000 groups in total.

R7: The Current Sample and Missing Data R-211

R7.4.3 Simulating a Random Sample with Panel Data

You can simulate an unbalanced panel using the procedure described below. This uses some
features that will be described in more detail in the chapters to follow, but this is a convenient place
to introduce them. The procedure will create a sample for a balanced panel as well as an unbalanced
one just by replacing the Rnd(m) in the first CREATE command with the fixed m that you want.

CALC ; ni = ... the number of groups you want in your panel $
SAMPLE ; 1 - ni $
CREATE ; ti = Rnd(m) $ Set m to the largest group size you want.
MATRIX ; mti = ti $
CALC ; i1 = 1 ; i = 1 ; sumti = 0 $
PROCEDURE $
CALC ; i2 = i1 + mti(i) – 1 $
SAMPLE ; i1 - i2 $
CREATE ; ... < the variables you want to simulate> ...
 ... $
CREATE ; groupti = mti(i) ; groupid = i $
CALC ; sumti = sumti + mti(i) ; i1 = i1 + 1 ; i = i + 1 $
ENDPROCEDURE $
EXECUTE ; N = ni $
SAMPLE ; 1 - sumti $

You can now analyze these panel data. Use ; Pds = groupti for group size counts. Groupid is a
simple (1,2,...) group identifier.

R7.5 Missing Data

 This section presents the information you will need to keep track of missing data when you
operate LIMDEP. Section R7.5.5 describes the SKIP command, a particularly important device for
handling missing data. Procedures for filling missing values with predictions from other models are
described in Chapter R20.

R7.5.1 Reading Missing Data

 When a data set contains missing values, you must indicate this in some way at the time the
data are read. How you do this depends on the type of file you are reading:

Worksheet file from a spreadsheet program: Blank cells in a worksheet file are sufficient to
indicate missing values. When LIMDEP writes a worksheet file for export, it, too will indicate
missing data by a blank cell. It is not necessary to put any alphabetic indicator in the cell.

Formatted ASCII file: To indicate missing data in a formatted file, that is one that must be
read with the ; Format = (...) specification in the READ command, leave the fields blank.
Then, add ; Blanks to your READ command when you read the file.

Unformatted ASCII file: Any nonnumeric data in the field, such as the word ‘missing’ will
suffice. Alternatively, a simple period surrounded by blanks will suffice. Note that in such a
file, a blank will not be read as missing, since blanks just separate numbers in the data file.

R7: The Current Sample and Missing Data R-212

CSV file: Missing values in a comma delimited CSV file are indicated by a single blank,
which may appear as the first character in a line, between two commas in the middle of a
line, or as a single blank after a comma at the end of a line. When you read such a file into
LIMDEP, you must use ; Format = CSV in your READ command.

DIF file: DIF files specifically contain alphanumeric data for missing values. Any
nonnumeric value will suffice. ; Format = DIF will pick these up appropriately.

Binary file: Missing data in a binary file must be indicated by the numeric value -999.

 The internal code for a missing datum is -999. You may use this numeric value in any type
of file to indicate a missing value. Upon reading the data, LIMDEP immediately converts any
missing data encountered to the numeric value -999.

R7.5.2 Missing Data in Transformations

 Any transformation (see Chapter R4) that requires a value which turns out to be a cell
containing missing data will return a missing value, not 0. Thus, if you compute y = Log(x), and some
values of x are missing, the corresponding values of y will be also. Conditions are treated as follows:
Suppose your transformation were CREATE ; If (z = 5) y = Log(x) $, and suppose for some
observation, z is missing. If the variable named y already exists and this command is transforming y,
then the condition would automatically be false, and y would not be set equal to Log(x), even if x were
not missing. If this transformation is creating y for the first time, that is, if does not already exist, then
the condition is, once again, automatically false, but now y is returned as the missing value, -999.
 When computing a column of predictions, LIMDEP returns a missing value for any
observations for which any of the variables needed to compute the prediction are missing, even if the
variable which will contain the predictions already exists at the time. This results because when you
request a model to produce a set of predictions, LIMDEP begins the process by ‘clearing’ the column
in the data area where it will store the predictions. Data areas are cleared by filling them with the
missing value code.

R7.5.3 Missing Data in Scalar and Matrix Algebra

 The treatment of missing values by CALCULATE is as follows:

• Dot products involving variables: The procedure is aborted, and -999 is returned.
• Max and Min functions: Missing data are skipped.
• Lik, Rsq, etc. (regression functions): Same as dot products.

 The matrix algebra program that directly accesses the data in several commands, including
x’x, for sums of squares and cross products, <x’x> for inverses of moment matrices, and many
others will simply process them as if the -999s were legitimate values. Since it is not possible to
deduce precisely the intention of the calculation, LIMDEP does not automatically skip these data or
abort to warn you. It should be obvious from the results. You can specifically request this. If you
do have the ‘SKIP switch’ set to ‘on’ (see Section R7.5.5) during matrix computations, LIMDEP
will process MATRIX commands such as x’x and automatically skip over missing values. But, in
such a case, the computation is usually erroneous, so your output will contain a warning that this has
occurred, and you might want to examine closely the calculations being done to be sure it is really
how you want to proceed.

R7: The Current Sample and Missing Data R-213

 Figure R7.7 illustrates the results discussed in the previous paragraph. The commands are
shown in the editing window. (We have selected the Mersenne Twister RNG and set the seed
explicitly so you can replicate the results.) Variables x and y are random samples of 100 observations
from the standard normal distribution. The CREATE command changes a few observations in each
column to missing values – the observations are not the same for x and y. The NAMELIST defines zx
to be x and a column of ones – a two column matrix, and zy likewise. With SKIP turned on, the 2×2
matrix product zx′zy shows that there are 73 observations in the reduced sample (see the 73 that is 1′1
at the upper left corner) and a warning is issued. With SKIP turned off, in the first computation, the
missing values are treated as -999s, and the resulting matrix has values that appear to be inappropriate.
 There are also some MATRIX commands which return new variables, computed as linear
combinations of existing variables. When missing data are encountered here, a missing value will be
returned for the observation being computed, but no warning will be issued (as this might be
deliberate).

Figure R7.7 Matrix Computations Involving Missing Data

R7: The Current Sample and Missing Data R-214

R7.5.4 Missing Data in Estimation Routines

 Unless you request it as described in the next section, LIMDEP will not account for the
presence of missing data in estimation programs. That is, if the current sample contains rows of
missing data, when you estimate a model or compute a moment matrix, the missing values will be
included as if the value -999 were simply valid data. (See the first matrix in Figure R7.7.) This will,
of course, seriously affect your results. Before using your data in estimation programs, you should
use REJECT to delete observations which contain missing values.

TIP: If your estimator fails to converge, or the results look strange, or you get a diagnostic that the
dependent variable is not coded correctly, you have probably failed to reject some observations
which contain missing values. The descriptive statistics (means, standard deviations) will likely
reveal some discrepancies.

NOTE: DSTAT, the descriptive statistics command, automatically bypasses missing values.
Descriptive statistics for each variable are computed separately, based only on the valid values for
that variable. Covariances and correlations are based only on complete full rows of the data. The
results show the resulting sample sizes. Most panel data estimators also bypass missing values, but
most other estimation routines do not.

R7.5.5 Automatically Bypassing Missing Data – The SKIP Command

 LIMDEP will skip missing data if you turn on the SKIP switch. This feature is controlled
with the commands

 SKIP (to turn it on) and NOSKIP (to turn it off).

SKIP can also be turned on and off with Project:Settings/Execution. See Figure R7.8.

Figure R7.8 SKIP Switch from Project Settings/Execution

R7: The Current Sample and Missing Data R-215

 SKIP works as follows: At the time you give the command, the current sample is taken to
be the ‘master sample.’ Note that this may or may not be the entire data set; the current sample may
already be a subset of your data. With this setting ‘on,’ when you give a command to estimate a
model, LIMDEP inspects only the variables in the model command and temporarily rejects
observations for which any of these variables are missing. After the model is estimated, the sample
is once again restored to the master sample.
 For example: suppose the data consist of

 Obs. 1 2 3 4 5 6 7 8 9 10 11 12
 X 1 2 3 1 5 . 8 2 . . 9 5
 Y . 8 2 . 1 3 4 5 6 7 6 1

The sequence of commands

 REJECT ; New ; x > 8 $
 SKIP
 REGRESS ; Lhs = y ; Rhs = one,x $

First deletes observation 11. The master sample is then 1-10,12. The regression uses observations 2,
3, 5, 7, 8, and 12. After it is run, the current sample is restored to 1-10,12. Any subsequent
SAMPLE, REJECT, INCLUDE, or PERIOD resets the master sample. Turn this feature off with
the command NOSKIP.

NOTE: If you are fitting any of the following models with panel data (this is almost all of the
models LIMDEP supports):

 Probit with random or fixed effects
 Logit with random or fixed effects
 Ordered probability with random effects
 Poisson with random or fixed effects
 Negative binomial with random or fixed effects
 Frontier with random effects
 Tobit with random effects
 Parametric survival models
 CLOGIT estimator and all estimators in NLOGIT 5 (treat the NALT rows of data as a panel)
 All fixed effects estimators specified with FEM
 All random parameters estimators
 All latent class estimators

LIMDEP will automatically bypass the full group of observations for any individual in a panel if any
of the observations contain missing data on any of the variables that are being used to fit the model.
You do not have to make any adjustments to enable this feature; it is handled internally. For these
cases, you should not have the SKIP switch on. If you wish to restrict the sample before estimation
in these settings, use REJECT.

R7: The Current Sample and Missing Data R-216

R7.5.6 Nonlinear Optimization Programs and Using SKIP Generally

 SKIP cannot operate on estimators that you define with MAXIMIZE, MINIMIZE,
GMME, NLSQ or NLSURE. The reason is that when SKIP is turned on, LIMDEP inspects the
data contained in lists of variables, ; Rhs, ; Rh2, ; Inst, and so on. The function definitions in these
commands do not contain lists; they contain variables intermingled with other entities such as
parameters and scalars. You can request that SKIP be applied to a set of variables that you specify
by adding
 ; Skip = any list of variables

to your command. You should include variables that appear in the function definitions but are not in
explicit lists. (See Chapters E15, E18, E20 and E44 for discussion of nonlinear function optimizers.)

HINT: You may use this with any estimation command. It will usually be redundant in other
models, but the feature is provided generally since we assume that we cannot anticipate every
possible model specification or usage.

R8: Commands for Estimating Models R-217

R8: Commands for Estimating Models

R8.1 Model Specifications of Variables and Weights

 This chapter will describe the common form of all model estimation commands. Equation
specifications are described in Sections R8.3-R8.7. Using weights in estimation is discussed in
Section R8.8.
 Chapters R9-R13 contain general discussions on the important statistical features of the
model estimators, such as output of model results, interpreting results and obtaining partial effects.
Chapters R11 and R12 also describe procedures that are generally used after a model is estimated,
such as testing hypotheses, retrieving and manipulating results, and analyzing restrictions on model
parameters. In terms of your use of LIMDEP for model estimation and analysis, Chapters R8-R12
are the most important general chapters in this part of the manual.

NOTE: Section R8.3 describes a major new feature in LIMDEP 10, incorporation of interaction
effects and nonlinear functions explicitly in model commands. These are part of a program wide
expansion in your ability to obtain model simulations and partial effects for any model specification.

R8.2 Model Commands

 All model commands are built from the basic form

 Model Command ; Lhs = dependent variable
 ; Rhs = list of independent variables
 ; ... other parts specific to the model ; ... $

The 100 or so different models are specified by changing the model name or by adding or subtracting
specifications from the template above. At different points, other specifications, such ; Rh2 = a
second list, are used to specify a list of variables. These will be described with the particular
estimators in the Econometric Modeling Guide. Different models will usually require different
numbers and types of variables to be specified in the lists above. You may always use namelists at
any point where a list of variables is required. Also, a list of variables may be composed of a set of
namelists.

NOTE ON CONSTANT TERMS IN MODELS: Of the over 100 different models that LIMDEP
estimates, only one, the linear regression model estimated by stepwise regression, automatically
supplies a constant term in the Rhs list. If you want your model to contain a constant term, you must
request it specifically by including the variable ‘one’ among your Rhs variables. You should notice
this in all of our examples below. The variable one is provided by the program; you do not have to
create it. You can, however, use one at any point, in any model where you wish to have a constant
term, and any MATRIX command based on a column of ones as a variable in the analysis of data.

R8: Commands for Estimating Models R-218

ADVICE ON MODEL SPECIFICATION: It is fairly rare that a model would be explicitly
specified without a constant. In almost all cases, you should include the constant term. Omitting the
constant amounts to imposing a restriction that will often distort the results, sometimes severely.
(We recall a startling exchange among some of our users in reaction to what appeared to be drastic
differences in the estimates of a probit model produced by LIMDEP and Stata. The difference
turned out to be due to the omitted constant term in the LIMDEP command.) In a few cases, though
it is not mandatory by the program, you definitely should consider the constant term essential – these
would include the stochastic frontier and the ordered probit models. However, in a few other cases,
you should not include a constant term. These are certain fixed effects, panel data estimators, such
as regression, logit, Poisson and so on. (In most cases, if you try to include an overall constant term
in a fixed effects model, LIMDEP will automatically remove it from the list.)

 In addition to the specifications of variables, there are over 200 different specifications of the
form
 ; sss [= additional information]

which are used to complete the model command. These specifications are specific to the model
being estimated. In some cases, these are mandatory.

 SETPANEL ; Group = id ; Pds = ti $
 REGRESS ; Lhs = ... ; Rhs = ... ; Panel ; Random Effects $

This is the model command for a random effects linear regression model. The last specification is
necessary in order to request the particular panel data model. Without the last two specifications, the
command simply requests linear least squares. Another example

 REGRESS ; Lhs = … ; Rhs = … ; Heteroscedasticity $

Requests a robust, heteroscedasticity corrected covariance matrix. In other cases, specifications will
be optional, as in

 REGRESS ; Lhs = ... ; Rhs = ... ; Keep = yf $

which requests LIMDEP to fit a model by linear least squares, then compute a set of predictions and
keep them as a new variable named yf. The regression is computed regardless, ; Keep = name is
added to request the additional step of putting the predictions in the data area as a new variable
named yf.
 Some model specifications are general and are used by most, if not all, of the estimation
commands. For example, the ; Keep = name specification in the command above is used by all
single equation models, linear or otherwise, to request LIMDEP to keep the predictions from the
model just fit. In other cases, the specification may be very specific to one or only a few models.
For example, the ; Cor in

 SWITCHING REGRESSION ; Lhs = ... ; Rh1 = ... ; Rh2 = ... ; Cor $

R8: Commands for Estimating Models R-219

is a special command used to request a particular variant of the switching regression model, that with
correlation across the disturbances in the two regimes. The default is to omit ; Cor, which means no
correlation.
 Figure R8.1 shows a model command and the resulting output window using the basic form
of model command.

Figure R8.1 Basic Model Estimation Command and Results

R8.3 Interaction Terms and Nonlinear Functions of Variables

 Models are usually specified with interaction terms, squares of variables, and so on. In
general, it is necessary to create these variables separately in the data set and then include the
transformed variables in the model. To continue the example above, a model that includes the
square of age and different impacts of education by gender would be obtained by adding

 CREATE ; agesq = age * age ; fem_educ = female * educ $
 PROBIT ; Lhs = doctor ; Rhs = one, age, agesq, educ, female, fem_educ $

R8: Commands for Estimating Models R-220

You can include these transformed variables directly in the model command, rather than first adding
them to the data set. Figure R8.2 shows the command and results.

Figure R8.2 Estimating a Model with Interaction Terms

R8.3.1 Interaction Terms and Logs of Variables in Commands

 Any term in a model command may appear as follows:

 variable1 * variable2 such as female * educ
 variable1 * variable2 ^ power such as educ * age^2
 variable1 / variable2 such as gdp / pricelvl
 variable1 / variable2 ^ power such as income / price^2
 variable1 ^ power such as age^2
 log(variable) such as log(wage)

R8: Commands for Estimating Models R-221

Note variable1 may be same as variable2, so age*age is the same as age^2. These variables may
appear in any list in a model, that is, ; Rhs, ; Lhs, ; Rh1, ; Rh2, and so on. The only restrictions are
that only the forms above are supported and the exponent in the power functions must be positive
and of the form n, .n or n.n. That is, they must be explicit numbers. A square root, for example is
obtained with power = .5. Note as well, the formulation also allows you to do division. There is a
potential for complications here. You will be protected from dividing by zero. However, the result
of your attempt to divide by zero will be to return a missing value. Since this calculation is being
done ‘on the fly’ during manipulations of the data, it is not possible to stop execution and take some
corrective action. A zero divide can turn an observation with no missing values into one in which a
variable in the model does contain a missing value. You should be careful at the outset if you will
use this feature, and ensure that you will not be dividing by zero at any time. There is also a second
possible (less probable, however) complication in this procedure. In general, the procedure will not
allow you to raise a negative number to a power. In principle, it is possible to raise a negative
number to an integer power, but LIMDEP is not checking for this possibility. An attempt to raise a
negative number to a nonzero power produces a missing value. Finally, the log function returns a
missing value if the variable is not positive.

In addition to the obvious convenience of streamlining the model commands and making it
unnecessary to compute the additional variables in your data set, this new feature provides a
significant capability to work with the PARTIAL EFFECTS command described in Chapter R11.
Consider a probit model with the square of age in it. The probability is

 Prob(doctor=1|x) = Φ(β1 + β2educ + β3female + β4age + β5age2).

The partial effect of age in this model is

 ∂Φ(.)/∂age = φ(β1 + β2educ + β3female + β4age + β5age2) × (β4 + 2β5age).

If we request partial effects in the usual way with a simple probit command

 CREATE ; agesq = age^2 $
 PROBIT ; Lhs = doctor ; Rhs = one, educ, female, age, agesq

; Partial Effects $

The response is

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
Average partial effects for sample obs.
--------+--
 | Partial Prob. 95% Confidence
 DOCTOR| Effect Elasticity z |z|>Z* Interval
--------+--
 EDUC| -.00571*** -.10285 -4.58 .0000 -.00816 -.00327
 FEMALE| .13036*** .09924 22.38 .0000 .11894 .14177 #
 AGE| -.02186*** -1.51297 -10.10 .0000 -.02610 -.01762
 AGESQ| .00031*** 1.00074 12.66 .0000 .00026 .00036
--------+--
Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0]
Elasticity for a binary variable is marginal effect/Mean.
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R8: Commands for Estimating Models R-222

This looks convincing, but it is not what we wanted. The program has computed a separate partial
effect for age and agesq. The problem is that the program has no way of knowing that agesq is the
square of age; it could be anything. It is just another variable in the equation. (This is the point
made by the now famous paper of Ai and Norton (2003).)

The PARTIAL EFFECTS feature described in Chapter R11 makes use of the in line
interaction and nonlinear functions and computes the partial effects correctly. For the example
shown, if we change the commands to

 PROBIT ; Lhs = doctor ; Rhs = one, educ, female, age, age^2 $
 PARTIAL EFFECTS ; Effects: age $

the results are

--> PARTIALS ; Effects : age $

Partial Effects Analysis for Probit Probability Function

Effects on function with respect to AGE
Results are computed by average over sample observations
Partial effects for continuous AGE computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dAGE Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect .00467 .00024 19.30 .00420 .00514

The in line statement of the relationship between age and age squared enables the partial effects
program to compute the appropriate derivatives.

NOTE: This new capability is built into nearly all the models that are fit by LIMDEP, including the
linear regression model, probit, tobit, and dozens of other.

 In any statistical command (DSTAT, REGRESS, SURE, and so on), logs of any variables
may be specified directly in the command instead of being created beforehand. For example, the
commands

 CREATE ; ly = Log(y) ; lx = Log(x) $
 DSTAT ; Rhs = ly, lx $
 REGRESS ; Lhs = ly ; Rhs = one, lx $

could be replaced with the commands

 DSTAT ; Rhs = Log(y), Log(x) $
 REGRESS ; Lhs = Log(y) ; Rhs = one, Log(x) $

Remember, though, in the second case, the logs of the variables are not kept in your data area; they
are retained only for the current regression or model.

R8: Commands for Estimating Models R-223

R8.3.2 Interaction Terms and Nonlinear Terms in Namelists

 Namelist definitions may contain any number of interactions, logs, and so on, as defined in
the preceding section. For example,

 NAMELIST ; translog = one, lnx1, lnx2, lnx1^2, lnx2^2, lnx1*lnx2 $

might be used for convenience to specify a production function. Then,

 REGRESS ; Lhs = Log(y) ; Rhs = translog $

could be used to estimate the model. It is important to note a difference between placing interactions
in a namelist and in a model command. When interactions are placed in your model command, they
replace the internal table that defines the constructed variables. Each model command defines its
own new set of variables. The list is replaced by the next model command. But, NAMELIST
defines a permanent set of definitions, since the namelist, itself is permanent. To continue the
example, the commands,

 NAMELIST ; cobbdgls = one, lnx1, lnx2 $
 NAMELIST ; translog = one, lnx1, lnx2, lnx1^2, lnx2^2, lnx1*lnx2 $
 REGRESS ; Lhs = Log(y) ; Rhs = translog $
 CALC ; lt = logl $
 REGRESS ; Lhs = Log(y) ; Rhs = cobbdgls $
 CALC ; lc = logl ; chisq = 2*lt - lc) $

will set up a likelihood ratio test of the null Cobb-Douglas model against the alternative translog
model.

R8.3.3 Managing Constructed Variables in the Data Set

 Namelists that contain interaction terms are accumulated in a table. This set of information
is part of the project you are working on. When you save your project, the namelist definitions are
saved in it, so the definitions will be intact when you reload your project.
 The accumulated table accounts for cases when namelists use the same constructions. For
example, the following creates three namelists.

SAMPLE ; 1-1000 $
CREATE ; x1 = Rnu(0,1) ; x2 = Rnu(0,1) ; x3 = Rnu(0,1) $
CREATE ; lnx1 = Log(x1) $
CREATE ; lnx2 = Log(x2) $
NAMELIST ; cobbdgls = one, lnx1, lnx2 $
NAMELIST ; hybrid = one, lnx1, lnx2, lnx1*lnx1, lnx2*lnx2 $
NAMELIST ; translog = one, Log(x1), Log(x2), lnx1*lnx1, lnx2*lnx2, lnx1*lnx2 $

The hybrid and translog lists share two interactions, so these do not create separate table entries.
You can see what is contained in the table with

 LIST ; [*] $

R8: Commands for Estimating Models R-224

This is a special single purpose command that is used to obtain a listing of the internal table of
interactions defined by your namelist commands. For the preceding, we would obtain

Constructed Variables Specified in Namelists and in Selection Equation
Variable Variable Variable ^ Power Used by Namelist Selection
--
_ntrct01 LNX1 * LNX1 HYBRID TRANSLOG
_ntrct02 LNX2 * LNX2 HYBRID TRANSLOG
logX1 Log X1 TRANSLOG
logX2 Log X2 TRANSLOG
_ntrct05 LNX1 * LNX2 TRANSLOG

The internal names at the left are not necessarily meaningful. They will show up in some sets of
results, however, so you may find the LIST command useful. When the variables needed to create
an interaction term are deleted for any reason, then it is no longer possible to construct a namelist
that uses that variable. You will receive a warning when this has occurred.
 There is one table with up to 50 entries in it for namelists, so it is possible for you to
overflow if you use too many interactions. As noted, it is possible to overflow the table if you have
too many complicated namelists. You can clear the table with

 DELETE ; [*] $

This special command is used only to clear the namelists interaction terms definitions table. For our
example, the DELETE command produces

Cleared internal table of constructed variables
Namelist HYBRID is no longer defined.
Namelist TRANSLOG is no longer defined.

R8.4 Categorical Variables in Model Commands

Categorical variables may be expanded in line in a model command with

 Expand(variable) or #variable such as expand(ethnic) or #ethnic.

For example, the following commands first obtain the variable sah (self assessed health). Hsat is
coded 0 – 10. The RECODE command collapses it to three categories. The PROBIT command
then fits the model shown above with the expanded sah variable in the model. There are three
categories, so one of them (the last one) is omitted.

CREATE ; sah = hsat $
RECODE ; sah ; 0/4=1 ; 5/7=2 ; 8/10=3 $
PROBIT ; Lhs = doctor

; Rhs = one, age, age^2, educ, female, female*educ, #sah$

The resulting output is shown in Figure R8.3.

R8: Commands for Estimating Models R-225

Figure R8.3 Probit Model with Interaction Terms and Categorical Variable

The specification creates a temporary internal namelist, such as educ = xx with a set of up to

99 dummy variables of the form educ = 01, educ = nn…, Your categorical variable need not be a
sequence of integers, but it must be composed of integers that are somewhere in 1,...,100. Thus,
educ could be coded 12,16,18,20 (number of years). The last dummy variable is always omitted, so
this can create up to 99 dummy variables. They are temporary. The names will show up in the
output by name, but will not show up in the data set or the project window. The variables and the
temporary namelist vanish after the model is executed.

There is a special case, if the variable is named year, we can assume it is up to 100 years
starting in 1921 and ending in 2020. Other restrictions:

1. This form may only be used for Rhs, Rh1, Rh2, Inst, Hfn, Hf1, Hfu, Hfv.
2. It may not be used in any form of multinomial choice model DISCRETE, NLOGIT, or any

of the sub forms such as RPLOGIT, etc.
3. It may not be combined with the interaction terms in Section R8.3.1.

Note that the construction mimics CREATE ; name = Expand(variable) but does not put any new
variables or namelists in the data set.

R8: Commands for Estimating Models R-226

R8.5 Lags and Partial Differences in Model Commands

 Models involving lagged variables may also be specified directly in terms of the lags, instead
of using previously created variables. For example, a regression of yt on one and yt-1 could be
obtained with

 CREATE ; lagy = y[-1] $
 REGRESS ; Lhs = y ; Rhs = one, lagy $

But, these two lines could be replaced by the single command

 REGRESS ; Lhs = y ; Rhs = one, y[-1] $

Leads and lags are specified using LIMDEP’s usual format with square brackets. Leads can be
specified with positive values in the brackets; the ‘+’ is optional. I.e., y[1] and y[+1] are the same.
 Lags and leads may be specified in this fashion in any Rhs, Rh1, Rh2, Inst, Eqn, or any other
variable list in any model command. Note, however that an invalid attempt to use a lagged variable
results in the diagnostic ‘Variable list contains a name not in the expected table’ followed by the
offending name. For example,

 LIST ; x[-1] $

is invalid since LIST is not a model command.

TIP: Namelists may not contain logs or lags. These variables are computed ‘on the fly,’ and do not
exist permanently in your data set unless you create them. If you attempt to include a lagged variable
in a namelist, a diagnostic warning of an unidentified name, ‘not in the expected table’ will be given.

 Logs and lagged variables can be mixed in any list of names, along with other variables, but
not with each other. Thus, Log(x[-1]) in a model command would be invalid. If a log cannot be
computed, because of a nonpositive value, a -999 is returned, BUT, NO WARNING IS ISSUED.
Lags or leads which extend beyond the limits of the data are returned as 0.0. You should set the
sample carefully before you use either of these operations. By and large, LIMDEP is not able to
account for your missing data here, even if SKIP is turned on.
 If you are using an iterative procedure with a large data set, embedding lags and logs in the
command will be a slower and much less efficient way to proceed, since the logs are recomputed
during each pass through the data set. In this instance, you should compute the logs of the variables
before calling for the procedure.

R8: Commands for Estimating Models R-227

 The following computes two step generalized least squares estimates for a classical
regression with an AR(3) (third order autoregressive) disturbance. The CREATE command uses the
coefficient vector that is automatically saved by the second regression. In the second regression,
where residuals are regressed on three lagged values, the out of sample values are replaced with zeros.

SAMPLE ; 1-127 $
 CREATE ; y = Rnn(0,1) ; x = Rnn(0,1) $
 REGRESS ; Lhs = y ; Rhs = one,x ; Res = e $
 REGRESS ; Lhs = e ; Rhs = e[-1], e[-2], e[-3],one $
 CREATE ; ygls = y - b(1)*y[-1] - b(2)*y[-2] - b(3)*y[-3]
 ; xgls = x - b(1)*x[-1] - b(2)*x[-2] - b(3)*x[-3] $

At this point, the first three rows of xgls and ygls are undefined.

SAMPLE ; 4-127 $
 REGRESS ; Lhs = ygls ; Rhs = one,xgls $

A similar procedure could be used for other autoregressive schemes. But, for some applications,
there is a simpler way to compute the last regression. The following option would normally be used
mainly with the classical regression model but, in fact, can be used in any model command. If your
model contains the specification

 ; Dfr = r1,r2,...,rp

where there may be any number of coefficients, then every observation on every variable in your
data set, zt (except one, of course) is used as if it had been transformed to

 zt* = zt - r1zt-1 - ... - rpzt-p.

(The data are not actually transformed; observations are differenced as they are used.) For example,
suppose you wish to regress yt*= yt - r1 yt-1 - r2 yt-2 - rp yt-3 on the same transformation of a set of
variables contained in a namelist, x. It is not necessary to compute the transformed variables. Use

 REGRESS ; Lhs = y ; Rhs = x ; Dfr = r1, r2, r3 $

Note that this could be applied to the example that embeds the lagged values in the regression. We
could use

 REGRESS ; Lhs = y ; Rhs = one, x ; Dfr = b(1), b(2), b(3) $

and omit the preceding CREATE commands. The coefficients may take any value, including 1.0, so
you can use this device to compute a regression in first differences;

 REGRESS ; Lhs = y ; Rhs = x ; Dfr = 1 $

R8: Commands for Estimating Models R-228

R8.6 Command Builders

 LIMDEP contains a set of dialog boxes and menus that you can use to build up your model
commands in parts, as an alternative to laying out the model commands in the text editor. Figure
R8.4 shows the top level model selection. The menu items, Data Description, etc., are subsets of
the modeling frameworks that LIMDEP supports. We’ve selected Linear Models from the menu,
which produces a submenu offering Regression, 2SLS, and so on. From here, the command
builder contains specialized dialog boxes, specific to a particular model command.

Figure R8.4 Model Command Builder with Linear Models Menu

We’ll illustrate operation of the command builder with a familiar application, Grunfeld’s panel data
set, 10 firms, 20 observations per firm, on three variables, investment, i, profit, f, and capital stock, c.
The data are contained in the project shown in Figure R8.5. The variables, firm1, form2,… are
dummy variables for the 10 firms. (The project files can be found in the resource folder created with
installation: C:\LIMDEP10\Project Files.)

R8: Commands for Estimating Models R-229

Figure R8.5 Project Window for the Grunfeld Data

Figure R8.6 shows the main model specification dialog box (Main page), which will be quite similar
for most of the models. The main window provides for specification of the dependent variable, the
independent variables, and weights if desired. (Weights are discussed in Chapter R8.) We will not
be using them in this example. If desired, the model is fully specified at this point. Note that the
independent variables have been moved from window at the right, which is a menu, to the
specification at the left. The highlighted variables D3 – D9 will be moved when we click the ‘<<’
button to select them. You may also click the query (?) button at the lower left of the dialog box to
obtain a Help file description of the REGRESS command for linear models that is being assembled
here. The Run button allows you now to submit the model command to the program to fit the
model. There is also a box on the Main page for the REGRESS command for specifying the
optional extension, the GARCH model. Since the main option box for this specification is not
checked, this option will not be added to the model command.

R8: Commands for Estimating Models R-230

Figure R8.6 Main Page of Command Builder for Linear Regression Model

 The other two tabs in the command builder provide additional options for the linear
regression model, as shown in Figures R8.7 and R8.8. For this example, we’ll submit the simple
command from the Main page with none of the options. Clicking the Run button submits the
command to the program, and produces the output shown in Figure R8.9.

Figure R8.7 Options Page for Linear Regression Model

R8: Commands for Estimating Models R-231

Figure R8.8 Output Page for Linear Regression Model

 The regression command that was assembled by the command builder can be seen in the
output window directly above the regression output in Figure R8.9:

Figure R8.9 Regression Results from Command Builder

R8: Commands for Estimating Models R-232

 The command builder has done the work of constructing the command and sending it to the
program. Although the command builders do not remember their previous commands, the
commands are available for you to reuse if you wish. You can use Edit:Copy and Edit:Paste to
copy commands from your output window into your editing window, then just submit them from the
editing window. The advantage of this is that you now need not reenter the dialog box to reuse the
command. For example, if you wanted to add a time trend, year, to this equation, you could just
copy the command to the editor, add year to the list, then select the line and click GO.

TIP: Commands that are ‘echoed’ to the output window are always marked with the leading ‘-- >.’
The command reader will ignore these, so you can just copy and paste the whole line, or block of
lines to move commands to your editing window.

 The command builders are not complete for all models that can be specified by LIMDEP.
Many features, such as the newer panel data estimators, are not contained in the command builders.
In fact, you will probably ‘graduate’ from the dialog boxes fairly quickly to using the text editor for
commands. The editors provide a faster and more flexible means of entering program instructions.

R8.7 Conditional Model Commands

 There are several features available for conditioning model estimation for certain subsamples
or for estimating models when some conditions are met, for example, based on some result from a
previous model.

R8.7.1 Estimation Conditioned on a Scalar Test Value

Any model command may be conditional using

 ; (scalar = value) or # (# means not equal) or < or >

If the condition is met, everything continues. If it is not met, a diagnostic comes back and the model
is not computed. The following shows an example for a regression model: The mean of a variable
named gcb is computed. If this mean is greater than 200, the regression is computed. Since the
mean is 110.9 which is less than the condition, the diagnostic is issued and the regression is not
computed. Then, the same sequence is carried out with the condition that the mean is greater than
100. The mean passes this condition, and the regression is computed.

CALC ; List ; gcb = Xbr(gc) $
 GCB = .11087976190476190D+03

REGRESS ; (gcb > 200) ; Lhs = gc ; Rhs = one,invt,invc $

 Error 999: GCB is not > 200.00000. Model is not estimated.

REGRESS ; (gcb > 100) ; Lhs = gc ; Rhs = one,invt,invc $

The CALC command obtains a value for gcb of 110.9. The first REGRESS command conditions
on gcb > 200, which is not true, so the regression command is bypassed with a diagnostic. The
second regression is computed, since 110.9 is greater than 100.

R8: Commands for Estimating Models R-233

R8.7.2 Setting the Sample Temporarily for a Model

Any model instruction can be specified for a subset of the sample defined by any condition
that can be used for an INCLUDE command. The syntax is

 Model (any) ; If [any condition that can be used for an INCLUDE command]
 ; ... the rest of model command $

The current sample is temporarily set to what is in the condition, relative to the current sample at the
time. A standard case would be when one wishes to select on a binary variable, as in the following
which computes separate regressions for men and women.

 REGRESS ; Lhs = wage ; Rhs = one,age,educ ; If [sex = 1] $
 REGRESS ; Lhs = wage ; Rhs = one,age,educ ; If [sex = 0] $

The command may be used more generally, as in the following in which the sample is set to include
the observations for which a certain variable is less than the sample average.

 CALC ; gcb = Xbr(gc)$
 REGRESS ; If [gc < gcb] ; Lhs = gc ; Rhs = one,invc,invt $

R8.7.3 Looping over Strata for a Model Command

You may extend the If [...] feature above to request a model estimator to loop through a set
of strata defined for a variable in the data set. The syntax is

 Model (any) ; For [variable] ; … the rest of the model $

This command executes once for each unique integer value of variable. To continue the earlier
example,

 REGRESS ; For [firm] ; Lhs = i ; Rhs = one,f,c $

would fit a linear regression model for the subsamples firm=1, firm=2, and so on. This feature
works for any set of integers – they need not be 1,2,... Data need not be sorted. The processor
simply works through the data set and picks out the subsamples one at a time. You may narrow the
definition with

 Model (any) ; For [variable = i1,i2,… list of integers] ; … $
as in
 POISSON ; For [educ = 9,12,16]
 ; Lhs = visits ; Rhs = one,age,income,educ $

(This feature corresponds to the ‘by variable’ types of construction in other commercial packages.)
 To continue our earlier example, the Grunfeld data contain 20 years of data on each of 10
firms. The variable firm indexes the firms. To carry out the same regression for the 10 firms, we used

R8: Commands for Estimating Models R-234

--> REGRESS ; for[firm] ; Lhs = i ; Rhs = one,f,c$
+---+
| Setting up an iteration over the values of FIRM |
| The model command will be executed for 10 values |
| of this variable. In the current sample of 200 |
| observations, the following counts were found: |
| Subsample Observations Subsample Observations |
| FIRM = 1 20 FIRM = 2 20 |
| FIRM = 3 20 FIRM = 4 20 |
| FIRM = 5 20 FIRM = 6 20 |
| FIRM = 7 20 FIRM = 8 20 |
| FIRM = 9 20 FIRM = 10 20 |
+---+
| Actual subsamples may be smaller if missing values |
| are being bypassed. Subsamples with 0 observations |
| will be bypassed. |
+---+

* Subsample analyzed for this command is FIRM = 1 *

(The output includes individual estimation results for the 10 firms.)

R8.8 Using Weights in Estimation

 Any procedure which uses sums of the data, including descriptive statistics and all
regression and nonlinear models can use a weighting variable by specifying

 ; Wts = name

where name is the name of the variable to be used for the weighting.
 Any model based on least squares of any sort or on likelihood methods can be estimated
with weights. This includes REGRESS, PROBIT, all LOGIT models, and so on. The only
substantive exceptions are the nonparametric and semiparametric estimators, MSCORE, NPREG,
and the Cox proportional hazard model.

NOTE: In computing weighted sums, the value of the variable, not its square root is used. As such,
if you are using this option to compute weighted least squares for a heteroscedastic regression, name
should contain the reciprocals of the disturbance variances, not the standard deviations.

In maximum likelihood estimation, the terms in the log likelihood and its derivatives, not the data
themselves, are multiplied by the weighting variable. That is, when you provide a weighting
variable, LIMDEP computes a sum of squares and cross products in a matrix as X′WX = Σiwixix′
and a log likelihood Log L = Σiwilog(fi), where wi is an observation on your weighting variable.
 The weighting variable must always be positive. The variable is examined before the
estimation is attempted. If any nonpositive values are found, the estimation is aborted.

R8: Commands for Estimating Models R-235

 During computation, weights are automatically scaled so that they sum to the current sample
size. The variable, itself, is not changed, however. If you specify that variable w is to be the
weighting variable in ; Wts = w, the weight actually applied is wi* = [N/Σiwi] × wi. This scaling
may or may not be right for a selected sample in a sample selection model. That is, after selection,
the weights on the selected data points may or may not sum to the number of selected data points.
As such, the weights in SELECT with univariate and bivariate probit criterion equations are rescaled
so that they sum exactly to the number of selected observations.

TIP: The scaling will generally not affect coefficient estimates. But, it will affect estimated
standard errors, sometimes drastically.

 To suppress the scaling, for example for a grouped data set in which the weight is a
replication factor, use ; Wts = name,noscale or just ; Wts = name,n.

WARNING: When this option is used with grouped data qualitative choice models, such as logit, it
often has the effect of enormously reducing standard errors and blowing up t-ratios.

The ‘noscale’ option would most likely be useful when examining proportions data with a known
group size. For example, consider a probit analysis of county voting returns. The data would consist
of N observations on [ni, pi, xi], where ni is the county size, pi is the proportion of the county
population voting on the issue under study, and xi is the vector of covariates. Such data are
heteroscedastic, with the variance of the measured proportion being proportional to 1/ni. We
emphasize, once again, when using this option with population data, standard errors tend to become
vanishingly small, and call upon the analyst to add the additional measure of interpretation.

R9: Output R-236

R9: Output

R9.1 Standard Output from Estimation Programs

 Results produced by an estimation commands will vary from model to model. The display
below that would appear in the output window would be typical. These are the results produced by
estimation of a basic tobit model using the Mroz.lpj data provided with the program. (The project
files can be found in the resource folder created with installation: C:\LIMDEP10\Project Files.) The
display begins with an echo of the estimation command followed by a statement of the exit status.
Status=0 means that the model was successfully estimated. (Something other than zero will indicate
a problem and will be accompanied by a diagnostic message. The sign on the log likelihood in the
status line is reversed because the optimizer minimizes the negative of the log likelihood.)

--> TOBIT ; Lhs = Whrs ; Rhs = one,wa,we,ww,kl6,k618$
Normal exit: 5 iterations. Status=0, F= 3817.300

Limited Dependent Variable Model - CENSORED
Dependent variable WHRS
Log likelihood function -3817.29976
Estimation based on N = 753, K = 7
Inf.Cr.AIC = 7648.600 AIC/N = 10.158
Model estimated: Feb 14, 2011, 08:13:12
Threshold values for the model:
Lower= .0000 Upper=+infinity
LM test [df] for tobit= 316.766[6]
Normality Test, LM = 40.989[2]
ANOVA based fit measure = .225490
DECOMP based fit measure = .236441
--------+--
 | Standard Prob. 95% Confidence
 WHRS| Coefficient Error z |z|>Z* Interval
--------+--
 |Primary Index Equation for Model
Constant| 1702.85*** 444.9422 3.83 .0001 830.78 2574.93
 WA| -33.9421*** 7.09484 -4.78 .0000 -47.8477 -20.0364
 WE| -9.39496 22.09910 -.43 .6707 -52.70840 33.91847
 WW| 199.156*** 15.52898 12.82 .0000 168.719 229.592
 KL6| -837.633*** 118.4994 -7.07 .0000 -1069.888 -605.379
 K618| -103.922*** 39.42369 -2.64 .0084 -181.191 -26.653
 |Disturbance standard deviation
 Sigma| 1158.25*** 42.96400 26.96 .0000 1074.04 1242.46
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

 Most of the models estimated by LIMDEP (including the tobit model above) are single
equation, ‘index function’ models. There is a dependent variable, which we’ll denote ‘y,’ a set of
independent variables, ‘x,’ and a model, consisting, in most cases, of either some sort of regression
equation or a statement of a probability distribution, either of which depends on an index function,
x′β and a set of ‘ancillary’ parameters, θ, such as a variance term, σ2 in a regression or a tobit model.
The parameters to be estimated are [β,θ]. Some notes about the output:

R9: Output R-237

• Results always include the coefficients, standard errors, and ratios of coefficients to standard
errors. In the index function models, the coefficients are named by the variable that
multiplies them in the index function. In models which do not use an index function
(NLSQ, MINIMIZE, CLOGIT, and a several others), the parameter label that you provide
will appear with the estimate instead. Note that ‘one’ becomes ‘Constant’ in the table.

• The prob value shown, ‘Prob[|z| > z*],’ is the value for a two tailed test of the hypothesis that
the coefficient equals zero. The probability shown is based on the standard normal
distribution in all cases except the linear regression model, when it is based on the ‘t’
distribution with degrees of freedom that will be shown in the table. When you fit a linear
regression, the table will list values of ‘t’ and Prob[|t|>t*]

• The diagnostics table for the model reports some statistics which will be present for all
models usually including:

1. left hand side variable,
2. number of observations used and the number of parameters estimated
3. the date and time the model was estimated,
4. log likelihood function or other estimation criterion function.

• Some results will be computable only for some models. The following results listed for the

Poisson model will not appear when there is no natural, nested hypothesis to test. (For
example, they will not normally appear in the output for the tobit model.)

1. log likelihood at a restricted parameter estimate, usually zero,
2. chi squared test of the restriction,
3. significance level,
4. degrees of freedom.

• Finally, there are usually some statistics or descriptors which apply specifically to the model

being estimated. For the tobit model, the output contains the threshold values used for the
censoring. There are also two Lagrange multiplier based specification test statistics that are
specific to the tobit model.

• Footnotes to the table will explain specific features of the output. This will usually include
a legend about reports of statistical significance, such as in the previous example. But, other
information might be included as well. For example, the result below shows the standard
display of partial effects for a probit model based on our earlier example. (The Lhs variable
in the tobit equation is hours worked. In the probit model that produced the results below, it
is 1[hours > 0].

The footnotes for this table indicate how the elasticity is computed for a binary variable and notes
that the ‘#’ indicates a dummy variable in the model, for which the partial effect is computed by first
difference rather than differentiation.

R9: Output R-238

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
Average partial effects for sample obs.
--------+--
 | Partial Prob. 95% Confidence
 LFP| Effect Elasticity z |z|>Z* Interval
--------+--
 WA| -.00724*** -.54202 -2.78 .0055 -.01235 -.00213
 WE| .03956*** .85514 5.17 .0000 .02455 .05457
 KIDS| -.11704*** -.14330 -2.65 .0080 -.20355 -.03053 #
--------+--
Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0]
Elasticity for a binary variable is marginal effect/Mean.
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R9.1.1 Changing the Confidence Level for the Confidence Intervals

 The default level of confidence for the confidence intervals is the universal standard 95%.
You can change this by adding

 ; Clevel = the value.

Acceptable values are from .10 to .99. For example, by adding ; Clevel = .90 to the TOBIT
command in the first example above, we revise the results to obtain the following output. The results
are the same as before save for the narrower (now 90% level) confidence intervals.

--------+--
 | Standard Prob. 90% Confidence
 WHRS| Coefficient Error z |z|>Z* Interval
--------+--
 |Primary Index Equation for Model
Constant| 1702.85*** 444.9422 3.83 .0001 970.99 2434.72
 WA| -33.9421*** 7.09484 -4.78 .0000 -45.6120 -22.2721
 WE| -9.39496 22.09910 -.43 .6707 -45.74474 26.95481
 WW| 199.156*** 15.52898 12.82 .0000 173.613 224.699
 KL6| -837.633*** 118.4994 -7.07 .0000 -1032.547 -642.719
 K618| -103.922*** 39.42369 -2.64 .0084 -168.769 -39.076
 |Disturbance standard deviation
 Sigma| 1158.25*** 42.96400 26.96 .0000 1087.58 1228.92
--------+--

 The setting for the confidence level is temporary, only for that model, when it is embedded
in a model command. You can make the change permanent with the full command

 DEFAULT ; Clevel = the value $

The setting will be the new default for all models from that point on.

R9: Output R-239

R9.1.2 Information Criteria for Maximum Likelihood Estimators

 As seen in the first set of model results, LIMDEP reports the Akaike Information Criterion,
or AIC with all maximum likelihood estimates. For the example,

Inf.Cr.AIC = 7648.600 AIC/N = 10.158

AIC is computed as -2LnL + 2K where lnL is the log likelihood function and K is the number of
parameters. AIC is similar to adjusted R2 in regression, but in general, a lower AIC is better. Some
AIC grows with the sample size, N. LIMDEP also reports AIC/N, for convenience.
 Other authors have suggested similar measures with different corrections for the model size.
A ‘finite sample’ version of AIC that may have better small sample properties is

 FSAIC = AIC + (1)2
1

K K
N K

+
− −

.

The Bayes Information Criterion is

 BIC = -2lnL + KlnN

While the Hannan and Quinn Information Criterion is

 HQIC = -2lnL + 2K Ln Ln N

You can request to display these additional measures by adding

 ; Output = IC

To your model command. For our example, the single line of information criterion results will be
replaced by

Inf.Cr.AIC = 7648.600 AIC/N = 10.158
FinSmplAIC = 7648.750 FIC/N = 10.158
Bayes IC = 7680.968 BIC/N = 10.200
HannanQuinn = 7661.069 HIC/N = 10.174

The switch remains on until you turn it off with ; Output = NoIC.

R9: Output R-240

R9.1.3 Timing Model Estimation

 You can display the time required to estimated your models with the command

 TIMER $

This is a switch that will remain on until you turn it off with

 NOTIMER $

For example, if we issued a TIMER $ command before our TOBIT command in the first example
above, the additional line

 Elapsed time: 0 hours, 0 minutes, .06 seconds.

will appear after the results. (Note that this result might differ from one computer to another for
identical models using the same data set.)
 The timer will usually just help you see how very fast modern computers are. However,
there is one use for the execution timer that is likely to be very useful. LIMDEP contains many
simulation based estimators that do require a very large amount of time. Using TIMER with a small
pilot execution can help in planning for estimation of a full model. To continue the earlier example,
we fit a random parameters tobit model with a random constant term and random coefficient on the
wage variable. We used 100 Halton draws for the simulations. The command is

TOBIT ; Lhs = whrs ; Rhs = one,wa,we,ww,kl6,k618
; Rpm ; Fcn = one(n),ww(n)
; Pts = 100 ; Halton $

After the results return, we are informed

 Elapsed time: 0 hours, 0 minutes, 27.27 seconds.

The data set used in this example is one third of the full data set. When we will fit the full
specification of this model using the entire data set, and allowing all six coefficients to be random,
we will use 1,000 Halton draws rather than 100. How long will it take? The time needed for the
simulation based estimator is roughly linear in the number of draws, the number of observations and
the number of random parameters. Based on the preceding, the estimated time it will take is
10×3×3×27.27 seconds, or about 41.4 minutes. If you are doing this style of estimation with very
large data sets, it can be useful to plan on how long the estimation will take.

R9: Output R-241

R9.2 Initial Model Results

 Nearly all models fit by LIMDEP are nonlinear and estimation requires an iterative
optimization. Starting values for the iterations are usually obtained by estimating a simpler model,
often using ordinary least squares, but sometimes by using maximum likelihood or some other
technique.

R9.2.1 Displaying Initial Least Squares Estimates

 Ordinary least squares (OLS) will frequently be used to obtaining the default starting values
for the iterations. However, the OLS estimator is occasionally an interesting entity in its own right.
To see the initial OLS outputs when they are computed for a nonlinear model, add

 ; OLS

to your model command.

NOTE: In order to reduce the amount of superfluous output, OLS results are not reported
automatically except for the linear regression model.

Ordinary least squares regression
LHS=WHRS Mean = 740.57636
 Standard deviation = 871.31422
 No. of observations = 753 Degrees of freedom
Regression Sum of Squares = .131978E+09 5
Residual Sum of Squares = .438932E+09 747
Total Sum of Squares = .570910E+09 752
 Standard error of e = 766.54595
Fit R-squared = .23117 R-bar squared = .22603
Model test F[5, 747] = 44.92158 Prob F > F* = .00000
Diagnostic Log likelihood = -6066.79538 Akaike I.C. = 13.29173
 Restricted (b=0) = -6165.77240
 Chi squared [5] = 197.95404 Prob C2 > C2* = .00000
--------+--
 | Standard Prob. 95% Confidence
 WHRS| Coefficient Error z |z|>Z* Interval
--------+--
Constant| 1567.05*** 267.1143 5.87 .0000 1043.51 2090.58
 WA| -18.3965*** 4.21727 -4.36 .0000 -26.6622 -10.1308
 WE| -7.49913 13.16210 -.57 .5688 -33.29638 18.29811
 WW| 104.457*** 9.26340 11.28 .0000 86.301 122.612
 KL6| -392.617*** 60.66255 -6.47 .0000 -511.513 -273.721
 K618| -78.6937*** 23.23463 -3.39 .0007 -124.2327 -33.1546
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

TIP: The OLS estimator is almost never a consistent estimator of the parameters of the nonlinear
models estimated by LIMDEP.

R9: Output R-242

R9.2.2 Intermediate Model Estimates

 Occasionally, obtaining estimates of the parameters of a nonlinear model begins with
estimation of a restricted version of that model. For examples: Estimation of a negative binomial
model begins with estimation of a Poisson regression model, again to obtain the starting values.
Estimation of the linear sample selection model by MLE begins with Heckman’s two step least
squares estimator. In cases like these, your results will often contain full sets of output for both the
initial, restricted model and the final model that you specified in your command.
 The following results are based on the ship accident data used in Greene (2011, Table F18.3
– it is table F25.4 in the 6th Edition, 2008). (The data are ship-accidents.lpj in the program provided
data sets.) (Some of the model results are not reported.) The intermediate Poisson results might be
useful, however, the second set of results are the main results for the command. (The OLS estimator
was also computed before the Poisson estimator, but not reported.)

CREATE ; logmth = Log(months) $
NAMELIST ; x = one,ta,tc,td,te,t6064,t6569,t7074,o7579 $
SKIP $

 NEGBIN ; Lhs = num ; Rhs = x,logmth $

Deleted 6 observations with missing data. N is now 34

Poisson Regression
Dependent variable ACC
--------+--
 | Standard Prob. 95% Confidence
 ACC| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -5.61566*** .98586 -5.70 .0000 -7.54791 -3.68341
 ...
 LOGMTH| .90617*** .10175 8.91 .0000 .70675 1.10559
--------+--
Line search at iteration 43 does not improve fn. Exiting optimization.

Negative Binomial Regression
Dependent variable ACC
--------+--
 | Standard Prob. 95% Confidence
 ACC| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -5.61780*** 1.24854 -4.50 .0000 -8.06489 -3.17070
 ...
 LOGMTH| .90633*** .12617 7.18 .0000 .65903 1.15362
 |Dispersion parameter for count data model
 Alpha| .44618D-04 .02567 .00 .9986 -.50276D-01 .50365D-01
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R9: Output R-243

R9.3 Using DISPLAY to View Estimation Results

 When your own program computes an estimate of a parameter vector and an asymptotic
covariance matrix, you can use DISPLAY to show the results in the standard format. The general
form of the instruction is

 DISPLAY ; Parameters = the vector of estimated parameters
 ; Covariance = the estimated covariance matrix $

The instruction constructs a table of results with standard errors, ‘z’ ratios and confidence intervals
in the same form of the standard output. For example,

TOBIT ; Lhs = y ; Rhs = x $
DISPLAY ; Parameters = b ; Covariance = varb $

would display the set of estimates for the tobit model twice. There are four optional specifications:

 ; Labels = appropriate list of labels
 ; Title = a title to use in the results
 ; Logl = a log likelihood to be displayed with the results
 ; Test: hypothesis tests (This feature is discussed in Chapter R13.)

 The command that appears at the end of the SCLS program,

DISPLAY ; Labels = x
; Parameters = bj
; Covariance = v

 ; Title = Symmetric Censored Least Squares $

produces the results below.

Symmetrically Censored Least Squares
--------+--
 | Standard Prob. 95% Confidence
 YS| Coefficient Error z |z|>Z* Interval
--------+--
Constant| 2076.64*** 492.0428 4.22 .0000 1112.25 3041.02
 WA| -31.0198*** 8.74809 -3.55 .0004 -48.1657 -13.8738
 WE| -4.53505 28.42455 -.16 .8732 -60.24615 51.17606
 WW| 101.108*** 34.08620 2.97 .0030 34.300 167.915
 KL6| -869.048*** 191.9083 -4.53 .0000 -1245.181 -492.914
 K618| -135.082*** 46.39106 -2.91 .0036 -226.007 -44.157
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Note the use of the namelist to provide the labels. Namelists are discussed in Chapter R6.

R9: Output R-244

R9.4 Covariance Matrices, Predictions and Hypothesis Tests

 There are several additional sets of results that can be reported with the estimation output,
including plots, lists of fitted values, hypothesis tests, and so on.

R9.4.1 Displaying Covariance Matrices

 The output display generally does not is the estimate of the asymptotic covariance matrix of
the estimates. Since models can have up to 150 parameters, this part of the output is potentially
voluminous. Consequently, the default is to omit it. You can request that it be listed by adding

 ; Covariance Matrix

to the model command. (Previous versions of LIMDEP and NLOGIT used ; Printvc for this switch.
This syntax is still supported.) Since covariance matrices can be extremely large, this is handled two
ways. If the resultant matrix is 5×5 or smaller, it is included in the output listing. The earlier tobit
equation had six independent variables plus the estimate of σ. If we remove the last two variables
from the namelist, the displayed results are as follows. (Some of the results are omitted.)

--> NAMELIST ; x = one,wa,we,ww$
--> TOBIT ; Lhs = y ; Rhs = x ; Covariance Matrix $
Normal exit: 5 iterations. Status=0, F= 3846.188

Limited Dependent Variable Model - CENSORED
Dependent variable Y
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error z |z|>Z* Interval
--------+--
 |Primary Index Equation for Model
Constant| 370.181 397.0084 .93 .3511 -407.942 1148.303
 WA| -7.82602 6.15057 -1.27 .2032 -19.88091 4.22887
 WE| -22.7934 22.69898 -1.00 .3153 -67.2826 21.6958
 WW| 221.558*** 16.14246 13.73 .0000 189.920 253.197
 |Disturbance standard deviation
 Sigma| 1212.37*** 45.20887 26.82 .0000 1123.76 1300.98
--------+---
Cov.[b^]| ONE WA WE WW Sigma
--------+---
 ONE| 157616. -1767.45 -6642.98 749.481 -801.367
 WA| -1767.45 37.8295 14.4632 -2.85004 -11.2469
 WE| -6642.98 14.4632 515.244 -118.841 -16.7283
 WW| 749.481 -2.85004 -118.841 260.579 220.413
 Sigma| -801.367 -11.2469 -16.7283 220.413 2043.84

If the matrix has more than five columns, then it is offered as an additional embedded matrix with
the output, as shown in Figure R9.1 for a larger tobit model. When estimation is done in stages,
; Covariance will only produce an estimated covariance matrix at the final step. Thus, no covariance
matrix is displayed for initial least squares results.

R9: Output R-245

Figure R9.1 Regression Output with Embedded Covariance Matrix

R9.4.2 Listing and Saving Model Predictions and Residuals

 Most estimated models produce several results based on the results of estimation.
Predictions from estimated models are saved in the data set as new variables and/or listed with the
output. In some cases, residuals are also computed. The additional variables will vary from one
model to the next. In some cases, such as ordered probit models, neither fitted values nor residuals
are meaningful. In other cases, such as the binary probit model, there is a meaningful model
prediction, but ‘residuals’ are not meaningful. To obtain a listing of model predictions with the
estimation results, add

 ; List

to the model command.

R9: Output R-246

 The following are added to the model results for the tobit model fit earlier when the
command contains ; List.

Predicted Values (* => observation was not in estimating sample.)
Observation Observed Y Predicted Y Residual x(i)b Pr[Nonlim]
 1 1610.0000 648.34116 961.65884 334.30377 .6135671
 2 1656.0000 851.31070 804.68930 640.61548 .7098988
 3 1980.0000 545.36992 1434.6301 158.00438 .5542540
 4 456.00000 653.49932 -197.49932 342.69169 .6163354
 5 1568.0000 681.84104 886.15896 388.12603 .6312240
 6 2032.0000 895.19098 1136.8090 701.65938 .7276738
 7 1440.0000 1781.6688 -341.66884 1748.4578 .9344232
 8 1020.0000 1392.7813 -372.78129 1319.2411 .8726474
 9 1458.0000 555.67710 902.32290 176.49569 .5605569
 10 1600.0000 1117.9592 482.04082 992.07176 .8041467

WARNING: You might prefer not to use this feature if you have a very large sample..

 The observed data are shown as they were used in estimation. The prediction will vary from
model to model. When shown, a prediction is generally the conditional mean function. But, each
model described in the Econometric Modeling Guide will include details about the form of the
conditional mean function. Note, for example, in the tobit model, although it is a single index
model, the prediction is not equal to the index function, as can be seen above. Listings such as this
one will usually also contain a variable that is specific to the model being estimated. The listing for
the tobit model shows the index function and the estimated probability that the dependent variable is
positive. If the model were fit as a linear regression model, then the listing would appear as

Predicted Values (* => observation was not in estimating sample.)
Observation Observed Y Predicted Y Residual 95% Forecast Interval
 1 1610.0000 846.10168 763.89832 -662.93686 2355.1402
 2 1656.0000 912.85679 743.14321 -594.93618 2420.6498
 3 1980.0000 679.29119 1300.7088 -828.64375 2187.2261
 4 456.00000 730.03419 -274.03419 -776.47476 2236.5431
 5 1568.0000 821.40877 746.59123 -685.62023 2328.4378
 6 2032.0000 978.99270 1053.0073 -527.41754 2485.4029
 7 1440.0000 1479.4728 -39.472813 -29.413349 2988.3590
 8 1020.0000 1302.9123 -282.91233 -206.24767 2812.0723
 9 1458.0000 658.73631 799.26369 -845.82208 2163.2947
 10 1600.0000 1091.8489 508.15111 -412.84736 2596.5452

The last two columns now contain a 95% forecast interval based on the linear regression model.
 To retain the model predictions as a new variable in the data set, include

 ; Keep = the name for the new variable.

Continuing our tobit example, we added ; Keep = yfittobt to the command. Figure R9.2 shows the
changed project window and the new variable in the data area.

R9: Output R-247

 This feature computes predictions for the observations in the current sample. (The current
sample is described in Chapter R7.) If this is not the full sample, then observations in the data set
that were not used in estimation are left as missing values, -999. You can use the model to fill these
missing values by adding

 ; Fill

to the command. LIMDEP will use the model to predict as many of these observations as possible.
If there are missing values among the independent variables, then the observation will be left as
missing. Missing values of the dependent variable do not prevent filling the observations, however.

Figure R9.2 Predicted Values Added to the Data Set

R9: Output R-248

R9.4.3 Listing Basic Partial Effects

 In most of LIMDEP’s models, the coefficients are not the partial effects of interest. These
are computed separately after estimation. Most estimators provide a basic set of results for partial
effects by adding

 ; Partial Effects

to the model command. These will be provided in a second set of results. (In previous versions of
LIMDEP and NLOGIT, the command was ; Marginal Effects. This form is still supported, and has
the same meaning in the current versions of LIMDEP and NLOGIT.)

For our tobit model from Section R9.1, the following additional output is presented after the
main model results:

Partial derivatives of expected val. with
respect to the vector of characteristics.
They are computed at the means of the Xs.
Observations used for means are All Obs.
Conditional Mean at Sample Point 613.5799
Scale Factor for Marginal Effects .5944
--------+--
 | Partial Standard Prob. 95% Confidence
 Y| Effect Error z |z|>Z* Interval
--------+--
 WA| -20.1760*** 4.20411 -4.80 .0000 -28.4159 -11.9361
 WE| -5.58460 13.13702 -.43 .6708 -31.33268 20.16348
 WW| 118.383*** 9.00549 13.15 .0000 100.733 136.033
 KL6| -497.910*** 69.32012 -7.18 .0000 -633.775 -362.045
 K618| -61.7740*** 23.47397 -2.63 .0085 -107.7821 -15.7659
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
Fixed parameter ... is constrained to equal the value or
had a nonpositive st.error because of an earlier problem.

 The partial effects computed with this feature are appropriate for single index models such
as the probit, logit and tobit models that do not contain nonlinear terms or interaction terms. For
more intricate models, and to obtain simulations and analyses of partial effects, you will use the post
estimation command PARTIAL EFFECTS. This command is detailed in Chapter R11.

UPDATE NOTE: LIMDEP now provides a large set of tools for obtaining appropriate partial
effects in models, for example that contain interaction terms and nonlinear parts, and for functions
that you define instead of using the conditional mean.

R9: Output R-249

R9.4.4 Hypothesis Tests and Restrictions

 You can test hypotheses as part of the model command. The model results will contain the
results of the test with the other output. Chapter R13 describes how to specify hypothesis tests and
restrictions in model commands. The following shows two simple examples:

Example 1: Joint test of two restrictions. The tobit model command is modified as follows:

NAMELIST ; x = one,wa,we,ww,kl6,k618 $
TOBIT ; Lhs = y ; Rhs = x

; test: wa = 0, we = 0 $

The command specifies two restrictions to be tested jointly, the coefficient on wa equals zero and the
coefficient on we equals zero. The request for a joint test is indicated by separating the specifications
with a comma. The model output result is as follows (the estimation results are not changed, so they
are omitted).

Limited Dependent Variable Model - CENSORED
Dependent variable Y
Log likelihood function -3817.29976
Estimation based on N = 753, K = 7
Inf.Cr.AIC = 7648.600 AIC/N = 10.158
Model estimated: Feb 14, 2011, 12:14:51
Threshold values for the model:
Lower= .0000 Upper=+infinity
LM test [df] for tobit= 316.766[6]
Normality Test, LM = 40.989[2]
ANOVA based fit measure = .225490
DECOMP based fit measure = .236441
Wald test of 2 linear restrictions
Chi-squared = 22.89, P value = .00001
--------+--

In addition to the standard results, the results of the Wald test of the two restrictions are shown. This
is one hypothesis of two restrictions.

R9: Output R-250

Example 2: Separate test of two restrictions. The tobit model command is modified as follows:

NAMELIST ; x = one,wa,we,ww,kl6,k618 $
TOBIT ; Lhs = y ; Rhs = x

; test: wa = 0, we = 0 | kl6 = 0, k618 = 0 $

The command specifies two joint restrictions. The first is the joint restriction specified earlier. The
second specifies that the coefficients on the two household size variables are zero. The request for a
pair of restrictions to be tested separately is made by separating the specifications with a vertical bar.
The model output result is as follows: The separate hypothesis tests are now displayed after the
other results.

Limited Dependent Variable Model - CENSORED
...
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error z |z|>Z* Interval
--------+--
...
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Chi squared tests of linear restrictions. Degrees of freedom shown
in [.]. Equals zero is implied if no specific value was given.
 1. Restriction:WA=0,WE=0
 Chi squared[2] = 22.891, P value = .0000
 2. Restriction:KL6=0,K618=0
 Chi squared[2] = 53.877, P value = .0000

UPDATE NOTE: There are several optional features and model extensions for testing and
imposing restrictions. These features are described in Chapter R13.

R9.4.5 Graphical Results

 Some models and commands produce graphical as well as text output. For example, to
obtain a plot of residuals with a linear regression model, we would use

NAMELIST ; x = one,wa,we,ww,kl6,k618 $
REGRESS ; Lhs = y ; Rhs = x ; Plot $

The results shown in Figure R9.3 would result. The graphical output is displayed in a separate
window. The contents of the window can be copied and moved to a document or spreadsheet. The
type of output shown will vary from model to model, so they are detailed in the specific contexts in
the Econometric Modeling Guide.

R9: Output R-251

Figure R9.3 Graphical Results Produced by a Model Command

R9.5 Suppressing Results

 Model estimation commands often appear as part of iterative or repetitive calculations.
Bootstrapping is a common example. In these cases, although estimation requires computation of a
model, you will not be interested in seeing the results of these intermediate steps. LIMDEP provides
two methods of suppressing output, one ‘local,’ that is specific to a particular model command and
one ‘global,’ that applies to all commands submitted as a group.

R9.5.1 Suppressing Estimation Results with Quietly

 You can suppress model estimation results by adding

 ; Quietly

to your command. This might seem counterproductive. But, you would use this if your model
command were part of an iteration in which the estimation results were only to be collected and used
in a later computation.

The command set below illustrates use of ; Quietly in an estimation procedure. LIMDEP
does not contain a built in estimator for Powell’s (1986) symmetrically censored least squares
(SCLS) estimator for the tobit model. But, the computations for the estimator are so simple that they
can be done with a small number of basic commands. The initial NAMELIST and CREATE
commands define the Rhs and Lhs variables in the model. The program can be adapted to a different
application just by changing these definitions correspondingly for the data set. The rest of the
commands are generic; they can be used for any data set. We have used the same specification as in
the first example above. The TOBIT command is used to obtain starting values. It contains ;
Quietly as this is just for starting values. We will examine them more closely later. The

R9: Output R-252

PROCEDURE will be executed many times – this is the iteration. (Procedures are discussed in
Chapter R19.) It computes a least squares regression that is not of separate interest in each cycle, so
the REGRESS command in the procedure is also modified to produce no visible output with ; Quietly.

?===
? Powell's (1986) symmetrically censored least squares estimator
?===
? This is the only part of the estimator that is specific to the problem. Here, the
? user defines the list of regressors and the dependent variable.
?--
NAMELIST ; x = one,wa,we,ww,kl6,k618 $
CREATE ; y = whrs $
?--
? Use the tobit MLE as starting values for beta.
?--
SAMPLE ; All $
TOBIT ; Quietly ; Lhs = y ; Rhs = x $
MATRIX ; bj = b ; btobit = b ; vtobit = varb $ We compare later.
CALC ; deltab = 1 $ Start delta large enough to begin.
?--
PROCEDURE $ This procedure computes the SCLS estimator iteratively
SAMPLE ; All $
CREATE ; bx = x'bj ; bx2 = 2*bx ; ts = bx > 0 ; ys = Min(y,bx2) $
REJECT ; ts = 0 $
REGRESS ; Quietly ; Lhs = ys ; Rhs = x $
MATRIX ; hj = <x'x>; bj1 = b ; db = bj1-bj ; bj = bj1 $
? Check for convergence using a scale free measure rather than db.
CALC ; List(exec) ; deltab = Qfr(db,hj) $
ENDPROCEDURE $
?--
EXECUTE ; While deltab > .00001 $
?--
? Estimation is finished. Get covariance matrix and show results.
?--
SAMPLE ; All $
CREATE ; vs = (y > 0) * (y < bx2) ; u2 = ts*(ys-bx)^2 $
MATRIX ; c = x'[vs]x ; d = x'[u2]x ; v = <c>*d*<c> $
DISPLAY ; Labels = x

; Parameters = bj
; Covariance = v

 ; Title = Symmetrically Censored Least Squares $
DISPLAY ; Labels = x ; Parameters = btobit ; Covariance = vtobit
 ; Title = Maximum Likelihood Tobit Estimates $
?==

The only results produced by this program up to the EXECUTE command are the trace of the
convergence criterion shown below. (EXECUTE is discussed in Chapter R19.) Note that the
iteration ends when deltab falls below .00001, which takes 17 iterations.

R9: Output R-253

--> EXECUTE ; while deltab > .00001 $
[CALC:Iteration=0001] DELTAB = 15409.0245374
[CALC:Iteration=0002] DELTAB = 15953.2498107
[CALC:Iteration=0003] DELTAB = 4105.9964315
[CALC:Iteration=0004] DELTAB = 803.3354609
[CALC:Iteration=0005] DELTAB = 153.0440572
[CALC:Iteration=0006] DELTAB = 33.2735713
[CALC:Iteration=0007] DELTAB = 6.8368188
[CALC:Iteration=0008] DELTAB = 1.4082200
[CALC:Iteration=0009] DELTAB = .3063135
[CALC:Iteration=0010] DELTAB = .0687631
[CALC:Iteration=0011] DELTAB = .0157467
[CALC:Iteration=0012] DELTAB = .0036514
[CALC:Iteration=0013] DELTAB = .0008487
[CALC:Iteration=0014] DELTAB = .0002000
[CALC:Iteration=0015] DELTAB = .0000475
[CALC:Iteration=0016] DELTAB = .0000114
[CALC:Iteration=0017] DELTAB = .0000027

R9.5.2 Suppressing All Results with SILENT

If you are using a bootstrap estimator, or searching over a parameter value as you estimate a
model repeatedly, you may want to suppress the model results while you accumulate a statistic or a
matrix in the background. In the previous example, the trace in CALC is the only visible result, and
we might have been uninterested in this as well.

The command SILENT is used in the editor, in a procedure or in an input file for this
purpose. In the SLCS example above, we used ; Quietly in the two model commands to suppress
the intermediate estimation results. We could have used

SILENT
EXECUTE ; while deltab > .00001 $

instead to suppress all results including the trace produced by the CALC command.
For example, consider the following set of commands which tests whether the set of

coefficients in a regression model are the same across 10 firms using a likelihood ratio test. (This is
based on the Grunfeld.lpj data set provided with the program.) For the homogeneity test, we compute
the regression model for all 200 observations, then for each of 10 firms. The test statistic is two times
the sum of the log likelihoods for the subsamples minus two times the log likelihood for the pooled data.

 SILENT
 SAMPLE ; 1-200 $
 REGRESS ; Lhs = i ; Rhs = one,f,c $
 CALC ; sumlogl = -2 * logl ; company = 0 $
 PROCEDURE
 CALC ; i1 = 20 * (company - 1) + 1 ; i2 = i1 + 19 $
 SAMPLE ; i1 - i2 $
 REGRESS ; Lhs = i ; Rhs = one,f,c $
 CALC ; sumlogl = sumlogl + 2 * logl $
 ENDPROCEDURE
 EXECUTE ; company = 1, 10 $

CALC ; List ; chisq = sumlogl $

R9: Output R-254

This procedure estimates 11 regression models. Our only interest is in the statistic sumlogl that is
accumulated. So, before executing the block of commands, we use SILENT to suppress all of the
output from the commands. When we are finished, we use CALC to retrieve the statistic.
 Note that silent execution is only for the duration of the current block of commands being
executed. A block of commands is executed by highlighting it in the editing window then clicking
GO. Once the block is finished, the switch is automatically turned off. This prevents you from
leaving the switch on. Do note what this implies for execution. Suppose that these two lines are on
the screen in your editor:

 SILENT
 REGRESS ; Lhs = … etc. $

If you highlight only the SILENT command, click GO, then highlight the REGRESS command and
click GO a second time, the REGRESS command will not be executed silently. If you highlight
both lines then click GO once, the REGRESS command will be executed silently. We will examine
EXECUTE in a later chapter. For now, note that you can localize the SILENT command by using

 EXECUTE ; Silent ; … the rest of the setup $

R9.6 The Review Window – Tables of Model Results

 In normal usage, model results are displayed one at a time. They may be recovered later
from the output file (or window) in a word processor if you wish to collect them in tables. You can
also assemble tables of results as you do your estimation, and send tables that combine results to the
output file. You can retain a ‘stack’ of up to 10 model results at a time by adding

 ; Table = up to eight character label

to any model command. This adds the model results to a stack of the last 10 tabled models.
Additional models push the stack downward. Thus, if you table an 11th model, it pushes model 1 off
the stack, and this one becomes model 10. To review the results in the stack, select Tools:Review
Tables or double click any of the models listed in the Output:Tables group in the project window.
You can then select any of the model results listed to open the Review Tables dialog box. This
feature allows you to review the model results.
 For an example, consider the following sequence of commands:

TOBIT ; Lhs = whrs ; Rhs = one,wa,we,ww,kl6,k618 ; Table = Full $
TOBIT ; Lhs = whrs ; Rhs = one,wa,we,ww ; Table = Nokids $

 TOBIT ; Lhs = whrs ; Rhs = one,we,ww ; Table = Nokds_wa $

The project window is updated after estimation as shown in Figure R9.4. Double clicking any of the
names in the Tables folder invokes the model review dialog box shown in Figure R9.5. You can
produce brief summary tables with your command processor. The command is

 REVIEW ; Title = … the title you’d like to give the table
 ; Model = list of up to three model names $

R9: Output R-255

You may have one, two, or three model specifications in the command. An example is shown below.

REVIEW ; Title = Three Tobit Specifications
 ; Model = Full,NoKids,NoKds_We $

Figure R9.4 Project Window with Model Table

Figure R9.5 Review Tables Dialog Box

R9: Output R-256

+--+
 | Three Tobit Specifications |
 +----------+---------------------+---------------------+---------------------+
 | | FULL | NOKIDS | NOKDS_WA |
 +----------+---------------------+---------------------+---------------------+
 | Variable | Parameter| t-ratio| Parameter| t-ratio| Parameter| t-ratio|
 +----------+-----------+---------+-----------+---------+-----------+---------|
Constant	1702.8550	3.827	370.1806	.932	2.4064	.009
WA	-33.9421	-4.784	-7.8260	-1.272		
WE	-9.3950	-.425	-22.7934	-1.004	-19.8272	-.878
WW	199.1557	12.825	221.5582	13.725	221.3327	13.712
KL6	-837.6332	-7.069				
K618	-103.9224	-2.636				
Sigma	1158.2500	26.959	1212.3680	26.817	1212.8740	26.816
Log-L	-3817.3000		-3846.1880		-3847.0000	
 +----------+-----------+---------+-----------+---------+-----------+---------+

R9.7 Output Files

 All of your model results are being accumulated in the output window, which will be
prominent on your desktop. When you exit LIMDEP to end your session, you will be asked if you
wish to save the contents of the output window in a file – the query will typically appear as shown in
Figure R9.6. You can at this point create an output file for the session just by clicking Yes. You
will have an opportunity to name the file with any filename you choose.

WARNING: Output files and command files are both saved with the .lim extension. You will need
to make careful note of which files you save are which type.

Figure R9.6 Query to Save Output Window

 You may also open a separate output file for a session or a part of a session at any time with
the command

 OPEN ; Output = filename $

Once an output file is opened, all output that appears in the output window is duplicated in the file.
You may close the current output file at any time either by opening a new one or with the command

 CLOSE

R9: Output R-257

 You may add a title that will appear at the top of each ‘page’ in the output file with

 TITLE ; any string of up to 72 characters $

This title will appear at the top of each page in the output file until you give a new title command.
(Pages in the output file are only relative. At certain points, the output is delimited with a banner
that displays useful information about changes in the sample, beginning of a model estimation
procedure, etc.)

A title string may insert the value contained in a scalar with the syntax

 TITLE = … \sname ...

The ‘\sname’ signifies that the current value contained in the scalar with that name is to be inserted
into the title at that point. For an example, you might be plotting a function of a few values;

 CALC ; theta = 0.545 $
 FPLOT ; ... ; Title = Function Plot for Theta = \theta $
 CALC ; theta = 0.875 $
 FPLOT ; ... ; Title = Function Plot for Theta = \theta $

A similar device may be used to insert a variable name in an indexed namelist with

 TITLE = …\namelist:index

You might use this in a loop with indexing over variables in a list. For example, the following
computes the same regression for several variables, and plots the residuals:

 NAMELIST ; y = y1,y2,y3 $
 PROCEDURE $
 REGRESS ; Lhs = y:i ; Rhs = x ; Res = e $
 PLOT ; Rhs = e ; Title = Residuals for Regression of \y:i on x $
 ENDPROCEDURE $
 EXECUTE ; i = 1,3 $

R9.7.1 Transporting Output Results to Word Processors

 You can lift blocks text from LIMDEP’s output window and drop it into any word
processing program (or the reverse). You can then edit the output in your word processor.

TIP: When you copy from the output window into Word, LIMDEP’s font formatting is typically
lost. We find the best results by changing the font to Courier New, size 9 after it is ‘pasted.’

You cannot edit the text in the output window – you can highlight and delete it, but that is the only
direct editing function in the output window. But, you can copy text from the output window to any
text editing window. You can also have multiple text editing windows open. It might be convenient
to have one text window open for commands and another for editing output.

R9: Output R-258

R9.7.2 Exporting Statistical Results from LIMDEP

 You can export your statistical results to other packages. The preceding shows how to
produce output files in text format that can be copied directly into word processing programs. With
copy/paste, you can extract matrix results and drop them directly into spreadsheet programs. You
can also export your results more formally to any program that can accept the ‘comma separated
values,’ or CSV format, such as Excel. The file that LIMDEP creates can be read directly, without
any further manipulation on your part. Setting it up requires a few steps, as shown below.

Step 1. Open the file that will contain the results to be exported.

This will be a .csv (comma separated values) file. Use the following LIMDEP OPEN
command:

 OPEN ; Export = …<filename>.csv $

You must open the file with extension .csv for this operation to succeed. LIMDEP does not
check this file setup for you – the program assumes that the file is opened correctly.

Step 2. Use the ; Export specification in your model commands.

In specific model commands that you wish to export, use the model option ; Export to put a
table of coefficients, etc. in the export file. You may also use ; Title = up to 80 characters
to put a line of text at the top of the results. For some other specific commands, you can use

 MATRIX ; Export = list of matrices $ puts a list of matrices in the file.
 DSTAT ; Export ; Rhs = ... $ copies the results to the CSV file.
 CALC ; Export = list of scalars $ copies scalars to the file.

Step 3. Close the file before you try to use it.

When you are finished exporting results to the file, use

 CLOSE ; Export $

to end accumulation of results in the file.

 After this file is created, you can now export your results to Excel just by double clicking the
file name in any context, such as Windows Explorer. There are two possible conflicts to be wary of:

• The file cannot be reopened. If you repeat an OPEN ; Export = name $ command, the
original file is erased and a new one with that name is created.

• Do not use this file, e.g., by Excel, until you exit LIMDEP, even if you have used a CLOSE
command to close the file.

R9: Output R-259

An example follows: We create the file in LIMDEP.

OPEN ; Export = “C:\...\tobitmodels.csv” $
TOBIT ; Lhs = whrs ; Rhs = one,wa,we,ww,kl6,k618 ; Export $
TOBIT ; Lhs = whrs ; Rhs = one,wa,we,ww ; Export $
CLOSE ; Export $

We then open the file in Excel:

Figure R9.7 LIMDEP Results Exported to Excel

R9: Output R-260

R9.7.3 The Last Model Output

The results in Figure R9.8 are produced by the command

TOBIT ; Lhs = whrs ; Rhs = one,wa,we,ww,kl6,k618
; Matrix $

The ; Matrix specification requests the embedded matrix object Matrix:LastOutp, which is shown
at the lower left of the window in Figure R9.8. Double clicking the object opens the
Matrix:LastOutp window containing the output. If the ; Matrix switch is omitted from the
command, this extra matrix output does not appear in the output.

Figure R9.8 Last Model Output as an Embedded Matrix

By clicking the upper left (blank) cell in this or any other matrix that LIMDEP displays, you

will highlight the entire matrix. You can then use edit copy/paste to export this output to another
program, such as Excel. The material that is moved to Excel is the same as that produced by
; Export in the previous section.

R10: Robust Covariance Matrices and Clustering R-261

R10: Robust Covariance Matrices and
Clustering

R10.1 Robust Covariance Matrix for Pooled Models

 Robust covariance matrices are used to estimate asymptotic covariance matrices for
estimators when model assumptions may not be met. Familiar examples include the White estimator
(see Chapter E5) for heteroscedasticity in regression and the Newey-West estimator (see Chapter E9)
for autocorrelation. For cross sections and ‘pooled’ maximum likelihood estimators, the counterpart
to White is the ‘sandwich’ estimator,

 V = H-1 OPG H-1

Where H is the negative of the second derivatives and OPG is the sum of the outer products of the
gradients of the terms in the log likelihood function,

() ()
1

ˆ ˆln ln
ˆ ˆ
i in

i

f f
=

′ ∂ ∂
 =
 ∂ ∂

∑OPG
θ θ

θ θ .

In some settings, V can overcome a misspecification of the model, for example, in the presence of
unmeasured heterogeneity in the conditional mean function of the Poisson regression model. In
other cases, researchers routinely use this estimator under the assumption that it compensates for
other unspecified types of misspecification.
 The robust covariance matrix is provided explicitly for a few models in LIMDEP, such as
LOGIT and POISSON, by placing

 ; Robust

in the command. For those for which is not explicitly provided, there is a way to ‘trick’ LIMDEP
into computing it anyway. The ‘clustering’ estimator discussed in the next section is provided for all
estimators in LIMDEP (that are based on the likelihood function). The cluster estimator when every
cluster has one observation is identical to this sandwich estimator. So, you can use

 ; Cluster = 1

with any MLE to obtain this robust estimator.
 To illustrate, we obtain the standard estimator and compare it to the robust estimator for a
probit model. The application is based on Mroz.lpj. The basic model command is

PROBIT ; Lhs = lfp ; Rhs = one,wa,we,kl6,k618 $

R10: Robust Covariance Matrices and Clustering R-262

The Lhs variable is the binary variable for labor force participation. The Rhs variables are age,
education, kids under six and kids six to eighteen. The standard results are shown below. (Some
results are omitted.)

Binomial Probit Model
...
--------+--
 | Standard Prob. 95% Confidence
 LFP| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .62379 .46637 1.34 .1810 -.29028 1.53786
 WA| -.03827*** .00746 -5.13 .0000 -.05288 -.02366
 WE| .12003*** .02219 5.41 .0000 .07655 .16351
 KL6| -.88612*** .11242 -7.88 .0000 -1.10646 -.66577
 K618| -.05569 .04009 -1.39 .1647 -.13426 .02287
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

When ; Robust is added to the command, the parameter estimates are the same, since the correction
only adjusts the standard errors.

Binomial Probit Model
...
Robust VC=<H>G<H> used for estimates.
--------+--
 | Standard Prob. 95% Confidence
 LFP| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .62379 .45877 1.36 .1739 -.27538 1.52297
 WA| -.03827*** .00742 -5.16 .0000 -.05281 -.02373
 WE| .12003*** .02216 5.42 .0000 .07659 .16347
 KL6| -.88612*** .11650 -7.61 .0000 -1.11445 -.65779
 K618| -.05569 .04106 -1.36 .1750 -.13617 .02479
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

If ; Cluster = 1 is added to the command, instead, the results are the same, but the indicator of the
‘Robust VC’ is replaced by a line of text before the results,

+---+
| Robust covariance matrix, <H>*OPG*<H> is used for the estimator. |
+---+

R10: Robust Covariance Matrices and Clustering R-263

R10.2 Using Clustering for Robust Covariance Matrices

 A robust estimator based on sample clustering is available for nearly all models estimated by
LIMDEP. The estimator that LIMDEP computes for the asymptotic covariance matrix of the MLE is

 Est.Asy.Var ˆ
 θ = V × '

1 1 cc
C
cC

C gg∑ =−
 × V

where V is the usual asymptotic covariance matrix estimator ignoring the clustering, C is the number
of clusters, and

 gc = icclustertheinnsobservatioi
g

 ∑ =

This is the outer product estimator in which observations are the sums of observations in the cluster.
See below for technical details on this estimator. In order to use this estimator, it is necessary only to
identify the cluster in the model command. Use one of the following

 ; Cluster = nc where nc is the fixed number of observations in each cluster.

Use this form if every cluster has the same number of observations. Alternatively, if the number of
observations in the clusters is different, you must provide some sort of identification variable (not a
count variable), such as might be used in the panel data estimator for the linear model. This form is

 ; Cluster = name of ID variable

This arrangement resembles a panel data setup. The variable may be any distinct (numeric) indicator
of the group; it need not be a consecutive set of integers. A third possibility is that you have a
variable which gives the number of observations per group, as in most of LIMDEP’s panel
estimators, but you do not have the group ID number that you need. You can create the ID variable
with

 CREATE ; groupID = Group Nmbr (count variable) $

 The option for clustering is offered in the command builders for all the nonlinear model
routines in the Model Estimates submenu. This will differ a bit from model to model. The one for
the probit model is shown below in Figure R10.1. The Model Estimates dialog box is selected at
the bottom of the Output page, then the clustering is specified in the next dialog box.

R10: Robust Covariance Matrices and Clustering R-264

Figure R10.1 Command Builder for a Probit Model

R10.2.1 Models for Which the Clustering Estimator is Supported

 This procedure may be used with any model in LIMDEP, but the estimator is not supported
for any of the panel data specifications. For some applications in LIMDEP, the estimator V is based
on the first derivatives of the log likelihood and not the second. This aspect is discussed further in
the technical notes to follow and noted in the documentation for specific models. In cases where the
BHHH estimator is used to compute V, the assumptions that underlie the cluster estimator may not
be met. In particular, there must be a presumption that the BHHH estimator and the negative inverse
Hessian estimator converge to the same matrix. For the kinds of applications for which this cluster
estimator appear to be designed, that seems very likely to be the case. It would not be the case where
users sought to protect themselves against model misspecification, but that is a different issue from
clustering. On the other hand, in most such cases, the parameter estimator will be inconsistent, so
robust covariance matrix estimation is a moot point.

R10: Robust Covariance Matrices and Clustering R-265

R10.2.2 An Example of the Clustering Estimator

 The following compute the corrected covariance matrix for a probit estimator. The sample is
the health care data healthcare.lpj. There are 27,326 observations in the data, and 7,293 groups
ranging in size from one to seven. The commands are

 PROBIT ; Lhs = doctor ; Rhs = one,age,educ,married,hsat $
 PROBIT ; Lhs = doctor ; Rhs = one,age,educ,married,hsat ; Cluster = id $

Binomial Probit Model
Dependent variable DOCTOR
Log likelihood function -16639.15794
Restricted log likelihood -18019.55173
Chi squared [4 d.f.] 2760.78759
Significance level .00000
McFadden Pseudo R-squared .0766053
Estimation based on N = 27326, K = 5
Inf.Cr.AIC =33288.316 AIC/N = 1.218
Hosmer-Lemeshow chi-squared = 20.38745
P-value= .00897 with deg.fr. = 8
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| 1.35413*** .06315 21.44 .0000 1.23036 1.47791
 AGE| .00849*** .00075 11.30 .0000 .00702 .00996
 EDUC| -.01544*** .00346 -4.46 .0000 -.02223 -.00866
 MARRIED| .00818 .01905 .43 .6678 -.02917 .04552
 HSAT| -.17506*** .00396 -44.25 .0000 -.18281 -.16730
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

+---+
| Covariance matrix for the model is adjusted for data clustering. |
| Sample of 27326 observations contained 7293 clusters defined by |
| variable ID which identifies by a value a cluster ID. |
+---+

Binomial Probit Model
... (this part is identical)
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| 1.35413*** .08506 15.92 .0000 1.18742 1.52085
 AGE| .00849*** .00100 8.49 .0000 .00653 .01045
 EDUC| -.01544*** .00485 -3.18 .0015 -.02495 -.00593
 MARRIED| .00818 .02523 .32 .7459 -.04128 .05763
 HSAT| -.17506*** .00490 -35.71 .0000 -.18467 -.16545
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R10: Robust Covariance Matrices and Clustering R-266

R10.2.3 Technical Details on the Clustering Estimator

 The literature contains a variety of robust covariance matrices for maximum likelihood
estimators. Most of these take the form of the ‘sandwich estimator,’

 Est.Var ˆ
 θ = (-H)-1 × (G′G) × (-H)-1

where H is an estimator of the second derivatives matrix of the log likelihood function and G is an
n×K matrix whose ith row is the vector of partial derivatives of the log density for the ith observation
with respect to the K parameters. (Thus, the gradient of the log likelihood for independent
observations is G′i where i is a column of ones.) The White estimator for least squares in the
presence of unspecified heteroscedasticity is a well known application. The following describes an
application to ‘clustered’ data in which a sample of n observations is composed of C ‘clusters,’ each
of which contains nc observations, c = 1,...,C – the number may differ across clusters. This is
somewhat related to panel data treatments, though users should not take the analogy very far, as none
of the treatment described here takes formal account of a panel structure in a data set. Our technical
presentation is fairly brief. (The settings in which data might be ‘clustered’ but are not appropriate
for a formal panel data treatment are discussed there.)
 The robust ‘sandwich’ estimator used in many applications arises in the following manner:
The asymptotic distribution of the maximum likelihood estimator derives from the following
fundamental results for a regular estimator:

 1
1

1 1ˆ ˆ ˆn

i i
n n

n n
−

=

 = −
∑H gθ − θ + higher order terms which vanish as n → ∞,

where H is the negative second derivatives matrix, which will be a sum, gi is the ith term in the first
derivative vector and the carats indicate computation at the MLE. Under the assumptions of the
model, the matrix in square brackets, which is the mean of a sample, converges to its population
counterpart, a finite positive definite matrix, while the mean in rounded brackets converges in
probability to zero. The limiting distribution of the statistic on the left hand side of the equation is
normal (see Greene (2011) for discussion) with mean zero and variance equal to the variance of the
product on the right hand side. The asymptotic variance of the MLE, θ̂ will then be 1/n times the
resulting limiting variance (assuming it exists, which we are doing here). As noted, the matrix in
square brackets converges to something, a matrix we’ll call B-1. The mean in round brackets is
assumed to be (at least as the sample increases in size) the mean of a random sample with a finite
variance. In fact, for regular ML problems, that matrix is B, but rather than assume that the problem
is properly specified, we will leave this true variance unspecified, and use a consistent estimator of it.
The sum in the round brackets is the derivative of the log likelihood which we have equated to zero
to obtain the MLE. Dividing it by n, we obtain g , the mean of a sample. Since the true mean is
known to be zero, we can estimate the variance of the mean by 1/n times the sample variance, which
would be 1/n times 1/n times the sum of squares. (Whether this should be divided by n-1 rather than
n is debatable. The result which would dictate this only holds as n → ∞.) Since this is a vector of
variables, rather than just one, we use the sum of outer products. Thus, combining our results, we
obtain the estimator

 Est.Asy.Var.
1

1 ˆn
iin =

∑ g =
1

1 1 ˆ ˆn
i iin n =

′∑ g g .

R10: Robust Covariance Matrices and Clustering R-267

Combining terms, we obtain our asymptotic variance estimator,

 Est.Asy.Var () ()21 1
1

1 1 1 1ˆ ˆ ˆˆ ˆn
i ii

n n
n n n n

− −
=

 ′= − −
∑H g g Hθ − θ

If the model is properly specified, the center term converges to the inverse of each of the outer terms,
which leaves the usual result for the asymptotic variance of the MLE, namely the inverse of the
negative of the Hessian. Our estimator of the asymptotic variance of the MLE, itself, is obtained by
dividing the resulting expression by n. After several cancellations, this produces the familiar
sandwich estimator for maximum likelihood estimators,

 Est.Asy.Var. ˆ
 θ =

1ˆ −
 − H ()1

ˆ ˆn
i ii=

′∑ g g
1ˆ −

 − H .

It is a valid estimator under the following assumptions:

1. The original expansion is valid; that is the first derivatives really do converge to zero.
2. The mean of the sample estimated second derivatives – the matrix in square brackets –

does converge to a finite matrix.

 Finally, the clustering estimator discussed in this section is based on the idea that there is a
grouping of the observations in the data set into larger observations which are connected in some
fashion (correlated seems inappropriate). In this instance, the estimator is modified to produce

 Clustered Est.Asy.Var. ˆ
 θ =

1ˆ −
 − H

− ∑ =
'

1 1 cc
C
cC

C gg
1ˆ −

 − H .

Note that if there are very few clusters, this can produce very large standard errors. Note also the
important result that this estimator does not require the MLE to converge to the parameters of
interest. It only requires the MLE to converge to something. Consider for an example, the probit
model with heteroscedasticity:

 yi* = β′xi + εi, εi ~ N[0, exp(γ′zi)] (latent structure)

 yi = 1 if yi* > 0, 0 otherwise.

Suppose one ‘estimates’ β by standard probit analysis, ignoring the heteroscedasticity. Then, if γ is
not zero, this estimator is not consistent for β. Depending on the remaining structure of the model,
and the nature of the data, it may not be consistent for anything. But, in most circumstances, this
‘MLE’ will converge to something; let’s call it δ. Though it is less than obvious, under this
assumption, the conditions of the estimator above are met, but the simple Hessian will not give the
appropriate asymptotic covariance matrix. The sandwich estimator will. It must be remembered,
however, that this estimator is an appropriate estimator for the asymptotic covariance matrix of an
inconsistent parameter estimator. There are cases in which the probability limit of the MLE, δ will
equal the β of interest, such as in the Poisson model with latent heterogeneity, but there will not be
very many such cases.

R10: Robust Covariance Matrices and Clustering R-268

R10.3 Stratified and Grouped Data

This extension adds features to the ; Cluster feature described in Section R10.2. The base
case invoked by ; Cluster changes the computation of the asymptotic covariance matrix for an
estimator. The main application is maximum likelihood estimators, for which the conventional
estimator of the asymptotic covariance matrix of the estimator is

 V = [Σi Hi]-1

where Hi is the sample estimate of the second derivatives matrix for the contribution of observation i
to the log likelihood function. The so-called ‘cluster estimator’ uses

 V × G × V = V ×[(C/(C-1)Σc (Σi=1,Nc gic) (Σi=1,Nc gic′)] × V

where C is the number of groups (clusters), Nc is the number of observations in group c and gic is the
first derivative of the contribution of individual i in group c to the log likelihood.
 We have extended this to include stratum level grouping, where a stratum includes one or
more clusters and weighting to allow finite population correction. We suppose that there are a total
of S strata in the sample. Each stratum, ‘s,’ contains Cs clusters. The number of observations in a
cluster is Ncs. Neglecting any other weighting considerations mentioned below, the full corrected
covariance matrix is now

 ()
cs

s

=1

1
=1

N

i=1
C

c=1

Variance Estimator =
 the inverse of the conventional estimator of the Hessian

=

= -

= w

=

s

s

S
s ss

C
s cs cs s sCc

cs ics ics

s cs

w

=

′ ′

∑
∑

∑
∑

VGV
V

G G

G g g g g

g g

g g

where gics is the derivative of the contribution to the log likelihood of individual i in cluster c in
stratum s. The remaining detail in the preceding is the weighting factor, ws. The stratum weight is
computed as
 ws = fs × hs × d

where fs = 1 or a finite population correction, 1 - Cs/Cs* where Cs* is the true

number of clusters in stratum s, where Cs* > Cs.

 hs = 1 or Cs/(Cs - 1)

 d = 1 or (N-1)/(N-K) where N is the total number of observations in the
entire sample and K is the number of parameters (rows in V).

R10: Robust Covariance Matrices and Clustering R-269

Requesting this computation requires use of several switches and specifications in the model
command. Use

 ; Cluster = the number of observations in a cluster (fixed) or the name of the
 identification variable which gives the cluster an identification. This
 is the setup that is described above.
 ; Stratum = the number of observations in a stratum (fixed) or the name of a

stratification variable which gives the stratum an identification.
 ; Wts = the name of the usual weighting variable for model estimation if
 weights are desired. This defines wics. This is the usual weighting
 setup that has been used in all previous versions of LIMDEP.
 ; Fpc = the name of a variable which gives the number of clusters in the
 stratum. This number will be the same for all observations in a
 stratum – repeated for all clusters in the stratum. If this number is
 the same for all strata, then just give the number.
 ; Huber = Use this switch to request hs. If omitted, hs = 1 is used.
 ; Dfc = Use this switch to request the use of d given above. If omitted,
 d = 1 is used.

You may request a summary of the group and stratum sizes to be given after estimation by adding

 ; Describe

to the command. Note, ; Describe produces a line of description for each stratum, so if you have a
very large number of strata in your sample, you may want to avoid this option.
 This sampling setup may be used with any estimator in LIMDEP. One note, however, you
should not use it with panel data models. The so called ‘clustering’ corrections are already built into
panel data estimators.
 The following shows the setup for a sample that contains 6,350 observations. This is a panel
with five observations per individual. We have also artificially divided the sample into five strata,
each with 1,270 observations, then fit a probit model. The information below would appear with a
model command that used this configuration of the data to construct a robust covariance matrix.

PROBIT ; Lhs = ip ; Rhs = x
; Cluster = 5
; Stratum = 1270
; Describe $

These results appear before any results of the probit command. They are produced by the ; Describe
specification in the command.
 To continue the example in the previous section, we artificially divided the data set into four
levels with

CREATE ; level = 1 + (id > 2000) + (id > 4000) + (id > 6000) $

The estimation command that accounts for this second level of grouping is

PROBIT ; Lhs = doctor; Rhs = one,age,educ,married,hsat
; Cluster = id ; Stratum = level ; Describe $

R10: Robust Covariance Matrices and Clustering R-270

==
 Summary of Sample Configuration for Two Level Stratified Data
==
 Stratum # Stratum Number Groups Group Sizes
 Size (obs) Sample FPC. 1 2 3 ... Mean
========== ========== ============= =================================
 1 7617 2000 1.0000 3 4 4 ... 3.8
 2 7963 2000 1.0000 4 1 7 ... 4.0
 3 7796 2000 1.0000 7 6 3 ... 3.9
 4 3950 1292 1.0000 6 1 3 ... 3.1
Normal exit: 4 iterations. Status=0, F= 16639.16
+---+
| Covariance matrix for the model is adjusted for data clustering. |
| Sample of 27326 observations contained 7293 clusters defined by |
| variable ID which identifies by a value a cluster ID. |
| Sample of 27326 observations contained 4 strata defined by |
| variable LEVEL which identifies by a value a stratum ID. |
+---+

Binomial Probit Model
Dependent variable DOCTOR
Log likelihood function -16639.15794
Restricted log likelihood -18019.55173
Chi squared [4 d.f.] 2760.78759
Significance level .00000
McFadden Pseudo R-squared .0766053
Estimation based on N = 27326, K = 5
Inf.Cr.AIC =33288.316 AIC/N = 1.218
Hosmer-Lemeshow chi-squared = 20.38745
P-value= .00897 with deg.fr. = 8
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| 1.35413*** .14134 9.58 .0000 1.07711 1.63115
 AGE| .00849*** .00164 5.18 .0000 .00528 .01170
 EDUC| -.01544* .00820 -1.88 .0598 -.03152 .00063
 MARRIED| .00818 .04168 .20 .8445 -.07352 .08987
 HSAT| -.17506*** .00812 -21.56 .0000 -.19097 -.15914
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R11: Partial Effects R-271

R11: Partial Effects

R11.1 Partial Effects for Estimated Models

 After model estimation is completed, the model results will generally be used for three ‘post
estimation’ functions:

• Estimation and analysis of partial effects,
• Prediction, decomposition of predictions, and simulation,
• Hypothesis testing.

This chapter will show how to estimate and analyze partial effects. Predictions and model
simulations are detailed in Chapter R12. Hypothesis tests are discussed in Chapter R13. Each of
these functions is a general feature of all of the models that you will fit with LIMDEP. These three
chapters will discuss the overall functions. Aspects of the particular models will be given in the
Econometric Modeling Guide.

This chapter describes two tools for analyzing partial effects, the ; Partial Effects
specification in model commands and a separate post estimation command PARTIAL EFFECTS
which is used to analyze the effects in greater detail.

The partial effects in a model are implications of the model, itself. To consider an example,
suppose we have fit a binary logit model, which specifies

Prob(y = 1|x) = Λ(β′x); Prob(y = 0|x) = Λ(-β′x)
where

Λ(β′x) = exp(β′x)/[1+exp(β′x)].
In particular,

Prob[doctor = 1|age,income] = Λ(β1 + β2age + β3 income)
where

doctor = 1[visits to doctor > 0 in observation year].

The estimation step produces estimates of β, which are reported by the program as described in
Chapter R9. In a nonlinear model such as this one, β does not measure the impact of x on a feature
of the relationship between y and x. In the logit model, the regression function is

 E[y|x] = 0Λ(β′x) + 1Λ(β′x) = Λ(β′x).

The effect of changes in x on the expected value of y|x is given by the partial effect,

 ∂E[y|x]/∂
Age

Income

 = Λ(β′x)Λ(-β′x)β = [] 2

3
() = () () ,

β
′ ′ ′ ′Λ × Λ Λ − β

x x xβ β β β

which is estimated separately after estimates of β are obtained and it is determined what value of x
will be used. The partial effects are a multiple of the coefficients. The model specification

 ; Partial Effects

R11: Partial Effects R-272

is used to request this specific computation. This general specification is discussed in Section R11.5.
There are also model specific aspects of this computation discussed in the Econometric Modeling
Guide.

NOTE: Previous versions of LIMDEP used the specification ; Marginal Effects for this request.
That usage is still supported. You may use either. We now use ; Partial Effects to be consistent
with the new PARTIAL EFFECTS command discussed in Section R11.4.

Analysis of the partial effects is a useful device for using the model to understand its

behavioral implications. Continuing the earlier example, interesting questions that might follow
include:

• How does the partial effect of age on the probability change as individuals get older?
• Does the effect of changes in income on the probability change as age increases?
• Is the income effect substantively different for women and men?

None of these are revealed by using a simple scaling of the coefficients. These sorts of issues and
scenarios are analyzed with the PARTIAL EFFECTS command discussed in Section R11.4. The
differences between the two ways of requesting partial effects are discussed in Section R11.2. Some
modeling and computation issues are discussed in Section R11.3.

NOTE: PARTIAL EFFECTS is a major new extension of the modeling capabilities in LIMDEP
10. The features described here are used with every model fit by the program. This command, with
the SIMULATION command discussed in Chapter R12 will greatly extend the reach of every
model that you can fit with LIMDEP, including the linear regression model, every nonlinear model,
and models that you program yourself.

R11.2 Command vs. Model Specification

 The following shows estimates of the model suggested in Section R11.1:

 LOGIT ; Lhs = doctor ; Rhs = one, age, income

; Partial Effects $

Binary Logit Model for Binary Choice
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| -.17978 .13989 -1.29 .1987 -.45395 .09439
 AGE| .02358*** .00284 8.31 .0000 .01802 .02915
 INCOME| -.64782*** .18979 -3.41 .0006 -1.01979 -.27584
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R11: Partial Effects R-273

As noted, partial effects are scaled versions of the coefficients. We can estimate these with ; Partial
Effects added to the command, which produces the results below.

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
Average partial effects for sample obs.
--------+--
 | Partial Prob. 95% Confidence
 DOCTOR| Effect Elasticity z |z|>Z* Interval
--------+--
 AGE| .00529*** .00477 8.37 .0000 .00405 .00653
 INCOME| -.14527*** -.00094 -3.42 .0006 -.22859 -.06195
--------+--
z, prob values and confidence intervals are given for the partial effect

The partial effects for the two variables in the model can also be computed using the command,

 PARTIAL EFFECTS ; Effects: age / income $

which produces

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to AGE
Results are computed by average over sample observations
Partial effects for continuous AGE computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dAGE Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect .00529 .00062 8.55 .00408 .00650

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to INCOME
Results are computed by average over sample observations
Partial effects for continuous INCOME computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dINCOME Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect -.14527 .04236 3.43 -.22829 -.06225

 The two approaches produce the same answer. (The very small differences in the confidence
intervals arise because ; Partial Effects uses an analytic expression for the derivatives used for the
delta method while PARTIAL EFFECTS uses numerical approximations to these derivatives.) To
illustrate how larger differences will arise, consider a model with an quadratic term and an
interaction term:

Prob[doctor = 1|age,income,sex] = Λ(β1 + β2age + β3age2 + β4income + β5sex + β5sex*income)

R11: Partial Effects R-274

The familiar approach to analysis would be

 CREATE ; agesq = age^2 ; sex_incm = sex*income $
 LOGIT ; Lhs = doctor ; Rhs = one, age, agesq, income, sex, sex_incm
 ; Partial Effects $
which produces

Binary Logit Model for Binary Choice
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| 2.06138*** .52067 3.96 .0001 1.04089 3.08187
 AGE| -.10040*** .02531 -3.97 .0001 -.15001 -.05079
 AGESQ| .00141*** .00029 4.88 .0000 .00085 .00198
 INCOME| -.49829* .26152 -1.91 .0567 -1.01086 .01429
 SEX| .46495*** .15131 3.07 .0021 .16839 .76150
SEX_INCM| .21012 .38785 .54 .5880 -.55005 .97028
--------+--
Average partial effects for sample obs.
--------+--
 | Partial Prob. 95% Confidence
 DOCTOR| Effect Elasticity z |z|>Z* Interval
--------+--
 AGE| -.02206*** -.07649 -3.97 .0001 -.03295 -.01118
 AGESQ| .00031*** .03798 4.89 .0000 .00019 .00044
 INCOME| -.10950* -.00421 -1.91 .0567 -.22211 .00312
 SEX| .10302*** .00142 3.09 .0020 .03766 .16838 #
SEX_INCM| .04617 .00032 .54 .5880 -.12087 .21322
--------+--
Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0]
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The processor has produced the scaled coefficients as requested, but these are not the partial effects.
In particular, with this specification,

∂Prob(doctor = 1|x)/∂age = Λ(βʹx)Λ(-βʹx)(β2 + 2β3age).

(Note, the problem has arisen because LIMDEP does not know from this command that agesq is the
square of age. It could be anything; it is just a name in a list.) It is possible to program the right
result, but it is a bit cumbersome. We could proceed as follows:

 NAMELIST ; x = one, age, agesq, income, sex, sex_incm $
 WALD ; Labels = b1,b2,b3,b4,b5,b6
 ; Start = b ; Var = varb
 ; Fn1 = age_efct = Lgp(b1’x)*Lgp(-b1’x)*(b2 + 2*b3*age)
 ; Average $

R11: Partial Effects R-275

WALD procedure. Estimates and standard errors
for nonlinear functions and joint test of
nonlinear restrictions.
Wald Statistic = 53.98486
Prob. from Chi-squared[1] = .00000
Functions of data are averaged over the obs.
--------+--
 | Standard Prob. 95% Confidence
WaldFcns| Coefficient Error z |z|>Z* Interval
--------+--
AGE_EFCT| .00428*** .00058 7.35 .0000 .00314 .00542
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The PARTIAL EFFECTS command is provided to automate this calculation. First, the quadratic
term and interaction are built into the command, so LIMDEP can find them later. Then, the
PARTIAL EFFECTS command does the rest.

 LOGIT ; Lhs = doctor
 ; Rhs = one, age, age^2, income, sex, sex*income $

The estimated model is identical, though the estimates are now labeled to show the built in structure.

Binary Logit Model for Binary Choice
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| 2.06138*** .52067 3.96 .0001 1.04089 3.08187
 AGE| -.10040*** .02531 -3.97 .0001 -.15001 -.05079
 AGE^2.0| .00141*** .00029 4.88 .0000 .00085 .00198
 INCOME| -.49829* .26152 -1.91 .0567 -1.01086 .01429
 SEX| .46495*** .15131 3.07 .0021 .16839 .76150
 |Interaction SEX*INCOME
Intrct02| .21012 .38785 .54 .5880 -.55005 .97028
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The partial effect for age is calculated using the analytic result, not as a scaled coefficient.

 PARTIAL EFFECTS ; Effects: age $

R11: Partial Effects R-276

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to AGE
Results are computed by average over sample observations
Partial effects for continuous AGE computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dAGE Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect .00428 .00058 7.35 .00314 .00542

 To this point, PARTIAL EFFECTS has merely provided a useful shortcut for obtaining
partial effects for a variable when there is a nonlinear term in the model. But, you can go far beyond
just automating the partial effects. To consider a final example, ‘does the partial effect of income on
the probability of visiting the doctor vary by sex? And, does it vary systematically by age as well?’
The following computes the partial effect of income at ages 20, 25, …, 80, separately for men and
women, and plots the two sets of results to reveal the extent and nature of the difference.

 PARTIAL EFFECTS ; Effects: income & age = 20(5)80

 | sex = 0,1 (male,female)
; Plot $

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to INCOME
Results are computed by average over sample observations
Partial effects for continuous INCOME computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dINCOME Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect -.08905 .04308 2.07 -.17348 -.00462

SEX = MALE --

AGE = 20.00 -.11841 .06254 1.89 -.24099 .00417
AGE = 25.00 -.12226 .06412 1.91 -.24795 .00342
AGE = 30.00 -.12368 .06472 1.91 -.25053 .00318
AGE = 35.00 -.12401 .06485 1.91 -.25113 .00310
AGE = 40.00 -.12380 .06471 1.91 -.25063 .00304
AGE = 45.00 -.12267 .06407 1.91 -.24825 .00291
AGE = 50.00 -.11942 .06233 1.92 -.24159 .00275
AGE = 55.00 -.11229 .05866 1.91 -.22726 .00268
AGE = 60.00 -.09980 .05240 1.90 -.20251 .00291
AGE = 65.00 -.08194 .04371 1.87 -.16762 .00373
AGE = 70.00 -.06101 .03375 1.81 -.12716 .00514
AGE = 75.00 -.04077 .02410 1.69 -.08800 .00646
AGE = 80.00 -.02444 .01592 1.53 -.05565 .00677

R11: Partial Effects R-277

SEX = FEMALE --

AGE = 20.00 -.05707 .05825 .98 -.17123 .05710
AGE = 25.00 -.06162 .06249 .99 -.18410 .06086
AGE = 30.00 -.06414 .06484 .99 -.19123 .06295
AGE = 35.00 -.06501 .06562 .99 -.19363 .06361
AGE = 40.00 -.06442 .06498 .99 -.19179 .06294
AGE = 45.00 -.06224 .06278 .99 -.18529 .06080
AGE = 50.00 -.05811 .05866 .99 -.17308 .05686
AGE = 55.00 -.05170 .05231 .99 -.15423 .05083
AGE = 60.00 -.04310 .04385 .98 -.12905 .04285
AGE = 65.00 -.03316 .03409 .97 -.09997 .03366
AGE = 70.00 -.02328 .02437 .96 -.07104 .02448
AGE = 75.00 -.01484 .01598 .93 -.04616 .01648
AGE = 80.00 -.00860 .00964 .89 -.02751 .01030

 There is obviously a great deal more that you can do with the command than with the model
specification. To sum up:

Use ; Partial Effects as a model specification to obtain partial effects in the form of scaled
coefficients, in a single convenient table. Other results that this approach will produce are
discussed in Section R11.5.

Use PARTIAL EFFECTS as a post estimation command for detailed analyses of variables
in models, such as the exercise above.

NOTE: When your model includes nonlinear functions and interaction terms built into the
specification, as in the example above, then you must use the post estimation command PARTIAL
EFFECTS to get the appropriate computation of partial effects.

R11: Partial Effects R-278

R11.3 Partial Effects Issues

 In single index equation models in which there exists a conditional mean, such as the logit
model shown in Section R11.1, the usual choice for a partial effect is the regression function, E[y|x].
The effect is

δ = ∂E[Lhs variable]/∂Rhs variables.

This derivative is what one usually has in mind for the partial effect. In a linear regression model,
this is simply the vector of regression coefficients. In many other nonlinear models, it will be a
vector of scaled coefficients. The Poisson regression model provides a familiar example;

E[y|x] = exp(β′x) = λ(β′x),
so that

δ = λ(β′x)×β.

In many models, particularly multiple equation models, there is no obvious choice for what
function to analyze. Consider the bivariate probit model, which models the joint probability
distribution of two binary outcome variables. To produce ‘partial effects,’ we must first determine
what the margin is. There are at least three candidates, the joint probability, Prob[y1=1,y2=1|x], a
general conditional mean function, E[y1|y2,x] and a particular conditional mean function, E[y1|y2 = 1,x],
and there are others. For another example, in an ordered probit or ordered logit model, the
specification provides

 Prob[y = j|x] = Hj(β,μ.x), j = 0,1,…,J.

The health satisfaction model analyzed in Greene and Hensher (2010) involves a response variable
that takes values 0,1,…,10, eleven values. So, there are eleven different probability functions that
can be differentiated and, more to the point, there is no regression function. (An example with three
outcomes appears in Section R11.5.1.) In general, LIMDEP does provide an answer for such
models, which will be fully documented, but we emphasize, it might not be precisely what you are
looking for, and you may have to do some additional computation to get the precise result you seek.
The PARTIAL EFFECTS command described in Section R11.4 will allow you to obtain partial
effects for any function of interest.
 There is a long list of issues that you want to be aware of in computing, reporting and
analyzing partial effects: For an example, in the logit model suggested earlier,

Prob[doctor = 1|age,sex,income]

= Λ(β1 + β2age + β3age2 + β4 income + β5 sex + β6 sex×income)
= Λ(β′x),

three partial effects are

 ∆Prob[doctor = 1|x]/∆sex = Λ(β′x|sex=1) - Λ(β′x|sex=0)
 ∂Prob[doctor = 1|x]/∂age = Λ(β′x)Λ(-β′x) × (β2 + 2β3 age)
 ∂Prob[doctor = 1|x]/∂income = Λ(β′x)Λ(-β′x) × (β5 + β6 sex)

R11: Partial Effects R-279

The following example shows the typical approach to estimation of this model, with data
transformation and partial effects, using the health care data used in the earlier examples:

CREATE ; agesq = age*age ; sex_incm = sex*income $
LOGIT ; Lhs = doctor

; Rhs = one, age, agesq, income, sex, sex_incm
; Partial Effects $

Binary Logit Model for Binary Choice
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| 2.06138*** .52067 3.96 .0001 1.04089 3.08187
 AGE| -.10040*** .02531 -3.97 .0001 -.15001 -.05079
 AGESQ| .00141*** .00029 4.88 .0000 .00085 .00198
 INCOME| -.49829* .26152 -1.91 .0567 -1.01086 .01429
 SEX| .46495*** .15131 3.07 .0021 .16839 .76150
SEX_INCM| .21012 .38785 .54 .5880 -.55005 .97028
--------+--
Partial derivatives of E[y] = F[*] with respect to the vector of
characteristics. Average partial effects for sample obs.
--------+--
 | Partial Prob. 95% Confidence
 DOCTOR| Effect Elasticity z |z|>Z* Interval
--------+--
 AGE| -.02206*** -.07649 -3.97 .0001 -.03295 -.01118
 AGESQ| .00031*** .03798 4.89 .0000 .00019 .00044
 INCOME| -.10950* -.00421 -1.91 .0567 -.22211 .00312
 SEX| .10302*** .00142 3.09 .0020 .03766 .16838 #
SEX_INCM| .04617 .00032 .54 .5880 -.12087 .21322
--------+--
Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0]
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

In obtaining partial effects, the following are issues to be considered:

1. What is the function that to be analyzed? There is no single ‘right’ answer to this question.
Researchers are usually interested in the slopes of the conditional mean function. But, some
other function might be of interest. And, in many models, such as the ordered probit and
multinomial logit models, there is no conditional mean function. In the example above, we
are analyzing the probability, or the conditional mean function.

2. Partial effects can be computed at the means of the variables, some other specific values of

the variables, or averaged over the sample observations on the variables. As noted in the
footnotes to the first table, the example above provides partial effects averaged over the
sample observations. This is more or less the norm in the recent literature.

R11: Partial Effects R-280

3. Partial effects for binary variables such as sex should generally be computed using first
differences, as shown above, not by scaling coefficients. The results above indicate that the
program has noticed that sex is a dummy variable, and adjusted the computations
accordingly.

4. Qualitative variables can produce an ambiguity. For example, if schooling in a model is

coded using two dummy variables representing high school (base case, E1=0, E2=0), trade
school or college (E1 = 1, E2 = 0) and post graduate (E1 = 0, E2 = 1), then how should the
‘effect’ of the third category, E2, be measured? Treating E2 as a dummy variable the same
as sex compares post graduate education to high school. But, since one normally attends
college before going to graduate school, the interesting comparison might be between E2
and E1. This can be handled by manipulating the partial effects, or by recoding E2 as E2′ =
E1+E2. But, either way, one wants to maintain the distinction.

5. Compound models such as two part models or heteroscedasticity models may have variables

that appear at more than one place in the equation. For example, the conditional mean
function in the zero inflated Poisson regression model is of the form F(γ′z)×λ(β′x)/[1-exp(-
λ(β′x)]. Not only does this model contain two sets of covariates to analyze, z and x, but in
most cases, some variables would appear in both z and x. Partial effects involve variables in
both parts of the model. The partial effect of a common variable, w, would be the sum of the
two parts. It is worth noting, this compound effect might be quite different from the
coefficients, in sign and magnitude.

6. In the model above that contains both age and age2, the partial effect is not a simple scaling

of the coefficient. In general, a partial effects calculation that reports a scaled coefficient
vector for an index function model will not do this calculation correctly – it will incorrectly
compute separate effects for ‘age’ and ‘age2.’ The results in the preceding example are not
correct – the partial effect for age is not -0.02206 and the effect reported for agesq makes no
sense. The problem is that the logit estimator has no way to know that agesq is the square of
age; they are just two variables in the model. (The PARTIAL EFFECTS procedure
described below solves this problem.)

7. The partial effects for sex and income in the model above are determined partly by the

interaction term. This is not computed correctly by a scaled coefficient. The results above
do not make the connection, again because the program has no way to know that the variable
named sex_incm is equal to sex times income.

8. The interaction term, itself, creates an ambiguity in the interpretation of the model. What is

the ‘interaction effect?’

9. Researchers differ on whether standard errors and hypothesis tests about partial effects
should be computed.

R11: Partial Effects R-281

LIMDEP provides two settings for computing partial effects, the ; Partial Effects
calculations built into the model commands and a separate program, the PARTIAL EFFECTS
command.

Some of the problems listed above are handled automatically by ; Partial Effects when you
estimate the model. In general, ; Partial Effects produces a convenient table of scaled coefficients
for all of the variables in the model at the same time. The results are appropriate for models that do
not contain interaction or nonlinear terms and when the set of scaled coefficients is your desired
result. For the items listed above, ; Partial Effects works as follows:

1. A specific choice, usually the conditional mean function or the probability in the model is

analyzed.
2. The usual calculation is the average partial effect. The ; Means option is provided to request

the calculation at the means.
3. Binary variables are usually automatically detected.
4. Qualitative variables are not handled directly.
5. Compound models are generally handled automatically.
6. Nonlinearities in the variables are generally not handled correctly.
7. Interaction effects are not handled correctly.
8. Interaction effects must be analyzed separately.
9. Standard errors and confidence intervals are provided with the estimates.

10. Nearly all models, including all panel data models, display elasticities with partial effects.

All of these issues are handled directly and completely by the PARTIAL EFFECTS
command. You will use PARTIAL EFFECTS to do detailed analysis of a particular variable,
rather than all variables simultaneously. The PARTIAL EFFECTS command provides the
following:

1. There is a default function assumed for each model, but you can specify a different function

to be analyzed.
2. Effects can be averaged across observations, computed at the means, or at specified values

of particular variables.
3. Binary variables are always handled appropriately.
4. The switch between categories for a categorical variable can be built into the calculation.
5. Effects in compound models are automatically accounted for.
6. All nonlinearities are accounted for in computed effects.
7. All interaction effects are accounted for in computed effects.
8. Effects and interaction terms can be analyzed numerically or graphically.
9. Standard errors and confidence intervals are provided for all computed effects.

 You should use ; Partial Effects for simple index function models such as a basic probit
model with a simple specification. You should use PARTIAL EFFECTS for more involved model
specifications and to analyze in more detail the implications of your model for the interactions of all
of its components.

R11: Partial Effects R-282

R11.4 The PARTIAL EFFECTS Command

 The PARTIAL EFFECTS (or just PARTIALS) command is structured to work with the
new model syntax described in Section R8.3. An example will help to fix ideas. The logit model
examined in Section R11.3 was specified using

CREATE ; agesq = age*age ; sex_incm = sex*income$
LOGIT ; Lhs = doctor

; Rhs = one, age, agesq, sex, income, sex_incm
; Partial Effects $

The same model can be specified by building the quadratic and interaction terms into the equation, as

LOGIT ; Lhs = doctor
; Rhs = one, age, age^2, sex, income, sex*income
; Partial Effects $

The estimation results produced by this alternative command are the same as the first, though the
labeling is slightly different – the program notices the quadratic and interaction terms:

Binary Logit Model for Binary Choice
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| 2.06138*** .52067 3.96 .0001 1.04089 3.08187
 AGE| -.10040*** .02531 -3.97 .0001 -.15001 -.05079
 AGE^2.0| .00141*** .00029 4.88 .0000 .00085 .00198
 SEX| .46495*** .15131 3.07 .0021 .16839 .76150
 INCOME| -.49829* .26152 -1.91 .0567 -1.01086 .01429
 |Interaction SEX*INCOME
Intrct02| .21012 .38785 .54 .5880 -.55005 .97028
--------+--
Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
Average partial effects for sample obs.
--------+--
 | Partial Prob. 95% Confidence
 DOCTOR| Effect Elasticity z |z|>Z* Interval
--------+--
 AGE| -.02206*** -.07649 -3.97 .0001 -.03295 -.01118
 AGE^2.0| .00031*** .03798 4.89 .0000 .00019 .00044
 SEX| .10302*** .00142 3.09 .0020 .03766 .16838 #
 INCOME| -.10950* -.00421 -1.91 .0567 -.22211 .00312
 |Interaction SEX*INCOME
Intrct02| .04617 .00032 .54 .5880 -.12087 .21322
--------+--

R11: Partial Effects R-283

As we noted earlier, none of the partial effects in this table are actually correct. Regardless of the
model specification, ; Partial Effects reports the scaled coefficient vector. The age effect does not
account for the quadratic term, the sex effect does not account for the interaction with income and the
income effect does not account for its interaction with sex. The basic post estimation command

 PARTIAL EFFECTS ; Effects: income / sex / age $

produces the following three sets of results:

Partial Effects Analysis for Logit Probability Function

Results are computed by average over sample observations
Partial effects for continuous INCOME computed by differentiation

df/dINCOME Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect -.08905 .04308 2.07 -.17348 -.00462

Partial effects for binary var SEX computed by first difference

Partial effect .11932 .01403 8.50 .09183 .14682

Partial effects for continuous AGE computed by differentiation

Partial effect .00428 .00058 7.35 .00314 .00542

All of the effects built into the model command are accounted for in the partial effects. These are the
correct estimates of the average partial effects for these three variables in this model.

NOTE: The list of variables in the PARTIAL EFFECTS command may be in a namelist. The
following produce the same results for the preceding example:

 NAMELIST ; x = income, sex, age $
 PARTIAL EFFECTS ; Effects: x $

The descriptions of the results are more detailed in this case. There are several options
available for changing the computation. Sections R11.4.1-R11.4.6 describe in detail the
specifications and options used with the PARTIAL EFFECTS command. To suggest how this new
feature extends the reach of your model analysis, here is a more detailed example. The first table
above shows that the average partial effect of age on the probability of visiting the doctor is 0.00428,
averaged over the sample. But, the model contains a nonlinearity in age. The partial effect with
respect to age varies with age, both because the probability is a nonlinear function and because of
this quadratic term. We can analyze this in more detail as follows:

PARTIAL EFFECTS ; Effects: age & age = 20(5)80 ; Plot(ci) $

R11: Partial Effects R-284

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to AGE
Results are computed by average over sample observations
Partial effects for continuous AGE computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dAGE Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect .00428 .00058 7.35 .00314 .00542
AGE = 20.00 -.00957 .00262 3.66 -.01470 -.00444
AGE = 25.00 -.00682 .00242 2.82 -.01156 -.00208
AGE = 30.00 -.00365 .00193 1.89 -.00744 .00013
AGE = 35.00 -.00032 .00134 .24 -.00296 .00231
AGE = 40.00 .00302 .00083 3.66 .00140 .00465
AGE = 45.00 .00624 .00073 8.58 .00481 .00766
AGE = 50.00 .00909 .00109 8.31 .00695 .01124
AGE = 55.00 .01122 .00143 7.86 .00842 .01402
AGE = 60.00 .01220 .00144 8.50 .00939 .01501
AGE = 65.00 .01175 .00103 11.37 .00972 .01377
AGE = 70.00 .01000 .00049 20.48 .00904 .01096
AGE = 75.00 .00752 .00061 12.38 .00633 .00871
AGE = 80.00 .00502 .00088 5.68 .00328 .00675

Note that the partial effect varies with age, peaks at 60, and changes sign at about 38. Thus, the
aging process implied is that the probability of doctor visitation decreases with age until (individual
in this sample) age about 38, then it begins to increase. Although one might suspect this from the
different signs of the linear and quadratic terms, the more detailed description is not obvious from
the numbers alone.

R11: Partial Effects R-285

R11.4.1 Last Model Used for Partial Effects

 The model used for the PARTIAL EFFECTS operation is the last one that you estimated.
This will be obvious from the results in your output window, though it is necessary to be specific
about which function is being used. That is, what function is being used to compute the effects. For
example, the preceding examples are based on a logit model, fit with

LOGIT ; Lhs = doctor
; Rhs = one, age, age^2, sex, income, sex*income $

The function used for the partial effects is the logit probability,

 Last model = Λ(βʹx) = Prob(Lhs variable = 1).

There is a specific function used for each model for which you can use PARTIAL EFFECTS.
These are documented in the Econometric Modeling Guide for the particular models. At any time,
you can find out what function is being used for the PARTIAL EFFECTS command by using the
command

 LAST MODEL $

For our logit example, the response would be

--> LAST MODEL $
The last estimated model is Logit Probability Function

In most cases, the function used is the conditional mean function. But, in some cases, such as the
ordered probit or logit models, there are numerous probability functions. For this particular case, the
default function is the probability of the highest outcome, for example,

--> OPROBIT ; Lhs = hsat ; Rhs=one,age,educ $
--> LAST MODEL $
The last estimated model is Ordered Probit Probability Y =10

The ordered probit models are a special case. The highest category is usually the one of interest.
You can change this by using

 ; Outcome = value (0,1,…)

NOTE: There is a default function for each model that PARTIAL EFFECTS may be used with.
However, you can specify a different function to be analyzed. The alternative function need not
even be a model. It can be any function you can specify with the command language. PARTIAL
EFFECTS can analyze any variable in any function that is computed using data and parameters.
Section R11.4.6 describes how to supply your own function to be analyzed.

R11: Partial Effects R-286

R11.4.2 Sample Used for PARTIAL EFFECTS

 The observations used to compute partial effects are whatever happen to be in the current
sample. These need not be the observations used to compute the model. The current sample can be
a subset of the estimation sample, a completely different set of observations, or even a single
observation. The computation of the partial effects is not dependent on the sample used for the
estimation.

R11.4.3 Types of Variables in Partial Effects

 The central part of the PARTIAL EFFECTS command is the request itself and the variable
that is changing. (The function to be analyzed is supplied by the previous model command or a
specification described in Section R11.4.6.) The simplest form would be

 PARTIAL EFFECTS ; Effects: X variable $

This specification requests analysis of

 δX = ∂f(last model function) / ∂X

For example, in the logit model estimated earlier, the partial effect for age is obtained below.

--> PARTIAL EFFECTS ; Effects: age $

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to AGE
Results are computed by average over sample observations
Partial effects for continuous AGE computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dAGE Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect .00428 .00058 7.35 .00314 .00542

• The X variable, age is noted.
• The processor detects if the X variable is a dummy variable and changes the computation

accordingly.

In the results below, the partial effect with respect to sex is reported.

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to SEX
Results are computed by average over sample observations
Partial effects for binary var SEX computed by first difference

df/dSEX Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect .11932 .01403 8.50 .09183 .14682

R11: Partial Effects R-287

R11.4.4 Types of Partial Effects

 The default calculation in partial effects is a derivative,

 δX = ∂f(last model function) / ∂X

But, there are other functions that might be of interest. You may specify any of the following:

• Elasticity df(X)/dX Use ; Effects: [X variable]

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to INCOME
Results are computed by average over sample observations
Partial effects for continuous INCOME computed by differentiation
Effect is computed as elasticity = dlnf(.)/dlnx

df/dINCOME Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect -.05294 .02559 2.07 -.10310 -.00278

• Semielasticity dlnF(X)/dX Use ; Effects: < X variable >

• Partial elasticity dF(X)/dlnX Use ; Effects: { X variable }

The semielasticity might be used for a conditional mean function for a continuous variable and a
discrete X variable such as time. The partial elasticity might be used for a discrete variable and a
continuous regressor. For example, the function might be a predictor of the number of visits to the
hospital or doctor, or recreation site, etc. while the regressor might be something like income.
Finally, if you have a set of categories in your model, you can specify that the margin be the switch
from one category to another. The specification requires both variables,

• Category switch f(Cat. A = 1, Cat. B = 0) - f(Cat. A = 0, Cat. B = 1).

For example, to compare two regions of the country, you might use

 ; Effects: Midlands, Cotswalds

Where midlands and cotswalds are two (among a set of) dummy variables that indicate region of the
country. Finally, there is special code used to deal with an ambiguous case. Suppose X is a dummy
variable for which you wish to compute the partial effect. If you are using ; Means, it is not possible
to see from the data that the variable is binary. To cover this case, use

• Dummy variable mean f(X = 1) – f(X = 0) Use ; Effects: (variable)

The two category case is handled likewise with (X_A, X_B).

R11: Partial Effects R-288

R11.4.5 Scenarios in the PARTIAL EFFECTS Command

 The basic syntax for the PARTIAL EFFECTS command is

 PARTIAL EFFECTS ; Effects: variable … scenario /
 variable … scenario / … $

You may provide a scenario for each variable specified. The variable(s) in the scenario can be the
same from one to the next or different. The scenario, itself, is optional. The simplest form of the
command would be

 Model ; Lhs = … ; Rhs = … ; other specifications $
 PARTIAL EFFECTS ; Effects: an X variable that appears in the model $

To obtain a set of partial effects for the variables in a model, separate the names with slashes.
For example,

 LOGIT ; Lhs = … ; Rhs = one,age,income,sex $
 PARTIAL EFFECTS ; Effects: age / income / sex $

The scenarios are specified as follows:

Discrete Values of a Variable: The ‘|’ Specification

 This specification computes the partial effect of the X variable while setting the Z variable
equal to the specified values for every observation. The partial effects are computed for each value
of Z specified.

 Xvariable | Zvariable = value, value, value … up to 10 values

The Z variable may be the same as the X variable or a different variable. For example,

 Effects: income | educ = 12, 16, 20

The variable that is changing may be the one that is being analyzed, as in

 Effects: educ | educ = 12, 16, 20

You may provide labels in parentheses for the values, as in

 Effects: income | sex = 0, 1 (male, female)
 / educ = 12,16,20 (hs, college, graduate)

The values of the Z variable can be any specified values. They need not be values that occur in the
sample. For example, even though sex is coded 0,1 in the sample, you could specify ‘| sex = 0,1,2,3’

Range of Values in Steps: The ‘&’ Specification

 This specification computes the partial effects for the sequence of

 Xvariable & Zvariable = lower limit (step length) upper limit.

For example, as in the application above,

 Effects: income & age = 20(5)80

R11: Partial Effects R-289

Combining Scenarios

 You can combine the two types of scenarios in a single analysis. The general form of the
scenario would be

 Effects: X variable | Z variable = z1, z2, … & W variable = lower(delta) upper

In a compound scenario, the W variable changes inside the Z variable. That is, the values of W are
computed for each value of Z in turn. In the example below, we have sex = 0,1 and age = 20(5)80.
The string of effects is computed for (sex = 0 (male), age = 20, 25,…,80) then for (sex = 1 (female),
age = 20, 25, …, 80). The command and results are

 PARTIAL EFFECTS ; Effects: income & age = 20(5)80
 | sex = 0,1 (male,female) $

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to INCOME
Results are computed by average over sample observations
Partial effects for continuous INCOME computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dINCOME Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect -.08905 .04308 2.07 -.17348 -.00462

SEX = MALE --

AGE = 20.00 -.11841 .06254 1.89 -.24099 .00417
AGE = 25.00 -.12226 .06412 1.91 -.24795 .00342
AGE = 30.00 -.12368 .06472 1.91 -.25053 .00318
AGE = 35.00 -.12401 .06485 1.91 -.25113 .00310
AGE = 40.00 -.12380 .06471 1.91 -.25063 .00304
AGE = 45.00 -.12267 .06407 1.91 -.24825 .00291
AGE = 50.00 -.11942 .06233 1.92 -.24159 .00275
AGE = 55.00 -.11229 .05866 1.91 -.22726 .00268
AGE = 60.00 -.09980 .05240 1.90 -.20251 .00291
AGE = 65.00 -.08194 .04371 1.87 -.16762 .00373
AGE = 70.00 -.06101 .03375 1.81 -.12716 .00514
AGE = 75.00 -.04077 .02410 1.69 -.08800 .00646
AGE = 80.00 -.02444 .01592 1.53 -.05565 .00677

SEX = FEMALE --

AGE = 20.00 -.05707 .05825 .98 -.17123 .05710
AGE = 25.00 -.06162 .06249 .99 -.18410 .06086
AGE = 30.00 -.06414 .06484 .99 -.19123 .06295
AGE = 35.00 -.06501 .06562 .99 -.19363 .06361
AGE = 40.00 -.06442 .06498 .99 -.19179 .06294
AGE = 45.00 -.06224 .06278 .99 -.18529 .06080
AGE = 50.00 -.05811 .05866 .99 -.17308 .05686
AGE = 55.00 -.05170 .05231 .99 -.15423 .05083
AGE = 60.00 -.04310 .04385 .98 -.12905 .04285
AGE = 65.00 -.03316 .03409 .97 -.09997 .03366
AGE = 70.00 -.02328 .02437 .96 -.07104 .02448
AGE = 75.00 -.01484 .01598 .93 -.04616 .01648
AGE = 80.00 -.00860 .00964 .89 -.02751 .01030

R11: Partial Effects R-290

R11.4.6 Plotting Partial Effects

 You can produce two types of plots with PARTIAL EFFECTS. When the figure has a set
of values for a single scenario, for example,

PARTIAL EFFECTS ; Effects: age & age = 20(5)80 ; Plot $

You can request a plot of the partial effects against the specified values of the Z variable. For our
logit model, the command produces

Partial Effects Analysis for Logit Probability Function

df/dINCOME Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect -.08905 .04308 2.07 -.17348 -.00462
AGE = 20.00 -.08872 .04365 2.03 -.17428 -.00317
AGE = 25.00 -.09290 .04538 2.05 -.18185 -.00395
AGE = 30.00 -.09484 .04628 2.05 -.18554 -.00414
AGE = 35.00 -.09543 .04654 2.05 -.18664 -.00422
AGE = 40.00 -.09504 .04624 2.06 -.18566 -.00441
AGE = 45.00 -.09341 .04524 2.06 -.18208 -.00474
AGE = 50.00 -.08974 .04323 2.08 -.17448 -.00501
AGE = 55.00 -.08298 .03983 2.08 -.16105 -.00491
AGE = 60.00 -.07239 .03488 2.08 -.14075 -.00403
AGE = 65.00 -.05838 .02868 2.04 -.11459 -.00217
AGE = 70.00 -.04279 .02202 1.94 -.08596 .00037
AGE = 75.00 -.02826 .01577 1.79 -.05918 .00266
AGE = 80.00 -.01680 .01050 1.60 -.03739 .00379

You can also add confidence bounds to the figure by changing ‘; Plot’ to ‘Plot(ci)’

 ; Plot(ci) for confidence interval

R11: Partial Effects R-291

For this example, we obtain:

(Note that the limits of the window have been adjusted to accommodate the confidence limits.)

The confidence limits are those shown in the table of results. These limits are based on the
estimate of the standard error of the average partial effect. In particular, the average partial effect is

 δX = (),1

1 ˆ ,
N

X i iiN =
δ∑ xβ

The standard error for the estimated δK is computed using the delta method,

 VX =
() (), ,

1 1

ˆ ˆ, ,1 1 ˆ
ˆ X i i X i iN N

i iN N= =

 ∂δ ∂δ

 ∂′∂

∑ ∑
x xβ β

ββ
Σ .

The partial effect, δX and the square root of VX is computed for each value Z Those are the values in
the table above. You can decorate the figure a bit by changing the title at the top and the label for the
vertical axis with

 ; Title = title for the figure,
 ; Vaxis = descriptor for the vertical axis.

A second type of figure can be produced when you combine & Z variable with | W variable. In this
case, up to five plots can appear in the same figure. The example below compares the income effects
for men and women.

PARTIAL EFFECTS ; Effects: income
| sex = 0,1 (male,female)
& age = 20(5)80

; Plot $

R11: Partial Effects R-292

R11.4.7 Sample Partitioning: The ‘@’ Specification

 Up to this point, we have used the entire current sample in computing the partial effects,
either in computing the average partial effects or in computing the sample means. You can partition
the current sample with the following syntax:

 X variable @ F variable

 X variable @ F variable = value1, value2, … up to 10 values

The F variable is a discrete variable that may take up to 10 values. In the first form, the variable is
inspected and the sample is partitioned according to the values found. In the second case, specific
values are used – this case might exclude some of the sample. For example, suppose educ were
coded 12, 16, 20 and you specified ; Effects: income @ educ = 26,20. Then, the analysis would be
done for the two parts of the sample with educ = 16 and 20 while observations with educ = 12 would
not be used in the analysis.
 This specification operates differently from the | specification. Using | Z variable, you
manipulate the values in the sample. Using @ F variable, you select observations, but do not change
the actual values used in the data. All three specifications may be combined to produce
counterfactuals. For example, the following specification

 ; Effects: income @ sex = 1 | sex = 0 & age = 20(5)80

selects the part of the sample that is female and computes the partial effects for that subsample while
assuming that they are male. That is, the @ sex = 1 specification specifies the subsample for which
sex = 1 (female) and computes the partial effect of income for ages from 20 to 80 by 5, while setting
the sex dummy variable to 0 (male). The results produced are

R11: Partial Effects R-293

===
Subsample for this iteration is SEX = 1 Observations: 2170
===

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to INCOME
Results are computed by average over sample observations
Partial effects for continuous INCOME computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dINCOME Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect -.05791 .05847 .99 -.17251 .05669

SEX = 0 --

AGE = 20.00 -.11832 .06245 1.89 -.24073 .00408
AGE = 25.00 -.12221 .06407 1.91 -.24779 .00337
AGE = 30.00 -.12365 .06469 1.91 -.25044 .00315
AGE = 35.00 -.12399 .06483 1.91 -.25106 .00308
AGE = 40.00 -.12377 .06468 1.91 -.25054 .00301
AGE = 45.00 -.12262 .06402 1.92 -.24810 .00286
AGE = 50.00 -.11934 .06224 1.92 -.24133 .00266
AGE = 55.00 -.11217 .05853 1.92 -.22688 .00255
AGE = 60.00 -.09964 .05224 1.91 -.20203 .00275
AGE = 65.00 -.08177 .04354 1.88 -.16711 .00356
AGE = 70.00 -.06086 .03359 1.81 -.12669 .00498
AGE = 75.00 -.04065 .02397 1.70 -.08764 .00633
AGE = 80.00 -.02436 .01584 1.54 -.05540 .00668

R11.4.8 Fixing Variables for the Entire Analysis

 You might want to fix certain extraneous variables during the analysis, apart from the
analysis. Use the specification(s)

 ; Fix = name [value], name [value], …

For example, if the model were expanded to

 LOGIT ; Lhs = doctor
 ; Rhs = one, age, age^2, income, sex, sex*income, hsat $

Where hsat is health satisfaction, and we then wish to analyze the partial effects in the model
assuming for the present that everyone in the sample reported 10 (the highest value) for hsat, we
could use something like

 PARTIAL EFFECTS ; Fix = hsat[10] ; Effects: income & educ = 20(5)80 $

We note, there is potential for conflicts among these specifications. For example,

 ; Fix = hsat [10] ; Effects: income | hsat = 8,9,10

R11: Partial Effects R-294

has an inconsistency. This will produce a diagnostic,

Conflict between ;Fix=... and scenario

However, it is not possible to catch all possible conflicts. It is necessary to be cautious when using
the global setting to fix some variables.

R11.4.9 Saving Individual Partial Effects

 You can save the individual specific partial effects computed when they are averaged by
adding
 ; Save

to the command. If you have a compound scenario, the value that is saved is the first one computed.
It is best to use this only with a simple partial effects computation. The operation creates a new
variable named partlfct. The estimated standard error is also saved, as se_partl. For example,

--> PARTIAL EFFECTS ; Effects: income ; save $

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to INCOME
Results are computed by average over sample observations
Partial effects for continuous INCOME computed by differentiation
Effect is computed as derivative = df(.)/dx
Effects are saved as variable PARTLFCT. Std.Errors as SE_PARTL

df/dINCOME Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect -.08905 .04308 2.07 -.17348 -.00462

 If you now use DSTAT ; Rhs = partlfct $ the sample mean reported will be -0.08905.
However, the sample standard deviation will not equal 0.04308. The value above is the standard
deviation computed using the delta method, not the sample standard deviation of the computed
values.

R11.4.10 Computing Partial Effects at Sample Means

The default form of effect is the ‘average partial effect.’ The effect is computed by
computing the derivative function for each observation in the sample. The alternative approach is to
compute the effect at the means of the data by adding

 ; Means

to the command. This changes the results to those below. Note, the second line of the legend in the
example below indicates how the effects are computed.

R11: Partial Effects R-295

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to AGE
Results are computed at sample means of all variables
Partial effects for continuous AGE computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dAGE Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect .00535 .00070 7.66 .00398 .00672

When you use the ‘@’ specification, the sample means are recomputed for the various subsamples.
For example,

 ; Effects: educ @ female = 0,1 (male,female) | age = 20,30,40 ; Means

computes the partial effect and the scenario at the sample means for males, then for females.

Partial Effects Analysis for Logit Probability Function

Effects on function with respect to EDUC
Results are computed at sample means of all variables
Partial effects for continuous EDUC computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dEDUC Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Subsample for this iteration is FEMALE = 0 Observations: 2311
Partial effect -.00084 .00322 .26 -.00715 .00546

AGE = 20.00 ---
Effect at means -.00090 .00345 .26 -.00766 .00585

AGE = 30.00 ---
Effect at means -.00088 .00336 .26 -.00746 .00570

AGE = 40.00 ---
Effect at means -.00085 .00325 .26 -.00722 .00552

Subsample for this iteration is FEMALE = 1 Observations: 2170
Partial effect -.00083 .00315 .26 -.00700 .00535

AGE = 20.00 ---
Effect at means -.00090 .00342 .26 -.00761 .00581

AGE = 30.00 ---
Effect at means -.00087 .00333 .26 -.00739 .00565

AGE = 40.00 ---
Effect at means -.00084 .00321 .26 -.00713 .00544

R11: Partial Effects R-296

R11.4.11 Weighted Observations

 Sample means and averages of partial effects (and simulations) are obtained by simple
averages of the sample observations. You may supply sample weights as usual with

 ; Wts = weighting variable

(See Section R8.6.) When the scenario specifies a partitioning of the sample using ‘@specification,’
the weights are scaled to sum to the number of observations in the subsample.

R11.4.12 Robust Covariance Matrices

 PARTIAL EFFECTS does not compute a covariance matrix. It uses the one provided by
the last model estimated, or provided by you in your function definition. If your estimated model
included a robust (e.g., cluster corrected) covariance matrix, then the standard errors and confidence
intervals will be similarly robust.

R11.4.13 Changing the Model Analyzed by PARTIAL EFFECTS

 The function that LIMDEP uses for PARTIAL EFFECTS is the model left behind by the
previous model command. The model will remain in place until another fitted model changes its
place. However, you can specify your own model, or function – it need not be a model; this can be
any function that you wish to analyze. The additional information in the command is

 ; Function = any user defined function
 ; Covariance = matrix
 ; Parameters = set of values
 ; Labels = names of parameters

The function definition is any function that you wish to specify using the same form as
MAXIMIZE, NLSQ, WALD, etc. The function is assumed to involve an estimated parameter
vector for which you also have in hand an estimated covariance matrix. The labels are provided so
that you can differentiate between parameters and all the other numeric entities that can appear in the
function.
 To consider a perhaps contrived example, suppose we had fit a probit model and were
interested in examining the behavior of the hazard function. The model is

 Prob(y = 1 | x) = Φ(βʹx).

The hazard function is

 h(βʹx) = -dlnΦ(-βʹx)/d(βʹx) = φ(βʹx)/[1 – Φ(βʹx)].

R11: Partial Effects R-297

This is not a conditional mean function, but it might nonetheless be interesting. To continue our
example, we will employ this template and examine the partial effect of income on the hazard
function for a probit model. The income variable in our model enters the function nonlinearly in
several terms. Step 1 is definition and estimation of the model.

 NAMELIST ; xprobit = one, age, educ, income, income^2, age*income, hsat $

PROBIT ; Lhs = doctor ; Rhs = xprobit $

Normal exit: 4 iterations. Status=0, F= 2727.435

Binomial Probit Model
Dependent variable DOCTOR
Log likelihood function -2727.43478
Restricted log likelihood -2908.96085
Chi squared [6 d.f.] 363.05212
Significance level .00000
McFadden Pseudo R-squared .0624024
Estimation based on N = 4481, K = 7
Inf.Cr.AIC = 5468.870 AIC/N = 1.220
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .86475*** .23176 3.73 .0002 .41050 1.31899
 AGE| .01642*** .00422 3.89 .0001 .00815 .02469
 EDUC| -.00166 .00872 -.19 .8494 -.01875 .01544
 INCOME| .83966 .59137 1.42 .1557 -.31941 1.99874
 |Constructed variable INCOME^2.0
_ntrct01| -.06449 .25065 -.26 .7970 -.55576 .42678
 |Interaction AGE*INCOME
_ntrct02| -.02484** .01176 -2.11 .0346 -.04789 -.00179
 HSAT| -.15719*** .00985 -15.95 .0000 -.17650 -.13787
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Step 2 is estimation of the partial effects.

 PARTIAL EFFECTS ; Labels = b1,b2,b3,b4,b5,b6,b7

; Parameters = b
; Covariance = varb
; Function = bx = b1'xprobit |

 cdf = Phi(bx) |
 pdf = N01(bx) |
 pdf/(1-cdf)

; Effects: income & age = 20(5)65
; Plot(ci) $

R11: Partial Effects R-298

The function is defined recursively purely for convenience. The same results would be produced by
; Function = N01(b1’x)/(1 - Phi(b1’x)); we decomposed it above to illustrate how to compute a
complicated function in parts. The estimated effects and a plot with 95% confidence limits are as
follows:

Partial Effects Analysis for User Specified Function

Effects on function with respect to INCOME
Results are computed by average over sample observations
Partial effects for continuous INCOME computed by differentiation
Effect is computed as derivative = df(.)/dx

df/dINCOME Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interval

Partial effect -.20970 .10857 1.93 -.42250 .00310
AGE = 20.00 .20150 .21357 .94 -.21709 .62009
AGE = 25.00 .11880 .18163 .65 -.23719 .47479
AGE = 30.00 .03423 .15207 .23 -.26382 .33228
AGE = 35.00 -.05212 .12736 .41 -.30175 .19751
AGE = 40.00 -.14019 .11170 1.26 -.35912 .07874
AGE = 45.00 -.22990 .10988 2.09 -.44527 -.01452
AGE = 50.00 -.32117 .12325 2.61 -.56273 -.07960
AGE = 55.00 -.41393 .14828 2.79 -.70455 -.12331
AGE = 60.00 -.50813 .18059 2.81 -.86209 -.15417
AGE = 65.00 -.60368 .21729 2.78 -1.02957 -.17779

R11: Partial Effects R-299

R11.4.14 Technical Details

 PARTIAL EFFECTS accounts for all interactions and nonlinearities built into the model or
function specification. The feature is available for every model fit by the program. Based on the
formulation in Section R11.4.10, you can use this process with any function that you can compute
with the data in your sample, whether the function is a model or anything else. It is also independent
of the sample used to fit the model. The parameter vector and associated covariance matrix are used
to compute functions of your data. No connection is assumed between the estimation sample and
functions you compute. You can, for example, fit a model with a given sample, then change to a
different set of observations and analyze the partial effects with respect to that second sample.
 The computations proceed as follows:

Step 1. Set subsamples: This is defined by @ values in Section R11.4.7

Step 2. Do for observations in the subsample:

Step 3. Obtain full observation x(i) from raw data set.

• Fix any values in x(i) as prescribed by Section R11.4.8.
• Fix any specific values by | or & specified by Section R11.4.5.
• Compute any interactions defined by the model.
• Perturb the original x(i) then recompute the interactions.
• Compute derivatives of functions with respect to x(i); partial effects.
• Perturb parameters and compute Jacobian for delta method.
• Accumulate average function, average derivatives, average Jacobian.

Step 4. Obtain appropriate asymptotic covariance matrix using covariance matrix and average

Jacobian.

The structure of the iteration implies that the interaction terms are computed after the data are
perturbed. Thus, if the model contains x and x2, the derivatives are obtained by evaluating the
function first at (x,x2), then at [(x+∆x), (x+∆x)2], which produces the right result for the partial effect
with respect to x. When the effects is with respect to a dummy variable, the perturbation step
consists of fixing the variable at 1 then 0. When there are multiple evaluations of the effects, as in
our earlier examples, the iteration takes place over Steps 2-4. The entire operation is carried out with
the sequence of values specified with | or &.
 Every parametric model fit by LIMDEP leaves behind a ‘last model function.’ This will
usually be a prediction function such as a conditional mean. Familiar examples are the index
function, βʹx, for the linear regression, the probabilities for the probit model, Φ(βʹx), or the logit
model, Λ(βʹx), and the conditional mean for the Poisson and negative binomial models, exp(βʹx).
There are many others, such as the compound conditional mean functions, for the zero inflated
Poisson model or the sample selection model. We denote this function generally as H(x,β) where x
is the observation vector that includes all variables in the model (both dependent and independent
and β is the full parameter vector. The specific model functions that apply for each model are
described in the Econometric Modeling Guide. Let β̂ be the sample estimate of β, and let Σ̂ be the

R11: Partial Effects R-300

estimate of the asymptotic covariance matrix of β̂ . These, with the specification of the model, itself,
constitute the last model function noted above. (Note in the process described in Section R11.4.10,
you provide these explicitly with your command.) The average partial effects reported by
PARTIAL EFFECTS are computed as

()

() ()
1

1

ˆ,1ˆ() or

1 ˆ ˆˆ () , | 1 , | 0

N

i

N

i

H
x

N x

x H x H x
N

=

=

∂
δ =

∂

 ∆ = = − =

∑

∑

x

x x

β

β β

.

Derivatives for continuous variables are computed numerically. The Jacobian required to apply the
delta method is

()

() ()

2

1

1

ˆ,1ˆ () or ˆ

ˆ ˆ, | 1 , | 01ˆ () .ˆ ˆ

iN

i
i

i iN

i

H
x

N x

H d H d
d

N

=

=

∂
=

′∂ ∂

 ∂ = ∂ =
 = −
 ′ ′∂ ∂

∑

∑

x
J

x x
J

β

β

β β

β β

The elements of the Jacobian are computed numerically. The estimator of the asymptotic variance
for a particular partial effect is then ˆ ˆˆ ′J JΣ .

METHODOLOGICAL NOTE: The computation of the asymptotic variance of the partial effects
used when the delta method is employed assumes that the exogenous data are given – they are
treated as constants. That is, the analysis is done conditionally on the data. No attempt is made to
correct the variance of the parameter estimator to account for the possibility that the variation in the
current sample might be different from that in the estimation sample.

R11.5 Partial Effects Estimated with Models

 The model specification is generally of the form

 Model ; Lhs = … ; Rhs = list of variables, x $

In most of the index function models such as regressions, probit, tobit, logit and Poisson models, the
partial effects are of the form

 δ(β′x,θ) = ∂E[y| β′x,θ]/∂x = g1(β′x,θ) × β,

R11: Partial Effects R-301

where g1(β′x,θ) is a scale factor that involves the data and all the model parameters. The unattached
parameter, θ, might be the standard deviation, σ in a tobit model or a correlation coefficient, ρ, in a
sample selection model. These are usually computed by averaging terms across the sample
observations, but in some cases, at the means of the full sample instead. The model may also contain
additional lists of variables. For example in a model of heteroscedasticity, an additional function
might appear, such as

 ; Hfn = list of variables z.

The conditional mean or other function that will be analyzed will then be of the form

 g(x,z) = g(β′x, γ′z, θ)

where β, γ and θ are sets of coefficients. Partial effects will take the form of scaled coefficients

 ∂g(β′x, γ′z, θ)/∂x = g1(β′x, γ′z, θ)β,

 ∂g(β′x, γ′z, θ)/∂z = g2(β′x, γ′z, θ)γ.

If a variable, w, appears in both x and z, then the effects are added to get the partial effect of w. In
some cases, the two parts might be of interest. For example, in a recursive bivariate probit model,
we can identify separate ‘direct’ and ‘indirect’ effects for some variables.
 Partial effects for nearly all of the regression, discrete choice, and limited dependent variable
models (including, for example, multinomial logit models) have been hard coded into LIMDEP. A
full set of output (estimate, standard error, t-ratio, prob value, confidence interval) is then reported.
Estimates are computed either by averaging observations or at the overall means of the data set and
optionally for the group means for a discrete variable that you may provide (with up to 10 levels).
To obtain the partial effects based on the observations used to fit the model, use

 ; Partial Effects

In most cases, the partial effects are computed by averaging the effects across observations,
producing ‘average partial effects.’ You can obtain the calculation done specifically at the sample
means of the data by adding

 ; Means

to the command.

R11.5.1 Partial Effects for Single Index Models

 The first case noted above will apply in most applications. The following illustrates for a
Poisson regression model

 POISSON ; Lhs = docvis ; Rhs = one,age,educ,married

; Partial Effects $

R11: Partial Effects R-302

Poisson Regression
Dependent variable DOCVIS
Log likelihood function -15974.83216
Restricted log likelihood -16398.15386
Chi squared [3 d.f.] 846.64341
Significance level .00000
McFadden Pseudo R-squared .0258152
Estimation based on N = 4481, K = 4
Inf.Cr.AIC =31957.664 AIC/N = 7.132
Chi- squared = 39732.10834 RsqP= .0376
G - squared = 23398.01988 RsqD= .0349
Overdispersion tests: g=mu(i) : 8.933
Overdispersion tests: g=mu(i)^2: 8.809
--------+--
 | Standard Prob. 95% Confidence
 DOCVIS| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .65317*** .06526 10.01 .0000 .52526 .78108
 AGE| .02043*** .00080 25.50 .0000 .01886 .02200
 EDUC| -.03859*** .00411 -9.40 .0000 -.04663 -.03054
 MARRIED| -.10357*** .02069 -5.01 .0000 -.14412 -.06301
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Partial derivatives of expected val. with
respect to the vector of characteristics.
Effects are averaged over individuals.
Observations used for means are All Obs.
Conditional Mean at Sample Point 2.8728
Scale Factor for Marginal Effects 2.8728
--------+--
 | Partial Standard Prob. 95% Confidence
 DOCVIS| Effect Error z |z|>Z* Interval
--------+--
 AGE| .05870*** .00271 21.70 .0000 .05340 .06400
 EDUC| -.11085*** .01242 -8.93 .0000 -.13519 -.08651
 MARRIED| -.30588*** .06515 -4.70 .0000 -.43356 -.17819 #
--------+--
Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0]
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

 There are cases in which there is no appropriate conditional mean function to differentiate.
The ordered choice models are a leading case. In general, for models of probabilities, LIMDEP
computes partial effects of the implied probabilities. In the example below, the dependent variable
in the ordered probit model takes values 0,1,2, so there are three sets of partial effects.

 OPROBIT ; Lhs = hlthsat ; Rhs = one,age,educ,married
 ; Partial Effects $

R11: Partial Effects R-303

Ordered Probability Model
Dependent variable HLTHSAT
Log likelihood function -3170.58904
Restricted log likelihood -3291.50941
Chi squared [3 d.f.] 241.84074
Significance level .00000
McFadden Pseudo R-squared .0367371
Estimation based on N = 4481, K = 5
Inf.Cr.AIC = 6351.178 AIC/N = 1.417
Underlying probabilities based on Normal
--------+--
 | Standard Prob. 95% Confidence
 HLTHSAT| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| 2.54306*** .14140 17.98 .0000 2.26592 2.82019
 AGE| -.02164*** .00171 -12.64 .0000 -.02499 -.01828
 EDUC| .05600*** .00834 6.71 .0000 .03965 .07234
 MARRIED| .03001 .04450 .67 .5000 -.05720 .11723
 |Threshold parameters for index
 Mu(1)| 1.99085*** .05104 39.01 .0000 1.89082 2.09088
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Marginal effects for ordered probability model
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0]
Names for dummy variables are marked by *.
--------+--
 | Partial Prob. 95% Confidence
 HLTHSAT| Effect Elasticity z |z|>Z* Interval
--------+--
 |--------------[Partial effects on Prob[Y=00] at means]--------------
 AGE| .00066*** 2.40368 7.68 .0000 .00049 .00083
 EDUC| -.00172*** -1.63481 -5.51 .0000 -.00233 -.00111
*MARRIED| -.00094 -.07809 -.66 .5081 -.00371 .00184
 |--------------[Partial effects on Prob[Y=01] at means]--------------
 AGE| .00765*** .86788 12.72 .0000 .00647 .00883
 EDUC| -.01980*** -.59027 -6.72 .0000 -.02557 -.01403
*MARRIED| -.01062 -.02773 -.67 .5002 -.04149 .02025
 |--------------[Partial effects on Prob[Y=02] at means]--------------
 AGE| -.00831*** -.59691 -12.72 .0000 -.00959 -.00703
 EDUC| .02152*** .40597 6.72 .0000 .01524 .02779
*MARRIED| .01156 .01910 .67 .5008 -.02209 .04520
--------+--
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

When partial effects are reported for probability models such as the ordered probit model above,
LIMDEP also reports the elasticities of the probabilities with respect to the independent variables.
These are

 Elasticity = ∂lnProb(…)/∂lnX = [Mean X/ Mean Prob(…)] × Partial effect.

The footnote indicates that the confidence interval is given for the partial effect, not the elasticity.

R11: Partial Effects R-304

R11.5.2 Partial Effects for Dummy Rhs Variables

 Models will often involve binary variables. The marginal effects described in the preceding
sections are computed by differentiating the expected value function with respect to the variables in
the model. But, one cannot actually differentiate with respect to a dummy variable, and an
appropriate way to compute an effect for a dummy variable is to compare the values of the function
with the binary variable set to one and zero. The appropriate effect for dummy variable z is, then

 δ10 = Effect of dummy variable z

 = f(…|other variables, z = 1) - f(…|other variables, z = 0)

 = f1(β|x, z = 1) – f0(β|x, z = 0).

In order to obtain the appropriate standard error for this estimate, one would then use the delta
method applied to this function of the parameters, rather than the one shown earlier. Thus, the
asymptotic variance for this estimator would be

 Asy.Var[d01] = g10Sg10′
where
 g10 = [∂ f1(β|x,z = 1)/∂β′] - [∂ f0(β|x,z = 1)/∂β′] (note, a row vector),

and S is as defined earlier. This computation is automated in a few cases. The probit, ordered probit
and Poisson models shown above all contain dummy variables that are autodetected by the partial
effects program. The PARTIAL EFFECTS command described in Section R11.3 detects this
automatically in all cases.

R11.5.3 Standard Errors and Confidence Intervals

 Covariance matrices for marginal effects are computed using the delta method. When the
estimated effects vector (using the estimated parameters) is d(x,b,q), we use

 Est.Var[d(x,b,q)] = {∂ d(x,q,b) / ∂[b′ q′]} × Est.Asy.Var[b,q] × {∂ d(x,q,b) / ∂[b′ q′]′}.

For example, for the Poisson regression model (which has no θ),

 ∂δ(x,β,θ) / ∂β′ = ∂exp(β′x)β / ∂β′ = exp(β′x) [I + βx′] = Γ,

which is estimated with G by computing Γ at b and the means of the regressors, while the estimated
asymptotic covariance matrix is

 Est.Asy.Var[b] = (X′ΛX)-1 = S, Λ = diag[exp(b′x)].

The standard errors for the reported marginal effects are then the square roots of the diagonal
elements of V = GSG′. When the partial effects are computed by averaging over the sample
observations, the preceding is modified by using the sample average, 1(1 /) (,) /N

i iN = ′ ′= Σ ∂ ∂G d b x θ β .

R11: Partial Effects R-305

R11.5.4 Significance Tests for Partial Effects

 Marginal effects are reported with standard errors and ‘significance tests’ of their difference
from zero in the same fashion as the coefficients. Whether one should test for significance in this
fashion represents a gap in the orthodoxy. The raw coefficient in a model such as the Poisson
regression does not represent the ‘effect’ of the respective ‘x’ on ‘y.’ Arguably, the marginal effect
measures that. However, the marginal effect is a hodgepodge of all the coefficients (and some data)
in the model. Testing for the significance of the effect is a qualitatively different exercise from
testing the significance of a coefficient. Testing whether a coefficient is zero is equivalent to testing
whether a variable is influential in the model, but testing whether a marginal effect is zero is not
equivalent to that same test. Consider the results for a Poisson model based on the ship accident data
examined in Greene (2011) given below. Note that based on the coefficient estimates, variable
T6064 is a ‘significant determinant’ of acc. But, the marginal effect of T6064 on E[y|x] is not
‘significant,’ by the usual standard. Does this imply that T6064 should be dropped from the model?
Researchers differ on this question, but we think not.

Poisson Regression
Dependent variable ACC
Log likelihood function -72.82081
--------+--
 | Standard Prob. 95% Confidence
 ACC| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -4.39059*** .71812 -6.11 .0000 -5.79808 -2.98310
 TYPE=01| -.23881 .24102 -.99 .3218 -.71119 .23358
 TYPE=02| -.54185* .32155 -1.69 .0920 -1.17208 .08839
 TYPE=03| -1.02222*** .34039 -3.00 .0027 -1.68937 -.35508
 TYPE=04| -.38893 .30562 -1.27 .2032 -.98794 .21008
 T6064| -.57984** .23952 -2.42 .0155 -1.04930 -.11038
 T6569| .12025 .20670 .58 .5607 -.28487 .52537
 T7074| .28651 .19745 1.45 .1468 -.10048 .67349
 LOGMTH| .87296*** .09947 8.78 .0000 .67800 1.06792

Partial derivatives of expected val. With respect to the vector of
characteristics. Effects are averaged over individuals.
--------+--
 | Partial Standard Prob. 95% Confidence
 ACC| Effect Error z |z|>Z* Interval
--------+--
 TYPE=01| -2.29509 3.65390 -.63 .5299 -9.45660 4.86641 #
 TYPE=02| -6.61880 10.05821 -.66 .5105 -26.33253 13.09492 #
 TYPE=03| -7.10538*** 2.74487 -2.59 .0096 -12.48522 -1.72554 #
 TYPE=04| -3.45041 3.94534 -.87 .3818 -11.18313 4.28230 #
 T6064| -5.31897 4.25823 -1.25 .2116 -13.66495 3.02701 #
 T6569| 1.28127 3.88184 .33 .7413 -6.32700 8.88953 #
 T7074| 3.18697 4.55099 .70 .4838 -5.73280 12.10674 #
 LOGMTH| 9.14039*** 2.81756 3.24 .0012 3.61808 14.66271
--------+--
Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0]

R11: Partial Effects R-306

 The marginal effect is a function of all the coefficients in the model. The large standard
error is a product of the mixture of all the coefficients and the highly nonlinear function, exp(.),
which produces the relatively large matrix G in V = GSG′. In most, but far from all cases the
‘statistical significance’ of the marginal effects will be roughly the same as that of the corresponding
coefficient. It turns out that the significance of the marginal effects is not a function of the point at
which they are computed (whether the mean of the xs or some other point). (We draw on a useful
study by Anderson and Newell (2003).) If the single index model is fit with the data measured in
deviations from their means, the identical coefficients, but a different constant term, and the same
asymptotic covariance matrix save for the row and column corresponding to the constant term will
be produced. The marginal effects will be of the form d = f(a)b where a is the estimated constant
term (and is an element of b) because the part of the index function that corresponds to β′x above
will be zero for all terms save the constant. If we now expand the expression for the estimator
asymptotic variance of dk, we will find this to be

 Est.Asy.Var[dk] = [f(a)]2Est.Asy.Var[bk] + (f′(a)bk)2Est.Asy.Var[a] + 2f(a)bk Est.Cov[a,bk].

The ratio of dk to its estimated standard error would be the same as that for bk were it not for the
second and third terms. So, in part, the statistical significance of the marginal effect for xk hangs on
the significance of the constant term, which seems hardly relevant to the question. While this
clarifies the computation, we see this as a negative result.

So, should one report significance tests with (and for) marginal effects? This must be up to
the researcher – we cannot answer the question here. In our opinion, based on the preceding, no.
But, researchers still differ on this question. As such, LIMDEP reports standard errors and
significance values for marginal effects. Whether they should be reported is up to the user.

R11.5.5 Partial Effects in Compound Models

 Models are sometimes constructed in which variables enter in more than one place.
Consider, for example, a probit model with exponential heteroscedasticity. The conditional mean in
this model is
 E[y|x,z] = Prob[y=1|x,z] = Φ [β′x / exp(γ′z)]

where Φ denotes the standard normal CDF. In this model, the vectors of partial effects are

 ∂ E[y|x,z] / ∂x = φ[β′x / exp(γ′z)] [1/ exp(γ′z)] × β,

 ∂ E[y|x,z] / ∂z = -φ[β′x / exp(γ′z)] [β′x / exp(γ′z)] × γ,

where φ denotes the standard normal density. These can be computed and tabulated separately.
However, if x and z have any variables in common, then the marginal effect of that variable on the
conditional mean is the sum of the two terms. Where this situation arises, LIMDEP computes the
sum, then reports that value in both places, since the table of marginal effects is identified generally
by variable. The following example shows the results for a heteroscedastic probit model.

PROBIT ; Lhs = doctor ; Rhs = one,age,educ,married
; Heteroscedasticity ; Hfn = age,hhninc
; Partial Effects $

R11: Partial Effects R-307

Binomial Probit Model
Dependent variable DOCTOR
Log likelihood function -2855.43281
Restricted log likelihood -2908.96085
Chi squared [5 d.f.] 107.05607
Significance level .00000
McFadden Pseudo R-squared .0184011
Estimation based on N = 4481, K = 6
Inf.Cr.AIC = 5722.866 AIC/N = 1.277
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .08337** .03597 2.32 .0205 .01287 .15388
 AGE| .00020 .00120 .17 .8654 -.00215 .00256
 EDUC| -.00213 .00257 -.83 .4067 -.00717 .00291
 MARRIED| .02532 .02130 1.19 .2345 -.01642 .06706
 |Variance function
 AGE| -.04000*** .01335 -3.00 .0027 -.06616 -.01383
 HHNINC| 1.13784*** .37940 3.00 .0027 .39423 1.88146
--------+--
Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
They are computed at the means of the Xs
Observations used for means are All Obs.
--------+--
 | Partial Prob. 95% Confidence
 DOCTOR| Effect Elasticity z |z|>Z* Interval
--------+--
 AGE| .00531 .36601 .62 .5355 -.01148 .02210
 EDUC| -.00308 -.05576 -.97 .3310 -.00928 .00313
 MARRIED| .03653** .04363 2.11 .0344 .00268 .07039
 |Variance function
 AGE| .00531 .36601 .62 .5355 -.01148 .02210
 HHNINC| -.14267 -.07900 -.95 .3426 -.43734 .15200
--------+--
Elasticity for a binary variable is marginal effect/Mean.
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R11.5.6 Partial Effects in a Two Equation Model

 In a few cases involving more than one dependent variable, LIMDEP creates an arrangement
that is specific to the model at hand. The bivariate probit model is a common application in which
each of the two equations may or may not have the multiplicative heteroscedasticity described above.
In this case, there is no obvious conditional mean, and therefore, no obvious marginal effect. What
is reported for this model is a conditional expectation, E[y1|y2=1] which is then a function of both β
vectors and both γ vectors. The analysis shown in the following example decomposes the total
partial effect.

R11: Partial Effects R-308

The same addition is then done to get the total effect. This is shown in the table below,
which then obtains the total effect:

BIVARIATE PROBIT ; Lhs = doctor,public
 ; Rh1 = one,age,educ,married
 ; Rh2 = one,educ,hhninc,hhkids
 ; Heteroscedasticity ; hf1 = age,hhninc
 ; Partial Effects $

FIML Estimates of Bivariate Probit Model
Dependent variable DOCPUB
Log likelihood function -4299.27255
Estimation based on N = 4481, K = 11
Inf.Cr.AIC = 8620.545 AIC/N = 1.924
Disturbance model is multiplicative het.
Var. Parms follow 8 slope estimates.
For e(1), 2 estimates follow HHKIDS
--------+--
 DOCTOR| Standard Prob. 95% Confidence
 PUBLIC| Coefficient Error z |z|>Z* Interval
--------+--
 |Index equation for DOCTOR
Constant| .08350** .03581 2.33 .0197 .01331 .15369
 AGE| .00021 .00303 .07 .9442 -.00572 .00615
 EDUC| -.00213 .00384 -.55 .5793 -.00965 .00540
 MARRIED| .02566 .04256 .60 .5466 -.05776 .10908
 |Index equation for PUBLIC
Constant| 3.73420*** .12547 29.76 .0000 3.48828 3.98012
 EDUC| -.17933*** .00983 -18.24 .0000 -.19860 -.16006
 HHNINC| -1.14793*** .14861 -7.72 .0000 -1.43920 -.85665
 HHKIDS| -.02191 .05326 -.41 .6808 -.12629 .08247
 |Variance equation for DOCTOR
 AGE| -.03982 .03081 -1.29 .1962 -.10020 .02057
 HHNINC| 1.13974*** .39091 2.92 .0035 .37357 1.90592
 |Disturbance correlation
RHO(1,2)| .03606 .03318 1.09 .2772 -.02898 .10110
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

+--+
| Partial Effects for Ey1|y2=1 |
+----------+---------------------+---------------------+
| | Regression Function | Heteroscedasticity |
| +---------------------+---------------------+
| | Direct | Indirect | Direct | Indirect |
| Variable | Efct x1 | Efct x2 | Efct h1 | Efct h2 |
+----------+----------+----------+----------+----------+
AGE	.00030	.00000	.00499	.00000
EDUC	-.00304	.00071	.00000	.00000
MARRIED	.03663	.00000	.00000	.00000
HHNINC	.00000	.00453	-.14270	.00000
HHKIDS	.00000	.00009	.00000	.00000
+----------+----------+----------+----------+----------+

R11: Partial Effects R-309

Partial derivatives of E[y1|y2=1] with
respect to the vector of characteristics.
They are computed at the means of the Xs.
Effect shown is total of all parts above.
Estimate of E[y1|y2=1] = .632895
Observations used for means are All Obs.
Total effects reported = direct+indirect.
--------+--
 DOCTOR| Partial Standard Prob. 95% Confidence
 PUBLIC| Effect Error z |z|>Z* Interval
--------+--
 AGE| .00529*** .00052 10.23 .0000 .00428 .00630
 EDUC| -.00233 .00315 -.74 .4590 -.00850 .00384
 MARRIED| .03663** .01709 2.14 .0321 .00312 .07013
 HHNINC| -.13817*** .04845 -2.85 .0043 -.23313 -.04321
 HHKIDS| .86508D-04 .00023 .38 .7023 -.35704D-03 .53006D-03
--------+--
Partial derivatives of E[y1|y2=1] with
respect to the vector of characteristics.
They are computed at the means of the Xs.
Effect shown is total of all parts above.
Estimate of E[y1|y2=1] = .632895
Observations used for means are All Obs.
These are the direct marginal effects.
--------+--
 DOCTOR| Partial Standard Prob. 95% Confidence
 PUBLIC| Effect Error z |z|>Z* Interval
--------+--
 AGE| .00529*** .00052 10.23 .0000 .00428 .00630
 EDUC| -.00304 .00306 -.99 .3214 -.00904 .00297
 MARRIED| .03663** .01709 2.14 .0321 .00312 .07013
 HHNINC| -.14270*** .04840 -2.95 .0032 -.23756 -.04785
 HHKIDS| .000 (Fixed Parameter).....
--------+--
Partial derivatives of E[y1|y2=1] with
respect to the vector of characteristics.
They are computed at the means of the Xs.
Effect shown is total of all parts above.
Estimate of E[y1|y2=1] = .632895
Observations used for means are All Obs.
These are the indirect marginal effects.
--------+--
 DOCTOR| Partial Standard Prob. 95% Confidence
E[y1|x,z| Effect Error z |z|>Z* Interval
--------+--
 AGE| .000 (Fixed Parameter).....
 EDUC| .00071 .00065 1.08 .2789 -.00057 .00199
 MARRIED| .000 (Fixed Parameter).....
 HHNINC| .00453 .00425 1.07 .2865 -.00380 .01287
 HHKIDS| .86508D-04 .00023 .38 .7023 -.35704D-03 .53006D-03
--------+--

R11: Partial Effects R-310

R11.5.7 Partial Effects in a Model with Direct and Indirect Effects

 Lastly, there are models in which the effects can be identified as being ‘direct’ or ‘indirect.’
The basic sample selection model is a leading case. The model is a two equation structure,

 d = 1[γ′z + u > 0]

 y = β′x + ε

 E[y|x,z,d=1] = β′x + (ρσ)λ(γ′z).

where λ(γ′z) is based on the probability of selection into the sample. In this case, the direct partial
effect of x on the regression part and the indirect partial effect on the probability part might be of
separate interest. The reported effects would appear as in the example below:

Sample Selection Model............................
Two step least squares regression
LHS=DOCVIS Mean = 2.99463
Correlation of disturbance in regression
and Selection Criterion (Rho)........... -.75369
--------+--
 | Standard Prob. 95% Confidence
 DOCVIS| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -1.64343 1.04388 -1.57 .1154 -3.68940 .40254
 AGE| .06510*** .00768 8.47 .0000 .05004 .08016
 EDUC| .26222** .10182 2.58 .0100 .06265 .46178
 MARRIED| -.32185 .20265 -1.59 .1122 -.71904 .07534
 LAMBDA| -4.29958*** 1.23383 -3.48 .0005 -6.71784 -1.88132
--------+--
Partial effects of E[y] = Xb + c*L with respect to the vector of
characteristics. They are computed at the means of the Xs. Means for direct
effects are for selected observations. Means for indirect effects are the
full sample used for the probit. If a variable appears in both Xb and in L
the second effect shown in the table is b + c*dL/dx = direct+indirect.
--------+--
 | Partial Standard Prob. 95% Confidence
 DOCVIS| Effect Error z |z|>Z* Interval
--------+--
 |Direct effects in the regression
 AGE| .06510*** .00768 8.47 .0000 .05004 .08016
 EDUC| .26222** .10182 2.58 .0100 .06265 .46178
 MARRIED| -.32185 .20265 -1.59 .1122 -.71904 .07534
 |Indirect effects in LAMBDA (means are for all obs.)
 EDUC| -.22298*** .07472 -2.98 .0028 -.36943 -.07653
 HHNINC| -1.42584*** .45069 -3.16 .0016 -2.30918 -.54251
 HHKIDS| -.02788 .07490 -.37 .7097 -.17469 .11892
 |Total effect for variables in both parts
 EDUC| .03924 .12630 .31 .7560 -.20830 .28677
--------+--

R12: Model Predictions, Residuals, Simulations and Decompositions R-311

R12: Model Predictions, Residuals,
Simulations and Decompositions

R12.1 Introduction

 This chapter will describe using the estimated model for prediction of the dependent
variable. This involves several possible exercises. Section R12.2 discusses using the estimated
model in the natural fashion to obtain fitted values for the dependent variable based on the data used
to fit the model. Chapter R11 described analyses of scenarios for computing partial effects based on
the last model estimated. Sections R12.3 and R12.4 continue that analysis by demonstrating how to
use the estimated model to make predictions of the dependent variable under assumptions about the
independent variable. For example, you might examine how the average prediction of a wage
equation differs between men and women. Finally, Section R12.5 extends the analysis of the
estimated model by showing how to compute the Oaxaca decomposition of differences in model
predictions across two groups.

R12.2 Creating and Displaying Predictions and Residuals

 Many of the single equation models in LIMDEP, though not all, contain a natural ‘dependent
variable.’ Model predictions for any such model are easily obtained as discussed below. What
constitutes a residual in these settings is ambiguous, but, once again, some construction that typically
reflects a deviation of an actual from a predicted value can often be retained. The exact definition of
a ‘fitted value’ and a ‘residual’ are given with the model descriptions in the Econometric Modeling
Guide. The benchmark case is the linear regression model,

 yi = βʹxi + εi

for which the natural prediction is ˆiy = bʹxi and the residual is ei = yi - ˆiy , where b is the estimated
parameter vector. In many other cases, the predictor is only one possible function. For example, for
the binary logit model, Prob(yi = 1|xi) = Λ(βʹxi), one possible predictor is the conditional mean
function, which is the probability, while another is ˆiy = 1 if Λ(bʹxi) > 0.5 (or some other chosen
value) and 0 otherwise. In either case, there is no obvious function to call the residual. As noted,
when it is possible to define a candidate for predicting the dependent variable, you can save
predictions after estimation.
 There are several options for computing and saving fitted values from the regression models.
You may request fitted values and/or residuals for almost any model. (The usual exceptions are, e.g.,
multiple equation models.) The fitted values are requested by adding

 ; Keep = name

to your model command. The request for residuals is

 ; Res = name

In each of these cases, the command will overwrite the variable if it already exists, or create a new one.
In any model command, the following specification requests a listing of the residuals and several other
variables:
 ; List

R12: Model Predictions, Residuals, Simulations and Decompositions R-312

TIP: To keep fitted values in a text file, you can either use ; List with an output file or use WRITE
and write the values in their own file or LIST ; variable $.

 If the current sample is not the entire data set, and the data array contains observations on the
regressors but not the dependent variable, you can produce predicted values for these out of sample
observations by adding the specification

 ; Fill

to your model command. The specifications ; Res, ; Keep, and ; Fill do not compute values for any
observations for which any variable to be used in the calculation is missing (i.e., equals -999).
Otherwise, a prediction is computed for every row for which data can be found.

TIP: The specification ; Fill provides a very simple way of generating out of sample predictions.

 To provide an example of the ; Fill feature, we will examine some data on gasoline sales in
the U.S. before and after the 1973-1974 oil embargo. The data below are yearly series on gasoline
sales (g), per capita income (y), and index numbers for a number of prices: pg is the gasoline price,
pnc, puc, and ppt are price indices for new and used cars and public transportation, and pn, pd, and
ps are aggregate price indices for nondurables, durables, and services.

IMPORT $
year, g, pg, y, pnc, puc, ppt, pd, pn, ps
1960 129.7 .925 6036 1.045 .836 .810 .444 .331 .302
1961 131.3 .914 6113 1.045 .869 .846 .448 .335 .307
1962 137.1 .919 6271 1.041 .948 .874 .457 .338 .314
1963 141.6 .918 6378 1.035 .960 .885 .463 .343 .320
1964 148.8 .914 6727 1.032 1.001 .901 .470 .347 .325
1965 155.9 .949 7027 1.009 .994 .919 .471 .353 .332
1966 164.9 .970 7280 .991 .970 .952 .475 .366 .342
1967 171.0 1.000 7513 1.000 1.000 1.000 .483 .375 .353
1968 183.4 1.014 7728 1.028 1.028 1.046 .501 .390 .368
1969 195.8 1.047 7891 1.044 1.031 1.127 .514 .409 .386
1970 207.4 1.056 8134 1.076 1.043 1.285 .527 .427 .407
1971 218.3 1.063 8322 1.120 1.102 1.377 .547 .442 .431
1972 226.8 1.076 8562 1.110 1.105 1.434 .555 .458 .451
1973 237.9 1.181 9042 1.111 1.176 1.448 .566 .497 .474
1974 225.8 1.599 8867 1.175 1.226 1.480 .604 .572 .513
1975 232.4 1.708 8944 1.276 1.464 1.586 .659 .615 .556
1976 241.7 1.779 9175 1.357 1.679 1.742 .695 .638 .598
1977 249.2 1.882 9381 1.429 1.828 1.824 .727 .671 .648
1978 261.3 1.963 9735 1.538 1.865 1.878 .769 .719 .698
1979 248.9 2.656 9829 1.660 2.010 2.003 .821 .800 .756
1980 226.8 3.691 9722 1.793 2.081 2.516 .892 .894 .839
1981 225.6 4.109 9769 1.902 2.569 3.120 .957 .969 .926
1982 228.8 3.894 9725 1.976 2.964 3.460 1.000 1.000 1.000
1983 239.6 3.764 9930 2.026 3.297 3.626 1.041 1.021 1.062
1984 244.7 3.707 10421 2.085 3.757 3.852 1.038 1.050 1.117
1985 245.8 3.738 10563 2.152 3.797 4.028 1.045 1.075 1.173
1986 269.4 2.921 10780 2.240 3.632 4.264 1.053 1.069 1.224

We will compute simple regressions of g on one, pg, and y. The first regression is based on the pre-
embargo data, 1960 - 1973, but fitted values are produced for all 27 years. The second regression
uses the full data set and also produces predicted values for the full sample. We then plot the actual
and both predicted series on the same figure to examine the influence of the later data points.

R12: Model Predictions, Residuals, Simulations and Decompositions R-313

 DATE ; 1960 $
 PERIOD ; 1960 - 1973 $
 REGRESS ; Lhs = g ; Rhs = one, pg, y ; Keep = gfit6073 ; Fill $
 PERIOD ; 1960 - 1986 $
 REGRESS ; Lhs = g ; Rhs = one, pg, y ; Keep = gfit6086 $
 PLOT ; Rhs = g, gfit6073, gfit6086 ; Grid

; Title = Actual and Predicted Values of Gasoline Sales
; Vaxis = Predictions and Actual Values $

 The modeling guide will detail the formulas used in computing predictions, residuals, and
accompanying information. When you use ; List, some additional information will be displayed in
your output. In some cases, there is no natural residual or prediction to be computed, for example in
the bivariate probit model. In these cases, an alternative computation is done, so what is requested by
; Res or ; Keep may not actually be a residual or a fitted value. Individual model descriptions will
provide details. In general, the ; List specification produces the following:

1. An indicator of whether the observation was used in estimating the model.
If not, the observation is marked with an asterisk,

2. The observation number or date if the data are time series,
3. The observed dependent variable when this is well defined,
4. The ‘fitted value’ = variable retained by ; Keep,
5. The ‘residual’ = variable retained by ; Res,
6. ‘variable 1,’ a useful additional function of the model which is not kept, and
7. ‘variable 2,’ another computation.

 Although the last two variables are not kept internally, they are written to your output window
and to the output file if one is open, so you can retrieve them later by editing the file with a word
processor. In all cases, the formulas for these variables will be given, so if you need to have them at
the time they are computed, you can use a subsequent CREATE command to obtain the variables.

R12: Model Predictions, Residuals, Simulations and Decompositions R-314

 We illustrate these computations with a Poisson regression and with the out of sample
predictions generated by the regression above. The POISSON command would be

 POISSON ; Lhs = … ; Rhs = … ; List $

The following table results and items listed for the Poisson model are:

 Actual: y, Prediction: E[y] = exp(b′x),
 Residual: y - E[y], Index: b′x,
 Probability: Pr[Y = y] = exp(-λ)λy/y!, λ = E[y].

Predicted Values (* => observation was not in estimating sample.)
Observation Observed Y Predicted Y Residual x(i)b Pr[Y*=y]
 7 1.0000000 1.9798297 -.9798297 .6830109 .2734001
 11 3.0000000 .5306525 2.4693475 -.6336479 .0146494
 14 2.0000000 .2027126 1.7972874 -1.5959661 .0167762
 19 1.0000000 .5892748 .4107252 -.5288626 .3268881
 22 .000000 1.5780671 -1.5780671 .4562007 .2063736
 27 .000000 2.7696027 -2.7696027 1.0187039 .0626869
 30 .000000 2.7215365 -2.7215365 1.0011966 .0657736
 32 .000000 2.1277174 -2.1277174 .7550497 .1191089
 36 .000000 3.1435090 -3.1435090 1.1453397 .0431312
 40 .000000 .2942943 -.2942943 -1.2231751 .7450572

For a linear regression, the listed items are the familiar ones:

 PERIOD ; 1960 - 1973 $
 REGRESS ; Lhs = g ; Rhs = one, pg, y ; Keep = gfit6073 ; List ; Fill $

Predicted Values (* => observation was not in estimating sample.)
Observation Observed Y Predicted Y Residual 95% Forecast Interval
 1960 129.70000 127.97574 1.7242571 113.55855 142.39293
 1961 131.30000 129.46848 1.8315196 115.86233 143.07464
 1962 137.10000 134.79680 2.3032016 121.53562 148.05797
 1963 141.60000 138.04485 3.5551485 124.97181 151.11789
 1964 148.80000 148.57831 .2216922 134.92510 162.23151
 1965 155.90000 160.79099 -4.8909945 147.75083 173.83116
 1966 164.90000 170.39062 -5.4906219 157.42443 183.35681
 1967 171.00000 180.10723 -9.1072289 167.41426 192.80019
 1968 183.40000 187.94904 -4.5490359 175.14474 200.75334
 1969 195.80000 195.73348 .0665187 182.92095 208.54601
 1970 207.40000 204.03594 3.3640592 191.12778 216.94410
 1971 218.30000 210.46229 7.8377141 197.31386 223.61072
 1972 226.80000 219.00002 7.7999808 205.47309 232.52695
 1973 237.90000 242.56621 -4.6662105 226.75788 258.37454
* 1974 225.80000 271.46293 -45.662927 197.85242 345.07343
* 1975 232.40000 282.81499 -50.414993 193.97954 371.65044
* 1976 241.70000 295.83796 -54.137957 199.16406 392.51186
* 1977 249.20000 310.71199 -61.511988 201.13776 420.28621
* 1978 261.30000 328.38475 -67.084753 210.89623 445.87328
* 1979 248.90000 388.24798 -139.34798 168.33937 608.15660
* 1980 226.80000 469.95448 -243.15448 93.674489 846.23447
* 1981 225.60000 505.76061 -280.16061 67.359617 944.16161
* 1982 228.80000 486.72655 -257.92655 80.042437 893.41066
* 1983 239.60000 482.42593 -242.82593 97.683078 867.16878
* 1984 244.70000 493.02438 -248.32438 122.68188 863.36689
* 1985 245.80000 499.99091 -254.19091 126.69249 873.28934
* 1986 269.40000 439.61912 -170.21912 191.30350 687.93473

R12: Model Predictions, Residuals, Simulations and Decompositions R-315

R12.3 The Last Model

 The model used for the PARTIAL EFFECTS operation described in Chapter R11 is the last
one that you estimated. This will be obvious from the results in your output window, though it is
necessary to be specific about which function is being used. In nearly all cases, that function is a
predictor for the dependent variable. Section R12.4 shows how to use that function to produce
predictions for the model and analyze different scenarios, similar to the partial effects analysis in
Chapter R11. In this case, the operation will be to SIMULATE the dependent variable.

For example, consider a logit model, fit with

LOGIT ; Lhs = doctor
; Rhs = one, age, age^2, sex, income, sex*income $

The function used for the simulations will the logit probability,

 Last model = Λ(βʹx) = Prob(Lhs variable = 1).

which is the conditional mean function. There is a specific function used for each model for which
you can use PARTIAL EFFECTS and SIMULATE. These are documented in the Econometric
Modeling Guide for the particular models. At any time, you can find out what function is being used
for the SIMULATE command by using the command

 LAST MODEL $

For our logit example, the response would be

--> LAST MODEL $
The last estimated model is Logit Probability Function

In most cases, the function used is the conditional mean function. But, in some cases, such
as the ordered probit or logit models, there a numerous probability functions. For this particular
case, the default function is the probability of the highest outcome, for example,

--> OPROBIT ; Lhs = hsat ; Rhs = one,age,educ $
--> LAST MODEL $
The last estimated model is Ordered Probit Probability Y =10

The ordered probit models are a special case. The highest category is usually the one of interest.
You can change this by using

 ; Outcome = value (0,1,…)

NOTE: There is a default function for each model that SIMULATE may be used with. However,
you can specify a different function to be analyzed. The alternative function need not even be a
model. It can be any function you can specify with the command language. SIMULATE can
analyze any variable in any function that is computed using data and parameters. Section R12.4.3
describes how to supply your own function to be analyzed.

R12: Model Predictions, Residuals, Simulations and Decompositions R-316

R12.4 Using SIMULATE with the Last Model

 Use SIMULATE after estimating a model to compute the average prediction of the
dependent variable (or the average function value for the function saved by the last model). For
example, the following fits a logit model, then computes the average predicted probability:

 NAMELIST ; xprobit = one, age, educ, income, income^2, age*income, hsat $
 PROBIT ; Lhs = doctor ; Rhs = xprobit $

Binomial Probit Model
Dependent variable DOCTOR
Log likelihood function -2727.43478
Restricted log likelihood -2908.96085
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .86475*** .23176 3.73 .0002 .41050 1.31899
 AGE| .01642*** .00422 3.89 .0001 .00815 .02469
 EDUC| -.00166 .00872 -.19 .8494 -.01875 .01544
 INCOME| .83966 .59137 1.42 .1557 -.31941 1.99874
 |Constructed variable INCOME^2.0
_ntrct01| -.06449 .25065 -.26 .7970 -.55576 .42678
 |Interaction AGE*INCOME
_ntrct02| -.02484** .01176 -2.11 .0346 -.04789 -.00179
 HSAT| -.15719*** .00985 -15.95 .0000 -.17650 -.13787
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

 SIMULATE $

Model Simulation Analysis for Probit Probability Function

Simulations are computed by average over sample observations

User Function Function Standard
(Delta method) Value Error |t| 95% Confidence Interval

Avg. function .64718 .00686 94.33 .63373 .66062

Like PARTIAL EFFECTS, simulations are computed by averaging over the sample observations.
You can, instead, compute the simulated value at the means of the data by adding

 ; Means

To the SIMULATE command. Weights may be used with

 ; Wts = the weighting variable

See Section R11.4.11 for further details of weighted observations in simulations.

R12: Model Predictions, Residuals, Simulations and Decompositions R-317

R12.4.1 The Sample Used in the Simulation

 You may use the estimation sample or any other defined sample for the simulations. After
the last model is estimated, you may proceed immediately to the simulations using the estimation
sample, or change the sample in any way with SAMPLE, REJECT or INCLUDE. The sample
used for estimating the model need not be related to the sample used for the simulation.
 You can save the results of the simulation by adding

 ; Keep

to the SIMULATE command. This will create two variables in your data set, function and se_fnctn
that contain the predictions and estimated standard errors of the predictions for the observations in
the current sample. (Note, once again, the current sample need not be the one used to fit the model.)
For example,

 INCLUDE ; New ; female = 1 $
 PROBIT ; Lhs = doctor ; Rhs = x $
 INCLUDE ; New ; female = 0 $
 SIMULATE ; Keep $

fits the model using the observations for which female equals one, then simulates the model for the
observations for which female equals zero. The fitted values for the male half of the sample are
generated using the coefficients computed with the female half of the sample.

R12.4.2 Scenarios in Simulations

 The SIMULATE command operates the same way that PARTIAL EFFECTS does. The
command used to examine different scenarios is

 SIMULATE ; Scenario
 | variable = list of values and/or
 & variable = range of values and/or
 @ variable = set of discrete values $

To continue our earlier example, we will simulate the average probability for ages 20, 25, 30, …, 80.

 SIMULATE ; Scenario & age = 20 (5) 80 $

R12: Model Predictions, Residuals, Simulations and Decompositions R-318

Model Simulation Analysis for Probit Probability Function

Simulations are computed by average over sample observations

User Function Function Standard
(Delta method) Value Error |t| 95% Confidence Interval

Avg. function .64718 .00686 94.33 .63373 .66062
AGE = 20.00 .50846 .03750 13.56 .43497 .58195
AGE = 25.00 .53929 .02966 18.18 .48116 .59742
AGE = 30.00 .56990 .02189 26.03 .52700 .61281
AGE = 35.00 .60012 .01454 41.28 .57163 .62862
AGE = 40.00 .62977 .00856 73.58 .61300 .64655
AGE = 45.00 .65868 .00734 89.72 .64429 .67307
AGE = 50.00 .68671 .01164 59.02 .66390 .70952
AGE = 55.00 .71371 .01718 41.55 .68005 .74738
AGE = 60.00 .73957 .02253 32.83 .69542 .78372
AGE = 65.00 .76418 .02732 27.97 .71063 .81774
AGE = 70.00 .78747 .03144 25.04 .72584 .84910
AGE = 75.00 .80937 .03482 23.24 .74112 .87761
AGE = 80.00 .82983 .03744 22.17 .75645 .90321

The settings for the scenarios are defined in Sections R11.4.5 and R11.4.8. You may also use

 ; Plot and ; Plot(ci)

As described in Section R11.4.6. The preceding scenario shows the effect of age on the average
probability graphically.

R12: Model Predictions, Residuals, Simulations and Decompositions R-319

R12.4.3 Defining the Model for SIMULATE

 The function that LIMDEP uses for SIMULATE is the model left behind by the previous
model command. The model will remain in place until another fitted model changes its place.
However, you can specify your own model, or function – it need not be a model; this can be any
function that you wish to analyze. The additional information in the command is

 ; Function = any user defined function
 ; Covariance = matrix
 ; Parameters = set of values
 ; Labels = names of parameters

This is the same as described for PARTIAL EFFECTS in Section R11.4.13. The function
definition is any function that you wish to specify using the same form as MAXIMIZE, NLSQ,
WALD, etc. The function is assumed to involve an estimated parameter vector for which you also
have in hand an estimated covariance matrix. The labels are provided so that you can differentiate
between parameters and all the other numeric entities that can appear in the function.
 To illustrate, we examine the behavior of the hazard function suggested in Section R11.4.13.
The model is

 Prob(y = 1 | x) = Φ(βʹx).

The hazard function is

 h(βʹx) = -dlnΦ(-βʹx)/d(βʹx) = φ(βʹx)/[1 – Φ(βʹx)].

This is not a conditional mean function, but it might nonetheless be interesting. To continue our
example, we will employ this template and simulate the hazard function for a probit model. The
income variable in our model enters the function nonlinearly in several terms. Step 1 is definition
and estimation of the model

 NAMELIST ; xprobit = one, age, educ, income, income^2, age*income, hsat $

PROBIT ; Lhs = doctor ; Rhs = xprobit $

R12: Model Predictions, Residuals, Simulations and Decompositions R-320

Normal exit: 4 iterations. Status=0, F= 2727.435

Binomial Probit Model
Dependent variable DOCTOR
Log likelihood function -2727.43478
Restricted log likelihood -2908.96085
Chi squared [6 d.f.] 363.05212
Significance level .00000
McFadden Pseudo R-squared .0624024
Estimation based on N = 4481, K = 7
Inf.Cr.AIC = 5468.870 AIC/N = 1.220
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .86475*** .23176 3.73 .0002 .41050 1.31899
 AGE| .01642*** .00422 3.89 .0001 .00815 .02469
 EDUC| -.00166 .00872 -.19 .8494 -.01875 .01544
 INCOME| .83966 .59137 1.42 .1557 -.31941 1.99874
 |Constructed variable INCOME^2.0
_ntrct01| -.06449 .25065 -.26 .7970 -.55576 .42678
 |Interaction AGE*INCOME
_ntrct02| -.02484** .01176 -2.11 .0346 -.04789 -.00179
 HSAT| -.15719*** .00985 -15.95 .0000 -.17650 -.13787
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Step 2 is the simulation.

 SIMULATE ; Labels = b1,b2,b3,b4,b5,b6,b7
 ; Parameters = b

 ; Covariance = varb
 ; Function = bx = b1'xprobit |
 cdf = Phi(bx) |
 pdf = N01(bx) |
 pdf/(1-cdf)
 ; Scenario & age = 20(5)65

 ; Plot(ci) $

The function is defined recursively purely for convenience. The same results would be produced by
; Function = N01(b1’x)/(1 - Phi(b1’x)); we decomposed it above to illustrate how to compute a
complicated function in parts. The simulation and a plot with 95% confidence limits are as follows:

R12: Model Predictions, Residuals, Simulations and Decompositions R-321

Model Simulation Analysis for User Specified Function

Simulations are computed by average over sample observations

User Function Function Standard
(Delta method) Value Error |t| 95% Confidence Interval

Avg. function 1.09003 .01444 75.47 1.06172 1.11834
AGE = 20.00 .82799 .06358 13.02 .70336 .95261
AGE = 25.00 .88087 .05191 16.97 .77912 .98262
AGE = 30.00 .93515 .03975 23.53 .85724 1.01306
AGE = 35.00 .99076 .02756 35.95 .93674 1.04478
AGE = 40.00 1.04764 .01713 61.17 1.01408 1.08121
AGE = 45.00 1.10574 .01544 71.60 1.07547 1.13601
AGE = 50.00 1.16499 .02549 45.70 1.11503 1.21496
AGE = 55.00 1.22535 .03974 30.84 1.14746 1.30323
AGE = 60.00 1.28675 .05544 23.21 1.17808 1.39542
AGE = 65.00 1.34914 .07197 18.75 1.20809 1.49020

R12: Model Predictions, Residuals, Simulations and Decompositions R-322

R12.5 Oaxaca-Blinder Decompositions

 The Oaxaca (1973) - Blinder (1973) decomposition is useful for examining the following
situation: A model is fit for two groups (male/female, country A/country B, firm 1/firm2, etc.). The
average predictions of the two models are Ay and By . We are interested in explaining the
difference, Ay - By . Much of the applicable literature is in labor economics, where the difference
pertains to wage differences and the predictors are human capital variables such as age, education
and experience. Consistent with the development in Section R12.4, write this difference as

 (,) (,)A B A A B By y h b x h b x− = − .

The question pursued by this technique is whether the difference is better explained, in general terms,
by the difference between the coefficients, bA - bB or the difference between the covariates, xA - xB. In
labor market applications such as Oaxaca’s and Blinder’s, the latter term is attributed to productivity
and the residual is variously associated with labor market discrimination.
 Most of the received literature on the decomposition focuses on the linear regression model.
Our implementation of the method is general, and applies to any model that can be simulated using
the SIMULATE command described in Section R12.4. The central idea behind the calculations is a
term such as (,)B Ah b x which is the mean outcome for group A if they had group B’s coefficients,
and the reverse. For the Oaxaca-Blinder approach, the difference in mean outcomes can be written

(,) (,)

 (,) (,) (,) (,) .
A B A A B B

A A A B A B B B

y y h b x h b x

h b x h b x h b x h b x

− = −

 = − + −

The first bracketed term is attributed to the difference in the data and the second is attributed to
differences in the coefficients – we label these ‘Due to data’ and ‘Due to beta’ in the results of the
procedure. The use of group A (with coefficients bA) as the reference group for the decomposition is
arbitrary, of course. Unfortunately, the decomposition is not crisp and symmetric even in the linear
case. Several other approaches have been suggested. Daymont and Andrisani (1984) essentially
reverse the roles of A and B, changing the viewpoint of the computation from A to B;

(,) (,)

 (,) (,) (,) (,)
A B A A B B

B A B B A A B A

y y h b x h b x

h b x h b x h b x h b x

− = −

 = − + −

 A third approach, also proposed by Daymont and Andrisani (1984), suggests a three part
decomposition that recognizes the possibility of an ‘interaction’ between coefficients and
‘endowments,’

{ }

(,) (,)

 (,) (,) (,) (,)

 + (,) (,) (,) (,)

A B A A B B

B A B B A B B B

A A B A A B B B

y y h b x h b x

h b x h b x h b x h b x

h b x h b x h b x h b x

− = −

 = − + − +

 − − −

R12: Model Predictions, Residuals, Simulations and Decompositions R-323

In the linear model, the third part of this ‘three fold decomposition’ can be written as (bA-bB)(xA-xB).
This neat construction does not carry over to nonlinear models. Finally, Oaxaca and Ransom (1994,
1998) and Neumark (1988) suggested basing the calculation on a common reference coefficient
vector we’ll label b*, so that

 * *

* *

(,) (,)

 (,) (,)

 (,) (,) (,) (,) .

A B A A B B

A B

A A A B B B

y y h b x h b x

h b x h b x

h b x h b x h b x h b x

− = −

 = − +
 − + −

There is a pertinent question in this form of the model as to what should be used for the reference
coefficient vector. Once again, attention focuses on the linear model, with various suggestions for a
weighted average of bA and bB by Reimers (1983) (50% each), Cotton (1988) (the proportion of the
full number of observations in each subsample), a matrix weighted average by Oaxaca and Ransom
(1994) and the pooled estimator by Neumark (1988). We have adopted the last of these in our
implementation in view of the idea that the usual application here will not be for the linear
regression.
 In order to compute the decompositions, it is necessary to fit the model three times, once
with each subsample and then with the pooled sample. The syntax is

 Model ; For [variable = *,0,1] ; … the rest of the model $
 DECOMPOSE $

The ‘; For [..]’ part of the model command specifies a discrete variable that takes at least the two
values shown in your command. These need not be exhaustive, though typically the variable will be
a dummy variable, such as female in our example below, that splits the full sample. The ‘*’ indicates
the pooled sample. For example, if your sample were grouped into five industries coded industry =
1,2,3,4,5 and you wished to compare industries 2 and 3, you could use

 ; For [industry = *,2,3] ; …

The model is any model that leaves behind a last model specification that can be used for the
decomposition. In general, there are no other specifications for the DECOMPOSE command. In a
few cases, it is necessary to provide an additional specification to complete the function definition.
For example, if you fit an ordered probit model for hsat with, say, 11 categories coded 0,1,…,10,
then

 ORDERED ; For [female = *,0,1] ; Lhs = hsat ; Rhs = … $
 DECOMPOSE $

the decomposition would be applied to the probability for the last (hsat = 10) category. You could
change this to the hsat = 8 category with

 DECOMPOSE ; Outcome = 8 $

R12: Model Predictions, Residuals, Simulations and Decompositions R-324

The other specific cases are the multinomial logit model and the bivariate probit models. These are
noted in the applicable chapter in the Econometric Modeling Guide.
 To illustrate, we start with a fairly involved probit model which we fit with the pooled
sample, then we examine the average predicted probability for the two subsamples female = 0 and
female = 1;

 NAMELIST ; xprobit = one, age, educ, income, income^2, age*income, hsat $

PROBIT ; Lhs = doctor ; Rhs = xprobit $
 SIMULATE ; Scenario @ female = 0,1 $

The simulation seems to suggest that the average probabilities are essentially the same for the two
groups. However, as we shall find, this masks a considerable underlying difference.

Binomial Probit Model
Dependent variable DOCTOR
Log likelihood function -2728.93368
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .86533*** .23148 3.74 .0002 .41163 1.31903
 AGE| .01648*** .00421 3.91 .0001 .00822 .02474
 EDUC| -.00218 .00871 -.25 .8024 -.01924 .01489
 INCOME| .85493 .58931 1.45 .1469 -.30010 2.00996
 |Constructed variable INCOME^2.0
_ntrct01| -.06908 .25004 -.28 .7823 -.55915 .42100
 |Interaction AGE*INCOME
_ntrct02| -.02501** .01175 -2.13 .0332 -.04803 -.00199
 HSAT| -.15706*** .00985 -15.94 .0000 -.17637 -.13775
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Model Simulation Analysis for Probit Probability Function

Simulations are computed by average over sample observations

User Function Function Standard
(Delta method) Value Error |t| 95% Confidence Interval

Subsample for this iteration is FEMALE = 0 Observations: 2313
Avg. function .64008 .00705 90.83 .62627 .65390
Subsample for this iteration is FEMALE = 1 Observations: 2170
Avg. function .65460 .00690 94.92 .64109 .66812

R12: Model Predictions, Residuals, Simulations and Decompositions R-325

 The next set of instructions fits the models separately for the two groups and compares the
three coefficient vectors. There does seem to be a substantive difference across the two groups. The
two simulations based on separate coefficient vectors now show that the average predicted
probabilities differ by about 20% (from 0.59 to 0.71).

INCLUDE ; New ; year = 1988 & female = 0 $
PROBIT ; Quietly ; Lhs = doctor ; Rhs = xprobit ; Table = Male $
SIMULATE $
INCLUDE ; New ; year = 1988 & female = 1 $
PROBIT ; Quietly ; Lhs = doctor ; Rhs = xprobit ; Table = Female $
SIMULATE $
INCLUDE ; New ; year = 1988 $
PROBIT ; Quietly ; Lhs = doctor ; Rhs = xprobit ; Table = Pooled $
REVIEW ; Model = male, female, pooled ; Title = Estimated Probit Models $

+--+
| Estimated Probit Models |
+----------+---------------------+---------------------+---------------------+
| | MALE | FEMALE | POOLED |
+----------+---------------------+---------------------+---------------------+
| Variable | Parameter| t-ratio| Parameter| t-ratio| Parameter| t-ratio|
+----------+-----------+---------+-----------+---------+-----------+---------|
Constant	.8705	2.810	.6631	1.844	.8655	3.739
AGE	.0161	2.709	.0147	2.371	.0165	3.914
EDUC	-.0042	-.361	.0287	2.016	-.0022	-.249
INCOME	.4734	.611	1.1573	1.253	.8548	1.450
_ntrct01	-.1300	-.370	-.0821	-.227	-.0691	-.276
_ntrct02	-.0157	-.982	-.0308	-1.713	-.0250	-2.129
HSAT	-.1731	-12.719	-.1437	-9.925	-.1571	-15.947
+----------+-----------+---------+-----------+---------+-----------+---------+

Model Simulation Analysis for Probit Probability Function
Simulations are computed by average over sample observations

User Function Function Standard
(Delta method) Value Error |t| 95% Confidence Interval

Subsample for this iteration is FEMALE = 0 Observations: 2311
Avg. function .58558 .00974 60.10 .56648 .60467
Subsample for this iteration is FEMALE = 1 Observations: 2170
Avg. function .71256 .00943 75.52 .69407 .73105

 Finally, the decomposition is produced by

 PROBIT ; For [female = *,0,1] ; Lhs = doctor ; Rhs = xprobit $
 DECOMPOSE $

The results shown below decompose the difference by the several methods suggested earlier. As
part of the output, a chi squared (Wald) test of the difference between the two coefficient vectors. In
this application, the hypothesis that the two coefficient vectors are the same is decisively rejected.
The decomposition analysis follows. It appears that for these data and this application, the large
majority of the difference between the average predictions is explained by variation in the
coefficients rather than variation in the data.

R12: Model Predictions, Residuals, Simulations and Decompositions R-326

Decomposition of Changes in Average Functions
Model Used in Computations = Probit Probability Function

 Sample is FEMALE = 0 FEMALE = 1 Sample
Estimates Based on (0) (1) Size
FEMALE = 0 (a) .585578 (a,0) .602840 (a,1) 2313
FEMALE = 1 (b) .709426 (b,0) .712562 (b,1) 2170
Pooled =** (*) .640084 (*,0) .654605 (*,1) 4483

Wald Test of Difference in the Two Coefficient Vectors
Chi squared[7] = 79.7955 , P Value = .0000

Total Change in Function (a,0) - (b,1) = -.126984 (100.00%)

Oaxaca | Due to data is (a,0) - (a,1) = -.017262 (13.59%)
Blinder | Due to beta is (a,1) - (b,1) = -.109723 (86.41%)

Daymont | Due to data is (b,0) - (b,1) = -.003136 (2.47%)
Andrisani | Due to beta is (a,0) - (b,0) = -.123848 (97.53%)

Daymont | Due to data is (b,0) - (b,1) = -.003136 (2.47%)
Andrisani | Due to beta is (a,1) - (b,1) = -.109723 (86.41%)
(3 Fold) | Due to function (a,0) - (b,0) +
 | (a,1) + (b,1) = -.014126 (11.12%)

Ransom | Due to data is (*,0) - (*,1) = -.014521 (11.44%)
Oaxaca | Due to beta is (a,0) - (*,0) + -.112463 (88.56%)
Neumark | (*,1) - (b,1)

R13: Testing Hypotheses and Imposing Restrictions R-327

R13: Testing Hypotheses and Imposing
Restrictions

R13.1 Introduction

 This chapter describes procedures for testing hypotheses and imposing restrictions on
estimated parameters. LIMDEP contains a wide variety of procedures which can be used for
hypothesis testing, including the familiar trio of tests, Wald, LM, LR as well as Hausman tests and
other moment based tests of model specification. Sections R13.2-R13.5 will describe how to carry
out F tests in linear regressions and Wald, LM and LR tests in other models (including the linear
regression). Hausman tests and conditional moment tests are described in Chapter R16. Models in
LIMDEP may be estimated subject to linear restrictions. In most case, these will be used either to
force coefficients to equal each other or to be fixed at specific values. The options described in
Section R13.6 include these and more general linear restrictions. Tests of hypotheses that involve
nonlinear functions of the parameters are described in Chapter R14.

R13.2 F Test of Linear Restrictions in Linear Models

 The following applies only to the linear regression models, REGRESS, 2SLS, SURE, 3SLS
and the fixed effects linear model, REGRESS ; Panel ; Fixed Effects. In the settings mentioned, the
parameters of the model are estimated by least squares. This produces an ‘unconstrained’ least squares
estimator. A restricted model can be conveniently estimated and tested in LIMDEP by specifying the
regression as usual and adding the restrictions as an optional specification. For the linear models, the
restrictions are specified by adding the following specification to the model command:

 ; CLS: linear function = value, linear function = value,...

For example, suppose the parameter vector has five elements, and three restrictions to be imposed are

 b2 + 2b3 - b4 = .5
 3b1 + 1.2b2 - b4 = 0
 b4 - b5 = 0

The regression could be specified with

 REGRESS ; Lhs = y ; Rhs = x1,x2,x3,x4,x5
 ; CLS: b(2) + 2b(3) - b(4) = .5,
 3b(1) + 1.2b(2) - b(4) = 0,
 b(4) - b(5) = 0 $

The restrictions are written exactly as they appear in theory. Note, however, they must be written in
the form ‘linear function = value.’ Also, separate restrictions with commas, not semicolons.
 This specification, when used with REGRESS, SURE, 2SLS, or 3SLS produces a full set of
output for the restricted estimator as well as for the unrestricted one (if it exists). The appropriate
test statistic is also presented. When using the ; CLS : option with one of the systems estimators,
s²(X′X)-1 is replaced with the variance matrix of the GLS estimator. The parameter vector in these
models is obtained by stacking the parameter vectors in the individual equations.

R13: Testing Hypotheses and Imposing Restrictions R-328

HINT: The results for REGRESS, SURE, 2SLS, and 3SLS which are automatically saved by this
procedure, for example, matrices b and varb, are the restricted estimates.

NOTE: This procedure may be used for only one set of restrictions. If your command contains
; CLS:... ; CLS:... for a second or more sets of restrictions, only the last one will be carried out. To
analyze multiple sets of restrictions, the ; Test form of the command described in Section R13.3 should
be used. This will produce several test statistics, but not more than one restricted estimator.

 Restrictions specified as shown in the previous example make it obvious exactly what the
hypothesis is. However, there is a bit of inconvenience in that the indexes in the parameters change
if the equation changes. For example, in the specification

REGRESS ; Lhs = hhninc ; Rhs = one,age,educ,married,hhkids,health $

to force the age coefficient to equal 0 and the married and hhkids coefficients to equal each other, we
would use b(2)=0, b(4)-b(5)=0. However, if another variable, say female, were added to the equation
between educ and married, then the second constraint would have to be changed to b(5)-b(6) = 0.
An alternative syntax may be used to remove this relationship. To impose the constraint, the
equation can be specified as

REGRESS ; Lhs = hhninc ; Rhs = one,age,educ,married,hhkids,health
 ; CLS: age = 0, married - hhkids = 0 $

The obvious advantage of this syntax is that it is not tied to the position of the variables in the Rhs
list. To continue our example, if female is now inserted into the equation between educ and married,
the restrictions do not have to be changed. Coefficients in the restrictions are given as before, but
now must include a ‘*’ for multiplication. For example, the restriction above could be married -
3.5*hhkids = 0.

You may use either of these two syntaxes to specify restrictions in any single equation
model. When there are multiple equations, there can be multiple appearances of each variable. As
such, the syntax based on names will no longer work, and you must use the parameter index form.
For example, in order to impose equality of the two age coefficients in

SURE ; Lhs = income,educ ; Eq1 = one,age,married ; Eq2 = one,age,hhkids $

It would be necessary to use ; CLS: b(2) - b(5) = 0. The alternative, ; CLS: age - age = 0 (while
true) would not be useable

From this point forward, we will use the syntax based on variable names rather than
parameter names whenever possible.
 When you specify a constrained linear regression, the output will include the full
unconstrained results and the constrained estimates. The constrained results will also contain the F
statistic and a test of the restrictions as a hypothesis. The application below carries out the test
suggested in the earlier example.

NOTE: The ; CLS and ; Test specifications described in the next section cannot detect interaction
terms and nonlinear specifications in model commands. For example,

 REGRESS ; Lhs = y ; Rhs = one,x1,x2,x1*x2
 ; CLS: x1*x2 = 0 $

will produce an error message. In order to fit the restricted regression and test the hypothesis about the
interaction term, it is necessary to create, say, x1x2 = x1*x2, then operate directly on the single variable.

R13: Testing Hypotheses and Imposing Restrictions R-329

Ordinary least squares regression
LHS=HHNINC Mean = .34890
 Standard deviation = .16405
 No. of observations = 4481 Degrees of freedom
Regression Sum of Squares = 14.8647 5
Residual Sum of Squares = 105.709 4475
Total Sum of Squares = 120.573 4480
 Standard error of e = .15369
Fit R-squared = .12328 R-bar squared = .12230
Model test F[5, 4475] = 125.85407 Prob F > F* = .00000
Diagnostic Log likelihood = 2036.69639 Akaike I.C. = -3.74424
 Restricted (b=0) = 1741.91120
 Chi squared [5] = 589.57038 Prob C2 > C2* = .00000
--------+--
 | Standard Prob. 95% Confidence
 HHNINC| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .06186*** .01882 3.29 .0010 .02497 .09876
 AGE| -.00034 .00024 -1.44 .1487 -.00080 .00012
 EDUC| .01943*** .00099 19.62 .0000 .01748 .02137
 MARRIED| .09572*** .00587 16.30 .0000 .08421 .10724
 HHKIDS| -.02954*** .00548 -5.39 .0000 -.04028 -.01880
 HEALTH| .00250** .00105 2.37 .0176 .00044 .00456
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Restricted least squares regression
LHS=HHNINC Mean = .34890
 Standard deviation = .16405
 No. of observations = 4481 Degrees of freedom
Regression Sum of Squares = 10.1564 3
Residual Sum of Squares = 110.417 4477
Total Sum of Squares = 120.573 4480
 Standard error of e = .15705
Fit R-squared = .08423 R-bar squared = .08362
Model test F[3, 4477] = 137.26823 Prob F > F* = .00000
Diagnostic Log likelihood = 1939.06322 Akaike I.C. = -3.70155
 Restricted (b=0) = 1741.91120
 Chi squared [3] = 394.30405 Prob C2 > C2* = .00000
Restrictions F[2, 4475] = 99.65804 Prob F > F* = .00000
--------+--
 | Standard Prob. 95% Confidence
 HHNINC| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .09931*** .01383 7.18 .0000 .07220 .12641
 AGE| .000 (Fixed Parameter).....
 EDUC| .01823*** .00100 18.22 .0000 .01627 .02019
 MARRIED| .02808*** .00320 8.78 .0000 .02181 .03435
 HHKIDS| .02808*** .00320 8.78 .0000 .02181 .03435
 HEALTH| .00125 .00105 1.19 .2341 -.00081 .00331
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
Fixed parameter ... is constrained to equal the value or
had a nonpositive st.error because of an earlier problem.

R13: Testing Hypotheses and Imposing Restrictions R-330

R13.3 Testing Linear Restrictions Using the Wald Statistic

 The Wald statistic for linear restrictions is based on the general linear hypothesis,

 H0: Rβ - q = 0 vs. H1: Rβ - q ≠ 0,

where β is a set of K coefficients that appear in the specified model, R is a J×K matrix of constants
that specify the restrictions, and q is a J×1 vector of constants. (See, e.g., Greene (2011, Chapter 5)
for discussion.) It is assumed that you are imposing fewer restrictions than there are parameters, so J
is strictly less than K. LIMDEP provides several ways to compute linear functions of parameters and
associated standard errors, and to compute test statistics for analyzing this form of restriction. The
general specification

 ; Test: linear restrictions

can be used with all models that are fit with the program. The specification can be used to test a
hypothesis involving one or more restrictions and one or more hypotheses at the same time.
Individual restrictions within a hypothesis are separated by commas. Hypotheses are separated by
the vertical bar character, ‘|.’

NOTE: In previous versions of LIMDEP, the specification was ; Wald:. This is still usable.

The restrictions are set up in exactly the same fashion as for ; CLS:. The specification produces the
Wald test statistic and the significance level in the output.
 In all cases, including the linear regression model, the Wald statistic is computed using the
results of the estimated model without imposing restrictions. The computed statistic is

 () ()1ˆ ˆˆWald
−′ ′= − − R q R R R qβ Σ β

Where β̂ is the estimated parameter vector and Σ̂ is the estimated covariance matrix. Under the
assumptions of the model and the hypothesis, this is a chi squared statistic with degrees of freedom
equal to the number of restrictions (which equals the number of rows in R, or elements in q).

NOTE: The restricted least squares or maximum likelihood estimator is not computed in order to
obtain the Wald statistic. The Wald statistic is based on the unrestricted estimates. It can be seen in
the examples below, the reported model estimates are the unrestricted estimates.

 For an example, consider a translog production function

 y = β1 + β2x1 + β3x2 + β4x12 + β5x22 + β6(2x1*x2) + ε,

where the variables are logs of output and the inputs. The hypothesis of constant returns to scale
(CRTS) in this model involves two restrictions, β2+β3 = 1 and β4+β5+β6 = 0. The hypothesis of the
Cobb-Douglas model as a restriction on the translog model is β4 = 0, β5 = 0, β6 = 0.

R13: Testing Hypotheses and Imposing Restrictions R-331

 Testing for CRTS in the two model forms could be done as follows:

 REGRESS ; Lhs = y ; Rhs = one,x1,x2,x11,x22,x12
 ; Test: x1 + x2 = 1, x11 + x22 + x12 = 0 | ? CRTS translog
 x1 + x2 = 1, x11 = 0, x22 = 0, x12 = 0 $ CRTS Cobb-Douglas

When your specification tests a single restriction, the test results are embedded in the model results.
When you specify more than one hypothesis test, a separate table of results is produced. The
example below demonstrates.
 The data listed are statewide measures of inputs and output in the transportation sector from
Greene (2008, Table F14.1). After importing the data, we created the transformed variables used in
the production function

IMPORT $

State ValueAdd Capital Labor NFirm
Alabama 126.148 3.804 31.551 68
California 3201.486 185.446 452.844 1372
Connecticut 690.670 39.712 124.074 154
Florida 56.296 6.547 19.181 292
Georgia 304.531 11.530 45.534 71
Illinois 723.028 58.987 88.391 275
Indiana 992.169 112.884 148.530 260
Iowa 35.796 2.698 8.017 75
Kansas 494.515 10.360 86.189 76
Kentucky 124.948 5.213 12.000 31
Louisiana 73.328 3.763 15.900 115
Maine 29.467 1.967 6.470 81
Maryland 415.262 17.546 69.342 129
Massachusetts 241.530 15.347 39.416 172
Michigan 4079.554 435.105 490.384 568
Missouri 652.085 32.840 84.831 125
NewJersey 667.113 33.292 83.033 247
NewYork 940.430 72.974 190.094 461
Ohio 1611.899 157.978 259.916 363
Pennsylvania 617.579 34.324 98.152 233
Texas 527.413 22.736 109.728 308
Virginia 174.394 7.173 31.301 85
Washington 636.948 30.807 87.963 179
WestVirginia 22.700 1.543 4.063 15
Wisconsin 349.711 22.001 52.818 142

CREATE ; x1 = Log(capital/nfirm) ; x2 = Log(labor/nfirm)

; x11 = x1*x1 ; x22 = x2*x2 ; x12 = 2*x1*x2 $
CREATE ; y = Log(valueadd/nfirm) $
REGRESS ; Lhs = y ; Rhs = one,x1,x2,x11,x22,x12

 ; Test: x1 + x2 = 1, x11 + x22 + x12 = 0 $

The first regression tests the single hypothesis of constant returns to scale in the translog model.

R13: Testing Hypotheses and Imposing Restrictions R-332

Ordinary least squares regression
LHS=Y Mean = .77173
 Standard deviation = .89931
 No. of observations = 25 Degrees of freedom
Regression Sum of Squares = 18.8441 5
Residual Sum of Squares = .565973 19
Total Sum of Squares = 19.4100 24
 Standard error of e = .17259
Fit R-squared = .97084 R-bar squared = .96317
Model test F[5, 19] = 126.52092 Prob F > F* = .00000
Diagnostic Log likelihood = 11.87760 Akaike I.C. = -3.30809
 Restricted (b=0) = -32.30989
 Chi squared [5] = 88.37497 Prob C2 > C2* = .00000
Wald Test: Chi-Squared(2) = 3.25567 Significance level = .19635
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error t |t|>T* Interval
--------+--
Constant| 1.92982*** .17886 10.79 .0000 1.57925 2.28039
 X1| -.02044 .29835 -.07 .9461 -.60520 .56431
 X2| .66866 .42676 1.57 .1337 -.16778 1.50510
 X11| -.07322 .12540 -.58 .5662 -.31900 .17256
 X22| .02341 .19785 .12 .9070 -.36436 .41119
 X12| -.03567 .15238 -.23 .8174 -.33434 .26300
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The second regression tests the CRTS hypothesis in the translog model then imposes the restrictions
of the Cobb-Douglas model and tests for CRTS in the restricted model.

REGRESS ; Lhs = y ; Rhs = one,x1,x2,x11,x22,x12
 ; Test: x1 + x2 = 1, x11 + x22 + x12 = 0 |

x11 = 0, x22 = 0, x12 = 0 , x1 + x2 = 1 $

Ordinary least squares regression
LHS=Y Mean = .77173
 Standard deviation = .89931
 No. of observations = 25 Degrees of freedom
Regression Sum of Squares = 18.8441 5
Residual Sum of Squares = .565973 19
Total Sum of Squares = 19.4100 24
 Standard error of e = .17259
Fit R-squared = .97084 R-bar squared = .96317
Model test F[5, 19] = 126.52092 Prob F > F* = .00000
Diagnostic Log likelihood = 11.87760 Akaike I.C. = -3.30809
 Restricted (b=0) = -32.30989
 Chi squared [5] = 88.37497 Prob C2 > C2* = .00000
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error t |t|>T* Interval
--------+--
Constant| 1.92982*** .17886 10.79 .0000 1.57925 2.28039
 X1| -.02044 .29835 -.07 .9461 -.60520 .56431
 X2| .66866 .42676 1.57 .1337 -.16778 1.50510
 X11| -.07322 .12540 -.58 .5662 -.31900 .17256
 X22| .02341 .19785 .12 .9070 -.36436 .41119
 X12| -.03567 .15238 -.23 .8174 -.33434 .26300

R13: Testing Hypotheses and Imposing Restrictions R-333

--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Chi squared tests of linear restrictions. Degrees of freedom shown
in [.]. Equals zero is implied if no specific value was given.
 1. Restriction:X1+X2=1,X11+X22+X12=0
 Chi squared[2] = 3.256, P value = .1964
 2. Restriction:X11=0,X22=0,X12=0,X1+X2=1
 Chi squared[4] = 24.905, P value = .0001

 The identical syntax is used for nonlinear models and the results will be arranged similarly.
In the following example, the command first tests the joint hypothesis that all the coefficients in the
model equal zero, then it tests each of the hypotheses one at a time.

POISSON ; Lhs = docvis ; Rhs = one,age,educ,public,married,hhkids
; Test: age = 0, educ = 0, public = 0, married = 0, hhkids = 0 |

age = 0 | educ = 0 | public = 0 | married = 0 | hhkids = 0 $

Poisson Regression
Dependent variable DOCVIS
Log likelihood function -15891.44190
Restricted log likelihood -16398.15386
Chi squared [5 d.f.] 1013.42392
Significance level .00000
McFadden Pseudo R-squared .0309005
Estimation based on N = 4481, K = 6
--------+--
 | Standard Prob. 95% Confidence
 DOCVIS| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .42184*** .08261 5.11 .0000 .25994 .58375
 AGE| .01673*** .00089 18.75 .0000 .01498 .01848
 EDUC| -.02491*** .00438 -5.68 .0000 -.03350 -.01631
 PUBLIC| .28806*** .03258 8.84 .0000 .22421 .35191
 MARRIED| -.03153 .02198 -1.43 .1515 -.07461 .01156
 HHKIDS| -.20139*** .02217 -9.08 .0000 -.24484 -.15793
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Chi squared tests of linear restrictions. Degrees of freedom shown
in [.]. Equals zero is implied if no specific value was given.
 1. Restriction:AGE=0,EDUC=0,PUBLIC=0,MARRIED=0,HHKIDS=0
 Chi squared[5] = 992.331, P value = .0000
 2. Restriction:AGE=0
 Chi squared[1] = 351.491, P value = .0000
 3. Restriction:EDUC=0
 Chi squared[1] = 32.272, P value = .0000
 4. Restriction:PUBLIC=0
 Chi squared[1] = 78.181, P value = .0000
 5. Restriction:MARRIED=0
 Chi squared[1] = 2.057, P value = .1515
 6. Restriction:HHKIDS=0
 Chi squared[1] = 82.500, P value = .0000

R13: Testing Hypotheses and Imposing Restrictions R-334

Note that there are two joint tests of the hypothesis that all coefficients are equal to zero in the results
above. The Wald statistic is shown in restriction 1 in the lower table of results. The likelihood ratio
test of the same hypothesis is shown with the standard results at the top of the table of results.

R13.4 Likelihood Ratio Tests

Most of the models in LIMDEP are estimated using the maximum likelihood estimator. The
log likelihood function provides a general approach to testing hypotheses. In most cases, the general
test of the hypothesis that all coefficients in the estimated model save for the constant term are equal
to zero is part of the standard output. In the Poisson regression example at the end of the previous
section, the initial model results include a likelihood ratio (chi squared) test of the hypothesis. The
general result for the test is based on the likelihood ratio statistic,

LR = 2[logL(unrestricted) - logL(restricted)].

Under the assumptions of the model and assuming the test is appropriate, the statistic is a chi squared
statistic with degrees of freedom equal to the number of restrictions. LIMDEP automatically saves
the log likelihood value in a scalar named logl when you fit a model. This value is replaced each
time you fit a new model. Figure R13.1 illustrates this for the Poisson model fit in the previous
example.

Figure 14.1 Project Window with Saved Log Likelihood

R13: Testing Hypotheses and Imposing Restrictions R-335

The general strategy for obtaining the statistic would be

 Model ; specification with restrictions … $
 CALC ; loglr = logl $
 Model ; specification without restrictions … $
 CALC ; loglu = logl $

Now, you can compute the likelihood ratio statistic. For example, the following will display the
statistic and appropriate critical value from the chi squared table. (You must provide the degrees of
freedom – there is no way for the program to figure out the degrees of freedom based on the
commands or the results.)

 CALC ; List ; lrtest = 2*(loglu - loglr) ; Ctb(.95, … <df>…) $

The following will show several typical applications.

R13.4.1 Fixed Value Restriction in a Poisson Model

 The following computes an unrestricted probit model, then tests the hypothesis that the
coefficients on the last two variables are zero. The initial output is suppressed. Only the results of
the test are shown.

PROBIT ; Quietly
; Lhs = doctor ; Rhs = one,age,educ,public,married,hhkids $

CALC ; loglu = logl $
PROBIT ; Quietly

; Lhs = doctor ; Rhs = one,age,educ,public $
CALC ; loglr = logl $
CALC ; List ; lrtest = 2*(loglu - loglr) ; cvalue = Ctb(.95,2) $

[CALC] LRTEST = 7.8459659
[CALC] CVALUE = 5.9914645
Calculator: Computed 2 scalar results

R13.4.2 Imposing and Testing Restrictions

 Section R13.6.1 describes a specification that can be used to impose fixed value and equality
restrictions in any model. The preceding test could be carried out with this device. The two probit
commands could be specified with

PROBIT ; Lhs = doctor ; Rhs = one,age,educ,public,married,hhkids
; Rst = b1,b2,b3,b4,b5,b6 $

and
PROBIT ; Lhs = doctor ; Rhs = one,age,educ,public,married,hhkids

; Rst = b1,b2,b3,b4,0,0 $

The second PROBIT command estimates the model subject to the restrictions that the last two
coefficients equal zero. (The ; Rst = list specification in the first model is actually redundant since it
does not specify any restrictions. It simply names the parameters in the model.)

R13: Testing Hypotheses and Imposing Restrictions R-336

R13.4.3 Homogeneity of Models in a Stratified Data Set

 The following example demonstrates several features of LIMDEP and shows a general
method of testing whether the same model should be used for all subgroups in a sample. The
modeling framework is

 For group i, model fi(.) applies to observations yig, xig, g = 1,…,G groups, i = 1,…,ng.

 H0: The same model applies to all groups.

 H1: The form of the model is the same for all groups, but the parameters differ across
 groups.

A likelihood ratio test of the null hypothesis is carried out as follows:

 Unrestricted: log Lu = ∑ =

G
g gL

1
log ; models are fit separately.

 Restricted: log Lr = the log likelihood for the model with all observations pooled.

The chi squared test statistic has degrees of freedom (G-1)×K where K is the number of parameters
in the model and is computed as

 χ2 = 2(log Lu – log Lr).

This test is equivalent to a ‘Chow test’ in the linear regression model.
 The following LIMDEP procedure does this computation. It assumes that the sample
stratification is provided by a variable that is coded 1,2,…,G. (See Chapter R4 if you need to create
this variable from some other kind of indicator variable.)

 PROC = samemodl(Model, y, x, group) $
 CALC ; g = Max(group) ? How many groups?
 ; loglu = 0 $ Will be accumulated
 DO FOR ; 100 ; grp = 1,g $ Execute once for each stratum
 INCLUDE ; New ; group = grp $ Select the observations
 Model ; Lhs = y ; Rhs = x ; Quietly $ Estimate the model
 CALC ; loglu = loglu + logl $ Unrestricted log likelihood = sum
 ENDDO ; 100 $ End of repetition block
 SAMPLE ; All $ Full sample for restricted model
 Model ; Lhs = y ; Rhs = x ; Quietly $ Estimate model using full sample
 CALC ; loglr = logl ? Retrieve restricted log likelihood
 ; List ; lrtest = 2*(loglu - loglr) ? LR statistic
 ; df = (g-1)*kreg ? Degrees of freedom
 ; prob = 1 - Chi(lrtest,df) $ P value = significance level
 ENDPROC $

R13: Testing Hypotheses and Imposing Restrictions R-337

This procedure can be used for any model that is built up simply for a dependent variable and a set of
independent variables. If need be, you could modify the model command for some other modeling
framework. Note that the model command is generic. You could use this for a probit model, then
with exactly the same program change over to a logit model.

TIP: Note that the model command includes ; Quietly. This will suppress what might be a huge
amount of output. This will often be a good idea.

 To illustrate, the following tests for homogeneity across genders of a probit model.

NAMELIST ; x = one,age,married,hhkids$
CREATE ; sex = female + 1 $
EXECUTE ; proc = samemodl(probit,doctor,x,sex)$

[CALC] LRTEST = 584.5646542
[CALC] DF = 4.0000000
[CALC] PROB = .0000000
Calculator: Computed 4 scalar results
Maximum repetitions of PROC

All other output from the procedure has been suppressed, so it only reports the outcome of the test.

R13.4.4 Testing for Equal Coefficient Vectors

 The test procedure in the previous section was constructed to illustrate using a procedure to
carry out a repetitive operation – in the application, the same calculations were applied to several
subsamples. The particular test carried out there, testing for equality of the coefficients across
subgroups of the sample, is so common that we have automated the entire computation in a single
command. The general syntax for the test is

 Model ; For [(test) group variable] ; the model specification $

The specification of the group variable can be a set of values, such as

 ; For [(test) firm = 2,3,4,5] ; …

However, we note a caution, if the list of values does not exhaust the full sample, then the test will
not be carried out correctly because the null specification uses the entire sample, not the pooled
sample from the values given. The way to set this up correctly would be to set the pooled sample at
the outset. For this example, suppose the full sample were firms 1,…,8. Then you would want the
pooled sample to include firms 2,3,4,5. The way to proceed would be

 INCLUDE ; New ; firm >= 2 & firm <= 5 $
 Model ; For [(test) firm = 2,3,4,5] ; … $

For the example below, we replicated the test in the previous section with

PROBIT ; For[(test)female]
; Quietly ; Lhs = doctor ; Rhs = one,age,married,hhkids $

R13: Testing Hypotheses and Imposing Restrictions R-338

The results are

+---+
| Setting up an iteration over the values of FEMALE |
| The model command will be executed for 2 values |
| of this variable. In the current sample of 27326 |
| observations, the following counts were found: |
| Subsample Observations Subsample Observations |
| FEMALE = 0 14243 FEMALE = 1 13083 |
| FEMALE =**** 27326 |
+---+
| Actual subsamples may be smaller if missing values |
| are being bypassed. Subsamples with 0 observations |
| will be bypassed. |
+---+

* Subsample analyzed for this command is FEMALE = 0 *

* Subsample analyzed for this command is FEMALE = 1 *

* Full pooled sample is used for this iteration. *

Homogeneity Test for Estimated Model

The model was estimated for 2 subsamples and the full sample
The likelihood ratio statistic is 2[Sum(g=1...G)logL(g) -logL(pooled)]
Chi squared = 584.5647 Estimated degrees of freedom = 4
Estimated P value for this test is .0000

Note that the built in function does not require the group variable to be coded 1,2,…,G. It only
expects to find a set of integer values. Thus, in the procedure, we used sex = female+1 which is now
coded 1,2 while in the built in function, we used female = 0,1.

R13.4.5 Two Part Models: Cragg’s Model for a Censored Dependent
Variable

 The tobit model specifies that y = max(0,β‘x+ε), ε ~ N(0,σ2). It follows that the appropriate
model for d = 0 if y = 0, d = 1 otherwise is a probit model with parameters γ = β/σ. Cragg’s
specification allows the parameters in the implied probit equation to differ completely from those in
the tobit model, so that the complete model is a probit model for d and a separate truncated
regression model for the positive values of y. (See Section E45.9.2 for further discussion.) Since the
tobit log likelihood is simply the sum of the probit and truncated regression log likelihoods (see
Greene, 2011), a simple test of the tobit model as a restriction on Cragg’s (1971) model (γ = β/σ) can
be based on
 χ2 = 2(logLprobit + logLtruncated regression - logLtobit).

R13: Testing Hypotheses and Imposing Restrictions R-339

This will have degrees of freedom equal to the number of variables in x. The following does the test:

 NAMELIST ; x = ... your definition $
 TOBIT ; Lhs = y ; Rhs = x $
 CALC ; ltobit = logl $
 CREATE ; d = y > 0 $
 TRUNC ; Lhs = y ; Rhs = x $ This skips points with y = 0.
 CALC ; ltrunc = logl $
 PROBIT ; Lhs = d ; Rhs = x $
 CALC ; lprobit = logl ; List
 ; lr = 2 * (ltrunc + lprobit - ltobit)
 ; df = Col(x) ; prob = Chi(lr,df) $

R13.4.6 Likelihood Ratio Tests for Discrete Choice Models

 In many discrete choice models (probit, logit, ordered probit, Weibull, etc.), the log
likelihood function for a model with only a constant term is

 log L0 = jjoutcomesj
pn log∑ =

where pj is the proportion of the sample observations which have dependent variable equal to choice
j, n is the sample size, and nj = npj. In this case, LIMDEP will carry out a likelihood ratio test of the
hypothesis that all model parameters except the constant term are zero and report the results with
other model output. The results below show the leading model output for a probit model, then a logit
model fit with the same variables.

Binomial Probit Model
Dependent variable DOCTOR
Log likelihood function -17715.32374
Restricted log likelihood -18019.55173
Chi squared [3 d.f.] 608.45598
Significance level .00000
McFadden Pseudo R-squared .0168832
Estimation based on N = 27326, K = 4
Inf.Cr.AIC =35438.647 AIC/N = 1.297
Hosmer-Lemeshow chi-squared = 164.02100
P-value= .00000 with deg.fr. = 8
--------+--

Binary Logit Model for Binary Choice
Dependent variable DOCTOR
Log likelihood function -17717.48126
Restricted log likelihood -18019.55173
Chi squared [3 d.f.] 604.14094
Significance level .00000
McFadden Pseudo R-squared .0167635
Estimation based on N = 27326, K = 4
Inf.Cr.AIC =35442.963 AIC/N = 1.297
Hosmer-Lemeshow chi-squared = 168.11271
P-value= .00000 with deg.fr. = 8
--------+--

R13: Testing Hypotheses and Imposing Restrictions R-340

Note that the restricted log likelihoods for the two models are identical. This follows from the earlier
results since the restricted log likelihood is the same function of the sample proportions for both
models.
 A similar convenience arises in the Poisson regression model, in which the restricted
parameter vector in a model with only a constant term is [log y ,0,…], so the log likelihood function
for a restricted model can be computed at this ‘estimate.’ The output for a Poisson model includes

Poisson Regression
Dependent variable DOCVIS
Log likelihood function -105449.32913
Restricted log likelihood -108662.13583
Chi squared [3 d.f.] 6425.61341
Significance level .00000
McFadden Pseudo R-squared .0295669
Estimation based on N = 27326, K = 4
Inf.Cr.AIC =********* AIC/N = 7.718
Chi- squared =265073.54284 RsqP= .0460
G - squared =157860.07745 RsqD= .0391
Overdispersion tests: g=mu(i) : 20.807
Overdispersion tests: g=mu(i)^2: 20.565
--------+--

The model results show the results of the overall test of model significance.

TIP: If your model output for the discrete choice model does not contain the results for this test, it is
probably because you neglected to include a constant term in your Rhs. If you do omit the constant
term, it is possible for the log likelihood for your model to be less than that for the model with only a
constant term. Moreover, even if it is not, the test given above will be misleading since the model
being tested is not nested in the larger model. That is, the model with ; Rhs = x cannot be compared
to the model with ; Rhs = one, unless x contains one.

R13.4.7 Likelihood Ratio Tests for Nonlinear Models

 In most cases, the model with no coefficients is not a simple function of the sample data. In
these cases, no simple test of overall significance is produced, but you can easily compute one. For
example, for a tobit model, you can use

 TOBIT ; Lhs = y ; Rhs = one,… other variables $
 CALC ; loglu = logl ; kr = kreg $
 TOBIT ; Lhs = y ; Rhs = one $
 CALC ; loglr = logl
 ; lrtest = 2*(loglu - loglr)
 ; df = kr - 1
 ; pvalue = 1 - Chi(lrtest,df) $

For this or any other case, you need only compare the log likelihood for your model with the log
likelihood for a model which contains only a constant term.
 The table below shows the output for the logit model of the previous section fit with only a
constant term:

R13: Testing Hypotheses and Imposing Restrictions R-341

Binary Logit Model for Binary Choice
Dependent variable DOCTOR
Log likelihood function -18019.55173
Estimation based on N = 27326, K = 1
Inf.Cr.AIC =36041.103 AIC/N = 1.319
Hosmer-Lemeshow chi-squared = 39.13032
P-value= .00000 with deg.fr. = 8
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| .52839*** .01252 42.19 .0000 .50385 .55294
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The log likelihood for the model is the one which appears in the earlier model results, so the test
results will be the same.

R13.5 Lagrange Multiplier Tests

Lagrange multiplier (LM) tests are used similarly to likelihood ratio tests. These two, in
contrast to the Wald test, rely specifically on the form of the likelihood function while the Wald
statistic relies only on the large sample properties of the parameter estimator. The logic of the LM test
is as follows: In estimating a model, if we do so without restrictions, the derivatives of the log
likelihood will equal zero (to within rounding error) at the maximizer of the function. If we fit the
model subject to restrictions, the maximized log likelihood will be lower (that is the basis of the LR
test) and the derivatives of the full log likelihood function will not be zero. The test is based on
measuring the extent to which the derivatives differ from zero. If the difference appears to be within
the bounds of sampling variability, the hypothesis of the restrictions is not rejected.

The LM test has a significant shortcoming that weighs against a significant virtue. The test
is the generally the most complicated of the three we are considering here, as it requires computation
of the derivatives (and programming them). The appeal, however, is that the test is based entirely on
the restricted model, which is often much simpler than the unrestricted model which is needed for the
Wald and LR tests. For an example that we pursue below, the probit model with heteroscedasticity
is a complicated model to estimate (and interpret). However, the test for heteroscedasticity can
(using the LM statistic) be based entirely on a homoscedastic model, which is very simple.

LIMDEP has a built in feature that automates LM tests for most of the models supported by
the program. The sections to follow describe this feature, then work through several examples..

R13.5.1 LM Tests Based on the Model Specification

 For most of the nonlinear models, you can request LIMDEP to compute an LM statistic by
treating your starting values as the restricted estimates. The procedure is then as follows:

1. Obtain the full restricted set of parameter estimates.
2. Use the following command:

 Model Name ; ... usual setup ... ; Start = your values ; Maxit = 0 $

R13: Testing Hypotheses and Imposing Restrictions R-342

When you specify a model, provide starting values, then prevent iterations with ; Maxit = 0,
LIMDEP does the following:

1. Computes the LM statistic using the starting values.
2. Reports the usual output, i.e., estimates, standard errors, etc. as if the starting values

were the maximum likelihood estimates.
3. Reports the LM statistic with the final output.

TIP: To do a Lagrange multiplier test, therefore, you would obtain the starting values by estimating
the restricted model, then specifying the unrestricted model as the command, providing as starting
values the estimates from the restricted model. This usually includes some fixed values for
parameters in the unrestricted specification, typically a set of zeros.

Example: Fixed Value Restriction in a Logit Model

 The following commands fit a logit model with an interaction between age and gender. We
are interested in testing the hypothesis that the coefficient on this term equals zero. The unrestricted
model is

LOGIT ; Lhs = doctor
; Rhs = one,age,educ,hhninc,married,female,age*female $

Binary Logit Model for Binary Choice
Dependent variable DOCTOR
Log likelihood function -17444.88483
Restricted log likelihood -18019.55173
Chi squared [6 d.f.] 1149.33380
Significance level .00000
McFadden Pseudo R-squared .0318913
Estimation based on N = 27326, K = 7
Inf.Cr.AIC =34903.770 AIC/N = 1.277
Hosmer-Lemeshow chi-squared = 80.07335
P-value= .00000 with deg.fr. = 8
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| -.59710*** .09733 -6.13 .0000 -.78786 -.40634
 AGE| .02896*** .00159 18.23 .0000 .02585 .03208
 EDUC| -.02697*** .00580 -4.65 .0000 -.03834 -.01560
 HHNINC| -.18680** .07571 -2.47 .0136 -.33518 -.03841
 MARRIED| -.01076 .03134 -.34 .7313 -.07219 .05066
 FEMALE| 1.06350*** .10301 10.32 .0000 .86161 1.26539
 |Interaction AGE*FEMALE
Intrct01| -.01141*** .00233 -4.89 .0000 -.01598 -.00684
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R13: Testing Hypotheses and Imposing Restrictions R-343

The large z statistic (-4.89) attached to the term in the unrestricted model suggests that the hypothesis
should be rejected. We will now fit the model subject to the restriction. The obvious way to proceed
is to drop the variable from the model, but for our purposes, it is more useful to compute the
restricted estimator. The command, which uses the device shown in Section R13.6.1 is

LOGIT ; Lhs = doctor
; Rhs = one,age,educ,hhninc,married,female,age*female
; Rst = b1,b2,b3,b4,b5,b6,0$

Binary Logit Model for Binary Choice
Dependent variable DOCTOR
Log likelihood function -17456.85932
Restricted log likelihood -18019.55173
Chi squared [6 d.f.] 1125.38482
Significance level .00000
McFadden Pseudo R-squared .0312268
Estimation based on N = 27326, K = 6
Inf.Cr.AIC =34925.719 AIC/N = 1.278
Model estimated: Mar 02, 2011, 13:01:44
Hosmer-Lemeshow chi-squared = 93.34713
P-value= .00000 with deg.fr. = 8
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| -.42017*** .09018 -4.66 .0000 -.59692 -.24342
 AGE| .02382*** .00118 20.13 .0000 .02150 .02614
 EDUC| -.02491*** .00578 -4.31 .0000 -.03624 -.01359
 HHNINC| -.18201** .07567 -2.41 .0162 -.33032 -.03371
 MARRIED| .00785 .03106 .25 .8005 -.05303 .06873
 FEMALE| .57669*** .02614 22.06 .0000 .52545 .62793
 |Interaction AGE*FEMALE
Intrct01| .000 (Fixed Parameter).....
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
Fixed parameter ... is constrained to equal the value or
had a nonpositive st.error because of an earlier problem.

The warning in the footnotes indicates that LIMDEP has noticed that a coefficient has a nonpositive
estimated standard error. This usually results from what we have done, fixing a coefficient to zero.
But, sometimes this signals a problem with the estimation of the model. On the basis of the two sets
of results, we can compute a likelihood ratio test of the hypothesis. The statistic will be twice the
difference in the log likelihoods, or 23.949. The square of the z statistic is 23.912, so thus far the
results are consistent. We will now carry out the LM test, with

LOGIT ; Lhs = doctor
; Rhs = one,age,educ,hhninc,married,female,age*female
; Start = b
; Maxit = 0 $

The starting value is the result of the previous estimation, which has a zero in the last position.

R13: Testing Hypotheses and Imposing Restrictions R-344

Binary Logit Model for Binary Choice
Dependent variable DOCTOR
LM Stat. at start values 23.96151
LM statistic kept as scalar LMSTAT
Log likelihood function -17456.85932
Restricted log likelihood -18019.55173
Chi squared [6 d.f.] 1125.38482
Significance level .00000
McFadden Pseudo R-squared .0312268
Estimation based on N = 27326, K = 7
Inf.Cr.AIC =34927.719 AIC/N = 1.278
Hosmer-Lemeshow chi-squared = 93.34713
P-value= .00000 with deg.fr. = 8
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| -.42017*** .09708 -4.33 .0000 -.61044 -.22990
 AGE| .02382*** .00158 15.11 .0000 .02073 .02691
 EDUC| -.02491*** .00579 -4.30 .0000 -.03627 -.01356
 HHNINC| -.18201** .07567 -2.41 .0162 -.33033 -.03370
 MARRIED| .00785 .03129 .25 .8019 -.05348 .06918
 FEMALE| .57669*** .10275 5.61 .0000 .37531 .77807
 |Interaction AGE*FEMALE
Intrct01| .000 .00233 .00 1.0000 -.005 .005
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

NOTE: When the restrictions are imposed, the estimated asymptotic covariance matrix will account
for those restrictions, as can be seen in the second set of results. But, when you use ; Maxit = 0,
there is no way to know what the restrictions are, so all parameters are treated as free. Thus, the
standard errors are different – generally larger – as we see in the results immediately above. This
effect is clearly visible in the results above in a comparison of the two reports of parameter estimates
and standard errors.

R13.5.2 LM Test of Homoscedasticity in a Probit Model

 The probit model suggested earlier is a natural candidate for the LM test. The test can be
carried out as follows:

 NAMELIST ; x = ... variables in the regression part
 ; z = ... variables in the heteroscedasticity $ No constant in z.
 CALC ; m = Col(z) $ Number of restrictions. Keep it generic.
 PROBIT ; Lhs = y ; Rhs = x $ Restricted model.
 PROBIT ; Lhs = y ; Rhs = x ; Rh2 = z
 ; Het ? This is the unrestricted model using restricted coefficients.
 ; Start = b, m_0 ; Maxit = 0 $
 CALC ; List ; lmstat
 ; 1 - Chi(lmstat,l) $

R13: Testing Hypotheses and Imposing Restrictions R-345

Note that the restricted estimator in this case is the probit model under H0: homoscedasticity, plus a
column of zeros for γ. For our health care data, an application of the procedure above produces the
following results: (The initial model results and some statistics have been omitted.)

NAMELIST ; x = one,age,educ,hhkids
 ; z = female,married,hhninc $

PROBIT ; Lhs = doctor ; Rhs = x $
PROBIT ; Lhs = doctor ; Rhs = x ; Het ; Hfn = z ; Maxit = 0 ; Start = b,0,0,0 $

Maximum of 0 iterations. Exit iterations with status=1.
Maxit = 0. Computing LM statistic at starting values.
No iterations computed and no parameter update done.

Binomial Probit Model
Dependent variable DOCTOR
LM Stat. at start values 336.00066
LM statistic kept as scalar LMSTAT
Log likelihood function -17676.31452
Restricted log likelihood -18019.55173
Chi squared [6 d.f.] 686.47442
Significance level .00000
McFadden Pseudo R-squared .0190480
Estimation based on N = 27326, K = 7
Inf.Cr.AIC =35366.629 AIC/N = 1.294
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .15472*** .05643 2.74 .0061 .04412 .26531
 AGE| .01337*** .00119 11.24 .0000 .01104 .01570
 EDUC| -.03090*** .00391 -7.90 .0000 -.03856 -.02323
 HHKIDS| -.12402*** .01797 -6.90 .0000 -.15923 -.08880
 |Variance function
 FEMALE| .000 .04717 .00 1.0000 -.092 .092
 MARRIED| .000 .05163 .00 1.0000 -.101 .101
 HHNINC| .000 .12116 .00 1.0000 -.237 .237
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

WARNING: You must provide the correct starting values for this procedure. Sometimes, the
parameters that are estimated by the nonlinear procedure are transformations of the original
parameters. The specific descriptions of the models describe the parameters that are estimated in
each case, and indicate exactly the way to provide starting values. For two examples:

 • Tobit: The model is parameterized in terms of β and σ. These are the values reported
 by the program in the output. But, the parameters estimated internally are γ = β/σ and
 θ = 1/σ. These are transformed to produce the output. LM statistics are based on
 these transformed parameters.
 • Parametric Survival Models: The Weibull, log logistic, etc. models are reported as
 parameterized in terms of β and σ. But, the internal variance parameter is P = 1/σ.

As noted, the appropriate starting values to provide are given with the model description.

R13: Testing Hypotheses and Imposing Restrictions R-346

R13.5.3 LM Tests for the Linear Regression Model

 There are a number of cases in which the LM statistic can be computed as a simple function
of the R2 in a linear regression. We consider several examples:

Breusch and Pagan’s (1979) Test for Heteroscedasticity in the Classical
Normal Regression Model

 For testing H0: Var[ε] = σ2 against H1: Var[ε] = f(γ′z), in the classical regression yi = β′xi + εi
the Lagrange multiplier statistic is one half the explained sum of squares in the regression of ei

/(e′e/n) on z. The residuals are computed from the homoscedastic regression. The test is applicable
to linear or nonlinear regression.

Omitted Variables in Linear Regression

 NAMELIST ; x = ... ; z = ... $
 REGRESS ; Lhs = y ; Rhs = x ; Res = e $
 CREATE ; e2 = e^2 / (sumsqdev / n) $
 CALC ; lmstat = .5 * Xss(z,e2) $

The matrix algebra program provides a straightforward method of doing this computation. (See Greene
(2011).)

 NAMELIST ; x = ... ; z = one,... $
 REGRESS ; Lhs = y ; Rhs = x ; Res = e $
 CREATE ; gi = e*e / (sumsqdev / n) - 1 $
 MATRIX ; lmstat = .5 * gi’z * <z’z> * z’gi $

Nonlinear Regression

 This would be the same as above except that the REGRESS command is replaced with

 NLSQ ; Lhs = y
 ; Fcn = the model
 ; Start = ... ; Labels = ...
 ; Res = e $

Godfrey’s (1978) LM Test for Autocorrelation

 For testing for Pth order moving average or autoregression in the disturbance of a classical
regression, the LM statistic equals nR2 in the regression of et on et-1,...,et-P and X, where et is an OLS
residual. Missing values at the beginning of the series are filled with zeros.

 NAMELIST ; x = ... $
 CREATE ; e1 = 0 ; e2 = 0 ; ... ; ep = 0 $ (Do this for p variables)
 REGRESS ; Lhs = y ; Rhs = x ; Res = e $
 CREATE ; If (_obsno > p) | e1=e[-1] ; e2=e[-2] ; ... ; ep = E[-p] $
 CALC ; lmstat = n * Rsq (x,e1,e2,...,ep,e) $

In this case, we create and fill with zeros the variables e1, e2,... before the second step estimator. It
would have been possible simply to regress e on x,e[-1],... But, if we did so, the missing lagged
values would be filled with -999s (the missing value code), not zeros as required.

R13: Testing Hypotheses and Imposing Restrictions R-347

R13.5.4 Programming Lagrange Multiplier Tests

 Lagrange multiplier (LM) tests can be carried out by several methods. The matrix algebra
package is well suited for this computation. In addition, several types of LM statistics can be
computed for you by the estimation program for the model being analyzed. This section will
describe and illustrate several approaches to computing LM statistics.
 The Lagrange multiplier statistic for a test of hypothesis H0 is LM = g0′[H0]-1g0, where g is
the gradient of the log likelihood function and H is n times a consistent estimator of the expected
value of the Hessian of the log likelihood. The subscript ‘0’ indicates that these matrices are to be
computed at the parameter estimates obtained under the restrictions of the null hypothesis, H0.

Example: Testing Homoscedasticity in a Probit Model Using Matrix Algebra

 The log likelihood function for a probit model with multiplicative heteroscedasticity is

 log L = ΣilnΦ[qi β‘xi × exp(-γ′zi)]

where qi = 2yi - 1 = sgn(yi).

The gradient is ∂logL/∂β = Σivixi

 ∂logL/∂γ = Σivizi(-β′xi)

where vi = qi(φi/Φi)×exp(-γ′zi)

and φi, Φi = standard normal PDF and CDF at qiβ′xi × exp(-γ′zi).

The hypothesis to be tested is H0: γ = 0. For convenience, combine the two parts of the gradient into
gi. The most convenient estimator to use for the LM test is usually the BHHH estimator of H,

 == ∑ =

n
i ii1

'ggH

∑ = 2
2

1)(')('
)(''

iiiiii

iiiii
i

n
i

v
x'xxx'xz-

x'zx-xx
ββ

β

With γ = 0, the LM statistic is simple to compute. The matrix function Bhhh is written specifically for
this type of calculation. The function Lmm in CREATE simplifies calculation of the first derivative.

 NAMELIST ; x = ... ; z = … $ Note, z must not contain one!
 CREATE ; y = the dependent variable $
 PROBIT ; Lhs = y ; Rhs = x $ Restricted model
 CREATE ; qi = 2 * y - 1 ? -1 for y=0, +1 for y=1
 ; xb = x’b ? beta’x
 ; gi = -qi * Lmm(qi * xb) ? qi * N01 / Phi
 ; vb = gi ? d./db’x
 ; vg = -gi * xb $ d./dg’z
 MATRIX ; gb = x’vb ? gradient for beta
 ; gg = z’vg ? gradient for gamma
 ; g0 = [gb / gg] ? stack the two vectors
 ; h0 = Bhhh(x,z,vb,vg) ? BHHH form of the Hessian
 ; List
 ; lm = g0’ <h0> g0 $ LM statistic reported

(A much easier approach for this application is shown in the next section.)

R13: Testing Hypotheses and Imposing Restrictions R-348

Example: LM Test for Groupwise Heteroscedasticity in Regression

 Some particular Lagrange multiplier statistics have been derived explicitly and have a
relatively simple form. The groupwise heteroscedastic regression (Greene (2011)) is an example:

 yi = Xiβ + εi, T observations, i=1,...,G groups.

 H0: εi ~ N(0,σ2I).

The alternative hypothesis is that σ2 differs by group, though β remains the same for all i. The LM
statistic is
 LM = (T/2)Σi(si

2/s2 - 1)2,

where si

2 is the group specific least squares residual variance and s2 is the counterpart when the data
are pooled. Variances are computed using T and GT as divisors, with no degrees of freedom
corrections. The following procedure would compute the test statistic. In this example, we use
CALCULATE instead of MATRIX in computing the test statistic. In the procedure below, the
symbol ‘g’ is the number of groups, which you would provide specifically. As usual, ‘y’ is the
dependent variable. Within the loop, we reset the sample after each regression.

 NAMELIST ; x = ... $
 CREATE ; y = your dependent variable $
 SAMPLE ; All observations $ The pooled sample has n = tg observations.
 CALC ; g = the appropriate value for the number of groups $
 CALC ; t = n / g ; first = 1 ; last = t $
 CALC ; s2 = Ess(x,y) / n ; lmstat = 0 $
 PROCEDURE
 SAMPLE ; first - last $
 CALC ; s2j = Ess(x,y) / t
 ; lmstat = lmstat + (t / 2) * (s2j / s2 - 1)^2
 ; first = first + t ; last = last + t $
 ENDPROCEDURE
 EXECUTE ; j = 1,g $ This says execute the procedure for j = 1 to g.
 CALC ; List ; lmstat $

 The procedure above is a bit more convenient with a fixed subsample size than it would be
otherwise, but not much. To modify it to account for variable sample sizes, we will require a
stratification variable which allows us to partition the sample. Suppose that variable is named group
and it takes values 1,2,…,G. The calculation of G for the program’s purpose is

 CALC ; g = Max(group) $

Then, the procedure would be replaced with

 PROCEDURE
 INCLUDE ; New ; group = j $
 CALC ; s2j = Ess(x,y) / n
 ; lmstat = lmstat + (n / 2) * (s2i / s2 - 1)^2 $
 ENDPROCEDURE

R13: Testing Hypotheses and Imposing Restrictions R-349

R13.6 Estimation Subject to Restrictions

Section R13.2 showed how to impose linear restrictions in least squares regression. You can
also impose restrictions on other models. Two procedures are provided. The first allows you to
impose fixed value and equality restrictions on any estimated parameter vector in any model. Most
applications that involve restrictions on parameters will be covered by this case. The second case is
more general linear restrictions, which can also be imposed in most models.

Before describing these procedures, we note two important general cases, by way of
practical suggestions.

Nonlinear Restrictions

 Estimation subject to nonlinear restrictions raises a set of practical issues not present with
linear restrictions. As a general rule, nonlinear restrictions, such as

 β1

2 + β2
2 + β3

2 = c2

which restricts the three parameters to lie on the surface of a ball with radius c, requires more
elaborate tools than are used in the general model estimation programs in LIMDEP. For specific
cases, you might be able to program the restrictions directly into your own likelihood function in
MAXIMIZE.

Inequality Restrictions

 LIMDEP does contain an estimator for linear regression with inequality restrictions, using
linear and quadratic programming methods. These are described in the Econometric Modeling
Guide. More generally, however, we will not make use of general inequality restrictions such as

 Rβ – q >> 0.

There are a few common cases that do appear regularly. Two in particular are models that contain a
variance parameter, σ, that must be forced to be positive and models that contain a correlation
coefficient, ρ, that must lie in (-1,1). The typical way to handle the first of these is to reparameterize
the model in terms of σ = exp(θ), and estimate θ which is unrestricted. For the correlation
coefficient, the standard approach, and the one used here, is to formulate the model in terms of the
hyperbolic arctangent function, θ = 1/2 ln[(1+ρ)/(1-ρ)]. The structural parameter, θ, is unrestricted,
and ρ = [exp(2θ)-1]/[exp(2θ)+1], which is bounded in the interval. We find in general, however, that
in cases in which this device is employed, the unrestricted estimators of σ and ρ obey the restriction
anyway.
 In practical terms, there is an element of this aspect of estimation that the user should be
mindful of. Restricting a parameter such as σ and ρ as suggested above does not generally force the
optimizer to find an interior solution that it would not have found otherwise. That is why the
restriction/retransformation is not actually necessary in most cases. When the restriction tends to be
binding, as sometimes happens with the bivariate probit model, for example, what you will find is
that θ will be drifting off to +∞ or -∞, so that ρ will be getting close to -1 or +1. The force of the
restriction is to prevent the program from dividing by zero or taking the log of a negative number. It
does not make the solver find a better solution for the parameter.

R13: Testing Hypotheses and Imposing Restrictions R-350

R13.6.1 Fixed Value and Equality Restrictions

 All models in LIMDEP can be estimated subject to equality and/or fixed value restrictions
on the parameters. These can be cross equation restrictions, such as in the multinomial logit model
or switching regression models, in which you might want to force one coefficient vector to equal
another, or within equation restrictions, such as in any regression model in which you want to force
coefficients to equal each other or fixed values (or both).
 The command structure used to request this feature is

 Model ; ... ; Rst = the specification

Restrictions are specified by just giving a list of labels for the parameters. Repetitions of labels
imply equality restrictions. Instead of a label, you may give a fixed value. The parameter which is
fixed is not reestimated; it is forced to the value you provide.
 For example, suppose the choice variable in a logit model, y, is explained by a constant, educ,
and income. Assume y takes four values. It is desired to force the income coefficient to be the same in
all three parameter sets. The model contains nine parameters. The command could be

 LOGIT ; Lhs = y; Rhs = one,income,educ
 ; Rst = b1, b2, b3, b4, b2, b5, b6, b2, b7 $

Note that two constraints are imposed. If it were desired to force the last coefficient to equal .1, say,
it would be necessary only to change b7 to .1. Note, as well, there is nothing implied by the
consecutive numbers used for the parameters. The sequence of symbols

 ; Rst = aa,inc,ab,ca,inc,qr,ty,inc,dc

would have exactly the same effect. The crucial element is that the second, fifth and eighth symbols
are the same. The other symbols in the list can be anything, as long as they are different. That said,
when we use this feature, we usually choose convenient combinations of numbers and letters that
make the specification easy to understand. The list of symbols that you choose in ; Rst are purely
for internal use by the optimizer. They will not appear anywhere in your results for the model.

TIP: Forcing a coefficient to equal a fixed value in a logit model is not the same as forcing the
corresponding marginal effect to equal a fixed value. Aside from zero, fixed values in the logit
model are going to be difficult to interpret. Of course, using fixed value constraints does provide an
easy way to test hypotheses.

 In order to use this feature, you will need to know what the precise parameter layout is for
the model you are estimating. This will be given with the specific model descriptions in the chapters
to follow. One way to find out in many cases is to fit the model without restrictions. If you provide
the wrong specification for the Rst list, you will get a diagnostic error about syntax in the
restrictions. Here is an example, based on a tobit model:

SAMPLE ; 1-1000 $
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; y = 0!(x1 + x2 + Rnn(0,2)) $
CALC ; Rng(1) $
CALC ; Ran(12345) $
TOBIT ; Lhs = y ; Rhs = one,x1,x2 ; Rst = b0,b1,b1 $

 Expected 4 specifications in RST/CML list. Found 3.

R13: Testing Hypotheses and Imposing Restrictions R-351

This model command specifies a tobit model with two independent variables, and attempts to force
the two coefficients to be equal. The problem with this command is that the tobit model has an
additional parameter, the standard deviation, σ. Since the restriction list contains no specification for
σ, a syntax error is indicated.
 If the preceding example is respecified correctly, the following output results:

TOBIT ; Lhs = y ; Rhs = one,x1,x2 ; Rst = b0,b1,b1,v $

Normal exit: 5 iterations. Status=0, F= 1339.909

Limited Dependent Variable Model - CENSORED
Dependent variable Y
Log likelihood function -1339.90941
Estimation based on N = 1000, K = 3
Inf.Cr.AIC = 2685.819 AIC/N = 2.686
Threshold values for the model:
Lower= .0000 Upper=+infinity
LM test [df] for tobit= 14.513[3]
Normality Test, LM = 1.890[2]
ANOVA based fit measure = .149337
DECOMP based fit measure = .295321
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error z |z|>Z* Interval
--------+--
 |Primary Index Equation for Model
Constant| .06266 .08224 .76 .4461 -.09854 .22385
 X1| .98991*** .05726 17.29 .0000 .87769 1.10213
 X2| .98991*** .05726 17.29 .0000 .87769 1.10213
 |Disturbance standard deviation
 Sigma| 2.00750*** .06927 28.98 .0000 1.87174 2.14326
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

 There are some shortcuts available for the ; Rst specification:

• k_value means repeat the value k times. Thus, 3 _ .2 = .2, .2, .2.
• k_label means label1, label2,..., labelk. Thus, 3_beta = beta1, beta2, beta3.

These can be used to impose multiple restrictions. Thus,

3_beta, 3_beta = beta1, beta2, beta3, beta1, beta2, beta3
3_beta, 2_0, beta1 = beta1, beta2, beta3, 0, 0, beta1

If you provide starting values for the iterations for your model, you can use some or all of them as
fixed values in the model. The symbol for a starting value is () with nothing in the parentheses. A
simple () or k_() appears in your list at the corresponding point where the fixed value would
appear. Thus,
 ; Start = .1, .2, .3, .4, 0, -.1, 0, 0,
 ; Rst = b1, (), b3, b4, b5, 3_()

fixes the second and sixth to eighth parameters to the values in the starting values list.

R13: Testing Hypotheses and Imposing Restrictions R-352

NOTE: The labels you use in this specification are temporary, and will not appear anywhere in your
output. They are used only for the purpose of specifying the restrictions in the command.

 To illustrate this feature, we will fit a Heckman and Singer (1983) specification for a three
class latent class model. The Heckman and Singer form of latent class model is one in which the
parameters for all classes are the same except for the constant term. In this form, we can think of the
model as a random effects model in which the random component has a discrete distribution. The
base model is a binary logit model. The following fits the model subject to all the restrictions
implied by the Heckman and Singer latent class assumption.

LOGIT ; Lhs = doctor ; Rhs = one,age,educ,married,hhninc,hsat
; Pds = ti
; Lcm ; Pts = 3

 ; Rst = a1, 5_beta, a2, 5_beta, a3, 5_beta, theta1, theta2, theta3 $

Logit Regression Start Values for DOCTOR
Dependent variable DOCTOR
Log likelihood function -16639.50194
Estimation based on N = 27326, K = 6
Inf.Cr.AIC =33291.004 AIC/N = 1.218
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
Constant| 2.28258*** .10496 21.75 .0000 2.07685 2.48831
 AGE| .01356*** .00123 10.98 .0000 .01114 .01598
 EDUC| -.02576*** .00588 -4.38 .0000 -.03728 -.01423
 MARRIED| .01395 .03187 .44 .6617 -.04852 .07641
 HHNINC| -.01849 .07801 -.24 .8127 -.17139 .13441
 HSAT| -.29189*** .00681 -42.87 .0000 -.30524 -.27855
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Latent Class / Panel Logit Model
Dependent variable DOCTOR
Log likelihood function -15617.83305
Restricted log likelihood -16639.50194
Chi squared [15 d.f.] 2043.33778
Significance level .00000
McFadden Pseudo R-squared .0614002
Estimation based on N = 27326, K = 10
Inf.Cr.AIC =31255.666 AIC/N = 1.144
Unbalanced panel has 7293 individuals
LOGIT (Logistic) probability model
Model fit with 3 latent classes.

R13: Testing Hypotheses and Imposing Restrictions R-353

--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Model parameters for latent class 1
Constant| 3.65647*** .20371 17.95 .0000 3.25720 4.05574
 AGE| .02231*** .00205 10.88 .0000 .01829 .02633
 EDUC| -.02965*** .01015 -2.92 .0035 -.04955 -.00976
 MARRIED| -.03666 .04992 -.73 .4627 -.13451 .06119
 HHNINC| .11252 .11083 1.02 .3100 -.10471 .32975
 HSAT| -.33354*** .00951 -35.07 .0000 -.35219 -.31490
 |Model parameters for latent class 2
Constant| -.22121 .28992 -.76 .4455 -.78945 .34703
 AGE| .02231*** .00205 10.88 .0000 .01829 .02633
 EDUC| -.02965*** .01015 -2.92 .0035 -.04955 -.00976
 MARRIED| -.03666 .04992 -.73 .4627 -.13451 .06119
 HHNINC| .11252 .11083 1.02 .3100 -.10471 .32975
 HSAT| -.33354*** .00951 -35.07 .0000 -.35219 -.31490
 |Model parameters for latent class 3
Constant| 1.79550*** .21675 8.28 .0000 1.37068 2.22031
 AGE| .02231*** .00205 10.88 .0000 .01829 .02633
 EDUC| -.02965*** .01015 -2.92 .0035 -.04955 -.00976
 MARRIED| -.03666 .04992 -.73 .4627 -.13451 .06119
 HHNINC| .11252 .11083 1.02 .3100 -.10471 .32975
 HSAT| -.33354*** .00951 -35.07 .0000 -.35219 -.31490
 |Estimated prior probabilities for class membership
Class1Pr| .43883*** .04092 10.72 .0000 .35863 .51903
Class2Pr| .10707*** .02364 4.53 .0000 .06074 .15340
Class3Pr| .45410*** .02793 16.26 .0000 .39936 .50885
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

 You may use the names of scalars rather than literal numbers as fixed values. As such, you
may also use this feature to loop over coefficients, search for a parameter value, or fit a model at
many different values. For example:

 PROCEDURE
 POISSON ; Lhs = num ; Rhs = x ; Rst = 8_b, beta9 $
 ENDPROCEDURE
 EXECUTE ; beta9 = .5 (.1) 1.5 $

estimates the model of our example with the coefficient on logmth taking fixed values of 0.5, 0.6, ...,
1.5.
 You may also use the name of a scalar rather than a fixed number when you specify the
number of values. This is useful in models in which you scan over the values of a parameter. For
example, the BURR model is a logit model that contains an asymmetry parameter. The following
would scan over a set of values of the extra parameter.

PROCEDURE $
BURR ; Lhs = doctor ; Rhs = one,age,educ,married,hhninc,hsat

; Rst = 6_beta, lambda $
ENDPROC $
EXECUTE ; lambda = .4(.1).7 $

R13: Testing Hypotheses and Imposing Restrictions R-354

NOTE ON VERSION 10: In previous versions of LIMDEP, the list of values provided for this
kind of looping procedure was assumed to be in the form name = first,last,step. The syntax used
above is name = first(step)last. You may use either syntax in your EXECUTE command.

 Finally, since the value used in Rst may be a variable scalar, you can use this to change the
size of the model. The following general setup uses that feature

 NAMELIST ; x = a list of variables $
 NAMELIST ; z = another list of variables $
 CALC ; k = Col(x) ; m = Col(z) $
 Model ; Lhs = … ; Rhs = x ; Rst = k_beta, m_0 $

The number of parameters in the model is k + m. The specified restriction allows k free parameters
related to x but forces the m parameters related to z to be zero.

R13.6.2 General Linear Restrictions

All nonlinear models estimated by maximum likelihood may be fit subject to linear equality
restrictions on the parameters. The syntax is the same as that for restrictions on the linear least
squares estimator described earlier. That is:

Model ; … other setup
 ; CML: linear restriction, linear restriction, … $

Linear restrictions are specified as

 a1 b(.) ± a2 b(.) … = q1 , … as many restrictions as desired.

The coefficients a1, a2, … are specific values. If any are equal to 1.0, they may be omitted. An
example appears below. Model coefficients are indexed by their appearance in the model
specification and are indexed sequentially, almost always corresponding to a list of right hand side
variables. We will examine two examples below. The restrictions may not be inequality restrictions.
Thus, this feature can be used to force a set of coefficients to equal zero, but it cannot be used to
make a sum of coefficients be greater than or equal to zero.
 For an example, consider a Poisson regression model with conditional mean function,

logE[num] = b(1) + b(2) × a + b(3) × c + b(4) × d + b(5) × e + b(6) × c67 + b(7) × c72
 + b(8) × c77 + b(9) × logmth.

The model is fit without restrictions using

 NAMELIST ; x = one,a,c,d,e,c67,c72,c77,logmth $
 POISSON ; Lhs = num ; Rhs = x $

We can use ; Rst = list to constrain b(9) to equal 1.0. The same restriction can be imposed with

 POISSON ; Lhs = num ; Rhs = x ; CML: b(9) = 1.0 $

R13: Testing Hypotheses and Imposing Restrictions R-355

The results produced by this will be identical Consider a more involved example. The four type
dummy variables, a, c, d, and e, are included with an overall constant term; type other is dropped to
avoid the multicollinearity problem of a complete set of dummy variables. Suppose, instead, we
include all five groups, and constrain the coefficients to sum to zero. The constraint solves the
identification problem.

CREATE ; other = 1-a-c-d-e $
 NAMELIST ; x = one,a,c,d,e,other,c67,c72,c77,logmth $
 POISSON ; Lhs = num ; Rhs = x
 ; CML: b(10) = 1, b(2) + b(3) + b(4) + b(5) +b(6) = 0 $

HOW IT’S DONE: See Section R13.6.3 for technical details on linearly constrained maximum
likelihood estimation.

VERSION NOTE: The specification ; CML: cannot recognize the model specifications used by
; Test: that are based on variable names rather than parameter numbers. ; CML is meant to apply not
only to regression style models, but also to settings such as NLSQ in which there is not a necessary
natural association between parameters and variables.

 Briefly, a final example is provided by the multinomial logit model. Consider a model with
four outcomes and four attributes:

 Prob[yi = j] = eij /[ei0 + ei1 + ei2 + ei3], j = 0,1,2,3; eij = exp(βj′xi).

For identification, this model will be estimated subject to β0 = 0. Thus, with four attributes
(including constant terms), β1 is [b(1),b(2),b(3),b(4)], β2 = [b(5),b(6),b(7),b(8)], and so on. Now,
suppose for reasons unknown to us, you wished each element in β2 to equal twice its counterpart in
β1. Your LOGIT command might appear as follows:

 LOGIT ; Lhs = yij
 ; Rhs = one,x1,x2,x3
 ; CML: b(5)-2b(1) = 0, b(6)-2b(2) = 0, b(7)-2b(3) = 0, b(8)-2b(4) = 0 $

R13.6.3 Imposing Linear Constraints on Maximum Likelihood
Estimators

 The objective is to maximize log L(data, θ) with respect to the parameter vector θ, subject to
the set of linear constraints, Rθ - q = 0, where

 θ = K × 1 vector of constrained parameters,

 R = J × K matrix of coefficients in J constraints,

 q = J × 1 vector of constants.

One approach to solving the maximization problem, which is equivalent to ‘solving out the
constraints,’ is to partition R and θ so that we may write them as

 R1θ1 + R2θ2 = q

R13: Testing Hypotheses and Imposing Restrictions R-356

such that R1 is J columns of R, R2 is K-J columns, and R1 is nonsingular. We could then write

 θ1 = R1

-1(q – R2θ2).

One would then estimate θ2 without constraints and solve for θ1 residually. The method will be
effective, but necessitates a possibly cumbersome search for the linearly independent columns of R
and an inconvenient rearrangement of the elements of θ to accommodate it.
 The solution method used here, which is equivalent (it would always give the same answer)
is to maximize the log likelihood function in terms of a (K-J) coefficient vector, γ, such that γ is
unconstrained, where θ = f(γ), and θ satisfies the constraints. (The preceding is included in this
general method.) Assuming that the constraints are linearly independent, there are K-J free,
unconstrained parameters in γ. To reparameterize the objective function in terms of this γ, we begin
with the spectral decomposition of

 Q = I - R′(RR′)-1R.

Note that Q is a K × K idempotent matrix with rank K-J. Therefore, Q has K-J unit characteristic
roots and J zero roots. Define the matrices Λ1 = IK-J = the K-J unit characteristic roots of Q, and
Λ2 = 0J = the J zero characteristic roots. Define C1 = the K × (K-J) matrix whose columns are the
characteristic vectors of Q corresponding to the unit roots and define C2 = the K × J matrix whose
columns are the characteristic vectors of Q corresponding to the zero roots.
 Let γ be the (K-J)×1 vector of free parameters. Let

 a = C2(RC2)-1q.

Then, the constrained parameter vector is

 θ = C1γ + a.

It remains to show that θ does satisfy the constraints Rθ = q. By simple multiplication, it is obvious
that Ra = q, so what remains to show is that RC1 = 0. By multiplication, RQ = 0. But, by
definition,
 Q = C1Λ1C1′ + C2Λ2C2′.

Since Λ2 = 0, RC1Λ1C1′ = 0. Post multiply by C1. Recall, Λ1 = I and, by construction of characteristic
vectors, C1′C1 = I. Of course, 0C1 = 0, so we are left with RC1I I = 0, which completes the proof.
 The estimation strategy, then, is to estimate γ. We begin the iterations with any γ0. When θ
is to be used in any computation (function, derivatives), we compute θ = C1γ + a. The function and
all derivatives are computed as functions of θ. Then,

 ∂objective/∂γ = C1′ × ∂objective/∂θ

 ∂2objective/∂γ∂γ′ = C1′ × ∂2objective/∂θ∂θ′ × C1.

If needed, the reverse transformation from θ to γ is γ = C1′θ. (The equality follows from C1′C1 = I
and C1′C2 = 0.)

R13: Testing Hypotheses and Imposing Restrictions R-357

 Iterative estimation for the constrained procedures consists of the following steps:

Step 1. Obtain starting values for θ, either by the program or user supplied. Sometimes the starting

vector may not satisfy the constraints. For the problems analyzed by LIMDEP, this will
generally not be a problem.

Step 2. Collapse starting vector to obtain γ.

Step 3. Iteration:

a. Enter iteration with γ.
b. Expand γ to obtain θ. By construction, θ satisfies the constraints.
c. Compute the function, gradient, and if needed, the Hessian in terms of θ.
d. Compute derivatives for γ as shown above.

Step 4. Test for convergence and either exit or update γ and return to Step 3.

Given the way the iterations are constructed, technical output produced during iterations will be for
the unconstrained optimization problem. Thus, if your model command includes ; Output = 3, the
derivatives displayed in the output will be with respect to γ, not θ. At exit, we recover θ = C1γ + a
and we estimate the asymptotic covariance matrix for the estimator with C1V C1′ where V is the
estimated asymptotic covariance for the estimator of γ.

R13.6.4 Restricted Linear Regression with Multicollinearity

 In a linear regression, if the X matrix is multicollinear, the ordinary least squares estimator
cannot be computed. However, if restrictions are imposed on the coefficients, the restrictions may
serve to increase the rank of the problem so that the coefficients can still be computed and the
coefficient vector is identified. Consider the model with a complete set of dummy variables
estimated in Section R13.6.2, where for now, we omit the first constraint:

CREATE ; other = 1-a-c-d-e $
 NAMELIST ; x = one,a,c,d,e,other,c67,c72,c77,logmth $
 REGRESS ; Lhs = num ; Rhs = x
 ; CLS: b(2) + b(3) + b(4) + b(5) +b(6) = 0 $

The ten column data matrix for this model is collinear; a+c+d+e+other = one, so that as stated, the
model could not be fit by linear least squares. However, the constraint in the last line turns this into
a nine dimension problem, and makes it estimable. Nonetheless, the typical textbook approach to
estimation in this case would break down, because the standard treatment in most textbooks and
most software is to fit the unconstrained model first by least squares, then compute the restricted
least squares estimator based on the unrestricted one. The textbook formula,

 bc = b – (XʹX)-1Rʹ [R(XʹX)-1Rʹ]-1(Rb – q),

requires inversion of XʹX prior to computation of the constrained estimator. But, since this matrix is
singular, the computation stalls at this point. In computing a linear regression, LIMDEP detects this
condition and fits the restricted model directly, without attempting to invert XʹX. Technical details
of this result appear in Greene and Seaks (1991) and in Chapter E5 on the linear regression model
where the results are detailed in full.

R13: Testing Hypotheses and Imposing Restrictions R-358

 The results for a model in which this condition emerges are shown below. No diagnostic
about multicollinearity would appear in the results, as the more general estimator has been used at
the outset.

 CREATE ; health = hsat + 1 $ Now coded 1,2,…,11
 CREATE ; Expand(health) $

HEALTH was expanded as _HEALTH_.
Largest value = 11. 11 New variables were created.
Category
 1 New variable = HEALTH01 Frequency= 447
 2 New variable = HEALTH02 Frequency= 255
 3 New variable = HEALTH03 Frequency= 642
 4 New variable = HEALTH04 Frequency= 1173
 5 New variable = HEALTH05 Frequency= 1390
 6 New variable = HEALTH06 Frequency= 4233
 7 New variable = HEALTH07 Frequency= 2530
 8 New variable = HEALTH08 Frequency= 4231
 9 New variable = HEALTH09 Frequency= 6172
 10 New variable = HEALTH10 Frequency= 3061
 11 New variable = HEALTH11 Frequency= 3192
Note, this is a complete set of dummy variables. If
you use this set in a regression, drop the constant.

The program output includes a warning that _health_ is a complete set of dummy variables so it is
necessary to drop one of them from a regression. This can be done at the outset by using
; Expand(health,0) in the CREATE command, which would produce

HEALTH was expanded as _HEALTH_.
Largest value = 11. 0 New variables were created.
Category
 1 New variable = HEALTH01 Frequency= 447
 2 New variable = HEALTH02 Frequency= 255
 3 New variable = HEALTH03 Frequency= 642
 4 New variable = HEALTH04 Frequency= 1173
 5 New variable = HEALTH05 Frequency= 1390
 6 New variable = HEALTH06 Frequency= 4233
 7 New variable = HEALTH07 Frequency= 2530
 8 New variable = HEALTH08 Frequency= 4231
 9 New variable = HEALTH09 Frequency= 6172
 10 New variable = HEALTH10 Frequency= 3061
Note, the last category was not expanded. You may use
this namelist as is in a regression with a constant.

However, to continue the example, we will proceed with the first form of the result. We then specify
the regression,

 REGRESS ; Lhs = hhninc ; Rhs = one,age,educ,married,hhkids,_health_

; CLS: b(16) = 0 $

The unrestricted regression cannot be computed because the last 11 columns of the X matrix sum to
the first column. However, the command does not generate a warning about collinearity.

R13: Testing Hypotheses and Imposing Restrictions R-359

Restricted least squares regression
LHS=HHNINC Mean = .35208
 Standard deviation = .17691
 No. of observations = 27326 Degrees of freedom
Regression Sum of Squares = 95.6962 14
Residual Sum of Squares = 759.481 27311
Total Sum of Squares = 855.178 27325
 Standard error of e = .16676
Fit R-squared = .11190 R-bar squared = .11145
Model test F[14, 27311] = 245.80300 Prob F > F* = .00000
Diagnostic Log likelihood = 10180.04000 Akaike I.C. = -3.58186
 Restricted (b=0) = 8558.60603
 Chi squared [14] = 3242.86795 Prob C2 > C2* = .00000
Restrictions F[1, 27310] = .00000 Prob F > F* = 1.00000
--------+--
 | Standard Prob. 95% Confidence
 HHNINC| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .06076*** .00776 7.83 .0000 .04554 .07598
 AGE| -.00012 .00010 -1.13 .2578 -.00032 .00009
 EDUC| .02067*** .00045 46.45 .0000 .01980 .02154
 MARRIED| .08595*** .00260 33.08 .0000 .08086 .09104
 HHKIDS| -.02028*** .00238 -8.54 .0000 -.02494 -.01562
HEALTH01| -.03547*** .00847 -4.19 .0000 -.05207 -.01886
HEALTH02| -.03606*** .01088 -3.31 .0009 -.05739 -.01473
HEALTH03| -.02461*** .00726 -3.39 .0007 -.03883 -.01039
HEALTH04| -.00741 .00573 -1.29 .1961 -.01865 .00382
HEALTH05| -.00113 .00539 -.21 .8345 -.01169 .00944
HEALTH06| -.00595 .00395 -1.51 .1321 -.01370 .00180
HEALTH07| .01114** .00447 2.49 .0127 .00238 .01991
HEALTH08| .01186*** .00392 3.03 .0025 .00418 .01955
HEALTH09| .01610*** .00364 4.42 .0000 .00897 .02324
HEALTH10| .01498*** .00423 3.54 .0004 .00670 .02327
HEALTH11| .000 (Fixed Parameter).....
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
Fixed parameter ... is constrained to equal the value or
had a nonpositive st.error because of an earlier problem.

You might note, this configuration of the problem produces a signature – note the F statistic in the
model results. It shows that the restriction is not binding, which will always be the case if the
restriction is what secures identification of the model..

R14: Functions of Parameters R-360

R14: Functions of Parameters

R14.1 Introduction

 This chapter describes a post estimation procedure for analyzing nonlinear functions of
parameters. The starting point is estimation of the parameters of a model, β and computation of an
estimate of the asymptotic covariance matrix for that estimator, Σ. Call these β̂ and Σ̂ . Post

estimation, we will compute functions of β̂ such as ratios of elements, partial effects, and other
functions that will be of the form

 () () ()1

1ˆ ˆ ˆˆ ˆ ˆ or , or ,N
iiN =

= = = ∑c c z c zγ β γ β γ β .

The procedures described here will be used for three calculations:

• computing the functions
• estimating the variances and covariances of the computed functions
• testing the hypothesis that γ(β) = 0 using the sample statistics.

The command used for all three computations is the WALD command.

R14.2 Covariance Matrices for Nonlinear Functions

 Two methods are used to obtain the estimated covariance matrix for the set of functions.
The delta method estimates the covariance matrix by computing the covariance matrix of a linear
approximation to the set of functions. The method of Krinsky and Robb uses information about the
asymptotic distribution of the estimator of β. The logic of Krinsky and Robb is to estimate the
variance of a function of β̂ by sampling random draws from the asymptotic distribution of β̂ and
obtaining an empirical estimate of the variance of the functions.

R14.2.1 The Delta Method

 Suppose that b is a vector of parameter estimates of a parameter vector β, computed by any
procedure (or even, if you wished, by some other program). Suppose, as well, that Σ is the
asymptotic covariance matrix of b and that VARB is our sample estimate of Σ. Let γ1(β),
γ2(β),...γJ(β) be J, up to 50, nonlinear functions of the form γj(β). Let the vector γ(β) be the set of
functions. Let c(b) denote the sample estimate of γ(β), obtained by computing γ(β) with the sample
estimate, b and one of the three forms noted in Section R14.1. Denote by δj the set of partial
derivatives,
 ∂γj(β)/∂β′ = δj.

Note that δj is a row vector. We estimate δj with dj by inserting our parameter estimates, b into the
function defined by δj. Under the usual assumptions about well behaved estimates, the asymptotic
covariance matrix for c(b) will be

 Γ = ∆Σ∆′

R14: Functions of Parameters R-361

where the jth row of ∆ is δj. The sample estimate of ∆ is D, whose rows are dj. Our estimate of Γ is

 G = D × VARB × D′.

For later purposes, we will call the matrix of derivatives, D, the Jacobian, though formally, the term
would apply if γ(β) were itself a vector of derivatives, such as partial effects, so that ∆ would then be
a matrix of second cross partial derivatives. Here, γ need not be a vector of partial derivatives of a
conditional mean function; γ(β) can be any set of functions you wish to analyze. The only
requirements for the theory of the delta method to work are that γ(β) be continuous and continuously
differentiable functions that do not involve the sample size.
 When they involve the sample data, the functions will be of two general forms

 () ()1

1ˆ ˆˆ ˆ, or ,N
iiN =

= = ∑c z c zγ β γ β .

In the first case, the functions are evaluated at the means of the data. In the second, the functions,
themselves, are averaged over the sample observations. The third case noted in the introduction is

()ˆˆ = cγ β in which the estimator is not a function of the sample data. For the first and third cases, the

Jacobian is computed as

 () ()ˆ ,
ˆˆ , ˆ

∂
=

′∂

c z
z

β
∆ β

β
.

That is, the Jacobian, like the functions, is computed at the sample means of the data. For the second
case, the appropriate Jacobian (fortunately), is simply

() ()
1

ˆ ,1ˆˆ
ˆ

iN

iN =

∂
=

′∂
∑

c zβ
∆ β

β
.

The remaining part of the theory is the asserted asymptotic normal distribution of γ̂ with asymptotic
covariance matrix estimated by G.

R14.2.2 The Method of Krinsky and Robb

The method of Krinsky and Robb (1986) departs from b as an estimator of β and V = VARB
as an estimator of Σ, the covariance matrix of b. The covariance matrix for the estimator of

()ˆˆ ,= c zγ β is obtained by computing the empirical variance of R observations on γ̂ . We obtain R

draws from the distribution of b then compute R draws from c(b). The draws on b are obtained using
primitive draws from the multivariate standard normal distribution as follows. Let L be the Cholesky
factorization of V, such that LLʹ = V. Then, a draw from the population of b is obtained as

br = b + Lvr.

Thus, br is a draw from the population which has mean b+L×0 = b and variance LILʹ = V. The draw
on b is then transformed to a draw from c by computing cr = c(br). The empirical variance is then
estimated using

 ()()1

1 () () .R
r rrR =

′= − −∑G c b c c b c

R14: Functions of Parameters R-362

R14.3 The Wald Statistic

 WALD is a general command for analyzing linear or nonlinear functions of parameters.
The Wald statistic for testing the hypothesis γ(β) = 0 is computed as

 W = c′G-1c.

This statistic has a limiting chi squared distribution with J degrees of freedom. As part of the results,
WALD reports the computed value of W.

R14.4 The WALD Command

 The general command for requesting a Wald statistic is

 WALD ; Labels = a list of labels for the parameters
 ; Start = the set of values for the parameters
 ; Var = the asymptotic covariance matrix
 ; Fn1 = the first function
 ; Fn2 = the second function
 … = ... up to 50 functions
 ; Keep = list of functions $

Request the Krinsky and Robb approach with the following addition to the WALD command:

 ; K&R ; Pts = number of draws.

The ; Pts specification is optional. The default is 1,000 draws. WALD will compute functions that
involve sample means of the data at the sample means. If the function you are computing is a
sample mean of observations, such as an average partial effect, then add

 ; Average

To the command. The estimated variance is then computed appropriately.

NOTE: You should not use Krinsky and Robb with ; Average, though the program will not stop
you from doing so. LIMDEP will attempt to apply Krinsky and Robb to each term in the sum, which
could lead to a huge amount of computation. However, this does not produce the correct covariance
matrix, because the draws are treated as if they are independent when they are not – they use the
same parameter vector. If you are computing a function with ; Average, you should use the delta
method.

TIP: There is no theoretical reason to prefer Krinsky and Robb’s method to the delta method. Their
1986 paper that claimed otherwise was retracted in their 1990 paper that attributed the earlier finding
to a software bug.

R14: Functions of Parameters R-363

R14.4.1 Components of the WALD Command

 The syntax of the command is such that the first three specifications provide the names,
values of, and covariance matrix for a set of parameters, then one or more functions to be analyzed.

• The ; Labels = ... specification is optional. Although they are optional, there is much less
chance for confusion if you provide your own labels. If you do not provide the labels, the
parameters will be labeled b1, b2, ..., bK, where K is the number of values you provide in the
; Start = ... specification. Do note that when you define the functions, ; Fn1 = ..., if you
have not provided labels, you must use the b1,... given above.

• ; Start = ... gives the numeric values for the parameters to be used in computing the
functions. These may be given numerically, as in ; Start = 1.3, -.70248, .1114, 4 or they
may be given symbolically, by using existing scalars and/or estimates from a previous
model. For example, ; Start = b(1), b(2), rho, b(15), ssqrd. You may use ; Parameters =
the values as a synonym

• ; Var = ... specifies the covariance matrix to be used. The matrix must match the starting
values in its dimensions. You may provide it three ways:

° name of a matrix, as in ; Var = varb
° selected rows and columns as in ; Var = varb[1, 3, 5, 6].
° numeric values, provided as a lower triangle, as in ; Var = 1.2, -3., 5.5.

You may use ; Covariance = specification as above as a synonym.

• ; Fnj = ... specifies the function to be analyzed. The full set of options for this part of the

command are given in Chapters E15 and E44. For present purposes, any algebraic function
of the estimates can be computed. Up to 50 functions can be defined. You may define
names for the functions that will be used in the results table with ; Fnj = name = definition.
An example appears below.

• ; Keep = ... is optional and specifies that only the specified functions are to be displayed and

retained in the results. Use this when some results are intermediate. Thus, if you were to
compute Fn1 ... Fn10, but you only were interested in Fn9 and Fn10, you might use ; Keep
= 9,10 to discard the first eight, intermediate results.

• When you use ; Average ; Keep = name, WALD creates two new variables in the data set,
waldfncn which contains for each observation, the first function value in the list, and
waldfnse which contains for each observation an estimate of the standard error.

R14: Functions of Parameters R-364

R14.4.2 Results of the WALD Command

 WALD produces a standard table of function values, standard errors, and so on. In the
following example, we estimate a probit model, then compute the average partial effects. (This
replicates the computations of ; Partial Effects in the command and PARTIAL EFFECTS.)

PROBIT ; Lhs = doctor ; Rhs = one,age,educ,hhninc,married $
WALD ; Covariance = varb

; Parameters = b
; Labels = b1,b2,b3,b4,b5

 ; Fn1 = density = Phi(b1 + b2*age + b3*educ + b4*hhninc + b5*married)
; Fn2 = ape_age = density * b2
; Fn3 = ape_educ = density * b3
; Fn4 = ape_incm = density * b4
; Fn5 = ape_marr = Phi(b1 + b2*age + b3*educ + b4*hhninc + b5) -
 Phi(b1 + b2*age + b3*educ + b4*hhninc)
; Average $

WALD procedure. Estimates and standard errors
for nonlinear functions and joint test of
nonlinear restrictions.
Wald Statistic = 19344.31753
Prob. from Chi-squared[5] = .00000
Functions of data are averaged over the obs.
--------+--
 | Standard Prob. 95% Confidence
WaldFcns| Coefficient Error z |z|>Z* Interval
--------+--
 DENSITY| .36520*** .00291 125.45 .0000 .35950 .37091
 APE_AGE| .00489*** .00064 7.65 .0000 .00364 .00615
APE_EDUC| -.00431 .00312 -1.38 .1663 -.01042 .00179
APE_INCM| -.14883*** .04505 -3.30 .0010 -.23713 -.06054
APE_MARR| .03920** .01735 2.26 .0239 .00519 .07321
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

 WALD computes the value of each function you specify, its estimated standard error, the t
ratio, and so on. It also computes the Wald statistic for the set of functions. The Wald statistic
computed by this procedure is

 W = ijJ
j

J
i

ji][
11

D VARBD'FnFn ××∑∑ ==

(The superscript indicates the element of an inverse matrix.) The statistic, itself, may be of no use to
you, in which case, it can be ignored. Conversely, the specific functions may be the superfluous
information, and the Wald statistic may be the only information that you need. In this case, the
function output can be ignored. After the computation, matrices waldfns, jacobian and varwald will
be the functions, c, the Jacobian, D, and the covariance matrix, G. Scalar wald will contain the Wald
statistic, W.

R14: Functions of Parameters R-365

R14.4.3 Recursive Functions

 Functions in the WALD command may use previous functions. For example:

 ; Fn1 = b’xbar
 ; Fn2 = N01(Fn1)/Phi(Fn1)
 ; Fn3 = s*(1 - Fn2*Fn1 - Fn2^2)

Do note, these must be defined recursively. In the preceding, Fn2 could not be defined as a function
of Fn3. We used this capability in the first example above, where density is defined then used in
three subsequent function definitions. This feature can be a particularly convenient and powerful
aspect of the command. Consider the routine below for computing a marginal effect for a binary
variable in a tobit model. The WALD command would be enormously complex and lengthy, if it
were not specified recursively. Note, the final line, if included in the command, would indicate that
only the 11th function is to be displayed and kept in the work areas.

SAMPLE ; 1-1000 $
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; d = Rnu(0,1) > .4 $
CREATE ; ys = 2.5 + .5*x1 + .4 *x2 - .6*d + Rnn(0,2) $
CREATE ; y = ys ; If(ys < 0) y = 0 ; If(ys > 5) y = 5 $
NAMELIST ; x = one,x1,x2 $
CALC ; l = 0 ; u = 5 ; kx = Col(x) $
TOBIT ; Lhs = y ; Rhs = x,d ; Limits = l,u ; Parameters $

 WALD ; Labels = kx_b,alpha,v ? all parameters
 ; Start = b ; Var = varb ? includes sigma
 ; Fn1 = (L - b1’x)/v ? (L - b’x1)/s
 ; Fn2 = (U - b1’x)/v ? (U - b’x1)/s
 ; Fn3 = Phi(Fn1 - alpha/v) ? Phi[(L - b’x1)/s]
 ; Fn4 = Phi(Fn2 - alpha/v) ? Phi[(U - b’x1)/s]
 ; Fn5 = N01(Fn1 - alpha/v) ? N01[(L - b’x1)/s]
 ; Fn6 = N01(Fn2 - alpha/v) ? N01[(U - b’x1)/s]
 ; Fn7 = Phi(Fn1) ? Phi[(L - b’x0)/s]
 ; Fn8 = Phi(Fn2) ? Phi[(U - b’x0)/s]
 ; Fn9 = N01(Fn1) ? N01[(L - b’x0)/s]
 ; Fn10 = N01(Fn2) ? N01[(U - b’x0)/s]
 ; Fn11 =

 (Fn3 * L + (1 - Fn4) * U + (b1’x+alpha) * (Fn4 - Fn3) + v * (Fn5 - Fn6))
 - (Fn7 * L + (1 - Fn8) * U + b1’x * (Fn8 - Fn7) + v * (Fn9 - Fn10))
 ; Average
 ; Keep = 11 $

R14: Functions of Parameters R-366

R14.4.4 Application Based on the Last Model

 The Last Model estimated produces a set of labels that you can use in the WALD command,
with the parameter vector, b, and covariance matrix, varb. The labels that apply for the last model
can be found in the project window. The labellist lstmodel is replaced each time you compute a new
model. To see its current contents, double click the name in the project window, and a list will be
placed in the output window. The example below is produced by the TOBIT command in the
program above.

Figure R14.1 Labellist from Last Model

You may use the last model labels with b and varb as defaults in your WALD command. The
example in Section R14.4.2 can be simplified a bit as

PROBIT ; Lhs = doctor ; Rhs = one,age,educ,hhninc,married$
WALD ; Fn1 = bx = b_one + b_age*age + b_educ*educ + b_hhninc*hhninc

 ; Fn2 = density = Phi(bx + b_married*married)
 ; Fn3 = ape_age = density * b_age
 ; Fn4 = ape_educ = density * b_educ
 ; Fn5 = ape_incm = density * b_hhninc
 ; Fn6 = ape_marr = Phi(bx + b5) - Phi(bx)
 ; Average $

Note that the construction above is invariant to how you order the variables in your model.
Regardless of what else appears on your Rhs and in what order it appears, in the Last Model set, the
name b_age will refer to the coefficient that multiplied age in the most recently estimated model.

R14: Functions of Parameters R-367

R14.4.5 The Number of Parameters

 In specifying a WALD command, you frequently need to know the number of coefficients in
the coefficient vector. This will likely depend on the model you have fit or the procedure you have
used to obtain the functions you are analyzing. When you fit a model, the number of coefficients in
the coefficient vector that is produced is stored as a scalar named kreg. You can use kreg in your
command. The preceding could have been

WALD ; Start = b
 ; Var = varb
 ; Labels = kreg _ gamma

; Fn1 = gamma2 * N01(gamma1’xb)
 ; Fn2 = gamma3 * N01(gamma2’xb) $

The advantage in this form is that you can structure your procedures so that they are general and not
dependent on a specific value or model. If you are not basing your computation on a previous model
that stored kreg, you can still obtain the dimension that you need as follows: CALC provides the
Row(matrix) function which returns the number of rows in a matrix. (The Col(matrix) function is
also available.) Thus, the preceding could also be specified using

CALC ; numbeta = Row(varb) $
WALD ; Start = b
 ; Var = varb

 ; Labels = numbeta _ gamma
; Fn1 = gamma2 * N01(gamma1’xb)

 ; Fn2 = gamma3 * N01(gamma2’xb) $

NOTE: There is a dot product in the N01 function. The construction b_one’xb means compute the
inner product of the coefficient vector with the variables in xb. The specific coefficient name b_one
means start the coefficient vector with b_one. You might have (certainly incorrectly) used b_gc’xb
which would compute b_gc*one + b_ttme*gc and a third term would be lost.

R14.4.6 Interdependent Sets of Functions

 In some applications, instead of presenting a Wald statistic, the table will give the diagnostic,
‘VC matrix for the functions is singular.’ This is likely to happen when you compute a set of
functions which are functionally dependent. This is deduced by the program attempting to invert the
covariance matrix. Assuming the base covariance matrix, varb, is nonsingular, the matrix G will be
singular if the derivatives matrix does not have full rank, in which case, we infer that the functions
are functionally dependent. The application below, which displays the results of the program in
Section R14.4.3, shows an example.

R14: Functions of Parameters R-368

Limited Dependent Variable Model - CENSORED
Dependent variable Y
Estimation criterion -1852.69115
Estimation based on N = 1000, K = 5
Threshold values for the model:
Lower= .0000 Upper= 5.0000
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error z |z|>Z* Interval
--------+--
 |Primary Index Equation for Model
Constant| 2.52695*** .10213 24.74 .0000 2.32678 2.72712
 X1| .47633*** .06529 7.30 .0000 .34837 .60429
 X2| .35063*** .06434 5.45 .0000 .22454 .47673
 D| -.85204*** .13559 -6.28 .0000 -1.11780 -.58628
 |Disturbance standard deviation
 Sigma| 2.05626*** .05765 35.67 .0000 1.94328 2.16924
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

WALD procedure. Estimates and standard errors
for nonlinear functions and joint test of
nonlinear restrictions.
VC matrix for the functions is singular.
Standard errors are reported, but the
Wald statistic cannot be computed.
Functions of data are averaged over the obs.
--------+--
 | Standard Prob. 95% Confidence
WaldFcns| Coefficient Error z |z|>Z* Interval
--------+--
 Fncn(1)| -1.22458*** .06032 -20.30 .0000 -1.34280 -1.10636
 Fncn(2)| 1.20702*** .06013 20.07 .0000 1.08916 1.32488
 Fncn(3)| .21866*** .01436 15.23 .0000 .19052 .24680
 Fncn(4)| .93997*** .00682 137.82 .0000 .92661 .95334
 Fncn(5)| .28275*** .01077 26.25 .0000 .26164 .30387
 Fncn(6)| .11431*** .01011 11.30 .0000 .09449 .13414
 Fncn(7)| .12024*** .01153 10.43 .0000 .09764 .14283
 Fncn(8)| .87638*** .01182 74.14 .0000 .85322 .89955
 Fncn(9)| .19195*** .01297 14.80 .0000 .16653 .21736
Fncn(10)| .19590*** .01304 15.03 .0000 .17035 .22145
Fncn(11)| -.63452*** .10035 -6.32 .0000 -.83120 -.43784
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

 If you are only interested in the functions, themselves, the diagnostic can be ignored.
Nonetheless, you will receive estimates of the functions and standard errors for the individual
components. The Wald statistic is of no interest anyway. The listing below shows the results of
executing the preceding WALD command for the tobit model. As might be expected, the functions
are dependent, and no Wald statistic is computed. In fact, for this application, the only quantity of
interest is the last function, which gives the desired partial effect. As such, all rows save the last one
in this table are ignored.

R14: Functions of Parameters R-369

R14.4.7 Extracting Parts of a Model

 It may be convenient to analyze just part of a model. Consider another example (a bit
farfetched, we admit). We fit a probit model for y using 15 regressors including a constant. The
hypotheses to be tested are

 b1b4/(b2 + b5 + exp(b11) = 1

 b2 + b3 = 4

The commands are

 PROBIT ; Lhs = y ; Rhs = x1,x2,...,x15,one $
 WALD ; Labels = b1,b2,b3,b4,b5,b11
 ; Start = b(1),b(2),b(3),b(4),b(5),b(11)
 ; Var = varb[1,2,3,4,5,11]
 ; Fn1 = b1*b4 / (b2 + b5 + Exp(b11)) - 1
 ; Fn2 = b2 + b3 - 4 $

Note how the constant of each restriction is moved to the left hand side of the expression to conform
to the convention gj(b) = 0. Also, as shown above, this procedure can be used for linear as well as
nonlinear restrictions.

R14.4.8 Application to a Function of the Parameters

 The WALD command can be used to analyze functions of parameters that do not involve the
data. To use this feature, you may follow your model command with any number of commands of
the form

 WALD ; Labels = a set of names for the parameters
 ; Parameters = the values of the estimates
 ; Covariance = the estimated covariance matrix
 ; Fn1 = function of model parameters
 ; Fn2 = function of model parameters
 ; ... up to 50 functions $

The command needs only to provide the desired function. Each WALD command may give up to
50 functions, but you may have as many WALD commands as you wish. To illustrate, we consider
an extensive example based on Example 6.8 CES Production Function in Greene (2011, p. 167).
One method of estimating the parameters of the CES production function,

 logy = logγ - (ν/ρ)log[δkρ+ (1-δ)lρ]

is to regress logy on one, x1 = logk, x2 = logl, and x3 = log2(k/l). The coefficients thus obtained are
labeled b1, b2, b3, and b4. The structural parameters are γ = exp(b1), δ = b2/(b2+b3), ν = (b2+b3), and
ρ = -2b4(b2+b3)/(b2b3). The bs are estimated by ordinary least squares. We then use WALD to
compute the structural parameters and estimate standard errors for these estimates. An application
appears below.

R14: Functions of Parameters R-370

IMPORT $

obs, valueadd, labor, capital
 1 657.29 162.31 279.99
 2 935.93 214.43 542.50
 3 1110.65 186.44 721.51
 4 1200.89 245.83 1167.68
 5 1052.68 211.40 811.77
 6 3406.02 690.61 4558.02
 7 2427.89 452.79 3069.91
 8 4257.46 714.20 5585.01
 9 1625.19 320.54 1618.75
10 1272.05 253.17 1562.08
11 1004.45 236.44 662.04
12 598.87 140.73 875.37
13 853.10 145.04 1696.98
14 1165.63 240.27 1078.79
15 1917.55 536.73 2109.34
16 9849.17 1564.83 13989.55
17 1088.27 214.62 884.24
18 8095.63 1083.10 9119.70
19 3175.39 521.74 5686.99
20 1653.38 304.85 1701.06
21 5159.31 835.69 5206.36
22 3378.40 284.00 3288.72
23 592.85 150.77 357.32
24 1601.98 259.91 2031.93
25 2065.85 497.60 2492.98
26 2293.87 275.20 1711.74
27 745.67 137.00 768.59

CREATE ; y = Log(valueadd)

 ; x1 = Log(capital) ; x2 = Log(labor) ; x3 = (x1-x2)^2 $
 REGRESS ; Lhs = y ; Rhs = one,x1,x2,x3 $
 WALD ; Labels = b0,b1,b2,b3 ; Start = b ; Var = varb
 ; Fn1 = gamma = Exp(b0)
 ; Fn2 = delta = b1 / (b1 + b2)
 ; Fn3 = nu = b1 + b2
 ; Fn4 = ro = -2 * b3 * (b1 + b2) / (b1 * b2) $

Ordinary least squares regression
LHS=Y Mean = 7.44363
 Standard deviation = .76115
 No. of observations = 27 Degrees of freedom
Regression Sum of Squares = 14.2614 3
Residual Sum of Squares = .801802 23
Total Sum of Squares = 15.0632 26
 Standard error of e = .18671
Fit R-squared = .94677 R-bar squared = .93983
Model test F[3, 23] = 136.36447 Prob F > F* = .00000
Diagnostic Log likelihood = 9.16451 Akaike I.C. = -3.22043
 Restricted (b=0) = -30.43298
 Chi squared [3] = 79.19498 Prob C2 > C2* = .00000
--------+--

R14: Functions of Parameters R-371

--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error t |t|>T* Interval
--------+--
Constant| 1.46773*** .40823 3.60 .0015 .66761 2.26784
 X1| -.11150 .41620 -.27 .7912 -.92723 .70423
 X2| 1.10023** .43422 2.53 .0186 .24917 1.95128
 X3| .15225 .12734 1.20 .2440 -.09734 .40184
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

WALD procedure. Estimates and standard errors
for nonlinear functions and joint test of
nonlinear restrictions.
Wald Statistic = 47548.33748
Prob. from Chi-squared[4] = .00000
Functions are computed at means of variables
--------+--
 | Standard Prob. 95% Confidence
WaldFcns| Coefficient Error z |z|>Z* Interval
--------+--
 GAMMA| 4.33936** 1.77146 2.45 .0143 .86736 7.81135
 DELTA| -.11277 .41944 -.27 .7880 -.93485 .70931
 NU| .98872*** .06259 15.80 .0000 .86605 1.11139
 RO| 2.45416 8.08604 .30 .7615 -13.39419 18.30251
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The standard least squares results are followed by the output from the WALD command. The table
contains the function values, computed at the parameter estimates, standard errors, and ratios of the
function values to the standard errors. The standard errors are the square roots of the diagonal
elements of the estimated asymptotic covariance matrix. This is computed using the ‘delta’ method,
i.e., let
 Fnj = cj(b), j = 1,...,J

denote the jth function that you have specified, written only as a function of the full vector of
parameter estimates, b. Let

 gj = ∂cj(b)/∂b′

Note that gj is a row vector which will usually contain some zeros, since the functions need not
involve all of the parameter estimates. Let G denote the matrix whose jth row is gj, so G is J×kreg.
Then, the asymptotic covariance matrix for the set of functions is computed using

 varwald = G ×varb × G′

R14: Functions of Parameters R-372

 After the functions are computed and reported, WALD retains three retrievable results:

 Matrices: waldfns = a vector containing the J functions
 varwald = a J×J estimated asymptotic covariance matrix
 jacobian = a J×K matrix of derivatives of the functions with
 respect to the parameters

 Scalar: wald = c′[varwald]-1 c

Wald is the Wald (chi squared) statistic used to test the hypothesis that all functions are jointly zero.
It is reported in the box header above the table of function values and standard errors. See Figure
R14.2 for the results of the example above.

Figure R14.2 Results from WALD Procedure

R14: Functions of Parameters R-373

R14.4.9 Application to a Complex Nonlinear Function

 As might be evident, the WALD command is more general than we have suggested, and it
can be an extremely powerful time saver. An example which normally involves a large amount of
computation is the predicted value for the Box-Cox regression. (The model, and the following
example, are described in more detail in Chapter E14.) The prediction for the Box-Cox model when
the transformation is applied to both Lhs and Rhs variables is

 () 1/
ˆ ((1) /) 1 .y b xk k k

λλ = λ − λ +∑

If λ is an estimated parameter whose variation must be included in the computation of the forecast
standard error, this becomes an exceedingly complex computation. With WALD, the computation
can be done as follows, where we use the means of two regressors for the forecast:

 BOXCOX ; Lhs = y
 ; Rhs = x1,x2,one
 ; Model = 3 ; Lambda = ... ; Par $
 CALC ; u1 = Xbr(x1) ; u2 = Xbr(x2) $
 WALD ; Labels = b1,b2,a,L
 ; Start = b(1),b(2),b(3),b(4)
 ; Var = varb[1,2,3,4]
 ; Fn1 = (L*(b1*x1@L + b2*x2@L + a) + 1)^(1/L) $

Using ; Par with the command saves the ancillary parameters, λ and s2 in b and varb.

R15: Retrievable Results R-374

R15: Retrievable Results

R15.1 Introduction

 When you use LIMDEP (any any other program) to compute estimates of parameters or
tables of results, you will need to be able to retrieve the results of estimation to do subsequent
calculations. Otherwise, you are limited to what the software provides in your tables of results in
what you can do with those results. To consider an example, it is common after estimation of
multinomial choice models to compute a ‘willingness to pay’ result using a ratio of the model
parameters. In the following example,

CLOGIT ; Lhs = mode
; Choices = air,train,bus,car
; Rhs = gc,invt,hinca,one $

the outcome variable is the choice of travel mode and the characteristics are a cost variable, gc, and
the time spent in the journey, invt. Hinca is an income variable that applies only in the air choice.
After estimation of βgc, βinvt and the other parameters, one can measure the willingness to pay (WTP)
for a shorter journey by the ratio, (-βinvt/-βgc). Estimation results are shown in Figure R15.1. At this
point, in order to compute the WTP, it is necessary to take out pen and paper and a hand calculator.
In addition, computing a standard error for the result will require the covariance matrix (and a
calculator) to employ, at considerable inconvenience, the delta method. In order to avoid this
inconvenience, it is necessary to be able to ‘retrieve’ the results of estimation in a way that they can
be manipulated using program instructions. (A menu of ‘post estimation’ features is helpful, but will
be insufficient unless the program has every possible calculation you might want in its menu.)
 We provide the calculator for you with the CALC command described in Chapter R17. So
to begin, you could get the result you need with

 CALC ; wtp = .00269 / .00861 $

which will produce the result 0.3127943. This obviously does not solve the problem, because a
different specification requires a new pair of values. What is required is to be able to insert the
values of the parameters as names of something that the program has computed. If we can retrieve
the results of estimation in something that has a name, we can manipulate the names to get the result
we need. Estimation results in LIMDEP are always retrievable in a set of named entities (scalars,
matrices, variables, etc.) To continue our example, the parameter vector computed by every
estimation command in LIMDEP is saved as a matrix named b which can be accessed as a matrix or
one element at a time with the calculator. Thus, the desired WTP measure is computed by

 CALC ; List ; wtp = -b(2)/(-b(1)) $

[CALC] wtp = .3127943

R15: Retrievable Results R-375

There is a minor additional inconvenience in this computation in that it insists that the two coefficients
be the first and second in the model. But, this is not strictly necessary either because the CLOGIT
command also automatically saves the names of the parameters. The CALC command below is
completely generic, and will find the desired result as long as invt and gc appear in the model.

CALC ; List ; wtp = b_invt / b_gc $

[CALC] wtp = .3127943

Figure R15.1 Estimated Travel Mode Choice Model

R15: Retrievable Results R-376

 Suppose we wished to test the hypothesis that travelers did not value their travel time. That
would entail a test of the hypothesis that WTP equals zero. To carry out the test, we could, in principle,
just test the hypothesis that the coefficient in the numerator of WTP equals zero (which we would
reject based on the estimation results in Figure R15.1). Alternatively, we could analyze the WTP result
itself. To apply the delta method to that, we would require the covariance matrix, which is also
retrievable. The WALD command below shows how to make use of the saved matrices and varb.

WALD ; Labels = bgc,binvt,chinca,cair,ctrain,cbus
; Parameters = b
; Covariance = varb
; Fn1 = WTP = -binvt/-bgc $

WALD procedure. Estimates and standard errors
for nonlinear functions and joint test of
nonlinear restrictions.
Wald Statistic = 1.26306
Prob. from Chi-squared[1] = .26107
Functions are computed at means of variables
--------+--
 | Standard Prob. 95% Confidence
WaldFcns| Coefficient Error z |z|>Z* Interval
--------+--
 WTP| .31279 .27832 1.12 .2611 -.23271 .85830
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

 Estimation results produced by LIMDEP are always retrievable, and the program command
language provides many convenient ways to manipulate those results. As shown above, the main
tools you will use to manipulate the retrievable results are CALC, MATRIX, CREATE and
WALD. The PARTIAL EFFECTS, SIMULATE and DECOMPOSE commands also use this
aspect of estimation. There are also several numerical analysis tools described in Chapter E43 that
can retrieve and use previous estimation results.

R15.2 Retrievable Results

 When you estimate a model, the estimation results are displayed on the screen in the output
window. In addition, each model produces a number of results which are saved automatically and
can be used in subsequent procedures and commands. Retrievable results generally appear in four
locations in the project, as variables, matrices, scalars and labellists.
 The CLOGIT command above shows an example. After the model is estimated, scalars
named nreg, kreg, and logl are created and set equal to the number of observations, number of
coefficients estimated, and the log likelihood for the model, respectively. For another, after you give
a REGRESS command, the scalar rsqrd is thereafter equal to the R² from that regression. You can
retrieve these and use them in later commands. For example,

 REGRESS ; ... $
 CALC ; f = rsqrd/(kreg-1) / ((1 - rsqrd)/(nreg - kreg)) $

computes a standard F statistic.

R15: Retrievable Results R-377

 Although the calculator has 100 cells, the first 14 are ‘read only’ in the sense that LIMDEP
reserves them for estimation results. You may use these scalars in your calculations, or in other
commands (see the example above), but you may not change them. (The one named rho may be
changed.) Likewise, the first three matrices are reserved by the program for ‘read only’ purposes.
The read only scalars are

 ssqrd, rsqrd, s, sumsqdef, degfrdm, ybar, sy, kreg, nreg, logl, exitcode

and two whose names and contents will depend on the model just estimated. The names used for
these will be given with the specific model descriptions. At any time, the names of the read only
scalars are marked in the project window with the symbol to indicate that these names are
‘locked.’ Figure R15.2 illustrates. This shows the setup of the project window after the clogit
example developed above.
 A parameter vector is automatically retained in a matrix named b. The program will also
save the estimated asymptotic covariance matrix and name it varb. The reserved matrices are thus b
and varb, with a third occasionally used and renamed. The third, protected matrix name will depend
on the model estimated. A few examples are:

 mu created by ORDERED PROBIT,
 sigma created by SURE and 3SLS,
 pacf created by IDENTIFY.

 When a model is fit by maximum likelihood, a variable named logl_obs is created. The
variable contains the contribution of each observation to the log likelihood that was maximized. In
the clogit example above, the log likelihood function reported in the results is -262.55917. We could
locate this result with

 CALC ; List ; Sum(logl_obs)$

 [CALC] *Result*= -262.5591744

In many single equation, single index models, such as the probit model or the linear regression
model, the derivative of the log likelihood function with respect to the β in the index function βʹx
takes the form

 ∂logL/∂β =
1

(, , ,) ,n
i i ii

g y
=∑ x xβ θ

where xi is the set of independent variables, yi is the dependent variable, θ is a vector of ancillary
parameters, and β is the vector of coefficients on xi in the model. The function g(.) is often called the
‘score function.’ It is also the derivative of the log likelihood function with respect to the constant
term. This is a residual-like function. It is the ‘generalized residual’ defined in Chesher and Irish
(1987). For examples, gi = εi / σ2 in the linear regression model when the disturbances are normally
distributed, and gi = (2yi-1) φ(βʹxi) / Φ[(2yi-1)βʹxi] in the probit model. (Note that this is the sample
selection correction term in Heckman’s (1979) two step sample selection estimator.) This variable
will be saved in the data area as score_fn. (The variable is created for every model fit by ML. When
there is no natural index function, for example in the bivariate probit model which has two index
functions, score_fn will be filled with missing values.)

R15: Retrievable Results R-378

 All estimators set at least some of these matrices, variables and scalars. In the case of the
scalars, those not saved by the estimator are set to zero. For example, the PROBIT estimator does
not save rsqrd. Matrices are simply left unchanged. So, for example, if you estimate a fixed effects
model, which creates the third matrix and calls it alphafe, then estimate a probit model which only
computes b and varb, alphafe will still be defined.

 Figure R15.2 Project Window

R15: Retrievable Results R-379

TIP: Each time you estimate a model, the contents of b, varb, and the scalars are replaced. If you
do not want to lose the results, retain them by copying them into a different matrix or scalar. For
example, the following computes a Wald test statistic for the hypothesis that the slope vector in a
regression is the same for two groups (a Chow test of sorts):

 REGRESS ; Lhs = y ; Rhs = ... ; If [male = 1] $
 MATRIX ; bmale = b ; vmale = varb $
 REGRESS ; Lhs = y ; Rhs = ... ; If [female = 1] $
 MATRIX ; bfemale = b ; vfemale = varb $
 MATRIX ; d = bmale - bfemale
 ; waldstat = d' * Nvsm(vmale, vfemale) * d $

 The matrix results saved automatically in b and varb are, typically, a slope vector, b, and the
estimated asymptotic covariance matrix of the estimator, from an index function model. For
example, when you estimate a tobit model, the estimates and asymptotic covariance matrix are

 β
σ

 and

V V
V V

ββ

σβ σσ

βσ

.

The results kept are β, in b, Vββ in varb, and σ in a scalar named s. The other parts of the asymptotic
covariance matrix are generally discarded. We call the additional parameters, such as s, the ancillary
parameters in the model. Most of the models that LIMDEP estimates contain one or two ancillary
parameters. These are generally handled as in this example; the slope vector is retained as b, the
ancillary parameters are kept as named scalars, and the parts of the covariance matrix that apply to
them are discarded.
 In some applications, you may want the full parameter vector and covariance matrix. You
can retain these, instead of just the submatrices listed above, by adding the specification

 ; Parameters

(or, just ; Par) to your model command. (Note, for example, the computation of marginal effects for
a dummy variable in a tobit model developed in Section R14.4.3.) Without this specification, the
saved results are exactly as described above. The specific parameters saved by each command are
listed with the model application in the chapters to follow. You will find an example of the use of
this parameter setting in the program for marginal effects for a binary variable in the tobit model,
which is in the previous section.
 Finally, there is occasional use, particularly in the WALD command, for the labels of the
parameters of the last model. Note in the project window in Figure R15.2, the labellist lstmodel is
shown in the Labellists category. By double clicking this item, we can see in the output window the
list of labels that have been assigned to the parameters fit by the previous model command. For
example, after the command

LOGIT ; Lhs = mode ; Rhs = one,gc,ttme,invc,invt $

Double clicking the lstmodel name in the project window displays the list shown in Figure R15.3.

R15: Retrievable Results R-380

Figure R15.3 Last Model Labellist

R16: Using Matrix Algebra R-381

R16: Using Matrix Algebra

R16.1 Introduction

 The data manipulation and estimation programs described in the chapters to follow are part
of LIMDEP’s general package for data analysis. The MATRIX, CREATE, and CALCULATE
commands provide most of the additional tools. By using the NAMELIST, SAMPLE, REJECT,
INCLUDE, PERIOD, and DRAW commands, you can arbitrarily define as many data matrices as
you want. Simple, compact procedures using MATRIX commands will then allow you to obtain
covariance and correlation matrices, condition numbers, and so on. More involved procedures can
be used in conjunction with the other commands to program new, possibly iterative, estimators, or to
obtain complicated partial effects or covariance matrices for two step estimators.
 To introduce this extensive set of tools and to illustrate its flexibility, we will present several
examples. The rest of the chapter will provide some technical results on matrix algebra and material
on how to use MATRIX to manipulate matrices. (Most of these examples are hardwired procedures
in LIMDEP, so the matrix programs are only illustrative.)

Example 1. Restricted Least Squares

 In the linear regression model, y = Xβ + ε, the linear least squares coefficient vector, b*, and
its asymptotic covariance matrix, computed subject to the set of linear restrictions Rb* = q are

 b* = b - (X′X)-1R′[R(X′X)-1R′]-1(Rb-q),

where b = (X′X)-1X′y

and Est.Asy.Var[b*] = s2(X′X)-1 - s2(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1.

First, define the X matrix, columns then rows. We assume the dependent variable is y.

 NAMELIST ; x = ... $ This defines the columns
 CREATE ; y = the dependent variable $
 SAMPLE ; ... as appropriate $ This defines the rows

Next, define R and q. This varies by the application. Get the inverse of X’X now, for convenience.

 MATRIX ; r = ... ; q = ... ; xxi = <x’x> $

Compute the unrestricted least squares coefficients and the discrepancy vector.

 MATRIX ; bu = xxi * x’y ; d = r * bu - q $

Compute the restricted least squares estimates and the sum of squared deviations.

 MATRIX ; br = bu - xxi * r’ * Iprd(r,xxi,r’) * d $
 CREATE ; u = y - x’br $

Compute the disturbance variance estimator.

 CALC ; s2 = (1/(n-Col(x)+Row(r))) * u’u $

R16: Using Matrix Algebra R-382

Compute the covariance matrix, then display the results.

 MATRIX ; vr = s2 * xxi - s2 * xxi * r’ * Iprd(r,xxi,r’) * r * xxi $
 DISPLAY ; Parameters = br ; Covariance = vr ; Labels = x
 ; Title = Restricted Least Squares Estimates $

(The MATRIX function, Stat(br,vr,x) produces the same output as DISPLAY.)
 The preceding gives the textbook formula for obtaining the restricted least squares
coefficient vector when X′X is nonsingular. For the case in which there is multicollinearity, but the
restrictions bring the problem up to full rank, the preceding is inadequate. (See Greene and Seaks
(1991).) The general solution to the restricted least squares problem is provided by the partitioned
matrix equation:

λ
*b

0R
R'XX'

 =

q

yX'
.

If the matrix in brackets can be inverted, then the restricted least squares solution is obtained along
with the vector of Lagrange multipliers, λ. The estimated asymptotic covariance matrix will be the
estimate of σ2 times the upper left block of the inverse. If X′X has full rank, this coincides with the
solution above. A routine for this more general computation is

 MATRIX ; xx = x’x ; xy = x’y ; r = ... ; q = ... $
 CALC ; k = Col(x) ; j = Row(r) $
 MATRIX ; zero = Init(j, j, 0)
 ; a = [xx / r,zero] ? Shorthand for symmetric partitioned matrix
 ; v = [xy / q]
 ; ai = Ginv(a) ; b_l = ai * v
 ; br = b_l(1:k) ; vr = ai(1:k, 1:k) $

CREATE ; u = y - x’br $
MATRIX ; vr = { u’u / (n-k+j) } * vr
 ; Stat(br,vr,x) $

Example 2. Poisson Model with a Fixed Value Restriction

 In order to compute a Poisson regression model with different exposure rates, the solution is
to enter the log of the exposure variable in the model with a fixed coefficient equal to 1.0. The
restriction can imposed with the ; Rst = option in the POISSON command (or with ; Exposure =
variable name). The following is an iterative procedure that would compute the same results for
this application. It is necessary to set up the matrix procedure first. We isolate the last element of b
to obtain the vector beta; delta is the update vector, initialized at zero, so the first iteration uses the
starting values.

NAMELIST ; x = one, … $
CREATE ; y = the dependent variable
CREATE ; logt = the log of the exposure variable $
POISSON ; Lhs = y ; Rhs = x,logt $ For now, ignore the constraint.
CALC ; k = Col(x) ; conv = 1 $
MATRIX ; beta = b(1:k) ; delta = [k|0] $

R16: Using Matrix Algebra R-383

This is the iterative procedure:

1. Update beta.
2. Compute the expected values, imposing slope on Log(months) = 1 and residuals.
3. Exit rule: conv must be initialized above because it is checked at entry to the iteration, not at

exit. I.e., the execute procedure checks conv first, then decides whether or not to execute the
procedure again. So, we make sure the check fails the first time it is tested.

PROCEDURE
MATRIX ; beta = beta - delta $
CREATE ; ey = Exp(x’beta + logt)

; uy = ey - y $
MATRIX ; g = x’uy ? first derivatives vector
 ; h = <x’[ey]x> ? negative of second derivatives matrix
 ; delta = h * g $ update vector
CALC ; List ; conv = g’delta $ This is the scale free convergence measure.
ENDPROCEDURE

Execute the procedure until convergence, then display final results.

EXECUTE ; until conv < .00001 $
MATRIX ; Stat(beta,h,x) $

This program produces a trace of the iterations followed by the statistical output:

[CALC] CONV = 46194.6187903
[CALC] CONV = 10427.4732874
[CALC] CONV = 1091.7873932
[CALC] CONV = 18.9173685
[CALC] CONV = .0067992
[CALC] CONV = .0000000
CONV<.00001

Number of observations in current sample = 4481
Number of parameters computed here = 4
Number of degrees of freedom = 4477
--------+--
 | Standard Prob. 95% Confidence
 Matrix| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -.99753*** .06572 -15.18 .0000 -1.12634 -.86871
 AGE| .02050*** .00081 25.44 .0000 .01893 .02208
 EDUC| -.04218*** .00412 -10.23 .0000 -.05025 -.03410
 MARRIED| -.11921*** .02070 -5.76 .0000 -.15979 -.07863
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R16: Using Matrix Algebra R-384

Example 3. Plotting an Estimation Criterion Function

 In some applications, a direct optimization of a criterion function with a gradient method,
such as Newton’s method used for the Poisson model in Example 2, is not feasible. When the search
is for a single parameter, an alternative is to fix the parameter in a grid of values and plot the values
of the criterion function over that grid to search for the optimum. The lag weight in a geometric lag
model is an example. The following routine uses nonlinear least squares. The sum of squares is
evaluated over an interval of values for λ, then plotted against those values. The regression model
ultimately deduced is estimated at the end of the routine. (Note that for this specific application, the
covariance matrix listed in that output would not be correct, as it does not correctly adjust for the use
of nonlinear least squares.)

First, define matrices to keep the parameters and sums of squares.

 MATRIX ; ee = [40|0] ; l = ee $

Set up the initial value of the subscript and estimation criterion.

 CALC ; i = 1 ; eemin = 9999999 ; best = 0 $

Define the procedure to estimate the regression and keep the results. We also retain the optimal
value of lambda and its sum of squares.

 PROCEDURE
 CREATE ; If(_obsno = 1) | z = lambda ; xstar = x
 ; (Else) | z = lambda * z[-1] ; xstar = x + lambda * xstar[-1] $
 REGRESS ; Lhs = y ; Rhs = one,z,xstar ; Quietly $
 MATRIX ; ee(i) = sumsqdev ? Note the use of subscripts for the matrix elements.
 ; l(i) = lambda
 ; If [sumsqdev < eemin] ; best = lambda ; eemin = sumsqdev $
 CALC ; List ; i = i + 1 $
 ENDPROCEDURE

Execute the procedure for the 40 values of lambda, then plot the values.

 EXECUTE ; lambda = .01 (.025) .99 $
 MPLOT ; Lhs = l ; Rhs = ee ; Fill ; Endpoints = 0,1 $
 CALC ; i = 1 ; List ; best $
 EXECUTE ; Lambda = best $
 REGRESS ; Lhs = y ; Rhs = one,z,xstar $

Notice the use of the scalars in the CREATE commands and as subscripts for the matrices.

R16: Using Matrix Algebra R-385

Example 4. Canonical Correlations

 Variables y1, ..., yL and x1,...,xK are arranged in n×L and n×K data matrices Y and X. The
canonical variates (y*,x*) are those M = Min(L,K) pairs of linear functions of Y and X that have
maximum correlation chosen so that all variables with unequal subscripts are uncorrelated. The
canonical correlations are their pairwise correlation coefficients, r1*... rM*, ordered from largest to
smallest. There are several ways to compute canonical correlations and canonical variates. The
following has the useful virtue that it involves only symmetric matrices. This simplifies the
computations because we need to compute characteristic roots, and decomposing symmetric matrices
is simpler in this regard. Define the matrix product

 R = Ryy

-½RyxRxx
-1RxyRyy

-½,

where Rij, i,j = x,y, is a sample correlation matrix. The characteristic roots of R are the squared
canonical correlation coefficients. The ordered canonical variates are contained in

 y* = YRC = YQ,

where the mth column of C is the characteristic vector of R corresponding to the mth largest nonzero
root, and
 x* = XRxx

-1RxyQ = XV.

The columns of Q are normalized to have unit length. The following program computes the
canonical correlations and the coefficients of the canonical variates. It is assumed that y and x are
namelists defining the sets of variables and that y does not have more variables than x, so that M is
the number of columns in x. Also, since this is based on correlations from the outset, neither x nor y
may contain a column of ones (i.e., a constant term).
 The following demonstrates how using matrix functions compresses large amounts of
computation in small numbers of commands. We have shown the computations with a sampling
experiment that you can use to demonstrate the procedures. Some of the intermediate output from
the procedure is omitted. The random values for the experiment are produced by generating four
independent columns of draws from the standard normal to constitute X and three for Y. Then, a
linear combination of the seven random variables, with random coefficients, is used to induce some
intercorrelation of the variables.
 Define the variables in the computations.

SAMPLE ; 1-1000 $
CALC ; Ran(12347) $ Set the seed so you can replicate the experiment.
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; x3 = Rnn(0,1) ; x4 = Rnn(0,1) $
CREATE ; y1 = Rnn(0,1) ; y2 = Rnn(0,1) ; y3 = Rnn(0,1) $
NAMELIST ; x = x1,x2,x3,x4 ; y = y1,y2,y3
 ; z = x,y $ Note, z is all seven variables.
MATRIX ; w = Rndm(7,7) $ Matrix of random numbers
MATRIX ; z = Xmlt(w) $ Mixture of all seven variables

R16: Using Matrix Algebra R-386

Compute the simple correlations and cross correlations.

 NAMELIST ; x = list of variables ; y = list of variables $

MATRIX ; List ; rxx = Xcor(x) ; ryy = Xcor(y) ; rxy = Xcor(x,y) $

These MATRIX commands do the following:

1. Compute and display the sample canonical correlations.
2. Column i of Q is the coefficients of variate y*(i).
3. Column i of V is the coefficients of variate x*(i).
4. Squared canonical correlations are the diagonals of R.

MATRIX ; List ; rr = Isqr(ryy) * rxy’ * <rxx> * rxy * Isqr(ryy) $
MATRIX ; List ; r = Root(rr) ; r = Diag(r) $
MATRIX ; List ; q = r * Cvec(rr) ; norm = Diag(q’q) $
MATRIX ; List ; q = q * Isqr(norm) $
MATRIX ; List ; v = <rxx> * rxy * q $

Correlation Matrix for Listed Variables
--------+---
 | X1 X2 X3 X4
--------+---
 X1| 1.00000 .66647 .13895 .70138
 X2| .66647 1.00000 -.27401 .25449
 X3| .13895 -.27401 1.00000 -.05935
 X4| .70138 .25449 -.05935 1.00000

Correlation Matrix for Listed Variables
--------+---
 | Y1 Y2 Y3
--------+---
 Y1| 1.00000 -.00686 -.15644
 Y2| -.00686 1.00000 .06252
 Y3| -.15644 .06252 1.00000

Correlation Matrix for Listed Variables
--------+---
 | Y1 Y2 Y3
--------+---
 X1| -.39031 .77714 -.07281
 X2| .00490 .74738 -.18534
 X3| -.17284 .13123 -.08101
 X4| -.03555 .55156 .10582

RR | 1 2 3
--------+--
 1| .724403 .00308662 .0609734
 2| .00308662 .838933 -.159083
 3| .0609734 -.159083 .0940829

R16: Using Matrix Algebra R-387

R | 1
--------+--------------
 1| .872078
 2| .729263
 3| .0560780

R | 1 2 3
--------+--
 1| .872078 .000000 .000000
 2| .000000 .729263 .000000
 3| .000000 .000000 .0560780

Q | 1 2 3
--------+--
 1| -.0559187 .866740 -.0784475
 2| .712281 .0590669 .144884
 3| -.0114815 .00421263 .0547281

NORM | 1 2 3
--------+--
 1| .510604 .000000 .000000
 2| .000000 .754745 .000000
 3| .000000 .000000 .0301406

Q | 1 2 3
--------+--
 1| -.0782555 .997674 -.451859
 2| .996804 .0679898 .834536
 3| -.0160678 .00484900 .315235

V | 1 2 3
--------+--
 1| -.104287 -2.17004 .766933
 2| .817439 1.35068 .0842229
 3| .410255 .579855 .0759146
 4| .440346 1.21526 -.0451223

Example 5. Discriminant Analysis

 A data matrix, X, with n rows consists of two submatrices, X1 in n1 rows and X2 in the other
n2 rows. ‘Discriminant analysis’ prescribes the following classification rule for an observation, xi:
Classify in Group 1 if

 xi′d > ½ []x x1 2+ ′d

where d = V-1 []x x1 2−

and V = [X1′X1 + X1′X1]/(n1+n2-2).

The data used to compute V are in deviations from the respective subsample means. A set of
commands that could be used for this computation are as follows. (This calculation, with numerous
extensions, is provided by the model command CLASSIFY.)

R16: Using Matrix Algebra R-388

 These two commands are specific to the application. Define the data matrix.

 NAMELIST ; x = list of names not including one $
 CREATE ; d1 = group 1 indicator variable
 ; d2 = 1 - d1 ? Group 2 indicator
 ; group = d1 + 2 * d2 $ Takes values 1 and 2

Obtain the means and variances to obtain V, then compute D.

 MATRIX ; xbar1 = <d1’1> * x’d1
 ; xbar2 = <d2’1> * x’d2
 ; s1 = {d1’d1 - 1} * Xvcm(x,d1)
 ; s2 = {d2’d2 - 1) * Xvcm(x,d2)
 ; v = {1/(n-2)} * Msum(s1,s2)
 ; d = <v> * Mdif(xbar1,xbar2) $

Compute the classification variable. Create a binary variable = 1 if classified in group 1 and 0 if in
group 2. (2 - this variable) produces the 1s and 2s. How well does the rule do? Right = 1 if class =
group.

 CREATE ; class = 2 - (x’d > .5 * (xbar1’d + xbar2’d))
 ; right = (class = group) $

Examine the results.

 CALC ; hit rate = Xbr(right) $
 LIST ; group, class, right $

Is the correct classification rate significant?

 CROSSTAB ; Lhs = group ; Rhs = class $

Example 6. Partial Effects in a Multinomial Logit Model

 This example is a program to compute marginal effects for a multinomial logit model. We
emphasize, this computation is automated in LIMDEP; it requires only for the LOGIT command to
include the specification ; Partial Effects. This example is only illustrative.
 The probabilities in the multinomial logit model are:

0

exp()
Prob[] , 0,..., .

exp()
j i

i j J
j j i

y j P j J
=

′
= = = =

′Σ

x
x

β

β

For convenience in what follows, we shall drop the observation subscript. For the present, ignore the
normalization β0 = 0. The partial effects in the model are

 δj = ∂Pj/∂x = Pj(βj - β), j = 0,1,...,J. where β =

0

J
j jj

P
=

β∑ .

R16: Using Matrix Algebra R-389

The asymptotic covariance matrix for dj, an estimator of δj would be computed using

 Asy.Var.[dj] = Gj Asy.Var[b]Gj’

where b is the full estimator of parameter vector β. It can be shown that

 Asy.Var.[dj] = ΣlΣmVjl Asy.Cov.[bl,bm′]Vjm′, j=0,...,J,

where Vjl = [1(j = l) - Pl][PjI - δjx′] - Pj δlx′

and 1(j = l) = 1 if j = l, and 0 otherwise.

 The program listed below does all of these computations. The only necessary modifications
for a specific application would be to set up the NAMELIST command for X and the CREATE
command for the dependent variable at the top of the routine. It does an enormous amount of
computation and illustrates usage of many features of LIMDEP’s programming language, including
nested loops. Once again, we emphasize, this routine exists internally.

 The user changes only these statements for a particular application:

 NAMELIST ; x = list of independent variables $
 CREATE ; y = dependent variable $

Obtain the dimensions of the data set, then estimate the model.

 CALC ; k = Col(x) ; j = Max(y) ; jplus1 = j + 1 ; jk = j*k $
 LOGIT ; Lhs = y ; Rhs = x $ (Also creates the matrix b_logit.)

The parameters are in a vector β. Arrange them in the matrix [β1,β2,...]. Also, include a leading
column of zeros to account for the normalization β0 = 0. This has been saved automatically by
LOGIT. VB is a partitioned matrix that includes blocks of zeros that correspond to β0 in the
parameter vector.

MATRIX ; beta = b_logit’ ; ones = Init(jplus1,1,1.0)
 ; ik = Iden(k) ; xbar = Mean(x)
 ; zk = Init(k,k,0) ; zkk = Init(jk,k,0)
 ; vb = [zk / zkk,varb] $ Include zero block.

Compute J+1 probabilities. The matrix of δs is also computed here.

 MATRIX ; prob = Expn(beta’xbar) ; prob = <prob’1> * prob
 ; bbar = beta * prob
 ; delta = beta * Diag(prob) - bbar * ones’ * Diag(prob) $

R16: Using Matrix Algebra R-390

This is the major loop. The outside loop is over j = 0,...,J for probabilities. This loop index is i = 1 to
j + 1.
 PROC $
 DO FOR ; 1000 ; i = 1,jplus1 $

Extract δj from the matrix computed earlier. Initialize VC for summing.

 MATRIX ; deltai = delta(1:k,i:i) ; vardelta = Init(k,k,0) $

The inner loops are for double summation over l and m = 0,...,J

 CALC ; k1l = 1 ; k2l = k $
 DO FOR ; 500 ; l = 1,jplus1 $
 CALC ; k1m = 1 ; k2m = k $
 DO FOR ; 400 ; m = 1,jplus1 $
 MATRIX ; deltal = delta(1:k,l:l) ; deltam = delta(1:k,m:m) $

Extract the corresponding block in the covariance matrix. Set up and compute Vl and Vm. Compute
the asymptotic covariance matrix.

 CALC ; sl = Prob(i) * (Eql(i,l) - Prob(i))
 ; sm = Prob(i) * (Eql(i,m) - Prob(m)) $
 MATRIX ; clm = vb(k1l:k2l, k1m:k2m)
 ; vl = sl * ik + sl * deltai * xbar’ - Prob(i) * deltal * xbar’
 ; vm = sm * ik + sm * deltai * xbar’ - Prob(i) * deltam * xbar’
 ; vardelta = vardelta + vl * clm * vm’ $

Recycle points for the two inner loops. Increment the counters and pointers for VC.

 CALC ; k1m = k1m + k ; k2m = k2m + k $
 ENDDO ; 400 $
 CALC ; k1l = k1l + k ; k2l = k2l + k $
 ENDDO ; 500 $

Display results for each set of marginal effects.

 MATRIX ; Stat(deltai,vardelta,x) $
 ENDDO ; 1000 $
 ENDPROC $
 EXECUTE $

R16: Using Matrix Algebra R-391

Example 7. Hausman Test for Fixed vs. Random Effects

 The Hausman (1978) test is used in the following setting: There are two estimators of the
parameter vector β, b0 and b1. Under H0, b0 is consistent and efficient, but b1 is inconsistent. Under
H1, both estimators are consistent, but b0 is inefficient. The statistic is computed using

 H = (b0 - b1)′[Est.Asy.Var(b0) - Est.Asy.Var(b1)]-1(b0 - b1).

A common application of the test is to distinguish fixed vs. random effects in a linear regression
model.

 H0: The fixed effects model is appropriate. The preferred estimator is least squares
 with dummy variables. This is b0.

 H1: The random effects model is appropriate. The preferred estimator is generalized
 least squares. This is b1.

 SETPANEL ; Group = … the identification variable ; Pds = the panel spec. $
 NAMELIST ; x = ... not including one $
 CALC ; k = Col(x) $
 REGRESS ; Lhs = y ; Rhs = x ; Panel ; Fixed Effects $
 MATRIX ; b0 = b(1 : k) ? This extracts the first K elements.
 ; v0 = varb $ LS dummy variable estimator
 REGRESS ; Lhs = y ; Rhs = x ; Panel ; Random Effects $
 MATRIX ; b1 = b(1 : k) ? 2 step GLS estimator
 ; v1 = varb(1:k,1:k)
 ; d = b0 - b1
 ; vd = v0 - v1
 ; List ; hausman = d’ * Sinv(vd) * d
 ; pvalue = 1 - Chi(hausman, k) $

Note the following about this test:

1. The Hausman statistic is computed using the Cholesky inversion program for symmetric
positive definite matrices. It occasionally occurs that the difference matrix is not positive
definite (PD). If you use an ordinary inversion program to compute the inverse, you may get
a misleading, or even negative result for the Hausman statistic, as the matrix may be
nonsingular even if it is not positive definite. When the difference matrix is not PD, you
should use zero for the Hausman statistic. Also, authors occasionally force the issue by using
a generalized (G2) inverse for this computation. Once again, this can produce a misleading
result. If the matrix is PD, the G2 inverse is not needed. If it is not PD, you should obtain
0.0 for the statistic, not the result of an ad hoc patch for the covariance matrix.

2. This statistic is computed and reported automatically by the panel data estimator if you do

not specify either ; Fixed or ; Random in the REGRESS command. See the example
below.

R16: Using Matrix Algebra R-392

 The following applies the routine to the Cornwell and Rupert labor supply data used in
Greene (2011, Table F8.1). Some of the intermediate results are omitted. The last line redoes the
computation with LIMDEP’s built-in routines.

 NAMELIST ; x = exp,wks,occ,ind,south,smsa,ms,union,one $
 CALC ; k = Col(x) - 1 $
 REGRESS ; Lhs = lwage ; Rhs = x ; Panel ; Fixed ; Pds = 7 $
 MATRIX ; bfe = b(1 : k) ? This extracts the first K elements.
 ; vfe = varb $ LS dummy variable estimator
 REGRESS ; Lhs = lwage ; Rhs = x ; Panel ; Random ; Pds = 7 $
 MATRIX ; bre = b(1 : k) ? 2 step GLS estimator
 ; vre = varb(1:k,1:k)
 ; d = bfe - bre
 ; vd = vfe - vre
 ; List ; hausman = d' * Sinv(vd) * d $
 CALC ; List ; pvalue = 1 - Chi(hausman, k) $

REGRESS ; Lhs = lwage ; Rhs = x ; Panel ; Pds = 7 $

LSDV least squares with fixed effects
LHS=LWAGE Mean = 6.67635
 Standard deviation = .46151
 No. of observations = 4165 Degrees of freedom
Regression Sum of Squares = 803.281 602
Residual Sum of Squares = 83.6239 3562
Total Sum of Squares = 886.905 4164
 Standard error of e = .15322
Fit R-squared = .90571 R-bar squared = .88978
Model test F[602, 3562] = 56.83746 Prob F > F* = .00000
Diagnostic Log likelihood = 2228.82754 Akaike I.C. = -3.61859
 Restricted (b=0) = -2688.80603
Panel:Groups Empty 0, Valid data 595
 Smallest 7, Largest 7
 Average group size in panel 7.00
Variances Effects a(i) Residuals e(i,t)
 1.111677 .023477
--------+--
 | Standard Prob. 95% Confidence
 LWAGE| Coefficient Error z |z|>Z* Interval
--------+--
 EXP| .09658*** .00119 81.10 .0000 .09424 .09891
 WKS| .00114* .00060 1.89 .0583 -.00004 .00232
 OCC| -.02486* .01389 -1.79 .0734 -.05208 .00236
 IND| .02076 .01557 1.33 .1825 -.00976 .05127
 SOUTH| -.00320 .03458 -.09 .9263 -.07096 .06457
 SMSA| -.04373** .01958 -2.23 .0256 -.08211 -.00534
 MS| -.03026 .01914 -1.58 .1138 -.06777 .00725
 UNION| .03416** .01504 2.27 .0232 .00468 .06364
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R16: Using Matrix Algebra R-393

Random Effects Model: v(i,t) = e(i,t) + u(i)
Estimates: Var[e] = .023477
 Var[u] = .128215
 Corr[v(i,t),v(i,s)] = .845235
Lagrange Multiplier Test vs. Model (3) =3847.31
(1 degrees of freedom, prob. value = .000000)
(High values of LM favor FEM/REM over CR model)
Baltagi-Li form of LM Statistic = 3847.31

--------+--
 | Standard Prob. 95% Confidence
 LWAGE| Coefficient Error z |z|>Z* Interval
--------+--
 EXP| .05802*** .00090 64.32 .0000 .05625 .05979
 WKS| .00163*** .00060 2.72 .0065 .00046 .00280
 OCC| -.11293*** .01280 -8.82 .0000 -.13803 -.08784
 IND| -.01361 .01405 -.97 .3326 -.04115 .01392
 SOUTH| -.06737*** .02388 -2.82 .0048 -.11418 -.02057
 SMSA| -.02141 .01668 -1.28 .1992 -.05410 .01128
 MS| -.02516 .01729 -1.46 .1455 -.05905 .00872
 UNION| .03968*** .01381 2.87 .0041 .01261 .06674
Constant| 5.55102*** .04166 133.23 .0000 5.46936 5.63269
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

HAUSMAN | 1
--------+--------------
 1| 2704.39
[CALC] PVALUE = .0000000

This is reported by the last command above, which fits both models.

Random Effects Model: v(i,t) = e(i,t) + u(i)
Estimates: Var[e] = .023477
 Var[u] = .128215
 Corr[v(i,t),v(i,s)] = .845235
Lagrange Multiplier Test vs. Model (3) =3847.31
(1 degrees of freedom, prob. value = .000000)
(High values of LM favor FEM/REM over CR model)
Baltagi-Li form of LM Statistic = 3847.31
Moulton/Randolph form:SLM N[0,1]= 62.94
Fixed vs. Random Effects (Hausman) =2704.39
(8 degrees of freedom, prob. value = .000000)
(High (low) values of H favor F.E.(R.E.) model).
 Sum of Squares 1977.160321
 R-squared -1.229281
--------+--

R16: Using Matrix Algebra R-394

R16.2 Entering MATRIX Commands

 MATRIX commands are typically given as parts of programs that perform larger functions,
such as in the examples in Section R16.1. You also have a matrix ‘calculator’ that you can access
occasionally in a window that is separate from your primary desktop windows (project, editing, and
output).

R16.2.1 The Matrix Calculator

 You may invoke the matrix calculator by selecting Tools:Matrix Calculator as shown in
Figure R16.1.

Figure R16.1 Tools Menu for Matrix Calculator

The matrix calculator window is shown in Figure R16.2.

R16: Using Matrix Algebra R-395

Figure R16.2 Matrix Calculator Window

 You can leave the matrix calculator window open while you go to some other function. For
example, you may find it convenient to interrupt your work in the editing/output windows by
activating the matrix calculator to check some result which, perhaps, is not emerging the way you
expected.
 There are two other ways to enter commands in the matrix calculator window. You can type
MATRIX commands in the smaller ‘Expr:’ (expression) window. In this dialog mode, if your
command will not fit on one line, just keep typing. At some convenient point, the cursor will
automatically drop down to the next line. Only press Enter when you are done entering the entire
command. In this mode of entry, you do not have to end your commands with a $.
 Alternatively, you can click the fx button to open a subsidiary window that provides a menu
of the functions (procedures). See Figure R16.3.

Figure R16.3 Insertion Window for Matrix Functions

You can select the function you wish to insert in your command. You must then fill in the
arguments of the function that are specific to your expression. (E.g., if you want Chol(sigma), you
can select Chol(A) from the menu, then you must change ‘A’ to ‘sigma.’ in the command.)

R16: Using Matrix Algebra R-396

R16.2.2 MATRIX Commands

 If your MATRIX command is part of a program, it is more likely that you will enter it ‘in
line,’ rather than in the matrix calculator. That is as a command in the text editor, in the format,

 MATRIX ; ... the desired command ... $

Commands may be entered in this format from the editor, as part of a procedure, or in an input file.
All of the applications given elsewhere in this manual are composed of in line commands, as are the
examples given in Section R16.1 and in many places in the preceding chapters.
 The essential format of a MATRIX command is

 MATRIX ; name = result ; ... additional commands ... $

If you wish to see the ‘result’ but do not wish to keep it, you may omit the ‘; name =.’ For example,
you are computing a result and you receive an unexpected diagnostic. We sometimes come across a
matrix, say rxx, that we thought was positive definite, but when we try something like MATRIX ;
Sinv(rxx) $, a surprise error message that the matrix is not positive definite shows up. A simple
listing of the matrix shows the problem. The .001 in the 4,4 element is supposed to be a 1.0. Now
we have to go back and find out how the bad value got there – some previous calculation did
something unexpected.

MATRIX ; Sinv(Rxx) $
Error 185: MATRIX - GINV,SINV,CHOL singular, not P.D. if SINV or CHOL
MATRIX ; List ; Rxx $
Result | 1 2 3 4
--------+--
 1| 1.00000 .666470 .138950 .701380
 2| .666470 1.00000 -.274010 .254490
 3| .138950 -.274010 1.00000 -.0593500
 4| .701380 .254490 -.0593500 .00100000

If you want only to see a matrix, and not operate on it, you can just double click its name in the
project window. That will open a window that displays the matrix. The offending rxx matrix shown
above is displayed in Figure R16.4.

Figure R16.4 Matrix Display from the Project Window

R16: Using Matrix Algebra R-397

 Matrix results will be mixtures of matrix algebra, i.e., addition, multiplication, subtraction,
and matrix functions, such as inverses, characteristic roots, and so on, and, possibly, algebraic
manipulation of functions of matrices, such as products of inverses.

R16.2.3 Conditional Commands

 All MATRIX commands may be made conditional, in the same manner as CREATE or
CALCULATE. The conditional command would normally appear

 MATRIX ; If (logical expression) name = expression $

The logical expression may be any expression that resolves either to ‘true’ or ‘false’ or to a numeric
value, with nonzero implying true. The rules for the expression are identical to those for CREATE
(see Section R4.2.2) and REJECT (see Section R7.2.2), as well as CALCULATE, and all forms of
DO. In this setting, if the condition is true, ‘name’ is computed; if it is false, ‘name’ is not
computed. Thus, if name is a new matrix, and the condition is false, after the command is given,
name will not exist. For example,

 MATRIX ; If (a(1,1) > rsqrd) q = Dtrm(v) $

 An entire set of MATRIX commands can be made conditional by placing a semicolon after
the condition, as in

 MATRIX ; If (condition) ; name = result ; result $

If the condition is false, none of the commands that follow it are carried out. This form of condition
may appear anywhere in a group of MATRIX commands.
 You may also make an entire set of matrix calculations conditional with the syntax

 MATRIX ; If (condition) | a set of matrix results $

If the condition is false, none of the commands after the bar are carried out. The test statistic for the
Brant test in Section R16.4.5 provides an extensive example.

R16.3 Matrix Output

 The results of MATRIX commands can be matrices with up to 50,000 elements, and can
thus produce enormous amounts of output. As such, most of the display of matrix results is left up to
your control.
 Matrix results are always displayed in the calculator window. When commands are in line,
results are generally not shown unless you specifically request the display with ; List. (See Section
R16.3.1.) The figures below demonstrate.

R16: Using Matrix Algebra R-398

Figure R16.5 Matrix Result in the Calculator Window

 When the computed result has more than five columns or more than 20 rows, it will be
shown in the output window as a place holder (object).

Figure R16.6 Matrix Result in the Output Window

If you double click the object, you can display the full matrix in a scalable window.

R16: Using Matrix Algebra R-399

Figure R16.7 Matrix Display Window

You can navigate around any matrix in the display with the editing keys, arrow, PgUp, and so on.

TIP: If you double click the upper left (blank) box in the window, this will ‘select’ the entire
window. You can then use edit copy/paste to bring this (tab delimited) matrix directly into Excel.

R16.3.1 Matrix Results

 When MATRIX commands are given in line, the default is not to display the results of any
matrix computations on the screen or in the output file. It is assumed that in this mode, results are
mostly intermediate computations. The output file will contain, instead, a listing of the matrix
expression and either a confirmation that the result was obtained or just a statement of the expression
with a diagnostic in the trace file. For example, the command

 MATRIX ; a = Iden(20) $

produces only an echo of the expression.
 You can request full display of matrices in the output file by placing

 ; List

before the matrix to be listed. Note how this has been used extensively in the preceding examples in
Section R16.1. This is a switch that will now remain on until you turn it off with ; Nolist. When the
end of a command is reached, ; Nolist once again becomes the default. The ; Nolist and ; List
switches may be used to suppress and restore output at any point. When the ; Nolist specification
appears in a MATRIX command, no further output appears until the ; List specification is used. At
the beginning of a command, the ; List switch is off, regardless of where it was before. If you are
doing many computations, you can suppress some of them, then turn the output switch back on, in
the middle of a command. For example:

 MATRIX ; Nolist ; xxi = <x1’x1> ; List ; Root(xxi) $

R16: Using Matrix Algebra R-400

displays only the characteristic roots of the inverse of a particular X′X matrix. Neither x1′x1 nor xxi
are displayed.
 Displaying matrices that already exist in the matrix work area requires only that you give the
names of the matrices. I.e.,

 MATRIX ; List ; abcd ; qed $ (note, separated by semicolons, not commas)

would request that the matrices named abcd and qed be displayed on your screen. You might also
want to see the results of a matrix procedure displayed, without retaining the results. The following
are some commands that you might type:

 MATRIX ; Root(xx) $ lists characteristic roots of xx.
 MATRIX ; a* b $ displays the matrix product ab.
 MATRIX ; Mean(x*) $ displays the means of all variables whose
 names begin with x.

These commands just display the results of the computations; they do not retain any new results.

R16.3.2 Unformatted Output

 In the cases considered thus far, when a matrix is listed in your output, it is partitioned and
formatted for convenient viewing. However, this may make further analysis of the matrix
inconvenient. If you would like to produce an unmodified, unformatted copy of one or more
matrices in your output so that you can manipulate them later, for example, use them in some other
program, use the command

 WRITE ; ... desired list of matrices $

The example below shows the difference in the two types of listings:

MATRIX;List;zz=rndm(6,5)$
ZZ | 1 2 3 4 5
--------+--
 1| -1.44814 1.36184 -.468357 -.622546 .795314
 2| -.168379 .104536 .904864 -.00397597 .528702
 3| .0952065 1.04398 -.0338957 -.769662 -1.44197
 4| .0849252 .243405 -.673963 1.29946 1.20323
 5| -.651083 .313592 .999907 .0339046 .104310
 6| .679254 -1.55387 .562071 -2.44212 1.35792

WRITE;zz$
[6 by 5] Matrix ; ZZ =[
 -1.448137, 1.361837, -.4683571, -.6225460, .7953138/
 -.1683794, .1045356, .9048638, -.3975969E-02, .5287020/
 .9520647E-01, 1.043977, -.3389574E-01, -.7696619, -1.441973/
 .8492519E-01, .2434048, -.6739631, 1.299464, 1.203225/
 -.6510833, .3135922, .9999074, .3390462E-01, .1043099/
 .6792535, -1.553875, .5620706, -2.442124, 1.357922
]$

The matrix is displayed as a command, but the body of the matrix is comma and slash delimited.

R16: Using Matrix Algebra R-401

R16.3.3 Technical Output

 All computations in LIMDEP are done in ‘double precision.’ That means that although the
visible displays of results typically contain anywhere from five to eight significant digits, all internal
results are computed with 17 significant digits. For some purposes, for example, for checking the
accuracy of iterative programs that you write, you may wish to see all of the computed digits for a
matrix result. You can request this format by using

 ; Peek

in your MATRIX command at the point at which you wish to begin the technical display. The
listing below shows the internal form of the first several values in zz from above.

Display of all internal digits of matrix Result
Result[1,1]=-.14481369392191410D+01
Result[1,2]=.13618369140362890D+01
Result[1,3]=-.46835710105771710D+00
Result[1,4]=-.62254596617409810D+00
Result[1,5]=.79531377257669170D+00
Result[2,1]=-.16837941022982930D+00
Result[2,2]=.10453556133910670D+00
Result[2,3]=.90486384151079990D+00
Result[2,4]=-.39759692924754610D-02
Result[2,5]=.52870199710107050D+00
Result[3,1]=.95206471103564530D-01
Result[3,2]=.10439772152053720D+01
Result[3,3]=-.33895735151328110D-01
Result[3,4]=-.76966187735011250D+00
...

R16.3.4 Exporting Matrix Results from LIMDEP

 You can export your statistical results to other packages. In Section R16.3, we noted that
with edit/copy and edit/paste, you can extract matrix results and drop them directly into spreadsheet
programs. You can also export your results more formally to any program that can accept the
‘comma separated values,’ or CSV format, such as Excel. The file that LIMDEP creates can be read
directly, without any further manipulation on your part. Setting it up requires a few steps, as shown
below.

Step 1. Open the file that will contain the results to be exported.

This will be a CSV (comma separated values) file. Use the following OPEN command:

 OPEN ; Export = …<filename>.csv $

You must open the file with extension .csv for this operation to succeed. LIMDEP does not
check this file setup for you – the program assumes that the file is opened correctly.

R16: Using Matrix Algebra R-402

Step 2. Use the ; Export specification in your model commands.

In specific model commands that you wish to export, use the model option ; Export to put
a table of coefficients, etc. in the export file. You may also use ; Title = up to 80
characters to put a line of text at the top of the results. For some other specific commands,
you can use

 MATRIX ; Export = list of matrices $ puts a list of matrices in the file.
 DSTAT ; Export ; Rhs = ... $ copies the results to the CSV file.
 CALC ; Export = list of scalars $ copies scalars to the file.

Step 3. Close the file before you try to use it.

When you are finished exporting results to the file, use

 CLOSE ; Export $

to end accumulation of results in the file.

After this file is created, you can now export your results to Excel just by double clicking the

file name in any context, such as Windows Explorer. There are two possible conflicts to be wary of:

• The file cannot be reopened. If you repeat an OPEN ; Export = name $ command, the
original file is erased and a new one with that name is created.

• Do not use this file, e.g., by Excel, until you exit LIMDEP, even if you have used a CLOSE

command to close the file.

An example follows: We first create the file in LIMDEP.

 OPEN ; Export = “C:\work\excelresults.csv” $

PROBIT ; Export ; Lhs = doctor
; Rhs = one,age,educ,hsat,hhninc $

 DSTAT ; Rhs = hsat,hhninc $
 MATRIX ; Export = b,varb $

We then open the file in Excel with the results shown in Figure R16.8.

R16: Using Matrix Algebra R-403

Figure R16.8 Results Exported to Excel

 As noted earlier, you can also use edit/copy in a matrix window and edit/paste in your
spreadsheet program to move matrices to other software.

R16: Using Matrix Algebra R-404

R16.3.5 Matrix Statistical Output

 Your matrix procedures will often create coefficient vectors and estimated covariance
matrices for them. For any vector, beta, and square matrix, v, of the same order as beta, the
command

 MATRIX ; Stat(beta,v) $

will produce a table which assumes that these are a set of statistical results. The table contains the
elements of beta, the diagonal elements of v and the ratios of the elements of beta to the square root
of the corresponding diagonal element of v (assuming it is positive). For example, the listing below
shows how the Stat function would redisplay the model results produced by a LOGIT command.

NOTE: MATRIX ; Stat(vector,matrix) $ has no way of knowing that the matrix you provide
really is a covariance matrix or that it is the right one for the vector that precedes it. It requires only
that ‘vector’ be a vector and ‘matrix’ be a square matrix of the same order as the vector. You must
insure that the parts of the command are appropriate.

The routine to produce model output for a matrix computed set of results can be requested to
display variable names by adding a namelist with the appropriate variables as a third argument in the
MATRIX ; Stat(b,v) $ function. If your estimator is a set of parameters associated with a set of
variables, x, they are normally labeled b_1, b_2, etc. Adding the namelist to the MATRIX ;
Stat(b,v,x) $ function carries the variable labels into the function. An example follows: (Some
results are omitted.)

Results from logit regression:

Binary Logit Model for Binary Choice
Dependent variable MODE
Log likelihood function -419.59809
Restricted log likelihood -472.36152
Chi squared [4 d.f.] 105.52685
--------+--
 | Standard Prob. 95% Confidence
 MODE| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| .29245 .22832 1.28 .2002 -.15504 .73995
 GC| .02160*** .00751 2.88 .0040 .00688 .03632
 TTME| -.04387*** .00486 -9.03 .0000 -.05340 -.03435
 INVC| -.00363 .00760 -.48 .6329 -.01852 .01126
 INVT| -.00466*** .00106 -4.37 .0000 -.00674 -.00257
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R16: Using Matrix Algebra R-405

 MATRIX ; Stat(b,varb) $

Number of observations in current sample = 840
Number of parameters computed here = 5
Number of degrees of freedom = 835
--------+--
 | Standard Prob. 95% Confidence
 Matrix| Coefficient Error z |z|>Z* Interval
--------+--
 B_1| .29245 .22832 1.28 .2002 -.15504 .73995
 B_2| .02160*** .00751 2.88 .0040 .00688 .03632
 B_3| -.04387*** .00486 -9.03 .0000 -.05340 -.03435
 B_4| -.00363 .00760 -.48 .6329 -.01852 .01126
 B_5| -.00466*** .00106 -4.37 .0000 -.00674 -.00257
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

 MATRIX ; Stat(b,varb,x) $

Number of observations in current sample = 840
Number of parameters computed here = 5
Number of degrees of freedom = 835
--------+--
 | Standard Prob. 95% Confidence
 Matrix| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .29245 .22832 1.28 .2002 -.15504 .73995
 GC| .02160*** .00751 2.88 .0040 .00688 .03632
 TTME| -.04387*** .00486 -9.03 .0000 -.05340 -.03435
 INVC| -.00363 .00760 -.48 .6329 -.01852 .01126
 INVT| -.00466*** .00106 -4.37 .0000 -.00674 -.00257
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The DISPLAY command can be used to produce a similar set of results.

 DISPLAY ; Parameters = b ; Covariance = varb ; Labels = x
 ; Title = Logit Model for Mode Choice $

Logit Model for Mode Choice
--------+--
 | Standard Prob. 95% Confidence
 Matrix| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .29245 .22832 1.28 .2002 -.15504 .73995
 GC| .02160*** .00751 2.88 .0040 .00688 .03632
 TTME| -.04387*** .00486 -9.03 .0000 -.05340 -.03435
 INVC| -.00363 .00760 -.48 .6329 -.01852 .01126
 INVT| -.00466*** .00106 -4.37 .0000 -.00674 -.00257
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R16: Using Matrix Algebra R-406

R16.3.6 Descriptive Statistics for the Elements in a Matrix

 The matrix function Dsta computes the mean and standard deviation of the elements in a
matrix. The matrix may be any size or shape. Use

 MATRIX ; Dsta(list of matrices) $

The matrices in the list need not be the same size. The following computes means and standard
deviations for 5×5 and 10×10 matrices of random draws from the standard normal distribution.

 MATRIX ; a5 = Rndm(5,5) ; a10 = Rndm(10,10) $
 MATRIX ; Dsta(a5,a10) $

DESCRIPTIVE STATISTICS FOR MATRIX ELEMENTS
Matrix Mean Standard Deviation Rows Columns Elements
A5 -.13648D+00 .94047D+00 5 5 25
A10 .55930D-01 .99133D+00 10 10 100

R16.3.7 Plotting Matrices

 The elements of one matrix may be plotted against those of another with

 MPLOT ; Rhs = matrix1 ; Lhs = matrix2 ; ... $

The rest of the command is the same as that for PLOT using variables. The two matrices must have
the same dimensions, but they need not be vectors. For this command, the figure drawn is a scatter
plot of the elements of matrix1 against the corresponding elements of matrix2. The PLOT
command and options for PLOT and MPLOT are discussed in Chapter E4.

NOTE: This is not a matrix function; MPLOT is a separate LIMDEP command. Example 3 in
Section R16.1 contains an application which uses MPLOT.

R16.4 Matrix Work Areas

 You have a workspace for the results of matrix computations that contains roughly 500,000
cells plus another 100,000 for intermediate results of your estimation commands. Most of your
matrix computations will take place in this area, either to manipulate matrices already in it or to use
the data to compute matrices to add to it. You can define up to 100 named matrices. The maximum
size of the result of a matrix computation is 50,000 cells. Although these dimensions may seem
limited, because of the way matrices are defined by LIMDEP, it is unlikely that they will ever
constrain you.
 If necessary, you can delete matrices to make room in your workspace with

 MATRIX ; Delete name, name, … $

(Note that there is no equals sign or colon after ; Delete.) You can also delete matrices in the project
window simply by selecting the matrix by name in the project window and pressing the Del key.

R16: Using Matrix Algebra R-407

R16.4.1 Rebuilding the Matrix Work Area

 When you open a project file, you restore your data and results, including the matrix work
area. A side effect of this is that if you wish to restore just your matrix work area, you must also
replace your entire data analysis project. The MATRIX functions Mput and Mget are provided to
allow you to save and restore a matrix algebra ‘subsession.’ Mput creates a special file that contains
the names, dimensions, and contents of all matrices that exist at the moment when it is created. Mget
will read that file and restore the matrix work areas to their previous state, without changing anything
else in your project. The syntaxes of these commands are

 MATRIX ; Mput = filename $

saves the matrix part of a SAVE (.lpj) file in the indicated file. The following command

MATRIX ; Mget = filename $

restores a matrix algebra workspace while leaving the rest of the project unchanged. Recognizing
the ambiguity of the location of a file in Windows, remember that you can use Insert:File Path to
locate a matrix file. Also, though these look like project files, they have several layers of internal
protection which will prevent them from accidentally overwriting the rest of your project.
 You can clear all matrices out of the matrix work area with the command

 MATRIX ; Reset $

R16.4.2 Naming and Notational Conventions

 Every numeric entity in LIMDEP is a matrix, and you will rarely have to make a distinction
among them. For example, in the expression,

 MATRIX ; f = q ’ r $

q and r could be any mix of:

• variables,
• data matrices,
• computed matrices,
• named scalars,
• literal numbers, e.g., 2.345,
• the number (symbol) 1, which has special meaning in matrix multiplication.

The two entities must be conformable for the matrix multiplication, but there is no requirement that
two matrices be the same type of entity. (Usually, they will be.) For convenience, we will
sometimes make the following definitions:

• Variable names are vnames.
• Namelists are xnames.
• Computed matrices are mnames.
• Scalars are rnames.
• Numbers are scalars.

R16: Using Matrix Algebra R-408

At any time, you can examine the contents of the tables of these names in your project workspace,
just by clicking the particular name in your project window. Whenever you create an entity in any of
these tables, all of the others are checked for conflicts. For example, if you try to create a variable
named q, and there is already a matrix with that name, an error will occur.

NOTE: There are two reserved matrix names in LIMDEP. The matrix program reserves the names
b and varb for the results of estimation programs. These two names may not appear on the left hand
side of a matrix expression. They may appear on the right, however.

There are a few additional names which are read only some of the time. For example, after you use
the SURE command, sigma becomes a reserved name. Model output will indicate if a reserved
name has been created.
 In the descriptions of matrix operations to follow,

• xname is the name of a data matrix. This will usually be a namelist. However, most data
manipulation commands allow you merely to give a set of variable names instead.

• mname is the name of a computed matrix.
• s is a scalar. It may be a number or the name of a scalar which takes a value.
• A matrix has r rows and c columns.
• Matrices in matrix expressions are indicated with boldfaced uppercase letters.
• The transpose of matrix in a matrix algebra expression C is denoted C ′.
• The apostrophe, ’, also indicates transposition of a matrix in LIMDEP commands.
• The ordinary inverse of matrix C is denoted C-1.

 The result of a procedure that computes a matrix A is denoted a. Input matrices are c, d,
etc. In any procedure, if a already exists, it may appear on both sides of the equals sign with no
danger of ambiguity; all matrices are copied into internal work areas before the operation actually
takes place. Thus, for example, a command may replace a with its own transpose, inverse or
determinant. You can replace a matrix with some function of that matrix which has different
dimensions entirely. For example, you might replace the matrix named a with a′a or with a’s rank,
trace or determinant.
 Note in these definitions and in all that follows, we will make a distinction between a matrix
expression (in theory), such as F = (1/n)X′X, and the entities that you manipulate with your LIMDEP
commands, for example, ‘you have created f = x’x.’ There are thus three sets of symbols. We will
use bold upper case symbols in matrix algebra descriptions; we will use bold lower case symbols for
the parts of LIMDEP commands. We will use italic lower case symbols when we refer, outside
LIMDEP commands, to the names of matrices, variables, namelists and scalars you have created.
Consider, for example, the following: ‘The sample second moment matrix of the data matrix X is
F = (1/n)X′X. You can compute this by defining X with a command such as NAMELIST ; x =
one,age,income $, then using the command MATRIX ; f = 1/n*x’x $. After you execute this
command, you will see the matrix f in your project window listing of matrices. The namelist x will
also appear in the project window list of namelists.’ You might note, we have used this convention
at several points above.

R16: Using Matrix Algebra R-409

R16.4.3 Matrix Dimensions

 The dimensions of all matrices are stored and kept automatically and almost never have to be
given explicitly. A 1×1 matrix is usually not treated any differently from any other matrix when it is
the result of a procedure. For example,

 MATRIX ; detc = Dtrm(c) $

computes a 1×1 matrix which equals the determinant of C.
 A row vector is rarely the same as a column vector. LIMDEP will not let you add a 3×1
vector to a 1×3 vector. With only a few exceptions that are made explicit below, all matrices used in
all computations must be strictly conformable.

R16.4.4 Placing Matrix Results in Scalars

 Matrix operations may specify that the result should be placed in an existing scalar instead.
(See Chapter R17.) If the result is a 1×1 matrix, the result is placed in the indicated scalar. If the
result is a more general matrix, the (1,1) element of the result is placed in the scalar and the
remaining elements are lost. For example, suppose x is a five column data matrix. That is, x would
be defined with a NAMELIST command. Then

 CALC ; varx1 = 0 $ Must already exist to use as a matrix result
 MATRIX ; cov = Xvcm(x)
 ; varx1 = Xvcm(x) $

creates cov, a 5×5 covariance matrix, and places the variance of the first variable in varx1.
 You can also use an element of a matrix in any later computation just as if it were a scalar.
Consider the following example: The MATRIX command computes a K×K X′X matrix, then turns
it into a 1×1 matrix equal to its own determinant. The CALC command then computes the log of
this determinant by computing the log of the first (and only) element in xx.

 MATRIX ; xx = Dtrm(x’x) $
 CALC ; logdet = Log(xx) $

TIP: There are 86 user defined scalars available to you. But, in view of the preceding, you can
create up to 100 more by using 1×1 matrices. We will return to this issue in Chapter R17.

Note, as well, there are many functions that are common in econometrics provided to simplify
computations such as this. For example, the computation above is obtained with the simple
command, MATRIX ; logdet = Logd(x’x) $.

R16: Using Matrix Algebra R-410

R16.4.5 Compound Names for Matrices, Variables and Scalars

The names of matrices, variables and scalars may all be of the form aaaa:ssss where ssss is
the name of a scalar. The scalar must take an integer value from 00 to 99. The value is appended to
the name to make a variable with the compound name. This feature will be useful for looping in
procedures. For example:

CALC ; index = 1 $
PROCEDURE $
CREATE ; x : index = 1 / index $
ENDPROCEDURE $
EXECUTE ; index = 1,10 $

creates 10 variables, x1 = 1, x2 = 1/2, x3 = 1/3, x4 = 1/4, ..., x10 = 1/10. The Brant test for homogeneity
in an ordered logit model provides another example – in this program, both matrices and variables are
being given compound names. This extensive routine also illustrates many of the matrix computations
discussed in this chapter. The discussion surrounding the commands will show the usages.
 This is the Brant test for preference heterogeneity in an ordered logit model. The base model
has Prob[y=j]=F[m(j)-β′x] – F[m(j-1)- β′x] The test examines whether β is the same for all
outcomes. It is a Wald test of the hypothesis β(0) = β(1) =... when β is allowed to vary across
choices. Each β(j) is estimated by the binary choice model Prob[y > r] for r = 0,1,...,Max(y)-1. For
y = 0,1,2,3,4,5, there are five β vectors estimated, and the test then evaluates the J = 4 vector
equalities. This routine is completely self contained. It requires only that the x and y be set up at the
beginning. This procedure is limited to y taking values up to five. The pattern below shows how it
could be extended if necessary. Only changes to the CREATE and MATRIX commands are needed
to allow for more outcomes in the ordered choice model.
 These commands set up the Lhs variable y and Rhs namelist x. Here, we are generating artificial
data.
 SAMPLE ; 1-1000 $
 CALC ; Ran(12345) $
 CREATE ; y = Rnd(6) - 1 ; xa = Rnn(0,1) ; xb = Rnn(0,1) ; xc = Rnn(0,1) $
 NAMELIST ; x = xa,xb,xc $ x does not include a constant term.

The remainder of the program is generic and need not be changed by the user. These commands
compute some values and matrix templates that are used later in the program. Matrices i and mi are
an identity and negative of identity, z is a zero matrix; bt and d are empty here, and will be filled
during execution of the procedure.

 NAMELIST ; x1 = x,one $
 CALC ; k = Col(x) $
 CALC ; ymax = Max(y) ; y1 = ymax-1 ; kj = ymax*k ; k1j = y1*k $
 MATRIX ; i = Iden(k) ; z = Init(k,k,0) ; mi = -1*i $
 MATRIX ; bt = Init(kj,1,0) ; d = Init(k1j,kj,0) $

This procedure computes the individual logit equations. To reduce the number of commands, it
makes heavy use of compound names. Loop index y1 takes values 1,2,...,ymax. j = y1 - 1,
0,1,2,...ymax-1. The procedure is creating variables z0, z1, ... each equal to a binary variable that
equals one when y > j. It is creating coefficient vectors b0, b1, ... then injecting (stacking) them
in the large vector bt. Each LOGIT command creates a variable with fitted probabilities, p0,...
After each b:j is computed, a vector of derivatives, w0 = p0(1-p0), w1 = p1(1-p1),... is computed.

R16: Using Matrix Algebra R-411

We are creating matrices v0, v1,... as inverses of moment matrices. Finally, the large matrix d is a
partitioned matrix in which block row j contains i on the diagonal and -i at the end of the row.

 PROC = Logits $
 CALC ; j = y1-1 ; jy = j*k+1 ; jyk = jy+k $
 CREATE ; z:j = y > j $
 LOGIT ; Lhs = z:j ; Rhs = x1 ; Prob = p:j $
 MATRIX ; b:j = b(1:k) ; bt(jy) = b:j $
 CREATE ; w:j = p:j*(1-p:j) $
 CALC ; jy = Min(jy,((ymax-2)*k+1)) ; jyk = jy+k $
 MATRIX ; v:j = <x1'[w:j]x1> ; vt = v:j ; vt = Part(vt,1,k,1,k) ; v:j = vt $
 MATRIX ; d(jy,1) = i ; d(jy,jyk) = mi $
 ENDPROC $
 EXECUTE ; y1 = 1,ymax ; Silent $

Conditional CREATE commands compute derivatives for estimated models. These use the probabilities
computed by the LOGIT commands in the procedure. The commands are conditional. They only
compute the variables needed, depending on the number of outcomes in the ordered choice model

 CREATE ; If[j >= 1] | w01=p1-p0*p1 $
 CREATE ; If[j >= 2] | w02=p2-p0*p2 ; w12=p2-p1*p2 $
 CREATE ; If[j >= 3] | w03=p3-p0*p3 ; w13=p3-p1*p3 ; w23=p3-p2*p3 $
 CREATE ; If[j >= 4] | w04=p4-p0*p4 ; w14=p4-p1*p4
 ; w24=p4-p2*p4 ; w34=p4-p3*p4 $

These are the partitioned covariance matrices. V is a partitioned matrix. The number of blocks
depends on the number of outcomes in the choice model.

MATRIX ; If(j >= 1) | v01=x1'[w01]x1 ; v01=v01(1:k,1:k)
; v01=v0*v01*v1; v10=v01' $

MATRIX ; If(j >= 2) | v02=x1'[w02]x1 ; v02=v02(1:k,1:k)
; v02=v0*v02*v2; v20=v02'
; v12=x1'[w12]x1 ; v12=v1*v12*v2 ; v12=v12(1:k,1:k) ; v21=v12' $

MATRIX ; If(j >= 3) | v03=x1'[w03]x1 ; v03 = v03(1:k,1:k)
; v03=v0*v03*v3 ; v30=v03'
; v13=x1'[w13]x1; v13=v13(1:k,1:k) ; v13=v1*v13*v3; v31=v13'
; v23=x1'[w23]x1; v23=v23(1:k,1:k) ; v23=v2*v23*v3 ; v32=v23' $

MATRIX ; If(j >= 4) | v04=x1'[w04]x1 ; v04=v04(1:k,1:k)
; v04=v0*v04*v4; v40=v04'

 ; v14=x1'[w14]x1; v14=v14(1:k,1:k) ; v14=v1*v14*v4 ; v41=v14'
; v24=x1'[w24]x1; v24=v24(1:k,1:k) ; v24=v2*v24*v4 ; v42=v24'
; v34=x1'[w34]x1; v34=v34(1:k,1:k) ; v34=v3*v34*v4 ; v43=v34' $

 MATRIX ; If[j >= 1] | v0=v0(1:k,1:k) ; v1=v1(1:k,1:k) ; v=[v0,v01/v10,v1] $
MATRIX ; If[j >= 2] | v2=v2(1:k,1:k)

; v=[v0,v01,v02 / v10,v1,v12 / v20,v21,v2] $
MATRIX ; If[j >= 3] | v3 =v3(1:k,1:k)

; v=[v0,v01,v02,v03/v10,v1,v12,v13/v20,v21,v2,v23/v30,v31,v32,v3] $
MATRIX ; If[j >= 4] | v4 =v4(1:k,1:k)

; v=[v0,v01,v02,v03,v04/v10,v1,v12,v13,v14/
 v20,v21,v2,v23,v24/v30,v31,v32,v3,v34/v40,v41,v42,v43,v4] $

R16: Using Matrix Algebra R-412

Compute the Wald statistic.

 MATRIX ; db = d*bt ; dvd = d * v * d' $
 MATRIX ; List ; Brant = db' * <dvd> * db $
 CALC ; List; df = Col(dvd); Ctb(.95, (Col(v))) ; l = Chi(Brant,df) $

R16.5 Reading Matrices

 You can import matrices from other data sources for example from a spreadsheet program
such as Excel or as text in an ordinary data file.

R16.5.1 Importing a Matrix as a Data File

 Since a matrix of values looks the same as a data set, you can read one directly from a file or
from your screen. The command looks the same as that for reading data into variables in your data
area but the specifications are for a matrix instead. Thus,

 IMPORT ; Rows = the number of rows
 ; Cols = the number of columns
 ; Matrix = the name of the matrix you are reading $

You can create a new matrix in this way, or you can replace an existing one. If you replace a matrix,
the new dimensions can be different from the old one. An example appears below. The IMPORT
command imports the Longley data into the matrix longley.

IMPORT ; Rows = 16 ; Cols = 7 ; Matrix = Longley $
1947 83.0 234289 1590 60323 8256 38407
1948 88.5 259426 1456 61122 7960 39241
1949 88.2 258054 1616 60171 8017 37922
1950 89.5 284599 1650 61187 7497 39196
1951 96.2 328975 3099 63221 7048 41460
1952 98.1 346999 3594 63639 6792 42216
1953 99.0 365385 3547 64989 6555 43587
1954 100.0 363112 3350 63761 6495 42271
1955 101.2 397469 3048 66019 6718 43761
1956 104.6 419180 2857 67857 6572 45131
1957 108.4 442769 2798 68169 6222 45278
1958 110.8 444546 2637 66513 5844 43530
1959 112.6 482704 2552 68655 5836 45214
1960 114.2 502601 2514 69564 5723 45850
1961 115.7 518173 2572 69331 5463 45397
1962 116.9 554894 2827 70551 5190 46652

The two limits on the command are

• Rows × Cols must be less than or equal to 50,000.
• You may only read one matrix in an IMPORT command. To read more than one matrix,

just use a separate IMPORT command for each one.

R16: Using Matrix Algebra R-413

R16.5.2 Importing a Matrix as a Block of Cells from Excel

A block of cells in a spreadsheet program such as Excel may be transported directly into a
named matrix. Use the text editor as described above and the following steps:

1. Create a template IMPORT command. Put the IMPORT command in the text editor first.
2. Use edit/copy in Excel to copy the rectangular block of cells.
3. Use edit/paste in LIMDEP to put the cells in the editor below the IMPORT command.
4. Submit the command as usual by highlighting it and clicking GO.

Figure R16.9 shows an example. Note that the grid markers are transferred into the text editor with
the matrix. These will be ignored by the command processor when the data are imported.

Figure R16.9 Exporting a Matrix to LIMDEP from Excel

R16: Using Matrix Algebra R-414

R16.6 Matrix Expressions

 Most of the operations you do with matrices, particularly if you are constructing estimators,
will involve expressions, products, sums, and functions such as inverses. This section will show how
to arrange such mathematical expressions of matrices. We have used these procedures at many
points in our earlier discussion.
 As noted above, every numerical entity in LIMDEP is a matrix and may appear in a matrix
expression. There are very few functions that require data matrices. These will be noted below. The
algebraic operators are

 * for matrix multiplication,
 + for addition,
 - for subtraction,
 ’ (apostrophe) for transposition and also for transposition then multiplication,
 / for a type of division (see below),
 ^ for raising a matrix to a power (several forms, see below).

Thus, c*d equals C × D and c*Ginv(c) (or c*<c>) equals C times its inverse, or I, and c′*Ginv(c)*c
equals C′. As will be evident shortly, the apostrophe operator, (’) is a crucial part of this package.
 When scalars appear in matrix computations, they are treated as scalars for purposes of
computation, not as matrices. Thus, AsB′, where s is a scalar, is the same as sAB′. The 1×1 matrix
in the middle does not interfere with conformability; it produces scalar multiplication. 1×1 matrices
which are the result of matrix computations, such as quadratic forms, also become scalars for
purposes of matrix multiplication. Thus, in A′ * r’b*r * A will not require conformability of A’ and
r’ (number columns of A′ equal number of rows of r′) if the quadratic form r’Br is collected in one
term; also, A′*r′*B*r*A does require conformability, but the same expression could be written a′ *
r’[B]r * a to achieve greater efficiency. If r happens to be a variable, this may be essential. The
implications of these different forms will be presented in detail below.
 All syntaxes are available for any entity, so long as conformability is maintained where
appropriate. A and B are any matrix; w is any vector, row or column, including, if desired, a
variable; and, C is any matrix. (Once again, a matrix is any numeric entity – there is no need to
distinguish, e.g., variables from previously computed matrices.)
 Each result in the following table produces a result that, for later purposes, may be treated as
a single matrix.

 a’b = transpose of a times b
 a’[w]b = a’diag(w) b (Do not create diagonal matrices!)
 a’< w > b = a’[diag(w)]-1 b
 a’[c] b = a’ c b = bilinear form
 a’< c > b = a’ c -1 b c is any matrix.
 < a > = a -1
 [a] = G-2 inverse of a.
 < a’ b > = (a’ b)-1
 < a’[w] b > = (a’[w] b)-1
 < a’< w > b > = (a’< w > b)-1.

Table R11.1 Matrix Expressions

R16: Using Matrix Algebra R-415

In a matrix expression, the symbol ‘1’ can be used where needed to stand for a column of ones. Thus,

 1’a = a row of ones times matrix a
 a’1 = transpose of matrix a times a column of ones.

Note that in each of these cases, the apostrophe is an operator that connotes multiplication after
transposition.

NOTE: You should never need to compute a′ * b. Always use a′b. Thus, in the earlier example,
c′< c > c is better than c ′*Ginv(c)* c or c ′< c >* c.

These functions will be particularly important for using matrix algebra with large amounts of data.
Section R16.7 gives further details.
 In any matrix function list, you may use the transpose operator for transposition. For
example, two ways to obtain the sum of a matrix and its transpose are

 sum = a + a’ and sum = Msum(a, a’).

The transpose of a matrix may appear in an expression simply by writing it with a following
apostrophe. For example,

 a’c’c a could be computed with a’ * c’ * c * a

though a’ * c’c * a would be necessary if c were a data matrix.
 You may string together as many matrices in a product as desired. As in the example, the terms
may involve other matrices or functions of other matrices. For example, the following commands will
compute White’s heteroscedasticity corrected covariance matrix for the OLS coefficient vector.

 NAMELIST ; x = list of Rhs variables $
 REGRESS ; Lhs = y ; Rhs = x ; Res = e $
 CREATE ; esq = e^2 $
 MATRIX ; white = <x’x> * x’[esq]x * <x’x>

The CREATE command that computes the squared residuals is actually unnecessary. The last two
lines could be combined in

 MATRIX ; white = <x’x> * Bhhh(x,e) * <x’x> $

LIMDEP also provides a function to compute the center matrix for the Newey-West estimator;

Nwst(x,e,l) computes the Newey-West middle matrix for l lags. l = 0 => White.
 e is the vector of residuals, x is a namelist defining the set of variables.

 You may also multiply simple matrices that you enter directly. For example

55
42

53
31

 = [1 / 3,5] * [2,4 / 5,5].

R16: Using Matrix Algebra R-416

The multiplication operator sorts out scalars or 1×1 matrices in a product. Consider, for example,
V = A(r′Ar)-1A′. If r is a column vector, this is a matrix (AA′) divided by a quadratic form. To
compute this, you could use

 MATRIX ; v = a * <r’[a]r> * a’ $

The scanner will sort out scalars and multiply them appropriately into the product of matrices. But,
in all cases, matrices which are not 1×1 must be conformable for the multiplication. Thus, if r were
a matrix instead of a vector, it might not be possible to compute V.
 The ‘+’ operator is used to add matrices. Thus, to add the two matrices above instead of
multiply them, we could use

+

55
42

53
31

 = [1 / 3,5] + [2,4 / 5,5].

The matrix subtraction operator is ‘-.’ Thus, a - c gives A - C (of course).
 You may also combine the +, -, and * operators in a command. For example, the restricted
least squares estimator in a classical regression model, when the linear restrictions are Rb = q, is

 br = bu - (X′X)-1R′[R(X′X)-1R′]-1(Rbu - q).

This could be computed with

 NAMELIST ; x = list of variables $
 MATRIX ; bu = <x’x> * x’y
 ; r = ... ; rt = r’
 ; q = ...
 ; d = r * bu - q
 ; xxi = <x’x>
 ; br = bu - xxi * r’ * <rt’[xxi]r > * d $

(Why did we transpose r into rt then use rt’, which is just r, in the last expression? Because the
apostrophe operator is needed to produce the correct matrix multiplication inside the < > operation.
There are other ways to do this, but the one above is very convenient.) Notice in the preceding that
if there is only one constraint, r will be a row vector, and the quadratic form will be a scalar, not a
matrix.
 Any of the product arrangements shown in Table R16.1 may appear in any function or
expression as if it were already an existing matrix. For example, Root (< x’[w]x >) computes the
characteristic roots of [Σiwixix]-1. But, longer matrix expressions may not be grouped in parentheses,
nor may they appear as arguments in other matrix functions. Expressions which must be used in
later sums and differences or functions must be computed first. There will usually be other ways to
obtain the desired result compactly. For examples,

 d = Sinv(a + c) is invalid but can be computed with d = Nvsm(a,c),
 d = (a + c) * q is invalid but can be computed with d = Msum(a,c) * q,
and d = Ginv(a * q * r) is invalid, but can be computed with d = Iprd(a,q,r).

The functions Msum, Mdif, Nvsm, and Iprd may facilitate grouping matrices if necessary.

R16: Using Matrix Algebra R-417

R16.6.1 Scalar Multiplication of a Result – Using CALCULATE

 You can multiply the result you are obtaining by a scalar by using

 name = value * expression

For example, one way to create a 2×2 identity matrix would be i2 = Iden(2). Then,

 teni2 = 10 * Iden(2)

would create a multiple of the identity matrix.
 As with CALC and CREATE, the names n and pi are always interpreted as the current
sample and the number 3.14159..., respectively. Thus, you might compute n(X′X)-1 by using
n * <x’x>. A scalar multiple may be a number, a scalar value you have computed earlier, or an
element of an existing matrix, such as r(3,4), For example, after computing a regression, since ssqrd
is kept automatically,

 vb = ssqrd * <x’x>

would reproduce the calculation of varb done automatically by the regression. As a shortcut,
LIMDEP also allows simple scalar division of a matrix. The syntax can be of these forms

 name = 1 / value * expression or name = <value> * expression.

For example, the following three expressions are equivalent:

 a = .1 * Iden(5) = 1/10 * Iden(5) = <10> * Iden(5).

The method of obtaining more complicated scalar multiples is given below. Note from the list in
Table R16.1 that you can use <s> * A for 1/s * A since <s> implies inversion, then the 1×1 is
detected.
 You can issue a CALCULATE command from a MATRIX command if you enclose the
command in curled brackets. It might look like this:

 MATRIX ; {1 - 2 * Phi(1.96)} $

which does not save anything since dropping the brackets and changing MATRIX to CALC does
the same thing. However,

 MATRIX ; {p = 1 - 2 * Phi(1.96) ; s2 = sumsqdev/n } * <x’x> $

is convenient – it computes p, then s2 which is then used to compute the variance of the maximum
likelihood estimator of the coefficient vector in a regression model.

R16: Using Matrix Algebra R-418

 This gives the same result as giving this command with CALC, instead. You can put any
valid CALCULATE command in the brackets. It can be as complex as necessary, with
subcommands separated by semicolons. The advantage of this is that you can use the result as a
scalar multiple for a matrix result by preceding your MATRIX command with the CALCULATE
command. For example, the following computes n(2π)-1/2 times an (X′X)-1 matrix:

 {n/(Sqr(2*pi))} * Xpxi(one,age,exper).

It is also possible to keep the scalar result at the same time as the matrix result. For example, the
preceding could be modified to

 qxxi = {v = n/(Sqr(2*pi))} * Xpxi(one,age,exper).

The scalar v is calculated inside the curled brackets. When it is obtained, the matrix qxxi is
computed as v times the inverse of the X′X matrix This command computes a scalar and a matrix
result at the same time.
 If your CALC command has more than one subcommand and you use it for scalar
multiplication, the value sent back as the scalar in the curled brackets is the last value calculated.
For example, the following would compute the ‘teni2’ obtained above:

 {1 + 1 ; abc = 3 ; r = 10} * Iden(2)

R16.6.2 Adding the Same Scalar to Every Element of a Matrix

A common operation in econometrics is adding the same value to each element of a matrix.

Consider, for example, adding one to every element of matrix A. The general operation is done with

MATRIX ; a = [value] + a $

More generally, whenever a 1×1 matrix, or a scalar, is added to another matrix, the operation is taken
to mean that the scalar should be added to (or subtracted from) every element of the larger matrix.
Thus, all of the following are valid commands:

 a = [pi] + a
 a = b’<varb>b + a

(which adds the same quadratic form to every element of a),

 a = a + [1] q + [2]
and so on.

R16: Using Matrix Algebra R-419

R16.6.3 Raising a Matrix to a Power

There are several ways to raise a matrix to a power. Let A denote an r×c matrix, P denote a
q×s matrix, and d denote a scalar: The matrices A and P may be the names of existing matrices, or any
construction of a matrix that produces a matrix result, including functions. Thus, one possibility is

 result = Sqrt(<x’[w]x>) ^ 2 (which equals <x’[w]x>).

Matrix to Scalar Power

A ^ d raises the matrix to the d power. A must be the name of a square matrix. The
following cases are allowed:

1. d = 0 returns identity matrix for all A.

2. d = positive integer. Repeated multiplication.

3. d = negative integer. Same as (A-1)d. A must be nonsingular.

Thus, a^-2 is the same as Ginv(a)^2 and a^-1 is the same as Ginv(a), the ordinary
inverse.

4. d = positive real number. Returns the spectral decomposition,
Q = C Λd C’ where C is the matrix of columns of characteristic vectors and Λ is the
diagonal matrix of characteristic roots. A must be symmetric.

5. d = negative real number. Same as case 4 except that all roots must be positive.
I.e., A must be positive definite. This replaces the Sqrt function (now, result = a^.5) and
the Isqr function (now, result = a^-.5).

Matrix to Matrix Power

 A ^ P. A and P must have the same dimensions, but need not be square. Then, element by
element, this returns A(i,j) ^ P (i,j) = [A(i,j) ^ P(i,j)].

Scalar to Matrix Power

d ^ A. A is any matrix. Each element of the result is d raised to the power of the
corresponding element of A. Thus, the dimensions of the result are those of A.

Matrix to Scalar Power, Element by Element

A ! d raises each element of a to the d power. Note that this differs completely from

A ^ d. For example, the following is valid, if a bit farfetched:

CALC ; q = Log(Phi(1.2*rsqrd)) $
MATRIX ; v = <x’x> ! q $

R16: Using Matrix Algebra R-420

R16.6.4 Entering, Moving, and Rearranging Matrices

 To define a matrix, use

 MATRIX ; name = [... row 1 / ... row 2 ... / ...] $

Elements in a row are separated by commas while rows are separated by slashes. For example,

 MATRIX ; a = [1,2,3,4 / 4,3,2,1 / 0,0,0,0] $ creates a =

0000
1234
4321

.

To facilitate entry of matrices you can use these two arrangements:

 k | value = a K×1 column vector with all elements equal to value
 k_value = a 1×K row vector with all elements equal to value

Thus, in the last row above, 0,0,0,0 could be replaced with 4_0.
 Symmetric matrices may be entered in lower triangular form. For example,

 MATRIX ; a = [1 / 2 , 3 / 4 , 5 , 6] $ creates a =
1 2 4
2 3 5
4 5 6

.

 Matrix elements given in a list such as above may be scalars, or even other matrices and
vectors. For example, to compute the column vector, [γ′ , θ] = [(1/σ)β′,(1/σ)]′ after fitting a tobit
model, you could use

 TOBIT ; ... $
 CALC ; theta = 1/s $
 MATRIX ; gamma = theta * b ; gt = [gamma / theta] $

Note that the slash used here indicates stacking, not division, and that gt is a column vector.

Partitioned Matrices

 A partitioned matrix may be defined with submatrices. For example, suppose c1 is a 5×2
matrix and c2 is 5×4. The matrix c=[c1,c2] is a 5×6 matrix which can be defined with

 MATRIX ; c = [c1 , c2]

The two matrices must have the same number of rows. Matrices may also be stacked if they have
the same number of columns. For example:

R16: Using Matrix Algebra R-421

To obtain F =

2

1

C
C

 use f = [c1 / c2].

To obtain M =

2221

1211

MM
MM

 use m = [m11,m12 / m21,m22].

Symmetric matrices may be specified in lower triangular form. For example, suppose M were
symmetric, so that M21 = M12′. M could be constructed using

 m = [m11 / m21 , m22].

The application of the Brant test in Section R16.4.5 gives an extensive example that uses partitioned
matrices.

Block Diagonal Matrix

 Form a block diagonal matrix from scalars and/or square matrices with

 a = Blkd(c1, c2, …, ck).

Matrices c1,…,ck may be any mix of scalars and square matrices.

Matrices with Identical Elements

 If a matrix or vector has all elements identical, use a = Init(r,c,s). This initializes an r×c
matrix with every element equal to scalar, s. This is a way to define a matrix for later use by an
estimation program. Example 3 in Section R16.1 shows an application. This method can also be
used to initialize a row (r=1) or column (c=1) vector. Alternatively, you could use a = [c_s] for a
row vector or a = [r|s] for a column vector. The function Ones(r) returns an r×1 column vector of
ones.

Identity Matrices

 To define an r×r identity matrix, use a = Iden (number of rows). It may be useful to use a
scalar for the number of rows. For example, suppose that x is the name of a namelist of K variables
which will vary from application to application and you will require a to be a K×K identity matrix,
where K is the number of variables in x. You can use the following:

 CALC ; k = Col(x) $
 MATRIX ; ik = Iden(k) $

The notation I[r] produces the same matrix as Iden(r). To extract a specific row or column from an
identity matrix, use the functions

Iden(k,j) = the jth column of K×K identity matrix,
Iden(k,-j) = the jth row of the same matrix.

R16: Using Matrix Algebra R-422

Band Matrices

 Certain applications in time series analysis, for example the calculation of the approximations
to the distribution of the Durbin-Watson statistic, require a band matrix. This has zeros everywhere
except above and below the principal diagonal, which are ones. To create such a matrix, use

 a = Iden (- number of rows)

For example,

 Iden (-3) =

010
101
010

.

Also, i[-r] may be used for the band matrix with ones on the sub and super diagonal of an r×r
matrix. This is the same as Iden(-r).

Random Matrices

 The MATRIX command a = Rndm(list) can be used to draw matrices of random numbers
from the normal distribution. The following specifications may be used:

 Rndm(m) = m×1 random vector from standard normal,
 Rndm(r,m) = r×m random matrix from standard normal.

All elements are independent draws. You may also specify the mean vector and covariance matrix
for a draw of a random vector from the normal distribution:

 Rndm(mu) = r×1 random vector from normal distribution with mean mu and

 covariance matrix I. The matrix mu may be a row or column vector,
 and r is the number of elements in mu.

 Rndm(sigma) = r×1 random vector from multivariate normal distribution with mean
 vector 0 and covariance matrix sigma. The number of rows in sigma
 is r. You must provide a positive definite sigma matrix.

 Rndm(mu,sigma) = r×1 random vector from multivariate normal distribution with mean
 vector mu and covariance matrix sigma. The matrix mu must be the
 name of a row or column vector with r elements, and sigma must be the
 name of a square matrix with r rows.

Halton draws are discussed in Section R24.7. You can use CREATE to obtain columns of Halton
draws. MATRIX will create the set of Halton draws for the first K prime numbers in each row of a
matrix using the function Hltn.

Hltn(n,K) = n creates a matrix whose n rows are Halton draws. There are K
 columns using the first K primes for bases of the Halton sequences

R16: Using Matrix Algebra R-423

Nodes and Weights for Hermite and Laguerre Quadrature

 To obtain a display of the sets of nodes and weights used for Gaussian quadrature, you can
use the function

Quad(n,H) or Quad(n,L) to produce a listing of quadrature points, weights and nodes
 for n points, H = Hermite, L = Laguerre

The 20 point Hermite quadrature values are listed below.

Result | 1 2
--------+----------------------------
 1| -5.38748 .222939E-12
 2| -4.60368 .439934E-09
 3| -3.94476 .108607E-06
 4| -3.34785 .780256E-05
 5| -2.78881 .228339E-03
 6| -2.25497 .00324377
 7| -1.73854 .0248105
 8| -1.23408 .109017
 9| -.737474 .286676
 10| -.245341 .462244
 11| .245341 .462244
 12| .737474 .286676
 13| 1.23408 .109017
 14| 1.73854 .0248105
 15| 2.25497 .00324377
 16| 2.78881 .228339E-03
 17| 3.34785 .780256E-05
 18| 3.94476 .108607E-06
 19| 4.60368 .439934E-09
 20| 5.38748 .222939E-12

The Hermite quadrature weights and nodes can be accessed from the matrix and used to compute
integrals of the form

 2
1

exp() () ()
H

h hh
x f x dx weight f node

+∞

=−∞
− ≈ ∑∫

The weights appear in the first column and the nodes are given in the second. The counterparts for
Gauss-Laguerre quadrature are used when the limits of integration are (0,+∞) and the weighting
function is Exp(-x). Built in functions that automate these procedures may also be used in
MAXIMIZE/MINIMIZE. See Chapter E44.

Multivariate Normal Probabilities

 The matrix function Mvnp produces a column vector of probabilities from the multivariate
normal CDF. The syntax is Mvnp(x,w) where w is a J×J covariance matrix of the random vector.
The mean vector is assumed to be zero. x is either a matrix or a namelist of variables, either with J
columns. Each row is taken as the vector from the multivariate normal distribution. Thus, if x has K
rows, the result of Mvnp(x,w) is a K element column vector with kth element equal to the
multivariate normal CDF evaluated at w and the corresponding row of x. The function Mvnd(x,w)
returns the multivariate normal density, rather than the CDF.

R16: Using Matrix Algebra R-424

Editing a Matrix

 Replace an element in a matrix with

 matrixname (i) = value or matrixname (i, j) = value.

The display window for a matrix also allows you to edit the matrix. In the example in Section R16.2.2,
we noted that the (4,4) matrix in the matrix in the display window in Figure R16.10 should be

Figure R16.10 Matrix Editing Window

1.0. With the display on the screen, you can change a matrix just by changing the value in the cell in
the display. The change will be recorded in the matrix stored in memory. (The display is the actual
matrix, not a copy of it.)

Equating One Matrix to Another

 Use a = c to equate a to c. To equate a to the transpose of c, use a = c’. You would
typically use this operation to keep estimation results. After each model command, the estimated
parameter vector is placed in the read only matrix, b. Thus, to avoid losing your coefficient vector,
you must equate something to b.

Extracting Part of a Matrix

 To extract a submatrix from matrix c, use a = Part (c, r1, r2, c1, c2); a is the submatrix of c
consisting of rows r1-r2 and columns c1-c2. If c is a, this will discard some of the rows and
columns of A. If C is a vector, you may omit the superfluous pair of subscripts. Thus,

 a = Part (c, 1, 5)

extracts elements 1 through 5 of vector c. If c is a column vector, a will be also. If c is a row vector,
a will be a row vector.
 The Part function can be abbreviated as follows: If a is a row or column vector with K
elements, a (first : last) denotes the subvector of ‘length’ elements of a beginning with the ‘first.’
E.g., a(4:6) is elements 4, 5, and 6 of a. The result is always a column vector, even if a is a row
vector to begin with. This may be used wherever a set of values is desired, for example, in lists of
starting values, in initializing or extracting from matrices with the MATRIX command, lists of
limits for LDV models, etc. For a two dimensional matrix, you may use a (r1:r2, c1:c2) instead of
Part (c, r1, r2, c1, c2).

R16: Using Matrix Algebra R-425

To extract parts of rows or columns of a matrix, use

 name = vector (-j) = vector without element j
 name = matrix (-j,-m) = matrix without row j and column m
 name = matrix (j,-m) = row j without element m
 name = matrix (-j,m) = column m without element j

Injecting Vectors into Matrices

 The statement

 name (* , j) = vector

replaces column j of the matrix with the elements of the vector. The ‘*’ indicates ‘replace all rows in
column j.’ You may also replace a row with

 name (j , *) = vector.

Finally, to replace the diagonal elements of the matrix with the elements of the vector, use

 name (* , *) = vector.

The vector on the right may be a row or column; it is just treated as a string of numbers. Also, the
matrices on the left and right need not be conformable. For example, in the first case, if the vector
has more elements than there are rows in the matrix, then some elements of vector will be left over
and discarded. If, on the other hand, name has more rows than there are elements in vector, then the
column will only be partially replaced. The row replacement works the same way. For the third
construction, the matrix need not be square, and, once again, may have dimensions different from
vector. The replacement is done for the principal diagonal, (i,i) elements, until either there are no
more rows or columns in the matrix or until the entire vector has been moved. If name is a vector,
you may use J = 1 to overlay part of one vector with another. The row or column indicator may be
given in a scalar as well as a value. For example,

 MATRIX ; sampleb = Init(10,2,0) $
 PROC
 CREATE ; x = Rnn(0,1) ; y = x + Rnn(0,1) $
 REGRESS ; Lhs = y ; Rhs = one, x $
 MATRIX ; sampleb(i,*) = b $
 ENDPROC+
 EXECUTE ; Silent ; i = 1,10 $

This places 10 vectors of least squares slopes into the rows of matrix sampleb.

Inserting One Matrix into Another

 The construction

 LhsMatrix (i,j) = RhsMatrix

puts the Rhs matrix into the Lhs matrix with upper left corner of the Rhs matrix at location (i,j) of the
Lhs matrix. This may also be used to put vectors into vectors, or vectors into matrices (but not
matrices into vectors). Row and column dimensions are strictly enforced. The operation is ignored
if either dimension of the Rhs matrix would go past the corresponding boundary of the Lhs matrix.

R16: Using Matrix Algebra R-426

Redimensioning a Matrix

 The function

 a = Vctr(d)

makes r×c matrix d into 1×rc row vector a by running the rows in order into a vector. Specific forms
of this operation are
 a = Runc(d) equivalent to Vctr(d′)
 a = Stkc(d) equivalent to transpose of Vctr(d)
 a = Stkr(d) equivalent to transpose of Vctr(d′).

The reverse operation would be

 a = Mvec(d,r,c)

This takes any matrix which has r times c elements in any arrangement, and produces an r by c matrix.

Column Vector from Symmetric Matrix

 The function

 a = Vech(c)

of k×k symmetric matrix c returns k(k+1)/2 × 1 column vector a from the lower triangle of c. For
example,

1

1 4
4 .

4 9
9

a Vech

 = =

Diagonal Elements of a Matrix in a Vector

 The function

 a = Vecd(c)

creates column vector a from the diagonal elements of the matrix c.

Diagonal Matrix Created from a Vector

 The command

 a = Diag(c)

creates a square matrix a with diagonal elements equal to those of row or column vector c. If c is a
square matrix, the diagonal elements of a will be the same as those of c while the off diagonal
elements of a will be zero.

R16: Using Matrix Algebra R-427

R16.7 Using MATRIX Commands with Data

 LIMDEP’s matrix package is designed to allow you to manipulate large amounts of data
efficiently and conveniently. Applications involving up to three million observations on 150
variables are possible. With MATRIX, manipulation of a data matrix with 1,000,000 rows and 50
columns, which would normally take 400 megabytes of memory just to store, is not only feasible, but
no more complicated than it would be if the data set had only 100 rows instead! It is important for
you to be aware of how this is done in order to use this program successfully.
 The essential ingredient is the form in which matrix results generally appear in econometrics.
It is quite rare for an estimator or a procedure to be based upon ‘data matrices,’ per se. Rather, they
almost always use functions of those matrices, typically moments, i.e., sums of squares and cross
products. For example, an OLS estimator, b = (X′X)-1X′y, can be viewed as a function of X and y.
But, it is much more useful to view it as a function of X′X and X′y. The reason is that, regardless of
the number of observations in the data set, these matrices are K×K and K×1, and K is usually small.
LIMDEP uses this result to allow you to manipulate your data sets with matrix algebra results,
regardless of the number of observations. To underscore the point, consider that currently, most other
econometrics packages provide a means of using matrix algebra. But, to continue our example, in order
to do a computation such as that for b directly, some of them must physically move the data that
comprise X into an entity that will be the matrix, X. Thus X must be created, even though the data
used to make X are already in place, as part of the data set currently being analyzed. It is this step
which imposes the capacity constraints on some econometrics programs. Avoiding it allows LIMDEP
to manipulate data matrices of any length. The utility of this approach will be clear shortly.
 It is important to keep in mind the distinction between two kinds of matrices that you will be
manipulating. We define them as follows:

• Data matrices: A data matrix is a set of rows defined by observations and columns defined
by variables. The elements of the data matrix reside in your data area which is discussed in
Sections R2.8 and R3.4.

• Computed matrices: A computed matrix is the result of an operation that is based on data
matrices or other computed matrices. The elements of a computed matrix will reside in your
matrix work area, which is defined below.

The distinction is purely artificial, since, as will soon be evident, every numeric entity in LIMDEP is a
matrix. The important element is that the size of a data matrix is n×K where n is the current sample
size and K is a dimension that you will define. The size of a computed matrix is K×L where K and L
are numbers of variables, or some other small values that you will define with your commands.

R16.7.1 Data Matrices

 To use your data to compute matrices, you will usually define ‘data matrices.’ This amounts
to nothing more than labeling certain areas of the data array; you do not actually have to move data
around (whatever that might mean) to create a data matrix. For LIMDEP’s purposes, a data matrix is
any set of variables which you list. You can overlap the columns of data matrices in any way you
choose; data matrices may share columns. An example appears below. One useful shortcut which
can be used to ‘create’ a data matrix is simply to associate certain variables and observations with the
matrix name by using NAMELIST. The variables are defined with the NAMELIST command. The
rows or observations are defined by the current sample, with the SAMPLE, REJECT/INCLUDE,

R16: Using Matrix Algebra R-428

DRAW, and PERIOD commands. If you change the current sample, the rows of all existing data
matrices change with it. If you change the variables in a namelist, you redefine all matrices that are
based on that namelist.
 For example, suppose the data array consists of the following:

 YEAR CONS INVST GDP PRICES
 1995 1003 425 1821 124.5
 1996 1047 511 2072 139.2
 1997 1111 621 2341 154.7
 1998 1234 711 2782 177.6

Two data matrices, demand and alldata would be defined by the command

 NAMELIST ; demand = cons,invst,gnp
 ; alldata = year,cons,invst,gdp,prices $

Notice that these data matrices share three columns. In addition, any of the 31 possible subsets of
variables can be a data matrix, and all could exist simultaneously.
 The number of rows each data matrix has depends on the current sample. For example, to
have the matrices consist of the last three rows of the data, it is necessary only to define

 SAMPLE ; 2-4 $

You can vary the sample at any time to redefine the data matrices. For example, suppose it is desired
to base some computations on demand using all four years, and then compute other matrices using
alldata only for the last three years. The sequence might appear as follows:

 SAMPLE ; All $
 MATRIX commands using demand
 SAMPLE ; 2-4 $
 MATRIX commands using alldata

 The reason for the distinction between data and computed matrices is this: Consider the
computation of a matrix of weighted sums of squares and cross products

 F = (1/n)X′WX

where X is n×K with n being the sample size, and W is an n×n diagonal matrix of weights. Suppose
n were 10,000 and K were 20. In principle, just setting up X and W for this computation would
require at least 8(10000×20 + 10000×10000), or over 800 million bytes of memory, before
computation even begins! But, computations of this size are routine for LIMDEP, because

• F = (1/n)Σiwi xi xi′ where xi is a row of X, which is always only 20×20, and
• The data needed for the sum already exist in your data area.

That is, by treating this sort of computation as a summing operation, not as a formal matrix product,
we can achieve tremendous efficiencies. The important feature to exploit is that regardless of n, the
result will always be K×K.

R16: Using Matrix Algebra R-429

R16.7.2 Computations Involving Data Matrices

 You can manipulate any sized data matrix with MATRIX. There are two simple rules to
remember when using large samples:

• Ensure that in any expression, MATRIX ; name = result $, the target matrix (name) is not
of the order of a data matrix. That is, neither rows nor columns is n. This will be simple to
achieve, since the sorts of computations that you normally do will ensure this automatically.

• Ensure that when data matrices appear in an expression, they are either in the form of a
moment matrix, i.e., in a summing operation, or they appear in a function that does
summing.

Suppose that x and y are data matrices defined as above with 500,000 rows and 25 columns each
(i.e., they are very large). Any operation that uses x or y directly will quickly run into space
problems. For example,

 MATRIX ; z = x’ * y $

(the matrix product equal to the transpose of x times y) is problematic, since copies of both x’ and y
must be created. But, the apostrophe is a special operator, and

 MATRIX ; z = x’y $

can be computed because in this form LIMDEP knows that the operation is a sum of cross products,
and will be only 25×25. An alternative way to obtain the z above is

 MATRIX ; z = Xdot(x,y) $

The second rule above, then, amounts to this: When data matrices appear in matrix expressions, they
should always be in some variant of x’y, i.e., as an explicit sum, or in one of the special moment
functions listed in Section R16.9, such as Xdot. The apostrophe (’) is a special operator in this
setting. Although it can be used in multiplying any matrices, it is the device which allows you to
manipulate huge data matrices, as illustrated by the examples given at the beginning of this chapter.
All of them work equally well with small samples or huge ones. The commands are all independent
of the number of observations.
 Finally, consider the weighted sum above, F = (1/n)X′WX where there are 10,000
observations and 20 variables. Once again, the result is going to be 20×20. LIMDEP provides many
different ways to do this sort of computation. For this case, the best way to handle it is as follows:

 NAMELIST ; x = the list of 20 variables $
 SAMPLE ; ... set up the 10,000 observations $
 CREATE ; w = the weighting variable $
 MATRIX ; f = 1/n * x’[w]x $

This would work with 10 or 10,000,000 observations. The matrix f is always 20×20.

R16: Using Matrix Algebra R-430

 The following program transcript illustrates the manipulation of a moderately large data set.

--> RESET
--> LOAD;file="...healthcare.lpj"$
 Project file contained 27326 observations.
--> SAMPLE ; All $
--> NAMELIST ; x = one,age,educ,married$
--> CREATE ; y = married ; Weight = Exp(.23*female) $
--> MATRIX ; bw = <x'[weight]x> * x'[weight]income $
--> CREATE ; ew = y - x'bw $
--> MATRIX ; vw = {ew'ew/(n-col(x))} * <x'[weight]x> $
--> MATRIX ; Stat(bw,vw,x) $

Number of observations in current sample = 27326
Number of parameters computed here = 4
Number of degrees of freedom = 27322
--------+--
 | Standard Prob. 95% Confidence
 Matrix| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .04834*** .00676 7.15 .0000 .03509 .06158
 AGE| .27115D-04 .8686D-04 .31 .7549 -.14312D-03 .19735D-03
 EDUC| .02120*** .00042 50.28 .0000 .02038 .02203
 MARRIED| .08277*** .00227 36.47 .0000 .07832 .08721
--------+--
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx.
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The data set contains 27,326 observations. The matrix commands compute a weighted least squares
linear regression of y on x. In principle, the weighting matrix in square brackets is 27,327 × 27,326.
However, the data matrix, X, and two variables, y and weight, are already defined in the data area, so
the MATRIX commands do not reproduce the data. None of the matrices produced by the
MATRIX commands are larger than 4×4.

R16.8 Functions for Manipulating Matrices

 The preceding described how to operate the matrix algebra package. The examples in
Section R16.1 also showed some of the more common uses of MATRIX. This and the following
sections will now detail the specifics of LIMDEP’s matrix language. In addition to the basic
algebraic operations of addition, subtraction, and multiplication, LIMDEP provides nearly 100
different functions of matrices, most of which can, themselves, be manipulated algebraically. The
matrix functions can be combined with the algebraic operators to create matrix expressions. Some of
these, such as Nvsm(.) are used to combine algebraic results, while others, such as Root(.) are
specialized functions that produce complex transformations of matrices. Any of the constructions in
Table R16.1 can be used as a standalone matrix. For example, to obtain the determinant of (X′WX)-1,
where W is a diagonal weighting matrix, you can use Dtrm(<x’[w]x>). Likewise, several such
constructions can appear in functions with more than one input matrix. This should allow you to
reduce some extremely complex computations to very short expressions.

R16: Using Matrix Algebra R-431

R16.8.1 Functions of One Matrix

Square Roots

 a = Sqrt(c) - AA = A2 = C, same as A ^ .5,
 a = Isqr(c) - AA = A2 = C-1, same as A ^ -.5,
 a = Orth(c) - A = C × Isqr(C′C) (orthonormalizes C, A’A = I),
 a = Proj(c) - A = C(C′C)-1C′.

Characteristic Roots and Vectors

 a = Cvec(c) - characteristic vectors.

If C is a K×K matrix, A has K columns. The kth column is the characteristic vector which
corresponds to the kth largest characteristic root, ordered large to small. C must be a symmetric
matrix. If not, only the lower triangle will be used.

 a = Root(c) - characteristic roots of a symmetric matrix.

For symmetric matrix C, A will be a column vector containing the characteristic roots ordered in
descending order. For nonsymmetric matrices, use

 a = Cxrt(c) - possibly complex characteristic roots of asymmetric matrix.

The characteristic roots of a nonsymmetric matrix may include complex pairs. The result of this
function is a K×2 matrix. The first column contains the real part. The corresponding element of the
second column will be the imaginary part, or zero if the root is real. The roots are ordered in
descending order by their moduli.
 You can use Cxrt to obtain the dominant root for a dynamic system. Then, the modulus can
be obtained with CALC. Let C be the relevant submatrix of the structural coefficient matrix in the
autoregressive form. Then,

 MATRIX ; rt = Cxrt(C) $
 CALC ; check = rt(1,1)^2 + rt(1,2)^2 $

Cxrt(c) gives the same results as Root(c) if C is a symmetric matrix. But, if C is nonsymmetric, Root(c)
gives the wrong answer because it assumes that C is symmetric, and uses only the lower triangle.
 It is always possible to obtain the roots of a symmetric matrix. But, certain nonsymmetric
matrices may not be decomposable. If this occurs, an error message results.
 The Root function can also be used to find the possibly complex roots of a dynamic
equation. If C is a vector of elements [c1 ,c2 ,...,cQ] instead of a symmetric matrix, then A = Root(c)
reports in a K×2 matrix the reciprocals of the characteristic roots of the matrix

 C =

0100

010
0001

321

 Qcccc

R16: Using Matrix Algebra R-432

These are the roots of the characteristic equation, 1 - c1 z - c2 z2 - ... - cQ zQ = 0, of the dynamic equation

 yt = c1 yt-1 + c2 yt-2 + ... + cQ yt-Q + other terms.

The dominant root of the system is the largest reciprocal reported. If its modulus is larger than one,
the equation is unstable.

Cholesky Decomposition

 A positive definite matrix, C, can be factored into the outer product of a lower triangular
matrix, L. I.e., C = LL′. The function

 a = Chol(c) - lower triangular matrix of Cholesky decomposition

returns the matrix L. An alternative representation is A = L*DL*′, where D is the diagonal matrix of
Cholesky values. The elements of D are the squares of the diagonal elements in L, so,

 L = L* × D1/2

To extract D and L* from L you could use

 MATRIX ; l = Chol(a) ; d = Diag(l) * Diag(l) ; ls = l * Isqr(d) $

Singular Value Decomposition

 An m×K matrix C for which m > K may be reduced to its singular value decomposition

 C = U × D × V′

where U is m×m with U′U = I, V is K×K with V′V = I, and D is a diagonal matrix containing the
singular values of C. Among its other virtues, the singular value decomposition is useful for
accurate and fast inversion, as (C′C)-1 = V*(D’D)-1 *V′. Use the function

 a = Svdx(c) - singular value decomposition, partitioned as

V
D

to obtain this decomposition. This function returns a 2K×K matrix. The first K rows contain V while
the second K rows contain the diagonal matrix, D. The leading matrix, U, is not returned. (The matrix
U is m×m. If you are decomposing a data matrix with, say, 10,000 rows, U would be 10,000×10,000. U
is generally not needed in subsequent computations; the useful information about the moments of the
data matrix will be contained in V and D.) This function also returns a scalar named svd_rank which
contains column rank of C. The rank is simply the number of nonzero singular values.

Element By Element Transformations

 a = Loge(c) - element by element natural log,
 a = Expn(c) - element by element exponent,
 a = Diri(c) - direct inverse = element by element reciprocal,
 a = Esqr(c) - element by element square root,

a = Sign(c) - gives matrix of signs of the elements of C, -1,0,1 for -,0,+.

These functions return zero for elements for which they cannot be computed.

R16: Using Matrix Algebra R-433

 The matrix power functions listed earlier can also be used to transform matrices element by
element. In particular,

 a = c ! q - element of C raised to the q power.
 a = c ^ d - if C and D have the same dimensions, Aij = Cij ^ Dij.

Inverse Matrices

 LIMDEP computes three types of inverse matrices. For a nonsingular and not necessarily
symmetric matrix, C, you can use

 a = Ginv(c) - A = C-1.

The inverse of a matrix may also be written in the form a = c^-1. The method used is pivoting and
row reduction. If the matrix to be inverted is symmetric and positive definite, a faster procedure
which uses the Cholesky decomposition is

 a = Sinv(c) - A = C-1.

Use this for regression problems and inversion of moment matrices. If the matrix to be inverted is
symmetric but short ranked, two types of generalized inverses are available. Let C be the matrix to
be inverted. A G-2 inverse is the A such that

 A = ACA and C = CAC.

For this matrix, you can use

 a = G2nv(c) - G2 inverse of square matrix

The Moore-Penrose inverse is a G-2 inverse which also satisfies the requirement that ACA and CAC
be symmetric. To compute it, use

 a = Mpnv(c) - Moore-Penrose inverse

The Moore-Penrose inverse is computed as

 Mpnv(c) = Σi(1/λi)cici′

where λi is a nonzero characteristic root of C and ci is the associated characteristic vector.
 Two additional functions are provided for inverting sums and products. The matrix function
Nvsm gives the inverse of the sum of the matrices in the list in parentheses. Thus,

 ; Nvsm(x1, x2, a, q) = (X1+X2+A+Q)-1.
and ; Nvsm(<x’x>, <y’[z]y>) = [(X′X)-1 + (Y′WY)-1]-1.

Matrices in the sum may also carry minus signs. Thus,

 ; Nvsm(x1, x2, -a) = (X1 + X2 – A)-1.

An inverse of a product of matrices is computed with

 ; Iprd(c1, c2, ...) = (C1 × C2...)-1.

R16: Using Matrix Algebra R-434

The computation of the restricted least squares estimator in Example 2 in Section R11.1 gives an
example in which

 ; Iprd(r, <x’x>, r’) = [R(X′X)-1R′]-1.

Scalar Functions

 The following always result in a 1×1 matrix:

 a = Dtrm(c) - determinant of square matrix,
 a = Logd(c) - log-determinant of positive definite matrix,
 a = Trce(c) - trace of square matrix,
 a = Norm(c) - Euclidean norm of vector C,
 a = Norm(c) - norm of matrix C = square root of trace of C′C,
 a = 2nrm(c) - 2 norm of matrix C = largest singular value of C,
 a = Rank(c) - rank of any matrix.

The rank is computed as the number of nonzero characteristic roots of C’C. To find the rank of a
data matrix X (i.e. several columns of data in a namelist, X), you could use

 c = Rank(x).

However, this may not be reliable if the variables are of different scales and there are many
variables. You should use, instead,

 MATRIX ; C = Diag(X’X) ; C = Isqr(C) * X’X * Isqr(C) ; Rank(C) $

R16.8.2 Functions of Two or More Matrices

 a = Kron(c, d) - A = C ⊗D (Kronecker product)
 a = Dirp(c, d, ...) - A = [Cij Dij ...] (direct product).

The direct product, or Hadamard product, A, of two matrices C and D is Aij = CijDij. C and D may
be the same matrix. You may multiply any number of matrices with this command. All must have
the same dimensions. For example, c = Dirp(c,c,c,c) replaces each element of C with its own fourth
power.

 a = Qrow(c, d) - column vector of quadratic forms.

The Qrow function returns a column vector. C and D are conformable matrices for the product
A = CDC’. Qrow returns the diagonal elements of a in a column vector. Each element is the
corresponding quadratic form of the row in C and the matrix D.

 a = Msum(c, d, ...) - matrix sum (same as C + D ...),
 a = Mdif(c, d) - matrix difference, C - D.

Msum and Mdif may be used to group matrices in a sum or difference for multiplication. I.e., c *
(d+e) * c is not valid, but c * Msum(d,e) * c is, and would be equivalent.

R16: Using Matrix Algebra R-435

R16.9 Sums of Observations

 There is no obstacle to computing a matrix X′X, even if X has 1,000,000 rows, so long as the
number of columns in X is not more than 225. The essential ingredient is that X′X is not treated as
the product of a K×n and an n×K matrix, it is accumulated as a sum of K×K matrices. By this device,
the number of rows, n, is immaterial (except, perhaps, for its relevance to how long the computation
will take). Matrix operations that involve C′AC or C′A-1C are, as in all cases, limited to 50,000
cells. But, suppose that C is 5,000×2 and A is a diagonal matrix. Then, the result is only 2×2, but
apparently it cannot be computed because A requires 25,000,000 cells. But, in fact, only 5,000 cells
of A are needed, those on the principal diagonal. LIMDEP allows you to do this computation by
providing a vector (in this case, 5,000×1) instead of a matrix, for a quadratic form. Thus, in c’[a]c, if
a is a column or row vector, LIMDEP will expand (at least in principle) the diagonal matrix and
compute the quadratic form C′AC as if A were Diag(a). This result will be crucial when C is a data
matrix, X, which may have tens or hundreds of thousands of rows. The second aspect of the
computation of matrices that involve your data is that once the data are in place in the data area, in
fact, there is no need to create A or Diag(a) at all. The data are just used in place; you need only use
variables and namelists by name.
 Invariably, when you manipulate data matrices directly in matrix algebra expressions, you
will be computing sums of squares and/or cross products, perhaps weighted, but in any event, of
order K×K. The simple approach that will allow you to do so is to ensure that when xnames and
vnames (namelists and variables) appear in matrix expressions, they appear in one of the following
constructions, where x and y are namelists of variables and w is a variable: Some data summation
functions are listed in Table 17.2.

x’x = the usual moment matrix.
x’y = cross moments.
x’[w] x = X’diag(w)X, weighted sums. w is a variable. Or, X’[w]Y.
x’<w> x = X’[diag(w)]-1X, weighted by reciprocals of weights.
< x’ x > = (X’X)-1, inverse of moment matrix.
< x’y> = (X’Y)-1, inverse of cross moments, if it exists .
< x’[w] x > = (X’[w]X)-1, inverse of weighted moments. Or <X’[w]Y>.
< x’<w> x > = (X’<w>X)-1, inverse, weighted by reciprocals of weights.

Table R16.2 Sums of Observations in Matrix Functions

Again, the use of the apostrophe operator here is important in that it sets up the summing operation
that allows you to use large matrices. That is, while logically x’ * y is the same as x’y for LIMDEP’s
purposes, they are very different operations. The left hand side requires that copies of x and y be
made in memory, while the right hand side requires only that the sum of cross products be
accumulated in memory.

TIP: All sample moments are computed for the currently defined sample. If the current sample
includes variables with missing data, you should make sure the SKIP switch is turned on. Missing
values in a matrix sum are treated as valid data, and can distort your results. If you precede the
MATRIX command(s) with SKIP, then in summing operations, observations with missing values
will be ignored.

R16: Using Matrix Algebra R-436

 To illustrate, the following extends Example 1 from Section R16.1 to constrained weighted
least squares. The matrix x is the namelist of right hand side variables, y is the name of the left hand
side variable, and w is a variable which contains the weights (variances). (Note, 1/wi appears in the
summations.)

 MATRIX ; xwxi = <x’<w>x>
 ; bu = xwxi * x’<w>y
 ; d = r * bu - q
 ; h = Iprd(r,xwxi,r’)
 ; br = bu - xwxi * r’ * h * d $
 CREATE ; u = y - x’br $
 CALC ; df = n - Col(x) + Row(r) $
 MATRIX ; s2 = 1/df * u’<w>u
 ; vr = s2 * xwxi - s2 * xwxi * r’ * h * r * xwxi $

 The operations described here for manipulating data matrices are logically no different from
other matrix operations already described. That is, in your expressions, there is no real need to
distinguish data manipulations from operations involving computed matrices. The purpose of this
section is to highlight some special cases and useful shortcuts.

Sums, Means, and Weighted Sums of Observations and Subsamples

 To sum the rows of a data matrix, use

 ; name = x’1 or x’one

The symbol, 1 is allowable in this context to stand for a column of ones of length n. This returns a
K×1 column vector whose kth element is the sum of the n observations for the kth variable in x. To
obtain a row vector instead, use

 ; name = 1’x or one’x

Do note, in most applications, this distinction between row and column vectors will be significant.
You can obtain a sample mean vector with

 ; name = 1/n * x’1

A matrix function, Mean, is also provided for obtaining sample means, so

 ; Mean(x) = 1/n * x’1

Note that the Mean function always returns a column vector of means, so if you want a row, you
must transpose the column after using the function. (1/n*1’x may be more convenient.) The Mean
function provides one advantage over the direct approach. You can use Mean with a list of variables
without defining a namelist. Thus, to obtain the means of z,x,w,log(k), f21, you could use

 ; name = Mean(z, x, w, Log(k), f21).

R16: Using Matrix Algebra R-437

To obtain a weighted mean, you can use

 ; name = <1’w> * x’w

where w is the weighting variable. Note that this premultiplies by the reciprocal of the sum of the
weights. If the weights sum to the sample size, then you can use 1/n or <n> instead of <1’w>. A
related usage of this is the mean of a subsample. To obtain a mean for a subsample of observations,
you will need a binary variable that equals one for the observations you want to select and zero
otherwise. Call this variable d. Then,

 ; name = <1’d> * x’d

will compute the desired mean. The Mean function also allows weights, so you can use Mean(x,w)
or Mean(x,d). In order to use this construction, the parameters of the Mean function must be a
namelist followed by a variable.

Covariances, Correlations, and Standard Deviations

 You can use the formulas for variances directly to obtain covariance matrices, but the functions,

 Xvcm(x) - covariance matrix for X
 Xcor(x) - correlation matrix for X
and Ktau(list of variables) - Kendall’s tau matrix form

will probably be simpler. Each of these may be weighted in the same fashion as the Mean function.
I.e., Xvcm(x,w) and Xcor(x,w) compute the covariances and correlations with a weighting variable.
As before, w can be replaced with a subsampling indicator (binary variable), d.
 Another construction allows you to obtain covariances and correlations for two sets of variables:

 Xvcm(x,y) - cross covariance for X and Y
 Xcor(x,y) - cross correlation for X and Y.

Note that Xvcm(x,y)ij = Cov(xi,yj) and likewise for the correlations. That is, the first namelist defines
the row variables in the matrix and the second defines the columns.
 A vector of standard deviations is requested with

 Sdev(x) - column vector of standard deviations of variables in namelist.

You may also provide weights in Sdev(x,w). For extracting correlations or standard deviations from
a covariance matrix, use

Mcor(v) - converts a covariance matrix V to a correlation matrix.
Msdv(v) - creates a diagonal matrix with standard deviations on the diagonal.
Vsdv(v) - extracts a column vector of standard deviations from covariance matrix

 V by arraying in the vector the square roots of the diagonal elements
 of matrix V.

Mdcr(x) - computes the matrix of correlations from a data matrix defined by a
 namelist x.
Mdvc(x) - computes the matrix of covariances from a data matrix defined by a
 namelist x.

R16: Using Matrix Algebra R-438

The Mdcr and Mdvc functions may also compute cross correlations and covariances for two lists of
variables by using (x,y) where y is a second namelist.

Sums of Squares and Cross Products

 Matrices of the form X′X are obtained directly, as x’x = Σixixi′ and x’[w]x = Σiwixixi′. All of
the other constructions involving inversion, <x’x>, weighting by reciprocals, and so on, apply here.
These were listed in Table R11.2. As in the previous cases, the weighting variable may be a binary
indicator for a subsample.
 For using a list of variables that is not collected in a namelist, you can use the Xdot function.
Thus,

 ; Xdot(x) = x’x

and so on for the weighted variants. But, suppose the data set consists of variables x1,x2,x3. Then,

 ; Xdot(x*) = Xdot(x1,x2,x3) = x’x

might also be used (if there were no other variables). In addition, xx = Xdot(*) would be the same
as xx = Xdot(one,x1,x2,x3). Some other possibilities would be

 ; xxlogs = Xdot(Log(x1), Log(x2), Log(x3)) $
and ; auto = Xdot(x1,x1[-1], x1[-2], x1[-3]) $

Note that, as earlier, in this format, you cannot use a weighting scheme, as there is no way to
distinguish a weighting variable from simply the last variable in the list. Some additional functions
that may be used are

 Xpxi(...) - (X’X)-1

 Xcpm(...) - 1/n X’X
 Xcpi(...) - n (X’X)-1

These functions would be useful for computing the moment matrices for a list of variables, but the
direct formula, e.g., <x’x>, will be preferable for a namelist.
 Some additional formats may also be specified. To obtain cross moment matrices, any of the
preceding may be specified with a pair of namelists instead and/or a weighting variable. Thus,

 A = Xdot(x,y,w) = x’[w]y = Σiwixiyi′,

where column vector xi is the transpose of row i of X and, as usual, the first namelist defines the row
variable.

R16: Using Matrix Algebra R-439

Sums of Squares and Cross Products of Deviations

 Use the shorthands

 x’[1]x =

with matrix X defined by the namelist x, and similarly for x’[1]y for namelist or variable y.

Outer Product Matrices

 Expressions for asymptotic covariance matrices are often of the form A = Σizi

2xixi′. This is
the usual format for the BHHH estimator. To obtain A, you can use

 CREATE ; z2 = z^2 $
 MATRIX ; a = x’[z2]x $

A function that makes the CREATE command unnecessary is

 a = Bhhh(x, z).

For partitioned matrices such as

 A =

∑∑
∑∑

==

==
n
i iii

n
i iiii

n
i iiii

n
i iii

wzw

wzz

1
2

1

11
2

''

''

yyxy

yxxx
,

you can use the function

a = Bhhh(x, y, z, w).

where x and y are namelists and z and w are the weighting variables, to obtain the result without
constructing the parts separately.
 This form of moment matrix arises frequently in index function models. For example, for
the probit model, the vector of first derivatives of the log likelihood for the ith observation is

 gi = zixi where zi = qiφ(β′xi)/ Φ(qiβ′xi) and qi = 2yi - 1.

Thus, the BHHH, or OPG estimator of the asymptotic covariance matrix for the MLE of β is of the
form above. Indeed, if the estimate of β is in hand, the OPG estimator could be easily found as
follows:

 CREATE ; z = Lmd((b’x),(1-y)) $
 MATRIX ; opg = Bhhh(x,z) $

(Note the necessary sign switch in the Lmd function to obtain the derivatives.)

1
()()

n
i ii=

′− −∑ x x x x

R16: Using Matrix Algebra R-440

Least Squares Computations

 To obtain a matrix or vector of least squares regression coefficients, you can use

 ; bols = <x’x> * x’y.

y can be a single variable, in which case this produces a column vector of regression coefficients, or
y can be a namelist to produce a matrix of coefficients whose jth column is the coefficients in the
regression of the jth column of y on all of the columns of x. Weights for weighted least squares are
provided in the usual fashion;

 ; bwls = <x’[w]x> * x’[w]y

and subsamples may be drawn as well with binary variables.
 The function Xlsq(x,y) or Xlsq(x,y,w) can be used for the same computations. If a list of
variable names is given in

 ; bls = Xlsq(list)

the last variable name is taken to be the ‘y’ in a least squares regression. With this construction, it is
not possible to use weights.
 The sum of squares and cross products of the residuals in a regression of y on X is

 e′e = y′y - y′X(X′X)-1X′y.

You can obtain this with

 ; ee = y’y - y’x * <x’x> * x’y.

But it will be simpler to use the function

 Rcpm(x,y) = y′y - y′X(X′X)-1X′y.

To save a step in some analyses, you can invert this matrix with

 Rcpi(x,y) = (y′y - y′X(X′X)-1X′y) -1.

 Certain specification tests in econometrics require a matrix of the form Rcpm or Rcpi using
weights of the form given in the Bhhh function above. To use this form of weighting in these
functions, use Rcpm(x,y,z,w) or Rcpi(x,y,z,w). Note, again, with this form, the weights are squares or
cross products of zi and wi.

R16: Using Matrix Algebra R-441

 The condition number of a data matrix, X, is the square root of the ratio of the largest to
smallest characteristic root of the scaled moment matrix, [diag(X′X)]-1/2 X′X [diag(X′X)]-1/2. Use the
function

Cnum(x) - the condition number for data matrix x defined by a namelist.

The 2-norm of a data matrix is the largest singular value, which can be computed using

 2nrm(x) - largest singular value of matrix x.

Least Absolute Deviations

 The matrix function

Ladb(x,y) - median regression (least absolute deviations) estimator,

where x is a namelist and y is a variable, produces the least absolute deviations coefficient vector.
You can also obtain the coefficient vector for a different quantile with the QREG model command.

Heteroscedasticity and Autocorrelation Robust Covariance Matrices

 The following commands will compute White’s heteroscedasticity corrected covariance
matrix for the OLS coefficient vector.

 NAMELIST ; x = list of Rhs variables $
 REGRESS ; Lhs = y ; Rhs = x ; Res = e $
 CREATE ; esq = e^2 $
 MATRIX ; white = <x’x> * x’[esq]x * <x’x> $

The CREATE command that computes the squared residuals is actually unnecessary. The last two
lines could be combined in

 MATRIX ; white = <x’x> * Bhhh(x,e) * <x’x> $

There is a single function that combines both of these.

 Nwst(x,e,l) computes the Newey-West middle matrix for l lags; e is the vector of
 least squares residuals and x is a namelist defining the set of variables.

Setting l equal to zero gives the White estimator. Thus, combining results, we have, for the White
estimator,

 MATRIX ; white = <x’x> * Nwst(x, e, 0) * <x’x> $

while the Newey-West estimator for, say, 10 lags is

 MATRIX ; neweywst = <x’x> * Nwst(x, e, 10) * <x’x> $

R16: Using Matrix Algebra R-442

R16.10 Matrix Commands that Transform the Data

 The preceding discussion has detailed matrix operations that are functions of other matrices
and of the data in the data area. None of the operations described so far actually change your data in
any way. Some operations on the data themselves are much more convenient with matrix algebra
than, for example, with CREATE commands. The following functions modify the raw data – do
note, these changes are permanent.

R16.10.1 Linear Transformations of Variables

 The following functions replace x with a transformation of x, where x is a namelist that
defines a data matrix. In each case, the original data are lost. If you wish to retain them, it is
necessary to create copies of the variables in x. To use a column of ones in any of these, it is
necessary to create one. Thus, x must be defined by a NAMELIST command, and may not contain
the variable one.

 x = Xmlt(s) - scalar multiplication of the data matrix.

Every item in the data matrix is multiplied by the scalar, s, either a number, a scalar, or a matrix
element.

 x = Xmlt(c) - linear combination of the variables

In this function, c is a square matrix with the same number of columns as x. Each variable in x is
replaced with the linear combination of all of the columns of x defined by the corresponding column
of c.

 x = Xmlt(v) - rowwise multiplication by variable v.

This multiplies all variables in a row by a variable in the row. Each variable in x is multiplied by the
corresponding observation of the variable v. The variable v should not be in x. Note that this is the
same as the CREATE function Scl(x,v) except that Xmlt(v) does not create a new namelist.

 x = Indx(y,c) - linear function of a data matrix.

Here, y is another data matrix; c is a matrix with the same number of columns as x and number of
rows equal to the number of columns in y. Each column of x is replaced by the linear combination of
the variables in y defined by the corresponding column of c. The namelists x and y must already be
defined as namelists. If y and x have variables in common, this will produce unpredictable (and no
doubt, undesirable) results.
 In general, no parameter list is required for the following functions. Each operation is
controlled by the currently defined sample. As before, x must be defined by a NAMELIST
command. In the function,

 ; x = Xstd

R16: Using Matrix Algebra R-443

the columns of x are standardized by subtracting the column mean, then dividing by the standard
deviation.
 ; x = Xdev

The columns of x are centered by subtracting the column mean, but are not rescaled.

 ; x = Xorn

The columns of x are orthonormalized. The data matrix, x, is replaced by x* = X(X′X)1/2. Finally,

 ; x = Pcom

The columns of x are replaced by the principal components of X, ordered by their contribution to the
total variation in x (the trace of X′X). The linear transformations are the characteristic vectors of
X′X, normalized to unit length.
 Keep in mind when using these functions that the variables only appear once in the data
array. When you change them, you change all data matrices which contain these variables. A
MATRIX command which operates on the data affects (or uses) only those observations included in
the current sample. Thus, for example, if you were to use a subset of your observations to compute
some principal components, the unused rows would be unchanged after the computation.

R16.10.2 Moving a Matrix into the Data Area

 It should never be necessary to move data from your data area to your matrix workspace –
data matrices are already manipulable as if they were computed matrices. But, the reverse move
might be useful. For example, after you compute a fixed effects regression using panel data, the
estimated fixed effects are stored in a matrix named alphafe. You might be interested in regressing
alphafe on a set of variables, or computing a set of descriptive statistics for some other purposes. In
order to do so, you will have to be able to access alphafe as if it were a variable. A means of doing
so is to use a simple CREATE command,

 CREATE ; x = alpha $

(This operation must be the only one done with this CREATE command. I.e., CREATE ; w = 1 ; x
= m $ is invalid.) That is, you simply equate the namelist to the matrix.
 The operation proceeds as follows: Suppose x has K columns (i.e., the namelist defining x
has K variables) However, K may be one and x may be the name of a variable. The current sample
has n observations, so n is the number of rows in x. Let a be any P×Q matrix in the matrix work
area. The command moves as many rows and columns of a into x as possible, starting at the top of
the sample and at the left in the list of variables. Note that the rows are as defined by the current
sample, whatever that may be. If x is a variable name and a is a matrix, elements of x are replaced
by the first column of a. If a is a row vector, it has only one row. A matrix is not transposed by a
copy. Thus, you cannot move a row vector into a column of your data array; you must create the
column vector first by transposing the matrix to be copied.

R16: Using Matrix Algebra R-444

R16.11 MATRIX Commands for Panel Data

 There are numerous transformations and matrix manipulations that are specifically written
for panel data. Chapter R5 described some of these. This section will provide further detail on some
matrix functions that can be used to manipulate panels. For most of this, you will require either a
‘stratification’ variable that identifies groups in a panel with their own code or group number or
identification, or a ‘group count’ variable such as generally used in ; Pds in the various model
commands.
 There are two sets of procedures provided for manipulating panel data. A number of matrix
functions are provided for computing group aggregates in panel data sets. For example, with a panel
data set with, say, 1,000 individuals each observed 11 times for a sample of 11,000 observations, you
might want to manipulate the 1000×1 vector of group means. You might also want to manipulate the
individual observations in a panel. For example, for some purposes (e.g., random effects models),
you might want a variable, zit = iz that, for individual i, equals the mean of the Ti observations for
that individual. That is, the group mean is repeated for the Ti observations. The CREATE
commands below are used for that purpose.

R16.11.1 MATRIX Functions for Panel Data

 The index variable described in the previous section gives the group identifiers in a panel data
set. In addition to the estimation programs, there are several matrix functions provided specifically for
panel data. Each of these requires you to provide a group indicator. The functions are:

 Grps(variable,index) = a five column matrix of group sizes, means, standard deviations,
 minima, and maxima, with one row for each group. There may
 be empty rows.
 Gsiz(index) = a column vector of group sizes,
 Gxbr(list,index) = an N×K matrix of group means; N = number of groups,
 K = number of variables,
 Gsdv(list,index) = an N×K matrix of standard deviations,
 Gmax(list,index) = an N×K matrix of group maxima,
 Gmin(list,index) = an N×K matrix of group minima.

 You may use these matrices in data transformations. Generally, this will involve some use
of the group means. Suppose your group indicator is named state and you have a panel of
observations on N states. You could transform a variable named, say, income to deviations from the
specific state means with the following commands:

 MATRIX ; stmean = Gxbr(income,state) $
 CREATE ; incdev = income - stmean(state) $

Note how the stratification variable is used as a subscript in the CREATE command. The two
commands do the following computations

 ∑ =
= staten

i statei
state

state income
n

stmean
1 ,

1 , state = 1,…,NSTATES,

 incdevi,state = incomei,state - statestmean , i = 1,..,nstate, state = 1,…,NSTATES.

R16: Using Matrix Algebra R-445

There is also a built in CREATE command that would do this at once,

 CREATE ; incdev = Group Devs (income, Str = state) $

 The matrix function

 Gsum(namelist [, variables not in a list], weight, index)

(the additional variables are optional) is a general function that transforms the data set into a matrix
of weighted sums. The resulting matrix has number of rows equal to the number of groups in the
index set. The number of columns is the number of variables in the namelist and the additional
variables listed. The variables in the namelist are weighted by the weighting variable as they are
summed while the variables in the list of additional variables, if any are specified, are simply
summed, but not weighted.
 This function is usually of the form Gsum(x,index) to compute group sums and the GMM
weighting matrix. An alternative form may be used to provide weights for some or all of the
variables, using

 Gsum(x, v1, v2, ..., weights, index)

(and likewise for Gmmw described below). In this form, the weights are applied to the individual
observations, when summing over the variables in x, but not v1, v2,

NOTE: Gxbr, Gsdv, etc. automatically bypass missing values rather than exiting when missing
values show up. This is a change from earlier versions of LIMDEP.

R16.11.2 GMM Weighting Matrix for Panel Data

 A GMM weighting matrix for a panel data application is created with the function

 Gmmw(list, e, index) = a K×X GMM style weighting matrix.

In this function, the variable e is typically a residual vector and list is a namelist of a set of
instrumental variables. This function computes a panel data based weighting matrix of the form

 Gmmw(x, e, index) = 1 1()()N N

i i i i i i i i= =′ ′ ′Σ = ΣX e e X w w where wi = 1
iT

t it ite=Σ x

and xit is the column vector of data on the K variables in Xi for individual i at time t. Thus, Xi is a
Ti×K matrix of data for individual i. This can be adapted to a cross section application simply by
making the index variable define groups of one. For example,

 CREATE ; i = Trn(1,1) $
 MATRIX ; w = 1/n * Gmmw(x,e,i) $

computes 21

1
N
i i i iN e= ′= ΣW x x This is the usual weighting matrix for GMM estimation with a cross

section.

R16: Using Matrix Algebra R-446

R16.11.3 Gsum and Gmmw Functions with Weights for Some or All
Variables

 The Gsum and Gmmw functions for panel data are usually of the form

 ; Gsum(x, index) and ; Gmmw(x, e, index)

to compute group sums and a GMM weighting matrix. An alternative form may be used to provide
weights for some or all of the variables, using

 Gsum(x, v1, v2, ..., weights, index)
and Gmmw(x, v1, v2, ..., e, index).

In this form, the weights are applied to the individual observations, when summing over the variables
in x, but not v1, v2,

R16.11.4 Matrix Forms for Computing Moments for Panel Data

These structures are for balanced or unbalanced panel data sets. In the definitions, xxx and
yyy are namelists of variables or the names if individual variables, u is the name of a variable,
typically a residual, ‘panel’ is either the fixed number of periods or the variable giving the group
count as usual for LIMDEP model command. Note that this differs from the preceding functions,
which use the equivalent of a stratification variable. These are strictly based on group counts, either
fixed and explicit, or in the form of a group count variable.

MATRIX ; Result = xxx ’ [e , panel] yyy $

This computes the sum of moments, 1 1()()N N

i i i i i i i i= =′ ′ ′Σ = ΣX e e Y w v . This computation is similar to the
Gmmw function discussed above, except here, there may be different sets of variables whereas in
Gmmw, xxx is the same as yyy. The result of the computation is ΣiXi′ei × ei′Yi where Xi is Ti×K and
Yi is Ti×M. The data in the computation above are untransformed. To use group mean deviations in
the same computation, use

MATRIX ; Result = xxx ’ [- e , panel] yyy $

This computes ()()0 0

1 1 1 1()() ()() ()()i iT TN N
i i i i i i i i t it i it i t it i it ie e e e= = = =′ ′ ′Σ = Σ Σ − − Σ − −X M e e M Y x x y y .

Note that only the minus sign in front of ‘e’ differentiates these two. To do the summing without
weighting, we obtain within group moment matrices. Use

MATRIX ; Result = xxx ’ [- , panel] yyy $

R16: Using Matrix Algebra R-447

This computes ()0
1 1 1() ()()iTN N

i i i i i t it i it i= = =′ ′Σ = Σ Σ − −X M Y x x y y . Note that there is a minus sign without
a variable name after the opening bracket. This form just computes within groups sums of squares
and cross products – i.e., moment matrices based on group mean deviations. To compute the
between groups sums of squares,

MATRIX ; Result = xxx ’ [+ , panel] yyy $

This computes ()0

1 1 1() iTN N
i i i i i t i i iT= = =′ ′Σ = Σ ΣX (I - M)Y x y , which is the between groups sums of squares

and cross products. Note, again, no ‘e’ variable is given. Finally, the total sum of squares for the
panel is

MATRIX ; Result = xxx ’ [* , panel] yyy $

This computes ()1 1 1 1()() ()()i iT TN N
i t it it i t it it= = = =′ ′Σ Σ − − = Σ Σ − −x x y y x x y y .

NOTE: None of these commands modify the input data. They also bypass missing data.

R17: Using the Calculator R-448

R17: Using the Calculator

R17.1 Introduction

 You will often need to calculate scalar results. The scientific calculator, CALC is provided
for this purpose. For example, you can use CALC to look up critical points for the normal, t, F, and
chi squared distributions instead of searching a table for the appropriate value. (And, CALC will
give you any value, not just the few in the tables.) Another case will be calculation of a test statistic
such as a t ratio or likelihood ratio statistic. LIMDEP’s calculator can function like a hand
calculator, but, it is an integral part of the larger program as well. Results you produce with the
calculator can be used elsewhere, and results you obtain elsewhere, such as by computing a
regression, can be used in scalar calculations. The programs listed in the chapters to follow contain
numerous examples. The example below is a simple application.

Example: Testing for a Common Parameter in a Probit Model

 Suppose a sample consists of 1000 observations in 10 groups of 100. The subsamples are
observations 1-100, 101-200, etc. We consider a probit model, y* = β0+β1x+ε, observed y = 1 if y* > 0
and 0 otherwise. With ε ~ N[0,1], Prob[y=1]=Φ(β0+β1x). We are interested in using a likelihood ratio
statistic to test the hypothesis that the same parameters, β0 and β1, apply to all 10 subsamples against
the alternative that the parameters vary across the groups. We also want to examine the set of
coefficients.
 The first two commands initialize the log likelihood function and define a place to store the
estimates.

 CALC ; lu = 0 ; i1 = 1 $
 MATRIX ; slopes = Init(10,2,0) $

The following commands define a procedure to compute probit models and sum unrestricted logL.

 PROC
 CALC ; i2 = i1 + 99 $
 SAMPLE ; i1 - i2 $
 PROBIT ; Lhs = y ; Rhs = one,x $
 CALC ; lu = lu + logl ; i1 = i1 + 100 $
 MATRIX ; slopes(i,*) = b $
 ENDPROC

Execute the procedure 10 times, resetting the sample each time.

 EXECUTE ; i = 1,10 $

The next two commands compute the restricted log likelihood.

 SAMPLE ; 1-1000 $
 PROBIT ; Lhs = y ; Rhs = one,x $ Computes restricted (pooled) logL.

Now, carry out the likelihood ratio test.

 CALC ; chisq = 2 * (lu - logl) ; prob = 1 - Chi(chisq,18) $

R17: Using the Calculator R-449

CALC plays several roles in this example. It is used to accumulate the unrestricted log likelihood
function, lu. The counters i1 and i2 are set and incremented to set the sample to 1-100, 101-200, etc.
The loop index, i, is also a calculator scalar, and once it is defined, any other command, such as the
MATRIX command above, can use i like any other number. Finally, the last CALC command
retrieves the log likelihood from the unrestricted model, computes the test statistic, then computes
the tail area to the right of the statistic to determine if the hypothesis should be rejected.

R17.2 Command Input in CALCULATE

 CALCULATE is the same as MATRIX in the two modes of input. Select Tools:Scalar
Calculator to open the calculator window, shown in Figure R17.1.

Figure R17.1 Calculator Window

 There are two ways to enter commands in the calculator window. You can type
CALCULATE commands in the smaller ‘Expr:’ window. If your command will not fit on one line,
just keep typing. At some convenient point, the cursor will automatically drop down to the next line.
Only press Enter when you are done entering the entire command. In this mode of entry, you do not
have to end your commands with a $.
 Alternatively, you can click the fx button to open a subsidiary window, the Insert Function
dialog box that provides a menu of matrix and calculator functions (see Figure R17.2). Select
Scalar to display the calculator functions (described in Section R17.6). By selecting a function and
clicking Insert, you can insert a template for the indicated function into your ‘Expr:’ window in the
calculator window. You must then change the arguments in the function (e.g., the ‘x’ in the Phi(x) in
Figure R17.2) to the entity that you desire. When you have entered your full expression in the
window, press Enter to display the command in the lower part of the window, as shown above.
 If your command is part of a program, it is more likely that you will enter it in ‘command
mode’ or in what we will label the ‘in line’ format. You will use this format in the editing window.
That is, in the format,

 CALC ; ... the desired result ... $

Commands may be entered in this format from the editor, as part of a procedure, or in an input file.
See Figure R17.3. One difference between the calculator window and display in the text editor or
the output window is that in the latter, you must include ; List in your command to have the result
actually displayed. This is the same as MATRIX. See Section R17.3 for details on the ; List.
specification.

R17: Using the Calculator R-450

Figure R17.2 Insert Function Dialog Box for Calculator Functions

Figure R17.3 CALCULATE Command in Text Editor

R17: Using the Calculator R-451

CALCULATE is similar to CREATE at this point, except that instead of calculating whole
columns of data, you calculate single, or ‘scalar’ values. When you give a name to the result, it is
kept in a work area and you can use it later. For example, suppose you wanted to have the value of e
(Euler’s constant) to use later on. You could, for example, calculate e = Exp(1). You could then

 CREATE ; etotheax = e ^ (a*x) $

CALC is also similar to MATRIX in that if you wish to see a value without keeping it you may type
the expression without giving it a name, as in

 CALC ; 1 + pi * Log(25) + 2.5 / 1.23 $

or, for the 99% critical value for a two tailed test from the standard normal distribution, Ntb(.995).
(Ntb stands for Normal table. You also have a t table, and so on.)

R17.3 Results from CALCULATE

 As shown above, when you are in the calculator window, the result of a calculator expression,
named or not, is displayed on your screen when it is obtained. When CALC commands are given in
command mode, the default is not to display the results of any computations in the output window or
in the output file if one is open. We assume that in this mode, results are intermediate computations,
for example, the increments to the counters in the example in Section R17.1. Commands that you
give will be listed in your trace file in all cases and in your output window.
 You can request a full display of results both in the output window and in an output file by
placing
 ; List

before the result to be listed. You can turn this switch off with

 ; Nolist

Thus, the command CALC ; tailprob = Phi(1) $ will create a named scalar, but will not show any
visible numerical results. But,

 CALC ; List ; tailprob = Phi(1) $

will show the result on the screen in the output window. Once the end of a command is reached,
; Nolist once again becomes the default. The ; Nolist and ; List switches may be used to suppress
and restore output at any point. When the ; Nolist specification appears in a CALC command, no
further output appears until the ; List specification is used to restore the listing. At the beginning of a
command, the ; List switch is off, regardless of where it was before.
 To see a result that was computed earlier, there are several ways to proceed. A CALC
command can simply ‘calculate’ a name. Thus, in the command format, you could just give the
command

 CALC ; List ; tailprob $

R17: Using the Calculator R-452

You may also open the calculator window and just type the name of the scalar you want to see.
Finally, when you obtain a named scalar result, it will be added to the project window. (You must
‘open’ the Scalars data group by clicking the .) When the list of scalars is displayed, click any
name to display the value at the bottom of the window, in the border. Double clicking a scalar name
will open the New Scalar dialog box which may also be used to replace the value of that scalar. See
Figure R17.4.
 As with MATRIX, you can see the full internal 17 digit result for your CALC commands
by using ; Peek instead of ; List. For our earlier example, the full value of Phi(1.96) is found by

 CALC ; Peek ; Phi(1.96) $

 [CALC] *Result*= .97500210485177950D+00

Figure R17.4 Edit Function of New Scalar Dialog Box

R17: Using the Calculator R-453

R17.4 Forms of CALCULATE Commands – Conditional
Commands

 The essential format of a CALCULATE command is

 CALC ; name = result ; ... additional commands ... $

If you wish to see the ‘result’ but do not wish to keep it, just omit ‘; name = .’ The same applies to
the dialog mode in the calculator window. Scalar results will be mixtures of algebraic expressions
(addition, multiplication, subtraction, and division), functions, such as logs, probabilities, etc., and,
possibly, algebraic manipulation of functions of scalars or expressions.
 All calculator commands may be made conditional, in the same manner as CREATE or
MATRIX. The conditional command would normally appear

 CALC ; If (logical expression) name = expression $

The logical expression may be any expression that resolves either to ‘true’ or ‘false’ or to a numeric
value, with nonzero implying true. The rules for the expression are identical to those for CREATE
(see Section R4.2.2) and REJECT (see Section R7.2.2), as well as MATRIX, and all forms of DO.
In this setting, if the condition is true, ‘name’ is computed; if it is false, name is not computed. Thus,
if name is a new scalar, and the condition is false, after the command is given, name will not exist.
For example,

 CALC ; If (A(1,1) > rsqrd) q = Log(Dtr(sigma)) $

 An entire set of CALCULATE commands can be made conditional by placing a semicolon
after the condition, as in

 CALC ; If (condition) ; name = result ; result $

If the condition is false, none of the commands which follow it are carried out. This form of
condition may appear anywhere in a group of CALC commands. This will be most useful in
iterative programs to condition your CALC commands.

R17.4.1 Reserved Names

 You can have a total of 100 scalar results stored in your work area. You can obtain a
complete list of the names and values assigned to any scalars in the calculator work area by
navigating the project window. Fourteen of the scalars are used by the program to save estimation
results, and are reserved. The 14 reserved names are

 ssqrd, degfrdm, ybar, logl, kreg, sumsqdev, rsqrd, sy, rho, lmda, nreg, theta, s, exitcode

R17: Using the Calculator R-454

You can see the reserved scalars in the project window in Figure R17.4. They are the ones marked
as ‘locked’ with the symbol,. These scalars (save for rho – see the hint below) are ‘read only.’
You may not change them with your commands. Most of these results apply to the linear regression
model, but values such as ybar, sy, and logl are saved by nearly all models. Scalars lmda and theta
will change from model to model, depending on the ancillary parameters in the model. After you
estimate a model, you will find these scalars defined automatically with the indicated values. These
values can thereafter be used on the right hand side of any command. The final one, exitcode, is an
indicator of the success or failure of the most recent estimation command. Usage is described in
Section R26.5.

TIP: When you use EXECUTE ; name = values $ (see Chapter R19), name becomes a ‘read only’
scalar while the procedure is being executed. After the loop is finished, name will still exist, and you
can modify it any way you wish. Notice, for instance, in the example in Section R17.1, CALC uses
the loop index, i to obtain i1 and i2 for the sample setting. But, that procedure could not change i
while it is executing.

HINT: Since it is such a common application, there is an exception to the read only setting of these
scalars. The scalar rho may be set by a loop control. For example, for scanning in a model of
autocorrelation, you might EXECUTE ; rho = 0, 1, .025 $. In general rho is not a protected name.
However, you cannot delete rho.

R17.4.2 Work Space for the Calculator

 Although there are 100 scalars available, the 14 protected names leave you a total of 86 to
work with. If you find yourself running out of room, the command

 CALC ; Delete name, name, ... $

can be used to clear space. Note that there is no comma or semicolon between the ; Delete
specification and the first scalar name. You may also delete scalars that are not reserved in the
project window by highlighting their names and pressing the Del key.

TIP: You are not really limited to these 86 scalars. Any 1×1 matrix can be used as if it were a
named scalar, so the distinction disappears. This adds nearly 100 named scalars to your capacity.
To use these additional scalars, you must create them as matrices, which you can do as follows:
MATRIX ; name = [0] $ For example,

 MATRIX ; newsclr = [0] $
 CALC ; newsclr = Phi(0.234) $

Do note, however, that when you list scalars in the project window, these 1×1 matrices will not be
displayed. (They will be displayed as matrices.) But, when you give CALC commands, you can use
the values taken by these 1×1 matrices just as if they were scalars.

R17: Using the Calculator R-455

R17.4.3 Compound Names for Scalars

 The names of scalars may be indexed by other scalars, in the form ssss:iiii where ‘ssss’ is a
name and ‘iiii’ is an integer valued index scalar. For example,

 CALC ; i = 37 ; value : i = pi $

creates a scalar named value37 and assigns it the value π. The procedure in the editor window in
Figure R17.5 shows how one might use this feature. The data set consists of 10 groups of 20
observations. The procedure computes a linear regression model using each subsample. Then it
catches the log likelihood function from each regression, and puts it in a correspondingly named
scalar. Thus, the loop index, j, takes values 1,2,...,10, so the scalar names are logl:j = logl1,...,logl10.

Figure R17.5 Procedure with Indexed Scalar Names

R17: Using the Calculator R-456

R17.5 Scalar Expressions

 The rules for calculator expressions are identical to those for CREATE. The rules of algebra
apply, with operations ^ and @ (Box-Cox transformation) taking first precedence, * and / next,
followed last by + and -. You may also use any of the functions listed below in any expression. This
includes the percentage points or critical values from the normal, t, F, and chi squared distributions,
sums of sample values, determinants of matrices, or any other algebraic functions. Chapter R16
describes how to obtain matrix results. You may also use an element of a matrix with its subscript
enclosed in parentheses in any scalar calculation. Finally, any particular observation on any variable
in your data area may also be used in an expression. For example, you might

 CREATE ; x = some function $
 CALC ; q = x(21) * sigma(2,2) $

In evaluating subscripts for variables, the observation refers to rows in the data array, not the
current sample. Expressions may also contain any number of functions, other operators, numbers,
and matrix elements. A scalar may appear on both sides of the equals sign, with the result being
replacement of the original value. For examples:

 CALC ; varsum = b(1)^2 * varb(1,1) + b(2)^2 * varb(2,2) + 2 * b(1) * b(2) * varb(1,2)$
 CALC ; messy = messy^2/pi - Gma(.5)/Gma(.1) * Sum(age) $

If it is necessary to change the algebraic order of evaluation, or to group parts of an expression,
use parentheses nested to as many levels as needed. For example,

 CALC ; func = (Gma(3) + Gma(5))^3 + ((x + y)/c) * (f + g) $

You may also nest functions. For example,

 CALC ; q = Log(Phi(a1 + a2 * Exp(a3 + a4 * Gma(z)))) $

There are two constants which can be used by name without having been set by you. At all points in
the program, the name ‘pi’ will be understood to be the number π = 3.14159... Note that this will
preempt matrices and scalars named pi, so this name should be avoided in other contexts. The name
pi may also appear in MATRIX and CREATE commands, for example,

 MATRIX ; pii = pi * Iden(5) $
 CREATE ; f = 1/(sg * Sqr(2 * pi)) * Exp(-.5 * ((x - mu)/sg)^2) $

 When you give a CALC, MATRIX, or CREATE command, the name ‘n’ is always taken
to mean the current sample size. You may use n in any scalar calculation. For example, after you
compute a regression, the log likelihood function could be computed using

 CALC ; l = -n/2 * (1 + Log(2 * pi) + Log(sumsqdev/n)) $

NOTE: n and pi have the meanings described above everywhere in LIMDEP. Thus, you could use
pi in a list of starting values, as part of a model command, or in CALCULATE.

R17: Using the Calculator R-457

R17.6 Calculator Functions

 The functions listed below may appear anywhere in any expression. The arguments of the
functions can be any number within the range of the function (e.g., you cannot take the square root of
-1) as well as matrix elements and names of other scalars. Function arguments may also be
expressions, or other functions whose arguments may, in turn, be expressions or other functions, and
so on. For example,

 z = Log(Phi(a1 + a2 + Log(a2 + (q + r)^2)))

is a valid expression which could appear in a CALC command. The depth of nesting functions
allowed is essentially unlimited. When in doubt about the order of evaluation, you should add
parentheses to remove the ambiguity. Also, in functions which have more than one argument
separated by commas, such as Eql(x,y) (which equals one if x equals y), include expression(s) in
parentheses. For example,

Eql(x+y , (r+c)^2)

may not evaluate correctly because of the ‘x+y’ term. But,

Eql((x+y) , ((r+c)^2))

will be fine. The supported functions are listed below:

R17.6.1 Basic Algebraic Functions

Log(x) = natural log,
Abs(x) = absolute value,
Sin(x) = sine,
Tan(x) = tangent,
Exp(x) = exponent,
Sqr(x) = square root,
Cos(x) = cosine,
Rcs(x) = arccosine,
Rsn(x) = arcsine,
Ath(x) = hyperbolic arctangent = ½ ln[(1+x)/(1-x)],
Ati(x) = inverse hyperbolic arctangent = [exp(2x)-1] / [exp(2x)+1].

R17.6.2 Relational Functions

Eql(x,y) = 1 if x equals y, 0 if not,
Neq(x,y) = 1 - Eql(x,y),
Sgn(x) = 1 if x > 0, 0 if x = 0, -1 if x < 0.

R17: Using the Calculator R-458

R17.6.3 Critical Points from the Normal Family of Distributions

In each case, when you enter ‘Fcn(P,...)’ where P is the probability, LIMDEP finds the x
such that for that distribution, the probability that the variable is less than or equal to x is P. For
example, for the normal distribution, Ntb(.95) = 1.645. The P you give must be strictly between 0
and 1.

Ntb(P) = standard normal distribution,
Inp(P) = same as Ntb(P),
Ttb(P,d) = t distribution with d degrees of freedom,
Ctb(P,d) = chi squared with d degrees of freedom,
Ftb(P,n,d) = F with n numerator and d denominator degrees of freedom,
Ntb(P,µ,σ) = normal distribution with mean µ and standard deviation σ.

R17.6.4 Probabilities and Densities for Continuous Distributions

Phi(x) = probability that N[0,1] ≤ x,
Phi(x,µ,σ) = probability that N[µ,σ] ≤ x,
N01(x) = density of the standard normal evaluated at x (Note ‘N-zero-one’),
Lgf(x) = log of standard normal density = -½ (ln2π + x2). Lgf(0)=.918938542,
N01(x,µ,σ) = density of normal[µ,σ] evaluated at x,
Tds(x,d) = prob[t with d degrees of freedom ≤ x],
Chi(x,d) = prob[chi squared variable with d degrees of freedom ≤ x],
Fds(x,n,d) = prob[F with n numerator and d denominator degrees of freedom ≤ x],
Lgp(x) = logit probability = exp(x)/(1+exp(x)),
Lgd(x) = logit density = Lgp(x)×(1 - Lgp(x)),
Lgt(P) = logit of x = Log(P/(1-P)) for 0 < P < 1,
Xpn(x,θ) = prob[exponential variable with mean 1/θ ≤ x],
Bds(x,α,β) = prob[beta variable with parameters α,β ≤ x]
Bdd(x, α,β) = density function for beta variable x with parameters α,β.

R17.6.5 Moments of the Left Truncated Normal Distribution

Trm(a) = mean of the truncated normal distribution, left truncated at a,
Trv(a) = variance of the left truncated at a normal distribution,
Trm(a) = E[z|z>a] = φ(a)/Φ(-a), standard normal distribution,
Trv(a) = Var[z|z>a] = 1 - Trm(a)(a + Trm(a)), standard normal,
Trm(a,µ,σ) = µ+ σTrm((a-µ)/σ),
Trv(a,µ,σ) = σ2Trv((a-µ)/σ).

These last two change the mean and standard deviation from 0 to µ and 1 to σ, respectively. For
upper (right) truncation instead of lower, add a ‘1’ as the final argument.

Trm(a,1), Trm(a,µ,σ,1), Trv(a,1), Trv(a,µ,σ,1).

R17: Using the Calculator R-459

R17.6.6 Probabilities and Densities for the Bivariate Normal
Distribution

Bvn(x1,x2,r) = cumulative probability from the bivariate standard normal distribution,
Bvd(x1,x2,r) = density from the bivariate standard normal,
Bv1(x1,x2,r) = partial derivative of Bvn with respect to x1 (see Greene, 2011, p. 740),
Bv2(x1,x2,r) = partial derivative of Bvn with respect to x2.

R17.6.7 Probabilities and Densities for the Multivariate Normal
Distribution

 In the following, x must be a vector with M elements that was created with a MATRIX
command or as a byproduct of some estimation program. W must be a square M×M covariance
matrix for the distribution. Then,

Mvn(x,W) = multivariate normal CDF with mean vector zero, Prob[X ≤≤ x],
Mvd(x,W) = multivariate normal PDF.

The multivariate CDF is

MM
M

BB

xxxF
M

dd]d'1/2)exp[(||(2π2(x) 11
11/2/2

1

−
−−−

∞−∞− ∞−

−= ∫∫ ∫
−

 xWxW
1MB

.

The lower limits are all Am = -∞. Thus, x(.) provides the upper bounds, B1,...,BM. For instance, one
of the examples in Breslaw’s contribution to the (1994) ReStat symposium – you can use this to test
the computation – is

MATRIX ; x = [0/0/0/0] ; w = [1/.2,1/.2,.4,1/.2,.4,.6,1] $
CALC ; p4 = Mvn(x,w) $

which will produce a value close to 0.15. If you desire to compute the probability in a rectangle
defined by finite lower bounds, A1,...,AM, at the lower limits and x1,...,xM at the upper limits, use

CALC ; Result = Mvn(x,w,a)

If you desire complementary probabilities, that is the probability for the area defined by a lower
bound of x(.) and upper bounds of +∞, use Mvn(y,W) where y is the negative of x. If you desire
some of the xs to be lower bounds and others to be upper bounds, you can use the following trick:
Create an M×M matrix T in which all off diagonal elements are zero and diagonal element Ti is +1 if
x(i) is an upper bound and -1 if Ti is a lower bound. Then, instead of x and W in your Mvn function,
use

 xa = Tx and WA = TWT

You must create these with MATRIX before using the Mvn function in CALC.

Multivariate normal probabilities are computed using the GHK simulator (see Section R8.8).
The number of replications used for the simulation is set by default at 100 when LIMDEP starts up.
If you wish to use some other value, use the function

Rep(Nrep) = number of replications for Mvn functions.

R17: Using the Calculator R-460

R17.6.8 Probabilities for Noncentral Distributions

The right hand tail probabilities for the noncentral chi squared and (singly – numerator only)
noncentral F distributions may be obtained with CALC by adding the noncentrality parameter to the
list for the corresponding central distribution.

 Chi(x,d,q) = prob[noncentral chi square with d degrees of freedom and

 noncentrality parameter q is ≤ x],
 Fds(x,n,d,q) = prob[noncentral F with n numerator degrees of freedom, d

 denominator degrees of freedom and noncentrality parameter q is ≤ x].

R17.6.9 Probabilities for Discrete Distributions

Psn(x,λ) = prob[Poisson with parameter λ ≤ x],
Psd(x,λ) = prob[Poisson with parameter λ equals x],
Bnm(x,n,π) = prob[binomial; n trials, success probability π ≤ x],
Bnd(x,n,π) = prob[binomial; n trials, success probability π equals x],
Gep(x,π) = prob[geometric; success probability π ≤ x],
Geo(x,π) = prob[geometric; success probability π equals x].

R17.6.10 Gamma Function and Gamma Distribution

Gma(x) = gamma function. Gma(.5) = √π and = (x-1)! if x = integer,
Psi(x) = digamma(x) = dlogGamma(x)/dx,
Psp(x) = trigamma(x) = d2logΓ(x)/dx2= Psi’(x) (0 ≤ x ≤ 40),
Lgm(x) = log of Gma(x). Note: Lgm(x+1) = log(x!),
Bta(x,y) = beta function. Bta(x,y) = Γ(x)Γ(y)/Γ(x+y).

R17.6.11 The Incomplete Gamma Function

The gamma density is f(x) = (aP /Γ(P))e-ax xP-1, x ≥ 0, a,P>0.

Gmp(x,P,a) = cumulative probability = Prob[X ≤ x],
Gmp(x,P,1) = Gmp(x,P). If a = 1, it may be omitted from the gamma probability.
Gtb(prob,P,a) = inverse probability function, i.e., the x such that the CDF at x equals

 the probability. As before, if a = 1, it may be omitted.

The normalized incomplete gamma integral is

 g(x,P) = 1 1
0

1

Γ()
(,), lim (,)

P
e t dt g x P g x Pat

x
P

x

− −

→∞
∫ = = .

This is the probability given above. Thus, the integral, itself can be computed with Γ(P)g(x,P) =
Gma(P) * Gmp(x,P). The counterpart for the nonstandardized distribution is obtained by providing a
value for a.

R17: Using the Calculator R-461

R17.6.12 Random Numbers

Rnn(µ,σ) = one draw from the normal distribution,
Rnu(lower,upper) = one draw from the continuous uniform distribution,
Ran(seed) = sets the seed for the random number generator.

If you wish to replicate a set of random draws, set the seed before drawing the sample. By default the
seed is set by the system clock, so samples will not be replicated unless you do this. Use an odd
number for the seed.

R17.6.13 Matrix Dimensions and Functions

If A is the name of a matrix,

Row(A) = number of rows in matrix A,
Col(A) = number of columns in matrix A,
Rnk(A) = rank of matrix A,
Nrm(A) = norm of A = trace(A′A),
2nr(A) = 2-norm of A = largest singular value.

For square matrix A,

Trc(A) = trace of matrix A,
Det(A) = determinant of matrix A,
Lmd(A) = log of determinant of matrix A if A is positive definite,
Cnm(A) = condition number for matrix A.

If ‘X’ is the name of a namelist, then

Row(X) = number of observations in current sample = n,
Col(X) = number of variables in the namelist.

R17.6.14 Sample Statistics and Regression Results

The observations used in any of the following are the current sample less any missing
observations. For the Sum, Xbr, Var, and Sdv functions of a single variable, missing data are
checked for the particular variable. Thus, Xbr(x1) and Xbr(x2) may be based on different
observations. You should keep close track of this if your data have gaps or different sample lengths.
For the remaining functions, all observations are used without regard to missing data. For example,
in the covariance function, LIMDEP uses all data points, so some data may be missing. Be careful
using these to prevent the -999s from distorting the statistics.

R17: Using the Calculator R-462

Sample Moments

For any variable in your data area, or namelist which contains only one variable name, the
functions listed below can be used just like any other function, such as Sqr(2). If you wish only to
display the statistic, just calculate it. Otherwise, these functions can be included in any expression.

Sum(variable) = sum of sample values,
Xbr(variable) = mean of sample values,
Sdv(variable) = standard deviation of sample values,
Var(variable) = variance of sample values,
Xgm(variable) = the geometric mean; Xgm(x) = Exp[1/nΣi log(xi)],
Xhm(variable,h) = the harmonic mean using parameter h; Xhm(x,h) = [Σixi

h]1/h

The summing functions (Sum, Var, Sdv, Xbr) can be restricted to a subsample by including a second
variable in the list. If a second variable appears, the function is compute for nonzero values of that
second variable. Thus, Sum(variable, dummy) is the sum of observations for which the dummy
variable is nonzero. This allows a simple way to obtain a mean or variance in a subset of the current
sample.

Covariance and Correlation

For any pair of variables,

Cov(variable,variable) = sample covariance,
Cor(variable,variable) = sample correlation.

We note, for obtaining the correlation between a continuous variable, x, and a binary variable, d, one
would use the ‘biserial’ correlation. It turns out that the biserial correlation is equal to the ordinary,
Pearson product moment correlation. So no special function is created for this. Just use

 CALC ; List ; Cor (continuous variable x, binary variable d) $

to obtain a biserial correlation coefficient.

Order Statistics

Med(variable) = median of sample values
Min(variable) = sample minimum,
Max(variable) = sample maximum,
Qnt(quantile,variable) = the indicated quantile for the variable.

To locate the minimum or maximum value in the current sample, use

Rmn(variable) = observation number where minimum value of variable occurs,
Rmx(variable) = observation number where maximum value of variable occurs.

R17: Using the Calculator R-463

Nonparametrics

Rkc(variable1,variable2) = the rank correlation of two variables.

 ρ = 1 - 6 Σi di
2 /n(n2 - 1), di = variable1i – variable2i

Cnc(x1,...,xK) = Kendall’s coefficient of concordance of the K sets of
 rankings, W = 12Σi(Si - S)2/[nK2(n2 - 1)] where Si = Σkxk,i.

The coefficient of concordance is used to measure the degree of agreement among n individuals each
of which has a set of K ranks. For example, consider a panel of n judges, each ranking a panel of K
= 10 paintings or musicians. A large sample chi squared test of the null hypothesis that all n
individuals are in ‘concordance’ may be based on

 χ2[K(n-1)] = K(n-1)W.

Dot Products

For any vector (matrix with one row or column), which we denote c or d, or variable in your
data set, denoted x or y,

Dot(c,c) = c′c,
Dot(c,d) = c′d,
Qfr(c,A) = c′Ac (A is a square matrix conformable with c.).

Two forms of the Dot function are

Dot(x,x) = x′x,
Dot(x,y) = x′y.

You may also use the simpler form with the apostrophe, and may mix variables and vectors in the
function. Thus, if x and y are variables, and c and d are vectors, all of the following are admissible
(assuming they are conformable):

CALC ; x’y ; c’y ; Dot(x,y) ; d’d $ and so on.

Regression Statistics

The CALC command has several functions which allow you to obtain certain regression
statistics, such as an R2 in isolation from the rest of the least squares computations. In the following,
the list of variables in the parentheses is of the form

list = independent variables, dependent variable.

The dependent variable is always given last in a list. As always, if you want a constant term, include
one. You can use a namelist for the independent variables if you wish, and the wildcard character, *,
may be used to abbreviate lists of variable names.

R17: Using the Calculator R-464

The following functions can be computed, where X is the list of independent variables:

Rsq(X,y) = R2 in regression of variable y on X, R2 =1-e’e/Σi(yi - y)2,
Xss(X,y) = explained sum of squares,
Ess(X,y) = error, or residual sum of squares,
Tss(X,y) = total sum of squares,
Ser(X,y) = standard error of regression,
Lik(X,y) = log likelihood function.

Count for a Panel

 The number of groups in a panel defined by the stratification variable ‘y’ is given by

 Ngi(y) = number of sequences of consecutive identical values of variable y.

This examines the sample of values and counts the number of runs of the same value, assuming that
each run defines a stratum. In a sample of 10, if i = 1,1,1,2,2,3,4,4,4, the number of runs (groups) is
four.

Pnl(pds variable) = average group size for panel defined by pds variable.

R17.7 Fit Measures for a Binary Choice Model

 There are a variety of fit measures for binary choice models. (These are discussed in more
detail in Chapter E26). For any binary variable, y, and variable p containing a column of fitted
probabilities, the function

 Fit(y,p) = table of fit measures for p as a model for predicting y.

The results for this function appear as in the following example:

 CALC ; List ; Fit(mode, pfit) $

+--+
| Fit Measures for Binomial Choice Model |
| Observed = CHOICE Fitted = CHOICEP |
+--+
| Y=0 Y=1 Total|
| Proportions .75000 .25000 1.00000|
| Sample Size 9600 3200 12800|
+--+
| Log Likelihood Functions for BC Model |
| P=0.50 P=N1/N P=Model|
| LogL = -8872.28 -7197.89 -6886.72|
+--+
| Fit Measures based on Log Likelihood |
| McFadden = 1-(L/L0) = .04323|
| Estrella = 1-(L/L0)^(-2L0/n) = .04849|
| R-squared (ML) = .04746|
+--+
| Fit Measures Based on Model Predictions|
| Efron = .04339|
| Ben Akiva and Lerman = .64204|
| Veall and Zimmerman = .08759|
| Cramer = .04509|
+--+

R17: Using the Calculator R-465

The values reported are

 logL = log likelihood = Σi yilogpi + (1 – yi)log(1 – pi),
 P0 = (1/N)Σi (1 – yi),
 P1 = (1/N)Σi yi,
 N0 = Σi (1 – yi),
 N1 = Σi yi,
 logL0 = restricted (constant term only) log likelihood,

= N0logP0 + N1logP1,
 N = N0 + N1,
 Efron = 1 – [Σi (yi – pi)2]/[Σi (yi – P1)2] (Note, P1 = the mean of y.),
 McFadden = 1 – logL / logL0,
 Ben-Akiva/Lerman = (1/N)Σi yi pi + (1-yi)(1 – pi),
 Cramer = (1/N1)Σi yipi - (1/N0)Σi pi(1 – yi),
 Veall and Zimmermann = [(δ - 1)/(δ - McFadden)] × McFadden, δ = N/(2logL0,
 RML

2 = 1 – exp[(-2/N)(logL – logL0)].

R17.8 Hypothesis Tests

Kolmogorov Smirnov Test of Normality

 The Kolmogorov-Smirnov test is a nonparametric statistic used to test a distributional
assumption. For the implementation here, we use the normal distribution as the null hypothesis. The
statistic is computed as

1

1max () , ()i ii N
i iD F x F x
N N≤ ≤

− = − −

Where F is the theoretical cdf being tested (normal). For the specified test,

Kst(variable) = Kolmogorov-Smirnov test statistic

The null distribution is assumed to be the normal distribution. The mean and standard deviation of
the normal distribution are estimated from the data. The derivation of the behavior of the test
statistic, and the critical values, actually assume that the mean and variance of the distribution are
known, not estimated from the data. So, the critical values given below should be viewed as
approximate If you do know the mean and standard deviation of the distribution, use

 Kst (variable, μ, σ) = Kolmogorov-Smirnov test against N[μ,σ2].

Critical values of the distribution of the test statistic are as follows:

Sample Size 20 25 30 35 Over 35

95% .294 .270 .240 .230 1.36/Sqr(N)
99% .356 .320 .290 .270 1.63/Sqr(N)

R17: Using the Calculator R-466

Testing for Significant Differences Between Two Populations

 The function Tst(x,y) is used to test for equality of means or variances for two variables x
and y. The sample used is the current sample. The function is

CALC ; Tst (x,y) $ for the means test,
and CALC ; Tst (x,y,2) $ for the variance test.

(You may use Tst(x,y,1) for the means test.) The names x and y may be two variables, two matrices
with any number of rows and columns, or one of each, both of which may be any configuration.
Missing values are automatically bypassed, and the samples may be different sizes, as noted. The
following shows an application using our discrete choice data.

CALC ; Tst (invc,gc) $

Test of equality of Means.
F statistic with [1, 1471] = 999.035; P = .00000

CALC ; Tst (invc,gc,2) $

Test of equality of Variances.
F statistic with [839, 839] = 2.197; P = .00000

Testing Equality of the Means of Two Populations

The means test is requested with

CALC ; Tst (x,y) $

or CALC ; Tst (x,y,1) $

The test is based on the standard t statistic, which we square to obtain an F statistic with 1 and D
degrees of freedom:

 F[1,d] = 2 2 2() /(/ /)x x y yx y s N s N− +

where
2

21 1() and
1

x xN N
i i i i

x
x x

x x xx s
N N
= =Σ Σ −

= =
−

and likewise for y. The sample sizes may be unequal. The inequality of the sample sizes will result
if one or the other of the variables contains missing values. As such, for the degrees of freedom for
the denominator, we use the Satterthwaite approximation,

2 2 2

2 2 2 2

(/ /)
[(/) /(1)] [(/) /(1)]

x x y y

x x x y y y

s N s N
d

s N N s N N
+

=
− + −

.

R17: Using the Calculator R-467

Testing Equality of the Variances of Two Populations

 The variance equality hypothesis is tested with the command

 CALC ; Tst (x,y,2) $

The test statistic is the standard F ratio with Nx - 1 and Ny – 1 degrees of freedom,

 F[Nx - 1 , Ny - 1] = 2 2/x ys s .

The roles of x and y are reversed if y has the larger variance. (This is merely for convenience in using
the F table. It has no bearing on the result of the test.)

Testing Equality of Two Population Proportions

 This test is requested with the command

 CALC ; Tst (x,y,3) $

As before, the data may be provided as variables, matrices or vectors, or a mix of the two. The test is
based on the underlying model, Prob[eventx] = πx and Prob[eventy] = πy. The subscripts denote the
two populations, not different events. We are interested in testing the null hypothesis

 H0: πx = πy

based on observed samples, x and y. These two variables are binary variables indicating the event
has occurred (xi = 1 or yi = 1) or not occurred, (xi = 0 or yi = 0). The test statistic is

()

()

2

2 1 where , = ,
(1) 1/ 1/

jN
x y i i

j
jx y

p p jc p j x y
NP P N N
=

− Σ
= =

− +

and P is the pooled proportion, (Nxpx + Nypy)/(Nx + Ny). Under the null hypothesis of equality, c2 has
a limiting chi squared distribution with one degree of freedom.

Testing Based on Summary Statistics

 The test statistics and procedures described above require you to provide the raw data for
computation of the statistics. If you have only the summary statistics, such as the means and
variances, you can easily use CALC to compute the same test statistics. Three functions are
provided to simplify the calculation for you. The three functions are, respectively,

Eqm(xb,yb,Nx,Ny,vx,vy) = test for equality of means,
Eqv(vx,vy,Nx,Ny) = test for equality of variances,
Eqp(px,py,Nx,Ny) = test for equality of proportions,

where xb and yb are the means, vx and vy are the variances and px and py are the proportions.

R17: Using the Calculator R-468

R17.9 Calculating Correlation Coefficients

 There are several types of correlation coefficients that one might compute, beyond the
familiar product moment measure. The nonparametric measures of rank correlation and of
concordance are additional examples. One might also be interested in correlations of discrete
variables, which are usually not measured by simple moment based correlations. The following
summarizes the computations of several types of correlations with LIMDEP. Some of these are
computed with CALC, as described earlier, while a few others are obtained by using certain model
commands.

Pearson Product Moment Correlations for Continuous Variables

For any pair of variables,

Cor(variable,variable) = sample correlation,

Biserial Correlation Between Continuous and Binary Variables

For obtaining the correlation between a continuous variable, x, and a binary variable, d, one
would use the ‘biserial’ correlation. It turns out that the biserial correlation is equal to the ordinary,
Pearson product moment correlation. So no special function is created for this. Just use

 CALC ; List ; Cor (continuous variable x, binary variable d) $

to obtain a biserial correlation coefficient.

Tetrachoric Correlation Coefficients for Binary Variables

This is equivalent to the correlation coefficient in the following bivariate probit model:

y1* = µ + ε1, y1 = 1(y1* > 0)

y2* = µ + ε2, y2 = 1(y2* > 0)

(ε1,ε2) ~ N2[(0,0),(1,1,ρ)]

The applicable literature contains a number of approaches to estimation of this correlation
coefficient, some a bit ad hoc. We proceed directly to the implied maximum likelihood estimator.
Fit this ‘model’ with

 BIVARIATE PROBIT ; Quietly ; Lhs = y1,y2 ; Rh1 = one ; Rh2 = one $
 CALC ; List ; Rho $

The reported estimate of ρ is the desired estimate. LIMDEP notices if your model does not contain
any covariates in the equation, and notes in the output that the estimator is a tetrachoric correlation.
If the ;Quietly is omitted from the bivariate probit command, the correlation coefficient will be
reported in the estimation results. The results below show an example

R17: Using the Calculator R-469

FIML Estimation of Tetrachoric Correlation
Dependent variable Y1Y2
Log likelihood function -24.70694
Estimation based on N = 20, K = 3
Inf.Cr.AIC = 55.414 AIC/N = 2.771
Model estimated: Mar 07, 2011, 11:26:20
--------+--
 Y1| Standard Prob. 95% Confidence
 Y2| Coefficient Error z |z|>Z* Interval
--------+--
 |Index equation for Y1
Constant| -.67449** .30469 -2.21 .0269 -1.27168 -.07730
 |Index equation for Y2
Constant| -.12566 .28106 -.45 .6548 -.67652 .42520
 |Tetrachoric Correlation between Y1 and Y2
RHO(1,2)| .29207 .35914 .81 .4161 -.41183 .99598
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The preceding suggests an interpretation for the bivariate probit model; the correlation coefficient
reported is the conditional (on the independent variables) tetrachoric correlation.

Tetrachoric Correlation Matrices

The computation in the preceding can be generalized to a set of M binary variables, y1,...,yM.
The tetrachoric correlation matrix would be the M×M matrix, R, whose off diagonal elements are the
ρmn coefficients described immediately above. There are several ways to do this computation, again,
as suggested by a literature that contains numerous recipes. Once again, the maximum likelihood
estimator turns out to be a useful device.
 A direct approach would involve expanding the latent model to

y1* = µ + ε1, y1 = 1(y1* > 0)

y2* = µ + ε2, y2 = 1(y2* > 0)

...

yM* = µ + εM, yM = 1(yM* > 0)

(ε1,ε2,...,εM) ~ NM[0,R]

The appropriate estimator would be LIMDEP’s multivariate probit estimator in which the Rhs for all
M equations contained only a constant. MPROBIT can handle up to M = 20. The correlation matrix
produced by this procedure is precisely the full information MLE of the tetrachoric correlation
matrix. However, for any M larger than two, this requires use of the GHK simulator to maximize the
simulated log likelihood, and is extremely slow. The received estimators of this model estimate the
correlations pairwise, as shown above. For this purpose, the FIML estimator is unnecessary. The
matrix can be obtained using bivariate probit estimates.

R17: Using the Calculator R-470

The following procedure would be useable:

NAMELIST ; y = y1,y2,...,yM $
CALC ; m = Col(y) $
MATRIX ; r = Iden(m) $
PROCEDURE $
DO FOR ; 20 ; i = 2,m $
CALC ; i1 = i - 1 $
DO FOR ; 10 ; j = 1,i1 $
BIVARIATE ; Quietly ; Lhs = y:i, y:j ; Rh1 = one ; Rh2 = one $
MATRIX ; r(i,j) = rho $
MATRIX ; r(j,i) = rho $
ENDDO ; 10 $
ENDDO ; 20 $
ENDPROCEDURE $
EXECUTE $

A final note, the preceding approach is not fully efficient. Each bivariate probit estimates (µm,µn)
which means that µm is estimated more than once when m > 1. A minimum distance estimator could
be used to reconcile these after all the bivariate probit estimates are computed. But, since the means
are nuisance parameters in this model, this seems unlikely to prove worth the effort.

Polychoric Correlation

 The polychoric correlation coefficient is used to quantify the correlation between discrete
variables that are qualitative measures. An appropriate description is that the discrete variables are
discretized counterparts to underlying quantitative measures. We typically use ordered probit
models to analyze such data. The polychoric correlation measures the correlation between y1 =
0,1,...,J1 and y2 = 0,1,...,J2. (Note, J1 need not equal J2.) One of the two variables may be binary as
well. (If both variables are binary, we use the tetrachoric correlation coefficient described above.)
 To compute the polychoric correlation for a pair of qualitative variables, we use LIMDEP’s
bivariate ordered probit model. First, compute the starting values for the first ordered probit model.

 ORDERED ; Lhs = y1 ; Rhs = one $
 MATRIX ; b1 = b ; mu1 = mu $

Next, compute the starting values for second equation, ordered probit or binary probit, Use one of
the following sets of commands.

 ORDERED ; Lhs = y2 ; Rhs = one $
 MATRIX ; b2 = b ; mu2 = mu $
or
 PROBIT ; Lhs = y2 ; Rhs = one $
 MATRIX ; b2 = b $

R17: Using the Calculator R-471

Then, fit the model.

 ORDERED ; Lhs = y1,y2 ; Rh1 = one ; Rh2 = one
 ; Start = b1,mu1,b2,mu2,0 $ Omit mu2 if y2 is binary

The set of starting values includes a zero for ρ. This may be omitted. Alternatively, if you have a
specific value other than zero in hand, you may provide it.
 For a simple example, we compute the polychoric correlation between self reported health
status and sex in the health care usage data examined earlier. Results appear below.

ORDERED ; Lhs = hsat ; Rhs = one $
MATRIX ; b1 = b ; mu1 = mu $
PROBIT ; Lhs = female ; Rhs = one $
MATRIX ; b2 = b $
ORDERED ; Lhs = hsat,female
 ; Rh1 = one ; Rh2 = one ; Start = b1,mu1,b2,0 $

Bivariate Ordered Probit Model
Dependent variable BivOrdPr
Log likelihood function -12561.56607
Restricted log likelihood -12563.05400
Chi squared [12 d.f.] 2.97586
Significance level .99571
McFadden Pseudo R-squared .0001184
Estimation based on N = 4481, K = 12
Inf.Cr.AIC =25147.132 AIC/N = 5.612
Model estimated: Mar 07, 2011, 11:36:35
--------+--
 NEWHSAT| Standard Prob. 95% Confidence
 FEMALE| Coefficient Error z |z|>Z* Interval
--------+--
 |Mean inverse probability for NEWHSAT
Constant| 2.17739*** .04831 45.07 .0000 2.08270 2.27208
 |Mean inverse probability for FEMALE
Constant| -.03944** .01875 -2.10 .0354 -.07620 -.00269
 |Threshold Parameters for Probability Model for NEWHSAT
 MU(01)| .23979*** .03248 7.38 .0000 .17613 .30345
 MU(02)| .54536*** .04154 13.13 .0000 .46395 .62677
 MU(03)| .86716*** .04543 19.09 .0000 .77812 .95620
 MU(04)| 1.13200*** .04702 24.07 .0000 1.03984 1.22417
 MU(05)| 1.65205*** .04865 33.96 .0000 1.55671 1.74740
 MU(06)| 1.91515*** .04917 38.95 .0000 1.81879 2.01152
 MU(07)| 2.32040*** .04989 46.51 .0000 2.22262 2.41818
 MU(08)| 3.00506*** .05156 58.29 .0000 2.90401 3.10610
 MU(09)| 3.50351*** .05401 64.86 .0000 3.39765 3.60937
 |Polychoric Correlation for NEWHSAT and FEMALE
RHO(1,2)| -.03288* .01907 -1.72 .0847 -.07026 .00450
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R17: Using the Calculator R-472

+---+
|Cross Tabulation |
|Row variable is NEWHSAT (Out of range 0-49: 0) |
|Number of Rows = 11 (NEWHSAT = 0 to 10) |
|Col variable is FEMALE (Out of range 0-49: 0) |
|Number of Cols = 2 (FEMALE = 0 to 1) |
|Chi-squared independence tests: |
|Chi-squared[10] = 14.11593 Prob value = .16777 |
|G-squared [10] = 14.12122 Prob value = .16753 |
+---+
| FEMALE |
+--------+--------------+------+ |
| NEWHSAT| 0 1| Total| |
+--------+--------------+------+ |
0	29 37	66	
1	26 26	52	
2	58 54	112	
3	107 89	196	
4	109 128	237	
5	333 347	680	
6	208 226	434	
7	388 330	718	
8	571 501	1072	
9	272 228	500	
10	210 204	414	
+--------+--------------+------+			
Total	2311 2170	4481	
+---+

Nonparametric Measures of Agreement of Rankings

 These two statistics measure the amount of agreement among sets of ranks. The first of
them is used to measure the correlation of a set of ranks.

Rkc(variable1,variable2) = the rank correlation of two variables.
 ρ = 1 - 6 Σi di

2 /n(n2 - 1), di = variable1i – variable2i

An application that is becoming common in the literature is to measure the agreement of a set of
efficiency rankings in a study of technical efficiency. The measures, themselves, often have no
natural magnitude, but the comparison of firms to each other is useful. A common exercise is to
compute the rankings of firms with two different measures, and search for high correlation of the two
sets of ranks.

Cnc(x1,...,xK) = Kendall’s coefficient of concordance of the K sets of
 rankings; W = 12Σi(Si - S)2/[nK2(n2 - 1)] where Si = Σkxk,i.

The coefficient of concordance is used to measure the degree of agreement among n individuals each
of which has a set of K ranks. For example, consider a panel of n judges, each ranking a panel of K
paintings or musicians. A large sample chi squared test of the null hypothesis that all n individuals
are in ‘concordance’ may be based on

 χ2[K(n-1)] = K(n-1)W --> χ2 [K(n-1)]

R17: Using the Calculator R-473

R17.10 Augmented Dickey Fuller Test

 The Adf function automates the Dickey Fuller test for unit roots in time series data. The
syntax is

CALC ; Adf (variable, type, lags for augmentation) $

where variable is the single time series variable to be analyzed,

type = 1, 2 or 3 for unit root, drift, trend, lags >= 0,
lags for augmentation is the number of additional lagged values to include

Users are referred to any of the standard texts, e.g., Greene (2011, Chapter 21) for details. An
example based on the investment series in the Grunfeld data follows:

CALC ; Adf (i,1,3) $

+--+
| Augmented Dickey Fuller Test for I |
| Form: Random walk |
| Number of lagged differences in model is 3 |
| DF(tau) = -2.32855, DF(gamma) = -10.96038 |
| Critical values for 196 observations: |
| DF(tau) |
| 01 is -2.58, .025 is -2.23, .05 is -1.95 |
| DF(gamma) |
| 01 is -13.80, .025 is -10.50, .05 is -8.10 |
+--+

R17.11 Plotting Discrete Distributions

 There are a variety of tools that can be used to display probability distributions. Precise,
accurate figures can be drawn by plotting the values of the probability density. Empirical
approximations to probability distributions can be obtained by drawing histograms for large random
samples of the random variable. CALCULATE provides numerous functions for computing
continuous and discrete probabilities and densities from a variety of distributions. The following
additional functions will produce tables and simple character based plots for discrete distributions:

Tbb(p,n) for binomial probabilities with probability p, n trials,
Tbp(lambda) for Poisson with mean lambda,
Tbg(p) for geometric with parameter p,
Tbn(p,n) for negative binomial with probability p and n successes,
Tbh(p,m,n) for hypergeometric with probability p, population size

m, n successes.

Calculating the function with specified parameters produces the listing and figure, as shown in the
illustration below. CALC ; List ; Tbb (.4375,20) $ produces the output in Figure R17.6.

R17: Using the Calculator R-474

Figure R17.6 Calculator Plot of Binomial Distribution

R17.12 Financial Functions

Net Present Value

 The net present value of a stream of K identical payments received at the beginning of each
period is

 Net present value = Npv (r, stream, k)

where r is the interest rate. For example, the net present value of a one million dollar lottery paid in
20 installments of $50,000, the first one right now, at an interest rate of 10% would be computed as
Npv (.1, 50000, 20), which is about $468,246. Note the format. The interest rate is stated in
fractional terms; 10% is .1, not 10.

R17: Using the Calculator R-475

 If the payment is different in each period, you need only create a variable in your data area
which contains those payments and replace the constant value in the above format with the name of
the variable. For example, to get the net present value of the five revenue projections, 75, 100, 125,
150, and 150, you would first create a variable named revenue containing these five values. Then,
you could compute Npv (.1, revenue, 5), which is about $484.36. Since the number of data points
involved will probably be small, the data editor would probably be the most convenient means of
setting this up.

Internal Rate of Return

 The internal rate of return for a stream of payments is the interest rate, r, such that

 -C + P0 + P1/(1+r) + P2/(1+r)2 + ... PK-1/(1+r)K-1 = 0.

where C is the initial outlay and K is the number of payments. This problem does not always have a
solution, and might have more than one. LIMDEP seeks a solution by scanning the range of r from
0.0 to 1.0 in increments of .01. If a solution exists in that range, it will be between two values of r
for which the expression above at these values will have different signs. We then interpolate linearly
between the two values. The accuracy of the solution is therefore to .005, or .5%
 To obtain internal rates of return, the format is the same as for net present value. The
function is

 Irr(c, fixed amount, k)

for a fixed payment or

 Irr(c, payments, k)

if the variable payments contains the payment stream. For the examples, the internal rate of return
on a $400,000 investment in the lottery ticket described above would be Irr(400000, 50000, 20) or
about 12.8% per year. For the revenue figures, suppose the initial outlay were $400. To get the
internal rate of return, you would use Irr(400, revenue, 5) which is about 20.6%.

R18: Two Step Estimators R-476

R18: Two Step Estimators

 Fitting a two equation model in two steps is a common procedure. Heckman’s (1979)
sample selection model is a widely cited example. There are many other applications. The typical
case involves computing a model at the first step, then inserting either a prediction or a residual (see
Terza, Basu and Rathouz (2008)) in a second equation. Under the usual assumptions, the second
step estimator is consistent, but the standard errors usually computed must be corrected for the
inclusion of a variable that is based on the estimated parameters from the first step.

R18.1 Covariance Matrices for Two Step Estimation

 The essential parts of the two step procedure are

Step 1. A model is estimated by least squares or maximum likelihood. Denote the parameters

estimated at this step as θ1.

Step 2. A second model is estimated in which a predicted value or a residual from the model in Step

1 appears on the right hand side of the equation. Denote the full set of parameters estimated
at this step as θ2.

We take it as given that estimation at both steps is consistent – the modeler will have to verify this on
a case by case basis. The remaining computation then is the correction of the estimated asymptotic
covariance matrix for the estimator at Step 2 for the randomness of the estimator from Step 1 which
has been used in the computation. We base our results for this computation on the Murphy and
Topel (1985) paper which presents a general method of doing the calculations. (See Greene (2011)
for additional discussion.) (There are like results for GMM estimation – see Newey (1984) –
however, we restrict our attention to maximum likelihood estimation in LIMDEP.)
 The underlying result is as follows (again, from Greene): Let V2 be the uncorrected
covariance matrix computed at Step 2, using the parameter estimates obtained at Step 1 as if they
were known, and V1 be the estimator of the asymptotic covariance matrix for the parameter estimates
obtained at Step 1. Both of these estimators are based on the respective log likelihood functions. In
addition, define

 n i2 i2
i 1

2 1

ln f ln f
'=

 ∂ ∂
= ∂ ∂

∑C
θ θ

and

 n i2 i1
i 1

2 1

ln f ln f
'=

 ∂ ∂
= ∂ ∂

∑R
θ θ

(Note the derivatives shown are the derivatives of individual terms in the two log likelihoods.) With
these in hand, the corrected covariance matrix for the second step estimator is

 V2* = V2 + V2[CV1C′ - RV1C′ - CV1R′]V2

R18: Two Step Estimators R-477

 Since the variety of combinations of model specifications which can give rise to this
computation is infinite, it is not possible to automate this generally in LIMDEP. But, a few special
cases are automated. The following will list these cases, then suggest some approaches for doing the
computation in other cases.

R18.2 Two Step Estimation for an Endogenous Discrete
Variable

 The general case that has been automated is a model of the form:

 y1 = a discrete variable specified by a probit, logit, Poisson, or negative binomial model or
 by a linear regression model,

 y2 = a dependent variable whose conditional mean function is a function of E[y1].

Models of this sort could in principle be estimated by full information maximum likelihood. We
consider two step estimation instead, which is usually simpler. Models for which the second step
shown above is automated are the following:

• probit and probit with heteroscedasticity,
• truncated regression,
• tobit and tobit with heteroscedasticity,
• Poisson and negative binomial regression,
• linear regression.

For these models, the estimation procedure is the following two steps:

PROBIT, LOGIT, etc. ; Lhs = y1 ; Rhs = as usual

; Prob = py ; Keep for Poisson or negative binomial
; Hold $

Model name ; Lhs = y2
; Rhs = as usual,py Note, py, not y1
; 2Step = py $

 In the example shown below, a probit model is estimated and the results are held for the
second step. At the second step, linear and Poisson regression models are estimated. (Results for the
probit model are omitted.) The second set of estimates in each example omit the Murphy and Topel
correction. The correction seems to be inconsequential in the linear regression results. However, the
same correction substantially changes the Poisson regression results.

REGRESS ; Lhs = docvis
; Rhs = one,hhkids,hhninc,epublic
; 2Step = epublic $

R18: Two Step Estimators R-478

Ordinary least squares regression
LHS=DOCVIS Mean = 2.87280
 Standard deviation = 5.14529
 Number of observs. = 4481
Model size Parameters = 4
 Degrees of freedom = 4477
Residuals Sum of squares = 116455.
 Standard error of e = 5.10019
Fit R-squared = .01811
 Adjusted R-squared = .01745
Model test F[3, 4477] (prob) = 27.5(.0000)
Diagnostic Log likelihood = -13657.05554
 Restricted(b=0) = -13698.00656
 Chi-sq [3] (prob) = 81.9(.0000)
Info criter. Akaike Info. Criter. = 3.25945
Covariance matrix corrected for two step using M&T
--------+--
 | Standard Prob. 95% Confidence
 DOCVIS| Coefficient Error z |z|>Z* Interval
--------+--
Constant| 1.20400* .72845 1.65 .0984 -.22374 2.63175
 HHKIDS| -.97872*** .15719 -6.23 .0000 -1.28680 -.67064
 HHNINC| -1.12430** .55245 -2.04 .0418 -2.20709 -.04152
 EPUBLIC| 2.78761*** .68587 4.06 .0000 1.44333 4.13190
--------+--
Constant| 1.20400* .72516 1.66 .0969 -.21729 2.62530
 HHKIDS| -.97872*** .15710 -6.23 .0000 -1.28663 -.67081
 HHNINC| -1.12430** .54909 -2.05 .0406 -2.20051 -.04810
 EPUBLIC| 2.78761*** .68296 4.08 .0000 1.44904 4.12619
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

POISSON ; Lhs = docvis
; Rhs = one,hhkids,hhninc,epublic
; 2Step = epublic $

Poisson Regression
Dependent variable DOCVIS
Log likelihood function -15988.45468
Restricted log likelihood -16398.15386
Chi squared [3 d.f.] 819.39836
Significance level .00000
McFadden Pseudo R-squared .0249845
Estimation based on N = 4481, K = 4
Inf.Cr.AIC =31984.909 AIC/N = 7.138
Murphy/Topel 2Step VC matrix:P= EPUBLIC
Chi- squared = 38697.41953 RsqP= .0627
G - squared = 23425.26493 RsqD= .0338
Overdispersion tests: g=mu(i) : 10.260
Overdispersion tests: g=mu(i)^2: 10.487

R18: Two Step Estimators R-479

--------+--
 | Standard Prob. 95% Confidence
 DOCVIS| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .18737 .65821 .28 .7759 -1.10269 1.47743
 HHKIDS| -.35941*** .04667 -7.70 .0000 -.45087 -.26794
 HHNINC| -.41892 .31052 -1.35 .1773 -1.02752 .18968
 EPUBLIC| 1.27807* .65511 1.95 .0511 -.00592 2.56207
--------+--
Constant| .18737* .10037 1.87 .0619 -.00936 .38410
 HHKIDS| -.35941*** .01929 -18.63 .0000 -.39722 -.32160
 HHNINC| -.41892*** .06919 -6.05 .0000 -.55453 -.28330
 EPUBLIC| 1.27807*** .09692 13.19 .0000 1.08811 1.46803
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R18.3 Two Step Estimation for an Endogenous Regression
Variable

 The same set of procedures described in the previous section may also be used when the first
step is a linear regression. Thus, the model is

 y1 = θ1′x1 + ε1, ε1 ~ N[0,σ2]

 density function for y2| y1 = f (y2, x2, | θ2 , θ1′x1).

The model is estimated by fitting the first equation by linear least squares, then inserting the
prediction from the linear model into the second equation and estimating θ2 by maximum likelihood,
including, presumably, the coefficient on E[y1] in the specification for y2. The Murphy and Topel
correction is then done at the second step. The only change will be the first step model command,
which is changed from PROBIT or LOGIT to REGRESS. The command sequence would be

REGRESS ; Lhs = y1 ; Rhs = as usual
; Keep = fy Note, ; Keep, not ; Prob
; Hold $

Model ; Lhs = y2
; Rhs = as usual,fy
; 2Step = fy $

The template shown immediately above is also the one used when the first step estimator is a Poisson
or negative binomial regression model.

R18: Two Step Estimators R-480

R18.4 Programming a Two Step Estimator

 The preceding includes a fairly large number of possible specifications, given all of the
different combinations. (Any of the first step models may be used with any of the second step
models.) But, an essentially infinite number of possible different specifications remain. If you wish
to use this procedure, you may have to program the second step correction yourself to do so.
LIMDEP’s various programming features should make this fairly easy. To illustrate, we will present
two applications, first an extremely simple case of a probit first step and a linear second one, then a
moderately complicated case in detail.
 The first example has a probit first step equation:

 y1* = θ′z + u1, , u1 ~ N[0.1]

 y1 = 1(y1* > 0),

 E[y1] = Φ(θ′z) Φ(.) = standard normal CDF

and a second step linear regression model fit by least squares,

 y2 = β′x + αE[y1|z] + ε. N[0,σ2]

At step 1, θ is estimated by maximizing the log likelihood

 log L1 =)|,(log
1 11∑ =

n
i iii yf θz = ()ii

n
i

q z'log
1

θΦ∑ =
, where qi = 2y1i – 1.

At step 2, (β,α) are estimated by least squares regression of y2 on x and ˆ()′Φ zθ . The appropriate
second step log likelihood for the regression is

 LogL2 = n 2 2 21 1 1

22 2 2i 1
ˆlog log 2 (1/)[(')]i i iy

=
′− σ − π − σ − − αΦ∑ x zβ θ .

The components of the covariance matrix are V1, the asymptotic covariance matrix estimated for the
probit model at the first step, V2, the conventional covariance matrix at the second step – without the
degrees of freedom correction, so V2 = (e′e/n)(X* ′ X*)-1 where X* contains the extra variable

ˆ()′Φ zθ i . From the definitions earlier,

 2 2
2 21 1

2 1

ln ln ˆ()ˆ' ()
n n ii i i i

i ii i
i

f f e e
= =

 ∂ ∂ ′ ′= = αφ θ ∂ ∂ σ σ′Φ θ
∑ ∑

x
C z z

zθ θ

and

 2 1
21 1

2 1

ˆln ln ()
ˆ ˆ' () ()

n n ii i i i i i
ii i

i i i

f f e q q
q= =

 ′ ∂ ∂ φ θ ′= = ∂ ∂ σ ′ ′Φ θ Φ θ
∑ ∑

x zR z
z zθ θ

.

R18: Two Step Estimators R-481

 The following program computes this entirely from first principles, without using the
preprogrammed estimation routines: The initial NAMELIST and CREATE commands set up the
specific problem. The rest of the program is generic.

 NAMELIST ; z = Rhs variables for the probit equation $
 CREATE ; y1 = Lhs variable for probit equation $
 NAMELIST ; x = Rhs variables for the regression equation $
 CREATE ; y2 = Lhs variable for regression $

 CALC ; k1 = Col(z) $
 CREATE ; qi = 2 * y1 - 1 $
 MAXIMIZE ; Start = k1_0 ; Labels = k1_theta
 ; Fcn = Log(Phi(qi * theta1 ’ z)) $
 MATRIX ; v1 = varb ; theta = b $
 CREATE ; p1 = Phi(z ’ theta) $
 NAMELIST ; xs = x,p1 $
 MATRIX ; b_a = <xs ’ xs> * xs ’ y2 $
 CREATE ; ei = y2 - xs ’ b_a $
 CALC ; s2 = ei ’ ei/n ; kplus1 = Col(xs) $
 MATRIX ; v2 = s2 * <xs ’ xs> $
 CREATE ; ci = 1/s2 * ei * 1/s2 * ei * b_a(kplus1) * N01(z ’ theta) $

CREATE ; ri = 1/s2 * ei * qi * N01(qi * z ’ theta)/Phi(qi * z ’ theta) $
MATRIX ; c = xs'[ci]z ; r = xs'[ri] z $
MATRIX ; v2c = c*v1*c' - r*v1*c' - c*v1*r' ; v2c = v2 + v2*v2c*v2 $
MATRIX ; Stat(b_a, v2c, xs) ; Stat(b_a, v2, xs) $

 For the second example, we consider a multinomial logit model for a y2 which has three
outcomes and a y1 determined by a probit model. The model is

 y1* = θ′z + ε1, y1 = 1(y1* > 0), E[y1] = Φ(θ′z), ε ~ N[0,σ2], Φ(.) = standard normal CDF,

 Prob[y2 = j] = ej / (e0 + e1 + e2), j = 0, 1, 2,

 e0 = 1

 e1 = exp[β1′x + γ1Φ(θ′z)]

 e2 = exp[β2′x + γ2Φ(θ′z)].

At step 1, θ is estimated by maximizing the log likelihood

 log L1 =)|,(log
1 11∑ =

n
i iii yf θz

 = ()ii
n
i

q z'log
1

θΦ∑ =
, where qi = 2y1i – 1.

R18: Two Step Estimators R-482

After the first step is complete, the predictions, Φ(θ′z), are computed using the maximum likelihood
estimates, then the log likelihood for the second model is maximized with respect to β1,γ1,β2,γ2 while
treating the predictions as if they were observed data. The second step log likelihood function is

 log L2 =),,,|)'(,,(log 2211 122 γγΦ∑ =
ββθ

n
i iiii yf zx

 =][Probln 2
2

01
jyd ij ij

n
i

=∑∑ ==
, where dij = 1 if y2i = j, j = 0,1,2

 Each step produces its own estimated parameter vector and asymptotic covariance matrix.
The matrices needed for the correction are:

 C = [] ')'()()(

)'(
)(

)'(
)(

222111

22

11

1 iiiiii

i

i
ii

i

i
ii

n
i

PdPd
Pd

Pd
zz

z
x

z
x

θ

θ

θ
φγγ −+−×

Φ

−

Φ

−

∑ =

 R =

Φ

×

Φ

−

Φ

−

∑ =
'

)'(
)'(

)'(
)(

)'(
)(

22

11

1 i
ii

ii

i

i
ii

i

i
ii

n
i q

q

Pd

Pd
z

z
z

z
x

z
x

θ
θ

θ

θ φ

(Derivatives for the logit and probit log likelihoods above appear in greater detail later in this
manual.)

The first part of the routine is set up for the particular application. The remainder is general and
need not be changed.

 NAMELIST ; x = … define the Rhs for the logit model
 ; z = … define the Rhs for the probit model
 CREATE ; y1 = … dependent variable in probit model
 ; y2 = … dependent variable in logit model

Next, we estimate the probit model. The IMR = lambda is just for convenience. It computes the
q*N01/Phi in the first log likelihood. We pick up the other terms now.

 PROBIT ; Lhs = y1 ; Rhs = z ; Prob = prob ; Hold(IMR = lambda) $
 CREATE ; den1 = N01(b’z) $
 MATRIX ; v1 = varb $

Augment the Rhs from the logit model with the fitted probability from the probit model, then fit the
logit model.

 NAMELIST ; xp = x,prob $
 LOGIT ; Lhs = y2 ; Rhs = xp $

R18: Two Step Estimators R-483

Get the subvectors of the logit parameter vector and the coefficients on the fitted probability.

 CALC ; k = Col(xp) ; j21 = k+1 ; j22 = 2*k
 ; gamma1 = b(k) ; gamma2 = b(j22) $
 MATRIX ; b1 = b(1:k) ; b2 = b(j21:j22) $

Compute the scalars that appear in the summations in the construction of the c and r matrices.

 CREATE ; d0 = (y2=0) ; d1 = (y2=1) ; d2 = (y2=2)
 ; e1 = Exp(b1’xp) ; e2 = Exp(b2’xp)
 ; p0 = 1 / (1 + e1 + e2) ; p1 = e1 * p0 ; p2 = e2 * p0
 ; u1 = (d1 - p1) ; u2 = (d2 - p2)
 ; dc1 = u1*(u1*gamma1 + u2*gamma2)*den1 ; dr1 = u1*lambda
 ; dc2 = u2*(u1*gamma1 + u2*gamma2)*den1 ; dr2 = u2*lambda $

Note the matrix constructions. The namelist [variable] namelist format is specifically for computing
matrices of the form of c and r in the expressions above. We compute both matrices in two parts,
then stack the parts.

 MATRIX ; cm1 = xp’ [dc1] z ; cm2 = xp’ [dc2] z
 ; rm1 = xp’ [dr1] z ; rm2 = xp’ [dr2] z
 ; c = [cm1 / cm2] ; r = [rm1 / rm2]

The last computation computes the corrected covariance matrix, and then displays the results.

 ; t = c * v1 * c’ – c * v1 * r’ – r * v1 * c’
 ; v2 = varb + varb * t * varb
 ; Stat(b,v2) $

R18.5 Theory for Two Step Estimators

 This section will present the theoretical results which underlie the Murphy and Topel (1985)
estimator for the asymptotic covariance matrix of a two step maximum likelihood estimator. These
results are used at many points in this manual.
 For convenience, we will temporarily suppress explicit references to data and observations.
We consider maximum likelihood estimation of two parameter vectors, θ1 which appears in the first
step log likelihood, log L1(θ1), and θ2 which appears with θ1 in the second step log likelihood, log
L2(θ1,θ2). The second step of the procedure is to maximize with respect to θ2 the conditional log
likelihood,

log log ,L Lc
2 2 1 2=

∧
θ θ

R18: Two Step Estimators R-484

where θ
∧

1 is the first step maximum likelihood estimator computed by maximizing logL1(θ1).

Maximizing log L2
c with respect to θ2 while inserting the previously obtained MLE, θ

∧

1 is not
generally equivalent to FIML estimation of θ1 and θ2 by maximizing log L2(θ1,θ2) with respect to θ1,
and θ2 simultaneously.

The following useful result appears in Maddala (1983, p. 243)

θ
∧

2 - θ2 ~
a

 - E L∂
∂ ∂

2
2

2 2

1
log

'θ θ

−
∂

∂
∂
∂ ∂

log log
'

L E L2

2

2
2

2 1
1 1θ θ θ

θ θ

 +

 −

∧

where the symbol ~
a

 means ‘has the same asymptotic distribution as.’ The matrix on the left would

be the asymptotic covariance matrix of θ
∧

2 if θ1 were not present in the log likelihood. In order to
generate the population analog of the Murphy and Topel estimator, we now insert two other useful
results from ‘regular’ maximum likelihood estimation. First,

E L E L L∂
∂ ∂

∂
∂

∂
∂

2
2

2 1

2

2

2

1

log
'

log log
'θ θ θ θ

 = −

 .

Second, if θ
∧

1 is the maximum likelihood estimator of θ1 based on logL1(θ1), then

θ
∧

1 - θ1 ~
a

−

−

E L L∂
∂ ∂

∂
∂

2
1

1 1

1

1

1

log
'

log
θ θ θ

.

Insert these two expressions into Maddala’s result to obtain

θ
∧

2 - θ2 ~
a

 - E L∂
∂ ∂

2
2

2 2

1
log

'θ θ

−
∂

∂
∂

∂
∂

∂
∂
∂ ∂

∂
∂

log log log
'

log
'

logL E L L E L L2

2

2

2

2

1

2
1

1 1

1

1

1θ θ θ θ θ θ

 −

 −

−

 .

To find the asymptotic variance, note that this expression is of the form

θ
∧

2 - θ2 ~
a

 V2[g2 - AV1g1]

where g1 and g2 are random (first derivative) vectors and V2, V1, and A are nonstochastic matrices
(of expectations). Thus, the asymptotic variance would be

Asy.Var[θ
∧

2 - θ2] =

V2{AVar[g2] + AV1AVar[g1]V1A′ - AV1ACov[g1,g2] - ACov[g2,g1]V1A′}V2.

R18: Two Step Estimators R-485

The two asymptotic variances in the expression are the negatives of the expected Hessians of the
respective log likelihoods. V2 is what would normally be computed as the asymptotic covariance
matrix for 2θ̂ , but this expression corrects it for the presence of 1θ̂ . Thus, AVar[g2] = V2

-1 and
Asy.Var[g1] = V1

-1. The asymptotic covariance of the two gradients is less familiar, but is estimable
with the sample counterparts of the individual terms in the log likelihoods. The parts, therefore, can
be seen to be the population analogs of the Murphy and Topel estimators presented earlier. We
estimate V2 with the conventional (albeit incorrect) estimator of the asymptotic variance of 22θ̂ . We

estimate V1 with the estimator of the asymptotic covariance matrix of 1θ̂ . Finally, we have
estimated A with G′M and ACov[g2,g1] with G′D. (Factors 1/n have been omitted in several places.)
 When the second step of the estimation is a least squares regression, we can obtain some
simplification. The equation estimated by ordinary least squares is

yi2 = γh(xi1,θ1) + xi2′θ2 + εi1.

Define the n×(1+K2) matrix Z2 = [zi′]i=1,...,n = [h(xi1,θ1), xi2′]i=1,...,n. Let V1 denote the K1×K1 estimated
asymptotic covariance matrix for the first step estimator of θ1 and let V2 denote the estimated
asymptotic covariance matrix for the second step least squares estimator of [γ,θ1]. Typically, this

would be s2 Z Z'
∧ ∧ −

1

where s2 = e′e/(n-K1-1). The degrees of freedom correction is immaterial in what

follows, as the results are asymptotic. If the second step is viewed as conditional maximum

likelihood estimation, then s2 would be replaced with
∧

σ2 = e′e/n. For purposes of the corrected
covariance matrix, we would have

gi2 = ε
σ

i
2 zi,

mi2 = ε
σ

i
2 γ ∂

∂
h xi(,)1 1

1

θ
θ

 = ε
σ

i
2 γwi

 di1 =
1

11),(
θ

θ
∂

∂ ih x .

(The last is the ith term in the derivative of the log likelihood upon which the first step estimator of
θ1 is based.) In constructing the corrected covariance matrix,

G′M = γ
σ

ε4
2

1 i i ii

n
z w '

=∑

Assuming that the disturbances are not heteroscedastic to begin with, the large sample behavior of
this will be the same as that of (γ/σ2)Z′W, so we will insert this in the corrected covariance matrix
where appropriate. (A factor 1/n needed to make this converge has been suppressed; it will cancel
out in the end.) The other matrix is

 G′D = 1
2 1σ

εi i ii

n
z d '

=∑ .

R18: Two Step Estimators R-486

Combining terms, then, we use

V2* = σ2(Z′Z)-1 + σ2(Z′Z)-1[(γ/σ2)2(Z′W)V1(W′Z)

 - (γ/σ4)(Z′W) V1(εi i ii

n
d z '

=∑ 1
) - (γ/σ4)(εi i ii

n
z d '

=∑ 1
)V1(Z′W)] σ2(Z′Z)-1.

A factor (1/σ4) will cancel in the second part of the equation. If we write the summation as D′EZ
where E = diag(εi), then the expression reduces to

V2* = σ2(Z′Z)-1 + (Z′Z)-1[γ2(Z′W)V1(W′Z) -

 γ(Z′W)V1(D′EZ) - γ(Z′ED)V1(Z′W)](Z′Z)-1.

Finally, in many situations, εi will be uncorrelated with both zi and di and with elements in zidi.′. For
example, di might be simple multiples of elements in xi2. In this case, the second and third terms in
the brackets would become small in large samples, leaving for this special case,

V2* = σ2(Z′Z)-1 + (Z′Z)-1[γ2(Z′W)V1(W′Z)](Z′Z)-1

= σ2(Z′Z)-1[(Z′Z) + (γ/σ)2(Z′W)V1(W′Z)](Z′Z)-1.

R19: Programming with Procedures R-487

R19: Programming with Procedures

R19.1 Introduction

 Your first uses of LIMDEP will undoubtedly consist of setting up your data and estimating
the parameters of some of the models described in the Econometric Modeling Guide. The purpose of
this chapter is to introduce LIMDEP’s tools for extending these estimators and writing new ones.
The programs described in this and the next two chapters will also help you make more flexible use
of the preprogrammed estimators, such as in testing hypotheses, analyzing specifications, and
manipulating the results of the estimation procedures.

R19.2 The Text Editor

 The tools and methods described in this chapter will make heavy use of the editing features
of the program. The various menus described earlier and in the model sections to follow will be of
limited usefulness when you are writing your own programs. The text editor will be essential.

R19.2.1 Placing Commands in the Editor

 LIMDEP’s editing window shown in Figure R19.1 is a standard Windows text editor. Enter
text as you would in any other Windows based text editor. You may enter as much text as you like
on the editing screen. The Edit menu provides standard editing features such as Cut, Copy, Paste,
Go To, and Find.

Figure R19.1 The Editing Window and the Edit Menu

The Insert menu shown in Figure R19.2 can also be used in the editing window. The Insert menu
allows you to place specific items on the screen in the editing window:

R19: Programming with Procedures R-488

Figure R19.2 Insert Menu for Text Editor

• Insert:Command will place a specific LIMDEP command (verb) at the insertion point

(where the cursor is). A dialog box allows you to select the verb from a full listing (with
explanation) of the commands.

• Insert:File Path will place the full path to a specific file at the insertion point. Several
LIMDEP commands use files. The dialog box will allow you to find the full path to a file on
your disk drive, and insert that path in your command.

• Insert: Text File will place the full contents of any text file you select in the editor at the
insertion point. You can merge command files, or create command files, using this tool.

R19.2.2 Executing the Commands in the Editor

 When you are ready to execute commands, highlight the ones you wish to submit. Then, you
can execute the commands in one of two ways:

• Click the GO button on the LIMDEP toolbar. (If the toolbar is not displayed click the
Tools:Options/View tab, then turn on the Display Tool Bar option. See Figure R19.3.)

• Select the Run menu at the top of your screen. See Figure R19.4. When commands are
highlighted, the first two items in this menu will be:

° Run selection to execute the selected commands once.
° Run selection Multiple Times to open a dialog box to specify the number of times

to run the highlighted commands.

TIP: If you have not selected any lines in the editor, the two selections in the Run menu will be
Run Line and Run Line Multiple Times. In this case, the line in question is the line where the
cursor is located.

R19: Programming with Procedures R-489

Figure R19.3 Tools:Options/View Menu to Set Up Desktop

Figure R19.4 Run Menu

R19: Programming with Procedures R-490

R19.2.3 Executing Silently

 SILENT execution is useful when you are running an iterative program or executing a set of
commands several times, and the output from any particular run is not of interest. You can turn off
all output from all commands by placing the command SILENT in your editor file at the point where
you want the output turned off. For example, suppose you executed the second line in the following
block of commands once, then the last three commands 100 times. First, initialize the procedure:

 SILENT
 MATRIX ; bsum = Init(2,1,0.0) $

Then, compute the average of 100 sets of least squares estimates.

 CREATE ; x = Rnn(0,1) ; y = x + Rnn(0,1) $
 REGRESS ; Lhs = y ; Rhs = x $
 MATRIX ; bsum = bsum + .01 * b $

 This would produce a huge amount of regression output, though, in fact, only the average of
the 100 estimators is really of interest. By adding the SILENT command, you can suppress the
intermediate regression output. As shown, with SILENT, this program would generate no visible
output save for a small trace in the status window in the top half of your output window, which will
show you what command is executing. The display in your output window will show you what
command is executing at any point. The command to resume the visible output is NOSILENT.
 You might use this at the end of your procedure so that you can see the results that you have
generated. For example, the preceding simulation, in full, might be:

 MATRIX ; bsum = Init(2,1,0.0) $
 PROCEDURE
 CREATE ; x = Rnn(0,1) ; y = x + Rnn(0,1) $
 REGRESS ; Lhs = y ; Rhs = one,x $
 MATRIX ; bsum = bsum + 1/100 * b $
 ENDPROCEDURE
 SILENT
 EXECUTE ; n = 100 $
 NOSILENT
 MATRIX ; List ; bsum $

The output window shown in Figure R19.5 shows that even though 100 regressions were computed,
the SILENT command suppresses everything save for the last command which displays the only
results of interest

R19: Programming with Procedures R-491

Figure R19.5 Results from Silenced Procedure

R19.2.4 Using Text Files with the Editor

Reading a File into the Editor

 You can insert the contents of any ASCII file into the editor. Just position the cursor in the
editing window where you want the file inserted, then select Insert:Text File from the Insert menu
and double click the file name. You can also insert a file if you right click in the editing window.
This opens a menu that combines parts of the Edit, Insert and Run menus. From this menu, select
Insert Text File to place the contents of the file in your editing window. See Figure R19.6.

R19: Programming with Procedures R-492

Figure R19.6 ‘Right Click’ Menu in Editing Window

You can use edit/copy and edit/paste to move anything from your word processor into the text editor
in LIMDEP, including equations, figures, etc. For example, if you paste MathType equations from a
Word document, they will be replicated in the editing window. However, nonASCII items, such as
these equations, will disappear when the contents of the text editor are saved on your computer at the
end of your session.

Writing a File from the Editor

 You can save the contents of the editor in an ASCII file as well. When the editing window is
open, you can select Save or Save As from the File menu. The next dialog box will query you
where to save the file. Also, when you leave the program, you will be queried if you wish to save
the contents of the editor – this is usually called ‘Untitled 1’ unless you have opened an existing file.
(And, note once again, if the window contains nonASCII items, these will be lost when the file is
written in text format.)

Executing a File with Run

 To execute the commands in a file, select Run File from the Run menu. (See Figure R19.4)
Double clicking the file name will automatically execute the commands in the file. This mode is
similar to ‘batch mode’ in that commands are read from the file and executed as they are read, but
they are not read into the text editor at the same time, and there is no interaction between you and the
program while this is being done. Once the file is read and the commands are executed, the results
appear in the output window and focus returns to the text editor as LIMDEP awaits your next
instruction. The command files that you submit in this fashion may contain any commands or sets of
commands that might otherwise be placed in the editor.
 The command

 OPEN ; input = the name of the file $

R19: Programming with Procedures R-493

is the same as selection of the file from the Run menu. Insert:File Path will be useful with this
command. The dialog box allows you to find the full path on your disk drive and insert that path in
your command. Also, file names should be enclosed in double quotes. Insert:File Path does this
automatically. See Figure R19.7 for an application of this device.

Figure R19.7 Using Insert File Path in the Text Editor

 You may place a sequence of OPEN commands in your editing window if you wish. The
text editor can open as many files as desired, but only one at a time. (Command files may not open
other command files.)

R19.3 Estimation Programs and Postprocessing

 For basic estimation purposes, the data setup and model commands,

 READ to input the data,
 CREATE to transform the data,
 SAMPLE, REJECT, INCLUDE, PERIOD to define the current sample, and
 REGRESS, PROBIT, LOGIT ... to estimate the model,

produce listings of parameter estimates, standard errors, and numerous diagnostic statistics. But,
every estimation program also produces an easily ‘retrievable’ set of statistics and results for you to
use in ‘postprocessing.’ By ‘retrievable,’ we mean that the number or set of numbers is available to
you to use, symbolically, in a subsequent command. (This might seem routine, but, in fact, it is not
at all. In software which is strictly menu driven, there is usually no means by which earlier results
can be recovered for any purpose. This is a critical disadvantage of strictly menu driven statistical
packages.) For example, consider testing the hypothesis that a set of coefficients equals zero in a
probit model, using the likelihood ratio test. One could proceed as follows:

R19: Programming with Procedures R-494

Step 1. Estimate the unrestricted model and write down the log likelihood, logLu.
Step 2. Estimate the restricted model and write down the log likelihood, logLr.
Step 3. Using a hand calculator, compute χ2 = -2(logLr - logLu).

If the log likelihood functions were retrievable within the program, there would be no need to
employ outside resources such as a calculator or a pencil and paper. Retrievability brings a second,
less obvious benefit. There must be some means of using the result once it is retrieved. For the
example above, for the log likelihoods to be useful in further computations, it must be possible to do
the computation in Step 3 within the program. A close look at most modern econometrics packages
reveals that they generally provide some means of manipulating scalar results such as log likelihood
functions, once they are computed. This is the crucial function of ‘programmability.’ We have used
this feature repeatedly in almost every chapter of this manual.
 Programs do differ in the degree to which one can program and postprocess results.
Consider, for example, carrying out a Hausman test on a subset of the coefficients estimated by two
different estimators. This operation would require:

1. The ability to save, then retrieve both coefficient vectors and covariance matrices,
2. The ability to extract subvectors and submatrices in a way that leaves them accessible later,
3. The ability to manipulate simultaneously several matrices and vectors, and,
4. A means of evaluating the significance of the test statistic.

These require a considerable amount of flexibility. LIMDEP’s programming tools, notably the
CALC and MATRIX commands, are written to provide the maximum access to estimation results
and the greatest ability to manipulate those results.
 All the estimation programs in LIMDEP produce four types of retrievable results:

1. Column vectors of data, in the form of predictions, residuals, or other functions,
2. Scalar results, such as log likelihood functions, test statistics, and parameters,
3. Matrix results, including coefficient vectors and asymptotic covariance matrices,
4. Coefficient estimates and a set of symbolic labels that facilitate testing hypotheses.

The features described in the next three sections rely heavily on this aspect of LIMDEP. What is
referred to above as ‘postprocessing’ is the use of these estimation results in subsequent commands
to analyze data in the context of a particular model, an extension of the model, or some general
modeling framework. For example, LIMDEP provides the full set of tools needed to carry out the
Hausman test suggested above, say, in the context of the discrete choice or nested logit model.
 The primary commands for numeric manipulation of data and estimation results are:

1. CREATE which transforms a full column of data at a time,
2. CALC which computes single results, in standalone expressions or using earlier

calculations, prior estimation results, columns of data, and so on, and
3. MATRIX for manipulating estimation results or other matrix valued results.

R19: Programming with Procedures R-495

CREATE is described in Chapters R4 and R5. MATRIX and CALC are detailed in Chapters R16
and R17. The three commands will often be used at the same time. For example, as part of the
analysis of the sample selection model described in Chapter E52, we require a statistic

 δ
_

 = (1/n)Σi λi (zi + λi)

where zi = α′wi for a parameter vector α and observation vector wi, and

 λi = φ(zi)/Φ(zi), where φ and Φ are the standard normal PDF and CDF.

The coefficients are the estimation results from a PROBIT command. The sequence of commands
which involves estimation and postprocessing, are

 NAMELIST ; wi = the list of names... $
 PROBIT ; ... ; Rhs = wi $
 MATRIX ; alpha = b $ retrieve the coefficients
 CREATE ; zi = z’alpha ? compute the variable
 ; lambdai = N01(zi)/Phi(zi)
 ; deltai = lambdai * (zi + lambdai) $
 CALC ; deltabar = Xbr(deltai) $

(There are somewhat shorter ways to obtain this result.) This simple example suggests what most of
your postprocessing programs will look like. To continue the example, having computed deltabar,
you might use it (as we do) in a matrix result such as

 V = (s2 + βk

2 δ)[X′X]-1.

The commands could be

 NAMELIST ; x = ... $
 CALC ; k = Col(x) $ number of columns
 REGRESS ; ... $ computes retrievable coefficient vector, B.
 MATRIX ; v = {ssqrd + b(k)^2 * deltabar} * <X’X> $

and, so on. Note, once again, how results are carried ‘downstream’ into subsequent commands.

R19.4 Procedures

 LIMDEP operates primarily as an ‘interpreter.’ This means that commands are submitted
one at a time, and carried out as they are received. This is as opposed to a ‘compiler’ which would
assemble a number of commands in some fashion, translate them into its own language, then execute
them all at once. ‘Batch’ mode, or batching commands provides a middle ground between these,
whereby you can submit groups of commands from input files or as streams of commands from the
editor or in a procedure. If the use of this is merely to submit a sequence of commands with a small
number of keystrokes (for which LIMDEP provides several methods), then batching provides
nothing more than a convenience. But, LIMDEP also provides batch like capabilities which make it
operate more like a compiler than an interpreter. Consider the logic of an iterative program:

R19: Programming with Procedures R-496

Step 1. Initial setup.
Step 2. Compute a result based on current information and previous results.
Step 3. Decide whether to exit the iteration or return to Step 2, and act on the decision.

In order to carry out such a sequence of commands, you must have several capabilities available.
First, results of Steps 1 and 2 must be retrievable. Second, it must be possible not only to submit the
set of commands in Step 2 in a batch mode, it must be possible to do so repeatedly. Step 3 may call
for many repetitions of the same set of commands. Here is a trivial example:

Step 1. CALC ; i = 0 $
Step 2. CALC ; List ; i = i + 1 $
Step 3. If i < 10, go to Step 2.

If we execute this program, it will display the numbers 1 to 10. The problem of retrievability is
obviously solved, assuming, of course, that CALC can compute and define something called ‘i’ in
such a way that later on, i will exist. (Certainly it can; see the previous chapter.) The second step
will be carried out 10 times. Obviously, you could simply be the program. That is, type the
command and look at i. If i is less than or equal to 10, type it again. The point of this discussion is
to devise a way to make LIMDEP do the repetitions for you.
 As noted, LIMDEP provides several methods of batching commands. The example above
could be handled as follows:

 CALC ; i = 0 $
 PROCEDURE
 CALC ; i = i + 1 $
 ENDPROCEDURE
 EXECUTE ; n = 10 $

This example initializes i, stores the updating command, then executes the stored command 10 times.
There are other ways to do this, as well. For example, a shorter way to display the numbers from 1
to 10 is

 PROCEDURE
 CALC ; List ; i $
 ENDPROCEDURE
 EXEC ; i = 1,10 $

Yet another way to proceed would program the steps literally. This would be

 CALC ; i = 1 $
 PROCEDURE
 LABEL ; 100 $
 CALC ; List ; i ; i = i + 1 $
 GO TO ; 100 ; i <= 10 $
 ENDPROCEDURE
 EXECUTE

This procedure is only executed once, but it contains a loop within it. It displays, then updates i 10
times.

R19: Programming with Procedures R-497

 The device used in each case (and generally) will be the ‘procedure.’ Procedures such as
these provide a convenient way to store commands. The EXECUTE command offers numerous
options for how to carry out the procedure and how to decide to exit from the procedure.
 LIMDEP is highly programmable. As shown in numerous examples already, and throughout
the Econometric Modeling Guide, you can arrange long sequences of commands to perform intricate
analyses. Procedures, which are similar to ‘subroutines’ or small programs greatly extend this
capability. Procedures will allow you to automate new estimators that are not already present in
LIMDEP, and to compute certain test statistics that are not routine parts of the standard output. The
remainder of this chapter will show you how to write and execute procedures.

R19.5 Defining and Executing Procedures

 To store a set of commands you begin with the command

 PROCEDURE or just PROC

This tells LIMDEP that the commands that will follow are not to be executed at the time, but just
stored for later use. The end of a procedure is indicated with

 ENDPROCEDURE or just ENDPROC

Once a set of commands has been entered as a procedure, you can execute it with

 EXECUTE or just EXEC

The EXECUTE command has a number of options which are discussed below.
 A procedure can be entered at any point, just by submitting it from the editing window. For
example

 CREATE ; x = Rnn(0,1) ; y = x + 1 + Rnn(0,2) $
 PROC
 SAMPLE ; first - last $
 REGRESS ; Lhs = y ; Rhs = one,x $
 ENDPROC
 CALC ; first = 1 ; last = 10 $
 EXEC

At the time the procedure is created, the sample limits might not exist. The procedure is defined, the
sample limits are set, and, finally, the procedure is executed. The procedure, in turn, sets the sample
and computes a regression.
 You can also load a procedure from an input file. The file must contain the command
PROCEDURE at the point at which the procedure is to begin, and ENDPROCEDURE at the end
of the procedure. These might be the first and last commands in the file if you want only to input a
procedure. If you OPEN such an input file, it will simply be loaded into the procedure buffer,
exactly as if you had typed it. But, remember, the PROCEDURE cannot OPEN any files itself.

R19: Programming with Procedures R-498

 The following apply to procedures:

• The procedure loader is not a compiler. The commands you type are not checked in any way
for validity. If you type nonsense, LIMDEP will dutifully store it for you. The problems
will show up when you try to execute the procedure. (But, see below, procedures can be
edited.)

• A procedure may consist of no more than 10,000 nonblank characters. When the commands
are stored, the embedded blanks are removed and comments are stripped off. Still, it may
pay to use short names and always use the four letter convention for model commands.

• The procedure may contain up to 50 commands, but remember that you can combine many
CREATE, CALC, or MATRIX operations in a single command by separating them with
semicolons.

• Only one active procedure can be defined at a time. If you issue a PROCEDURE
command, any procedure which existed before is immediately erased. But, you can store up
to 10 more procedures in a library, which is described in the next section.

• Project files (.lpj files) always contain not only the active procedure, but also any procedures
that you have stored in your procedure library. They become part of the project.

R19.5.1 The Procedure Library

 The preceding shows how to store an ‘active’ procedure that you can execute with the simple
command EXECUTE. We denote this the ‘current procedure.’ You can also store up to 10
additional procedures, by name, in a library of procedures. Use

 PROC = procname $

to begin storage of a named procedure. The named procedure is then executed with

 EXECUTE ; Proc = procname ; ... $

(There are other options available for the EXECUTE command.) Therefore, you can have up to 11
procedures active at any time, the current procedure and up to 10 library routines. The current
procedure can be invoked with the EXECUTE command, while the library procedures are executed
by name. You will find the names of library procedures in your project window, as shown in the
example below.

R19: Programming with Procedures R-499

Figure R19.8 Project Window with Procedure Library

R19.5.2 Executing a Procedure

 The simplest means of executing a procedure you have stored is the command

 EXECUTE

This will carry out the set of commands you have stored exactly once. At the end of the last
command, the message ‘Maximum repetitions’ will appear on your screen. (You have requested one
repetition.)
 You can EXECUTE a procedure as many times as you like, just by repeating this command.
A library procedure is executed with

 EXECUTE ; Proc = procname $

NOTE: When you execute a library procedure, it becomes the current procedure. Thus, if you want
to execute it again, the ‘; Proc = procname’ is not necessary.

The other options for executing procedures in different ways are described in the following sections.

R19: Programming with Procedures R-500

R19.5.3 Repeated Execution of a Procedure

 There are several options available for the EXECUTE command that are based on use of the
PROCEDURE as an iterative routine, such as that shown in the examples below. Repeated
execution is obtained with

 EXECUTE ; n = number of repetitions $

The procedure will be executed the specified number of times unless some other method of exiting it
is invoked. For example, consider the following:

 CALC ; count = 0 $
 PROC

 CALC ; count = count + 1 $
 ENDPROC
 EXECUTE ; n = 10 $

This will display the numbers from one to 10, then exit on maximum repetitions of 10.

R19.5.4 Executing a Procedure Silently

 Procedures are often used to produce a final result with many intermediate computations.
You can suppress intermediate output with

 EXECUTE ; Silent $

This suppresses all output. When the procedure is completed, the SILENT switches are turned off.
You can then use MATRIX, CALC, or whatever other means are necessary to inspect the desired
final result from the procedure. You might use this in an experiment in which you fit the same
model many (possibly thousands of) times and accumulate a statistic from the execution. For
example, you might investigate whether the mean of a certain statistic is zero with the following
procedure. The procedure is general – you could replace the application specific part with some
particular estimation problem. It accumulates a result, then uses the central limit to test the
hypothesis that the statistic being computed is drawn from a distribution with mean zero.

 CALC ; meanb = 0 ; sb = 0 ; nrep = 1000 $
 PROC
 … generate the data set for the model command that computes the statistic
 CALC ; meanb = meanb + the statistic
 ; sb = sb + the statistic ^2 $
 ENDPROC
 EXECUTE ; Silent ; n = nrep $
 CALC ; meanb = meanb / nrep
 ; sb = Sqr((sb - nrep * meanb^2)/(nrep - 1))
 ; List ; z = Sqr(nrep) * meanb/sb $

R19: Programming with Procedures R-501

The procedure estimates the same model 1,000 times. The statistic of interest is z, computed at the
last line. Since the model results are not useful, we use ; Silent to suppress them. The number of
repetitions is specified generically in a scalar named nrep, so if a larger or smaller sample is desired,
it is necessary only to change the fixed value in the first line.

R19.5.5 Execution with a Scalar Parameter

 You can execute a procedure while carrying a single value of a parameter into the procedure.
This would be useful for exploratory work. The command structure is

 EXECUTE ; name = value $

‘Name’ is created as a scalar which can be used (but not changed) by CALC while the procedure is
executing. For example, the following computes Box-Cox regressions for different values of the
transformation parameter:

 PROC
 BOXCOX ; Lhs = y ; Rhs = ... ; lambda = ll $
 CALC ; List ; ll $
 ENDPROC
 EXECUTE ; ll = .35 $
 EXECUTE ; ll = 1.294 $

and so on. This is a device that allows you to experiment with model specifications. For example,
the following varies the correlation parameter in a bivariate probit model:

 NAMELIST ; x1 = ... first Rhs for bivariate probit model
 ; x2 = ... second Rhs for bivariate probit model $
 CALC ; k1 = Col(x1) ; k2 = Col(x2) ; rho12 = 0 $
 PROC
 BIVARIATE PROBIT ; ... variables setup
 ; Rst = k1_b , k2_c , rho12 $
 ENDPROC
 EXECUTE ; rho12 = value $

R19.5.6 Query for a Parameter to Use in the Procedure

 Your procedure may use a scalar value which you would like to vary according to the output
you see on your screen. Or, you may wish to experiment with different oddly spaced values. For
example, you might wish just to execute the procedure with different values of the scalar. The ridge
regression estimator given in an example below depends on a scalar ‘r’ which we supply to the
routine each time it is carried out. This option operates as follows:
 You give a value to the scalar you wish to use. Presumably this value appears in your
procedure.

 CALC ; name = value $

Your command is:

 EXECUTE ; Query = name $

R19: Programming with Procedures R-502

The procedure is executed first with the value set by the CALC command. When it is finished, you
are queried for the parameter. Figure R19.9 shows operation of this feature. The number of periods
for the Newey-West estimator is given by the scalar numpds. The value of this is set to four, then the
procedure is executed. The regression is computed with numpds = 4 (output from the regression is
not shown). After execution, a subsidiary window opens which queries you for a new value of
numpds. The current value is shown in the window. At this point, if you wish to execute the
procedure with a new value of numpds, you would change the value in the window and click OK. If
you wish to exit the procedure, instead, you would click Cancel.

Figure R19.9 Procedure with Query for a Parameter

 As another simple application, we consider a procedure to compute a ridge regression
estimator,
 br = (X′X + rI)-1X′y.

Various ancillary computations surrounding the estimator, including the appropriate variance matrix,
are discussed in Judge, et. al (1985). Here we show only the computation of the slope vector for
various values of r. (The moment matrices are centered but not scaled.)

 NAMELIST ; x = list of variables ; y = Lhs variable $
 CALC ; r = 1 ; k = Col(x) $
 MATRIX ; xx = x’[1]x ; xy = x’[1]y $
 PROC
 MATRIX ; xxr = xx + r * Iden(k) ; br = < xxr > * xy $
 ENDPROC
 EXECUTE ; Query = r $

R19: Programming with Procedures R-503

R19.5.7 Conditional Execution

 The EXECUTE command may be made conditional. The construction is

 EXECUTE ; ... (all other options) ; While condition $

or EXECUTE ; ... (all other options) ; Until condition $

The condition is any valid condition for a LIMDEP logical command. (See Section R19.8.1.) For
example:

 EXECUTE ; Proc = integral(i) ; While i < 10 $

 or EXECUTE ; Proc = integral(i) ; Until i*(j+r) > 1234.45 $

 In Figure R19.10, we have modified the regression example once again, this time to request
the program to compute the Newey-West estimator for several values of numpds. In the new
procedure, the regression is computed, then numpds is incremented.

Figure R19.10 Conditional Execution of a Procedure

NOTE: In this example, numpds is set to four then the procedure is executed. As it is, numpds is
incremented. The condition is checked before the procedure is executed. As such, for this example,
the regression is computed for numpds = 4, 5, 6, 7, 8, and 9, but not for numpds = 10.

R19: Programming with Procedures R-504

 Here is a second application. LIMDEP does not contain a built in estimator for Powell’s
(1986) symmetrically trimmed censored least squares estimator. But, the estimator involves only
simple least squares computations and is easily programmed using a procedure with a conditional
exit rule. The program is shown in Figure R19.11. This is generic. The only changes needed for a
different application are the definitions of the namelist, x, and variable, y.

Figure R19.11 Procedure for SCLS Estimator

R19: Programming with Procedures R-505

R19.5.8 Defining Exit (Convergence) Criteria

 Procedures often involve iterations. For this sort of computation, you will need to automate
the decision to continue or terminate execution. You can easily construct your own exit tests, but
there are three ‘test criteria’ available internally. In an iterative procedure, one normally repeats a set
of commands or computations, each time updating some variable(s), until some test criterion is met.
For purposes of writing such a program, you can use the threshold settings in the EXECUTE
command and compute the test values with MATRIX commands as follows:

1. Use EXEC to define up to three threshold values with the command

 EXEC ; t(1) = value ; t(2) = value ; t(3) = value $

Use as many of the three as desired. ‘Value’ may be any fixed value or the current contents
of any scalar.

2. Compute the exit values in MATRIX with any of

 MATRIX ; c(j) = Norm(b1)
 ; c(j) = Chng(b1)
 ; c(j) = Chng(b1,b2)
 ; c(j) = value

for j = 1, 2, or 3. b1 and b2 must be vectors. The functions shown above are

 Norm = Euclidean norm of the vector.
 Chng(b1) = maximum of the absolute values of b1i.
 Chng(b1,b2) = maximum absolute value of (b1i - b2i)/b1i, or 1000 if b1i = 0.

 These test criteria can be used in addition to the ; n = maximum specification. The EXEC
command now operates as follows:

Step 1. Execute procedure.

Step 2. If repetitions = max, exit. (Be sure to set n; the default is one, which is assumed here if you
do not reset it.)

Step 3. If c(j) < t(j) for any j for which both have been defined, then exit procedure.

Step 4. Else, go to Step 1.

For an example, consider estimation of the Poisson regression model by Newton’s method. The
Poisson model and the necessary formulas are discussed in Chapter E41. Newton’s method for the
Poisson model is defined by

 bk+1 = bk + [X′ΛX]-1X′[y - vec(Λ)],

R19: Programming with Procedures R-506

where ‘k’ indexes iterations, λi = exp(b′xi), Λ is the diagonal matrix of λis, and [y - vec(Λ)] is a
vector of residuals yi - λi. The matrix product is taken as the update vector for purposes of our
iteration.
 The following procedure and execution would estimate the model (an example is included to
demonstrate the execution):

 SAMPLE ; 1-1000 $
 CALC ; Ran (12345) $ Set seed so you can replicate this.
 CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; y = Rnp(4) $
 NAMELIST ; x = one,x1,x2 $
 CALC ; k = Col(x) $
 MATRIX ; beta = Init(k,1,0) ; delta = beta $ Just to start.
 PROC
 MATRIX ; beta = beta + delta $
 CREATE ; l = Exp(x’beta) ; e = y - l $
 MATRIX ; g = x’e ; delta = <x’[l]x> * g
 ; List ; c(1) = Norm(delta) $
 CALC ; List ; Sqr(delta’delta) $
 ENDPROC
 EXECUTE ; n = 25 ; t(1) = .00001 $

The output is as shown below. The procedure updates the parameter vector, then computes the
update vector for the next iteration. The EXECUTE command monitors the vector delta. When the
norm of delta is small enough or 25 iterations are executed, the procedure is ended. The listing by
CALC shows the value of the convergence rule at each iteration. The last one shown does indeed
show that convergence has been reached.

[CALC] *Result*= 2.9938850
[CALC] *Result*= .7995319
[CALC] *Result*= .5546264
[CALC] *Result*= .2257010
[CALC] *Result*= .0303004
[CALC] *Result*= .0005026
[CALC] *Result*= .0000002
Exit criterion 1 met.

Query for Exit from Iterations

 You may request simply to be queried whether to exit or not each time the procedure is
carried out. In this case, n is ignored, so the command should be simply

 EXECUTE ; Query $

It is not necessary to set the thresholds except for convenience. Each time the procedure is carried
out, the current values of C(1)-C(3) and T(1)-T(3) are displayed in your output window, and you are
asked whether to reenter the iteration or to exit. Presumably the decision would rest on some
previous results, including C(1), C(2), and C(3) if you compute them.

R19: Programming with Procedures R-507

 Figure R19.12 continues the preceding example by using EXECUTE ; Query $ to run the
procedure. The threshold values (which we have not set, so they are zero) are displayed in the output
window. Then, a dialog comes up to request you to close the procedure or run it again.

[CALC] *Result*= 2.9938850
+-----------------------------------+
|Test values for exit from procedure|
|# Current Value Threshold Value |
|1 2.99389 .00000 |
|2 .00000 .00000 |
|3 .00000 .00000 |
+-----------------------------------+

Figure R19.12 Query for Exit from a Procedure

R19.5.9 Parameters and Character Strings in Procedures

 Procedures may have parameters. Define the procedure as follows:

 PROC = name (parameter1, ..., up to 15 parameters) $
Then,
 EXECUTE ; Proc = name (actual1, ...) $

The actual arguments are substituted for the dummy parameters at execution time. This is like a
subroutine call, but more flexible. For execution, the passed parameters are simply expanded as
character strings, then the procedure, after creation in this fashion, becomes the current procedure.
For example,

 PROC = Dstats (x) $
 DSTAT ; Rhs = x $
 ENDPROC
 NAMELIST ; zbc = ... a list of variables
 ; q123 = a different list of variables $
 EXEC ; Proc = Dstats (zbc) $
 EXEC ; Proc = Dstats (q123) $

R19: Programming with Procedures R-508

Any string may be substituted anywhere in the procedure. This will allow great flexibility. For
example, even models can be changed with the procedure.

 PROC = Modeler (model)
 Model ; Lhs = y ; Rhs = one,x $
 ENDPROC
 EXEC ; Proc = Modeler (probit) $
 EXEC ; Proc = Modeler (logit) $

Note the following for this modeler routine:

• Your procedures may have up to 15 parameters in the list.

• The number of parameters in the EXEC command is checked against the number in the
procedure definition at execution time. But, it is not possible to check the consistency of the
parameters in the two lists. Thus, you can’t be prevented from sending a bad command to
the Modeler routine above.

 With this device, you are free to pass variables, namelists, matrices, model names, or any
other entities you require. Also, strings can vary in type from one execution to another, though you
must be careful to avoid causing conflicts. For example, assuming that t is a scalar in the named
procedure, one might use

 PROC = name (t) $
then,
 EXEC ; Proc = name (x) $
 EXEC ; Proc = name (1.2345) $

which would not cause a conflict.
 Such procedures would generally be useful for creating prepackaged subroutines. For
example, the following procedure computes LM statistics for a given model using two sets of
variables:

 PROC = Lmtest (model, y, x1, x2) $
 Model ; Lhs = y ; Rhs = x1 $
 MATRIX ; k2 = Col(x2)
 ; b2 = k2 _ 0 $
 Model ; Lhs = y ; Rhs = x1,x2
 ; Start = b, b2 ; Maxit = 0 $
 ENDPROC

You could execute this with something like the following:

 NAMELIST ; v1 = one,v1a,ddd
 ; v2 = ll,g123 $
 EXEC ; Proc = Lmtest (probit, y, v1, v2) $

R19: Programming with Procedures R-509

Macros – The STRING Command

 The STRING command provides another way for you to set up variable parameters in your
procedures. This feature allows you to define a character string with a name. This may save you
some typing. But, you can also use this command to operate your procedures more like true
subroutines. LIMDEP keeps three cells for you to use to store character strings with up to 80
characters each. The command to store a character string is

 STRING ; stj = any character string $

where ‘j’ is 0, 1, or 2. The only rule that applies is that the string may not be used to give the
primary verb of a command or the semicolon which follows it. For example,

 STRING ; st1 = dstat ; Rhs = * $

is not a valid command, because DSTAT is a primary verb (model name). But, you might use

 STRING ; st1 = Rhs = * ; Output = 3 $

The string is inserted into a command by enclosing its name in double quotes. To continue the
example, following the preceding, you could use

 DSTAT ; “st1” $

Strings can make procedures work like subroutines, as in

PROC
DSTAT ; “st0” $
ENDPROC
STRING ; st0 = Rhs = c $
EXECUTE
STRING ; st0 = Rhs = y $
EXECUTE

This is essentially the same as using a parameter list as shown at the beginning of this section. The
advantage would be for cases in which you want to modify longer character strings, rather than just
names or values.

R19.5.10 Local Variables in Procedures

 Your procedures may contain any commands and use any variables, matrices, etc. that exist
in your project. One implication of this flexibility is that to this point, all entities that you use in
your procedures are ‘global.’ What you compute within your procedure affects your project after the
procedure is completed. For example, if your procedure contains the command CALC ; rho = .7 $,
when the procedure is completed, the value of the scalar rho in your project will equal .7. You may
be interested in creating scalars, matrices or variables that are ‘local’ to your procedure. These
would typically be intermediate computations that you are not interested in retaining after the
procedure has been executed.

R19: Programming with Procedures R-510

You can declare local variables in a procedure as follows:

 PROCEDURE $
 LOCAL ; Scalar = a set of names for the scalars you want to use
 ; Matrix = a set of matrix names for matrices you want to use
 ; Variable = a set of variable names that you wish to use $
 … commands that use these names and any others …
 ENDPROCEDURE $
 EXECUTE ; … any options $

You may use any or all of the three type declarations in the LOCAL command. The entities that
they define will exist while the procedure is being executed, but they will disappear after the
procedure is finished.

Note the following parameters for the LOCAL command:

• The names that you declare may be new names that do not already exist in the project. In
this case, these scalars, matrices or variables will vanish after the procedure is executed.

• The names that you declare may be the same as entities that already exist in the project. In

this case, the local entity will use that name temporarily, but when the procedure is finished,
the existing entity is restored. For example, this procedure

 CALC ; List ; a1 = pi $
 PROCEDURE $
 LOCAL ; Scalar = a1 $
 CALC ; List ; a1 = Sqr(pi) $
 ENDPROC $
 EXECUTE $
 CALC ; List ; a1 $

sets the scalar a1 equal to π. Within the procedure, a1 is set equal to the square root of π.
When the procedure is finished, a1 is still equal to its global value, π. The visible results of
this procedure are

 [CALC] A1 = 3.1415927
 [CALC] A1 = 1.7724539
 [CALC] A1 = 3.1415927.

• The procedure may also use global names. If they are not declared to be local to the
procedure, then scalars, matrices and variables that are created within the procedure will
exist when the procedure is finished.

R19: Programming with Procedures R-511

R19.6 Looping with the EXECUTE Command

 The EXECUTE command may be set up in the form of a ‘DO LOOP.’ The syntax would be

 EXECUTE ; name = first value, last value, increment ; ... other options $

The command works as follows: When you give this command, ‘name’ is created as a scalar in your
calculator work area. It may already exist or you can create a new scalar this way. The loop
parameters may be any values, real or integer, positive or negative. For example,

 ; rho1 = 0 , 1, .1

creates scalar rho1 and moves it from zero to one in steps of 0.1. In this case, the procedure would
be executed 11 times. You can also decrement, as in

 ; index = 100.781, 20.11, -21.5,

which produces five repetitions. The increment may be omitted, in which case, it is assumed to be
one. Thus, for example,

 EXECUTE ; i = 1, 10 $

Before executing, LIMDEP determines the number of repetitions using

 repeat count = Min(1, |last - first| / |increment|)

so the procedure is always executed at least once. This setup is similar to

 EXECUTE ; n = repeat $

except that the looping form creates a scalar entity which you can use in your calculations.
 The loop index is a scalar which you may use in other commands. But, you may not change
it with any other command. It is ‘read only’ while the loop is executing. Thereafter, you may
change it in any way you like.

R19.7 Looping Over an Indexed Set of Variables in a
Namelist

 Variables in namelists may be indexed. The format is listname:index to indicate the
‘indexth’ variable in the list. For example, in

 NAMELIST ; x = yabc,ydef,y123 $

x:1 is yabc, x:2 is ydef, and, x:3 is y123. This indexing scheme can be used in any command at any
point in a command stream. It is most likely to be useful in a procedure, however.

R19: Programming with Procedures R-512

 For example, the following procedure takes the logs of up to 100 variables:

 NAMELIST ; x = ... $
 PROC
 CREATE ; z : i = Exp(x : i) $
 DSTAT ; Rhs = x : i, z : i $
 ENDPROC
 CALC ; x = Col(x) $
 EXEC ; i = 1,k $

A list of variable names may also be used to control execution of a block of commands, as in the
block below.

 PROCEDURE

Commands use variable : loopname.

 ENDPROC
 EXECUTE ; : loopname = a list of variables $

This could be useful, for example, for estimating the same model with a set of dependent variables.
For example:

 PROCEDURE
 REGRESS ; Lhs = : shares ; Rhs = x $
 ENDPROC
 EXECUTE ; : shares = capital,labor,fuel $

R19.8 Flow Control within Procedures

 The ability to construct loops is one of the most important features of any programming
language. The next two sections will give a large amount of detail on how to construct loops and
iterative programs. In this section, we focus on one set of commands and techniques. The LABEL
and GO TO commands, which we used in Section R19.4, allow the creation of multiple and nested
loops. Programs may contain multiple labels and several loops, which may be nested or executed one
after the other.
 The basic construction is:

 PROCEDURE
 ... some block of commands ...
 LABEL ; number $
 ... some other block of commands ...
 GO TO ; number ; logical condition $
 ENDPROCEDURE
 EXECUTE

The GO TO instruction is carried out if the logical condition is true. If no condition is given, then
the GO TO is unconditional – it is always carried out.

R19: Programming with Procedures R-513

R19.8.1 Logical Expressions

 The logical condition can relate any scalar entity to any other scalar entity (i.e., scalars,
numbers, or matrix elements) and can be as complex as needed to carry out the desired task. The
structure to use for this part of the command is the same as that for CREATE (Section R4.2.2),
CALC (Section R17.4), MATRIX (Section R16.2.3), and REJECT/INCLUDE (Section R7.4).
Logical expressions are any desired expressions that provide the condition for the transfer of control
to be carried out (or not). They may include any number of levels of parentheses and may involve
mathematical expressions of any complexity involving named scalars, matrix or vector elements, and
literal numbers. The operators are:

 Math and relational: +, -, *, /, ^, >, >=, <, <=, =, #.

 Concatenation: & for ‘and’, | for ‘or.’

A simple example is:

 GO TO ; 100 ; x > 0 $

For a second example with no obvious interpretation:

 GO TO ; 100 ; (r / s)*((c + 7)*(x + 2) * y^2 + z^3) > 1 | x + y < 0 $

The hierarchy of operations is ^, (*,/) (+,-), (>,>=,<,<=,=,#), &, |. Operators in parentheses have
equal precedence and are evaluated from left to right. When in doubt, add parentheses. There is
essentially no limit to the number of levels of parentheses. (They can be nested to about 20 levels.)
 It is important to note that in evaluating expressions, you get a logical result, not a
mathematical one. The result is either ‘true’ or ‘false.’ An expression which cannot be computed
cannot be true, so it is false. Therefore, any subexpression which involves division by zero or a
negative number to a noninteger power produces a result of false. But, that does not mean that the
full expression is false. For example: ‘x / 0 > 0 | x > y’ could be true. The first expression is false
because of the zero divide, but the second might be true, and the OR in the middle returns true if
either expression is true. Also, we adopt the C++ language convention for evaluation of the truth of
a mathematical expression. A nonzero result is true, a zero result is false. Thus, your expression
need not actually make logical comparisons. For example: Suppose x is a scalar which might be 0 or
1. GO TO ; 100 ; x $ will make the transfer if x equals 1 and not if x equals 0. Therefore, this is the
same as GO TO ; 100 ; x # 0$

NOTE: Using variables in the logical expressions is permissible. But, except for CREATE,
REJECT, and INCLUDE, which are being evaluated during a loop through your data set, the values
taken by variables will be ambiguous, and the results will be unpredictable. For example, if x is a
variable, GO TO ; 974 ; x > 1 $ is likely to behave strangely since the value taken by x is generally
defined only by the last operation to use your data.

R19: Programming with Procedures R-514

R19.8.2 Loops within Procedures

 There are two commands which can be used to transfer control in procedures and in editor
files. These are

 LABEL ; label number $
and GO TO ; label ; condition $

As discussed earlier, these commands can be used to add flexibility to procedures. One usage would
be to create loops within procedures, or even loops within loops. The following example (rather
clumsily) computes recursive residuals for a set of observations. The procedure itself would be
executed once, but the loop within the procedure is controlled by the LABEL and GO TO commands.

 NAMELIST ; x = ... $
 PROC = recrsive $
 CREATE ; recrsiv = 0 $
 CALC ; i = k $
 LABEL ; 100 $
 SAMPLE ; 1 - i $
 MATRIX ; bt = Xlsq(x,y) $
 CALC ; i = i + 1
 SAMPLE ; i $
 CREATE ; recrsiv = y - x’bet $
 GO TO ; 100 ; i <= N $
 ENDPROC

This routine computes a set of recursive residuals for observations k+1 to n in a sample. Note that
the statements which control the loop are the initial value of i, the incrementing of i and the GO TO
statement.

Examples

 Consider the following example:

 PROCEDURE
 CREATE ; recrsiv = 0 $
 CALC ; i = 2
 ; nobs = n $
 LABEL ; 100 $
 SAMPLE ; 1 - i $
 MATRIX ; bt = Xlsq(one,x,y) $
 CALC ; i = i +1
 ; laste = y(i) - bt(1) - bt(2)*x(i) $
 CREATE ; recrsiv(i) = laste $
 GO TO ; 100 ; i <= nobs $
 ENDPROCEDURE
 EXECUTE

R19: Programming with Procedures R-515

This routine computes a set of recursive residuals for observations 3 - n in a sample. Note again that
the statements which control the loop are the initial value of i, the incrementing of i and the GO TO
statement.
 As shown above, the loop could have been controlled with a single EXECUTE command.
But, this new structure allows much greater flexibility. First, the transfer may be forward or
backward in the command block. Thus, one can execute any block of commands conditionally, by
bypassing it or not depending on a condition. Second, there may be any number of transfers (up to
10 altogether) in the code block, and these can be nested. For example:

 PROCEDURE
 CALC ; i = 0 $
 LABEL ; 10 $
 CALC ; i = i + 1 $
 CALC ; j = 0 $
 LABEL ; 20 $
 CALC ; j = j + 1 $
 MATRIX ; matrix (i,j) = pi $
 GO TO ; 20 ; j < 5 $
 GO TO ; 10 ; i < 5 $
 ENDPROCEDURE
 EXECUTE

This loads a 5×5 matrix with π one cell at a time (perhaps a bit clumsily, since MATRIX ; matrix =
Init(5,5,pi) $ does the identical job).
 Although our examples have been loop constructions, the GO TO command can operate on
any scalar comparison. Thus, one might compute a regression, then do some followup computations
if the R2 is greater than .5, and so on.

R19.9 Looping with DO Statements

 You may use four forms of DO statements as alternatives to the LABEL and GO TO
commands in the editor. The DO command is used to request repetition of a block of commands. It
has four forms. The first is:

 PROCEDURE
 DO FOR ; label ; index = a1[,a2,[a3]] $
 ... any block of commands ...
 ENDDO ; label $
 ENDPROCEDURE
 EXECUTE

R19: Programming with Procedures R-516

The label is any character string, name, or number, up to eight characters. This is carried out as follows:

• If only a1 is given, the block of commands is carried out once. For example,

 DO FOR ; Ar1model ; rho = .5 $
 ...
 ENDDO ; Ar1model $

• If a1 and a2 are given, the block of commands is carried out once for each of the values a1,
a1+1, a1+2, ..., until the incremented value is greater than or equal to a2. Typically, these
would be integers, as in

 MATRIX ; a = Init(10,1,0)$
 DO FOR ; 10 ; i = 1,10 $
 MATRIX ; a(i) = i $
 ENDDO ; 10 $

• If a3 is given, the execution is the same as in the preceding example except a3 is used as the

increment instead of 1. For example, the following computes the Box-Cox model for

 LAMBDA = -1, -.9, ..., .9, 1.0.
 DO FOR ; bc ; m = -1,1,.1$
 BOXCOX ; ... ; lambda = m $
 ENDDO ; bc $

Three other forms of the DO command are as follows:

• Do while executes the block of commands as long as the condition is true.

 DO WHILE ; label ; logical condition $
 ...
 ENDDO ; label $

The block of commands is always executed once. Then the condition is checked and if true,
the commands are executed again. There is potential for problems here. If your block of
commands does not change something that can falsify the condition, this block of commands
will execute forever.

• Do until executes the block of commands until the condition becomes true.

 DO UNTIL ; label ; logical condition $
 ...
 ENDDO ; label $

• Do if executes the block of commands once if the condition is true.

 DO IF ; label ; condition $
 ...
 LABEL ; label $

R19: Programming with Procedures R-517

 The logical condition in these constructions is set up the same as for the GO TO instruction.
See Section R19.8.1 for details. For example:

 CALC ; q = 0 $
 DO UNTIL ; 10 ; q > .5 $
 CALC ; q = ... some operation that increases q $
 ENDDO ; 10 $

 You can nest loops up to 10 levels. For example:

 PROCEDURE
 MATRIX ; a = Init (3,3,0) $
 DO FOR ; 10 ; i = 1,3 $
 DO FOR ; 5 ; j = 1,3 $
 CALC ; ij = i * j $
 MATRIX ; a(i,j) = ij $
 ENDDO ; 5 $
 ENDDO ; 10 $
 ENDPROCEDURE

There is a limit of 10 loops in one command block, but these may be arranged in any fashion you like.

WARNING: There are many ways to construct bad loops, and by and large, LIMDEP cannot
protect you from them. For instance, in the previous example, if the second to last and the last
statements were reversed, the loop would be badly nested. The results might not be what you
expected. Also (note carefully!!), it is possible for you to create infinite loops from which there is
no escape. For example, if you decrement instead of increment a counter, there may be no way to
get out of a loop. Unfortunately, it is usually not possible for LIMDEP to check such a condition just
by looking at a set of commands, so it is solely up to you to avoid this. The next section discusses
what to do in such a situation.

The DO FOR command must appear within a procedure. It can be used to set up looping
procedures based on counters, as in C++ or Fortran. The general syntax is

 DO FOR ; label ; index = the specification $

This command is set up so that loop counters are dynamically computed. This provides the ability to
nest loops, and set the counter for an inner loop in an outer one. For example,

 DO FOR ; 10 ; k = 1,10 $
 DO FOR ; 5 ; j = 1,k $
 CALC ; sum = j+k $
 MATRIX ; m(j,k) = sum $
 ENDDO ; 5 $
 ENDDO ; 10 $

This block of lines places values in the upper triangle of a matrix. The lower triangle is unchanged.
(Note, it might be tempting in the procedure to just use MATRIX ; m(j,k) = j+k $, however, the
Rhs of this command is not a matrix computation, so it will not be carried out correctly.)

R19: Programming with Procedures R-518

R19.10 Escaping from an Infinitely Looping Procedure

 The warning about infinite loops in the preceding section suggests an aspect of operation of
LIMDEP that it is useful to know a bit about. Much of the kind of computation that you do with
LIMDEP involves mathematical calculations that take place in the background, particularly if you
are using large data sets or simulation based estimators. As such, there may be long intervals when
you are waiting passively for results while the program computes. Unfortunately, the infinite loop
scenario suggested above would be one of these situations. LIMDEP has two ways to tell you when
computation is going on in the background. First, the Stop button on the LIMDEP toolbar will be
illuminated red, as shown in Figure R19.13. (At other times, it will be dark.) Second, there is a ‘busy
light’ (the black and white spinner at the lower right corner of the desktop) which appears during a
computation. If you have created an infinite loop, or some other inescapable situation, the busy light
will be spinning, but you will be unable to use the Stop button to exit the computation. There is no
recourse but to exit the program.
 If you find yourself having to ‘crash’ LIMDEP, or any other program for that matter, there is
a tool in Windows that can do this fairly painlessly. When you need to escape from any program and
have no other recourse, place your mouse cursor in an empty space in the taskbar at the bottom of
your screen and right click. From the popup menu, select Start Task Manager. From the
Applications tab, you can select LIMDEP from the list of running applications and then select End
Task to get out of your infinite loop. Unfortunately, as the menu indicates, this terminates the
program. However, it is a polite termination. Before the program ends, you will be given an
opportunity to save your project and editing windows.

Figure R19.13 Stop Button and Busy Light Active

R19: Programming with Procedures R-519

R19.11 Editing Procedures and Creating New Procedures

 Once you have entered a procedure, there are two ways you can edit it, for example, if it is
necessary to correct errors.

1. If the procedure is in the text editing window, the easiest way to proceed is just to edit it on
the screen, then highlight just the procedure, from PROC through ENDPROC, and click the
GO button on the toolbar. This will replace the procedure with the modified version.

2. If you have one or more named procedures, you can also use LIMDEP’s procedure editor to
edit them. Open the Procedures folder in the project window, then double click the name of
the procedure. This will open the procedure editing window.

To create a new procedure, use any of the following:

1. Type your PROCEDURE commands in the editing window, highlight the procedure from

PROC to ENDPROC and click GO.

2. From the Project menu, select New, then Procedure.

3. From the Run menu, select New Procedure.

4. From the Insert menu, select Item into Project, then Procedure.

The last three options above all open the New Procedure dialog box, shown in Figure R19.14.

Figure R19.14 New Procedure Dialog Box

You can then enter the procedure name and any parameters you wish. This sets up the header for the
procedure. When you exit with OK, the editing window will then appear as shown in Figure R19.15,

R19: Programming with Procedures R-520

Figure R19.15 Procedure Editing Window

(You will go directly to this window if you are editing an existing procedure.) Within the procedure
editing window, you can enter the commands, change existing commands, or modify the parameter
list. The standard features of the Edit menu (cut, paste, etc.) are all available in this window as well.
Upon exiting, the procedure will be entered into the library.

R20: Multiple Imputation R-521

R20: Multiple Imputation

R20.1 Introduction to Multiple Imputation

 Multiple imputation (MI) is a set of techniques that is used to fill missing values in a data set
when estimating a model. The core of the technique is an ancillary model that is used to fit the
missing values prior to estimation of the model of interest. To form the basic framework, consider a
model
 f(y|x,β,θ) = g(y,x,β,θ).

For example, f(y|x,β,θ) might be a normal density with conditional mean function βʹx and
conditional variance θ = σ2. Suppose estimation is to be based on N observations, however, nm
observations on x are missing (and nc observations are complete). The technique works in three
steps:

Step 1. Fit imputation equation x̂ = h(available sample information) using complete data.

Step 2. (Repeated M times). Use the imputation equation to fill the missing values of x, then

estimate (β,θ) using imputed sample m.

Step 3. Aggregate the M estimates of (β,θ) and the M estimates of the asymptotic covariance matrix
for the estimates.

Step 1 is preparatory. Step 2 consists of M repetitions of an ‘imputation step’ followed by an
‘estimation step.’ The imputation step is based on a Bayesian approach to obtaining an appropriate
random sample to use to fill the randomly missing observations.
 The reader is referred to Rubin (1976, 1987, 1996), Little and Rubin (2002), and Royston
(2004) for some details. There is a large intricate literature on the fine details and various aspects of
MI that apply when the data do not conform to the multivariate normal conditions that are ideal for
the techniques. LIMDEP provides a basic set of procedures for MI for a variety of types of data.
Among the advantages of this implementation:

• An enormous disadvantage of some implementations of MI is the need to replicate the data
set for each iteration. If the base data set is large, this limits the imputation to only a few
repetitions. LIMDEP avoids this problem by storing only the formulas needed to do the
imputation, not the imputed data themselves. Imputations are created within the existing
data set, not by replicating the data. This implies that there is no practical limit to the
number of iterations that can be performed at Step 2.

• As a consequence of the first advantage, there is no list of specific procedures that MI can be

used with in LIMDEP. MI is available for every procedure that uses data in LIMDEP
including estimators that you create with MAXIMIZE or with any other procedures. That
is, Step 2 above is not estimation of a specific model; it is one or more (possibly many more)
computations using the data set that contains imputed values.

R20: Multiple Imputation R-522

R20.2 Methodology

 The template application of MI can be drawn with reference to a model

 y = f(x1,x2|β)

where β is the parameter vector to be estimated. We suppose that there are n observations in the
sample, nc,1 complete observations on x1, nm,1 missing values for x1, and nc,2 and nm,2 complete and
missing observations on x2. The missing and complete observations on x1 and x2 need not coincide.
We suppose as well that there is additional information in the sample, Z, for which there are
observations present for at least some observations when there are missing observations on x1 or x2.
(Though there is mention of it in some of the received literature, we will ignore the case of missing
values on y. Prediction of missing values of the dependent variable in an equation could not possibly
pass the ‘missing at random’ test needed to use MI and could not be exogenous in the model as is
required for consistent parameter estimation.) The overall approach of MI is to use available
information on x2 and Z to predict missing values of x1 and available information on x1 and Z to
predict missing values of x2. It is assumed that the missing values are ‘missing at random,’ that is,
that the data on x2 and Z do not contain information on the probability that x1 is missing, and
likewise for x1 and Z for x2. The three steps listed above are carried out as follows:

Step 1. Construct imputation equations 1 1

ˆˆ1 (2, ,)x h x Z= δ and 2 2
ˆˆ2 (1, ,)x h x Z= δ using available

complete observations on relevant variables.

Step 2. (M repetitions): Simulate missing values of x1 from the conditional model h1 and missing
values of x2 from the conditional model h2. For each repetition, we obtain estimates of the
parameters, ˆ

mβ and the asymptotic covariance matrix ˆ
mΣ .

Step 3. (Aggregation). The estimator of β is
1

1 ˆM
mmM =

= ∑b β . The variance estimator is

 ()()1 1

1 1 1 ˆ ˆˆ 1
1

M M
m m mm mM M M= =

′ = + + − − −
∑ ∑S b bΣ β β

 Steps 1 and 3 are straightforward. The complication at Step 1 is the choice of imputation
equation. The most thoroughly researched case is the linear regression model, which would be used
if x1 or x2 were a continuous random variables without obvious other complications. However,
survey data and large public data sets typically are composed mostly of binary or attitudinal scale
variables for which linear regression methods are inappropriate. We note in the next section the
several types of models that LIMDEP uses for missing data situations. Step 3 obtains the estimator
of the asymptotic variance of the MI estimator. The variance estimator accounts for the essential
sampling variability of the estimator in the first term – this is the ‘within simulation’ variance – and
the variability introduced by the simulation itself in the second term – this is the between simulations
variance. Step 2 is the focus of attention in the received literature. There are many approaches used
for the simulation. The description below details the method used in LIMDEP.

R20: Multiple Imputation R-523

R20.3 How It’s Done – Overview

 The implementation of MI in LIMDEP proceeds as follows:

 For Step 1, you will fit as many as 30 equations for variables that contain missing values that
you intend to impute during your analysis. For an example, we suppose we will impute missing
values for doctor, which is binary and for hhninc (household income) which is continuous. This step
proceeds as follows:

IMPUTE ; Lhs = doctor ; Rhs = one,age,educ,married ; Type = binary $

Equation stored for imputing missing values of DOCTOR
Imputation method: Binary Logistic
Observations currently in full data set = 27326
Complete observations for imputation equation = 17897
Missing observations on DOCTOR in data set = 2765

IMPUTE ; Lhs = hhninc ; Rhs = one,age,educ,handper ; Type = measurement $

Equation stored for imputing missing values of HHNINC
Imputation method: Linear Regression
Observations currently in full data set = 27326
Complete observations for imputation equation = 17768
Missing observations on HHNINC in data set = 2839

The project window is updated to include the information about the imputation equations.

Figure R20.1 Imputation Equations in the Project Window

R20: Multiple Imputation R-524

By double clicking either of the imputation equations in the project list, we produce a summary table
of the results of the estimation step for the imputation equations.

IMPUTE ; List $

Imputation Equations
Equations currently available for multiple imputation
The full sample contains 27326 observations
Complete observations counts apply to full sample
Missing obs for RHS is based on listwise deletion
Types: LR=linear regression, BR=binary logistic
 OL=ordered logit, ML=multinomial logit
 FL=fractional logit, PR=Poisson regression
---------------------+--------------+---------------------+
 Equation | RHS Vars |Complete Observations|
LHS type missing|Number Missing| LHS RHS Eqn|
---------------------+--------------+---------------------+
DOCTOR BR 2037| 4 7392| 25289 19934 17897|
HHNINC LR 2090| 4 7468| 25236 19858 17768|
---------------------+--------------+---------------------+

Step 2 is carried out by defining a procedure as described in Chapter R19. The template for
the procedure appears as in the following example:

PROC $
PROBIT ; Lhs = ... ; Rhs = ... x...; Imputation = imputna $
LOGIT ; Lhs = ... ; Rhs = ... x...; Imputation = imputnb $
POISSON ; Lhs = ... ; Rhs = ... x...; Imputation = imputnc $
ENDPROC
EXECUTE ; N = number of imputations desired

; Imputation = imputna, imputnb, imputnc $

The procedure acts as follows: Each model for which we wish to use the MI procedure is given a
name – there are three in the procedure. The EXECUTE command instructs LIMDEP to fit each
model N times with imputed data each time. For example, in the preceding, if we set N = 5, then
there would be five different imputed data sets used to fit the models. A new data set is created for
each iteration. Note, however, that the imputation is independent of the model. It is carried out
before the model is estimated. For example, the first model command in the procedure is a PROBIT
equation. Since this is one of the imputation models, before the probit model is fit, the imputation
equations are used to fill as many observations as possible. After each repetition of the procedure,
the data set is restored to its original state, with the missing values back in place. Then, the steps are
repeated for each imputation. An important implication of this sequencing of the steps is that if the
model equation contains interactions or nonlinearities, these will be applied correctly to the imputed
data. That is, within the procedure, the sample data set, for any and all purposes, is the imputed data
set for that repetition.

R20: Multiple Imputation R-525

R20.4 The Imputation Step

 This section describes creating the imputation equations. Though we label this the imputation
step, in fact, the imputation takes place at the same time as the estimation is done. Your first step in
this analysis is to create the equations used to compute the imputed values. Do this as follows:

1. Use SAMPLE ; All $ to use as much information as is in the data as possible.
2. For each variable that you intend to fill with missing values, create the imputation equation with

 IMPUTE ; Lhs = the variable
 ; Rhs = one,… the variables that you will use for the imputations
 ; Type = the type of variable on the Lhs $

 The types are

 M = measurement – continuous variable, use linear regression
 B = binary variable, use a logit model to predict
 C = count variable, use a Poisson regression
 O = ordered (scale) variable, use an ordered probit model
 F = fractional variable, use a logit model for proportions data
 T = type variable – unordered choice, use a multinomial logit model

There are no other optional specifications for the IMPUTE command. This instruction fits a model
using as many complete observations as it can find in the current sample. No estimation results are
produced. A summary count of the number of complete and incomplete observations that were
encountered is produced. An example appears in Section R20.3. You may store up to 30 equations
each with up to 100 Rhs variables including the constant term. The list of imputation equations,
identified by the Lhs variables, appears in the project window. You can inspect the results of this
step by double clicking any of the names in the project window.
 To delete an imputation equation, use

 IMPUTE ; Delete name $

(There is no semicolon before the name.) You can also delete an equation by right clicking the name
in the project window and selecting Delete from the menu. Obtain a summary of the set of
imputation equations with

 IMPUTE ; List $

You can use your imputation equations to create simulated values for the missing values in your data
set as follows: First, create a template for the simulation with

 CREATE ; new variable name = old variable name $

The new variable name is any name you wish to use for the variable to be created. The old variable
is a Lhs variable whose name appears in the list of imputation equations. Second,

 IMPUTE ; Lhs = new variable ; Rhs = old variable ; Type = Fill $

LIMDEP will use the stored imputation equation and the method described in Section R20.7 to fill as
many missing values as possible.

R20: Multiple Imputation R-526

TIP: Neither the theory nor LIMDEP’s implementation of it will prevent you from using IMPUTE
to create imputed values of the dependent variable in an equation. The theory should prevent this,
however, since the imputed values will be endogenous in the resulting equation. Any notion of
consistent estimation of the model parameters would be optimistic at best.

When you use SAVE and LOAD, the specifications and parameter values for the imputation
equations will be restored with the data.

NOTE: No backwards incompatibilities with earlier versions of LIMDEP are created by this
addition of material in the project file. The format of LIMDEP project files has never changed. You
will be able to use SAVE and LOAD of project files across all versions of LIMDEP and NLOGIT.

R20.5 The Estimation Step

The imputation equations are used by placing the estimation step inside a procedure. You
should first set the sample to be what you want to use for the estimation step irrespective of the
missing values. Use SAMPLE, REJECT, INCLUDE, etc. to determine the current sample before
doing the estimation. You will now define a procedure that includes the imputation as follows:

PROCEDURE $
Any commands that manipulate data, matrices, scalars, etc.
Model ; definition ; Imputation = a first imputation name … $
Any additional commands $
Model ; definition ; Imputation = a second imputation name … $
… repeated as many times as desired $
ENDPROCEDURE $

The procedure is then executed with

 EXECUTE ; N = desired number of imputations
 ; Imputation = first name, second name, … $

For a simple example,

 PROCEDURE $
 PROBIT ; Lhs = doctor ; Rhs = one,age,educ,income ; Imputation = modela $
 ENDPROC $
 EXECUTE ; N = 10 ; Imputation = modela $

The imputation identifiers act as follows: Imputation is used in generating the parameter vector and
covariance matrix for that estimator. The procedure sets up the model and identifies it as one that
will be using imputation. The procedure is unrestricted. It may contain any commands, including
model commands. The ; Imputation = name specification is used to identify those models that will
be accumulating an average for the mean vector and covariance matrix. Thus, for example,

 PROCEDURE $
 PROBIT ; Lhs = doctor ; Rhs = one,age,educ,income ; Imputation = modela $
 POISSON ; Lhs = hospital ; Rhs = one,age,healthy $
 ENDPROC $
 EXECUTE ; N = 10 ; Imputation = modela $

R20: Multiple Imputation R-527

would be a valid procedure. The Poisson regression does not use imputation, while the probit model
does. (It would actually be a waste of effort to have the Poisson model inside the procedure, since it
would be estimated the same 10 times, though only the last one would be reported.) Multiple
imputation is used for models that produce an estimator and a covariance matrix. Commands that do
not produce these may not include ; Imputation. This would include commands such as
IDENTIFY, PLOT, and DSTAT. EXECUTE may also include

 ; Report

to produce a line by line report of the progress of the estimation step. An example appears below.

There are no restrictions on what models may appear in the procedure. Every model in
LIMDEP and NLOGIT is supported. The reason is that the imputation is created before the model
command is carried out. The EXECUTE command, itself, fills in the missing values for each
iteration, then any model that appears in the procedure can use the filled variables, as they are the
names of variables that all exist in the data set. Within the procedure, the imputed data set becomes
the new data set for all operations of the program.
 Some care is required by this degree of flexibility. The imputed data set may still contain
missing values if the imputation equation does not find complete data to fill all observations with
gaps. The model commands, such as POISSON above, will be operating with a SKIP command on,
so they will bypass remaining missing observations. However, data manipulations such as
MATRIX will not automatically skip over missing data. You can use REJECT within the
procedure, but it is a good idea to restore the sample to what it was at the beginning of the procedure
if you do so.
 The following shows an example of setting up a multiple imputation procedure. The first
three commands just carry out an experiment. We randomly set about 30% of the values of variable
income to -999 (missing).

SAMPLE ; All $
CREATE ; pick = Rnu(0,1) $
CREATE ; If (pick < .3) income = -999 $

The next instruction sets up the imputation for this variable, using some other variables in the data
set. The ; Type = measurement indicates that the variable being filled is continuous, and the
imputation equation is a linear regression.

IMPUTE ; Lhs = income
; Rhs = one,age,educ,handper,married,working,bluec
; Type = measurement $

The brief summary of the imputation is the only output produced by the IMPUTE command.

Equation stored for imputing missing values of INCOME
Imputation method: Linear Regression
Observations currently in full data set = 27326
Complete observations for imputation equation = 19126
Missing observations on HHNINC in data set = 8200

R20: Multiple Imputation R-528

A more detailed summary of the imputation equation is obtained with the List instruction. The
center column of the summary will indicate how many observations will have to remain unused
because of missing values among the Rhs variables being used in the imputation equation. In this
case, there are complete data for all of these variables (age, educ, handper, married, working, bluec).

 IMPUTE ; List $

Imputation Equations
Equations currently available for multiple imputation
The full sample contains 27326 observations
Complete observations counts apply to full sample
Missing obs for RHS is based on listwise deletion
Types: LR=linear regression, BR=binary logistic
 OL=ordered logit, ML=multinomial logit
 FL=fractional logit, PR=Poisson regression
---------------------+--------------+---------------------+
 Equation | RHS Vars |Complete Observations|
LHS type missing|Number Missing| LHS RHS Eqn|
---------------------+--------------+---------------------+
HHNINC LR 8200| 7 0| 19126 27326 19126|
---------------------+--------------+---------------------+

The procedure to do the estimation is as follows:

 Proc = BnryChce $
 LOGIT ; Lhs = healthy ; Rhs = one,age,educ,income
 ; Imputation = impa $
 PROBIT ; Lhs = healthy ; Rhs = one,age,educ,income
 ; Imputation = impb $
 ENDPROC $
 EXECUTE ; Proc = probit ; N = 5 ; Report
 ; Imputation = impa,impb $

Note that income appears in both models. The progress of the imputation based estimation appears
after the EXECUTE command is submitted.

[Imputation] Begin executing 5 imputation/estimation procs.
[Imputation] IMPA ; 1 of 5. Estimated model with imputed data.
[Imputation] IMPB ; 1 of 5. Estimated model with imputed data.
[Imputation] Executed imputation/estimation procedure 2 of 5
[Imputation] IMPA ; 2 of 5. Estimated model with imputed data.
[Imputation] IMPB ; 2 of 5. Estimated model with imputed data.
[Imputation] Executed imputation/estimation procedure 3 of 5
[Imputation] IMPA ; 3 of 5. Estimated model with imputed data.
[Imputation] IMPB ; 3 of 5. Estimated model with imputed data.
[Imputation] Executed imputation/estimation procedure 4 of 5
[Imputation] IMPA ; 4 of 5. Estimated model with imputed data.
[Imputation] IMPB ; 4 of 5. Estimated model with imputed data.
[Imputation] Executed imputation/estimation procedure 5 of 5
[Imputation] IMPA ; 5 of 5. Estimated model with imputed data.
[Imputation] IMPB ; 5 of 5. Estimated model with imputed data.
[Imputation] Executed imputation/estimation procedure 6 of 5
 Normal exit: 5 iterations. Status=0, F= 17398.41
 [Imputation] : Completed 5 estimations of IMPA with imputed data.

R20: Multiple Imputation R-529

Binary Logit Model for Binary Choice
Dependent variable HEALTHY
Log likelihood function -17398.40698
Restricted log likelihood -18279.94994
Chi squared [3 d.f.] 1763.08592
Significance level .00000
Estimation based on N = 27326, K = 4
MI results based on 5 imputed samples
Likelihood based stats are not reliable
when using multiple imputation methods.
Hosmer-Lemeshow chi-squared = 44.99363
P-value= .00000 with deg.fr. = 8
--------+--
 | Standard Prob. 95% Confidence
 HEALTHY| Coefficient Error z |z|>Z* Interval
--------+--
 |Characteristics in numerator of Prob[Y = 1]
Constant| .91855*** .09430 9.74 .0000 .73373 1.10336
 AGE| -.03901*** .00116 -33.53 .0000 -.04129 -.03673
 EDUC| .10429*** .00610 17.08 .0000 .09233 .11626
 HHNINC| .21566** .10388 2.08 .0379 .01206 .41925
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Normal exit: 4 iterations. Status=0, F= 17400.13
 [Imputation] : Completed 5 estimations of IMPB with imputed data.

Binomial Probit Model
Dependent variable HEALTHY
Log likelihood function -17400.12943
Restricted log likelihood -18279.94994
Chi squared [3 d.f.] 1759.64102
Significance level .00000
Estimation based on N = 27326, K = 4
MI results based on 5 imputed samples
Likelihood based stats are not reliable
when using multiple imputation methods.
Hosmer-Lemeshow chi-squared = 52.50448
P-value= .00000 with deg.fr. = 8
--------+--
 | Standard Prob. 95% Confidence
 HEALTHY| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| .58610*** .05684 10.31 .0000 .47470 .69750
 AGE| -.02404*** .00071 -33.96 .0000 -.02543 -.02265
 EDUC| .06243*** .00361 17.30 .0000 .05536 .06950
 HHNINC| .13303** .06344 2.10 .0360 .00870 .25737
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

[Imputation] Completed 5 imputation/estimation procs.

Maximum repetitions of PROC

R20: Multiple Imputation R-530

R20.6 The Aggregation Step and Post Estimation Analysis

Final results are computed as follows for each model identified in the procedure as being
estimated using imputed data: The parameter estimator of β is

1

1 ˆM
mmM =

= ∑b β .

The variance estimator is

 ()()1 1

1 1 1 ˆ ˆˆ 1
1

M M
m m mm mM M M= =

′ = + + − − −
∑ ∑S b bΣ β β

where M is the number of imputations that are done. No other results are changed by the imputation.
The estimation done at each replication treats the imputed data as if they were observed. In particular,

• No weighting scheme is used to reweight observations that contain imputed values.
• Account is taken of the possibility that the imputation might introduce a source of

measurement error in the estimation.

The estimation results contain a warning that statistics such as likelihood ratio statistics
might be unreliable when the parameter vector reported is an average of several coefficient vectors.
However, you can use Wald (chi squared) tests as usual when you use multiple imputation. The tests
can be included in the estimation command. For example,

 PROBIT ; Lhs = healthy ; Rhs = one,age,educ,income
 ; Test: age = 0 | age + income = 0
 ; imputation = impb $
would work as expected. The tests would be carried out based on the final (averaged) results after
the imputation loop. You may also use the post estimation tools, PARTIAL EFFECTS,
SIMULATE and DECOMPOSE within the imputation loop. The analyses will be delayed until
after the imputation steps are completed. Thus, inference in each command is based on S . For
example, the procedure could be

 Proc = logitmdl $

LOGIT ; Lhs = healthy ; Rhs = one,age,educ,income
 ; Test: age = 0 | age + income = 0
 ; Imputation = implogit $

PARTIAL EFFECTS ; Effects: age & age = 20(5)65 $
ENDPROC $
EXECUTE ; Proc = probit ; N = 5 ; Report ; Imputation = implogit $

R20: Multiple Imputation R-531

R20.7 Using Multiple Imputation in Your Own Model

 You will generally produce your own models by using MAXIMIZE/MINIMIZE, NLSQ,
NLSURE, GMME, etc. or by computing a parameter vector and covariance matrix using MATRIX
with CREATE, CALC, and other programming commands. For the optimization commands such
as MAXIMIZE, just include ; Imputation = name in the command, the same as other model
estimation commands. When you compute your own parameter vector and covariance matrix using
MATRIX, use DISPLAY to show your results. For example, suppose your parameter vector and
covariance matrix were named beta and vb. Then, after computing them, use

 DISPLAY ; Parameters = beta
 ; Covariance = vb
 ; Imputation = the name
 ; … any other options $

R20.8 Imputation Methods

The imputation methods used here build on Rubin’s methods, with modifications for some
of the types that he (and others) have not written about. In all cases, for each observation within
each replication, we draw a random set of parameters from the posterior normal population. We then
insert the prediction in place of the missing value. The original data set, with missing values, is
restored after each iteration concludes. Each of the six estimators depends on an estimated set of
parameters computed at the estimation step with an estimated asymptotic covariance matrix. Label
these generically β̂ and Γ̂ . Let the Cholesky decomposition of Γ̂ be denoted CCʹ, so that C is a
lower triangular matrix. With these in place, the simulations of the missing data are done as follows:
For each case, a random draw on the parameter vector is generated by

 ˆ ˆ
r r= + Cwβ β

Where wr is a K-variate draw from the multivariate standard normal population. In each case, an
applicable index function, zi,r = ˆ

r i′zβ is computed from the available data for that observation. Then,
the following algorithms are used:

Binary Random Variable

 Probabilities P0 = Λ(-zir) and P1 = Λ(zir) = 1 - P0 are computed. The unit interval is divided
into [0,P0] and (P0,1]. A random draw from U[0,1] is taken. If U is less than or equal to P0 then

,ˆi rx = 0, otherwise ,ˆi rx =1.

Fractional Random Variable

 The random draw is simply ,ˆi rx = Λ(zir).

R20: Multiple Imputation R-532

Continuous Random Variable

 The random draw is

,ˆi rx = zir + ,2
,

. .ˆ i r
i r

d f w

σ χ

where 2
,i rχ is a random draw from the chi squared population with degrees of freedom equal to those

that applied to the regression, and wi,r is a random draw from the standard normal population.

Ordered Outcome

 The estimated ordered logit model includes threshold parameters µ̂ . The estimated values
are ordered, to insure all predicted probabilities are positive. The estimated values of µ̂ are used
directly to maintain the coherence of the model. For the simulation, the J+1 cell probabilities

 Pj,ir = Λ(μj - zir) - Λ(μj-1 - zir), j = 0,1,…,J are computed,

where μ0 = 0 and μ-1 = -∞. The J + 1 cumulative probabilities are Qj,ir = Λ(μj - zi,r). The unit interval
is divided into the J + 1 cells by the values of Qj,ir where Q-1,ir = 0. A random draw from U[0,1] is
obtained. If U > Qj-1,ir and U < Qj,ir then ,ˆi rx = j. For example, if 0 < U < Λ(-zir) then ,ˆi rx = 0.
If Λ(-zir) < U < Λ(1µ̂ - zir) then ,ˆi rx =1, and so on.

Poisson Distributed Count Variable

For a Poisson distributed outcome, we form the mean θir = exp(zir). We then compute the
CDF of the implied Poisson distribution Qj = Qj-1 + P(j) where P(j) is the Poisson probability with
mean θir and Q0 = exp(-θir). A draw from the population is obtained by drawing a value from U[0,1].
If Qj < U < Qj+1, then ,ˆi rx = j.

Unordered Outcomes Multinomial Random Variable

 The approach is essentially the same as that for the ordered outcome. For the multinomial
logit model with J outcomes, the parameter vector is partitioned into J subvectors, βj where βJ = 0.
Then, the J probabilities are computed according to

 ,

1 ,

exp()
.

exp()
ir j

j J
j ir j

z
P

z=

=
Σ

The [0,1] interval is partitioned into J parts with length P1, P2,…,PJ. The intervals [0,P1), [P1,P1+P2)
and so on are used to partition the unit interval into the J cells identified with j = 1, j = 2, and so on.
A draw from U[0,1] is then taken. If U falls in cell j, then ,ˆi rx = j.

R20: Multiple Imputation R-533

R20.9 Usage Notes

 The technique of multiple imputation is rooted in the Bayesian method of data augmentation.
In this framework, missing values in an analysis are treated as unknown parameters to be estimated
along with structural parameters. To consider a useful benchmark application, consider the probit
model,
 y* = βʹx + ε
 y = 1[y* > 0].

If y* were observed directly, β would be estimated efficiently by least squares regression of y* on x.
However, only y, not y* is observed. In the classical treatment, under these circumstances, β is
estimated by maximum likelihood. A Bayesian treatment (see Greene (2011, pp. 671-672)) can
proceed by including y* with β in the estimation process, using data augmentation. In general, the
Gibbs sampler used in this method is based on estimating y* by taking random draws from the
distribution of y* conditioned on the observed data and the current estimate of β, then using
regression of the predicted values of y* on x to reestimate β. The steps are repeated many times.
This is essentially the strategy at work in multiple imputation. Estimation proceeds by estimating the
missing values using estimates of the conditional model produced at the imputation step. The use of
multiple imputations, as opposed to one single imputation, corresponds to the repetitions of the
Gibbs sampler. The aggregation step, at which the multiple estimates of β are averaged, corresponds
to the averaging of the draws on β by the Gibbs sampler.

R20.9.1 Questions on Usage

 The theory of multiple imputation is well developed in great detail for the benchmark case of
a linear regression of a variable y on a set of continuous variables x, when the K + 1 variables in the
model are multivariate normally distributed. The theoretical foundation is less firm for the arguably
more common cases in which the variables to be imputed are discrete, ordered, count variables, and
so on, and the dependent variable in the model is likewise, discrete or otherwise not amenable to
linear regression. Nonetheless, the underlying motivation is persuasive, and it does appear that some
advantage can be gained through use of the technique when the data conditions are relatively
favorable. We consider some general questions about MI here, but refer the reader to the applicable
literature for technical details, more in depth analysis, and wisdom about usage.

Should I use multiple imputation instead of listwise deletion?

 If there is any information about the missing values contained in the complete data, then
listwise deletion obviously ignores this information. MI is likely to seem more attractive the greater
is the number of incomplete observations. However, as the number of incomplete cases increases,
the number of imputations necessary will increase accordingly. The danger of having the simulation
noise taint the estimator increases as the relative presence of missing values increases.

R20: Multiple Imputation R-534

Should I use multiple imputation instead of single imputation?

 Single imputation amounts essentially to filling missing values either with a mean of the
complete observations or with some sort of conditional mean such as an ancillary regression based
on complete data. The case for MI instead of single imputation rests on the assumptions that
motivate MI more generally. Estimation of standard errors based on a single imputation is likely to
be more optimistic than appropriate. The estimated standard errors will not account for the presence
of the sampling variability in the imputation equation.

How many imputations should I use?

 This depends on many factors, including the model being estimated and the models used for
the imputation. Under the most favorable case of multivariate normality and a relatively small
number of incomplete cases, Rubin (1987) has argued that more than 90% of the advantage of MI
can be obtained with M = 2. Since the most favorable case is also likely to be the least common, this
provides only a floor. The literature has a focal point at M = 5 or 10. It is difficult to discern any
useful rule of thumb for determining M. The suggestion that the analyst examine the behavior of
their estimator with different values seems useful.

Should I use MI to impute missing values of the dependent variable?

 Never.

Should I use complete values of the dependent variable in the imputations of
the independent variables?

 This is likely to invalidate the assumption that the variables on the right hand side of your
equation are exogenous to the data generating process for the dependent variable. As a general
proposition, the answer here would be no if you are interested in consistent estimation of the
parameters of your model.

Is MI the same as Gibbs Sampling?

 As described above, MI resembles Gibbs sampling. But, they are not the same thing. MI is
not based on a Bayesian type of updating algorithm. The same imputation equation is used in every
iteration of MI.

Is MI the same as the EM algorithm?

 The EM algorithm is a method used for maximizing likelihood functions. It is firmly based
on the distribution of the dependent variable and on the conditional distribution of the underlying
unobserved data conditioned on the observed information. The probit example described in Section
R20.1 bears resemblance to the EM method. The EM method also resembles the Gibbs sampler in
the way that the weights constructed at the E (expectation) step are updated from one iteration to the
next. Once again, since MI does not rely on any form of updating algorithm, for this reason and
others, MI is not the same as the EM method.

R20: Multiple Imputation R-535

R20.9.2 Implementation Notes

The MI feature of LIMDEP provides a looping procedure within which missing values of
variables that you designate are filled with predictions from fitted models. Logically, internally, the
program creates a map of the data area that records where missing values appear. As the iteration
begins, the imputation equations are executed all at once to fill as many missing values as possible.
Thus, a data set is prepared for the commands within the procedure to use. All commands within the
procedure use the same imputed data set. At the end of the sequence of commands in the procedure,
the data set is restored to its initial state, with missing values inserted where they were before. Each
iteration of the procedure operates on a new imputed data set. A consequence of this procedure is
that you do not have to do any data management of the imputed data at all. The output report will
provide some information about how many missing values were filled and how many remained. But,
absolutely no action is required of you to deal with the imputed data set.

You can achieve replicability of your imputation results by setting the seed of the random
number generator before executing the procedure. You can also create imputed data sets by using
the IMPUTE ; Type = Fill… $ procedure described in Section R20.4 then using EXPORT, SAVE
or WRITE to offload the data set.

We note a few computations this program does not do:

1. It does not examine and act on missing data ‘patterns,’ such as monotone missing values and
so on. It fills the missing values in the variables, one variable at a time, independently.
Given the way that the imputation step proceeds, patterns of missing data would not be
useful. The program uses as many complete observations as it can find at every step. The
knowledge that a variable z1 is missing whenever another variable, z2 is missing would not
be useful.

2. It does not do any exotic corrections to degrees of freedom for the linear model. These will

apply only to the linear model in any event, which is likely to be the least frequent case that
one would use these methods. Moreover, the typical corrections for degree of missingness
in the data usually produce values for the degrees of freedom parameter for the t distribution
that are orders of magnitude beyond the point at which t becomes indistinguishable from
standard normal. The inference framework in the MI setting is assumed to be reasonably
approximated by asymptotic normality. Test statistics are based on large sample normal
distributions and the chi squared distribution for Wald statistics. F ratios, used only in the
linear model, are assumed to have denominator degrees of freedom large enough to use
Wald statistics (J*F) instead.

3. We do not do any special data management, such as saving the imputed data set(s) as

separate files. This is because we do not create freestanding replicated data sets with
imputations. Imputations are done ‘on the fly,’ and fill in the gaps in the existing data set, in
place. The advantage of this way of proceeding is that if you want to compute a thousand
imputations with a huge data set, you can do it.

R21: Bootstrapping and Other Sampling Experiments R-536

R21: Bootstrapping and Other Sampling
Experiments

R21.1 Introduction

 This chapter documents two functions available in LIMDEP, bootstrapping which will be
useful for researchers and students interested in analyzing the properties of certain sample statistics,
and sampling experiments, which will be primarily of interest to students and those using LIMDEP
for instructional purposes.

R21.2 Bootstrapping Cross Sections and Panel Data

 Bootstrapping is a technique used to deduce the properties (usually mean and variance) of the
sampling distributions of estimators by using the variation in the observed sample under an assumption
that the pattern of variation in the observed sample mimics reasonably accurately the counterpart in the
population. The user is referred to one of the standard sources on this subject for discussion. Useful
references include Efron (1979, 1998), Efron and Tibshirani (1986), Greene (2011) and other sources
cited therein. The mechanics of the procedure are as follows: An estimator, b of a parameter or vector
of parameters, β is computed using the data in a sample, X = [x1,...,xn]. We desire to estimate the
(usually asymptotic) sampling variance of the estimator, Asy.Var[b]. The technique is to compute

 Vbs = ()()'1
1

bbbb −−∑ = r
R
r rR

where R is the number of replications of the bootstrapping, and br is the estimate of β obtained from
the rth bootstrap sample, using the same computations used to compute the original estimator, b. A
bootstrap sample is obtained by sampling, with replacement, m observations from X (where m is
generally, though not necessarily, equal to n). Note that the variation is computed around the
original estimate, not the mean of the bootstrap estimates. Also, in what follows, we refrain from
labeling Vbs the variance matrix, and instead call it the mean squared error. Under ‘good’ sampling
conditions, Vbs is a reasonable estimator of Asy.Var[b].
 The number of replications, R, needed depends on the quantity being estimated. For
statistics with narrow precision, such as a specific quantile of the distribution, several hundred may
be needed. For a broader characteristic, such as the asymptotic variance, research has found that
perhaps 50 or 100 are likely to be sufficient.
 Several of the preprogrammed estimators in LIMDEP use this technique to estimate the
asymptotic variance of the estimator: MSCORE; REGRESS with the least absolute deviations
estimator; QREG and QCREG which computes quantile regressions; the data envelopment analysis
package in FRONTIER; and MATCHING, the propensity score matching estimator. You can use
bootstrapping with any estimator that you compute with any model in LIMDEP, either with the
preprogrammed commands, or one that you might program yourself using any of the programming
tools. The technique is used with the following steps:

R21: Bootstrapping and Other Sampling Experiments R-537

Step 1. Write a procedure to compute the result. The result to be bootstrapped must either be a
vector or a scalar. The procedure can involve any computation you wish, so long as the
procedure computes the statistic you are analyzing and gives it a name.

Step 2. Execute the procedure as follows:

 MATRIX or CALC ; initialize the entity being computed, to establish its name $
 PROCEDURE computes the parameter vector or scalar named above

 EXECUTE ; N = number of bootstrap replications desired. (This is R.)
 ; Bootstrap = the name of the statistic as declared above $

An optional specification in the EXECUTE command is

 ; Draws = number of observations in the bootstrapped sample.

This specifies m. If you omit this, the default value is the current sample size, n. If you do not
specify the number of draws, the default is the original sample size. Note that the leading MATRIX
or CALC is needed to establish what you are bootstrapping, as the output produced by this
procedures differs in the two cases.

NOTE: When you use ; Bootstrap, the EXECUTE command is carried out with ; Silent set
automatically. Only the original, full sample output is shown. You should not override this.

Bootstrapping Panel Data

 If your estimator is based on panel data, set up the panel with SETPANEL before any other
operations. Then, you can include

 ; Panel or ; Pds = specification

in the EXECUTE command. Rather than drawing individual observations in the bootstrapped
sample, the procedure will sample groups of observations from the panel. The groups sizes may be
different; the procedure works for balanced or unbalanced panels.

If the result your procedure computes is a vector, then the output of the procedure will be a
statistical table consisting of the original estimate, estimates of the root mean squared errors (around
the original estimate), t ratios and p values for the estimates. The latter two of these may be
questionable, but will nonetheless be suggestive. If your result is a scalar, output will include a set of
descriptive statistics, including the original estimate, root mean squared error, skewness, kurtosis,
minimum, and maximum. You may also request a histogram of the bootstrapped values by adding

 ; Histogram

to the EXECUTE command.
 Note, finally, you may use this set of procedures with any computation in any estimation
program or programming tool. All that is required is that you

R21: Bootstrapping and Other Sampling Experiments R-538

1. Declare the name of the vector or scalar before the EXECUTE command with a MATRIX
or CALCULATE command.

2. Compute the vector or scalar, by name, within the procedure.

3. Bootstrap that specific vector or scalar with the ; Bootstrap specification in the EXECUTE
command.

Remaining output is handled for you by the program. How the computation is done within the
procedure is completely up to you. There are no restrictions. All that is required is that the declared
result be the output of a MATRIX or CALC command. For the first of these, that MATRIX
command might do nothing more than simply capture an estimation result. For example:

 NAMELIST ; x = the variables on the Rhs of some model command $
 CALC ; k = Col(x) $
 MATRIX ; bb = Init(k,1,0.0) $ This is the declaration.
 PROC
 Model command to fit a model using x for which the coefficient vector is b $
 MATRIX ; bb = b $ This captures the result.
 ENDPROC
 EXEC ; Bootstrap = bb ; N = 100 $

Two examples follow.

Bootstrapped Estimates of a Vector of Coefficients

 LIMDEP computes standard errors for the marginal effects for its models by using the delta
method. It has been argued that in small samples, the delta method may be a bit unreliable. In this
example, we will examine this issue by doing the same computation using bootstrapping. The
example is set up so that you should be able to replicate it exactly:

 CALC ; Ran(12347.0) $
 SAMPLE ; 1-50 $
 CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; y = (x1 + x2 + Rnn(0,2)) > 0 $
 NAMELIST ; x = x1,x2,one $
 MATRIX ; mrgfct = Init(2,1,0) $ Note that this declares vector mrgfct.
 PROC
 PROBIT ; Lhs = y ; Rhs = x ; Partial Effects $
 CREATE ; scale = N01(b’x) $
 MATRIX ; mrgfct = {Xbr(scale)} * b(1:2) $ This computes vector mrgfct.
 ENDPROC
 EXECUTE ; Bootstrap = mrgfct ; N = 100 $ This bootstraps mrgfct.

The CREATE and MATRIX commands after the PROBIT command obtain the average partial
effects for the two variables. This experiment produces the following output: In fact, the standard
errors computed by the delta method are quite close to the bootstrapped values. The estimated
marginal effects and estimated standard errors computed by the probit estimator based on the full
sample are reported after the results of the bootstrap procedure. Note that the confidence interval
reported for the bootstrap results is almost the same as that for the probit model which used the delta
method. (The effects themselves are identical because the bootstrap procedure reports the original
coefficients based on the actual sample. Only the standard errors are bootstrapped.)

R21: Bootstrapping and Other Sampling Experiments R-539

Completed 100 bootstrap iterations.

Results of bootstrap estimation of model.
Model has been reestimated 100 times.
Coefficients shown below are the original
estimates based on the full sample.
bootstrap samples have 50 observations.
--------+--
 | Standard Prob. 95% Confidence
BootStrp| Coefficient Error z |z|>Z* Interval
--------+--
MRGFC001| .18647*** .05117 3.64 .0003 .08618 .28676
MRGFC002| .06452 .05432 1.19 .2350 -.04195 .17099
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Binomial Probit Model
Dependent variable Y
Log likelihood function -29.76776
Restricted log likelihood -34.01460
Chi squared [2 d.f.] 8.49369
Significance level .01431
--------+--
 | Prob. 95% Confidence
 Y| Coefficient Elasticity z |z|>Z* Interval
--------+--
 |Index function for probability
 X1| .55286*** .00209 2.63 .0085 .14137 .96434
 X2| .19129 .25802 1.08 .2803 -.15598 .53856
Constant| .18840 1.00000 .98 .3277 -.18887 .56567
--------+--
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
Average partial effects for sample obs.
--------+--
 | Partial Prob. 95% Confidence
 Y| Effect Elasticity z |z|>Z* Interval
--------+--
 X1| .18647*** .00067 3.44 .0006 .08032 .29262
 X2| .06452 .02861 1.12 .2634 -.04855 .17758
--------+--
Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0]
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The Distribution of a Sample Correlation Coefficient

 Applying the delta method to the distribution of a sample correlation coefficient as a
function of the sample variances and covariance is notoriously unreliable. A standard
approximation, Asy.Var[r] = (1 – r2)/n, is known to be problematic in small samples and when ρ is
close to 1.0. The following analyzes the correlation between two variables empirically.

R21: Bootstrapping and Other Sampling Experiments R-540

The commands are:

 CALC ; Ran(12347.0) $
 SAMPLE ; 1-500 $
 CREATE ; x1 = Rnn(0,1) ; x2 = x1 + Rnn(0,1) $
 CALC ; r12 = 0 $
 PROC
 CALC ; r12 = Cor(x1,x2) $
 ENDPROC
 EXECUTE ; Bootstrap = r12 ; N = 500 ; Histogram $

Results are shown below. The true correlation is 1/√2 ≈ 0.702. The sample estimate is 0.720. In
fact, the distribution does look noticeably nonnormal. The standard approximation, Asy.Var[r] = (1
– r2)/n would produce an approximation of 0.031 for the asymptotic standard error. The
bootstrapped root mean squared deviation is 0.020, which is quite different.

Completed 500 bootstrap iterations.
+--+
| Results of bootstrap estimation of model.|
| Model has been reestimated 500 times. |
| Statistics shown below are centered |
| around the original estimate based on |
| the original full sample of observations.|
| Result is R12 = .71951 |
| bootstrap samples have 500 observations.|
| Estimate RtMnSqDev Skewness Kurtosis |
| .720 .020 -.314 3.266 |
| Minimum = .635 Maximum = .777 |
+--+

Figure R21.1 Estimated Distribution of the Sample Correlation Coefficient

R21: Bootstrapping and Other Sampling Experiments R-541

R21.3 Jackknife Estimation

This procedure computes the variance (matrix) for an estimator by jackknife replications. In
a sample of N observations, the estimator is computed N times, dropping one observation from the
sample each time. The variance of the resulting estimators is reported with the original estimator.
The jackknife estimator of the variance of the estimator is

 Vbs = ()()() ()1
'

1
N

i ii

N
N =

− −
− ∑ b b b b

where b is the full sample estimator of β and b(i) denotes the estimator computed using all
observations except for observation i.
 Jackknife estimation may be used with any estimator that you compute using a sample of
data – that includes all model estimators or any other statistic that is computed with a sample of
observations – it operates the same as the bootstrap estimator described above. Any specifications,
options for the estimator (such as clustering, robust variance matrices), etc. may be used. The
jackknife estimator replications are computed using the precisely identical setup as the original.

The specification ; Jackknife = entity is used for this technique. The template procedure
for using the jackknife estimator is:

 PROCEDURE $
 any model or other computation that computes the estimator or statistic,

and gives it a name $
 ENDPROCEDURE $
 EXECUTE ; Jackknife = name $

Note, again, this is otherwise the same as the setup for the bootstrap estimator.

A small example that computes a variance estimator for the least squares coefficient follows.
A second example computes a jackknife estimator for the mean of a sample of functions of
observations drawn from a chi squared distribution.
 To illustrate the jackknife estimator, we will estimate the coefficients of a probit model using
a widely used sample of 32 observations on performance by high school students. (See Greene
(2011, p. 590). Variables gpa, tuce, psi and grade are grade point average, a test score, a treatment
dummy for a type of learning program, and whether grades in an Economics course improved.

 OBS GPA TUCE PSI GRADE OBS GPA TUCE PSI GRADE
 1 2.66 20 0 0 2 2.89 22 0 0
 3 3.28 24 0 0 4 2.92 12 0 0
 5 4.00 21 0 1 6 2.86 17 0 0
 7 2.76 17 0 0 8 2.87 21 0 0
 9 3.03 25 0 0 10 3.92 29 0 1
 11 2.63 20 0 0 12 3.32 23 0 0
 13 3.57 23 0 0 14 3.26 25 0 1
 15 3.53 26 0 0 16 2.74 19 0 0
 17 2.75 25 0 0 18 2.83 19 0 0
 19 3.12 23 1 0 20 3.16 25 1 1
 21 2.06 22 1 0 22 3.62 28 1 1
 23 2.89 14 1 0 24 3.51 26 1 0
 25 3.54 24 1 1 26 2.83 27 1 1
 27 3.39 17 1 1 28 2.67 24 1 0
 29 3.65 21 1 1 30 4.00 23 1 1
 31 3.10 21 1 0 32 2.39 19 1 1

R21: Bootstrapping and Other Sampling Experiments R-542

The jackknife estimator is shown below.

PROBIT ; Lhs = grade ; Rhs = one,gpa,tuce,psi $
PROC $
PROBIT ; Lhs = grade ; Rhs = one,gpa,tuce,psi ; Quiet $
ENDPROC $
EXECUTE ; Jackknife = b $

Binomial Probit Model
Dependent variable GRADE
Log likelihood function -12.81880
Restricted log likelihood -20.59173
Chi squared [3 d.f.] 15.54585
Significance level .00140
--------+--
 | Standard Prob. 95% Confidence
 GRADE| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
Constant| -7.45232*** 2.54247 -2.93 .0034 -12.43547 -2.46917
 GPA| 1.62581** .69388 2.34 .0191 .26583 2.98579
 TUCE| .05173 .08389 .62 .5375 -.11269 .21615
 PSI| 1.42633** .59504 2.40 .0165 .26008 2.59259
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Completed 32 jackknife iterations.

Results of jackknife estimation of model.
Model has been reestimated 32 times.
Coefficients shown below are the original
estimates based on the full sample.
jackknife samples have 31 observations.
--------+--
 | Standard Prob. 95% Confidence
JckKnife| Coefficient Error z |z|>Z* Interval
--------+--
 B001| -7.45232 4.76289 -1.56 .1177 -16.78741 1.88277
 B002| 1.62581 1.12779 1.44 .1494 -.58463 3.83625
 B003| .05173 .10033 .52 .6061 -.14491 .24837
 B004| 1.42633* .73717 1.93 .0530 -.01850 2.87117
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

This example considers estimation of E[f(x)] where x has a chi squared distribution with two
degrees freedom and f(x) = .5*lnx / exp(.2x2). We draw a sample of 100 observations from the chi
squared population, compute the functions, the mean of the functions, and the bootstrap estimator of
the variance of the statistic.

R21: Bootstrapping and Other Sampling Experiments R-543

For comparison, the conventional estimator, N-1/2 × Std.Dev(f(x)) is reported as well.

CALC ; Ran(12359) $
SAMPLE ; 1-100 $
CREATE ; x = Rnx(2) $
CREATE ; x = Rnx(2) $
CREATE ; f_x = .5*Log(x)/Exp(.2*x^2) $
PROC $
CALC ; meanf_x = Xbr(f_x) $
ENDPROC $
EXECUTE ; Jackknife = meanf_x $

Completed 100 jackknife iterations.
+--+
| Results of jackknife estimation of model.|
| Model has been reestimated 100 times. |
| Statistics shown below are centered |
| around the original estimate based on |
| the original full sample of observations.|
| Result is MEANF_X = -.14928 |
| jackknife samples have 99 observations.|
| Estimate RtMnSqDev Skewness Kurtosis |
| -.149 .049 .003 .001 |
| Minimum = -.152 Maximum = -.124 |
+--+

Maximum repetitions of PROC

CALC ; List ; samplesd = 1/Sqr(n) * Sdv(f_x) $

[CALC] SAMPLESD= .0483802

The bootstrap value of .049 compares to the empirical estimate of .0483. As noted, this estimator can
be employed with any statistic or estimator that you compute with a sample. One exception: This
estimator should not be used with panel data estimators. The ‘leave one out’ procedure leaves out an
observation, not a group of observations. This is useable for cross sections, but not for panels. Its
validity in time series is ambiguous, since the resampling procedure ‘punches a hole’ in the time series.

R21.4 Random Sampling from the Current Sample – DRAW

 One of the important components of the bootstrapping procedure described in the previous
section is the process of sampling observations from the current ‘master’ sample. The bootstrap
feature of EXECUTE does this automatically. You may wish to draw a random sample from your
data set for other reasons, for example, to program a different type of bootstrap estimator of your
own. You can draw a random sample from the current sample of observations with the DRAW
command. The procedure is as follows: First, set the parent population to whatever is desired with
READ, SAMPLE, REJECT, and INCLUDE. This results in nobs observations. The command to
draw a random sample is

 DRAW ; N = number $

to sample number observations without replacement. N must be less than nobs. Use

 DRAW ; N = number ; Rep $

R21: Bootstrapping and Other Sampling Experiments R-544

to sample with replacement. In this case, nobs can be anything and number can be up to 100,000.
For example:

 SAMPLE ; 1-100 $
 CREATE ; i = Trn(1,1) $ numbers from 1 to 100
 LIST ; i $ will display numbers from 1 to 100 in order
 DRAW ; N = 200 ; Rep $
 LIST ; i $ will display 200 random draws from i

The original data are not changed, only the sample pointers are. Restore the original sample with

 DRAW ; N = 0 $

All commands which modify the sample turn off the random sample and restore the original data set.
These are REJECT, INCLUDE, SAMPLE, DATES, PERIOD.

WARNING: Do not do any operation which modifies your existing data while this sampling
procedure is in effect. The results will be unpredictable and can be severely problematic. This
affects all operations that use the data.

WARNING: Do not use SKIP with bootstrapped samples or random samples. SKIP generates an
internal REJECT command which will then automatically produce a DRAW ; N = 0 $ command
even if no observations get skipped.

 You can also enter a DRAW random sample command by choosing Project:Set Sample

Figure R21.2 Dialog Box for DRAW Command

R21: Bootstrapping and Other Sampling Experiments R-545

R21.5 Random Sampling from Panel Data Sets

 You can draw a sample from a panel data set as easily as a cross section, by using DRAW as
described above. However, this will probably not produce the effect you want. In a sample of data
{zi,t, t = 1,...,Ti, i = 1,...,N}, one will typically want to sample over i, not over i and t. The random
sample will consist of Ns sampled individuals, with group sizes Ti equal to the original group sizes.
For a concrete example, if you have a sample of 1,000 firms, and five observations on each firm, you
will generally want to sample Ns firms, then for each firm sampled, the draw consists of all five
observations for this firm. Simply using DRAW as defined in the preceding section will interrupt
this sample configuration. LIMDEP’s DRAW command provides an option to allow this sort of
sampling. To use this, if you have an unbalanced panel, you must have a group count variable
available, as discussed in Chapter R5. For balanced panels, you need only provide the fixed group
size. In both cases, the command is

 DRAW ; N = number of groups to sample
 ; Pds = the panel specification
 [; Replacement] $

The last specification is optional. If the panel has a fixed group size, then ; Pds = the group size, for
example, ; Pds = 5. If the panel is unbalanced, then ; Pds = the name of the group size variable.
There are internal limits on the size of panel that may be sampled:

• The overall, total sample size must be < 750,000.
• The number of groups sampled must be < 20,000.

R21.6 Random Number Generators

 The other crucial component of bootstrapping and DRAW, as well as any other sampling
experimentation you might do, is the set of random number generators. You can generate random
numbers from a variety of distributions and with all of CREATE (columns of values in a variable),
CALC (single random draws) and MATRIX (matrices of random values).

R21.6.1 Setting the Seed for the Random Number Generator

 You can produce replicability for any computation involving random number generation by
using a particular value of the seed for the generator. Note, for example, that the two examples
above begin by setting the seed to a particular value; this way, you can reproduce our results.
 To reset the seed for the random number generator, use the command

 CALC ; Ran(seed) $

In this fashion, you can replicate a sample from one session to the next. Use a large odd number for
your seed.

R21: Bootstrapping and Other Sampling Experiments R-546

R21.6.2 Using CREATE to Generate Random Samples

 There are numerous transformations which draw samples using LIMDEP’s random number
generators. The basic generators are for the continuous uniform distribution in the indicated range
and the normal distribution with a specific mean and standard deviation. The commands are

 CREATE ; name = Rnu(lower limit, upper limit) $

and CREATE ; name = Rnn(mean, standard deviation) $

which will create a variable containing a sample from the indicated normal distribution. The central
tool for discrete distributions is the discrete uniform generator,

 CREATE ; name = Rnd(upper limit) $

which draws values randomly from the set 1, 2, ..., upper limit. Thus, for example, to simulate coin
tosses with heads = 1 and tails = 2, you would use Rnd(2).
 The sample is placed with the observations in the current sample. If you want to draw more
than the default number, you might want to use the ROWS command (See Section R3.4) before you
draw the sample.
 Random draws may also appear anywhere in an expression as operands whose values are
random draws from the specified distribution. For example, a random sample from a chi squared
distribution with one degree of freedom could be drawn with

 CREATE ; name = Rnn(0,1) ^ 2 $

Random samples can be made part of any other transformation. For example, the following shows
how to create a random sample from a regression model in which the assumptions of the classical
model are met exactly:

 CREATE ; x1 = Rnu(10,10)
 ; x2 = Rnn(16,10)
 ; y = 100 + 1.5 * x1 + 3.1 * x2 + Rnn(0,50) $

The regression of y on x1 and x2 would produce estimates of β1 = 100, β2 = 1.5, and β3 = 3.1.
 In addition to the Rnn(m,s) (normal with mean m and standard deviation s) and Rnu(l,u)
(continuous uniform between l and u), you may use these additional generators in the same fashion
to sample from the normal family of distributions:

 Rng(m,s) = lognormal with parameters m and s,
 Rnt(d) = t with d degrees of freedom,
 Rnx(d) = chi squared with d degrees of freedom.

Use
 CREATE ; F = (Rnx(dn)/dn)/(Rnx(dd)/dd) $

for the F distribution with dn and dd degrees of freedom.

R21: Bootstrapping and Other Sampling Experiments R-547

In addition, you can use

 Rne(q) = exponential with mean q,
 Rnw(0) = Weibull,
 Rnl(0) = logistic,
 Rnc(0) = Cauchy,
 Rnp(q) = Poisson with mean q,
 Rnd(n) = discrete uniform, x = 1,...,n,
 Rnb(n,p) = binomial, n trials, probability p,
 Rnh(a,c) = Gumbel (extreme value) with location a, scale c. If c = 1, use Rnh(a).
 Rni(a,c) = gamma with scale a and shape c. If a = 1, use Rni(c).
 Rna(a,b) = beta with parameters a and b.

You must provide the ‘0’ in the Weibull, logistic, and Cauchy functions. You may also sample from
the truncated standard normal distribution. Two formats are

 Rnr(lower) = sample from the distribution truncated to the left at ‘lower,’
 Rnr(lower,upper) = distribution with both tails truncated.

E.g., Rnr(.5) samples observations greater than or equal to .5.
 Parameters of all requests for random numbers are checked for validity. For the truncated
normal, you must have

 lower ≤ 1.5, upper ≥ -1.5, upper - lower ≥ .5.

If upper is not provided, it is taken as +∞. If you need upper truncation, a transformation which will
produce the desired result is -Rnr(-lower).
 The parameters of any random number generator can be variables, other functions, or
expressions, as well. For example, you might simulate draws from a Poisson regression model with

 CREATE ; x1 = Rnn(0,1)
 ; x2 = Rnu(0,1)
 ; y = Rnp(Exp(.2 + .3 * x1 - .05 * x2)) $

R21.6.3 Sampling from the Multivariate Normal Distribution

 To sample from the multivariate normal distribution, it is necessary to generate a set of
random variables. We do this by using the following theoretical result.

If x = (x1,...,xK) are distributed with joint normal distribution with mean vector 0 and
covariance matrix I, then Ax + µ is distributed multivariate normally with mean
vector µ and covariance matrix AA′.

You can use this result to generate a multivariate sample from the normal distribution with mean
vector µ and covariance matrix Σ by simply decomposing Σ into AA′, and using this and the desired
µ in the theoretical result. We use the Cholesky decomposition in which A is a lower triangular
matrix. The operation will create a multivariate sample – that is K variables where K is the number
of elements in x and N observations, where N is the number of observations in the current sample.

R21: Bootstrapping and Other Sampling Experiments R-548

You can sample from the distribution with up to 100 elements, in which case, you will create 100
new variables in your data area. Collectively, these K variables are a multivariate sample from the
specified multivariate normal distribution.
 The command for generating a sample from the multivariate normal distribution is

 CREATE ; name = Rmn(vector µ, matrix Σ) $

You must provide the vector µ and matrix Σ. However, if you want µ to equal zero, omit it. Thus,

 CREATE ; name = Rmn(matrix Σ) $

samples from the multivariate normal population with mean vector zero and covariance matrix Σ.
Alternatively, you can force Σ to be an identity matrix by using

 CREATE ; name = Rmn(vector µ) $

to sample from the multivariate normal population with mean vector µ and covariance matrix I.
Finally, if you want to sample from the standard normal population with mean vector zero and
covariance matrix I, use

 CREATE ; name = Rmn(k) $

where k is the number of elements in the random vector. In this case, k must either be an integer from
1 to 100 or the name of scalar which contains an integer from 1 to 100. LIMDEP detects what kind
of sample you want to generate by examining what appears in the parentheses. A vector and a
matrix implies the first case, just a matrix implies the second, just a vector, the third, and just a
number, the fourth.
 The ‘; name =’specifies the name of a namelist that will be created. This may be a new
namelist or you can replace an existing one. The variables in that namelist will be constructed as if
the command were

 NAMELIST ; name = name00, name01,... $

For example, if you use

 CREATE ; xret = Rmn(mu,v) $

where mu is a 10×1 vector and v is a 10×10 covariance matrix, then there will be a new namelist
created in your data area:

 xret = xret00,xret01,xret02,...,xret09.

This routine creates the variables, and issues a report of what it has computed. The following shows
an example of sampling 1,000 observations is from a 4-variate normal distribution.

R21: Bootstrapping and Other Sampling Experiments R-549

Figure R21.3 Sampling from the Multivariate Normal Population

Note in the report in the output window, the theoretical and empirical means and variances are both
reported. The actual mean and standard deviations of the drawn sample will not equal the theoretical
ones, since the data are a random sample – they are not constrained. Also, the report shows the seed
for the random number generator. It does not equal the seed that appears in the command in the
editing window. The CALC ; Ran(seed) $ function allows you to set a specific seed for the random
number generator. The actual value used internally is a transformation of the one you give. The
point of the function is to enable you to reset the seed to the same value, not a particular value.
Specific values of the seed are meaningless. But, your ability to reset the seed to a specific value
allows you to replicate random sampling results.
 This procedure creates several results:

• The namelist as specified in the command,
• The variables (up to 100 of them) which are the random sample,
• Matrices mean_rmn which is the matrix of means of your sample, and var_rmn which is

the sample covariance matrix.

The latter two matrices could be created immediately after the sampling command with

 MATRIX ; mean_rmn = Mean(namelist)
 ; var_rmn = Xvcm(namelist) $

 All of the elements of the setup for this computation are checked internally before any
computation is done. The following conditions will generate diagnostics:

R21: Bootstrapping and Other Sampling Experiments R-550

• Your matrices mu and v are not currently in the matrix names table.
• Your parentheses contain more than two names.
• The matrix is not square.
• The vector is not conformable with the matrix; mu may be a row or a column, but it must

be the same size as v whichever applies.
• Your computation implies more than 100 variables.
• You are out of space for new namelists or variables.
• Your matrix v is not symmetric.
• Your matrix v is not positive definite.

If none of these failures occur, the computation will proceed.

R21.6.4 Using CALC to Generate Random Draws

 CALC has a limited facility for random sampling. The Rnn, Rnu, and Rnd functions as
described for CREATE are also available for CALC. Thus,

 CALC ; name = Rnu(lower limit, upper limit) $
 CALC ; name = Rnn(mean, standard deviation) $
 CALC ; name = Rnd(upper limit) $

compute single draws from the continuous uniform, normal, and discrete uniform distributions,
respectively. As in CREATE, these may be transformed to sample from other distributions.

R21.6.5 Using MATRIX to Draw Random Matrices

 The MATRIX command ; a = Rndm(list) can be used to draw matrices of random numbers
from the normal distribution. The following specifications may be used:

 Rndm(m) = m×1 random vector from standard normal,
 Rndm(r,m) = r×m random matrix from standard normal.

All elements are independent draws. You may also specify the mean vector and covariance matrix
for a draw of a random vector from the normal distribution:

 Rndm(mu) = r×1 random vector from normal distribution with mean mu and

covariance matrix I. The matrix mu may be a row or column vector,
and r is the number of elements in mu.

 Rndm(sigma) = r×1 random vector from multivariate normal distribution with mean

vector 0 and covariance matrix sigma. The number of rows in sigma
is r. You must provide a positive definite sigma matrix.

 Rndm(mu,sigma) = r×1 random vector from multivariate normal distribution with mean

vector mu and covariance matrix sigma. The matrix mu must be the
name of a row or column vector with r elements, and sigma must be the
name of a square matrix with r rows.

R21: Bootstrapping and Other Sampling Experiments R-551

R21.6.6 Simulating Random Effects in a Panel

 The random number generator in MATRIX can be used to simulate random effects models.
Suppose your panel (real or simulated) has n groups, and each group has T(i) individuals. You will
require a stratification indicator that is incremented from one to do this. You can easily obtain this if
you do not already have it with

 REGRESS ; Lhs = one ; Rhs = one ; Pds = group count or
 ; Str = the stratum indicator you have
 ; Panel $

This creates _stratum which will be the variable you need. Now, suppose you know the theoretical
standard deviation of the common effect, say sd. Then, you can use

 MATRIX ; v_i = Rndm(your n) $
 CREATE ; ui = sd * v_i (_stratum) $

The example in Figure R21.4 computes the random effect for a balanced panel with 10 observations
per individual.

 Figure R21.4 Simulating a Random Effect

R21: Bootstrapping and Other Sampling Experiments R-552

R21.6.7 Simulating an Unbalanced Panel Data Set

If you are generating random samples using the random number generators, you will want to
be able to simulate the group sizes for the simulation. This is a fairly involved operation. The
following procedure will do it (for a balanced panel as well.)

CALC ; ni = ... the number of groups you want in your panel $
SAMPLE ; 1 - ni $
CREATE ; ti = Rnd(m) $ Set m to the largest group size you want.
MATRIX ; mti = ti $
CALC ; i1 = 1 ; i = 1 ; sumti = 0 $
PROC $
CALC ; i2 = i1 + mti(i) - 1 $
SAMPLE ; i1 - i2 $
CREATE ; ... < the variables you want to simulate> ...
 ... $
CREATE ; groupti = mti(i) ; groupid = i $
CALC ; sumti = sumti + mti(i) ; i1 = i1 + 1 ; i = i + 1 $
ENDPROC $
EXECUTE ; N = ni $
SAMPLE ; 1 - sumti $

You can now analyze these panel data. Use ; Pds = groupti for group size counts. Groupid is a
simple (1,2,...) group identifier. For example, you could use groupid in the calculation of individual
random effects described in the preceding section.

R21.7 Plotting Distributions

 There are a variety of tools that can be used to display probability distributions. Precise,
accurate figures can be drawn by plotting the values of the probability distribution. Empirical
approximations to probability distributions can be obtained by drawing histograms for large random
samples of the random variable.

R21.7.1 CALC Functions that Show Discrete Distributions

CALCULATE provides numerous functions for computing continuous and discrete
probabilities and densities from a variety of distributions. The following additional functions will
produce tables and character based plots for discrete distributions:

Tbb(p,n) for binomial probabilities with probability p, n trials,
Tbp(lambda) for Poisson with mean lambda,
Tbg(p) for geometric with parameter p,
Tbn(p,n) for negative binomial with probability p and n successes,
Tbh(p,m,n) for hypergeometric with probability p, population size m, and n successes.

Calculating the function with specified parameters produces the listing and figure, as shown in the
illustration below. CALC ; List ; Tbb(.4375,20) $ produces the following results in the output
window:

R21: Bootstrapping and Other Sampling Experiments R-553

Figure R21.5 Binomial Distribution with CALC Functions

R21.7.2 Plotting a Density

 You can plot any function using the FPLOT command. One use might be to plot a known
probability density function. The form of the FPLOT command is

 SAMPLE ; 1 $
 FPLOT ; Fcn = the specification of the function as a function of x
 ; Labels = x
 ; Plot(x)
 ; Start = some value in the range of x
 ; Limits = the range of variation of the variable
 ; Pts = the number of points to plot (and connect) $

You may also add a title to the figure with ; Title = the desired title. Note that the function need
not simply be a function of x; it can involve other parameters as well. You might, for example, use

 CALC ; mu = a value ; sigma = a value $
 PROC
 FPLOT ; ... ; Fcn = (1/sigma) * N01((x - mu)/sigma) / Phi((a - mu)/sigma)
 ; ... $
 ENDPROC
 EXECUTE ; a = 0, 1.5, .5 $

R21: Bootstrapping and Other Sampling Experiments R-554

to plot the density of a truncated normal variable as a function of the mean, mu, the standard
deviation, sigma, and the upper truncation point, a.
 The SAMPLE ; 1 $ command is used here because FPLOT will compute the sum over the
current sample of whatever function is specified. This will allow you to plot log likelihood
functions. For the purpose here, you do not wish to sum, so you reduce the sample to just one
observation. The example below plots the density of the logistic random variable.

SAMPLE ; 1 $
FPLOT ; Labels = x
 ; Plot(x)
 ; Limits = -4,4
 ; Start = 0
 ; Pts = 100
 ; Fcn = Exp(x) / (1 + Exp(x))^2

; Title = Logistic Distribution $

SAMPLE ; 1 $
FPLOT ; Labels = x
 ; Plot(x)
 ; Limits = -4,4
 ; Start = 0
 ; Pts = 100
 ; Fcn = Exp(x) / (1 + Exp(x))^2

; Title = Logistic Distribution $

Figure R21.6 Density of the Logistic Distribution

R21: Bootstrapping and Other Sampling Experiments R-555

R21.7.3 Drawing a Distribution by Plotting a Histogram

 The HISTOGRAM command provides sufficient resolution to produce a reasonable
estimate of a distribution if the sample is large enough. You need only draw your random sample
using any of the methods discussed earlier, then use HISTOGRAM to plot the distribution. For
example, the application below displays an empirical estimate of the density of a mixture of normal
distributions, with even mixing of two reasonably widely separated normal distributions:

ROWS ; 10000 $ Add rows to data area
CALC ; Ran(1234567) $ Make exercise replicable
SAMPLE ; 1-10000 $ Use a large sample
CREATE ; x1 = Rnn(1,1) ; x2 = Rnn(5,1) $ Two normal distributions
CREATE ; u = Rnd(2) - 1 $ Mixture, 50/50
CREATE ; v = u*x1 + (1-u)*x2 $ The mixed variables
HISTOGRAM ; Rhs = v ; Int = 60 $ 60 bar histogram

Figure R21.7 Histogram for Draws from a Bimodal Distribution

R21.7.4 Sampling Experiments

 As the preceding illustrates, the random number generators combined with the
HISTOGRAM command can be used to produce an empirical estimate of a distribution (density).
This device could also be used to demonstrate the generation of data through data generating
processes. Thus, events can be simulated in this fashion. The following (admittedly pretty basic)
application illustrates a coin tossing experiment. Each player tosses a fair coin 10 times. What does
the distribution of the number of heads tossed look like? (We know this is binomial, but we simulate
it the hard way anyway.)

R21: Bootstrapping and Other Sampling Experiments R-556

 First, set the number of players.

 CALC ; players = ... $ How many players?
 SAMPLE ; 1 - players $

Now, toss 10 coins, coding 0 for tails, 1 for heads, and add the 1s.

 SAMPLE ; 1-100 $
 CALC ; Ran(12345) $
 CREATE ; toss1 = Rnd(2) - 1 ? (of course, there is an easier way)
 ; toss2 = Rnd(2) - 1 ; toss3 = Rnd(2) - 1
 ; toss4 = Rnd(2) - 1 ; toss5 = Rnd(2) - 1
 ; toss6 = Rnd(2) - 1 ; toss7 = Rnd(2) - 1
 ; toss8 = Rnd(2) - 1 ; toss9 = Rnd(2) - 1
 ; toss10 = Rnd(2) - 1 $
 CREATE ; heads = toss1 + toss2 + toss3 + toss4 + toss5 +
 toss6 + toss7 + toss8 + toss9 + toss10 $
 HISTOGRAM ; Rhs = heads ; Title = Histogram for Number of Heads $

The following shows the result of this simulation with 100 players.

Figure R21.8 Sampling Experiment for Coin Tosses

R21: Bootstrapping and Other Sampling Experiments R-557

R21.7.5 The Law of Large Numbers and the Central Limit Theorem

 Demonstrating the central limit theorem always takes a bit of creativity. The following
shows one approach. The procedure shows the effect of increasing n on the observed frequency
distribution of sample means of n observations drawn from some decidedly nonnormal distribution.
This program could be modified to compare more than three sample sizes, and can be changed easily
to apply the result to sampling from any desired distribution. The annotations describe where
modifications should be made. These commands create columns of sample means of three, 10 and
25 observations.

SAMPLE ; 1-10000 $ desired number of means
CALC ; Ran(1234567) $
CREATE ; n1 = Trn(3,0) ; n2 = Trn(10,0) ; n3 = Trn(25,0) ; row = Trn(1,1) $

This line can be changed to use a different parent distribution

 CREATE ; c2 = Rnx(2) $

MATRIX ; xb3 = Gxbr(c2,N1) ; xb10 = Gxbr(c2,n2) ; xb25 = Gxbr(c2,n3) $

To show the force of the result, we now produce histograms for our samples of means, using the
same scale for all three figures. The limits are taken from the one known to have the greatest range
of variation.

SAMPLE ; 1-400 $
CREATE ; mean1 = xb3(row) ; mean2 = xb10(row) ; mean3 = xb25(row) $
CALC ; a0 = Min(mean1) ; a1 = Max(mean1) $
CREATE ; z1 = Sqr(3) * (mean1-2)/Sqr(2) ; z2 = Sqr(10) * (mean2-2)/Sqr(2)

; z3 = Sqr(25) * (mean3-2)/Sqr(2) $

These three histograms demonstrate the operation of the law of large numbers.

 HISTOGRAM ; Rhs = mean1 ; Int = 60 ; Limits = a0,a1
 ; Title = Means of Samples of 3 $
 HISTOGRAM ; Rhs = mean2 ; Int = 60 ; Limits = a0,a1
 ; Title = Means of Samples of 10 $
 HISTOGRAM ; Rhs = mean3 ; Int = 60 ; Limits = a0,a1
 ; Title = Means of Samples of 25 $

These three histograms demonstrate the force of the central limit theorem.

HISTOGRAM ; Rhs = z1 ; Int = 60 ; Limits = -3,3 $
HISTOGRAM ; Rhs = z2 ; Int = 60 ; Limits = -3,3 $
HISTOGRAM ; Rhs = z3 ; Int = 60 ; Limits = -3,3 $

R21: Bootstrapping and Other Sampling Experiments R-558

Figure R21.9a Means of Samples of 3

Figure R21.9b Means of Samples of 10

R21: Bootstrapping and Other Sampling Experiments R-559

Figure R21.9c Means of Samples of 25

R21.8 Urn Experiments

 The final set of applications we consider is a class of sampling experiments known as ‘urn
experiments.’ These can become extremely elaborate. LIMDEP is well suited to make even the
most complicated of these quite simple to program. We consider a basic template to carry out the
following two steps:

Step 1. An ‘urn’ is initialized with a fixed mixture of nb blue and nr red balls. (This can be

generalized to more colors without great difficulty.) Then, n0 = nb + nr.

Step 2. For draws i = n0 + 1 to ntotal, we reach into the urn and draw one of the (i - 1) balls then in

the urn. Depending on the color drawn, add another ball to the urn. The new ball added
may be blue or red, depending on some decision rule. At each draw i, watch the behavior
of the proportion of red balls in the urn.

The following program can be used to carry out these steps. The only changes needed in the
program to accommodate a particular experiment are the setting of n0, nblue, and ntotal at the
beginning to dictate the parameters of the experiment and the augmentation rule for adding the next
ball (i.e., the CALC command which creates newball). The program carries out the entire
experiment and displays the proportion of red balls by plotting it.
 The application that follows the program is the ‘Polya’ experiment. In this experiment, the
augmentation rule is to add a ball that is the same color as the one drawn. In this experiment, there is
no fixed limiting value for the proportion. It depends entirely on the initial conditions and on the
first few balls drawn. An interesting aspect of this experiment can be seen by starting it from the
same initial conditions with a relatively small n0.

R21: Bootstrapping and Other Sampling Experiments R-560

First, set up the initial conditions: The n0 in the following command is the number of ‘balls’
to be in the urn at the outset. The CREATE command creates the initial balls, with, say, ‘blue’
coded 0 and ‘red’ coded 1. This then starts the experiment with a fixed number of blue and red balls
in the urn.

CALC ; n0 = ... your setting ; nblue = ... ; ntotal = ... $
 SAMPLE ; 1 - n0 $

CREATE ; ball = 0*Ind(1,nblue) + 1*Ind((nblue+1),n0) $ nred = n0 - nblue

Now, do the experiment of adding balls to the urn according to some rule and, at each step, compute
the appropriate descriptive statistics. ntotal = the number of balls that will be in the urn at the end of
the experiment. Generally urn experiments involve drawing a ball from the existing stock in the urn,
then adding one to the urn by a prescribed rule. We create a variable which at observation i points
randomly to one of the balls that is already in the urn. For i = n0+1,... pick is a random integer from
the values 1,2,...,i-1.

SAMPLE ; 1 - ntotal $ Total number of balls at the end of the experiment.
CREATE ; i = Trn(1,1) - 1 $ Creates i = 0,1,2,... for the whole sample.
CREATE ; If (_obsno > n0) pick = Rnd(i) $

We will now create a procedure that will generate a Markov chain of balls added to the urn. The
CREATE command carries out the rule for adding a new ball.

PROC $
CALC ; row = pick(obs) ? CALC picks from the existing balls for

; oldball = ball(row) ? observation i. Oldball gives the ball picked.
 ; newball = ... some function of oldball $

CREATE ; ball(obs) = newball $ Add the ball at this observation.
ENDPROC $

For example, if red, toss a coin and add blue if heads, red if tails. Thus, if the oldball is blue = 0, add
nothing. If oldball is red = 1, add a random draw, 0 or 1. This does it.

CALC ; If [oldball = 1] newball = oldball * (Rnd(2)-1) $
 CALC ; n1 = n0 + 1 $

EXEC ; obs = n1,ntotal $ Fill all cells of the column.

We now compute the proportion of red balls at each observation. This is done for each just by
averaging the balls from 1 to i. This is a ‘partial sum’ computed using the recursion, sum(i) =
sum(i-1) + x(i).

SAMPLE ; 1 - ntotal $
CREATE ; If (_obsno = 1) sum = ball ; (Else) sum = sum[-1] + ball $
CREATE ; mean = sum/(i+1) $

R21: Bootstrapping and Other Sampling Experiments R-561

We now have a column of means where at observation i, the mean is based on observations 1 to i.
Presumably, this column of means will converge to something, so we investigate by describing or
plotting.

 SAMPLE ; n1 - ntotal $
 PLOT ; Lhs = i ; Rhs = mean ; Fill ; Grid ; Endpoints = 0,ntotal $

This program carries out the Polya experiment. We begin by placing 10 balls in the urn, three blue
ones and seven red ones. We then run the experiment for 500 draws in total. Set the parameters for
this application.

 CALC ; n0 = 10 ; nblue = 3 ; ntotal = 500 $

Set the initial conditions.

 SAMPLE ; 1 - n0 $
 CREATE ; ball = 0*Ind(1,nblue) + 1*Ind((nblue+1),n0) $ nred = n0 - nblue
 SAMPLE ; 1 - ntotal $ Total number of balls at the end of the experiment.
 CREATE ; i = Trn(1,1) - 1 $ Creates i = 0,1,2,... for the whole sample.

Run the experiment.

 CREATE ; If (_obsno > n0) pick = Rnd(i) $
 PROC $
 CALC ; row = pick(obs) ? CALC picks from the existing balls for

; oldball = ball(row) ? observation i. Oldball is the ball picked.
; newball = oldball $

 CREATE ; ball(obs) = newball $ Add the same ball as picked.
 ENDPROC $
 CALC ; n1 = n0 + 1 $
 EXEC ; obs = n1,ntotal $ Fill all cells of the column.

Compute and display the results.

 SAMPLE ; 1 $
 CREATE ; sum = ball $
 SAMPLE ; 1 - ntotal $
 CREATE ; If (_obsno > 1) sum = sum[-1] + ball $
 CREATE ; mean = sum/(i+1) $
 SAMPLE ; n1 - ntotal $
 PLOT ; Lhs = i
 ; Rhs = mean ; Fill
 ; Grid ; Endpoints = 0,ntotal $

We ran this experiment a second time with the same initial conditions, but a different set of picks by
saving the second set of results in a variable named mean2, then plotting both sets of results in the
same figure. The result is shown in the second figure.

R21: Bootstrapping and Other Sampling Experiments R-562

Figure R21.10a Polya Experiment

Figure R21.10b Two Runs of the Polya Experiment

R22: Models for Panel Data R-563

R22: Models for Panel Data

R22.1 Introduction

 This chapter will introduce LIMDEP’s collection of programs for analysis of panel data.
LIMDEP supports by far a larger variety of model formulations for panel data than any other package.
Nearly all of the models supported by the program, including dozens of linear and nonlinear
specifications, provide special treatments for panel data including fixed and random effects,
stratification, latent class models, random parameters, multilevel effects, and ‘cluster’ corrections for
layered and stratified data sets. This goes far beyond the familiar fixed and random effects linear
regression, Poisson and logit models typically found elsewhere, and includes sample selection models,
multinomial logit, probit, censored and truncated regression, and a large variety of loglinear models.
 The methods used for estimation of these models have many common features, but will also
vary a bit from one application to the next. This chapter will summarize the background theory and
practical aspects of the estimation methods for LIMDEP’s panel data models. Subsequent chapters
in the Econometric Modeling Guide will then describe the specific models and the LIMDEP
commands used to estimate them.
 Section R22.5 will describe the basic forms of the commands for these models and the
results that each will produce. There are additional features and options with each of the three broad
groups, fixed effects, random effects and latent class models. Chapters R23-R25 will give technical
details as well as additional model commands and features for specific model classes, common
(fixed and random) effects, random parameters and latent class models.

NOTE: Users of these model forms and programs should consult Chapters R4 and R5 for discussion
of data sets for panel data models in LIMDEP.

R22.2 Panel Data Models

 Panel data treatments in LIMDEP, broadly defined, are those models and specifications that
directly use the information that observations are grouped either because of common membership in
a class (cluster and strata, for example) or because the observations constitute multiple observations
on the same entity (person, firm, country). A not quite complete list of the set of programs that
contain estimators and model forms for these treatments includes the following basic forms that
support various arrangements of fixed and random effects:

• linear regression,
° fixed and random effects models,
° random coefficients models,
° heteroscedasticity and autocorrelation,
° time series cross section (TSCS) and SURE models,
° nested random effects,
° simultaneous equations models,
° dynamic panel data models,

• nonlinear regression with exponential conditional mean,
• binary logit, probit, Gompertz, complementary log log and arctangent,
• bivariate probit models and sample selection models for binary choice,

R22: Models for Panel Data R-564

• ordered probit, logit Gompertz and complementary log log,
• generalized ordered probit models and ordered probit models with selection,
• tobit, censored and truncated regression models,
• exponential regression model,
• Weibull, gamma, binomial, geometric, inverse Gaussian, and other loglinear models,
• Poisson and negative binomial regression models,
• Nonpoisson count models for over and underdispersion,
• stochastic frontier models,
• survival models – parametric models with time varying covariates,
• sample selection models,
• multinomial, multiperiod, random effects probit model.

The list will also be extended to include the large number of programs that fit random parameters,
and latent class models. These include the ones listed above as well as numerous others.
 LIMDEP does not require panels to be ‘balanced. Only TSCS and SURE require that there
be the same number of rows of data for each individual. But, the set of observations must be
‘contiguous.’ That is, for all models listed above, the set of observations for a particular individual
(group) must be a consecutive set of observations in the data set. Section R22.3.2 discusses an
operation that can be used when the panels in the original data set are not contiguous.

NOTE: Much of the econometrics literature on panel data models focuses on the balanced panel
case and treats the unbalanced panel as in inconvenient extension. This is what is necessary to keep
the mathematics manageable. (See, e.g., Baltagi (2005).) However, this is a point at which theory
and practice diverge. In LIMDEP, all panels are treated as unbalanced. The balanced panel is the
special case, though only in a trivial way that will be invisible to you.

R22.3 Data Arrangement and Setup

 Your data are assumed to consist of variables:

 yit, x1it, x2it, ..., xKit, Iit, i = 1,...,N, t = 1,...,Ti,

 yit = dependent variable,
 xit = set of independent variables,
 Iit = stratification indicator,
 K = number of regressors, not including one,
 N = number of groups,
 Ti = number of observations in group ‘i.’

The data set for all panel data models will normally consist of multiple observations, denoted
t = 1,...,Ti, on each of i = 1,...,N observation units, or ‘groups.’ A typical data set would include
observations on several persons or countries each observed at several points in time, Ti, for each
individual. In the following, we use ‘t’ to symbolize ‘time’ purely for convenience. The panel could
consist of N cross sections observed at different locations or N time series drawn at different times,
or, most commonly, a cross section of N time series, each of length Ti. The estimation routines are
structured to accommodate large values of N, such as in the national longitudinal data sets, with Ti
being as large or small as dictated by the study but not directly relevant to the internal capacity of the
estimator. (The size of Ti does become relevant in the two way models.)

R22: Models for Panel Data R-565

NOTE: With the current revision of LIMDEP, there is no limit on the number of groups in a panel.
Earlier versions had an upper limit of 20,000 groups. This enhancement will come at the cost of
very slightly slower computation, but if you have less than several hundred thousand observations,
the difference should not be perceptible.

We define a balanced panel to be one in which Ti is the same for all i, and, correspondingly, an
unbalanced panel is one in which the group sizes may be different across i.

NOTE: Panels are never required to be ‘balanced.’ That is, the number of time observations, Ti
may vary with ‘i.’ The computation of the panel data estimators is neither simpler nor harder with
constant Ti. No distinction is made internally. There are some theoretical complications, though.

R22.3.1 Data Arrangement

 Data for the panel data estimators in LIMDEP are assumed to be arranged contiguously in
the data set. Logically, you will have

 Nobs = ∑
=

N

i
iT

1

observations on your independent variables, arranged in a data matrix

T1 observations for group 1
T2 observations for group 2
 …
TN observations for group N

and likewise for the data on y, the dependent variable. When you first read the data into your
program, you should treat them as a cross section with nobs observations. The partitioning of the
data for panel data estimators is done at estimation time. Chapter R5 contains further details on how
to set up and use panel data sets.

NOTE: Missing data are handled automatically by this estimator. You need not make any changes
in the current sample to accommodate missing values – they will be bypassed automatically. Group
sizes and all computations are obtained using only the complete observations. Whether or not you
have used SKIP to manage missing values, this estimator will correctly arrange the complete and
incomplete observations.

R22.3.2 Reordering Balanced Panels

 Panel data may happen to be arranged by period rather than by group. For example, you
might have data on 1,000 firms in each of 10 years, with the first 1,000 observations being year 1,
the second 1,000 year 2, and so on. For nearly all panel data functions in LIMDEP, you will need to
rearrange these data so that the first 10 observations are firm 1, the next 10 are firm 2, and so on. If
you have no more than 100,000 observations in total, you can request that such a panel be reordered
by specifying the following artificial linear regression command

 REGRESS ; Lhs = one ; Rhs = one ; Panel
; Pds = … or ; Str = …
; Reorder $

X =

R22: Models for Panel Data R-566

This reorders the entire data set so that it is properly arranged for the panel data estimators. Further
details on this operation are given in Chapter R5.

R22.3.3 CREATE Commands for Panel Data

Data transformation functions and matrix operations for panel data are described in Chapters
R4 and R5. One particular function that you are likely to find useful is the device to create a variable
that contains the group means of a time varying variable in a panel. To create a new variable that
replicates for each observation in a group the mean of that group, use the group means function,

 CREATE ; z = Group Mean (variable, Str = name or number) $
or CREATE ; y = Group Mean (variable, Pds = name or number) $

The function requires a panel data specification, precisely the same sort as used to specify panels in
the model commands. The function produces a report when computed, such as

+---+
| Variable = ____________ Variable Groups Max Min Average |
| AVGWKS Group means WKS 595 7 7 7.0 |
+---+

The variable is added to the data set, as shown in Figure R22.1.

Figure R22.1 Group Means of Weeks

R22: Models for Panel Data R-567

This function must be used in isolation, not as part of another command nor in a compound function.
Use a new CREATE command for each variable. Other available panel data functions are

Group deviations Group Devs (deviations from own group means, zit - iz)
Group lagged value Group Lags (the first observation becomes missing, zi,t-1)
Group first difference Group Diff (the first observation becomes missing, zit - zi,t-1)

R22.4 General Model Forms for Panel Data

 The class of models presented in this chapter are generically denoted

 P(yit) = g(βi, xit, εit)
where
 P(.) = the probability density function of the observed random variable, yit.

 i = 1,...,N denotes the ith group or individual.

The number of groups is usually unlimited, but in a few cases is limited. This generally applies to
the fixed effects models where the upper limit in some cases is 250,000. There is no limit on the
number of groups in the random effects, random parameters or latent class formulations.

 t = 1,...,Ti denotes the tth period, ranging from one to a person or group

specific Ti. With only one exception that is dictated by the structure of
the model (TSCS and SURE), LIMDEP always allows Ti to vary across
groups. That is, panels may always be unbalanced.

 yit = the observed dependent variable.

 xit = is used to denote an observed vector of independent variables. This

may include variables which vary across both groups and periods, and, in
some applications, may also involve variables which vary across groups
but are constant across periods, such as group specific dummy variables
or time invariant effects such as gender in microeconometric
applications.

 βi = the parameter vector for the ith individual. This may vary completely

across individuals, as in the random coefficients models, or it may have a
fixed component and a subvector which varies across groups, as in the
usual fixed effects model. It may also be constant across groups and
periods, as in the random effects model.

 εit = the stochastic component of the model. The symbol is used generically

to indicate the stochastic nature of the model, not necessarily a
‘disturbance.’

 g = the density of the observed random variable conditioned on the

arguments.

R22: Models for Panel Data R-568

LIMDEP supports the following general model forms for panel data:

Fixed Effects Models

 g(βi, xit, εit) = g(β′xit + αi, εit)

The ‘effect’ αi is assumed to be correlated with the included variables, xit. This model is generally
estimated by including N group dummy variables in the model. Familiar results are largely based on
least squares with the ‘within’ transformation (deviations from group means). This does not work
for nonlinear models. LIMDEP uses maximum likelihood methods instead.

Random Effects Models

 g(βi, xit, εit) = g(β′xit , εit + ui)

The effect ui in this model is assumed to be uncorrelated with the included variables xit. Familiar
results are based on generalized least squares in linear models. In nonlinear models, it is necessary
to analyze the likelihood function instead.

Random Coefficients Models

 g(βi, xit, εit) = g[βi(zi,vi)′xit , εit]

The individual specific coefficient vector is modeled as the result of a random process that depends
on observable heterogeneity, zi and unobserved heterogeneity, vi. There are numerous variants on
this ‘hierarchical’ (or ‘multilevel’) model. The random effects model can be viewed as a random
coefficients model in which only the constant term is random. But, in this modeling framework as
discussed below, we view the random coefficients models much more broadly than this. First,
coefficients on the other exogenous variables are allowed to be random as well. Second, the random
coefficients models fit in LIMDEP also allow for underlying heterogeneity in the distribution of the
parameters, to be modeled with other individual specific characteristics. Thus, in the formulation
above, the mean of the distribution of βi is allowed to vary deterministically across individuals.

Latent Class Models

 g(βi, xit, εit) = Eclasses [g((βclass′xit , εit) | class]

The latent class model characterizes the population that generates the sample more broadly than just
characterizing the model. The implication for the model builder is that there is latent heterogeneity
in model components, similar to the random parameters model. Here, the distribution across
individuals is discrete. In the random parameters model, the variation is continuous.
 There is some variation across model types regarding which of the three model forms is
supported. The list in the Table R22.1 suggests the extent.

R22: Models for Panel Data R-569

Model Class Fixed Effects Random Effects Random Parameters Latent Class
Linear Regression a • • • •
Nonlinear Reg. (Expon.) • • • •

Binary Choice
Probit a • • • •
Logit a • • • •
Complementary Log Log a • • • •
Gompertz a • • • •
Bivariate Probit b • •
Bivar. Probit Selection b • • •
Partial Observability b • •

Multinomial Choice
Multinomial Logit c • • •
Multinomial Probit b •
Ordered Probability/All a • • • •
Generalized Ord. Probit • •

Count Data
Poisson Regression a • • • •
Negative Binomial a • • • •
Poisson/NegBin ZIP b • • • •

Loglinear Models
Normal (Exp. Regr.) b • • • •
Exponential b • • • •
Gamma b • • • •
Weibull b • • • •
Inverse Gaussian b • • • •
Geometric b • • • •
Power b • • • •
Binomial b • • • •

Limited Dependent Variable
Tobit a • • • •
Censored (Grouped) Dataa • • • •
Truncated Regression b • • • •
Sample Selection b • • •

Survival and Frontier Models
Weibull b • • • •
Exponential b • • • •
Loglogistic b • • • •
Lognormal b • • • •
Stochastic Frontier a • • • •

Table R22.1 Model Formulations with Panel Data Estimators

a The random effects model can be estimated by standard REM techniques (GLS, quadrature) or by
 the simulation method with a random parameters formulation;
b The random effects model can only be estimated by the simulated random parameters approach.
c Multinomial logit with random effects can be fit as a random parameters logit model by NLOGIT
 Version 5. The latent class multinomial logit model can also be fit with NLOGIT Version 5.

R22: Models for Panel Data R-570

R22.5 Model Commands

 There is a small amount of variation across models in the form of the commands, but in most
cases, the model formulation will be as follows:

R22.5.1 Specifying the Panel

 Panels may always be balanced or unbalanced. A balanced panel has the same number of
observations per group; Ti is a fixed T. An unbalanced panel allows Ti to vary across individuals.
Your model command will generally contain a specification

 ; Pds = panel specification

which tells which of these is the case. If the panel is balanced, you will give the specific value as the
specification, for example as in

 ; Pds = 10

If the panel is unbalanced, you will provide the name of a variable which repeats within a group the
number of observations in the group, as in

 ; Pds = ti

For example, suppose your panel data set contained 20 observations in total, in six groups with
Ti = 4, 3, 2, 4, 5, and 2 observations. Then the variable named ti containing the 20 values

 4,4,4,4, 3,3,3, 2,2 4,4,4,4, 5,5,5,5,5, 2,2

could be used to specify this panel.
 The general command

 SETPANEL ; Group = id variable ; Pds = name to be used for count variable $

can be used to set up the group size variable and to install a procedure that will automatically keep
track of the panel settings for the current sample. After you use SETPANEL, it is only necessary to
include
 ; Panel

in your model command. Further details on this setting appear in Section R5.3.3.
 Most of the techniques described here apply to applications involving panel data sets.
However, in the case of the random parameters models, the techniques can be extended to a
surprising array of cross section applications. The model does not require a panel, though in
practice, the model is not strongly identified by a cross section, and results may be less than ideal.
Nonetheless, ; Pds = 1 is allowable, though it is superfluous. If you do not specify ; Pds in your
command, one period is assumed.

R22: Models for Panel Data R-571

NOTE: The fixed and random effects linear regression models also allow a stratification variable to
be specified with ; Str = variable. This provides a group identifier. This is specific to this particular
model. It has the same effect as the periods specification above. But, the ; Str = variable
formulation may only be used in that setting with the REGRESS command. See Chapter R5 for
discussion of panel data indicator variables and Chapter E11 for the panel data estimator used with
REGRESS. For nonlinear models, ; Str = variable is used only for the clustering estimator for
robust covariance matrices (Sections R10.1 and E18.2.6) for specifying nested, multilevel random
effects (Section E18.8).

R22.5.2 Missing Data

 Missing data can sometimes confuse the panel data setups. In some cases, you must remove
the observations containing missing values from the sample before issuing the estimation command.
In the large panel data groupings fixed effects, random parameters and latent classes, the estimator
will, itself, bypass the missing data, and your observation count can give the group sizes including
the missing values. The discussion for each model framework will detail specifically how missing
values are to be handled. Please note this in each case for the model you are analyzing.

R22.5.3 Model Type Specifications, Output and Saved Matrices

 There are some common aspects of the major classes of panel data models. We discuss
these here. Later in this chapter, we will provide more extensive details on each of these estimation
classes, including some of the more specialized formats. In addition to the model specific results
that are retained by each estimator, the panel data estimators each create type specific matrices that
are likely to be useful. For example, if requested, the general fixed effects estimator creates a matrix
named alphafe which contains the estimated dummy variable coefficients (up to 50,000 of them).

Fixed Effects Models

A fixed effects model will generally be specified with

 Model ; Lhs = ...
 ; Rhs = ...
 ; Pds = specification
 ; FEM $

NOTE: With two exceptions, ; Fixed Effects may be used instead of ; FEM. Two models, the
binary logit and the negative binomial model each support two different approaches to fixed effects
estimation. For these cases, ; Fixed invokes the Chamberlain estimator for the logit model and the
Hausman, Hall and Griliches estimator for the negative binomial model. LIMDEP’s more general,
‘true’ fixed effects estimator is invoked with ; FEM. The differences between the approaches are
discussed in the respective chapters in the Econometric Modeling Guide.

R22: Models for Panel Data R-572

 Other estimation features will usually be available as well, such as optimization parameters,
fitted values, and so on. For example, the following presents estimates for a probit model with 1,000
individual intercepts using simulated data – actually 676 as 324 groups had no within group
variation. See Figure R22.2 and Chapter R23 for discussion of this important point.

 CALC ; Ran (123457) $
 SAMPLE ; 1-5000 $
 MATRIX ; ui = Rndm(1000) $
 CREATE ; x = Rnn(0,1) ; i = Trn(5,0) $
 CREATE ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $
 CREATE ; yit = yits > 0 $
 PROBIT ; Lhs = yit ; Rhs = one,x

; Pds = 5
; FEM

 ; Partial Effects
; Parameters $

Probit Regression Start Values for YIT
Dependent variable YIT
Log likelihood function -3154.28695
Estimation based on N = 5000, K = 2
Inf.Cr.AIC = 6312.574 AIC/N = 1.263
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
 X| .34595*** .01912 18.09 .0000 .30847 .38343
Constant| -.32119*** .01850 -17.37 .0000 -.35744 -.28494
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Nonlinear Estimation of Model Parameters
Method=Newton; Maximum iterations=100
Convergence criteria: max|dB| .1000D-05, dF/F= .1000D-08, g<H>g= .1000D-08
Normal exit from iterations. Exit status=0.

FIXED EFFECTS Probit Model
Dependent variable YIT
Log likelihood function -1729.82433
Estimation based on N = 5000, K = 677
Inf.Cr.AIC = 4813.649 AIC/N = .963
Sample is 5 pds and 1000 individuals
Skipped 324 groups with inestimable ai
PROBIT (normal) probability model
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
 X| .65919*** .03125 21.10 .0000 .59795 .72043
--------+--

R22: Models for Panel Data R-573

--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics.
They are computed at the means of the Xs.
Estimated E[y|means,mean alphai]= .435
Estimated scale factor for dE/dx= .394
--------+--
 | Partial Prob. 95% Confidence
 YIT| Effect Elasticity z |z|>Z* Interval
--------+--
 X| .25949*** .01523 21.04 .0000 .23531 .28366
--------+--
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The matrix alphafe contains the estimates of the dummy variable coefficients. (The large values,
-1.d20 are filler for cells that correspond to inestimable coefficients. This occurs when the
dependent variable in the binary choice model is always zero or one.

Figure R22.2 Estimated Fixed Effects

Random Effects Models

 Random effects models will usually be specified similarly, but as noted, there is large
variation across model types. The simple specification

 ; Pds = specification

R22: Models for Panel Data R-574

will suffice in a few cases, such as the stochastic frontier model, but for the probit, logit, Poisson,
and others, in which there are several different panel data models, you must specify the type of
model, with

 ; Pds = specification ; Random Effects

For example, the following small experiment estimates a (properly specified – the data exactly obey
the assumptions) random effects probit model. Note that a full set of results is produced for the
model, as would be in a cross section.

 CALC ; Ran (123457) $
 SAMPLE ; 1-5000 $
 MATRIX ; ui = Rndm(1000) $
 CREATE ; x = Rnn(0,1) ; i = Trn(5,0) $
 CREATE ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $
 CREATE ; yit = yits > 0 $
 PROBIT ; Lhs = yit ; Rhs = one,x

; Pds = 5
 ; Random Effects
 ; Partial Effects

; Parameters $

Random Effects Binary Probit Model
Dependent variable YIT
Log likelihood function -2838.62648
Restricted log likelihood -3154.28695
Chi squared [1 d.f.] 631.32094
Significance level .00000
Estimation based on N = 5000, K = 3
Inf.Cr.AIC = 5683.253 AIC/N = 1.137
Sample is 5 pds and 1000 individuals.
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -.44895*** .03927 -11.43 .0000 -.52591 -.37199
 X| .50151*** .02536 19.78 .0000 .45181 .55122
 Rho| .49459*** .02209 22.39 .0000 .45131 .53788
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
They are computed at the means of the Xs
Observations used for means are All Obs.
--------+--
 | Partial Prob. 95% Confidence
 YIT| Effect Elasticity z |z|>Z* Interval
--------+--
 X| .13539*** .00514 18.75 .0000 .12124 .14954
--------+--
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R22: Models for Panel Data R-575

Random Parameters

 The random parameters models are all specified the same way. The model command is

 Model ; Lhs = ...
 ; Rhs = ...
 ; Pds = specification (this is optional here)
 ; RPM (for random parameters model)
 ; Fcn = variable name (distribution) ... $

(There are numerous optional specifications for this model class. These are detailed in Chapter
R24.) The ; Fcn = name (distribution) specifies the variable in the Rhs list whose coefficient is
random – they need not all be. The basic distributions available are normal, uniform, and triangular,
which you would specify as

 ; Fcn = name(n) or (u) or (t)

(There are a variety of ways to modify and extend this model.) There are several other parameters
that are part of this specification. Estimation is done by simulation, so you may specify the number
of replications for the simulation with

 ; Pts = the desired number of replications

The default is 100, but you may give any value you like.
 The parameters specified to be random are assumed in the preceding to be uncorrelated, so
that for each one, the estimates consist of the mean of the distribution and a scale factor for the
random term.. You can fit a model in which the random parameters are allowed to be freely
correlated by adding

 ; Correlation

to the model command.
 The following simulates and fits a random parameters probit model in an exercise similar to
the earlier examples. (Some output is omitted.)

 CALC ; Ran (123457) $
 SAMPLE ; 1-5000 $
 MATRIX ; ui = Rndm(1000) $
 CREATE ; x = Rnn(0,1) ; i = Trn(5,0) $
 CREATE ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $
 CREATE ; yit = yits > 0 $
 PROBIT ; Lhs = yit ; Rhs = one,x
 ; Pds = 5
 ; RPM ; Fcn = one(n),x(n)
 ; Correlated ; Pts = 50
 ; Parameters $

R22: Models for Panel Data R-576

Random Coefficients Probit Model
Dependent variable YIT
Log likelihood function -2853.67087
Restricted log likelihood -3154.28695
Chi squared [3 d.f.] 601.23217
Significance level .00000
Estimation based on N = 5000, K = 5
Sample is 5 pds and 1000 individuals
PROBIT (normal) probability model
Simulation based on 50 random draws
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
 |Means for random parameters
Constant| -.45179*** .02276 -19.85 .0000 -.49640 -.40718
 X| .49366*** .02391 20.65 .0000 .44680 .54053
 |Diagonal elements of Cholesky matrix
Constant| .99052*** .02798 35.40 .0000 .93568 1.04537
 X| .08259*** .02207 3.74 .0002 .03933 .12585
 |Below diagonal elements of Cholesky matrix
 lX_ONE| -.01478 .02759 -.54 .5922 -.06886 .03930
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Implied covariance matrix of random parameters

Var_Beta| 1 2
--------+----------------------------
 1| .981138 -.0146412
 2| -.0146412 .00703983

Implied standard deviations of random parameters

S.D_Beta| 1
--------+--------------
 1| .990524
 2| .0839037

Implied correlation matrix of random parameters

Cor_Beta| 1 2
--------+----------------------------
 1| 1.00000 -.176169
 2| -.176169 1.00000

The ; Parameters specification in a random parameters model creates several matrices:

 beta_i = group specific estimates of E[βi | data on individual i]
 sdbeta_-i = group specific estimates of Std.Dev[βi | data i]
 gammaprm = estimate of Γ matrix
 sdrpm = estimates of σβ for random parameters.

R22: Models for Panel Data R-577

Figure R22.3 Matrix Results from Random Parameters Model

NOTE: The random coefficients model with only the constant term specified to be random is
equivalent to a random effects model as discussed earlier. However, these will not give the same
answer for a given data set because the random effects model will generally be fit by full ML, using
Hermite quadrature to integrate the random effect out of the terms in the log likelihood function
while the random parameters (random constant) is estimated by simulation methods. If the model is
correctly specified, these two estimators should produce similar answers. The larger is the sample,
the closer they will be. The example below demonstrates using the artificial data generated earlier.

 CALC ; Ran (123457) $
 SAMPLE ; 1-5000 $
 MATRIX ; ui = Rndm(1000) $
 CREATE ; x = Rnn(0,1) ; i = Trn(5,0) $
 CREATE ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $
 CREATE ; yit = yits > 0 $
 PROBIT ; Lhs = yit ; Rhs = one,x
 ; Pds = 5
 ; RPM ; Fcn = one(n) ; Pts = 100 $
 PROBIT ; Lhs = yit ; Rhs = one,x ; Random Effects $

R22: Models for Panel Data R-578

Random Coefficients Probit Model
Dependent variable YIT
Log likelihood function -2844.30849
Restricted log likelihood -3154.28695
Chi squared [1 d.f.] 619.95692
Significance level .00000
McFadden Pseudo R-squared .0982721
Estimation based on N = 5000, K = 3
Inf.Cr.AIC = 5694.617 AIC/N = 1.139
Model estimated: Mar 10, 2011, 07:02:51
Sample is 5 pds and 1000 individuals
PROBIT (normal) probability model
Simulation based on 100 random draws
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
 |Nonrandom parameters
 X| .49965*** .02285 21.86 .0000 .45485 .54444
 |Means for random parameters
Constant| -.45470*** .02203 -20.64 .0000 -.49787 -.41153
 |Scale parameters for dists. of random parameters
Constant| .99086*** .02799 35.40 .0000 .93600 1.04572
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Random Effects Binary Probit Model
Dependent variable YIT
Log likelihood function -2838.62648
Restricted log likelihood -3154.28695
Chi squared [1 d.f.] 631.32094
Significance level .00000
McFadden Pseudo R-squared .1000735
Estimation based on N = 5000, K = 3
Inf.Cr.AIC = 5683.253 AIC/N = 1.137
Model estimated: Mar 10, 2011, 07:03:49
Sample is 5 pds and 1000 individuals.
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -.44895*** .03927 -11.43 .0000 -.52591 -.37199
 X| .50151*** .02536 19.78 .0000 .45181 .55122
 Rho| .49459*** .02209 22.39 .0000 .45131 .53788
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R22: Models for Panel Data R-579

 The slope parameters differ predictably, but are close as might be expected. The correlation
parameter estimated by the REM equals σu

2 / (1 + σu
2). Computing this ratio with the value

0.99086268 given for the RPM gives a counterpart to ρ of 0.495409. The two techniques are clearly
finding essentially the same point. Note, as well, that the log likelihoods are similar, but as expected,
not exactly the same.

Latent Class Models

 Finally the command for the latent class models has a common simple form:

 Model ; Lhs = ...
 ; Rhs = ...
 ; Pds = specification
 ; LCM (for latent class model)
 ; Pts = number of classes, up to 9 $

The small example below uses exactly the same data used in the preceding examples. In this case,
although the results seem reasonable, in fact, the model is misspecified – the data do not conform to
a latent class model. The estimator has done its best to partition the continuously variable parameter
vector (with one nonvarying element) into a discrete distribution with three mass points. Note that
the true expected value of the continuously variable constant term in the model is -0.5000. If we
average the two class specific coefficient vectors with weights equal to the respective class
probabilities (-.75661,.60010), the results resemble the true mean vector of (-.5,.5). The ; List
parameter requests a listing of the posterior class probabilities (defined below) and the actual
commands. The example shows the first few observations.

The ; Parameters specification in the command also creates three matrices:

 b_class = coefficient matrix - one column for each class, coefficients for
 underlying models,
 class_pr = estimated class probabilities,
 beta_i = group (individual) specific posterior estimated coefficient vector.

 CALC ; Ran (123457) $
 SAMPLE ; 1-5000 $
 MATRIX ; ui = Rndm(1000) $
 CREATE ; x = Rnn(0,1) ; i = Trn(5,0) $
 CREATE ; yits = -.5 + .5*x + ui(i) + Rnn(0,1) $
 CREATE ; yit = yits > 0 $
 PROBIT ; Lhs = yit ; Rhs = one,x
 ; Pds = 5
 ; LCM

; Pts = 2
 ; Parameters

; List $

R22: Models for Panel Data R-580

Probit Regression Start Values for YIT
Dependent variable YIT
Log likelihood function -3154.28695
Estimation based on N = 5000, K = 2
Inf.Cr.AIC = 6312.574 AIC/N = 1.263
Model estimated: Mar 10, 2011, 07:13:59
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -.32119*** .01850 -17.37 .0000 -.35744 -.28494
 X| .34595*** .01912 18.09 .0000 .30847 .38343
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Normal exit: 10 iterations. Status=0, F= 2859.914

Latent Class / Panel Probit Model
Dependent variable YIT
Log likelihood function -2859.91433
Restricted log likelihood -3154.28695
Chi squared [4 d.f.] 588.74525
Significance level .00000
McFadden Pseudo R-squared .0933246
Estimation based on N = 5000, K = 5
Inf.Cr.AIC = 5729.829 AIC/N = 1.146
Model estimated: Mar 10, 2011, 07:14:00
Sample is 5 pds and 1000 individuals
PROBIT (normal) probability model
Model fit with 2 latent classes.
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
 |Model parameters for latent class 1
Constant| -.98945*** .05685 -17.40 .0000 -1.10089 -.87802
 X| .44691*** .03553 12.58 .0000 .37728 .51655
 |Model parameters for latent class 2
Constant| .55354*** .06718 8.24 .0000 .42187 .68522
 X| .49469*** .03977 12.44 .0000 .41673 .57264
 |Estimated prior probabilities for class membership
Class1Pr| .60851*** .03119 19.51 .0000 .54738 .66963
Class2Pr| .39149*** .03119 12.55 .0000 .33037 .45262
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

===
Predictions computed for the group with the largest posterior probability
Obs. Periods Fitted outcomes
===
Ind.= 1 J* = 2 P(j)= .009 .991
 01-05 1.0 1.0 1.0 1.0 1.0
Ind.= 2 J* = 1 P(j)= .997 .003
 01-05 1.0 1.0 1.0 1.0 1.0
Ind.= 3 J* = 1 P(j)= .995 .005
 01-05 1.0 1.0 1.0 1.0 1.0
Ind.= 4 J* = 2 P(j)= .015 .985

R22: Models for Panel Data R-581

Figure R22.4 Latent Class Model Results

R23: Fixed and Random Effects Models for Panel Data R-582

R23: Fixed and Random Effects Models for
Panel Data

R23.1 Introduction

 LIMDEP provides a variety of panel data treatments for about 50 different model
specifications. The starting point is the basic common effects model, in the form of fixed and
random effects. These versions of each model, such as the linear model, Poisson regression, probit
model, or ordered choice models, are described in detail in the Econometric Modeling Guide. In this
chapter, we will detail some general results about how fixed and random effects are handled in linear
and nonlinear models.

R23.2 Fixed Effects Models

 The fixed effects linear regression model is fit by ordinary least squares, instrumental
variables or feasible generalized least squares in the presence of autocorrelation. For other models,
fixed effects models are fit by maximum likelihood methods. Fixed effects nonlinear models have
heretofore been viewed generally as intractable except in a few special cases. The problem has been
that it is generally not possible to transform the data in such a way as to remove the effects from the
density, so the researcher was faced with the need to fit all the model coefficients. We have
developed a method of handling this problem (in collaboration with George Jakubson of Cornell
University) which essentially estimates the model by brute force, but takes advantage of some
special characteristics of the fixed effects model. In a few familiar cases (three), it is possible to
condition the fixed effects out of the density and estimate the parameters of interest via a conditional
log likelihood. For our purposes, this is a partial solution, as it provides a method for some useful
cases, logit and Poisson, for example, but does not extend to some very important cases, namely the
tobit and probit models. The methods we have developed for LIMDEP extend to these three and
many other interesting cases.

R23.2.1 Least Squares in the Linear Regression Model

 The one way fixed effects linear regression model is described in Chapter E17. The model is

 yit = αi + β′xit + εit

The model is fit by taking advantage of the Frisch-Waugh theorem for partitioned least squares
regression. The least squares slope coefficients are obtained by linear regression of

 (yit - .iy) on (xit - .ix) where .iy = ∑ =
iT

t ity
1

 and .ix = ∑ =
iT

t it1
x

R23: Fixed and Random Effects Models for Panel Data R-583

Panels may be unbalanced, as usual. By this construction, a separate constant term is estimated for
each group, as opposed to an overall constant and ‘contrasts’ for N - 1 of the groups. The individual
constant terms are then computed as the group specific residuals,

 ai = ∑ =
iT

t 1
(yit - .iy) - (xit - .ix)′b.

 When there is autocorrelation, the model is first partial differenced using the value of rho
provided from your prior estimation of the model – see Chapter E11. The fixed effects treatment is
applied to the transformed model,

 yit - r yi,t-1 = β′(xit - r xi,t-1) + αi(1 - r) + (εit - r εi,t-1)

The fixed effects computed for this model are saved in a matrix named alphafe.
 The basic command (without the other available options) for this linear regression model is

 REGRESS ; Lhs = the dependent variable
 ; Rhs = the independent variables, not including one
 ; Pds = the specification of the periods indicator
 ; Panel
 ; Fixed Effects $ (or just ; Fixed)

If you have defined your panel data with SETPANEL (see Chapter R5), then the ; Pds = … may be
omitted.
 The two way fixed effects linear regression model (see Section E17.3) is

 yit = αi + γt + β′xit + εit.

It is usually assumed – this is essential for your purposes – that in a two way fixed model, the
number of periods in the data set is relatively small – generally less than about 100. Since panels
may be unbalanced, there is a large degree of complication in the computation of the estimates. This
is handled in LIMDEP by treating the two way fixed effects model as a one way model with a set of
T* - 1 = Max(Ti) - 1 period specific dummy variables. Thus, the coefficients in the two way model
are actually computed by generating the period specific dummy variables. There is no correction for
autocorrelation supported in the two factor fixed framework.

NOTE: The number of periods (or second level groups) may be up to 1,000 in LIMDEP 10.

 There are counterparts to the simple formulas based on the Frisch-Waugh theorem for two
way panel models. In particular, the OLS coefficients can be estimated by least squares regression
of the transformed variables it it i tDy y y y y= − − + . However, this only gives the correct answer
for a balanced panel. If the panel is unbalanced, this formula will result in a plausible, but incorrect
answer for the two way fixed effects model. Because LIMDEP never restricts you to a balanced
panel for any model, this formula is not used. The two way fixed effects model is always fit by
creating the period dummy variables and including them in a one way fixed effects model.

R23: Fixed and Random Effects Models for Panel Data R-584

 In the reported output for the two way fixed effects model, the fixed effects are transformed
so that the model contains an overall constant term and two sets of centered dummy variable
coefficients. That is, in the two factor model (not the one factor model), the output will contain an
overall constant term and group specific coefficients, ai transformed so that Σiai = 0, and period
specific coefficients, ct transformed so that Σt ct = 0.
 For the linear regression model – this differs a bit from the nonlinear models – you must
provide a variable that lists the periods, even if the panel is balanced. Thus, within each group, the
variable will take some or all of the values 1,...,T*. For a balanced panel, you can create this with

 CREATE ; date = Trn(-t,0) $

where T is the number of periods. If the panel is unbalanced, you must create the variable in
whatever fashion is necessary. (Some hints appear in Chapter R5.) The model command is then

 REGRESS ; Lhs = the dependent variable
 ; Rhs = the independent variables, not including one
 ; Pds = the specification of the periods indicator
 ; Time = the time variable
 ; Fixed Effects $

NOTE: In previous versions of LIMDEP, the equivalent was ; Period = the time variable. This is
still supported. The form suggested above is provided to maintain consistency with the newer models.

There are other options available for the panel data specifications in the linear model as well.
Further details appear in Chapter E17. The linear model with fixed effects and endogenous right
hand side variables is described in Chapter E22.

Example – Linear Fixed Effects Model

 The listing below demonstrates the results for a linear fixed effects model in a (balanced)
panel with 595 individuals and seven periods. The commands are

SETPANEL ; Group = _stratum ; Pds = ti $
REGRESS ; Lhs = lwage ; Rhs = one,wks,occ,ind,south

; Panel ; Fixed Effects $

The standard results include the simple least squares results without fixed effects followed by the
least squares dummy variable (LSDV) estimates. The last table of results presents summary analysis
of variance statistics and the results of hypothesis tests of the null model with no effects against the
fixed effects model. For these data, the model of the null hypothesis is decisively rejected based on
the F statistic and the chi squared results.

R23: Fixed and Random Effects Models for Panel Data R-585

+---+
| Variable = ____________ Variable Groups Max Min Average |
| TI Group sizes _STRATUM 595 7 7 7.0 |
+--+

Ordinary least squares regression
LHS=LWAGE Mean = 6.67635
 Standard deviation = .46151
 No. of observations = 4165 Degrees of freedom
Regression Sum of Squares = 127.319 4
Residual Sum of Squares = 759.586 4160
Total Sum of Squares = 886.905 4164
 Standard error of e = .42731
Fit R-squared = .14355 R-bar squared = .14273
Model test F[4, 4160] = 174.32156 Prob F > F* = .00000
Diagnostic Log likelihood = -2366.09179 Akaike I.C. = -1.69930
 Restricted (b=0) = -2688.80603
 Chi squared [4] = 645.42847 Prob C2 > C2* = .00000
Panel Data Analysis of LWAGE [ONE way]
 Unconditional ANOVA (No regressors)
Source Variation Deg. Free. Mean Square
Between 646.25374 594. 1.08797
Residual 240.65119 3570. .06741
Total 886.90494 4164. .21299
--------+--
 | Standard Prob. 95% Confidence
 LWAGE| Coefficient Error z |z|>Z* Interval
--------+--
 WKS| .00518*** .00129 4.01 .0001 .00265 .00772
 OCC| -.30924*** .01362 -22.70 .0000 -.33595 -.28254
 IND| .10092*** .01397 7.22 .0000 .07354 .12830
 SOUTH| -.16271*** .01467 -11.09 .0000 -.19146 -.13397
Constant| 6.59913*** .06126 107.73 .0000 6.47906 6.71919
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

LSDV least squares with fixed effects
LHS=LWAGE Mean = 6.67635
 Standard deviation = .46151
 No. of observations = 4165 Degrees of freedom
Regression Sum of Squares = 647.046 598
Residual Sum of Squares = 239.859 3566
Total Sum of Squares = 886.905 4164
 Standard error of e = .25935
Fit R-squared = .72955 R-bar squared = .68420
Model test F[598, 3566] = 16.08638 Prob F > F* = .00000
Diagnostic Log likelihood = 34.44842 Akaike I.C. = -2.56678
 Restricted (b=0) = -2688.80603
Estd. Autocorrelation of e(i,t) = .492839
Panel:Groups Empty 0, Valid data 595
 Smallest 7, Largest 7
 Average group size in panel 7.00
Variances Effects a(i) Residuals e(i,t)
 .143678 .067263

R23: Fixed and Random Effects Models for Panel Data R-586

--------+--
 | Standard Prob. 95% Confidence
 LWAGE| Coefficient Error z |z|>Z* Interval
--------+--
 WKS| .00111 .00102 1.09 .2766 -.00089 .00311
 OCC| -.07139*** .02331 -3.06 .0022 -.11707 -.02571
 IND| .02944 .02632 1.12 .2634 -.02215 .08103
 SOUTH| -.02694 .05818 -.46 .6433 -.14098 .08710
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

+--+
| Test Statistics for the Classical Model |
+--+
| Model Log-Likelihood Sum of Squares R-squared |
|(1) Constant term only -2688.80597 886.90494 .00000 |
|(2) Group effects only 27.58464 240.65119 .72866 |
|(3) X - variables only -2366.09173 759.58557 .14355 |
|(4) X and group effects 34.44849 239.85932 .72955 |
+--+
| Hypothesis Tests |
| Likelihood Ratio Test F Tests |
| Chi-squared d.f. Prob F num denom P value |
|(2) vs (1) 5432.78 594 .0000 16.14 594 3570 .00000 |
|(3) vs (1) 645.43 4 .0000 174.32 4 4160 .00000 |
|(4) vs (1) 5446.51 598 .0000 16.09 598 3566 .00000 |
|(4) vs (2) 13.73 4 .0082 2.94 4 3566 .01912 |
|(4) vs (3) 4801.08 594 .0000 13.01 594 3566 .00000 |
+--+

R23.2.2 Maximum Likelihood Estimation

 The general (possibly nonlinear) one way fixed effects model is

 zit = αi + β′xit, i = 1,...,N, t = 1,...,Ti,

 p(yit) = g(zit, θ).

where αi is the coefficient on a binary variable, di, which indicates membership in the ith group. The
panel is assumed to consist of N groups with Ti observations in the ith group. The panel need not be
balanced; Ti may always vary across groups. Nonlinear models of this form are estimated in two
ways. A conditional estimator is obtained by using the conditional joint distribution,
f(yi1,yi2,...,yiT|Σtyit). (See, for example Griliches, Hall, and Hausman (1984) who develop this for the
Poisson regression.) The resulting density is a function of β alone, which is then estimated by
(conditional) maximum likelihood. This estimator is available for the binary logit, Poisson, and
negative binomial models. Chapters E30 and E44 provide extensive details. Other models do not
reduce to a useable closed form through this conditioning, so that the conditional estimator is
unavailable. The unconditional estimator is obtained by a direct maximization of the full log
likelihood function and estimating all parameters including the group specific constants.

R23: Fixed and Random Effects Models for Panel Data R-587

Maximum Number of Groups

 The estimator described here actually computes the full vector of K+N coefficients, ‘the hard
way,’ one might say. This means that your estimated coefficient vector can be huge.

The upper limit on the number of group specific constants that may be estimated is 100,000.

Estimated Coefficients in Fixed Effects Models

 As seen in the example below, the model output does not include the estimated fixed effects
(dummy variable) coefficients. These are saved in a matrix named alphafe, but not displayed. You
can examine the matrix by double clicking its name in the project window. The earlier example
demonstrates.

Certain models, such as the binary choice models, require that observation groups in which
there is no variation in the dependent variable be dropped from the sample when estimating fixed
effects models – there is no MLE for the individual specific constant in this case. (This is not general
– it only applies to a few models.) In a probit model, for example, the individual specific coefficient
cannot be estimated if the Lhs variable is always zero or always one. The alphafe matrix’s length
matches the number of groups in all cases. Noncomputable αs, e.g. for logit and probit, are set equal
to -1.d20 or +1.d20 when yit = 0 or 1, respectively.

The Incidental Parameters Problem

 Full estimation of the fixed effects model in this fashion generally encounters the ‘incidental
parameters’ problem. The estimators of the fixed effects coefficients are inconsistent in a fixed
effects model, not because they estimate the wrong parameters, but because the variances of the
estimators of αi are of order 1/Ti which is not assumed to be increasing, not 1/N, which is. Thus, the
properties of the slope estimator (and the estimator of θ in the negative binomial model) depend on
an inconsistent estimator. It can be shown (see below) that the variance of the slope estimator
converges to zero. The mean of the slope estimator converges to a function that deviates from β as a
function of the extent to which the estimator of αi deviates from αi. Let ai be the MLE of αi and b be
the estimator of β. The usual results for the MLE in a multiparameter situation would produce
consistency from the fact that b = b(a1, a2, ...) and

 plimN→∞ b - β = a function of, among other things, plimN→∞ ai - αi, i = 1,...,N.

In the usual case, all terms (including the other estimators) would converge to zero. In this case, that
does not hold, though the extent to which the small sample (Ti) affects b is unknown. (Contrary to
widespread belief, the bias of the MLE is not always upward. In the tobit model, there appears to be
none, though the estimator of σ is biased downward, while in the truncated regression, it appears that
both the slopes and the estimator of σ are biased toward zero. Unfortunately, the end result is
strongly model specific. See Greene (2004).) Certainly if your panel contains very small group
sizes, say Ti less than five or so, then this estimator is shaky. If you have fairly large group sizes, say
on the order of 15 or more, then you are in the range of sample sizes that analysts often rely upon to
assert other asymptotic results. Users are urged to consider this issue when using the unconditional
fixed estimators.

R23: Fixed and Random Effects Models for Panel Data R-588

 Surprisingly, the incidental parameters problem is not present in the Poisson model. The
reason for this intriguing result is that in the Poisson model, the first order conditions for estimation
of the slopes are actually free of the fixed effects – see Winkelmann (2000) for a proof. You can see
this effect at work in the application in Chapter E44. The conditional and unconditional estimators
are identical. This is not the case for the negative binomial or binary logit models, however. It is for
a few other estimators, such as the exponential regression. The formal reason for this result is that in
the cases listed, there exist sufficient statistics, usually the group means of the dependent variable,
for estimation of the dummy variable coefficients.

Two Way Fixed Effects Models

 LIMDEP’s unconditional estimator can also produce a two way fixed effects model,

 zit = αi + δt + β′xit.

There will now be MaxTi-1 additional coefficients in the model. You can request this estimator by
adding

 ; Time = ti

where the variable ti tells, for each observation, in which period the observation occurred. This
variable must take the values 1,2,...,MaxTi. That is, it must be coded with ‘t,’ the index number of
the period. A date will not work – it will be flagged as identifying too many coefficients. Do note
that observations may be made at different periods in the different groups. For example, if you have
a panel with three observations in the first group and seven in the second, the first three observations
could have been made at t = 2, t = 4, and t = 7. The routine assumes that MaxTi is equal to the
largest group size in the model. (That way, it is assured that there are no holes in the sequence of
observations.) Thus, the largest group in the sample must have this variable coded with the complete
set of integers, 1,2,...,Tmax.

NOTE: If you have a balanced panel with ; Pds = t where t is a fixed value, then you can specify
the time effects with ; Time = one as there can be no variation in the coding of the period in a
balanced panel.

NOTE: Our experience has been that this extension produces considerable instability in the
negative binomial, though it works nicely in the Poisson model.

 The fixed effects model with time effects is estimated by actually creating the time specific
dummy variables. You will see a complete set of time effects in the output. As such, however, if
you have a large group size in your panel, this extension may create an extremely large model.

R23: Fixed and Random Effects Models for Panel Data R-589

R23.2.3 How it’s Done

 The unconditional log likelihood is maximized by using Newton’s method. The log
likelihood is

 log L =

∏∑ ==

),,(log
11

θitit
T
t

n
i

zygi

Let pit, yit, xit and zit denote the components of this function. Then, by simple differentiation, we
obtain

β∂

∂ Llog =
1 1

log (, ,)iN T it it
iti t

it

g y z
z= =

∂
∂∑ ∑ xθ = gβ =

1 1
iN T

i t= =∑ ∑
gitxit

ι

L
α∂

∂ log =
it

ititT
t z

zygi

∂
∂∑ =

),,(log
1

θ = gi =
1

iT

t=∑ git

'

log2

ββ∂∂
∂ L

 =
2

21 1

log (, ,)iN T it it
it iti t

it

g y z
z= =

∂ ′
∂∑ ∑ x xθ = Hββ′

2

2

log

i

L∂
∂α

 =
2

21

log (, ,)iT it it
t

it

g y z
z=

∂
∂∑ θ

 = hii

i

L
α∂∂

∂
β
log2

 =
2

21

log (, ,) xiT it it
itt

it

g y z
z=

∂
∂∑ θ

 = hβi

Assemble the full set of first derivatives in a (K+N)×1 vector, g and the full set of second derivatives
in a (K+N)×(K+N) matrix, H. The iteration for Newton’s method is

 γs+1 = γs - Hs

-1gs

 = γs + ds,

where γ denotes the full (K+N)×1 parameter vector, (β′,α1,α2,...,αN)′ and s indexes iterations. This
iteration then, computes a change vector, ds as the product of the matrix and vector of derivatives. In
principle, the matrix H is huge, which makes this computation unwieldy. However, the lower right
N×N submatrix of H (the very large part) is a diagonal matrix – see above. Therefore, it is not
necessary actually to compute the entire matrix. The change vector can be computed as a sum of
K×1 vectors which are themselves functions only of the scalar diagonal parts of the submatrix and
the K×K submatrix at the upper left, all of which is very easily done and requires no more computer
memory than a conventional estimator, say least squares for a regression.

R23: Fixed and Random Effects Models for Panel Data R-590

 We use Newton’s method for the computations, so the actual Hessian is available for
estimation of the asymptotic covariance matrix of the estimators. Let Hβα′ denote the K×N submatrix
of H obtained as [hβ1, hβ2, ..., hβN] and let Hαα′ denote the N×N diagonal lower right submatrix of H
obtained as diag[hii]. Then, the estimator of the asymptotic covariance matrix for the MLE of β is
the upper left submatrix of -H-1. Using the partitioned inverse formula, this is

 Asy.Var[b] = [-(Hββ′ - Hβα′ (Hαα′)-1 Hαβ′)]-1

The first matrix is given above. By inserting the formulas given above, and exploiting the fact that
Hαα′ is a diagonal matrix, we obtain the simple result

 Hβα′ (Hαα′)-1 Hαβ′ =)')((1
1 ii

ii

N
i h ββ=∑ hh

This produces a sum of K×K matrices which is of the form of a moment matrix and which is easily
computed. Thus, the asymptotic covariance matrix for the estimated coefficient vector is easily
obtained in spite of the size of the problem.
 Two considerations remain. First, it is not possible to store the asymptotic covariance matrix
for the estimator of the fixed effects (unless there are relatively few of them). Using the partitioned
inverse formula once again, we can show that the elements of Asy.Var[a] are contained in

 Asy.Var[a] = [-(Hαα′ - Hαβ‘(Hββ′)-1Hβα′)]-1.

The ijth element of the matrix to be inverted is

 (Hαα′ - Hαβʹ(Hββ′)-1Hβα′)ij = 1(i = j)hii - hβi ′(Hββ′)-1 hβj

This is a full N×N matrix, and so the model size problem will apply – it is not feasible to manipulate
this matrix. On the other hand, one could extract particular parts of it if that were necessary. For the
interested practitioner, we will lay out the computational results. The Hessian to be inverted for the
asymptotic covariance matrix of a is

 Hαα′ - Hαβ‘(Hββ′)-1Hβα′

We keep in mind that Hαα′ is an N×N diagonal matrix. Using result A-66b in Greene (2011), we
have that the inverse of this matrix is

 [Hαα′]-1 + [Hαα′]-1 Hαβ‘ {(Hββ′)-1 - Hβα′[Hαα′]-1 Hαβ‘}-1 Hβα′[Hαα′]-1.

This is a messy expression, but the fact that Hαα′ is diagonal simplifies it considerably. In particular,
by expanding the summations where needed, we find

 -Asy.
1

' 1

1 1 1 1, 1() N
i j i i ji

ij ii jj ii

Cov a a i j
h h h h

−

−
=

′ ′ = = + −

∑h H h h h1

β ββ β β βϕ

R23: Fixed and Random Effects Models for Panel Data R-591

(Note that the first term is a bit ambiguously defined, as if i ≠ j, this is 0/0 – we define it to be zero.)
At first glance, this may appear not to have gained anything. But, it has gained a great deal. The
matrix to be inverted is K×K, not N×N, so this can be computed by summation. It may be a large
amount of computing, but it is at least straightforward, and easily calculated as it involves only K×1
vectors and repeated use of the same K×K inverse matrix. Note that this is the inverse of the
Hessian, which must be inverted to compute the asymptotic variance or covariance. Hence the
leading minus sign at the left of the definition.
 Likewise, the asymptotic covariance matrix of the slopes and the constant terms can be
arranged in a computationally feasible format. Using what we already have and result A-74 in
Greene (2011), we find that

 Asy.Cov[b,a′] = -(Hββ′)-1 Hβα′ × Asy.Var[a]

Once again, this involves N×N matrices, but the expression simplifies. Using our previous results,
we can reduce this to

 Asy.Cov[b,ai] = -(Hββ′)-1],[.
1 mii

N
m

aaCovAsyβh∑ =
.

Again, the gain in simplification may not be obvious, but it is substantial. This asymptotic
covariance matrix involves a huge amount of computation, but essentially no computer memory –
only the K×K matrix. The K×1 vectors would have to be computed ‘in process,’ which is why this
involves a large amount of computation. But, once again, it is very feasible. At no point is it
necessary to maintain an N×N matrix, which has always been viewed as the obstacle. Finally, we
note the motivation for the last two results. One might be interested in the computation of an
asymptotic variance for a function g(b,ai) such as a prediction for a probit model, Φ(b′xit + ai). The
delta method would require a very large amount of computation, but it is feasible with the preceding
results.
 Finally, note that in Asy.Var[b], the terms are of order (NT) minus a sum of N order T outer
products. Therefore, the end result is the inverse of an order NT matrix, which will converge to zero.
What this establishes is that b does converge to a parameter in the sense that its asymptotic
covariance matrix converges to zero. However, it converges to a function that deviates from β to the
extent that plim ai deviates from αi.

Example – Nonlinear Fixed Effects Model

 The listing below shows a fixed effects model for an unbalanced with 7,293 groups.

SAMPLE ; All $
SETPANEL ; Group = id ; Pds = ti $
PROBIT ; Lhs = doctor ; Rhs = age,educ,hhninc,married

; FEM ; Panel ; Par
; Partial Effects $

R23: Fixed and Random Effects Models for Panel Data R-592

+---+
| Variable = ____________ Variable Groups Max Min Average |
| TI Group sizes ID 7293 7 1 3.7 |
+---+

Probit Regression Start Values for DOCTOR
Dependent variable DOCTOR
Log likelihood function -17700.96342
Estimation based on N = 27326, K = 5
Inf.Cr.AIC =35411.927 AIC/N = 1.296
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 AGE| .01539*** .00072 21.42 .0000 .01398 .01679
 EDUC| -.02811*** .00350 -8.03 .0000 -.03497 -.02125
 HHNINC| -.09776** .04626 -2.11 .0346 -.18844 -.00708
 MARRIED| -.00931 .01888 -.49 .6220 -.04630 .02769
Constant| .02642 .05397 .49 .6244 -.07936 .13221
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Nonlinear Estimation of Model Parameters
Method=Newton; Maximum iterations=100
Convergence criteria: max|dB| .1000D-05, dF/F= .1000D-08, g<H>g= .1000D-08
Normal exit from iterations. Exit status=0.

FIXED EFFECTS Probit Model
Dependent variable DOCTOR
Log likelihood function -9454.05945
Estimation based on N = 27326, K =4251
Inf.Cr.AIC =27410.119 AIC/N = 1.003
Unbalanced panel has 7293 individuals
Skipped 3046 groups with inestimable ai
PROBIT (normal) probability model
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Index function for probability
 AGE| .06334*** .00426 14.87 .0000 .05499 .07169
 EDUC| -.07547* .04063 -1.86 .0632 -.15510 .00416
 HHNINC| -.02496 .10713 -.23 .8158 -.23493 .18501
 MARRIED| -.04865 .06194 -.79 .4322 -.17004 .07275
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R23: Fixed and Random Effects Models for Panel Data R-593

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics.
They are computed at the means of the Xs.
Estimated E[y|means,mean alphai]= .621
Estimated scale factor for dE/dx= .380
--------+--
 | Partial Prob. 95% Confidence
 DOCTOR| Effect Elasticity z |z|>Z* Interval
--------+--
 AGE| .02409*** 1.66920 6.94 .0000 .01729 .03089
 EDUC| -.02871 -.52464 -1.48 .1392 -.06675 .00934
 HHNINC| -.00949 -.00540 -.23 .8151 -.08906 .07007
 MARRIED| -.01850*** -.02978 -3.34 .0008 -.02935 -.00766 #
--------+--
Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0]
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

The vector alphafe contains the estimated fixed effects coefficients for those groups for which it is
estimable. The vector shows (rows 4, 8, 18, 19) observations at which there is no within group
variation in the dependent variable.

Figure R23.1 Estimated Fixed Effects

R23: Fixed and Random Effects Models for Panel Data R-594

R23.3 Random Effects Models

 The random effects model is formulated in the context of an index function model,

 P(yit | xit, ui) = g(yit, β′xit + ui, θ)

where θ is any ancillary parameters that appear in the model and ui, which is time invariant, is the
latent unobserved heterogeneity that enters the model in the form of the random effect. The model
command will typically be of the form

 Model name such as PROBIT, LOGIT, etc.
 ; Lhs = ...
 ; Rhs = ...
 ; Pds = panel specification
 ; Random Effects $

(There is some variation in the commands for specific models.) Other options follow the usual
pattern, and are described for each model in the chapters to follow.
 All models that support panel data treatments in LIMDEP provide some kind of random
effects estimator. In many cases, more than one is available. In addition, various estimation
techniques are used in LIMDEP to fit random effects models. These are summarized in Table R23.1
below. The various estimation techniques are described at several points in this manual. This
section will collect a few common results. Some general observations:

• The two step FGLS procedure is specific to the linear regression model, and is described in
detail in Chapter E18 with other methods for estimation of the linear model with panel data.

• Four models, Poisson, negative binomial, the parametric survival models with heterogeneity

and several forms of the stochastic frontier models have known closed forms for the
unconditional distribution of the observed response – that is, the density after ui is integrated
out. These are described in detail in the specific chapters devoted to these models.

• The random parameters model is described in lengthy detail in Chapter R24. As noted, in

any model included in that framework, a pure random effects model results if the constant
term is treated as the only random parameter. In these cases, the simulation estimator
provides an alternative to the quadrature based estimator that we describe here.

• The linear regression model with random coefficients can be estimated in two ways. A

modified generalized least squares procedure due to Hildreth, Houck, and Swamy is
presented in Section E15.4. Through appropriate restrictions on the model, this can be forced
to be a random effects model. However, this is the third best of three approaches to random
effects in the linear model. (We mention it purely for completeness.)

R23: Fixed and Random Effects Models for Panel Data R-595

Model Class Two Step
FGLS

Random Constant
in RPM

ML with
Quadrature Exact ML

Linear Regr. 1 & 2 Way • • •
Linear Reg. Multilevel •

Binary Choice
Probit • •
Logit • •
Complementary Log Log • •
Gompertz • •
Bivariate Probit •
Bivar. Probit Selection •
Partial Observability •

Multinomial Choice
Multinomial Logit •
Multinomial Probit •
Ordered Probability/All • •
Generalized Ord. Probit •

Count Data
Poisson Regression • (some forms) •
Negative Binomial • •
Poisson/NegBin ZIP •

Loglinear Models
Exponential •
Gamma •
Weibull •
Inverse Gaussian •
Geometric •
Power •
Binomial •
Normal (Exp Regression) •

Limited Dependent Variable
Tobit • •
Censored (Grouped) Data •
Truncated Regression •
Sample Selection •

Survival and Frontier Models
Weibull • •
Exponential • •
Loglogistic • •
Lognormal • •
Stochastic Frontier • •

Table R23.1 Random Effects Model Estimators

R23: Fixed and Random Effects Models for Panel Data R-596

There are additional forms of the random effects model. The linear regression model
supports a three level nested random effect model,

 yijkt = β′xijkt + wijk + vij + ui + εijkt,

which is estimated by maximum likelihood (assuming all components are normally distributed).
This estimator is described in Section E18.8. The Hausman and Taylor model modifies the one way
random effects model to accommodate correlation among some of the right hand side variables and
the random effect. The formulation is

 yit = β1′x1,it + β2′x2,it + γ1′f1,i + γ2′f2,i + ui + εit,

where x2,it and f2,i are correlated with ui. Discussion appears in Chapter E23. The Arellano, Bond and
Bover estimator for dynamic panel data models extends this formulation to add a lagged dependent
variable,

 yit = yi,t-1 + β1′x1,it + β2′x2,it + γ1′f1,i + γ2′f2,i + ui + εit,

 Any random parameters model that uses the methods described below in this section may
also include multilevel (up to 10 levels) random effects, with main linear effects and products. The
extension of the model takes the form

 Indexit = βi′xit + cj1 ej1 + cj2 ej2 + ... + cjM ejM

with up to 10 effects in total. The cjm are ones and zeros simply used to select the effects in the
model. The effects are up to 10 normally distributed random terms associated with discrete
indicators. Effects may appear singly or as products, and may be nested or simply be associated with
any desired groupings of the data. Full details appear in Section R24.8.

R23.3.1 Quadrature Based Estimation – The Butler and Moffitt Method

 Write the one way random effects model as

 zit | ui = β′xit + σuui

where ui ~ N[0,1], and let εit be the stochastic term in the model that provides the conditional
distribution. Thus,

 P[yit| xit, ui] = g(yit, β′xit + σui, θ), i = 1,...,N, t = 1,...,Ti.

where g(.) is the density discussed earlier (Poisson, normal, logistic, extreme value, Gompertz, etc.).
The parameter vector for the random effects model is

 θ = [β1,...,βK, σ]′.

The log likelihood function is

 log L = Σi log Li

R23: Fixed and Random Effects Models for Panel Data R-597

where log Li is the contribution of the ith individual (group) to the total. Conditioned on ui, the Ti
terms in the contribution to the likelihood for group i are independent. So, the joint conditional
probability for the ith group is

 P[yi1,...,yiTi | xi1,...,ui] = ∏
=

σ+
iT

t
iuitit uyg

1
)'(xβ,

where now, ui is normalized to unit variance. Since ui is unobserved, it is necessary to obtain the
unconditional log likelihood by taking the expectation of this over the distribution of ui. For
convenience, write the tth term in the probability above as

 G(yit, β′xit + γui),

where γ = σu, so that

 Li | ui = ∏
=

γ+
iT

t
iitit uyG

1
)'(xβ, .

Then, Li = Eui [Li | ui]

 = ∫ ∏
∞

∞−
=

γ+
π

−
i

T

t
iitit

i duuyP
u i

 x
1

2
)',(

2
)2/exp(

β

NOTE: It can be seen in the likelihood function that it is necessary actually to compute the product
of the densities for the group, not the sum of the logs. For this reason, the number of observations in
a group cannot be extremely large. (We are frequently asked about this.) Since the individual
density is likely to be on the order of .25 or so, the product of 100 probabilities is on the order of
10-100. This means that the end result is more rounding error than result. In worse cases, the
computation will ‘overflow’ – that is, exceed the computer’s capacity to compute the value. For
example, the correct result for the product of 100 probabilities on the order of .01 cannot be
computed in the accuracy of the computer, which is about 10+/-380. The diagnostic that this estimator
produces mentions a ‘Bad counter...’ When the counter for group size exceeds 100, the estimator
assumes that you have made some kind of error.

 Finally,

 log L = ∑ =

N
i iL

1
log

The function is maximized by solving the likelihood equations:

 ∑ =

γ

∂

∂
=

γ

∂

∂ N
i

iLL
1

loglog
ββ

 = 0.

For convenience below, let θ denote the full parameter vector, [β,γ]′.

R23: Fixed and Random Effects Models for Panel Data R-598

 The integration is done with Hermite quadrature. Make the change of variable to vi = ui/ 2 .
Then,

 log Li = 2

1

1log exp() (,)
iT

i it it i i
t

v P y v dv
∞

−∞
=

′− + δ
π

∏∫ xβ

where δ = γ× 2 . The integral of the form

 ∫
∞

∞−
− dvvgv)()exp(2

is approximated by the Hermite quadrature,

 ∫
∞

∞−
− dvvgv)()exp(2 ≈ ∑ =

H
h hh zgw

1
)(

where wh are the weights and zh are the abscissas for the approximation. (See Section R23.3.1,
Butler and Moffitt (1982) and Abramovitz and Stegun (1972) for further details.) Collecting terms,
then, the log likelihood is computed with

 log L = ∑ =

N
i 1

log Li ≈
1 1

1

1log (,)
iT

N H
h it it hi h

t

w P y z
= =

=

 ′ + δ
π

∑ ∑ ∏ xβ

 The derivatives of the log likelihood function are approximated as well

θθ ∂

∂
=

∂
∂ i

i

i L
L

L 1log

 2

1

1 exp() (,)
iT

i
i it it i i

t

L v P y v dv
∞

−∞
=

∂ ∂ ′= − + δ
∂ ∂π

∏∫ xβ
θ θ

 1
1

(,)(,) (,)
i

i
T

T it it i
it it i it is it

t s t

P y vP y v P y v
=

= ≠

′∂ + δ∂ ′ ′+ δ = + δ ∂ ∂
∑∏ ∏xx xβ

β β
θ θ

 ∑∏ =
=

∂

δ+∂
δ+= i

i T
t

iitit
T

t
iisit

vyP
vyP

1
1

)',(log
)',(

θ
β

β
x

x

Collecting terms once again, we obtain the approximation,

θθ ∂

∂
=

∂

∂
∑ =

i

i

N
i

L
L

L 1log
1

 ≈
1 1

1

1

1
1

log (,)1 (,)

1 (,)

i
i

i

T
H T it it h

h it it hh t
tN

i T
H

h it it hh
t

P y zw P y z

w P y z

= =
=

=

=
=

 ′ ∂ + δ ′ + δ ∂π
 ′ + δ π

∑ ∑∏
∑

∑ ∏

xx

x

β
β

θ

β

R23: Fixed and Random Effects Models for Panel Data R-599

Note that Li and its derivatives are approximated separately. The summation involves two separate
integrals. We use a 20 point quadrature by default, but you can change the number of quadrature
points by including ; Hpt = p in the command, where ‘p’ is the desired number of points, (one of 2,
3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 32, 64, 96). In most cases, the accuracy of the computations will
improve with the number of quadrature points. However, the amount of computation will increase as
well (linearly). The asymptotic covariance matrix estimator is based on the first derivatives, using
the BHHH estimator.
 As noted, this procedure is used in several models, including the single index binary choice
models, the count data models, and the tobit and ordered probability models. The various derivatives
and underlying transformations of the parameters will differ a bit from model to model. These are
discussed in the specific contexts below. For illustration, consider the common binary choice
models, probit and logit. These are single index models that involve only a slope vector, β. The
heterogeneity adds a variance parameter to the model, but the variance term, δ, appears linearly in
the function along with β, so no complication is added by this additional parameter as the summation
is done over the abscissas. In each case, the term

 P(yit, β′xit + γzh) = [] ()11it h

yy itit F zit hF z
−

′− + γ ′ + γ xx ββ

so log P(yit, β′xit + γzh) = yit logFit + (1 - yit)log (1 - Fit).

Thus,
log (,) 1 (.)

1
itit it h it it

it
hit it

P y z y y g
zF F

′ ∂ + δ −
= − ∂ −

xxβ
θ

The functional forms appear in Section E27.2.1. Using the functions defined there, the log
derivatives, g(yit, β′xit + γui) are as follows:

 Probit: g(yit, β′xit + γui) = (2 1) ()
[(2 1)()]

it it i

it it i

y u
y u

′− φ + γ
′Φ − + γ
x
x

β
β

 Logit: g(yit, β′xit + γui) = (2yit - 1){1 - Λ[(2yit - 1)(β′xit + γui)]}

The asymptotic covariance matrix is estimated by the BHHH estimator,

 H =
1

'11
1

−

∂
∂

∂
∂∑ =

θθ
i

i

i

i

N
i

L
L

L
L

Example – Nonlinear Random Effects Model

 An example of the random effects nonlinear model is shown below. The data used are the
same as in the fixed effects model estimated earlier.

SAMPLE ; All $
SETPANEL ; Group = id ; Pds = ti $
PROBIT ; Lhs = doctor ; Rhs = one,age,educ,hhninc,married
 ; Random Effects ; Panel ; Par

 ; Partial Effects $

R23: Fixed and Random Effects Models for Panel Data R-600

+---+
| Variable = ____________ Variable Groups Max Min Average |
| TI Group sizes ID 7293 7 1 3.7 |
+---+
Normal exit: 4 iterations. Status=0, F= 17701.08

(Same as for the fixed effects model)

Normal exit: 11 iterations. Status=0, F= 16289.92

Random Effects Binary Probit Model
Dependent variable DOCTOR
Log likelihood function -16289.42796
Restricted log likelihood -17700.96342
Chi squared [1 d.f.] 2823.07092
Significance level .00000
McFadden Pseudo R-squared .0797434
Estimation based on N = 27326, K = 6
Inf.Cr.AIC =32590.856 AIC/N = 1.193
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
Constant| -.09497 .09406 -1.01 .3127 -.27932 .08938
 AGE| .02270*** .00125 18.19 .0000 .02025 .02515
 EDUC| -.03383*** .00629 -5.38 .0000 -.04616 -.02149
 HHNINC| .02166 .06651 .33 .7447 -.10869 .15201
 MARRIED| -.04914* .02934 -1.67 .0940 -.10665 .00838
 Rho| .45018*** .01020 44.13 .0000 .43019 .47018
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Partial derivatives of E[y] = F[*] with
respect to the vector of characteristics
They are computed at the means of the Xs
Observations used for means are All Obs.
--------+--
 | Partial Prob. 95% Confidence
 DOCTOR| Effect Elasticity z |z|>Z* Interval
--------+--
 AGE| .00630*** .42914 18.41 .0000 .00563 .00697
 EDUC| -.00939*** -.16632 -5.38 .0000 -.01281 -.00597
 HHNINC| .00601 .00331 .33 .7447 -.03017 .04220
 MARRIED| -.01364* -.01619 -1.67 .0941 -.02961 .00233
--------+--
z, prob values and confidence intervals are given for the partial effect
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R24: Random Parameter Models R-601

R24: Random Parameter Models

R24.1 Random Parameters Models

 The underlying motivation of the random parameters (RP) model is individual heterogeneity
in the parameters in a parametric model. We model this generically as

 f(yit | xit, zi) = g(yit, xit, zi, αi)

where g(.) is the probability density for the observed response of the ith individual at time t, yit is the
observed response, xit and zi are measured covariates, and αi is a person specific parameter vector
that varies randomly across individuals, with a mean α and covariance matrix Ω. (The LIMDEP
implementation does not accommodate heteroscedasticity in the distribution. Heteroscedasticity is
supported in the counterpart model for the multinomial logit framework in NLOGIT Version 5.
Nearly every model supported in LIMDEP is included in this framework. The following broad
modeling frameworks support this structure:

• Linear regression
• Binary choice: probit, logit, complementary log log, Gompertz, bivariate probit models
• Ordered probability models, probit, logit, Gompertz, complementary log log
• Count data: Poisson and negative binomial, ZIP model and several others
• Censored dependent variable: tobit, grouped data
• Truncated dependent variable: truncated regression
• Loglinear dependent variable: exponential, gamma, inverse Gaussian regression, power,

binomial, normal exponential, beta
• Parametric survival models: Weibull, exponential, lognormal, loglogistic, inverse Gauss
• Stochastic frontier models
• Sample selection models
• Discrete choice: multinomial logit

All of the models listed except the last use the same estimation program and thus have precisely the
same structure. The random parameters logit model in NLOGIT Version 5 has a separate program
for estimation that operates quite similarly, but includes several additional features not contained in
the others.
 This section describes a broad class of models in LIMDEP. This model framework is
widely used in many fields of statistics and econometrics. The models described here are also found
in other literatures under the headings multilevel models, mixed models, and hierarchical models. All
of these have large intersections – some are completely subsumed – in the set of random parameters
models described here.

R24: Random Parameter Models R-602

R24.2 Mathematical Formulation of the RP Model

The structure of the random parameters model from the point of view of the modeler is

 αi = [β1i′, β2i′, θ′]′

where θ = ancillary parameters, such as the dispersion parameter in the negative binomial
 model or σ in a tobit or linear regression model

 β1i = β1 = K1 nonrandom parameters

 x1it = variables multiplied by β1i

 β2i = β2
0 + ∆zi + Γvi = K2

 random parameters

where β2

0 = the fixed constant terms in the means of the distributions for the random
 parameters

 zi = a set of M observed variables which do not vary over time and which
 enter the means (optional) of the random parameters

 ∆ = coefficient matrix, K2×M, which forms the observation specific term in
 the mean

 vi = unobservable K2×1 latent random term in the ith observation in β2i. Each
 element of vit has zero mean and known variance. Elements of vit may be
 distributed as normal, uniform, triangular, lognormal, or others. There are
 numerous options for specifying the means of the distributions. The

 distributions of the random parameters need not be the same. Two models
 are used for the elements of vi:

 Random Effects: vi = vi for all t. This is the usual random effects form.
 Autocorrelated (AR(1)): vit = Rvi,t-1 + uit where R is a diagonal matrix

 of coefficient specific autocorrelation coefficients and uit satisfies the
 earlier specification for vit.

 Γ = lower triangular or diagonal matrix which produces the covariance matrix
of the random parameters, Ω = ΓA Γ ′ in the random effects form and
Ω = ΓA1/2 (I-R2)-1 A1/2Γ ′ in the AR(1) model. A is the diagonal matrix of
known variances of the elements of vi. If all parameters are (standard)
normally distributed, then A = I. Uniformly distributed random variables
have variance 1/12. Other forms have different values. In the final
specification of the model, these implicit scales are absorbed into Γ – they
will be invisible to you in your estimated model.

 x2it = variables multiplied by β2it

 βit = [β1′, β2it′]′

R24: Random Parameter Models R-603

With autocorrelated vit, βi can vary with t. For ease of exposition, we will suppress this in what
follows, and use βi to denote the random parameter vector. Finally,

 xit = [x1it′, x2it′]′

 ait = βit′xit

 P(yi|xit, zi, vit) = g(yit, ait, θ) = the density for the observed response variable.

R24.3 Commands for Random Parameters Models

NOTE: There is no command builder for the random parameters models.

 The essential command for the random parameters model is structured as follows, where all
parts are mandatory:

 Model command such as PROBIT, POISSON, TOBIT, etc.
 ; Lhs = dependent variable
 ; Rhs = all variables in xi,

 including one if model contains a constant
 ; RPM (for random parameters model)
 ; Fcn = specification of random parameters $

Panel Data

 A panel is specified as usual;

 ; Pds = specification of number of periods for the panel

The RPM is not strictly for panel data. In principle, the random elements in the parameters serve as
the random effects in a panel data model. But, this model can be fit, possibly with less precise
results, using a cross section.

Heterogeneity in the Means of the Parameters

 As formulated above, the random parameters each have a fixed mean, βk that is estimated.
The general form of the random parameter thus far is

 βk,i = βk

0 + γk vk,i

where βk is the mean (to be estimated), γk is the scale factor and vk,i is a random variable (defined
below) The mean may be specified to depend on observed variables zi with

 ; RPM = list of variables in zi

The random parameter is now

 βk,i = βk

0 + δk′zi + γk vk,i.

The mean vector for the set of random parameters will now be E[βi|zi] = β0 + Δzi.

R24: Random Parameter Models R-604

Distributions of Parameters

 The ; Fcn list consists of a list of names of variables that appear in x2i, each followed in
parentheses by one of the following distribution specifications: The form is ; Fcn = name(dist)
where dist is one of the following:

 c for constant (zero variance), vi = 0
 n for normally distributed, vi = a standard normally distributed variable
 u for uniform, vi = a standard uniform distributed variable in (-1,+1),
 t for triangular (the ‘tent’ distribution), see below
 h for negative half normal, v = (2π)-1/2 - |u|,
 e for centered lognormal, v = Exp(u) – sqr(e)
 s for Johnson Sb, v = exp(u) / [1 + exp(u)]
 l for lognormal, see below.

The vi above is a random draw from the indicated population. In cases c, n, h, e, s, and l, the draw vi
is the indicated transformation of a draw from the standard normal population. The negative half
normal is a random variable with half normal density that is constrained to be less than zero. The
Johnson Sb random variable ranges from zero to one. The centered lognormal variable ranges from
-1.649 to +∞. It has the long tail of the lognormal distribution, but is shifted so as to have mean zero.
In cases u and t, the draw is a transformation of a standard uniform, U(0,1) variable. For the tent
distribution, the transformation is

 vi = 1(u < .5)[(2u)1/2 – 1] + 1(u > .5)[1 – (2(1-u))1/2]

This variable’s density is a symmetric tent shape with mode at zero and which has support -1 to +1.
For example, as shown earlier, the familiar random effects model is specified with ; Fcn = one(n).
Note, there is no default distribution. You must specify one of the preceding (or a modification of it
as shown below) in parentheses with the name. This is how you indicate that a parameter is to be
treated as random in the model. Note, again, that the specification of the model (thus far) is

 βk,i = βk
0 + γk vk,i

so that your random variable has distribution with the shape of the selected variable, but is not
constrained to the range of that distribution. For example, using ; Fcn = x(u) produces a random
parameter that has a uniform (flat) distribution with center at βk and range βk ± σk. Likewise, the
parameter with Sb distribution is not, itself, constrained to be in the 0,1 range.

Fixed Parameters

 You can specify that a ‘random’ parameter has zero variance (is fixed) by using

 ; Fcn = name(c) or name(*)

This form specifies that the variance is zero, that is, only the mean varies. Of course, this is the same
as not specifying the parameter as random, with one exception. If you have specified a hierarchical
structure for the mean, then the covariates will still enter the mean of the variable. This is a way to
build up a hierarchical structure for any model. Thus,

 ; Rpm = z1, z2
 ; Fcn = x(c)

R24: Random Parameter Models R-605

specifies that the index function is of the form βix = (β1
0 + δ1,1z1+ δ1,2z2)x. (This builds interaction

terms.) Another form of this may be used to fix the mean of the parameter to a fixed value;

 variable name(*,value) = a fixed parameter with zero variance
 and mean equal to value

(This is the same as (dist|value) in NLOGIT Version 5.) Thus, the parameter is nonrandom, and is
fixed at the specified value. This differs from the previous specification in that with (c), the mean is
a free parameter and the variance equals zero, while with (*,value), the mean is constrained to the
given value with the variance also fixed at zero. This device provides a way to fix a parameter in the
model. The ; Rst = list specification would normally be used to do that, but ; Rst = list is extremely
difficult to use in this setting because there are so many parameters and during model setup, the
parameter vector is reordered in a way that may not be easily predictable in a complicated
specification. Note that this construction will be problematic if you have specified ; Rpm =
variables, as the specification is

 βk,i = βk

0 + δk′zi + γk vk,i.

and this form only allows you to fix βk

0

Restricting the Range of a Parameter

 You may specify that the parameter is lognormally distributed. This variant on the model
will force a coefficient to be positive, and will also impose a particular form on the distribution of
parameters across individuals. Use ; Fcn = name(l) to request a lognormally distributed coefficient.
In this case, for the particular random parameter βik, we will have

 βik = exp(βk

0 + δk′zi + γkvik).

Do note, if the coefficient is negative in an unrestricted model, forcing it to be positive may not work
very well, or at all. This does, however, change the distribution of random parameters across
individuals. A caution about this specification; it is often slow to converge, and frequently is
inestimable. The assumption of lognormality is a strong one. Also, if the parameter you specified to
be lognormally distributed tends in the sample to be negative, this will be an invalid restriction that
will probably be revealed by nonconvergence. You can anticipate this if you fit the model as a fixed
parameter model, and this parameter shows up as ‘significantly’ negative.

The triangular distribution can also be useful for restricting parameters. A special case of
the triangular distribution specification is

 variable name(t ,*) = a parameter that ranges from 0 to 2 β.

The triangular distribution is now restricted to one side of zero. The range is 0 to 2β0 in either the
positive or negative direction, depending on the estimate of β0. Figure R24.1 shows the implied
model for the underlying parameter with this specification when the estimated parameter is 1.375.
(The reported estimated ‘scale factor’ will also equal this value.)

R24: Random Parameter Models R-606

Figure R24.1 Estimated Constrained Triangular Distribution

Note that this specification will also be problematic if you have specified ; RPM = variables.

Fixing the Mean

 Other forms for random parameters are

 variable name(type,value) = parameter with mean fixed at the
 value but a free variance

This form specifies that the mean of the parameter is fixed at value but the standard deviation is free.
This forces the distribution of the random parameter to be centered at fixed mean value. For
example, an interesting form is

 ; name(n, 0)

which defines a normally distributed parameter with mean zero. This is a type of random effects
model.
 The final two specifications modify the variables that enter the mean, that is the Δzi term in
βi = β0 + Δzi + Γvi. You would have specified ; RPM = z list. Then,

 variable name(dist | #) = fixed mean parameter

specifies that the zi variables do not appear in the mean of this specific parameter. This affects only
the specific parameter of this specification. Formally, this specification constrains the indicated row
of ∆ to be a row of zeros. You may also specify particular variables to appear in the mean with

 variable name(dist | # pattern)

R24: Random Parameter Models R-607

The pattern is ones and zeros to put zeros in cells in the row of Δ. (This is the same as in NLOGIT
Version 5.) For example, in

 ; RPM = z1,z2
 ; Fcn = x1(n | # 01), x2 (n | # 10)

the specification makes the mean of the coefficient on x1 a function of z2, but not z1 and the mean of
the coefficient on x2 a function of z1 but not z2.

Correlated Parameters

 The default specification is for Γ to be a diagonal matrix, which implies that the random
parameters are uncorrelated. You can specify correlated parameters with

 ; Cor

Your estimated model will now contain estimates of the triangular matrix as well as the implied
covariance matrix of the parameters, deduced as ΓΓ′. Note, although this is permissible with any
specification of any model, the meaning of the estimated model is ambiguous if you have mixed
distributions in your specifications. The correlation is induced by creating vi, then using Γvi to create
the parameters. Without the correlation, your specified parameter has the indicated distribution. But,
for example, if you specify one parameter (the first) normal and the second uniform, your second
parameter will actually be composed as

 β2i = β2 + γ12vi1 + γ22vi2,

that is, the sum of a normal and a uniform. Again, this is not precluded by the program, and you can
fit such a model, but its meaning is a bit ambiguous.

Time Variation in Parameters

 As noted, you can build some autocorrelation into your model by specifying that model for
vi. To request this, use
 ; AR1

This specification of the model adds an autocorrelation parameter, ρi, for each random parameter.
The generating mechanism for random parameters with this switch turned on is

 βki,t = βk

0 + δk′zi + γkvki,t,
 vik,t = ρkvik,t-1 + uik,t

and uik,t takes the distribution specified in the name(dist) specification. The distribution may be any
of those listed earlier.
 The earlier caution about mixing distributions is repeated, more emphatically here. In the
autocorrelation model, the vits are generated by the autocorrelation scheme, then mixed by Γ, so the
same ambiguity arises. We advise that when using this form, you specify uncorrelated parameters.

R24: Random Parameter Models R-608

Draws for the Simulated Log Likelihood – Number and Type

 This model is fit by maximum simulated likelihood, as described below. The number of
draws for the simulator is an important element of the estimator. If you specify too few, it is difficult
to argue for consistency of the estimator. A few hundred is the norm. If you specify a very large
number, estimation will take a long time. Estimation time is roughly linear in R. The default value
is R = 100. You can change this with

 ; Pts = R (number of replications)

There is a body of theory relevant to this parameter (see Greene 2011, Chapter 15), but it states only
that R/N1/2 should diverge – R should increase faster than root-N – for the MSL estimator to be
consistent. This does not state what R should be, however. Also, we note the important alternative
to random draws, Halton sequences, makes much of this moot. To request Halton sequences instead
of pseudorandom draws, use

 ; Halton

Halton sequences are discussed in detail below. We do suggest, when doing specification searches
or experimental work, you can set R to a small value such as 25, and the estimator will perform
satisfactorily. For ‘production’ work to generate final results, we do suggest several hundred draws.

Common Random Term in Random Parameter Models

 In the RPM model, each random parameter, βik, has associated with it a random term, vik, that
is specific to that parameter (and individual). It might be desired to have all parameters be functions
of the same vi. (That is the central feature of the Alvarez, Arias and Greene (2006) frontier model
discussed in Section E64.10, for example.) To request this, you need add only

 ; Common

If you have specified multiple random parameters – this option has no effect unless you have – then
the first specification in the list controls what the common random term will be.

Other Standard Specifications and Options

 Finally, the following options operate the same as in the fixed parameters cases. Use

 ; Keep = name to retain fitted values
 ; Res = name to retain residuals
 ; Prob = name to retain fitted probabilities for observed outcome
 ; Partial Effects same as ; Marginal Effects
 ; List to display of predicted values (only if Ti is < 10 for all i)
 ; Maxit = n to set maximum iterations
 ; Wts = name to specify weights – assumed the same for all periods if
 panel data

and other controls of optimization, such as setting the convergence criteria. Lagrange multiplier
statistics will be difficult to obtain in some cases because the starting values for the iterations vary
greatly from model to model, and will often not conform to what one might expect the ‘restricted’
model to be. In general, ; Maxit = 0 will produce ambiguous results at best.

R24: Random Parameter Models R-609

R24.4 The Parameter Vector and Starting Values

 Starting values for the iterations are generally obtained by fitting a basic model without
random parameters – least squares for the linear model, tobit, etc., maximum likelihood probit, logit,
Poisson, or exponential, and so on. In some cases, such as the stochastic frontier model, you must
provide the starting values by fitting the restricted model. Every model description in the chapters to
follow will specify how to estimate the RP model for that framework. Other RP parameters are set
to zero. Thus, the initial results in the output for these models will often be the basic models
discussed in the succeeding sections.
 You may provide your own starting values for the parameters with

 ; Start = ... the list of values for all parameters in the model

The parameter vector is laid out as follows, in this order (where we introduce the new symbol, φ, to
avoid some confusion)

 φ1, ..., φK1 are the K1 nonrandom parameters (this is β1),

 β1
0,...,βK2

0 are the K2 means of the distributions of the random parameters,

 σ1,σ2,...,σK2 are the K2 scale parameters for the distributions of the random parameters.

These are the essential parameters. There are three optional parts, some or all of which may also be
in the parameter vector. If you have specified that parameters are to be correlated, then the σs are
followed by the below diagonal elements of Γ. (The σs are the diagonal elements.) If there are two
random parameters, then there is one below diagonal element. If there are three random parameters,
then there are three below diagonal elements, and so on. The number of elements in total in this part
of the parameter vector will be K2(K2 - 1)/2. These are supplied rowwise, so that this part of the
parameter list will be

 Γ = γ21, γ31, γ32, ..., γK2,K2-1

If you have specified heterogeneity variables with ; Rpm = z list, then the elements of Γ are
followed by the K2 rows of ∆, each of which has M elements,

 ∆ = δ11, δ12, ..., δ1M, ..., δK2,1,...,δK2,M.

Finally, if you have specified the model with autocorrelation, the K2 autocorrelation coefficients will
follow:
 ρ = ρ1, ρ2, ..., ρK2.

 Consider an example: The model specifies:

 ; RPM = z1,z2
 ; Rhs = one,x1,x2,x3,x4 ? base parameters β1, β2, β3, β4, β5
 ; Fcn = one(n),x2(n),x4(n)
 ; Cor

R24: Random Parameter Models R-610

Then, after rearranging to put the nonrandom parameters first, the model becomes

 Variable Parameter
 x1 α1
 x3 α2
 one β1

0 + σ1vi1 + δ11zi1 + δ12zi2
 x2 β2

0 + σ2vi2 + γ21vi1 + δ11zi1 + δ12zi2
 x4 β3

0 + σ3vi3 + γ31vi1 + γ32vi2 + δ11zi1 + δ12zi2

and the parameter vector would be

 θ = φ1, φ2, β1
0, β2

0, β3
0, σ1, σ2, σ3, γ21, γ31, γ32, δ11, δ12, δ21, δ22, δ31, δ32.

You may use ; Rst and ; CML to impose restrictions on the parameters. Use the preceding as a
guide to the arrangement of the parameter vector.
 The variances of the underlying random variables are given earlier, 1 for the normal
distribution, 1/3 for the uniform, and 1/6 for the tent distribution. The σ parameters are only the
standard deviations for the normal distribution. For the other two distributions, σk is a scale
parameter. The standard deviation is obtained as σk/ 3 for the uniform distribution and σk/ 6 for
the triangular distribution. When the parameters are correlated, the implied covariance matrix is
adjusted accordingly. The correlation matrix is unchanged by this.

R24.5 Individual Specific ‘Estimates’

 The random parameter models save the matrices, variables and scalars that are usual for the
particular models – there is some difference across the model types. An additional result that is
produced by the RP model for all the models is the conditional estimates of E[βi| datai, θ̂] that can
be produced for each individual (group) in the sample. Request this matrix with

 ; Parameters

This save matrices

beta_i with individual specific estimates of E[βi| datai, θ̂]
 sdbeta_i = estimates of standard deviations of [βi| datai, θ̂].

Each matrix has one column for each random parameter in the model. They do not contain the fixed
parameter estimates. The next two sections provide details and examples of this computation.
 The two matrices have

 Rows = number of individuals in the sample,
 Columns = number of random parameters in the model.

Each matrix is limited to 50,000 cells, so if your model with your sample size exceeds that, the
matrices are filled by observations until they run out of room. You can restrict the matrices to retain
only certain columns from the predicted values as follows: When you set up the function types with
; Fcn = list of types, place a dot before the type specifications you wish to save. For the example
above, which has
 ; Fcn = one(n),x2(n),x4(n),

R24: Random Parameter Models R-611

this will create three column matrices, with a column for each coefficient. If it is changed to

 ; Fcn = one(.n), x2(n), x4(.n)

then, the matrices will have only two columns, containing the estimates of the first and third parameters.
 The matrices can be moved to the data area by setting up a template. Suppose the matrix has
N rows and four columns. If the sample is 1000 individuals, the matrix beta_i will have 1000 rows
and four columns. You can use

 CREATE ; b1 = 0; b2 = 0; b3 = 0 ; b4 = 0 $
 NAMELIST ; rpbeta = b1,b2,b3,b4 $
 CREATE ; rpbeta = beta_i $

This creates four variables in the first 1,000 rows in the current sample. This will probably be the
first 1,000 rows in the data area, but might not be.
 Before documenting the computation, three notes are important regarding these statistics. (The
literature on random parameter models, especially the Bayesian part of it, is particularly loose on these
points. An exception is Train (2009), to which we refer the interested reader.) First, the computation is
performed at the estimated values of the population parameters, θ̂ . As such, the statistics do not take
into consideration the sampling error in the estimate of θ. Second, the computation described here
calculates the mean and standard deviation of the conditional distribution of βi. That is, we describe
how to estimate E[βi| datai, θ̂] and Std[βi| datai, θ̂], where ‘datai’ denotes all the information in hand
about individual i including the dependent variable and θ̂ is the estimate of the population parameters.
The conditional distribution for person i is the distribution of β within the subpopulation of people
who, if they faced the same choice situations as i with the same variables, would make the same
choices as i. Since individuals with different coefficients can have the same outcomes when they face
the same situations, there is a distribution of coefficients within this subpopulation of individuals. The
conditional distribution is this distribution. Third, the conditional mean is a consistent estimator of βi
only if the number of observations in the group, Ti, rises without bound along with the sample size, N.
In most situations, the number of outcomes for each sampled individual is naturally limited and cannot
rise without bound. (For example, if Ti is the number of times a person buys a new car, it is logically
impossible for Ti to rise without bound.) In these cases, the conditional mean of βi is not a consistent
estimator of individual i’s true coefficients. To focus the idea, consider that two individuals q and r in
the sample could have identical right hand side variables xi, identical covariates, zi and identical
outcomes, yi. (Certainly this could occur in a simple model with only a few variables in it.)
Nonetheless, being two different individuals, they could (indeed, given the distribution is continuous,
they would) be characterized by two different parameter vectors, βq and βr. Given that all the measured
information is the same for the two, both parameter vectors are draws from the same conditional
distribution, p(βi| xi, zi,yi, θ̂). We will estimate the mean of this distribution, E(βi| xi, zi,yi, θ̂), which
will then characterize both individuals the same. This mean is not a consistent estimator of either βq or
βr. To the point, increasing sample sizes will produce a better estimate of θ, but as long as the number
of choice situations faced by each person is fixed, E(βi| xi, zi,yi, θ̂) will be the same for i = q and i = r
even though βq ≠ βr. On the other hand, if somehow the number of choice situations faced by each
person rose without bound, then eventually the two people would make different choices when facing
the same right hand side variables, such that yi would differ for i = q and i = r. With different values of
yi the conditional means E(βi| xi, zi,yi, θ̂) for the two people would differ; and with enough choice

R24: Random Parameter Models R-612

situations faced by each person, the conditional means for the two people would converge to each
person’s own true coefficients. However, as this explanation hopefully makes clear, this convergence
to the true coefficients for each person only occurs when the number of choice situations faced by each
person rises without bound. In the vast majority of applications, the number of choice situations faced
by each person cannot rise without bound and, in fact, is quite small, such that the conditional mean is
not a consistent estimator of the person’s true coefficients. This line of logic applies both to the
conditional means estimated here and to the posterior means estimated in Bayesian analysis.

Estimates of Conditional Means

 The estimates of the model parameters provide the unconditional estimates of the parameter
vectors. The precise construction differs from one model to the next, but in general, that estimate is
the prior mean,

 1
ˆ ˆ ˆˆˆ , ,i i

 = + z0
2α β β ∆ θ

This estimator uses the aggregate of the information in the sample and, if present, information
contained in zi. However, we can also form a person specific conditional estimator of the second
component. (The first and third are viewed as constants, so prior and posterior are the same.)
Discussion of this computation may be found in Train (2009). The estimator of the conditional mean
of the distribution of the random parameters – conditioned on the person specific data – is

 1

1

(1/)ˆ[|]
(1/)

R
irr ir

i i i R

r ir

R f
E data

R f

∧ ∧
∧

=
∧

=

= =
∑
∑

α
α α , 1

ˆ ˆ ˆˆ ˆˆ , ,ir i ir
 = + + z v0

2α β β ∆ Γ θ

where summation over R is the within observation summation over the simulation replications, and
the weights are the joint densities that enter (in log form) the log likelihood,

1

(, , , , all estimated structural parameters)iT
it it i irir t

f f y
∧

=
= ∏ x z v .

Use the ; Parameters specification in your model command to request this computation. This will
save the matrix named beta_i containing the estimates of the second component, E[β2|datai]. (Since
the nonrandom components are constant, the averages will just equal those constants.) Note, this
matrix may be quite large, as there is one vector for each individual in the sample – each person is a
row in this matrix. We also estimate the standard deviation of this distribution by estimating for
each random parameter,

2

,2 1
,

1

ˆ ˆ(1/)ˆ[|] ˆ(1/)

R
ir ir kr

i k i R
irr

R f
E data

R f
=

=

β
β = ∑

∑

then computing the square root of the estimated variance,

()22
, ,

ˆ ˆ[|] [|]i k i i k iE data E dataβ − β .

These are the values that appear in the matrix sdbeta_i. The application below suggests how one
might use this information.

R24: Random Parameter Models R-613

Random Parameters Fitted Values

The fitted values routines have been changed to use the simulated random parameters rather
than the global means. The parameter vector in the random parameters model is

βi = β0 + Δzi + Γvi.

The estimators use the conditional (posterior) estimator, E[βi|datai, θ̂].

R24.6 Application

 We will illustrate a few useful features of the RP model with the data set used in several
earlier applications. The German health care data examined in Section E2.8 and several later
examples provides a straightforward panel data set. For this purpose, we will examine a small
subsample of the full data set. The commands for estimating a Poisson regression for number of
doctor visits are

 SAMPLE ; 1-5000 $
 REJECT ; _groupti < 7 $
 POISSON ; Lhs = docvis ; Rhs = one,female,age,hhninc,hhkids,educ
 ; RPM
 ; Fcn = one(n),age(n),hhninc(n)
 ; Correlated parameters
 ; Pds = 7 ; Pts = 25
 ; Halton draws

; Parameters $

We obtained the following estimation results. The initial results are the starting values obtained by
fitting the model with all nonrandom parameters. Note that the Rhs variables have been reordered
before the beginning of estimation.

Poisson Regression Start Values for DOCVIS
Dependent variable DOCVIS
Log likelihood function -11538.30728
Estimation based on N = 1015, K = 6
Inf.Cr.AIC =23088.615 AIC/N = 22.747
Model estimated: Mar 10, 2011, 22:35:03
--------+--
 | Standard Prob. 95% Confidence
 DOCVIS| Coefficient Error z |z|>Z* Interval
--------+--
 FEMALE| .32063*** .03269 9.81 .0000 .25656 .38470
 HHKIDS| -.09901*** .03809 -2.60 .0093 -.17367 -.02436
 EDUC| -.11206*** .00984 -11.39 .0000 -.13134 -.09277
Constant| 1.94456*** .15840 12.28 .0000 1.63410 2.25502
 AGE| .01441*** .00215 6.70 .0000 .01020 .01863
 HHNINC| -.18130* .10435 -1.74 .0823 -.38582 .02323
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R24: Random Parameter Models R-614

The next set of results is the estimates of the structural parameters of the random parameters model.
The parameter estimates given include β1, β2

0, the diagonal elements of Γ, then the below diagonal
elements of Γ. The matrix given as var_beta is computed as ΓΓ′. The matrix s.d_beta is the vector
of square roots of the diagonal elements of ΓΓ′. Finally, the correlation matrix is derived from the
covariance matrix.

Normal exit: 35 iterations. Status=0, F= 2952.749

Random Coefficients Poisson Model
Dependent variable DOCVIS
Log likelihood function -2952.74858
Restricted log likelihood -11538.30728
Chi squared [6 d.f.] 17171.11739
Significance level .00000
McFadden Pseudo R-squared .7440917
Estimation based on N = 1015, K = 12
Inf.Cr.AIC = 5929.497 AIC/N = 5.842
Model estimated: Mar 10, 2011, 22:35:07
Sample is 7 pds and 145 individuals
POISSON regression model
Simulation based on 25 Halton draws
--------+--
 | Standard Prob. 95% Confidence
 DOCVIS| Coefficient Error z |z|>Z* Interval
--------+--
 |Nonrandom parameters
 FEMALE| .25071*** .02936 8.54 .0000 .19316 .30826
 HHKIDS| -.21606*** .02781 -7.77 .0000 -.27057 -.16155
 EDUC| -.08131*** .00891 -9.12 .0000 -.09878 -.06384
 |Means for random parameters
Constant| .94045*** .13317 7.06 .0000 .67943 1.20146
 AGE| .03588*** .00184 19.55 .0000 .03229 .03948
 HHNINC| -.93486*** .09543 -9.80 .0000 -1.12189 -.74783
 |Diagonal elements of Cholesky matrix
Constant| 4.63750*** .12811 36.20 .0000 4.38642 4.88858
 AGE| .02874*** .00079 36.42 .0000 .02720 .03029
 HHNINC| 1.29611*** .03842 33.73 .0000 1.22081 1.37142
 |Below diagonal elements of Cholesky matrix
lAGE_ONE| -.05637*** .00260 -21.67 .0000 -.06147 -.05127
lHHN_ONE| -1.54333*** .13804 -11.18 .0000 -1.81389 -1.27277
lHHN_AGE| -2.46124*** .09005 -27.33 .0000 -2.63773 -2.28475
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Implied covariance matrix of random parameters

Var_Beta| 1 2 3
--------+--
 1| 21.5064 -.261432 -7.15719
 2| -.261432 .00400406 .0162620
 3| -7.15719 .0162620 10.1195

R24: Random Parameter Models R-615

Implied standard deviations of random parameters

S.D_Beta| 1
--------+--------------
 1| 4.63750
 2| .0632777
 3| 3.18111

Implied correlation matrix of random parameters

Cor_Beta| 1 2 3
--------+--
 1| 1.00000 -.890890 -.485154
 2| -.890890 1.00000 .0807875
 3| -.485154 .0807875 1.00000

The ; Correlated Parameters specification requests computation of the two matrices of conditional
means. These appear as follows:

Figure R24.2 Estimated Conditional Means

Note, the sample contains 145 individuals, so that is the number of rows in the matrices. There is a
considerable amount of variation across individuals in both means and standard deviations. To
explore this, we will construct a plot that shows this variation.

R24: Random Parameter Models R-616

The following extracts the parts of the two matrices and constructs an interesting figure.

 SAMPLE ; 1-145 $
 MATRIX ; b_inc = beta_i (1:145, 2:2) $
 MATRIX ; sb_inc = sdbeta_i (1:145, 2:2) $
 CREATE ; beta_inc = b_inc $
 CREATE ; sbeta = sb_inc $
 CREATE ; lower = beta_inc - 2*sbeta
 ; upper = beta_inc + 2*sbeta $
 CREATE ; person = Trn(1,1) $
 PLOT ; Lhs = person
 ; Rhs = lower,upper ; Centipede
 ; Title = 95% Probability Intervals for Beta(Income)
 ; Yaxis = Range
 ; Endpoints = 0,150 ; Bars = 0 $

Figure R24.3 Confidence Intervals for Conditional Means

 As noted earlier, the conditional means (the dots in the centipede plot) are not actually
estimates of βi. However, βi is a draw from the conditional distribution P(βi|datai,θ). The spikes in
the figure above represent estimates of a range of this density that should capture a large proportion
of the mass of the distribution. In general, a mean plus two standard deviations will capture at least
95% of any but the most pathological distribution. Thus, subject to a couple caveats we’ll note, the
lines in the figure above do represent confidence regions for βi. The caveats are: first, the estimates
are based on the estimates of the structural parameters, θ̂ , not the actual parameters, θ. Thus, by not
accounting for this variation, the intervals above are too narrow. As can be seen in the estimation
results, the structural parameters are estimated quite precisely. Second, the precise shape of the
distribution is not known. If it is asymmetric, then the preceding might be too narrow. This would
be a minor consideration, however. Overall, then, we might reasonably consider the figure above to
display a confidence interval for the parameter βi.

R24: Random Parameter Models R-617

R24.7 Technical Details on Estimation of RP Models by
Simulation

 For purposes of this presentation, we will change slightly the mathematical form of the
model. The log likelihood for the random parameters is formulated and maximized with the steps
described below. This derivation will be lengthy. We have collected the results that are used in
several modeling frameworks here in one place so that they may be easily accessed in one location in
the manual. The identical mathematical results apply to all the models listed earlier.

The Theoretical Likelihood Function and Derivatives

 The structure of the random parameters model is based on the conditional density (slightly
abbreviated for the moment)

 P(yit | xit, βi) = g(yit, βi′xit), i = 1,...,N, t = 1,...,Ti.

where g(.) is the density discussed earlier. The model assumes that parameters are randomly
distributed with possibly heterogeneous (across individuals) mean

 E[βi| zi] = β + ∆zi,

(the second term is optional – the mean may be constant),

 Var[βi| zi] = Σ.

By construction, then,

 βi = β + ∆zi + Γvi.

(Note that βi could vary across time as well as individuals. This follows from the extension of the
model to allow autocorrelation in the random terms. This is developed below.) The third term is
simply the deviation of βi from its theoretical mean. It is convenient to analyze the model in this
fully general form at this point. One can easily accommodate nonrandom parameters just by placing
rows of zeros in the appropriate places in ∆ and Γ. The actual treatment is discussed in the preceding
section.

NOTE: If there is no heterogeneity in the mean, and only the constant term is considered random –
the model may specify that some parameters are nonrandom – then this model is equivalent to the
random effects model discussed earlier.

 The true log likelihood function is

 log L = Σi log Li

where log Li is the contribution of the ith individual (group) to the total. Conditioned on vi, the joint
probability for the ith group is

 P[yi1,...,yiTi | xit,..., zi,vi, t = 1,...,Ti] =
1

()
iT

it i it
t

g y
=

′∏ x,β

R24: Random Parameter Models R-618

Since vi is unobserved, it is necessary to obtain the unconditional log likelihood by taking the
expectation of this over the distribution of vi. Thus,

 Li | vi, t=1,...,Ti =
1

()
iT

it i it
t

g y
=

′∏ x,β .

Then, Li = Evi [Li | vi, t=1,...,Ti] =
Range of

1

(, 1) (,)
i

i

T

i i it i it i
t

g t ,...,T P y d
=

′= ∏∫ v
v x vβ

(Note that this is a multivariate integral.) Then, finally,

 log L = ∑ =

N
i iL

1
log

 For convenience in what follows, let Θ = the full vector of all parameters in the model. The
likelihood function is maximized by solving the likelihood equations:

 ∑ = ∂
∂

=
∂

∂ N
i

iLL
1

loglog
ΘΘ

 = 0,

and note that these derivatives will likewise involve integration. For this estimator, the integration is
done by Monte Carlo simulation. In general, we use the approximation strategy:

 Evi [Li | vi, t=1,...,Ti] ≈
1

1 | (, 1,...,)R
i ir ir

L t T
R =

=∑ v

where vir is a set of Ti K2-variate random draw from the joint distribution of vi. (I.e., it is a draw of a
Ti×K2 random matrix. In the case of no autocorrelation, there is only one K2-variate draw, which is
then the same in all periods, in the fashion of a random effects model.) See Brownstone and Train
(1999), Train (1998, 2009), and Revelt and Train (1998) for discussion. The approximation improves
with increased R (this is under your control) and with increases in N, though the simulation variance
which decreases with increases in R does not decrease with N.

Random Draws for the Simulations

The K2 elements of vir are drawn as follows: We begin with a K2 random vector wir that is

K2 independent draws from the standard uniform [0,1] distribution or

 K2 Halton draws from the mth Halton sequence, where m is the mth prime number
 in the sequence of K2 prime numbers beginning with 2.

R24: Random Parameter Models R-619

The Halton values are also distributed in the unit interval. They are described in detail below. This
primitive draw is then transformed to the distribution specified in the ; Fcn specification, as follows:

Uniform[-1,1]: uk,ir = 2wk,ir - 1

 Tent [-1,1] uk,ir = 1(wk,ir < .5)[,2 k irw - 1] + 1(wk,ir > .5)[1 - ,2(1)k irw−]

 Normal[0,1] uk,ir = Φ-1(wk,ir)

(Other transformations are listed at the beginning of this section.) This produces a K2 vector, uir.
Finally, vir is obtained as follows:

1. No autocorrelation: vir = uir for all t.

In this case, wir is drawn once for the entire set of Ti periods, and reused. This is the
standard ‘random effect’ arrangement, in which the effect is the same in every period. In
this case,

 witr = wir, uitr = uir, and vitr = vir,

2. AR1 model (autocorrelation): vk,i1r = [1/(1 - ρk
2)] uk,i1r

 vk,itr = ρk vk,i,t-1,r + uk,itr

This is the standard first order autocorrelation treatment, with the Prais-Winsten treatment
for the first observation to avoid losing any observations due to differencing. For this case,
uk,ir has been drawn for each period, uk,itr, then used in the transformation immediately above
to produce vitr.

In the preceding derivation, it is stated that Ω = ΓΓ′ is the covariance matrix of Γvitr. This is

true for the standard normal case. For the other two cases, a further scaling is needed. The variance
of the uniform [-1,1] is the squared width over 12, or 1/3, so its standard deviation is 1/ 3 = .57735.
The variance of the standardized tent distribution is 1/6. (Since this is a density with a discontinuous
derivative, this takes a bit of derivation to show. It can be shown by partitioning the distribution.
The density of u in this case is

 f(u) = 2(1+u) for u < 0 and 2(1-u) for u > 0.

The probability in each section is ½. The mean is obviously zero (by construction). The two
conditional means are -1/3 and +1/3 for the left and right halves. The conditional variances can be
found by simple integration to be 1/18 in each half. The variance equals the variance of the
conditional mean plus the expected value of the conditional variance, which gives 1/9 for the former
and 1/18 for the latter, which sum to 1/6. The standard deviation is therefore .40824. This implicit
scaling is undone at the time the results are reported.

R24: Random Parameter Models R-620

Controlling the Simulation

 There are two parameters of the simulations that you can change. The number of points in
the simulation is R. Authors differ in the appropriate value. Train (2009) recommends several
hundred. Bhat (2001) suggests 1,000 as an appropriate value. The program default is 100. You can
choose the value with
 ; Pts = number of draws, R

 In order to replicate an estimation, you must use the same random draws. One implication
of this is that if you give the identical model command twice in sequence, you will not get the
identical set of results because the random draws in the sequences will be different. To obtain the
same results, you must reset the seed of the random number generator with a command such as

 CALC ; Ran (seed value) $

We often use Ran(12345) before each of our examples, precisely for this reason. The specific value
you use for the seed is not of consequence; any odd number will do.
 In this connection, we note a consideration which is crucial in this sort of estimation. The
random sequence used for the model estimation must be the same in order to obtain replicability. In
addition, during estimation of a particular model, the same set of random draws must be used for
each person every time. That is, the sequence vi1, vi2, ..., viR used for each individual must be the
same every time it is used to calculate a probability, derivative, or likelihood function. (If this is not
the case, the likelihood function will be discontinuous in the parameters, and successful estimation
becomes unlikely.) One way to achieve this which has been suggested in the literature is to store the
random numbers in advance, and simply draw from this reservoir of values as needed. Because
LIMDEP is able to use very large samples, this is not a practical solution, especially if the number of
draws is large as well. We achieve the same result by assigning to each individual, i, in the sample,
their own random generator seed which is a unique function of the global random number seed, S,
and their group number, i;

 Seed(S,i) = S + 123.0 × i, then minus 1.0 if the result is even.

Since the global seed, S, is a positive odd number, this seed value is unique, at least within the
several million observation range of LIMDEP.

Halton Draws and Random Draws for Simulations

 The standard approach to simulation estimation is to use random draws from the specified
distribution. As suggested above, good performance in this connection requires very large numbers
of draws. The drawback to this approach is that with large samples and large models, this entails a
huge amount of computation and can be very time consuming. Some authors have documented
dramatic speed gains with no degradation in simulation performance through the use of a small
number of Halton draws instead of a large number of random draws. Authors (e.g., Bhat (2001))
have found that a Halton sequence of draws with only one tenth the number of draws as a random
sequence is often equally effective. To use this approach, add

 ; Halton

to your model command.

R24: Random Parameter Models R-621

 Conventional simulation based estimation uses a random number to produce a large number
of draws from a specified distribution. The central component of the standard approach is draws
from the standard continuous uniform distribution, U[0,1]. (LIMDEP’s random number generator is
described in Appendix R4A.3.) Draws from other distributions are obtained from these draws by
using transformations. In particular, where ui is one draw from U[0,1],

 Normal [0,1]: vi = Φ-1(ui)

Uniform[-1,1]: vi = 2ui - 1

 Tent: vi = 12 −iu if ui ≤ 0.5, vi = 1 - 12 −iu otherwise.

Given that the initial draws satisfy the assumptions necessary, the central issue for purposes of
specifying the simulation is the number of draws. Results differ on the number needed in a given
application, but the general finding is that when simulation is done in this fashion, the number is
large. A consequence of this is that for large scale problems, the amount of computation time in
simulation based estimation can be extremely long.
 Procedures have recently been devised in the numerical analysis literature for taking
‘intelligent’ draws from the uniform distribution, rather than random ones. (See Train (1999, 2009)
and Bhat (2001) for extensive discussion and further references.) These procedures appear vastly to
reduce the number of draws needed for estimation (by a factor of 90% or more) and reduce the
simulation error associated with a given number of draws. In one application of the method to be
discussed here, Bhat (2001) found that 100 Halton draws produced lower simulation error than 1,000
random numbers.
 The procedure described here is labeled Halton sequences. (See Train (1999).) The Halton
sequence is generated as follows: Let r be a prime number larger than two. Expand the sequence of
integers g = 1,... in terms of the base r as

 i
i

I
i

rbg ∑ =
=

0
 where by construction, 0 ≤ bi ≤ r - 1 and rI ≤ g < rI+1.

The Halton sequence of values that corresponds to this series is

 1
0

)(−−
=∑= i

i
I
i

rbgH

For example, using base 5, the integer 37 has b0 = 2, b1 = 2, and b3 = 1. Then

 H(37) = 2×5-1 + 2×5-2 + 1×5-3 = 0.448.

The sequence of Halton values is efficiently spread over the unit interval. The sequence is not
random as the sequence of pseudorandom numbers is.

The figures below show two sequences of Halton draws and two sequences of
pseudorandom draws. The Halton draws are based on r = 7 and r = 9. The clumping evident in the
first figure is the feature (among other others) that mandates large samples for simulations. We use
the prime numbers in order beginning with 3. If a model requires K random draws, we use the first
K prime numbers to generate the sequences. Within each series, the first 10 draws are discarded, as
these draws tend to be highly correlated across different periods.

R24: Random Parameter Models R-622

Figure R24.4 Bivariate Distribution of Random Uniform Draws

Figure R24.5 Bivariate Distribution of Halton (7) and Halton (9)

 You can draw Halton sequences for your own purposes. The command

 CREATE ; name = Hlt(prime number) $

generates a Halton sequence for the n integers, where n is your sample size, beginning at one. The
descriptive statistics below show the behavior of the Halton sequences. Note, they are not random –
they are not intended to be. The ACFs and PACFs reflect the underlying construction of the data.
The descriptive statistics do show how the series covers the uniform distribution, which has mean .5
and standard deviation 1/ 12 = .288675.

R24: Random Parameter Models R-623

Time series identification for H7
PACF is computed using Yule-Walker equations.
xxx
Lag | Autocorrelation Function |Box/Prc| Partial Autocorrelations X
xxx
 1 | .264*| |*** | 69.88*| .264*| |*** X
 2 |-.227*| ***| |121.60*|-.320*| **** | X
 3 |-.475*| *****| |347.03*|-.374*| **** | X
 4 |-.478*| *****| |575.07*|-.438*| ***** | X
 5 |-.235*| ***| |630.47*|-.485*| ***** | X
 6 | .252*| |*** |693.93*|-.302*| *** | X
 7 | .978*| |*********** |*******| .958*| |***********X
 8 | .248*| |*** |*******|-.690*| ******** | X
 9 |-.239*| ***| |*******|-.178*| ** | X
 10 |-.484*| *****| |*******|-.053 | * | X
 11 |-.486*| *****| |*******|-.030 | * | X
 12 |-.245*| ***| |*******|-.041 | * | X
 13 | .239*| |*** |*******|-.068*| * | X
 14 | .962*| |*********** |*******| .211*| |** X
 15 | .237*| |*** |*******|-.166*| ** | X
xxx
Time series identification for H9
PACF is computed using Yule-Walker equations.
xxx
Lag | Autocorrelation Function |Box/Prc| Partial Autocorrelations X
xxx
 1 | .406*| |**** |164.92*| .406*| |**** X
 2 |-.040 | *| |166.49*|-.245*| *** | X
 3 |-.335*| ****| |278.42*|-.277*| *** | X
 4 |-.482*| *****| |511.04*|-.317*| *** | X
 5 |-.483*| *****| |744.21*|-.365*| **** | X
 6 |-.336*| ****| |857.15*|-.417*| ***** | X
 7 |-.042 | *| |858.90*|-.428*| ***** | X
 8 | .400*| |**** |*******|-.166*| ** | X
 9 | .984*| |*********** |*******| .973*| |***********X
 10 | .396*| |**** |*******|-.611*| ******* | X
 11 |-.046 | *| |*******|-.189*| ** | X
 12 |-.338*| ****| |*******|-.050 | * | X
 13 |-.484*| *****| |*******|-.010 | * | X
 14 |-.485*| *****| |*******|-.011 | * | X
 15 |-.339*| ****| |*******|-.035 | * | X
xxx
Descriptive Statistics
--------+---
Variable| Mean Std.Dev. Minimum Maximum Cases Missing
--------+---
 H7| .498364 .288477 .832986E-03 .997501 1000 0
 H9| .497013 .288833 .152416E-03 .998628 1000 0
 R1| .491032 .277905 .201170E-03 .995654 1000 0
 R2| .502866 .282573 .943576E-04 .999873 1000 0
--------+---

R24: Random Parameter Models R-624

 To illustrate the technique, we will use 500 observations from a simulated data set, and
compare estimation with 500 random draws with estimation using 50 Halton draws. Computation
time is linear in the number of draws, so the second model takes roughly one tenth as long as the
first. (It is not exact as generation of a Halton draw does not take the same amount of time as
generation of a random number.)

 CALC ; Ran(12345) $
 SAMPLE ; 1-2000 $
 CREATE ; I = Trn(10,0) $
 MATRIX ; b1 = Rndm(200)
 ; b2 = Rndm(200) $
 CALC ; b3 = -1 ; b4 = .5 ; b5 = .2 $
 CREATE ; x1 = Rnu(-.5,.5)
 ; x2 = Rnn(0,1)
 ; x3 = Rnn(0,1)
 ; x4 = Rnd(3)-2 $
 CREATE ; index =.5*b1(i) + .2*b2(i)*x1 + b3*x2 + b4*x3 + b5*x4 + Rnn(0,4) $
 CREATE ; y = index > 0 $

SAMPLE ; 1-500 $
TIMER $
PROBIT ; Lhs = y
 ; Rhs = one,x1,x2

; RPM
; Pts = 500
; Pds = 10
; Fcn = one(n),x1(n) $

PROBIT ; Lhs = y
 ; Rhs = one,x1,x2

; RPM
; Pts = 50
; Pds = 10
; Halton
; Fcn = one(n),x1(n) $

The results are strikingly similar, but, the Halton method takes roughly one eighth of the time to
complete the estimation. (The computation of the initial estimates is omitted for both models.)

R24: Random Parameter Models R-625

Random Coefficients Probit Model
Dependent variable Y
Log likelihood function -336.40582
Restricted log likelihood -336.41192
Chi squared [2 d.f.] .01218
Significance level .99393
Sample is 10 pds and 50 individuals
PROBIT (normal) probability model
Simulation based on 500 random draws
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error z |z|>Z* Interval
--------+--
 |Nonrandom parameters
 X2| -.26254*** .05998 -4.38 .0000 -.38011 -.14497
 |Means for random parameters
Constant| .05662 .05758 .98 .3254 -.05623 .16948
 X1| .06019 .24729 .24 .8077 -.42449 .54488
 |Scale parameters for dists. of random parameters
Constant| .03541 .05708 .62 .5350 -.07647 .14730
 X1| .00757 .23486 .03 .9743 -.45274 .46789
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Elapsed time: 0 hours, 0 minutes, 6.02 seconds.

Random Coefficients Probit Model
Dependent variable Y
Log likelihood function -336.36654
Restricted log likelihood -336.41192
Chi squared [2 d.f.] .09076
Significance level .95564
McFadden Pseudo R-squared .0001349
Estimation based on N = 500, K = 5
Inf.Cr.AIC = 682.733 AIC/N = 1.365
Sample is 10 pds and 50 individuals
PROBIT (normal) probability model
Simulation based on 50 Halton draws
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error z |z|>Z* Interval
--------+--
 |Nonrandom parameters
 X2| -.26320*** .06004 -4.38 .0000 -.38087 -.14553
 |Means for random parameters
Constant| .05679 .05841 .97 .3309 -.05769 .17127
 X1| .06042 .24702 .24 .8068 -.42374 .54458
 |Scale parameters for dists. of random parameters
Constant| .07584 .05725 1.32 .1853 -.03638 .18805
 X1| .02051 .23609 .09 .9308 -.44222 .48324
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Elapsed time: 0 hours, 0 minutes, .84 seconds.

R24: Random Parameter Models R-626

Constructing the Parameter Vector

 In the following, we include all cases by allowing for autocorrelation in the random effects.
Thus, we write the random parameter vector as βit. Let

 vitr = the rth replication (random draw) on the vector of random variables vit

With vitr in hand, we form the rth draw on the random parameter, βitr as follows:

 β1itr = β1 (K1 nonrandom parameters – does not change with i, r, or t).
 This parameter vector is being estimated.

 β2itr = β2 + ∆zi + Σvitr + Πvitr (K2
 random parameters)

 = β2 + ∆zi + Γvitr where Γ = Σ + Π

where β2 = the fixed means of the distributions for the random parameters.
 This parameter vector is being estimated.

 zi = a set of M observed variables which do not vary over time and which
 enter the means (optional)

 ∆ = coefficient matrix, K2×M, which forms the observation specific term in
 the mean. If zi has been specified with ; Rpm = list, then ∆ is a vector
 of parameters that is being estimated. Otherwise, ∆ does not appear in
 the model specification.

 Σ = diagonal matrix of scale parameters – standard deviations if the random
 effects are uncorrelated (Π = 0). Σ is being estimated.

 Π = lower triangular matrix with zeros on the main diagonal. Π becomes
 nonzero only when you specify ; Correlation. Π is a matrix of
 parameters to be estimated; otherwise, it does not appear in the model

 Γ = lower triangular or diagonal matrix which produces the covariance
 matrix of the random parameters, Ω = Γ Γ ′ in the random effects form
 and Ω = Γ(I-R2)-1Γ ′ in the AR(1) model. The elements of Γ are being
 estimated.

 R = Diagonal autocorrelation matrix. If ; AR1 is specified, then the elements
 of R are being estimated. Otherwise, R does not appear in the model

 x1it = variables multiplied by β1itr.

 Various restrictions, such as zeros in ∆ or Γ, or equality restrictions between means and
variances, are imposed during the construction. The parameter vector, βitr is now in hand. For
parameters specified to be lognormally distributed, the respective element of βitr is now
exponentiated.

R24: Random Parameter Models R-627

Forming the Simulated Likelihood

The probability density function is formed by beginning with

 Pitr = g(yit, βitr′xit, θ)

(Note, if this is the random effects model, then βitr′xit = βir′xit.) The joint conditional probability for
the ith individual is

 Pir | (vitr, t = 1,...,Ti) = ∏ =
iT

t 1
Pitr| vitr.

The unconditional density would now be obtained by integrating the random terms out of the
conditional distribution. We do this by simulation:

 Pi = ∑ =

R
rR 1

1 Pir | (vitr, t = 1,...,Ti)

Note that in the random effects case, we are averaging over R replications in which the Ti
observations are each a function of the same vir. Thus, each replication in this case involves drawing
a single random vector. In the AR1 case, each replication involves drawing a sequence of Ti
vectors, vitr. Finally, the simulated log likelihood function to be maximized is

 log L = ∑ =

N
i 1

log Pi

 = ∑ =

N
i 1

log ∑ =

R
rR 1

1 Pir | (vitr, t = 1,...,Ti)

 = ∑ =

N
i 1

log ∑ =

R
rR 1

1 ∏ =
iT

t 1
Pitr| vitr

Derivatives of the Simulated Log Likelihood

 The derivatives of the log likelihood function must be approximated as well. The theoretical
maximum is based on

αα ∂

∂
=

∂
∂ i

i

i L
L

L 1log

where α is the vector of all parameters in the model. Then,

Range of

1

(, 1,...,) (, ,) (, 1,...,)
i

it

T
i

it i it it it it i
t

L g t T P y d t T
=

∂ ∂ ′= = =
∂ ∂ ∏∫ v

 v x vβ θ
α α

1

1

(, ,)(, ,) (, ,)
i

i
T

T it i it
it i it is i itt

t s t

P yP y P y
=

= ≠

′∂∂ ′ ′= ∂ ∂
∑∏ ∏xx xβ θ

β θ β θ
α α

1

1

log (, ,) (, ,)
i

i
T

T it it it
it it it t

t

P yP y
=

=

′∂ ′= ∂
∑∏ xx β θ

β θ
α

R24: Random Parameter Models R-628

Collecting terms once again, we obtain the approximation,

αα ∂

∂
=

∂

∂
∑ =

i

i

N
i

L
L

L 1log
1

 ≈
1 1

1

1

1
1

log (, ,)1 (, ,)

1 (, ,)

i
i

i

T
R T it itr it

it itr itr t
tN

i T
H

it itr ith
t

P yP y
R

P y
R

= =
=

=

=
=

 ′∂ ′ ∂
 ′

∑ ∑∏
∑

∑ ∏

xx

x

β θ
β θ

α

β θ

We now consider in finer detail how the derivatives with respect to the low level, structural
parameters are computed.

To avoid some involved notation, it is useful to go back and partition the parameter vector.
Each element of βitr involves its own vector of structural parameters, a βk from the mean vector, a
row of ∆, a diagonal element of Σ, a row of Π, and an autocorrelation coefficient, ρk. It is convenient
to write this explicitly as

 βk,itr = βk + δk′zi + σkvk,itr + πk′vitr

 vk,itr = ρkvk,i,t-1,r + uk,itr or vk,1tr = uk,i1r / 21 kρ− for the first observation.

Note that the first row of Π has no nonzero elements, the second has only one, the third, two, and so
on. Also, for any nonrandom parameters, all terms save the first are zero in the statement above. It
is useful, as well, to keep in mind that Γ is a triangular matrix, so the vector γk has one, then two,
then ... nonzero elements. Let µk denote the full vector of parameters associated with βk,itr, and
collect these subvectors in a large, complete vector of parameters, µ. (At this point, µ is the full
vector of model parameters except for any ancillary parameters such as θ in the negative binomial or
the disturbance standard deviation, σ, in the tobit model.) We seek the gradient,

µ∂

∂ Llog = ∑ =

N
i 1 µ∂

∂ iPlog

which we will obtain by stacking the gradients with respect to µk. For the moment, assume that the
random parameters are uncorrelated, so that the matrix, Π is not in the model – the reason is that
with nonzero Π and autocorrelation, each βk is a function of the ρm in other parameters. We turn to
this complication below. At various points, we will use analogs to the convenient result

θ∂

∂
=

θ∂
∂ PPP log .

Suppressing the conditioning notation, and collecting terms from above, we have

k

ir
ir

R
r

ik

i PP
RP

P
µµ ∂

∂
=

∂
∂ ∑ =

log11log
1

k

itrT
tir

R
r

i

PP
RP

i

µ∂
∂

= ∑∑ ==

log11
11

R24: Random Parameter Models R-629

The second expression takes us into the primitive, lowest level probabilities. To evaluate them, we
can now use the simplification

k

itrk

itrk

itr

k

itr PP
µµ ∂

β∂
β∂

∂
=

∂
∂ ,

,

loglog
.

The first term in the product is the familiar one from maximization of the conventional log
likelihoods for these models. For example, for the Poisson model,

 itkitrit
itrk

itr xyP
,

,
)(log

λ−=
β∂

∂

while for the negative binomial model, this is

 itkitrit
itrk

itr xqy
P

,
,

])([
log

θ−+θ=
β∂

∂ .

In the absence of cross parameter correlation, the latter derivatives are easy to evaluate:

 1, =
β∂

β∂

k

itrk , i
k

itrk z=
∂

β∂

δ
, , itrk

k

itrk v ,
, =

σ∂

β∂
, and, if ; Cor, ,k itr

itr
k

∂β
=

∂
v

π

Note that the last of these has only k-1 nonzero terms, for k = 1,...,K2. Finally, for the autocorrelation
parameters (assuming that the parameters are not correlated),

 , ,
, , 1, k itr k itr

k k k i t r
k k

v
v −

∂β ∂
= σ = σ

∂ρ ∂ρ

or , 1 2 3/ 2(1)
k

k k i r
k

u ρ
σ

− ρ

for the first observation.

One term remains. If ; Cor has been specified, then βk is a function of ρm for some of the
other parameters, because the term πk′vitr is a function of some alien components of vitr (and, by
construction, it is not a function of the kth component). In particular,

k

ir
ir

R
r

ik

i PP
RP

P
ρ∂

∂
=

ρ∂
∂ ∑ =

log11log
1

k

itrT
tir

R
r

i

PP
RP

i

ρ∂
∂

= ∑∑ ==

log11
11

and

k

itrk

itrk

itr

k

itr PP
ρ∂

β∂
β∂

∂
=

ρ∂
∂ ,

,

loglog
 +

k

itrm

itrm

itr
km

P
ρ∂

β∂
β∂

∂∑ ≠
,

,

log

R24: Random Parameter Models R-630

The final term is

k

itrm

ρ∂
β∂ , = πmk

k

itrkv
ρ∂

∂ , .

The last derivative above was given previously. Working backwards from here, we assemble these
parts to obtain the full gradient of the log likelihood.
 The common ancillary parameters are a remaining complication. Consider, for example, the
negative binomial model. For the overdispersion parameter,

 =
θ∂

∂ iPlog
θ∂

∂∑∑ ==
itrT

tir
R
r

i

PP
RP

i log11
11

and the latter derivative is

θ∂

∂ itrPlog = Ψ(θ + yit) - Ψ(θ) + logqitr + (1 - qitr) - yiitqitr/θ.

Another formulation of the preceding computation is illuminating. This shows more

graphically how the preceding are actually carried out – the implementation is actually simpler than
the derivation might suggest. We produce this for the group of binary choice models as an
illustration. For the binary choice models, we have

 P(yit, βitr′xit) = [] []() ity
ititrFity

ititrF −− 1'1' xx ββ = Gitr

so
 log P(yit, βitr′xit) = yit logFitr + (1 - yit)log (1 - Fitr).
The index is

 witr = βitr′xit

 = β′xit + zi′∆′xit + vitr′Γ′xit

We will need

⊗
⊗=

∂
∂

itir

iti

it
irtw

xv
xz

x

µ
 = hitt

Then,

 itritrititr
irt

it

irt

itirtit wyg
F
y

F
ywyP

h),(
1
1)(log ,

−
−

−=
∂

∂
µ

 = gitr.

The forms of the particular density functions, git(.), differ among the four models. The functional
forms appear at the beginning of Section E18.3.1. In the vector at the end of the expression, the
lower term is the result of the term xit′Γvir. Since Γ is a lower triangular matrix, this term actually
involves the K2(K2+1)/2 terms that are nonzero in the matrix Γ including σk and nonzero elements of
Π.

R24: Random Parameter Models R-631

Hessians and Asymptotic Covariance Matrix Estimation

 We will only sketch the full derivation of the Hessians here. Return to the full gradient of
the ith term in the log likelihood log likelihood – terms are summed over i to get the gradient and
Hessian – the following is written in terms of the full parameter vector, including any ancillary
parameters. The gradient is

 gi α∂
∂

= ∑∑ ==
itrT

tir
R
r

i

PP
RP

i log11
11

.

Let Hi denote the second derivatives matrix. Then,

 Hi = - gi gi′ + 'loglog11
111

∂
∂

∂
∂ ∑∑∑ === αα

itrT
t

itrT
tir

R
r

i

PPP
RP

ii

'
log11 2

11 αα ∂∂
∂

+ ∑∑ ==
itrT

tir
R
r

i

PP
RP

i .

The only term which has not already appeared is the second derivatives matrix in the third part.
Consider first the case of no autocorrelation. This derivative is obtained by differentiation of

k

itrk

itrk

itr

k

itr PP
µµ ∂

β∂

β∂
∂

=
∂

∂ ,

,

loglog
.

which gives

'

log
'

log
'

log

,

2
,,

2

,

2

mitrk

itr

k

itrk

mk

itrk

itrk

itr

mk

itr PPP
µµµµµµ ∂β∂

∂
∂
β∂

+
∂∂

β∂
β∂

∂
=

∂∂
∂ .

In the absence of autocorrelation, the random parameters are linear in the underlying parameters, so
the first of the two second derivatives is zero. Using this and our previous results, we obtain

∂
β∂

∂
β∂

β∂β∂
∂

=
∂∂

∂
'

log
'

log ,,

,,

22

m

itrm

k

itrk

itrmitrk

itr

mk

itr PP
µµµµ

.

The only major complication in the preceding arises when there is autocorrelation, as in this case,
and when the reduced form parameters are not linear in ρk. In this instance, the square of the first
derivative is used as an approximation to the second. The BFGS algorithm is always used for
estimation of this model, so the Hessian is only used at exit for computing the asymptotic covariance
matrix.

R24: Random Parameter Models R-632

R24.8 Multilevel and Multiple Effects RP Models

 The following applies to all random parameters models in LIMDEP – the entire class of
models estimable with the ; RPM specification with only the exception of the two equation models,
bivariate probit and sample selection. It modifies the single index models.
 The model is based on the single index function

 Indexit = β′xit

such as the linear regression model, yit = Indexit + εit or the probit model, in which yit = 1(Indexit+εit >
0) or the Poisson regression in which the probabilities are functions of exp(Indexit). We add to this
M = up to 10 ‘effects’

 Indexit = β′xit + cj1 ωj1,i + cj2 ωj2,i + ... cjM ωjM,i.

The cjM are ones and zeros simply used to select the effects in the model. The effects are up to 10
normally distributed random terms associated with discrete group indicators such as strata, clusters,
etc. Effects may appear singly or as products, and may be nested or simply be associated with any
desired groupings of the data. The associated variables can be any desired discrete indicator that
associates a unique value with a group. Consider an example based on test scores. Suppose we have
nationwide data, arranged by region, state, county, district, school. That is individual test scores
observed in five decreasing levels of aggregation. Then, in addition to the data on test scores
(presumably individual students) and the covariates in x, we have variables with distinct codes for
the five levels of aggregation – the only restriction is that codes must be integers from 1,2,...,9999.
The specification is

 ; REM = name1, name2, ..., nameM

For our example, this would thus be

 ; REM = region,state,county,district,school

This estimator does not require that these ‘effects’ be nested. The effects can be defined at any level
of aggregation, and could be a mixture of nested and nonnested groupings. Suppose, for example,
you also had indicators of grouping by type of program, which might be one of, say, 10, which varies
all over the range of observations, without respect to the other five groupings listed. For another
example, one might also have a party effect in that list, for whether the state in question had a
Democratic, Republican, or Other Party governor at the time. This could also be included.
 Effects may also be main or secondary (products). You can specify secondary effects by
writing the effects as products, as in

 ; REM = name1, name2, name3*name4, name2*name3*name4, name1*name4

You may define up to 10 effects or combinations of effects in total, using up to 10 basic effects. To
continue the example, you might specify an interaction between state and district with

 ; REM = region,state,county,district,school,state*district

; REM can be added to an RPM model or may appear by itself instead of RPM ; Fcn = …

R24: Random Parameter Models R-633

R24.8.1 Command

 This estimator uses LIMDEP’s package of random parameter model (RPM) estimators. The
essential part of the command is

 Model ; Lhs = the dependent variable
 ; Rhs = the independent variables
 ; RPM
 ; Pds = the correct specification for your panel (see below)
 ; REM = the specification of your random effects $

This specification may be in addition to other random parameter specifications in the command.
(See the application below.)
 Typically, the panel specification in ; Pds = ... would correspond to the structure of one of
your effects variables. But, this is not required. Indeed, you could have ; Pds = 1. But, if you are
analyzing a panel, you should specify it as usual. Note that the command does not contain ; Panel.
This must be omitted from this command. The effects are set up as described above. There is one
other specification that you should use. The estimator for this model is maximum simulated
likelihood. You may want to control the number of random draws used in the simulations. This is
an extremely computation intensive estimator. The number of random draws is specified with

 ; Pts = the desired number

The default value is 100. For generating final results in a study, you will probably use several
hundred. But, for exploratory work, as in our example below, you might want to choose a small
value, such as 10 or 25. Also, as in the case of the RPM, you may gain some speed and smoothness
of the optimization by using Halton sequences instead of pseudorandom draws to do the integrations
involved. This is done by adding

 ; Halton

to the command.

R24.8.2 Application

 We consider a random parameters stochastic frontier model (see Chapter E33) of the form

 yit = α + βi′xit + εit - ait + σuui + σwwg + γ(σuui)(σvwg)

The parameter vector is treated as a simple RPM, with βi,k = βk

0 + vi,k. In the setting of the frontier
model, ait is the half normally distributed inefficiency term while εit (normally denoted vit) is the
symmetric noise term. Note that in this model, we allow these to vary with time. The common
effect σuui is equivalent to a producer specific effect, which is, in turn, also equivalent to a random
constant term. In the application below, we fit the model to a sample of farms in a panel data set
with T = 6 observations per farm. (The data are discussed in greater detail in Chapter E31.) We are
also artificially (for the purpose of our numerical example) grouping farms into clusters of six farms.

R24: Random Parameter Models R-634

(There are 247 farms, so the last cluster has only one farm.) We allow for separate effects for farm
and group, and also provide for an interaction of the two effects.
 The commands are

 CREATE ; group = Trn(36,0) $
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4 $
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4
 ; RPM ; Fcn = x1(n),x2(n),x3(n),x4(n)
 ; Pds = 6
 ; Pts = 15
 ; REM = group,farm $
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4 $
 FRONTIER ; Lhs = yit ; Rhs = one,x1,x2,x3,x4
 ; RPM ; Fcn = x1(n),x2(n),x3(n),x4(n)
 ; Pds = 6
 ; Pts = 15
 ; REM = group,farm,group*farm $

Three sets of estimates appear below. The first is the pooled, fixed parameter version of the model
that is used to provide the starting values for the iterations. The second is the RP model with farm
and group effects. The third adds the interaction effect of farm and group. Since the grouping is
completely artificial, we would not expect to see any significant effect due to this component.
Although the coefficient on the effects in the two RE models do appear to be significant, the
variances due to the grouping effects are very small – one and two orders of magnitude smaller –
compared to the farm effect which can be clearly seen in any panel data model fit with these two
data. We might surmise that the ‘group effect’ here is picking up farm effects that are left over
beyond the simple linear additive effect of the first random effect. Note, finally, in the third model,
the iterative routine exited abnormally with a diagnostic that no improvement in the function could
be located. However, this was after 40 iterations, and in fact, the derivatives were quite small at this
point. This suggests only that the likelihood is fairly flat at this point, not that the optimization has
failed, and we take the estimates as given.

Limited Dependent Variable Model - FRONTIER
Dependent variable YIT
Log likelihood function 822.68831
Estimation based on N = 1482, K = 7
Inf.Cr.AIC =-1631.377 AIC/N = -1.101
Model estimated: Mar 10, 2011, 22:52:57
Variances: Sigma-squared(v)= .01075
 Sigma-squared(u)= .02425
 Sigma(v) = .10371
 Sigma(u) = .15573
Sigma = Sqr[(s^2(u)+s^2(v)]= .18710
Stochastic Production Frontier, e = v-u

R24: Random Parameter Models R-635

--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
 |Primary Index Equation for Model
Constant| 11.7014*** .00447 2614.87 .0000 11.6926 11.7101
 X1| .58369*** .01887 30.93 .0000 .54670 .62068
 X2| .03555*** .01113 3.20 .0014 .01375 .05736
 X3| .02256* .01281 1.76 .0783 -.00256 .04768
 X4| .44948*** .01035 43.42 .0000 .42919 .46977
 |Variance parameters for compound error
 Lambda| 1.50164*** .08748 17.17 .0000 1.33019 1.67310
 Sigma| .18710*** .00011 1698.90 .0000 .18688 .18732
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Random Coefficients Frontier Model
Dependent variable YIT
Log likelihood function 1266.54960
Restricted log likelihood .00000
Chi squared [6 d.f.] 2533.09921
Significance level .00000
Estimation based on N = 1482, K = 13
Inf.Cr.AIC =-2507.099 AIC/N = -1.692
Sample is 6 pds and 247 individuals
Stochastic frontier (half normal)
Simulation based on 15 random draws
Model contained 2 random effects.
Sigma(u) (1 sided) = .08573
Sigma(v) (symmetric)= .06173
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
 |Production / Cost parameters, nonrandom first
Constant| 11.6209*** .00389 2988.25 .0000 11.6133 11.6285
 |Means for random parameters
 X1| .63225*** .01001 63.17 .0000 .61264 .65187
 X2| -.00627 .00606 -1.03 .3016 -.01815 .00562
 X3| .05448*** .00706 7.72 .0000 .04064 .06831
 X4| .41693*** .00537 77.63 .0000 .40641 .42746
 |Scale parameters for dists. of random parameters
 X1| .03083*** .00398 7.75 .0000 .02303 .03863
 X2| .02501*** .00424 5.89 .0000 .01669 .03332
 X3| .03725*** .00554 6.73 .0000 .02640 .04810
 X4| .07809*** .00280 27.89 .0000 .07260 .08358
 |Standard Deviations of Random Effects
R.E.(01)| .05930*** .00218 27.14 .0000 .05502 .06358
R.E.(02)| .15460*** .00259 59.74 .0000 .14953 .15968
 |Variance parameter for v +/- u
 Sigma| .10565*** .00270 39.13 .0000 .10036 .11094
 |Asymmetry parameter, lambda
 Lambda| 1.38874*** .10644 13.05 .0000 1.18013 1.59735
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R24: Random Parameter Models R-636

+---+--------------+
Random effects in the model are based on	Random Effect
these expanded qualitative variables.	Variance
R.E.(01) = GROUP	.003516
R.E.(02) = FARM	.023903
+---+--------------+

Random Coefficients Frontier Model
Dependent variable YIT
Log likelihood function 1278.51141
Restricted log likelihood .00000
Chi squared [7 d.f.] 2557.02282
Significance level .00000
Estimation based on N = 1482, K = 14
Inf.Cr.AIC =-2529.023 AIC/N = -1.706
Sample is 6 pds and 247 individuals
Stochastic frontier (half normal)
Simulation based on 15 random draws
Model contained 3 random effects.
Sigma(u) (1 sided) = .08949
Sigma(v) (symmetric)= .06025
--------+--
 | Standard Prob. 95% Confidence
 YIT| Coefficient Error z |z|>Z* Interval
--------+--
 |Production / Cost parameters, nonrandom first
Constant| 11.6173*** .00397 2929.12 .0000 11.6095 11.6251
 |Means for random parameters
 X1| .65045*** .01033 62.98 .0000 .63021 .67069
 X2| .01572** .00623 2.52 .0116 .00352 .02793
 X3| .02458*** .00738 3.33 .0009 .01011 .03905
 X4| .40630*** .00553 73.41 .0000 .39545 .41714
 |Scale parameters for dists. of random parameters
 X1| .01456*** .00421 3.45 .0006 .00629 .02282
 X2| .06401*** .00501 12.78 .0000 .05420 .07383
 X3| .10801*** .00623 17.34 .0000 .09580 .12022
 X4| .07088*** .00271 26.13 .0000 .06557 .07620
 |Standard Deviations of Random Effects
R.E.(01)| .04544*** .00195 23.30 .0000 .04162 .04926
R.E.(02)| .12743*** .00239 53.21 .0000 .12273 .13212
R.E.(03)| .01908*** .00193 9.87 .0000 .01529 .02287
 |Variance parameter for v +/- u
 Sigma| .10789*** .00271 39.87 .0000 .10258 .11319
 |Asymmetry parameter, lambda
 Lambda| 1.48523*** .11417 13.01 .0000 1.26147 1.70899
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

+---+--------------+
Random effects in the model are based on	Random Effect
these expanded qualitative variables.	Variance
R.E.(01) = GROUP	.002065
R.E.(02) = FARM	.016237
R.E.(03) = GROUP FARM	.000364
+---+--------------+

R24: Random Parameter Models R-637

R24.8.3 Technical Details

The probability density function for the random parameters model, now with the additional
effects, is formed by beginning with

 Pitr = g(yit, βitr′xit + cj1 ωj1,i + cj2 ωj2,i + ... cjM ωjM,i, θ)

The joint conditional probability for the ith individual is

 Pir | (ωj1,i,ωj2,i,...ωjM,i,vitr, t = 1,...,Ti) = ∏ =
iT

t 1
Pitr| ωj1,i,ωj2,i,...ωjM,i,vitr.

The unconditional density would now be obtained by integrating the random terms out of the
conditional distribution. We do this by simulation, as we did before:

 Pi = ∑ =

R
rR 1

1 Pir | (ωj1,ir,ωj2,ir,...ωjM,ir,vitr, t = 1,...,Ti)

Thus, each replication in this case involves drawing a single random vector on vi, but in addition, it
involves drawing from the population of the common effects, ωj1,i,ωj2,i,...ωjM,i. Finally, the simulated
log likelihood function to be maximized is

 log L = ∑ =

N
i 1

log Pi

 = ∑ =

N
i 1

log ∑ =

R
rR 1

1 Pir | (ωj1,i,ωj2,i,...ωjM,i,vitr, t = 1,...,Ti)

 = ∑ =

N
i 1

log ∑ =

R
rR 1

1 ∏ =
iT

t 1
Pitr|ωj1,i,ωj2,i,...ωjM,i,vitr

The procedure that includes these random effects is essentially the same save for the drawing of the
effects for the simulations, which is not done in synchronization with the draws for the random
parameters, but rather, is drawn from a separate reservoir of draws for the effects, themselves.
Further details on the maximization appear above in Section R24.7.
 We note one important aspect of the simulation/integration. Where the common effect is of
the form σωui – that is, the subscript on the effect matches the index of the product operation, as in
the familiar random effects model – then the preceding is exactly equivalent to that RE model. In
other cases, however, the effect may be varying over a different range than the index in the product.
Consider a model with both group and time effects. There are T time effects for each i, since each
individual is observed in each period. Thus,

 Indexit,r = βit,r′xit + γ1vi,r + γ2wt,r + γ3vi,rwt,r.

That is, the integral over periods is recomputed for each i, while the integral over vi is only computed
once. Moreover, in principle, though wt is a ‘time’ effect, we are treating it as if it were a state
specific time effect when we integrate it out. (There is a separate random variable wt for each period,
however.) This means that although state observations are correlated across states because of the
common time effect, we are treating them as uncorrelated by this procedure. Thus, it must be treated
as approximate. This all comes out appropriately if the effects are nested and Ti corresponds to the
highest level in the nest (the level that encompasses the lower levels).

R25: Latent Class Models R-638

R25: Latent Class Models

R25.1 Latent Class Models

A model for a panel of data, i = 1,...,N, t = 1,...,Ti is specified with

 P[yit | xit] = F(yit,β′xit) = P(i,t).

We use the term ‘group’ to indicate the Ti observations on respondent i in periods t = 1,...,Ti. We
emphasize, the latent class, or finite mixture model, does not require panel data, and has been
widely analyzed in many settings using cross section data. Indeed, the original finite mixture
problem was cast in the context of cross section data. Thus, throughout this discussion, Ti may equal
one for some or all i.
 Unobserved heterogeneity in the distribution of yit is assumed to impact the density in the
form of a random effect. The continuous distribution of the heterogeneity is approximated by using
a finite number of ‘points of support.’ The distribution is approximated by estimating the location of
the support points and the mass (probability) in each interval. In implementation, it is convenient
and useful to interpret this discrete approximation as producing a sorting of individuals (by
heterogeneity) into J classes, j = 1,...,J. (Since this is an approximation, J is chosen by the analyst.)

Thus, we modify the model for a latent sorting of yit into J ‘classes’ with a model which
allows for heterogeneity as follows: The probability of observing yit given that regime j applies is

 P(i,t|j) = P[yit| xit, j]

where the density is now specific to the group. The analyst does not observe directly which class,
j = 1,...,J generated observation yit|j, and class membership must be estimated. Heckman and Singer
(1984) suggest a simple form of the class variation in which only the constant term varies across the
classes. This would produce the model

 P(i,t|j) = F[yit, β′xit + δj], Prob[class = j] = Fj

We might formulate this approximation more generally as,

 P(i,t|j) = F[yit, β′xit + δj′xit],

 Fj = exp(θj) / Σj exp(θj), with θJ = 0.

In this formulation, each group has its own parameter vector, βj′ = β + δj, though the variables that
enter the mean are assumed to be the same. (This can be changed by imposing restrictions on the
full parameter vector, as described below.) This allows the Heckman and Singer formulation as a
special case by imposing restrictions on the parameters. A further generalization is discussed below.
In general, the latent class model will extend beyond the basic index function formulation.
 There is a huge literature on latent class modeling. One particularly useful reference is a
compendium by McLachlan and Peel (2000).

R25: Latent Class Models R-639

R25.2 Commands for Latent Class Modeling

 The estimation command for this model is

 Model, such as POISSON, PROBIT, TOBIT, LOGIT, etc.

 ; Lhs = dependent variable
 ; Rhs = independent variables
 ; LCM (for latent class model)
 ; Pds = panel data specification (optional)
 ; Pts = the number of classes $

The estimator does not require a panel. You can use ; Pds = 1. (This is the classic ‘finite mixture’
problem, which was not originally specified for panel data.) This applies to both LIMDEP’s class of
estimators and to the LCM model in NLOGIT. The default number of support points is five. You may
set J to 2, 3, ..., 9 with

 ; Pts = the value you wish.

Some particular results computed for the latent class model are

 ; Parameters to save the individual specific parameter estimates.
 See Section R25.7 for details.
 ; Group = name to retain the index of the most likely latent class
 ; Cprob = name to retain the estimated probability for the most likely

 latent class

You can obtain a listing of the predicted class and the probabilities by using

 ; List

An example appears below. (Computation of these values is described in the technical details.) You
can use the ; Rst = list option to structure the latent class model so that different variables appear in
different classes. Alternatively, you can use this to force the Heckman and Singer form of the model
as follows, where we use a three class model as an example:

 NAMELIST ; x = ... one, list of variables $
 CALC ; k1 = Col(x) - 1 $
 POISSON ; Lhs = ...

; Rhs = x
 ; LCM

; Pts = 3
 ; Rst = d1,k1_b, d2,k1_b, d3,k1_b, t1,t2,t3 $

This sequence of instructions computes a three class Poisson regression model in which the slope
parameters are the same in all three classes – only the constant terms differ across the classes. Latent
class models can specified as an alternative to random effects models or random parameters models.
The ; Rst = list specification can be used to impose a variety of kinds of restrictions in the model.
Note that the last three parameters in the list are for the class probabilities. LIMDEP, itself, imposes
a restriction on these – the last parameter is fixed at zero. But, although you must include
specifications for these parameters in your ; Rst list, you should not impose any restrictions yourself
on these parameters. They must remain unrestricted for the estimator to manipulate internally.

R25: Latent Class Models R-640

R25.3 Modeling Frameworks for Latent Class Analysis

The following modeling frameworks may be analyzed in the latent class structure:

 • Linear regression, yit|j = βj′xit + εit|j

• Exponential regression, yit|j = exp(βj′xit) + εit|j

• Binary choice: probit, logit, complementary log log, Gompertz
• All ordered probability models, probit, logit, etc.
• Count data: Poisson and negative binomial
• Zero inflated count models, Poisson ZIP, negative binomial ZINB
• Censored dependent variable: tobit, grouped data
• Truncated dependent variable: truncated regression
• Loglinear dependent variable: exponential, gamma, inverse Gaussian regression, Weibull,

binomial, power, geometric, beta
• Stochastic frontier models: half normal, exponential, Battese/Coelli
• Parametric survival models: Weibull, exponential, lognormal, loglogistic, inverse Gauss

Note that the zero inflation models, Poisson (ZIP), negative binomial (ZINB) and ordered probability
models (ZIOP) are latent class models in their own right, outside the estimator being considered
here.

R25.4 Output and Saved Results

 Estimation results for this estimation program will contain initial results for the model
without the latent class treatment, followed by the full set of results for the latent class model.
Estimates retained by this model include

 Matrices: b = full parameter vector, [β1′, β2′,... F1,...,FJ]
 varb = full covariance matrix

Note that b and varb involve J×(K+1) estimates. Two additional matrices are created,

 b_class = a J×K matrix with each row equal to the corresponding βj

 class_pr = a J×1 vector containing the estimated class probabilities

A third matrix,

 beta_i = an N×K matrix with one row of estimates for each person

is saved if you include ; Parameters in the command. See below for discussion

Scalars: kreg = number of variables in Rhs list

 nreg = total number of observations used for estimation
 logl = maximized value of the log likelihood function

 exitcode = exit status of the estimation procedure.

R25: Latent Class Models R-641

 An example of a four class model based on the German health care data analyzed in
Chapter E2 and elsewhere appears below.

 SAMPLE ; All $
 SETPANEL ; Group = id ; Pds = ti $
 PROBIT ; Lhs = doctor
 ; Rhs = one,hhninc,hhkids,educ
 ; LCM

; Pts = 4
; Maxit = 150
; Parameters

 ; Panel $

+---+
| Variable = ____________ Variable Groups Max Min Average |
| TI Group sizes ID 7293 7 1 3.7 |
+---+

Probit Regression Start Values for DOCTOR
Dependent variable DOCTOR
Log likelihood function -17835.48615
Estimation based on N = 27326, K = 4
Inf.Cr.AIC =35678.972 AIC/N = 1.306
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
Constant| .89068*** .03921 22.72 .0000 .81383 .96754
 HHNINC| -.04608 .04536 -1.02 .3097 -.13497 .04282
 HHKIDS| -.22638*** .01576 -14.36 .0000 -.25727 -.19549
 EDUC| -.03978*** .00342 -11.62 .0000 -.04650 -.03307
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Latent Class / Panel Probit Model
Dependent variable DOCTOR
Log likelihood function -16383.65581
Restricted log likelihood -17835.48615
Chi squared [16 d.f.] 2903.66067
Significance level .00000
McFadden Pseudo R-squared .0814012
Estimation based on N = 27326, K = 19
Inf.Cr.AIC =32805.312 AIC/N = 1.201
Unbalanced panel has 7293 individuals
PROBIT (normal) probability model
Model fit with 4 latent classes.
--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--

R25: Latent Class Models R-642

 |Model parameters for latent class 1
Constant| 2.01229*** .23864 8.43 .0000 1.54457 2.48001
 HHNINC| -.11883 .27690 -.43 .6678 -.66154 .42388
 HHKIDS| -.50878*** .14213 -3.58 .0003 -.78735 -.23020
 EDUC| -.01378 .02016 -.68 .4944 -.05330 .02574
 |Model parameters for latent class 2
Constant| .96086*** .21747 4.42 .0000 .53463 1.38709
 HHNINC| -.19837 .29576 -.67 .5024 -.77805 .38131
 HHKIDS| .13957 .29302 .48 .6339 -.43474 .71387
 EDUC| -.05816*** .01569 -3.71 .0002 -.08892 -.02740
 |Model parameters for latent class 3
Constant| 1.18089*** .30725 3.84 .0001 .57869 1.78309
 HHNINC| .35242 .36659 .96 .3364 -.36609 1.07093
 HHKIDS| -.83844* .44384 -1.89 .0589 -1.70835 .03146
 EDUC| -.04909** .01942 -2.53 .0115 -.08716 -.01103
 |Model parameters for latent class 4
Constant| -.36679* .18732 -1.96 .0502 -.73393 .00035
 HHNINC| .40442** .17905 2.26 .0239 .05348 .75535
 HHKIDS| -.05314 .07418 -.72 .4738 -.19853 .09226
 EDUC| -.05407*** .01544 -3.50 .0005 -.08434 -.02381
 |Estimated prior probabilities for class membership
Class1Pr| .28001*** .04017 6.97 .0000 .20127 .35875
Class2Pr| .29987* .17320 1.73 .0834 -.03960 .63935
Class3Pr| .22435 .17602 1.27 .2025 -.12065 .56936
Class4Pr| .19576*** .02528 7.74 .0000 .14621 .24531
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Elapsed time: 0 hours, 0 minutes, 34.03 seconds.

Figure R25.1 Matrix Results for Latent Class Models

R25: Latent Class Models R-643

R25.5 Extending the Class Probability Model

 The latent class probabilities are parameterized in the form of a logit model,

1

exp()
, 0

exp()
j

j JJ
m m

F
=

θ
= θ =

Σ θ

The latent heterogeneity model can be extended by allowing measured influences in the prior
probability. Let zi1, ..., zim denote M time invariant variables (such as sex, marital status, location,
education) which affect the latent class probabilities. Then, we extend the model so that prior class
assignment is formulated as a multinomial logit;

 P[class j | zi] = Fij =
1

exp()
,

exp()
j i

JJ
m im=

′
=

′∑
z

 0
z

θ
θ

θ

To use this form of the model, change the model command to include the variables

 ; LCM = the list of variables

Do not include one among the variables.
 To illustrate, we have extended the example above to allow the class probabilities to vary
with age and sex. The new command is

 PROBIT ; Lhs = doctor
 ; Rhs = one,hhninc,hhkids,educ
 ; LCM = female,age
 ; Pts = 4
 ; Pds = _groupti $

The results now contain two sets of results, the probit equation for each latent class and the
multinomial logit model for the class probabilities. There is a well defined likelihood ratio test for
the demographic effects in the context of a particular latent class model. The model of the preceding
section is nested within this one, so one can use an LR test for the effects. The test statistic in our
example would be 2×(-16117.8 – (-16383.66)) = 531.72. There would be eight degrees of freedom.
This chi squared is far larger than the tabled critical value, so the hypothesis of the model with
constant class probabilities would be rejected.

Latent Class / Panel Probit Model
Dependent variable DOCTOR
Log likelihood function -16117.88464
Restricted log likelihood -17835.48615
Chi squared [24 d.f.] 3435.20301
Significance level .00000
McFadden Pseudo R-squared .0963025
Estimation based on N = 27326, K = 25
Inf.Cr.AIC =32285.769 AIC/N = 1.182
Model estimated: Mar 10, 2011, 23:39:26
Unbalanced panel has 7293 individuals
PROBIT (normal) probability model
Model fit with 4 latent classes.

R25: Latent Class Models R-644

--------+--
 | Standard Prob. 95% Confidence
 DOCTOR| Coefficient Error z |z|>Z* Interval
--------+--
 |Model parameters for latent class 1
Constant| 1.07285*** .32627 3.29 .0010 .43337 1.71233
 HHNINC| -.39763 .34938 -1.14 .2551 -1.08241 .28714
 HHKIDS| -.41370*** .11466 -3.61 .0003 -.63844 -.18896
 EDUC| .06894** .03306 2.09 .0370 .00415 .13373
 |Model parameters for latent class 2
Constant| .61316*** .11051 5.55 .0000 .39655 .82976
 HHNINC| .14997 .10850 1.38 .1669 -.06269 .36263
 HHKIDS| -.17793*** .03766 -4.73 .0000 -.25173 -.10412
 EDUC| -.03110*** .00772 -4.03 .0001 -.04624 -.01597
 |Model parameters for latent class 3
Constant| 1.39136*** .35630 3.91 .0001 .69303 2.08969
 HHNINC| .23213 .38590 .60 .5475 -.52422 .98848
 HHKIDS| .01433 .13113 .11 .9130 -.24267 .27134
 EDUC| -.02403 .02580 -.93 .3517 -.07459 .02654
 |Model parameters for latent class 4
Constant| -.51211*** .16401 -3.12 .0018 -.83356 -.19066
 HHNINC| .38605** .16197 2.38 .0172 .06860 .70351
 HHKIDS| -.04868 .06313 -.77 .4406 -.17241 .07504
 EDUC| -.04087*** .01347 -3.03 .0024 -.06726 -.01448
 |Estimated prior probabilities for class membership
 ONE_1| -4.51574*** .59041 -7.65 .0000 -5.67291 -3.35856
FEMALE_1| .90950*** .18200 5.00 .0000 .55278 1.26623
 AGE_1| .09563*** .01056 9.06 .0000 .07493 .11632
 ONE_2| .67420** .33444 2.02 .0438 .01871 1.32968
FEMALE_2| .58395*** .15575 3.75 .0002 .27869 .88922
 AGE_2| -.00244 .00743 -.33 .7429 -.01701 .01213
 ONE_3| .81172 .88536 .92 .3592 -.92355 2.54698
FEMALE_3| 2.66204*** .35274 7.55 .0000 1.97068 3.35340
 AGE_3| -.07800*** .03013 -2.59 .0096 -.13706 -.01895
 ONE_4| 0.0 (Fixed Parameter).....
FEMALE_4| 0.0 (Fixed Parameter).....
 AGE_4| 0.0 (Fixed Parameter).....
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
Fixed parameter ... is constrained to equal the value or
had a nonpositive st.error because of an earlier problem.

+--+
| Prior class probabilities at data means for LCM variables |
| Class 1 Class 2 Class 3 Class 4 Class 5 |
| .23144 .49772 .05760 .21324 .00000 |
+--+

Elapsed time: 0 hours, 0 minutes, 43.05 seconds.

R25: Latent Class Models R-645

R25.6 Testing for the Latent Class Model

 In order to test for latent class effects, you must compare a model with the effects to one
without. This is not a straightforward parametric restriction on the latent class model. Note, thus, if
θj is set equal to zero, this just produces Fj = 1/J. Alternatively, forcing all coefficient vectors to
equal zero destroys the identifiability of the latent class probabilities – their standard errors will go to
+∞. (Try it.) Therefore, in order to test for class effects, the restricted and unrestricted models must
be fit separately. One can use a likelihood ratio test, based on the following computations: For the
latent class model the unrestricted log likelihood is,

 log LU = ∑ =

N
i 1

log j
J
=∑ 1 Fij 1

iT

t=∏ P(i,t|j).

For example, for the Poisson or negative binomial model with no latent class sorting, the log
likelihood is

 log LR = ∑ =

N
i 1

log
1

iT

t=∏ P(i,t).

In both models, observations within the groups are assumed to be independent. Taking logs in the
second expression produces the conventional log likelihood function for the count model,

 log LR = ∑ =

N
i 1 ∑ =

iT
t 1

 log P(i,t).

Therefore, it appears that a conventional likelihood ratio statistic can be computed. The degrees of
freedom would be (J-1)(Kz+K). The first (J-1)Kz would be for the free latent class probabilities while
the latter K(J-1) would be for the additional slope parameters in the last J-1 latent classes. The
problem with this approach is that the model is not identified under the restrictions, so this is not a
conventional LR test. That is, without the latent class sorting, the extra slope parameters cannot be
estimated, and without variation across classes in the slope parameters, the class parameters cannot
be estimated. The upshot is that if this is a valid LR statistic, then surely the degrees of freedom is
fewer than (J-1)(Kz+K). But, whether it is appears not to be conclusively determined in the
literature. (See Heckman and Singer for discussion.)
 A related problem concerns finding the right number of classes. A simple likelihood ratio
test of the J class model against the J-1 class model is inappropriate because the degrees of freedom
for the test is ambiguous. If two classes have identical parameters, then the model has one less class
regardless of whether the two class probabilities are equal or not. So, the degrees of freedom for the
test is unclear. In another direction, one cannot test ‘up’ to the number of classes, say starting with J,
then incrementing to J+1 if the likelihood increases sufficiently. The reason is that under the
alternative (J+1), the lower level estimates are inconsistent. For better or worse, in recent research,
analysts have often done this specification search by testing ‘down’ from a model believed to be too
large to a smaller one, using not the likelihood ratio statistic, but one of the information criteria, such
as the Akaike information measure.

R25: Latent Class Models R-646

R25.7 Individual Specific Estimates

 Among the useful results of this formulation is a posterior estimate of the probabilities of
particular group membership; using Bayes theorem,

 P(j | i) = P(i, j) / P(i) =
1

(|)

(|)
ij

J
ijj

P i j F

P i j F
=∑

Using this result, we can then compute j* = the index of the group with the highest posterior
probability. Predicted values, residuals, and predicted probabilities for the observed outcomes are
then computed as those associated with group j*. That is, for example,

 Fitted valueit = conditional mean function|j*, which will be model specific,

and so on. The ; List request in a model command will produce a listing of these results, such as that
shown in the small example below for a three class model:

===
Predictions computed for the group with the largest posterior probability
===
Ind.= 1 Most likely group=2 P(j)= .44531 .55469 .00000
Ind.= 2 Most likely group=1 P(j)= .61782 .38218 .00000
Ind.= 3 Most likely group=1 P(j)= .98831 .01169 .00000
Ind.= 4 Most likely group=1 P(j)= .99278 .00722 .00000
Ind.= 5 Most likely group=3 P(j)= .00084 .01151 .98765
Ind.= 6 Most likely group=1 P(j)= .98695 .01305 .00000
Ind.= 7 Most likely group=1 P(j)= .68889 .31111 .00000
Ind.= 8 Most likely group=1 P(j)= .74947 .25053 .00000
Ind.= 9 Most likely group=1 P(j)= .99247 .00753 .00000
Ind.= 10 Most likely group=1 P(j)= .95551 .04449 .00000
(Rows 11-25 omitted)
Ind.= 26 Most likely group=1 P(j)= .82398 .17602 .00000
Ind.= 27 Most likely group=1 P(j)= .96988 .03012 .00000
Ind.= 28 Most likely group=2 P(j)= .02913 .97087 .00000
Ind.= 29 Most likely group=2 P(j)= .16479 .83521 .00000
Ind.= 30 Most likely group=1 P(j)= .84708 .15292 .00000

 The preceding also suggests a person specific estimate of the parameter vector. The prior
estimate would be the one from the most likely class, based only on the estimates parameters. But,
using all the information available for the individual, we can compute a conditional mean of the
posterior distribution using

1

ˆ[| ,] (|)J
i ji i j

E data P j i
∧ ∧ ∧

=
= = ∑β β θ β

We emphasize, this is an estimator of the mean of a conditional distribution in exactly the same
fashion as discussed in Section R24.5. It is not truly an estimator of a person specific parameter
vector. For better or worse, perhaps the best estimator of that would be *

ˆ
jβ , the estimated parameter

vector associated with the most likely class.
 Use the ; Parameters specification in your model command to request this computation.
This will save a matrix named beta_i containing the estimates. Note, this matrix may be quite large,
as there is one vector for each individual in the sample – each person is a row in this matrix. An
example appears above in Section R25.4. See Figure R25.1.

R25: Latent Class Models R-647

R25.7.1 Individual Specific Posterior Class Probabilities

 The posterior probabilities for the latent classes may be saved as variables in the data set
rather than in a matrix. To do so, you must have variables in the data set which will be given the
probabilities. The following general form will create columns in your data set containing missing
values, ready to receive the probabilities. There must then be a namelist to collect the names, such as
the one below,

 CREATE ; name1,name2,…,nameJ $
 NAMELIST ; probs = name1,...,nameJ $ (Use any name you wish.)

Finally, add
 ; Classp = the name of the namelist

To the model command. We changed the example in Section R25.4 by adding

 CREATE ; prob1,prob2,prob3,prob4 $
 NAMELIST ; probs = prob1,prob2,prob3,prob4 $

then added ; Classp = probs to the model command. The new data shown in Figure R25.2 results.

Figure R25.2 Individual Specific Posterior Probabilities

R25: Latent Class Models R-648

R25.7.2 Individual Specific Parameters

 The matrix beta_i that is saved by ;Parameters contains a full set of estimates for each
individual or group in the sample. If you have a large number of individuals or a large model or
both, this may quickly exhaust the 50,000 cell limit on a saved matrix. You can use the same
procedure detailed in the previous section to save specific parameters in the data area instead of in a
matrix. The procedure is once again to create the template variables and add them to a namelist, then
add
 ; Par = namelist (lclist)

To the model command, where the namelist is the one just created and the lclist is the names of the
specific variables in the model. For an example, we used

 CREATE ; betainc, betaeduc $
 NAMELIST ; betalcm = betainc,betaeduc $

Then ; Par = betalcm (hhninc,educ)

The results are shown in Figure R25.3.

Figure R25.3 Individual Specific Parameters

R25: Latent Class Models R-649

R25.8 Application

 The preceding displays a fairly detailed example of an estimated latent class model. To
illustrate the technique further, we will show an approach for handling the canonical, original problem
of latent class analysis, separating a mixture of normal distributions. We consider a sample, y1,...,yN in
which the data generating mechanism for the data is a pair of latent normal distributions with equal
variances but different means. The following procedure can be used to carry out experiments for this
problem. The data generation mechanism creates a mixture of normals, N(0,1) with probability prob
and N(µ,1) with probability 1-prob. We display a kernel density estimator of the mixed distribution,
then use a linear regression on a constant to estimate the class probabilities and underlying means. It
can be seen by trying different values that the mixture estimator is more successful the more sharply
defined are the underlying data (of course). In the first experiment below, the estimator is unable to
distinguish the two classes. The second works out much more favorably.

 PROC = LCM(mu,prob) $
 SAMPLE ; 1-1000 $
 CALC ; Ran(123457) $
 CREATE ; mix = Rnu(0,1) $
 CREATE ; If (mix < prob) y = Rnn(0,1)
 ; (Else) y = Rnn(mu,1) $
 KERNEL ; Rhs = y $
 REGRESS ; Lhs = y ; Rhs = one

; LCM
; Pts = 2 $

 ENDPROC $
 EXEC ; Proc = LCM(1.5, .5) $
 EXEC ; Proc = LCM(3,.4) $

Figure R25.4 Kernel Density Estimator for y

R25: Latent Class Models R-650

+---------------------------------------+
| Kernel Density Estimator for Y |
| Observations = 1000 |
| Points plotted = 1000 |
| Bandwidth = .410767 |
| Statistics for abscissa values---- |
| Mean = 1.839709 |
| Standard Deviation = 1.816993 |
| Minimum = -2.836608 |
Maximum = 5.727679
Kernel Function = Logistic
Cross val. M.S.E. = .000000
Results matrix = KERNEL
+---------------------------------------+
Elapsed time: 0 hours, 0 minutes, .13 seconds.

OLS Starting values for latent classes model......
Ordinary least squares regression
LHS=Y Mean = 1.83971
 Standard deviation = 1.81699
 Number of observs. = 1000
Model size Parameters = 1
 Degrees of freedom = 999
Residuals Sum of squares = 3298.16
 Standard error of e = 1.81699
Fit R-squared = .00000
 Adjusted R-squared = .00000
Diagnostic Log likelihood = -2015.62129
 Restricted(b=0) = -2015.62129
Info criter. Akaike Info. Criter. = 1.19537
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error z |z|>Z* Interval
--------+--
Constant| 1.83971*** .05746 32.02 .0000 1.72709 1.95233
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

R25: Latent Class Models R-651

Figure R25.5 Kernel Density Estimator for y

Normal exit: 20 iterations. Status=0, F= 1943.114

Latent Class / Panel LinearRg Model
Dependent variable Y
Log likelihood function -1943.11398
Restricted log likelihood -17835.48615
Chi squared [4 d.f.] 31784.74433
Significance level .00000
McFadden Pseudo R-squared .8910535
Estimation based on N = 1000, K = 5
Inf.Cr.AIC = 3896.228 AIC/N = 3.896
Sample is 1 pds and 1000 individuals
LINEAR regression model
Model fit with 2 latent classes.
--------+--
 | Standard Prob. 95% Confidence
 Y| Coefficient Error z |z|>Z* Interval
--------+--
 |Model parameters for latent class 1
Constant| 3.08638*** .07717 40.00 .0000 2.93513 3.23763
 Sigma| .96456*** .05246 18.39 .0000 .86175 1.06738
 |Model parameters for latent class 2
Constant| .01659 .12197 .14 .8918 -.22246 .25565
 Sigma| 1.07898*** .08190 13.17 .0000 .91846 1.23950
 |Estimated prior probabilities for class membership
Class1Pr| .59389*** .03127 18.99 .0000 .53260 .65518
Class2Pr| .40611*** .03127 12.99 .0000 .34482 .46740
--------+--
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Elapsed time: 0 hours, 0 minutes, .22 seconds.

Maximum repetitions of PROC

R25: Latent Class Models R-652

R25.9 Technical Details on Estimating Latent Class Models

The sequence of Ti observations for individual i, given group j is y(i|j) =
[y(i,1|j),y(i,2|j),...,y(i,Ti|j)]. Observations for individual i in different periods are assumed to be
independent. Thus, the joint probability of the sequence of observations [y(i|j)] is

 P(i|j) =

1
iT

t=∏ P(i,t|j).

We denote the mass, or probability in interval (group) j as Fij, j = 1,...,J, such that Fi1 + Fi2 + ... + FiJ
= 1. Then, the posterior probability of an observed sequence of observations is

 P(i) = j
J
=∑ 1 Fj P(i|j)

where Fj is the probability of membership in the jth class. We parameterize the group probabilities
with

 Fij =
1

exp()

exp()
j i

J
j ij=

′

′∑
z

z

θ

θ

where θJ = 0, since Σj Fij = 1. The log likelihood function for the observed sample is

 log L = ∑ =

N
i 1

 log[P(i)]

 = ∑ =

N
i 1

log j
J
=∑ 1 Fj 1

iT

t=∏ P(i,t|j)

This function is maximized with respect to the vector of parameters β = (β1,...,βJ), θ1,...,θJ. subject to
the restriction that θJ = 0. (Other restrictions may be imposed as well.)
 Maximization of the log likelihood does not require any unusual techniques or approaches.
(Some authors, e.g., Cockburn (1999) have used the EM algorithm for a Poisson model of this sort,
but this is a means to an end, not a necessity. We have found that the conventional approach used
here works without problems, and is much simpler.) The gradient of the log likelihood function is

 |
|1 1

loglog 1 iN T it j
ij i ji t

j i j

PL F P
P= =

∂∂
=

∂ ∂∑ ∑β β
 = |

|1 1
iN Tij i j

it ji t
i

F P
P= =∑ ∑ g

 |1 1

log 1 [1()]N J
i m im imi m

j i

L P F j m F
P= =

∂
= = −

∂ ∑ ∑θ
zi = |

1 1

N J im i j
imi m

i

F P
P= =∑ ∑ r

The gradients in the first term are the ordinary derivatives of the log probabilities that enter the log
likelihood in the other formulations we have considered. The asymptotic covariance matrix for the
estimated parameters is computed from the estimated Hessian of the log likelihood. The Hessian is
obtained as follows, where we will sketch the derivation and skip a bit of the algebra. The mixed
derivative, ∂2logL/∂βj∂βk′, is simplified by the fact that Pit|j involves only a single parameter vector,

R25: Latent Class Models R-653

so the only second derivatives with respect to model parameters involve products of first derivatives.
Also, Fij is not a function of βj. Let Hit|j be the ‘own’ Hessian,

 Hit|j =
2 log

j j

L∂
′∂ ∂β β

.

The gradient above may be written

1

log n
ii

L
=

∂
=

∂ ∑ g
δ

where δ is the full set of parameters in the model. The BHHH estimator for estimating the
asymptotic covariance matrix would be based on

 D-1 = () 1

1

N
i ii

−

=
′∑ g g

The results just cited imply that the Hessian of the log likelihood is equal to D plus a set of terms we
now define. The diagonal block ∂2logL/∂βj∂βi′ is

 Hβjβj′ = Dββ′ + ()()|
| | |1 1 1 1

'i i iN T T Tij i j
it j it j it ji t t t

i

F P
P= = = =

 + ∑ ∑ ∑ ∑H g g

The full Hessian for the parameters in the prior probabilities is augmented, in blocks for θj,θm by

 Hθj θm’ = Dθj θm +
2

|
1 1

log log logN J ij i j ij ij ij
i j

i j m j m

F P F F F
P= =

 ∂ ∂ ∂
+ ′ ′∂ ∂ ∂ ∂

∑ ∑ θ θ θ θ

Finally, the cross derivative for βj and θm is

Hβjβj′ = Dθj θm + ()|
|1 1

log
iN Tij i j ij

it ji t
i m

F P F
P= =

 ∂
 ′∂

∑ ∑ g
θ

.

Thus, the Hessian differs from D, and the estimator differs from the BHHH estimator, by the
augmented terms shown above. Note that each of these should be close to zero, as within the square
brackets in the first two cases is the second derivative plus the squared first derivative. This sum
should normally have expectation zero if the maximand were the only term in the brackets. Given
the structure of the problem, these terms will not be zero. However, this being a regular maximum
likelihood problem, the Hessian and the outer products matrix do have the same probability limits.
We generally use the inverse of the analytical Hessian for the asymptotic covariance matrix.
However, if the model is overspecified (too many classes), this matrix may fail to be positive definite
– some roots may become close to zero. In this case, the program automatically reverts to the
BHHH estimator, D-1. For starting values for the iterations, we use the single class estimates for the
parameters, perturbed slightly (5%) and class probabilities equal to 1/J.

R26: Numerical Optimization R-654

R26: Numerical Optimization

R26.1 Numerical Optimization

 Most of LIMDEP’s models are quite nonlinear and require iterative procedures for
estimating the parameters. In most cases, how this is done need not concern you any more than does
the internal method of computing ordinary least squares coefficients. But, there are a few things
which will be helpful for you to know about LIMDEP’s internal workings. This chapter will
describe those aspects of the nonlinear optimization procedures which you can control and give some
technical background on the methods that will be useful to you when you need to diagnose why a
procedure appears to have failed. Also, Section R26.10 on starting values is especially important,
since your starting values will be part of one method of testing hypotheses.

R26.2 Technical Display During Optimization

 If your output window has the Status tab selected, then during iterations, you will see on
your screen a progress report of the sort shown in Figure R26.1

Figure R26.1 Technical Output During Optimization

R26: Numerical Optimization R-655

The top line reports the model being estimated, the algorithm that is being used and the maximum
iterations. There are default algorithms for all procedures, but you can change the algorithm if need
be. (This should be rare.) The iteration reports show the function value (usually the negative of the
log likelihood function) and the ‘derivative’ which is a rate of change of the gradient. This is one of
the convergence criteria discussed below. The first iteration will remain on the screen on the line
labeled iteration 1. This shows you the function value at the starting values. Then subsequent
iterations are reported on the second line. Thus, this reports the change in the function value from
entry to the current iteration. The line marked ‘changes’ reports two other convergence criteria, the
rate of change of the function and the maximum proportional change in the parameters. (These are
described more fully below.) If you are using the DFP or BFGS algorithm, the next few lines will
display the progress of the line search.

R26.3 Technical Output During Iterations

 The technical output described in Section R26.4.1 will normally not appear in your output
window. If your estimation problem is well specified and appropriate for your data, you generally
will not need it. However, it is helpful to have the technical diagnostic information produced by the
iterations when the optimization is not going well. For example, you might want to find out why a
particular procedure failed to converge. The specification

 ; Output = n

added to any model command is used to control the amount of intermediate output produced in the
output file. The values of n and the corresponding output produced at each iteration are shown in the
example below. The results were all produced by the same well behaved probit model, with only
changes in this one setting: In each case, iterations 3 through 6 are omitted. Note that most of this
information is actually displayed in the optimization report shown in Figure R26.1, but only in a rolling
ticker format. The following shows how to retain this information for inspection after estimation.

n = 0: No technical information. Only the exit status is given.
Normal exit from iterations. Exit status=0.

n > 0: Starting values, maximum iterations, convergence rules, and algorithm for all cases

n = 1: Log likelihood only
Nonlinear Estimation of Model Parameters
Method=BFGS ; Maximum iterations=100
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB| .0000D+00
Nodes for quadrature: Laguerre=40;Hermite=20.
Replications for GHK simulator= 100
Itr 1 F= .5414D+03 gtHg=.2334D+05 chg.F=.5414D+03 max|db|=.2296D+11
Itr 2 F= .4957D+03 gtHg=.2203D+04 chg.F=.4569D+02 max|db|=.2583D+07
Itr 7 F= .4510D+03 gtHg=.6400D-06 chg.F=.1026D-08 max|db|=.4254D-06
 * Converged
Normal exit from iterations. Exit status=0.
Function= .54138770542D+03, at entry, .45098351283D+03 at exit

n = 2: 1 and first derivative vector
Nonlinear Estimation of Model Parameters
Method=BFGS ; Maximum iterations=100
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB| .0000D+00
Nodes for quadrature: Laguerre=40;Hermite=20.

R26: Numerical Optimization R-656

Replications for GHK simulator= 100
1st derivs. -.23291D+03 -.22964D+05 -.41717D+04
Itr 1 F= .5414D+03 gtHg=.2334D+05 chg.F=.5414D+03 max|db|=.2296D+11
1st derivs. -.68784D+02 -.14430D+04 .16631D+04
Itr 2 F= .4957D+03 gtHg=.2203D+04 chg.F=.4569D+02 max|db|=.2583D+07
1st derivs. -.47747D-05 -.54975D-04 -.27842D-03
Itr 7 F= .4510D+03 gtHg=.6400D-06 chg.F=.1026D-08 max|db|=.4254D-06
 * Converged
Normal exit from iterations. Exit status=0.
Function= .54138770542D+03, at entry, .45098351283D+03 at exit

n = 3: 2 and parameter vector
Nonlinear Estimation of Model Parameters
Method=BFGS ; Maximum iterations=100
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB|.0000D+00
Nodes for quadrature: Laguerre=40;Hermite=20.
Replications for GHK simulator= 100
Start values: -.12459D+01 .00000D+00 .00000D+00
1st derivs. -.23291D+03 -.22964D+05 -.41717D+04
Parameters: -.12459D+01 .00000D+00 .00000D+00
Itr 1 F= .5414D+03 gtHg=.2334D+05 chg.F=.5414D+03 max|db|=.2296D+11
1st derivs. -.68784D+02 -.14430D+04 .16631D+04
Parameters: -.12459D+01 .35436D-02 .64375D-03
Itr 2 F= .4957D+03 gtHg=.2203D+04 chg.F=.4569D+02 max|db|=.2583D+07
1st derivs. -.47747D-05 -.54975D-04 -.27842D-03
Parameters: -.15539D+00 -.13346D-02 -.11622D-01
Itr 7 F= .4510D+03 gtHg=.6400D-06 chg.F=.1026D-08 max|db|=.4254D-06
 * Converged
Normal exit from iterations. Exit status=0.
Function= .54138770542D+03, at entry, .45098351283D+03 at exit

n = 4: 3 and stepsize search (not used for Newton’s method)
Nonlinear Estimation of Model Parameters
Method=BFGS ; Maximum iterations=100
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB| .0000D+00
Nodes for quadrature: Laguerre=40;Hermite=20.
Replications for GHK simulator= 100
Start values: -.12459D+01 .00000D+00 .00000D+00
1st derivs. -.23291D+03 -.22964D+05 -.41717D+04
Parameters: -.12459D+01 .00000D+00 .00000D+00
Itr 1 F= .5414D+03 gtHg=.2334D+05 chg.F=.5414D+03 max|db|=.2296D+11
Try = 0 F= .5414D+03 Step= .0000D+00 Slope= -.2334D+05
Try = 1 F= .1829D+05 Step= .1000D+00 Slope= .5520D+06
Try = 2 F= .1167D+04 Step= .1660D-01 Slope= .1095D+06
Try = 3 F= .4957D+03 Step= .3602D-02 Slope= -.1123D+04
1st derivs. -.68784D+02 -.14430D+04 .16631D+04
Parameters: -.12459D+01 .35436D-02 .64375D-03
Itr 2 F= .4957D+03 gtHg=.2203D+04 chg.F=.4569D+02 max|db|=.2583D+07
Try = 0 F= .4957D+03 Step= .0000D+00 Slope= -.2203D+04
Try = 1 F= .4979D+03 Step= .3602D-02 Slope= .3513D+04
Try = 2 F= .4941D+03 Step= .1425D-02 Slope= -.4192D+00
1st derivs. -.47747D-05 -.54975D-04 -.27842D-03
Parameters: -.15539D+00 -.13346D-02 -.11622D-01
Itr 7 F= .4510D+03 gtHg=.6400D-06 chg.F=.1026D-08 max|db|=.4254D-06
 * Converged
Normal exit from iterations. Exit status=0.
Function= .54138770542D+03, at entry, .45098351283D+03 at exit

R26: Numerical Optimization R-657

R26.4 Exit from Iterations and Warning Messages

 Although the problems LIMDEP is programmed to handle are highly nonlinear, they are
usually straightforward to solve, and convergence of iterative procedures is usually routine. But,
optimization procedures sometimes break down. Unless you have a perfectly collinear data matrix,
you can always compute the coefficients of a linear regression model. This is not true of a nonlinear
model, and the optimizer can break down for various reasons.

R26.4.1 Normal Exit from Iterations

 In theory, one exits the search for a maximizer of a function when the derivatives become
zero. But, in digital computing, this never happens – because of rounding error and the way that
numbers are represented, the practical rule is that one exits when the computed derivatives become
small enough, or some other quantity becomes close enough to a theoretical target. Exit criteria – the
rules for deciding when proper convergence has been achieved – for leaving iterative procedures are
discussed below. Normal exit from iterations is marked clearly in the technical output for the model.
For example, here is a routine estimation log for a probit model:

Nonlinear Estimation of Model Parameters
Method=NEWTON; Maximum iterations=100
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB| .0000D+00
Start values: -.12459D+01 .00000D+00 .00000D+00
1st derivs. -.23291D+03 -.22964D+05 -.41717D+04
Parameters: -.12459D+01 .00000D+00 .00000D+00
Itr 1 F= .5414D+03 gtHg=.1400D+02 chg.F=.5414D+03 max|db|= .1331D+05
1st derivs. .29637D+02 .29896D+04 .43932D+03
Parameters: -.28762D-01 -.13955D-02 -.13314D-01
Itr 2 F= .4524D+03 gtHg=.1675D+01 chg.F=.8899D+02 max|db|= .4378D+01
1st derivs. .22859D+00 .25697D+02 .33154D+01
Parameters: -.15467D+00 -.13322D-02 -.11637D-01
Itr 3 F= .4510D+03 gtHg=.1329D-01 chg.F=.1410D+01 max|db|= .4617D-02
1st derivs. .18061D-04 .24314D-02 .29542D-03
Parameters: -.15539D+00 -.13346D-02 -.11622D-01
Itr 4 F= .4510D+03 gtHg=.1159D-05 chg.F=.8836D-04 max|db|= .4525D-06
1st derivs. .16587D-12 .26532D-10 .42846D-11
Parameters: -.15539D+00 -.13346D-02 -.11622D-01
Itr 5 F= .4510D+03 gtHg=.1221D-13 chg.F=.9663D-12 max|db|= .7055D-14
 * Converged
Normal exit from iterations. Exit status=0.
Function= .54138770542D+03, at entry, .45098351283D+03 at exit

The theoretical solution to the optimization occurs where all three convergence criteria listed are 0.0.
The marker after the last iteration shows which criterion indicated the convergence had been
satisfactorily achieved to within the acceptable tolerance. The exit code of zero for this procedure is
shown in the next line. The last line shows the function value – usually the negative of the log
likelihood function as it is here – at the starting values, then at the final values. Standard model
output consisting of parameter estimates, standard errors, and other statistics will now follow.

R26: Numerical Optimization R-658

R26.4.2 Maximum Iterations

 Large numbers of iterations may be a tipoff that something is wrong. LIMDEP’s models
usually take no more than 25 iterations to fit, and often take far less. Exceptions are latent class and
random parameters, certain sample selection models and other models which involve correlation
coefficients for two or more normal distributions. These can take 50 or 75. But, users have reported
100, 200, 1,000 and more. It is generally unlikely that any estimator which is going to converge at all
would ever reach 100 iterations before doing so, and if you find this is the case with yours, you
should check the diagnostic statistics to see if you really have obtained the optimum the estimator
was seeking. When the maximum number of iterations is reached before convergence, you will see
the following:

Maximum iterations reached. Exit iterations with status=1.
Abnormal exit from iterations. If current results are shown
check convergence values shown below. This may not be a
solution value (especially if initial iterations stopped).
Gradient value: Tolerance= .1000D-05, current value= .1159D-05
Function chg. : Tolerance= .0000D+00, current value= .8836D-04
Parameters chg: Tolerance= .0000D+00, current value= .4525D-06
Smallest abs. parameter change from start value = .1335D-02

This will be followed by the current set of parameter estimates, with full output as if proper
convergence had been reached. You should generally check other results to be sure that this is the
case – generally, when the maximum number of iterations is reached, the optimizer has not
converged.

R26.4.3 Unable to Find Function Optimum

 The number of trials in the line search is another indication of imminent failure. When an
estimator which uses a line search method is proceeding smoothly toward its optimum, each step in
the line search will take a small number of ‘tries,’ typically five or less, and usually only two The
following shows an example of a smooth, well behaved line search toward a function optimum:

Nonlinear Estimation of Model Parameters
Method=BFGS ; Maximum iterations=100
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB| .0000D+00
Start values: -.37027D+00 .00000D+00 .00000D+00 .00000D+00
1st derivs. -.11632D+05 .17512D+03 .93689D+02 -.21033D+03
Parameters: -.37027D+00 .00000D+00 .00000D+00 .00000D+00
Itr 1 F= .3680D+05 gtHg= .1164D+05 chg.F= .3680D+05 max|db|= .2103D+09
Try = 0 F= .3680D+05 Step= .0000D+00 Slope= -.1164D+05
Try = 1 F= .3579D+05 Step= .1000D+00 Slope= -.8481D+04
Try = 2 F= .3466D+05 Step= .3660D+00 Slope= -.2831D+02
1st derivs. -.31270D+02 -.87580D+02 -.33433D+00 .90024D+02
Parameters: -.43298D-02 -.55091D-02 -.29474D-02 .66168D-02
Itr 2 F= .3466D+05 gtHg= .1294D+03 chg.F= .2139D+04 max|db|= .1590D+05
Try = 0 F= .3466D+05 Step= .0000D+00 Slope= -.1294D+03
Try = 1 F= .3673D+05 Step= .3660D+00 Slope= .1139D+05
Try = 2 F= .3466D+05 Step= .4048D-02 Slope= -.6944D+00

R26: Numerical Optimization R-659

 Occasionally, more than two tries will occur during a line search, even 10 or 15. But, again,
this will be unusual. When 20 trials are reached, LIMDEP will back up, and try a slightly different
direction. But, expect 20 more trials to occur, after which breakdown of the iterations is likely to be
next. The next example, which is a deliberately misconstructed optimization problem, illustrates the
sort of diagnostic output that will result when the optimization is in the process of failing: (Two
iterations which preceded the ‘crash’ have been omitted.)

Nonlinear Estimation of Model Parameters
Method=BFGS ; Maximum iterations=100
Convergence criteria:gtHg .1000D-05 chg.F .0000D+00 max|dB|=.0000D+00
Start values: .10000D+01 .10000D+01 .10000D+01
1st derivs. .39403D+01 .29861D+03 .97451D+02
Parameters: .10000D+01 .10000D+01 .10000D+01
Itr 1 F= -.2869D+05 gtHg= .3141D+03 chg.F=.2869D+05 max|db|=.2986D+03
Try = 0 F= -.2869D+05 Step= .0000D+00 Slope= -.3141D+03
Try = 1 F= -.2872D+05 Step= .1000D+00 Slope= -.3415D+03
Try = 2 F= -.2876D+05 Step= .2000D+00 Slope= -.3742D+03
Try = 3 F= -.2884D+05 Step= .4000D+00 Slope= -.4637D+03
Try = 4 F= -.2683D+05 Step= .8000D+00 Slope= .1341D+05
Try = 5 F= -.2886D+05 Step= .4312D+00 Slope= -.4818D+03
Try = 6 F= -.2887D+05 Step= .4521D+00 Slope= -.4948D+03
Try = 7 F= -.2888D+05 Step= .4685D+00 Slope= -.5055D+03
Try = 8 F= -.2888D+05 Step= .4820D+00 Slope= -.5147D+03
Try = 9 F= -.2889D+05 Step= .4937D+00 Slope= -.5230D+03
Try = 10 F= -.2889D+05 Step= .5039D+00 Slope= -.5304D+03
Try = 11 F= -.2890D+05 Step= .5131D+00 Slope= -.5373D+03
Try = 12 F= -.2890D+05 Step= .5214D+00 Slope= -.5437D+03
Try = 13 F= -.2891D+05 Step= .5290D+00 Slope= -.5497D+03
Try = 14 F= -.2891D+05 Step= .5360D+00 Slope= -.5553D+03
Try = 15 F= -.2892D+05 Step= .5425D+00 Slope= -.5607D+03
Try = 16 F= -.2892D+05 Step= .5486D+00 Slope= -.5658D+03
Try = 17 F= -.2892D+05 Step= .5542D+00 Slope= -.5706D+03
Try = 18 F= -.2892D+05 Step= .5596D+00 Slope= -.5752D+03
Try = 19 F= -.2893D+05 Step= .5646D+00 Slope= .2016D+03
Try = 20 F= -.2893D+05 Step= .5642D+00 Slope= -.5793D+03
1st derivs. .74139D+01 .55601D+03 .16343D+03
Parameters: .99292D+00 .46368D+00 .82497D+00
Itr 2 F= -.2893D+05 gtHg= .5796D+03 chg.F=.2365D+03 max|db|= .1199D+04
Try = 0 F= -.2893D+05 Step= .0000D+00 Slope= -.5796D+03
Try = 1 F= -.2861D+05 Step= .1000D+00 Slope= .7339D+04
Try = 2 F= -.2893D+05 Step= .8642D-02 Slope= .1883D+03
Try = 3 F= -.2893D+05 Step= .1960D-02 Slope= .2047D+03
Try = 4 F= -.2893D+05 Step= .4751D-03 Slope= .2083D+03
Try = 5 F= -.2893D+05 Step= .1647D-03 Slope= .2090D+03
Try = 6 F= -.2893D+05 Step= .1372D-03 Slope= .1043D+03
Try = 7 F= -.2893D+05 Step= .1274D-03 Slope= .2392D+02
1st derivs. -.12633D+02 -.72807D+02 .16345D+03
Parameters: .99292D+00 .46356D+00 .82494D+00
Itr 3 F= -.2893D+05 gtHg= .1794D+03 chg.F= .5362D-01 max|db|= .1981D+03
1st derivs. -.12633D+02 -.72807D+02 .16345D+03
Parameters: .99292D+00 .46356D+00 .82494D+00
Itr 1 F= -.2893D+05 gtHg= .1794D+03 chg.F= .2893D+05 max|db|= .1981D+03
Try = 0 F= -.2893D+05 Step= .0000D+00 Slope= -.1794D+03
Try = 1 F= -.2893D+05 Step= .1274D-03 Slope= .8810D+01
1st derivs. .74150D+01 .38739D+03 .16346D+03
Parameters: .99293D+00 .46361D+00 .82482D+00
Itr 2 F= -.2893D+05 gtHg= .4008D+03 chg.F= .1036D-01 max|db|= .1187D+04

R26: Numerical Optimization R-660

Try = 0 F= -.2893D+05 Step= .0000D+00 Slope= -.1637D+03
Try = 1 F= -.2893D+05 Step= .1274D-03 Slope= -.1637D+03
Try = 2 F= -.2893D+05 Step= .2547D-03 Slope= -.1637D+03
Try = 3 F= -.2893D+05 Step= .5095D-03 Slope= -.1638D+03
Try = 4 F= -.2893D+05 Step= .1019D-02 Slope= -.1638D+03
Try = 5 F= -.2893D+05 Step= .2038D-02 Slope= -.1639D+03
Try = 6 F= -.2893D+05 Step= .4076D-02 Slope= -.1640D+03
Try = 7 F= -.2893D+05 Step= .8151D-02 Slope= -.1643D+03
Try = 8 F= -.2893D+05 Step= .1630D-01 Slope= -.1649D+03
Try = 9 F= -.2893D+05 Step= .3261D-01 Slope= -.1673D+03
Try = 10 F= -.2894D+05 Step= .6521D-01 Slope= -.1698D+03
Try = 11 F= -.2895D+05 Step= .1304D+00 Slope= -.1769D+03
Try = 12 F= -.2897D+05 Step= .2608D+00 Slope= -.1933D+03
Try = 13 F= -.2903D+05 Step= .5217D+00 Slope= -.2384D+03
Try = 14 F= -.2849D+05 Step= .1043D+01 Slope= .2398D+05
Try = 15 F= -.2912D+05 Step= .8520D+00 Slope= -.3463D+03
Try = 16 F= -.2916D+05 Step= .9545D+00 Slope= -.4082D+03
Try = 17 F= -.2915D+05 Step= .9673D+00 Slope= .2080D+04
Try = 18 F= -.2916D+05 Step= .9556D+00 Slope= .8732D+03
Try = 19 F= -.2916D+05 Step= .9553D+00 Slope= -.4088D+03
Try = 20 F= -.2916D+05 Step= .9554D+00 Slope= -.4089D+03
1st derivs. -.76681D+01 .13325D+03 .40881D+03
Parameters: .10480D+01 .46122D+00 -.12901D+00
Itr 3 F= -.2916D+05 gtHg= .1001D+04 chg.F= .2351D+03 max|db|= .1896D+05
Try = 0 F= -.2916D+05 Step= .0000D+00 Slope= -.4089D+03
Try = 1 F= -.2916D+05 Step= .1274D-03 Slope= .8737D+03
Try = 2 F= -.2916D+05 Step= .3105D-04 Slope= -.4084D+03
Try = 3 F= -.2916D+05 Step= .4441D-04 Slope= -.2954D+03
Try = 4 F= -.2916D+05 Step= .5146D-04 Slope= .5476D+02
Try = 5 F= -.2916D+05 Step= .5127D-04 Slope= .4534D+02
Try = 6 F= -.2916D+05 Step= .5112D-04 Slope= .3764D+02
1st derivs. -.76674D+01 -.40340D+03 -.37166D+02
Parameters: .10480D+01 .46122D+00 -.12906D+00
Line search does not improve fn. Exit iterations. Status=3
Abnormal exit from iterations. If current results are shown
check convergence values shown below. This may not be a
solution value (especially if initial iterations stopped).
Gradient value: Tolerance= .1000D-05, current value= .4842D+03
Function chg. : Tolerance= .0000D+00, current value= .1337D-06
Parameters chg: Tolerance= .0000D+00, current value= .1462D+04
Smallest abs. parameter change from start value = .4793D-01
Function= -.28691160722D+05, at entry, -.29162843696D+05 at exit

R26.4.4 Too Few Iterations

 LIMDEP is generally not able to discern if something is wrong with your estimation problem
or, of course, if the specification of your model is incorrect. Note in the preceding example, the
failure of the iterations is noted with a message about not finding the function optimum (the problem
was constructed so that the function had no optimum), followed by a suggestion that something
appears to be wrong. Another possible iteration failure is diagnosed when what looks like
convergence occurs more quickly than might be expected. Thus, if you fit a model that looks ‘too
good,’ you might get the following message:

R26: Numerical Optimization R-661

Itr 2 F= .3465D+04 gtHg=.2434D-02 chg.F=.6227D-06 max|db|=.8534D+00
Try = 0 F= .3465D+04 Step= .0000D+00 Slope= -.2432D-02
Try = 1 F= .3465D+04 Step= .1973D-04 Slope= .6015D-01
Try = 2 F= .3465D+04 Step= .7670D-06 Slope= .1673D-09
1st derivs. .51135D-06 -.43989D-05 .52469D-05 -.82815D-06
Parameters: -.26491D-02 .50561D-02 -.15405D-01 .26967D-02
Itr 3 F= .3465D+04 gtHg=.6916D-05 chg.F=.9345D-09 max|db|=.8725D-03
Try = 0 F= .3465D+04 Step= .0000D+00 Slope= -.6916D-05
Try = 1 F= .3465D+04 Step= .7670D-06 Slope= .2358D-02
Try = 2 F= .3465D+04 Step= .2243D-08 Slope= .7125D-13
1st derivs. .33793D-07 .79251D-07 .62163D-07 -.89005D-08
Parameters: -.26491D-02 .50561D-02 -.15405D-01 .26967D-02
Itr 4 F= .3465D+04 gtHg=.9579D-07 chg.F=.1501D-10 max|db|=.1774D-04
 * Converged
Note: DFP and BFGS usually take more than 4 or 5 iterations to converge.
If this problem was not structured for quick convergence, you might want
to examine results closely. If convergence is too early, tighten convergence.
Normal exit from iterations. Exit status=0.

This is not necessarily an error message, but it might indicate a problem. For example, if you restart
an estimation problem using as starting values the values which maximize the function already, then
convergence will come very quickly. The particular model which generated the message above was
extremely well behaved, and it did converge to a true optimum in only three iterations. But, that is
relatively unusual, so when you see this message, you should check to insure that the convergence
was to a true optimum of your function.

R26.4.5 General Failure of Indeterminate Cause

 Finally, another possibility is that apparent convergence of the estimator isn’t convergence at
all. The following message was produced by another deliberately badly structured estimation
problem. For the particular function we chose, the first derivatives are always identically zero at the
starting values, but that is not a maximum of the function. Because zero derivatives is a convergence
rule, it looks to the optimizer as if an optimum has been found in the first iteration. But, that is
definitely not the case. The signature of this failure is the last line of the output, which states that the
estimated covariance matrix of the estimates is singular. In this situation, the ‘estimates’ are
probably nonsense values.

NOTE: Convergence in initial iterations is rarely
at a true function optimum. Check all results.
check convergence values shown below. This may not be a
solution value (especially if initial iterations stopped).
Gradient value: Tolerance= .1000D-05, current value= .0000D+00
Function chg. : Tolerance= .0000D+00, current value= .3059D+05
Parameters chg: Tolerance= .0000D+00, current value= .0000D+00
Smallest abs. parameter change from start value = .0000D+00
Note: At least one parameter did not leave start value.
Normal exit from iterations. Exit status=0.
Models - estimated variance matrix of estimates is singular
Current estimated covariance matrix for slopes is singular.

R26: Numerical Optimization R-662

R26.4.6 Interrupting the Iterations

 You may find it necessary to stop the iterations. For example, it may become obvious that
something is wrong, and this estimation process is not going to work. When this occurs, especially if
you are using a very large data set, you can stop the iterations by clicking the red Stop button on the
LIMDEP toolbar, shown in Figure R26.2.

Figure R26.2 Stop Button on the LIMDEP Toolbar

The Stop button operates as a yes/no query. During iterations or other operations that iterate by
looping over the data, the Stop button on the toolbar will turn red. If you click this button during
computation, LIMDEP will interrupt the computations and ask you if you would like to end the
iterations at this point, as shown in Figure R26.3. The query appears after a full pass through the
data set is complete. If you have a very large data set, there may be a noticeable lag between when
you click the Stop button and the dialog box appears.

Figure R26.3 Query for Exit from Iterations

If you elect to stop the iterations and enough iterations have been carried out that some progress has
been made toward a solution, you will be offered a display of the results as they have been obtained
up to that point. This is shown in Figure R26.4

Figure R26.4 Exit from Iterations to Current Results

The toolbar also contains a Pause button to the right of the Stop button. You can click this to
interrupt an ongoing procedure, then click it again to continue.

R26: Numerical Optimization R-663

R26.4.7 Warnings During the Iterations

 Certain warnings do occur during optimization, such as for a correlation that strays out of the
[-1.1] interval. These warnings only indicate that a trial value of the parameter was not a valid
estimate. LIMDEP will then back up and try a new value, and the iterations will continue. So, you
will often see these diagnostics interspersed with other output.

NOTE: These warnings should be ignored if the estimator subsequently reaches a normal convergence.
If convergence is not subsequently reached, the warnings may help you diagnose the problem.

R26.5 Exit Codes

 All estimation procedures produce a scalar named exitcode. The exit status from any model
routine will be shown in your trace file, trace.lim, or in your output file if you were using one. The
exit codes that are reported are

0. Normal exit, everything OK. The convergence rule that was satisfied will be listed.
1. Maximum iterations exceeded.
2. Failure, singular Hessian.
3. Failure, unable to maximize function.
4. Unable to compute function value. (This will be rare. Bad starting values will cause this.)
5. General failure at setup time, not during estimation. Another diagnostic will appear in

the trace file to explain this. (Almost always an error in your command or data.)

The exitcode is accessible as any other scalar, and can be used for any desired purpose. For example,
if you have written a program that fits models in a loop, you may want to skip certain computations
if exitcode is not 0, since in this case, a certain value that you might want to retrieve may be
unavailable. There is a mixture of termination conditions in exitcode, both for model setup and for
the optimization, itself. A second indicator is produced by the nonlinear optimization, named
opt_exit, which gives only the information 0 - 4 above, and only during optimization. This code is a
somewhat better indicator of the actual optimization process.

R26.6 Iteration Controls

 You can control several aspects of the iterations with options that can appear in your
commands.

R26.6.1 Maximum Iterations

 To control the maximum number of iterations taken by the iterative routines use

 ; Maxit = maximum

The defaults are 50 for the algorithms which use a line search (DFP, BFGS, and BHHH) and 25 for
Newton’s method.

NOTE: The special case, ; Maxit = 0 is used to carry out LM tests based on the starting values that
you provide. ; Maxit = 0 is a specific instruction to do this test. See Chapter R13 for details.

R26: Numerical Optimization R-664

TIP: If your estimator goes through many iterations, then fails with a singular Hessian after
apparently converging, reestimate the model, and set Maxit to some value lower than the number
reached on the previous try. You may learn something useful about the model this way.

R26.6.2 Algorithms

 All models have a default algorithm. We have chosen the one most likely to work in most
cases. (See the discussion below.) In most cases, including LIMDEP’s minimization package, an
alternative algorithm is requested in a command with the specification

 ; Alg = algorithm

The chapters to follow which describe the models in detail list the defaults and available options for
LIMDEP’s nonlinear models. Also shown is the method used to compute the estimate of the
covariance matrix of the coefficients, which is sometimes part of the algorithm. The choices are

 DFP Davidon, Fletcher, Powell,
 BFGS Broyden, Fletcher, Goldfarb, Shanno,
 NEWTON Newton’s Method,
 BHHH Berndt, Hall, Hall, Hausman,
 SteDes Steepest Descent.

Technical material on these methods appears below. You may choose an algorithm by its first two
letters.
 It should be noted, unless the convergence criteria are made fairly tight, the different
algorithms will often give slightly different answers (i.e., at the fifth or sixth significant digit).
Which is likely to be most successful is going to depend on the data, and it may pay to try more than
one. The defaults chosen have been found to be the most reliable. Generally, BFGS is most likely to
be successful when no particular choice is obvious. However, it can be rather time consuming. In a
very large data set, use Newton or BHHH if possible, BFGS or DFP if they fail to find the
maximum. Newton’s method is best if the problem is globally concave, but this is somewhat
unusual. Our experience has been that using Newton’s method when the BHHH estimator is used to
estimate the covariance matrix often fails to converge. For example, ; Alg = BHHH will probably
not work very well for the bivariate probit model, but might be satisfactory for the logit model. On
the other hand, for the logit model, Newton’s method will almost always be the best of the group, as
the log likelihood for this model is globally concave. Steepest descent is almost always extremely
slow to converge and will often fail altogether. We advise against using it at all.

R26.6.3 Convergence Rules

 Convergence can be based on any of three criteria:

• Gradient: g′Hg < εg where g is the current derivative vector and H is the inverse of the
current Hessian or, in the case of DFP and BFGS, the most recent estimate of it. This value
is reported as ‘Derivative’ in the technical display and gtHg in the iteration output.

• Proportional change in all parameters < εb.

• Proportional change in the function value < εf.

R26: Numerical Optimization R-665

The default value of εg is 0.00001 and the other two are set to 0.0. By default, LIMDEP uses only
the gradient rule. (This is the standard choice in contemporary software.) In general, convergence
will be based on any nonzero value for these three rules.
 You can change the gradient value and/or activate the other two as described below. Note in
particular the gradient criterion. This is not based on the absolute size of the derivatives, as they are
dependent on the scale of the data. Rather, the criterion is based on a scale free quadratic form. As
such, an iteration may converge at a point at which the derivatives are a bit larger than you might
have expected.
 To change the values of these settings for a particular model, use

 ; Tlf = value to set the function convergence criterion,
 ; Tlb = value to set the parameter convergence criterion,
 ; Tlg = value to set the gradient convergence criterion.

If you omit the ‘= value,’ 0.0 is assumed. These apply only to the model command in which they
appear. On the next model, they will again be set at the default values.
 For practical purposes, the gradient rule is generally the best of the three. The least
satisfactory will usually be the parameter rule. Convergence on the function might be useful for a
particularly difficult problem, but it should be noted that the gradient rule is generally more difficult
to satisfy. As such, if you have both Tlf and Tlg turned on, Tlg will often be reached first, and thus,
will often result in fewer iterations to convergence.

NOTE: When you do reach convergence on the parameters or the function, you should check the
derivative rule anyway. It is possible for g′Hg to be too large, even if convergence on the function
value seems to have been reached.

R26.7 Quadrature

 Several estimators in LIMDEP use Gaussian quadrature to approximate integrals that cannot
be evaluated analytically. We use Hermite quadrature when the limits are -∞ to +∞ and Laguerre
quadrature when the limits are 0 to ∞. The computation is

 10
() ()Lx

i ii
e f x d x w f z

∞ −
=

≈ ∑∫

for Gauss-Laguerre quadrature and likewise for Gauss-Hermite quadrature in which the weight
function is exp(-x2) and the range of integration is (-∞,∞). The values wi are the ‘weights’ for the
quadrature and zi are the ‘nodes.’ The approximations differ in accuracy based on the number of
points used. The more points are used, the more accurate the approximation, but, at the same time,
the greater is the amount of time needed to do the computation. Gaussian quadrature is described in
detail in Abramovitz and Stegun (1972). (We do note, the approximations are surprisingly accurate
even for fairly small numbers of nodes.)
 At the time you start LIMDEP, the default numbers of points for these quadratures are 20
and 40 points respectively. This uses an intermediate value for Hermite quadrature; 68 points are
provided for Laguerre and 96 for Hermite if you wish to choose a higher setting. More points
provide greater accuracy, so all else constant, these choices are optimal. But, the greater number of
points also increases the amount of computation time, so you may want to reduce these values.

R26: Numerical Optimization R-666

 Any model command may contain

 ; Lpt = number of points for Laguerre quadrature, one of
 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 40, 68

 ; Hpt = number of points for Hermite quadrature, one of
 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 32, 64, 96

(LIMDEP will choose the closest value it can to the value you specify if your value is not in the list.)
The model need not actually use these techniques. Once the number of quadrature points is set by a
model command, it remains set until another model command changes it.
 You might find it useful to have access directly to these vectors of weights and abscissas for
example, to approximate an integral of your own specification. A MATRIX command is provided
for this purpose;

 MATRIX ; [name =] Quad (number of points, L or H) $

(The ‘name =’ is optional. MATRIX is discussed further in Chapter R16.) An example is shown in
Figure R26.5

Figure R26.5 MATRIX Function to Retrieve Quadrature Weights

R26: Numerical Optimization R-667

R26.8 Multivariate Normal Probabilities

LIMDEP contains a simulator for the multivariate normal CDF. We use the GHK (Geweke,
Hajivassiliou, Keane) methodology to approximate the CDF. (See Greene (2011) for details.) The
technique produces quite fast and accurate approximations to the M fold integral

.1

)(

)(

)1(

)1(
1 ,,,),...,(... MM

MB

MA

B

A

dxdxxxfP ∫ ∫=

where f(...) is the M-variate normal density function for x with mean vector zero and M×M positive
definite covariance matrix, Ω. The approximation is obtained by averaging a set of R replications
obtained by transforming draws produced by a random number generator. (See Appendix R4A.2 for
details on the computation.) The simulation estimator of P is consistent in R. Further details may be
found in Greene (2011) and in a symposium in the November, 1994 Review of Economics and
Statistics and the references cited there. Usage, including how to set R is discussed below. M may
be up to 20, though the accuracy for a given R declines with M. For any M, the accuracy increases
with R. Again, the estimated P is consistent in R.

We have implemented this procedure in four applications in LIMDEP – CALCULATE,
CREATE, MATRIX, and a multivariate probit model which extends the bivariate probit model – as
well as the multinomial probit extension of the logit model available in NLOGIT Version 5. Users of
this technique should be familiar with the theoretical development, including its limitations, as
discussed in the received literature.
 The value of R, the number of replications, is set globally, at the time you start LIMDEP, at
100. Authors differ on how large R must be to get good approximations. The default 100 is a
compromise. Some have mentioned 500. You may change R, but be aware that higher R leads to
greatly increased amounts of computation; estimators which use this technique are slow. Two ways
to set R are with CALC and in the estimation commands. First,

CALC ; Rep(r) $ for example, CALC ; Rep(100) $

sets R permanently. The model command which uses the simulator is the multivariate (multiple
equation) probit model. The command can include a setting for R, which is then permanent until
changed later, with

MPROBIT ; ... ; Pts = r ; ... $

R26.8.1 Model Based on the Multivariate Normal Distribution

The model which use this technique is the multivariate probit model. The multivariate probit
model is a multiequation extension of the probit model;

yim* = βm′xim + εim
yim = 1 if yim* > 0, and 0 otherwise, m = 1,...,M.

The εim, m = 1,...,M have a multivariate normal distribution with variances 1 and correlations ρml. Each
individual equation is a standard probit model. This generalizes the bivariate probit model for up to 20
equations. Note the difference between the multivariate probit model and the multinomial probit
model. The multivariate probit model defines the outcomes of up to 20 dependent variables. All of
them obey their own behavioral equation. In the multinomial probit model, there is a single dependent
variable and a single outcome. This is described in greater detail in the NLOGIT Reference Guide

R26: Numerical Optimization R-668

R26.8.2 Tools that Calculate Multivariate Normal Probabilities

For computing multivariate normal probabilities to be used in scalars, variables, or matrix
results, you can use the following:

For single computations of the multivariate normal CDF in which Am = -∞, you may use

CALCULATE ; Result = Mvn(x,w) $

to obtain a single probability from -∞ to xm, m=1,...,M. The parameters x and w are a vector and a
matrix, respectively, obtained using MATRIX or as the result of some estimation procedure, where
x(.) provides the upper bounds. If you desire to compute the probability in a rectangle defined by
finite A(.) at the lower limits and x(.) at the upper limits, use

CALCULATE ; Result = Mvn(x,w,a) $

If you desire complementary probabilities, that is the probability for the area defined by a lower
bound of x(.) and upper bounds of +∞, use Mvn(y,w) where y is the negative of x. You may also
obtain the multivariate normal density, with the function

CALC ; Result = Mvd(x,w) $

Further details on calculating multivariate normal probabilities appear in Section R17.6.7.

You may use

CREATE ; Prob = Mvn(x,w) $

in which x is a namelist of M variables. Each row (observation) in x is the counterpart to the x in the
CALCULATE function. As before, x is M variables and w is the M×M covariance matrix. Note,
variables may be repeated in x. For example, if x1 and x2 are free, but x3 - x6 are all zero, then you
could use

CREATE ; zero = 0 $
 NAMELIST ; x = x1,x2,zero,zero,zero $

CREATE ; p = Mvn(x,w) $

This creates a variable p with each element equal to the M-variate normal CDF evaluated at w and
the ith observation in x. The Mvn function may be used as you would any other function in
CREATE. The function Mvd(x,w) returns the column vector of densities instead of the CDF.

You may use

MATRIX ; Result = Mvnp(x,w) $

Once again, w is the M×M covariance matrix. Now, x is an N×M matrix or a namelist of M
variables. The result is an N×1 column vector of the normal probabilities. This operates essentially
the same as the CREATE function – the differences are that x may be a conformable matrix or a
namelist and the result of the computation is a matrix, not a variable. The function

MATRIX ; Result = Mvnd(x,w) $

returns the density functions instead of cumulative probabilities.

R26: Numerical Optimization R-669

R26.9 Default Values of Program Parameters

 As described above, there are a set of program default settings for optimization parameters.
These are

 Program Parameter Default Command Setting
 Convergence Rules
 Parameters 0.0 ; Tlb = value (0.0 to 1.d-8)
 Function 0.0 ; Tlf = value (0.0 to 1.d-8)
 Gradient 1.d-6 ; Tlg = value (0.0 to 1.d-8)
 Quadrature Points
 Hermite 40 ; Hpt = number (2 to 96)
 Laguerre 20 ; Lpt = number (2 to 68)
 Iterations
 Iterations 100 ; Maxit = number (0 to 1000)
 Technical Output 0 ; Output = value (0,1,2,3,4,5)
 Simulation points 100 ; Pts = value (1 to 2000)
 Model Output
 Confidence Level .95 ; CL = value (0.1 to 0.995)
 Information Criteria 0 ; IC = value (0 or 1)

You may change any of these in a specific model command. When you do so, the setting is for that
model only. After estimation, the values return to their default setting. You may change the default
settings by using

 DEFAULT ; parameter setting(s) as shown in the table above $

The command may change any or all of the defaults. These will remain in effect going forward from
that point until you change them again. Note, however, these settings are now written into a project
file, so if you exit then restart LIMDEP, the program defaults will be a their original settings.
You can obtain a listing of the current default settings with

 DEFAULT $

The listing will appear as shown below.

Current Settings of Program Defaults for Estimation

Convergence criteria for optimization program
 Change in function .0000000
 Change in parameters .0000000
 Derivative criterion .0000010
Maximum iterations 100
Technical output during iterations 0
Information criteria beyond AIC 0
Hermite quadrature points 40
Gauss Laguerre quadrature points 20
Number of draws for simulations 100
Confidence level in confidence intervals 95%
Maximum utility in multinomial choice 100.0

R26: Numerical Optimization R-670

R26.10 Starting Values

 When you wish to provide your own starting values for any nonlinear model, you will add
the specification

 ; Start = list of values

to your model command. If starting values are not provided, the program will usually use least
squares, or some variant, or perhaps zero.

TIP: With a few exceptions including the MAXIMIZE/MINIMIZE feature and related commands
in which you specify your own model, and the bivariate ordered probit model, starting values are
always optional.

The chapters on the specific models will show exactly what is required if you wish to provide
starting values. If you do provide starting values, you must usually give a complete set, including
any ancillary parameters, such as the disturbance standard deviation, σ, for the tobit model. For
example, the ML estimator for the selection model requires starting values for α (probit), β
(regression), σ, and ρ. Your command might look as follows:

 SELECT ; Lhs = y ; Rhs = x
 ; MLE
 ; Start = alpha, beta, sigma11, -0.321 $

where alpha and beta are matrices (vectors), sigma11 is a scalar, and the value for ρ is given
explicitly. In any list, you may give values as particular numbers, in calculator scalars, or in matrices
or any mixture as long as the right number of values, in the right order, are given in total. A
convenient device is the repetition factor for multiple occurrences of the same value,

 K_value = value,value,...,value K times.

The repetition value may be a literal number or a scalar. For example, a general routine for starting
the iterations for a probit model at [0] would be:

 NAMELIST ; x = ... the list of Rhs variables $
 CALC ; k = Col(x) $
 PROBIT ; Lhs = y ; Rhs = x
 ; Start = k_0 $

R26: Numerical Optimization R-671

R26.11 Hints for Iterative Estimation

 When you give a model command, chances are good that estimation will proceed smoothly
and, eventually, your estimates will be reported after some intermediate output which may or may
not be of interest to you. But, there are a number of things that can go wrong with a nonlinear
estimator. The following lists some of the most common problems and how you can react to them
when they occur.

Model Development

 The paragraphs below will detail several possible problems. There are many ways that
estimation of a nonlinear model can fail, and we cannot anticipate all of them here. One piece of
advice that we give more than any other is the following: If estimation of a model breaks down for
nonobvious reasons, it is often related to the data. Back up and try fitting an extremely simple
version of the same model with perhaps only one or two variables in it. This is not intended to be a
specification that would be interesting. But, starting from a very simple formulation will usually
allow you to get the estimation process started. Then, add in variables one or two at a time. At some
point, presumably before the initial failure occurred, the estimation will break down, revealing to you
the variable that is causing the problem.

Scaling Data

 This is often crucial. If you are having convergence problems, the first place to look is at the
scaling of your data. Models such as the ordered probit will often fail to converge if your model
contains variables of very different magnitudes. For example, a model which includes dummy
variables (order 1), as well as income in dollars (order 10,000) and income squared (order
100,000,000) will almost never be estimable. All you have to do is divide income by 10,000 before
squaring, and use scaled income and income squared. In many cases, this is all that is needed to turn
an ill behaved problem into a well behaved one.
 One of the indicators of a scaling problem, aside from the statistics for the variables
themselves, is badly unbalanced derivatives. If you suspect this problem, try doing the estimation
with an output file open. After exiting from the iterations, inspect the file. The output will list, for
each iteration, the values of the parameters and the derivatives. If you find that one or a few of the
derivatives are very much larger than the others, say 1,000 compared to 1 or .1, then the variable
associated with that coefficient needs to be scaled.

Model Size

 LIMDEP makes it very easy to specify very large models with very little effort, once the data
are read. If you are estimating one of the ‘messier’ models, such as the bivariate probit model or the
mover stayer model – these are models with very volatile log likelihoods which are difficult to
maximize – you may find it useful to begin your analysis with a very small model, even if the
specification is suspect, just to get started. Choose a small handful of variables, say two or three at the
most, and estimate the model. If you find that it works, start building up the model by adding back the
variables you think should be in the equation(s). If the procedure should break down somewhere along
the way, you will be able to single out problematic variables. On the other hand, if the procedure
breaks down at the very first step, you should give some thought to whether your specification is
correct. A mismatch between the model and the dependent variable may be the issue.

R26: Numerical Optimization R-672

Warnings About Parameter Values

 Many of LIMDEP’s models contain parameters which are restricted to a particular range.
For example, the correlation coefficient which appears in the sample selection, switching
regressions, and bivariate probit models must be in the range -1 to 1. The threshold parameters in
the ordered probit model must be strictly increasing. Models which contain such parameters are
estimated by the BFGS method, with its elaborate line search. So, from time to time you may get a
diagnostic that, for example, an estimate of a variance parameter is out of range (negative). There is
nothing for you to do, and nothing is wrong. LIMDEP has simply tried out a value of the parameter
vector which has an invalid value. The diagnostic is triggered, and LIMDEP will try a smaller step
size. The step size will be reduced until the value is no longer invalid. (It is certain that the step size
can be reduced enough to produce a valid value; the value from which the steps began must have
been valid.)
 On the other hand, if the parameter values are invalid at the very beginning of the iterations,
LIMDEP will give up immediately. Internally, LIMDEP makes sure that starting values are always
valid. But, you may supply your own values, and if you send in a bad value, rather than attempting
to patch up the error, LIMDEP quits and waits for you to respecify the model.

Premature Convergence

 Be suspicious of convergence which occurs when the derivatives are large. The function
value may be relatively stable even though the derivatives are not close enough to zero if your model
is not very well specified and as a consequence, LIMDEP is taking very small steps from one
iteration to the next. The values of the derivatives of the function at a ‘true’ convergence are
typically from 1.d-2 to 1.d-6. If you have convergence at values in the range of 1.d+2 or so, you may
want to reestimate the model with the function convergence switch turned off with ; Tlf. Now, the
opposite may also occur. For your data, it may simply be impossible to find a satisfactory point at
which the derivatives are small. Rather than let LIMDEP give up, you may want to force
convergence, which you can also do with ; Tlf, using a relatively large value, say .01. This takes
some experimenting. We should note, your best approach would be to leave the convergence rules
as the program sets them until problems arise.

Appendix R26A Technical Details on Optimization

 Most of the nonlinear optimization programs in LIMDEP use what are called gradient
methods to maximize log likelihoods. The class of gradient methods is defined by the iteration

 bt+1 = bt - λtHtgt

where bt+1 = the next value of the estimate,
 bt = the current value of the estimate,
 λt = the stepsize,
 gt = the vector of first derivatives, or gradient,
 Ht = a positive definite matrix.

R26: Numerical Optimization R-673

The subscript ‘t’ indicates that the quantity is computed using bt. The iterative procedure begins
with a ‘starting value,’ b0. At each iteration, the gradient and H are computed, a decision is made as
to what is the best stepsize to take, and the next value of b is computed. At some point, either
because of ‘convergence,’ too many iterations, or failure of the procedure (by its own determination)
to locate the optimal parameter value, the iterative procedure is ended and the results are reported.
Convergence is deemed to occur when one or more stopping rules are met. Because of rounding and
approximation error, the search for the best b must end before the derivatives of the log likelihood
are exactly zero. Thus, one or more convergence criteria are defined to determine when the
estimates are ‘close enough’ to the true maximizers of the log likelihood to quit.
 During its iterations, LIMDEP is minimizing the negative of the log likelihood. As such,
when you see function values in your output during iterations, they will have the opposite sign of the
log likelihood that appears in your output. In addition, there are a few cases, such as the constant -
(N/2)log(2π) terms in log likelihood functions built up from the normal density, in which LIMDEP
does not bother with invariant constants during its iterations. In these cases, the log likelihood
function reported to you in your final results may not equal the minimized value of the function that
was minimized to obtain the estimates.
 An ‘algorithm’ is defined by the particular choice of λ and H. LIMDEP offers several, but
chooses a ‘default’ for itself unless you specifically change the choice. A ‘line search’ is rather like
an iteration within an iteration. The line search consists of a search for the best stepsize for a given
H and g in a given iteration.
 LIMDEP generally uses one of two algorithms for solving the nonlinear optimization
problems. For globally convex problems, such as, tobit, logit and probit, Newton’s method is a
natural choice. For details on the algorithm, see, e.g., Greene (2011). For the less well behaved
likelihood functions, a form of the method of Broyden et. al (see Fletcher, 1980) is used. The basic
algorithm is also described in Greene (2011). LIMDEP uses a modification of this method suggested
by Gruvaeus and Joreskog (1970). The algorithm uses a line search method developed by the
aforementioned authors in order to determine a stepsize. This is coupled with the formulation of the
BFGS algorithm as described, e.g., in Greene (2011). The search procedure begins with several
steepest descent iterations (using the same line search) in order to improve the starting values. It
then continues with the BFGS iterations. Thus, when you see your intermediate output, you will see
the parameter search in two parts with what appears to be two consecutive sets of iterations.
 Alternative algorithms may be chosen for fitting most of LIMDEP’s nonlinear models. The
following are the algorithms as defined by LIMDEP. In a few cases, these differ slightly from the
conventional usage. In each case, H is an estimate of the asymptotic covariance matrix of the
coefficient estimates, or the inverse of the Hessian. This may use analytic second derivatives or the
sum of the outer products of the first derivatives depending on the model. The gradient in all cases is
denoted ‘g.’ Where it appears, λ is the step length found by the line search. The number of the
iteration is denoted ‘t’.

Newton’s Method: bt+1 = bt - Htgt.

 Most of the routines that use this method use actual second derivatives, not expectations.
That is, we do not use the method of scoring. In a number of cases, however, what we call Newton’s
method is actually that of Berndt, et. al. without a line search. These cases are those in which we
construct our estimate of H from first derivatives instead of the analytic second derivatives, that is,
Ht = Σi gtigti′, where ‘i’ indexes observations.

R26: Numerical Optimization R-674

BHHH: bt+1 = bt - λtHtgt.

 Save for the different method of the line search, what we call the BHHH method
corresponds to the Berndt, et. al. method. But, for models such as the probit model, with its globally
concave log likelihood function, what we call BHHH is actually Newton’s method with a line search.
(These are the cases in which H is built up from the analytic second derivatives rather than from the
first derivatives as shown above.) The line search is that of Gruvaeus and Joreskog rather than that
of Berndt, et. al.

BFGS and DFP: bt+1 = bt - λtHtgt.

 Ht is accumulated from an initial identity matrix by the rank two (DFP) or rank three
(BFGS) update described in Gruvaeus and Joreskog (1970) or Greene (2011). This is used only
during the iterations; the asymptotic covariance matrix is recomputed at exit from the iteration. The
BFGS method is a refinement on DFP which adds another rank one term (thus making it a rank three
update).

Steepest Descent: bt+1 = bt - λtgt.

 The steepest descent method uses only the gradient and a stepsize.

R27: Summary for LIMDEP Reference Guide R-675

R27: Summary for LIMDEP Reference Guide

R27.1 Introduction

 The LIMDEP documentation is divided into two parts. This part, the Reference Guide,
contains descriptions of the basic program functions – data entry, file manipulation, etc. – and some
suggested programs and command sets that are likely to be useful in a variety of modeling settings.
The second part, the Econometric Modeling Guide, presents descriptions of the specific modeling
frameworks that are built into the software, such as regression models, duration models, and models
for binary choice. A separate NLOGIT Reference Guide is written specifically for users of NLOGIT
Version 5, a suite of programs for modeling discrete choice.
 This chapter will provide an overview of all of the functions in LIMDEP. The descriptions
will include cross references to the more detailed documentations elsewhere in the manual. The
purpose here is to summarize the functionality of the LIMDEP program suite.

R27.2 Essential Program Functions

R27.2.1 Startup

 Start LIMDEP as you would any other program, for example, by selecting the program from
the Start menu or by double clicking the LIMDEP icon on your desktop. (Other ways to invoke
LIMDEP are described in Chapter R2.)
 The session is identified as your ‘project,’ which will consist of, ultimately, your data, and
the various results that you accumulate. Once you have begun a session, you will want to maintain an
open editing window (the text editor) in which to enter commands. Select File:New, then
Text/Command Document to open an editing window.

R27.2.2 Operation

 There are two ways to give instructions to LIMDEP. You may use the menu driven dialog
boxes (command builders), which are described Chapter R8. However, for most (probably nearly all)
of the analysis you do with LIMDEP, the command format, with commands submitted from the text
editor, is likely to be a much more convenient way to proceed. You may submit commands to the
text editor in a variety of ways. You can use the Insert menu options to insert commands, the full
path to a specific file, or the contents of a text file. You may execute commands using the Run
menu options. Operation details are discussed in Chapter R2.
 This chapter will briefly discuss the command builders and other menus. But, from this point
forward, and throughout most of the Econometric Modeling Guide, we will rely almost entirely on
the command driven mode of operation.

R27: Summary for LIMDEP Reference Guide R-676

R27.3 Reading a Data Set

 For most data sets that are stored in ASCII files, the basic instruction

 IMPORT ; file = … the name of the file $

will be sufficient to import the data into LIMDEP ready to use. IMPORT and the READ command
that can be used for unusual file types are described in Chapter R3.
 The usual way to read a data file is to import variables into the data editor. You can use the
menu option, Project:Import/Variables or you can open the data editor (grid icon on the toolbar) then
place the mouse cursor in the empty (hatched) data field and click the right mouse button to open the
data editor menu. Select Import Variables, then double click the file name to import the variables.
 Once a data set has been read into your project, the variables that exist in the program will be
listed in your project window. In order to view the variable listing, you will generally have to click
the plus box next to the Variables topic in the Data grouping.
 There are many other formats and optional specifications in READ that allow you to import
different data sets into your data area (or into a matrix – See Section R16.5).

R27.4 Transforming Data

 There are five basic commands used for data transformations:

 CREATE ; variable name = expression $ to create a transformed variable,
 DELETE ; list of variables $ to delete variables from the data set,
 RECODE ; variable ; range of values = new value ... $ to recode a variable,
 RENAME ; old name = new name $ to change the name of a variable,
 SORT ; Lhs = key variable [; Rhs = variables to carry] $

You will rarely need DELETE, and RENAME, and RECODE should be used fairly infrequently.
The SORT command is sometimes useful for creating index variables, but you should always
remember that when you use SORT and you do not carry all variables, then the correspondence of
variables within observations will be lost. Your data transformations will be almost exclusively
carried out using CREATE.
 CREATE is used in two ways. When you manipulate existing data, your transformations
will be of the form

 CREATE ; new variable = some function of existing variables $

The function on the right hand side can involve the standard mathematical operators (+, -, *, /, ^) as
well as several others (! for maximum, = for creating binary variables, etc.). There are also several
dozen functions, such as Log, Exp, Abs, Phi (normal CDF), and so on. The second way you will
manipulate data with CREATE will be to generate random samples using the random number
generators. In this case, your command will typically begin with

 CREATE ; new variable = a column of draws from some specified distribution $

after which you will manipulate the newly created data in the usual fashion. Data transformations are
described in Chapter R4. Chapter R5 details a number of other considerations for managing panel data.

R27: Summary for LIMDEP Reference Guide R-677

R27.5 Setting the Sample

 The commands used to define the sample in use at a particular time are:

 NAMELIST defines a name to be synonymous with a list of variables.
 SAMPLE designates specific observations to be included in a subsample.
 REJECT excludes certain observations from the sample based on an algebraic rule.
 INCLUDE includes certain observations from the sample based on an algebraic rule.
 DRAW draws a subsample of observations from a sample, with or without
 replacement.
 SKIP automatically bypasses observations that contain missing values.
 DATES establishes the periodicity of time series data.
 PERIOD designates specific time series observations to be included in a subsample.

Sample setting in its various forms is described in Chapter R7.
 Prior to estimation, or during your analysis, you will want a shortcut that will enable you to
equate a particular name with a group of variables. The command

 NAMELIST ; name = list of variable names $

is used for this function. Namelists have several uses in model estimation, matrix algebra, and in
programming estimators.
 The commands

 SAMPLE ; first - last $
and PERIOD ; beginning date - ending date $

are used to designate specific contiguous blocks of observations for inclusion in the ‘current sample’
for estimation purposes. The first is used for cross sections; the latter for time series. The PERIOD
command must be preceded by

 DATES ; first date in the data set $

which establishes the label of the first date in the data set and the type of data, monthly, quarterly, or
yearly. The preceding are unconditional. Two commands

 REJECT ; logical condition $
and INCLUDE ; logical condition $

are used to delete observations from or add observations to the current sample. These two
commands operate on cross section data, and are generally not useful for time series data. (This is
because in a time series, they would delete observations in the middle of the series, or add
observations possibly randomly outside the current sample. LIMDEP is only equipped to analyze
contiguous time series data.)
 Observations in a cross section may be drawn randomly for purposes of bootstrapping or
related analyses by using the

 DRAW ; N = number of observations $

R27: Summary for LIMDEP Reference Guide R-678

to draw without replacement, or

 DRAW ; N = number of observations ; Replacement $

to sample with replacement.
 Finally, since samples often include missing observations, a switch is provided for you to
instruct the program to bypass observations which include missing values during estimation. The
command is

 SKIP

This command should generally be used when your data have missing values. Though it is likely to
be rare that you would not want to bypass these, LIMDEP usually does not do this automatically.
The exception is in the panel data estimators, which generally do manage missing values internally.

R27.6 Multiple Imputation

 Multiple imputation involves an imputation step and an estimation step. A third step,
aggregation of the imputation results, takes place simultaneously with the estimation step. The
imputation step involves fitting imputation equations with

 IMPUTE ; Lhs = the variable to be imputed
 ; Rhs = independent variables in the equation
 ; Type = the type of variable being imputed.

The estimation step takes place within a procedure, as in

 PROCEDURE $
 … commands for manipulating data, matrices, sample, etc.
 Model command ; … ; Imputation = label $
 … may be repeated
 ENDPROCEDURE $
 EXECUTE ; N = number of imputations
 ; Imputation = the list of labels that appear in the procedure $

A trace of the imputation is requested with ; Report in the EXECUTE command. Details on
multiple imputation are given in Chapter R20.

R27.7 Econometric Model Estimation

 The definition of a ‘model’ in LIMDEP consists of the modeling framework, the statement
of the variables in the model, and what role the variables will play in that model. All model
specifications, once again, broadly defined, will be of the same form

 Model name ; variable specification, such as the name of a dependent variable
 ; possibly other variable specifications
 ; other information needed to complete the model specification $

R27: Summary for LIMDEP Reference Guide R-679

The ‘Model name’ designates the modeling framework. In most cases, this defines a broad class of
models, such as POISSON which indicates that the command is for one of the twenty or so different
models for count data, most of which are extensions of the basic Poisson regression model. Many
model commands provide only the class of models, and further specification is needed to provide the
specific model. The form is

 ; Model = spec

that is used by many model commands to specify a particular variant. An example is LOGLINEAR
; Model = Weibull… $ The following define large classes of models that are available for nearly all
specific model specifications in LIMDEP:

; RPM random parameters model used throughout LIMDEP (note, ; RPL is a
 random parameters counterpart – random parameters logit model – that
 is used only in NLOGIT Version 5.) This specification may include

 ‘= list’ for an extension of the model to include measured heterogeneity.

; LCM latent class model.

 The ‘model variables specification’ generally defines the dependent and independent
variables in a model. In almost all cases, the model will include one or more dependent variables,
denoted a Lhs, or ‘left hand side’ variable in LIMDEP’s command structure. Independent variables
usually appear on the Rhs, or right hand side, of a model specification. The various specifications
that attend the command are used to specify the basic model and to add certain optional features or
model variations. Some of these are extremely general. For example, nearly every model command
will contain a ; Lhs = variable(s) specification to identify the dependent variable(s). In contrast,
; Cost is used only by the frontier model command to request a cost (as opposed to a production)
frontier model. The following lists most of the model specifications used with the model commands,
in decreasing level of generality. A few specifications which have only one narrow single use in the
context of only one model are omitted, and presented with the specific model.

R27.7.1 Variable Specifications in Model Commands

 These essential parts of model commands are described in Chapter R8.

; Lhs = names specifies model dependent variable(s).
; Rhs = names specifies model independent variable(s).
; Rh1 = names first list of variables in a two equation model.
; Rh2 = names second list of variables in a two equation model.
; Inst = names list of instrumental variables.
; Wts = name weighting variable, [,Noscale] prevents scaling to sum to sample size.
; Hfn = names list of variables for variance in heteroscedasticity model.
; Eqn = names use with SURE/3SLS/NLSURE, multivariate probit to specify the
 variables or equations in a multivariate model.
; Skip = names list of variables that should be inspected for missing values to be
 skipped in the current sample.
; Dfr = values automatic creation of partially differenced values. Use with REGRESS.

R27: Summary for LIMDEP Reference Guide R-680

NOTE: The variable one is a program created variable that always equals 1.0. Use one to indicate a
constant term in a model.

R27.7.2 Controlling Output from Model Commands

 These optional features are described in the following sections: ; Par in Section R15.2
; Partial Effects in Section R9.4.3, ; OLS in Section R9.2.1, and ; Table = name in Section R9.6.

 TIMER command – reports computation time for estimated models.

; Par keeps ancillary parameters such as a correlation in main results vector b.
; Partial Effects displays marginal effects (same as ; Marginal Effects).
; OLS displays least squares starting values when (and if) they are computed.
; Table = name saves model results to be combined later in output tables.
; Matrix reports embedded covariate matrix objects with outputs.
; Quietly does not report model output.
; Clevel set significance level for confidence intervals in output
; Export exports results to .csv file for spreadsheet programs (Section R9.7.2.)

R27.7.3 Robust Asymptotic Covariance Matrices

 See Section R9.4.1 for discussion of ; Covariance Matrix. The clustering computation for
robust covariance matrices is described in Section R10.2. Choice based sampling is described at
several points; a reasonably detailed discussion appears in Section E27.10. Robust estimation also
appears in the discussion of several models. General discussion appears in Sections R10.1 and
R10.2.

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown),
 same as ; Printvc.
; Choice uses choice based sampling (sandwich with weighting) estimated matrix.
; Cluster = spec computes cluster form of corrected covariance estimator. There are
 several extensions of this estimator.
; Robust sandwich estimator or robust VC for TSCS and some discrete choice
 models.
; Stratum = spec second, higher level of grouping for robust covariance with complex data
 sets.
; Huber correction for cluster estimator of robust covariance matrix.
; Fpc = spec finite population correction in cluster estimator.
; HC1 heteroscedasticity consistent covariance matrix type used by REGRESS.
; HC2 same.
; HC3 same.

R27: Summary for LIMDEP Reference Guide R-681

R27.7.4 Optimization Controls for Nonlinear Optimization

 These optional features are described in detail in Chapter R26.

; Start = list gives starting values for a nonlinear model.
; Tlg[= value] sets convergence value for gradient.
; Tlf[= value] sets convergence value for function.
; Tlb[= value] sets convergence value for parameters.
; Tln = value sets convergence value for nonlinear least squares.
; Alg = name algorithm.
; Maxit = n maximum iterations.
; Mxit = n restricts number of tries in line search (internal use only).
; Output = n technical output during iterations.
; Lpt = n Laguerre quadrature, number of points to use.
; Hpt = n Hermite quadrature, number of points to use.
; Set keeps current setting of optimization parameters as permanent.
; Nowarn no warnings reported in technical iteration output.

R27.7.5 Setup for Simulation Based Estimators

; Halton use with RPM and NLOGIT 5 RPL model for Halton sequences.
; Antithetical uses antithetical pairs of random draws in simulations.
; Pts = n number of replications to use in simulations.

R27.7.6 Execution of Procedures for Model Estimation

 EXECUTE
 ; optional specifications $
 ; Bootstrap = name bootstrap estimation of covariance matrix for estimator.
 ; Jackknife = name jackknife estimation of covariance matrix for estimator.
 ; Silent estimates without reporting results.

R27.7.7 Predictions and Residuals

 Fitted values (predictions) and residuals are described in Chapter R12.

; List displays a list of fitted values with the model estimates.
; Keep = name keeps fitted values as a new (or replacement) variable in data set.
; Res = name keeps residuals as a new (or replacement) variable.
; Prob = name saves probabilities as a new (or replacement) variable.
; Fill fills missing values (outside estimating sample) for fitted values.

R27.7.8 Model Setup for Certain Models

 Two step estimation is described in Chapter R18 and in numerous examples in the
Econometric Modeling Guide (on censored data). The Harvey model is used in several model
frameworks, and is described in the specific chapter in the Econometric Modeling Guide. The
; Model = type specification modifies the command to request a particular form within the model
class specified.

R27: Summary for LIMDEP Reference Guide R-682

 Specific forms of this specification appear in the respective chapters in the Econometric
Modeling Guide.

; Model = name specifies a particular form of a general model class, SURVIVAL,
 LOGLINEAR, POISSON, TSCS.

; 2step = name two step estimation used by PROBIT, REGRESS, TOBIT, LOGIT,
 POISSON.

; Het Harvey style model in TOBIT, PROBIT, LOGIT, ORDERED,
 POISSON, SURVIVAL.

 ; Hfn = list list of variables for heteroscedastic function.
 ; Hfu = list same, FRONTIER.
 ; Hfv = list same, FRONTIER.
 ; Hf1 = list same, BIVARIATE PROBIT.
 ; Hf2 = list same, BIVARIATE PROBIT.
 ; Hfe = list same, random effects linear models.

R27.7.9 Setup for Panel Data Models

 LIMDEP contains an extremely large menu of panel data estimators. The set of controls
listed below is used primarily with the nonlinear estimators for panel data. The data arrangement is
described in Chapters R5 and in R22. Chapter R5 is used for ‘one way’ panels, in which the model
has only a group specific effect. Models may also have a two way structure, in which there is a time
specific effect. Time effects are described in Section R23.2.2. The controls listed below are
discussed in numerous sections below, and summarized with the estimators in Chapters R23-R25.

Data Specification for Panel Data

; Pds = spec specifies panel data, fixed number of periods or number given by variable.
; Time = spec specifies time for two way fixed effects model for panel.
; Periods = t time specification for panel estimators.
; Str = name specifies a stratification variable for DSTAT, REGRESS, SURVIVAL.

Panel Data Specifications in Nonlinear Modeling Frameworks

; FEM fixed effects model.
; Fixed fixed effects model – used in a few cases to avoid ambiguity.
; REM random effects model.
; Random random effects model – used in a few cases to avoid ambiguity.
; AR1 use with NLOGIT 5 RPL model, and all RPM, autocorrelation models.
; Cor use with NLOGIT 5 RPL model and all RPM for correlated random

 parameters.
; Cprob = name saves conditional probabilities for panel models and NLOGIT.
; Group = name use with latent class models, keeps predicted group.
; Fcn = setup use in setup for RPM panel model and in NLOGIT 5 RPL model.
; Dpd dynamic panel data models.

R27: Summary for LIMDEP Reference Guide R-683

R27.8 Post Estimation

 Post estimation analysis includes hypothesis testing, estimation and analysis of partial
effects, model simulation, and decompositions.

R27.8.1 Hypothesis Tests and Restrictions

 These features are described in Chapter R13.

; CML: spec constrained maximum likelihood.
; CLS: spec constrained least squares.
; Test: spec Wald test of linear restrictions.
; Rst = list specifies equality and fixed value restrictions.
; Maxit = 0 use with ; Start = list, sets up a Lagrange multiplier test.
; Wald: spec Wald test of linear restrictions – same as ; Test: spec.

R27.8.2 Partial Effects

 After a model is estimated,

 PARTIAL EFFECTS ; Effects: variable $

Produces the average partial effect for the variable named. Additional scenarios allow analysis of
the behavior of the partial effects. Use any or all of

 ; Effects: variable | variable = discrete set of values
 & variable = lower (step) upper
 @ variable = values for sample partitioning

Plots of partial effects are requested with

 ; Plot or ; Plot(ci) for confidence limits.

R27.8.3 Oaxaca Decompositions

 The model is fit to a split sample with

 Model ; For [variable = *, value, value] ; … the rest of the model $
Then,
 DECOMPOSE $

There are no options for this command.

R27: Summary for LIMDEP Reference Guide R-684

R27.9 The Command Builders

 An alternative method of submitting commands is to use the interactive dialog boxes which
for reasons that will be evident shortly, we call the command builders. (This feature is described in
detail in Chapter R8.) Command builders for model commands are produced by selecting Model in
the main menu. The Model menu, shown in Figure R27.1, offers a number of groups of model
frameworks. You may then select one of the groupings of models shown, to open a subsidiary menu
of specific models. An example for the binary choice models is shown in Figure R27.1. You may
then click a model name to open the command builder dialog box for that specific command. An
example for the PROBIT command is shown in Figure R27.2.

 Figure R27.1 Selecting the Command Builder from the Model Menu

The Main tab (page) in the command builder dialog box requests the variables part of the commands.
A few of the optional features will usually appear here as well, including, for example, a weighting
variable. Other optional specifications are provided on the other tabs (pages) of the command
builder window. As can be seen in Figure R27.2, the probit model command builder has two
additional pages. Note, you must provide the essential variable parts of a command on the Main
page before you may enter the Options page. The command builder will insist on this.

R27: Summary for LIMDEP Reference Guide R-685

NOTE: The query (?) button at the lower left of the command builder dialog box is a link to a
context sensitive Help file that contains a large amount of information about the command.

Figure R27.2 Main Page for Command Builder (PROBIT)

 Once you have selected the model specification in the command builder window, click the
Run button to submit the command to LIMDEP for processing. This produces two results: First, the
command is carried out, and the results appear in the output window, as would result in general when
a model command is issued. Second, as its name implies, the command builder ‘builds’ the model
command, and places a copy of it in the output window with the results. (See Figure R27.3.)
 The first line of text above the output is the command generated by this selection in the
window. You can copy these commands from the output window and paste them into the editing
window, as we have done in our example in Figure R27.4. You might find this useful if you wish to
modify the model and reuse the command. The editor will usually be more convenient. Note, as
well, that the command interpreter will ignore the leading ‘-->’ so there is no absolute need to edit
these characters out of the editing window.

R27: Summary for LIMDEP Reference Guide R-686

Figure R27.3 Output Window

Figure R27.4 Detail from the Editing Window

NOTE: The command builders are not complete. Some options and model forms must be specified
with commands formed in the text editors. The command builders are intended generally for
development of the more basic forms of the models and for relatively uncomplicated models. Not all
optional features in all models are present in the command builder. Moreover, a few of the model
frameworks are not contained in the command builder menu. We anticipate that the command builders
will be used by those who are becoming accustomed to using LIMDEP. After a relatively short
introductory period, you will probably find the text editor more convenient than the command builders.

R27: Summary for LIMDEP Reference Guide R-687

R27.10 Econometric Data Structures and Modeling Tools

 The Econometric Modeling Guide describes the econometric modeling frameworks that are
specifically built into LIMDEP. The following overviews these frameworks and describes the
essential commands that relate to them. Since each of these provides many options and variants,
only the essential features and basic command structures are listed. Before listing the modeling
frameworks, we note in this section the data structures that LIMDEP is designed to analyze.

R27.10.1 Cross Section Data

 Most of the models and techniques that LIMDEP contains are best suited for cross section
data. The distinguishing feature of such a data set is independence of the observations. The data
will consist of a group of ‘exchangeable’ data points – that is, the order of the observations in the
sample has no significance. Thus, regression, nonlinear modeling, optimization, etc., are typically
based on sums of independent observations.

R27.10.2 Panel Data

 LIMDEP contains the widest array of estimators for panel data sets available in any major
package. (A summary of the panel data models in LIMDEP appears in Chapters R22-R25.) The
panel of data consists of n groups of Ti observations. With only the exception of the TSCS model
framework, whose structure makes a balanced panel necessary, panels in LIMDEP may always be
unbalanced – no estimator requires that group sizes be equal. The range of panel data models
supported by LIMDEP includes models for discrete choice, censored and truncated data, count data,
limited range dependent variables, survival models and various models for multinomial and ordered
discrete outcomes.

The panel data models supported by the program can be described mathematically as
follows: The ‘model’ is defined by a probability model for the observed outcome,

 P(yit) = g(βi, xit, εit) where:

 P(.) = the probability density function of the observed random variable, yit.

 i = 1,...,N denotes the ith group or individual. The number of groups is sometimes

unlimited, but in many cases is limited. When it is, the upper limit is 50,000.

 t = 1,...,Ti denotes the tth period, ranging from one to a person or group specific Ti.

With only one exception that is dictated by the structure of the TSCS model
LIMDEP always allows Ti to vary across groups. That is, panels may always be
unbalanced.

 yit = the observed dependent variable.

 xit = is used to denote an observed vector of independent variables. This may include

variables which vary across both groups and periods, and, in some applications,
may also involve variables which vary across groups but are constant across
periods, such as group specific dummy variables.

R27: Summary for LIMDEP Reference Guide R-688

 βi = the parameter vector for the ith individual. This may vary completely across
individuals, as in the random coefficients models, or it may have a fixed component
and a subvector which varies across groups, as in the usual fixed effects model. It
may also be constant across groups and periods, as in the random effects model.

 εit = the stochastic component of the model. The symbol is used generically to indicate

the stochastic nature of the model, not necessarily a ‘disturbance.’

 g = the density of the observed random variable conditioned on the arguments.

 LIMDEP supports the following general model forms for panel data:

Fixed Effects: g(βi, xit, εit) = g(β′xit + αi, εit)

These models contain dummy variables for specific groups. Techniques that are unique to

LIMDEP allow tens of thousands of dummy variable coefficients to be estimated in models that were
previously assumed to be intractable for this approach. Roughly 50 different models, nearly all of
them nonlinear, include a fixed effects form.

Random Effects: g(βi, xit, εit) = g(β′xit , εit + ui)

The econometric interpretation of this variant treats the ‘effect’ as an additive or

multiplicative random, group specific disturbance in a model. (Many statistical treatments broaden
the term to mean what we label ‘random parameters’ in the next paragraph.)

Random Parameters: g(βi, xit, εit), f(βi) is defined as part of the model.

Most of LIMDEP’s models can be estimated in a random parameters format. Broadly, this

approach bridges the Bayesian approach to estimation and the classical fixed parameters approach.
Further details on this model class appear below.

Latent Class Models: g(βi, xit, εit) = Eclasses [g((βclass′xit , εit) | class]

In a latent class formulation, the continuous distribution of the heterogeneity is approximated by
using a finite number of ‘points of support.’ The distribution is approximated by estimating the
location of the support points and the mass (probability) in each interval. In implementation, it is
convenient and useful to interpret this discrete approximation as producing a sorting of individuals
(by heterogeneity) into J classes, j=1,...,J.

Table R27.1 lists the panel data estimators contained in this version of LIMDEP.

R27: Summary for LIMDEP Reference Guide R-689

Model Class Fixed Effects Random Effects Random Parameters c Latent Class
Linear Regression a,d • • • •
MIMICb • •

Binary Choice
Probit a • • • •
Logit a • • • •
Complementary log log a • • • •
Gompertz a • • • •
Bivariate Probit b • •
Biv. Probit Selection b • • •
Partial Observability b • •

Multinomial Choice
Multinomial Logit e • • •
Multinomial Probit b •
Ordered Probability/All a • • • •

Count Data
Poisson Regression a • • • •
Negative Binomial a • • • •
Poisson/NegBin ZIP b • • • •

Loglinear Models
Exponential b • • • •
Gamma b • • • •
Weibull b • • • •
Inverse Gaussian b • • • •
Power b • • • •
Binomial b • • • •
Exponential regression b • • • •
Geometric b • • • •

Limited Dependent Variable
Tobit a • • • •
Truncated Regression b • • • •
Grouped Data b • • • •
Sample Selection b • • •

Survival and Frontier Models
Weibull b • • • •
Exponential b • • • •
Loglogistic b • • • •
Lognormal b • • • •
Stochastic Frontier a • • • •

Table R27.1 Model Formulations with Panel Data Estimators

a The random effects model can be estimated by standard REM techniques (GLS, quadrature) or by
 the simulation method with a random parameters formulation;
b The random effects model can only be estimated by the simulated random parameters approach.
c Any random parameters model produces a random effects model by a random constant term.
d Linear Regression: Fixed effects fit by maximum likelihood and least squares, random effects fit
 by GLS and maximum simulated likelihood.
e Multinomial logit with random effects is fit as a random parameters logit model by NLOGIT Version 5.

R27: Summary for LIMDEP Reference Guide R-690

R27.10.3 Fixed Effects Models

 The fixed effects model is

 zit = αidit + β′xit, i = 1,...,N, t = 1,...,Ti,

 p(yit) = g(zit, θ).

where αi is the coefficient on a binary variable, dit, which indicates membership in the ith group.
The panel is assumed to consist of N groups with Ti observations in the ith group. The panel need
not be balanced; Ti may vary across groups. Nonlinear models of this form are estimated in two
ways. The conditional estimator is obtained by using the conditional joint distribution,
f(yi1,yi2,...,yiT|Σtyit). See, for example Griliches, Hall, and Hausman (1984) who develop this for a
Poisson regression. The resulting density is a function of β alone, which is then estimated by
(conditional) maximum likelihood. This estimator is available for the binary logit, Poisson, and
negative binomial models. Chapters R22 and R23 provide extensive details. Most models do not
reduce to a useable closed form through this conditioning, so that the conditional estimator is
unavailable. The unconditional estimator is obtained by a direct maximization of the full log
likelihood function and estimating all parameters including the group specific constants.

The Incidental Parameters Problem

 Full estimation of the fixed effects model in this fashion generally encounters the ‘incidental
parameters’ problem. The estimators of the fixed effects coefficients are inconsistent in a fixed
effects model, not because they estimate the wrong parameters, but because the variances of the
estimators of αi are of order 1/Ti with Ti not assumed to be increasing, not 1/N, where N is. Thus, the
properties of the slope estimator (and the estimator of θ in the negative binomial model) depend on
an inconsistent estimator. The mean of the slope estimator converges to a function that deviates
from β as a function of the extent to which the estimator of αi deviates from αi. Let ai be the MLE of
αi and b be the estimator of β. The usual results for the MLE in a multiparameter situation would
produce consistency from the fact that b = b(a1, a2, ...) and

 plimN→∞ b - β = a function of, among other results, plimN→∞ ai - αi, i = 1,...,N.

In the usual case, all terms (including the ‘other results’) would converge to zero. In this case, that
does not hold, though the extent to which the small sample (Ti) affects b is unknown. Certainly if
your panel contains very small group sizes, say Ti less than five or so, then this estimator is shaky. If
you have fairly large group sizes, say on the order of 30 or more, then you are in the range of sample
sizes that analysts often rely upon to assert other asymptotic results. Users are urged to consider this
issue when using the unconditional fixed estimators.
 Surprisingly, the incidental parameters problem is not present in the Poisson model. The
reason for this intriguing result is that in the Poisson model, the first order conditions for estimation
of the slopes are actually free of the fixed effects – see Winkelmann (2000) for a proof. This effect
is illustrated in the application in Chapter E44. The conditional and unconditional estimators are
identical. This is not the case for the negative binomial or binary logit models, however. It is for a
few other estimators, such as the exponential regression.

R27: Summary for LIMDEP Reference Guide R-691

 LIMDEP’s unconditional estimator can also produce a two way fixed effects model,

 zit = αi + δt + β′xit.

There will now be MaxTi-1 additional coefficients in the model. You can request this estimator by
adding
 ; Time = Ti

where the variable Ti indicates, for each observation the period in which the observation occurred.
This variable must take the values 1,2,...,MaxTi. That is, it must be coded with ‘t,’ the index number
of the period. A date will not work – it will be flagged as identifying too many coefficients. Do note
that observations may be made at different periods in the different groups. For example, if you have
a panel with three observations in the first group and seven in the second, the first three observations
could have been made at t = 2, t = 4, and t = 7. The routine assumes that MaxTi is equal to the
largest group size in the model. (That way, it is assured that there are no holes in the sequence of
observations.) Thus, the largest group in the sample must have this variable coded with the complete
set of integers, 1,2,...,Tmax.

NOTE: If you have a balanced panel with ; Pds = T where T is a fixed value, then you can specify
the time effects with ; Time = one as there can be no variation in the coding of the period in a
balanced panel.

NOTE: Our experience has been that the time effects extension produces considerable instability in
the negative binomial, though it works nicely in the Poisson model.

 The fixed effects model with time effects is estimated by actually creating the time specific
dummy variables. You will see a complete set of time effects in the output. As such, however, if
you have a large group size in your panel, this extension may create an extremely large model.
 The unconditional log likelihood is maximized by using Newton’s method. A full
discussion of the method is given in Chapter R23.

R27.10.4 Random Effects and Multilevel Random Effects Models

 The fixed effects model is

 zit = σuui + β′xit, i = 1,...,N, t = 1,...,Ti,

 p(yit) = g(zit, θ)

where the common effect ui has a distribution with mean zero and variance one – the scale of the
random variable is accommodated by the unknown parameter σu. The distinction between fixed
effects (FE) and random effects (RE) models is that while in the fixed effects case, dit may be
correlated with xit, in the random effects case, ui is not correlated with xit. (Ultimately, what this
means is that ui is uncorrelated with the group mean ix .) As before, all panels may be balanced or
unbalanced. Estimation of the random effects model is done in three ways in LIMDEP.

R27: Summary for LIMDEP Reference Guide R-692

Two Step FGLS

 For the linear regression case, the simple RE may be fit by two step feasible generalized
least squares. The variance components, σu

2 and σε
2 are consistently estimated by using the ordinary

least squares residuals, then the full model is fit once again by generalized least squares. This is
discussed in Section E18.2.

Maximum Likelihood

 With a normality assumption, the log likelihood can be formulated and maximized directly.
For the linear model, this is done directly, operating on the log likelihood function itself which has a
closed form. This is also the case for the nested random effects linear model discussed below.
Estimation of the model is discussed in Section E18.3. For several other models, including probit,
logit, tobit and ordered probit, the log likelihood function is an integral which does not have a closed
form, but which can be satisfactorily approximated using Hermite quadrature.

Maximum Simulated Likelihood

 Any model that can be fit as a random parameters model – Table R27.1 lists, with all
variants, over 40 of them – can be fit as a random effects model by allowing only the constant term
to be random in the model. This implies that virtually any model that can be fit with LIMDEP can be
fit as a random effects model.

Multilevel Random Effects Model

 Suppose the data are constructed in levels – we allow up to 10 nested levels, so that the
structure is
 vi,t,s,r, i = 1,...,N; t = 1,...,Ti; s = 1,...,Sit, r = 1,...,Rits

where we use four levels as an example. Consider, for example, student test performance data in
which i is school district, t is school, s is teacher, and r is student. Schematically, the data might
appear as:

 i=1 ... i=N
|-----------------------------------|...|----------------------------|
 t=1 t=2 t=T1 t=1 t=TN
|---------| |-------| ... |---------| |--------------|...|---------|
 s=1 s=S11 s=1 s=S12 ... s=1 s=S1,T1 s=1 s=SN1 s=1 s=2 s=SN,TN
|----| |--| |-| |---| |-| |-----| |----------| |-|...|-| |-| |-|
 r = 1,...,R1,T(1),S(T1) r = 1,...,RN,T(N),S(TN)
....................................

With the effects model now defined as

 zitsr = σuui + σvvit + σwwits + σεεitsr + ...

we have a multilevel effects model with a potentially extremely involved correlation structure.
Again, LIMDEP allows this up to 10 levels. In addition, the effects may be specified
multiplicatively as well as additively. This model is fit by maximum simulated likelihood as a
random parameters model Random parameters models are discussed throughout the Econometric
Modeling Guide and in some detail in Chapter R24.

R27: Summary for LIMDEP Reference Guide R-693

R27.10.5 The Random Parameters Model

 A number of researchers have analyzed a few variants of this model under different names.
In particular, there is now an extensive literature on ‘mixed logit’ models (Train (1999), et al.). This
multinomial logit version of this model has also been used in well known papers by Goldberg (1995)
and Berry et al. (1995). Researchers, primarily not in economics, have also analyzed ‘multilevel’
models and ‘hierarchical’ models applied to linear regression, binary logit and Poisson and negative
binomial regression models. These are variants of the random parameters model described here. To
our knowledge, this is the first implementation of this technique in a class of models as diverse as the
one listed in the preceding table.

The structure of the random parameters model from the point of view of the modeler is

 αi = [β1i′, β2i′, θ′]′

where θ = ancillary parameters, such as the dispersion parameter in the negative binomial
 model – most of the models listed have no ancillary parameters

 β1i = β1 = K1 nonrandom parameters, x1it = variables multiplied by β1i

 β2it = β2 + ∆zi + Γvit = K2
 random parameters, x2it = variables multiplied by β2it

where β2 = the fixed means of the distributions for the random parameters

 zi = a set of M observed variables which do not vary over time and which
enter the means

 ∆ = coefficient matrix, K2×M, which forms the observation specific term in
 the mean

 vit = unobservable K2×1 latent random term in the ith observation in β2i. Each
element of vit has mean zero and variance one. Each element of vit may be
distributed as normal, uniform, or triangular. They need not be the same.

 Γ = lower triangular or diagonal matrix which produces the covariance matrix
 of the random parameters, Ω = Γ Γ ′ in the random effects form and
 Ω = Γ(I-R2)-1Γ ′ in the AR(1) model.

 βi = [β1′, β2it′]′

 xit = [x1it′, x2it′]′

 ait = βit′xit

 P(yi|xit, zi, vit) = g(yit, ait, θ) = the density for the observed response.

Two models are used for vit:

 Random Effects: vit = vi for all t. This is the usual random effects form.

 Autocorrelated [AR(1)] vit = Rvi,t-1 + uit where R is a diagonal matrix of coefficient
specific autocorrelation coefficients, and uit satisfies the earlier specification for vit.

R27: Summary for LIMDEP Reference Guide R-694

The multilevel random effects model described in the preceding section is also incorporated in this
model by building the effects model into the random constant term of the random parameters model
described here.

R27.10.6 Observations About GLIM and GEE Estimation

 A fairly prominent development in the statistical literature, generalized equation estimation
(GEE) modeling appears to be yet another form of estimator. (See Liang and Zeger (1986) and
Diggle, Liang and Zeger, (1994).) The GEE estimator is not explicitly supported in LIMDEP
directly as a preprogrammed routine. However, most of the internally consistent forms of GEE
models (there are quite a few that are not consistent) are contained in the list in Table R15.1, so you
can do several forms of GEE modeling with LIMDEP. As this is a frequently asked question, we
consider it in detail.

GLIM

 The GEE method of modeling panel data is an extension of Nelder and Wedderburn’s (1972)
and McCullagh and Nelder’s (1983) Generalized Linear Models (GLIM) approach to specification.
The generalized linear model is specified by a ‘link’ to the conditional mean function,

 f(E[yit | xit]) = β′xit,

and a ‘family’ of distributions,

 yit | xit ~ g(β′xit, θ)

where β and xit are as already defined and θ is zero or more ancillary parameters, such as the
dispersion parameter in the negative binomial model (which is a GLIM). Many of the models
already discussed in this manual fit into this framework, such as the standard probit model which has
link function f(.) = Φ-1(P) and Bernoulli distribution family and the classical normal linear regression
which has link function equal to the identity function and normal distribution family. More
generally, for the single index binary choice models estimated by LIMDEP, if Prob[yit = 1] = F(β′xit),
then this is the conditional mean function, and the link function is simply (by definition)

 f(E[yit | xit]) = F-1[F(β′xit)] = β′xit.

and the distribution family is, again, the Bernoulli distribution. This form captures the parametric
binary choice models, including probit, logit, Gompertz, complementary log log and Burr (scobit).
A like result holds for the count models, Poisson and negative binomial, for which the link is simply
the log function. So far, nothing has been added to models that are already familiar. The
aforementioned authors demonstrate a method by which models which fit in this class can be
estimated by a kind of iterated weighted least squares. This is one of the reasons that GLIM
modeling has attracted such interest. In the absence of a preprogrammed routine, it is easy to do.
 One can create a vast array of models by crossing a menu of link functions with a second
menu of distributional families. Consider, for example, the matrix in Table R15.2 (which does not
exhaust all the possibilities). We choose four distributional families to provide models for the four
most common kinds of random variables:

R27: Summary for LIMDEP Reference Guide R-695

 Link Functions
Kind of r.v. Family Identity Logit Probit Log Reciprocal
Binary Bernoulli X • • X X
Continuous normal • • • • •
Count Poisson X X X • X
Nonnegative gamma X X X • X

Table R15.2 Generalized Linear Models

Nelder et al.’s estimation theory is complete in that there is no theoretical restriction on the mesh
between link and family. But, in fact, most of the combinations are internally inconsistent. For
example, for the binary dependent variable, only the probit and logit links make sense; the others
imply a conditional mean that is not bounded by zero and one. For the continuous random variable,
any link could be chosen; this just defines a linear or nonlinear regression model. For the count
variable, only the log transformation insures an appropriate nonnegative mean. The logit and probit
transformations imply a positive mean, but one would not want to formulate a model for counts that
forces the conditional mean function to be a probability between zero and one, so these make no
sense either. The same considerations rule out all but the log transformation for the gamma family.
The preceding lists many of the commonly used link functions (some not listed are just alternative
continuous distributions). More than half of our table is null. Of the nine combinations that are
consistent, five are just nonlinear regressions, which is a much broader class than this, and one would
unduly restrict themselves if they limited themselves to the GLIM framework for nonlinear
regression analysis. After eliminating internally inconsistent combinations of link functions and
families, nearly all of the commonly used, internally consistent generalized linear models appear as
preprogrammed estimators in LIMDEP, though they are calibrated using maximum likelihood rather
than iteratively reweighted least squares. The upshot of all this is that LIMDEP does fit ‘generalized
linear models.’ GLIM is an alternative (albeit, fairly efficient) method of estimating some models
that are quite routinely handled with conventional maximum likelihood estimation.

GEE Modeling

 All the preceding said, GLIM has not cost anything either. GLIM provides a clever
interpretation of some familiar models and an efficient algorithm. But, GEE provides a potentially
useful variation of these already familiar models by extending them to panel data settings. To the
preceding GLIM interpretation, the GEE approach adds what is essentially a random effects form to
the panel of observations. Let us redefine the link function as

 f(E[yit | xit]) = β′xit + εit, t = 1,...,Ti.

Now, consider some different approaches to formulating the Ti×Ti covariance matrix for the
heterogeneity: (Once again, we borrow some nomenclature from the GEE literature):

 Independent: Corr[εit, εis] = 0, t ≠ s
 Exchangeable: Corr[εit, εis] = ρ, t ≠ s
 AR(1): Corr[εit, εis] = ρ|t-s| , t ≠ s
 Nonstationary: Corr[εit, εis] = ρts , t ≠ s, |t-s| < g
 Unstructured: Corr[εit, εis] = ρts , t ≠ s.

R27: Summary for LIMDEP Reference Guide R-696

The GEE approach to estimation is a form of generalized method of moments. Most of these models
are already available in other forms. The first one is obvious - this is just the pooled estimator
ignoring any group effects. The second is the random effects model. We have noted a large number
of models, including most of those in the valid set of GLIMs that LIMDEP can fit in the random
effects form. In addition, all models that are available in the random parameters form can be fit with
just a random constant term and can thus provide this random effects model. This includes most of
the GLIM models and some others, such as the tobit model. In addition, the random parameters
model allows an AR(1) format for the random constant term, so all the models that fit in the
exchangeable case can also be fit as in the AR(1) case. LIMDEP has no facility for the nonstationary
or unstructured cases. We do note, however, these sorts of models are very weakly identified in any
estimation setting, owing to the large number of parameters that must be estimated to characterize
the distribution of an unobserved random vector. A fully unstructured correlation matrix, for
example, is nearly inestimable as an ancillary parameter in a model fit by maximum likelihood,
because the log likelihood becomes quite flat in the space of the correlations. If the panel is at all
large, users should not be optimistic about fitting models such as the unstructured one above. (For
example, LIMDEP’s multinomial probit and multivariate probit models face this difficulty.)
 In this respect, then, LIMDEP can estimate most GEE models. The estimation technique
however, is simulated maximum likelihood, not the method of moments. By construction,
LIMDEP’s estimator will be more efficient asymptotically, though in the sizes typical of panel data
sets, this will probably be a minor consideration.
 We note, finally, although there are a few GEE models not available in LIMDEP, the ability
to structure the random parameters model with random coefficients on all variables makes this
estimator, in fact, far more general than the GEE estimator. The end result would be, in answer to
the frequently asked question, yes, LIMDEP does do GLIM and GEE estimation, and considerably
more with the random parameters model.

R27.10.7 Latent Class Models

A model for a panel of data, i = 1,...,N, t = 1,...,Ti is specified

 P[yit | xit] = F(yit,β′xit) = P(i,t).

Henceforth, we use the term ‘group’ to indicate the Ti observations on respondent i in periods
t = 1,...,Ti. (In our formulation of this model framework, Ti may equal one – this all applies to cross
sections as well as panels.) Unobserved heterogeneity in the distribution of yit is assumed to impact
the density in the form of a random effect. The continuous distribution of the heterogeneity is
approximated by using a finite number of ‘points of support.’ The distribution is approximated by
estimating the location of the support points and the mass (probability) in each interval. In
implementation, it is convenient and useful to interpret this discrete approximation as producing a
sorting of individuals (by heterogeneity) into J classes, j = 1,...,J. (Since this is an approximation, J
is chosen by the analyst.)

Thus, we modify the model for a latent sorting of yit into J ‘classes’ with a model which
allows for heterogeneity as follows: The probability of observing yit given that regime j applies is

 P(i,t|j) = P[yit| xit, j]

R27: Summary for LIMDEP Reference Guide R-697

where the density is now specific to the group. The analyst does not observe directly which class,
j = 1,...,J generated observation yit|j, and class membership must be estimated. Heckman and Singer
(1984) suggest a simple form of the class variation in which only the constant term varies across the
classes. This would produce the model

 P(i,t|j) = F[yit, β′xit + δj], Prob[class = j] = Fj

We formulate this approximation more generally as,

 P(i,t|j) = F[yit, β′xit + δj′xit], Fj = exp(θj) / Σj exp(θj), with θJ = 0.

In this formulation, each group has its own parameter vector, βj′ = β + δj, though the variables that
enter the mean are assumed to be the same. (This can be changed by imposing restrictions on the
full parameter vector, as described below.) This allows the Heckman and Singer formulation as a
special case by imposing restrictions on the parameters. (A further generalization is discussed
below.)
 The latent heterogeneity model can be extended by allowing measured influences in the prior
probability. Let zi1, ..., zim denote M time invariant variables (such as sex, marital status, location,
education) which affect the latent class probabilities. Then, we extend the model so that prior class
assignment is formulated as a multinomial logit;

 P[class j | zi] = Fij =
1

exp()

exp()
j i

J
j ij=

′

′∑
z

z

θ

θ

R27.10.8 Time Series Data

 LIMDEP contains some capabilities for time series data, including Box-Jenkins
identification, ARMAX and distributed lag models, GARCH models of several sorts, tests for unit
roots, and a few techniques for estimating dynamic equations.

R27.11 Econometric Model Estimation Templates

 LIMDEP’s preprogrammed estimation routines include a very wide variety of models and
variants of model forms. We have arranged the documentation of these estimators in the
Econometric Modeling Guide by the class of estimation method or the modeling frameworks of
interest – in the form of an econometric reference – rather than by program command. The next
chapter will lay out the essential format of the model estimation commands in LIMDEP. Only the
command structures will be presented. Mathematical details on specific models and techniques are
given in the indicated places in the Econometric Modeling Guide.

R28: Diagnostics and Error Messages R-698

R28: Diagnostics and Error Messages

R28.1 Introduction

 The following is a complete list of diagnostics that will be issued by LIMDEP and NLOGIT.
Altogether, there are well over 1,000 specific conditions that are picked up by the command
translation and computation programs. Nearly all of the error messages listed below identify
problems in commands that you have provided for the command translator to parse and then to pass
on to the computation programs.
 Most diagnostics are self explanatory and will be obvious. For example,

82 ;LHS - variable in list is not in the variable names table.

states that your Lhs variable in a model command does not exist. No doubt this is due to a
typographical error – the name is misspelled. Other diagnostics are more complicated, and in many
cases, it is not quite possible to be precise about the error. Thus, in many cases, a diagnostic will say
something like ‘the following string contains an unidentified name’ and a part of your command will
be listed – the implication is that the error is somewhere in the listed string. Finally, some
diagnostics are based on information that is specific to a variable or an observation at the point at
which it occurs. In that case, the diagnostic may identify a particular observation or value. In the
listing below, we use the conventions:

 <AAAAAAAA> indicates a variable name that will appear in the diagnostic,
 <nnnnnnnnnnnn> indicates an integer value, often an observation number, that is given,
 <xxxxxxxxxxxx> indicates a specific value that may be invalid, such as a ‘time’ that is
 negative.

The listing below contains the diagnostics and, in some cases, additional points that may help you to
find and/or fix the problem. The actual diagnostic you will see in your output window is shown in
the Courier font, such as appears in diagnostic 82 above.
 We note it should be extremely rare, but occasionally, an error message will occur for
reasons that are not really related to the computation in progress. (We cannot give an example – if
we knew where it was, we would remove the source before it occurred.) You will always know
exactly what command produces a diagnostic – an echo of that command will appear directly above
the error message in the output window. So, if an absolutely unfathomable error message shows up,
try simplifying the command that precedes it to its bare essentials, and by building it up, reveal the
source of the problem.
 Finally, there are the ‘program crashes.’ Obviously, we hope that these never occur, but they
do. The usual ones are division by zero and exponent overflow. Once again, we cannot give specific
warnings about these, since if we could, we would fix the problem. If you do get one of these and
you cannot get around it, please contact us at support@limdep.com.

mailto:support@limdep.com�

R28: Diagnostics and Error Messages R-699

R28.2 Optimization

 The following messages occur during estimation of a model. In some cases, estimation must
stop at that point – the iterative process has broken down. In a few cases, the error is actually just a
warning or notification of some temporary condition, in which case, estimation will continue. In this
case, you will want to look closely at the final results and the accompanying output to see if any
further problems have come up during optimization. Note that some of these warnings occur without
a diagnostic number. These are denoted ‘wrn’ in the listing below.

NOTE: Section R26.4 contains lengthy discussion of most of these diagnostics and their causes.

801 Problem with starting values provided.

Exit status will be 5. Check the command. This means the starting values could not be
read from the command.

802 Cannot compute function at start values.

Exit status will be 4. This is not likely with internal values; it usually happens if you
give a bad set of starting values.

 Cannot compute function at current values.

Exit status will be 4, breakdown of the iterations. For example, if an estimated variance
becomes negative and it is not possible to retreat to a valid value, iteration is halted with
this error.

803 Hessian is not positive definite at start values.
 B0 is too far from solution for Newton method.

Switching to BFGS as a better solution method.
You can usually ignore this. Unless the starting values are very good, this is common.
BFGS does not need the Hessian. But, this may be a warning of bad things to come.

804 Looks like convergence occurred too quickly.

NOTE: Convergence in initial iterations is rarely at a true
function optimum. Check all results.
Most problems take more than four or five iterations. When one does not, it can mean
that the starting values are already the solutions (OK), or the derivatives are zero at the
starting values (possibly not OK). This is application dependent. It may not be a
problem.

 Looks like convergence occurred too quickly.
 Note: DFP and BFGS usually take more than 4 or 5 iterations

to converge. If this problem was not structured for quick
convergence, you might want to examine results closely. If
convergence is too early, tighten convergence with, e.g.,
;TLG=1.D-9.

805 Initial iterations cannot improve function.

Exit status will be 3. This may be due to unusable starting values, or the starting values
are already the solution.

R28: Diagnostics and Error Messages R-700

Wrn Hessian is not definite at current values.
 Switching to BFGS (gradient based) method.

(Not a failure. Just looking for a better algorithm.)
This is the same as 803, but it occurs after iterations have begun.

806 Line search does not improve fn. Exit iterations.

Exit status will be 3. This is usually not an error. If the likelihood function is fairly flat
near the maximum, this will occur. However, for a very badly behaved log likelihood,
this error will occur, and will give you a warning about the function being optimized. If
it happens in the first iteration, the model is probably inappropriate for this data set.

Wrn Maximum iterations reached.

Exit iterations with status=1.

Wrn Abnormal exit from iterations.

If current results are shown, check the convergence values shown in the results. The
results shown may not be a solution (especially if the initial iterations stopped). This is a
general failure. Some other diagnostic will indicate the cause.

Wrn Smallest abs. parameter change from start value = <xxxxxx>.

Note: At least one parameter did not leave start value.
This is a general failure. If you programmed derivatives in MAXIMIZE, at least one of
them is always zero. More generally, if starting values are so bad, it may not be possible
to make progress toward a solution.

Wrn Iterations aborted by user request.

Exit status will be minus 1. You clicked the Stop button.

R28.3 Setup and Runtime Diagnostics

 Most of the diagnostics listed here are produced by errors in commands, not by problems
that arise during estimation of a model. Most of these diagnostics are self explanatory. A few
suggestions will be added where that may not be the case. Note, some diagnostic numbers have
multiple diagnostics, which will be grouped and listed with that number. In general, diagnostic
numbers are only meaningful to help you navigate through this listing. The numbers attached to
diagnostics are used internally in the program, but not specifically meaningful in this listing.

 1 Unrecognized command. (Missing ; ?).

The command is not one of the recognized commands. This can happen if you have a $
in the middle of a command and you submit extra lines. For example, the command(s)

PROBIT ; Lhs = y ; Rhs = x $

 ; Het

will cause this error if you submit both lines. The $ in the first makes the second look
like a new command.

R28: Diagnostics and Error Messages R-701

 2 Command is more than 10,000 characters.
This is usually caused by a command file that contains its own data. It should rarely
happen. The program is protected internally from this. However, you might actually be
trying to execute such a huge command. If so, it needs to be modified.

 Diagnostics 3 through 14 are produced when you try to read a data file with IMPORT or

READ.

 3 READ - ; not NREC,NVAR,FORM,NAME,FILE,STAR,BYVA.

The READ command has an unrecognized code following a semicolon.

 4 READ - error reading NREC (NOBS) or NREC was not given.

This should only occur if NOBS specifies a value that cannot be read or is not positive.

 5 READ - error reading NVAR or NVAR not specified.

 6 READ: Syntax error in format. Missing paren? Other error?

 7 READ - Data set is too large. Expand data area
 (Project...).

 8 READ - too many variables.

This is not likely. The limit is 899.

 9 READ - error or end of file occurs while reading data set.

Unexpected end of file will usually not be the problem. A file with bad data in it, such
as alphabetic data in a Fortran formatted file can cause this.

 10 READ -error or end of file reading variable names or format.

 11 READ -Converting ;BLANKS. Command must give ;FORMAT=(...).

 12 READ -Names=list or in file. Not enough names were given.

Check this against NVAR given in the command.

 13 Expected OPEN;INPUT=..., OPEN;OUPUT=..., LOAD/SAVE;FILE=...

 14 READ - unformatted read, a record contains erroneous data.

 15 OPEN - expected = sign not found.

The command is supposed to be OPEN ; Input = the name of the file $.

 16 OPEN - expected ; or $ was not found.

The command must end with a $. This is an unlikely error, as a $ or ; is going to be
found eventually.

 17 OPEN - expected to find INPUT=filename or OUTPUT=filename.

 18 READ;...;BLANKS. Maximum line length = 500. Line is too long.

R28: Diagnostics and Error Messages R-702

 19 OPEN, LOAD, SAVE, READ, or WRITE. Could not open the file.
This may mean the pointer to the file did not actually locate the file. Try enclosing a file
name in double quotes. This is necessary if the file name has spaces in it. It may also
occur if some other program is using the file.

 20 ROWS - The value is too small. Just use SAMPLE;1-value $.

 21 CALC - Too many subexpressions in parens. Unable to compile.

 22 READ. An invalid name spec was found in file or command.

Names must begin with a letter and have no more than eight characters.

 23 Warning: F or chi-squared <= 0. Check regression for errors.

 24 File system error. Cannot OPEN the indicated file.

The disk drive may be empty, or the file may be in use by other software.

 25 MATRIX;{calc command}expression. Did not find closing },),].
 This error often occurs when something else is wrong. For example, if your MATRIX
 command contains a variable name where a matrix name is expected, or there is a comma
 out of place, this error can occur.

 26 REJECT or TVC-Wrong number of operators >, &,... Mismatched.

 27 REJECT or TVC - &, +, or $ was found where >,<,... expected.

 28 REJECT or TVC - >,<,... was found where &, +, or $ expected.

 29 REJECT:0 obs. in resulting sample. Current sample restored.

 30 CREATE/CALC ;...Unmatched parentheses in current subcommand.

 31 Panel model. You have only one group. Check STR/PER variable.

 32 Model command. Start values. Unreadable or wrong # given.

 33 PROC,EXEC,OPEN,SAVE,LOAD,SHOW in proc.

These are commands that cannot appear in procedures.

 34 Proc. buffer full, 10,000 characters or > 50 commands in a
 proc.

 35 REJECT/SAMPLE - Maximum sample size for command exceeded.

 36 SAMPLE - did not find ; or $ where expected.

 37 SAMPLE - value given in sample specification not a number.

 38 SAMPLE - range n1-n2, n1<=0,n2<=0, n1>nrec, n2>nrec, n1>n2.

A SAMPLE command must have a range of values from low to high. The maximum
sample size may be seen at the top of the project window – this is nrec.

R28: Diagnostics and Error Messages R-703

 39 Poisson. Invalid limit given for censoring model.

 40 Poisson. Truncation model requested, but no limit given.

; Truncation must be accompanied by ; Limit = value.

 41 Error in variable list given for HFN, HF1, or HF2.

Check the list of variables. At least one of them does not exist.

 42 MATRIX - in IF[value1 rr value2] -] precedes value2.

This is a syntax error. It looks like the closing bracket is in the wrong place.

 43 ORDERED PROBIT - Current estimates thresholds not ordered.

This is only a warning that occurs during estimation. Results will follow. It can usually
be ignored, but if the procedure breaks down, this is likely to have preceded the failure.
If you have a large sample and your dependent variable almost never takes at least one
of the interior values, expect this diagnostic. Note diagnostic 44.

 44 ORDE,Panel,BIVA PROBIT: A cell has (almost) no observations.

Estimation of the thresholds requires values in all cells. A (nearly) empty cell makes
estimation of the thresholds impossible.

 45 LOGNORMAL REGRESSION - nonpositive values for lhs

variable.

 46 REGR;CLS: - Specified constraints not linearly

independent.

 47 GROUPED DATA - must have at only 3-18 cells (limit

values).

 48 NAMELIST name conflict. Could not construct namelist.

This will be accompanied by an explanation, such as the name you tried to use was
already in use for a matrix or scalar.

 49 GROUPED Y > # limits + 1. Bad data or too few limit values.

 50 Complex roots: Cannot compute eigenvalues of matrix.

It was not possible to obtain a solution. Some matrices produce this. It is not an error.

 51 CREATE - did not find expected = in expression.

 52 CREATE/DATA or Probit;HOLD. No room for a new variable.

 53 CREATE/REJECT. Expression too complex. Over 50 parentheses.

 54 NTOBIT: You must specify two LHS variables for this model.

 55 HFN, HF1, or HF2. Too many variables. The limit is 75.

 56 Not used.

R28: Diagnostics and Error Messages R-704

 57 List in DTA function contains an unknown variable.
This diagnostic is no longer used. It should not occur. If it does, use CREATE ;
Namelist name = matrix name $ instead.

 58 CREATE-Data must be alone w/o IF() or other transformation.

When you move a matrix into a variable or namelist, do not include any sort of
condition, such as If(...).

 59 Cannot ID the name above. (Not a Matrix,Variable,Function).

The transformation in the CREATE command contains an unrecognized name. Some
transformations allow any of the types above, so all the tables are searched before this
error occurs.

 60 CREATE - Arguments in a DOT function are not conformable.

 61 Compilation error in CREATE. See previous diagnostic.

 62 SURE using MLE - Model is too big. # xs > 100 or # ys > 20.

 63 SURE w/MLE - Missing or bad Pattern list or bad CLS: list.

 64 CREATE - in parsing IF(...)... did not find closing).

 65 MATRIX;name=value*result. Problem interpreting value.

 66 REGR ; PANEL This command must provide ;STR=variable.

 67 Matrix element in an expression has an invalid subscript.

 68 MATRIX;name=result. Name is a reserved MATRIX name (e.g. B).

 69 WALD,NLSQ,MAXIMIZE. Cannot translate the listed string.

 70 Cannot compute TSCS with only one group.

 71 Variable list contains a name not in the expected table.

This is a general error that can occur in many contexts. The command involves a list of
variables, and at least one of them does not exist. Check the names against the project
list.

 72 All models. List of names, including namelist is too long.

 73 Expected , or ; or $ in list of names was not found.

 74 NAMELIST - Table is full; can only keep 10 NAMELISTs.

 75 NAMELIST: Syntax error. Expected = or DELETE not found.

 76 EXECUTE - no procedure has been stored yet.

 77 NAMELIST - name in a namelist is not a valid variable name.

R28: Diagnostics and Error Messages R-705

 78 NAMELIST - Namelist may contain up to 100 variable names.

 79 EXECUTE - specification not ;N=n or ;T(j)=value or ;QUERY.

 80 EXECUTE;N=value$ value is invalid or unreadable as a number.

 81 Model command - specification aaa in ;aaa not recognized.

 82 ;LHS - variable in list is not in the variable names table.

 83 RHS/RH1 variable or MATRIX in list not in the names table.

 84 INST/RH2/SKIP variable in list not in the var. name table.

 85 ;WTS - variable not in table or nonpositive weight found.

 86 Not used.

 87 EXECUTE;T(j)=c$ j is not 1, 2, or 3 or c is erroneous.

 88 QR or LDV model. Found a bad value for dependent variable.

 89 REGR;ALG=GRID(l,u,d) - one of the values is not readable.

 90 ;MAXIT=n - n is not a valid number.

 91 ;OUTPUT=n - n is not a valid number.

 92 REGR;PLOT(variable) - variable is not in the names table.

 93 REGR;ALG=GRID(l,u,d) - invalid value given for l, u, or d.

 94 Model command must include the ;RHS or ;RH1 specification.

 95 ;SEP=variable name - variable name not in the names table.

 96 ;LIMITS=item,item,.. - item is not a valid name or number.

 97 The model command must include the ;LHS specification.

 98 The model command must include ;RH2 or ;INST specification.

 99 ;PDS/INT/RHO/PTS/PERIODS=n. Bad # or inconsistent if panel.

In the ; Pds = value form, in a panel, the value must be reasonable, and the full sample
size must be an even multiple of it.

100 ;HOLD(*) - * not NDX, or IMR; no , or); or unknown name.

101 LOGIT - one of the cells (outcomes) has no observations.

102 LOGIT - likelihood cannot be computed at current estimates.

R28: Diagnostics and Error Messages R-706

103 LOGIT - Number of LHS vars is too large. Bad model setup?

104 DISC - Singular Hessian.

Look for an attribute that does not vary across choices. If you have one, use ; Rh2 for it.

105 ARMAX or other model. Unable to forecast with missing data.

106 DISC - A choice was (almost) never chosen, empty cell.

107 DISC - Observations in data not a multiple of # of choices.

108 DISCRETE CHOICE;CHOICES=list... - Name has > 8 characters.

109 ;CLS/RST - error in syntax. Check specified constraints.

110 ;RH1=list - a variable in the list is not in names table.

111 ;RH2=list - a variable in the list is not in names table.

112 ;CHOICES=list - DISCRETE CHOICE requires this spec.

113 PROBIT;START=list;LOAD or INCI or BIVA. Check start values.

114 CALC - RAN(seed) - seed is not readable.

115 CALC ; DOT(z1,z2) must be (var,var) or (matrix,matrix).

116 CALC - Unable to compute result. Check earlier message.

This is a general diagnostic that is issued after it becomes impossible to translate a
command or calculation. An earlier diagnostic will show the error.

117 CALC Vectors in DOT(x,y) have different number of elements.

118 CALC The name used is reserved for estimation results.

119 MATRIX - QFRI or QFII. Inner matrix of q-form is singular.

120 CALC Unable to find a solution for internal rate of return.

121 MATRIX - QFRI or QFII. Quadratic form is singular.

The quadratic form can be computed, but the result cannot be inverted.

122 CALC - Cannot identify matrix given in ROW or COL command.

123 MATRIX ; name(subscript) = value expected, bad syntax.

124 MATRIX - name=result. Name is a reserved CALC name (e.g. S).

125 CALC ;Rn=fcn(list) too few or bad values given for function.

126 CALC zero divide or function cannot be computed at value(s).

This error also occurs when the result of a calculation will be infinitely large or small.

R28: Diagnostics and Error Messages R-707

The following errors arise when computing a set of least squares coefficients. Many models use this
program to compute starting values, so these OLS generated errors can arise in the context of almost
any model.

127 Models - Sample sum of weights is less than or equal to 1.0.

128 Models - Insufficient variation in dependent variable.

129 Models - Variable i (i is given) has no variation.

130 Models - Regression; insufficient degrees of freedom.

131 Models - Regression; regressors are collinear.

132 Models - Regression; sum of weights < number of parameters.

The following errors will occur during estimation of a specific model. They will precede or occur at
the same time as the 800+ errors listed in Section R17.2.

133 MINIMIZE/NLSQ/SURE: Syntax error in or missing LABELS=list.

134 Models - Unusable starting values. Unable to continue.

135 Models - singular Hessian during Newton iterations.

136 Models - Maximum iterations exceeded by Newton iterations.

137 Iterations: function not computable at crnt. trial estimates.

138 Models - Maximum iterations in Steepest Descent or DFP/BFGS.

139 Line search no longer improving function. Check results.

The iterations are probably about to terminate. Check the derivatives. This may be near
enough to the maximum for the results to be useable. If need be, add ; Output = 3 to the
model command to produce a list of derivatives.

140 Not used.

141 Iterations - current or start estimate of sigma nonpositive.

This is a warning. It often happens during iterations, but a solution is obtained anyway.
Just means a bad trial value. See Section R8.4 for discussion.

141 Survival scale parameter not positive
 Selection scale parameter not positive
 These errors occur during estimation of a survival model subject to sample selection.
 They are transient warnings, not errors. Estimation will continue

142 Estimated correlation is outside the range -1 < r < 1.
 Same sort of problem as in error 141.

R28: Diagnostics and Error Messages R-708

143 Models - estimated variance matrix of estimates is singular.
This often happens after what looks like successful estimation. Try reducing the model
to find out why it occurs.

In the following matrix diagnostics, there are many references to functions that now have simple
equivalents that will usually avoid the diagnostic. For example, PART(b,1,value) might now be
b(1:value) and Xcpm(X) would normally be X’X.

144 MATRIX - INDX - matrix has different # of columns from LHS.

145 MATRIX - INDX - expected namelist or variable name on LHS.

146 MATRIX - C(j)=CHNG(B1,B2). B1,B2 must have same dimensions.

147 MATRIX - C(j)=NORM(B1),CHNG(B1,B2). B1, B2 must be vectors.

148 MATRIX - C(j)=NORM(B1) or C(j)=CHNG(B1) - B1 not defined.

149 MATRIX - C(j)=proc().proc() must be NORM, CHNG, or a number.

150 MATRIX - expected ; or $ or },], or)not found.

151 MATRIX - expected = not found where expected.

152 MATRIX - MATRIX;C(j)=...$ j is not 1, 2, or 3.

153 MATRIX - names table is full (100 names). Use DELETE.

154 MATRIX - procedure name (name = proc(list)) not recognized.

155 MATRIX - Procedure requires a computed, not a data matrix.

156 MATRIX - Procedure requires a data, not a computed matrix.

157 MATRIX - A=proc(list)$ There is a bad value in list.

158 MATRIX - A=LOAD(list)$ list contains wrong number of values.

159 MATRIX - A=LOAD(list)$ Number rows or columns not positive.

160 MATRIX - A=PART(B...)$ syntax. , or ; or) not found.

161 MATRIX - A=PART(B,list)$ list must contain 2 or 4 values.

162 MATRIX - A=PART(B,r1,r2,c1,c2)$ invalid for dimensions of B.

163 MATRIX - A=proc(B...)$ B is not the table of matrix names.

164 MATRIX - A=INIT(r,c,v),IDEN(r),IPDL(r,c). Bad or short list.

165 MATRIX - A=INIT(),IDEN(),IPDL(), row or column invalid. 0?

R28: Diagnostics and Error Messages R-709

166 MATRIX - A=INDX(B,...), # of columns of A and B must match.

167 MATRIX - matrix name in proc(list) is not in table.

168 MATRIX - namelist in output of proc may not contain ONE.

169 MATRIX - A=[B1/B2]. Matrices must have same number of columns.

170 MATRIX - A=[B1,B2]. Matrices must have same number of rows.

171 MATRIX - GINV, SINV, SQRT, ISQR, DTRM - nonsquare matrix.

172 MATRIX - VECD(B) or RNDM(,sigma) - matrix B is not square.

173 MATRIX - DIAG(B) - matrix B is not a row or column vector.
174 MATRIX - CVEC(B) - matrix B is not square.

175 MATRIX - procedure requires two matrices.

176 MATRIX - QFRM/QROW-B1 and B2 not conformable for QFRM/QROW.

177 MATRIX - MSUM or MDIF, matrices must have same dimensions.

178 MATRIX:MPRD(B1,B2,...) or MPLOT, matrices not conformable.

179 MATRIX - MTPR or MTTP(B1,B2) matrices are not conformable.

180 MATRIX - RNDM(mu,sigma). Mismatch of dimensions of mu&sigma

181 MATRIX - MIPR(B1,B2) - B1*B2 is not square - cannot invert.

182 MATRIX - MPRI(B1,B2) - B1tB2 is not square; cannot invert.

183 MATRIX - MIPR(B1,B2) - B1 and B2 are not conformable.

184 MATRIX - SCLR or REPL - lhs matrix must already exist.

185 MATRIX - GINV,SINV,CHOL singular, not P.D. if SINV or CHOL.

186 MATRIX - SQRT, ISQR, or, ORTH - nonpositive root.

187 MATRIX - MIPR(B1,B2) - B1 is singular; unable to proceed.

188 MATRIX - MPRI(B1,B2) - B1tB2 is singular.

189 MATRIX - XDOT,XCPM,XVCM,XCOR,XLSQ - namelist must be first.

190 MATRIX - XDOT,XCPM,XVCM,XCOR,XLSQ:namelist or var. is 2nd.

191 MATRIX - XDOT,XCPM,XVCM,XCOR,XLSQ;variable must be 3rd.

192 MATRIX - XLSQ - columns of specified matrix are collinear.

R28: Diagnostics and Error Messages R-710

193 MATRIX - result is too large for buffer. (rows*cols> 22500).

194 MATRIX - XMLT,XSTD,XORN,PCOM - LHS namelist does not exist.

195 MATRIX - XMLT - expected matrix name or variable on RHS.

196 MATRIX - XMLT - RHS matrix not square, same # columns as X.

197 MATRIX - XSTD or XORN - a variable in list has no variation.

198 MATRIX - XORN - Correlation matrix has a nonpositive root.

199 MATRIX - PCOM - Invalid matrix name given on RHS.

200 2SLS - Too few instrumental variables or they are collinear.

201 SELECT - selection leaves insufficient degrees of freedom.

202 SELECT - variance matrix for criterion equation is singular.

203 POISSON or NEGBIN: Negative or noninteger value in LHS var.

204 DSTAT;PDS=N...$ - matrix for partial autocors is singular.

205 CREATE;namel=namer[-lag]$ lag is not a valid integer.

206 CREATE;namel=namer[-lag]$Syntax error, [not where expected.

207 CREATE;namel=namer[-lag]$namer must be an existing variable.

208 MINIMIZE;...$ Start values not given or contain bad values.

209 MINIMIZE; The IV estimator is only for nonlinear 2SLS.

210 MINIMIZE;FIX:...$ Too many fixed values, or bad spec.

211 SURE or 3SLS;.. EQn variable list has an unknown variable.

212 SURE or 3SLS:EQn=list. n is invalid, nonpositive or > 20.

213 SURE or 3SLS;resid. cov. mat. singular;LHS vars. collinear?

214 Not used.

215 Model too large.K>150,>120 for SELE,>100 for 2SLS or MINI.

216 REGR, SURE, or 3SLS. Params*# of constraints must be < 401.

217 SELECT must be preceded by PROBIT or LOGIT with ;HOLD.

218 MATRIX;STAT(B,VB) problem with names B or VB.

219 MATRIX;STAT(B,VB) B or VB has inappropriate dimensions.

R28: Diagnostics and Error Messages R-711

220 SAVE/LOAD -- Read or write error with binary file.

221 The data on the LHS variable appear not to be coded 0,1,2...

222 Input file: Read error reading command.

223 Any regression: OLS gives a perfect fit; check model.

224 LIMDEP/NLOGIT: FIML not enabled. This feature not available.

225 CREATE;x=DTA(m);...$ DTA must be the only transformation.

226 MATRIX; a list of values is given but not assigned a name.

227 Matrix;[list/list/...] lengths of lists are inconsistent.

228 Matrix loaded with [list/list/...] Bad values or unknown name.

229 Matrix: Unable to translate command. Check for syntax error.

230 PROC=name{...}$ Expected to find }$ to end command. Syntax.

231 Cannot accurately compute probabilities for F(p,1,1),P>.999.

232 Noninteger degrees of freedom given for t, F, or chi-sqrd.

233 Matrix - Out of room. Unable to save result of computation.

234 Matrix - name=QFRI(A,B)... B is not positive definite.

235 NLSURE requires more than one LHS variable/Equation.

236 APPEND - there are insufficient rows to append the data.

237 APPEND - Requires too many new variables to be added.

238 WARNING!! All 3 convergence rules =0. Will never exit iters!

239 Test:... or Cls:... the j in B(j)... is > # of coefficients.

240 ;LIMITS=matrix... bad specification, too many or bad values.

241 Poisson/NegBin: Cannot compute function - extreme values.

242 NLSQ:Wrong number of start values - need one for each label.

243 File system error. Files may not be opened by PROCEDURES

244 SELECT. Corrected s.e. < 0. Check for bad or missing data.

245 READ: NOBS too large to store.

R28: Diagnostics and Error Messages R-712

246 Poisson/NegBin w/ panel. Cannot compute fn at current parms.

247 Not used.

248 2 way panel data, # periods > 20000?? Check ;PERIOD variable.

249 Random effects. Did not find positive estimated component.

250 SURE/3SLS; SIGMA = matrix. Matrix was not in the table.

251 ;STR=variable name (ORDE,SURV,CRMO/PANEL). Name not found.

Stratification variables are used in several places. This is a general diagnostic. The error
is also produced by MATRIX panel data functions, and the ; Sep = variable specification
in SWITCH.

252 Not used.

253 REGR;DFR=list. List contains a bad or unreadable value.

254 REGR; robust OLS variance estimator. Model too big. (K>100).

255 MATRIX; Matrices not conformable for operation. Check sizes.

256 CREATE:Internal table overflow. Break command into parts.

257 SURV:...There is insufficient space left in the data array.

258 SURV Stratification variable has too many or invalid values.

 Too many effects: Obs=<NNNNNN> Group=<NNNNNN> Limit=<NNNNNN>
 Invalid group ID for effects model. I=<NNNNNN> ID=<NNNNNN>
 No obs. found for group <NNNNNN> in effects model.

These diagnostics occur with the Cox model with fixed effects. They will usually occur
because of a badly coded group identifier or stratification indicator.

259 SURV;PLOT... Unable to find regressor vector(s) for plotting.

260 SURV;PLOT Regressor vectors have wrong number of elements.

261 SURV Maximum of 100000 observations exceeded. Cannot continue.

262 SURV;STR... Invalid stratification. Unable to continue.

263 Not used.

264 ;Keep=name and/or ;Res=name - no room left for new variable.

265 POIS;MODEL=N... No evidence of overdispersion. Use Poisson.
266 EXEC;rname=F,L[,D]. No repetitions.int(|L-F|[/|D|]) is zero.

267 EXEC;RNAME=F,L,D. One of F<L & D<0 or F>L & D>0 or D=0.

R28: Diagnostics and Error Messages R-713

268 EXEC;RNAME=F,L,D. excessive repetitions (over 30000!).

269 EXEC;RNAME=list.No scalars left to create the loop index.

270 Not used.

271 GMM: Covariance matrix for moments or estimates is singular.

272 2SLS or SELECT. Using 2sls. Negative R-squared. (Warning.)

273 SURV ; RH2 = ... $ Inadequate censoring split for model.

274 SURV;RH2... $ Not available for Prop. Haz. Forget MODEL=..?

275 SURV;Log-linear model. Data are not in log-form. Transform.

276 Model...;LIMITS=list. Too many values. Limit is 20.

277 WKx/DIF/XLS file has an unexpected format. Cannot continue.

278 WKx/DIF/XLS.Numeric data found where var name was expected.

279 READ. Data input from a WKx file must be stored internally.

280 Box-Cox. The model cannot be fit with the values provided.
 The Box-Cox transformation cannot be computed for negative values.

281 OPEN or WRITE error on last command. Disk problem? Missing?

282 LOAD command. Problem with file OPEN or READ. Restarting.

283 SURVIVAL. No variation in LHS variable! Cannot compute.

284 Output file is corrupted. Closing to keep current contents.

285 WRITE or READ requires a file name. (WRITE/READ;FILE=...)

286 WRITE command. ;FORMAT=something unidentifiable. Expected (.

287 > 899 variables in project file! StatTransfer or DBMS Copy?

288 RENAME:The NEW name is already in use. Use a different one.

289 Not used.

290 RECODE Error: Syntax, Number of values or Unreadable value.

291 Error in RENAME command. Must be OLD_NAME = VALID_NEW_NAME.

292 Error in STRING command. Must be STj = string, j=1,2, or 3.

293 MATRIX MVEC(name,r,c). name is not the name of a vector.

R28: Diagnostics and Error Messages R-714

294 MATRIX command contains unbalanced (), <>, [], or {}.

295 MATRIX MVEC(name,r,c). Too few elements to make rxc matrix.

296 MATRIX MVEC(name,r,c). Too many elements for an rxc matrix.

297 Invalid # rows in matrix of quad/bilinear form in MINIMIZE.

298 Quad/bilinear form badly dimensioned. Cannot compute it.

299 READ;...;NKMAX=value. Value is <200000 or invalid.

300 Not used.

301 LOAD. File too large. Use Project:Settings/Data area to reset.

302 Calc. No room for new scalars. Use DELETE to make space.

303 CREATE. Division by a zero standard deviation.

304 CREATE has too many subcommands (> 100). Break up command.

305 CREATE: Errors occurred which prevented transformations.

306 CALC. NTB. P too close to 0 or 1. Can’t get X accurately.

307 ;TLF=f ;TLB=b ;TLG=g Value given, f, b, or g is unreadable.

308 ;SMOOTH=value for MSCORE. Value is not readable.

309 ;TIES=n, ;END=n, ;QNT=q for MSCORE. Value given is bad.

310 Computing restricted least squares. R*VAR(b)*R’ singular.

311 Probit: Data on Y are badly coded. (<0,1> and <=0 or >= 1).

312 Ordered: Bad stratification variable or too many strata.

313 Stepwise. No variables pass selection rule to enter. Y = a.

314 Residual Plot. Too many to residuals to plot.

315 Stoch. Frontier: OLS residuals have wrong skew. OLS is MLE.

This is a theoretical issue, not a program problem. If the OLS residuals are skewed in
the wrong direction, the MLE for the stochastic frontier is OLS. This usually means that
there is no evidence of inefficiency in your data. We emphasize (since this is a
frequently asked question), this is a data issue. When this condition arises, it is because
the data and the model, at least the current specification of it, are inconsistent. There is
no ‘fix’ other than a different model or specification.

316 Crosstab: One of the variables is always <= 0 or >= 50.

R28: Diagnostics and Error Messages R-715

317 Plot. Number of values is too large for plotter. (> 15000.)

318 Identify ; Rhs = variable. You forgot to include ;PDS = T.

319 Dstat;RHS=LIST ; Quantiles $ Too many observations (>22000).

This will also arise if the sample is > 4000 for plots or > 100000 for histogram.

320 ;2Step=NAME. Is NAME OK? Preceded by Probit or Logit?

321 SURV:Proportional Hazards. Fixed values setup is incorrect.

322 MSCORE. Too many observations.(10000 is the limit.)

323 Panel:Sum[N(i)] < K+1. Check STR variable. Use Matr;Gsiz(var)$.

324 READ;FILE=name...$ The data file was not found when expected.

325 MATRIX:Panel. Stratification variable is bad or missing.

326 Work space overflow. Too many lines of names in data file.

327 Closing command file to prevent reading data as commands.

328 FORMAT in READ;BLANKS. Slash format may not be inside parens.

329 FORMAT in READ;BLANKS. Parens may not be nested to 3 levels.

330 FORMAT in READ;BLANKS. Repetition N(...). Error reading N.

331 REGR;PANEL. ONE found in RHS with 2SLS. Redo without ONE.

332 READ. Your data set is too big to fit internally.

333 FORMAT provided for READ command has unbalanced parens.

334 ROWS;max$ The value given is unreadable, < 100, or too big.

335 SURV;...$ Unable to obtain start values for Gompertz model.

336 SELECT w/ 2SLS. Mismatched numbers of RHS & INST variables.

337 SELECT;bivar probit: Unable to find DELTA1 and/or DELTA2.

338 Selection data are incorrectly coded. Unable to continue.

This is produced by the two treatment model.

339 SURV ; LIMITS ...$ You have given more than 2 limit values.

340 SURV;WTS=matrix for S. The matrix you gave is the wrong size.

341 SURV with TVCs. (log) Normal model is not available here.

R28: Diagnostics and Error Messages R-716

342 SURV with TVCs. Truncation not allowed in this model.

343 SURV with TVCs. Splitting model not allowed in this model.

344 LOGIT/Fixed effects. Cannot compute P. (Sum(yi) near 0 or T).

345 Note:MAXIT=0 set by user. LM stat. kept in scalar LMSTAT.

This is not an error. The program is telling you what it is doing with the statistic.

346 SURVIVAL. Unstable estimates. Unable to plot distribution.

347 ORDERED Probit or Logit. Too many cells. The limit is 50.

348 ORDE;HAZ;ENDPOINTS=list$ Bad vals., wrong number, not ordered.

349 TSCS. Not enough workspace for your problem. K or N too big.

350 TSCS. Inconsistent (or nonexistent) values for T. PDS=????

351 FRON:Cannot have both PDS and an NTIME variable in command.

352 Model with Panel. Sum of N(i) not equal to full sample size.

353 Internal error. Unable to convert a date. Check last command.

354 DATE;YEAR[.mth] or [.qtr]$ Year must be 4 digits. < 1000 ?

355 DATE;YEAR.??$ Expected valid month or quarter not found.

356 DATE;YEAR.Q$ found, but Q is not 1, 2, 3, or 4 as expected.

357 PERIOD command found. Your data are undated. Use DATE first.

358 PERIOD command is not of the form PERIOD ; Begin - End $.

359 PERIOD command specifies invalid date or END before BEGIN.

360 CREATE:Parameter in STD(x),XBR(x),DEV(x) must be a variable.

361 HISTOGRAM:Too many limits (> 39) or intervals (> 38) given.

362 HISTOGRAM:No values found in specified or default ranges.

363 MATRIX:XDOT or other moment matrix. Missing data. No result.

364 FPLOT: Command must include ;PTS = number of points to plot.

365 FPLOT: Command must include ;LIMITS=lower,upper for range.

366 FPLOT: ;LIMITS=L,U. L and U must bracket the start value.

367 FPLOT: Command must include ;PLOT(label).

R28: Diagnostics and Error Messages R-717

368 PROBIT;Random Effects. K too big (>40) or T too big (> 75).

369 PROBIT;Panel:Options RH2 and grouped data not allowed.

370 PROBIT;Random Effects: Problem is too big. K x T > 1000.

371 MATRIX: LADB function is limited to K>=1 & K<21 and N<=5000.

372 CALC: You may not change the loop variable of EXEC;loop=..$

373 CALC: Do not use N on the left of an equals sign.(Reserved).

374 MSCORE ... ; TIES $ File error opening work file for ties.

375 Not used.

376 Not used.

377 Command OPEN;FILE=name$ is not valid. Use INPUT or OUTPUT.

378 EA/LimDep - TSCS models are limited to 20 groups.

379 EA/LimDep - SURE/3SLS are limited to 5 equations.

380 A READ error has occurred while reading from your file.

381 An error occurred opening the file requested.

The file name is given.

382 An end of file error has occurred reloading from the file.

383 LHS must supply 1 matrix, C, for simplex method.

384 LinProg:No. of limits in Xl or Xu must = no. of values in C.

385 INPUT files cannot open other input files.

386 LinProg:Limit specifications, ;LIMITS=Xl,Xu needed for LP.

387 SAVE LOAD SHOW must be followed by ;FILE=name$.

388 LinearProg:Number of activities is limited to 300 for LP.

389 File conflict. Opening current input for output or vice versa.

390 READ/WRITE;UNIT=number. number was unreadable. Check command.

391 LnPrg:Matrix A must contain NX+2 cols. NX=no. of values in C.

392 WRITE;format=binary... File name must be given for binary.

393 LP: Number of constraints must not exceed 300 (rows in A).

R28: Diagnostics and Error Messages R-718

394 BOXCOX:Values too large. Model is explosive. Scale your data.

395 BOXCOX:;LAMBDA=value not found or MODEL=3 & no THETA found.

396 BOXCOX:With ;PTS=n, you must give lower,upper or l,u,theta.

397 BOXCOX:Weights for hetero. model must be > 1. Rescale W(i).

398 Bivar.Probit:Hessian not PD. WESML VC not computed. BHHH used.

399 MNAME(first:last). Check syntax. First or last is bad.

This is produced by extracting part of a matrix.

400 MNAME(first:last). Matrix size exceeded by this address.

You have specified bad dimensions. Check the matrix size.

401 MATRIX. CXRT/complex roots. Nonconvergence. Cannot compute.

402 Name conflict. This will cause some commands not to work.

403 Using default name:YFIT for prediction/RESID for residuals.
 Either the name you gave was not useable, or no name was given.

404 PROBIT. More than one LHS variable given. Grouped? Use ORDE?

405 WALD test. VC matrix specified is wrong size or not square.

406 Not used.

407 Not used.

408 WALT test. No functions -- FNj=... -- found on command line.

409 Matr;name(*,J)=vec. Not a vector, unknown matrix, or bad J.

410 HREG:Estimates diverging. Variances vanishing or exploding.

411 ARMAX: Moving average terms are explosive. Exit iterations.
 This tends to happen when you are using the wrong model.

412 ARMAX: Model has too many parameters. Unable to estimate.

413 ARMAX: Model has no MA terms. Use REGRESS to estimate it.

414 ARMAX: Not enough observations to fit model.T-d-p-q-K < 11.

415 ARMAX: Singular derivatives matrix Cannot invert GtG.

416 ARMAX:More than 20 iterations.Cannot find initial MA terms.
 The model is not consistent with the data. This is the wrong model for these data.

417 ARMAX: You tried to forecast beyond maximum ROWS of data.

R28: Diagnostics and Error Messages R-719

418 SURE/3SLS: The AR1 models are not available for 3SLS.

419 Improper function setup. Expected BVN(x,y,r). Ambiguous.

420 DISC: Count variable for number of choices must be wrong.

421 MODEL;... Current sample setting has no observations.

422 PROC=a new name. You already have 10 procs. defined.

423 EXEC ; PROC = name. PROC does not exist yet. Cannot run.

424 REGR;PANEL;AR1: AR1 is not available with a two way model.

425 REGR;PANEL. Could not invert VC matrix for Hausman test.

426 NLSUR;LHS=list. Number of variables not equal to # of eqns.

427 NLSUR or WALD. You must specify eqns with ;Fn1=...;Fn2=...

428 NLSUR. Unknown name given with ;SIGMA=name.

429 NLSUR ;SIGMA=name. Wrong dimensions. (R or C not = # eqns.)

430 NLSUR ;SIGMA=name. SIGMA matrix is not positive definite.

431 DISC;nested logit. Not enough work space for VC matrix.

432 Not used.

433 SELECT..;with 2 treatments. Did not find VDELTA (bi-probit).

434 Matrix: [a] or <a> defines diag. matrix > than 150x150.

435 You can use a different setup to avoid huge matrices.

This is just a tip, not an error. LIMDEP almost never needs to compute huge matrices.

436 Matrix: <var.> creates vector longer than 22500 elements.

437 Matrix: <matrix> attempts to invert a nonsquare matrix.

438 Matrix: <matrix>. Cannot invert. The matrix is singular.

439 Matrix: <matrix>. No inverse. Zeros on the diagonal.

440 Matrix: [result]. This construction is not meaningful.

441 Matrix:..<..>.. or ..[..].. Did not find closing > or].

442 Matrix: The expression contains an unknown name.

443 Matrix: ..<..>.. or ..[..].. Term must define a vector.

R28: Diagnostics and Error Messages R-720

444 Matrix: <scalar>. Scalar is 0. Cannot take reciprocal.

445 Matrix: Diagonal middle matrix has wrong number of terms.

446 Matrix: Matrices are not conformable for multiplication.

447 Current estimated covariance matrix for slopes is singular.

448 More than 10 DOxx loops in PROC. Limit is 10.

449 DO... Syntax error. Expected DO..;label;control $.

450 Found NAMELIST:index. Invalid index, < 0; > # of variables.

451 Maximum iterations. Exit status for parameter search = 2.
 This is a generic diagnostic used by the optimization routine.

 Counters for panel data:
 Counter <=0:<nnnnnn>. Row=<nnnnn> group=<nnnnn>.
 Counter variable does not match the sample.

These diagnostics are produced by the CREATE command for computing moments for
panel data.

 Could not compute ADF. See previous diagnostic.
 Unstable equation in lagged differences. Sum is >= 1.
 Perfect fit in ADF regression equation. EstVar[c]=0.
 Sample has too few observations to carry out test.
 Moment matrix for ADF (regression) test is singular.

These diagnostics are generated by CALC when attempting to compute the augmented
Dickey Fuller test statistic.

 You must OPEN;EXPORT=file before exporting results.
 Write error exporting matrices to CSV file.
 MATRIX and CALC will both check for problems exporting results to a CSV file.

 Number of start values must match # vars. in RHS.
 Did not find */-+ or > in scenario specification.
 Unknown variable name in scenario specification.
 Variable in scenario does not appear in the RHS.
 Bad value found in scenario specification after = sign.

These diagnostics are produced by the BINARY CHOICE command used after PROBIT
or LOGIT to analyze the predicted probabilities.

Using ;PDS=number. NOBS not a multiple of number.

 Group count variable is mismatched to full sample.
 The number of variables for TABLES must be less than 11.
 Invalid weighting variable. Nonpositive values were found.
 Number of strata > 5000! Tables overflowing. Must exit.
 Use only one of ;PDS, ;CLUSTER or ;STR in the command.

These diagnostics are produced by the TABLES command for analyzing panel data on a
variable.

 Quantile Regression needs nK <= 200,000 and n < 10,000.

R28: Diagnostics and Error Messages R-721

452 Cannot sample <nnnnnn> from <nnnnnn> without replacement.
Your DRAW command specifies more draws than there are observations in the sample.

 Bootstrap sample exceeds 100,000 obs. Must exit.
DRAW command for panel data.
Base sample for panel/bootstrap must be < 400,000.
DRAW ; PDS=spec. Could not identify spec.
Counter for panel group sizes is nonpositive.
Sum of counts is > full sample. Check variable.
Bootstrap sample is > 20000 groups. Must exit.
These diagnostics are produced by the DRAW command for panel data.

 Cannot compute ROC for N > 375,000 points, for N = ...

Cannot sample <nnnnnn> from <nnnnnn> without replacement.
Bootstrap sample exceeds 100,000 obs. Must exit.
Maximum current sample for bootstrap is 780,000.
These errors occur when using bootstrapping with panel data

453 Expected DRAW;N=number$ (;REP optional). Check syntax.
 Invalid N for DRAW, < 0 or > 100000 (20000 for panel)

454 This BIVARIATE probit model needs two LHS variables.

455 NAME....: Obs. in sample= nnnnnn, VALUE.

You have specified a badly coded variable for bivariate probit.

456 Obs= nnnnn Sum of Pij= x.xxxx. Should be 1.

Proportions data for bivariate probit do not add to 1.0

457 Selection bivar. probit states ;LIMITS=ja,jb.

The values ja and jb must be 1 or 0.

458 Selection: two treatments, looking for DELTA1 and DELTA2.

Either the matrices were not found or the ones found are the wrong size.

459 Selection: two treatments, looking for and not finding VDELTA.

460 Expression/eqn is too complex. Too many subexpressions,

3 value functions, scalars, or operations.
Simplify. This is from MAXIMIZE. It means your complicated expression has too
many components, and an internal table has overflowed. You must break the function
into parts, use subfunctions, or use more than one command.

461 LHS variable for binary choice model is not binary!

462 0/1 choice model is inestimable. Bad variable = <AAAAAAAA>.

463 Its values predict 1[<AAAAAAAA> = 0 or 1] perfectly.

R28: Diagnostics and Error Messages R-722

464 Error in or near ‘FFF...’
This is for the CALC command. The ‘FFF...’ will be the part of the command that could
not be translated.

465 CALC function, cannot identify a name in expression.

This depends on the context in terms of what kind of name the expression is looking for.

466 A CALC expression has mix of matrices and other things.

This diagnostic depends on context. Dot products, for example, must be two matrices or
two variables.

467 CALC: Dot product, vectors not the same size.

468 AAAAAAAA may not appear in an expression.

This gives the name of an entity, such as a namelist, that may not appear in the expression.

469 Current Rho = <value given>, using value to compute S2(e).

The current value of RHO is not useable. A recent valid value is being used instead.

Diagnostics 470 - 485 are produced by computations of functions and expressions by CALC.

470 Bad observation for CALC function <1 or too big.

This depends on the function.

471 Cannot compute <function given>; Parameter <nn>, is <description>.

The value might be too small, too large, less than one, etc. This depends on the function.

472 Did not find a variable in this NGI function.

This is the group size function in CALC.

 Test of proportions requires binary variables.
TST(x,y) function requires matrices &/or variables.
A sample is too small to carry out the test of equality.
A variable given for TST function has no variance.
Rank Correlation.
The function requires one or more variables.
RKC and CNC require at least two variables.
Harmonic and Geometric Means.
Harmonic mean needs a nonzero scale.
A variable in XGM or XHM is not a set of ranks 1,...,n.
Cannot compute geo./har. mean with negative values.
These diagnostics are produced by setups for the Tst function in CALC, used for testing
equality of means, variances or proportions.

473 Cannot compute matrix function with this parameter.

This depends on the function.

474 Did not find the variable for MIN, MAX, RMX function.

R28: Diagnostics and Error Messages R-723

475 Too many observations (>22000) for Med(...) function in CALC.

476 Not able to ID variable in SUM, XBR, SDV, VAR function in CALC.

477 NAMELIST: more than 1 name in SUM, XBR, SDV, VAR function in CALC.

478 REGRESSION function RSQ etc. has a nonvariable in it.

This is a CALC function.

479 CHK function needs both RHS and LHS of a model.

This is a CALC function.

480 CALC Computing RSQ, ESS, ... found missing values.

481 Binomial, Geometric, NegBin. Pi must be in [.05,.95].

This is a CALC function.

482 Binomial, Hypergeometric: n must be in [2,25].
 Poisson: Lambda must be > 0 and no more than 15.

Hypergeometric, NegBin., M must be in [1,99].
 Hypergeometric, P must be < 100.

Hypergeometric: m must be less than P.
These are all CALC functions used for drawing discrete probability distributions.

 Found [ELSE], but no prior IF[...] was set.
This is a logical condition in CALC.

483 Replications for MVN probabilities, bad or > 2000.

484 NAME on LHS of CALC function is not a valid name.

485 Cannot identify this name: <name is given>.

This is a matrix function in CALC.

486 TVC <nn> has too many operations (max=15).

Unable to identify operand <nn> in TVC <n>.
Cannot compute TVC <nn> Observation=<nnnnnn>.
This is for the Cox model with TVC. Check the specification of the TVC.

Data error. Individual <nnnnnn> has <nnnnnn> records?
Data error, Gompertz. Individual <nnnnn> record <nnn>
T=<xxxxx>.
Data error. Individual <nnnnnn> T0=xxxxx, T1=xxxxx. Invalid
values.
Data ended expecting <nn> more lines for individual <nnnnnn>.
Found <nnnnnnn> records, and <nnnnn> individuals.
Unexpected data configuration.
Gompertz model: Observation <nnnnn> duration < 0.
These diagnostics result from the parametric survival models with a sequence of
observation specific values per individual, denoted by <nnnnn>.

R28: Diagnostics and Error Messages R-724

487 <AAAAAAAA> is an invalid name. Names may not contain
<character given>.

488 <AAAAAAAA> is an invalid name. Names may not begin with

<character given>.

489 CONFLICT: <type of name> name <name is given> already used

as a <type, e.g., matrix>.

Diagnostics 490 - 495 are generated by specification of the SURE model estimated by MLE.

490 Label <AAAAAAAA> is repeated in labels list.

491 A name in the pattern is not among the labels.

492 Your pattern list has the wrong number of specifications in it.

493 Col <n> of your parameter matrix is all zeros.

494 Row <n> of your parameter matrix is all zeros.

495 Label <AAAAAAAA> does not appear in pattern matrix.

496 Namelist <AAAAAA> is no longer defined.

This is a warning. It is the result of deleting a variable.

497 Cannot compute function at current values.

This occurs during optimization. See Section R17.2 for related diagnostics. This may
stop iterations if no nearby value is known.

498 Skipping <nn> repetitions after error flag set.

This occurs during bootstrap iterations when invoked by EXECUTE command.

Setup FOR[variable(=values)] missing]. Cannot continue.
In FOR[variable...] variable name is not recognized.
In FOR{variable=list], list is unreadable or > 100 values.
In FOR[variable=list], list item is not an integer.
FOR[variable] implies more than 100 repetitions.
These diagnostics are produced by problems in setting up a model command with the
conditional MODEL ; For [condition] ; ... $

498 diag='Cannot use FOR[variable] during bootstrap iterations'
diag='No nonempty subsamples were found!'

499 DSTAT, Stratification variable value is > 50.

There are too many strata.

500 Variable <AAAAAAAA> has no variation. Cannot compute ACF.

R28: Diagnostics and Error Messages R-725

501 Bootstrap could not find estimated parameter <AAAAAAAA>.
Check the EXECUTE command.

501 GROUP=Name. Cannot identify the name. Check vars.
Histogram can only plot 4 groups at a time.
Data for multiple histograms must be 0 < x < 40
Data for multiple histograms must be integers 0-39

502 Matrix specified in bootstrap setup is not a vector.

503 Too few bootstraps were run to finish analysis.

The estimator wants at least as many replications as there are parameters.

504 Estimated result, <name given> never changed.

Bootstrap repetitions did not produce any variation in the item being estimated.

505 Negbin/ZIP/Het is over specified/inestimable. Use POISSON.

This happens if estimated θ goes to zero.

506 Use POIS ; ZIP ; ... for LOGIT w/o heterogeneity.

The model specification appears inconsistent. It looks like a request for a selection
model, but is not specified correctly. This is a guess.

507 Insufficient selected observations to fit Poisson with selectivity.

508 Matrix panel function, list of vars is not right.

The specification must be variable(s) followed by a stratification variable. Either the
wrong number of variables is given or they do not look right for the function. This is
function specific.

509 GSUM(specification) must begin with a namelist then

comma....MATRIX function)

510 Did not recognize namelist in GSUM function.

511 Observation= <nnnnnn>, Variable= <xxx.xxxx>) bad stratum.

The value for the stratification looks inappropriate.

512 Target name for SCL function must be < 7 characters.

The value given for the SCL function must not be a variable.
Did not find opening and closing parens for SCL fn.
Expected NAMELIST comma VARIABLE in SCL(.) not found
NAMELIST specified inside SCL function does not exist.
VARIABLE specified inside SCL function does not exist.
SCL function creates new NAMELIST. 10 already exist.
These diagnostics are for the Scl function in CREATE.

R28: Diagnostics and Error Messages R-726

STR variable has missing values. Cannot continue.
 Stratum > 200,000 obs. Table has overflowed.
 Nonsense value for group size. Cannot continue.
 Panel moments. Cannot ID left side matrix.
 Variable or list name on RHS of moment is not recognized.
 Variable name after [is not recognized.
 In [residual,panel # or name], cannot ID panel spec.
 Fixed panel group size given is not positive.
 Sample size is not a multiple of fixed group size.
 Sum of variable group sizes is > sample size.
 Group means fn. must provide variable and panel spec.
 Data area is full. No room to store group means var.
 Group means: Variable does not exist in data set yet.
 Cannot replace variable with own means. Use a new name.
 Group means panel spec must be ;STR=spec or ;PDS=spec
 GroupMeans(Variable,pds). Pds is not a # or variable.
 These diagnostics are for the Group Means function in CREATE.

 Can only RANK one variable per CREATE command.

Syntax error in CREATE;Name=Rnk(variable).
Cannot locate variable in Rnk(variable) function.
Rnk(.) can only be applied up to N = 100,000 obs.
These diagnostics are for the Rnk(.) function in CREATE

 Create;[Lag]=value$ Could not read value.

Could not compute sample. See preceding diagnostic.
 This occurs when attempting to use the Mvn function to create a random sample.

513 Cannot identify variable in EXPAND function.

514 MATRIX in CREATE; ... = matrix. Name not in table.

515 Namelist created by matrix move to data: conflict.

516 HISTOGRAM : Bad limits= <nnn> and <nnn>.
 Histogram can only plot 4 groups at a time.
 GROUP=Name. Cannot identify the name. Check vars.
 Data for multiple histograms must be integers 0-39
 You gave <nn> ;LABELS for <nn> groups.

517 Cannot plot. No variation in LHS variable.

Cannot plot. No variation in RHS variable.
Cannot produce centipede plot with > 1 LHS variable
Multiple plots is only available with PLOT command
Limits and Endpoints must be determined internally.
Data must be sorted (internally) for multiple plots.
;Regression is not available with multiple plots
Cannot stratify data with multiple plots.
Multiple plots is limited to 5 LHS and RHS variables.
Multiple plot needs same number of RHS and LHS vars.

518 Stratified plot must use PLOT for 1 RHS & 1 LHS variable.

R28: Diagnostics and Error Messages R-727

519 Demonstration program does not support READ or APPEND.
Sorry, NLOGIT_ACA does not support IMPORT or APPEND.

520 Cannot rearrange a matrix after READ.

Labels cannot be installed by APPEND.'
Error in ;LABELS=column. Cannot continue.

521 Use matrix transpose to rearrange matrix after READ.
You tried to read your data into a matrix with the By Variables specification. Just read
the data into the matrix, then transpose the matrix.

522 Not Used.

523 Cannot merge files into a matrix.

This diagnostic is produced by the merge feature in READ invoked with GROUP =
variable.

524 Cannot merge file, no variables exist yet.

Cannot merge data arranged By Variables.
APPEND cannot be used to merge data sets.
Cannot merge data in .WK1/XLS/DIF files.
Did not find your GROUP variable: <AAAAAAAA>.
Data set is not a multiple of group size.
Bad group counter = <nn>. Row= <nnnnnn>, group = <nnnnnn>.
You must specify NOBS to expand GROUPED data.
Reading only <nnnnnn> obs into <nnnnnn> groups.
These diagnostics are also produced by the merge feature in READ invoked with
GROUP = variable. There is a mismatch between the two files.

525 Cannot rearrange a binary file into a matrix.

526 Extract from binary file. You must give COLS=...

527 Problem with worksheet file. Nonsense dimensions.

Found NREC= <nnnnnnnn>, NVAR= <nnnnnnnn>.

527 DIAG='ByVar,;FORMAT and ;Blanks not supported with Labels=j'

528 Same as 527.

529 RECODE must begin with NAME(...=...,...).

530 Invalid number given for recode. Unable to recode.

531 Closing parenthesis not found where expected.

This is produced by a format for reading data.

532 Unreadable data encountered at record <nnnnnn>.

This is usually produced by alphabetic data appearing where a number is expected.

R28: Diagnostics and Error Messages R-728

533 Warning: <nnnnnn> observations would not fit in data area.
This is generated by APPEND when you are appending a large number of observations.
This will usually result in the entire read operation being aborted.

534 The last <nnn> variables specified would not fit.

This is generated by APPEND.

535 A name requested by READ is invalid.

The name begins with a number, punctuation mark, etc.

536 A name requested by READ is already in use.

In this case, a new name, Xnnn is created. It is better to correct. Default names are
difficult to keep track of.

537 APPEND: No match found for <AAAAAAAA>.

This is only a warning. The program is creating a new variable. You probably did not
intend this.

538 Warning: Name <AAAAAAAA> was not useable. Replaced with <AAAAAAAA>.

See diagnostic 536.

539 Variable list: The unidentifiable string is <aaaaaaaaa>.

A list that is supposed to provide a set of variable names cannot be translated.

 Name range given, values are not low-high
 A command contains a list of variables AAAnnnn – AAAmmmm.

 Interaction Effects not allowed in this context

> 20 interactions in command - too complex. Table overflow.
> 50 interactions in table. Table overflow. Use DELETE

540 Variable list in command is > 150. Too large for models.

EXPAND(name) is not a valid form in this context.

541 Only DSTAT and WRITE;list... may exceed 150 vars.

542 Only one LHS variable for semiparametric estimator.

Panel data estimators not available for semiparametric.
Semiparametric estimator cannot use weights.
Semiparametric does not support heteroscedasticity.
Robust VC estimator is not available with semiparametric.
SCOBIT model not supported by semiparametric.
Semiparametric estimator cannot fit random effects.
Cannot use semiparametric for selection model.
Semiparametric cannot fit with choice based sampling.
Semiparametric cannot make out of sample predictions.
These diagnostics are produced by the semiparametric estimator for binary choice. They
are produced by requests for unavailable options with this model.

Number of GME support points must be one of 2,...,9

R28: Diagnostics and Error Messages R-729

543 Kernel estimator needs LHS binary or proportions data.

544 Burr model is not available for panel data.

Burr model is only for binary choices.
Heteroscedasticity is not available for Burr model.

545 Random Effects Model requires panel data. (LOGIT).

Random Effects Model requires individual data. (LOGIT).
546 Fixed effects model is only available for binomial Y. (LOGIT).

547 Heteroscedasticity model is only for binary outcomes.

Heteroscedasticity model may not use panel data.
Selection model may not be based on het. logit.
Heteroscedasticity model is only for individual data.

548 Error: N not a multiple of T. N= <nnnnnnn> T= <nnnn>.

In a balanced panel, the full sample size must be an even multiple of the group size.

Bad counter= <nnn>. (>200?) Row= <nnnn>, group= <nnnnnn>.
In an unbalanced panel, if a group size seems to be extraordinarily large, the program
concludes that the counter variable is probably miscoded.

549 Not enough workspace for <nnn> pds. and <nnn> vars.

This should be unusual. It would happen with a huge model and large group sizes.

550 Unable to create a new namelist for probs.

The multinomial logit request for probabilities creates a set of variables.

551 Not enough room in data for new variables (probs).

The multinomial logit computation of probabilities creates several variables.

552 Data area is <nnnnnn> by <nnnn> WKS cell is

(<nnnnnnn>,<nnnnnn>).
A cell in a worksheet file has a strange row, col index. LIMDEP cannot place the value.

553 Same as 552 for placement into a matrix.

554 A label cell is not ascii text. Cannot read file.

Something peculiar is in the first row of a spreadsheet file. Make sure it is just rows.

555 Row index in XLS file > 65536. Cannot read it.

These are bad data in a spreadsheet file. It should not be possible for Excel to write a
row number larger than 65536 .

556 Cannot fit exponential model for panel data.

557 Invalid setup (m1,m2) for generalized F model.

R28: Diagnostics and Error Messages R-730

558 Variance het. model is for Logistic,Weibull,Normal models.
The variance heterogeneity model is not available for the truncation model.

 SURV cannot have both SELECT and HET/NORMAL
 SURV with SELECT. Need to fit PROBIT;Hold model first.
 This model is for MODEL=W, L, N, E, G or P only.
 SURV with HET or SELECT does not support Variance Het.
 SURV with HET or SELECT is not available for panels
 SURV with HET or SELECT does not support truncation.
 SURV with HET or SELECT does not support splitting.
 Cannot fit this model with linear restrictions (;RST).

These diagnostics are produced by specification of a SURVIVAL model with
heterogeneity.

559 Data error. Individual <nnnn> T0=xxxx, T1=xxxx.

This is a data error for one of the loglinear survival models with time varying covariates.
T0 must be less than T1.

560 Data error. Individual,<nnnnn>, has <nnnnn> records?

561 Data ended expecting,<nnnn> more lines for individual <nnnn>.

562 Gompertz model: Obs. <nnnn> duration < 0.

563 Data error: OBS.= I6,’ T= F8.2,’ Limits= 2F8.2).

564 Splitting model producing P=1 for all obs.
 This is probably the wrong model for these data.

565 IF... or REJECT... Cannot ID string <string is given>.

This is probably a name in the string that is not in any of the tables (matrix, variables,
scalars, etc.).

566 1 x 1 data matrix in use is a missing value.

567 Missing values make matrices nonconformable.

568 Cannot resolve exponent in matrix power.

569 MATRIX Error is in <string is given>.

570 Expected <nn> parameters for <proc. name>. Found <nn>.

Your EXECUTE command for a procedure has the wrong number of parameters in the
list. The offending character string is then listed.

R28: Diagnostics and Error Messages R-731

571 MINIMIZE/MAXIMIZE needs function definition with ;FCN=...

Expected subfunction name to appear in FCN=...
FUNCTION;... needs to include ;Keep=variable name.
FUNCTION;...;Derivatives=namelist. Error in list name.
Number of subfunctions must be less than 51.
Invalid subfunction name <AAAAAAAA> is a (scalar, etc.)

 PARTIALS or DECOMPOSE;Function... must provide ;Labels
FUNCTION;DERIVATIVES=namelist. Wrong # of names in list.
Derivatives namelist contains ONE or name of KEEP var.

573 Variable name for quadrature equals a variable name.
Variable name for quadrature equals a matrix name.
Variable name for quadrature equals a scalar name.
Variable name for quadrature equals a parameter name.

 All these are different names from what was expected in this context.

574 GMM estimator unidentified: NPARM > # equations.

575 Conflict:param. and <AAAAAAAA> have the same name: <AAAAAAAA>.

You are using a label for a parameter in your optimization command that is already in
use for something else, such as a scalar or matrix.

576 The variable in Plot(label) does not appear among ;Labels.

CPLOT needs 2 labels in Plot(label1,label2) spec.

577 Observation <nnnnnn> variable <AAAAAAAA> is missing.

This MATRIX operation does not bypass missing values. Use REJECT.

578 Incompatible B and RHS=list were given for kernel.

A simple count of elements in B and variables in Rhs does not match. It looks like B is
from a different model.

579 Sample size= <nnnnnn> is too <large or small> for kernel estimator.

580 Error occurred attempting to open file for MGET/MPUT.

581 Error occurred in READ/WRITE during MGET or MPUT.

582 Found [ELSE], but no prior IF[...] was set. (MATRIX command.)

583 Problem with matrix. See previous diagnostic.

This is generic. There are several possible conditions. A previous diagnostic will
indicate the problem.

584 Expected number in Quad(points,type) not found.

Expected L or H in Quad(points,type) not found.
Quad points not one of the available set.
This is just a request to list the weights and nodes for quadrature.

R28: Diagnostics and Error Messages R-732

585 Total cells= <nnnnnn>, Space= <nnnnnn>, Cells needed = <nnnnnn>.
The result of a MATRIX command is too large. Maximum size is 22,500 cells.

586 Estimated E[y1|y2,...]=0. Cannot compute partials.

Marginal effects for the multivariate probit model produce an unusable numeric result.
LIMDEP is unable to continue.

587 You did not define EQ<n> for <AAAAAAAA>.

This is the multivariate probit. You have fewer equations defined than there are Lhs
variables.

588 Error translating function in optimization command.

The offending character string will be listed. This is usually caused by an unrecognized
name in the expression. This will be listed in a previous error message.

589 Error is in <character string is listed>.

This is the translation error in WALD or an optimization command. A previous
diagnostic will show the cause of the problem.

590 Obs.= <nnnnnn> Cannot compute function: <a hint is given>.

This is produced by the optimization programs. It is data dependent. The hint may be
able to show the source of the problem, for example zero divide, number too large for
gamma function, etc. You must examine the data to determine the exact cause. The
observation that produced the error is given.

591 Cannot censor data with R.E. Model.

The ordered probit model with random effects cannot also accommodate censoring.
This is for cross section data only.

 HIOP model does not allow censoring.
 HIOP model does not allow panel data treatments.
 HIOP model does not allow selection or zero inflation.
 HIOP model requires HI1=list or HI2=list, not incl. ONE.

These diagnostics relate to the hierarchical ordered probit model.

592 Censoring indicator <AAAAAAAA> = <xxxx> at obs <nnnnnn>.

The censoring indicator for the ordered probit model is supposed to be binary.

593 Not enough uncensored observations to continue. (OProbit.)

594 Stratum <nn> has no observations in it. (Ordered probit.)

LIMDEP cannot estimate the threshold parameters for this stratum.

595 Warning, NPRD= <nnn>, P(i) may be inaccurate.

When you compute a random effects model, the group probability equal to the product
of the member probabilities is computed, not the sum of logs. If you have many periods,
this becomes too inaccurate to compute the log likelihood with it.

Hessian is singular at rho=0. Cannot compute LM test.
Problem with random effects probit or ordered probit.

R28: Diagnostics and Error Messages R-733

596 Error: N not a multiple of T. N= <nnnnnn>. T= <nnnnnn>.
For a balanced panel, the full sample size should be a simple multiple of the group size.

 Bad counter=<nnnnnn>.(>75?)Row= <nnnnnn>, group= <nnnnnn>.

The counter variable takes a peculiar value, nonpositive or unexpectedly large.

597 Not a matrix save file! MGET request uses the wrong type of file.

598 You must provide ;NOBS=value to read into matrix.

599 Nobs*Nvar > maximum matrix size of 22500 cells.

600 Simplify expression or separate WALD functions.

601 Obs: <nnnnnn> <AAAAAA> = <xxxxxx>. Gradient not computable.

The MLE for the Box-Cox model requires all data to be transformed to be nonnegative.
The transformation can be computed even for zero, but the derivatives of the log
likelihood as well as the correct asymptotic covariance matrix require all data to be
transformed to be positive.

602 Error attempting to convert date: <date string given>.

This is an internal error that should not occur. You may be using a date in a CREATE
function that is out of range. For example using yearly data from 1960 to 2000, and
creating with the function Ind (2001) might cause this error since this date is out of
range.

603 PDS= <nnnnnn> NOBS= <nnnnnn> Panel is not balanced.

Your REGRESS command suggests the panel is balanced with ; Pds = value, but the
sample size is not a multiple of the indicated number of periods.

604 No room in data area to create group indicator. (REGRESS ; Panel)

 The nested random effects model is only for regression.
 Use only ;STRATUM and ;CLUSTER for the nested RE model.
 Nested random effects model must be unconstrained.
 Nested random effects model does not support AR(1).
 Nested random effects model does not support weights.
 Cannot fit nested RE model with random parameters.
 Nested RE model cannot do Murphy Topel 2 step VC.
 These diagnostics all relate to the panel model with nested random effects.

605 PDS variable has missing values. Cannot continue.

STR variable has missing values. Cannot continue.

606 Stratum <nnnnnn> has > 20000 obs. Is this a panel?

This does not appear to be a panel.

R28: Diagnostics and Error Messages R-734

607 Too many groups for noncontiguous panel data.
When data are arranged haphazardly in the sample, if the sample is small enough, it is
still possible to create the counters and pointers needed for the regression. If N is too
large, however, estimation is not possible. Try sorting the data so they are more
convenient.

608 AR(1) model cannot be computed with weighting.

609 Bad setup for Haus/Tay estimator.kx1+kx2+kz1+kz2 not =#rhs

Hausman/Taylor estimator: KX1 must be positive
Model is not identified. KX1 must be >= KZ2.
Hausman/Taylor. Must provide s2e,s2u, both positive.

610 A valid observation has a missing PERIOD variable.

611 Outer strat. var takes value > 10000. Recode.

This is the two way stratification in the random effects model. The outer stratification
variable must be a complete sequence of integers.

612 Number of bootstraps must exceed K for VC matrix.

613 (N,K) must not exceed (5000,15) for LAD estimator.

614 # RHS variables may not exceed 100 for ICLS.

615 NOBS may not exceed 100,000 for ICLS.

616 Error in specification of equality constraints.

617 Lower bound for X(<nn>) is greater than upper.

Your linear programming problem is not set up properly.

618 Solution vector has infinite components.

There is no solution for the linear programming problem.

619 No feasible solution exists.

620 Maximum iterations exceeded.

621 Numerical instability. Cannot solve problem.

621 Panels for Malmquist indices must be balanced. Fixed T.
 Cannot bootstrap Malmquist indices. NBT=# is ignored.
 Cannot compute allocative inefficiency for Malmquist.
 Number of prices supplied must equal number of inputs.
 ONE is not a valid OUTPUT (LHS) variable.
 ONE is not a valid INPUT (RHS) or PRICE (RH2) variable.
 DEA is limited to 16,000 observations (firms).
 Peers tabulation is only for small samples - N <= 1000.
 Panel data must be balanced, no missing, no zeros.
 Number of bootstraps must be between 10 and 1000.
 Not enough workspace for the number of bootstrap reps.
 Solution vector has infinite components. No soln.

These diagnostics are checks on the data envelopment procedure in FRONTIER.

R28: Diagnostics and Error Messages R-735

622 Inconsistency found in constraints.
 This is a problem in setting up a linear programming problem.

623 Check for error in <string is given>.

Look for: Unknown names, pairs of operators, e.g., */
This is a general diagnostic for the CREATE command. Something in an expression
could not be identified. A character string that contains the error will be included in the
diagnostic also. Note, during compilation, strings in parentheses are reduced from the
inside out, and internally, the reduced string will be given a symbol with a lower case
letter. Thus, the string from X=(A+1)*/(C+D) (which contains an error) might appear in
the diagnostic as ‘aa*/ab’ where the ‘aa’ is the symbol for (A+1), etc. The internal
coding with lower case letters is used to break down expressions in parentheses. The
first letter indicates the subcommand – subcommands are separated by semicolons. ‘a’
is first, ‘b’ is next, etc. The next letter indicates the expression in parentheses in the
order encountered. Thus, ‘ab’ is the D+1. Unfortunately, when there are nested
parentheses, this can become confusing, since the listing just continues in order. Thus,
the final expression in ((A+1)*/(C+D)) is ‘ac.’

624 No valid data found in sample=1 to <nnnnnn>.
 A SAMPLE command, SAMPLE ; n1 - n2 $ produced a sample with no valid data.

625 2 way F.E.M. No observations in period <nnnn>.

The period dummy variable coefficient cannot be estimated. (Column of zeros.)

626 Insufficient degrees of freedom for group means regression.

627 You must fit the PROBIT or LOGIT model to use ZIP.

This is for the Nagin and Land model for counts.

628 A variable name appears more than once in list.
 This is the setup for the Nagin and Land estimator for the Poisson model.

629 GAMMA count model is unstable when Vy/Ey > 10.
 LIMDEP terminates. You might try the negative binomial model.

630 Error: N not a multiple of T. N= <nnnnnn>. T= <nnn>.

This is for the count data model for panel data. You are using a balanced panel, but the
sample size is not a multiple of the group size.

631 Bad counter= <nn>. Row = <nnnnn> group= <nnnnnn>.

The group size for a panel data count model took a nonpositive value. This occurs
during a data check.

632 Counter variable contains an error. Check values.

In the count data model for an unbalanced panel, it looks like the counter is out of sync.
The count took the observations for a group past the end of the current sample.

R28: Diagnostics and Error Messages R-736

633 Negative LHS value found. Cannot fit the Poisson (count) model.
Variable <AAAAAAA> is always zero.
No variation observed in <AAAAAA>.
Singular Hessian in <AAAAAA> model for <AAAAAA>.
Maximum iterations fitting <AAAAAA> model for <AAAAAA>.
The program that produces this diagnostic is used to compute starting values for Poisson,
probit, logit, and several other models. The diagnostic is specific to the kind of model
being computed.

Diagnostics 634 - 637 are produced by the Arellano and Bond, dynamic panel data estimator, called
by REGRESS ; Panel ; Dpd ; ...

634 Unable to read your ;START=LIST specification.

4 values given in ;START must sum to number of RHS variables.
4 values given in ;START must be nonnegative.
;START=list must give KX1,KX2,KF1,KF2[,s2u,s2e].
Values given for s2u and s2e must be positive.

635 Your model is too large for this pgm. (> 50 RHS vars.)
636 This estimator is limited to T(i) <= 100 periods.

You have too many instruments (moment conditions).
 Invalid values given for First date - Last Date in DATE=...
 DATE=variable for DPD must give a sequence of integers
 Date given is not within First - Last as in command.
 DPD: Looking for DATE=Variable,first date - last date.
 DATE variable given for DPD/Panel is not in names table.

Unable to construct model for ZTYPE=P and unbalanced panel

637 Unable to invert moment matrix for model VC matrix.

Diagnostics 638 – 641 are produced by the random coefficients model.

638 Last group: <nnnn> ID= <nnnnnn>. Only 1 observation.
 The random coefficients model cannot be computed.

i= <nnnn>, index= <nnnnnn>, T(i)= F6.1,’ too small.

639 i= <nnnn>, index= <nnnnnn>, singular moment matrix.

640 i= <nnnn>, index= <nnnnnn>, Perfect fit, s^2=0.

641 Not enough groups (only <nnn>) to fit model.

642 Heteroscedasticity model does not support control variable.

This is only for the sample selection model.

643 Heteroscedasticity model does not support instrumental variables.

This is only for the sample selection model.

644 Cannot select on <AAAAAAAA> = <nnn>.

Sample selection model with multinomial logit selection equation. You used ; Choice =
jj, but the Lhs variable in the logit model does not take this value.

R28: Diagnostics and Error Messages R-737

645 Hausman and Wise attrition model must be preceded by PROBIT;HOLD...
Starting value for SIGMA is not positive.
Start values for r12 and r23 must both be in (-1,1).

646 Starting value for RHO must be in (-1,+1).

Staring value for SIGMA must be positive.

647 Label <AAAAAAAA> is used twice in procedure.
 The parameters in a procedure must each have a unique label.

Loop index <AAAAAAAA> used in more than one DO.

648 Execute changes a protected scalar, S etc.
 EXECUTE ; Name = values $ cannot change the scalars S, RSQRD, etc.

649 Loop index <AAAAAAAA> was used in EXEC command.
 Your DO loops must use different index names from the EXECUTE command.

650 ENDDO; <AAAAAAAA> $. No matching DO found.

651 DO...; <AAAAAAAA>;...$ No matching ENDDO found.

652 GROUPED: Obs= <nnnnnn> Limit values are not ordered.

If the limit values are constants, you can see the problem in the command. But, if the
limit values are given by variables, you must look at the data to find this problem. The
observation number is given for this reason.

653 Marginal effects, stratification variable not in table.
 ; Margin = name for stratification gives an unknown name.

654 Too many strata in marginal effects setup. > 9.

655 Marginal effects, Variable = <AAAAAAAA> stratum <nn> is empty.

656 EXEC;WHILE or UNTIL... Condition fails on the first try.

Cannot get started.

657 Invalid value (K > 0 to 15000) given for ;DRAWS=Nb.

658 Error encountered translating ;LCM=list.

The problem is an unknown variable name.

659 Maximum of 10 variables allowed in ;LCM=list.

660 Not Used.

Diagnostics 661 - 663 are produced by the WRITE command.

661 Problem with format given for WRITE command.

R28: Diagnostics and Error Messages R-738

662 Cannot process internal () or / in [format].
Did not find expected ending] in format.]
Format type is not X, F, I, D, or E.
I, F, D, or E format types need field with specification.
No .d specification was given for D, E, or F format.
The .d format is not used for X or I format.
X format code does not allow w.d in spec.
Error in repeat count of format specification.
Error in w part of w.d spec. in format code.
Error in .d part of w.d format specification.
Dw.d/Ew.d requires w-d > 5, Fw.d, w-d > 1.
Format does not give enough codes for variable list.

663 Cannot APPEND. You have not opened a file.

There can only be one line per observation. The WRITE command writes to the screen
when you do not give a file name. This is an error in the WRITE operation. Check the
FORMAT or file specification.

664 No observations in stratum <nn>.
 This is the loglinear survival model or the Cox model. A stratum is empty.

665 Frontier with ;HET must give ;HFv and/or ;HFu.
 You must fit PROBIT ; Hold before FRONTIER;SELECT'
 Battese-Coelli model requires a panel data set.'
 Battese-Coelli model does not support hetero.'
 Scaling model requires ;RH2=list. (Else use ;HET;HFu &/or v)
 Scaling model requires ;RH2=list of variables (not ONE)
 Scaling can only have HFU. s(v) is a constant.
 SC form of frontier scaling requires ;HFU=list
 Basic SF model was inestimable. Trying panel model.

666 Str variable= <AAAAAA> Obs.= <nnnnnn>, value= <nnnn> > 100.

This is the stochastic frontier model using panel data. A stratum has too many
observations.

Stratum <nnn> is empty. Unable to continue.
This is for the frontier or limited dependent variable with panel data.

Use REGR;Lhs=one ;Rhs=one;Str= <AAAAAAAA>$ to create _STRATUM.
This is a way to compute a correctly created stratification variable for the panel data
estimators.

667 Warning, NPRD= <nnnn>; P(i) may be inaccurate.

To compute the log likelihood it is necessary to compute the product of the densities for
all observations in the group. If the group size is large, this is likely to be too small to
compute accurately.

668 Error: N not a multiple of T. N= <nnnnnn>. T= <nnnn>.
 In a balanced panel, the sample size must be a multiple of the group size.

R28: Diagnostics and Error Messages R-739

669 Bad counter= <nn>. Row= <nnnnnn>, group= <nnnnnn>.
 The count variable for a panel takes an unusable value, such as zero or negative.

670 Variable <AAAAAA> has no variation. No regression.

The error occurs computing a least squares regression, possibly for many different
models.

671 GARCH model with Q=0 is fit by OLS.

672 Nobs is < # groups. Cannot compute full GLS.

In the TSCS model, the number of periods must be larger than the number of groups. If
not, then Sum(ei ei’) does not have full rank, and GLS cannot be computed.

673 TSCS: Error reading ;GROUP=list...

674 Cannot compute TVC <nn>, Observation=<nnnnnn>.

This occurs during estimation of the Cox model. It is data dependent, so the observation
is given.

675 Found nonpositive LHS variable in loglinear model.

Data for SURV:inv.gauss must be in log form. Are they?
Found value of Y outside (0,1).
These are checks on the values of the dependent variable for the beta regression, gamma
regression, exponential regression, or inverse Gaussian regression.

676 Fixed effects model requires ;PDS=specification.

677 Counter <=0: <nnnnnn>. Row = <nnnnn>, group= <nnnnn>.

This occurs during a fixed effects model. There are many different models in the ; Fem
group. This occurs during a data check on setup for the panel.

678 Error: N not a multiple of T. N= <nnnnnn>. T= <nnnn>.
 In a balanced panel, the sample size must be a multiple of the group size.

679 Obs. <nnnnnn> is < 0. Cannot fit Pois/NegBin.

Obs. <nnnnnn> is <= 0. Cannot fit loglinear model.
Obs. <nnnnnn> = xxxxxx FEM/probit mdl needs 0/1 or proportion.
All of these are data checks on appropriate values for the Lhs variable while fitting a
fixed effects model.

680 Latent Class Model requires a panel to be estimated.
 You specified ; Lcm without specifying a panel with ; Pds = spec.

681 Did not find positive values of lambda and sigma.

LIMDEP is looking for starting values for the panel data version of the stochastic
frontier model. You must precede the panel data version with an identical cross section
model command.

R28: Diagnostics and Error Messages R-740

682 B vector is too short. Did you fit frontier for B0?
Expected to find B from previous FRON..;PAR command.
Starting value for LAMBDA=su/sv is not positive.
Starting value for SIGMA=sqr(s2u+s2v) is not positive.
LIMDEP is looking for starting values for the panel data version of the stochastic
frontier model. You must precede the panel data version with an identical cross section
model command.

682 This model must be fit first w/o latent classes.
 This model must be fit first w/o RPM specified.

Model spec. must be identical to the initial estimator.
Starting value for LAMBDA=su/sv is not positive.
Starting value for SIGMA=sqr(s2u+s2v) is not positive.
These diagnostics are produced by the Battese and Coelli frontier estimator.

683 B vector is too short. Did you fit zip model for B0?

ZAPTAU not found or wrong size. Did you fit ZIP mdl?
Expected to find estd. ALPHA. Did you fit ZINB mdl?
LIMDEP is looking for starting values for the panel data version of the ZIP model. You
must precede the panel data version with an identical cross section model command.

684 GROUPED/panel must be preceded by GROUP;Rhs=...,one...$.

GROUPED requires internal limit values with ;LIMITS=

685 This estimator does not allow ;RST or ;CML.

686 Starting value for theta in negbin must be > 0.

Starting value for sigma must be > 0.
Starting value for rho must be in (-1,1).
All of these are checks on an ancillary parameter for a panel data model. This will
generally not occur if the internally generated starting values are used, but can occur if
you supply your own.

687 Your TIME variable exceeds maximum period from PDS.

688 Iterations aborted by user request. Exit status=-1.

689 Exit from iterative procedure. <nnnnn> iterations completed.

690 This model is inestimable if parms. are correlated.

The random parameters stochastic frontier model allows parameters in the mean, the
mean of the truncated distribution and the variance all to be random. They cannot be
correlated, however.

691 Biv Prb needs y1,y2, RH1 and RH2. MDL is incomplete.
 Your bivariate probit random parameters model command is incomplete.

692 Bivariate Probit needs y1,y2, RH1 and RH2.

Your model command is incomplete.

R28: Diagnostics and Error Messages R-741

693 For ;MEANS, need ONE in both SELECT and PROBIT.
In SelectREM, both equations must contain ONE.

 This is the panel, random parameters (Zabel) form of the sample selection model.

694 FCN for RP model is variable(t) or [t]. t=N,T,or U.

Did not recognize variable name in FCN setup.
In the ; Fcn = (name) or [name] specification, the name must be included in the Rhs
variables.

695 Variable in FCN=name (< or [type] > or > is not in

RHS/RH2/HFN list.
Note that if a variable is in an Hfn list, it will usually appear as [name] not (name).

696 There are no complete obs. in the data set!

If you have a panel that has missing values in every group, the model will be
inestimable.

697 Previous SELECT model does not match. Was it MLE?

Did not find sigma>0 and -1<rho<1 in previous MLE.
SELECT ; Rpm ; ... must be preceded by an identical MLE for the model to produce
starting values.

698 Unsuccessful initial estimation to get start values.

This is produced setting up the random parameters, fixed effects, or latent class models
for any of the model types, probit, tobit, etc. If this diagnostic occurs for a cross section
version, then the panel version will not be estimable either.

699 GROUPED requires internal limit values with ;LIMITS=.

700 GROUPED/panel must be preceded by GROUP;Rhs=...,one...$.

The panel data version requires an identical cross section version to provide the starting
values.

701 Starting value for RHO must be in (-1,1).

This is produced while reading your starting values for a panel data version of the
bivariate probit model.

Start value for RHO must be in (-1,1).
This is produced while reading your starting values for a panel data version of the
sample selection model.

702 Starting value for sigma or theta must be > 0.

Start value for sigma, theta (or lambda) must be > 0.
This is produced while reading your starting values for a panel data version of the tobit
or negative binomial or other limited dependent variable model.

703 Cannot list more than 10 outcomes.
 The panel data models with ; List are limited to group sizes of 10 or less.

R28: Diagnostics and Error Messages R-742

704 Panel 2sls, # INST vars. must be >= # RHS vars.
Panel 2sls may have only one of ;FIX,;RAN,;DIF,;MEA
Panel 2sls, Too few observations to compute estimator

705 NOTE: Analytic Hessian is not PD. Using BHHH for variances.

The latent class models compute the analytic second derivatives matrix for all models.
If convergence was not very close to the true function maximum, this matrix may not be
positive definite. If so, the BHHH estimator is used instead.

706 Demonstration version does not support SAVE.

NLOGIT_ACA can only read its own project file.

707 Demonstration program can only load its own file.

708 SAVE file is badly constructed. Cannot read it.

709 Data array in file is < Nmax*Kmax. Cannot store.

710 Unable to load project. Restarting. NKMAX=200000.

711 CREATE Variable in EXPAND is not an integer from 1 to 100.

712 EXPAND for <AAAAAAAA> needs <nnn> variables. Only <nnn> are

available.

713 You already have 10 namelists defined. Cannot EXPAND.

714 Variable specified for recode is not in NAMES=...

715 Both LHS variables are dichotomous. Use BIVARIATE PROBIT.

Noninteger value found for one of the LHS variables.
Unable to display frequency table. Both dimensions > 8.
One of the LHS variables takes a value > 20.
No starting values were provided.
Unusable starting vector. Needs B1,MU1,B2,MU2 (RHO opt.)
The wrong number of starting values was found.
Absolute value of start value for RHO is greater than 1.
Exiting from function computation with error.
Check setup for ;KEEP = name1,name2. Found an error.
One of the outcomes almost never occurs. Estimation of the threshold parameters will
not be possible. These diagnostics relate to the bivariate ordered probit model.

716 In MATRIX ^ power, MATRIX is not square.

717 MATRIX^matrix power. Not same dimensions.

718 Matrix^power. Exponent is too large, > 10.

719 Cannot raise non positive definite matrix to negative power.

R28: Diagnostics and Error Messages R-743

720 Raising negative root to noninteger power.

721 Raising large root to power causes overflow.

Overflow occurs when a number becomes too large for the computer. This is
approximately exp(638).

722 Raising negative value to noninteger power.

A matrix is being raised to a power.

723 Raising large value to power causes overflow.

Matrix being raised to a power produces a large number being raised to a large power.

724 Expected no more than 5 specifications in ;SDV=list of 1 or *s.

This is for simulation estimation by MAXIMIZE. You may either allow free or unit
constrained variances for the simulation variables.

725 You must specify ONE of ;PDS or ;STR for a panel.

726 Reordering can only be done for balanced panels.

Your REGRESS ; Panel command requests that the observations be reordered. This can
only be done for a balanced panel.

727 Can only reorder up to 100,000 observations.

728 <nnnnnn> is not enough complete observations to continue.
 You have too many missing values in the data set to fit the model you have specified.

729 Unable to optimize function. Collinearity?

730 Cannot optimize. Constraints are inconsistent.

731 Variable <AAAAAAAA> always = <xxxxxx>. No variation!

This applies to independent variables in a model. This is checked at the time an OLS
regression is computed, usually for starting values. If it occurs, your model will not be
estimable.

732 Warning. OLS gives a perfect fit.

This shows up in many possible contexts. It usually means that the model you want
cannot be computed.

733 Cannot fit exponential survival model for panel data.

734 SELECT AND BPROBT Check setup for fixed effect SELECT model.

735 Tobit and Poisson/FEM cannot keep cprobs.

R28: Diagnostics and Error Messages R-744

736 Latent class form is not available for this model type.

 The ;RST=list specification is not available for RPM.

The ;CML=list specification is not available for RPM.
R.E. is not supported for latent class models.

Latent class form is not available for this model type.
The REM=spec... is not supported for this model.

Cannot HOLD probit results from an R.E. model.

737 Selection RP model requires PROBIT;...;HOLD as usual for selection

models.

738 Error in ;TABLE = MODELNAME. Check syntax.

739 ;KEEP/RES/PROB/GROUP/CPROB, expected = name not found.

740 ;KEEP/RES/PROB/GROUP,CPROB=name, name is too long.

741 ;KEEP/RES/PROB/GROUP,CPROB=name, name is invalid.

742 Cannot identify specification given for ;PDS=....

743 Cannot identify specification given for cluster.

This needs ; Cluster = number or ; Cluster = a variable name to give the stratification.

744 Invalid value given for quadrature nodes. Ignored.

745 Panel estimators (;PDS=...) do not support ;CLUSTER=....

746 Cannot use both WTS and CLUSTER in fitting a model.

747 Sample is too long to sort. N= <nnnnnn>.
 The limit is 100,000 observations.

748 ;SIGMA=NAME, sigma is supposed to be a matrix in this context.

749 ;sigma=NAME only used for SURE,3SLS,NLSURE,GMME.

750 ;REG/SPIKES/BARS/GRID/NOFILL/BARS only for PLOT and MPLOT.

751 TIME=variable. Variable given not recognized.

752 LIMIT=name or value. Name not recognized or bad value.

753 ;LAGS=value for LSDV estimator. Could not read value.

754 ;NBT=value (bootstraps). Could not read value given.

R28: Diagnostics and Error Messages R-745

755 ;RHO=value is only for REGRESS and 2SLS.

756 DSP=value (Negbin) or ;THETA=value (Box-Cox).

The value given is not positive.

757 ; Hold(IMR=...) No room to create IMR variable. Data area is full.

758 ;Spikes or ;Bars=list. Could not read list of values.

759 Name in expr not label,variable,scalar,matrix,list,or FNi.

This is generated by optimization or WALD.

760 Optimization or WALD. Expression has unmatched square

brackets.

761 Found \, expected \number\ did not find it. (Optimization or
 WALD).

762 Obs.<nnnnnn> of <AAAAAAAA> = <xxxxx>, not 0 or 1.

Data for the multivariate probit model must be binary.

763 Cannot identify namelist in ;UTILITY=namelist.

764 UTILITY=name must specify a namelist of NY names.

765 The namelist in UTILITY=name may not contain ONE.

766 Did not find a valid name in UTILITY=name.

767 CREATE, name in expr is not var.,scalar,matrix, etc.

768 Have been unable to break down the command segment.

Diagnostic 623 will follow this diagnostic and show the function in question.

769 You must provide ;TRIALS=spec. for binomial model.
 Fixed number of trials must be a positive integer.
 Invalid missing value found for LHS variable.
 Invalid missing value found for number of trials.
 LHS variable for binomial model must be integer >= 0.
 Number of trials for all obs. must be integer > 0.
 Bad data found. Y must always be <= number of trials.
 Did not find any nonzero values for LHS variable.
 LHS variable always takes the same value.
 These are all checks on the loglinear, binomial regression model.

769 Invalid data for geometric model. Must be 0,1,2,...
 Invalid data. Mean of Y must be positive.

R28: Diagnostics and Error Messages R-746

770 MATCHing command must be preceded by PROBIT or LOGIT ;Hold.
 MATCH can only analyze up to 200,000 observations.
 ONE is not a valid outcome variable.
 Invalid treatment dummy: Obs/Row=<NNN>/<NNN>= <NNNN>.
 <NNN> valid obs. is too small for matching analysis.
 There is no variation in the outcome variable. Check data.
 There are no control observations in the sample.
 There are no treated observations in the sample.

771 LOGIT/RPM can only fit with up to 20 outcomes.
 Data for LOGIT/RPM are not coded 0,1,...,J up to 19.
 LHS variable for LOGIT must contain all values 0...J.

772 ;Labels=list. Expected <NNN> names. <NNN> were given.
 CLASSIFY: limit is 1,000 distinct groups.
 CLASSIFY: Exceeding workspace. Too many variables.
 CLASSIFY: Bad values given for priors.
 CLASSIFY: Wrong number of priors given.
 CLASSIFY: wrong number of labels given.
 CLASSIFY: Singular covariance matrix for a group.
 CLASSIFY: Priors must be between 0 and 1.
 Priors for classes do not sum to 1. Check values.

775 ;CLS can only be done once per command. | is not available

Cannot read value after = sign in test specification
Variable name in test specification is not recognized
Variable in test spec. does not appear in the model

776 Missing data reduce sample to 2 or less. No plot!

778 WARNING. N*(K+1) > 50000. Cannot store matrix beta(i).

Unable to obtain MLE of lambda for frontier model.
Estimated lambda < 0. Cannot estimate inefficiency.
LOWESS regression is limited to 5,000 observations.
LOWESS can only save predictions for one LHS variable
LOWESS must be based on a nonconstant x, not ONE.
Local linear regression is limited to 20 regressors

779 Unusable starting values. Cannot continue.
 This is produced by the random thresholds ordered choice model.

780 Invalid name specified in LOCAL declaration

Name in LOCAL declaration is a reserved <AAAAAAAA> name.
LOCAL;type=list$ Type must be matrix, scalar or variable.
Insufficient work space to set up local variable.
LOCAL;=list...$ Did not find equals sign.
LOCAL;type=list.... Type appears more than once.
LOCAL;type=list. Too many (> 10) items in list
Name given in LOCAL;type=list is > 8 characters.

781 The stratification variable must be an integer.

Can only tabulate up to 99 strata
Found only one stratum in sample. Use DSTAT
Found nonpositive value for weighting variable.

R28: Diagnostics and Error Messages R-747

782 Over 100,000 values for Sqq(.) function. Overflow

783 BINARY CHOICE ANALYSIS requires ;Start = values.

Number of start values must match # vars. in RHS.
Model must be LOGIT, PROBIT, GOMPERTZ or COMPLOG.
Did not find */-+ or > in scenario specification.
Unknown variable name in scenario specification.
Variable in scenario does not appear in the RHS.
Bad value found in scenario specification after = sign
FORMAT('Cannot compute ROC for > 375,000 points.

783 Name in ;IMPUTATION=name is not in list w/ EXEC

;Imputation is not useable with LAST MODEL
;Imputation is only useable inside a procedure.
LastModel command missing ... = specification.
Unable to read parameters or covariance in LastModel
Number of labels does not match number of parameters
Covariance matrix is the wrong size for parameters
Covariance matrix is not symmetric
Covariance matrix is not nonnegative definite
LastModel must include ;Parameters and ;Covariance

784 DECOMPOSE must be preceded by model setup

Sample size too small for decomposition

Diagnostics 785 are produced by the PARTIAL EFFECTS and SIMULATE commands.

785 SAVE cannot be used with ;Means.

Cannot locate X variable for effects
| variable W = ... is badly specified.
| variable W ... cannot find the var.
| variable W = list... Bad list.
& variable Z = ... Cannot find Z.
& variable Z = L(D)U. Bad list found.
Insufficient observations to get APE.
Nonpositive increment D in L(D)U
;PLOT requires & Z = L(D)U in spec.
Not enough room in data area to SAVE.
Cannot compute elasticities for binary X
;Effects: ONE ... is not a valid spec.
;Effects:...@ D. Cannot find D in table
in @D=values, unreadable or > 10 values
In @D=values or @D, not a set of integers
;Fix:variable =...Cannot identify variable
;Fix:variable=value. Cannot read value
;Fix:variable... Variable cannot be fixed
Cannot do sample splitting if not ;Average
Conflict between ;Fix=... and scenario
;Outcome=value in PARTIALS. Value is unreadable or < 0
Error in construction FN*=label*vector(j1:j2)
No model has been stored yet.
PARTIALS or DECOMPOSE w/ ;Function... must provide Labels'

R28: Diagnostics and Error Messages R-748

786 Did not find list to LIST or DELETE in table.
No equals sign found in LABELS command.
LSTMODEL is reserved for program use. Change the name.
25 label lists already exist. No room for a new one.
Label list <AAAAAAAA> is full. Unable to store

787 You must open an EXPORT file before exporting matrices
Matrix <AAAAAAAA> has > 255 columns. Cannot export it to Excel.
You must OPEN;EXPORT=file before exporting results

788 Block diagonal matrix exceeds 223x223
Matrix in BLKD list is not in matrix table.
Matrices in block diagonal list must be square

789 Y must take values 0,1,2,3,4 for GHH SAH model

RHS for this model must be ONE,...
Did not find namelists XR and XM for GHH model
First name in XR and XM namelists must be ONE.
Did not find right start values from OPROBIT
Did not find start vector MU with 3 values
Did not find start vector BR with 1+kr values
Did not find start vector BM with 1+km values'

790 Singular moment matrix for Xj, X or Yj. Check model spec

Problem with model spec. Smallest root is < or = 1.
Y cannot be ONE in this LIML context.
These diagnostics are produced by the LIML estimator for linear models.

791 All RHS variables are in INST list. Cannot test.
Not enough instruments provided for Wu test.
Insufficient observations in sample for Wu test
Instruments are collinear. Cannot compute Wu test.
Instruments and X are collinear. Cannot do Wu test
These diagnostics are associated with the Wu test for 2SLS.

792 No within groups degrees of freedom. N groups!
There is no within group variation in this X.
No between groups degrees of freedom. 1 group!
No valid observations in the sample!
No variation in this X! All values are identical

793 There is no variation in the LHS variable.!
In truncation/endogenous model, y must be > 0.
Exposure var: <AAAAAAAA> = <xxxxxxxx> at row,obs=<nnnnnnnn>

794 RMN(mu,V), unrecognized name given for mu and/or V

RNM(mu,V), more than 2 matrices given in the list
Nonsquare V matrix given for RMN function.
You must give a vector for MU in RMN(mu,V)
Nonconformable vector MU and matrix V in RMN(MU,V)
Maximum size of created sample in RMN is 100 variables.
You already have 25 namelists. Unable to create a new one.
No room left in data for new variables from RMN
Matrix V given in RMN(mu,V) is not symmetric
Matrix V given in RMN(mu,V) has a negative root.

R28: Diagnostics and Error Messages R-749

798 Interaction variable no longer exists. Last model is unuseable.
Eqn. kept with ;HOLD no longer useable. Int.varbl missing.
Namelist <AAAAAAAA> is no longer useable. Int.
IMPUTE;Lhs= . . . must precede EXEC;Imputation ...
TYPE must be M, B, F, C, T or O in IMPUTE command
IMPUTE must contain LHS, RHS and Type specifications

801 LHS var in IMPUTE;fill may not be in an imputation model

801 <Model command> is not used with RPMAX/RPMIN

RPMAX/RPMIN must provide <Specification>
RPMAX/RPMIN is not a <Model type> command')
No derivatives in RPMIN/RPMAX command or ;FCN=...
Use label[value] to fix parameters
No multiple equations spec. in RP...
Start values are given in ;Labels=...
Panel data are not set up correctly.
The RPMIN and RPMAX estimators have very specific requirements for the model
specification.

802 Create ; name = stk(...). Did not find equals sign.
 Expected to find STK(..). Did not find (or).

Processing STK function. Did not find expected , / or)
Cannot make NAME=Stk(... same NAME ...). Change LHS.
Cannot identify item ',8a1,' in STK(...list...)
Rows in stacked matrix define different #s of cols.
Stacked matrix has too many rows for your data area.
Stacked data matrix is too large; > 250,000 cells.
You do not have room to create a new variable.
You have already defined 25 namelists. No room left.
You do not have room to create a new variable.

802 GLIM command must contain ;MODEL=type.

Unrecognized model type in GLIM;Model=type.
You must provide ;TRIALS=spec. for binomial model.
Fixed number of trials must be a positive integer
FEM/probit mdl needs 0/1 or proportion

803 Error encountered translating ;LCM/DCEVM=list.

Maximum of 30 variables allowed in ;LCM/DCEVM=list.
Unable to identify name in ;CLASSP=namelist
Cannot save LC parameters in ONE. Use a new variable.
Unable to identify name in ;PAR=namelist
CLASSP=list contains ONE. Cannot save P(j|i) in ONE.
;PAR=namelist(lclist). Error in lclist.
;PAR=namelist(lclist).Lists must be same length.
;PAR=nlist(lclist). Vars. in lclist must be in nlist

804 Setup for conditional model command has an error.

Model ; (scalar reln value) ... $. Scalar unknown
Model ; (scalar reln value) ... $ Bad value given.

R28: Diagnostics and Error Messages R-750

805 (NEW);namelist=list redefines an existing namelist
NAMELIST;(NEW) Cannot use OR/XOR/AND constructions.
Did not find commas or $ between or after names
NAMELIST;(NEW) cannot modify existing variables.

807 Too few valid observations to fit model.

Moment matrix for regression is singular.
A perfect fit is obtained for the regression part!
No variation in LHS variable for regression!

808 ADF(.) needs 3 settings: Variable,Type,#lags.

ADF, type must = 1 (r.w), 2(drift), or 3(trend).
Lags for ADF test must be one of 0,1,2,...,10
Could not compute ADF. See previous diagnostic
Unstable equation in lagged differences. Sum is >= 1
Perfect fit in ADF regression equation. EstVar[c]=0.
Sample has too few observations to carry out test.
Moment matrix for ADF (regression) test is singular

808 Implied or estimated THETA is zero. Cannot compute ME.
 This is for the Box-Cox model.

809 Fully simultaneous BVP model is not identified

813 Could not evaluate expression in SAMPLE command.'

816 SETPANEL must have both ;GROUP=name and ;PDS=name.

Did not find variable given in ;GROUP=name.
;PDS=name gives an invalid name to use for PDS
Unable to set up GROUP and PDS variables in SETPANEL
Using ;PDS=number. NOBS not a multiple of number.
Group count variable is mismatched to full sample.
Invalid weighting variable. Nonpositive values were found.
Number of strata > 5000! Tables overflowing. Must exit.
Use only one of ;PDS, ;CLUSTER or ;STR in TABLES command.
Counter <=0. Row = <nnnnnn>, group = <nnnnnn>
Too many periods to fit two way fixed effects models.
Noncontiguous panel is too large. Cannot store means.

811 ROWS: You must give a value from 1 to 1000.

812 Title=... \Name or scalar. Cannot match name after \.

TITLE=string... String may not exceed 80 characters.

818 DEFAULT: Did not find expected equals sign.'

Unreadable value given in DEFAULT command.

819 Expected <nnn> specifications in RST/CML list. Found <nnn>.

820 EXEC;:name=list..., name > 7 chars or no = sign found.

EXEC;:name=list. An unknown name appears in the list.

R28: Diagnostics and Error Messages R-751

821 Quantile Regression needs n <= 100,000.'
Unable to allocate memory for analysis. Must exit.'

851 Multiple imputation requires M > 1.

Invalid value given for seed in EXEC command
;IMPUTATION=label is not supported for this model command
Name in ;IMPUTATION=name on command not found in list w/ EXEC
IMPUTE;LHS=.;RHS=.;Type=Fill$ must have 1 var on L and R.
Imputation models table is full (30 equations)

The following is a generic diagnostic produced when a model command is translated. The general
form of the command is

 Model ; ... ; Specification... $

Diagnostic 999 occurs when the ‘Specification’ part of the command, such as Rhs, Lhs, Rh2, and so
on, is not recognized.

999 The specification ; <XXX spec. is listed.> is not recognized.

R28.4 Discrete Choice (CLOGIT) and NLOGIT

 Diagnostics with numbers 1,000 and higher are generated by the CLOGIT command or by
the command parser or estimators in NLOGIT.

1000 FIML/NLogit is not enabled in this program.

This error occurs when LIMDEP encounters a model command such as RPLOGIT that is
only enabled in NLOGIT.

1001 Syntax problem in tree spec or expected ; or $ not found.

1002 Model defines too many alternatives (more than 100).

1003 A choice label appears more than once in the tree specification.

1004 Number of observations not a multiple of # of alternatives.

This is expected when you have a fixed choice set.

1005 Problem reading labels, or weights for choice based sample.

1006 Number of weights given does not match number of alternatives.

1007 A choice based sampling weight given is not between zero and one.

1008 The choice based sampling weights given do not sum to one.

1009 Expected [in limb specification was not found.

1010 Expected (in branch specification was not found.

R28: Diagnostics and Error Messages R-752

1011 A branch label appears more than once in the tree.

1012 A choice label in a branch spec. is not in ;CHOICES list.

1013 Branch specifications are not separated by commas.

1014 One or more ;CHOICE labels does not appear in the tree.

1015 One or more ;CHOICE labels appears more than once in tree.

1016 The model must have either 1 or 3 LHS variables. Check spec.

1017 Nested logit model must include ;MODEL:... or ;RHS spec.

Found neither Model: nor RhS/Rh2.
Your model specification is incomplete.

1018 There is an unidentified variable name in the equation.

In the ; Model: U (...) part of the command, one of your specified utility functions
contains a variable name that is not in your data set.

1019 Model specification exceeds an internal limit. See documentation.
 RANK data can only be used for 1 level (nonnested) models.

You have specified a nested logit model and requested rank data for the observed
outcomes. The nested logit model cannot be estimated with ranks data.

1020 Not used specifically.
 May show up with a self explanatory message.

1021 Using Box-Cox function on a variable that equals 0?

1022 Insufficient valid observations to fit a model.

1023 Mismatch between current and last models.

This occurs when you are using the ; Simulation = ... part of NLOGIT.

1024 Failure estimating DISCRETE CHOICE model.

Since this occurs during an attempt to compute the starting values for other models, if it
fails here, it won’t succeed in the more complicated model.

1025 Failed to fit model. See earlier diagnostic.

1026 Singular VC may mean model is unidentified. Check tree.

What looks like convergence of a nested logit model may actually be an unidentified
model. In this case, the covariance matrix will show up with at least one column of
zeros.

1027 Models - estimated variance matrix of estimates is singular.

Non P.D. 2nd derivatives. Trying BHHH estimator instead.
This is just a notice. In almost all cases, the Hessian for a model that is not the simple
MNL model will fail to be positive definite at the starting values. This does not indicate
any kind of problem.

R28: Diagnostics and Error Messages R-753

1028 In ;SIMULATION=list of alts, a name is unknown.

1029 Did not find closing] in labels[list].

1030 Error in specification of list in ;Choices=...labels[list].

1031 List in ;Choices=...labels[list] must be 1 or NALT values.

1032 Merging SP and RP data. Not possible with 1 line data setup.

Merging SP and RP data requires LHS=choice,NALTi,ALTij form.
Check :MERGERPSP(id=variable, type=variable) for an error.

1033 Indiv. <nnnnnn> with ID= <nnnnn> has same ID as another
 individual.
 This makes it impossible to merge the data sets.

1034 Specification error. Scenario must begin with a colon.

1035 Expected to find Scenario: specification = value.

1036 Unbalanced parentheses in scenario specified.

1037 Choice given in scenario: attr(choice...) is not in the model.

1038 Cannot identify attribute specified in scenario.

1039 Value after = in scenario spec is > 20 characters.

1040 Cannot identify RHS value in scenario spec.

1041 Transformation asks for divide by zero.

1042 Can only analyze 5 scenarios at a time.

1043 Did not find any valid observations for simulation.

1044 Expected to find ; LIST : name_x (choices). Not found.

1045 Did not find matching (or [in <scenario specification is given>.

1046 Cannot recognize the name <AAAAAAAA> in <scenario
 (specification is given)>.

1047 Same as 1046.

1048 None of the attributes requested appear in the model.

1049 Model has no free parameters among slopes!

This occurs during an attempt to fit the MNL model to obtain starting values for a nested
logit or some other model.

R28: Diagnostics and Error Messages R-754

1050 DISC with RANKS. Obs= <nnnnnn>. Alt= <nn>. Bad rank given = <nnnn>.
DISC w/ RANKS. Incomplete set of ranks given for obs.<nnnnnn>.
These are data problems with the coding of the Lhs variable.

1051 Singular VC matrix trying to fit MNL model.

When the MNL breaks down, it will be impossible to fit a more elaborate model such as
a nested logit model.

1052 You did not provide ;FCN=label(distn),... for RPL model.

1053 Scaling option is not available with HEV, RPL, or MNP model.
 Ranks data may not be used with HEV, RPL, or MNP model.
 Nested models are not available with HEV, RPL, or MNP model.
 Cannot keep cond. probs. or IVs with HEV, RPL, or MNP model.
 Choice based sampling not useable in HEV, RPL, or MNP model.

These diagnostics are produced by problems setting up the scaling option for mixed data sets.

1054 Scaling option is not available with one line data setup.
 Ranks data may not be used with one line data setup.
 Choice set may not be variable with one line data setup.
 One line data setup requires ;RHS and/or ;RH2 spec.
 Nested models are not available with one line data setup.
 Cannot keep probabilities or IVs with one line data setup.

1055 Did not find closing paren in ;SCALE(list) spec.

The list of variables to be scaled has an error.
Only 40 or fewer variables may be scaled.
You are attempting to scale the LHS variable.
The list of values given for SCALE grid is bad.
Grid must = Lo,Hi,N or Lo,Hi,N,N2. Check spec.
Grid must have Low > 0 and High > low. Check #s.
Number of grid points must be 2,3,... up to 20.

1056 Unidentified name in IIA list. Procedure omitted.

1057 More than 5 names in IIA list. Limit is 5.

1058 Size variables only available with (Nested) MNL.

1059 Cannot locate size variable specified.

1060 Model is too large: Number of betas up to 90.

Model is too large: Number of alphas up to 30.
Model is too large: Number of gammas up to 15.
Model is too large: Number of thetas up to 10.

1061 Number of RHS variables is not a multiple of # of choices.
 This occurs when you are using a one line setup for your data.

1062 Expected ;FIX=name[...]. Did not find [or].

R28: Diagnostics and Error Messages R-755

1063 In ;FIX=name[...], name does not exist: <name is given>.

1064 Error in fixed parameter given for <name is given>.

1065 Wrong number of start values given.

This occurs with nested logit and other models, not the random parameters logit model.

 Expected ;KERNEL=(...),... Missing parenthesis
 The limit on latent effects in KERNEL is 10.
 Willingness to pay computations
 Error in specification of WTP=name1/name2
 Can only save up to 5 WTP values per run.

These diagnostics relate to the kernel model setup.

1066 Command has both ;RHS and Model: U(alts). Inconsistent.

1067 Syntax problem in ;USET:(names list)= list of values.

1068 ;USET: list of parms contains an unrecognized name.

1069 Warning, ;IUSET: # values not equal to # names.

1070 Warning, ;IUSET: # values not equal to # names.

1071 Spec for RPL model is label(type) or [type]. Type=N,C,or L.

1072 Expected ,;$ in COR/SDV/HFN/REM/AR1=list not found.

1073 Invalid value given for correl. or std.dev. in list.

1074 ;COR/SDV=list did not give enough values for matrix.

1075 Error. Expected [in ;EQC=list[value] not found.

Error:Value in EQC=list[value] is not a correlation.
Error. Unrecognized alt name in ;EQC=list[value].
Error:List needs more than 1 name in EQC=list[value].
Error. A name is repeated in ;EQC=list[value].

1076 Your model forces a free parameter equal to a fixed one.

1077 Covariance heterogeneity model needs nonconstant variables.

1077 Invalid parameter name (;label) ',a8,' is a ',a8,'.')

1078 Covariance heterogeneity model not available with HEV model.

Covariance heterogeneity model is only for 2 level models.
Covariance heterogeneity model needs 2 or more branches.

1079 At least one variance in the HEV model must be fixed.

In NLOGIT, in the heteroscedastic extreme value, you have specified the model so that
all the variances are free. But, for identification, one of them must be fixed.

1080 Multiple observation RPL/MNP data must be individual.

R28: Diagnostics and Error Messages R-756

1081 Mismatch of # indivs. and number implied by groups.
WARNING Halton method is limited to 25 random parameters.

1082 Not used.

1083 MODEL followed by a colon was expected, not found.

1084 Expected equation specs. of form U(...) after MODEL.

1085 Unidentified name found in <string is given>.
 This occurs during translation of ; Model: U (...) specifications.

1086 U(list) must define only choices,branches, or limbs.

1087 An equals sign was not found where expected in utility

function definition.

1088 Mismatched [or (in parameter value specification.

1089 Could not interpret string; expected to find number.

1090 Expected to find ;IVSET:=defn. at this point.

1091 Expected to find a list of names in parens in IVSET.

1092 IVSET:(list) ... Unidentified name appears in (list).

1093 You have given a spec for an IV parm that is fixed at 1.

1094 You have specified an IV parameter more than once.

1095 Count variable <nnnnnn> at row <nnnnnn> equals <nnnn>.

The peculiar value for the count variable has thrown off the counter that keeps track of
where the estimator is in the data set.

1096 Choice variable <AAAAAAAA> at row <nnnnn>: Choice= <nnnnn>.
 The most likely cause is a coding error. Check for bad data.

1097 Obs. <nnnnnn>: Choice set contains <nnnn> <nnnn> times.

The choice variable for individual data has more than one 1.0 in it. LIMDEP cannot
determine which alternative is chosen.

1098 Obs. <nnnnnn> alt. <nnn> is not an integer nor a proportion.

1099 Obs. <nnnnnn> responses should sum to 1.0. Sum is <xxxxxx>.

1100 Cannot classify obs. <nnnnnn> as IND, PROPs, or FREQs.

Your data appear to be a mix of individual and frequency data. This occurs when an
individual’s Lhs variable data include zeros. It then becomes difficult to determine what
kind of data you have. You can settle the question by including ; Frequencies in your
command, if that is appropriate.

R28: Diagnostics and Error Messages R-757

1101 # of parms in < list > greater than # choices in U(list).

1102 RANK data can only be used for 1 level (nonnested) model.

1103 Wrong number of variables given in ;CLASSP=list.

;CLASSP=list contains ONE. Cannot save P(j|i) in ONE.

1104 Negative value in NLRP;Tau=value is ignored

Negative value in GMXL;Tau=value is ignored
Value not in [0,1] in GMXL;Gamma=value
Unknown name in ;RPASC=list. Spec. ignored.'

1121 User fn. in RPMIN/MAX is nonpositive. Using Log(.)?

1122 Numerical underflow Product of F(i,r,t) is too small.

1123 Numerical overflow Product of F(i,r,t) is too large.

Diagnostics 1121-1144 are produced by the nonlinear random parameters logit model (NLRPLOGIT).

1121 Too many parameters in list (over 150)

1122 num_symbol, num negative or greater than 150

1123 No. of start values must equal no. of labels.

1124 NLRPLogit requires ;Start=starting values.

1125 Error reading starting values for NLRPLogit

1126 Error in ;FIX=list of labels for NLRPLogit.

1127 Invalid parameter name (;label) ',a8,' is a ',a8,'.'

1128 Fn. name conflicts with var. or other name.

1129 Unbalanced parentheses in function defn.

1130 Table overflow. Function is too complex.

1131 Error in function. See earlier error msg.

1132 Expected to find ;Model:U(...) = name / ...

1133 Utility spec uses a function not in the table

1134 ;Fnj=function name=function defnn.

1135 Alternative function name may not equal a label

1136 Expected ending] in name[...] was not found

1137 Unknown name appears in list in name[list]

R28: Diagnostics and Error Messages R-758

1138 WTP setup for NLRP must be alt[xvar/xvar].

1139 Alt name in WTP spec for NLRP is unknown

1140 X var name in Alt[Xvar/Yvar] is unknown.

1141 Y var name in Alt[Xvar/Yvar] is unknown.

1142 Expected ;888:(xname,blabel) colon not found

1143 Expected (xname,bname) found incorrect specs.'

1144 Table full,25 specs for 888:(xname,bname)/...

1151 User fn. in RPMIN/MAX is nonpositive. Using Log(.)?

1152 Numerical underflow Product of F(i,r,t) is too small.

1153 Numerical overflow Product of F(i,r,t) is too large.

LIMDEP 10 References R-759

LIMDEP 10 References

Abowd, J. and H. Farber, H. [1982] ‘Job Queues and the Union Status of Workers,’ Industrial and
 Labor Relations Review, 35, pp. 354-367.
Abramovitz, M. and Stegun, I. [1972] Handbook of Mathematical Functions, Dover Press,
 New York.
Ackerberg, D. and Devereux, P. [2009] ‘Improved Jive Estimators for Overidentified Linear Models
 with and without Heteroskedasticity,’ Review of Economics and Statistics, 91, 2, pp. 351-362.
Agresti, A. [1984] Analysis of Ordinal Categorical Data, John Wiley and Sons, New York.
Ahn, S. and Schmidt, P. [1995] ‘Efficient Estimation of Models for Dynamic Panel Data,’ Journal of

Econometrics, 68, pp. 3-38.
Ai, C. and Norton, E. [2003] ‘Interaction Terms in Logit and Probit Models,’ Economics Letters,

Elsevier, 80, 1, pp. 123-129.
Aigner, D., Lovell, K., and Schmidt, P. [1977] ‘Formulation and Estimation of Stochastic Frontier
 Production Function Models,’ Journal of Econometrics, 6, pp. 21-37.
Alvarez, A., Amsler, C., Orea, L., and Schmidt, P. [2006] ‘Interpreting and Testing the Scaling
 Property in Models where Inefficiency Depends on Firm Characteristics,’ Journal of
 Productivity Analysis, 25, 3, pp. 201-212.
Alvarez, A., Arias, C., and Greene, W. [2006] ‘Fixed Management and Time Invariant Efficiency in
 a Random Coefficients Model,’ Manuscript, Department of Economics, University of
 Oviedo, Oviedo.
Amemiya, T. [1973] ‘Regression Analysis When the Variance of the Dependent Variable is
 Proportional to the Square of Its Expectation,’ Journal of the American Statistical
 Association, 68, pp. 928-934.
Amemiya, T. [1981] ‘Qualitative Response Models: A Survey,’ Journal of Economic Literature, 19,
 pp. 1483-1536.
Amemiya, T. [1984] ‘Censored or Truncated Regression Models, Symposium,’ Journal of
 Econometrics, 24, 1/2, pp. 1-222.
Amemiya, T. [1987] Advanced Econometrics, Harvard University Press, Cambridge.
Amemiya, T. and MaCurdy, T. [1986] ‘Instrumental Variables Estimation of an Error Components
 Model,’ Econometrica, 54, pp. 869-880.
Anderson, S. and Newell, R. [2003] ‘Simplified Marginal Effects in Discrete Choice Models,’
 Economics Letters, 81, 3, pp. 321-326.
Angrist, J.D., Imbens, G.W., and Krueger, A.B. [1999] ‘Jackknife Instrumental Variables
 Estimation,’ Journal of Applied Econometrics, 14, 1, pp. 57-67.
Angrist, J.D. and Pischke, J. [2009] Mostly Harmless Econometrics: An Empiricist’s Companion,
 Princeton University Press, Princeton.
Antweiler, W. [2001] ‘Nested Random Effects Estimation in Unbalanced Panel Data,’ Journal of
 Econometrics, 101, pp. 295-313.
Arellano, M. and Bond, S. [1991] ‘Some Tests of Specification for Panel Data: Monte Carlo

Evidence and an Application to Employment Equations’ Review of Economic Studies, 58,
pp. 277-297.

Arellano, M. and Bond, S. [1998] ‘Dynamic Panel Data Estimation Using DPD98 for Gauss: A
 Guide for Users,’ CEMFI, Madrid.
Arellano, M. and Bover, O. [1995] ‘Another Look at the Instrumental Variable Estimation of

Error-Components Models,’ Journal of Econometrics, 68, pp. 29-51.

LIMDEP 10 References R-760

Atkinson, S. and Cornwell, C. [1994] ‘Parametric Estimation of Technical and Allocative
 Inefficiency with Panel Data,’ International Economic Review, 35, 1, pp. 231-244.
Baltagi, B. [2005] Econometric Analysis of Panel Data, 3rd Edition, John Wiley and Sons, New York.
Baltagi, B. and Li, Q. [1990] ‘A Comparison of Variance Components Estimators Using Balanced
 Versus Unbalanced Data,’ Econometric Theory, 6, 2, pp. 283-285.
Barnow, B., Cain, G., and Goldberger, A. [1981] ‘Issues in the Analysis of Selection Bias,’ Department
 of Economics, University of Wisconsin, Madison.
Battese, G. and Coelli, T. [1988] ‘Prediction of Firm-Level Technical Efficiencies with a Generalized
 Frontier Production Function and Panel Data,’ Journal of Econometrics, 38, pp. 387-399.
Battese, G. and Coelli, T. [1992] ‘Frontier Production Functions, Technical Efficiency and Panel Data:

With Application to Paddy Farmers in India,’ Journal of Productivity Analysis, 3, pp. 153-169.
Battese, G. and Coelli, T. [1995] ‘A Model for Technical Inefficiency Effects in a Stochastic Frontier
 Production Function for Panel Data,’ Empirical Economics, 20, pp. 325-332.
Battese, G. and Coelli, T. (eds.) [1997] ‘Efficiency and Productivity Measurement,’ Journal of
 Productivity Analysis, 8 (entire issue).
Battese, G. and Corra, G. [1977] ‘Estimation of a Production Frontier Model: With Application for the
 Pastoral Zone of Eastern Australia,’ Australian Journal of Agricultural Economics, 21,
 pp. 167-179.
Bauer, P. [1990] ‘A Survey of Recent Econometric Developments in Frontier Estimation,’ Journal of
 Econometrics, 46, pp. 21-39.
Beach, C. and MacKinnon, J. [1978] ‘A Maximum Likelihood Procedure for Regression with
 Autocorrelated Errors,’ Econometrica, 46, pp. 51-58.
Beck, N. and Katz, J. [1995] ‘What To Do (And Not To Do) with Time Series-Cross Section Data in
 Comparative Politics,’ American Political Science Review, 89, pp. 634-647.
Becker, S. and Ichino, A. [2002] ‘Estimation of Average Treatment Effects Based on Propensity

Scores,’ The Stata Journal, 2, pp. 358-377.
Beckers, D. and Hammond, C. [1987] ‘A Tractable Log-Likelihood Function for the Normal-Gamma
 Stochastic Frontier Model,’ Economics Letters, 24, pp. 33-38.
Beggs, J., Cardell, S., and Hausman, J. [1981] ‘Assessing the Potential Demand for Electric Cars,’
 Journal of Econometrics, 17, pp. 1-19.
Belsley, D. [1980] ‘On the Efficient Computation of the Nonlinear Full-Information Maximum
 Likelihood Estimator,’ Journal of Econometrics, 14, pp. 203-224.
Belsley, D., Kuh, E., and Welsh, R. [1980] Regression Diagnostics, John Wiley and Sons, New York.
Bera, A., Jarque, C., and Lee, L. [1984] ‘Testing the Normality Assumption in Limited Dependent
 Variable Models,’ International Economic Review, 25, pp. 563-578.
Bera, A. and Sharma, S. [1999] ‘Estimating Production Uncertainty in Stochastic Frontier
 Production Function Models.’ Journal of Productivity Analysis, 12, pp. 187-210.
Berndt, E. [1991] The Practice of Econometrics, Addison Wesley, New York.
Berndt, E., Hall, B., Hall, R., and Hausman, J. [1974] ‘Estimation and Inference in Nonlinear
 Structural Models,’ Annals of Economic and Social Measurement, 3/4, pp. 653-666.
Berndt, E. and Wood, D. [1975] ‘Technology, Prices, and the Derived Demand for Energy,’ Review
 of Economics and Statistics, 57, pp. 376-384.
Berry, S., Levinsohn, J. and Pakes, A. [1995] ‘Automobile Prices in Market Equilibrium,’
 Econometrica, 63, pp. 841-890.
Bhargava, A. and Sargan, J. [1983] ‘Estimating Dynamic Random Effects Models from Panel Data

Covering Short Periods,’ Econometrica, 51, pp. 221-236.

LIMDEP 10 References R-761

Bhat, C. [1994] ‘Imputing a Continuous Income Variable from Grouped and Missing Income
 Observations,’ Economics Letters, 46, 4, pp. 311-320.
Bhat, C. [1999] ‘Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed Logit

Model,’ Msp., Department of Civil Engineering, University of Texas, Austin.
Bhat, C. [2001] ‘Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed
 Multinomial Logit Model,’ Transportation Research, 35B, pp. 677-693.
Bhat, C. and Castelar, S. [2000] ‘A Unified Mixed Logit Framework for Modeling Revealed and

Stated Preferences: Formulation and Application to Congestion Pricing Analysis in the
San Francisco Bay Area,’ Manuscript, Department of Civil Engineering, University of
Texas, Austin.

Bloom, D. and Killingsworth, M. [1985] ‘Correcting for Truncation Bias Caused by a Latent
 Truncation Variable,’ Journal of Econometrics, 27, 1, pp. 131-135.
Blundell, R., Griffith, R., and Windmeijer, F. [2002] ‘Individual Effects and Dynamics in Count

Data Models,’ Journal of Econometrics, 108, pp. 113-131.
Blundell, R. and Smith, R. [1986] ‘An Exogeneity Test for a Simultaneous Equation Tobit Model
 with an Application to Labor Supply,’ Econometrica, 54, 3, pp. 679-685.
Bollerslev, T. [1986] ‘Generalized Autoregressive Conditional Heteroscedasticity,’ Journal of

Econometrics, 31, pp. 307-327.
Bollerslev, T. and Ghysels, E. [1996] ‘Periodic Autoregressive Conditional Heteroscedasticity,’

Journal of Business and Economic Statistics, 14, pp. 139-151.
Bollerslev, T. and Wooldridge, J. [1992] ‘Quasi Maximum Likelihood Estimation and Inference in
 Dynamic Models with Time Varying Covariances,’ Economic Reviews, 11, pp. 143-172.
Bowman, K. and Shenton, L. [1975] ‘Omnibus Contours for Departures from Normality Based on √b1
 and b2’. Biometrika 62, 2, pp. 243-250.
Box, G. and Jenkins, G. [1984] Time Series Analysis: Forecasting and Control, 2nd Edition, Holden
 Day, New York.
Boyes, W., Hoffman, D., and Low, S. [1989] ‘An Econometric Analysis of the Bank Credit Scoring
 Problem,’ Journal of Econometrics, 40, pp. 3-14.
Breusch, T. and Pagan, A. [1979] ‘A Simple Test for Heteroscedasticity and Random Coefficient
 Variation,’ Econometrica, 47, pp. 1287-1294.
Breusch, T. and Pagan, A. [1980] ‘The LM Test and its Application to Model Specification in
 Econometrics,’ Review of Economic Studies, 47, pp. 239-254.
Brown, R., Durbin, J., and Evans, J. [1972] ‘Techniques for Testing the Constancy of Regression
 Relationships Over Time,’ Journal of the Royal Statistical Society, Series B, 37, pp. 149-172.
Brownstone, D. and Train, K. [1999] ‘Forecasting New Product Penetration with Flexible

Substitution Patterns,’ Journal of Econometrics, 89, pp. 109-129.
Burnett, N. [1997] ‘Gender Economics Courses in Liberal Arts Colleges,’ Journal of Economic

Education, 28, 4, pp. 369-377.
Butler, J. and Chatterjee, P. [1997] ‘Tests of the Specification of Univariate and Bivariate Ordered
 Probit,’ Review of Economics and Statistics, 79, 2, pp. 343-347.
Butler, J. and Moffitt, R. [1982] ‘A Computationally Efficient Quadrature Procedure for the One
 Factor Multinomial Probit Model,’ Econometrica, 50, 3, pp. 761-764.
Cameron, C. and Trivedi, P. [1986] ‘Econometric Models Based on Count Data: Comparisons and
 Applications of Some Estimators,’ Journal of Applied Econometrics, 1, 1, pp. 29-54.
Cameron, C. and Trivedi, P. [1990] ‘Regression Based Tests for Overdispersion in the Poisson
 Regression Model,’ Journal of Econometrics, 46, pp. 347-364.

LIMDEP 10 References R-762

Cameron, C. and Trivedi, P. [1998] Regression Analysis of Count Data, Cambridge University Press,
New York.

Cameron, C. and Trivedi, P. [2005] Microeconometrics: Methods and Applications, Cambridge
 University Press, New York.
Cecchetti, S. [1986] ‘The Frequency of Price Adjustment: A Study of the Newsstand Prices of
 Magazines,’ Journal of Econometrics, 31, pp. 255-274.
Chamberlain, G. [1980] ‘Analysis of Covariance with Qualitative Data,’ Review of Economic Studies,
 47, pp. 225-238.
Chatfield, C. [1996] The Analysis of Time Series: An Introduction, 5th Edition, Chapman and Hall,

London.
Chatterjee, S. and Price, B. [1991] Regression Analysis by Example, 2nd Edition, John Wiley and

Sons, New York.
Chesher, A. and Irish, M. [1987] ‘Residual Analysis in the Grouped Data and Censored Normal

Linear Model,’ Journal of Econometrics, 34, pp. 33-62.
Cheung, C. and Goldberger, A. [1984] ‘Proportional Projections in Limited Dependent Variable
 Models,’ Econometrica, 52, pp. 531-534.
Christensen, L. and Greene, W. [1976] ‘Economies of Scale in U.S. Electric Power Generation,’
 Journal of Political Economy, 84, pp. 625-656.
Christofides, L., Stengos, T., and Swidinsky, R. [1997] ‘On the Calculation of Marginal Effects in
 the Bivariate Probit Model,’ Economics Letters, 54, 3, pp. 203-208.
Cleveland, W. [1979] ‘Robust Locally Weighted Regression and Smoothing Scatterplots,’ Journal of
 the American Statistical Association, 74, 368, pp. 829-836.
Cockburn, I., Wang, P., and Puterman, B. [1998] ‘Analysis of Patent Data - A Mixed Poisson

Regression Model Approach,’ Journal of Business and Economic Statistics, 16, 1, pp. 27-41.
Coelli, T. [1996a] ‘A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer

Program),’ CEPA Working Paper 96/08, Department of Econometrics, University of New
England, Armidale.

Coelli, T. [1996b] ‘A Guide to FRONTIER Version 4.1: A Computer Program for Stochastic Frontier
 Production and Cost Function Estimation,’ CEPA Working Paper 96/07, Department of
 Econometrics, University of New England, Armidale.
Coelli, T., Prasada Rao, D., O’Donnell, C., and Battese, G. (2005), An Introduction to Efficiency and
 Productivity Analysis, 2nd Edition, Springer, New York.
Consul, P. and Jain, G. [1973] ‘A Generalization of the Poisson Distribution,’ Technometrics, 15,
 pp. 791-799
Cornwell, C. and Rupert, P. [1988] ‘Efficient Estimation with Panel Data: An Empirical Comparison
 of Instrumental Variable Estimators,’ Journal of Applied Econometrics, 3, pp. 149-155.
Cornwell, C., Schmidt, P., and Sickles, R. [1990] ‘Production Frontiers with Cross Sectional and Time

Series Variation in Efficiency Levels,’ Journal of Econometrics, 46, pp. 185-200.
Cotton, J. [1988] ‘On the Decomposition of Wage Differentials,’ Review of Economics and
 Statistics, 70, 2, 1988, pp. 236-239.
Cox, D. [1961] ‘Tests of Separate Families of Hypotheses,’ Proceedings of the Fourth Berkeley
 Symposium on Mathematical Statistics and Probability, University of California Press,
 Berkeley.
Cox, D. [1972] ‘Regression Models and Life Tables,’ Journal of the Royal Statistical Society, Series B,
 34, pp. 187-220.
Cox, D. [1975] ‘Partial Likelihood,’ Biometrika, 62, pp. 269-276.
Cox, D. and Oakes, R. [1984] Analysis of Survival Data, Chapman and Hall, London.

LIMDEP 10 References R-763

Cragg, J. [1971] ‘Some Statistical Models for Limited Dependent Variables with Application to the
 Demand for Durable Goods,’ Econometrica, 39, pp. 829-844.
Creel, M. and Loomis, J. [1990] ‘Theoretical and Empirical Advantages of Truncated Count Data
 Estimators for Analysis of Deer Hunting in California,’ American Journal of Agricultural
 Economics, 72, pp. 434-441.
Crepon, B. and Duguet, E. [1995] ‘Research and Development, Competition and Innovation: Pseudo
 Maximum Likelihood and Simulated Maximum Likelihood Applied to Count Data Models
 with Heterogeneity,’ Journal of Econometrics, 79, 2, pp. 355-378.
Cutler, S. and Ederer, F. [1958] ‘Maximum Utilization of the Life Table in Analyzing Survival,’
 Journal of Chronic Disorders, pp. 699-712.
Davidson, R. and MacKinnon, J.G. [1981] ‘Several Tests for Model Specification in the Presence of
 Multiple Alternatives,’ Econometrica, 49, pp. 781-793.
Davidson, R. and MacKinnon, J.G. [1993] Estimation and Inference in Econometrics, Oxford
 University Press, Oxford.
Davidson, R., and MacKinnon, J.G. [2004] Econometric Theory and Methods, Oxford University
 Press, New York.
Davidson, R., and MacKinnon, J.G. [2006] ‘The Case Against JIVE,’ Journal of Applied
 Econometrics, 6, pp. 827-833.
Daymont, T. and Andrisani, P. [1984] ‘Job Preferences, College Major and the Gender Gap in
 Earnings,’ Journal of Human Resources 19, 3, pp. 408-428.
Deheija, R. and Wahba, S. [1999] ‘Causal Effects in Nonexperimental Studies: Reevaluation of the

Evaluation of Training Programs,’ Journal of the American Statistical Association, 94, pp.
1052-1062.

Dehejia, R. and Wahba, S. [2002] ‘Propensity Score Matching Methods for Nonexperimental Causal
Studies,’ Review of Economics and Statistics, 84, 1, pp. 151-161.

DeMaris, A. [2004] Regression with Social Data: Modeling Continuous and Limited Response
 Variables, John Wiley and Sons, New York.
Dickey, D. and Fuller, W. [1979] ‘Distribution of the Estimators for Autoregressive Time Series with a
 Unit Root,’ Journal of the American Statistical Association, 74, pp. 427-431.
Diggle, P., Liang, K., and Zeger, S. [1994] Analysis of Longitudinal Data, Clarendon Press, Oxford.
Efron, B. [1979] ‘Bootstrapping Methods: Another Look at the Jackknife,’ Annals of Statistics, 7,

pp. 1-26.
Efron, B. [1998] An Introduction to the Bootstrap, John Wiley and Sons, New York.
Efron, B. and Tibshirani, R. [1986] ‘Bootstrap Measures for Standard Errors, Confidence Intervals,

and Other Measures of Statistical Accuracy,’ Statistical Science, 1, pp. 54-77.
Enders, W. [2003] Applied Econometric Time Series, 2nd Edition, John Wiley and Sons, New York.
Engle, R. [1982] ‘Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of
 United Kingdom Inflations,’ Econometrica, 50, pp. 987-1008.
Engle, R., Lilien, D., and Robins, R. [1987] ‘Estimating Time Varying Risk Premia in the Term

Structure: The ARCH-M Model,’ Econometrica, 55, pp. 391-407.
Englin, J. and Shonkwiler, J. [1995] ‘Estimating Social Welfare Using Count Data Models: An
 Application to Long-Run Recreation Demand Under Conditions of Endogenous

Stratification and Truncation,’ Review of Economics and Statistics, 77, pp. 104-112.
Estrella, A. [1998] ‘A New Measure of Fit for Equations with Dichotomous Dependent Variables,’

Journal of Business and Economic Statistics, 16, 2, pp. 198-205.
Fair, R. [1977] ‘A Note on Computation of the Tobit Estimator,’ Econometrica, 45, pp. 1723-1727.
Fair, R. [1978] ‘A Theory of Extramarital Affairs,’ Journal of Political Economy, 86, pp. 45-61.

LIMDEP 10 References R-764

Fare, R., Grosskopf, S., and Lovell, C.A.K. [1994] Production Frontiers, Cambridge University
 Press, Cambridge.
Fin, T. and Schmidt, P. [1984] ‘A Test of the Tobit Specification Against an Alternative Suggested by
 Cragg,’ Review of Economics and Statistics, 66, pp. 174-177.
Fiorentini, G., Calzolari, G., and Panattoni, L. [1996] ‘Analytic Derivatives and the Computation of
 GARCH Estimates,’ Journal of Applied Econometrics, 11, pp. 399-417.
Fletcher, R. [1980] Practical Methods of Optimization, John Wiley and Sons, New York.
Fomby, T., Hill, R., and Johnson, S. [1984] Advanced Econometric Methods, Springer Verlag,
 Heidelberg.
Fry, T. [1991] ‘A Generalized Logistic Tobit Model,’ Mimeo, Department of Econometrics, Monash
 University, Clayton.
Glass, G. and Hopkins, K. [1996] Statistical Methods in Education and Psychology, 3rd Edition, Allyn
 and Bacon, Needham Heights.
Glejser, H. [1965] ‘A New Test for Heteroskedasticity,’ Journal of the American Statistical
 Association, 60, pp. 539-547.
Glewwe, P. [1997] ‘A Test of the Normality Assumption in the Ordered Probit Model,’ Econometric
 Reviews, 16, pp. 1-19.
Godfrey, L. G. [1978] ‘Testing Against General Autoregressive and Moving Average Error Models
 when the Regressors Include Lagged Dependent Variables,’ Econometrica, 46, pp. 1293-1302.
Goldberg, P. [1995] ‘Product Differentiation and Oligopoly in International Markets: The Case of
 the U.S. Automobile Industry,’ Econometrica, 63, pp. 891-952.
Goldfeld, S. and Quandt, R. [1972] Nonlinear Methods in Econometrics, North-Holland, Amsterdam.
Gong, X., van Soest, A., and Villagomez, E. [2000] ‘Mobility in the Urban Labor Market: A Panel

Data Analysis for Mexico,’ IZA Working Paper 213, Bonn.
Gourieroux, C., Monfort, A., and Trognon, A. [1984] ‘Pseudo Maximum Likelihood Methods:
 Applications to Poisson Models,’ Econometrica, 52, pp. 701-720.
Greene, W. [1981] ‘Sample Selection Bias as a Specification Error: Comment,’ Econometrica, 49,
 pp. 795-798.
Greene, W. [1983] ‘Estimation of Limited Dependent Variable Models by Ordinary Least Squares and
 the Method of Moments,’ Journal of Econometrics, 21, pp. 195-212.
Greene, W. [1984] ‘Estimation of the Correlation Coefficient in a Bivariate Probit Model Using the
 Method of Moments,’ Economics Letters, 16, pp. 285-291.
Greene, W. [1990a] ‘A Gamma Distributed Stochastic Frontier Model,’ Journal of Econometrics,
 46, pp. 141-163.
Greene, W. [1990b] ‘Multiple Roots of the Tobit Log-Likelihood,’ Journal of Econometrics, 46,
 pp. 365-380.
Greene, W. [1991] ‘The Econometric Approach to Efficiency Measurement,’ Working Paper 93-20,
 Department of Economics, Stern School of Business, New York University, New York.
Greene, W. [1992] ‘A Statistical Model for Credit Scoring,’ Working Paper EC-92-29, Department of
 Economics, Stern School of Business, New York University, New York.
Greene, W. [1993] Econometric Analysis, 1st Edition, Prentice Hall, Englewood Cliffs.
Greene, W. [1994] ‘Accounting for Excess Zeros and Sample Selection in Poisson and Negative

Binomial Regression Models,’ Working Paper 94-10, Department of Economics, Stern
School of Business, New York University, New York.

Greene, W. [1996] ‘Models for Count Data,’ Survey Paper, Manuscript, Department of Economics,
 Stern School of Business, New York University, New York.

LIMDEP 10 References R-765

Greene, W. [1997a] ‘Frontier Production Functions,’ in Pesaran, M. and Schmidt, P. (eds.), Handbook
 of Applied Econometrics: Microeconometrics, Oxford University Press, Oxford.
Greene, W. [1997b] Econometric Analysis, 3rd Edition, Prentice Hall, Englewood Cliffs.
Greene, W. [1998] ‘Gender Economics Courses in Liberal Arts Colleges: Further Results,’ Journal of
 Economic Education, 29, 4, pp. 291-300.
Greene, W. [1999] ‘Marginal Effects in the Censored Regression Model,’ Economics Letters, 64, 1,
 pp. 43-50.
Greene, W. [2000a] ‘Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier
Model,’ Working Paper 00-05, Department of Economics, Stern School of Business, New York
 University, New York.
Greene, W. [2000b] Econometric Analysis, 4th Edition, Prentice Hall, Englewood Cliffs.
Greene, W. [2001] ‘ Fixed and Random Effects in Nonlinear Models,’ Working Paper 01-01,

Department of Economics, Stern School of Business, New York University, New York.
Greene, W. [2003] Econometric Analysis, 5th Edition, Prentice Hall, Englewood Cliffs.
Greene, W. [2004a] ‘The Behaviour of the Maximum Likelihood Estimator of Limited Dependent
 Variable Models in the Presence of Fixed Effects,’ Econometrics Journal, 7, pp. 98-119.
Greene. W. [2004b]’Fixed Effects and Bias Due to the Incidental Parameters Problem in the Tobit
 Model,’ Econometric Reviews, 23, 2, pp. 125-148.
Greene, W. [2006b] ‘A General Approach to Incorporating Selectivity in a Model,’ Working
 Paper 06-10, Department of Economics, Stern School of Business, New York University,
 New York.
Greene, W. [2006c] ‘Econometric Analysis of Panel Data,’
 http://pages.stern.nyu.edu/~wgreene/Econometrics/PanelDataNotes-6.ppt.
Greene, W. [2007] ‘Functional Form and Heterogeneity in Models for Count Data,’ Foundations and

Trends in Econometrics, 1, 2, pp. 113-218.
Greene, W. [2008a] ‘Functional Forms for the Negative Binomial Model for Count Data,’ Economics

Letters, 99, 3, 2008, pp. 585-590.
Greene, W. [2008b] ‘The Econometric Approach to Efficiency Analysis,’ in Fried, H., Lovell, K., and

Schmidt, S. (eds.) The Measurement of Productive Efficiency and Productivity Growth, Oxford
University Press, Oxford.

Greene, W. [2010] ‘A Sample Selection Corrected Stochastic Frontier Model,’ Journal of Productivity
 Analysis, 34, 1, pp. 15-24.
Greene, W. [2011] ‘Fixed Effects Vector Decomposition: A Magical Solution to the Problem of Time
 Invariant Variables in Fixed Effects Models?,’ Political Analysis, 19, 2, pp. 135-146 and
 pp. 170-172.
Greene, W. and Hensher, D. [2010] Modeling Ordered Choices, Cambridge University Press,
 Cambridge.
Greene, W. and Seaks, T. [1991] ‘The Restricted Least Squares Estimator: A Pedagogical Note,’
 Review of Economics and Statistics, 73, pp. 563-567.
Greene, W., Seaks, T., and Greene, L. [1995] ‘Estimating the Functional Form of the Independent
 Variables in Probit Models,’ Applied Economics, 27, 2, pp. 193-196.
Grogger, J. and Carson, R. [1991] ‘Models for Truncated Counts,’ Journal of Applied Econometrics, 6,
 pp. 225-238.
Gross, J. and Clark, V. [1975] Survival Distributions: Reliability Applications in the Biomedical
 Sciences, John Wiley and Sons, New York.
Gruvaeus, G. and Joreskog, K. [1970] ‘A Computer Program for Minimizing a Function of Several
 Variables,’ Educational Testing Services, Research Bulletin 70-14.

http://pages.stern.nyu.edu/~wgreene/Econometrics/PanelDataNotes-6.ppt�

LIMDEP 10 References R-766

Gujarati, D. [1988] Basic Econometrics, McGraw-Hill, New York, p. 502.
Gurmu, S. [1991] ‘Tests for Detecting Overdispersion in the Positive Poisson Regression Model,’
 Journal of Business and Economic Statistics, 9, pp. 215-222.
Haberman, S. [1980] Analysis of Qualitative Data, Academic Press, New York.
Hadri, K. and Whittaker, J. [1999] ‘Efficiency, Environmental Contaminants and Farm Size: Testing

for Links Using Stochastic Production Frontiers,’ Journal of Applied Economics, 2, 2,
pp. 337-356.

Hadri, K., Guermat, C. and Whittaker, J. [2003a] ‘Estimating Farm Efficiency in the Presence of
 Double Heteroscedasticity Using Panel Data,’ Journal of Applied Economics, 6, 2,

pp. 255-268.
Hadri, K. Guermat, C. and Whittaker, J. [2003b] ‘Estimation of Technical Inefficiency Effects Using

Panel Data and Doubly Heteroscedastic Stochastic Production Frontiers,’ Empirical
Economics, 28, 1, pp. 203-222.

Hamilton, J. [1994] Time Series Analysis, Princeton University Press, Princeton.
Han, A. [1987] ‘A Nonparametric Analysis of a Generalized Regression Model: The Maximum Rank
 Correlation Estimator,’ Journal of Econometrics, 35, pp. 303-316.
Han, A. and Hausman, J. [1986] ‘Semiparametric Estimation of Duration and Competing Risk
 Models,’ Working Paper 450, Department of Economics, MIT, Cambridge.
Han, C., Orea, L., and Schmidt, P. [2005] ‘Estimation of a Panel Data Model with Parametric
 Temporal Variation in Individual Effects,’ Journal of Econometrics, 126, 2, pp. 241-267.
Hansen, L. [1982] ‘Large Sample Properties of Generalized Method of Moments Estimators,’
 Econometrica, 50, pp. 1029-1054.
Hansen, L. and Singleton, K. [1982] ‘Generalized Instrumental Variables Estimation of Nonlinear
 Rational Expectations Models,’ Econometrica, 50, pp. 1269-1286.
Harris, M. and Zhao, X. [2007] ‘A Zero-Inflated Ordered Probit Model, with an Application to

Modelling Tobacco Consumption,’ Journal of Econometrics, 141, 2, pp. 1073-1099.
Harvey, A. [1976] ‘Estimating Regression Models with Multiplicative Heteroskedasticity,’
 Econometrica, 44, pp. 461-465.
Harvey, A. [1993] The Econometric Analysis of Time Series, 2nd Edition, MIT Press, Cambridge.
Hastings, N., Evans, M., and Peacock, B. [1993] Statistical Distributions, 2nd Edition, John Wiley and
 Sons, New York.
Hatanaka, T. [1974] ‘An Efficient Two-Step Estimator for the Dynamic Adjustment Model with
 Autocorrelated Errors,’ Journal of Econometrics, 2, pp. 199-220.
Hausman, J. [1978] ‘Specification Tests in Econometrics,’ Econometrica, 46, pp. 1251-1271.
Hausman, J., Hall, B., and Griliches, Z. [1984] ‘Econometric Models for Count Data with an
 Application to the Patents - R&D Relationship,’ Econometrica, 52, pp. 909-938.
Hausman, J. and McFadden, D. [1984] ‘Specification Tests for the Multinomial Logit Model,’
 Econometrica, 52, pp. 1219-1240.
Hausman, J. and Taylor, W. [1981] ‘Panel Data and Unobservable Individual Effects,’

Econometrica, 49, pp. 1377-1398.
Hausman, J. and Wise, D. [1979] ‘Attrition Bias in Experimental and Panel Data: The Gary Income
 Maintenance Experiment,’ Econometrica, 47, pp. 455-473.
Hay, D. [1980] ‘Selectivity Bias in a Simultaneous Logit - OLS Model,’ Manuscript, Department of
 Economics, University of Southern California, Los Angeles.
Hayashi, F. [2000] Econometrics, Princeton University Press, Princeton.
He, B., Xie, M., Goh, T., and Tsui, K. [2002] ‘Control Charts Based on Generalized Poisson Model

for Count Data,’ The Logistics Institute, Georgia Institute of Technology, Atlanta.

LIMDEP 10 References R-767

Heckman, J. [1979] ‘Sample Selection Bias as a Specification Error,’ Econometrica, 47, pp. 153-161.
Heckman, J. [1981] ‘The Incidental Parameters Problem and the Problem of Initial Conditions

in Estimating a Discrete Time-Discrete Data Stochastic Process,’ in Manski, C. and
McFadden, D. (eds.), Structural Analysis of Discrete Data with Econometric Applications,
MIT Press, Cambridge, pp. 114-178.

Heckman, J. and MaCurdy, T. [1980] ‘A Life Cycle Model of Female Labor Supply,’ Review of
 Economic Studies, 47, pp. 247-283.
Heckman, J., Ichimura, H., and Todd. P. [1997] ‘Matching as an Econometric Evaluation Estimator:

Evidence from Evaluating a Job Training Program,’ Review of Economic Studies, 64, 4,
pp. 605-654.

Heckman, J., Ichimura, H., and Todd. P. [1998a] ‘Matching as an Econometric Evaluation Estimator,
‘ Review of Economic Studies, 65, 2, pp. 261-294.

Heckman, J., Ichimura, H., Smith, J., and Todd, P. [1998b] ‘Characterizing Selection Bias Using
Experimental Data,’ Econometrica, 66, 5, pp. 1017-1098.

Heckman, J., LaLonde, R., and Smith, J. [1999] ‘The Economics and Econometrics of Active
Labour Market Programmes,’ in Ashenfelter, O. and Card, D. (eds.), The Handbook of
Labor Economics, 3, North-Holland, Amsterdam.

Heckman, J. and Singer, B. [1984] ‘Econometric Duration Analysis,’ Journal of Econometrics, 24,
 pp. 63-132.
Heckman, J., Tobias, J., and Vytlacil, E. [2003] ‘Simple Estimators for Treatment Parameters in a
 Latent Variable Framework,’ Review of Economics and Statistics, 85, 3, pp. 748-755.
Heckman, J. and Vytlacil, E. [2000] ‘Instrumental Variables, Selection Models and Tight Bounds on
 the Average Treatment Effect,’ NBER Technical Working Paper 0259.
Hensher, D. and Bradley, M. [1993] ‘Using Stated Response Data to Enrich Revealed Preference
 Discrete Choice Models,’ Marketing Letters, 4, 2, pp. 139-152.
Hensher, D. and Johnson, N. [1981] Applied Discrete Choice Modelling, John Wiley and Sons, New
 York.
Hensher, D., Rose, J., and Greene, W. [2005a] Applied Choice Analysis, Cambridge University Press,
 Cambridge.
Hensher, D., Rose, J., and Greene, W. [2005b] ‘The Implications on Willingness to Pay of
 Respondents Ignoring Specific Attributes,’ Transportation, 32, 3, pp. 203-222.
Hilbe, J. [2011] Negative Binomial Regression, Second Edition, Cambridge University Press,
 Cambridge.
Hildebrand, G. and Liu, T. [1957] Manufacturing Production Functions, Cornell University Press,
 Ithaca.
Hildreth, C. and Houck, C. [1968] ‘Some Estimators for a Linear Model with Random Coefficients,’
 Journal of the American Statistical Association, 63, pp. 584-595.
Honore, B. and Kyriazidou, E. [2000] ‘Panel Data Discrete Choice Models with Lagged Dependent
 Variable Models,’ Econometrica, 68, pp. 839-874.
Horn, D., Horn, A., and Duncan, G. [1975] ‘Estimating Heteroskedastic Variances in Linear Models,’
 Journal of the American Statistical Association, 70, pp. 380-385.
Horowitz, J. [1993] ‘Semiparametric Estimation of a Work-Trip Mode Choice Model,’ Journal of

Econometrics, 58, pp. 49-70.
Horrace, W. and Schmidt. P [1996] ‘Confidence Statements for Efficiency Estimates from Stochastic
 Frontier Models,’ Journal of Productivity Analysis, 7, pp. 257-282.
Horrace, W. and Schmidt. P [2000] ‘Multiple Comparisons with the Best, with Economic
 Applications,’ Journal of Applied Econometrics 15, 1, pp 1-26.

LIMDEP 10 References R-768

Howe, C., Lee, B., and Bennett, L. [1994] ‘Design and Analysis of Contingent Valuation Surveys
 Using the Nested Tobit Model,’ Review of Economics and Statistics, 76, pp. 385-388.
Hsiao, C. [1986] Analysis of Panel Data, Cambridge University Press, Cambridge.
Huang, C. and Liu, T. [1994] ‘Estimation of a Non-Neutral Stochastic Frontier Production
 Function, Journal of Productivity Analysis, 5, pp. 171-180.
Hui, W. [1991] ‘Proportional Hazard Weibull Mixtures,’ Mimeo, Department of Economics,
 Australian National University, Canberra.
Hyslop, D. [1999] ‘State Dependence, Serial Correlation and Heterogeneity in Intertemporal Labor

Force Participation of Married Women,’ Econometrica, 67, pp. 1255-1294.
Johnson, N. and Kotz, S. [1970] Distributions in Statistics, Continuous Univariate Distributions - 2,
 John Wiley and Sons, New York.
Johnson, N. and Kotz, S. [1974] Distributions in Statistics - Continuous Multivariate Distributions,
 John Wiley and Sons, New York.
Johnson, N. and Kotz, S. [1993] Distributions in Statistics - Discrete Distributions, 2nd Edition,

John Wiley and Sons, New York.
Johnston, J. and DiNardo, J. [1997] Econometric Methods, 4th Edition, McGraw-Hill, New York.
Jondrow, J., Lovell, K., Materov, I., and Schmidt, P. [1982] ‘On the Estimation of Technical
 Inefficiency in the Stochastic Frontier Production Function Model,’ Journal of
 Econometrics, 19, 2/3, pp. 233-238.
Joreskog, K. [1973] ‘A General Method for Estimating a Linear Structural Equation System,’ in
 Goldberger, A. and Duncan, O. (eds.), Structural Equation Methods in the Social Sciences,
 Seminar Press, New York, pp. 85-112.
Judge, G., Hill, C., Griffiths, W., and Lee, T. [1985a] The Theory and Practice of Econometrics,
 John Wiley and Sons, New York.
Judge, G., Hill, C., Griffiths, W., and Lee, T. [1985b] Introduction to the Theory and Practice of
 Econometrics, John Wiley and Sons, New York.
Kalbfleisch, J. and Prentice, R. [1980] The Statistical Analysis of Failure Time Data, John Wiley and
 Sons, New York.
Kennan, J. [1985] ‘The Duration of Contract Strikes in U.S. Manufacturing,’ Journal of Econometrics,
 28, pp. 5-29.
Kennedy, W. and Gentle, J. [1980] Statistical Computing, Marcel Dekker, New York.
Kiefer, N. [1988] ‘Economic Duration Data and Hazard Functions,’ Journal of Economic Literature,
 26, pp. 646-679.
Kim, H. and Pollard, J. [1990] ‘Cube Root Asymptotics,’ Annals of Statistics, pp. 191-219.
Kim, Y and Schmidt, P [2000] ‘A Review and Empirical Comparison of Bayesian and Classical

Approaches to Inference on Efficiency Levels in Stochastic Frontier Models with Panel
Data,’ Journal of Productivity Analysis, 14, 2, pp. 91-118.

Klein, R. and Spady, R. [1993] ‘An Efficient Semiparametric Estimator for Discrete Choice
Models,’ Econometrica, 61, pp. 387-421.

Kmenta, J. [1967] ‘On Estimation of the CES Production Function,’ International Economic Review,
 8, pp. 180-189.
Kodde, D. and Palm, F. [1986] ‘Wald Criteria for Jointly Testing Equality and Inequality

Restrictions,’ Econometrica, 54, 5, pp. 1243-1248.
Koenker, R. and Bassett, G. [1978] ‘Regression Quantiles,’ Econometrica, 46, pp. 107-112.
Koenker, R. and Bassett, G. [1982] ‘Robust Tests for Heteroscedasticity Based on Regression
 Quantiles,’ Econometrica, 50, pp. 43-61.

LIMDEP 10 References R-769

Koenker, R. and D’Orey, V. [1987] ‘Algorithm AS 229: Computing Regression Quantiles,’
Journal of the Royal Statistical Society: Series C (Applied Statistics), 36, 3, pp. 383-393.

Krailo, M. and Pike, M. [1984] ‘Conditional Multivariate Logistic Analysis of Stratified Case-
Control Studies,’ Applied Statistics, 44, 1, pp. 95-103.

Krinsky, I. and Robb, L. [1986] ‘On Approximating the Statistical Properties of Elasticities,’ Review
of Economics and Statistics, 68, 4, pp. 715-719.

Krinsky, I. and Robb, L. [1990] ‘On Approximating the Statistical Properties of Elasticities:
Correction,’ Review of Economics and Statistics, 72, 1, pp. 189-190.

Kumbhakar, S. [1994] Efficiency Estimation in a Profit Maximizing Model Using Flexible
Production Function,’ Agricultural Economics, 10, pp. 143-152.

Kumbhakar, S. [1995] ‘Modeling Technical and Allocative Inefficiency in Translog Production
 Functions,’ Economics Letters, 63, pp. 12-19.
Kumbhakar, S. and Lovell, C. [2000] Stochastic Frontier Analysis, Cambridge University Press,
 Cambridge.
Kyriazidou, E. [1997] ‘Estimation of a Panel Data Sample Selection Model,’ Econometrica, 65,

1997, pp. 1335-1364.
LaLonde, R [1986] ‘Evaluating the Econometric Evaluations of Training Programs with
 Data,’ American Economic Review, 76,(4), 1986, pp. 604-620
Lambert, D. [1992] ‘Zero-Inflated Poisson Regression, with an Application to Defects in
 Manufacturing,’ Technometrics, 34, 1, pp. 1-14.
Lancaster, T. [1985] ‘Generalized Residuals and Heterogeneous Duration Models: With Applications
 to the Weibull Model,’ Journal of Econometrics, 28, pp. 155-169.
Lancaster, T. [1990] The Econometric Analysis of Transition Data, Cambridge University Press,
 Cambridge.
Land, K., McCall, P., and Nagin, D. [1994] ‘Poisson and Mixed Poisson Regression Models: A

Review of Applications, Including Recent Developments in Semiparametric Maximum
Likelihood Methods,’ Manuscript, Department of Sociology, Duke University, Durham.

Land, K., McCall, P., and Nagin, D. [1995] ‘A Comparison of Poisson, Negative Binomial and
Semiparametric Mixed Poisson Regression Models with Empirical Applications to
Criminal Careers Data,’ Manuscript, Department of Sociology, Duke University, Durham.

L’Ecuyer, P. [1998] ‘Good Parameters and Implementations for Combined Multiple Recursive
 Random Number Generators,’ Working Paper, Department of Information Science, University
 of Montreal, Montreal.
Lee, B. [1992] ‘A Nested Tobit Analysis for a Sequentially Censored Regression Model,’ Economics
 Letters, 38, pp. 269-273.
Lee, L. [1976] ‘Estimation of Limited Dependent Variable Models by Two-Stage Methods,’ Ph.D.
 Dissertation, University of Rochester, Rochester.
Lee, L. [1978] ‘Unionism and Wage Rates: A Simultaneous Equation Model with Qualitative and
 Limited Dependent Variables,’ International Economic Review, 19, pp. 415-433.
Lee, L. [1983] ‘Generalized Econometric Models with Selectivity,’ Econometrica, 51, pp. 507-512.
Lee, L., Maddala, G. S., and Trost, R. P. [1980] ‘Asymptotic Covariance Matrices of Two Stage Probit
 and Two Stage Tobit Methods for Simultaneous Models With Selectivity,’ Econometrica, 48,
 pp. 491-504.
Lerman, S. and Manski, C. [1981] ‘On the Use of Simulated Frequencies to Approximate Choice
 Probabilities,’ in Manski, C. and McFadden, D. (eds.), Structural Analysis of Discrete Data
 with Econometric Applications, MIT Press, Cambridge.

LIMDEP 10 References R-770

Liang, K. and Zeger, S. [1986] ‘Longitudinal Data Analysis Using Generalized Linear Models,’
Biometrika, 73, pp. 13-22.

Long, S. [1997] Regression Models for Categorical and Limited Dependent Variables, Sage
Publications, Thousand Oaks.

Longley, J. W. [1967] ‘An Appraisal of Least Squares Programs from the Point of the User,’ Journal of
 the American Statistical Association, 62, pp. 819-841.
Machado, J. and Santos Silva, J.M.C. [2005] ‘Quantiles for Counts,’ Journal of the American
 Statistical Association, 100, pp. 1226-1237.
Mroz, T. [1987] ‘The Sensitivity of an Empirical Model of Married Women’s Hours of Work to
 Economic and Statistical Assumptions,’ Econometrica, 55, 4, pp. 765-99.
MacKinnon, J. and White, H. [1985] ‘Some Heteroskedasticity Consistent Covariance Matrix
 Estimators with Improved Finite Sample Properties,’ Journal of Econometrics, 19,
 pp. 305-325.
Maddala, G. S. [1983] Limited Dependent and Qualitative Variables in Econometrics, Cambridge
 University Press, Cambridge.
Manski, C. [1975] ‘Maximum Score Estimation of the Stochastic Utility Model,’ Journal of
 Econometrics, 3, pp. 205-228.
Manski, C. [1985] ‘Semiparametric Analysis of Discrete Response: Asymptotic Properties of the
 Maximum Score Estimator,’ Journal of Econometrics, 27, pp. 313-333.
Manski, C. [1986] ‘Semiparametric Analysis of Binary Response from Response-Based Samples,’
 Journal of Econometrics, 31, pp. 31-40.
Manski, C. [1987] ‘Semiparametric Analysis of Random Effects Linear Models from Binary Panel
 Data,’ Econometrica, 55, pp. 357-362.
Manski, C. [1988] Analog Estimation Methods in Econometrics, Chapman and Hall, New York.
Manski, C. and McFadden, D. (eds.) [1981] Structural Analysis of Discrete Data with Econometric
 Applications, MIT Press, Cambridge.
Manski, C. and Thompson, S. [1985] ‘Operational Characteristics of Maximum Score Estimation,’
 Journal of Econometrics, 32, pp. 85-108.
Manski, C. and Thompson, S. [1987] ‘MSCORE: A Program for Maximum Score Estimation of
 Linear Quantile Regressions from Binary Response Data With NPREG: A Program for Kernel
 Estimation of Univariate Nonparametric Regression Functions,’ Department of Economics,
 University of Wisconsin, Madison.
Matsumoto, M. and Nishimura, T. [1998] ‘Mersenne Twister: A 623-Dimensionally Equidistributed
 Uniform Pseudorandom Number Generator,’ ACM Transactions on Modeling and Computer
 Simulation, 8, 1, pp 3-30.
McCullagh, P. and Nelder, J. [1983] Generalized Linear Models, Chapman and Hall, New York,
 p. 137.
McCullough, B. [1996] ‘Consistent Forecast Intervals when the Forecast-Period Exogenous

Variables are Stochastic,’ Journal of Forecasting, 15, pp. 293-304.
McCullough, B. [1999] ‘Econometric Software Reliability: EViews, LIMDEP, SHAZAM, and

TSP,’ Journal of Applied Econometrics, 14, 2, pp. 191-202.
McCullough, B. and Renfro, C. [1998] ‘Benchmarks and Software Standards: A Case Study of

GARCH Procedures,’ Journal of Economic and Social Measurement, 25, pp. 59-71.
McCullough, B. and Vinod, H. [1999] ‘The Numerical Reliability of Econometric Software,’

Journal of Economic Literature, 37, 2, pp. 633-665.
McDonald, J. and Moffitt, R. [1980] ‘The Uses of Tobit Analysis,’ Review of Economics and Statistics,
 62, pp. 318-321.

LIMDEP 10 References R-771

McFadden, D. [1982] ‘Econometric Models of Probabilistic Choice,’ in Manski, C. and McFadden, D.
 (eds.), Structural Analysis of Discrete Data with Econometric Applications, MIT Press,
 Cambridge.
McLachlan, C. and Peel, D. [2000] Finite Mixture Models, John Wiley and Sons, New York.
Meeusen, W. and van den Broeck, J. [1977] ‘Efficiency Estimation from Cobb Douglas Production
 Functions with Composed Error, International Economic Review, 18, pp. 435-444.
Meng, C. and Schmidt, P. [1985] ‘On the Cost of Partial Observability in the Bivariate Probit Model,’
 International Economic Review, 26, 1, pp. 71-86.
Mullahy, J. [1986] ‘Specification and Testing of Some Modified Count Data Models,’ Journal of
 Econometrics, 33, pp. 341-365.
Munnell, A. [1990] ‘Why has Productivity Declined? Productivity and Public Investment,’ New
 England Economic Review, pp. 3-22.
Murphy, K. and Topel, R. [2002] ‘Estimation and Inference in Two-Step Econometric Models,’
 Journal of Business and Economic Statistics, 20, pp. 88-97.
Nagin, D. and Land, K. [1993] ‘Age, Criminal Careers, and Population Heterogeneity: Specification
 and Estimation of a Nonparametric, Mixed Poisson Model,’ Criminology, 31, 3, pp. 327-362.
Nakamura, A. and Nakamura, M. [1983] ‘Part Time and Full Time Work Behavior of Married
 Women, a Model with a Doubly Truncated Dependent Variable,’ Canadian Journal of
 Economics, 16, pp. 201-218.
Nakosteen, R. and Zimmer, M. [1980] ‘Migration and Income: The Question of Self Selection,’
 Southern Economic Journal, 46, pp. 840-851.
Nelder, J. and Wedderburn, W. [1972] ‘Generalized Linear Models,’ Journal of the Royal Statistical
 Society, A, 135, pp. 370-384.
Nelson, F. and Olsen, R. [1978] ‘Specification and Estimation of a Simultaneous Equation Model with
 Limited Dependent Variables,’ International Economic Review, 19, pp. 695-710.
Nerlove, M. and Press, J. [1973] ‘Univariate and Multivariate Log-Linear and Logistic Models,’
 RAND Corporation Report R-1306-EDA/NIH.
Neumark, D. [1988] ‘Employer’s Discriminatory Behavior and the Estimation of Wage

Discrimination,’ Journal of Human Resources 23, 3, pp. 279-295.
Newey, W [1984] ‘A Method of Moments Interpretation of Sequential Estimators,’ Economics Letters,
 14, pp. 201-206.
Newey, W. [1987] ‘Efficient Estimation of Limited Dependent Variable Models with Endogenous
 Explanatory Variables,’ Journal of Econometrics, 36, pp. 231-250.
Newey, W. and West, K. [1987] ‘A Simple Positive Semi-Definite Heteroskedasticity and
 Autocorrelation Consistent Covariance Matrix,’ Econometrica, 55, pp. 703-708.
Oaxaca, R. and Ransom, M. [1994] ‘On Discrimination and the Decomposition of Wage
 Differentials,’ Journal of Econometrics 6, 1, pp. 5-21.
Oaxaca, R. and Ransom, M. [1998] ‘Calculation of Approximate Variances for Wage Decomposition

Differential,’ Journal of Economics and Social Measurement 24,1, pp. 55-61.
Olsen, R. [1978] ‘Note on the Uniqueness of the Maximum Likelihood Estimator of the Tobit Model,’
 Econometrica, 46, pp. 1211-1215.
Olsson, U. [1979] ‘Maximum Likelihood Estimation of the Polychoric Correlation Coefficient,’
 Psychometrika, 44, 4, pp. 443-460.
Orme, C. [1989] ‘Maximum Likelihood Estimation in the Generalized Logistic Model,’ Mimeo,
 Department of Economics, University of Nottingham, Nottingham.
Pagan, A. and Vella, F. [1989] ‘Diagnostic Tests for Models Based on Individual Data: A Survey,’
 Journal of Applied Econometrics, 4, pp. S29-S59.

LIMDEP 10 References R-772

Papke, L. and Wooldridge, J. [2008] ‘Panel Data Methods for Fractional Response Variables with an
 Application to Test Pass Rates,’ Journal of Econometrics, 145, 1-2, pp. 121-133.
Pesaran, M. [1987] The Limits to Rational Expectations, Basil Blackwell, London.
Pesaran, M. and Hall, A. [1988] ‘Tests of Non-Nested Linear Regression Models Subject to Linear
 Restrictions,’ Economics Letters, 27, pp. 341-348.
Petersen, T. [1986a] ‘Fitting Parametric Survival Models with Time-Dependent Covariates,’
 Journal of the Royal Statistical Society, Series C (Applied Statistics), 35, 3, pp. 281-288.
Petersen, T. [1986b] ‘Estimating Fully Parametric Hazard Rate Models with Time-Dependent
 Covariates,’ Sociological Methods and Research, 14, pp. 219-246.
Phillips, G. and Hale, C. [1977] ‘The Bias of Instrumental Variable Estimators of Simultaneous

Equation Systems,’ International Economic Review, 18, 1, pp. 219-228.
Phillips, P. and Perron, P. [1988] ‘Testing for a Unit Root in Time Series Regression,’ Biometrika, 75,

pp. 335-346.
Pindyck, R. and Rubinfeld, D. [1991] Econometric Models and Economic Forecasts, 3rd Edition,
 McGraw-Hill, New York.
Pitt, M. and Lee, L. [1981] ‘The Measurement and Sources of Technical Inefficiency in the Indonesian
 Weaving Industry,’ Journal of Development Economics, 9, pp. 43-64.
Plumper, T. and Troeger, V. [2007] ‘Efficient Estimation of Time-Invariant and Rarely Changing
 Variables in Finite Sample Panel Analyses with Unit Fixed Effects,’ Political Analysis, 15, 2,
 pp. 124-139.
Plumper, T. and Troeger, V. [2011] ‘Fixed Effects Vector Decomposition: Properties, Reliability and
 Instruments,’ Political Analysis, 19, 2, pp. 147-164.
Poirier, D. [1980] ‘Partial Observability in Bivariate Probit Models,’ Journal of Econometrics, 12,
 pp. 209-217.
Powell, J. [1984] ‘Least Absolute Deviations Estimation for the Censored Regression Model,’

Journal of Econometrics, 25, pp. 303-325.
Powell, J. [1986] ‘Symmetrically Trimmed Least Squares Estimation for Tobit Models,’ Econometrica,

54, 6, pp. 1435-1460.
Pratt, J. [1981] ‘Concavity of the Log Likelihood,’ Journal of the American Statistical Association,
 76, pp. 137-159.
Pregibon, D. [1981] ‘Logistic Regression Diagnostics,’ Annals of Statistics, 9, pp. 705-724.
Pudney, S. and Shields, M. [2000] ‘Gender, Race, Pay and Promotion in the British Nursing
 Profession: Estimation of a Generalized Ordered Probit Model,’ Journal of Applied
 Econometrics, 15, 4, pp. 367-399.
Quandt, R. [1983] ‘Computational Problems and Methods,’ in Griliches, Z. and Intrilligator, M. (eds.),
 Handbook of Econometrics, North-Holland, Amsterdam.
Ramsey, J. [1969] ‘Tests for Specification Errors in Classical Linear Least Squares Regression

Analysis,’ Journal of the Royal Statistical Society, Series B, 31, 2, pp. 350-371.
Reifschneider, D. and Stevenson, R. [1991] ‘Systematic Departures from the Frontier: A Framework

for the Analysis of Firm Inefficiency,’ International Economic Review, 32, pp. 715-723.
Reimers C. [1983] ‘Labor Market Discrimination Against Hispanic and Black Men,’ Quarterly

Journal of Economics, 65, pp. 570-579.
Revelt, D. and Train, K. [1998] ‘Mixed Logit with Repeated Choices: Households’ Choices of

Appliance Efficiency Level,’ Review of Economics and Statistics, 80, pp. 1-11.
Riphahn, R., Wambach, W., and Million, A. [2003] ‘Incentive Effects in the Demand for Health
 Care: A Bivariate Panel Count Data Estimation,’ Journal of Applied Econometrics,
 18, 4, pp. 387-405.

LIMDEP 10 References R-773

Ritter, C. and Simar, L. [1997] Pitfalls of Normal-Gamma Stochastic Frontier Models, Journal of
Productivity Analysis, 9, pp. 167-182.

Rivers, D. and Vuong, Q. [1988] ‘Limited Information Estimators and Exogeneity Tests for
 Simultaneous Probit Models,’ Journal of Econometrics, 39, pp. 347-366.
Robinson, C. and Tomes, N. [1982] ‘Self Selection and Interprovincial Migration,’ Canadian Journal
 of Economics, 15, pp. 475-502.
Romeu, A. [2004] ‘ExpEnd: Gauss Code for Panel Count-Data Models,’ Journal of Applied
 Econometrics, 19, 3, pp. 429-434.
Rosett, R. and Nelson, R. [1975] ‘Estimation of the Two-Limit Probit Regression Model,’
 Econometrica, 43, pp. 141-146.
Ruud, P. [2000] An Introduction to Classical Econometric Theory, Oxford University Press, Oxford.
Salkever, D. [1976] ‘The Use of Dummy Variables to Compute Prediction Errors and Confidence
 Intervals,’ Journal of Econometrics, 4, pp. 393-397.
Santos Silva, J.M.C. and Windmeijer, F. [2001] ‘Two-Part Multiple Spell Models for Health Care
 Demand,’ Journal of Econometrics, 104, pp. 67-89.
Schmidt, P. [1985] ‘Frontier Production Functions,’ Econometric Reviews, 4, 2, pp. 289-328.
Schmidt, P. and Strauss, R. [1975] ‘The Predictions of Occupation Using Multinomial Logit Models,’
 International Economic Review, 16, 2, pp. 471-486.
Schmidt, P. and Witte, A. [1989] ‘Predicting Criminal Recidivism Using Split Population Survival
 Time Models,’ Journal of Econometrics, 40, pp. 141-159.
Simar, L. and Wilson, P. [1998] ‘Sensitivity Analysis of Efficiency Scores: How to Bootstrap in

Nonparametric Frontier Models,’ Management Science, 44, pp. 49-61.
Simar, L. and Wilson, P. [1999] ‘Of Course We Can Bootstrap DEA Scores! But, Does It Mean

Anything?’ Journal of Productivity Analysis, 11, pp. 67-80.
Spector, L. and Mazzeo, M. [1980] ‘Probit Analysis and Economic Education,’ Journal of Economic
 Education, 11, pp. 37-44.
Spitzer, J. [1984] ‘Variance Estimates in Models with the Box-Cox Transformation: Implications for
 Estimation and Hypothesis Testing,’ Review of Economics and Statistics, 66, pp. 645-652.
Staiger, D. and Stock, J. [1997] ‘Instrumental Variables Regression with Weak Instruments,’
 Econometrica, 65, 3, pp. 557-586.
Stevenson, R. [1980] ‘Likelihood Functions for Generalized Stochastic Frontier Estimation,’
 Journal of Econometrics, 13, pp. 57-66.
Stewart, M. [1983] ‘On Least Squares Estimation When the Dependent Variable is Grouped,’
 Review of Economic Studies, 50, pp. 141-149.
Stoker, T. [1986] ‘Consistent Estimation of Scaled Coefficients,’ Econometrica, 54, pp. 1461-1482.
Swamy, P. [1971] Statistical Inference in Random Coefficient Regression Models, Springer Verlag,
 New York.
Swamy, P. [1974] ‘Linear Models with Random Coefficients,’ in Zarembka, P. (ed.), Frontiers in
 Econometrics, Academic Press, New York.
Terza, J. [1985] ‘A Tobit-Type Estimator for the Censored Poisson Regression Model,’ Economics
 Letters, 18, pp. 361-365.
Terza, J. [1994] ‘Estimating Count Data Models with Endogenous Switching and Sample Selection,’
 Mimeo, Department of Economics, Pennsylvania State University, University Park.
Terza, J. [1998] ‘Estimating Count Data Models with Endogenous Switching: Sample Selection

and Endogenous Treatment Effects,’ Journal of Econometrics, 84, 1, pp. 129-154.
Terza, J. [2009] ‘Parametric Nonlinear Regression with Endogenous Switching,’ Econometric

Reviews, 28, pp. 555-580.

LIMDEP 10 References R-774

Terza, J., Basu, A., and Rathouz , P.J. [2008] ‘Two-stage Residual Inclusion Estimation: Addressing
Endogeneity in Health Econometric Modeling,’ Journal of Health Economics 27, 3,
pp. 531-543.

Train, K. [1998] ‘Recreation Demand Models with Taste Differences over People,’ Land Economics,
 74, pp. 230-239.
Train, K. [1999] ‘Halton Sequences for Mixed Logit,’ Manuscript, Department of Economics,

University of California, Berkeley.
Train, K. [2009] Discrete Choice Models with Simulation, 2nd Edition, Cambridge University Press,
 Cambridge.
Trethaway, M. and Windle, R. [1983] ‘U.S. Airline Cross Section: Sources of Data,’ Mimeo,
 Department of Economics, University of Wisconsin, Madison.
Uebersax, J.S. [2006] ‘The Tetrachoric and Polychoric Correlation Coefficients,’ Statistical Methods

for Rater Agreement web site. Available at: http://john-uebersax.com/stat/tetra.htm.
Veall, M. and Zimmermann, K. [1992] ‘Pseudo-R2 in the Ordinal Probit Model,’ Journal of

Mathematical Sociology,’ 16, pp. 333-342.
Veall, M. and Zimmermann, K. [1996] ‘Pseudo-R2 Measures for Some Common Limited Dependent
 Variable Models,’ Journal of Economic Surveys, 10, 3, pp. 241-259.
Verbeek, M. [1990] ‘On the Estimation of a Fixed Effects Model with Selectivity Bias,’ Economics
 Letters, 34, pp. 267-270.
Verbeek, M. and Nijman, T. [1992] ‘Testing for Selectivity Bias in Panel Data Models,’

International Economic Review, 33, 3, pp. 681-703.
Vuong, Q. [1989] ‘Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses,’
 Econometrica, 57, pp. 307-334.
Waldman, D. [1982] ‘A Stationary Point for the Stochastic Frontier Likelihood,’ Journal of
 Econometrics, 18, pp. 275-279.
White, H. [1978] ‘A Heteroskedasticity Consistent Covariance Matrix and a Direct Test for
 Heteroskedasticity,’ Econometrica, 46, pp. 817-838.
White, H. [1980] ‘Using Least Squares to Approximate Unknown Regression Functions,’ International
 Economic Review, 21, 1, pp. 149-170.
White, H. [1981] Asymptotic Theory for Econometricians, Academic Press, New York.
Williams, R. [2006] ‘Generalized Ordered Logit/Partial Proportional Odds Models for Ordinal
 Dependent Variables,’ Department of Sociology, University of Notre Dame, Notre Dame.
Willis, R. and Rosen, S. [1978] ‘Education and Self Selection,’ Journal of Political Economy, 87,
 pp. S7-S36.
Windmeijer, F. [1995] ‘Goodness of Fit Measures in Binary Choice Models,’ Econometric Reviews,
 14, pp. 101-116.
Winkelmann, R. [2008] Econometric Analysis of Count Data, 5th Edition, Springer-Verlag, Berlin.
Winkelmann, R. and Zimmermann, K. [1991a] ‘A New Approach for Modeling Economic Count
 Data,’ Economics Letters, 37, pp. 139-143.
Winkelmann, R. and Zimmermann, K. [1991b] ‘Count Data Models for Demographic Data,’ Working
 Paper, SELAPO, University of Munich, Munich.
Winkelmann, R. and Zimmermann, K. [1991c] ‘Inference in Misspecified Poisson Models,’ Working
 Paper, SELAPO, University of Munich, Munich.
Wong, W. [1983] ‘On the Consistency of Cross-Validation in Kernel Nonparametric Regression,’
 The Annals of Statistics, 11, pp. 1136-1141.
Wong, W. and Famoye, F. [1997] ‘Modeling Household Fertility Decisions with Generalized
 Poisson Regression,’ Journal of Population Economics, 10, pp. 273-283.

http://john-uebersax.com/stat/tetra.htm�

LIMDEP 10 References R-775

Wooldridge, J. [1995] ‘Selection Corrections for Panel Data Models Under Conditional Mean
 Independence Assumptions,’ Journal of Econometrics, 68, pp. 115-132.
Wooldridge, J. [1999] ‘Asymptotic Properties of Weighted M Estimators for Variable Probability
 Samples, Econometrica, 67, pp. 1385-1406.
Wooldridge, J. [2002] Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge.
World Health Organization [2000] The World Health Report, 2000, Health Systems: Improving
 Performance, WHO, Geneva.
Wynand, P. and van Praag, B. [1981] ‘The Demand for Deductibles in Private Health Insurance,’
 Journal of Econometrics, 17, pp. 229-252.
Yen, S. and Jones, A. [1997] ‘Household Consumption of Cheese: An Inverse Hyperbolic Sine

Double-Hurdle Model with Dependent Errors’, American Journal of Agricultural
Economics, 79, pp. 246-251.

Zabel, J. [1992] ‘Estimating Fixed and Random Effects Models with Selectivity,’ Economics Letters,
 40, pp. 269-272.
Zamani, H. and Ismail, N. [2011] ‘Functional Form for the Generalized Poisson Regression Model,’
 Communication in Statistics – Theory and Methods.
Zavoina, R. and McElvey, W. [1975] ‘A Statistical Model for the Analysis of Ordinal Level Dependent
 Variables,’ Journal of Mathematical Sociology, Summer, pp. 103-120.
Zhao, X. and Harris, M. [2004] ‘Demand for Marijuana, Alcohol and Tobacco: Participation, Levels
 of Consumption, and Cross-Equation Correlations,’ Economic Record, 80, 251, pp. 391-410.

LIMDEP 10 Reference Guide Index R-776

LIMDEP 10 Reference Guide Index

AIC (Akaike Information Criterion) R-239
Algorithm R-655, R-664
 BFGS R-674
 Newton’s method R-673
APPEND command R-142
ASCII file R-103, R-121, R-127
Autocorrelation R-346, R-441
Average partial effect R-300

Balanced panel R-181
BFGS R-674
BHHH R-439
Binary choice fit R-464
Binary file R-125, R-126
Binary variable R-145
Bivariate normal R-153, R-177, R-459
Bivariate probit R-308
Blanks in file R-129
Block diagonal matrix R-421
Bootstrapping R-536
 correlation R-539
Box-Cox R-373
Box-Cox transformation R-145
Breusch and Pagan test R-346
Butler and Moffitt R-596

CALCULATE command R-449
 correlation coefficients R-468
 random sample R-550
Calculator R-448
Canonical correlation R-385
Categorical variable R-159, R-224
Censoring R-338
Central limit theorem R-557
Character data R-129
Chi squared R-167
Chow test R-336
CLIST command R-200
CLS R-327
Cluster R-263
 estimator R-264, R-265, R-266
CML R-354
Command R-74

bar R-101

builder R-28
modify R-72
random parameters R-603
summary R-90

Commands
APPEND R-142
CALCULATE R-449
CLIST R-200
CREATE R-143
DATES R-207
DECOMPOSE R-323
DEFAULT R-669
DELETE R-176
DISPLAY R-197, R-201, R-243
DO R-515
DRAW R-209, R-543
FPLOT R-553
IMPORT R-103, R-105
IMPUTE R-525

 LIST R-137
MATRIX R-396
MERGE R-191
MPLOT R-406
NAMELIST R-193

 NOSKIP R-215
PARTIAL EFFECTS R-273, R-282
PERIOD R-207
PROCEDURE R-497
READ R-120
RECODE R-173
REJECT R-204
RENAME R-176
SAMPLE R-204
SETPANEL R-186
SIMULATE R-316
SKIP R-214
SORT R-174
STRING R-509
TITLE R-257
WALD R-362
WRITE R-141

Confidence interval R-238, R-304
Constant term R-217
Convergence R-505, R-664

LIMDEP 10 Reference Guide Index R-777

Correlation coefficient R-468
 biserial R-468
 polychoric R-470
 rank R-472
 tetrachoric R-468
Covariance matrix R-244, R-360
CREATE
 functions R-151
 matrix R-155
 means R-157
 random sample R-546
CREATE command R-115, R-143, R-146
Critical values R-458
Cross section data R-204
CSV
 file R-104, R-139, R-401
 format R-110
Current sample R-202

Data R-83
 numeric R-107
Data area R-78, R-118
 cells R-119
 rows R-119
 size R-78
Data editor R-112
Data file R-103, R-120, R-130
 blanks R-129
Data matrix R-162, R-427
Data transformation R-143
DATES command R-207
DECOMPOSE command R-323
Decomposition R-322
Decomposition, Oaxaca R-322
DEFAULT command R-669
DELETE command R-176
Delta method R-360
Desktop R-57, R-93
Diagnostics R-698
 unable to find optimum R-658
Dickey Fuller test R-473
Direct effect R-310
Discrete choice R-339
Discriminant analysis R-387
DISPLAY command R-197, R-201, R-243
DO command R-515
DRAW R-677

DRAW command R-209, R-543
 panel data R-545
Dummy variable R-152, R-304

Editing window R-61, R63
Editor R-130
Elasticity R-287
Endogenous binary variable R-477
Endogenous variable R-479
Equal coefficient vectors R-337
Estimation, suppress results R-251
Excel R-108, R-126, R-132, R-413
EXECUTE R-354, R-497, R-526
 conditional R-503
 loop R-511
 silent R-253, R-490, R-500
 query R-501
Executing commands R-65, R-488
Exit code R-663
Exit program R-73
Expand R-358
 categorical variable R-159
Exponent R-151
Export
 data R-132, R-139
 results R-258
 variables R-117

File
 CSV R-104, R-401
 data R-103
 Excel R-108, R-126, R-132
 input R-76
 output R-60, R-87, R-256
 path R-64
 project R-59, R-61, R-136
 Stata R-126
 type R-59
Fill R-312
Fitted values R-311
Fixed effects R-563, R-582
 Hausman test R-391
 nonlinear R-591
 saving R-571
 two way R-588
FPLOT command R-553

LIMDEP 10 Reference Guide Index R-778

Gamma distribution R-460
Gamma function R-151, R-460
GEE R-694
Gibbs sampler R-534
GLIM R-694
GMM R-445
GO button R-65, R-69
Graphical results R-250
Group count variable R-190
Group means R-163, R-444
Grouped data R-268
Groupwise heteroscedasticity R-348

Halton sequence R-618, R-620
Hausman test R-391
Help R-88
Hermite quadrature R-423
Heteroscedasticity R-441
Histogram R-537
Homoscedasticity R-344
Hypothesis test R-244, R-249, R-327

Identity matrix R-421
IMPORT R-103, R-121, R-112
IMPORT command R-103, R-105
Imputation R-521, R-525

aggregation R-530
binary variable R-531
continuous variable R-532
estimation R-526
fractional variable R-531
missing values R-521
multinomial variable R-532
ordered outcome R-532
Poisson variable R-532

IMPUTE command R-525
Incidental parameters problem R-587
INCLUDE R-204, R-677
Indexed variables R-511
Individual specific estimates R-610
Indirect effect R-310
Infinite loop R-518
Information criteria R-239
Initial model results R-241
Input file R-76
Interaction term R-219
 namelist R-233

Iterations R-655
 convergence R-664
 exit R-657

Jackknife estimation R-541

Kolmogorov Smirnov test R-465
Krinsky and Robb R-360, R-361

Labellists R-200
Labels R-106, R107, R-123
Lagrange multiplier R-382
Lagrange multiplier test R-341
Lags R-154, R-226
Laguerre quadrature R-423
Last model R-260, R-285, R-315
Latent class R-638, R-640
 probability R-643
 posterior probability R-647
Law of large numbers R-557
LCM R-639
Least absolute deviations R-441
Least squares R-241, R-440
Likelihood ratio test R-334, R-339
Linear restrictions R-327, R-330
LIST R-312
LIST command R-137
Listwise deletion R-533
LM test R-341, R-346
 autocorrelation R-346
 groupwise heteroscedasticity R-348
Local variable R-509
Logarithm R-151
Logical expression R-148
Logistic distribution R-152
Lognormal R-167
Looping R-511

Marginal effects R-272
Matrix

block diagonal R-421
CALCULATE R-417
calculator R-394
characteristic root R-431
Cholesky decomposition R-432
correlation R-437
data R-162, R-427

LIMDEP 10 Reference Guide Index R-779

Excel R-413
export results R-401
functions R-155
GMM R-445
Hadamard product R-434
import R-412
inverse R-433
Kronecker product R-434
panel data R-444
partitioned R-420
peek R-401
power R-419
random R-422, R-550
singular value decomposition R-432
square root R-431
statistical output R-404
sum of squares R-438

 technical output R-401
 work area restore R-407
MATRIX R-381
MATRIX command R-396
Matrix algebra R-381
 namelist R-197
Maximum iterations R-658
Maximum likelihood R-239, R-334
Maximum likelihood estimator, constrained
 R-355
Maximum simulated likelihood R-608
Means R-157
 partial effects R-294
Menu R-57

edit R-96
help R-100
insert R-64, R-96
model R-98
project R-97
run R-99
tools R-99
window R-100

Merge, panel data R-188
MERGE command R-191
Mget R-407
Missing data R-202, R-211
 estimation with R-214
 matrix algebra R-212
 SKIP R-214
Missing data code R-111

Missing values R-111, R-112, R-115, R-148,
 R-202, R-521
 transformation R-147
Model command R-217

conditional R-232
sample R-233
strata R-233

Model estimates R-242
Model output R-236
 confidence interval R-238
Model prediction R-245
Model, information criteria R-239
MPLOT command R-406
Multicollinearity R-357, R-382
Multilevel models R-632
Multinomial logit, partial effects R-388
Multiple imputation R-521, R-531
 aggregation R-530
 estimation R-526
Multivariate normal R-153, R-168, R-177,
 R-180, R-423, R-459, R-667, R-668
 matrix R-171
Murphy and Topel estimator R-476

Namelist R-192
 data matrix R-199
 deleting R-194
 define R-193
 display model R-197
 editing R-195
 indexed R-511
 interaction term R-223
 matrix algebra R-197
 nonlinear terms R-223
 wildcard character R-192
NAMELIST R-677
NAMELIST command R-193
Names
 conventions R-75
 matrix R-407
 variable R-106, R-107, R-122
Net present value R-474
Newton’s method R-673
New variable R-114
NIST R-88
Noncentral distribution R-460

LIMDEP 10 Reference Guide Index R-780

Nonlinear function R-219
Nonlinear optimization R-216
Normal
 bivariate R-177
 truncated R-180
 multivariate R-153, R-168, R-177,
 R-180, R-423, R-459, R-667, R-668
Normal distribution R-152, R-458
NOSKIP command R-215

Observation labels R-106, R107, R-123
Observations R-79
Omitted variables R-346
OPG R-439
Optimization R-216, R-654
 diagnostics R-699
 exit code R-663
 premature convergence R-672
 quadrature R-665
 scaling data R-671
 starting values R-670
Order statistics R-462
Output R-236
 matrix R-397
Output file R-60, R-87, R-256
Output window R-60, R-70, R-86, R-137

Panel data R-181, R-563

balanced R-181, R-565
DRAW R-210
fixed effects R-568, R-582
global setting R-186
group count variable R-190
group functions R-163
group indicator R-183
group means R-444, R-566
group size R-185
invariant variables R-188
latent class R-568, R-579
least squares R-582
matrix R-444, R-445
maximum likelihood R-586
merge variables R-188
missing values R-571
random coefficients R-568
random effects R-568
random parameters R-575

random sample R-210, R-211
regression R-563
unbalanced R-552

Parameters R-379
Partial difference R-226
Partial effects R-248, R-271
 average R-300
 compound model R-306
 confidence interval R-304
 dummy variable R-304

fixed variables R-293
means R-294
model analyzed R-296
plotting R-290
sample partition R-292
saving R-294

 significance R-305
single index model R-301

PARTIAL EFFECTS R-315
 issues R-278
 sample R-286
 variables R-286
 scenarios R-288
PARTIAL EFFECTS command R-273, R-282
Partial elasticity R-287
Partitioned matrix R-420
PERIOD command R-207
Plot
 matrix R-406
 density R-553
 histogram R-555
Poisson R-168
Pooled model R-261
Posterior probabilities R-647
Predictions R-244, R-311
Probability, multivariate normal R-177
Probit R-448
 heteroscedasticity R-344
Procedure R-84, R-495, R-487
 editing R-519
 library R-498
PROCEDURE R-252, R-526
PROCEDURE command R-497
Program parameters, default R-669
Project R-78
Project file R-59, R-61, R-136
Project window R-71, R-80

LIMDEP 10 Reference Guide Index R-781

Quadrature R-423, R-596, R-665
Quietly R-251

Random effects R-551, R-563, R-573, R-594
 Hausman test R-391
 nonlinear R-599
Random matrix R-422
Random number generator R-165, R-166,
 R-179
 seed R-165, R-545
 uniform R-178
Random parameters R-575, R-601
 distribution R-604
 individual specific estimates R-610
 likelihood function R-617
 simulation R-608
Random sample R-167, R-209, R-543, R-546
 multivariate normal R-547
 panel data R-545
Ranks R-153
READ command R-120
 by variables R-124
Recode character data R-129
RECODE command R-173
REGRESS
 panel data R-583
 fixed effects R-584
REJECT R-111, R-202, R-215
REJECT command R-204
REM R-632
RENAME command R-176
Reserved names R-75
 matrix R-408
 calculator R-453
Residuals R-245, R-311
Restarting R-85
Restricted least squares R-381
Restrictions R-249, R-327, R-335, R-349
 fixed value R-342, R-350
 nonlinear R-349
Retrievable results R-376
REVIEW R-254
Robust R-261
Robust covariance matrix R-261, R-296
ROWS R-120

SAMPLE R-677
SAMPLE command R-115, R-204
Save R-73
Scenarios, simulate R-317
SCLS estimator R-252
Seed R-165, R-555
SETPANEL R-218
SETPANEL command R-186
SILENT R-253, R-490
SIMULATE R-315, R-319
SIMULATE command R-316
Simulation R-608
 random effects R-551
Single index model R-301
SKIP command R-214
SORT command R-174
Spreadsheet file R-108
Stack data R-162
Standardized variable R-157
Starting values R-609, R-670
Statistic, Wald R-330
STRING command R-509
Stop button R-662
Stratified data R-268, R-336

Tables of results R-254
Test R-330
Text editor R-130, R-487
Time series data R-207
TIMER R-240
TITLE command R-257
Toolbar R-58, R-101
Trace R-86
Transformation R-143
 algebraic R-145
 conditional R-148
 if/else R-149
Trend variable R-147, R-152
Truncated normal R-180, R-458
Tutorial R-67
Two part model R-338
Two step estimation R-476

Variable, Lhs and Rhs R-217
Variable names R-106, R-107, R-122

LIMDEP 10 Reference Guide Index R-782

compound R-171
Variance, sample R-180

WALD R-274, R-363
 recursive function R-365
 results R-364
WALD command R-362
Wald statistic R-330
Warning message R-657
Weights R-217, R-234, R-296
WRITE command R-141
 data file R-141
WTP R-374

	Table of Contents
	What’s New in Version 10?
	WN1 Model Specification with Interactions, Nonlinearities and Categorical Variables
	WN1.1 Interactions and Nonlinearities Built Directly into Model Commands
	WN1.2 Interaction Terms Included in Namelists
	WN1.3 Definitions of Interaction Terms Stored in Project Files
	WN1.4 Categorical Variables Expanded Inline in Model Commands

	WN2 Post Estimation Analysis
	WN2.1 Simulation of Outcomes and Model Results
	WN2.2 Partial Effects
	WN2.3 Difference in Differences Analysis
	WN2.4 Oaxaca Decompositions

	WN3 Multiple Imputation
	WN3.1 Multiple Imputation for Data Sets with Missing Values
	WN3.2 Technical Details

	WN4 Hypothesis Tests
	WN4.1 Chi Squared Tests for Linear Restrictions
	WN4.2 Likelihood Ratio Tests of Homogeneity of Groups
	WN4.3 Specification Tests for the Linear Regression Model

	WN5 Model Extensions for Random Parameters and Latent Class Models
	WN5.1 Random Parameter Models
	WN5.2 Latent Class models

	WN6 New Models and Features
	WN6.1 Descriptive Statistics
	WN6.2 Kernel Density Estimators
	WN6.3 Histograms
	WN6.4 Graphs and Plotting
	WN6.5 Linear, Semiparametric and Nonparametric Regression Model
	WN6.6 Poisson and Negative Binomial Regressions for Count Data
	WN6.7 Stochastic Frontiers
	WN6.8 Binary Choice Models
	WN6.9 Ordered Choice
	WN6.10 Limited Dependent Variables
	WN6.11 WALD Command
	WN6.12 Nonlinear Optimization
	WN6.13 Numerical Analysis

	WN7 Random Sampling and Bootstrapping
	WN8 Panel Data Handling
	WN8.1 Panel Data Setting
	WN8.2 Transformations for Panel Data
	WN8.3 Spreadsheets and Panel Data

	WN9 Data Import and Export
	WN9.1 Default Formats
	WN9.2 Stata’s .dta Format
	WN9.3 Documentation in Project Files
	WN9.4 Exporting Data
	WN9.5 Export to the Output Window

	WN10 Transformation Functions for CREATE
	WN10.1 Clearing Columns in the Data Area
	WN10.2 Using NAMELIST to Create a Template for a Data Matrix
	WN10.3 SORT
	WN10.4 CREATE Functions
	WN10.5 Stacking Variables with CREATE

	WN11 Programming Tools
	WN11.1 Executing Procedures
	WN11.2 Matrix Functions
	WN11.3 New CALC functions

	WN12 Program Results
	WN12.1 New Use for Namelists
	WN12.2 New CLIST Command to Define a List of Labels

	WN13 Technical Program Settings

	R1: Introduction to LIMDEP Version 10
	R1.1 The LIMDEP Program
	R1.2 Econometric Techniques
	R1.3 Summary of What’s New in Version 10
	R1.4 Documentation

	R2: Basics of Operation
	R2.1 Introduction to the LIMDEP Desktop
	R2.1.1 LIMDEP Desktop Menus
	R2.1.2 The LIMDEP Toolbar and Command Bar
	R2.1.3 Components of a LIMDEP Session

	R2.2 LIMDEP File Types
	R2.3 Beginning the LIMDEP Session
	R2.3.1 Opening a Project File
	R2.3.2 Opening an Editing Window

	R2.4 Using the Editing Window
	R2.4.1 Using the Insert Menu in the Editing Window
	R2.4.2 Executing Commands from the Editing Window
	R2.4.3 The Editing Window Right Mouse Button Menu

	R2.5 A Short Tutorial
	R2.6 Commands
	R2.6.1 Syntax
	R2.6.2 Naming Conventions and Reserved Names

	R2.7 Input Files – Entering Commands from a File
	R2.8 Work Areas and Projects
	R2.8.1 Work Areas
	R2.8.2 The Project Window

	R2.9 Restarting During a Session
	R2.10 Program Output and the Output Window
	R2.10.1 Opening an Output File
	R2.10.2 Editing Your Output
	R2.10.3 Printing

	R2.11 Help
	R2.12 Summary of Commands
	R2.13 Summary of the LIMDEP Desktop
	R2.13.1 The LIMDEP Windows
	R2.13.2 The Main Menus
	R2.13.3 The LIMDEP Toolbar
	R2.13.4 The Command Bar
	R2.13.5 Commands and Menu Items

	R3: Importing and Reading Data Files
	R3.1 Importing and Reading Data
	R3.2 Import a Standard Formatted ASCII File
	R3.2.1 Observation Labels and Variable Names in the Data File
	R3.2.2 Data Files that Contain Only Numeric Data
	R3.2.3 Observation Labels without Variable Names in the Data File
	R3.2.4 Reading a Spreadsheet File from Excel
	R3.2.5 Missing Values in Data Files
	R3.2.6 Missing Values in the Comma Delimited (CSV) Files
	R3.2.7 Data Files that Are Not Formatted for IMPORT

	R3.3 The Data Editor
	R3.4 The Data Area
	R3.4.1 Temporary Expansion of the Data Area
	R3.4.2 Permanently Setting the Number of Cells in the Data Area
	R3.4.3 Setting the Number of Rows in the Data Area

	R3.5 The READ Command for Nonstandard Data Files
	R3.5.1 ASCII Numeric Data Files
	R3.5.2 Variable Names Not Provided in the Data File
	R3.5.3 Variable Names in the Data File
	R3.5.4 Observation Labels
	R3.5.5 Transposed Data Files – Reading by Variables
	R3.5.6 Binary Files and Files from Other Programs
	R3.5.7 Formatted ASCII Files
	R3.5.8 Recoding Character Data

	R3.6 Using the Text Editor as a Data File
	R3.6.1 Use the Text Editor to Avoid Creating a Data File
	R3.6.2 Exporting from Excel to the Text Editor

	R3.7 Documenting the Contents of a Data/Project File
	R3.8 Listing Data in Your Output Window
	R3.9 Exporting and Writing Data Files
	R3.9.1 How to EXPORT a CSV File
	R3.9.2 How to WRITE a Data File

	R3.10 Adding Observations – The APPEND Command

	R4: Data Transformations
	R4.1 Data Transformations
	R4.2 The CREATE Command
	R4.2.1 Algebraic Transformations
	R4.2.2 Conditional Transformations

	R4.3 CREATE Functions
	R4.3.1 Common Algebraic Functions
	R4.3.2 Univariate Normal Distribution
	R4.3.3 Logistic Distribution
	R4.3.4 Trends and Seasonal Dummy Variables
	R4.3.5 Ranks of Observations
	R4.3.6 Box-Cox Function and its Derivatives
	R4.3.7 Bivariate and Multivariate Normal Probabilities
	R4.3.8 Leads and Lags
	R4.3.9 Matrix Functions
	R4.3.10 Moving a Matrix
	R4.3.11 Means, Deviations, Standardized Variables
	R4.3.12 Moments for a Set of Variables – the Xmt Function
	R4.3.13 Multiple of a Set of Variables – the Scl Function
	R4.3.14 Expanding a Categorical Variable into a Set of Dummy Variables
	R4.3.15 Stacking Data to Create Data Matrices
	R4.3.16 Group Functions for Panel Data

	R4.4 Random Number Generators
	R4.4.1 Setting the Seed for the Random Number Generator
	R4.4.2 Basic Random Number Generation
	R4.4.3 Random Samples from Continuous Distributions
	R4.4.4 Random Samples from Discrete Distributions
	R4.4.5 Sampling from the Multivariate Normal Distribution

	R4.5 Compound Names for Variables
	R4.6 Changing Particular Observations of a Variable
	R4.7 Recoding Variables – The RECODE Command
	R4.8 Sorting Variables – The SORT Command
	R4.9 The DELETE and RENAME Commands
	Appendix R4A Numerical Methods
	R4A.1 Computing Bivariate Normal Probabilities
	R4A.2 Computing Multivariate Normal Probabilities
	R4A.3 Uniform Random Number Generation
	R4A.4 Standard Normal Random Number Generation
	R4A.5 Random Number Generation from Other Distributions
	R4A.6 Sampling from the Truncated Normal Distribution
	R4A.7 Random Sampling from the Multivariate Normal Distribution
	R4A.8 Sample Variances

	R5: Panel Data and Data for Discrete Choice Models
	R5.1 Estimation Using Panel Data
	R5.2 Programs that Use Panel Data
	R5.3 Panel Data Arrangement
	R5.3.1 Group Indicators and Within Group Observation Numbers
	R5.3.2 Group Size Variables for Panel Data
	R5.3.3 Permanent Global Setting for Panel Data

	R5.4 Merging Invariant Variables into a Panel Data Set
	R5.4.1 Using an ID Variable to Merge Data
	R5.4.2 Using a Group Count Variable to Merge Data

	R6: Variable Lists and Label Lists
	R6.1 Namelists and Labellists
	R6.2 Lists of Variables in Model Commands
	R6.3 Wildcard Characters in Variable Lists
	R6.4 Defining Namelists
	R6.4.1 Combining Namelists
	R6.4.2 Deleting Namelists
	R6.4.3 Editing Namelists

	R6.5 Using Namelists
	R6.5.1 Using Namelists in Commands
	R6.5.2 Using Namelists in Matrix Algebra
	R6.5.3 Using Namelists to Display Model Results
	R6.5.4 Using Namelists in CREATE
	R6.5.5 Using NAMELIST to Create a Data Matrix
	R6.5.6 Indexing Variables in Namelists

	R6.6 Labellists

	R7: The Current Sample and Missing Data
	R7.1 The Current Sample
	R7.2 Cross Section Data
	R7.2.1 Defining the Current Sample with the SAMPLE Command
	R7.2.2 Removing and Adding Observations with REJECT/INCLUDE
	R7.2.3 Interaction of REJECT/INCLUDE and SAMPLE

	R7.3 Time Series Data
	R7.4 Using the DRAW Command to Obtain Random Samples
	R7.4.1 Random Sampling from a Cross Section
	R7.4.2 Random Sampling from a Panel Data Set
	R7.4.3 Simulating a Random Sample with Panel Data

	R7.5 Missing Data
	R7.5.1 Reading Missing Data
	R7.5.2 Missing Data in Transformations
	R7.5.3 Missing Data in Scalar and Matrix Algebra
	R7.5.4 Missing Data in Estimation Routines
	R7.5.5 Automatically Bypassing Missing Data – The SKIP Command
	R7.5.6 Nonlinear Optimization Programs and Using SKIP Generally

	R8: Commands for Estimating Models
	R8.1 Model Specifications of Variables and Weights
	R8.2 Model Commands
	R8.3 Interaction Terms and Nonlinear Functions of Variables
	R8.3.1 Interaction Terms and Logs of Variables in Commands
	R8.3.2 Interaction Terms and Nonlinear Terms in Namelists
	R8.3.3 Managing Constructed Variables in the Data Set

	R8.4 Categorical Variables in Model Commands
	R8.5 Lags and Partial Differences in Model Commands
	R8.6 Command Builders
	R8.7 Conditional Model Commands
	R8.7.1 Estimation Conditioned on a Scalar Test Value
	R8.7.2 Setting the Sample Temporarily for a Model
	R8.7.3 Looping over Strata for a Model Command

	R8.8 Using Weights in Estimation

	R9: Output
	R9.1 Standard Output from Estimation Programs
	R9.1.1 Changing the Confidence Level for the Confidence Intervals
	R9.1.2 Information Criteria for Maximum Likelihood Estimators
	R9.1.3 Timing Model Estimation

	R9.2 Initial Model Results
	R9.2.1 Displaying Initial Least Squares Estimates
	R9.2.2 Intermediate Model Estimates

	R9.3 Using DISPLAY to View Estimation Results
	R9.4 Covariance Matrices, Predictions and Hypothesis Tests
	R9.4.1 Displaying Covariance Matrices
	R9.4.2 Listing and Saving Model Predictions and Residuals
	R9.4.3 Listing Basic Partial Effects
	R9.4.4 Hypothesis Tests and Restrictions
	R9.4.5 Graphical Results

	R9.5 Suppressing Results
	R9.5.1 Suppressing Estimation Results with Quietly
	R9.5.2 Suppressing All Results with SILENT

	R9.6 The Review Window – Tables of Model Results
	R9.7 Output Files
	R9.7.1 Transporting Output Results to Word Processors
	R9.7.2 Exporting Statistical Results from LIMDEP
	R9.7.3 The Last Model Output

	R10: Robust Covariance Matrices and Clustering
	R10.1 Robust Covariance Matrix for Pooled Models
	R10.2 Using Clustering for Robust Covariance Matrices
	R10.2.1 Models for Which the Clustering Estimator is Supported
	R10.2.2 An Example of the Clustering Estimator
	R10.2.3 Technical Details on the Clustering Estimator

	R10.3 Stratified and Grouped Data

	R11: Partial Effects
	R11.1 Partial Effects for Estimated Models
	R11.2 Command vs. Model Specification
	R11.3 Partial Effects Issues
	R11.4 The PARTIAL EFFECTS Command
	R11.4.1 Last Model Used for Partial Effects
	R11.4.2 Sample Used for PARTIAL EFFECTS
	R11.4.3 Types of Variables in Partial Effects
	R11.4.4 Types of Partial Effects
	R11.4.5 Scenarios in the PARTIAL EFFECTS Command
	R11.4.6 Plotting Partial Effects
	R11.4.7 Sample Partitioning: The ‘@’ Specification
	R11.4.8 Fixing Variables for the Entire Analysis
	R11.4.9 Saving Individual Partial Effects
	R11.4.10 Computing Partial Effects at Sample Means
	R11.4.11 Weighted Observations
	R11.4.12 Robust Covariance Matrices
	R11.4.13 Changing the Model Analyzed by PARTIAL EFFECTS
	R11.4.14 Technical Details

	R11.5 Partial Effects Estimated with Models
	R11.5.1 Partial Effects for Single Index Models
	R11.5.2 Partial Effects for Dummy Rhs Variables
	R11.5.3 Standard Errors and Confidence Intervals
	R11.5.4 Significance Tests for Partial Effects
	R11.5.5 Partial Effects in Compound Models
	R11.5.6 Partial Effects in a Two Equation Model
	R11.5.7 Partial Effects in a Model with Direct and Indirect Effects

	R12: Model Predictions, Residuals, Simulations and Decompositions
	R12.1 Introduction
	R12.2 Creating and Displaying Predictions and Residuals
	R12.3 The Last Model
	R12.4 Using SIMULATE with the Last Model
	R12.4.1 The Sample Used in the Simulation
	R12.4.2 Scenarios in Simulations
	R12.4.3 Defining the Model for SIMULATE

	R12.5 Oaxaca-Blinder Decompositions

	R13: Testing Hypotheses and Imposing Restrictions
	R13.1 Introduction
	R13.2 F Test of Linear Restrictions in Linear Models
	R13.3 Testing Linear Restrictions Using the Wald Statistic
	R13.4 Likelihood Ratio Tests
	R13.4.1 Fixed Value Restriction in a Poisson Model
	R13.4.2 Imposing and Testing Restrictions
	R13.4.3 Homogeneity of Models in a Stratified Data Set
	R13.4.4 Testing for Equal Coefficient Vectors
	R13.4.5 Two Part Models: Cragg’s Model for a Censored Dependent Variable
	R13.4.6 Likelihood Ratio Tests for Discrete Choice Models
	R13.4.7 Likelihood Ratio Tests for Nonlinear Models

	R13.5 Lagrange Multiplier Tests
	R13.5.1 LM Tests Based on the Model Specification
	R13.5.2 LM Test of Homoscedasticity in a Probit Model
	R13.5.3 LM Tests for the Linear Regression Model
	R13.5.4 Programming Lagrange Multiplier Tests

	R13.6 Estimation Subject to Restrictions
	R13.6.1 Fixed Value and Equality Restrictions
	R13.6.2 General Linear Restrictions
	R13.6.3 Imposing Linear Constraints on Maximum Likelihood Estimators
	R13.6.4 Restricted Linear Regression with Multicollinearity

	R14: Functions of Parameters
	R14.1 Introduction
	R14.2 Covariance Matrices for Nonlinear Functions
	R14.2.1 The Delta Method
	R14.2.2 The Method of Krinsky and Robb

	R14.3 The Wald Statistic
	R14.4 The WALD Command
	R14.4.1 Components of the WALD Command
	R14.4.2 Results of the WALD Command
	R14.4.3 Recursive Functions
	R14.4.4 Application Based on the Last Model
	R14.4.5 The Number of Parameters
	R14.4.6 Interdependent Sets of Functions
	R14.4.7 Extracting Parts of a Model
	R14.4.8 Application to a Function of the Parameters
	R14.4.9 Application to a Complex Nonlinear Function

	R15: Retrievable Results
	R15.1 Introduction
	R15.2 Retrievable Results

	R16: Using Matrix Algebra
	R16.1 Introduction
	R16.2 Entering MATRIX Commands
	R16.2.1 The Matrix Calculator
	R16.2.2 Matrix Commands
	R16.2.3 Conditional Commands

	R16.3 Matrix Output
	R16.3.1 Matrix Results
	R16.3.2 Unformatted Output
	R16.3.3 Technical Output
	R16.3.4 Exporting Matrix Results from LIMDEP
	R16.3.5 Matrix Statistical Output
	R16.3.6 Descriptive Statistics for the Elements in a Matrix
	R16.3.7 Plotting Matrices

	R16.4 Matrix Work Areas
	R16.4.1 Rebuilding the Matrix Work Area
	R16.4.2 Naming and Notational Conventions
	R16.4.3 Matrix Dimensions
	R16.4.4 Placing Matrix Results in Scalars
	R16.4.5 Compound Names for Matrices, Variables and Scalars

	R16.5 Reading Matrices
	R16.5.1 Importing a Matrix as a Data File
	R16.5.2 Importing a Matrix as a Block of Cells from Excel

	R16.6 Matrix Expressions
	R16.6.1 Scalar Multiplication of a Result – Using CALCULATE
	R16.6.2 Adding the Same Scalar to Every Element of a Matrix
	R16.6.3 Raising a Matrix to a Power
	R16.6.4 Entering, Moving, and Rearranging Matrices

	R16.7 Using MATRIX Commands with Data
	R16.7.1 Data Matrices
	R16.7.2 Computations Involving Data Matrices

	R16.8 Functions for Manipulating Matrices
	R16.8.1 Functions of One Matrix
	R16.8.2 Functions of Two or More Matrices

	R16.9 Sums of Observations
	R16.10 Matrix Commands that Transform the Data
	R16.10.1 Linear Transformations of Variables
	R16.10.2 Moving a Matrix into the Data Area

	R16.11 Matrix Commands for Panel Data
	R16.11.1 MATRIX Functions for Panel Data
	R16.11.2 GMM Weighting Matrix for Panel Data
	R16.11.3 Gsum and Gmmw Functions with Weights for Some or All Variables
	R16.11.4 Matrix Forms for Computing Moments for Panel Data

	R17: Using the Calculator
	R17.1 Introduction
	R17.2 Command Input in CALCULATE
	R17.3 Results from CALCULATE
	R17.4 Forms of CALCULATE Commands – Conditional Commands
	R17.4.1 Reserved Names
	R17.4.2 Work Space for the Calculator
	R17.4.3 Compound Names for Scalars

	R17.5 Scalar Expressions
	R17.6 Calculator Functions
	R17.6.1 Basic Algebraic Functions
	R17.6.2 Relational Functions
	R17.6.3 Critical Points from the Normal Family of Distributions
	R17.6.4 Probabilities and Densities for Continuous Distributions
	R17.6.5 Moments of the Left Truncated Normal Distribution
	R17.6.6 Probabilities and Densities for the Bivariate Normal Distribution
	R17.6.7 Probabilities and Densities for the Multivariate Normal Distribution
	R17.6.8 Probabilities for Noncentral Distributions
	R17.6.9 Probabilities for Discrete Distributions
	R17.6.10 Gamma Function and Gamma Distribution
	R17.6.11 The Incomplete Gamma Function
	R17.6.12 Random Numbers
	R17.6.13 Matrix Dimensions and Functions
	R17.6.14 Sample Statistics and Regression Results

	R17.7 Fit Measures for a Binary Choice Model
	R17.8 Hypothesis Tests
	R17.9 Calculating Correlation Coefficients
	R17.10 Augmented Dickey Fuller Test
	R17.11 Plotting Discrete Distributions
	R17.12 Financial Functions

	R18: Two Step Estimators
	R18.1 Covariance Matrices for Two Step Estimation
	R18.2 Two Step Estimation for an Endogenous Discrete Variable
	R18.3 Two Step Estimation for an Endogenous Regression Variable
	R18.4 Programming a Two Step Estimator
	R18.5 Theory for Two Step Estimators

	R19: Programming with Procedures
	R19.1 Introduction
	R19.2 The Text Editor
	R19.2.1 Placing Commands in the Editor
	R19.2.2 Executing the Commands in the Editor
	R19.2.3 Executing Silently
	R19.2.4 Using Text Files with the Editor

	R19.3 Estimation Programs and Postprocessing
	R19.4 Procedures
	R19.5 Defining and Executing Procedures
	R19.5.1 The Procedure Library
	R19.5.2 Executing a Procedure
	R19.5.3 Repeated Execution of a Procedure
	R19.5.4 Executing a Procedure Silently
	R19.5.5 Execution with a Scalar Parameter
	R19.5.6 Query for a Parameter to Use in the Procedure
	R19.5.7 Conditional Execution
	R19.5.8 Defining Exit (Convergence) Criteria
	R19.5.9 Parameters and Character Strings in Procedures
	R19.5.10 Local Variables in Procedures

	R19.6 Looping with the EXECUTE Command
	R19.7 Looping Over an Indexed Set of Variables in a Namelist
	R19.8 Flow Control within Procedures
	R19.8.1 Logical Expressions
	R19.8.2 Loops within Procedures
	Examples

	R19.9 Looping with DO Statements
	R19.10 Escaping from an Infinitely Looping Procedure
	R19.11 Editing Procedures and Creating New Procedures

	R20: Multiple Imputation
	R20.1 Introduction to Multiple Imputation
	R20.2 Methodology
	R20.3 How It’s Done – Overview
	R20.4 The Imputation Step
	R20.5 The Estimation Step
	R20.6 The Aggregation Step and Post Estimation Analysis
	R20.7 Using Multiple Imputation in Your Own Model
	R20.8 Imputation Methods
	R20.9 Usage Notes
	R20.9.1 Questions on Usage
	R20.9.2 Implementation Notes

	R21: Bootstrapping and Other Sampling Experiments
	R21.1 Introduction
	R21.2 Bootstrapping Cross Sections and Panel Data
	R21.3 Jackknife Estimation
	R21.4 Random Sampling from the Current Sample – DRAW
	R21.5 Random Sampling from Panel Data Sets
	R21.6 Random Number Generators
	R21.6.1 Setting the Seed for the Random Number Generator
	R21.6.2 Using CREATE to Generate Random Samples
	R21.6.3 Sampling from the Multivariate Normal Distribution
	R21.6.4 Using CALC to Generate Random Draws
	R21.6.5 Using MATRIX to Draw Random Matrices
	R21.6.6 Simulating Random Effects in a Panel
	R21.6.7 Simulating an Unbalanced Panel Data Set

	R21.7 Plotting Distributions
	R21.7.1 CALC Functions that Show Discrete Distributions
	R21.7.2 Plotting a Density
	R21.7.3 Drawing a Distribution by Plotting a Histogram
	R21.7.4 Sampling Experiments
	R21.7.5 The Law of Large Numbers and the Central Limit Theorem

	R21.8 Urn Experiments

	R22: Models for Panel Data
	R22.1 Introduction
	R22.2 Panel Data Models
	R22.3 Data Arrangement and Setup
	R22.3.1 Data Arrangement
	R22.3.2 Reordering Balanced Panels
	R22.3.3 CREATE Commands for Panel Data

	R22.4 General Model Forms for Panel Data
	R22.5 Model Commands
	R22.5.1 Specifying the Panel
	R22.5.2 Missing Data
	R22.5.3 Model Type Specifications, Output and Saved Matrices

	R23: Fixed and Random Effects Models for Panel Data
	R23.1 Introduction
	R23.2 Fixed Effects Models
	R23.2.1 Least Squares in the Linear Regression Model
	R23.2.2 Maximum Likelihood Estimation
	R23.2.3 How it’s Done

	R23.3 Random Effects Models
	R23.3.1 Quadrature Based Estimation – The Butler and Moffitt Method

	R24: Random Parameter Models
	R24.1 Random Parameters Models
	R24.2 Mathematical Formulation of the RP Model
	R24.3 Commands for Random Parameters Models
	R24.4 The Parameter Vector and Starting Values
	R24.5 Individual Specific ‘Estimates’
	R24.6 Application
	R24.7 Technical Details on Estimation of RP Models by Simulation
	R24.8 Multilevel and Multiple Effects RP Models
	R24.8.1 Command
	R24.8.2 Application
	R24.8.3 Technical Details

	R25: Latent Class Models
	R25.1 Latent Class Models
	R25.2 Commands for Latent Class Modeling
	R25.3 Modeling Frameworks for Latent Class Analysis
	R25.4 Output and Saved Results
	R25.5 Extending the Class Probability Model
	R25.6 Testing for the Latent Class Model
	R25.7 Individual Specific Estimates
	R25.7.1 Individual Specific Posterior Class Probabilities
	R25.7.2 Individual Specific Parameters

	R25.8 Application
	R25.9 Technical Details on Estimating Latent Class Models

	R26: Numerical Optimization
	R26.1 Numerical Optimization
	R26.2 Technical Display During Optimization
	R26.3 Technical Output During Iterations
	R26.4 Exit from Iterations and Warning Messages
	R26.4.1 Normal Exit from Iterations
	R26.4.2 Maximum Iterations
	R26.4.3 Unable to Find Function Optimum
	R26.4.4 Too Few Iterations
	R26.4.5 General Failure of Indeterminate Cause
	R26.4.6 Interrupting the Iterations
	R26.4.7 Warnings During the Iterations

	R26.5 Exit Codes
	R26.6 Iteration Controls
	R26.6.1 Maximum Iterations
	R26.6.2 Algorithms
	R26.6.3 Convergence Rules

	R26.7 Quadrature
	R26.8 Multivariate Normal Probabilities
	R26.8.1 Model Based on the Multivariate Normal Distribution
	R26.8.2 Tools that Calculate Multivariate Normal Probabilities

	R26.9 Default Values of Program Parameters
	R26.10 Starting Values
	R26.11 Hints for Iterative Estimation
	Appendix R26A Technical Details on Optimization

	R27: Summary for LIMDEP Reference Guide
	R27.1 Introduction
	R27.2 Essential Program Functions
	R27.2.1 Startup
	R27.2.2 Operation

	R27.3 Reading a Data Set
	R27.4 Transforming Data
	R27.5 Setting the Sample
	R27.6 Multiple Imputation
	R27.7 Econometric Model Estimation
	R27.7.1 Variable Specifications in Model Commands
	R27.7.2 Controlling Output from Model Commands
	R27.7.3 Robust Asymptotic Covariance Matrices
	R27.7.4 Optimization Controls for Nonlinear Optimization
	R27.7.5 Setup for Simulation Based Estimators
	R27.7.6 Execution of Procedures for Model Estimation
	R27.7.7 Predictions and Residuals
	R27.7.8 Model Setup for Certain Models
	R27.7.9 Setup for Panel Data Models

	R27.8 Post Estimation
	R27.8.1 Hypothesis Tests and Restrictions
	R27.8.2 Partial Effects
	R27.8.3 Oaxaca Decompositions

	R27.9 The Command Builders
	R27.10 Econometric Data Structures and Modeling Tools
	R27.10.1 Cross Section Data
	R27.10.2 Panel Data
	R27.10.3 Fixed Effects Models
	R27.10.4 Random Effects and Multilevel Random Effects Models
	R27.10.5 The Random Parameters Model
	R27.10.6 Observations About GLIM and GEE Estimation
	R27.10.7 Latent Class Models
	R27.10.8 Time Series Data

	R27.11 Econometric Model Estimation Templates

	R28: Diagnostics and Error Messages
	R28.1 Introduction
	R28.2 Optimization
	R28.3 Setup and Runtime Diagnostics
	R28.4 Discrete Choice (CLOGIT) and NLOGIT

	LIMDEP 10 References
	LIMDEP 10 Reference Guide Index

