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Preface 
 
 NLOGIT is a major suite of programs for the estimation of discrete choice models.  It is built 
on the original DISCRETE CHOICE (or CLOGIT as is used in the current versions) command in 
LIMDEP Version 6, which provided some of the features that are described with the estimator 
presented in Chapter N17 of this reference guide.  NLOGIT, itself, began in 1996 with the development 
of the nested logit command, originally an extension of the multinomial logit model.  With the 
additions of the multinomial probit model and the mixed logit model among several others, NLOGIT 
has now grown to a self standing superset of LIMDEP.  The focus of most of the recent development is 
the random parameters logit model, or ‘mixed logit’ model as it is frequently called in the literature.  
NLOGIT is now the only generally available package that contains panel data (repeated measures) 
versions of this model, in random effects and autoregressive forms.  We note, the technology used in 
the random parameters model, originally proposed by Dan McFadden and Kenneth Train, has proved 
so versatile and robust, that we have been able to extend it into most of the other modeling platforms 
that are contained in LIMDEP.  They, like NLOGIT, now contain random parameters versions.  Finally, 
a major feature of NLOGIT is the simulation package.  With this program, you can use any model that 
you have estimated to do ‘what if’ sorts of simulations to examine the effects on predicted behavior of 
changes in the attributes of choices in your model. 
 NLOGIT Version 5 continues the ongoing (since 1985) collaboration of William Greene 
(Econometric Software, Inc.) and David Hensher (Econometric Software, Australia.)  Recent 
developments, especially the random parameters and generalized mixed logit in its cross section and 
panel data variants have also benefited from the enthusiastic collaboration of John Rose (Econometric 
Software, Australia).   
 We note, the monograph Applied Choice Analysis: A Primer (Hensher, D., Rose, J. and 
Greene, W., Cambridge University Press, 2005) is a wide ranging introduction to discrete choice 
modeling that contains numerous applications developed with NLOGIT.  This book should provide a 
useful companion to the documentation for NLOGIT. 
 
Econometric Software, Inc. 
Plainview, NY  11803 
2012 
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What’s New in Version 5? 
 
 NLOGIT 5 takes advantage of all the new features developed in LIMDEP 10.  The main 
update specifically in NLOGIT 5 is the large number of new models that we have added.  These are 
several major expansions of the modeling capability of the program, such as the new generalized 
mixed logit model and nonlinear random parameters logit model.  We have also continued to add 
enhancements to give you greater flexibility in analyzing data and organizing results.  We have 
added dozens of features in NLOGIT 5, some clearly visible ones such as the new models and some 
‘behind the scenes’ that will smooth the operation and help to stabilize the estimation programs.  The 
following will summarize the important new developments. 
 
WN1 The NLOGIT 5 Reference Guide 
 
 Users of earlier versions of NLOGIT will see that we have reworked the NLOGIT manual. 
The new electronic format will make it much simpler to navigate the manual and find specific topics 
of interest, and, of course, will make the documentation much more portable.  As in Version 4, we 
have included in this manual documentation of the foundational discrete choice models described in 
greater detail in the LIMDEP Econometric Modeling Guide, including binary choice and ordered 
choice models.  These are presented here to develop a complete picture of the use of NLOGIT to 
analyze data on discrete choices.  Second, we have included extensive explanatory text and dozens of 
new examples, with applications, for every technique and model presented.  The number of chapters 
in the model has increased from 19 to 34 to accommodate the new models, to organize specific 
topics more compactly and to make it easier for you to find the documentation you are looking for. 
 
WN2 New Multinomial Choice Models 
 
 We have added several major model classes to the package.  Some of these are extensions of 
the random parameters models that are at the forefront of current practice.  We have also extended 
the latent class model in two major directions. 
 
WN2.1 New Scaled and Generalized Mixed Logit Models 
 
 The base case multinomial logit model departs from a model with linear utility functions and 
fixed (nonrandom) coefficients; 
 
   Uij  =  β′xij  +  εij 
 
with familiar assumptions about the random components of the random utility functions.  The scaled 
multinomial logit model builds overall scaling heterogeneity into the MNL model, with 
 
   βi  =  σi β 
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where σi is randomly distributed across individuals.  The base case random parameters (mixed) logit 
model departs from the parameter specification, 
 
   βi  =  β  +  ∆zi  +  Γwi.  
 
The generalized mixed logit model combines the specification of the scaled MNL with an allocation 
parameter, γ, that distributes two sources of random variation, scale heterogeneity in σi and 
preference heterogeneity in Γwi.  The encompassing formulation in the generalized mixed logit 
model is 
   βi  =  σi[β  +  ∆zi]  +  [γ  +  σi(1-γ)]Γwi. 
 
The scaled MNL as well as several other interesting specifications are special cases of the 
generalized mixed logit model. 
 
WN2.2 Estimation in Willingness to Pay Space 
 
 Estimation of willingness to pay values is a standard exercise in choice modeling.  Recent 
research has motivated a search for formulations that allow researchers to avoid using ratios of 
coefficients that have dubious statistical properties.  One promising approach that is built into our 
formulation of the generalized mixed logit model is to transform the model parameters so that 
estimation takes place in ‘willingness to pay space,’ rather than in preference.  By this device, 
willingness to pay values are estimated directly as the coefficients in the transformed model. 
 
WN2.3 Random Regret Logit Model 
 
 The use of random utility maximization as the fundamental platform for choice modeling has 
long been the standard approach.  Random regret minimization suggests a useful alternative criterion 
whereby the individual makes a choice based on avoiding the disutility that results from making 
alternative choices that might be less or more attractive.  This formulation presents an alternative to 
the IIA formulation of the multinomial logit, random utility model. 
 
WN2.4 Latent Class Models 
 
 Two new types of latent class models are provided.  The first is a random parameters latent 
class model.  Both features are present in the same model.  The central result is that there is a random 
parameters model that characterizes each of the latent classes. 
 The second extended latent class model extends the -888, ignored attributes feature to latent 
classes.  Up to 32 different classes – we have raised the maximum number of classes from 9 to 32 – 
are defined to accommodate the possible patterns of deliberately missing values in the data set. 
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WN2.5 Error Components Logit Model 
 
 The multinomial logit model, 
 

   Prob(yit = j|E1i,E2i,...) = ( )
( )1

exp

exp

x

xi

jit
J

qitq=

′

′∑
β

β
, 

 
has served as the basic platform for discrete choice modeling for decades.  Among its restrictive 
features is its inability to capture individual choice specific variation due to unobserved factors.  The 
error components logit model, 
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exp
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has emerged as a form that allows this.  In a repeated choice (panel data) situation, this will play the 
role of a type of random effects model. 
 
WN2.6 Nonlinear Random Parameters Logit Model 
 
  The nonlinear random parameters logit model expands the range of random parameters 
models of the form 
 

   βi  =  σi[β  +  ∆zi  +  Γwi]. 
 
(This is a generalized mixed logit model with γ = 1.)  Parameters may enter the utility functions 
nonlinearly.  The model also encompasses the error components specification, producing 
 

   Prob(yit = j|E1i,E2i,...) = ( )
( )1

exp [ ]

exp [ ]i

j i jit j ji
J

j i jit j jiq

V E

V E
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where Vj[βi,xjit] is an arbitrary nonlinear function that you define. 
 
WN2.7 Box-Cox Nested Logit Model 
 
 The nested logit model is extended to allow an automated handling of the Box-Cox 
transformation of the attributes.  This provides some elements of a nonlinear utility function model, 
though it is much less general than the model in the previous section. 
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WN.3 Model Extensions 
 
 In addition to the new model frameworks and many new features built into LIMDEP, we 
have added some extensions to the multinomial choice models.  As noted, some of these are rather 
behind the scenes.  For example, we have expanded the limit on model sizes from 100 to 500 choices 
and from 150 to 300 model parameters. 
 
WN3.1 General -888 format 
 
 The ‘-888’ feature that allows you to accommodate deliberately ignored attributes has been 
extended so that it is now available in all models. 
 
WN3.2 Mixed Logit Models 
 

Numerous specifications have been added to build realistic, plausible parameter 
distributions.  For example, the Weibull and triangular distributions provide useful alternatives to the 
lognormal for imposing sign constraints on coefficients.  There are now 20 different stochastic 
specifications for the random parameters in a mixed logit model.  We have also built optional 
specifications into the definitions of the random parameters to allow variation in the characteristics 
that appear in the means and standard deviations of different distributions. 
 
WN3.3 Elasticities and Partial Effects 
 
 The formatting of results for elasticities has been completely revised.  We have also added a 
feature to allow you to export tables of elasticities directly to any version of Excel. 
 
WN3.4 Robust Covariance Matrix 
 
 The cluster estimator for clustered data sets that has been built into the other estimators in 
LIMDEP has now been added to the models in NLOGIT.  The cluster estimator is a correction to the 
standard errors of an estimator for assumed panel data effects. 
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N1: Introduction to NLOGIT Version 5 
 
N1.1 Introduction 
 
 NLOGIT is a package of programs for analyzing data on multinomial choice.  The program, 
itself, consists of a special set of estimation and analysis routines, specifically for this class of 
models and style of analysis.  LIMDEP provides the foundation for NLOGIT, including the full set of 
tools used for setting up the data, such as importing data files, transforming variables (e.g., 
CREATE), and so on.  NLOGIT is created by adding a set of capabilities to LIMDEP.  The notes 
below describe this connection in a bit more detail. 
 

N1.2 The NLOGIT Program 
 
 NLOGIT adds one (very powerful) command to LIMDEP, 
 
 NLOGIT ; … specification of choice variable 
   ; … specification of choice model behavioral equations 
   ; … definition of choice modeling framework (e.g., nested logit) 
   ; … other required and optional features $ 
 
The NLOGIT command is the gateway to the large set of features that are described in this NLOGIT 
Reference Guide. All other features and commands in LIMDEP are provided in the NLOGIT package 
as well. 
 The estimation results produced by NLOGIT  look essentially the same as by LIMDEP, but 
at various points, there are differences that are characteristic of this type of modeling.  For example, 
the standard data configuration for NLOGIT looks like a panel data set analyzed elsewhere in 
LIMDEP.  This has implications for the way, for example, model predictions are handled.  These 
differences are noted specifically in the descriptions to follow.  But, at the same time, the estimation 
and post estimation tools provided for LIMDEP, such as matrix algebra and the hypothesis testing 
procedures, are all unchanged.  That is, NLOGIT is LIMDEP with an additional special command. 
 

N1.3 NLOGIT and LIMDEP Integration and Documentation 
 
 NLOGIT 5 is a suite of programs for estimating discrete choice models that are built around 
the logit and multinomial logit form.  This is a superset of LIMDEP’s models – NLOGIT 5 is all of 
LIMDEP 10 plus the set of tools and estimators described in this guide. LIMDEP 10 contains the 
CLOGIT command and the estimator for the ‘conditional logit’ (or multinomial logit) model.  
CLOGIT is the same as the most basic form of the NLOGIT command described in Chapter N19.   
 The full set of features of LIMDEP 10 is part of this package.  We assume that you will use 
the other parts of LIMDEP as part of your analysis. To use NLOGIT, you will need to be familiar 
with the LIMDEP platform. At various points in your operation of the program, you will encounter 
LIMDEP, rather than NLOGIT as the program name, for example in certain menus, dialog boxes, 
window headers, diagnostics, and so on.  Once again, these result from the fact that in obtaining 
NLOGIT, you have installed LIMDEP plus some additional capabilities.  If you are uncertain which 
program is actually installed on your computer, go to the About box in the main menu.  It will 
clearly indicate which program you are operating. 
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 This NLOGIT Reference Guide provides documentation for some aspects of discrete choice 
models in general but is primarily focused on the specialized tools and estimators in NLOGIT 5 that 
extend the multinomial logit model.  These include, for example, extensions of the multinomial logit 
model such as the nested logit, random parameters logit, generalized mixed logit and multinomial 
probit models.  This guide is primarily oriented to the commands added to LIMDEP that request the 
set of discrete choice estimators.  However, in order to provide a more complete and useful package, 
Chapters N4-N17 in the NLOGIT Reference Guide describe common features of LIMDEP 10 and 
NLOGIT 5 that will be integral tools in your analysis of discrete choice data, as shown, for example, 
in many of the examples and applications in this manual.  
 Users will find the LIMDEP documentation, the LIMDEP Reference Guide and the LIMDEP 
Econometric Modeling Guide, essential for effective use of this program.  It is assumed throughout 
that you are already a user of LIMDEP.  The NLOGIT Reference Guide, by itself, will not be 
sufficient documentation for you to use NLOGIT unless you are already familiar with the program 
platform, LIMDEP, on which NLOGIT is placed.   
 The LIMDEP and NLOGIT documentation use the following format: The LIMDEP 
Reference Guide chapter numbers are preceded by the letter ‘R.’ The LIMDEP Econometric 
Modeling Guide chapter numbers are preceded by ‘E,’ and the NLOGIT Reference Guide chapter 
numbers are preceded by ‘N.’ 
 
N1.4 Discrete Choice Modeling with NLOGIT 
 
 NLOGIT is a set of tools for building models of discrete choice among multiple alternatives.  
The essential building block that underlies the set of programs is the random utility model of choice, 
 
 U(choice 1) = f1 (attributes of choice 1, characteristics of the chooser, ε1,v,w) 
 ... 
 U(choice J) = fJ (attributes of choice J, characteristics of the chooser, εJ,v,w) 
 
where the functions on the right hand side describe the utility to an individual decision maker of J 
possible choices, as functions of the attributes of the choices, the characteristics of the chooser,  
random choice specific elements of preferences, εj, that may be known to the chooser but are 
unobserved by the analyst, and random elements v and w, that will capture the unobservable 
heterogeneity across individuals. Finally, a crucial element of the underlying theory is the 
assumption of utility maximization, 
 
 The choice made is alternative j such that U(choice j) > U(choice q) ∀ q ≠ j. 
 
The tools provided by NLOGIT are a complete suite of estimators beginning with the simplest binary 
logit model for choice between two alternatives and progressing through the most recently developed 
models for multiple choices, including random parameters, mixed logit models with individual 
specific random effects for repeated observation choice settings and the multinomial probit model. 
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 Background theory and applications for the programs described here can be found in many 
sources.  For a primer that develops the theory for multinomial choice modeling in detail and 
presents many examples and applications, all using NLOGIT, we suggest 
 

Hensher, D., Rose, J., and Greene, W., Applied Choice Analysis, Cambridge University 
Press, 2005.  

 
A general reference for ordered choice models, also based on NLOGIT is 
 

Greene, W. and Hensher, D., Modeling Ordered Choices, Cambridge University Press, 
Cambridge, 2010. 

 
It is not possible (nor desirable) to present all of the necessary econometric methodology in a manual of 
this sort.  The econometric background needed for Applied Choice Analysis as well as for use of the 
tools to be described here can be found in many graduate econometrics books.  One popular choice is 
 
 Greene, W., Econometric Analysis, 7th Edition, Prentice Hall, Englewood Cliffs, 2011. 
 
N1.5 Types of Discrete Choice Models in NLOGIT 
 
 The order and organization of presentations in this manual are partly oriented to the types of 
models you will analyze and partly toward the types of data you will use.  Chapters N2 and N3 
describe discrete choice models including NLOGIT model and command summaries. 
 In Chapters N4-N15, we develop basic choice models that have occupied a large part of the 
econometrics literature for several decades.  The situations are essentially those in which the 
characteristics of decision makers and the choices that they make form the observational base for the 
model building.  The fundamental building block for all of these, as well as for the more elaborate 
models, is the binary choice model:  The structural equations for a model of consumer choice based 
on a single alternative – either to choose an outcome or not to choose it – are  
 
   U(choice) =  β′x  +  ε, 

   Prob(choice)   =  Prob(U > 0) 

    =  F(β′x), 

   Prob(not choice) =  1 - F(β′x), 
 
where x is a vector of characteristics of the consumer such as age, sex, education, income, and other 
sociodemographic variables, β is a vector of parameters and F(.) is a suitable function that describes the 
model.  The choice of vote for a political candidate or party is a natural application.  Models for binary 
choice are developed at length in Chapters E26-E32 in the LIMDEP Econometric Modeling Guide.  
They will be briefly summarized in Chapters N4-N7 to provide the departure point for the models that 
follow.  Useful extensions of the binary choice model presented in Chapters N8-N12 include models 
for more than one simultaneous binary choice (of the same type), including bivariate binary choice 
models and simultaneous binary choice models and a model for multivariate binary choices (up to 20). 
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 The ordered choice model described in Chapters N13-N15 describe a censoring of the 
underlying utility in which consumers are able to provide more information about their preferences. 
In the binary choice model, decision makers reveal through their decisions that the utility from 
making the choice being modeled is greater than the utility of not making that choice.  In the ordered 
choice case, consumers can reveal more about their preferences – we obtain a discretized version of 
their underlying utility.  Thus, in survey data, voters might reveal their strength of preferences for a 
candidate or a food or drink product, from zero (strongly disapprove), one (somewhat disapprove) to, 
say, four (strongly approve).   
 The appropriate model might be 
 
   Prob(strongly dislike) =  Prob(U < 0), 

   Prob(dislike) =  Prob(0 < U < µ1), 

   Prob(indifferent) =  Prob(µ1 < U < µ2), 

   and so on. 
 
We can also build extensions of the ordered choice model, such as a bivariate ordered choice model 
for two simultaneous choices and a sample selection model for nonrandomly selected samples. 
 The multinomial logit (MNL) model described in Chapters N16 and N17 is the original 
formulation of this model for the situations in which, as in the binary choice and ordered choice 
models already considered, we observe characteristics of the individual and the choices that they 
make.  The classic applications are the Nerlove and Press (1973) and Schmidt and Strauss (1976) 
studies of labor markets and occupational choice.  The model structure appears as follows: 
 

   Prob[yi  =  j]  =  
( )

( )1
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Note the signature feature, that the determinants of the outcome probability are the individual 
characteristics.  This model represents a straightforward special case of the more general forms of 
the multinomial choice model described in Chapters N16 and N17 and in the extensions that follow 
in Chapters N23-N33. 
 Chapters N18-N22 document general aspects of operating NLOGIT.  Chapter N18 describes 
the way that your data will be arranged for estimation of multinomial discrete choice models.  
Chapter N19 presents an overview of the command structure for NLOGIT models.  The commands 
differ somewhat from one model to another, but there are many common elements that are needed to 
set up the essential modeling framework. Chapter N20 describes choice sets and utility functions. 
Chapter N21 describes results that are computed for the multinomial choice models beyond the 
coefficients and standard errors.  Finally, Chapter N22 describes the model simulator.  You will use 
this tool after fitting a model to analyze the effects of changes in the attributes of choices on the 
aggregate choices made by individuals in the sample. 
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 The models developed in Chapters N23-N33 extend the binary choice case to situations in 
which decision makers choose among multiple alternatives.  These settings involve richer data sets in 
which the attributes of the alternatives are also part of the observation, and more elaborate models of 
behavior. The broad modeling framework is the multinomial logit model.  With a particular 
specification of the utility functions and distributions of the unobservable random components, we 
obtain the canonical form of the logit model, 
 

   Prob[yi  =  j]  =  
( )

( )1

exp

expi

ij
J

iqq=

′

′∑
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x

β

β
, 

 
where yi is the index of the choice made.  This is the basic, core model of the set of estimators in 
NLOGIT.  (This is the model described in Chapters N16 and N17.) 
 The basic setup for this model consists of observations on N individuals, each of whom 
makes a single choice among Ji choices, or alternatives.  There is a subscript on J because we do not 
restrict the choice sets to have the same number of choices for every individual.  The data will 
typically consist of the choices and observations on K ‘attributes’ for each choice.  The attributes that 
describe each choice, i.e., the arguments that enter the utility functions, may be the same for all 
choices, or may be defined differently for each utility function.  It is also possible to incorporate 
characteristics of the individual which do not vary across choices in the utility functions.  The 
estimators described in this manual allow a large number of variations of this basic model. 
 In the discrete choice framework, the observed ‘dependent variable’ usually consists of an 
indicator of which among Ji alternatives was most preferred by the respondent.  All that is known 
about the others is that they were judged inferior to the one chosen.  But, there are cases in which 
information is more complete and consists of a subjective ranking of all Ji alternatives by the 
individual.  NLOGIT allows specification of the model for estimation with ‘ranks data.’  In addition, 
in some settings, the sample data might consist of aggregates for the choices, such as proportions 
(market shares) or frequency counts.  NLOGIT will accommodate these cases as well. 
 The multinomial model has provided a mainstay of empirical research in this literature for 
decades.  But, it does have limitations, notably the assumption of independence from irrelevant 
alternatives, which limit its generality. Recent research has produced many new, different 
formulations that have broadened the model.  NLOGIT contains most of these, all of which remove 
the crucial IIA assumption of the multinomial logit (MNL) model.  Chapters N23-N33 describe these 
frontier extensions of the multinomial logit model.  In brief, these are as follows: 
 
N1.5.1 Random Regret Logit Model 
 
 The random regret logit model is a variant of the basic conditional logit model.  The form of 
the utility functions involves more direct comparisons of the attributes of the alternatives.  Whereas 
in the essential MNL model, the utility functions enter the probability linearly in terms of the 
attributes, so the coefficients are marginal utilities, in the random regret model, the attributes enter 
the probabilities through the regret functions, 
 
   ( ) log[1 exp( ( ))]ij m jm imR m x x= + β −  
 
which compare attribute m in alternative j to that attribute in alternative i. 
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N1.5.2 Scaled Multinomial Logit Model 
 
 The scaled multinomial logit model accommodates individual heterogeneity in choice 
structures through the scaling of the marginal utilities rather than in the location parameters.  The 
coefficients in the scaled MNL model take the form 
 
   βi  =  σiβ 

where    σi  =  σ × exp(δ′zi + τvi). 
 
This is a type of random parameters model; the scale parameter can vary systematically with the 
observables, zi and randomly across individuals with vi. 
 
N1.5.3 Latent Class and Random Parameters LC Models 
 
 The latent class model is a semiparametric approximation to the random parameters 
multinomial logit model.  It embodies many of the features of the RPL model.  But, the parameters 
are modeled as having a discrete distribution with a small number of support points.  An alternative 
interpretation is that individuals are intrinsically sorted into a small number of classes, and 
information about class membership is extracted from the sample along with class specific parameter 
vectors.  The RP variant, which is new with this version of NLOGIT, provides a random parameters 
logit model (see Section N1.5.7) in each class. 
 
N1.5.4 Heteroscedastic Extreme Value Model 
 
 In the base case, multinomial logit model, the assumption of equal variances produces great 
simplicity in the mathematical results, but at considerable cost in the generality of the model. In 
particular, if the assumption of equal variances is inappropriate, then the different scaling that is 
present in the variances will, instead, be forced on the coefficients in the utility functions, in ways 
that may distort the predictions of the model.  The heteroscedastic extreme value model relaxes this 
assumption by allowing the disturbances in the utility functions each to have their own variance.  An 
extension of this model allows these unequal variances to be dependent on characteristics of the 
individual as well.  Thus, the heteroscedasticity assumption allows us to relax the assumption of 
equal variances across choices and to incorporate individual heterogeneity in the scaling as well as 
the ‘locations’ of the utility functions. 
 
N1.5.5 Multinomial Probit Model 
 
 This model is much more general than the multinomial logit model, but until recently was 
largely impractical because of the multinormal integrals required for estimation. We include an 
implementation based on the GHK simulation method.  The multinomial probit (MNP) model 
relaxes the assumptions of the MNL model by assuming joint normality for the random terms in the 
utility functions and by allowing (subject to some identification restrictions) the random terms to 
have different variances and unrestricted correlations. 
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N1.5.6 Nested Logit Models 
 
 The choice among alternatives could be viewed as taking place at more than one level.  For 
instance, in an application developed in the chapters to follow, we consider transportation mode 
choice among four alternatives, car, train, bus, and air.  One might view the choice among these 
four as first between public (bus, train) and private (air, car) transportation and then, within each of 
the two branches of the ‘tree,’, a second choice of specific mode.  This sort of hierarchical choice is 
handled in the setting of ‘nested logit models.’ NLOGIT allows tree structures to have up to four 
levels.  There are also several specific forms of the nested logit model that enforce the implications 
of utility maximization on the model parameters.  
 The nested logit (NL) model described in the previous paragraph is appropriately viewed as 
a relaxation of the strong IID structure of the multinomial logit model that implies the IIA 
assumption.  In particular, the nested logit model allows for different variances for the groups of 
alternatives in the branches and for (equal) correlation across the alternatives within a branch.  (The 
earlier interpretation of a decision structure is only superimposed on the nested logit model; it is not 
the statistical basis of the NL model.  The ‘decision’ part of the model rests at the lowest level, 
among the alternatives.) The covariance heterogeneity model extends this model a bit further by 
allowing the variances to depend on variables in the model.  The covariance heterogeneity model is a 
model of heteroscedasticity. 
 One of the weaker parts of the nested logit specification is the narrow specific assumption of 
which alternative appears in each branch of the tree.  This is often not known with certainty.  The 
generalized nested logit model allows alternatives to appear in more than one branch, in a 
probabilistic fashion. 
 
N1.5.7 Random Parameters and Nonlinear RP Logit Model 
 
 This is the most general model contained in NLOGIT.  As argued by McFadden and Train 
(2000), it may be the most flexible form of discrete choice model available generally, as they argue 
that any behavior pattern can be captured by this model form.  The random parameters logit (RPL) 
model extends the MNL model by allowing its parameters to be random across individuals.  The 
random parameters may have their own data dependent means, their own variances, and may be 
correlated.  By this device, we obtain an extremely general, flexible model.  The assumptions about 
the covariance matrix of the random parameters are transmitted to the random terms in the utility 
functions so that both the uncorrelatedness and equal variance assumptions are relaxed in the 
process.  This model also allows a panel data treatment, with either random effects or an 
autoregressive pattern in the random terms.  The error components logit model provides a method of 
incorporating a rich structure of individual specific random effects in the conditional logit and  
random parameters models.  The nonlinear RP variant allows the utility functions in the probability 
model to be arbitrary nonlinear functions of the data and parameters. 
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N1.5.8 Error Components Logit Model 
 
 The error components logit model is essentially a random effects model for the MNL 
framework.  The basic model structure for a repeated choice (panel data) setting would be 
 

   Prob[yit = j| vi1,...,viM)  =  
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where vi1,...,viM are M individual effects that appear in the Ji utility functions and djs are binary 
variables that place specific effects in the different alternatives. Different sets of effects, or only 
particular ones, appear in each utility function, which allows a nested type of arrangement. 
 
N1.5.9 Generalized Mixed Logit Model 
 
 The generalized mixed logit model is an encompassing model for many of the specifications 
already noted, and a variety of new specifications as well.  The model follows the random 
parameters model of Section N1.5.7, but adds several layers to the specification of the random 
parameters.  Specifically,  
 
   βi  =  σiβ  +  [γ + (1 - γ)σi]Γvi, 
 
where σi is the heterogeneous scale factor noted in Section N1.5.2, γ is a distribution parameter that 
moves emphasis to or away from the random part of the model, Γ is (essentially) the correlation 
matrix among the random parameters.  As noted, several earlier specifications are special cases. 

This form of the RP model allows a number of useful extensions, including estimation of the 
model in willingness to pay (WTP) space, rather than utility space. 
 

N1.6 Functions of NLOGIT 
 
 The chapters to follow will describe the different features of NLOGIT and the various 
models it will estimate.  The functionality of the program consists of these major features: 
 

• Estimation programs.  These are full information maximum likelihood estimators for the 
collection of models. 
 

• Description and analysis.  Model results are used to compute elasticities, marginal effects, 
and other descriptive measures. 

 
• Hypothesis testing, including the IIA assumption and tests of model specification.  

 
• Computation of probabilities, utility functions, and inclusive values for individuals in the 

sample. 
 

• Simulation of the model to predict the effects of changes in the values of attributes in the 
aggregate behavior of the individuals in the sample.  For example, if x% of the sampled 
individuals choose a particular alternative, how would x change if a certain price in the 
model were assumed to be p% higher for all individuals? 
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N2: Discrete Choice Models 
 
N2.1 Introduction 
 
 This chapter will provide a short, thumbnail sketch of the discrete choice models discussed 
in this manual. NLOGIT supports a large array of models for both discrete and continuous variables, 
including regression models, survival models, models for counts and, of relevance to this setting, 
models for discrete outcomes.  The group of models described in this manual are those that arise 
naturally from a random utility framework, that is, those that arise from an individual choice setting 
in which the model is of an individual’s selection among two or more alternatives.  This includes 
several of the models described in the LIMDEP manual, such as the binary logit and probit models, 
but also excludes some others, including the models for count data and censored and truncated 
regression models, and some of the loglinear models such as the geometric regression model. 
 Two groups of models are considered.  The first set are the binary, ordered and multivariate 
choice models that are documented at length in Chapters E26-E35 in the LIMDEP Econometric 
Modeling Guide.  These form the basic building blocks for the NLOGIT extensions that are the main 
focus of this part of the program.  Since they are developed in detail elsewhere, we will only provide 
the basic forms and only the essential documentation here.  The second group of estimators are the 
multinomial logit models and extensions of them that form the group of tools specific to NLOGIT. 
 
N2.2 Random Utility Models 
 
 The random utility framework starts with a structural model, 
 
 U(choice 1)  =  f1 (attributes of choice 1, characteristics of the consumer, ε1,v,w), 
  ... 
 U(choice J)  =  fJ (attributes of choice J, characteristics of the consumer, εJ,v,w), 
 
where ε1,...,εJ denote the random elements of the random utility functions and in our later treatments, 
v and w will represent the unobserved individual heterogeneity built into models such as the error 
components and random parameters (mixed logit) models.  The assumption that the choice made is 
alternative j such that  
 
   U(choice j) > U(choice q) ∀ q ≠ j. 
 
The observed outcome variable is then  
 
   y  =  the index of the observed choice. 
 
The econometric model that describes the determination of y is then built around the assumptions 
about the random elements in the utility functions that endow the model with its stochastic 
characteristics.  Thus, where Y is the random variable that will be the observed discrete outcome,  
 
   Prob(Y = j)  =  Prob(U(choice j) > U(choice q) ∀ q ≠ j). 
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The objects of estimation will be the parameters that are built into the utility functions including 
possibly those of the distributions of the random components and, with estimates of the parameters  
in hand, useful characteristics of consumer behavior that can be derived from the model, such as 
partial effects and measures of aggregate behavior. 
 To consider the simplest example, that will provide the starting point for our development, 
consider a consumer’s random utility derived over a single choice situation, say whether to make a 
purchase.  The two outcomes are ‘make the purchase’ and ‘do not make the purchase.’  The random 
utility model is simply 
 
   U(not purchase) =  β0′x0  +  ε0, 

   U(purchase) =  β1′x1  +  ε1. 
 
Assuming that ε0 and ε1 are random, the probability that the analyst will observe a purchase is 
 
   Prob(purchase)   =  Prob(U(purchase) > U(not purchase)) 

       =  Prob(β1′x1  +  ε1  > β0′x0  +  ε0) 

       =  Prob(ε1 - ε0 < β1′x1  -  β0′x0) 

       =  F(β1′x1  -  β0′x0), 
 
where F(z) is the CDF of the random variable ε1 - ε0.  The model is completed and an estimator, 
generally maximum likelihood, is implied by an assumption about this probability distribution.  For 
example, if ε0 and ε1 are assumed to be normally distributed, then the difference is also, and the 
familiar probit model emerges.  (The probit model is developed in Chapters E26 and E27.) 
 The sections to follow will outline the models described in this manual in the context of this 
random utility model.  The different models derive from different assumptions about the utility 
functions and the distributions of their random components. 
 
N2.3 Binary Choice Models 
 
 Continuing the example in the previous section, the choice of alternative 1 (purchase) 
reveals that U1 > U0, or that  
 
   ε0 - ε1  <  β1′x1 -  β0′x0. 
 
Let ε = ε1 - ε0 and β′x represent the difference on the right hand side of the inequality – x is the union 
of the two sets of covariates, and β is constructed from the two parameter vectors with zeros in the 
appropriate locations if necessary.  Then, a binary choice model applies to the probability that ε ≤ 
β′x, which is the familiar sort of model developed in Chapter E26.  Two of the parametric model 
formulations in NLOGIT for binary choice models are the probit model based on the normal 
distribution: 

   F  =  dtti
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and the logit model based on the logistic distribution 
 

   F  =  exp( )
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  =  Λ(β′xi). 

 
 Numerous variations on the model can be obtained. A model with multiplicative 
heteroscedasticity is obtained with the additional assumption 
  
   εi  ~  normal or logistic with variance ∝ [exp(γ′zi)]2, 
 
where zi is a set of observed characteristics of the individual. A model of sample selection can be 
extended to the probit and logit binary choice models.  In both cases, we depart from 
 
   Prob(yi = 1 |xi)  =  F(β′xi), 

where    F(t)   =  Φ(t) for the probit model and Λ(t) for the logit model, 

   di*   =  α′zi + ui, ui ~ N[0,1], di = 1(di* > 0), 

   yi, xi      observed only when di = 1. 
 
where zi is a set of observed characteristics of the individual.  In both cases, as stated, there is no 
obvious way that the selection mechanism impacts the binary choice model of interest.  We modify 
the models as follows:  For the probit model, 
 
   yi*  =  β′xi + εi, εi ~ N[0,1], yi  =  1(yi* > 0), 
 
which is the structure underlying the probit model in any event, and 
 
   ui, εi  ~  N2[(0,0),(1,ρ,1)]. 
 
(We use NP to denote the P-variate normal distribution, with the mean vector followed by the 
definition of the covariance matrix in the succeeding brackets.)  For the logit model, a similar 
approach does not produce a convenient bivariate model.  The probability is changed to 
 

   Prob(yi = 1 | xi,εi)  =  exp( )
1 exp( )

i i
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With the selection model for zi as stated above, the bivariate probability for yi and zi is a mixture of a 
logit and a probit model.  The log likelihood can be obtained, but it is not in closed form, and must 
be computed by approximation.  We do so with simulation.  The model and the background results 
are presented in Chapter E27.  
  



N2: Discrete Choice Models  N-16 

 There are several formulations for extensions of the binary choice models to panel data 
setting. These include  
 

• Fixed effects:     Prob(yit = 1)  =  F(β′xit  +  αi),  
    αi correlated with xit. 

 
• Random effects: Prob(yit = 1)  =  Prob(β′xit + εit + ui > 0),  

   ui uncorrelated with xit. 
 

• Random parameters: Prob(yit = 1)  =  F(βi′xit),   
    βi | i ~ h(β|i) with mean vector β and covariance matrix Σ. 
 

• Latent class:  Prob(yit = 1|class j) =  F(βj′xit),  
    Prob(class = j)  =  Gj(θ,zi), 
 
where zi is a set of observed characteristics of the individual. Other variations include simultaneous 
equations models and semiparametric formulations. 
 
N2.4 Bivariate and Multivariate Binary Choice Models 
 
 The bivariate probit model is a natural extension of the model above in which two decisions 
are made jointly; 
   yi1*  =  β1′xi1 + εi1,  yi1  =  1 if yi1* > 0, yi1  =  0 otherwise, 

   yi2*  =  β2′xi2 + εi2,  yi2  =  1 if yi2* > 0, yi2  =  0 otherwise, 

   [εi1,εi2]  ~  N2[0,0,1,1,ρ], -1 < ρ < 1, 

   individual observations on y1 and y2 are available for all i. 
 
This model extends the binary choice model to two different, but related outcomes.  One might, for 
example, model y1 = home ownership (vs. renting) and y2 = automobile purchase (vs. leasing).  The 
two decisions are obviously correlated (and possibly even jointly determined). 
 A special case of the bivariate probit model is useful for formulating the correlation between 
two binary variables.  The tetrachoric correlation coefficient is equivalent to the correlation 
coefficient in the following bivariate probit model: 
 

 yi1*  =  µ + εi1, yi1  =  1(yi1* > 0), 

 yi2*  =  µ + εi2, yi2  =  1(yi2* > 0), 

 (εi1,εi2)  ~  N2[(0,0),(1,1,ρ)]. 
 
The bivariate probit model has been extended to the random parameters form of the panel data 
models.  For example, a true random effects model for a bivariate probit outcome can be formulated 
as follows:  Each equation has its own random effect, and the two are correlated.   
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 The model structure is 
 
   yit1*  =  β1′xit1  +  εit1  +  ui1,  yit1  =  1 if yit1* > 0, yit1  =  0 otherwise, 

   yit2*  =  β2′xit2  +  εit2  +  ui2,  yit2  =  1 if yit2* > 0, yit2  =  0 otherwise, 

   [εit1,εit2]   ~  N2[0,0,1,1,ρ], -1 < ρ < 1, 

   [ui1 , ui2]  ~  N2[0,0,1,1,θ], -1 < θ < 1. 
 
Individual observations on yi1 and yi2 are available for all i.  Note, in the structure, the idiosyncratic 
εitj creates the bivariate probit model, whereas the time invariant common effects, uij create the 
random effects (random constants) model.  Thus, there are two sources of correlation across the 
equations, the correlation between the unique disturbances, ρ, and the correlation between the time 
invariant disturbances, θ. 

The multivariate probit model is the extension to M equations of the bivariate probit model 
 

  yim*   =  βm′xim+ εim, m = 1,…,M 

  yim    =  1 if yim* > 0, and 0 otherwise, 

  εim, m  =  1,...,M  ~ NM[0,R], 
 
where R is the correlation matrix. Each individual equation is a standard probit model.  This 
generalizes the bivariate probit model for up to M = 20 equations. 
 
N2.5 Ordered Choice Models 
 
 The basic ordered choice model can be cast in an analog to our random utility specification.  
We suppose that preferences over a given outcome are reflected as earlier, in the random utility 
function: 
   yi*   =  β′xi + εi,   

   εi  ~  F(εi |θ), θ = a vector of parameters, 

   E[εi|xi]  =  0,  

   Var[εi|xi] =  1. 
 
The consumers are asked to reveal the strength of their preferences over the outcome, but are given 
only a discrete, ordinal scale, 0,1,...,J.  The observed response represents a complete censoring of the 
latent utility as follows: 
 
   yi     =  0 if yi* ≤ µ0, 

    =  1 if µ0 < yi* ≤ µ1, 

    =  2 if µ1 < yi*  ≤ µ2, 
    ... 

    =  J if  yi* > µJ-1. 
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The latent ‘preference’ variable, yi* is not observed.  The observed counterpart to yi* is yi.  (The 
model as stated does embody the strong assumption that the threshold values are the same for all 
individuals.  We will relax that assumption below.)  The ordered probit model based on the normal 
distribution was developed by Zavoina and McElvey (1975).  It applies in applications such as 
surveys, in which the respondent expresses a preference with the above sort of ordinal ranking.  The 
ordered logit model arises if εi is assumed to have a logistic distribution rather than a normal.  The 
variance of εi is assumed to be the standard, one for the probit model and π2/6 for the logit model, 
since as long as yi*, β, and εi are all unobserved, no scaling of the underlying model can be deduced 
from the observed data.  (The assumption of homoscedasticity is arguably a strong one.  We will also 
relax that assumption.) Since the µs are free parameters, there is no significance to the unit distance 
between the set of observed values of yi.  They merely provide the coding.  Estimates are obtained by 
maximum likelihood.  The probabilities which enter the log likelihood function are 
 
   Prob(yi = j)  =  Prob(yi* is in the jth range). 
 
The model may be estimated either with individual data, with yi = 0, 1, 2, ... or with grouped data, in 
which case each observation consists of a full set of J + 1 proportions, pi0,...,piJ. 
 There are many variants of the ordered probit model.  A model with multiplicative 
heteroscedasticity of the same form as in the binary choice models is 
 
   Var[εi]  =  [exp(γ′zi)]2.  
 
The following describes an ordered probit counterpart to the standard sample selection model.  (This 
is only available for the ordered probit specification.)  The structural equations are, first, the main 
equation, the ordered choice model that was given above and, second, a selection equation, a 
univariate probit model, 

   di*    =  α′zi + ui, 

   di    =  1 if di*
 

 > 0 and 0 otherwise. 

The observation mechanism is 
 
   [yi,xi]      is observed if and only if di  =  1, 

   εi,ui  ~  N2[0,0,1,1,ρ]; there is ‘selectivity’ if ρ is not equal to zero. 
 
The general set of panel data formulations is also available for the ordered probit and logit models.   
 

• Fixed effects:     Prob(yit = j)  =  F[µj -(β′xit  +  αi)]  -  F[µj-1-(β′xit  +  αi)], 
    αi correlated with xit. 
 

• Random effects: Prob(yit = j)  =  F[µj -(β′xit  +  ui)]  -  F[µj-1-(β′xit  +  ui)],  
    ui uncorrelated with xit. 
 

• Random parameters: Prob(yit = j)  =  F(µj -βi′xit)  -  F(-µj-1βi′xit), 
    βi | i  ~  h(β|i) with mean vector β and covariance matrix Σ. 
 

• Latent class:  Prob(yit = j|class c)  =  F(µj,c -βc′xit)  -  F(µj-1,c -βc′xit), 
    Prob(class = c)  =  Gc(θ,zi). 
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 The hierarchical ordered probit model, or generalized ordered probit model, relaxes the 
assumption that the threshold parameters are the same for all individuals. Two forms of the model 
are provided. 
   Form 1:   µij  =  exp(θj + δ′zi), 
   Form 2:   µij  =  exp(θj + δj′zi). 
 
Note that in Form 1, each µj has a different constant term, but the same coefficient vector, while in 
Form 2, each threshold parameter has its own parameter vector.   
 Harris and Zhao (2004, 2007) have developed a zero inflated ordered probit (ZIOP) 
counterpart to the zero inflated Poisson model.  The ZIOP formulation would appear  
 
   di*   =  α′zi  +  ui,   di  = 1 (di* > 0), 

   yi*   =  β′xi   +  εi,   yi  = 0 if yi* < 0  or di = 0, 

             1 if 0 < yi* < µ1  and di = 1, 

        2 if µ1 < yi* < µ2 and di = 1, 

         and so on. 
 
The first equation is assumed to be a probit model (based on the normal distribution) – this estimator 
does not support a logit formulation.  The correlation between ui and εi is ρ, which by default equals 
zero, but may be estimated instead.  The latent class nature of the formulation has the effect of 
inflating the number of observed zeros, even if u and ε are uncorrelated.  The model with correlation 
between ui and εi is an optional specification that analysts might want to test.  The zero inflation 
model may also be combined with the hierarchical (generalized) model given above.  
 The bivariate ordered probit model is analogous to the seemingly unrelated regressions 
model for the ordered probit case:   
 

   yij*   =  βj′xji + εij, 

   yij     =   0 if yij* < 0,  

         1 if 0 < yij* < µ1,  

         2, ... and so on, j = 1,2, 
 
for a pair of ordered probit models that are linked by Cor(εi1,εi2) = ρ. The model can be estimated 
one equation at a time using the results described earlier. Full efficiency in estimation and an 
estimate of ρ are achieved by full information maximum likelihood estimation. Either variable (but 
not both) may be binary.  (If both are binary, the bivariate probit model should be used.)  The 
polychoric correlation coefficient is used to quantify the correlation between discrete variables that 
are qualitative measures.  The standard interpretation is that the discrete variables are discretized 
counterparts to underlying quantitative measures.  We typically use ordered probit models to analyze 
such data.  The polychoric correlation measures the correlation between y1 = 0,1,...,J1 and y2 = 0,1,...,J2.  
(Note, J1 need not equal J2.)  One of the two variables may be binary as well.  (If both variables are 
binary, we use the tetrachoric correlation coefficient described in Section E33.3.)  For the case noted, 
the polychoric correlation is the correlation in the bivariate ordered probit model, so it can be 
estimated just by specifying a bivariate ordered choice model in which both right hand sides contain 
only a constant term. 
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N2.6 Multinomial Logit Model 
 
 The canonical random utility model suggested by the structure of Section N2.2 is as follows: 
 
   U(alternative 0)  =  β0′xi0  +  ε i0, 

   U(alternative 1)  =  β1′xi1  +  ε i1, 
    ... 

    U(alternative J)  =  βJ ′xiJ  +  εiJ, 

   Observed yi  = choice j if  Ui (alternative j) > Ui (alternative q) ∀ q ≠ j. 
 
The ‘disturbances’ in this framework (individual heterogeneity terms) are assumed to be 
independently and identically distributed with identical type 1extreme value distribution; the CDF is 
 
   F(εj)  =  exp(-exp(-εj)). 
 
Based on this specification, the choice probabilities are 
 
   Prob(choice j)   =  Prob(Uj > Uq), ∀ q ≠ j 

     =  
0

exp( )

exp( )
j ij

J
q iqq=

′

′∑
x

x

β

β
, j = 0,...,J. 

 
At this point we make a purely semantic distinction between two cases of the model.  When the 
observed data consist of individual choices and (only) data on the characteristics of the individual, 
identification of the model parameters will require that the parameter vectors differ across the utility 
functions, as they do above.  The study on labor market decisions by Schmidt and Strauss (1975) is a 
classic example.  For the moment, we will call this the multinomial logit model.  When the data also 
include attributes of the choices that differ across the alternatives, then the forms of the utility 
functions can change slightly – and the coefficients can be generic, that is the same across 
alternatives.  Again, only for the present, we will call this the conditional logit model.  (It will 
emerge that the multinomial logit is a special case of the conditional logit model, though the reverse 
is not true.)  The conditional logit model is defined in Section N2.7. 
 The general form of the multinomial logit model is 
  

   Prob(choice j)  =  
0

exp( )

exp( )
j i

J
q iq=

′

′∑
x

x

β

β
, j = 0,...,J. 

 
A possible J + 1 unordered outcomes can occur.  In order to identify the parameters of the model, we 
impose the normalization  β0 = 0.  This model is typically employed for individual or grouped data in 
which the ‘x’ variables are characteristics of the observed individual(s), not the choices.  The data 
will appear as follows: 
 

• Individual data:   yi coded 0, 1, ..., J, 
• Grouped data:    yi0, yi1,...,yiJ give proportions or shares. 
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N2.6.1 Random Effects and Common (True) Random Effects 
 
 The structural equations of the multinomial logit model are 
 
   Uijt  =  βj′xit  +  εijt, t = 1,...,Ti, j = 0,1,...,J,i=1,...,N, 
 
where Uijt gives the utility of choice j by person i in period t – we assume a panel data application 
with t = 1,...,Ti.  The model about to be described can be applied to cross sections, where Ti = 1.  
Note also that as usual, we assume that panels may be unbalanced.  We also assume that εijt has a 
type 1 extreme value distribution and that the J random terms are independent.  Finally, we assume 
that the individual makes the choice with maximum utility.  Under these (IIA inducing) assumptions, 
the probability that individual i makes choice j in period t is 
 

   Pijt  =  
0

exp( )

exp( )
j it

J
q itq=

′

′∑
x

x

β

β
. 

 
We now suppose that individual i has latent, unobserved, time invariant heterogeneity that enters the 
utility functions in the form of a random effect, so that 
 
   Uijt  =  βj′xit  + αij + εijt, t = 1,...,Ti, j = 0,1,...,J,i=1,...,N. 
 
The resulting choice probabilities, conditioned on the random effects, are 
 

    Pijt | αi1,...,αiJ =  
0

exp( )

exp( )
j it ij

J
q it iqq=

′ + α

′ + α∑
x

x

β

β
. 

 
To complete the model, we assume that the heterogeneity is normally distributed with zero means 
and (J+1)×(J+1) covariance matrix, Σ.  For identification purposes, one of the coefficient vectors, 
βq, must be normalized to zero and one of the αiqs is set to zero. We normalize the first element – 
subscript 0 – to zero.  For convenience, this normalization is left implicit in what follows.  It is 
automatically imposed by the software.  To allow the remaining random effects to be freely 
correlated, we write the J×1 vector of nonzero αs as 
 
   αi  =  Γ vi 
 
where Γ is a lower triangular matrix to be estimated and vi is a standard normally distributed (mean 
vector 0, covariance matrix, I) vector. 
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N2.6.2 A Dynamic Multinomial Logit Model 
 
 The preceding random effects model can be modified to produce the dynamic multinomial 
logit model proposed in Gong, van Soest and Villagomez (2000).  The choice probabilities are 
 

  Pijt | αi1,...,αiJ  =  
1

exp( )

exp( )
j it j it ij

J
q it q it iqq=

′ ′+ + α

′ ′+ + α∑
x z

x z

β γ

β γ
 t = 1,...,Ti, j = 0,1,...,J,i=1,...,N, 

 
where zit contains lagged values of the dependent variables (these are binary choice indicators for the 
choice made in period t) and possibly interactions with other variables.  The zit variables are now 
endogenous, and conventional maximum likelihood estimation is inconsistent.  The authors argue 
that Heckman’s treatment of initial conditions is sufficient to produce a consistent estimator.  The 
core of the treatment is to treat the first period as an equilibrium, with no lagged effects, 
 

  Pij0 | θi1,...,θiJ  =  0

01

exp( )

exp( )
j i ij

J
q i iqq=

′ + θ

′ + θ∑
x

x

δ

δ
, t = 0, j = 0,1,...,J,i=1,...,N, 

 
where the vector of effects, θ, is built from the same primitives as α in the later choice probabilities.  
Thus, αi = Γvi and θi = Φ vi, for the same vi, but different lower triangular scaling matrices.  (This 
treatment slightly less than doubles the size of the model – it amounts to a separate treatment for the 
first period.)  Full information maximum likelihood estimates of the model parameters, 
(β1,...,βJ,γ1,...,γJ,δ1,...,δJ,Γ,Φ) are obtained by maximum simulated likelihood, by modifying the 
random effects model.  The likelihood function for individual i consists of the period 0 probability as 
shown above times the product of the period 1,2,...,Ti probabilities defined earlier. 
 
N2.7 Conditional Logit Model 
 
 If the utility functions are conditioned on observed individual, choice invariant 
characteristics, zi, as well as the attributes of the choices, xij, then we write 
 
   U(choice j for individual i)  =  Uij  =  β′xij + γj′zi +  εij, j = 1,...,Ji. 
 
(For this model, which uses a different part of NLOGIT, we number the alternatives 1,...,Ji rather 
than 0,...,Ji.  There is no substantive significance to this – it is purely for convenience in the context 
of the model development for the program commands.)  The random, individual specific terms, 
(εi1,εi2,...,εiJ) are once again assumed to be independently distributed across the utilities, each with 
the same type 1 extreme value distribution 
 
   F(εij)  =  exp(-exp(-εij)). 
 
Under these assumptions, the probability that individual t chooses alternative j is 
 
   Prob(Uij > Uiq) for all q ≠ j. 
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It has been shown that for independent type 1 extreme value distributions, as above, this probability 
is 

   Prob(yi = j)  =  
( )

( )1

exp

expi

ij j i
J

iq q iq=

′ ′+

′ ′+∑
x z

x z

β γ

β γ
 

 
where yi is the index of the choice made.  We note at the outset that the IID assumptions made about 
εj are quite stringent, and induce the ‘Independence from Irrelevant Alternatives’ or IIA features that 
characterize the model. This is functionally identical to the multinomial logit model of Section N2.6.  
Indeed, the earlier model emerges by the simple restriction γj = 0. We have distinguished it in this 
fashion because the nature of the data suggests a different arrangement than for the multinomial logit 
model and, second, the models in the section to follow are formulated as extensions of this one.  
 
N2.7.1 Random Regret Logit and Hybrid Utility Models 
 
 We consider two direct extensions of the conditional logit model, one related to the forms of 
the utility functions and a second related to the treatment of heterogeneity. 
 The random utility form of the model is based on linear utility functions of the alternatives, 
 
   Uijt  =  β′xit  +  εijt, t = 1,...,Ti, j = 0,1,...,J,i=1,...,N. 
 
The random regret form bases the choices at least partly on attribute level regret functions, 
 
   Rij(k) =  log[1+exp(βk(xjk – xik))] 
 
where k denotes the specific attribute and i and j denote association with alternatives i and j, 
respectively.  (See Chorus (2010) and Chorus, Greene and Hensher (2011).)  The systematic regret 
of choice i can then be written  
 
   

1 1
log[1 exp( ( ))]J K

i k jk ikj k
R x x

= =
= + β −∑ ∑ . 

 
The random regret form of the choice model is then 
 

   
1

exp( )

exp( )
j

j J
jj

R
P

R
=

−
=

−∑
 

 
This model does not impose the IIA assumptions.  The model may also be specified with only a 
subset of the attributes treated in the random regret format.  This hybrid model is 
 

   
1

exp( )

exp( )
j ij

j J
j ijj

R
P

R
=

′− +
=

′− +∑
x

x

β

β
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N2.7.2 Scaled MNL Model 
 
 The scaled multinomial logit model allows the model to accommodate broad heterogeneity 
across individuals, for example when two or more data sets from different groups are combined.  
This is a special case of the generalized mixed logit model described in Section N2.11.2.  The 
general form of the scaled MNL model is 
 

   Prob(yi = j)  =  
( )

( )1

exp

expi

i ij
J

i iqq=

′σ

′σ∑
x

x

β

β
 

 
where    σi        =  exp(δ′zi  +  τvi) 
 
The scaling factor, σi differs across individuals, but not across choices.  It has a deterministic 
component, exp(δ′zi), and a random component, exp(τvi).  Either (or both) may equal 1.0, that is, 
either or both restrictions δ = 0 or τ = 0.  For example, a simple nonstochastic scaling differential 
between two groups would result if τ = 0 and if zi were simply a dummy variable that identifies the 
two groups.  Other forms of scaling heterogeneity can be produced by different variables in zi.  The 
scaling may also be random through the term τvi.  In this instance, vi is a random term (usually, but 
not necessarily normally distributed).  With δ = 0 and τ ≠ 0, we obtain a randomly scaled 
multinomial logit model. 
 
N2.8 Error Components Logit Model 
 
 When the sample consists of a ‘panel’ of data, that is, when individuals are observed in more 
than one choice situation, the conditional logit model can be augmented with individual effects, 
similar to the use of common effects models in regression and other single equation cases.  A ‘panel 
data’ form of this model that is a counterpart to the random effects model is what we label the ‘error 
components model.’  (This has been called the ‘kernel logit model’ in some treatments in the 
literature.)  The model arises by introducing M up to maxi Ji alternative and individual specific 
random terms in the utility functions as in 
 
   U(choice j for individual i in choice setting t)    

    =  Uijt   

    =  β′xij + γj′zi +  εij  +  1
M
m jm m imd u=Σ σ , j = 1,...,Ji, t = 1,...,Ti. 

where   djm =  1 if effect m appears in utility function j, 0 if not, 

   σm =  the standard deviation of effect m (to be estimated), 
   vim =  effect m for individual i. 
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The M random individual specifics are σmuim.  They are distributed as normal with zero means and 
variances σm

2.  The constants djm equal one if random effect m appears in the utility function for 
alternative j, and zero otherwise.  The error components account for unobserved, alternative specific 
variation.  With this device, the sets of random effects in different utility functions can overlap, so as 
to accommodate correlation in the unobservables across choices.  The random effects may also be 
heteroscedastic, with 
 
   σm,i

2  =  σm
2 exp(θm′zi). 

 
The probabilities attached to the choices are now 
 

   Prob(yi = j)  =  
( )

( )
1

11

exp

expi

M
ij j i m jm m im

J M
iq q i m qm m imq

d u

d u
=

==

′ ′+ + Σ σ

′ ′+ Σ σ∑
x z

x z

β γ

β γ
. 

 
This is precisely an analog to the random effects model for single equation models.  Given the 
patterns of djm, this can provide a nesting structure as well.  Examples in Chapter N30 will 
demonstrate. 
 
N2.9 Heteroscedastic Extreme Value Model 
 
 In the conditional logit model, 
 
   U(choice j for individual i)  =  Uij  =  β′xij + γj′zi +  εij, j = 1,...,Ji, 
 

   Prob(yi = j)  =  
( )

( )1

exp

expi

ij j i
J

im m im=

′ ′+

′ ′+∑
x z

x z

β γ

β γ
, 

 
an implicit assumption is that the variances of εji are the same.  With the type 1 extreme value 
distribution assumption, this common value is π2/6.  This assumption is a strong one, and it is not 
necessary for identification or estimation.  The heteroscedastic extreme value model relaxes this 
assumption.  We assume, instead, that 
 
   F(εij) =  exp(-exp(-θjεij)], 
 
   Var[εij] =  σj

2 (π2/6)  where  σj
2 =  1/θj

2, 
 
with one of the variance parameters normalized to one for identification.  (Technical details for this 
model including a statement of the probabilities appears in Chapter N26.)  A further extension of this 
model allows the variance parameters to be heterogeneous, in the standard fashion, 
 
   σij

2 =  σj
2 exp(γ′zi). 

 



N2: Discrete Choice Models  N-26 

N2.10 Nested and Generalized Nested Logit Models 
 
 The nested logit model is an extension of the conditional logit model.  The models supported 
by NLOGIT are based on variations of a four level tree structure such as the following: 
 
ROOT                                   root 
                                        │ 
                        ┌───────────────┴────────────────┐ 
                        │                                │ 
TRUNKS                trunk1                            trunk2               
                        │                                │ 
                ┌───────┴───────┐               ┌────────┴──────┐ 
                │               │               │               │ 
LIMBS                        limb1                             limb2                             limb3                             limb4        
                │               │               │               │ 
            ┌───┴───┐       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐ 
            │       │       │       │       │       │       │       │ 
BRANCHES   branch1      branch2     branch3     branch4     branch5     branch6     branch7     branch8   
            │       │       │       │       │       │       │       │ 
          ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐ 
          │   │   │   │   │   │   │   │   │   │   │   │   │   │   │   │        
ALTS              a1    a2      a3      a4     a5      a6      a7      a8     a9     a10   a11   a12    a13   a14    a15    a16 
 
 The choice probability under the assumption of the nested logit model is defined to be the 
conditional probability of alternative j in branch b, limb l, and trunk r,  j|b,l,r: 
 

   P(j|b,l,r)  =  | , ,| , ,

| , , | ,| , ,

exp( )exp( )
exp( ) exp( )

j b l rj b l r

q b l r b l rq b l r
J

′′

′∑
xx

   =   
x

ββ

β
, 

 
where Jb|l,r is the inclusive value for branch b in limb l, trunk r, Jb|l,r = log Σq|b,l,rexp(β′xq|b,l,r).  At  the 
next level up the tree, we define the conditional probability of choosing a particular branch in limb l, 
trunk r, 

   P(b|l,r)  =  | , | , | , | , | , | ,

| , | , | , || ,

exp( ) exp( )
exp( ) exp( )

b l r b l r b l r b l r b l r b l r

s l r s l r s l r l rs l r

J J
J I

′ ′+ τ + τ
′ + τ∑

y y
   =   

y
α α

α
, 

 
where Il|r is the inclusive value for limb l in trunk r, Il|r = log Σs|l,rexp(α′ys|l,r + τs|l,rJs|l,r).  The 
probability of choosing limb l in trunk r is 
 

   P(l|r)  =  | | | | | |

| | ||

exp( ) exp( )
exp( ) exp( )

l r l r l r l r l r l r

q r s r s r rs r

I I
I H

′ ′+ σ + σ
′ + σ∑

z z
   =   

z
δ δ

δ
, 

 
where Hr is the inclusive value for trunk r, Hr = log Σs|lexp(δ′zs|r + σs|rIs|r).   
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Finally, the probability of choosing a particular limb is  
 

   P(r)  =  
exp( )

exp( )
r r r

s s ss

H
H

′ + φ
′ + φ∑

h . 
h

θ
θ

 

 
By the laws of probability, the unconditional probability of the observed choice made by an 
individual is 

  P(j,b,l,r)  =  P(j|b,l,r) × P(b|l,r) × P(l|r) × P(r). 
 
This is the contribution of an individual observation to the likelihood function for the sample. 
 The ‘nested logit’ aspect of the model arises when any of the τb|l,r or σl|r or φr differ from 1.0.  
If all of these deep parameters are set equal to 1.0, the unconditional probability reduces to 
 

   P(j,b,l,r)  =  | , , | , |

, , , , , ,

exp( )
exp( )

j b l r b l r l r r

j b l r b l r l r rr l b j

′ ′ ′ ′+ + +
′ ′ ′ ′+ + +∑ ∑ ∑ ∑

x y z h
x y z h

β α δ θ

β α δ θ
, 

  
which is the probability for a one level conditional (multinomial) logit model. 
 
N2.10.1 Alternative Normalizations of the Nested Logit Model 
 
 The formulation of the nested logit model imposes no restrictions on the inclusive value 
parameters.  However, the assumption of utility maximization and the stochastic underpinnings of 
the model do imply certain restrictions.  For the former, in principle, the inclusive value parameters 
must be between zero and one.  For the latter, the restrictions are implied by the way that the random 
terms in the utility functions are constructed.  In particular, the nesting aspect of the model is 
obtained by writing 
 

   εj|b,l,r  =  uj|b,l,r  +  vb|l,r. 
 
That is, within a branch, the random terms are viewed as the sum of a unique component, uj|b,l,r, and a 
common component, vb|l,r.  This has certain implications for the structure of the scale parameters in 
the model.  NLOGIT provides a method of imposing the restrictions implied by the underlying 
theory.   
 There are three possible normalizations of the inclusive value parameters which will produce 
the desired results.  These are provided in this estimator for two and three level models only.  This 
includes most of the received applications.  We will detail the first two of these forms here and 
describe how to estimate all of them in Chapter N28.  For convenience, we label these random utility 
formulations RU1, RU2 and RU3.  (RU3 is just a variant of RU2.) 
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RU1 
 
 The first form is  

   P(j|b,l)  =  | , | ,

| , || ,

exp( ) exp( )
exp( ) exp( )

j b l j b l

q j l b lq b l
J

′ ′

′∑
x x

   =   
x

β β

β
, 

 
where Jb|l is the inclusive value for branch b in limb l,  
 
   Jb|l  = log Σq|b,l exp(β′xq|b,l).   
 
At the next level up the tree, we define the conditional probability of choosing a particular branch in 
limb l, 

   P(b|l)  =  | | | | | |

| | ||

exp ( ) exp ( )
exp( )exp ( )

b l b l b l b l b l b l

ls l s l s ls l

J J
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′ ′   λ + λ +   
′ λ + ∑

y y
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α
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where Il is the inclusive value for limb l, 
 
   Il  =  log Σs|l exp[λs|l (α′ys|l + Js|l)].   
 
The probability of choosing limb l is 
 

   P(l)  =  
[ ]

|exp[ ( )] exp[ ( )]
exp ( ) exp( )

l l l l l l

s s ss

I I
I H

′γ + ′γ +
′γ +∑

z z   =   
z

δ δ
δ
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Note that this the same as the familiar normalization used earlier; this form just makes the scaling 
explicit at each level. 
 
RU2 
 
 The second form moves the scaling down to the twig level, rather than at the branch level.  
Here it is made explicit that within a branch, the scaling must be the same for alternatives. 
 

   P(j|b,l)  =  | | , | | ,

|| | ,| ,

exp ( ) exp ( )
exp( )exp ( )

b l j b l b l j b l

b lb l q b lq b l
J

′ ′   µ µ   
′ µ ∑

x x
   =   

x

β β

β
. 

 
Note in the summation in the inclusive value that the scaling parameter is not varying with the 
summation index.  It is the same for all twigs in the branch.  Now, Jb|l is the inclusive value for 
branch j in limb l,  
 
   Jb|l  =  log Σq|b,l exp[µb|l  (β′xq|b,l)].   
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At the next level up the tree, we define the conditional probability of choosing a particular branch in 
limb l, 
 

   P(b|l)  =  
( )

( )
( )| | | | | |

| | |

exp (1/ ) exp (1/ )

exp( )exp (1/ )
l b l b l b l l b l b l b l
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where Il is the inclusive value for limb l, 
 
   Il  =  ( )| | ||

log exp ' (1/ )l s l s l s ls l
J γ + µ ∑ yα . 

 
Finally, the probability of choosing limb l is 
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where the log sum for the full model is 
 
   H  =  [ ]log exp ' (1/ )s s ss

I+ γ∑ zδ . 
 
N2.10.2 A Model of Covariance Heterogeneity 
 

This is a modification of the two level nested logit model.  The base case for the model is 
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Denote the logsum,  the log of the denominator, as Jb = inclusive value for branch b = IV(b).  Then, 
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The covariance heterogeneity model allows the τb inclusive value parameters to be functions of a set 
of attributes, vb , in the form 
 

  τb* = τb × exp(δ′vb), 
 
where δ is a new vector of parameters to be estimated.  Since the inclusive parameter is a scaling 
parameter for a common random component in the alternatives within a branch, this is equivalent to 
a model of heteroscedasticity. 
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N2.10.3 Generalized Nested Logit Model 
 
 The generalized nested logit model is an extension of the nested logit model in which 
alternatives may appear in more than one branch.  Alternatives that appear in more than one branch 
are allocated across branches probabilistically.  The model estimated includes the usual nested logit 
framework (only two levels are supported in this framework), as well as the matrix of allocation 
parameters.  The only difference between this and the more basic nested logit model is the 
specification of the tree. For the allocations of choices to branches, a multinomial logit form is used, 
 
   πj,b  =  Prob(alternative j is in branch b)  =  exp(θj,b) / Σs exp(θj,s), 
 
where the parameters θ are estimated by the program.  Note the denominator summation is over 
branches that the alternative appears in.  The probabilities sum to one.  The identification rule that 
one of the θs for each alternative modeled equals one is imposed.  These allocations may depend on 
an individual characteristic (not a choice attribute), such as income. In this instance, the multinomial 
logit probabilities become functions of this variable,  
 
   πj,b  =  Prob(alternative j is in branch b)  =  exp(θj,b + γj,bzi ) / Σs exp(θj,s+ γj,szi). 
 
Now, to achieve identification, one of the θs is set equal to zero and one of the γs is set equal to zero.  
It is convenient to form the matrix Π = [πj,b].  This is a J×B matrix of allocation parameters.  The 
rows sum to one, and note that some values in the matrix are zero.  But, no rows have all zeros – 
every alternative appears in at least one branch, and no columns have all zeros – every branch 
contains at least one alternative.  The probabilities for the observed choices are formed as 
 
   Prob(alternative, branch) =  P(j,b) 

    =  P(j|b) × P(b) 
 

where   ,
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N2.10.4 Box-Cox Nested Logit 
 
 The Box-Cox form of the nested logit model automates a model specification that was 
already in NLOGIT 4.  This form can replace the function transformation BCX(variable) in the utility 
functions. 
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N2.11 Random Parameters Logit Models 
 
 In its most general form, we write the multinomial logit probability as 
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where       U(j,i) = ji j i j ji ji ji′ ′ ′α + +z + f xθ φ β , j = 1,...,Ji alternatives in individual i’s choice set 
 

           αji  is an alternative specific constant which may be fixed or random, αJi = 0, 

  θj   is a vector of nonrandom (fixed) coefficients, θJi = 0, 

  φj  is a vector of nonrandom (fixed) coefficients, 

           βji   is a coefficient vector that is randomly distributed across individuals;  
    vi enters βji, 

     zi   is a set of choice invariant individual characteristics such as age or income, 

           fji  is a vector of M individual and choice varying attributes of choices,  
    multiplied by φj, 

   xji   is a vector of L individual and choice varying attributes of choices,  
    multiplied by βji. 
 
The term ‘mixed logit’ is often used in the literature (e.g., Revelt and Train (1998)) for this model.  The 
choice specific constants, αji and the elements of βji are distributed randomly across individuals such 
that for each random coefficient, ρki = any (not necessarily all of) αji or βjki, the coefficient on attribute 
xjik, k = 1,...,K, 
                 ρjki  =  αji or βjki  =  ρjk  +  δk′wi  +  σkvki, 

or               ρjki  =  αji or βjki  =  exp(ρjk  +  δjk′wi  +  σjkvjki). 
 
The vector wi (which does not include one) is a set of choice invariant characteristics that produce 
individual heterogeneity in the means of the randomly distributed coefficients; ρjk is the constant 
term and δjk is a vector of ‘deep’ coefficients which produce an individual specific mean.  The 
random term, vjki is normally distributed (or distributed with some other distribution) with mean 0 
and standard deviation 1, so σjk is the standard deviation of the marginal distribution of ρjki. The vjkis 
are individual and choice specific, unobserved random disturbances – the source of the 
heterogeneity.  Thus, as stated above, in the population 
 
               αji or βjki   ~  Normal or Lognormal [ρjk + δjk′wi, σjk

2]. 
 
(Other distributions may be specified.)  For the full vector of K random coefficients in the model, we 
may write 
   ρi  =  ρ  +  ∆wi  +  Γvi 
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where Γ is a diagonal matrix which contains σk on its diagonal.  A nondiagonal Γ allows the random 
parameters to be correlated.  Then, the full covariance matrix of the random coefficients is Σ = ΓΓ′.  
The standard case of uncorrelated coefficients has Γ = diag(σ1,σ2 ,…,σk). If the coefficients are 
freely correlated, Γ is a full, unrestricted, lower triangular matrix and Σ will have nonzero off 
diagonal elements. An additional level of flexibility is obtained by allowing the distributions of the 
random parameters to be heteroscedastic,  
 

   σijk
2  =  σjk

2 × exp(γjk′hi). 
 

This is now built into the model by specifying 
 

   ρi  =  ρ  +  ∆wi  +  Γ Ωi vi 

where   Ωi  = diag[σijk
2] 

 
and now, Γ is a lower triangular matrix of constants with ones on the diagonal.  Finally, 
autocorrelation can also be incorporated by allowing the random components of the random 
parameters to obey an autoregressive process, 
 
   vki,t  =  τki vki,t-1 + cki,t  
 
where cki,t is now the random element driving the random parameter. 
 This produces, then, the full random parameters logit model 
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           βi  =  β  +  ∆zi  +  Γ Ωi vi 

           vi  ~  with mean vector 0 and covariance matrix I.  
 
The specific distributions may vary from one parameter to the next.  We also allow the parameters to 
be lognormally distributed so that the preceding specification applies to the logarithm of the specific 
parameter. 
 
N2.11.1 Nonlinear Utility RP Model 
 
 The nonlinear utility function (NLRP) form of the mixed model is one of two major extensions 
of this model that appear in NLOGIT 5 – the other is the generalized mixed model in the next section.  
In the NLRP model, the model parameters may be specified as in the model above.  But, the utility 
functions need not be linear in the attributes and characteristics.  This more general model is 
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where           βi  =  β  +  ∆zi  +  Γ Ωi vi 

           vi  ~  with mean vector 0 and covariance matrix I. 

and            ( )j i jiU ′,xβ  is any nonlinear function of the data and parameters. 
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N2.11.2 Generalized Mixed Logit Model 
 
 The second major extension of the random parameters model is the generalized mixed logit 
model developed by Fiebig, Keane, Louviere and Wasi (2010).  The extension of the random 
parameters model is 
   βi  =  σiβ  +  γΓvi  + (1 - γ)σiΓvi 
 
The generalized mixed logit model embodies several different forms of heterogeneity in the random 
parameters and random scaling, as well as the distribution parameter, γ, which allocates the influence 
of the parameter heterogeneity and the scaling heterogeneity. Several interesting model forms are 
produced by different restrictions on the parameters.  For example, if  γ = 0 and Γ = 0, we obtain the 
scaled MNL model in Section N2.7.2.  A variety of other special cases are also provided.  One 
nonlinear normalization in particular allows the model to be transformed from a specification in 
‘utility space’ as above to ‘willingness to pay space’ by analyzing an implicit ratio of coefficients. 
 
N2.12 Latent Class Logit Models 
 

In the latent class formulation, parameter heterogeneity across individuals is modeled with a 
discrete distribution, or set of ‘classes.’  The situation can be viewed as one in which the individual 
resides in a ‘latent’ class, c, which is not revealed to the analyst.  There are a fixed number of 
classes, C.  Estimates consist of the class specific parameters and for each person, a set of 
probabilities defined over the classes.  Individual i’s choice among J alternatives at choice situation t 
given that individual i is in class c is the one with maximum utility, where the utility functions are 
 
      Ujit|c  = βc′xjit  +  εjit 
 
where    Ujit  = utility of alternative j to individual i in choice situation t 

   xjit = union of all attributes that appear in all utility functions.  For 
     some alternatives, xjit,k may be zero by construction for some 
     attribute k which does not enter their utility function for 
     alternative j. 

   εjit = unobserved heterogeneity for individual i and alternative j in 
     choice situation t. 

   βc  = class specific parameter vector. 
 
Within the class, choice probabilities are assumed to be generated by the multinomial logit model  
 

   Prob[yit = j | class = c]  =  
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As noted, the class is not observed.  Class probabilities are specified by the multinomial logit form, 
 

   Prob[class = c]  =  Qic  =  ( )
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exp

exp
c i

C
c ic=

′

′∑
z

z

θ

θ
, θC  =  0. 

 
where zi is an optional set of person, situation invariant characteristics.  The class specific 
probabilities may be a set of fixed constants if no such characteristics are observed.  In this case, the 
class probabilities are simply functions of C parameters, θc, the last of which is fixed at zero. This 
model does not impose the IIA property on the observed probabilities. 
 For a given individual, the model’s estimate of the probability of a specific choice is the 
expected value (over classes) of the class specific probabilities.  Thus, 
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N2.12.1 2K Latent Class Model 
 
 NLOGIT accommodates attribute ‘nonattendance’ by the ‘-888’ feature described in Chapter 
N18.  In particular, in some choice analyses, some, but not all individuals indicate that they did not 
pay attention to certain attributes.  The appropriate model building strategy is to impose zero 
restrictions on the utility parameters, β, for these specific individuals.  NLOGIT provides this 
capability throughout the estimation suite – all models are fit with this capability.  (This feature is 
unique to NLOGIT.)  This feature accommodates cases in which individuals explicitly reveal the 
form of their utility functions.  The model noted here is usable when the sorting of individuals in this 
way is latent – there is no observed indicator.  Consider a model with four attributes, x1, x2, x3, x4.  
All individuals attend to x1 and x2.  Some ignore x3, some ignore x4, and some ignore both x3 and 
x4 (and some attend both).  Thus, in terms of the possible utility functions, there are four types of 
individuals in the population, distinguished by the type of utility function that is appropriate: 
 
 (x3 and x4)  Uij  =  β1x1  +  β2x2  +  β3x3  +  β4x4  + ε 

 (x3 only)  Uij  =  β1x1  +  β2x2  +  β3x3                + ε 

 (x4 only)  Uij  =  β1x1  +  β2x2                +  β4x4  + ε 

 (Neither)  Uij  =  β1x1  +  β2x2     + ε 
 
The difference that is built into this model form is that the analyst does not know which individual is 
in which group.  This can be treated as a latent class model.  The number of classes is 2K where K is 
the number of attributes that treated by the latent class specification. 
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N2.12.2 Latent Class – Random Parameters Model 
 
 The LCRP model is a combination of the latent class model described above and the random 
parameters model in Section N2.11.  This is a latent class model in which a random parameters 
model applies within each class. 
 
N2.13 Multinomial Probit Model 
 

In this model, the individual’s choice among J alternatives is the one with maximum utility, 
where the utility functions are 

 
      Uji   = β′xji  +  εji 

where   Uji  =  utility of alternative j to individual i 

   xjit   = union of all attributes that appear in all utility functions.  For 
     some alternatives, xjit,k may be zero by construction for some 
     attribute k which does not enter their utility function for 
     alternative j. 
 
The multinomial logit model specifies that εji are draws from independent extreme value 
distributions (which induces the IIA condition).  In the multinomial probit model, we assume that εji 
are normally distributed with standard deviations Sdv[εji] = σj and correlations Cor[εji, εqi] = ρjq (the 
same for all individuals).  Observations are independent, so Cor[εji,εqs ] = 0 if i is not equal to s, for 
all j and q.  A variation of the model allows the standard deviations and covariances to be scaled by a 
function of the data, which allows some heteroscedasticity across individuals. 

The correlations ρjq are restricted to -1 < ρjq < 1, but they are otherwise unrestricted save for 
a necessary normalization.  The correlations in the last row of the correlation matrix must be fixed at 
zero.   The standard deviations are unrestricted with the exception of a normalization – two standard 
deviations are fixed at 1.0 – NLOGIT fixes the last two.   
 This model may also be fit with panel data.  In this case, the utility function is modified as 
follows: 
      Uji,t   =   β′xji,t  +  εji,t  +  vji,t 
 
where ‘t’ indexes the periods or replications.  There are two formulations for vji,t,  
 
   Random effects   vji,t =  vji,t (the same in all periods) 

   First order autoregressive vji,t  =  αj vji,t-1  +  aji,t. 
 
It is assumed that you have a total of Ti observations (choice situations) for person i.  Two situations 
might lend themselves to this treatment.   If the individual is faced with a set of choice situations that 
are similar and occur close together in time, then the random effects formulation is likely to be 
appropriate.  However, if the choice situations are fairly far apart in time, or if habits or knowledge 
accumulation are likely to influence the latter choices, then the autoregressive model might be the 
better one. 
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 You can also add a form of individual heterogeneity to the disturbance covariance matrix.  
The model extension is 

 
  Var[εi]  =  exp[γ′hi] × Σ 

 
where Σ is the matrix defined earlier (the same for all individuals), and hi is an individual (not 
alternative) specific set of variables not including a constant. 
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N3: Model and Command Summary for 
Discrete Choice Models 

 
N3.1 Introduction 
 
 The chapters to follow will provide details on the various discrete choice models you can 
estimate with NLOGIT and on the model commands you will use to request the estimates.  This chapter 
will provide a brief summary listing of the models and model commands.  The variety of logit models 
now use a set of specific names, rather than qualifiers to more general model classes as in earlier 
versions.  For example, the model name OLOGIT can be used instead of ORDERD ; Logit. The 
earlier formats remain available, but the newer ones may prove more convenient.  The full listing of 
these commands is also given below.  The commands below specify the essential parts needed to fit the 
model.  The numerous options and different forms are discussed in the chapters to follow (and, were 
noted in the LIMDEP Econometric Modeling Guide as well). 
 
N3.2 Model Dimensions 
 
 The descriptions below present the different discrete choice models that are the main feature 
of NLOGIT.  NLOGIT contains all of LIMDEP, so all of the models documented in the LIMDEP 
Econometric Modeling Guide, including the regression models, limited dependent variable models, 
generalized linear models, sample selection models, and so on are supported in NLOGIT, as well as 
the ancillary tools including MATRIX, etc.  
 There are various built in limits in the estimators.  These are noted at the specific points 
below where necessary.  The following lists the most important internal constraints on the 
estimators: 
 

• Multinomial choice model estimators in NLOGIT:    maximum numbers of: 
° Alternatives       500 
° Attributes       300 
° Branches in nested logit models         25 
° Limbs in nested logit models         10 
° Random error components         10 

• Maximum number of choices in the MLOGIT form of the model      25 
• Heteroscedasticity models, maximum number of variables      75 
• Ordered choice models: maximum number of outcomes      25 
• Unconditional fixed effects models, number of individuals             100,000 
• Random parameters models, maximum number of RPs     25 
• Latent class models, maximum number of classes     30 
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N3.3 Basic Discrete Choice Models 
 
 The binomial probit and logit models and the ordered probit and logit models are the primary 
model frameworks for single equation, single decision, discrete choice models.  The ordered choice 
and the bivariate and multivariate probit models are multivariate extensions of the simple probit model.   
 
N3.3.1 Binary Choice Models 
 
 There are six binary choice models, probit, logit, complementary log log, Gompertz, Burr, 
and arctangent documented in Chapter E27.  The ones that interest us here are the binary probit and 
logit models.  The probit model is requested with 
 
 PROBIT ; Lhs  = dependent variable 
   ; Rhs  = independent variables $ 
 
The binary logit model may be invoked with 
 
 BLOGIT ; Lhs  = dependent variable 
   ; Rhs  = independent variables $ 
 
In earlier versions, you would use the LOGIT command, which is still useable.  LOGIT is the same 
as BLOGIT when the data on the dependent variable are either binary (zeros and ones) or 
proportions (strictly between zero and one).  Chapters E26-E29 document numerous extensions of 
these models.  Chapters E30-E32 consider semiparametric and nonparametric approaches and 
extensions of the binary choice models for panel data. 
 
N3.3.2 Bivariate Binary Choices 
 
 The command for the bivariate probit model is 
 
 BVPROBIT ; Lhs  = variable 1, variable 2 
   ; Rh1  = independent variables for equation 1 
   ; Rh2  = independent variables for equation 2 $ 
 
In this form, the Lhs specifies two binary dependent variables.  You may use proportions data 
instead, in which case, you will provide four proportions variables, in order, p00, p01, p10, p11.  
This command is the same as BIVARIATE PROBIT in earlier versions.  (You may still use 
BIVARIATE PROBIT.) 
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N3.3.3 Multivariate Binary Choice Models 
 
 The multivariate probit model is specified with 
 
 MVPROBIT ; Lhs  = y1, y2, ..., yM 
   ; Eq1  = Rhs variables for equation 1 
   ; Eq2  = Rhs variables for equation 2 
   ... 
   ; EqM = Rhs variables for equation M $ 
 
Data for this model must be individual.  The Lhs specifies a set of binary dependent variables.  This 
command is the same as MPROBIT (which may still be used) in earlier versions. 
 
N3.3.4 Ordered Choice Models 
 
 Chapter E34 describes five forms for the ordered choice model, probit, logit, complementary 
log log, Gompertz and arctangent.  The first two interest us here.  The ordered probit model is 
requested with 
 
 OPROBIT ; Lhs  = dependent variable 
   ; Rhs  = independent variables $ 
 
This is the same as the ORDERED PROBIT command, which may still be used.  In this model, the 
dependent variable is integer valued, taking the values 0, 1, ..., J.  All J+1 values must appear in the 
data set, including zero.  You may supply a set of J+1 proportions variables instead.  Proportions will 
sum to 1.0 for every observation.  Chapter E35 documents a bivariate version of the ordered probit 
model for two joint ordered outcomes, and a sample selection model. 
 The ordered logit model is requested with 
 
 OLOGIT ; Lhs  = dependent variable 
   ; Rhs  = independent variables $ 
 
The same arrangement for the dependent variables as for the ordered probit model is assumed.  This 
command is the same as ORDERED ; Logit in earlier versions. 
 
N3.4 Multinomial Logit Models 
 
 The ‘multinomial logit model’ is a special case of the conditional logit model, which, itself, 
is the gateway model to the main model extensions described in Section N2.5. 
 
N3.4.1 Multinomial Logit 
 
 The multinomial logit model described in Section N2.6 and Chapter E37 is invoked with 
 
 MLOGIT ; Lhs  = dependent variable 
   ; Rhs  = independent variables $ 
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Data for the MLOGIT model consist of an integer valued variable taking the values 0, 1, ..., J.  This 
model may also be fit with proportions data.  In that case, you will provide the names of J+1 Lhs 
variables that will be strictly between zero and one, and will sum to one at every observation.  The 
MLOGIT command is the same as LOGIT.  The program inspects the command (Lhs) and the data, 
and determines internally whether BLOGIT or MLOGIT is appropriate.  Note, on proportions data, 
if you want to fit a binary logit model with proportions data, you will supply a single proportions 
variable, not two.  (What would be the second one is just one minus the first.)  If you want to fit a 
multinomial logit model with proportions data with three or more outcomes, you must provide the 
full set of proportions.  Thus, you would never supply two Lhs variables in a LOGIT, BLOGIT or 
MLOGIT command. 
 
N3.4.2 Conditional Logit 
 
 The command for the conditional model, and the commands in the sections to follow, are 
variants of the NLOGIT command.  This is a full class of estimators based on the conditional logit 
form.  There are several forms of the essential command for fitting the conditional logit model with 
NLOGIT.  The simpler one is 
 
 CLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics $ 
 
As discussed in Chapter N20 and in Section E38.3, the data for this estimator consist of a set of J 
observations, one for each alternative.  (The observation resembles a group in a panel data set.)  The 
command just given assumes that every individual in the sample chooses from the same size choice 
set, J.  The choice sets may have different numbers of choices, in which case, the command is 
changed to 
   ; Lhs  = dependent variable, choice set size variable 
 
The second Lhs variable is structured exactly the same as a ; Pds variable for a panel data estimator.  
In the second form of the model command, the utility functions are specified directly, symbolically.  
 The ; Rhs and ; Rh2 specifications can be replaced with 
 
   ; Model: ... specification of the utility functions 
 
This is discussed in Chapter N21 and Chapter E39. 
 The CLOGIT command is the same as DISCRETE CHOICE. It is also the same as 
NLOGIT when the only information given in the command is that specified above, that is when 
none of the specifications that invoke the model extensions that are described in the sections to 
follow are provided. 
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N3.5 NLOGIT Extensions of Conditional Logit 
 
 The conditional logit model provides the basic framework for a very large number of 
extensions that are provided by NLOGIT.  The following lists the basic commands for most of these.  
Each model form is developed in greater detail in one of the chapters that follow.  Each model may 
be specified with a variety of options and different specifications for numerous variants.  The 
following shows the essential command for the most basic form of the model. 
 

N3.5.1 Random Regret Logit 
 
 The random regret form of the model is specified with 
 
 RRLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2 = list of choice invariant individual characteristics $ 
 
The command is otherwise the same as CLOGIT, with the same formats for variable choice set 
sizes, etc.  The utility functions must be specified as above, not using ; Model: …, owing to the 
particular form of the utility functions in the random regret format. 
 

N3.5.2 Scaled Multinomial Logit 
 
 The scaled multinomial logit model is a randomly scaled MNL, with βi = σiβ, where σi is a 
heterogeneous scalar.  The model command is 
 
 SMNLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2 = list of choice invariant individual characteristics $ 
 
N3.5.3 Heteroscedastic Extreme Value 
 
 The heteroscedastic extreme value model is requested with the command 
 
 HLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2 = list of choice invariant individual characteristics $ 
 
The command is otherwise the same as the CLOGIT command, with the same formats for variable 
choice set sizes and utility function specifications.  The HLOGIT command is the same as 
 
 NLOGIT ; Heteroscedasticity 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics $ 
 
that was used in earlier versions of NLOGIT.  (This may still be used if desired.) 



N3: Model and Command Summary for Discrete Choice Models  N-42 

N3.5.4 Error Components Logit  
 
 The error components model is described in Section N2.8 and in Chapter N30.  The model 
command is 
 
 ECLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics  
   ; ECM = specification of the tree structure for the error components $ 
 
This command is the same as NLOGIT ; ECM = specification ... $  The error components model 
may also be specified as a part of the random parameters model.  Thus, your RPLOGIT command 
may also contain the ; ECM = specification. 
 
N3.5.5 Nested and Generalized Nested Logit 
 
 The nested logit model is the default form of the NLOGIT command.  Request the nested 
logit model with 
 
 NLOGIT ; Tree = specification of the tree structure 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics $ 
 
The generalized nested logit model command is   
 
 GNLOGIT ; Tree = specification of the tree structure 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics $ 
 
The GNLOGIT command in place of the NLOGIT command tells NLOGIT that the tree structure 
may have overlapping branch specifications.  (You may also use NLOGIT ; GNL.)  If you specify 
that alternatives appear in more than one branch in the NLOGIT command, this will produce an 
error message.  The option is available only for the GNLOGIT command.  The specification of 
variable choice set sizes and utility functions is the same as for the CLOGIT command. 
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N3.5.6 Random Parameters Logit 
 
 The random parameters logit model (mixed logit model) is requested by specifying a 
conditional logit model, and adding the specification of the random parameters.  The model 
command is 
 
 RPLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics  
   ; Fcn  = the specifications of the random parameters   
   ; ... other specifications for the random parameters model $ 
 
Once again, variable choice set sizes and utility function specifications are specified as in the 
CLOGIT command.  This command is the same as 
 
 NLOGIT ; RPL 
   ; ... the rest of the command $ 
 
There is one modification that might be necessary.  If you are providing variables that affect the 
means of the random parameters, you would generally use 
 
 NLOGIT ; RPL = the list of variables 
   ; ... the rest of the command $ 
The RPL specification may still be used this way.  The command can be NLOGIT as above, or 
 
 RPLOGIT ; RPL = the list of variables 
   ; ... the rest of the command $ 
 
These are identical.   
 The random parameters model may also include an error components specification defined 
in the next section.  The command will be 
 
 RPLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics  
   ; Fcn  = the specifications of the random parameters   
   ; ... other specifications for the random parameters model  
   ; ECM = specification $ 
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N3.5.7 Generalized Mixed Logit 
 

 The generalized mixed logit model is an extension of the random parameters model.  The 
command has several parts that produce the various model types.  The essential command is 
 
 GMXLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics  
   ; Fcn = specification of the random parameters $ 
 
N3.5.8 Nonlinear Random Parameters Logit 
 

 This command extends the random parameters model by allowing the utility functions to be 
any nonlinear that you specify.  There are numerous variants of this model.  The essential command 
is 
 NLRPLOGIT ; Lhs = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Labels = the labels used for the model parameters 
   ; Start = starting values for iterations 
   ; Fn1 = specification of a nonlinear function 
   ; … up to 50 nonlinear function specifications 
   ; Model: U(name…) = one of the nonlinear functions defined / 

 U(name…) = another one of the functions, etc.  
; Fcn = specifications of the random parameters $ 

 
The model is set up by defining the choice variable and a set of nonlinear functions that will be combined to 
make the utility functions.  The functions may be arbitrarily complex 
 

N3.5.9 Latent Class Logit  
 
 The essential form of the command for the latent class model is 
 
 LCLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics  
   ; Pts  = the number of classes $ 
 
Like the RPLOGIT command, you need to modify this command if you are providing variables that 
affect the class probabilities. You would generally use 
 
 NLOGIT ; LCM = the list of variables 
   ; ... the rest of the command $ 
 
The LCM specification may still be used this way.  The command can be NLOGIT as above, or 
identically, 
 
 LCLOGIT ; LCM = the list of variables 
   ; ... the rest of the command $ 
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N3.5.10 2K Latent Class Logit  
 
 The 2K model is a particular latent class model in which there are simple constraints across 
the classes, but only one parameter vector used for the whole model.  The model is set up as a latent 
class model with an additional specification: 
 
 LCLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics  
   ; Pts  = the number of classes $ 
 
In this form of the model, the number of points is specified as 102, 103, or 104, corresponding to 
whether the first 2, 3, or 4 variables in the RHS list are given the special treatment that defines the 
model. 
 
N3.5.11 Latent Class Random Parameters 
 
 The latent class random parameters model extends the latent class model.  The essential 
command is 
 
 LCRPLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics  
   ; Fcn = definition of the random parameters part 
   ; Pts  = the number of classes $ 
 
N3.5.12 Multinomial Probit 
 
 The multinomial probit model is described in Chapter N27 and Section N2.13.  The essential 
command is 
 
 MNPROBIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics $ 
 
Variable choice set sizes and utility function specifications are specified as in the CLOGIT 
command.  This command is the same as 
 
 NLOGIT ; MNP 
   ; ... the rest of the command $ 
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N3.6 Command Summary 
 
 The following lists the current and where applicable, alternative forms of the discrete choice 
model commands.  The two sets of commands are identical, and for each model, in NLOGIT 5, either 
command may be used for that model. 
 
Models    Command           Alternative Command Form 
 
Binary Choice Models 
 Binary Probit   PROBIT  PROBIT 
 Binary Logit   BLOGIT  LOGIT 
 Bivariate Probit   BVPROBIT  BIVARIATE PROBIT 
 Multivariate Probit   MVPROBIT  MPROBIT 
 
Ordered Choice Models 
 Ordered Probit   OPROBIT  ORDERED PROBIT 
 Ordered Logit   OLOGIT  ORDERED ; Logit 
 
Multinomial Logit Models 
 Multinomial Logit   MLOGIT  LOGIT 
 Conditional Logit   CLOGIT  DISCRETE CHOICE 
 
Conditional Logit Extensions  
 Conditional Logit   CLOGIT  CLOGIT 
 Multinomial Logit   NLOGIT  NLOGIT (Same as CLOGIT) 
 Scaled Multinomial Logit  SMNLOGIT  GMXLOGIT ; SMNL 
 Random Regret Multinomial Logit RRLOGIT 
 Error Components Logit  ECLOGIT  NLOGIT ; ECM = ... 
 Heteroscedastic Extreme Value HLOGIT  NLOGIT ; Het 
 Nested Logit   NLOGIT ; Tree = ... NLOGIT ; Tree = ... 
 Generalized Nested Logit  GNLOGIT ; Tree = ... NLOGIT ; GNL ; Tree = ... 
 Random Parameters Logit  RPLOGIT  NLOGIT ; RPL 
 Generalized Mixed Logit  GMXLOGIT 
 Nonlinear Random Parameters NLRPLOGIT 
 Latent Class Logit   LCLOGIT  NLOGIT ; LCM 
 2K Latent Class   LCLOGIT 
 Random Parameters Latent Class LCRPLOGIT 
 Multinomial Probit   MNPROBIT  NLOGIT ; MNP 
 
NLOGIT contains an additional command that is used for a specific purpose: 
 
 NLCONVERT ; Lhs = ... ; Rhs = ... ; Other parameters $ 
 
This command is used to reconfigure a data set from a one line format to a multiple line format that is 
more convenient in NLOGIT.  NLCONVERT is described in Chapter  N18. 
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N3.7 Subcommand Summary 
 
 The following subcommands are used in NLOGIT model commands.  The BLOGIT, 
BPROBIT, BVPROBIT, MVPROBIT, OLOGIT and OPROBIT commands have additional 
specifications that are documented in the LIMDEP Econometric Modeling Guide for these specific 
models.  The specifications below are those that may appear in the NLOGIT command or the 
conditional logit extensions described above. 
 
General Model Specification and Data Setup 
 
     Data on Dependent Variable 
 
 ; Ranks   indicates that data are in the form of ranks, possibly ties at last place. 
 ; Shares  indicates that data are in the form of proportions or shares. 
 ; Frequencies  indicates that data are in the form of frequencies or counts. 
 ; Checkdata  checks validity of the data before estimation. 
 ; Wts = name specifies a weighting variable. (Noscale is not used here.) 
 ; Scale (list of variables) = values for scaling loop specifies scaling of certain variables 
   during iterations. 
 ; Pds = spec indicates multiple choice situations for individuals. Used by RPL, LCM, ECM,  
   MNP and by binary choice models to indicate a panel data set.  
 
     Specification of the Dependent Variable 
 

; Lhs = names specifies model dependent variable(s).  
  Second Lhs variable indicates variable choice set size.  
  Third Lhs variable indicates specific choices in a universal choice set.   
  First Lhs variable is a set of utilities if ; MCS is used. 

 ; MCS   requests data generated by Monte Carlo simulation. 
 ; Choices = list lists names for alternatives. 
 
     Specification of Utility Functions 
 
 ; Rhs = names lists choice varying attribute variables. 
 ; Rh2 = names lists choice invariant characteristic variables. 
 ; Model:  alternative way to specify utility functions, followed by definitions of 
   utility functions. 
 ; Fix = list  lists names of and values for coefficients that are to be fixed. 
 ; Uset (list of alternatives) = list of values or [list of values] alternative method of 
   specifying starting values or fixed coefficients. 
 ; Lambda = value specifies coefficient to use for Box-Cox transformation. 
 ; Attr = list  lists names for attributes used in one line entry format. 
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Output Control 
 
     List and Retain Variables and Results 
 
 ; Prob = name keeps predicted probabilities from estimated model as variable. 
 ; Keep = name keeps predicted values from estimated model as variable. Used by 
   PROBIT and BLOGIT only. 
 ; Utility = name keeps predicted utilities as variable. 
 ; List   lists predicted probabilities and predicted outcomes with model results. 
 ; Parameters retains additional parameters as matrices.  With RPL and LCM, keeps 
   matrices of individual specific parameter means. 
 ; WTP = list  lists specifications to retain computations of willingness to pay. 
 
     Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
  same as ; Printvc.  

 
 ; Robust  computes robust sandwich estimator for asymptotic covariance matrix. 
 ; Cluster = spec computes robust cluster corrected asymptotic covariance matrix. 
 
     Display of Estimation Results 
 
 ; Show   displays model specification and tree structure. 
 ; Describe  lists descriptive statistics for attributes by alternative. 
 ; Odds   includes odds ratios in estimation results. Used only by BLOGIT. 
 ; Crosstab  includes crosstabulation of predicted and actual outcomes. 
 ; Table = name adds model results to stored tables. 
 
     Marginal Effects 
 
 ; Effects: spec displays estimated marginal effects.  Used by NLOGIT. 

; Partial Effects displays marginal effects, same as ; Marginal Effects. Used by PROBIT,  
  BLOGIT, BVPROBIT, MVPROBIT, OLOGIT, OPROBIT. 

 ; Means  computes marginal effects using data means.  Uses average partial effects if  
   this is not specified. 
 ; Pwt   uses probability weights to compute average partial effects. 
 
Hypothesis Testing 
 

; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 

 ; IAS = list  lists choices used with CLOGIT to test IIA assumption. 
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Optimization 
 
     Iterations Controls 
 
 ; Alg = name  specifies optimization method. 

; Maxit = n sets the maximum iterations. 
 ; Tlg [ = value] sets the convergence value for convergence on the gradient. 

; Tlf [ = value] sets the convergence value for function convergence. 
; Tlb [ = value] sets the convergence value for convergence on change in parameters. 

 ; Set   keeps current setting of optimization parameters as permanent. 
; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 

 
     Starting Values 
 
 ; Start = list  provides starting values for all model parameters. 
 ; PR0 = list  provides starting values for free parameters only. (Generally not used.) 
 
     Constrained Estimation 
 

; CML: spec  defines a constrained maximum likelihood estimator. 
 ; Rst = list  imposes fixed value and equality constraints. 
 ; Calibrate  fixes parameters at previously estimated values. 
 ; ASC  initially fit model with just ASCs. 
 
     Criterion Function for CLOGIT 
 
 ; GME [ = number of support points] generalized maximum entropy. Used by MLOGIT  
    and CLOGIT. 
 ; Sequential  sequential two step estimator for nested logit.  (Generally not used.) 
 ; Conditional  conditional estimator for two step nested logit.  (Generally not used.) 
 
     Simulation Based Estimation 
 
 ; Pts = number sets number of replications for simulation estimator.  Used by ECM and 
    MNP.  (Also used by LCM to specify number of latent classes.) 
 ; Shuffled  uses shuffled uniform draws to compute draws for simulations. 
 ; Halton  uses Halton sequences for simulation based estimators. 
 
Simulation Processor  (BINARY CHOICE Command for PROBIT and BLOGIT) 
 
 ; Simulation [ = list of choices] simulates effect of changes in attributes on aggregate outcomes. 
 ; Scenarios  specifies changes in attributes for simulations. 
 ; Arc   computes arc elasticities during simulations. 
 ; Merge  merges revealed and stated preference data during simulations. 
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Specific NLOGIT Model Commands 
 

 ; LCM [ = list of variables] specifies latent class model.  Optionally, specifies variables that  
   enter the class probabilities.  (Command is also LCLOGIT.)  Also used by  
   PROBIT and BLOGIT. 
 ; ECM = list of specifications specifies error components logit model. (Command is also 
   ECLOGIT.) 
 ; HEV   specifies heteroscedastic extreme value model.  (Command is also  
   HCLOGIT.) 
 
     Heteroscedastic Models 
 

 ; Het   specifies a heteroscedastic model. Used by RPL, ECL and HEV. 
 ; Hfr = names  specifies heteroscedastic function in RPL, HEV and covariance  
   heterogeneity form of nested logit model. 
 ; Hfe = names specifies heteroscedasticity for ECM. 
 
     Nested Logit Model 
 

 ; Tree = spec specifies tree structure in nested logit model. 
 ; GNL   specifies generalized nested logit model. (Command is also GNLOGIT.) 
 ; RU1   specifies parameterization of second and third levels of the tree. 
 ; RU2   specifies parameterization of second and third levels of the tree. 
 ; RU3   specifies parameterization of second and third levels of the tree. 
 ; IVSET: spec imposes constraints on inclusive value parameters. 
 ; IVB = name  keeps branch level inclusive values as a variable. 
 ; IVL = name  keeps limb level inclusive values as a variable. 
 ; IVT = name  keeps trunk level inclusive values as a variable. 
 ; Prb = name  keeps branch level probabilities as a variable. 
 ; Cprob = name keeps conditional probabilities for alternatives. 
 
     Random Parameters Logit Model 
 
 ; RPL [ = list of variables] requests mixed logit model. Optionally specifies variables to 
   enter means of random parameters. 
 ; AR1   AR(1) structure for random terms in random parameters. 
 ; Fcn:   defines names and types of random parameters. 
 ; Correlation  specifies that random parameters are correlated. 
 ; Hfr = names defines variables in heteroscedasticity.  Also used by HEV and covariance 
   heterogeneity. 
 
     Multinomial Probit 
 

 ; MNP   specifies multinomial probit model.  (Command is also MNPROBIT.) 
 ; EQC = list  specifies a set of choices whose pairwise correlations are all equal. 
 ; RCR = list  specifies configurations for correlations for multinomial probit model.   
   Also used by RPL. 
 ; SDV = list  specifies diagonal elements of covariance matrix.  Also used by RPL  
   and HEV. 
 ; REM   specifies random effects form of the model. 
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N4: Data for Binary and Ordered Choice 
Models 

 
N4.1 Introduction 
 
 The data arrangement needed for discrete choice modeling depends on the model you are 
estimating.  For the models described in Chapters N4-N15, you are fitting either cross section or 
panel models, and the observations are arranged accordingly.  This is needed because in this part of 
the environment, you are fitting models for a single choice, and you need only a single observation to 
record that choice.  For the models in Chapters N16 and N17 and N23-N33, the basic format of your 
data set will resemble a panel, even though it will usually be a cross section. This is because you are 
fitting models for choice sets with multiple alternatives, with one ‘observation’ (data record) for each 
alternative.  For ‘panel’ models in the discrete choice environment, your data will consist of sets of 
groups of observations.  This is developed in detail in Chapter N20. 
 
N4.2 Grouped and Individual Data for Discrete Choice 
Models 
 
 There are two types of data which may be analyzed.  We say that the data are individual if 
the measurement of the dependent variable is physically discrete, consisting of individual responses.  
The familiar case of the probit model with measured 0/1 responses is an example.  The data are 
grouped if the underlying model is discrete but the observed dependent variable is a proportion.  In 
the probit setting, this arises commonly in bioassay.  A number of respondents have the same values 
of the independent variables, and the observed dependent variable is the proportion of them with 
individual responses equal to one.  Voting proportions are a common application from political 
science. 
 With only two exceptions, all of the discrete response models estimated by LIMDEP and 
NLOGIT can be estimated with either individual or grouped data.  The two exceptions are 
 

• the multivariate probit model described in Chapter N12 (and E33) 
• the multinomial probit model described in Chapter N27 

 
You do not have to inform the program which type you are using. If necessary, the data are inspected 
to determine which applies.  The differences in estimation arise only in the way starting values are 
computed and, occasionally, in the way the output should be interpreted.  Cases sometimes arise in 
which grouped data contain cells which are empty (proportion is zero) or full (proportion is one).  
This does not affect maximum likelihood estimation and is handled internally in obtaining the 
starting values.  No special attention has to be paid to these cells in assembling the data set.  We do 
note, zero and unit ‘proportions’ data are sometimes indicative of a flawed data set, and can distort 
your results. 
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N4.3 Data Used in Estimation of Binary Choice Models 
 
 The following lists the specific features of the data needed to enable estimation of binary 
choice models. Certain features of the data that are inconsequential or irrelevant in linear regression 
modeling can impede estimation of a discrete choice model. 
 
N4.3.1 The Dependent Variable 
 
 Data on the dependent variable for binary choice models may be individual or grouped.  The 
estimation program will check internally, and adjust accordingly where necessary.  The log 
likelihood function computed takes the same form for either case.  The only special consideration 
concerns the computation of the starting values for the iterations.  If you do not provide your own 
starting values, they are determined for the individual data case by simple least squares.  The OLS 
estimator is not useful in itself, but it does help to adjust the scale of the coefficient vector for the 
first iteration.  For the grouped data case, however, the initial values are determined by the minimum 
chi squared, weighted least squares computation.  Since this will generally involve logarithms or 
other transformations which become noncomputable at zero or one, they are not computed for 
individual data. 
 
N4.3.2 Problems with the Independent Variables 
 
 There is a special consideration for the independent variables in a binary choice model.  If a 
variable xk is such that the range of xk can be divided into two parts and within the two parts, the 
value of the dependent variable is always the same, then this variable becomes a perfect predictor for 
the model.  The estimator will break down, sometimes by iterating endlessly as the coefficient vector 
drifts to extreme values.  The following program illustrates the effect:  The variable z is positive 
when y equals one and negative when it equals zero.   Notice, first, it spun for 100 iterations, which 
is almost certainly problematic. A probit model should take less than 10 iterations. Second, note that 
the log likelihood function is essentially zero, indicative of a perfect fit.  Finally, note that the 
coefficients are nonsensical, and the standard errors are essentially infinite.  All are indicators of a 
bad data set and/or model.  The extreme (perfect) values for the fit measures on the next page 
underscore the point.  Finally, note the prediction table shows that the model predicts the dependent 
variable perfectly.   
 

SAMPLE  ; 1-100 $ 
CALC  ; Ran(12345) $ 
CREATE  ; x = Rnn(0,1) ; d = Rnu(0,1) > .5 $ 
CREATE  ; y = (-.5 + x + d + Rnn(0,1)) > 0 $ 
CREATE  ; If(y = 1)z = Rnu(0,1)  
  ; If(y = 0)z = -Rnu(0,1) $ 
PROBIT  ; Lhs = y  
  ; Rhs = one,x,z  
  ; Output = 4 $ 
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Maximum of   100 iterations. Exit iterations with status=1. 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function          .00000 
Restricted log likelihood     -69.13461 
Chi squared [   2 d.f.]       138.26922 
Significance level               .00000 
McFadden Pseudo R-squared     1.0000000 
Estimation based on N =    100, K =   3 
Inf.Cr.AIC  =      6.0 AIC/N =     .060 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.98505       148462.2      .00 1.0000 ***********  *********** 
       X|     .14766       120032.6      .00 1.0000 ***********  *********** 
       Z|    144.424       345728.4      .00  .9997 -677470.698  677759.546 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Probit   model for variable Y          | 
+----------------------------------------+ 
|                 Y=0       Y=1     Total| 
| Proportions  .53000    .47000   1.00000| 
| Sample Size      53        47       100| 
+----------------------------------------+ 
| Log Likelihood Functions for BC Model  | 
|              P=0.50    P=N1/N   P=Model| 
| LogL =       -69.31    -69.13       .00| 
+----------------------------------------+ 
| Fit Measures based on Log Likelihood   | 
| McFadden = 1-(L/L0)          =  1.00000| 
| Estrella = 1-(L/L0)^(-2L0/n) =  1.00000| 
| R-squared (ML)               =   .74910| 
| Akaike Information Crit.     =   .06000| 
| Schwartz Information Crit.   =   .13816| 
+----------------------------------------+ 
| Fit Measures Based on Model Predictions| 
| Efron                        =  1.00000| 
| Ben Akiva and Lerman         =  1.00000| 
| Veall and Zimmerman          =  1.00000| 
| Cramer                       =  1.00000| 
+----------------------------------------+ 
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+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |     53 ( 53.0%)|      0 (   .0%)|     53 ( 53.0%)| 
|  1   |      0 (   .0%)|     47 ( 47.0%)|     47 ( 47.0%)| 
+------+----------------+----------------+----------------+ 
|Total |     53 ( 53.0%)|     47 ( 47.0%)|    100 (100.0%)| 
+------+----------------+----------------+----------------+ 
+---------------------------------------------------------+ 
|Crosstab for Binary Choice Model.  Predicted probability | 
|vs. actual outcome. Entry = Sum[Y(i,j)*Prob(i,m)] 0,1.   | 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|      Predicted Probability      |                | 
|Value |    Prob(y=0)        Prob(y=1)   | Total Actual   | 
+------+----------------+----------------+----------------+ 
| y=0  |     52 ( 52.0%)|      0 (   .0%)|     53 ( 52.0%)| 
| y=1  |      0 (   .0%)|     46 ( 46.0%)|     47 ( 46.0%)| 
+------+----------------+----------------+----------------+ 
|Total |     53 ( 52.0%)|     46 ( 46.0%)|    100 ( 98.0%)| 
+------+----------------+----------------+----------------+ 
----------------------------------------------------------------------- 
Analysis of Binary Choice Model Predictions Based on Threshold =  .5000 
----------------------------------------------------------------------- 
Prediction Success 
----------------------------------------------------------------------- 
Sensitivity = actual 1s correctly predicted                     97.872% 
Specificity = actual 0s correctly predicted                     98.113% 
Positive predictive value = predicted 1s that were actual 1s   100.000% 
Negative predictive value = predicted 0s that were actual 0s    98.113% 
Correct prediction = actual 1s and 0s correctly predicted       98.000% 
----------------------------------------------------------------------- 
Prediction Failure 
----------------------------------------------------------------------- 
False pos. for true neg. = actual 0s predicted as 1s              .000% 
False neg. for true pos. = actual 1s predicted as 0s              .000% 
False pos. for predicted pos. = predicted 1s actual 0s            .000% 
False neg. for predicted neg. = predicted 0s actual 1s            .000% 
False predictions = actual 1s and 0s incorrectly predicted        .000% 
----------------------------------------------------------------------- 
 

 In general, for every Rhs variable, x, the minimum x for which y is one must be less than the 
maximum x for which y is zero, and the minimum x for which y is zero must be less than the maximum 
x for which y is one. If either condition fails, the estimator will break down.  This is a more subtle, and 
sometimes less obvious failure of the estimator.  Unfortunately, it does not lead to a singularity and the 
eventual appearance of collinearity in the Hessian.  You might observe what appears to be convergence 
of the estimator on a set of parameter estimates and standard errors which might look reasonable.  The 
main indication of this condition would be an excessive number of iterations – the probit model will 
usually reach convergence in only a handful of iterations – and a suspiciously large standard error is 
reported for the coefficient on the offending variable, as in the preceding example.   
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 You can check for this condition with the command: 
 
 CALC   ; Chk (names of independent variables to check,  
               name of dependent variable) $ 
 
The offending variable in the previous example would be tagged by this check; 
 

CALC    ; Chk(z,y) $ 
 
  Error   462: 0/1 choice model is inestimable. Bad variable = Z 
  Error   463: Its values predict 1[Y       = 1] perfectly. 
  Error   116: CALC - Unable to compute result. Check earlier message. 
 
This computation will issue warnings when the condition is found in any of the variables listed.  
(Some computer programs will check for this condition automatically, and drop the offending 
variable from the model.  In keeping with LIMDEP’s general approach to modeling, this program 
does not automatically make functional form decisions.  The software does not accept the job of 
determining the appropriate set of variables to include in the equation.  This is up to the analyst.) 
 
N4.3.3 Dummy Variables with Empty Cells 
 
 A problem similar to the one noted above arises when your model includes a dummy 
variable that has no observations equal to one in one of the two cells of the dependent variable, or 
vice versa. An example appears in Greene (1993, p. 673) in which the Lhs variable is always zero 
when the variable ‘Southwest’ is zero. Professor Terry Seaks has used this example to examine a 
number of econometrics programs.  He found that no program which did not specifically check for 
the failure – only one did – could detect the failure in some other way.  All iterated to apparent 
convergence, though with very different estimates of this coefficient and differing numbers of 
iterations because of their use of different convergence rules.  This form of incomplete matching of 
values likewise prevents estimation, though the effect is likely to be more subtle.  In this case, a 
likely outcome is that the iterations will fail to converge, though the parameter estimates will not 
necessarily become extreme.   
 Here is an example of this effect at work.  The probit model looks excellent in the full 
sample.  In the restricted sample, d never equals zero when y equals zero.  The estimator appears to 
have converged, the derivatives are zero, but the standard errors are huge: 
 

SAMPLE  ; 1-100 $ 
CALC  ; Ran(12345) $ 
CREATE  ; x = Rnn(0,1)  

; d = Rnu(0,1) > .5 $ 
CREATE  ; y = (-.5 + x + d + Rnn(0,1)) > 0 $ 
PROBIT  ; Lhs = y  

; Rhs = one,x,d $ 
 
In this subset of data, d is always one when y equals zero. 
 

REJECT  ; y = 0 & d = 0 $ 
PROBIT  ; Lhs = y  

; Rhs = one,x,d $ 
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Nonlinear Estimation of Model Parameters 
Method=NEWTON; Maximum iterations=100 
1st derivs.     .35811D+02  -.19962D+02   .12369D+01 
Itr  1 F=  .6981D+02 gtHg=  .6608D+01 chg.F=  .6981D+02 max|db|=  .9613D+01 
1st derivs.     .49044D+01  -.74989D+01  -.29693D+00 
Itr  2 F=  .4521D+02 gtHg=  .2003D+01 chg.F=  .2460D+02 max|db|=  .5302D+00 
... 
Itr  5 F=  .4282D+02 gtHg=  .1305D-03 chg.F=  .4625D-03 max|db|=  .2534D-04 
1st derivs.    -.10201D-08  -.76739D-08  -.32583D-08 
Itr  6 F=  .4282D+02 gtHg=  .2445D-08 chg.F=  .8516D-08 max|db|=  .4705D-09 
                        * Converged 
Normal exit from iterations. Exit status=0. 
Function=  .69808104286D+02, at entry,  .42822158396D+02 at exit 
 
+---------------------------------------------+ 
| Binomial Probit Model                       | 
| Dependent variable                    Y     | 
| Number of observations              100     | 
| Iterations completed                  6     | 
| Log likelihood function       -42.82216     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Index function for probability 
 Constant|    -.93917517       .23373657    -4.018   .0001 
 X       |    1.17177061       .24254318     4.831   .0000    .10291147 
 D       |    1.53191876       .35304007     4.339   .0000    .45000000 
 
The second model required 24 iterations to converge, and produced these results:  The apparent 
convergence is deceptive, as evidenced by the standard errors. 
 
Nonlinear Estimation of Model Parameters 
Method=NEWTON; Maximum iterations=100 
Itr 21 F=  .1660D+02 gtHg=  .3006D-04 chg.F=  .1614D-08 max|db|=  .2668D-01 
1st derivs.    -.19854D-08   .10979D-08  -.28588D-14 
Parameters:     .70037D+01   .14126D+01  -.63569D+01 
Itr 22 F=  .1660D+02 gtHg=  .1787D-04 chg.F=  .5692D-09 max|db|=  .2530D-01 
1st derivs.    -.72119D-09   .39979D-09   .11824D-13 
Parameters:     .71645D+01   .14126D+01  -.65178D+01 
Itr 23 F=  .1660D+02 gtHg=  .1064D-04 chg.F=  .2012D-09 max|db|=  .2406D-01 
1st derivs.    -.26221D-09   .14554D-09  -.35527D-14 
Parameters:     .73213D+01   .14126D+01  -.66746D+01 
Itr 24 F=  .1660D+02 gtHg=  .6336D-05 chg.F=  .7126D-10 max|db|=  .2294D-01 
                        * Converged 
Normal exit:  24 iterations. Status=0, F=    16.60262 
Function=  .26413087151D+02, at entry,  .16602624379D+02 at exit 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function       -16.60262 
Restricted log likelihood     -32.85957 
Chi squared [   2 d.f.]        32.51388 
Significance level               .00000 
McFadden Pseudo R-squared      .4947400 
Estimation based on N =     61, K =   3 
Inf.Cr.AIC  =     39.2 AIC/N =     .643 
Hosmer-Lemeshow chi-squared =   4.91910 
P-value=  .08547 with deg.fr. =       2 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    7.32134       24162.78      .00  .9998 ***********  47365.49187 
       X|    1.41264***      .39338     3.59  .0003      .64163   2.18365 
       D|   -6.67459       24162.78      .00  .9998 ***********  47351.49594 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
You can check for this condition if you suspect it is present by using a crosstab.  The command is 
 
 CROSSTAB ; Lhs = dependent variable   
   ; Rhs = independent dummy variable $ 
 
The 2×2 table produced should contain four nonempty cells.  If any cells contain zeros, as in the 
table below, then the model will be inestimable. 
 
+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is Y        (Out of range 0-49:      0)             | 
|Number of Rows =  2      (Y        =  0 to  1)                   | 
|Col variable is D        (Out of range 0-49:      0)             | 
|Number of Cols =  2      (D        =  0 to  1)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[   1] =    6.46052   Prob value =  .01103            | 
|G-squared  [   1] =    9.92032   Prob value =  .00163            | 
+-----------------------------------------------------------------+ 
|                      D                                          | 
+--------+--------------+------+                                  | 
|       Y|      0      1| Total|                                  | 
+--------+--------------+------+                                  | 
|       0|      0     14|    14|                                  | 
|       1|     16     31|    47|                                  | 
+--------+--------------+------+                                  | 
|   Total|     16     45|    61|                                  | 
+-----------------------------------------------------------------+ 
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N4.3.4 Missing Values 
 
 Missing values in the current sample will always impede estimation.  In the case of the 
binary choice models, if your sample contains missing observations for the dependent variable, you 
will receive a warning about improper coding of the values of the Lhs variable.  This message will be 
given whenever values of the dependent variable appear to be neither binary (0/1) or a proportion, 
strictly between 0 and 1. 
 
 Probit: Data on Y are badly coded. (<0,1> and <=0 or >= 1). 
 
 Missing values for the independent variables will also badly distort the estimates.  Since the 
program assumes you will be deciding what observations to use for estimation, and -999 (the missing 
value code) is a valid value, missing values on the right hand side of your model are not flagged as 
an error.  You will generally be able to see their presence in the model results.  The sample means 
for variables which contain missing values will usually look peculiar.  In the small example below, 
x2 is a dummy variable.  Both coefficients are one, which should be apparent in a sample of 1,000.  
The results, which otherwise look quite normal, suggest that missing values are being used as data in 
the estimation.  With SKIP, the results, based on the complete data, look much more reasonable. 
 
 CALC    ; Ran(12345) $ 
 SAMPLE  ; 1-1000 $ 
 CREATE  ; x1 = Rnn(0,1)  

; x2 = (Rnu(0,1) > .5) $ 
 CREATE  ; y = (-.5 + x1 +x2+rnn(0,1)) > 0 $ 
 CREATE  ; If(_obsno > 900)x2 = -999 $ 
 PROBIT  ; Lhs = y  

; Rhs = one,x1,x2 $ 
SKIP $ 

 PROBIT  ; Lhs = y  
; Rhs = one,x1,x2 $ 

 
Normal exit:   5 iterations. Status=0, F=    549.5785 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function      -549.57851 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.08623*        .04601    -1.87  .0609     -.17640    .00394 
      X1|     .81668***      .05541    14.74  .0000      .70807    .92529 
      X2|     .00029*        .00015     1.95  .0517      .00000    .00058 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable                    Y 
Log likelihood function      -441.38989 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
       Y|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.57123***      .07004    -8.16  .0000     -.70850   -.43396 
      X1|     .97268***      .06611    14.71  .0000      .84310   1.10225 
      X2|     .98082***      .10134     9.68  .0000      .78219   1.17945 
--------+-------------------------------------------------------------------- 
 
You should use either SKIP or REJECT to remove the missing data from the sample.  (See   
Chapter R7 for details on skipping observations with missing values.) 
 
N4.4 Bivariate Binary Choice 
 
 The bivariate probit model can be fit with either grouped data (you provide four proportions 
variables) or individual data (you provide two binary variables).  In either case, the data must contain 
observations in both off diagonal cells.  If your binary data are such that either the (y1=0,y2=1) or the 
(y1=1,y2=0) have no observations, then the correlation coefficient cannot be estimated, and the 
estimator will iterate endlessly, eventually ‘converging’ to a value of -1 or +1 for ρ.  Note that this 
does not apply to the bivariate probit with selection, but that is a different model.  For the grouped 
data case, if one of the proportions variables is always zero, the same problem will arise. 
 
N4.5 Ordered Choice Model Structure and Data 
 
 Data for the ordered choice models must obey essentially the same rules as those for binary 
choice models.  Data may be grouped or individual.  (Survey data might logically come in grouped 
form.)  If you provide individual data, the dependent variable is coded 0, 1, 2, ..., J.  There must be at 
least three values.  Otherwise, the binary probit model applies. If the data are grouped, a full set of 
proportions, p0, p1, ..., pJ, which sum to one at every observation must be provided.  In the individual 
data case, the data are examined to determine the value of J, which will be the largest observed value 
of y that appears in the sample.  In the grouped data case, J is one less than the number of Lhs 
variables you provide.  There are two additional considerations for ordered choice modeling. 
 
N4.5.1 Empty Cells 
 
 If you are using individual data, the Lhs variable must be coded 0,1,...,J.  All the values must 
be present in the data.  NLOGIT will look for empty cells.  If there are any, the estimation is halted.  
(If the value ‘j’ is not represented in the data, then the threshold parameter, µj cannot be estimated.  
In this case, you will receive a diagnostic such as 
 
 ORDE, Panel, BIVA PROBIT: A cell has (almost) no observations. 
 Empty cell: Y never takes the value 2. 
 
This diagnostic means exactly what it says.  The ordered probability model cannot be estimated 
unless all cells are represented in the data 
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N4.5.2 Coding the Dependent Variable 
 
 Users frequently overlook the coding requirement, y = 0,1,...  If you have a dependent 
variable that is coded 1, 2,..., you will see the following diagnostic 
 
 Models - Insufficient variation in dependent variable 
 
The reason this particular diagnostic shows up is that NLOGIT creates a new variable from your 
dependent variable, say y, which equals zero when y equals zero and one when y is greater than zero.  
It then tries to obtain starting values for the model by fitting a regression model to this new variable.  
If you have miscoded the Lhs variable, the transformed variable always equals one, which explains 
the diagnostic.  In fact, there is no variation in the transformed dependent variable.  If this is the case, 
you can simply use CREATE to subtract 1.0 from your dependent variable to use this estimator. 
 
N4.6 Constant Terms 
 
 In general, discrete choice models should contain constant terms.  Omitting the constant term 
is analogous to leaving the constant term out of a linear regression.  This imposes a restriction that 
rarely makes sense. 
 The ordered probit model must include a constant term, one, as the first Rhs variable.  Since 
the equation does include a constant term, one of the µs is not identified.  We normalize µ0 to zero.  
(Consider the special case of the binary probit model with something other than zero as its  threshold 
value.  If it contains a constant, this cannot be estimated.)  Other programs sometimes use different 
normalizations of the model.  For example, if the constant term is forced to equal zero, then one will 
instead, have a nonzero threshold parameter, µ0, which equals zero in the presence of a nonzero 
constant term. 
 In the more general multinomial choice models, when choices are unlabelled, there may be 
no case for including alternative specific constants (ASCs) in the model, since they are not actually 
associated with a particular choice.  On the other hand, ASCs in a model with unlabelled choices 
might simply imply that after controlling for the effects of the attributes, the indicated alternative is 
chosen more or less frequently than the base alternative.  It is possible that this might occur because 
the alternative is close to the reference alternative or that culturally, those undertaking the 
experiment might tend to read left to right.  Failure to include ASCs in the model would in this case 
correlate the alternative order effect into the other estimated parameters, possibly distorting the 
model results. 
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N5: Models for Binary Choice 
 
N5.1 Introduction 
 
 We define models in which the response variable being described is inherently discrete as 
qualitative response (QR) models.  This and the next several chapters will describe NLOGIT’s 
qualitative dependent variable model estimators.  The simplest of these are the binomial choice 
models, which are the subject of this chapter and Chapters E27-E29. This will be followed by the 
progressively more intricate formulations such as bivariate and multivariate probit, multinomial logit 
and ordered choice models.  NLOGIT supports a large variety of models and extensions for the 
analysis of binary choice.  The parametric model formulations, probit, logit, extreme value 
(complementary log log) etc. are treated in detail in Chapter E27. We will focus on the first two of 
these here. 
 
N5.2 Modeling Binary Choices 
 
 A binomial response may be the outcome of a decision or the response to a question in a 
survey.  Consider, for example, survey data which indicate political party choice, mode of 
transportation, occupation, or choice of location. We model these in terms of probability 
distributions defined over the set of outcomes.  There are a number of interpretations of an 
underlying data generating process that produce the binary choice models we consider here.  All of 
them are consistent with the models that NLOGIT estimates, but the exact interpretation is a function 
of the modeling framework. 
 
N5.2.1 Underlying Processes 
 
 Consider a process with two possible outcomes indicated by a dependent variable, y, labeled 
for convenience, y = 0 and y = 1. We assume, as well, that there is a set of measurable covariates, x, 
which will be used to help explain the occurrence of one outcome or the other.  Most models of 
binary choice set up in this fashion will be based upon an index function, β′x, where β is a vector of 
parameters to be estimated.  The modeling of discrete, binary choice in these terms, is typically done 
in one of the following frameworks: 
 
Random Utility Approach 
 
 The respondent derives utility  
 
   U0 = β0′x + ε0 from choice 0, and U1 = β1′x + ε1 from choice 1,  
 
in which ε0 and ε1 are the individual specific, random components of the individual’s utility that are 
unaccounted for by the measured covariates, x.  The choice of alternative 1 reveals that U1 > U0, or that  
 
   ε0 - ε1 <  β0′x - β1′x.   
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Let ε = ε0 - ε1 and let β′x represent the difference on the right hand side of the inequality – x is the 
union of the two sets of covariates, and β is constructed from the two parameter vectors with zeros in 
the appropriate locations if necessary.  Then, the binary choice model applies to the probability that ε 
≤ β′x, which is the familiar sort of model shown in the next paragraph.  This is a convenient way to 
view migration behavior and survey responses to questions about economic issues. 
 
Latent Regression Approach 
 
 A latent regression is specified as  
 
   y* = β′x + ε.   
 
The observed counterpart to y* is  
 
   y = 1 if and only if y* > 0.   
 
This is the basis for most of the binary choice models in econometrics, and is described in further 
detail below.  It is the same model as the reduced form in the previous paragraph.  Threshold models, 
such as labor supply and reservation wages lend themselves to this approach. 
 
Conditional Mean Function Approach 
 
 We assume that y is a binary variable, taking values 0 and 1, and formulate a priori that 
Prob[y=1] = F(β′x), where F is any function of the index that satisfies the axioms of probability, 
 
   0  < F(β′x)  <  1 
 
   F ′ (β′x)  >  0, 
 
   limz↓-∞  F(z)  =  0, limz↑+∞  F(z)  =  1. 
It follows that, 
   F(β′x)  =  0 × Prob[y = 0 | x]  +  1 × Prob[y = 1 | x] 
 
is the conditional mean function for the observed binary y.  This may be treated as a nonlinear 
regression or as a binary choice model amenable to maximum likelihood estimation.  This is a useful 
departure point for less parametric approaches to binary choice modeling. 
 
N5.2.2 Modeling Approaches 
 
 NLOGIT provides estimators for three approaches to formulating the binary choice models 
described above: 
 
Parametric Models – Probit, Logit, Extreme etc. 
 
 Most of the material below (and the received literature) focuses on models in which the full 
functional form, including the probability distribution, are defined a priori.  Thus, the probit model 
which forms the basis of most of the results in econometrics, is based on a latent regression model in 
which the disturbances are assumed to have a normal distribution.  The logit model, in contrast, can be 
construed as a random utility model in which it is assumed that the random parts of the utility functions 
are distributed as independent extreme value.  
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Semiparametric Models – Maximum Score, Semiparametric Analysis 
 
 A semiparametric approach to modeling the binary choice steps back one level from the 
previous model in that the specific distributional assumption is dropped, while the covariation (index 
function) nature of the model is retained.  Thus, the semiparametric approach analyzes the common 
characteristics of the observed data which would arise regardless of the specific distribution 
assumed. Thus, the semiparametric approach is essentially the conditional mean framework without 
the specific distribution assumed.  For the models that are supported in NLOGIT, MSCORE and 
Klein and Spady’s framework, it is assumed only that F(β′x) exists and is a smooth continuous 
function of its argument which satisfies the axioms of probability.  The semiparametric approach is 
more general (and more robust) than the parametric approach, but it provides the analyst far less 
flexibility in terms of the types of analysis of the data that may be performed.  In a general sense, the 
gain to formulating the parametric model is the additional precision with which statements about the 
data generating process may be made.  Hypothesis tests, model extensions, and analysis of, e.g., 
interactions such as marginal effects, are difficult or impossible in semiparametric settings. 
 
Nonparametric Analysis – NPREG 
 
 The nonparametric approach, as its name suggests, drops the formal modeling framework.  It 
is largely a bivariate modeling approach in which little more is assumed than that the probability that 
y equals one depends on some x.  (It can be extended to a latent regression, but this requires prior 
specification and estimation, at least up to scale, of a parameter vector.)  The nonparametric 
approach to analysis of discrete choice is done in NLOGIT with a kernel density (largely based on 
the computation of histograms) and with graphs of the implied relationship.  Nonparametric analysis 
is, by construction, the most general and robust of the techniques we consider, but, as a consequence, 
the least precise.  The statements that can be made about the underlying DGP in the nonparametric 
framework are, of necessity, very broad, and usually provide little more than a crude overall 
characterization of the relationship between a y and an x. 
 
N5.2.3 The Linear Probability Model 
 
 One approach to modeling binary choice has been to ignore the special nature of the 
dependent variable, and use conventional least squares.  The resulting model, 
 
   Prob[yi = 1]  =  β′xi  +  εi 
 
has been called the linear probability model (LPM).  The LPM is known to have several problems, 
most importantly that the model cannot be made to satisfy the axioms of probably independently of 
the particular data set in use.  Some authors have documented approaches to forcing the LPM on the 
data, e.g., Fomby, et al., (1984), Long (1997) and Angrist and Pischke (2009).  These computations 
can easily be done with the other parts of NLOGIT, but will not be pursued here.  
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N5.3 Grouped and Individual Data for Binary Choice Models 
 
 There are two types of data which may be analyzed.  We say that the data are individual if the 
measurement of the dependent variable is physically discrete, consisting of individual responses. The 
familiar case of the probit model with measured 0/1 responses is an example.  The data are grouped if 
the underlying model is discrete but the observed dependent variable is a proportion.  In the probit 
setting, this arises commonly in bioassay.  A number of respondents have the same values of the 
independent variables, and the observed dependent variable is the proportion of them with individual 
responses equal to one.  Voting proportions are a common application from political science. 
 All of the qualitative response models estimated by NLOGIT can be estimated with either 
individual or grouped data.  You do not have to inform the program which type you are using; if 
necessary, the data are inspected to determine which applies.  The differences arise only in the way 
starting values are computed and, occasionally, in the way the output should be interpreted.  Cases 
sometimes arise in which grouped data contain cells which are empty (proportion is zero) or full 
(proportion is one).  This does not affect maximum likelihood estimation and is handled internally in 
obtaining the starting values. No special attention has to be paid to these cells in assembling the data set. 
 
N5.4 Variance Normalization  
 
 In the latent regression formulation of the model, the observed data are generated by the 
underlying process 
   y  =  1  if and only if β′x + ε  >  0. 
 
The random variable, ε, is assumed to have a zero mean (which is a simple normalization if the 
model contains a constant term).  The variance is left unspecified.  The data contain no information 
about the variance of ε.  Let σ denote the standard deviation of ε.  The same model and data arise if 
the model is written as 
 
   y  =  1  if and only if  (β/σ)′x + ε/σ  >  0. 
 
which is equivalent to  
 

   y  =  1  if and only if γ′x + w  >  0. 
 
where the variance of w equals one.  Since only the sign of y is observed, no information about 
overall scaling is contained in the data.  Therefore, the parameter σ is not estimable; it is assumed 
with no loss of generality to equal one.  (In some treatments (Horowitz (1993)), the constant term in 
β is assumed to equal one, instead, in which case, the ‘constant’ in the model is an estimator of 1/σ. 
This is simply an alternative normalization of the parameter vector, not a substantive change in the 
model.) 
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N5.5 The Constant Term in Index Function Models 
 
 A question that sometimes arises is whether the binary choice model should contain a 
constant term.  The answer is yes, unless the underlying structure of your model specifically dictates 
that none be included.  There are a number of useful features of the parametric models that will be 
subverted if you do not include a constant term in your model: 

 
• Familiar fit measures will be distorted. Indeed, omitting the constant term can seriously 

degrade the fit of a model, and will never improve it. 
 

• Certain useful test statistics, such as the overall test for the joint significance of the 
coefficients, may be rendered noncomputable if you omit the constant term. 
 

• Some properties of the binary choice models, such as their ability to reproduce the average 
outcome (sample proportion) will be lost. 

 
Forcing the constant term to be zero is a linear restriction on the coefficient vector.  Like any other 
linear restriction, if imposed improperly, it will induce biases in the remaining coefficients.  
(Orthogonality with the other independent variables is not a salvation here.  Thus, putting variables 
in mean deviation form does not remove the constant term from the model as it would in the linear 
regression case.) 
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N6: Probit and Logit Models: Estimation 
 
N6.1 Introduction 
 
 We define models in which the response variable being described is inherently discrete as 
qualitative response (QR) models.  This and the next several chapters will describe two of NLOGIT’s 
qualitative dependent variable model estimators, the probit and logit models.  More extensive 
treatment and technical background are given in Chapters E27-29.  Several model extensions such as 
models with endogenous variables, and sample selection, are treated in Chapter E29.  Panel data 
models for binary choice appear in Chapters E30 and E31.  Semi- and nonparametric models are 
documented in Chapter E32. 
 
N6.2 Probit and Logit Models for Binary Choice 
 
 These parametric model formulations are provided as internal procedures in NLOGIT for 
binary choice models.  The probabilities and density functions are as follows: 
 
Probit 
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  =  Λ(β′xi),     f = Λ(β′xi)[1 - Λ(β′xi)] 

 
N6.3 Commands 
 
 The basic model commands for the two binary choice models of interest here are: 
 
 PROBIT  ; Lhs = dependent variable 
 or BLOGIT   ; Rhs = regressors $ 
 
Data on the dependent variable may be either individual or proportions for both cases.  When the 
dependent variable is binary, 0 or 1, the model command may be LOGIT – the program will inspect 
the data and make the appropriate adjustments for estimation of the model. 
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N6.4 Output 
 
 The binary choice models can produce a very large amount of optional output.   
Computation begins with some type of least squares estimation in order to obtain starting values. 
With ungrouped data, we simply use OLS of the binary variable on the regressors.   If requested, the 
usual regression results are given, including diagnostic statistics, e.g., sum of squared residuals, and 
the coefficient ‘estimates.’ The OLS estimates based on individual data are known to be inconsistent. 
They will be visibly different from the final maximum likelihood estimates. For the grouped data 
case, the estimates are GLS, minimum chi squared estimates, which are consistent and efficient. Full 
GLS results will be shown for this case. 
 
NOTE:  The OLS results will not normally be displayed in the output.  To request the display, use    
; OLS in any of the model commands. 
 
N6.4.1 Reported Estimates 
 
 Final estimates include: 
 

• logL   =  the log likelihood function at the maximum, 
 

• logL0  =  the log likelihood function assuming all slopes are zero.  If your Rhs variables do 
not include one, this statistic will be meaningless.  It is computed as 
 

   logL0  =  n[PlogP + (1-P)log(1-P)] 
 
where P is the sample proportion of ones. 
 

• McFadden’s pseudo R2 - 1 - logL/logL0. 
 

• The chi squared statistic for testing H0: β = 0 (not including the constant) and the 
significance level = probability that χ2 exceeds test value.  The statistic is 
 

   χ2  =  2(logL - logL0). 
 

• Akaike’s information criterion, -2(logL - K) and the normalized AIC,  =  -2(logL - K)/n. 
 

• The sample and model sizes, n and K. 
 

• Hosmer and Lemeshow’s fit statistic and associated chi squared and p value. (The Hosmer 
and Lemeshow statistic is documented in Section E27.8.) 
 

 The standard statistical results, including coefficient estimates, standard errors, t ratios, p 
values and confidence intervals appear next.  A complete listing is given below with an example.  
After the coefficient estimates are given, two additional sets of results can be requested, an analysis 
of the model fit and an analysis of the model predictions. 
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 We will illustrate with binary logit and probit estimates of a model for visits to the doctor 
using the German health care data described in Chapter E2.  The first model command is 
 

LOGIT  ; Lhs = doctor  
   ; Rhs = one,age,hhninc,hhkids,educ,married 
   ; OLS ; Summary 
   ; Output = IC $ (Display all variants of information criteria) 
 

Note that the command requests the optional listing of the OLS starting values and the additional fit 
and diagnostic results.  The results for this command are as follows.  With the exception of the table 
noted below, the same results (with different values, of course) will appear for all five parametric 
models.  Some additional optional computations and results will be discussed later. 
 
----------------------------------------------------------------------------- 
Binomial Logit Model for Binary Choice 
There are  2 outcomes for LHS variable DOCTOR 
These are the OLS estimates based on the 
binary variables for each outcome Y(i)=j. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .63280***      .05584    11.33  .0000      .52335    .74224 
     AGE|     .00387***      .00082     4.73  .0000      .00226    .00547 
  HHNINC|    -.08338**       .03967    -2.10  .0356     -.16114   -.00563 
  HHKIDS|    -.08456***      .01943    -4.35  .0000     -.12264   -.04647 
    EDUC|    -.00804**       .00355    -2.27  .0234     -.01500   -.00109 
 MARRIED|     .03209         .02131     1.51  .1321     -.00968    .07387 
--------+-------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function     -2121.43961 
Restricted log likelihood   -2169.26982 
Chi squared [   5 d.f.]        95.66041 
Significance level               .00000 
McFadden Pseudo R-squared      .0220490 
Estimation based on N =   3377, K =   6 
Inf.Cr.AIC  = 4254.879 AIC/N =    1.260 
FinSmplAIC  = 4254.904 FIC/N =    1.260 
Bayes IC    = 4291.628 BIC/N =    1.271 
HannanQuinn = 4268.018 HIC/N =    1.264 
Hosmer-Lemeshow chi-squared =  17.65094 
P-value=  .02400 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .52240**       .24887     2.10  .0358      .03463   1.01018 
     AGE|     .01834***      .00378     4.85  .0000      .01092    .02575 
  HHNINC|    -.38750**       .17760    -2.18  .0291     -.73559   -.03941 
  HHKIDS|    -.38161***      .08735    -4.37  .0000     -.55282   -.21040 
    EDUC|    -.03581**       .01576    -2.27  .0230     -.06669   -.00493 
 MARRIED|     .14709         .09727     1.51  .1305     -.04357    .33774 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 



N6: Probit and Logit Models: Estimation  N-69 

N6.4.2 Fit Measures 
 
 The model results are followed by a cross tabulation of the correct and incorrect predictions 
of the model using the rule 
 

   
∧
y  =  1  if  F(β

∧
‘xi )  >  .5, and 0 otherwise. 

 
For the models with symmetric distributions, probit and logit, the average predicted probability will 
equal the sample proportion.  If you have a quite unbalanced sample – high or low proportion of ones 
– the rule above is likely to result in only one value, zero or one, being predicted for the Lhs variable.  
You can choose a threshold different from .5 by using 
 
   ; Limit = the value you wish 
 
in your command. There is no direct counterpart to an R2 in regression.  Authors very commonly 
report the 

   Pseudo – R2 = log (model)1
log (constants only)

L
L

− . 

 
We emphasize, this is not a proportion of variation explained.  Moreover, as a fit measure, it has some 
peculiar features.  Note, for our example above, it is 1 - (-17673.10)/(-18019.55) = 0.01923, yet with 
the standard prediction rule, the estimated model predicts almost 63% of the outcomes correctly. 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Logit    model for variable DOCTOR     | 
+----------------------------------------+ 
|                 Y=0       Y=1     Total| 
| Proportions  .34202    .65798   1.00000| 
| Sample Size    1155      2222      3377| 
+----------------------------------------+ 
| Log Likelihood Functions for BC Model  | 
|              P=0.50    P=N1/N   P=Model| 
| LogL =     -2340.76  -2169.27  -2121.44| 
+----------------------------------------+ 
| Fit Measures based on Log Likelihood   | 
| McFadden = 1-(L/L0)          =   .02205| 
| Estrella = 1-(L/L0)^(-2L0/n) =   .02824| 
| R-squared (ML)               =   .02793| 
| Akaike Information Crit.     =  1.25996| 
| Schwartz Information Crit.   =  1.27084| 
+----------------------------------------+ 
| Fit Measures Based on Model Predictions| 
| Efron                        =   .02693| 
| Ben Akiva and Lerman         =   .56223| 
| Veall and Zimmerman          =   .04899| 
| Cramer                       =   .02735| 
+----------------------------------------+ 
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 The next set of results examines the success of the prediction rule 
 
   Predict yi = 1 if Pi  >  P* and 0 otherwise 
 
where P* is a defined threshold probability.  The default value of P* is 0.5, which makes the 
prediction rule equivalent to ‘Predict yi = 1 if the model says the predicted event yi = 1 | xi is more 
likely than the complement, yi = 0 | xi.’  You can change the threshold from 0.5 to some other value 
with 
   ; Limit = your P* 
 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |     21 (   .6%)|   1134 ( 33.6%)|   1155 ( 34.2%)| 
|  1   |     12 (   .4%)|   2210 ( 65.4%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |     33 (  1.0%)|   3344 ( 99.0%)|   3377 (100.0%)| 
+------+----------------+----------------+----------------+ 
+---------------------------------------------------------+ 
|Crosstab for Binary Choice Model.  Predicted probability | 
|vs. actual outcome. Entry = Sum[Y(i,j)*Prob(i,m)] 0,1.   | 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|      Predicted Probability      |                | 
|Value |    Prob(y=0)        Prob(y=1)   | Total Actual   | 
+------+----------------+----------------+----------------+ 
| y=0  |    415 ( 12.3%)|    739 ( 21.9%)|   1155 ( 34.2%)| 
| y=1  |    739 ( 21.9%)|   1482 ( 43.9%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |   1155 ( 34.2%)|   2221 ( 65.8%)|   3377 ( 99.9%)| 
+------+----------------+----------------+----------------+ 
 
This table computes a variety of conditional and marginal proportions based on the results using the 
defined prediction rule.  For examples, the 66.697% equals (1482/2222)100% while the 66.727% is 
(1482/2221)100%. 
 
----------------------------------------------------------------------- 
Analysis of Binary Choice Model Predictions Based on Threshold =  .5000 
----------------------------------------------------------------------- 
Prediction Success 
----------------------------------------------------------------------- 
Sensitivity = actual 1s correctly predicted                     66.697% 
Specificity = actual 0s correctly predicted                     35.931% 
Positive predictive value = predicted 1s that were actual 1s    66.727% 
Negative predictive value = predicted 0s that were actual 0s    35.931% 
Correct prediction = actual 1s and 0s correctly predicted       56.174% 
----------------------------------------------------------------------- 
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----------------------------------------------------------------------- 
Prediction Failure 
----------------------------------------------------------------------- 
False pos. for true neg. = actual 0s predicted as 1s            63.983% 
False neg. for true pos. = actual 1s predicted as 0s            33.258% 
False pos. for predicted pos. = predicted 1s actual 0s          33.273% 
False neg. for predicted neg. = predicted 0s actual 1s          63.983% 
False predictions = actual 1s and 0s incorrectly predicted      43.767% 
----------------------------------------------------------------------- 
 
N6.4.3 Covariance Matrix 
 
 The estimated asymptotic covariance matrix of the coefficient estimator is not automatically 
displayed – it might be huge.  You can request a display with 
 
   ; Covariance 
 
If the matrix is not larger than 5×5, it will be displayed in full.  If it is larger, an embedded object that 
holds the matrix will show, instead.  By double clicking the object, you can display the matrix in a 
window.  An example appears in Figure N6.1 below. 
 

 
Figure N6.1  Embedded Matrix 
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N6.4.4 Retained Results and Generalized Residuals 
 
 The results saved by the binary choice models are: 
 
 Matrices: b   =  estimate of β (also contains γ for the Burr model) 
   varb   =  asymptotic covariance matrix 
 
 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Variables: logl_obs =  individual contribution to log likelihood 
   score_fn =  generalized residual. See Section E27.9. 
 
 Last Model: b_variables 
 
 Last Function: Prob(y = 1 | x) = F(b′x).  This varies with the model specification. 
 
 Models that are estimated using maximum likelihood automatically create a variable named 
logl_obs, that contains the contribution of each individual observation to the log likelihood for the 
sample.  Since the log likelihood is the sum of these terms, you could, in principle, recover the 
overall log likelihood after estimation with 
 
 CALC  ; List ; Sum(logl_obs) $ 
 
The variable can be used for certain hypothesis tests, such as the Vuong test for nonnested models.  
The following is an example (albeit, one that appears to have no real power) that applies the Vuong 
test to discern whether the logit or probit is a preferable model for a set of data: 
 
 LOGIT ; … $ 
 CREATE ; lilogit = logl_obs $ 
 PROBIT ; … $ 
 CREATE ; liprobit = logl_obs ; di = liprobit - lilogit $ 
 CALC  ; List ; vtest = Sqr(n) * Xbr(di) / Sdv(di) $ 
 
 The ‘generalized residuals’ in a parametric binary choice model are the derivatives of the log 
likelihood with respect to the constant term in the model.  These are sometimes used to check the 
specification of the model (see Chesher and Irish (1987)).  These are easy to compute for the models 
listed above – in each case, the generalized residual is the derivative of the log of the probability with 
respect to β′x.  This is computed internally as part of the iterations, and kept automatically in your 
data area in a variable named score_fn.  The formulas for the generalized residuals are provided in 
Section E27.12 with the technical details for the models.  For example, you can verify the 
convergence of the estimator to a maximum of the log likelihood with the instruction 
 
 CALC  ; List ; Sum(score_fn) $ 
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N6.5 Robust Covariance Matrix Estimation 
 
 The preceding describes a covariance estimator that accounts for a specific, observed aspect 
of the data.  The concept of the ‘robust’ covariance matrix is that it is meant to account for 
hypothetical, unobserved failures of the model assumptions.  The intent is to produce an asymptotic 
covariance matrix that is appropriate even if some of the assumptions of the model are not met.  (It is 
an important, but infrequently discussed issue whether the estimator, itself, remains consistent in the 
presence of these model failures – that is, whether the so called robust covariance matrix estimator is 
being computed for an inconsistent estimator.)  (Chapter R10 provides general discussion of robust 
covariance matrix estimation.) 
 
N6.5.1 The Sandwich Estimator 
 
 A robust covariance matrix estimator adjusts the estimated asymptotic covariance matrix for 
possible misspecification in the model which leaves the MLE consistent but the estimated asymptotic 
covariance matrix incorrectly computed.  One example would be a binary choice model with 
unspecified latent heterogeneity.  A frequent adjustment for this case is the ‘sandwich estimator,’ 
which is the choice based sampling estimator suggested above with weights equal to one. (This 
suggests how it could be computed.)  The desired matrix is 
 

Est.Asy.Var ˆ 
 β   =  

1 1
2 2

1 1 1

log log log log'ˆ ˆ ˆ ˆ ˆ ˆ
n n ni i i i
i i i

F F F F
− −

= = =

           ∂ ∂ ∂ ∂
           

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂                
∑ ∑ ∑

β β β β β β
 

 
Three ways to obtain this matrix are 
 
   ; Wts = one ; Choice based sampling 
or   ; Robust 
or   ; Cluster = 1 
 
The computation is identical in all cases.  (As noted below, the last of them will be slightly larger, as 
it will be multiplied by n/(n-1).) 
 
N6.5.2 Clustering 
 
 A related calculation is used when observations occur in groups which may be correlated.  
This is rather like a panel; one might use this approach in a random effects kind of setting in which 
observations have a common latent heterogeneity.  The parameter estimator is unchanged in this 
case, but an adjustment is made to the estimated asymptotic covariance matrix.  The calculation is 
done as follows: Suppose the n observations are assembled in G clusters of observations, in which 
the number of observations in the ith cluster is ni.  Thus, 
 

   
1

G
ii

n
=∑  =  n. 

 
  



N6: Probit and Logit Models: Estimation  N-74 

Let the observation specific gradients and Hessians be 
 

   gij  =  
log ijL∂

∂β
 

   Hij  =  
2 log

'
ijL∂

∂ ∂β β
. 

 
The uncorrected estimator of the asymptotic covariance matrix based on the Hessian is 
 

   VH =   -H-1  =  ( ) 1

1 1
iG n

iji j

−

= =
−∑ ∑ H  

 
Estimators for some models such as the Burr model will use the BHHH estimator, instead.  In 
general, 

   VB =  ( ) 1

1 1
iG n

ij iji j

−

= =
′∑ ∑ g g  

 
Let V be the estimator chosen.  Then, the corrected asymptotic covariance matrix is 
 

   Est.Asy.Var ˆ 
 β   =  ( )( )1 1 11

i iG n n
ij iji j j

G
G = = =

 ′
 −  
∑ ∑ ∑V g g  V  

 
Note that if there is exactly one observation per cluster, then this is G/(G-1) times the sandwich 
estimator discussed above.  Also, if you have fewer clusters than parameters, then this matrix is 
singular – it has rank equal to the minimum of G and K, the number of parameters. 
 This procedure is described in greater detail in Section E27.5.3.  To request the estimator, 
your command must include 
 
   ; Cluster = specification 
 
where the specification is either the fixed value if all the clusters are the same size, or the name of an 
identifying variable if the clusters vary in size.  Note, this is not the same as the variable in the Pds 
function that is used to specify a panel.  The cluster specification must be an identifying code that is 
specific to the cluster.  For example, our health care data used in our examples is an unbalanced 
panel.  The first variable is a family id, which we will use as follows 
 
   ; Cluster = id 
 
The results below demonstrate the effect of this estimator.  Three sets of estimates are given.  The 
first are the original logit estimates that ignore the cross observation correlations.  The second use the 
correction for clustering.  The third is a panel data estimator – the random effects estimator described 
in Chapter E30 – that explicitly accounts for the correlation across observations.  It is clear that the 
different treatments change the results noticeably.   
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Uncorrected covariance matrix: 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.20205**       .09397    -2.15  .0315     -.38622   -.01787 
     AGE|     .01935***      .00130    14.90  .0000      .01681    .02190 
    EDUC|    -.02477***      .00578    -4.28  .0000     -.03611   -.01344 
 MARRIED|     .12023***      .03376     3.56  .0004      .05405    .18640 
  HHNINC|    -.21388***      .07580    -2.82  .0048     -.36245   -.06532 
  HHKIDS|    -.24879***      .02983    -8.34  .0000     -.30726   -.19032 
  FEMALE|     .58305***      .02620    22.26  .0000      .53171    .63439 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Cluster corrected covariance matrix: 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.20205         .12997    -1.55  .1200     -.45678    .05269 
     AGE|     .01935***      .00176    11.00  .0000      .01590    .02280 
    EDUC|    -.02477***      .00811    -3.05  .0023     -.04067   -.00888 
 MARRIED|     .12023***      .04556     2.64  .0083      .03093    .20953 
  HHNINC|    -.21388**       .09276    -2.31  .0211     -.39568   -.03209 
  HHKIDS|    -.24879***      .03842    -6.48  .0000     -.32409   -.17349 
  FEMALE|     .58305***      .03744    15.57  .0000      .50967    .65644 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Random effects estimates: 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.70495***      .18028    -3.91  .0001    -1.05830   -.35160 
     AGE|     .03656***      .00241    15.18  .0000      .03184    .04128 
    EDUC|    -.03703***      .01132    -3.27  .0011     -.05923   -.01484 
 MARRIED|     .05481         .05570      .98  .3251     -.05435    .16397 
  HHNINC|     .00772         .11698      .07  .9474     -.22156    .23700 
  HHKIDS|    -.23497***      .04727    -4.97  .0000     -.32763   -.14232 
  FEMALE|     .77202***      .05357    14.41  .0000      .66702    .87702 
     Rho|     .39909***      .00586    68.07  .0000      .38760    .41058 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N6.5.3 Stratification and Clustering  
 
 The clustering estimator is extended to include stratum level grouping, where a stratum 
includes one or more clusters, and weighting to allow finite population correction.  We suppose that 
there are a total of S strata in the sample.  Each stratum, ‘s,’ contains Cs clusters.  The number of 
observations in a cluster is Ncs.  Neglecting the weights for the moment, 
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where gics is the derivative of the contribution to the log likelihood of individual i in cluster c in 
stratum s.  The remaining detail in the preceding is the weighting factor, ws.  The stratum weight is 
computed as 
   ws  = fs × hs × d 
 
where    fs  = 1  or a finite population correction, 1 - Cs/Cs* where Cs* is the true 

number of clusters in stratum s, where Cs* > Cs. 
 

   hs = 1  or Cs/(Cs - 1) 

   d  = 1  or (N-1)/(N-K) where N is the total number of observations in the 
    entire sample and K is the number of parameters (rows in V). 

Use 
 ; Cluster  =  the number of observations in a cluster (fixed) or the name of a 
    stratification variable which gives the cluster an identification.  This 
    is the setup that is described above. 
 ; Stratum  =  the number of observations in a stratum (fixed) or the name of a  
    stratification variable which gives the stratum an identification 
 ; Wts     = the name of the usual weighting variable for model estimation if 
    weights are desired.  This defines wics.   
 ; FPC     = the name of a variable which gives the number of clusters in the 
    stratum.  This number will be the same for all observations in a 
    stratum – repeated for all clusters in the stratum.  If this number is 
    the same for all strata, then just give the number. 
 ; Huber     Use this switch to request hs.  If omitted, hs = 1 is used. 
 ; DFC        Use this switch to request the use of d given above.  If omitted, 
    d = 1 is used. 
 
Further details on this estimator may be found in Section E30.3 and Section R10.3. 
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N6.6 Analysis of Partial Effects 
 

 Partial effects in a binary choice model are 
 

   [ | ] ( ) ( )
( )

E y F dF
d

′ ′∂ ∂
= =

′∂ ∂
x x x

x x x
β β

β
β

 = F′(β′x)β  =  f(β′x)β 

 

That is, the vector of marginal effects is a scalar multiple of the coefficient vector.  The scale factor, 
f(β′x),  is the density function, which is a function of x.  This function can be computed at any data 
vector desired.  Average partial effects are computed by averaging the function over the sample 
observations.  The elasticity of the probability is 
 

   lo g[ | ] [ | ] marginal effect
lo g [ | ] [ | ]

k k

k k
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 When the variable in x that is changing in the computation is a dummy variable, the 
derivative approach to estimating the marginal effect is not appropriate.  An alternative which is 
closer to the desired computation for a dummy variable, that we denote z, is 
 

   ∆Fz   =  Prob[y = 1 | z = 1]  -  Prob[y = 1 | z = 0] 
  =  F(β′x + αz | z = 1)  - F(β′x + αz | z = 0) 
  =  F(β′x + α)  - F(β′x). 

 

NLOGIT examines the variables in the model and makes this adjustment automatically.   
There are two programs in NLOGIT for obtaining partial effects for the binary choice (and 

most other) models, the built in computation provided by the model command and the PARTIAL 
EFFECTS command.  Examples of both are shown below.   

The LOGIT, PROBIT, etc. commands provide a built in, basic computation for partial 
effects. You can request the computation to be done automatically by adding 
 

   ; Partial Effects (or ; Marginal Effects) 
 

to your command.  The results below are produced for logit model in the earlier example.  The 
standard errors for the partial effects are computed using the delta method.  See Section E27.12 for 
technical details on the computation.  The results reported are the average partial effects. 
 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00402***      .26013     4.92  .0000      .00242    .00562 
  HHNINC|    -.08666**      -.05857    -2.22  .0267     -.16331   -.01001 
  HHKIDS|    -.08524***     -.05021    -4.33  .0000     -.12382   -.04667   # 
    EDUC|    -.00779**      -.13620    -2.24  .0252     -.01461   -.00097 
 MARRIED|     .03279         .03534     1.52  .1288     -.00952    .07510   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
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The equivalent PARTIAL EFFECTS command, which would immediately follow the LOGIT 
command, would be 
 

PARTIAL EFFECTS  ; Effects: age / hhninc / hhkids / educ / married  
; Summary $ 

 
--------------------------------------------------------------------- 
Partial Effects for Probit Probability Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00402     .00082    4.92      .00242      .00562 
      HHNINC       -.08666     .03911    2.22     -.16331     -.01001 
   *  HHKIDS       -.08524     .01968    4.33     -.12382     -.04667 
      EDUC         -.00779     .00348    2.24     -.01461     -.00097 
   *  MARRIED       .03279     .02159    1.52     -.00952      .07510 
--------------------------------------------------------------------- 
 
The second method provides a variety of options for computing partial effects under various 
scenarios, plotting the effects, etc.  See Chapter R11 for further details. 
 
NOTE:  If your model contains nonlinear terms in the variables, such as age^2 or interaction terms 
such as age*female, then you must use the PARTIAL EFFECTS command to obtain partial effects.  
The built in routine in the command, ; Partial Effects, will not give the correct answers for variables 
that appear in nonlinear terms. 
 
N6.6.1 The Krinsky and Robb Method 
 
 An alternative to the delta method described above that is sometimes advocated is the 
Krinsky and Robb method.  By this device, we have our estimate of the model coefficients, b, and 
the estimated asymptotic covariance matrix, V.  The marginal effects are computed as a function of b 
and the vector of means of the sample data, x , say gk(b, x ) for the kth variable.  The Krinsky and 
Robb technique involves sampling R draws from the asymptotic normal distribution of the estimator, 
computing the function with these R draws, then computing the empirical variance.  This is not done 
automatically by the binary choice estimator, but you can easily do the computation using the 
WALD command.  For an example, we will use this method to compute the marginal effects for two 
variables in the logit model estimated earlier.  The program would be 
 
 NAMELIST  ; x = one,age,hhninc,hhkids,educ,married $ 
 LOGIT  ; Lhs = doctor ; Rhs = x ; Partial Effects $  
 MATRIX  ; xbar = Mean(x) $ 
 CALC   ; kx = Col(x) ; Ran(12345) $ 
 WALD  ; Start = b ; Var = varb ; Labels = kx_b 
   ; Fn1 = b2 * Lgd(b1'xbar) 
   ; Fn2 = b3 * Lgd(b1'xbar) 
   ; K&R ; Pts = 2000 $ 
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----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =     27.72506 
Prob. from Chi-squared[ 2] =       .00000 
Krinsky-Robb method used with 2000 draws 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|     .00409***      .00084     4.85  .0000      .00244    .00575 
 Fncn(2)|    -.08694**       .03913    -2.22  .0263     -.16363   -.01025 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
--------------------------------------------------------------------- 
Partial Effects for Probit Probability Function 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      AGE           .00402     .00082    4.92      .00242      .00562 
      HHNINC       -.08666     .03911    2.22     -.16331     -.01001 
--------------------------------------------------------------------- 
 
There is a second sources of difference between the Krinsky and Robb estimates and the delta 
method results that follow:  The Krinsky and Robb procedure is based on the means of the data while 
the delta method averages the partial effects over the observations.  It is possible to perform the 
K&R iteration at every observation to reproduce the APE calculations by adding ; Average to the 
WALD command.  The results below illustrate. 
 
--------+-------------------------------------------------------------------- 
 Fncn(1)|     .00407***      .00085     4.80  .0000      .00241    .00573 
 Fncn(2)|    -.08673**       .03929    -2.21  .0273     -.16373   -.00973 
--------+-------------------------------------------------------------------- 
 
We do not recommend this as a general procedure, however.  It is enormously time consuming and 
does not produce a more accurate result. 
 
Estimating Marginal Effects by Strata 
 
 Marginal effects may be calculated for indicated subsets of the data by using 
 
   ; Margin = variable 
 
where ‘variable’ is the name of a variable coded 0,1,... which designates up to 10 subgroups of the 
data set, in addition to the full data set. For example, a common application would be 
 

   ; Margin = sex 
 
in which the variable sex is coded 0 for men and 1 for women (or vice versa).  The variable used in 
this computation need not appear in the model; it may be any variable in the data set.   
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For example, using our logit model above, we now compute marginal effects separately for 
men and women: 

 
 LOGIT  ; Lhs = doctor  
   ; Rhs = one,age,hhninc,hhkids,educ,married 
   ; Margin = female $ 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function     -2121.43961 
Restricted log likelihood   -2169.26982 
Chi squared [   5 d.f.]        95.66041 
Significance level               .00000 
McFadden Pseudo R-squared      .0220490 
Estimation based on N =   3377, K =   6 
Inf.Cr.AIC  = 4254.879 AIC/N =    1.260 
Hosmer-Lemeshow chi-squared =  17.65094 
P-value=  .02400 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .52240**       .24887     2.10  .0358      .03463   1.01018 
     AGE|     .01834***      .00378     4.85  .0000      .01092    .02575 
  HHNINC|    -.38750**       .17760    -2.18  .0291     -.73559   -.03941 
  HHKIDS|    -.38161***      .08735    -4.37  .0000     -.55282   -.21040 
    EDUC|    -.03581**       .01576    -2.27  .0230     -.06669   -.00493 
 MARRIED|     .14709         .09727     1.51  .1305     -.04357    .33774 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used are FEMALE=0 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00414***      .26343     4.84  .0000      .00247    .00582 
  HHNINC|    -.08756**      -.06038    -2.18  .0291     -.16619   -.00893 
  HHKIDS|    -.08714***     -.05161    -4.34  .0000     -.12645   -.04783   # 
    EDUC|    -.00809**      -.14612    -2.27  .0234     -.01509   -.00109 
 MARRIED|     .03351         .03549     1.50  .1334     -.01025    .07728   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used are FEMALE=1 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00404***      .26337     4.88  .0000      .00242    .00567 
  HHNINC|    -.08545**      -.05555    -2.18  .0290     -.16217   -.00873 
  HHKIDS|    -.08519***     -.04911    -4.33  .0000     -.12379   -.04659   # 
    EDUC|    -.00790**      -.13086    -2.28  .0225     -.01468   -.00111 
 MARRIED|     .03279         .03550     1.50  .1345     -.01015    .07573   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used are All Obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00410***      .26352     4.86  .0000      .00244    .00575 
  HHNINC|    -.08660**      -.05811    -2.18  .0291     -.16436   -.00884 
  HHKIDS|    -.08626***     -.05044    -4.34  .0000     -.12524   -.04727   # 
    EDUC|    -.00800**      -.13893    -2.27  .0230     -.01490   -.00110 
 MARRIED|     .03318         .03551     1.50  .1339     -.01021    .07658   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

+-------------------------------------------+ 
| Marginal Effects for Logit                | 
+----------+----------+----------+----------+ 
| Variable | FEMALE=0 | FEMALE=1 | All Obs. | 
+----------+----------+----------+----------+ 
| AGE      |   .00414 |   .00404 |   .00410 | 
| HHNINC   |  -.08756 |  -.08545 |  -.08660 | 
| HHKIDS   |  -.08714 |  -.08519 |  -.08626 | 
| EDUC     |  -.00809 |  -.00790 |  -.00800 | 
| MARRIED  |   .03351 |   .03279 |   .03318 | 
+----------+----------+----------+----------+ 
 
 The computation using the built in estimator is done at the strata means of the data.  The 
computation can be done by averaging across observations using the PARTIAL EFFECTS (or just 
PARTIALS) command.  For example, the corresponding results for the income variable are 
obtained with 
 

PARTIAL EFFECTS  ; Effects: hhninc @ female=0,1$ 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for Logit Probability Function 
--------------------------------------------------------------------- 
Effects on function with respect to HHNINC 
Results are computed by average over sample observations 
Partial effects for continuous HHNINC   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dHHNINC         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Subsample for this iteration is FEMALE   =  0   Observations:    1812 
APE. Function      -.08585     .03925    2.19     -.16278     -.00892 
--------------------------------------------------------------------- 
Subsample for this iteration is FEMALE   =  1   Observations:    1565 
APE. Function      -.08355     .03820    2.19     -.15841     -.00868 
 
Examining the Effect of a Variable Over a Range of Values 
 
 Another useful device is a plot of the probability (conditional mean) over the range of a 
variable of interest either holding other variables at their means, or averaging over the sample values.  
The figure below does this for the income variable in the logit model for doctor visits.   The figure is 
plotted for hhkids = 1 and hhkids = 0 to show the two effects.  We see that the probability falls with 
increased income, and also for individuals in households in which there are children.   
 

SIMULATE  ; Scenario: & hhninc = 0(.05).5 | hhkids=0,1 ; plot$ 
 

 
Figure N6.2  Probabilities Varying with Income 
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N6.7 Simulation and Analysis of a Binary Choice Model   
 
 This section describes a procedure that is used with all of the parametric models described 
above.  It is used for two specific analyses.  This procedure allows you to analyze the predictions 
made by a binary choice when the variables in the model are changed.  The analysis is provided in 
two parts: 
 

• Change specific variables in the model by a prescribed amount, and examine the changes in 
the model predictions. 
 

• Vary a particular variable over a range of values and examine the predicted probabilities 
when other variables are held fixed at their means. 

 
This program is available for the six parametric binary choice models: probit, logit, Gompertz, 
complementary log log, arctangent and Burr.  The probit and logit models may also be 
heteroscedastic. The routine is accessed as follows. First fit the model as usual. Then, use the 
identical model specification as shown below with the specifications indicated: 
 
 (MODEL)  ; Lhs = ... ; Rhs = ... $ 
 
Then 
 
     BINARY CHOICE ; Lhs = (the same) ; Rhs = (the same) ; ... (also the same) 
         ; Model = Probit, Logit, Gompertz, Comploglog or Burr 
         ; Start = B (from the preceding model) 
 
 (optional, the value to use for predicting Lhs = 1, default = .5) 
 
   ; Threshold = P* 
 
 (optional) ; Scenario: variable operation = value / 
     (variable operation = value) / ... (may be repeated) 
 
 (optional) ; Plot: variable (lower limit, upper limit) $ 
 
In the ; Plot specification, the limits part may be omitted, in which case the range of the variable is 
used.  This will replicate for the one variable the computation of the program in the preceding section. 
 The ; Scenario section computes all predicted probabilities for the model using the sample 
data and the estimated parameters.  Then, it recomputes the probabilities after changing the variables 
in the way specified in the scenarios.  (The actual data are not changed – the modification is done 
while the probabilities are computed.)  The scenarios are of the form 
 
   variable operation  = value 
 
such as   hhkids  + = 1   (effect of additional kids in the home) 
or   hhninc * = 1.1  (effect of a 10% increase in income) 
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You may provide multiple scenarios.  They are evaluated one at a time.  This is an extension of the 
computation of marginal effects. 
 In the example below, we extend the analysis of marginal effect in the logit model used 
above. The scenario examined is the impact of every individual having one more child in the 
household then having a 50% increase in income.  (Since hhkids is actually a dummy variable for the 
presence of kids in the home, increasing it by one is actually an ambiguous experiment.  We retain it 
for the sake of a simple numerical example.)  The plot shows the effect of income on the probability 
of visiting the doctor, according to the model. 
 
 NAMELIST ; x = one,age,educ,married,hhninc,hhkids $ 

LOGIT  ; Lhs = doctor ; Rhs = x $ 
BINARY  ; Lhs = doctor ; Rhs = x  
               ; Model = Logit ; Start = b 
               ; Scenario:  hhkids + = 1 / hhninc * = 1.5  $ 

 
The model output is omitted for brevity. 
 
+-------------------------------------------------------------+ 
|Scenario 1. Effect on aggregate proportions. Logit    Model  | 
|Threshold T* for computing Fit = 1[Prob > T*] is  .50000     | 
|Variable changing = HHKIDS  , Operation = +, value =   1.000 | 
+-------------------------------------------------------------+ 
|Outcome           Base case       Under Scenario   Change    | 
|      0        33 =    .98%       831 =   24.61%      798    | 
|      1      3344 =  99.02%      2546 =   75.39%     -798    | 
|  Total      3377 = 100.00%      3377 =  100.00%        0    | 
+-------------------------------------------------------------+ 
+-------------------------------------------------------------+ 
|Scenario 2. Effect on aggregate proportions. Logit    Model  | 
|Threshold T* for computing Fit = 1[Prob > T*] is  .50000     | 
|Variable changing = HHNINC  , Operation = *, value =   1.500 | 
+-------------------------------------------------------------+ 
|Outcome           Base case       Under Scenario   Change    | 
|      0        33 =    .98%       106 =    3.14%       73    | 
|      1      3344 =  99.02%      3271 =   96.86%      -73    | 
|  Total      3377 = 100.00%      3377 =  100.00%        0    | 
+-------------------------------------------------------------+ 
 
 The SIMULATE command used in the example provides a greater range of scenarios that 
one can examine to see the effects of changes in a variable on the overall prediction of the binary 
choice model.  The advantage of the BINARY command used here is that for straightforward 
scenarios, it can be used to provide useful tables such as the ones shown above. 
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N6.8 Using Weights and Choice Based Sampling 
 
 The ; Wts option can always be used in the usual fashion for the probit and logit models.  
However, in the grouped data case, a somewhat different treatment may be desired.  The 
observations may consist of pi, xi and ni, where ni is the number of replications used to obtain pi.  The 
usual treatment assumes that pi is a sample of one from a distribution with variance pi(1-pi). But pi is 
more precise than this.  Its unconditional variance is pi(1-pi)/ni. Thus, the efficiency of the estimator 
of β is underestimated.  There is also an inherent heteroscedasticity which must be accounted for.  
The heteroscedasticity due to pi is built into the likelihood function.  But if your proportions are 
based on different numbers of observations, the variances will differ correspondingly.  This can be 
accounted for by including ni as a weighting variable.  Since the weighting procedure automatically 
scales the weights so that they sum to the sample size, which would be inappropriate here, it is 
necessary to modify the specification.  Use 
 
   ; Wts = variable, Noscale 
or just    ; Wts = variable, N 
  
to prevent the automatic scaling.  This produces a replication of the observations, which is what is 
needed for grouped data. 
 This usage often has the surprising side effect of producing implausibly small standard 
errors.  Consider, for example, using unscaled weights for statewide observations on election 
outcomes.  The implication of the Noscale parameter is that each proportion represents millions of 
observations.  Once again, this is an issue that must be considered on a case by case basis. 
 
Choice Based Sampling 
 
 In some individual data cases, the data are deliberately sampled so that one or the other 
outcome is overrepresented in the sample.  For example, suppose that in a binary response setting, 
the true proportion of ones in the population is .05 and the true proportion of zeros is .95. One might 
over sample the ones in order to learn more about the decision process.  However, some account 
must be taken of this fact in the estimation since it obviously will impart some biases.  The following 
assumes that these population proportions are known, which must be true to apply the technique.  
We use the assumed values to demonstrate the technique; other values would be substituted in the 
analogous manner. 
 The general principle involved is as follows: Suppose that the sample is deliberately drawn 
so that it contains 50% ones and 50% zeros while it is known that the true proportions in the 
population are .05 and .95.  Then, the ones are overrepresented by a factor of .50/.05 = 10 while the 
zeros are underrepresented by a factor of .50/.95 = .5263.  To obtain the right ‘mix’ in the sample, it 
is necessary to scale down the ones by a factor of .05/.50 = .1 and scale up the zeros by a factor of  
.95/.50 = 1.9.  This can be handled simply by using a weighting variable during estimation to 
reweight the observations.  The precise method of doing so is discussed below.  (See, also, Manski 
and McFadden (1981).) 
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 An additional change must be made in order to obtain the correct asymptotic covariance 
matrix for the estimates.  Let H be the Hessian of the (weighted) log likelihood, i.e., the usual 
estimator for the variance matrix of the estimates, and let G′G be the summed outer products of the 
first derivatives of the (weighted) log likelihood. (This is the inverse of the BHHH estimator.)  
Manski and McFadden (1981) show that the appropriate covariance matrix for the estimates is 
  
   V = (-H)-1 G′G (-H)-1. 
 
The computation of the weighted estimator and the corrected asymptotic covariance is handled 
automatically in NLOGIT by the following estimation programs: 
  

• univariate probit, logit, extreme value and Gompertz model, 
• bivariate probit model with and without sample selection, 
• binomial and multinomial logit models, 
• discrete choice (conditional logit).  

  
With the exception of the last of these, you request the estimator with 
 
   ; Wts = name of weighting variable  
   ; Choice Based 
  
The weighting variable can usually be created with a single command.  For example, the weighting 
variable suggested in the example used above would be specified as follows: 
  
 CREATE  ; wt = (.95/.50)*(y = 0)  +  (.05/.50)*(y = 1) $ 
 
 For models that do not appear in the list above, there is a general way to do this kind of 
computation.  How the weights are obtained will be specific to your application if you wish to do 
this.  To compute the counterpart to V above, you can do the following: 
 
 CREATE  ; wt = the desired weighting variable $ 
 Model name ; ... specification of the model 
   ; Wts = the weighting variable 
   ; Cluster = 1 $ 
 
Since the ‘cluster’ estimator computes a sandwich estimator, we need only ‘trick’ the program by 
specifying that each cluster contains one observation.  The observations in the parts will be weighted 
by the variable given, so this is exactly what is needed. 
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N6.9 Heteroscedasticity in Probit and Logit Models 
 
 The univariate choice model with multiplicative heteroscedasticity is 
 
   yi*   =  β′xi + εi, 

   yi  =  1 if yi* > 0 and yi = 0 if yi* ≤ 0, 

   εi  ~  Normal or Logistic with mean 0, and variance ∝ [exp(γ′wi)]
2  

 
(In the logistic case, the true variance is scaled by π2/3.) 
 
NOTE:  These heteroscedasticity models require individual data. 
 
 Request the model with heteroscedasticity with 
 
 PROBIT ; Lhs  = dependent variable   
       or LOGIT ; Rhs  = regressors in x 
   ; Rh2 = list of variables in w  
   ; Heteroscedasticity (or just ; Het) $ 
 
Other options and specifications for this model are the same as the basic model.  Two general 
options that are likely to be useful are 
 
   ; Keep = name to retain predicted values 
   ; Prob = name to retain fitted probabilities 
 
and the controls of the iterations and the amount of output. 
 
NOTE:  Do not include one in the Rh2 list.  A constant in γ is not identified. 
 
 This model differs from the basic model only in the presence of the variance term.  The 
output for this model is also the same, with the addition of the coefficients for the variance term. The 
initial OLS results are computed without any consideration of the heteroscedasticity, however. 
 Since the log likelihood for this model, unlike the basic model, is not globally concave, the 
default algorithm is BFGS, not Newton’s method.   
 For purposes of hypothesis testing and imposing restrictions, the parameter vector is 
 
   θ  =  [β1,...,βK,γ1,...,γL]. 
 
If you provide your own starting values, give the right number of values in exactly this order. 
 You can also use WALD and ; Test: to test hypotheses about the coefficient vector.  Finally, 
you can impose restrictions with  
 
   ; Rst = .... 
or   ; CML: restrictions... 
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NOTE:  In principle, you can impose equality restrictions across the elements of β and γ with             
; Rst = ..., (i.e., force an element in β to equal one in γ), but the results are unlikely to be satisfactory. 
Implicitly, the variables involved are of different scales, and this will place a rather stringent 
restriction on the model. 
 
Use 
   ; Robust  
or    ; Cluster = id variable or group size 
 
to request the sandwich style robust covariance matrix estimator or the cluster correction. 
 
NOTE:  There is no ‘robust’ covariance matrix for the logit or probit model that is robust to 
heteroscedasticity, in the form of the White estimator for the linear model.  In order to accommodate 
heteroscedasticity in a binary choice model, you must model it explicitly. 
 
NOTE:  ; Maxit = 0 provides an easy way to test for heteroscedasticity with an LM test. 
  
 To test the hypothesis of homoscedasticity against the specification of this more general 
model, the following template can be used:  (The model may be LOGIT if desired.) 
  
 NAMELIST ; x = ... the Rhs of the probit model 
   ; w = ... the Rh2 of the heteroscedasticity model $ 
 CALC  ; m = Col(w) $ 
 PROBIT ; Lhs = ...  
   ; Rhs = x $  
 PROBIT ; Lhs = ...  
   ; Rhs = x 
   ; Rh2 = w ; Het  
   ; Start = b, m_0  
   ; Maxit = 0 $ 
 
This produces an LM statistic and (superfluously) reproduces the restricted model. 
 The results that are saved automatically are the same as for the basic model, that is, b, varb, 
and the scalars.  In this case, b will contain the full set of estimates, with the slopes followed by the 
variance parameters, i.e., [b,c].  The Last Model labels for the WALD command are [b_variable, 
c_variable]. 
 We note, this model may be rather weakly identified by the observed data, unless they are 
plentiful and the model is sharply consistent with the data.  In fact, identification is not a problem, 
and the model is straightforward to estimate.  But, one could argue that the specification problem 
addressed by this model is one of functional form rather than heteroscedasticity.  That is, the model 
specification is arguably indistinguishable from one with a peculiar kind of conditional mean 
function, which, in turn, could be standing in for some other, perhaps reasonable, albeit nonlinear 
model.  In addition, it is common for the estimated standard errors that are computed for this model 
to be quite large, as a result of a kind of multicollinearity – the high correlation of the derivatives of 
the log likelihood. 
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Application 
 
 To illustrate the model, we have refit the specification of the previous section with a 
variance term of the form Var[ε] = [exp(γ1female + γ2working )]2.  Since both of these are binary 
variables, this is equivalent to a groupwise heteroscedasticity model.  The variances are 1.0, exp(2γ1), 
exp(2γ2) and exp(2γ1+2γ2) for the four groups.  We have fit the original model without 
heteroscedasticity first.  The second LOGIT command carries out the LM test of heteroscedasticity. 
The third command fits the full heteroscedasticity model. 
 
 INCLUDE ; New ; year = 1994 $ 
 NAMELIST ; x = one,age,educ,married,hhninc,hhkids,female $ 
 LOGIT  ; Lhs = doctor ; Rhs = x  
   ; Partial Effects $ 
 NAMELIST  ; w = female,working $ 
 CALC   ; m = Col(w) $ 
 LOGIT  ; Lhs = doctor ; Rhs = x 
   ; Heteroscedasticity ; Rh2 = w 
   ; Start = b,m_0  
   ; Maxit = 0 $ 
 LOGIT  ; Lhs  = doctor ; Rhs = x 
   ; Heteroscedasticity ; Rh2 = w  
   ; Partial Effects $ 
 PARTIALS ; Effects: female $ 
 
The model results have been rearranged in the listing below to highlight the differences in the 
models.  Also, for convenience, some of the results have been omitted. 
 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function     -2085.33796 
 
The LM statistic is included in the initial diagnostic statistics for the second model estimated. 
 
LM Stat. at start values        3.11867 
LM statistic kept as scalar    LMSTAT 
 
These are the results for the model with homoscedastic disturbances. 
 
Inf.Cr.AIC  = 4184.676 AIC/N =    1.239 
Restricted log likelihood   -2169.26982 
McFadden Pseudo R-squared      .0386913 
 
These are the coefficient estimates for the two models. 
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Homoscedastic disturbances 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .14726         .25460      .58  .5630     -.35173    .64626 
     AGE|     .01643***      .00384     4.28  .0000      .00891    .02395 
    EDUC|    -.01965         .01608    -1.22  .2219     -.05117    .01188 
 MARRIED|     .15536         .09904     1.57  .1167     -.03875    .34947 
  HHNINC|    -.39474**       .17993    -2.19  .0282     -.74739   -.04208 
  HHKIDS|    -.41534***      .08866    -4.68  .0000     -.58911   -.24157 
  FEMALE|     .64274***      .07643     8.41  .0000      .49295    .79253 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Heteroscedastic disturbances 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .12927         .30739      .42  .6741     -.47320    .73174 
     AGE|     .02036***      .00501     4.06  .0000      .01053    .03018 
    EDUC|    -.02913         .01984    -1.47  .1421     -.06803    .00976 
 MARRIED|     .19969         .12639     1.58  .1141     -.04803    .44742 
  HHNINC|    -.36965*        .22169    -1.67  .0954     -.80414    .06485 
  HHKIDS|    -.53029***      .12783    -4.15  .0000     -.78083   -.27974 
  FEMALE|    1.24685***      .45754     2.73  .0064      .35009   2.14361 
        |Disturbance Variance Terms 
  FEMALE|     .44128*        .25946     1.70  .0890     -.06725    .94982 
 WORKING|     .08459         .10082      .84  .4014     -.11300    .28219 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the marginal effects for the two models.  Note that the effects are also computed for the 
terms in the variance function.  The explanatory text indicates the treatment of variables that appear 
in both the linear part and the exponential part of the probability. 
 
+-------------------------------------------+ 
| Partial derivatives of probabilities with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Effects are the sum of the mean and var-  | 
| iance term for variables which appear in  | 
| both parts of the function.               | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]|Elasticity| 
+--------+--------------+----------------+--------+--------+----------+ 
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Homoscedastic disturbances 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00352***     -.00205     4.29  .0000      .00191    .00512 
    EDUC|    -.00421         .00058    -1.22  .2218     -.01096    .00254 
 MARRIED|     .03357        -.00031     1.56  .1194     -.00868    .07582   # 
  HHNINC|    -.08452**       .00044    -2.20  .0282     -.16000   -.00905 
  HHKIDS|    -.09058***      .00027    -4.65  .0000     -.12876   -.05240   # 
  FEMALE|     .13842***     -.00119     8.60  .0000      .10687    .16997   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Heteroscedastic disturbances 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effects are the sum of the mean and var- 
iance term for variables which appear in 
both parts of the function. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
     AGE|     .00337***      .20980     3.84  .0001      .00165    .00509 
    EDUC|    -.00482        -.08104    -1.47  .1404     -.01123    .00159 
 MARRIED|     .03306         .03424     1.59  .1119     -.00769    .07380 
  HHNINC|    -.06119        -.03975    -1.63  .1038     -.13492    .01254 
  HHKIDS|    -.08778***     -.04969    -4.45  .0000     -.12640   -.04916 
  FEMALE|     .20639***      .13969     5.09  .0000      .12687    .28592 
        |Disturbance Variance Terms 
  FEMALE|    -.07388        -.05000    -1.08  .2784     -.20747    .05972 
 WORKING|    -.01416        -.01493     -.71  .4801     -.05347    .02514 
        |Sum of terms for variables in both parts 
  FEMALE|     .13252***      .08969     3.52  .0004      .05875    .20629 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 The partial effects for the heteroscedasticity model are computed at the means of the 
variables.  It is possible to obtain average partial effects by using the PARTIAL EFFECTS program 
rather than the built in marginal effects routine.  The following shows the results for female, which 
appears in both parts of the model. 
 
 PARTIAL EFFECTS ; Effects: female $ 
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--------------------------------------------------------------------- 
Partial Effects  Analysis for Heteros. Logit Prob.Function 
--------------------------------------------------------------------- 
Effects on function with respect to FEMALE 
Results are computed by average over sample observations 
Partial effects for binary var FEMALE   computed by first difference 
--------------------------------------------------------------------- 
df/dFEMALE         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE. Function       .13430     .01653    8.12      .10190      .16669 
 
These are the summaries of the predictions of the two estimated models.  The performance of the 
two models in terms of the simple count of correct predictions is almost identical – the 
heteroscedasticity model correctly predicts three observations more than the homoscedasticity 
model.  The mix of correct predictions is very different, however. 
 
Homoscedastic disturbances 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |     82 (  2.4%)|   1073 ( 31.8%)|   1155 ( 34.2%)| 
|  1   |     85 (  2.5%)|   2137 ( 63.3%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |    167 (  4.9%)|   3210 ( 95.1%)|   3377 (100.0%)| 
+------+----------------+----------------+----------------+ 
 
Heteroscedastic disturbances 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |    131 (  3.9%)|   1024 ( 30.3%)|   1155 ( 34.2%)| 
|  1   |    139 (  4.1%)|   2083 ( 61.7%)|   2222 ( 65.8%)| 
+------+----------------+----------------+----------------+ 
|Total |    270 (  8.0%)|   3107 ( 92.0%)|   3377 (100.0%)| 
+------+----------------+----------------+----------------+ 
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N7: Tests and Restrictions in Models for Binary 
Choice 

 
N7.1 Introduction 
 
 We define models in which the response variable being described is inherently discrete as 
qualitative response (QR) models.  Chapter N6 presented the model formulation and estimation and 
analysis tools.  This chapter will detail some aspects of hypothesis testing.  Most of these results are 
generic, and will apply in other models as well. 
 
N7.2 Testing Hypotheses  
 
 The full set of options is available for testing hypotheses and imposing restrictions on the 
binary choice models.  In using these, the set of parameters is 
 
   β1, ..., βK  plus γ for the Burr model 
 
 In the parametric models, hypotheses can be done with the standard trinity of tests:  Wald, 
likelihood ratio and Lagrange Multiplier.  All three are particularly straightforward for the binary 
choice models. 
 
N7.2.1 Wald Tests 
 
 Wald tests are carried out in two ways, with the ; Test: specification in the model command 
and by using the WALD command after fitting the model.  The former is used for linear restrictions.  
The WALD command is more general and allows for tests of nonlinear restrictions on parameters.    
 The Wald statistic is computed using the estimates of an unrestricted model.  The hypothesis 
implies a set of restrictions 
 
   H0:  c(β)  =  0. 
 
(This may involve linear distance from a constant, such as 2β3 - 1.2 = 0.  The preceding formulation 
is used to achieve the full generality that NLOGIT allows.)  The Wald statistic is computed by the 
formula 

   W  =  ( ) ( ) ( ){ } ( ) ( )
1

ˆ ˆ ˆ ˆ ˆ' . . 'Est AsyVar
−

 
  

c G G cβ β β β β  
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c β
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and β̂  is the vector of estimated parameters. 
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 You can request Wald tests of simple restrictions by including the request in the model 
command.  For example: 
 
 PROBIT ; Lhs = doctor   
   ; Rhs = one,age,educ,married,hhninc,hhkids   
   ; Test:  age + educ = 0,  
    married = 0 ,  
    hhninc + 2*hhkids = -.3  $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -17670.94233 
Restricted log likelihood  -18019.55173 
Chi squared [   5 d.f.]       697.21881 
Significance level               .00000 
McFadden Pseudo R-squared      .0193462 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =35353.885 AIC/N =    1.294 
Hosmer-Lemeshow chi-squared = 105.22799 
P-value=  .00000 with deg.fr. =       8 
Wald test of  3 linear restrictions 
Chi-squared =      26.06, P value   =    .00001 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .15500***      .05652     2.74  .0061      .04423    .26577 
     AGE|     .01283***      .00079    16.24  .0000      .01129    .01438 
    EDUC|    -.02812***      .00350    -8.03  .0000     -.03498   -.02125 
 MARRIED|     .05226**       .02046     2.55  .0106      .01216    .09237 
  HHNINC|    -.11643**       .04633    -2.51  .0120     -.20723   -.02563 
  HHKIDS|    -.14118***      .01822    -7.75  .0000     -.17689   -.10548 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Note that the results reported are for the unrestricted model, and the results of the Wald test are 
reported with the initial header information.  To fit the model subject to the restriction, we change     
; Test: in the command to ; CML: with the following results: 
 
 PROBIT ; Lhs =  doctor   
   ; Rhs =  one,age,educ,married,hhninc,hhkids   
   ; CML:  age + educ = 0,  
     married = 0 ,  
     hhninc + 2*hhkids = -.3  $ 
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----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -2125.57999 
Restricted log likelihood   -2169.26982 
Chi squared [   2 d.f.]        87.37966 
Significance level               .00000 
McFadden Pseudo R-squared      .0201403 
Estimation based on N =   3377, K =   3 
Inf.Cr.AIC  = 4257.160 AIC/N =    1.261 
Linear constraints imposed            3 
Hosmer-Lemeshow chi-squared =  20.93392 
P-value=  .00733 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .04583         .06144      .75  .4557     -.07458    .16624 
     AGE|     .01427***      .00192     7.44  .0000      .01052    .01803 
    EDUC|    -.01427***      .00192    -7.44  .0000     -.01803   -.01052 
 MARRIED|        0.0    .....(Fixed Parameter)..... 
  HHNINC|    -.06304         .07079     -.89  .3731     -.20178    .07569 
  HHKIDS|    -.11848***      .03539    -3.35  .0008     -.18785   -.04911 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
When the restrictions are built into the estimator with CML, the information reported is only that the 
restrictions were imposed.  The results of the Wald or LR test cannot be reported because the 
unrestricted model is not computed.  
 
N7.2.2 Likelihood Ratio Tests 
 
 Use the log likelihood functions from both restricted and unrestricted models.  Log 
likelihood functions are saved automatically by the estimators.  Do keep in mind that these are 
overwritten each time – the scalar logl gets replaced by each model command.  Your general strategy 
for carrying out a likelihood ratio test would be 
 
 Model name  ; ... - specifies the unrestricted model 
 CALC  ; lu = logl $  Capture log likelihood function 
 Model name  ; ... - specifies the restricted model 
 CALC  ; lr = logl  
   ; List ; chisq = 2*(lu - lr )   
   ; 1 - Chi(chisq, degrees of freedom) $ 
 
You must supply the degrees of freedom.  If the result of the last line is less than your significance 
level – usually 0.05 – then, the null hypothesis of the restriction would be rejected.  Here are two 
examples:  We continue to examine the German health care data.  For purposes of these tests, just for 
the illustrations, we will switch to a probit model. 
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Simple Linear Restriction 
 

 The following tests the pair of linear restrictions suggested above.  Looking at the unrestricted 
results from earlier, the restrictions don’t look like they are going to pass.  The results bear this out.  
 
 SAMPLE ; All $ 

NAMELIST ; x = one,age,educ,married,hhninc,hhkids $ 
LOGIT  ; Lhs = doctor ; Rhs = x $ 

 CALC  ; lu = logl $ 
LOGIT  ; Lhs = doctor ; Rhs = x  
  ; Rst = b0, b1, b1, 0, b2, b3 $ 

 CALC  ; lr = logl    
   ; List ; chisq = 2*(lu - lr) ; 1 - Chi(chisq,2) $ 
 
[CALC] CHISQ   =    158.9035080 
[CALC] *Result*=       .0000000 
Calculator: Computed   3 scalar results 
 
Homogeneity Test   
 

 We are frequently asked about this.  The sample can be partitioned into a number of 
subgroups.  The question is whether it is valid to pool the subgroups.  Here is a general strategy that 
is the maximum likelihood counterpart to the Chow test for linear models:  Define a variable, say, 
group, that takes values 1,2,...,G, that partitions the sample.  This is a stratification variable. The test 
statistic for homogeneity is 
 
 χ2  =  2[(Σgroups log likelihood for the group)  -  log likelihood for the pooled sample] 
 
The degrees of freedom is G-1 times the number of coefficients in the model. 
 
Create the group variable.   
 
 SAMPLE   ; Pooled sample ... however defined ... $ 
 Model name ; ... ; Quiet $  Specify the appropriate model.  Suppress the output. 
 CALC  ; chisq = -2*logl ; df = -kreg $ 
 
Automate the model fitting estimation, and accumulate the statistic. 
 
 PROC 
    INCLUDE  ; New ; Group = i $ 
    Model name ; ... ; Quiet $  Specify the same model.  Suppress the output. 
    CALC ; chisq = chisq + 2*logl ; df = df + kreg $ 
 ENDPROC 
 
Determine the number of groups. 
 
 CALC  ; g = Max(group) $ 
 
Estimate the model once for each group. 
 
 EXEC  ; i = 1,g $ 
 CALC  ; List ; chisq ; df ; 1 - Chi(chisq,df)  $ 
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This procedure produces only the output of the last CALC command, which will display the test 
statistic, the degrees of freedom and the p value for the test. 
 To illustrate, we’ll test the hypothesis that the same probit model for doctor visits applies to 
both men and women.  This command suppresses all output save for the actual test of the hypothesis. 
 
 NAMELIST ; x = one,age,educ,married,hhninc,hhkids $ 

PROBIT  ; If [ female = 0] ; Lhs = doctor ; Rhs = x ; Quiet $ 
 CALC  ; l0 = logl $ 

PROBIT  ; If [ female = 1] ; Lhs = doctor ; Rhs = x ; Quiet $ 
 CALC  ; l1 = logl $ 

PROBIT  ; Lhs = doctor ; Rhs = x ; Quiet $ 
 CALC  ; l01 = logl ; List 
   ; chisq = -2*(l01 - l0 - l1) 
   ; df = 2*kreg ; pvalue = 1 - Chi(chisq,df) $ 
 
The results of the chi squared test strongly reject the homogeneity restriction. 
 
[CALC] CHISQ   =    549.3141072 
[CALC] DF      =     12.0000000 
[CALC] PVALUE  =       .0000000 
Calculator: Computed   4 scalar results 
 
N7.2.3 Lagrange Multiplier Tests 
 
 The third procedure available for testing hypotheses is the Lagrange Multiplier, or LM 
approach.  The Lagrange Multiplier statistic is computed as a Wald statistic for testing the hypothesis 
that the derivatives of the log likelihood are zero when evaluated at the restricted maximum 
likelihood estimator; 

   LM   =  ( ) ( ){ } ( )
1

ˆ ˆ ˆ' . .R R REst AsyVar
−

 
  

g g gβ β β  

where    ˆ
Rβ  =  MLE of the parameters of the model, with restrictions imposed 

   g ( )ˆ
Rβ  =  derivatives of log likelihood of full model, evaluated at ˆ

Rβ  

 
The estimated asymptotic covariance matrix of the gradient is any of the usual estimators of the 
asymptotic covariance matrix of the coefficient estimator, negative inverse of the actual or expected 
Hessian, or the BHHH estimator based on the first derivatives only. 
 Your strategy for carrying out LM tests with NLOGIT is as follows: 
 
Step 1. Obtain the restricted parameter vector.  This may involve an unrestricted parameter vector in 

some restricted model, padded with some zeros, or a similar arrangement. 
 
Step 2. Set up the full, unrestricted model as if it were to be estimated, but include in the command 
 
   ; Start  = restricted parameter vector 
   ; Maxit = 0  
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The rest of the procedure is automated for you.  The ; Maxit = 0 specification takes on a particular 
meaning when you also provide a set of starting values.  It implies that you wish to carry out an LM 
test using the starting values. 
 To demonstrate, we will carry out the test of the hypothesis 
 
   β_age + β_educ  =  0 
   β_married  =  0 
   β_hhninc + β_hhkids  =  - .3  
 
that we tested earlier with a Wald statistic, now with the LM test.  The commands would be as follows: 
 
 PROBIT ; Lhs = doctor   
   ; Rhs  = one,age,educ,married,hhninc,hhkids   
   ; CML: age+educ = 0, married = 0 , hhninc + 2*hhkids = -.3 $ 
 PROBIT ; Lhs  = doctor   
   ; Rhs  = one,age,educ,married,hhninc,hhkids   
   ; Maxit = 0 ; Start = b $ 
 
The results of the second model command provide the Lagrange multiplier statistic.  The value of 
26.06032 is the same as the Wald statistic computed earlier, 26.06. 
 
Maximum of     0 iterations. Exit iterations with status=1. 
Maxit = 0. Computing LM statistic at starting values. 
No iterations computed and no parameter update done. 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
LM Stat. at start values       26.06032 
LM statistic kept as scalar    LMSTAT 
Log likelihood function    -17683.96508 
Restricted log likelihood  -18019.55173 
Chi squared [   5 d.f.]       671.17331 
Significance level               .00000 
McFadden Pseudo R-squared      .0186235 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =35379.930 AIC/N =    1.295 
Model estimated: Jun 13, 2011, 19:40:02 
Hosmer-Lemeshow chi-squared = 132.57086 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    -.06593         .05655    -1.17  .2437     -.17678    .04491 
     AGE|     .01484***      .00079    18.76  .0000      .01329    .01639 
    EDUC|    -.01484***      .00351    -4.23  .0000     -.02171   -.00796 
 MARRIED|        0.0         .02049      .00 1.0000 -.40156D-01  .40156D-01 
  HHNINC|    -.09655**       .04636    -2.08  .0373     -.18741   -.00568 
  HHKIDS|    -.10173***      .01821    -5.59  .0000     -.13742   -.06603 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 To complete the trinity of tests, we can carry out the likelihood ratio test, which we could do 
as follows: 
 
 PROBIT ; Quiet ; Lhs = doctor   
   ; Rhs = one,age,educ,married,hhninc,hhkids   
   ; CML: b(2) + b(3) = 0, b(4) = 0, b(5) + b(6) = -.3 $ 
 CALC  ; lr = logl $ 
 PROBIT ; Quiet  ; Lhs = doctor   
   ; Rhs = one,age,educ,married,hhninc,hhkids $ 
 CALC  ; lu = logl ; List 
   ; lrstat = 2*(lu – lr) $ 
 
The result of the computation (which displays only the last statistic) is 
 
[CALC] LRSTAT  =     26.0455042 
Calculator: Computed   2 scalar results 
 
The value of 26.0455 differs only trivially from the other values.  This is actually not surprising, 
since they should all converge to the same statistic, and the sample in use here is very large. 
 
N7.3 Two Specification Tests 
 
 The following are two specialized tests for the probit model, one for testing which of two 
competing models appears to be appropriate, and one test against the hypothesis of normality that 
underlies the probit model. 
 
N7.3.1 A Test for Nonnested Probit Models 
 
 Davidson and MacKinnon (1993) present a test of the nonnested hypothesis that an 
alternative set of variables, zi, is the appropriate one for the structural equation of the probit model.  
 
   Testing y* = x′β + ε  vs.  y* = z′γ + u 
 

NAMELIST ; x  = the independent variables 
  ; z  = the competing list of independent variables $ 
CREATE ; y  = the dependent variable $ 
PROBIT ; Quiet ; Lhs = y ; Rhs = x $ 
CREATE ; xbeta = x’b; fx = N01(xbeta) ; px = Phi(xbeta) 
  ; v = Sqr(px*(1-px)) ; dev = (y - px) / v   
  ; xv = fx*xbeta / v $ 
PROBIT  ; Quiet ; Lhs = y ; Rhs = z $  
CREATE  ; pz = Phi(z’b) ; test = (px - pz) / v $ 
REGRESS ; Lhs = dev ; Rhs  = xv,test $ 
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The test is carried out by referring the t ratio on test to the t table.  A value larger than the critical 
value argues in favor of z as the correct specification.  For example, the following tests for which of 
two specifications of the right hand side of the probit model is preferred. 
 

NAMELIST ; x  = one,age,educ,married,hhninc,hhkids,self 
  ; z  = one,age,educ,married,hhninc,female,working $ 
CREATE ; y  = doctor $ 
 

The remaining commands are identical. 
 The essential regression results are as follows.  We also reversed the roles of x and z. 
Unfortunately, as often happens in specifications, the results are contradictory. 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     DEV|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      XV|     .04569**       .01985     2.30  .0214      .00678    .08459 
    TEST|    -.79517***      .03995   -19.90  .0000     -.87348   -.71687 
--------+-------------------------------------------------------------------- 
      XV|     .04668**       .02033     2.30  .0217      .00684    .08652 
    TEST|    -.26126***      .04273    -6.11  .0000     -.34500   -.17751 
 
The t ratio of -19.9 in the first regression argues in favor of z as the appropriate specification.  But, 
the also significant t ratio of -6.11 in the second argues in favor of x. 
 
N7.3.2 A Test for Normality in the Probit Model 
 

The second test is a Lagrange multiplier test against the null hypothesis of normality in the 
probit model.  (The test was developed in Bera, Jarque and Lee (1984).)  As usual in normality tests, 
the statistic is computed by comparing the third and fourth moments of an underlying variable to 
their expected value under normality.  The computations are as follows, where i indicates the ith 
observation: 
   ai  =  xi′β 

   φi  =  φ(ai) 

   Φi  =  Φ(ai) 

   di   =  φi (yi - Φi) / [Φi(1 - Φi)] 

   ci =  φi
2 / [Φi(1 - Φi)] 

   m3i =  -1/2(ai
2 – 1) 

   m4i =  1/4 (ai (ai
2 + 3)) 

   zi =  (xi′, m3i, m4i)′ 

Then,   ( ) ( ) ( )1

1 1 1
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The commands below will carry out the test.  The chi squared reported by the last line has two 
degrees of freedom. 
 

NAMELIST  ; x  = one,... $ 
CREATE  ; y  = the dependent variable $ 
PROBIT  ; Lhs = y ; Rhs = x  $ 
CREATE  ; ai = b'x ; fi = Phi(ai) ; dfi = N01(ai)  
   ; di = (y-fi) * dfi  /(fi*(1-fi)) ; ci = dfi^2 /(fi*(1-fi))  
  ; m3i = -1/2*(ai^2-1) ; m4i =  1/4*(ai*(ai^2+3)) $ 
NAMELIST  ; z = x,m3i,m4i $ 
MATRIX  ; List ; LM = di’z * <z'[ci]z> * z'di $ 

 
We executed the routine for our probit model estimated earlier, with 
 

NAMELIST  ; x = one,age,educ,married,hhninc,hhkids,self $ 
CREATE  ; y = doctor $ 

 
The result of 93.12115 would lead to rejection of the hypothesis of normality; the 5% critical value 
for the chi squared variable with two degrees of freedom is 5.99. 
 
      LM|             1 
--------+-------------- 
       1|       93.1211 
 
N7.4 The WALD Command 
 
 The WALD command may be used for linear and nonlinear restrictions.  The model 
commands produce a set of names that can be used in WALD commands after estimation.  For the 
binary choice commands, these are b_variable.  The WALD command can be used with these names 
in specified restrictions, with no other information needed.  For example: 
 
 PROBIT ; Lhs = doctor   
   ; Rhs = one,age,educ,married,hhninc,hhkids  $ 
 WALD  ; Fn1 = b_age + b_educ - 0 
   ; Fn2 = b_married - 0 
   ; Fn3 = b_hhninc + b_hhkids + .3 $ 
 
(The latter restriction doesn’t make much sense, but we can test it anyway.)  The results of this pair 
of commands are shown below.  (The PROBIT command was shown earlier.) 
 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =     24.95162 
Prob. from Chi-squared[ 3] =       .00002 
Functions are computed at means of variables 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|    -.01528***      .00369    -4.14  .0000     -.02252   -.00805 
 Fncn(2)|     .05226**       .02046     2.55  .0106      .01216    .09237 
 Fncn(3)|     .04239         .05065      .84  .4027     -.05689    .14166 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
You may follow a model command with as many WALD commands as you wish. 
 You can use WALD to obtain standard errors for linear or nonlinear functions of parameters.  
Just ignore the test statistics.  Also, WALD produces some useful output in addition to the displayed 
results.  The new matrix varwald will contain the estimated asymptotic covariance matrix for the set of 
functions.  The new vector waldfns will contain the values of the specified functions.  A third matrix, 
jacobian, will equal the derivative matrix, ∂c(β)/∂β′.  For the computations above, the three matrices are 
 

 
Figure N7.1  Matrix Results for the WALD Command 

 
Thus, the command 
 
 MATRIX ; w = waldfns’ <varwald> waldfns $ 
 
would recompute the Wald statistic. 
 
Matrix W        has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   24.95162 
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N7.5 Imposing Linear Restrictions 
 
Fixed Value and Equality Restrictions  
 
 Fixed value and equality restrictions are imposed with 
 
   ; Rst = the list of settings symbols for free parameters,  
     values for specific values 
For example,  
 
 NAMELIST ; x = one,age,educ,married,hhninc,hhkids $ 

LOGIT  ; Lhs  = doctor ; Rhs = x  
  ; Rst  = b0, b1, b1, 0, b2, b3 $ 

 
will force the second and third coefficients to be equal and the fourth to equal zero. 
 
Linear Restrictions  
 
 These are imposed with 
 
   ; CML:  the set of linear restrictions 
 
(See Section R13.6.3.)  This is a bit more general than the Rst function, but similar.  For example, to 
force the restriction that the coefficient on age plus that on educ equal twice that on hhninc, use 
 
   ; CML:  age + educ - 2*hhninc = 0 
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N8: Extended Binary Choice Models 
 
N8.1 Introduction 
 
 NLOGIT supports a large variety of models and extensions for the analysis of binary choice.  
This chapter documents sample selection models, models with endogenous right hand side variables 
and two step estimation of models that build on probit and logit models. 
 
N8.2 Sample Selection in Probit and Logit Models 
 
 The model of sample selection can be extended to the probit and logit binary choice models.  
In both cases, we depart from 
 
   Prob[yi = 1 |xi] = F(β′xi) 

where    F(t) = Φ(t) for the probit model and Λ(t) for the logit model, 

   zi*   = α′wi + ui, ui ~ N[0,1], zi = 1(zi* > 0) 

   yi, xi     observed only when zi = 1. 
 
In both cases, as stated, there is no obvious way that the selection mechanism impacts the binary 
choice model of interest.  We modify the models as follows:   
 For the probit model, 
 
   yi*  =  β′xi + εi, εi ~ N[0,1], yi = 1(yi* > 0) 
 
which is the structure underlying the probit model in any event, and 
 
   ui, εi  ~  BVN[(0,0),(1,ρ,1)]. 
 
This is precisely the structure underlying the bivariate probit model.  Thus, the probit model with 
selection is treated as a bivariate probit model.  Some modification of the model is required to 
accommodate the selection mechanism.  The command is simply 
 
 BIVARIATE ; Lhs = y,z   
   ; Rh1 = variables in x 
   ; Rh2 = variables in w 
   ; Selection $ 
 
 For the logit model, a similar approach does not produce a convenient bivariate model.  The 
probability is changed to 

   Prob(yi = 1 | xi,εi) = exp( )
1 exp( )

i i

i i

′ + σε
′+ + σε

x
x

β
β

. 
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With the selection model for zi as stated above, the bivariate probability for yi and zi is a mixture of a 
logit and a probit model.  The log likelihood can be obtained, but it is not in closed form, and must 
be computed by approximation.  We do so with simulation.  The commands for the model are 
 
 PROBIT ; Lhs = z ; Rhs = variables in w ; Hold $ 
 LOGIT ; Lhs = y ; Rhs = variables in x  ; Selection $ 
 
The motivation for a probit selection mechanism into a logit model does seem ambiguous. 
 
N8.3 Endogenous Variable in a Probit Model 
 
 This estimator is for what is essentially a simultaneous equations model.  The model 
equations are 

   
1 2 1 1
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2
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 ,
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y y y y
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Probit estimation based on y1 and (x1,y2) will not consistently estimate (β,α) because of the 
correlation between y2 and ε induced by the correlation between u and ε.  Several methods have been 
proposed for estimation. One possibility is to use the partial reduced form obtained by inserting the 
second equation in the first. This will produce consistent estimates of β/(1+α2σ2+2ασρ)1/2 and 
αγ/(1+α2σ2+2ασρ)1/2.  Linear regression of y2 on z produces estimates of γ and σ2, but there is no 
method of moments estimator of ρ produced by this procedure, so this estimator is incomplete.  
Newey (1987) suggested a ‘minimum chi squared’ estimator that does estimate all parameters.  A 
more direct, and actually simpler approach is full information maximum likelihood.  Details on the 
estimation procedure appear in Section E29.3. 
 To estimate this model, use the command 
 
 PROBIT ; Lhs  = y1, y2 
   ; Rh1 = independent variables in probit equation 
   ; Rh2 = independent variables in regression equation $ 
 
(Note, the probit must be the first equation.)  Other optional features relating to fitted values, 
marginal effects, etc. are the same as for the univariate probit command.  We note, marginal effects 
are computed using the univariate probit probabilities, 
 
   Prob[y1 = 1] ~  Φ[β′x + αy2]   
 
These will approximate the marginal effects obtained from the conditional model (which contain u). 
When averaged over the sample values, the effect of u will become asymptotically negligible.  
Predictions, etc. are kept with ; Keep = name, and so on.  Likewise, options for the optimization, 
such as maximum iterations, etc. are also the same as for the univariate probit model. 
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Retained Results 
 
 The results saved by this binary choice estimator are: 
 
 Matrices: b = estimate of (β,α,γ).  Using ; Par adds σ and ρ to b. 
   varb = asymptotic covariance matrix. 
  
 Scalars: kreg  = number of variables in Rhs 
   nreg  = number of observations 
   logl  = log likelihood function 
 
 Last Model: b_variable (includes α) and, c_variables. 
 
 Last Function: Φ(b′x + ay2) = Prob(y1 = 1 | x,y2). 
 
The Last Model names are used with WALD to simplify hypothesis tests.   The last function is the 
conditional mean function.  The extra complication of the estimator has been used to obtain a 
consistent estimator of β,α.  With that in hand, the interesting function is E[y1| x,y2]. 
 

NAMELIST  ; xdoctor = one,age,hsat,public,hhninc$ 
NAMELIST  ; xincome = one,age,age*age,educ,female,hhkids $ 
PROBIT  ; Lhs = doctor,hhninc 

; Rh1 = xdoctor ; Rh2 = xincome $ 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for DOCTOR 
Dependent variable               DOCTOR 
Log likelihood function    -16634.88715 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33279.774 AIC/N =    1.218 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    1.05627***      .05508    19.18  .0000      .94831   1.16423 
     AGE|     .00895***      .00073    12.24  .0000      .00752    .01038 
    HSAT|    -.17520***      .00395   -44.31  .0000     -.18295   -.16745 
  PUBLIC|     .12985***      .02515     5.16  .0000      .08056    .17914 
  HHNINC|    -.01332         .04581     -.29  .7712     -.10310    .07645 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=HHNINC   Mean                 =         .35208 
             Standard deviation   =         .17691 
             No. of observations  =          27326  Degrees of freedom 
Regression   Sum of Squares       =        88.9621           5 
Residual     Sum of Squares       =        766.216       27320 
Total        Sum of Squares       =        855.178       27325 
             Standard error of e  =         .16747 
Fit          R-squared            =         .10403  R-bar squared =   .10386 
Model test   F[  5, 27320]        =      634.40260  Prob F > F*   =   .00000 
Diagnostic   Log likelihood       =    10059.42844  Akaike I.C.   = -3.57369 
             Restricted (b=0)     =     8558.60603  Bayes  I.C.   = -3.57189 
             Chi squared [  5]    =     3001.64483  Prob C2 > C2* =   .00000 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.40365***      .01704   -23.68  .0000     -.43705   -.37024 
     AGE|     .02555***      .00079    32.43  .0000      .02400    .02709 
 AGE*AGE|    -.00029***   .9008D-05   -31.68  .0000     -.00030   -.00027 
    EDUC|     .01989***      .00045    44.22  .0000      .01901    .02077 
  FEMALE|     .00122         .00207      .59  .5538     -.00283    .00527 
  HHKIDS|    -.01146***      .00231    -4.96  .0000     -.01599   -.00693 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

Initial iterations cannot improve function.Status=3 
  Error   805: Initial iterations cannot improve function.Status=3 
Function=  .61428384629D+04, at entry,  .61358027527D+04 at exit 
 

----------------------------------------------------------------------------- 
Probit with Endogenous RHS Variable 
Dependent variable               DOCTOR 
Log likelihood function     -6135.80156 
Restricted log likelihood  -16599.60800 
Chi squared [  11 d.f.]     20927.61288 
Significance level               .00000 
McFadden Pseudo R-squared      .6303647 
Estimation based on N =  27326, K =  13 
Inf.Cr.AIC  =12297.603 AIC/N =     .450 
--------+-------------------------------------------------------------------- 
  DOCTOR|                  Standard            Prob.      95% Confidence 
  HHNINC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Coefficients in Probit Equation for DOCTOR 
Constant|    1.05627***      .07626    13.85  .0000      .90681   1.20574 
     AGE|     .00895***      .00074    12.03  .0000      .00749    .01041 
    HSAT|    -.17520***      .00392   -44.72  .0000     -.18288   -.16752 
  PUBLIC|     .12985***      .02626     4.94  .0000      .07838    .18131 
  HHNINC|    -.01332         .14728     -.09  .9279     -.30200    .27535 
        |Coefficients in Linear Regression for HHNINC 
Constant|    -.40301***      .01712   -23.55  .0000     -.43656   -.36946 
     AGE|     .02551***      .00081    31.37  .0000      .02391    .02710 
 AGE*AGE|    -.00028***   .9377D-05   -30.39  .0000     -.00030   -.00027 
    EDUC|     .01986***      .00040    50.26  .0000      .01908    .02063 
  FEMALE|     .00122         .00207      .59  .5552     -.00284    .00528 
  HHKIDS|    -.01144***      .00226    -5.06  .0000     -.01587   -.00701 
        |Standard Deviation of Regression Disturbances 
Sigma(w)|     .16720***      .00026   639.64  .0000      .16669    .16772 
        |Correlation Between Probit and Regression Disturbances 
Rho(e,w)|     .02412         .02550      .95  .3442     -.02586    .07409 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N9: Fixed and Random Effects Models for 
Binary Choice 

 
N9.1 Introduction 
 
 The parametric models discussed in Chapters N5-N6 are extended to panel data formats. 
Four specific parametric model formulations are provided as internal procedures in NLOGIT for 
these binary choice models.  These are the same ones described earlier, less the Burr distribution 
which is not included in this set.  Four classes of models are supported: 
 

• Fixed effects:     Prob[yit = 1]  =  F(β′xit  +  αi),  
    αi may be correlated with xit, 

 
• Random effects: Prob[yit = 1]  =  Prob[β′xit + εit + ui > 0], 

    ui is uncorrelated with xit, 
 
• Random parameters: Prob[yit = 1]  =  F(βi′xit),   

    βi | i  ~  h(β|i) with mean vector β and covariance matrix Σ 
 
• Latent class:  Prob[yit = 1|class j]  =  F(βj′xit),  

    Prob[class = j]  =  Fj(θ) 
 
The last two models provide various extensions of the basic form shown above. 
 
NOTE:  None of these panel data models require balanced panels.  The group sizes may always 
vary. 
 
NOTE:  None of these panel data models are provided for the Burr (scobit) model. 
 
All formulations are treated the same for the five models, probit, logit, extreme value, Gompertz and 
arctangent. 
 
NOTE:  The random effects estimator requires individual data. The fixed effects estimator allows 
grouped data. 
 
The third and fourth arise naturally in a panel data setting, but in fact, can be used in cross section 
frameworks as well.  The fixed and random effects estimators require panel data.  The fixed and 
random effects models are described in this chapter.  Random parameters and latent class models are 
documented in Chapter N10. 
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 The applications in this chapter are based on the German health care data used throughout 
the documentation.  The data are an unbalanced panel of observations on health care utilization by 
7,293 individuals.  The group sizes in the panel number as follows: Ti: 1=1525, 2=2158, 3=825, 
4=926, 5=1051, 6=1000, 7=987. There are altogether 27,326 observations.  The variables in the file 
that are used here are 
 
      doctor    =  1 if number of doctor visits > 0, 0 otherwise, 
     hhninc   =  household nominal monthly net income in German marks / 10000, 
 hhkids  =  1 if children under age 16 in the household, 0 otherwise, 
      educ   =  years of schooling, 
      married  =  marital status, 
      female  =  1 for female, 0 for male, 
      docvis  =  number of visits to the doctor, 
      hospvis  =  number of visits to the hospital, 
 newhsat =  self assessed health satisfaction, coded 0,1,...,10. 
 
The data on health satisfaction in the raw data file, in variable hsat, contained some obvious coding 
errors.  Our corrected data are in newhsat. 
 
N9.2 Commands 
 
 The essential model command for the models described in this chapter are  
 
 PROBIT ; Lhs = dependent variable 
 or LOGIT ; Rhs = independent variables - not including one 
    ; Panel 
    ; ...  specification of the panel data model  $ 
 
As always, panels may be balanced or unbalanced.  The panel is indicated with 
 
 SETPANEL ; Group = group identifier  

; Pds = count variable to be created $ 
Thereafter, 
   ; Panel 
 
in the model command is sufficient to specify the panel setting.  In circumstances where you have set 
up the count variable yourself, you may also use the explicit declaration in the command: 
 
   ; Pds = the fixed number of periods if the panel is balanced 
   ; Pds = a variable which, within a group, repeats the number  
      of observations in the group 
 
One or the other of these two specifications is required for the fixed and random effects estimators. 
 
NOTE: For these estimators, you should not attempt to manage missing data.  Just leave 
observations with missing values in the sample. NLOGIT will automatically bypass the missing 
values. Do not use SKIP, as it will undermine the setting of ; Pds = specification. 
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The estimator produces and saves the coefficient estimator, b and covariance matrix, varb, as usual.  
Unless requested, the estimated fixed effects coefficients are not retained.  (They are not reported 
regardless.)  To save the vector of fixed effects estimates, α in a matrix named alphafe, add 
 
   ; Parameters 
 
to the command.  The fixed effects estimators allow up to 100,000 groups.  However, only up to 
50,000 estimated constant terms may be saved in alphafe. 
 

N9.3 Clustering, Stratification and Robust Covariance 
Matrices 
 

 The robust estimator based on sample clustering and stratification is available for the 
parametric binary choice models.  Full details appear in Chapter R10 for the general case and  
Section E27.5.2 for the parametric binary choice models of interest here. The option for clustering is 
offered in the command builders for most of the nonlinear model and binary choice routines in the 
Model Estimates submenu.  This will differ a bit from model to model.  The one for the probit 
model is shown below in Figure N9.1.  The Model Estimates dialog box is selected at the bottom of 
the Output page, then the clustering is specified in the next dialog box. 
 

 
Figure N9.1  Command Builder for a Probit Model 

 

This sampling setup may be used with any of the binary choice estimators.  Do note, however, you 
should not use it with panel data models.  The so called ‘clustering’ corrections are already built into 
the panel data estimators.  (This is unlike the linear regression case, in which some authors argue that 
the correction should be used even when fixed or random effects models are estimated.) 
 To illustrate, the following shows the setup for the panel data set described in the preceding 
section.  We have also artificially reduced the sample to 1,015 observations, 29 groups of 35 
individuals, all of whom were observed seven times. The information below would appear with a 
model command that used this configuration of the data to construct a robust covariance matrix. 
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The commands are: 
 

 SAMPLE  ; 1-5000 $ 
 REJECT  ; _groupti < 7 $ 
 NAMELIST  ; x = age,educ,hhninc,hhkids,married $ 
 PROBIT ; Lhs = doctor ; Rhs = one,x 
   ; Cluster = 7  
   ; Stratum = 35  
   ; Describe $ 
 
These results appear before any results of the probit command. They are produced by the ; Describe 
specification in the command. 
 
======================================================================== 
 Summary of Sample Configuration for Two Level Stratified Data 
======================================================================== 
 Stratum #   Stratum    Number Groups          Group Sizes 
            Size (obs)  Sample   FPC.       1       2       3 ...   Mean 
==========  ==========  =============  ================================= 
         1          35       5 1.0000       7       7       7 ...    7.0 
         2          35       5 1.0000       7       7       7 ...    7.0 
        (Rows 3 – 28 omitted) 
        29          35       5 1.0000       7       7       7 ...    7.0 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of   1015 observations contained    145 clusters defined by  | 
|      7 observations (fixed number) in each cluster.                 | 
| Sample of   1015 observations contained     29 strata defined by    | 
|     35 observations (fixed number) in each stratum.                 | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function      -621.15030 
Restricted log likelihood    -634.14416 
Chi squared [   5 d.f.]        25.98772 
Significance level               .00009 
McFadden Pseudo R-squared      .0204904 
Estimation based on N =   1015, K =   6 
Inf.Cr.AIC  = 1254.301 AIC/N =    1.236 
Hosmer-Lemeshow chi-squared =  18.58245 
P-value=  .01726 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|     .71039        2.41718      .29  .7688    -4.02720   5.44797 
     AGE|     .00659         .03221      .20  .8378     -.05655    .06973 
    EDUC|    -.05898         .14043     -.42  .6745     -.33421    .21625 
  HHNINC|    -.13753        1.25599     -.11  .9128    -2.59921   2.32416 
  HHKIDS|    -.11452         .56015     -.20  .8380    -1.21240    .98336 
 MARRIED|     .29025         .82535      .35  .7251    -1.32741   1.90791 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N9.4 One and Two Way Fixed Effects Models 
 
 The fixed effects models are estimated by unconditional maximum likelihood.  The 
command for requesting the model is 
 
 PROBIT  ; Lhs = dependent variable 
 or LOGIT ; Rhs = independent variables - not including one 
   ; Panel 
   ; Fixed Effects or ; FEM  $ 
 
NOTE:  Your Rhs list should not include a constant term, as the fixed effects model fits a complete 
set of constants for the set of groups.  If you do include one in your Rhs list, it is automatically 
removed prior to beginning estimation. 
 
Further documentation and technical details on fixed effects models for binary choice appear in 
Chapter E30. 
 The fixed effects model assumes a group specific effect: 
 
   Prob[yit  =  1]  =  F(β′xit  +  αi) 
 
where αi is the parameter to be estimated.  You may also fit a two way fixed effects model 
 
   Prob[yit  =  1]  =  F(β′xit  +  αi  +  γt) 
 
where γt is an additional, time (period) specific effect.  The time specific effect is requested by 
adding 
   ; Time 
 
to the command if the panel is balanced, and  
 
   ; Time = variable name 
 
if the panel is unbalanced.  For the unbalanced panel, we assume that overall, the sample  
observation period is  
 

   t  = 1,2,..., T 
 
and that the ‘Time’ variable gives for the specific group, the particular values of t that apply to the 
observations.  Thus, suppose your overall sample is five periods.  The first group is three 
observations, periods 1, 2, 4, while the second group is four observations, 2, 3, 4, 5.  Then, your 
panel specification would be 
 
   ; Pds = Ti,  for example, where Ti = (3, 3, 3), (4, 4, 4, 4) 
and   ; Time = Pd,  for example, where Pd = (1, 2, 4), (2, 3, 4, 5). 
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 Results that are kept for this model are 
 
 Matrices: b   =  estimate of β 
   varb   =  asymptotic covariance matrix for estimate of β. 
   alphafe =  estimated fixed effects if the command contains ; Parameters 
 
 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
  
The upper limit on the number of groups is 100,000.  Partial effects are computed locally with            
; Partial Effects in the command.  The post estimation PARTIAL EFFECTS command does not 
have the set of constant terms, some of which are infinite, so the probabilities cannot be computed. 
 
Application 
 
 The gender and kids present dummy variables are time invariant and are omitted from the 
model. Nonlinear models are like linear models in that time invariant variables will prevent 
estimation.  This is not due to the ‘within’ transformation producing columns of zeros.  The within 
transformation of the data is not used for nonlinear models.  A similar effect does arise in the 
derivatives of the log likelihood, however, which will halt estimation because of a singular Hessian. 
 The results of fitting models with no fixed effects, with the person specific effects and with 
both person and time effects are listed below.  The results are partially reordered to enable 
comparison of the results, and some of the results from the pooled estimator are omitted. 
 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 NAMELIST  ; x = age,educ,hhninc,newhsat $ 
 PROBIT  ; Lhs = doctor ; Rhs = x,one  
   ; Partial Effects $ 
 PROBIT  ; Lhs = doctor ; Rhs = x 
   ; FEM  

; Panel 
   ; Parameters  
   ; Partial Effects $ 
 PROBIT  ; Lhs = doctor ; Rhs = x 
   ; FEM  

; Panel 
   ; Time Effects  
   ; Parameters 
   ; Partial Effects $ 
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These are the results for the pooled data without fixed effects. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -16639.23971 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2760.62404 
Significance level               .00000 
McFadden Pseudo R-squared      .0766008 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33288.479 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  20.51061 
P-value=  .00857 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .00856***      .00074    11.57  .0000      .00711    .01001 
    EDUC|    -.01540***      .00358    -4.30  .0000     -.02241   -.00838 
  HHNINC|    -.00668         .04657     -.14  .8859     -.09795    .08458 
 NEWHSAT|    -.17499***      .00396   -44.21  .0000     -.18275   -.16723 
Constant|    1.35879***      .06243    21.77  .0000     1.23644   1.48114 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the estimates for the one way fixed effects model.   
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -9187.45120 
Estimation based on N =  27326, K =4251 
Inf.Cr.AIC  =26876.902 AIC/N =     .984 
Unbalanced panel has   7293 individuals 
Skipped 3046 groups with inestimable ai 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .04701***      .00438    10.74  .0000      .03844    .05559 
    EDUC|    -.07187*        .04111    -1.75  .0804     -.15244    .00870 
  HHNINC|     .04883         .10782      .45  .6506     -.16249    .26015 
 NEWHSAT|    -.18143***      .00805   -22.53  .0000     -.19721   -.16564 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Figure N9.2  Estimated Fixed Effects 

 
 Note that the results report that 3046 groups had inestimable fixed effects.  These are 
individuals for which the Lhs variable, doctor, was the same in every period, including 1525 groups 
with Ti = 1.  If there is no within group variation in the dependent variable for a group, then the fixed 
effect for that group cannot be estimated, and the group must be dropped from the sample.  The          
; Parameters specification requests that the estimates of αi be kept in a matrix, alphafe.  Groups for 
which αi is not estimated are filled with the value -1.E20 if yit is always zero and +1.E20 if yit is 
always one, as shown above. 
 The log likelihood function has increased from -16,639.24 to -9187.45 in computing the fixed 
effects model.  The chi squared statistic is twice the difference, or 14,903.57.  This would far exceed 
the critical value for 95% significance, so at least at first take, it would seem that the hypothesis of no 
fixed effects should be rejected.  There are two reasons why this test would be invalid.  First, because 
of the incidental parameters issue, the fixed effects estimator is inconsistent.  As such, the statistic just 
computed does not have precisely a chi squared distribution, even in large samples.  Second, the fixed 
effects estimator is based on a reduced sample.  If the test were valid otherwise, it would have to be 
based on the same data set.  This can be accomplished by using the commands 
 
 CREATE  ; meandr = Group Mean(doctor, Str = id) $ 
 REJECT  ; meandr < .1 | meandr > .9 $ 
 PROBIT ; Lhs = doctor ; Rhs = one,x $ 
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(The mean value must be greater than zero and less than one. For groups of seven, it can be as high as 
6/7 = .86.) Using the reduced sample, the log likelihood for the pooled sample would be -10,852.71.  
The chi squared is 11,573.31 which is still extremely large.  But, again, the statistic does not have the 
large sample chi squared distribution that allows a formal test.  It is a rough guide to the results, but not 
precise as a formal rule for building the model. 
 In order to compute marginal effects, it is necessary to compute the index function, which 
does require an αi.  The mean of the estimated values is used for the computation.  The results for the 
pooled data are shown for comparison below the fixed effects results. 
 
These are the partial effects for the fixed effects model.  
 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]   with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Estimated E[y|means,mean alphai]=    .625 
Estimated scale factor for dE/dx=    .379 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01783***     1.22903     6.39  .0000      .01237    .02330 
    EDUC|    -.02726        -.49559    -1.40  .1628     -.06554    .01102 
  HHNINC|     .01852         .01048      .45  .6542     -.06253    .09957 
 NEWHSAT|    -.06882***     -.77347    -5.96  .0000     -.09144   -.04619 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the partial effects for the pooled model. 
 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00297***      .20554    11.66  .0000      .00247    .00347 
    EDUC|    -.00534***     -.09618    -4.30  .0000     -.00778   -.00291 
  HHNINC|    -.00232        -.00130     -.14  .8859     -.03401    .02937 
 NEWHSAT|    -.06075***     -.65528   -49.40  .0000     -.06316   -.05834 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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These are the two way fixed effects estimates.  The time effects, which are usually few in number, 
are shown in the model results, unlike the group effects. 
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -9175.69958 
Estimation based on N =  27326, K =4257 
Inf.Cr.AIC  =26865.399 AIC/N =     .983 
Model estimated: Jun 15, 2011, 11:00:11 
Unbalanced panel has   7293 individuals 
Skipped 3046 groups with inestimable ai 
No. of period specific effects= 6 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .03869***      .01310     2.95  .0031      .01301    .06437 
    EDUC|    -.07985*        .04130    -1.93  .0532     -.16080    .00109 
  HHNINC|     .05329         .10807      .49  .6219     -.15852    .26510 
 NEWHSAT|    -.18090***      .00806   -22.44  .0000     -.19670   -.16510 
 Period1|    -.08649         .15610     -.55  .5795     -.39244    .21946 
 Period2|    -.00782         .13926     -.06  .9552     -.28076    .26513 
 Period3|     .08766         .12423      .71  .4804     -.15583    .33116 
 Period4|     .03048         .10907      .28  .7799     -.18330    .24425 
 Period5|    -.02437         .09372     -.26  .7948     -.20807    .15932 
 Period6|     .05075         .07761      .65  .5131     -.10136    .20287 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]   with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Estimated E[y|means,mean alphai]=    .625 
Estimated scale factor for dE/dx=    .379 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01467***     1.01123     4.35  .0000      .00806    .02129 
    EDUC|    -.03029        -.55056    -1.49  .1370     -.07021    .00964 
  HHNINC|     .02021         .01144      .48  .6289     -.06176    .10218 
 NEWHSAT|    -.06861***     -.77109    -4.34  .0000     -.09962   -.03761 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N9.5 Conditional MLE of the Fixed Effects Logit Model 
 

 Two nonlinear models, the binomial logit and Poisson regression can be estimated by 
conditional maximum likelihood.  This is a specialized approach that was devised to deal with the 
problem of large numbers of incidental parameters discussed in the preceding section. (This model 
was studied, among others, by Chamberlain (1980).)  The log likelihood for the binomial logit model 
with fixed effects is 
 

   logL  =  ( )1 1
log 2 1 ( )iN T

it it ii t
y

= =
′Λ  − + α  ∑ ∑ xβ  

 
The first term, 2yit - 1, makes the sign negative for yit = 0 and positive for yit = 1, and Λ(.) is the 
logistic probability, Λ(z) = 1/[1 + exp(-z)].  Direct maximization of this log likelihood involves 
estimation of N+K parameters, where N is the number of groups.  As N may be extremely large, this 
is a potentially difficult estimation problem.  As we saw in the preceding section, direct estimation 
with up to 100,000 coefficients is feasible.  But, the method discussed here is not restricted – the 
number of groups is unlimited because the fixed effects coefficients are not estimated.  Rather, the 
fixed effects are conditioned out of the log likelihood.  The main appeal of this approach, however, is 
that whereas the brute force estimator of the preceding section is subject to the incidental parameters 
bias, the conditional estimator is not; it is consistent even for small T (even for T = 2). 
 The contribution to the likelihood function of the Ti observations for group i can be 
conditioned on the sum of the observed outcomes to produce the conditional log likelihood, 
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This function can be maximized with respect to the slope parameters, β, with no need to estimate the 
fixed effects parameters.  The number of terms in the denominator of the probability may be 

exceedingly large, as it is the sum of T* terms where T* is equal to the binomial coefficient 








i

i

S
T

 and 

Si is the sum of the binary outcomes for the ith group.  This can be extremely large.  The computation 
of the denominator is accomplished by means of a recursion presented in Krailo and Pike (1984).   Let 
the denominator be denoted A(Ti,Si).  The authors show that for any T and S the function obeys the 
recursion 
   A(T,S)  =  A(T-1,S)  + exp(xiT′β)A(T-1,S-1) 
 
with initial conditions  A(T,s)  =  0  if  T < s  and A(T,0)  =  1. 
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This enables rapid computation of the denominator for Ti up to 200 which is the internal limit.  (If 
your model is this large, expect this computation to be quite time consuming.  Although 200 periods 
(or more) is technically feasible, the number of terms rises geometrically in Ti, and more than 20 or 
30 or so is likely to test the limits of the program (as well as your patience).  Note, as well that when 
the sum the observations is zero or Ti, the conditional probability is one, since there is only a single 
way that each of these can occur.  Thus, groups with sums of zero or Ti fall out of the computation.  
 Estimation of this model is done with Newton’s method.  When the data set is rich enough 
both in terms of variation in xit and in Si, convergence will be quick and simple. 
 
N9.5.1 Command 
 
 The command for estimation of the model by this method is 
 
 LOGIT ; Lhs = dependent variable 
   ; Rhs = dependent variables (do not include one) 
   ; Pds = fixed number of periods or variable for group sizes $ 
 
NOTE:  You must omit the ; FEM from the logit command.  This is the default panel data estimator 
for the binary logit model.  Use ; Fixed Effects or ; FEM to request the unconditional estimator 
discussed in the previous section. 
 
 You may use weights with this estimator.  Presumably, these would reflect replications of 
the observations.  Be sure that the weighting variable takes the same value for all observations within 
a group.  The specification would be 
 
   ; Wts = variable, Noscale 
 
The Noscaling option should be used here if the weights are replication factors.  If not, then do be 
aware that the scaling will make the weights sum to the sample size, not the number of groups. 
 Results that are retained with this estimator are the usual ones from estimation: 
 
 Matrices: b   =  estimate of β 
   varb   =  asymptotic covariance matrix for estimate of β 
 
 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
 
  



N9: Fixed and Random Effects Models for Binary Choice  N-120 

N9.5.2 Application 
 
 The following will fit the binary logit model using the two methods noted.  Bear in mind that 
with Ti < 7, the unconditional estimator is inconsistent and in fact likely to be substantially biased.  
The conditional estimator is consistent.  Based on the simulation results cited earlier, the second 
results should exceed the first by roughly 40%.  Partial effects are shown as well.    
 
 NAMELIST ; x = age,educ,hhninc,newhsat $ 
 LOGIT  ; Lhs = doctor ; Rhs = x,one $ 
 LOGIT ; Lhs = doctor ; Rhs = x 
   ; Panel $ (Chamberlain conditional estimator)  
 LOGIT ; Lhs = doctor ; Rhs = x 
   ; Panel ; FEM $ (unconditional estimator)  
 
These are the pooled estimates. 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function    -16639.86860 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2759.36627 
Significance level               .00000 
McFadden Pseudo R-squared      .0765659 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33289.737 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  23.04975 
P-value=  .00330 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
     AGE|     .01366***      .00121    11.26  .0000      .01128    .01604 
    EDUC|    -.02604***      .00585    -4.45  .0000     -.03750   -.01458 
  HHNINC|    -.01231         .07670     -.16  .8725     -.16264    .13801 
 NEWHSAT|    -.29181***      .00681   -42.86  .0000     -.30515   -.27846 
Constant|    2.28922***      .10379    22.06  .0000     2.08580   2.49265 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

These are the conditional maximum likelihood estimates followed by the unconditional fixed effects 
estimates.  For these data, the unconditional estimates are closer to the conditional ones than might 
have been expected, but still noticeably higher as the received results would predict.  The suggested 
proportionality result also seems to be operating, but with an unbalanced panel, this would not 
necessarily occur, and should not be used as any kind of firm rule (save, perhaps for the case of Ti = 2). 
 
+--------------------------------------------------+ 
| Panel Data Binomial Logit Model                  | 
| Number of individuals          =    7293         | 
| Number of periods              =TI               | 
| Conditioning event is the sum of DOCTOR          | 
+--------------------------------------------------+ 
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----------------------------------------------------------------------------- 
Logit Model for Panel Data 
Dependent variable               DOCTOR 
Log likelihood function     -6092.58175 
Estimation based on N =  27326, K =   4 
Inf.Cr.AIC  =12193.164 AIC/N =     .446 
Hosmer-Lemeshow chi-squared = ********* 
P-value=  .00000 with deg.fr. =       8 
Fixed Effect Logit Model for Panel Data 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .06391***      .00659     9.70  .0000      .05100    .07683 
    EDUC|    -.09127         .05752    -1.59  .1126     -.20401    .02147 
  HHNINC|     .06121         .16058      .38  .7031     -.25352    .37594 
 NEWHSAT|    -.23717***      .01208   -19.63  .0000     -.26086   -.21349 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
FIXED EFFECTS Logit  Model 
Dependent variable               DOCTOR 
Log likelihood function     -9279.06752 
Estimation based on N =  27326, K =4251 
Inf.Cr.AIC  =27060.135 AIC/N =     .990 
Unbalanced panel has   7293 individuals 
Skipped 3046 groups with inestimable ai 
LOGIT (Logistic) probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .07925***      .00738    10.74  .0000      .06479    .09372 
    EDUC|    -.11803*        .06779    -1.74  .0817     -.25090    .01484 
  HHNINC|     .07814         .18102      .43  .6660     -.27665    .43294 
 NEWHSAT|    -.30367***      .01376   -22.07  .0000     -.33064   -.27670 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
 

 When the panel is balanced, the estimator also produces a frequency count for the 
conditioning sums.  For example, if we restrict our sample to the individuals who are in the sample 
for all seven periods, the following table will also appear with the results.    
 

+--------------------------------------------------+ 
| Panel Data Binomial Logit Model                  | 
| Number of individuals          =     887         | 
| Number of periods              =       7         | 
| Conditioning event is the sum of DOCTOR          | 
| Distribution of sums over the  7 periods:        | 
| Sum        0     1     2     3     4     5     6 | 
| Number    48    73    82   100   115   116   151 | 
| Pct.    5.41  8.23  9.24 11.27 12.97 13.08 17.02 | 
| Sum        7     8     9    10    11    12    13 | 
| Number   202     0     0     0     0     0     0 | 
| Pct.   22.77   .00   .00   .00   .00   .00   .00 | 
+--------------------------------------------------+ 
 

This count would be meaningless in an unbalanced panel, so it is omitted. 
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 How should you choose which estimator to use?  We should note that the two approaches  
will generally give different numerical answers. The conditional and unconditional log likelihoods 
are different.  In general, you should use the conditional estimator if T is not relatively large.  The 
conditional estimator is less efficient by construction, but consistency trumps efficiency at this level.  
In addition, if you have more than 100,000 groups, you must use the conditional estimator.  If, on the 
other hand, T is larger than, say, 10, and N is less than 100,000, then the unconditional estimator 
might be preferred.  The additional consideration discussed in the next section might also weigh in 
favor of the unconditional estimator. 
 

N9.5.3 Estimating the Individual Constant Terms 
 
 The conditional fixed effects estimator for the logit model specifically eliminates the fixed 
effects, so they are not directly estimated.  Without them, however, the parameter estimates are of 
relatively little use.  Fitted probabilities and marginal effects will both require some estimate of a 
constant term. You can request post estimation computation of the fixed effects by using the 
specification  
   ; Parameters 
 
This saves a matrix named alphafe in your matrix work area.  This will be a vector with number of 
elements equal to the number of groups, containing an ad hoc estimate of αi for the groups for which 
there is within group variation in yit. We note how this is done.  The logit model is 
 
   Prob[yit = 1|xit] = Λ(β′xit + αi) where Λ(z) = exp(z)/[1+exp(z)] 
 
After estimation of β, we treat the β′xit part of this as known, and let zit = β′xit. These are now just 
data.  As such, the log likelihood for group i would be 
 
   log Li = Σt log Λ[(2yit – 1)(zit + αi)] 
 
The likelihood equation for αi would be 
 
   Σt (yit – Pit) = 0 where Pit = Λ(zit + αi) 
 
The implicit solution for αi is given by  
 
   Σt yit  =  Σt wit / (ai + wit) where wit = exp(zit) and ai = exp(-αi).   
 
If yit is always zero or always one in every period, t, then there is no solution to maximizing this 
function.  The corresponding element of alphafe will be set equal to -1.d20 or +1.d20  But, if the yits 
differ, then the αi that equates the left and right hand sides can be found by a straightforward search. 
The remaining rows of alphafe will contain the individual specific solutions to these equations.  
(This is the method that Heckman and MaCurdy (1980) suggested for estimation of the fixed effects 
probit model.)   
 We emphasize, this is not the maximum likelihood estimator of αi because the conditional 
estimator of β is not the unconditional MLE.  Nor, in fact, is it consistent in N.  It is consistent in Ti, 
but that is not helpful here since Ti is fixed, and presumably small.  This estimator is a means to an 
end.  The estimated marginal effects can be based on this estimator – it will give a reasonable 
estimator of an overall average of the constant terms, which is all that is needed for the marginal 
effects.  Individual predicted probabilities remain ambiguous. 
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N9.5.4 A Hausman Test for Fixed Effects in the Logit Model 
 

 The fixed effects estimator is illustrated with the data used in the preceding examples:  Note 
that the first estimator is the pooled estimator.  Under the alternative hypothesis of fixed effects, it is 
inconsistent.  Under the null, it is consistent and efficient. The second estimator is the conditional MLE 
and the third one is the unconditional fixed effects estimator.  The unconditional fixed estimator cannot 
be used for formal testing because of the incidental parameters problem – it is inconsistent.  The pooled 
estimator and the conditional fixed effects estimator use different samples, so the likelihoods are not 
comparable.  Therefore, testing for the joint significance of the effects is problematic for the 
conditional estimator.  What one can do is use a Hausman test.  The test is constructed as follows: 
 

             H0:  There are no fixed effects; unconditional ML estimators are b0 and V0 

             H1:  There are fixed effects: conditional ML estimators are b1 and V1 
 

Under H0, b0 is consistent and efficient, while b1 is consistent but inefficient.  Under H1, b0 is 
inconsistent while b1 is consistent and efficient.  The Hausman statistic would therefore be 
 

H  =  (b1 - b0)′ [V1 - V0]-1(b1 - b0) 
 

The statistic can be constructed as follows: 
 

 NAMELIST ; x = the independent variables, not including one $ 
 LOGIT ; Lhs =  ... ; Rhs = x, one $ 
 CALC  ; k = Col(x) $ 
 MATRIX ; b0 = b(1:k) ; v0 = varb(1:k,1:k) $ 
 LOGIT ; Lhs = ... ; Rhs = x ; Pds = ... ; FEM $ 
 MATRIX ; b1 = b ; v1 = varb $ 
 MATRIX ; d = b1 - b0 ; List ; h = d’ * Nvsm(v1, -v0) * d $ 
 

We apply this to our innovation data by defining x = imprtshr,fdishare,logsales,relsize,prod and the 
dependent variable is innov.  The remaining commands are generic. 
 The three sets of parameter estimates were given earlier.  The Hausman statistic using the 
procedure suggested above is 
 

 SAMPLE ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 NAMELIST ; x = age,educ,hhninc,newhsat $ 
 LOGIT ; Lhs = doctor ; Rhs = x, one $ 
 CALC  ; k = Col(x) $ 
 MATRIX ; b0 = b(1:k) ; v0 = Varb(1:k,1:k) $ 
 LOGIT ; Lhs = doctor ; Rhs = x ; Panel $ 
 MATRIX ; b1 = b ; v1 = varb $ 
 MATRIX ; d = b1 - b0 ; List ; h = d' * Nvsm(v1, -v0) * d $ 
 

The final result of the MATRIX command is 
 
       H|             1 
--------+-------------- 
       1|       98.1550 
 

This statistic has four degrees of freedom.  The critical value from the chi squared table is 9.49, so 
based on this test, we would reject the null hypothesis of no fixed effects. 
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N9.6 Random Effects Models for Binary Choice  
 
 The five models we have developed here can also be fit with random effects instead of fixed 
effects.  The structure of the random effects model is 
 
   zit | ui  =  β′xit  +  εit  +  ui   
 
where ui is the unobserved heterogeneity for the ith individual, 
 
   ui  ~  N[0,σu

2], 
 
and  εit is the stochastic term in the model that provides the conditional distribution. 
 
   Prob[yit  =  1| xit, ui]  =  F(β′xit   +  ui), i = 1,...,N, t = 1,...,Ti. 
 
where F(.) is the distribution discussed earlier (normal, logistic, extreme value, Gompertz).  Note 
that the unobserved heterogeneity, ui is the same in every period.   The parameters of the model are 
fit by maximum likelihood.  As usual in binary choice models, the underlying variance, 
 
   σ2   =  σu

2  +  σε
2 

 
is not identified.  The reduced form parameter,  
 

   ρ   =  
22

2

u

u

σ+σ

σ

ε

,  

 
is estimated directly.  With the normalization that we used earlier, σε

2 = 1, we can determine  
 

   σu  =  
ρ−

ρ
1

.    

 
Further discussion of the estimation of these structural parameters appears at the end of this section. 
 The model command for this form of the model is 
 
 PROBIT ; Lhs = dependent variable 
 or LOGIT ; Rhs = independent variables - not including one 
   ; Panel 
   ; Random Effects $ 
 
NOTE:  For this model, your Rhs list should include a constant term, one. 
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 Partial effects are computed by setting the heterogeneity term, ui to its expected value of zero.  
Restrictions may be tested and imposed exactly as in the model with no heterogeneity.  Since 
restrictions can be imposed on all parameters, including ρ,  you can fix the value of ρ at any desired 
value.  Do note that forcing the ancillary parameter, in this case, ρ, to equal a slope parameter will 
almost surely produce unsatisfactory results, and may impede or even prevent convergence of the 
iterations. 
 Starting values for the iterations are obtained by fitting the basic model without random 
effects.  Thus, the initial results in the output for these models will be the binary choice models 
discussed in the preceding sections. You may provide your own starting values for the parameters 
with 
   ; Start = ... the list of values for β, value for ρ  
 
There is no natural moment based estimator for ρ, so a relatively low guess is used as the starting 
value instead.  The starting value for ρ is approximately .2 (θ = [2ρ/(1-ρ)]1/2  ≈.29 – see the technical 
details below.  Maximum likelihood estimates are then computed and reported, along with the usual 
diagnostic statistics.  (An example appears below.) This model is fit by approximating the necessary 
integrals in the log likelihood function by Hermite quadrature.  An alternative approach to estimating 
the same model is by Monte Carlo simulation.  You can do exactly this by fitting the model as a 
random parameters model with only a random constant term.   
 Your data might not be consistent with the random effects model.  That is, there might be no 
discernible evidence of random effects in your data.  In this case, the estimate of ρ will turn out to be 
negligible.  If so, the estimation program issues a diagnostic and reverts back to the original, 
uncorrelated formulation and reports (again) the results for the basic model. 
 Results that are kept for this model are 
 
 Matrices: b   =  estimate of β 
   varb   =  asymptotic covariance matrix for estimate of β 
 
 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
   rho =  estimated value of ρ 
   varrho =  estimated asymptotic variance of estimator of ρ 
 
 Last Model: b_variables, ru 
 
 Last Function: Prob(y = 1|x,u=0)  (Note: None if you use ; RPM to fit the RE model.) 
 
The additional specification ; Par in the command requests that ρ be included in b and the additional 
row and column corresponding to ρ be included in varb.  If you have included ; Par, rho and varrho 
will also appear at the appropriate places in b and varb.   
 
NOTE:  The hypothesis of no group effects can be tested with a Wald test (simple t test) or with a 
likelihood ratio test.  The LM approach, using ; Maxit = 0 with a zero starting value for ρ does not 
work in this setting because with ρ = 0, the last row of the covariance matrix turns out to contain 
zeros. 
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Application 
 
 The following study fits the probit model under four sets of assumptions.  The first uses the 
pooled estimator, then corrects the standard errors for the clustering in the data.  The second is the 
unconditional fixed effects estimator.  The third and fourth compute the random effects estimator, 
first by quadrature, using the Butler and Moffitt method and the second using maximum simulated 
likelihood with Halton draws.  The output is trimmed in each model to compare only the estimates 
and the marginal effects. 
 
 NAMELIST ; x = age,educ,hhninc,newhsat $ 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 PROBIT  ; Lhs = doctor ; Rhs = x,one ; Partial Effects 
   ; Cluster = id $ 
 PROBIT ; Lhs = doctor ; Rhs = x ; Partial Effects 
   ; Panel ; FEM $ 
 PROBIT ; Lhs = doctor ; Rhs = x,one ; Partial Effects 
   ; Panel ; Random Effects $ 
 
The random parameters model described in Chapter E31 provides an alternative estimator for the 
random effects model based on maximum simulated likelihood rather than with Hermite quadrature.  
The general syntax is used below for a probit model to illustrate the method.   
 
 PROBIT ; Lhs  = doctor ; Rhs = x,one ; Partial Effects 
   ; Panel ; RPM ; Fcn = one(n) ; Pts = 25 ; Halton $ 
 CALC  ; List ; b(6)^2/(1+b(6)^2) $ 
 
These are the pooled estimates with corrected standard errors. 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -16639.23971 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2760.62404 
Significance level               .00000 
McFadden Pseudo R-squared      .0766008 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33288.479 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  20.51061 
P-value=  .00857 with deg.fr. =       8 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .00856***      .00098     8.76  .0000      .00664    .01047 
    EDUC|    -.01540***      .00499    -3.09  .0020     -.02517   -.00562 
  HHNINC|    -.00668         .05646     -.12  .9058     -.11735    .10398 
 NEWHSAT|    -.17499***      .00490   -35.72  .0000     -.18460   -.16539 
Constant|    1.35879***      .08475    16.03  .0000     1.19268   1.52491 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The unconditional fixed effects estimates appear next.  They differ greatly from the pooled estimates.  
It is worth noting that under the random effects assumption, neither the pooled nor these fixed effects 
estimates are consistent. 
 
----------------------------------------------------------------------------- 
FIXED EFFECTS Probit Model 
Dependent variable               DOCTOR 
Log likelihood function     -9187.45120 
Estimation based on N =  27326, K =4251 
Inf.Cr.AIC  =26876.902 AIC/N =     .984 
Model estimated: Jun 15, 2011, 14:02:10 
Unbalanced panel has   7293 individuals 
Skipped 3046 groups with inestimable ai 
PROBIT (normal)  probability model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .04701***      .00438    10.74  .0000      .03844    .05559 
    EDUC|    -.07187*        .04111    -1.75  .0804     -.15244    .00870 
  HHNINC|     .04883         .10782      .45  .6506     -.16249    .26015 
 NEWHSAT|    -.18143***      .00805   -22.53  .0000     -.19721   -.16564 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the random effects estimates.  The variance of u and correlation parameter ρ are given 
explicitly in the results.  In the MSL random effects estimates that appear next, only the standard 
deviation of u is given.  Squaring the 1.37554428 gives 1.892122, which is nearly the same as the 
1.888060 given in the first results.  In order to compare the first estimates to the MSL estimates, it is 
necessary to divide the first by the estimate of 1+ρ.  Thus, the scaled coefficient on age in the first 
set of estimates would be 0.019322; that on educ would be -.027611, and so on. Thus, the two sets of 
estimates are quite similar. 
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----------------------------------------------------------------------------- 
Random Effects Binary Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -15614.50229 
Restricted log likelihood  -16639.23971 
Chi squared [   1 d.f.]      2049.47485 
Significance level               .00000 
McFadden Pseudo R-squared      .0615856 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =31241.005 AIC/N =    1.143 
Unbalanced panel has   7293 individuals 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01305***      .00119    10.97  .0000      .01072    .01538 
    EDUC|    -.01840***      .00594    -3.10  .0020     -.03005   -.00675 
  HHNINC|     .06299         .06387      .99  .3240     -.06218    .18817 
 NEWHSAT|    -.19418***      .00520   -37.32  .0000     -.20437   -.18398 
Constant|    1.42666***      .09644    14.79  .0000     1.23765   1.61567 
     Rho|     .39553***      .01045    37.84  .0000      .37504    .41601 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Random Coefficients  Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -15619.14356 
Restricted log likelihood  -16639.23971 
Chi squared [   1 d.f.]      2040.19230 
Significance level               .00000 
McFadden Pseudo R-squared      .0613067 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =31250.287 AIC/N =    1.144 
Model estimated: Jun 15, 2011, 14:04:01 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01288***      .00083    15.58  .0000      .01126    .01450 
    EDUC|    -.01823***      .00395    -4.61  .0000     -.02598   -.01048 
  HHNINC|     .06741         .05108     1.32  .1870     -.03271    .16752 
 NEWHSAT|    -.19383***      .00435   -44.58  .0000     -.20235   -.18531 
        |Means for random parameters 
Constant|    1.42554***      .06828    20.88  .0000     1.29172   1.55936 
        |Scale parameters for dists. of random parameters 
Constant|     .80930***      .01088    74.38  .0000      .78797    .83062 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 The random parameters approach provides an alternative way to estimate a random effects 
model.   A comparison of the two sets of results illustrates the general result that both are consistent 
estimators of the same parameters.  We note, however, the Hermite quadrature approach produces an 
estimator of ρ = σu

2/(1 + σu
2) while the RP approach produces an estimator of σu.  To check the 

consistency of the two approaches, we compute an estimate of ρ based on the RP results.  The result 
below demonstrates the near equivalence of the two approaches. 
 
CALC ; List ; b(6)^2/(1+b(6)^2)$ 
[CALC] *Result*=       .3957574 
 
These are the four sets of estimated partial effects. 
 
Pooled 
----------------------------------------------------------------------------- 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00297***      .20554     8.83  .0000      .00231    .00363 
    EDUC|    -.00534***     -.09618    -3.09  .0020     -.00874   -.00195 
  HHNINC|    -.00232        -.00130     -.12  .9058     -.04074    .03610 
 NEWHSAT|    -.06075***     -.65528   -39.87  .0000     -.06374   -.05777 
--------+-------------------------------------------------------------------- 
Unconditional Fixed Effects 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]    
Estimated E[y|means,mean alphai]=    .625 
Estimated scale factor for dE/dx=    .379 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01783***     1.22903     6.39  .0000      .01237    .02330 
    EDUC|    -.02726        -.49559    -1.40  .1628     -.06554    .01102 
  HHNINC|     .01852         .01048      .45  .6542     -.06253    .09957 
 NEWHSAT|    -.06882***     -.77347    -5.96  .0000     -.09144   -.04619 
--------+-------------------------------------------------------------------- 
Random Effects 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]   
Observations used for means are All Obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00376***      .25254    11.06  .0000      .00310    .00443 
    EDUC|    -.00531***     -.09261    -3.10  .0020     -.00866   -.00195 
  HHNINC|     .01817         .00986      .99  .3239     -.01793    .05426 
 NEWHSAT|    -.05600***     -.58577   -37.33  .0000     -.05894   -.05306 
--------+-------------------------------------------------------------------- 
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Random Constant Term 
----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Scale Factor for Marginal Effects   .3541 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00456***      .28882    11.14  .0000      .00376    .00536 
    EDUC|    -.00646***     -.10635    -5.06  .0000     -.00896   -.00396 
  HHNINC|     .02387         .01223     1.32  .1882     -.01168    .05942 
 NEWHSAT|    -.06864***     -.67771   -33.24  .0000     -.07269   -.06459 
--------+-------------------------------------------------------------------- 
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N10: Random Parameter Models for Binary 
Choice 

 
N10.1 Introduction 
 
 The probit and logit models are extended to panel data formats as internal procedures.  Four 
classes of models are supported: 
 

• Fixed effects:     Prob[yit = 1]  =  F(β′xit  +  αi),  
    αi correlated with xit, 

 
• Random effects: Prob[yit = 1]  =  Prob[β′xit + εit + ui > 0], 

    ui uncorrelated with xit, 
 
• Random parameters: Prob[yit = 1]  =  F(βi′xit),   

    βi | i  ~  h(β|i) with mean vector β and covariance matrix Σ 
 
• Latent class:  Prob[yit = 1|class j]  =  F(βj′xit),  

    Prob[class = j]  =  Fj(θ) 
 
The first two were developed in Chapter E30.  This chapter documents the use of random parameters 
(mixed) and latent class models for binary choice. Technical details on estimation of random 
parameters are given in Chapter R24. Technical details for estimation of latent class models are 
given in Chapter R25. 
 
NOTE:  None of these panel data models require balanced panels.  The group sizes may always vary. 
 
The random parameters and latent class models do not require panel data.  You may fit them with a 
cross section.  If you omit ; Pds and ; Panel in these cases, the cross section case, Ti = 1, is assumed.  
(You can also specify ; Pds = 1.)  Note that this group of models (and all of the panel data models 
described in the rest of this manual) does not use the ; Str = variable specification for indicating the 
panel – that is only for REGRESS. 
 The probabilities and density functions supported here are as follows: 
 
Probit 
 

 F = dtti

∫
β

∞− π

−x' 2

2
)2/exp(   =  Φ(β′xi),     f = φ(β′xi) 

 
Logit 
 

 F = exp( )
1 exp( )

i

i

′
′+

x
x

β
β

  =  Λ(β′xi),    f =  Λ(β′xi)[1 - Λ(β′xi)] 
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N10.2 Probit and Logit Models with Random Parameters 
 
 We have extended the random parameters model to the binary choice models as well as 
many other models including the tobit and exponential regression models. Some of the relevant 
background literature includes Revelt and Train (1998), Train (1998), Brownstone and Train (1999), 
and Greene (2001). (In that literature, the models are described under the heading ‘mixed logit’ 
models.  We will require a broader rubric for our purposes.)  The structure of the random parameters 
model is based on the conditional probability 
 
   Prob[yit  =  1| xit, βi]  =  F(βi′xit), i = 1,...,N, t = 1,...,Ti. 
 
where F(.) is the distribution discussed earlier (normal, logistic, extreme value, Gompertz).  The model 
assumes that parameters are randomly distributed with possibly heterogeneous (across individuals) 
 
   E[βi| zi]  =  β  +  ∆zi,   
 
(the second term is optional – the mean may be constant), 
 
   Var[βi| zi]  =  Σ. 
 
The model is operationalized by writing 
 
   βi  =  β  +  ∆zi  +  Γvi where vi ~ N[0,I]. 
 
As noted earlier, the heterogeneity term is optional.  In addition, it may be assumed that some of the 
parameters are nonrandom.  It is convenient to analyze the model in this fully general form here.  
One can easily accommodate nonrandom parameters just by placing rows of zeros in the appropriate 
places in ∆ and Γ.  The command structure for these models makes this simple to do. 
 
NOTE:  If there is no heterogeneity in the mean, and only the constant term is considered random – 
the model may specify that some parameters are nonrandom – then this model is equivalent to the 
random effects model of the preceding section. 
 
N10.2.1 Command for the Random Parameters Models 
 
 The basic model command for this form of the model is 
 
 PROBIT ; Lhs = dependent variable 
 or LOGIT ; Rhs = independent variables 
   ; Panel or Pds = fixed periods or count variable 
   ; RPM 
   ; Fcn = random parameters specification $ 
 
NOTE:  For this model, your Rhs list should include a constant term. 
 
NOTE:  The ; Pds specification is optional.  You may fit these models with cross section data.   
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Specifying Random Parameters 
 
 The ; Fcn = specification is used to define the random parameters.  It is constructed from 
the list of Rhs names as follows:  Suppose your model is specified by 
 
   ; Rhs = one, x1, x2, x3, x4 
 
This involves five coefficients.  Any or all of them may be random; any not specified as random are 
assumed to be constant.  For those that you wish to specify as random, use 
 
   ; Fcn = variable name (distribution),  
    variable name (distribution), ... 
 
Three distributions may be specified.  All random variables have mean 0. 
 
   n =  standard normal distribution, variance = 1, 
   t =  triangular (tent shaped) distribution in [-1,+1], variance = 1/6, 
   u =  standard uniform distribution [-1,1], variance = 1/3, 
   l =  lognormal distribution, variance = exp(.5), 
   o =  tent shaped distribution with one anchor at zero 
   g =  log gamma 
  or c =  variance = 0.  (The parameter is not random.) 
 
Each of these is scaled as it enters the distribution, so the variance is only that of the random draw 
before multiplication. The normal distribution is used most often, but there are several other 
possibilities. Numerous other formats for random parameters are described in Section R24.3.  Those 
results all apply to the binary choice models.  To specify that the constant term and the coefficient on 
x1 are each normally distributed with given mean and variance, use 
 
   ; Fcn = one(n), x1(n). 
 
This specifies that the first and second coefficients are random while the remainder are not.  The 
parameters estimated will be the mean and standard deviations of the distributions of these two 
parameters and the fixed values of the other three.   
 The results include estimates of the means and standard deviations of the distributions of the 
random parameters and the estimates of the nonrandom parameters.  The log likelihood shown in the 
results is conditioned on the random draws, so one might be cautious about using it to test 
hypotheses, for example, that the parameters are random at all by comparing it to the log likelihood 
from the basic model with all nonrandom coefficients.  The test becomes valid as R increases, but the 
50 used in our application is probably too few.  With several hundred draws, one could reliably use 
the simulated log likelihood for testing purposes. 
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Correlated Random Parameters 
 
 The preceding defines an estimator for a model in which the covariance matrix of the 
random parameters is diagonal.  To extend it to a model in which the parameters are freely 
correlated, add 
   ; Correlation (or just ; Cor) 
 
to the command.  An example appears below.   
 
Heterogeneity in the Means 
 
 The preceding examples have specified that the mean of the random variable is fixed over 
individuals.  If there is measured heterogeneity in the means, in the form of 
 
   E[βki]  =  βk  +  Σm δkm zmi 
 
where zm is a variable that is measured for each individual, then the command may be modified to 
 
   ; RPM  =  list of variables in z 
 
In the data set, these variables must be repeated for each observation in the group.  In the application 
below, we have specified that the random parameters have different means for individuals depending 
on gender and marital status. 
 
Autocorrelation 
 
 You may change the character of the heterogeneity from a time invariant effect to an AR(1) 
process,  
   vkit  =  ρkvki,t-1  +  wkit.   
 
N10.2.2 Results from the Estimator and Applications 
 
 The results produced by this estimator begin with the familiar diagnostic statistics, likelihood 
function, information criteria, etc.  The coefficient estimates are possibly rearranged so that the 
nonrandom parameters appear first.  In the base case of a diagonal covariance matrix, the means of 
the random parameters appear next, followed in the same order by the estimated scale parameters.  
The example below illustrates.  For normally distributed parameters, these are the standard 
deviations.  For other distributions, these scale factors are multiplied by the relevant standard 
deviation to obtain the standard deviation of the parameter.  For example, if we had specified 
 
   ; Fcn = educ(u) 
 
in the model command, then the parameter on educ would be defined to have mean 1.697 and 
standard deviation .08084 times 1/sqr(6).  (The uniform draw is transformed to be U[-1,+1].) 
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The commands are: 
 
 SAMPLE ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 NAMELIST ; x = age,educ,hhninc,hsat $ 
 LOGIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects ; Panel ; RPM  
; Fcn = one(n),hhninc(n),hsat(n)  
; Pts = 25 ; Halton $ 

 
----------------------------------------------------------------------------- 
Logit    Regression Start Values for DOCTOR 
Dependent variable               DOCTOR 
Log likelihood function    -16639.59764 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33289.195 AIC/N =    1.218 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .01366***      .00121    11.25  .0000      .01128    .01603 
    EDUC|    -.02603***      .00585    -4.45  .0000     -.03749   -.01457 
Constant|    2.28946***      .10379    22.06  .0000     2.08604   2.49288 
  HHNINC|    -.01221         .07670     -.16  .8735     -.16254    .13812 
    HSAT|    -.29185***      .00681   -42.87  .0000     -.30519   -.27850 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Random Coefficients  Logit    Model 
Dependent variable               DOCTOR 
Log likelihood function    -15617.53717 
Restricted log likelihood  -16639.59764 
Chi squared [   3 d.f.]      2044.12094 
Significance level               .00000 
McFadden Pseudo R-squared      .0614234 
Estimation based on N =  27326, K =   8 
Inf.Cr.AIC  =31251.074 AIC/N =    1.144 
Unbalanced panel has   7293 individuals 
LOGIT (Logistic) probability model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01541***      .00100    15.39  .0000      .01344    .01737 
    EDUC|    -.02538***      .00475    -5.34  .0000     -.03469   -.01607 
        |Means for random parameters 
Constant|    1.77433***      .08285    21.42  .0000     1.61195   1.93671 
  HHNINC|     .08517         .06181     1.38  .1682     -.03598    .20632 
    HSAT|    -.23532***      .00541   -43.50  .0000     -.24592   -.22471 
        |Scale parameters for dists. of random parameters 
Constant|    1.37499***      .01982    69.36  .0000     1.33614   1.41384 
  HHNINC|     .18336***      .03792     4.84  .0000      .10904    .25768 
    HSAT|     .00080         .00204      .39  .6960     -.00319    .00479 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point    .6436 
Scale Factor for Marginal Effects   .2294 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00353***      .23902    15.53  .0000      .00309    .00398 
    EDUC|    -.00582***     -.10241    -5.36  .0000     -.00795   -.00369 
  HHNINC|     .01954         .01069     1.38  .1686     -.00827    .04735 
    HSAT|    -.05398***     -.56914   -29.82  .0000     -.05753   -.05043 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 When the random parameters are specified to be correlated, the output is changed.  The 
parameter vector in this case is written 
 
   βi  =  β0  +  Γ vi 
 
where Γ is a lower triangular Cholesky matrix.  In this case, the nonrandom parameters and the 
means of the random parameters are reported as before.  The table then reports Γ in two parts.  The 
diagonal elements are reported first.  These would correspond to the case above.  The nonzero 
elements of Γ below the diagonal are reported next, rowwise.  In the example below, there are three 
random parameters, so there are 1 + 2 elements below the main diagonal of Γ in the reported results.  
The covariance matrix for the random parameters in this specification is 
 
   Var [ βi]  =  Ω  =  ΓAΓ′ 
 
where A is the known diagonal covariance matrix of vi.  For normally distributed parameters, A = I.  
This matrix is reported separately after the tabled coefficient estimates.  Finally, the square roots of 
the diagonal elements of the estimate of Ω are reported, followed by the correlation matrix derived 
from Ω.  The example below illustrates. 
 
 LOGIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Pds = _groupti  
   ; RPM  
   ; Fcn = one(n),hhninc(n),newhsat(n)  

; Correlated 
   ; Pts = 25  

; Halton $ 
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----------------------------------------------------------------------------- 
Random Coefficients  Logit    Model 
Dependent variable               DOCTOR 
Log likelihood function    -15606.79747 
Restricted log likelihood  -16639.59764 
Chi squared [   6 d.f.]      2065.60035 
Significance level               .00000 
McFadden Pseudo R-squared      .0620688 
Estimation based on N =  27326, K =  11 
Inf.Cr.AIC  =31235.595 AIC/N =    1.143 
Unbalanced panel has   7293 individuals 
LOGIT (Logistic) probability model 
Simulation based on  25 Halton draws 
----------------------------------------------------------------------------- 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01471***      .00101    14.61  .0000      .01274    .01668 
    EDUC|    -.02740***      .00475    -5.77  .0000     -.03670   -.01810 
        |Means for random parameters 
Constant|    1.98083***      .08660    22.87  .0000     1.81111   2.15056 
  HHNINC|     .09438         .06586     1.43  .1518     -.03470    .22346 
    HSAT|    -.25657***      .00615   -41.74  .0000     -.26861   -.24452 
        |Diagonal elements of Cholesky matrix 
Constant|    1.90753***      .07911    24.11  .0000     1.75248   2.06257 
  HHNINC|     .91257***      .08028    11.37  .0000      .75522   1.06991 
    HSAT|     .01770***      .00203     8.74  .0000      .01373    .02167 
        |Below diagonal elements of Cholesky matrix 
lHHN_ONE|    -.00234         .10500     -.02  .9822     -.20813    .20344 
lHSA_ONE|    -.08124***      .00932    -8.71  .0000     -.09951   -.06297 
lHSA_HHN|     .09466***      .00433    21.88  .0000      .08617    .10314 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       3.63867    -.00447279      -.154960 
       2|    -.00447279       .832783      .0865698 
       3|      -.154960      .0865698      .0158724 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.90753 
       2|       .912570 
       3|       .125986 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000    -.00256946      -.644803 
       2|    -.00256946       1.00000       .752973 
       3|      -.644803       .752973       1.00000 
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----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point    .6464 
Scale Factor for Marginal Effects   .2286 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00336***      .22640    14.71  .0000      .00291    .00381 
    EDUC|    -.00626***     -.10967    -5.78  .0000     -.00838   -.00414 
  HHNINC|     .02157         .01175     1.43  .1522     -.00796    .05110 
    HSAT|    -.05864***     -.61557   -27.65  .0000     -.06280   -.05448 
--------+-------------------------------------------------------------------- 
 
 Finally, if  you specify that there is observable heterogeneity in the means of the parameters 
with 
   ; RPM = list of variables 
 
then the model changes to 
 
   βi  =  β0  +  ∆zi  +   Γ vi. 
 
The elements of ∆, rowwise, are reported after the decomposition of Γ.  The example below, which 
contains gender and marital status, illustrates.  Note that a compound name is created for the 
elements of ∆. 
 
 LOGIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Panel  
   ; RPM = female,married 
   ; Fcn = one(n),hhninc(n),hsat(n)   

; Correlated 
   ; Pts = 25  

; Halton $ 
 
----------------------------------------------------------------------------- 
Random Coefficients  Logit    Model 
Dependent variable               DOCTOR 
Log likelihood function    -15470.04441 
Restricted log likelihood  -16639.59764 
Chi squared [  12 d.f.]      2339.10646 
Significance level               .00000 
McFadden Pseudo R-squared      .0702874 
Estimation based on N =  27326, K =  17 
Inf.Cr.AIC  =30974.089 AIC/N =    1.134 
Model estimated: Jun 15, 2011, 18:43:49 
Unbalanced panel has   7293 individuals 
LOGIT (Logistic) probability model 
Simulation based on  25 Halton draws 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01375***      .00104    13.24  .0000      .01171    .01578 
    EDUC|    -.00913*        .00488    -1.87  .0613     -.01870    .00043 
        |Means for random parameters 
Constant|    1.58591***      .12092    13.11  .0000     1.34890   1.82291 
  HHNINC|     .10102         .12817      .79  .4306     -.15018    .35223 
    HSAT|    -.25929***      .01173   -22.11  .0000     -.28228   -.23630 
        |Diagonal elements of Cholesky matrix 
Constant|    1.85093***      .07867    23.53  .0000     1.69674   2.00512 
  HHNINC|    1.17355***      .08054    14.57  .0000     1.01570   1.33140 
    HSAT|     .00147         .00202      .73  .4682     -.00250    .00543 
        |Below diagonal elements of Cholesky matrix 
lHHN_ONE|     .15728         .10367     1.52  .1293     -.04592    .36047 
lHSA_ONE|    -.06741***      .00926    -7.28  .0000     -.08555   -.04926 
lHSA_HHN|     .07996***      .00426    18.78  .0000      .07161    .08831 
        |Heterogeneity in the means of random parameters 
cONE_FEM|     .26949***      .09017     2.99  .0028      .09276    .44622 
cONE_MAR|     .11320         .10064     1.12  .2607     -.08404    .31044 
cHHN_FEM|     .10364         .12514      .83  .4075     -.14162    .34891 
cHHN_MAR|    -.08432         .13820     -.61  .5418     -.35520    .18655 
cHSA_FEM|     .03242***      .01081     3.00  .0027      .01124    .05360 
cHSA_MAR|    -.01361         .01218    -1.12  .2638     -.03748    .01026 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       3.42595       .291109      -.124767 
       2|       .291109       1.40195      .0832340 
       3|      -.124767      .0832340      .0109393 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.85093 
       2|       1.18404 
       3|       .104591 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000       .132831      -.644484 
       2|       .132831       1.00000       .672107 
       3|      -.644484       .672107       1.00000 
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----------------------------------------------------------------------------- 
Partial derivatives of expected val. with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Conditional Mean at Sample Point    .6687 
Scale Factor for Marginal Effects   .2215 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00305*        .19821     1.89  .0591     -.00012    .00621 
    EDUC|    -.00202        -.03425    -1.28  .1994     -.00511    .00107 
  HHNINC|     .02238         .01178      .38  .7014     -.09203    .13679 
    HSAT|    -.05744        -.58287     -.70  .4825     -.21776    .10288 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
  
Results saved by this estimator are: 
 
 Matrices: b    =  estimate of θ 
   varb    =  asymptotic covariance matrix for estimate of θ. 
   gammaprm   =  the estimate of Γ 
   beta_i  =  individual specific parameters, if ; Par is requested 
   sdbeta_i =  individual specific parameter standard deviations if ; Par  
          is requested 
 
 Scalars: kreg    =  number of variables in Rhs 
   nreg    =  number of observations 
   logl    =  log likelihood function 
 
 Last Model: b_variables  
 
 Last Function: None 
 
 Simulation based estimation is time consuming.  The sample size here is fairly large (27,326 
observations).  We limited the simulation to 25 Halton draws.  The amount of computation rises 
linearly with the number of draws.  A typical application of the sort pursued here would use perhaps 
300 draws, or 12 times what we used.  Estimation of the last model required two minutes and 30 
seconds, so in full production, estimation of this model might take 30 minutes.  In general, you can 
get an idea about estimation times by starting with a small model and a small number of draws.  The 
amount of computation rises linearly with the number of draws – that is the main consumer.  It also 
rises linearly with the number of random parameters.  The time spent fitting the model will rise only 
slightly with the number of nonrandom numbers.  Finally, it will rise linearly with the number of 
observations.  Thus, a model with a doubled sample and twice as many draws will take four times as 
long to estimate as one with the original sample and number of draws. 
 When you include ; Par in the model command, two additional matrices are created, beta_i 
and sdbeta_i.  Extensive detail on the computation of these matrices is provided in Section R24.5.  
For the final specification described above, the results would be as shown in Figure N10.1. 
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Figure N10.1  Estimated Conditional Parameter Means 

 
N10.2.3 Controlling the Simulation 
 
 R is the number of points in the simulation.  Authors differ in the appropriate value.  Train 
recommends several hundred.  Bhat suggests 1,000 is an appropriate value.  The program default is 
100.  You can choose the value with 
 
   ; Pts = number of draws, R 
 
The value of 50 that we set in our experiments above was chosen purely to produce an example that 
you could replicate without spending an inordinate amount of waiting for the results. 
 The standard approach to simulation estimation is to use random draws from the specified 
distribution.  As suggested immediately above, good performance in this connection requires very 
large numbers of draws.  The drawback to this approach is that with large samples and large models, 
this entails a huge amount of computation and can be very time consuming.  Some authors have 
documented dramatic speed gains with no degradation in simulation performance through the use of 
a small number of Halton draws instead of a large number of random draws.  Authors (e.g., Bhat 
(2001)) have found that a Halton sequence of draws with only one tenth the number of draws as a 
random sequence is equally effective.  To use this approach, add 
 
   ; Halton 
 
to your model command. 
 In order to replicate an estimation, you must use the same random draws.  One implication 
of this is that if you give the identical model command twice in sequence, you will not get the 
identical set of results because the random draws in the sequences will be different.  To obtain the 
same results, you must reset the seed of the random number generator with a command such as 
 
 CALC   ; Ran(seed value) $ 
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(Note that we have used Ran(12345) before some of our earlier examples, precisely for this reason.  
The specific value you use for the seed is not of consequence; any odd number will do. 
 The random sequence used for the model estimation must be the same in order to obtain 
replicability.  In addition, during estimation of a particular model, the same set of random draws 
must be used for each person every time.  That is, the sequence vi1, vi2, ..., viR used for each 
individual must be same every time it is used to calculate a probability, derivative, or likelihood 
function.  (If this is not the case, the likelihood function will be discontinuous in the parameters, and 
successful estimation becomes unlikely.)  One way to achieve this which has been suggested in the 
literature is to store the random numbers in advance, and simply draw from this reservoir of values 
as needed.  Because NLOGIT is able to use very large samples, this is not a practical solution, 
especially if the number of draws is large as well.  We achieve the same result by assigning to each 
individual, i, in the sample, their own random generator seed which is a unique function of the global 
random number seed, S, and their group number, i; 
 
   Seed(S,i) =  S  +  123.0 × i, then minus 1.0 if the result is even. 
 
Since the global seed, S, is a positive odd number, this seed value is unique, at least within the 
several million observation range of NLOGIT.   
 
N10.2.4 The Parameter Vector and Starting Values 
 

 Starting values for the iterations are obtained by fitting the basic model without random 
parameters.  Other parameters are set to zero.  Thus, the initial results in the output for these models 
will be the binary choice models discussed in the preceding sections. You may provide your own 
starting values for the parameters with 
 
   ; Start = ... the list of values for θ. 
 
The parameter vector is laid out as follows, in this order: 
 
 α1, ..., αK  are the K nonrandom parameters, 

 β1,...,βM  are the M means of the distributions of the random parameters, 

 σ1,σ2,...,σM are the M scale parameters for the distributions of the random parameters. 
 
These are the essential parameters.  If you have specified that parameters are to be correlated, then 
the σs are followed by the below diagonal elements of Γ.  (The σs are the diagonal elements.)  If you 
have specified heterogeneity variables, z, then the preceding are followed by the rows of ∆.  
Consider an example:  The model specifies: 
 
   ; RPM = z1,z2 
   ; Rhs = one,x1,x2,x3,x4   ? base parameters β1, β2, β3, β4, β5 
   ; Fcn = one(n),x2(n),x4(n) 
   ; Cor 
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Then, after rearranging, the model becomes 
 
        Variable  Parameter 
         x1  α1 
        x3    α2 
  one  β1  +  σ1vi1       +  δ11zi1  +  δ12zi2 
  x2  β2  +  σ2vi2   +  γ21vi1      +  δ11zi1  +  δ12zi2 
  x4  β3  +  σ3vi3   +  γ31vi1   +  γ32vi2    +  δ11zi1  +  δ12zi2 
 
and the parameter vector would be 
 
  θ  =  α1, α2, β1, β2, β3, σ1, σ2, σ3, γ21, γ31, γ32, δ11, δ12, δ21, δ22, δ31, δ32. 
 
You may use ; Rst and ; CML to impose restrictions on the parameters.  Use the preceding as a 
guide to the arrangement of the parameter vector.  We do note, using ; Rst to impose fixed value, 
such as zero restrictions, will generally work well.  Other kinds of restrictions, particularly across the 
parts of the parameter vector, will generally produce unfavorable results. 
 The variances of the underlying random variables are given earlier, 1 for the normal 
distribution, 1/3 for the uniform, and 1/6 for the tent distribution.  The σ parameters are only the 
standard deviations for the normal distribution.  For the other two distributions, σk is a scale 
parameter.  The standard deviation is obtained as σk/ 3  for the uniform distribution and σk/ 6  for 
the triangular distribution. When the parameters are correlated, the implied covariance  matrix is 
adjusted accordingly.  The correlation matrix is unchanged by this. 
 
N10.2.5 A Dynamic Probit Model 
 
 We consider estimation of the dynamic (habit persistence) probit model 
 
   yit* =  α + β′xit  +  γyi,t-1  +  εit  +  σui, t = 0,...,Ti, i = 1,...,N 

   yit  =  1(yit* > 0). 
 
Simple estimation of the model by maximum likelihood is clearly inappropriate owing to the random 
effect.  ML random effects is likewise inconsistent because yi,t-1 will be correlated with the random 
effect.  Following Heckman (1981), a suggested formulation and procedure for estimation are as 
follows: Treat the initial condition as an equilibrium, in which 
 
   yi0* =  φ + δ′xi0  +  εi0  +  τui 

   yi0 =  1(yi0* > 0) 
 
and retain the preceding model for periods 1,...,Ti. Note that the same random effect, ui appears 
throughout, but the scaling parameter and the slope vector are different in the initial period.  The 
lagged value of yit does not appear in period 0.  This model can be estimated in this form with the 
random parameters estimator in NLOGIT.  Use the following procedure.   
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Set up the variables: 
 
   dit   =  1 in period 1, 0 in all other periods, 

   fit    =  1 - dit  =  1 in all periods except period 1, 

   xit   =  the set of regressors in the model, 0 in the first period, 

   xi0  =  the set of regressors in the model in period 0, 0 in all other periods, 

   yi,-1 =  yi,t-1 in periods 1,...,Ti, 0 in the first period. 
 
Then, the encompassing model is 
 
   yit* =  β′xit  + δ′xi0 +  φdit + αfit + γyi,-1  +  εit  +  σfitui  +  τditui, 

   yit  =  1(yit*  >  0), t = 0,1,...,Ti. 
 
The commands you might use to set up the data would follow these steps.  First, use CREATE to set 
up your group size count variable, _groupti. 
 
 CREATE  ; yit = the dependent variable  
   ; yit1 = yit[-1] ? Make sure that yit1 = 0 in the first period. 
   ; t = Trn(-ti,1)  or whatever means to set up 1,2,...Ti + 1  
   ; dit = (t=1) ; fit = (t > 1) $ 
 CREATE ; set up the xit and xi0 sets of variables $ 
 
The estimation command is a random parameters probit model.  We make use of a special feature of 
the RPM that allows the random component of the random parameters to be shared by more than one 
parameter.  This is precisely what is needed to have both τui and σui appear in the equation without 
forcing τ = σ. 
 
 PROBIT ; Lhs = yit  
   ; Rhs = xit,xi0,yit1,dit,fit  
   ; Panel 
   ; RPM  
   ; Fcn = dit(n), fit(n)  

; Common 
   ; ... any other desired specifications for the estimation $ 
 
A refinement of this model assumes that ui  =  λ′zi + wi for a set of time invariant variables.  (See 
Hyslop (1999) and Greene (2011.)  One possibility is the vector of group means of the variables xit.  
(Only the time varying variables would be included in these means.)  These can be created and 
included as additional Rhs variables.   
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N10.3 Latent Class Models for Binary Choice 
 

The binary choice model for a panel of data, i = 1,...,N, t = 1,...,Ti  is 
 

  Prob[Yit = yit | xit]   =  F(yit,β′xit)  =  P(i,t), yit = 0 or 1. 
 
Henceforth, we use the term ‘group’ to indicate the Ti observations on respondent i in periods t = 
1,...,Ti.  Unobserved heterogeneity in the distribution of yit is assumed to impact the density in the 
form of a random effect.  The continuous distribution of the heterogeneity is approximated by using 
a finite number of ‘points of support.’  The distribution is approximated by estimating the location of 
the support points and the mass (probability) in each interval.  In implementation, it is convenient 
and useful to interpret this discrete approximation as producing a sorting of individuals (by 
heterogeneity) into J classes, j = 1,...,J.  (Since this is an approximation, J is chosen by the analyst.) 

Thus, we modify the model for a latent sorting of yit into J ‘classes’  with a model which 
allows for heterogeneity as follows:  The probability of observing yit given that regime j applies is 
 

  P(i,t|j)  =  Prob[Yit = yit| xit, j] 
 
where the density is now specific to the group.  The analyst does not observe directly which class,      
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model 
 
   P(i,t|j)  =  F[yit, β′xit  +  δj], Prob[class = j]  =  Fj 
 
We formulate this approximation more generally as, 
 
   P(i,t|j)  =  F[yit, β′xit  +  δj′xit], Fj  =  exp(θj) / Σj exp(θj), with θJ  = 0. 
 
In this formulation, each group has its own parameter vector, βj′ =  β  +  δj,  though the variables that 
enter the mean are assumed to be the same.  (This can be changed by imposing restrictions on the 
full parameter vector, as described below.)  This allows the Heckman and Singer formulation as a 
special case by imposing restrictions on the parameters.  You may also specify that the latent class 
probabilities depend on person specific characteristics, so that 
 
   θij =  θj′zi, θJ  =  0. 
 
 The estimation command for this model is 
 
  PROBIT or LOGIT ; Lhs = dependent variable 
     ; Rhs = independent variables 
     ; Panel or Pds = fixed periods or count variable 
     ; LCM $ 
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The default number of support points is five.  You may set J from two to 30 classes with 
 
   ; Pts = the value 
 
Use   ; LCM = list of variables in zi 
 
to specify the multinomial logit form of the latent class probabilities.   
 

Estimates retained by this model include 
 

Matrices:  b   = full parameter vector, [β1′, β2′,... F1,...,FJ] 
 varb = full covariance matrix 

    Note that b and varb involve J×(K+1) estimates.   
 
  Two additional matrices are created: 
 
  b_class = a J×K matrix with each row equal to the corresponding βj 

  class_pr = a J×1 vector containing the estimated class probabilities 
 

 If the command specifies ; Parameters, then the additional matrix created is: 
 
  beta_i = individual specific parameters 
 

Scalars: kreg = number of variables in Rhs list 
  nreg = total number of observations used for estimation 
  logl = maximized value of the log likelihood function 
  exitcode = exit status of the estimation procedure 
 
N10.3.1 Application 
 
 To illustrate the model, we will fit probit models with three latent classes as alternatives to 
the continuously varying random parameters models in the preceding section.  This model requires a 
fairly rich data set – it will routinely fail to find a maximum if the number of observations in a group 
is small.  In addition, it will break down if you attempt to fit too many classes.  (This point is 
addressed in Heckman and Singer.)   
 The model estimates include the estimates of the prior probabilities of group membership.  It 
is also possible to compute the posterior probabilities for the groups, conditioned on the data.  The     
; List specification will request a listing of these.  The final illustration below shows this feature for 
a small subset of the data used above.  The models use the following commands:  The first is the 
pooled probit estimator.  The second is a basic, three class LCM.  The third models the latent class 
probabilities as functions of the gender and marital status dummy variables.  The final model 
command fits a comparable random parameters model.  We will compare the two estimated models. 
  



N10: Random Parameter Models for Binary Choice  N-147 

 Fit the pooled probit model first, basic latent class, then latent class with the gender and 
marital status dummy variables in the class probabilities. 
 
 PROBIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Cluster = id $  
 MATRIX ; betapool = b’ $ 
 PROBIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Pds = _groupti  

; LCM  
; Pts = 3 $ 

 PROBIT ; Lhs = doctor ; Rhs = x,one  
; Partial Effects 

   ; Pds = _groupti 
       ; LCM = female,married  

; Pts = 3  
; Parameters $ 

 
Fit the random parameters probit model with heterogeneity in means. 
 
 PROBIT ; Lhs = doctor ; Rhs = x,one  

; Partial Effects 
   ; Pds = _groupti  
   ; RPM = female,married 
   ; Fcn = one(n),hhninc(n),newhsat(n)  

; Correlated 
   ; Pts = 25  

; Halton  
; Parameters $ 

 
These are the estimated parameters of the pooled probit model.  The cluster correction is shown with 
the pooled results. 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of  27326 observations contained   7293 clusters defined by  | 
| variable ID       which identifies by a value a cluster ID.         | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               DOCTOR 
Log likelihood function    -16638.96591 
Restricted log likelihood  -18019.55173 
Chi squared [   4 d.f.]      2761.17165 
Significance level               .00000 
McFadden Pseudo R-squared      .0766160 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =33287.932 AIC/N =    1.218 
Hosmer-Lemeshow chi-squared =  20.59314 
P-value=  .00831 with deg.fr. =       8 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
     AGE|     .00855***      .00098     8.75  .0000      .00664    .01047 
    EDUC|    -.01539***      .00499    -3.08  .0020     -.02517   -.00561 
  HHNINC|    -.00663         .05646     -.12  .9066     -.11729    .10404 
    HSAT|    -.17502***      .00490   -35.72  .0000     -.18462   -.16542 
Constant|    1.35894***      .08475    16.03  .0000     1.19282   1.52505 
--------+-------------------------------------------------------------------- 
 
These are the estimates of the basic three class latent class model. 
 
----------------------------------------------------------------------------- 
Latent Class / Panel Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -15609.05992 
Restricted log likelihood  -16638.96591 
Chi squared [  13 d.f.]      2059.81198 
Significance level               .00000 
McFadden Pseudo R-squared      .0618972 
Estimation based on N =  27326, K =  17 
Inf.Cr.AIC  =31252.120 AIC/N =    1.144 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
     AGE|     .01388***      .00228     6.10  .0000      .00942    .01835 
    EDUC|    -.00381         .01146     -.33  .7399     -.02627    .01866 
  HHNINC|    -.07299         .15239     -.48  .6320     -.37166    .22569 
    HSAT|    -.20115***      .01709   -11.77  .0000     -.23466   -.16765 
Constant|    2.08411***      .23986     8.69  .0000     1.61399   2.55424 
        |Model parameters for latent class 2 
     AGE|     .01336***      .00183     7.29  .0000      .00977    .01696 
    EDUC|    -.01886**       .00815    -2.31  .0206     -.03483   -.00289 
  HHNINC|     .06824         .10660      .64  .5221     -.14069    .27717 
    HSAT|    -.20129***      .00994   -20.26  .0000     -.22076   -.18181 
Constant|    1.15407***      .17393     6.64  .0000      .81317   1.49498 
        |Model parameters for latent class 3 
     AGE|     .00547         .00464     1.18  .2390     -.00363    .01456 
    EDUC|    -.04318**       .01911    -2.26  .0239     -.08063   -.00572 
  HHNINC|     .30044         .21747     1.38  .1671     -.12579    .72668 
    HSAT|    -.14638***      .01965    -7.45  .0000     -.18489   -.10786 
Constant|     .24354         .31547      .77  .4401     -.37478    .86186 
        |Estimated prior probabilities for class membership 
Class1Pr|     .40689***      .04775     8.52  .0000      .31331    .50048 
Class2Pr|     .45729***      .03335    13.71  .0000      .39192    .52266 
Class3Pr|     .13581***      .02815     4.82  .0000      .08063    .19100 
--------+-------------------------------------------------------------------- 
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The three class latent class model is extended to allow the prior class probabilities to differ by sex 
and marital status. 
 
----------------------------------------------------------------------------- 
Latent Class / Panel Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -15471.73843 
Restricted log likelihood  -16638.96591 
Chi squared [  19 d.f.]      2334.45496 
Significance level               .00000 
McFadden Pseudo R-squared      .0701502 
Estimation based on N =  27326, K =  21 
Inf.Cr.AIC  =30985.477 AIC/N =    1.134 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
     AGE|     .01225***      .00240     5.11  .0000      .00755    .01695 
    EDUC|     .01438         .01311     1.10  .2725     -.01130    .04007 
  HHNINC|    -.02303         .16581     -.14  .8895     -.34801    .30194 
    HSAT|    -.17738***      .01802    -9.84  .0000     -.21271   -.14205 
Constant|    1.76773***      .25126     7.04  .0000     1.27528   2.26018 
        |Model parameters for latent class 2 
     AGE|     .00185         .00409      .45  .6508     -.00616    .00986 
    EDUC|    -.03067**       .01439    -2.13  .0331     -.05888   -.00245 
  HHNINC|     .23788         .18111     1.31  .1890     -.11709    .59285 
    HSAT|    -.15169***      .01623    -9.35  .0000     -.18349   -.11989 
Constant|     .44044*        .26021     1.69  .0905     -.06957    .95045 
        |Model parameters for latent class 3 
     AGE|     .01401***      .00199     7.02  .0000      .01010    .01791 
    EDUC|    -.00399         .00847     -.47  .6372     -.02060    .01261 
  HHNINC|     .03018         .11424      .26  .7916     -.19372    .25408 
    HSAT|    -.21215***      .01178   -18.01  .0000     -.23524   -.18906 
Constant|    1.13165***      .18329     6.17  .0000      .77241   1.49088 
        |Estimated prior probabilities for class membership 
   ONE_1|    -.53375**       .21925    -2.43  .0149     -.96347   -.10403 
FEMALE_1|    1.18549***      .13400     8.85  .0000      .92284   1.44813 
MARRIE_1|    -.33518**       .16234    -2.06  .0390     -.65336   -.01700 
   ONE_2|    -.51961*        .26512    -1.96  .0500    -1.03924    .00002 
FEMALE_2|    -.31028*        .18197    -1.71  .0882     -.66694    .04638 
MARRIE_2|    -.42489**       .18253    -2.33  .0199     -.78265   -.06713 
   ONE_3|        0.0    .....(Fixed Parameter)..... 
FEMALE_3|        0.0    .....(Fixed Parameter)..... 
MARRIE_3|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 

+------------------------------------------------------------+ 
|  Prior class probabilities at data means for LCM variables | 
|   Class 1     Class 2     Class 3     Class 4     Class 5  | 
|    .36905      .17087      .46008      .00000      .00000  | 
+------------------------------------------------------------+ 
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Since the class probabilities now differ by observation, the program reports an average using 
the data means.  The earlier fixed prior class probabilities are shown below the averages for this 
model.  The extension brings only marginal changes in the averages, but this does not show the 
variances across the different demographic segments (female/male, married/single) which may be 
substantial. 
 These are the estimated ‘individual’ parameter vectors.   
 

 
Figure N10.2  Latent Class Parameter Estimates 

 
The random parameters model in which parameter means differ by sex and marital status and are 
correlated with each other is comparable to the full latent class model shown above. 
 
----------------------------------------------------------------------------- 
Random Coefficients  Probit   Model 
Dependent variable               DOCTOR 
Log likelihood function    -15469.87914 
Restricted log likelihood  -16638.96591 
Chi squared [  12 d.f.]      2338.17354 
Significance level               .00000 
McFadden Pseudo R-squared      .0702620 
Estimation based on N =  27326, K =  17 
Inf.Cr.AIC  =30973.758 AIC/N =    1.133 
Unbalanced panel has   7293 individuals 
PROBIT (normal)  probability model 
Simulation based on  25 Halton draws 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .01161***      .00086    13.51  .0000      .00993    .01330 
    EDUC|    -.00704*        .00407    -1.73  .0833     -.01501    .00093 
        |Means for random parameters 
Constant|    1.29395***      .09898    13.07  .0000     1.09995   1.48795 
  HHNINC|     .08845         .10690      .83  .4080     -.12108    .29798 
    HSAT|    -.21458***      .00954   -22.50  .0000     -.23327   -.19589 
        |Diagonal elements of Cholesky matrix 
Constant|    1.04680***      .04364    23.98  .0000      .96126   1.13234 
  HHNINC|     .69686***      .04676    14.90  .0000      .60521    .78851 
    HSAT|     .00014         .00120      .12  .9049     -.00220    .00248 
        |Below diagonal elements of Cholesky matrix 
lHHN_ONE|     .10493*        .05843     1.80  .0725     -.00960    .21946 
lHSA_ONE|    -.03295***      .00517    -6.37  .0000     -.04309   -.02282 
lHSA_HHN|     .04592***      .00248    18.54  .0000      .04107    .05078 
        |Heterogeneity in the means of random parameters 
cONE_FEM|     .20456***      .07264     2.82  .0049      .06218    .34694 
cONE_MAR|     .07909         .08153      .97  .3320     -.08070    .23888 
cHHN_FEM|     .08596         .10341      .83  .4059     -.11672    .28863 
cHHN_MAR|    -.07299         .11495     -.63  .5254     -.29828    .15230 
cHSA_FEM|     .02966***      .00873     3.40  .0007      .01256    .04677 
cHSA_MAR|    -.00931         .00991     -.94  .3474     -.02873    .01011 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.09579       .109842     -.0344941 
       2|       .109842       .496629      .0285454 
       3|     -.0344941      .0285454     .00319490 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.04680 
       2|       .704719 
       3|      .0565235 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3 
--------+------------------------------------------ 
       1|       1.00000       .148897      -.582977 
       2|       .148897       1.00000       .716624 
       3|      -.582977       .716624       1.00000 
 
These are the estimated marginal effects from the three models estimated, the pooled probit model, 
the three class latent class model and a comparable random parameters model, respectively. 
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Pooled 
----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00297***      .20548     8.83  .0000      .00231    .00363 
    EDUC|    -.00534***     -.09614    -3.09  .0020     -.00873   -.00195 
  HHNINC|    -.00230        -.00129     -.12  .9066     -.04072    .03612 
    HSAT|    -.06076***     -.65534   -39.87  .0000     -.06375   -.05777 
--------+-------------------------------------------------------------------- 
3 Class Latent Class 
--------+-------------------------------------------------------------------- 
     AGE|     .00446***      .28510     7.28  .0000      .00326    .00566 
    EDUC|    -.00572***     -.09511    -2.64  .0082     -.00997   -.00148 
  HHNINC|     .01510         .00780      .61  .5433     -.03360    .06381 
    HSAT|    -.06917***     -.68884   -19.60  .0000     -.07609   -.06225 
--------+-------------------------------------------------------------------- 
3 Class Heterogeneous Priors 
----------------------------------------------------------------------------- 
     AGE|     .00406***      .26197     7.00  .0000      .00292    .00520 
    EDUC|    -.00064        -.01069     -.27  .7838     -.00519    .00391 
  HHNINC|     .01657         .00865      .68  .4953     -.03106    .06420 
    HSAT|    -.06804***     -.68420   -20.83  .0000     -.07444   -.06164 
--------+-------------------------------------------------------------------- 
Random Parameters 
----------------------------------------------------------------------------- 
     AGE|     .00424***      .27768     3.18  .0015      .00162    .00685 
    EDUC|    -.00257        -.04379    -1.48  .1385     -.00597    .00083 
  HHNINC|     .03226         .01711      .55  .5814     -.08242    .14695 
    HSAT|    -.07827        -.79992    -1.22  .2216     -.20379    .04724 
--------+-------------------------------------------------------------------- 
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N11: Semiparametric and Nonparametric 
Models for Binary Choice 

 
N11.1 Introduction 
 
 This chapter will present three non- and semiparametric estimators for binary choice models. 
Familiar parametric estimators of binary response models, such as the probit and logit are based on 
the log likelihood criterion, 
 

   log L  =  )'|(log1
1 ii

n
i

yF
n

xβ∑ =
. 

 

The Cramer-Rao theory justifies this procedure on the basis of efficiency of the parameter estimates. 
But, it is to be noted that the criterion is not a function of the ability of the model to predict the 
response.  Moreover, in spite of the widely observed similarity of the predictions from the different 
models, the issue of which parametric family (normal, logistic, etc.) is most appropriate has never 
been settled, and there exist no formal tests to resolve the question in any given setting.  Various 
estimators have been suggested for the purpose of broadening the parametric family, so as to relax 
the restrictive nature of the model specification.  Two semiparametric estimators are presented in 
NLOGIT, Manski’s (1975, 1985) and Manski and Thompson’s (1985, 1987) maximum score 
(MSCORE) estimator and Klein and Spady’s (1993) kernel density estimator.   
 The MSCORE estimator is constructed specifically around the prediction criterion 
 

   Choose β to maximize S  =  Σi [yi*  × zi*], 

where    yi*

   z

 =  sign (-1/1) of the dependent variable  

 
i* =  the sign (-1/1) of β′xi. 

Thus, the MSCORE estimator seeks to maximize the number of correct predictions by our familiar 
prediction rule – predict yi = 1 when the estimated Prob[yi = 1] is greater than .5, assuming that the 
true, underlying probability function is symmetric.  In those settings, such as probit and logit, in 
which the density is symmetric, the sign of the argument is sufficient to define whether the 
probability is greater or less than .5.  For the asymmetric distributions, this is not the case, which  
suggests a limitation of the MSCORE approach.  The estimator does allow another degree of 
freedom in the choice of a quantile other than .5 for the prediction rule – see the definition below – 
but this is only a partial solution unless one has prior knowledge about the underlying density. 
 Klein and Spady’s semiparametric density estimator is based on the specification 
 
   Prob[yi = 1]  =  P(β′xi) 
 
where P is an unknown, continuous function of its argument with range [0,1].  The function P is not 
specified a priori; it is estimated with the parameters.  The probability function provides the location 
for the index that would otherwise be provided by a constant term.  The estimation criterion is 
 

   log L  =  
1

1 [ log ( ) (1 ) log(1 ( ))]n
i n i i n ii

y P y P
n =

′ ′+ − −∑ x xβ β  
 

where Pn is the estimator of P and is computed using a kernel density estimator. 
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 The third estimator is a nonparametric treatment of binary choice based on the index 
function estimated from a parametric model such as a logit model. 
 
N11.2 Maximum Score Estimation - MSCORE 
 
 Maximum score is a semiparametric approach to estimation which is based on a prediction 
rule.  The base case (quantile = ½) is 
 
   S   =  Σi [yi*  ×   zi* ], 
 
where yi* is the sign (-1/1) of the dependent variable and zi* is the counterpart for the fitted model;   
z

 

i* = the sign (-1/1) of β′xi.  Thus, this base case is formulated precisely upon the ability of the sign 
of the estimated index function to predict the sign of the dependent variable (which, in the binary 
response models, is all that we observe). Formally, MSCORE maximizes the sample score function 

   MaxβεB Snα(β) = (1/n)Σi[yi*   -  (1-2α)]Sgn(β′xi), 

 where   B  = {β ε RK : ║β║ = 1}. 
  
The sample data consist of n observations [yi* ,xi] where yi* is the binary response.  Input of yi is the 
usual binary variable taking values zero and one; yi* is obtained internally by converting zeros to 
minus ones.  The quantile, α, is between zero and one and is provided by the user. The vector xi is 
the usual set of K regressors, usually including a constant.  An equivalent problem is to maximize the 
normalized sample score function 
  
   SNα*(β) =  (1/n)[Snα(β) / Wn   +   1], 

where     Wn   =  (1/n)Σiwi 

and      wi  =  abs(yi* - (1-2α)).   
 
This may then be rewritten as 
 
   Snα*(β)  =  Σi wi*  × 1[yi*  = Sgn(β′xi)], 

where   wi*     =  wi / Wn. 
 
and 1[•] is the indicator function which equals 1 if the condition in the brackets is true and 0 
otherwise.  Thus, in the preceding, 1[•] equals 1 if the sign of the index function, β′xi, correctly 
predicts yi*.  The normalized sample score function is, thus, a weighted average of the prediction 
indicators.  If α = ½, then wi* equals 1/n, and the normalized score is the fraction of the observations 
for which the response variable is correctly predicted.  Maximum score estimation can therefore be 
interpreted as the problem of finding the parameters that maximize a weighted average number of 
correct predictions for the binary response. 
 The following shows how to use the MSCORE command and gives technical details about 
the procedure.  An application is given with the development of NPREG, which is a companion 
program, in Section N11.4. 
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N11.2.1 Command for MSCORE 
 
 The mandatory part of the command for invoking the maximum score estimator 
 
 MSCORE  ; Lhs = y ; Rhs = x list of independent variables $ 
 
The first element of x should be one.  The variable y is a binary dependent variable, coded 0/1. The 
following are the optional specifications for this command.  The default values given are used by 
NLOGIT if the option is not specified on the command. MSCORE is designed for relatively small 
problems.  The internal limits are 15 parameters and 10,000 observations. 
 
N11.2.2 Options Specific to the Maximum Score Estimator 
 
Quantile 
 
 The quantile defines the way the score function is computed.  The default of .5 dictates that 
the score is to be calculated as (1/n) times the number of correctly predicted signs of the response 
variable.  You may choose any value between 0 and 1with 
 
   ; Qnt = quantile (default = .5; this is α). 
 
Number of Bootstrap Replications 
 
 Bootstrap estimates are computed as follows:  After computing the point estimate, 
MSCORE generates R bootstrap samples from the data by sampling n observations with 
replacement.  The entire point estimation procedure, including computation of starting values is 
repeated for each one.  Let b be the maximum score estimate, R be the number of bootstrap 
replications, and di be the ith bootstrap estimate.  The mean squared deviation matrix, 
 
   MSD = (1/R)Σi [(di - b)(di - b)′], 
 
is computed from the bootstrap estimates.  This is reported in the output as if it were the estimated 
covariance matrix of the estimates.  But, it must be noted that there is no theory to suggest that this is 
correct.  In purely practical terms, the deviations are from the point estimate, not the mean of the 
bootstrap estimates.  The results are merely suggestive. The use of ; Test: should also be done with 
this in mind.  Use  
   ; Nbt = number of bootstraps (default = 20) 
 
to set the number of bootstrap iterations. 
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Analysis of Ties 
 
 The specification for analysis of ties is  
 
   ; Ties to analyze ties (default = no) 
 
If the ; Ties option is chosen, MSCORE reports information about regions of the parameter space 
discovered during the endgame searches for which the sample score is tied with the score at the final 
estimates.  If a tie is found in a region, MSCORE records the endpoints of the interval, the current 
search direction, and some information which records each observation’s contribution to the sample 
score in the region.  It is possible to determine whether ties found on separate great circle searches 
represent disjoint regions or intersections of different great circles.  Since the region containing the 
final estimates is partially searched in each iteration, the tie checking procedure records extensive 
information about this region.  For each region, MSCORE reports the minimum and maximum 
angular direction from the final estimates.  These are labeled PSI-low and PSI-high.  The parameter 
values associated with these endpoints are also reported.   
 If tie regions are found that are far from the point estimate, it may be that the global 
maximum remains to be found.  If so, it may be useful to rerun the estimator using a starting value in 
the tied region.  The existence of many tie regions does not necessarily indicate an unreliable 
estimate.  Particularly in large samples, there may be a large number of disjoint regions in a small 
neighborhood of the global maximum. 
 
Number of Endgame Iterations 
 
 The number of endgame iterations is specified with     
 
   ; End = number endgame iterations (default = 5). 
 
A given set of great circle searches may miss a direction of increase in the score function. Moreover, 
even if the trial maximum is a true local maximum, it may not be a global maximum. For these reasons, 
upon finding a trial maximum, MSCORE conducts a user specified number of ‘endgame iterations.’  
These are simply additional iterations of the maximization algorithm.  The random search method is 
such that with enough of these, the entire parameter space would ultimately be searched with 
probability one.  If the endgame iterations provide no improvement in the score, the trial maximum is 
deemed the final estimate.  If an improvement is made during an endgame search, the current estimate 
is updated as usual and the search resumes.  The logic of the algorithm depends on the endgame 
searches to ensure that all regions of the parameter space are investigated with some probability. The 
density of the coverage is an increasing function of the number of endgame searches. 
 There are no formal rules for the number of endgame searches.  It should probably increase 
with K and (perhaps a little less certainly) with n.  But, because the step function more closely 
approximates a continuous population score function, it may be that fewer endgame searches will be 
needed as N increases. 
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Starting Values 
 
 Starting values are specified with 
 
   ; Start = starting values (default = none). 
 
If starting values are not provided by the user, they are computed as follows:  For each of the K 
parameters, we form a vector equal to the kth column of an identity matrix.  The sample score 
function is evaluated at this vector, and the kth parameter is set equal to this value.  At the 
conclusion, the starting vector is normalized to unit length.  If you do provide your own starting 
values, they will be normalized to unit length before the iterations are begun. 
 
Technical Output 
 
 Technical output is specified with  
 
   ; Output = 4 or 5 for output of trace of bootstraps to output file 
     (default = neither). 
 
This is used to control the amount of information about the bootstrap iterations that is produced.  
This can generate hundreds or thousands of lines of output, depending on the number of bootstrap 
estimates computed and the number of endgame searches requested.  This information is displayed 
on the screen, in order to trace the progress of execution.  In general, the output is not especially 
informative except in the aggregate.  That is, individual lines of this trace are likely to be quite 
similar.  The default is not to retain information about individual bootstraps or endgame searches in 
the file.  Use ; Output = 4 to request only the bootstrap iterations (one line of output per).  Use         
; Output = 5 to include, in addition, the corresponding information about the endgame searches. 
 
N11.2.3 General Options for MSCORE 
 
 The following general options used with the nonlinear estimators in NLOGIT are available 
for MSCORE: 
   ; Covariance Matrix  to display MSE matrix (default = no), 
    same as ; Printvc 
   ; List  to display predicted values (default = no list) 
   ; Keep = name to retain predictions in name (default = no) 
   ; Res = name  to retain fitted values in name (default = no) 
   ; Test: spec  to specify restriction (default = none) 
   ; Maxit = n  to set maximum iterations (default = 50) 
  
Note the earlier caution about the MSD matrix when using the ; Test: option.  The ; Rst = ... and       
; CML: options for imposing restrictions are not available with this estimator. 
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N11.2.4 Output from MSCORE 
 
 Output from MSCORE consists of the following, in the order in which it will appear on 
your screen or your output file: 

 
1. The iteration summary for the primary estimation procedure (this is labeled bootstrap sample 

0’) and, if you have requested them, the bootstrap sample estimations.  With each one, we 
report the number of iterations, the number of completed ‘endgame iterations’ (see the 
discussion above), the maximum normalized score, and the change in the normalized score.  

 
2. Echo of input parameters in your command. 

 
3. The score function and normalized score function evaluated at three different points: 

 
a. naive, the first element of β is 1 or -1 and all other values are 0, 
b. the starting values, 
c. the final estimates. 
 

4. The deviations of the bootstrap estimates from the point estimates are summarized in the 
root mean square error and mean absolute angular deviation between them. 

 
5. The point estimates of the parameters. 

 
NOTE:  The estimates are presented in NLOGIT’s standard format for parameter estimates. 
If you have computed bootstrap estimates, the mean square deviation matrix (from the point 
estimate) is reported as if it were an estimate of the covariance matrix of the estimates.  This 
includes ‘standard errors,’ ‘t ratios,’ and ‘prob. values.’  These may, in fact, not be 
appropriate estimates of the asymptotic standard errors of these parameter estimates.  
Discussion appears in the references below. 
 
If you change the number of bootstrap estimates, you may observe large changes in these 
standard errors.  This is not to be interpreted as reflecting any changes in the precision of the 
estimates.  If anything, it reflects the unreliability of the bootstrap MSD matrix as an 
estimate of the asymptotic covariance matrix of the estimates.  It has been shown that the 
asymptotic distribution of the maximum score estimator is not normal.  (See Kim and 
Pollard (1990).)  Moreover, even under the best of circumstances, there is no guarantee that 
the bootstrap estimates or functions of them (such as t ratios), converge to anything useful. 

 
6. A cross tabulation of the predictions of the model vs. the actual values of the Lhs variable. 
 
7. If the model has more than two parameters, and you have requested analysis of the ties, the 

results of the endgame searches are reported last.  Records of ties are recorded in your output 
file if one is opened, but not displayed on your screen. 
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 The predicted values computed by MSCORE are the sign of b′xi, coded 0 or 1.  Residuals 
are yi  - ŷ i, which will be 1, 0, or -1.  The ; List specification also produces a listing of b′xi.  The last 
column of the listing, labeled Prob[y = 1] is the probabilities computed using the standard normal 
distribution.  Since the probit model has not been used to fit the model, these may be ignored. 
 Results which are saved by MSCORE are: 
 
 b   =  final estimates of parameters 
 varb =  mean squared deviation matrix for bootstrap estimates 
 score =  scalar, equal to the maximized value of the score function 
 
The Last Model labels are b_variable.  But, note once again, that the underlying theory needed to 
justify use of the Wald statistic does not apply here. 
 
N11.3 Klein and Spady’s Semiparametric Binary Choice Model 
 
 Klein and Spady’s semiparametric density estimator is based on the specification 
 
   Prob[yi = 1]  =  P(β′xi) 
 
where P is an unknown, continuous function of its argument with range [0,1].  The function P is not 
specified a priori; it is estimated with the parameters.  The probability function provides the location 
for the index that would otherwise be provided by a constant term.  The estimation criterion is 
 

   log L  =  
1
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where Pn is the estimator of P and is computed using a kernel density estimator.  The probability 
function is estimated with a kernel estimator, 
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Two kernel functions are provided, the logistic function, Λ(z) and the standard normal CDF, Φ(z). 
 As in the other semiparametric estimators, the bandwidth parameter is a crucial input.  The 
program default is n-(1/6), which ranges from .3 to about .6 for n ranging from 30 to 1000.  You may 
provide an alternative value. 
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N11.3.1 Command 
 
 The command for this estimator is 
 
  SEMIPARAMETRIC  
   ; Lhs = dependent, binary variable 
   ; Rhs = independent variables $ 
 
Do not include one on the Rhs list.  The function itself is playing the role of the constant.  Optional 
features include those specific to this model, 
 
   ; Smooth = desired value for h 
   ; Kernel = Normal – the logistic is standard 
 
and the general ones available with other estimators, 
 
   ; Partial Effects 
   ; Prob = name   to retain fitted probabilities 
   ; Keep = name   to retain predicted values 
   ; Res  = name   to retain residuals 
   ; Covariance Matrix  to display the estimated asymptotic covariance matrix, 
     same as ; Printvc 
 
The semiparametric log likelihood function is a continuous function of the parameters which is 
maximized using NLOGIT’s standard tools for optimization.  Thus, the options for controlling 
optimization are available, 
 

   ; Maxit  = n  to set maximum iterations 
   ; Output = 1, 2, 3 to control intermediate output 
   ; Alg  = name to select algorithm  
 
Restrictions may be imposed and tested with 
 
   ; Test: spec  to specify restriction (default = none) 
   ; Rst = list  to specify fixed value and equality restrictions 
   ; CML: spec  to specify other linear constraints 
 
N11.3.2 Output 
 
 Output from this estimator includes the usual table of statistical results for a nonlinear 
estimator.  Note that the estimator constrains the constant term to zero and also normalizes one of the 
slope coefficients to one for identification. This will be obvious in the results. Since probabilities 
which are a continuous function of the parameters are computed, you may also request marginal 
effects with 
   ; Partial Effects  
 
(In previous versions, the command was ; Marginal Effects.  This form is still supported.)  Partial 
effects are computed using Pn(β′xi) and its derivatives (which are simple sums) computed at the 
sample means. 
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Results Kept by the Semiparametric Estimator 
 
 The model results kept by this estimator are 
 
 Matrices:  b   =  final estimates of parameters 
 
   varb  =  mean squared deviation matrix for bootstrap estimates 
 Scalars:  logl  =  log likelihood 
   kreg  =  number of Rhs variables 
   nreg  =  number of observations used to fit the function 
   exitcode =  exit status for estimator 
 
 Last Model:  The labels are b_variable 
 
 Last Function: None 
 
N11.3.3 Application 
 
 The Klein and Spady estimator is computed with the binary logit model.  We use only a 
small subset of the data, the observations that are observed only once.  The complete lack of 
agreement of the two models is striking, though not unexpected. 
 
 REJECT ; _groupti > 1 $ 
 SEMI  ; Lhs = doctor  
   ; Rhs = one,age,hhninc,hhkids,educ,married  
   ; Partial Effects $ 
 LOGIT ; Lhs = doctor  
   ; Rhs = one,age,hhninc,hhkids,educ,married  
   ; Partial Effects $ 
 
----------------------------------------------------------------------------- 
Semiparametric Binary Choice Model 
Dependent variable               DOCTOR 
Log likelihood function     -1001.96124 
Restricted log likelihood   -1004.77427 
Chi squared [   4 d.f.]         5.62607 
Significance level               .22887 
McFadden Pseudo R-squared      .0027997 
Estimation based on N =   1525, K =   4 
Inf.Cr.AIC  = 2011.922 AIC/N =    1.319 
Hosmer-Lemeshow chi-squared = ********* 
P-value=  .00000 with deg.fr. =       8 
Logistic kernel fn. Bandwidth =  .29475 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Odds Ratio        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Characteristics in numerator of Prob[Y = 1] 
     AGE|     .98652         .02284     -.59  .5577      .94176   1.03128 
  HHNINC|     .02962**       .04607    -2.26  .0236     -.06067    .11991 
  HHKIDS|    3.16366        4.50864      .81  .4190    -5.67311  12.00042 
    EDUC|     .96226         .11808     -.31  .7539      .73083   1.19368 
 MARRIED|    2.71828    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Odds ratio = exp(beta); z is computed for the original beta 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|    -.00025        -.01488     -.59  .5523     -.00107    .00057 
  HHNINC|    -.06479***     -.03782   -76.40  .0000     -.06645   -.06313 
  HHKIDS|     .02120         .01063      .26  .7984     -.14148    .18388 
    EDUC|    -.00071        -.01305     -.33  .7445     -.00497    .00355 
 MARRIED|     .01841    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Binary Logit Model for Binary Choice 
Dependent variable               DOCTOR 
Log likelihood function      -996.30681 
Restricted log likelihood   -1004.77427 
Chi squared [   5 d.f.]        16.93492 
Significance level               .00462 
McFadden Pseudo R-squared      .0084272 
Estimation based on N =   1525, K =   6 
Inf.Cr.AIC  = 2004.614 AIC/N =    1.315 
Hosmer-Lemeshow chi-squared =  10.56919 
P-value=  .22732 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|     .46605         .34260     1.36  .1737     -.20544   1.13754 
     AGE|     .00509         .00448     1.14  .2556     -.00369    .01387 
  HHNINC|    -.49045*        .26581    -1.85  .0650    -1.01142    .03052 
  HHKIDS|    -.36639***      .12639    -2.90  .0037     -.61410   -.11867 
    EDUC|     .00783         .02419      .32  .7461     -.03957    .05523 
 MARRIED|     .16046         .12452     1.29  .1975     -.08360    .40451 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Partial derivatives of E[y] = F[*]  with 
respect to the vector of characteristics 
Average partial effects for sample obs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  DOCTOR|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00117        -.00127     1.14  .2554     -.00085    .00320 
  HHNINC|    -.11304*        .00087    -1.85  .0648     -.23301    .00694 
  HHKIDS|    -.08606***      .00019    -2.87  .0041     -.14476   -.02736   # 
    EDUC|     .00180        -.00053      .32  .7461     -.00912    .01273 
 MARRIED|     .03702        -.00057     1.29  .1971     -.01924    .09327   # 
--------+-------------------------------------------------------------------- 
#  Partial effect for dummy variable is E[y|x,d=1] - E[y|x,d=0] 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
N11.4 Nonparametric Binary Choice Model 
 
 The kernel density estimator is a device used to describe the distribution of a variable 
nonparametrically, that is, without any assumption of the underlying distribution.  This section 
describes an extension to a simple regression function.  The kernel density function estimates any 
sufficiently smooth regression function, Fβ(z) = E[δ|β′x=z], using the method of kernels, for any 
parameter vector β.  δ must be a response variable with bounded range [0,1].  In the special case in 
which δ is a binary response taking values 0/1, NPREG estimates the probability of a positive 
response conditional on the linear index β′x.  With an appropriate choice of x and β, and by rescaling 
the response, this estimator can estimate any sufficiently smooth univariate regression function with 
known bounded range.  One simple approach is to assume that x is a single variable and β equals 1.0, 
in which case, the estimator describes E[yi|xi].  Alternatively, NPREG may be used with the 
estimated index function, β′xi, from any binary choice estimator.  The natural choice in this instance 
would be MSCORE, since MSCORE does not compute the probabilities (that is, the conditional 
mean).  In principle, the estimated index function could come from any estimator, but from a probit 
or other parametric model, this would be superfluous. 
 The regression function computed is  
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The function is computed for a specified set of values zj, j = 1,...,M.  Note that each value requires a 
sum over the full sample of n values.  The primary component of the computation is the kernel 
function, K[.].   
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Eight alternatives are provided: 
 

1. Epanechnikov: K[z]   =  .75(1 - .2z2) / Sqr(5) if |z| <= 5, 0 else, 
2. Normal:   K[z] =  φ(z) (normal density), 
3. Logit:    K[z] =  Λ(z)[1-Λ(z)] (default), 
4. Uniform:  K[z] =  .5 if |z| < 1, 0 1 else, 
5. Beta:   Z[z] =  (1-z)(1+z)/24 if |z| < 1, 0 1 else, 
6. Cosine:   K[z] =  1 + cos(2πz) if |z| < .5, 0 else, 
7. Triangle:   K[z] =  1 - |z|, if |z| <= 1, 0 else. 
8. Parzen:   K[z] =  4/3 - 8z2 + 8|z|3 if |z| <= .5, 8(1-|z|)3 else. 

 
The other essential part of the computation is the smoothing (bandwidth) parameter, h.  Large values 
of h stabilize the function, but tend to flatten it and reduce the resolution.  Small values of h produce 
greater detail, but also cause the estimator to become less stable. 
 The basic command is 
 
 NPREG ; Lhs = the dependent variable 

; Rhs = the variable $ 
 
With no other options specified, the routine uses the logit kernel function, and uses a bandwidth 
equal to 
        h  =  .9Q/n0.2 where Q  =  min(std.dev., range/1.5) 
 
You may specify the kernel function to be used with 
 
   ; Kernel = one of the names of the eight types of kernels listed above. 
 
The bandwidth may be specified with 
 
   ; Smooth = the bandwidth parameter. 
 
 There is no theory for choosing the right smoothing parameter, λ.  Large values will cause 
the estimated function to flatten at the average value of yi.  Values close to zero will cause the 
function to pass through the points zi,yi and to become computationally unstable elsewhere.  A choice 
might be made on the basis of the CVMSPE.  (See Wong (1983) for discussion.)  A value that 
minimizes CVMSPE(λ) may work well in practice.  Since CVMSPE is a saved result, you could 
compute this for a number of values of λ then retrieve the set of values to find the optimal one. 

The default number of points specified is 100, with zj = a partition of the range of the 
variable.  You may specify the number of points, up to 200 with 
 
   ; Pts = number of points to compute and plot. 
 
The range of values plotted is the equally spaced grid from min(x)-h to max(x)+h, with the number 
of points specified. 
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N11.4.1 Output from NPREG 
 
 Output from KERNEL is a set of points for an estimated function, several descriptive 
statistics, and a plot of the estimated regression function.  The added specification 
 
   ; List  
 
displays the specific results, zi for the sample observations and the associated estimated regression 
functions.  These values are also placed in a two column matrix named kernel after estimation of the 
function. 
 The cross validation mean squared prediction error (CVMSPE) is a goodness of fit measure. 
Each observation, ‘i’ is excluded in turn from the sample.  Using the reduced sample, the regression 
function is reestimated at the point zi in order to provide a point prediction for yi.  The average 
squared prediction error defines the CVMSPE.  The calculation is defined by 
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Then,   CVMSPE(h)  =  (1/n) Σi [yi - Fi*(xi)]2. 
 

N11.4.2 Application 
 

 The following estimates the parameters of a regression function using MSCORE, then uses 
NPREG to plot the regression function. 
 

 REJECT  ; _groupti > 1 $ 
 NAMELIST ; x = one,age,hhninc,hhkids,educ,married $  
 MSCORE  ; Lhs = doctor ; Rhs =x $ 
 CREATE ; xb = x'b$ 
 NPREG ; Lhs = doctor ; Rhs = xb $ 
 
----------------------------------------------------------------------------- 
Maximum Score Estimates of Linear Quantile 
Regression Model from Binary Response Data 
Quantile                .500      Number of Parameters =     6 
Observations input   =  1525      Maximum Iterations   =   500 
End Game Iterations  =   100      Bootstrap Estimates  =    20 
Check Ties?               No 
Save bootstraps?          No 
Start values from MSCORE (normalized) 
Normal exit after  100 iterations. 
Score functions:     Naive   At theta(0)      Maximum 
           Raw      .26033       .26033        .27738 
    Normalized      .63016       .63016        .63869 
Estimated MSEs from  20 bootstrap samples 
(Nonconvergence in   0 cases) 
Angular deviation (radians) of bootstraps from estimate 
Mean square =  1.027841             Mean absolute =   .979001 
Standard errors below are based on bootstrap mean squared 
deviations.  These and the t-ratios are only approximations. 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  DOCTOR|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|     .42253         .63272      .67  .5043     -.81758   1.66263 
     AGE|     .01146         .03120      .37  .7134     -.04969    .07261 
  HHNINC|    -.20766         .45880     -.45  .6508    -1.10689    .69157 
  HHKIDS|    -.82224         .65955    -1.25  .2125    -2.11494    .47045 
    EDUC|     .01446         .07191      .20  .8406     -.12648    .15541 
 MARRIED|     .31926         .35336      .90  .3663     -.37331   1.01183 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when beta*x is greater than one, zero otherwise.       | 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |     23 (  1.5%)|    541 ( 35.5%)|    564 ( 37.0%)| 
|  1   |     10 (   .7%)|    951 ( 62.4%)|    961 ( 63.0%)| 
+------+----------------+----------------+----------------+ 
|Total |     33 (  2.2%)|   1492 ( 97.8%)|   1525 (100.0%)| 
+------+----------------+----------------+----------------+ 
+---------------------------------------------------------+ 
|Crosstab for Binary Choice Model.  Predicted probability | 
|vs. actual outcome. Entry = Sum[Y(i,j)*Prob(i,m)] 0,1.   | 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|      Predicted Probability      |                | 
|Value |    Prob(y=0)        Prob(y=1)   | Total Actual   | 
+------+----------------+----------------+----------------+ 
| y=0  |    564 ( 37.0%)|      0 (   .0%)|    564 ( 37.0%)| 
| y=1  |    961 ( 63.0%)|      0 (   .0%)|    961 ( 63.0%)| 
+------+----------------+----------------+----------------+ 
|Total |   1525 (100.0%)|      0 (   .0%)|   1525 (100.0%)| 
+------+----------------+----------------+----------------+ 
+---------------------------------------+ 
| Nonparametric Regression for DOCTOR   | 
| Observations       =          1525    | 
| Points plotted     =          1525    | 
| Bandwidth          =       .090121    | 
| Statistics for abscissa values----    | 
| Mean               =       .854823    | 
| Standard Deviation =       .433746    | 
| Minimum            =      -.167791    | 
| Maximum            =      1.662874    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =       .231635    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 
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Figure N11.1  Nonparametric Regression 
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N12: Bivariate and Multivariate Probit and 
Partial Observability Models 

 
N12.1 Introduction 
 
 The basic formulation of the models in this chapter is the bivariate probit model: 
 
   zi1  =  β1′xi1 + εi1,  yi1  =  1 if zi1 > 0, yi1  =  0 otherwise, 

   zi2  =  β2′xi2 + εi2,  yi2  =  1 if zi2 > 0, yi2  =  0 otherwise, 

   [εi1,εi2] ~ bivariate normal (BVN) [0,0,1,1,ρ], -1 < ρ < 1, 

   individual observations on y1 and y2 are available for all i. 
 
(This model is also available for grouped (proportions) data. See Section N12.2.2.)  The model given 
above would be estimated using a complete sample on [y1, y2, x1, x2] where y1 and y2 are binary 
variables and xij are sets of regressors.  This chapter will describe estimation of this model and 
several variants: 
 

• The disturbances in one or both equations may be heteroscedastic. 
 

• The observation mechanism may be such that yi1 is not observed when yi2 equals zero. 
 

• The observation mechanism may be such that only the product of yi1 and yi2 is observed. 
That is, we only observe the compound outcomes ‘both variables equal one’ or ‘one or 
both equal zero.’ 
 

• The basic model is extended to as many as 20 equations as a multivariate probit model. 
 
NOTE:  It is not necessary for there to be different variables in the two (or more) equations.  The 
Rh1 and Rh2 lists may be identical if your model specifies that.  There is no issue of identifiability or 
of estimability of the model – the variable lists are unrestricted.  This is not a question of 
identification by functional form. The analogous case is the SUR model which is also identified even 
if the variables in the two equations are the same. 
 

• Some extensions to a simultaneous equations model are easily programmed. 
 

• The bivariate probit and partial observability models are extended to the random 
parameters modeling framework for panel data. 
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N12.2 Estimating the Bivariate Probit Model 
 
 The two equations can each be estimated consistently by individual single equation probit 
methods (see Chapter E27).  However, this is inefficient and incomplete in that it ignores the 
correlation between the disturbances.  Moreover, the correlation coefficient itself might be of interest.  
The comparison is analogous to that between OLS and GLS in the multivariate regression model.  The 
model is estimated in NLOGIT using full information maximum likelihood.  The essential command is 
 
 BIVARIATE PROBIT ; Lhs  = y1,y2 
 (or just BIVARIATE)  ; Rh1  = right hand side for equation 1 
    ; Rh2  = right hand side for equation 2 $ 
 
N12.2.1 Options for the Bivariate Probit Model 
 
 Restrictions may be imposed both between and within equations by using 

   ; Rst = list of specifications... 
and   ; CML: linear restrictions 
 
You might, for example, force the coefficients in the two equations to be equal as follows: 
 
 NAMELIST  ; x = ... $ 
 CALC  ; k = Col(x) $ 
 BIVARIATE ; Lhs = y1,y2 ; Rh1 = x ; Rh2 = x ; Rst = k_b, k_b, r $ 
 
(The model is identified with the same variables in the two equations.) 
 
NOTE:  You should not use the name rho for ρ in your ; Rst specification;  rho is the reserved name 
for the scalar containing the most recently estimated value of ρ in whatever model estimated it.  If it 
has not been estimated recently, it is zero.  Either way, when ; Rst contains the name rho, this is 
equivalent to fixing ρ at the value then contained in the scalar rho.  That is, rho is a value, not a 
model parameter name such as b1.  On the contrary, however, you might wish specifically to use rho 
in your ; Rst specification.  For example, to trace the maximized log likelihood over values of ρ, you 
might base the study on a command set that includes 
 
 PROCEDURE 
 BIVARIATE  ; ....  ; Rst = ..., rho $ 
 ... 
 ENDPROC 
 EXECUTE ; rho = 0.0, .90, .10 $ 
 
This would estimate the bivariate probit model 10 times, with ρ fixed at 0, .1, .2, ..., .9.  Presumably, 
as part of the procedure, you would be capturing the values of logl and storing them for a later listing 
or perhaps a plot of the values against the values of rho. 
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 If you use the constraints option, the parameter specification includes ρ.  As such, you can 
use this method to fix ρ to a particular value.  This is a model for a voting choice and use of private 
schools: 
   vote =  f1(one,income,property_taxes) 
   private =  f2(one,income,years,teacher). 
 
Suppose it were desired to make the income coefficient the same in the two equations and, in a 
second model, fix rho at 0.4.  The commands could be 
 
 BIVARIATE ; Lhs  = tax,priv  
   ; Rh1  = one,inc,ptax ; Rh2 = one,inc,yrs,tch 
   ; Rst  = b10,bi,b12,b20,bi,b22,b23,r $ 
 
and BIVARIATE ; Lhs  = tax,priv  
   ; Rh1  = one,inc,ptax ; Rh2 = one,inc,yrs,tch 
                ; Rst  = b10,bi,b12,b20,bi,b22,b23,0.4 $ 
 
Choice Based Sampling 
 
 Any of the bivariate probit models may be estimated with choice based sampling.  The feature 
is requested with 
   ; Wts = the appropriate weighting variable 
   ; Choice Based 
  
For this model, your weighting variable will take four values, for the four cells (0,0), (0,1), (1,0), and 
(1,1); 
   wij   =  population proportion / sample proportion, i,j = 0,1. 
 
The particular value corresponds to the outcome that actually occurs.  You must provide the values. 
You can obtain sample proportions you need if you do not already have them by computing a 
crosstab for the two Lhs variables: 
 
 CROSSTAB ; Lhs  = y1 ; Rhs = y2  $ 
 
The table proportions are exactly the proportions you will need.  To use this estimator, it is assumed 
that you know the population proportions. 
 
Robust Covariance Matrix with Correction for Clustering 
 
 The standard errors for all bivariate probit models may be corrected for clustering in the 
sample.  Full details on the computation are given in Chapter R10, so we give only the final result 
here.  Assume that the data set is partitioned into G clusters of related observations (like a panel).  
After estimation, let V be the estimated asymptotic covariance matrix which ignores the clustering.  
Let gij denote the first derivatives of the log likelihood with respect to all model parameters for 
observation (individual) i in cluster j.   
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 Then, the corrected asymptotic covariance matrix is 
 

   Est.Asy.Var ˆ 
 β   =  ( )( )1 1 11

i iG n n
ij iji j j
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You specify the clusters with 
 
 ; Cluster  =  either the fixed number of individuals in a group or the name of a variable 
    which identifies the group membership 
 
Any identifier which is common to all members in a cluster and different from other clusters may be 
used.  The controls for stratified and clustered data may be used as well.  These are as follows: 
 
 ; Cluster =  the number of observations in a cluster (fixed) or the name of a 
    stratification variable which gives the cluster an identification.  This 
    is the setup that is described above. 
 ; Stratum = the number of observations in a stratum (fixed) or the name of a  
    stratification variable which gives the stratum an identification 
 ; Wts    = the name of the usual weighting variable for model estimation if 
    weights are desired.  This defines wics.  This is the usual weighting 
    setup that has been used in all previous versions of LIMDEP and  
    NLOGIT. 
 ; FPC    = the name of a variable which gives the number of clusters in the 
    stratum.  This number will be the same for all observations in a 
    stratum – repeated for all clusters in the stratum.  If this number is 
    the same for all strata, then just give the number. 
 ; Huber   Use this switch to request hs.  If omitted, hs = 1 is used. 
 ; DFC        Use this switch to request the use of d given above.  If omitted, 
    d = 1 is used. 
 
Note, these corrections will generally lead to larger standard errors compared to the uncorrected results.   
 
N12.2.2 Proportions Data 
 
 Like other discrete choice models, this one may be fit with proportions data.  Since this is a 
bivariate model, you must provide the full set of four proportions variables, in the order 
 
   ; Lhs = p00, p01, p10, p11. 
 
(You may use your own names).  Proportions must be strictly between zero and one, and the four 
variables must add to 1.0. 
 
NOTE:  When you fit the model using proportions data, there is no cross tabulation of fitted and 
actual values produced, and no fitted values or ‘residuals’ are computed. 
 
  



N12: Bivariate and Multivariate Probit and Partial Observability Models N-172 

N12.2.3 Heteroscedasticity 
 
 All bivariate probit specifications, including the basic two equation model, the sample 
selection model (Section N12.4), and the Meng and Schmidt partial observability model (Section 
N12.7), may be fit with a multiplicative heteroscedasticity specification.  The model is the same as 
the univariate probit model; 
 
   εi  ~  N{0, [exp( γi′zi)]2 }, i = 1 and/or 2. 
 
Either or both equations may be specified in this fashion.  Use 
 
   ; Hf1 = list of variables if you wish to modify the first equation 
   ; Hf2 = list of variables if you wish to modify the second equation 
 
NOTE:  Do not include one in either list.  The model will become inestimable. 
 
The model is unchanged otherwise, and the full set of options given earlier remains available.  To 
give starting values with this modification, supply the following values in the order given: 
 
   Θ  =  [β1,β2,γ1,γ2,ρ]. 
 
As before, all starting values are optional, and if you do provide the slopes, the starting value for ρ is 
still optional.  The internal starting values for the variance parameters are zero for both equations.  
(This produces the original homoscedastic model.) 
 
N12.2.4 Specification Tests 
 

Wald, LM, and LR tests related to the slope parameters would follow the usual patterns 
discussed in previous chapters.  One might be interested in testing hypotheses about the correlation 
coefficient.  The Wald test for the hypothesis that ρ equals zero is part of the standard output for the 
model – see the results below which include a ‘t’ statistic for this hypothesis.  Likelihood ratio and 
LM tests can be carried out as shown below: 
 The following routine will test the specification of the bivariate probit model against the null 
hypothesis that two separate univariate probits apply.  The test of the hypothesis that ρ equals zero is 
sufficient for this.  The first group of commands computes and saves the univariate probit 
coefficients and log likelihoods. 
 
 NAMELIST ; x1 = ... Rhs for the first equation 

  ; x2 = ... Rhs for the second equation $ 
PROBIT ; Lhs = y1 ; Rhs = x1 $ 
MATRIX ; b1 = b $ 
CALC  ; l1 = logl $ 
PROBIT ; Lhs = y2 ; Rhs = x2 $ 
MATRIX ; b2 = b $ 
CALC  ; l2 = logl $ 
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To carry out the likelihood ratio test, we now fit the bivariate model, which is the unrestricted one. 
The restricted model, with ρ = 0, is the two univariate models.  The restricted log likelihood is the 
sum of the two univariate values.  The CALC command carries out the test.  The BIVARIATE 
command also produces a t statistic in the displayed output for the hypothesis that ρ = 0.  To 
automate the test, we can also use the automatically retained values rho and varrho.  The second 
CALC command carries out this test. 
 

BIVARIATE ; Lhs = y1,y2 ; Rh1 = x1 ; Rh2 = x2 $ 
CALC  ; lrtest = 2*(l1 + l2 - logl) 
  ; pvalue = 1 - Chi(lrtest,1) $ 
CALC  ; waldtest = rho^2 / varrho 
  ; pvalue = 1 - Chi(waldtest,1) $ 

 
The Lagrange multiplier test is also simple to carry out using the built in procedure, as we have 
already estimated the restricted model.  The test is carried out with the model command that specifies 
the starting values from the restricted model and restricts the maximum iterations to zero. 
 
 NAMELIST ; x1 = ... Rhs for the first equation 

  ; x2 = ... Rhs for the second equation $ 
PROBIT ; Lhs = y1 ; Rhs = x1 $ 
MATRIX ; b1 = b $ 
PROBIT ; Lhs = y2 ; Rhs = x2 $ 
MATRIX ; b2 = b $ 
BIVARIATE ; Lhs = y1,y2 ; Rh1 = x1 ; Rh2 = x2 
  ; Start = b1,b2,0 ; Maxit = 0 $ 

 
 You can test the heteroscedasticity assumption by any of the three classical tests as well.  
The LM test will be the simplest since it does not require estimation of the model with 
heteroscedasticity. You can carry out the LM test as follows: 
  
 NAMELIST ; x1 = ... ; x2   = ... ; z1  = ... ; z2  = ... $ 
 BIVARIATE ; Lhs = ...  ; Rh1 = x1 ; Rh2 = x2 $ 
 CALC  ; h1 = Col(z1) ; h2 = Col(z2)  
   ; k1 = Col(x1) ; k2 = Col(x2) ; k12 = k1+k2 $ 
 MATRIX ; b1_b2 = b(1:k12) $ 
 BIVARIATE ; Lhs = ... 
   ; Rh1 = x1 ; Rh2 = x2 ? specify the two probit equations 
   ; Hf1 = z1 ; Hf2 = z2  ? variables in the two variances 
   ; Start = b1_b2, h1_0, h2_0, rho 
   ; Maxit = 0 $ 
  
In this instance, the starting value for rho is the value that was estimated by the first model, which is 
retained as a scalar value. 
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N12.2.5 Model Results for the Bivariate Probit Model 
 
 The initial output for the bivariate probit models consists of the ordinary least squares results 
if you request them with 
 
   ; OLS 
 
Final output includes the log likelihood value and the usual statistical results for the parameter 
estimates. 
 The last output, requested with 
 
   ; Summary 
 
 is a joint frequency table for four cells, with actual and predicted values shown.  The predicted 
outcome is the cell with the largest probability.  Cell probabilities are computed using 
   
  Pi00  =  1  -  Pi11  -  Pi10  -  Pi01   Pi01  =  Φ   [β2′xi2]  -  Pi11 

   Pi10  =  Φ   [β1′xi1]  -  Pi11  Pi11  =  Φ2 [β1′xi1, β2′xi1, ρ] 
 
A table which assesses the success of the model in predicting the two variables is presented as well. 
An example appears below.  The predictions and residuals are a bit different from the usual setup 
(because this is a two equation model): 
 
   ; Keep = name to retain the predicted y1 
   ; Res = name  to retain the predicted y2 
   ; Prob = name  to retain the probability for observed y1, y2 outcome 
   ; Density = fitted bivariate normal density for observed outcome 
 
 Matrix results kept in the work areas automatically are b and varb.  An extra matrix named 
b_bprobt is also created.  This is a two column matrix that collects the coefficients in the two 
equations in a parameter matrix. The number of rows is the larger of the number of variables in x1 
and x2.  The coefficients are placed at the tops of the respective columns with the shorter column 
padded with zeros.   
 
NOTE:  There is no correspondence between the coefficients in any particular row of b_bprobt. For 
example, in the second row, the coefficient in the first column is that on the second variable in x1 
and the coefficient in the second column is that on the second variable in x2.  These may or may not 
be the same. 
 
 The results saved by the binary choice models are: 
 
 Matrices: b   =  estimate of (β1′,β2′,ρ)′  
   varb   =  asymptotic covariance matrix 
 
 Scalars: kreg   =  number of parameters in model 
   nreg   =  number of observations 
   logl   =  log likelihood function 
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 Variables: logl_obs =  individual contribution to log likelihood 
 
 Last Model: b1_variables, b2_variables, c1_variables, c1_variables, r12 
 
 Last Function: Prob(y1 = 1,y2 = 1|x1,x2) = Φ2(b1′x1,b2′x2,r) 
 
The saved scalars are nreg, kreg, logl, rho, varrho.  The Last Model labels are b_variables and 
b2_variables.  If the heteroscedasticity specification is used, the additional coefficients are 
c1_variables and c2_variables.  To extract a vector that contains only the slopes, and not the 
correlation, use 
 
 MATRIX ; {kb = kreg-1} ; b1b2 = b(1:kb) $ 
 
To extract the two parameter vectors separately, after defining the namelists, you can use 
 
 MATRIX ; {k1 = Col(x1) ; k12 = k1+1 ; kb = kreg-1} 

; b1 = b(1:k1) ; b2 = b(k12:kb) $ 
 
You may use other names for the matrices.  (Note that the MATRIX commands contain embedded 
CALC commands contained in {}.)  If the model specifies heteroscedasticity, similar constructions 
can be used to extract the three or four parts of b. 
 
N12.2.6 Partial Effects 
 
 Because it is a two equation model, it is unclear what should be an appropriate ‘marginal 
effect’ in the bivariate probit model.  (This is one of our frequently asked questions, as users are 
often uncertain about what it is that they are looking for when they seek the ‘partial effects’ in the 
model – effect of what?  on what?)  The literature is not necessarily helpful in this regard.  The one 
published result in the econometrics literature, Christofides, Stengos and Swidinsky (1997), plus an 
error correction in a later issue, focuses on the joint probability of the two outcome variables 
equaling one – which is not a conditional mean.  The probability might be of interest.  It can be 
examined with the PARTIAL EFFECTS program.  An example appears below.  The marginal 
means in the model are the univariate probabilities that the two variables equal one. These are also 
not necessarily interesting, but, in any event, they can be computed using the univariate models. 

NLOGIT analyzes the conditional mean function 
 
   E[y1 | y2 = 1, x1, x2] = Prob[y1 = 1,y2 = 1| x1,x2,ρ) / Prob[y2 = 1|x1]. 
 
This is the function analyzed in the bivariate probit marginal effects processor.  The bivariate probit 
estimator in NLOGIT allows either or both of the latent regressions to be heteroscedastic.  The 
reported effects for this model include the decomposition of the marginal effect into all four terms, 
the regression part and the variance part, in each of the two latent models. 
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The computations of the following marginal effects in the bivariate probit model are 
included as an option with the estimator. There are two models, the base case of y1,y2 a pair of 
correlated probit models, and y1|y2 = 1, the bivariate probit with sample selection.  (See Section 
N12.4 below.)  The conditional mean computed for these two models would be identical, 
 
   E[y1|y2 = 1]  = Φ2 [w1, w2 , ρ ] / Φ( w2 ) 
 
where Φ2 is the bivariate normal CDF and Φ is the univariate normal CDF. This model allows 
multiplicative heteroscedasticity in either or both equations, so 
 

  w1  =  β1′x1 / exp(γ1′z1) 
 
and likewise for w2.  In the homoscedastic model, γ1 and/or γ2 is a zero vector.  Four full sets of 
marginal effects are reported, for x1, x2, z1, and z2.  Note that the last two may be zero.  The four 
vectors may also have variables in common.  For any variable which appears in more than one of the 
parts, the marginal effect is the sum of the individual terms.  A table is reported which displays these 
total effects for every variable which appears in the model, along with estimated standard errors and 
the usual statistical output. Formulas for the parts of these marginal effects are given below with the 
technical details.  For further details, see Greene (2011).   
 Note that you can get marginal effects for y2|y1 just by respecifying the model with y1 and y2 
reversed (y2 now appears first) in the Lhs list of the command. You can also trick NLOGIT into 
giving you marginal effects for y1|y2 = 0 (instead of y2 = 1) by computing z1 = 1-y1 and z2 = 1-y2, and 
fitting the same bivariate probit model but with Lhs = z1,z2.  You must now reverse the signs of the 
marginal effects (and all slope coefficients) that are reported. 
 The example below was produced by a sampling experiment:  Note that the model specifies 
heteroscedasticity in the second equation though, in fact, there is none. 
 
 CALC  ; Ran(12345) $ 

SAMPLE   ; 1-500 $ 
 CREATE   ; u1 = Rnn(0,1)   ; u2 = u1 + Rnn(0,1)  

; z  = Rnu(.2,.4) ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) 
; x3 = Rnn(0,1)   ; y1 = (x1 + x2 + u1) > 0 ; y2 = (x1 + x3 + u2) > 0 $ 

 BIVARIATE    ; Lhs = y1,y2  
; Rh1 = one,x1,x2 ; Rh2 = one,x1,x3  
; Hf2 = z ; Partial Effects $ 

 
The first set of results is the model coefficients. 
 
----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable                 Y1Y2 
Log likelihood function      -416.31350 
Estimation based on N =    500, K =   8 
Inf.Cr.AIC  =  848.627 AIC/N =    1.697 
Disturbance model is multiplicative het. 
Var. Parms follow   6 slope estimates. 
For e(2),  1 estimates follow X3 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for Y1 
Constant|    -.04292         .07362     -.58  .5599     -.18721    .10137 
      X1|    1.09235***      .08571    12.74  .0000      .92435   1.26035 
      X2|    1.06802***      .08946    11.94  .0000      .89268   1.24337 
        |Index    equation for Y2 
Constant|     .01017         .06432      .16  .8744     -.11590    .13623 
      X1|     .82908**       .37815     2.19  .0283      .08792   1.57024 
      X3|     .70123**       .30512     2.30  .0215      .10321   1.29925 
        |Variance equation for Y2 
       Z|    -.05575        1.45449     -.04  .9694    -2.90651   2.79500 
        |Disturbance correlation 
RHO(1,2)|     .66721***      .07731     8.63  .0000      .51568    .81874 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
This is the decomposition of the marginal effects for the four possible contributors to the effect. 
 
+------------------------------------------------------+ 
|              Partial Effects for Ey1|y2=1            | 
+----------+---------------------+---------------------+ 
|          | Regression Function |  Heteroscedasticity | 
|          +---------------------+---------------------+ 
|          |   Direct | Indirect |   Direct | Indirect | 
| Variable | Efct  x1 | Efct  x2 | Efct  h1 | Efct  h2 | 
+----------+----------+----------+----------+----------+ 
|       X1 |   .48383 |  -.17370 |   .00000 |   .00000 | 
|       X2 |   .47305 |   .00000 |   .00000 |   .00000 | 
|       X3 |   .00000 |  -.14691 |   .00000 |   .00000 | 
|        Z |   .00000 |   .00000 |   .00000 |   .00092 | 
+----------+----------+----------+----------+----------+ 
 
A table of the specific effects is produced for each contributor to the marginal effects.  This first 
table gives the total effects.  The values here are the row total in the table above. 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .661053 
Observations used for means are  All Obs. 
Total effects reported = direct+indirect. 
--------+-------------------------------------------------------------------- 
      Y1|     Partial      Standard            Prob.      95% Confidence 
      Y2|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .31013***      .04356     7.12  .0000      .22476    .39550 
      X2|     .47305***      .04338    10.91  .0000      .38804    .55807 
      X3|    -.14691***      .02853    -5.15  .0000     -.20283   -.09099 
       Z|     .00092         .02404      .04  .9694     -.04620    .04804 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The direct effects are the marginal effects of the variables (x1 and z1) that appear in the first equation. 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .435447 
Observations used for means are  All Obs. 
These  are the  direct marginal  effects. 
--------+-------------------------------------------------------------------- 
     TAX|     Partial      Standard            Prob.      95% Confidence 
    PRIV|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     INC|     .67814***      .24487     2.77  .0056      .19820   1.15807 
    PTAX|    -.83030**       .38146    -2.18  .0295    -1.57794   -.08266 
     YRS|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
The indirect effects are the effects of the variables that appear in the other (second) equation. 
 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .661053 
Observations used for means are  All Obs. 
These are the indirect  marginal effects. 
----------------------------------------------------------------------------- 
--------+-------------------------------------------------------------------- 
      Y1|     Partial      Standard            Prob.      95% Confidence 
E[y1|x,z|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|    -.17370***      .03250    -5.34  .0000     -.23740   -.11000 
      X2|        0.0    .....(Fixed Parameter)..... 
      X3|    -.14691***      .02853    -5.15  .0000     -.20283   -.09099 
       Z|     .00092         .02404      .04  .9694     -.04620    .04804 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
 The marginal effects processor in the bivariate probit model detects when a regressor is a 
dummy variable.  In this case, the marginal effect is computed using differences, not derivatives.  
The model results will contain a specific description.  To illustrate this computation, we revisit the 
German health care data.  A description appears in Chapter E2.  Here, we analyze the two health care 
utilization variables, doctor = 1(docvis > 0) and hospital = 1(hospvis > 0) in a bivariate probit model.   
  



N12: Bivariate and Multivariate Probit and Partial Observability Models N-179 

The model command is 
 
 SAMPLE ; All $ 
 CREATE ; doctor = docvis > 0 ; hospital = hospvis > 0 $ 
 BIVARIATE ; Lhs  = doctor,hospital 
   ; Rh1 = one,age,educ,hhninc,hhkids 
   ; Rh2 = one,age,hhninc,hhkids 
   ; Partial Effects $ 
 
The variable hhkids is a binary variable for whether there are children in the household.  The 
estimation results are as follows.  This is similar to the preceding example.  The final table contains 
the result for the binary variable.  In fact, the explicit treatment of the binary variable results in very 
little change in the estimate. 
 
----------------------------------------------------------------------------- 
FIML Estimates of Bivariate Probit Model 
Dependent variable               DOCHOS 
Log likelihood function    -25552.65886 
Estimation based on N =  27326, K =  10 
Inf.Cr.AIC  =51125.318 AIC/N =    1.871 
--------+-------------------------------------------------------------------- 
  DOCTOR|                  Standard            Prob.      95% Confidence 
HOSPITAL|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for DOCTOR 
Constant|     .13653**       .05618     2.43  .0151      .02642    .24663 
     AGE|     .01353***      .00076    17.84  .0000      .01205    .01502 
    EDUC|    -.02675***      .00345    -7.75  .0000     -.03352   -.01998 
  HHNINC|    -.10245**       .04541    -2.26  .0241     -.19144   -.01345 
  HHKIDS|    -.12299***      .01670    -7.37  .0000     -.15571   -.09027 
        |Index    equation for HOSPITAL 
Constant|   -1.54988***      .05325   -29.10  .0000    -1.65426  -1.44551 
     AGE|     .00510***      .00100     5.08  .0000      .00313    .00707 
  HHNINC|    -.05514         .05510    -1.00  .3169     -.16314    .05285 
  HHKIDS|    -.02682         .02392    -1.12  .2622     -.07371    .02006 
        |Disturbance correlation 
RHO(1,2)|     .30251***      .01381    21.91  .0000      .27545    .32958 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------+ 
|  Partial Effects for Ey1|y2=1  | 
+----------+----------+----------+ 
|          |   Direct | Indirect | 
| Variable | Efct  x1 | Efct  x2 | 
+----------+----------+----------+ 
|      AGE |   .00367 |  -.00036 | 
|     EDUC |  -.00726 |   .00000 | 
|   HHNINC |  -.02779 |   .00385 | 
|   HHKIDS |  -.03336 |   .00187 | 
+----------+----------+----------+ 
 
  



N12: Bivariate and Multivariate Probit and Partial Observability Models N-180 

----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .822131 
Observations used for means are  All Obs. 
Total effects reported = direct+indirect. 
--------+-------------------------------------------------------------------- 
  DOCTOR|     Partial      Standard            Prob.      95% Confidence 
HOSPITAL|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00332***      .00023    14.39  .0000      .00286    .00377 
    EDUC|    -.00726***      .00096    -7.58  .0000     -.00913   -.00538 
  HHNINC|    -.02394*        .01225    -1.95  .0507     -.04796    .00008 
  HHKIDS|    -.03149***      .00471    -6.69  .0000     -.04072   -.02226 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .822131 
Observations used for means are  All Obs. 
These  are the  direct marginal  effects. 
--------+-------------------------------------------------------------------- 
  DOCTOR|     Partial      Standard            Prob.      95% Confidence 
HOSPITAL|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|     .00367***      .00022    16.44  .0000      .00323    .00411 
    EDUC|    -.00726***      .00096    -7.58  .0000     -.00913   -.00538 
  HHNINC|    -.02779**       .01232    -2.25  .0241     -.05195   -.00364 
  HHKIDS|    -.03336***      .00460    -7.26  .0000     -.04237   -.02436 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Partial derivatives of  E[y1|y2=1]  with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Effect shown is total of all parts above. 
Estimate of E[y1|y2=1] = .822131 
Observations used for means are  All Obs. 
These are the indirect  marginal effects. 
--------+-------------------------------------------------------------------- 
  DOCTOR|     Partial      Standard            Prob.      95% Confidence 
E[y1|x,z|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AGE|    -.00036***   .7075D-04    -5.03  .0000     -.00049   -.00022 
    EDUC|        0.0    .....(Fixed Parameter)..... 
  HHNINC|     .00385         .00385     1.00  .3167     -.00369    .01140 
  HHKIDS|     .00187         .00167     1.12  .2620     -.00140    .00515 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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+-----------------------------------------------------------+ 
| Analysis of dummy variables in the model. The effects are | 
| computed using E[y1|y2=1,d=1] - E[y1|y2=1,d=0] where d is | 
| the variable. Variances use the delta method.  The effect | 
| accounts for all appearances of the variable in the model.| 
+-----------------------------------------------------------+ 
|Variable      Effect   Standard error     t ratio          | 
+-----------------------------------------------------------+ 
 HHKIDS      -.031829     .004804           -6.625 
 
N12.3 Tetrachoric Correlation 
 
 The tetrachoric correlation is a measure of the correlation between two binary variables.  The 
familiar Pearson, product moment correlation is inappropriate as it is used for continuous variables.  
The tetrachoric correlation coefficient is equivalent to the correlation coefficient in the following 
bivariate probit model: 
 

 y1* = µ + ε1, y1 = 1(y1* > 0) 

 y2* = µ + ε2, y2 = 1(y2* > 0) 

 (ε1,ε2) ~ N2[(0,0),(1,1,ρ)] 
 
The applicable literature contains a number of approaches to estimation of this correlation 
coefficient, some a bit ad hoc.  We proceed directly to the implied maximum likelihood estimator. 
You can fit this ‘model’ with 
 
 BIVARIATE ; Lhs = y1,y2 ; Rh1 = one ; Rh2 = one $ 
 
The reported estimate of ρ is the desired estimate.  NLOGIT notices if your model does not contain 
any covariates in the equation, and notes in the output that the estimator is a tetrachoric correlation.  
The results below based on the German health care data show an example. 
 
----------------------------------------------------------------------------- 
FIML Estimation of Tetrachoric Correlation 
Dependent variable               DOCHOS 
Log likelihood function    -25898.27183 
Estimation based on N =  27326, K =   3 
Inf.Cr.AIC  =51802.544 AIC/N =    1.896 
--------+-------------------------------------------------------------------- 
  DOCTOR|                  Standard            Prob.      95% Confidence 
HOSPITAL|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Estimated alpha for P[DOCTOR  =1] = F(alpha) 
Constant|     .32949***      .00773    42.61  .0000      .31433    .34465 
        |Estimated alpha for P[HOSPITAL=1] = F(alpha) 
Constant|   -1.35540***      .01074  -126.15  .0000    -1.37646  -1.33434 
        |Tetrachoric Correlation between DOCTOR   and HOSPITAL 
RHO(1,2)|     .31106***      .01357    22.92  .0000      .28446    .33766 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The preceding suggests an interpretation for the bivariate probit model; the correlation coefficient 
reported is the conditional (on the independent variables) tetrachoric correlation. 
 The computation in the preceding can be generalized to a set of M binary variables, y1,...,yM.  
The tetrachoric correlation matrix would be the M×M matrix, R, whose off diagonal elements are the 
ρmn coefficients described immediately above.  There are several ways to do this computation, again, 
as suggested by a literature that contains recipes.  Once again, the maximum likelihood estimator 
turns out to be a useful device. 
 A direct approach would involve expanding the latent model to 
 

 y1* = µ + ε1, y1 = 1(y1* > 0) 

 y2* = µ + ε2, y2 = 1(y2* > 0) 

 ... 

 yM* = µ + εM, yM = 1(yM* > 0) 

 (ε1,ε2,...,εM) ~ NM[0,R] 
 
The appropriate estimator would be NLOGIT’s multivariate probit estimator, MPROBIT, which can 
handle up to M = 20. The correlation matrix produced by this procedure is precisely the full 
information MLE of the tetrachoric correlation matrix.  However, for any M larger than two, this 
requires use of the GHK simulator to maximize the simulated log likelihood, and is extremely slow. 
The received estimators of this model estimate the correlations pairwise, as shown earlier.  For this 
purpose, the FIML estimator is unnecessary.  The matrix can be obtained using bivariate probit 
estimates. The following procedure would be useable: 
 

NAMELIST  ; y = y1,y2,...,ym $ 
CALC           ; m = Col(y) $ 
MATRIX      ; r = Iden(m) $ 
PROCEDURE $ 
DO FOR  ; 20 ; i = 2,m $ 
CALC      ; i1 = i - 1 $   
DO FOR  ; 10 ; j = 1,i1 $ 
BIVARIATE  ; Lhs = y:i, y:j ; Rh1 = one ; Rh2 = one $ 
MATRIX  ; r(i,j) = rho $ 
MATRIX  ; r(j,i) = rho $ 
ENDDO  ; 10 $ 
ENDDO ; 20 $ 
ENDPROC $ 
EXECUTE  ; Quietly $ 

 
A final note, the preceding approach is not fully efficient.  Each bivariate probit estimates (µm,µn) 
which means that µm is estimated more than once when m > 1.  A minimum distance estimator could 
be used to reconcile these after all the bivariate probit estimates are computed.  But, since the means 
are nuisance parameters in this model, this seems unlikely to prove worth the effort. 
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N12.4 Bivariate Probit Model with Sample Selection  
 
 In the bivariate probit setting, data on y1 might be observed only when y2 equals one.  For 
example, in modeling loan defaults with a sample of applicants, default will only occur among 
applicants who are granted loans.  Thus, in a bivariate probit model for the two outcomes, the 
observed default data are nonrandomly selected from the set of applicants.  The model is 
 
   zi1 = β′xi1 + εi1, yi1 = sgn(zi1), 
    zi2 = β′xi2 + εi2, yi2 = sgn(zi2), 
    εi1,εi2 ~ BVN(0,0,1,1,ρ), 
     (yi1,xi1) is observed only when yi2 = 1. 
 
This is a type of sample selectivity model. The estimator was proposed by Wynand and van Praag 
(1981). An extensive application which uses choice based sampling as well is Boyes, Hoffman, and 
Low (1989). (See also Greene (1992 and 2011).)  The sample selection model is obtained by adding 
 
   ; Selection  (or just ; Sel) 
 
to the BIVARIATE PROBIT command.  All other options and specifications are the same as 
before.  Except for the diagnostic table which indicates that this model has been chosen, the results 
for the selection model are the same as for the basic model. 
 

N12.5 Simultaneity in the Binary Variables 
 
 A simultaneous equations sort of model would appear as 
 
   zi1  =  β1′xi1 + γ1yi2 +  εi1,  yi1  =  1 if zi1 > 0, yi1  =  0 otherwise, 
   zi2  =  β2′xi2 + γ1yi1 + εi2,  yi2  =  1 if zi2 > 0, yi2  =  0 otherwise, 
   [εi1,εi2] ~ bivariate normal (BVN) [0,0,1,1,ρ], -1 < ρ < 1, 
   individual observations on y1 and y2 are available for all i. 
 
It would follow from the construction that 
 
  Prob[y1 = 1,  y2 = 1]  =  Φ2 (β1′x1+  γ1y2,  β2′x2+  γ2y1, ρ] 
 
and likewise for the other cells, where y1 and y2 are two binary variables.  Unfortunately, the model as 
stated is not internally consistent, and is inestimable.  Ultimately, it is not identifiable.  As a practical 
matter, you can verify this by attempting to devise a way to simulate a sample of observations that 
conforms exactly to the assumptions of the model.  In this case, there is none because there is no linear 
reduced form for this model.  (The approach suggested by Maddala (1983) is not consistent.)  NLOGIT 
will detect this condition and decline to attempt to do the estimation.  For example: 
 
      BIVARIATE PROBIT ; Lhs = y1,y2 ; Rh1 = one,x1,x3,y2 ; Rh2 = one,x2,x3,y1 $ 
 
produces a diagnostic, 
 
Error   809: Fully simultaneous BVP model is not identified 
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NOTE:  Unlike the case in linear simultaneous equations models, nonidentifiability does not prevent 
‘estimation’ in this model.  (2SLS estimates cannot be computed when there are too few instrumental 
variables, which is the signature of nonidentifiability in a linear context.)  With the ‘fully 
simultaneous bivariate probit model,’ it is possible to maximize what purports to be a log likelihood 
function – numbers will be produced that might even look reasonable.  However, as noted, the model 
itself is nonsensical – it lacks internal coherency. 
 
N12.6 Recursive Bivariate Probit Model 
 
 A slight modification of the model in the previous section is identified and used in many 
recent applications.  Consider the model for the probability of the event y1 = 0/1 and y2 = 0/1 
assuming γ2 = 0. 
   Prob[y1 = 1, y2 = 1 | x1 , x2 ]  =  Φ2 (β1′x1 + γ1,  β2′x2, ρ) 

   Prob[y1 = 1, y2 = 0 | x1 , x2 ]  =  Φ2 (β1′x1,        -β2′x2, -ρ) 

   Prob[y1 = 0, y2 = 1 | x1 , x2 ]  =  Φ2 (-β1′x1 + γ1, β2′x2, -ρ) 

   Prob[y1 = 0, y2 = 0 | x1 , x2 ]  =  Φ2 (-β1′x1,       -β2′x2, ρ) 
 
This is a recursive simultaneous equations model.  Surprisingly enough, it can be estimated by full 
information maximum likelihood ignoring the simultaneity in the system; 
 
 BIVARIATE ; Lhs  =  y1, y2 
   ; Rh1 =  x1,y2 ; Rh2 = x2 $ 
 
(A proof of this result is suggested in Maddala (1983, p. 123) and pursued in Greene (1998).)  An 
application of the result to the gender economics study is given in Greene (1998).  Some extensions 
are presented in Greene (2003, 2011). 
 This model presents the same ambiguity in the conditional mean function and marginal 
effects that were noted earlier in the bivariate probit model.  The conditional mean for y1 is 
 
   E[y1 | y2 = 1, x1, x2]  =  Φ2 (β1′x1 +  γ1, β2′x2, ρ) / Φ(β2′x2) 
 
for which derivatives were given earlier.  Given the form of this result, we can identify direct and 
indirect effects in the conditional mean: 
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The unconditional mean function is 
 
  E[y1 | x1, x2] =  Φ(β2′x2) E[y1 | y2 = 1, x1, x2]  + [1-Φ(β2′x2)] E[y1 | y2 = 0, x1, x2] 

    =  Φ2 (β1′x1 +  γ1, β2′x2, ρ)  + Φ2 (β1′x1, -β2′x2, -ρ) 
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Derivatives for marginal effects can be derived using the results given earlier.  Analysis appears in 
Greene (1998). The decomposition is done automatically when you specify a recursive bivariate 
probit model – one in which the second Lhs variable appears in the Rhs of the first equation. 
 The following demonstrates this by extending the model.  Note the appearance of priv on the 
Rhs of the first equation, x1. 
 

NAMELIST ; y = tax, priv 
   ; x1 = one,inc,ptax,priv ; x2 = one,inc,yrs,ptax $ 

BIVARIATE ; Lhs = tax,priv ; Rh1 = x1 ; Rh2 = x2 ; Partial Effects $ 
 
----------------------------------------------------------------------------- 
FIML - Recursive Bivariate Probit Model 
Dependent variable               PRITAX 
Log likelihood function       -74.21179 
Estimation based on N =     80, K =   9 
Inf.Cr.AIC  =  166.424 AIC/N =    2.080 
--------+-------------------------------------------------------------------- 
    PRIV|                  Standard            Prob.      95% Confidence 
     TAX|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index    equation for PRIV 
Constant|   -2.81454        5.51612     -.51  .6099   -13.62594   7.99687 
     INC|     .16264         .76312      .21  .8312    -1.33304   1.65832 
     YRS|    -.03484         .04247     -.82  .4120     -.11808    .04840 
    PTAX|     .04605         .98275      .05  .9626    -1.88011   1.97220 
        |Index    equation for TAX 
Constant|    -.68059        4.05341     -.17  .8667    -8.62513   7.26394 
     INC|    1.22768         .81424     1.51  .1316     -.36820   2.82356 
    PTAX|   -1.63160         .99598    -1.64  .1014    -3.58368    .32047 
    PRIV|     .98178         .95912     1.02  .3060     -.89807   2.86162 
        |Disturbance correlation 
RHO(1,2)|    -.83119         .57072    -1.46  .1453    -1.94977    .28740 
--------+-------------------------------------------------------------------- 
 
--------------------------------------------------------------- 
Decomposition of Partial Effects for Recursive Bivariate Probit 
Model is     PRIV = F(x1b1), TAX      = F(x2b2+c*PRIV    ) 
Conditional mean function is E[TAX     |x1,x2] = 
            Phi2(x1b1,x2b2+gamma,rho) + Phi2(-x1b1,x2b2,-rho) 
Partial effects for continuous variables are derivatives. 
Partial effects for dummy variables (*) are first differences. 
Direct effect is wrt x2, indirect is wrt x1, total is the sum. 
--------------------------------------------------------------- 
Variable   Direct Effect   Indirect Effect    Total Effect 
---------+---------------+-----------------+------------------- 
     INC |   .4787001        .0169062           .4956064 
    PTAX |  -.6362002        .0047864          -.6314138 
     YRS |   .0000000       -.0036217          -.0036217 
---------+----------------------------------------------------- 
 
The decomposition of the partial effects accounts for the direct and indirect influences.  Note that 
there is no partial effect given for priv because this variable is endogenous.  It does not vary 
‘partially.’ 
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N12.7 Panel Data Bivariate Probit Models 
 
 The four bivariate probit models, bivariate probit, bivariate probit with selection, Poirier’s 
partial observability and Abowd’s partial observability model have all been extended to the random 
parameters form of the panel data models.  (The fixed effects and latent class models are not 
available.)  Use of the random parameters formulation is described in detail in Chapter R24.  We will 
only sketch the extension here.  The commands for the models are as follows, where [ ... ] indicates 
an optional part of the specification: 
 
 BIVARIATE  ; Lhs  = y1, y2   ? Bivariate probit 
   ; Rh1  = Rhs for equation 1 
   ; Rh2 = Rhs for equation 2 
   [ ; Selection ]    ? Partial observability 
 
or  PROBIT ; Lhs  = y   ? Probit model 
   ; Rh1  = Rhs for equation 1 
   ; Rh2 = Rhs for equation 2 ? Partial observability (Poirier) 
   [ ; Selection ]    ? Abowd and Farber 
 
Then,   ; RPM [ = list for heterogeneity in the mean ] 
   ; Pds = panel specification ? Optional if cross section 
   [ ; Pts = number of replications ] 
   [ ; Halton and other controls for the estimation ] 
   ; Fcn = designation of random parameters $ 
 
For the random parameters specification, use  
 
   ; name ( distribution ) distribution = n, u, t, l, c  for the first equation 
or    ; name [ distribution ] for the second equation. 
 
Note that random parameters in the second equation are designated by square brackets rather than 
parentheses.  This is necessary because the same variables can appear in both equations.  Two other 
specifications should be useful 
 
   ; Cor  allows the random parameters to be correlated. 
   ; AR1 allows the random terms to evolve according to an AR(1) process 
    rather than be time invariant.   
 
 The two equation random parameters save the matrices b and varb and the scalar logl after 
estimation.  No other variables, partial effects, etc. are provided internally to the command.  But, you 
can use the estimation results directly in the SIMULATION, PARTIAL EFFECTS commands, 
and so on.  An example appears after the results of the simulation below. 
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Application 
 
 To demonstrate this model, we will fit a true random effects model for a bivariate probit 
outcome.  Each equation has its own random effect, and the two are correlated.  The model structure is 
 
   zit1  =  β1′xit1 + εit1  +  ui1,   yit1  =  1 if zit1 > 0, yit1  =  0 otherwise, 

   zit2  =  β2′xit2 + εit2  +   ui2,  yit2  =  1 if zit2 > 0, yit2  =  0 otherwise, 

   [εit1,εit2] ~  Bivariate normal (BVN) [0,0,1,1,ρ], -1 < ρ < 1, 

   [ui1,ui2] ~  Bivariate normal (BVN) [0,0,1,1,θ], -1 < θ < 1, 
 
Individual observations on y1 and y2 are available for all i.  Note, in the structure, the idiosyncratic  εitj 
creates the bivariate probit model, whereas the time invariant common effects, uij create the random 
effects (random constants) model.  Thus, there are two sources of correlation across the equations, the 
correlation between the unique disturbances, ρ, and the correlation between the time invariant 
disturbances, θ.  The data are generated artificially according to the assumptions of the model.  
 

CALC  ; Ran(12345) $ 
SAMPLE ; 1-200 $ 
CREATE ; x1 = Rnn(0,1) ; x2 = Rnn(0,1) ; x3 = Rnn(0,1) $ 
MATRIX ; u1i = Rndm(20) ; u2i = .5* Rndm(20) + .5* u1i $ 
CREATE ; i  = Trn(10,0) ; u1 = u1i(i) ; u2 = u2i(i) $ 
CREATE ; e1 = Rnn(0,1) ; e2 = .7*Rnn(0,1) + .3*e1 $ 
CREATE ; y1 = (x1+e1 + u1) > 0  
  ; y2 = (x2+x3+e2+u2) > 0  ; y12 = y1*y2 $ 
BIVARIATE ; Lhs = y1,y2 ; Rh1 = one,x1 ; Rh2 = one,x2,x3  

; RPM ; Pds = 10 ; Pts = 25 ; Cor ; Halton 
; Fcn = one(n), one[n] $   

PROBIT ; Lhs = y12 ; Rh1 = one,x1 ; Rh2 = one,x2,x3  
; RPM ; Pds = 10 ; Pts = 25 ; Cor ; Halton 
; Fcn = one(n), one[n] ; Selection $   

PROBIT ; Lhs = y12 ; Rh1 = one,x1 ; Rh2 = one,x2,x3  
; RPM ; Pds = 10 ; Pts = 25 ; Cor ; Halton 
; Fcn = one(n), one[n] $   

 
Note that by construction, most of the cross equation correlation comes from the random effects, not 
the disturbances.  The second model is the Abowd/Farber version of the partial observability model. 
The Poirier model is not estimable for this setup.  It is easy to see why.  The correlations in the Poirier 
model are overspecified.  Indeed, with ; Cor for the random effects, the Poirier model specifies two 
separate sources of cross equation correlation.  This is a weakly identified model.  The implication can 
be seen in the results below, where the estimator failed to converge for the probit model, and at the exit, 
the estimate of ρ was nearly -1.0.  This is the signature of a weakly identified (or unidentified) model. 
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These are the estimates of the Meng and Schmidt model. 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for Y1 
Dependent variable                   Y1 
Log likelihood function      -114.32973 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .65214***      .10287     6.34  .0000      .45052    .85375 
Constant|    -.12214         .09617    -1.27  .2041     -.31062    .06634 
--------+-------------------------------------------------------------------- 
Probit   Regression Start Values for Y2 
Dependent variable                   Y2 
Log likelihood function       -83.99189 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X2|     .96584***      .14838     6.51  .0000      .67503   1.25665 
      X3|    1.00421***      .14562     6.90  .0000      .71880   1.28961 
Constant|     .17104         .11176     1.53  .1259     -.04801    .39009 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  BivProbt Model 
Dependent variable                   Y1 
Log likelihood function      -163.43468 
Estimation based on N =    200, K =   9 
Inf.Cr.AIC  =  344.869 AIC/N =    1.724 
Sample is 10 pds and     20 individuals 
Bivariate Probit model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    X1_1|    1.08374***      .19408     5.58  .0000      .70335   1.46412 
    X2_2|    1.18264***      .22213     5.32  .0000      .74727   1.61800 
    X3_2|    1.18893***      .18946     6.28  .0000      .81758   1.56027 
        |Means for random parameters 
   ONE_1|    -.05021         .12427     -.40  .6862     -.29377    .19335 
   ONE_2|     .27827*        .15481     1.80  .0723     -.02514    .58169 
        |Diagonal elements of Cholesky matrix 
   ONE_1|    1.08131***      .17778     6.08  .0000      .73288   1.42975 
   ONE_2|     .42491***      .15811     2.69  .0072      .11503    .73480 
        |Below diagonal elements of Cholesky matrix 
lONE_ONE|    -.45867**       .17845    -2.57  .0102     -.80842   -.10892 
        |Unconditional cross equation correlation 
lONE_ONE|    -.17471         .17798     -.98  .3263     -.52355    .17413 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|       1.16924      -.495965 
       2|      -.495965       .390927 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       1.08131 
       2|       .625242 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000      -.733586 
       2|      -.733586       1.00000 
 
These are the estimates of the Abowd and Farber model. 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for Y12 
Dependent variable                  Y12 
Log likelihood function      -103.81770 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .52842***      .10360     5.10  .0000      .32537    .73147 
Constant|    -.66498***      .10303    -6.45  .0000     -.86692   -.46304 
--------+-------------------------------------------------------------------- 
Probit   Regression Start Values for Y12 
Dependent variable                  Y12 
Log likelihood function      -102.69669 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X2|     .50336***      .11606     4.34  .0000      .27588    .73084 
      X3|     .38430***      .11126     3.45  .0006      .16622    .60237 
Constant|    -.64606***      .10368    -6.23  .0000     -.84927   -.44286 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  PrshlObs Model 
Dependent variable                  Y12 
Log likelihood function       -72.83435 
Restricted log likelihood    -102.69669 
Chi squared [   3 d.f.]        59.72467 
Significance level               .00000 
McFadden Pseudo R-squared      .2907819 
Estimation based on N =    200, K =   8 
Inf.Cr.AIC  =  161.669 AIC/N =     .808 
Sample is 10 pds and     20 individuals 
Partial observability probit model 
Simulation based on  25 Halton draws 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    X1_1|    1.09511***      .23019     4.76  .0000      .64394   1.54629 
    X2_2|    2.26279***      .79573     2.84  .0045      .70319   3.82239 
    X3_2|    1.90015***      .70892     2.68  .0074      .51070   3.28960 
        |Means for random parameters 
   ONE_1|     .09219         .22240      .41  .6785     -.34370    .52809 
   ONE_2|    -.06872         .36077     -.19  .8489     -.77581    .63837 
        |Diagonal elements of Cholesky matrix 
   ONE_1|     .59436**       .23215     2.56  .0105      .13935   1.04937 
   ONE_2|    1.98257***      .73799     2.69  .0072      .53614   3.42900 
        |Below diagonal elements of Cholesky matrix 
lONE_ONE|    -.91612**       .41168    -2.23  .0261    -1.72299   -.10925 
        |Unconditional cross equation correlation 
lONE_ONE|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|       .353265      -.544507 
       2|      -.544507       4.76987 
 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .594361 
       2|       2.18400 
 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000      -.419469 
       2|      -.419469       1.00000 
 
These are the estimates of the Poirier model. 
 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for Y12 
Dependent variable                  Y12 
Log likelihood function      -103.81770 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X1|     .52842***      .10360     5.10  .0000      .32537    .73147 
Constant|    -.66498***      .10303    -6.45  .0000     -.86692   -.46304 
----------------------------------------------------------------------------- 
Probit   Regression Start Values for Y12 
Dependent variable                  Y12 
Log likelihood function      -102.69669 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      X2|     .50336***      .11606     4.34  .0000      .27588    .73084 
      X3|     .38430***      .11126     3.45  .0006      .16622    .60237 
Constant|    -.64606***      .10368    -6.23  .0000     -.84927   -.44286 
--------+-------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  PrshlObs Model 
Dependent variable                  Y12 
Log likelihood function       -70.16147 
Sample is 10 pds and     20 individuals 
Partial observability probit model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
     Y12|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    X1_1|     .95923***      .21311     4.50  .0000      .54154   1.37692 
    X2_2|    1.02185***      .28212     3.62  .0003      .46890   1.57480 
    X3_2|     .77643***      .23096     3.36  .0008      .32376   1.22910 
        |Means for random parameters 
   ONE_1|     .41477         .32108     1.29  .1964     -.21454   1.04407 
   ONE_2|     .08625         .31520      .27  .7844     -.53153    .70402 
        |Diagonal elements of Cholesky matrix 
   ONE_1|     .42395         .28240     1.50  .1333     -.12955    .97744 
   ONE_2|     .98957***      .29127     3.40  .0007      .41869   1.56044 
        |Below diagonal elements of Cholesky matrix 
lONE_ONE|    -.62399**       .31020    -2.01  .0443    -1.23197   -.01601 
        |Unconditional cross equation correlation 
lONE_ONE|    -.99693***      .01079   -92.41  .0000    -1.01808   -.97579 
--------+-------------------------------------------------------------------- 
 
Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|       .179731      -.264539 
       2|      -.264539       1.36861 
 

Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .423947 
       2|       1.16988 
 

Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000      -.533382 
       2|      -.533382       1.00000 
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N12.8 Simulation and Partial Effects 
 
 This is the model estimated at the beginning of the previous section.  
 
   y1* = a1 + b11 x1 + u1 + e1 

   y2* = a2 + b22 x2 + b23 x3 + u2 + e2. 
 
The random effects, u1 and u2, are time invariant – the same value appears in each of the 10 periods 
of the data.  The model command is 
 

BIVARIATE ; Lhs = y1,y2  
; Rh1 = one,x1 ; Rh2 = one,x2,x3  
; RPM ; Pds = 10 ; Pts = 25 ; Cor ; Halton 
; Fcn = one(n), one[n] $ 

 
----------------------------------------------------------------------------- 
Random Coefficients  BivProbt Model 
Bivariate Probit model 
Simulation based on  25 Halton draws 
--------+-------------------------------------------------------------------- 
      Y1|                  Standard            Prob.      95% Confidence 
      Y2|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
    X1_1|    1.08374***      .19408     5.58  .0000      .70335   1.46412 
    X2_2|    1.18264***      .22213     5.32  .0000      .74727   1.61800 
    X3_2|    1.18893***      .18946     6.28  .0000      .81758   1.56027 
        |Means for random parameters 
   ONE_1|    -.05021         .12427     -.40  .6862     -.29377    .19335 
   ONE_2|     .27827*        .15481     1.80  .0723     -.02514    .58169 
        |Diagonal elements of Cholesky matrix 
   ONE_1|    1.08131***      .17778     6.08  .0000      .73288   1.42975 
   ONE_2|     .42491***      .15811     2.69  .0072      .11503    .73480 
        |Below diagonal elements of Cholesky matrix 
lONE_ONE|    -.45867**       .17845    -2.57  .0102     -.80842   -.10892 
        |Unconditional cross equation correlation 
lONE_ONE|    -.17471         .17798     -.98  .3263     -.52355    .17413 
--------+-------------------------------------------------------------------- 
 

 
Figure N12.1  Matrix Results 
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The estimator does not support predictions or partial effects.  But, we can use the template 
SIMULATE and PARTIAL EFFECTS programs to create our own by supplying our function and 
estimates..  We will use the model exactly as shown in the results, with labels  for the estimates in 
order of their appearance:  b11,b22,b23,a1,a2,c11,c22,c21,ro.  For purposes of the exercise, we will 
examine the bivariate normal probability P(y1=1,y2=1).  With all the parts in place, other functions, 
such as the conditional means, can be examined by making minor changes in the function definition.  
For example, in the program below, partial effects are obtained simply by changing the command to 
PARTIALS and changing ; Scenario: to ; Effects: x1. 
 
? Create time invariant random effects.  Used to create correlated u1 and u2 

 
MATRIX  ; mv1 = Rndm(20,1) ; mv2 = Rndm(20,1) $ 
CREATE  ; index = Trn(10,0) $ 
CREATE  ; v1 = mv1(index) ; v2 = mv2(index) $ 

 
? Simulate the joint probability and examine its behavior as x1 varies 
 

SIMULATE  ; Labels = b11,b22,b23,a1,a2,c11,c22,c21,ro 
    ; Parameters = b ; Covariance = varb 

; Function = xb1 = a1+b11*x1+c11*v1 | 
    xb2 = a2+b22*x2+b23*x3+c21*v1+c22*v2 | 
    Bvn(xb1,xb2,ro) 

; Scenario: & x1 = -3(.2)3 ; Plot $ 
 
--------------------------------------------------------------------- 
Model Simulation Analysis for User Specified Function 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avrg. Function      .23829     .02576    9.25      .18780      .28878 
X1      = -3.00     .00645     .00464    1.39     -.00266      .01555 
X1      = -2.80     .00870     .00567    1.54     -.00240      .01981 
(rows omitted) 
X1      =  2.80     .51118     .03121   16.38      .45001      .57235 
X1      =  3.00     .51513     .03049   16.90      .45538      .57488 
 

 
Figure N12.2  Simulation of Estimated Model 
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N12.9 Multivariate Probit Model 
 

The multivariate probit model is the extension to M equations of the bivariate probit model 
 

  yim*   =  βm′xim+ εim, m = 1,…,M 

  yim    =  1 if yim* > 0, and 0 otherwise. 

  εim, m  =  1,...,M  ~ MVN [0,R] 
 
where R is the correlation matrix. Each individual equation is a standard probit model.  This 
generalizes the bivariate probit model for up to M = 20 equations. Specify the model with the same 
command structure as the SURE model, using the command MPROBIT, 
 
 MPROBIT  ; Lhs = y1,y2,...,ym (list of up to 20 variables) 

; Eq1 = list of Rhs variables in the first equation 
; Eq2 = list of Rhs variables in the second equation 
... 
; EqM = list of Rhs variables for Mth equation $ 

 
The data for this model must be individual, not proportions and not frequencies.  You may use 
 
        ; Wts = name 
 
as usual.  Other options specific for this model in addition to the standard output options are 
 

  ; Prob = name  
 
which requests the estimator to save the predicted probability for the observed joint outcome, and 
 

  ; Utility = name  
 
where ‘name’ is an existing namelist to save the estimated utilities, Xmβm.  Restrictions can be 
imposed with  
 

   ; Rst = list 
and   ; CML:  specification for constraints 
 
Note that either of these can be used to specify the correlation matrix.  The list for ; Rst includes the 
M(M-1)/2 below diagonal elements of R.  You can use this to force correlations to equal each other, 
or zero, or other values. 
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N12.9.1 Retrievable Results 
 

This model keeps the following retrievable results: 
 
 Matrices: b   =  estimate of (β1′,β2′,…,βM′ )′ = vector of slopes only  
   varb   =  asymptotic covariance matrix 
   omega =  M×M correlation matrix of disturbances 
 
 Scalars: kreg   =  number of parameters in model 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
 Variables: logl_obs =  individual contribution to log likelihood 
 
 Last Model: None 
 
 Last Function: None 
 
N12.9.2 Partial Effects 
 

You can obtain marginal effects for this model of the following form:  The expected value of 
y1 given that all other ys equal one is 
 

        E[y1|y2=1,...,yM=1] = Prob(y1=1,...,yM=1)/Prob(y2=1,...,yM=1) = P1...M / P2...M  =  E1. 
 
The derivatives of this function are constructed as follows:  Let x equal the union of all of the 
regressors that appear in the model, and let γm be such that zm = x’γm = βm′xm.  (γm will usually have 
some zeros in it unless all regressors appear in all equations.)  Then, 
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The relevant parts of this combination of the coefficient vectors are then extracted and reported for 
the specific equations. Standard errors are obtained using the delta method, and all derivatives are 
approximated numerically. All effects are computed at the means of the Rhs variables.  Use 
 

  ; Partial Effects 
 
to request this computation. In the display of these results, derivatives with respect to the constant 
term are set to zero. 
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 Standard errors for these marginal effects cannot be computed directly. We report a 
bootstrapped approximation computed as follows:  Let the estimated set of marginal effects be 
denoted d.  This is computed using the parameter estimates from the model as given earlier.  Let V 
denote the estimated asymptotic covariance matrix for the coefficient estimates.  An estimate of the 
variance of the estimator of the marginal effects is obtained as the mean squared deviation of 50 
random draws from the distribution of the underlying slope parameters.  You can set the number of 
bootstrap replications to use with 
 
   ; Nbt = number of replications. 
 
The draws are based on the asymptotic normal distribution with mean b and variance V.  (The 
estimated correlation parameters are taken as fixed.)  Thus, the marginal effects at the data means are 
computed 50 additional times with these new parameters, using 
 

   ( )∑ =
−=

50
1

2

50
1][.

r jjrj dddVarEst  

 
Note that the sums are centered at the original estimated marginal effect, not at the means of the 
random draws. 
 
 
N12.9.3 Sample Selection Model 
 
 There are two modifications of the multivariate probit model built into the estimator.  The 
first is a multivariate version of the selection model in Section N12.4.  The model structure is 
 

  yi1*   =  β1′xi1 + εi1,  

  yi2*   =  β2′xi2 + εi2, 
   … 
  yi,M-1*   =  βM-1′xi,M-1 + εI,M-1,  

  yiM*   =  βM′xiM + εiM,  

  yim    =  1 if yim* > 0, and 0 otherwise. 

  εim, m  =  1,...,M  ~ MVN [0,R] 

   yi,1,yi,2,…,yi,M-1 only observed when yiM = 1. 
 
In the same fashion as earlier, the log likelihood is built up from the laws of probability.  The 
different terms in the likelihood function are 
 
   Prob(yiM = 1|xim)  
 
for the nonselected case, then 
 
   Prob(Yi1 = yi1,…,Yi,M-1 = yi,M-1 , yiM = 1|xi1,…,xiM). 
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The last equation is the selection mechanism.  This produces a difference in the likelihood that is 
maximized (and, to some degree, in the interpretation of the model), but no essential difference in the 
estimation results. 
 This form of the model is requested by adding 
 
   ; Selection  
 
to the MVPROBIT command.  There are no other changes in the model specification, or the data.  
Missing data may be coded as zeros or as missing. 
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N13: Ordered Choice Models 
 
N13.1 Introduction 
 
 The basic ordered choice model is based on the  latent regression, 
 
   yi* =  β′xi + εi,  εi ~ F(εi |θ), E[εi|xi] = 0, Var[εi|xi] = 1, 
 
The observation mechanism results from a complete censoring of the latent dependent variable as 
follows: 
   yi   =  0 if yi  ≤ µ0, 

    =  1 if µ0 < yi  ≤ µ1, 

    =  2 if µ1 < yi   ≤ µ2, 

    ... 

    =  J if  yi  > µJ-1. 
  
The latent ‘preference’ variable, yi* is not observed.  The observed counterpart to yi* is yi.  Five 
stochastic specifications are provided for the basic model shown above.  The ordered probit model 
based on the normal distribution was developed by Zavoina and McElvey (1975).  It applies in 
applications such as surveys, in which the respondent expresses a preference with the above sort of 
ordinal ranking.  The variance of εi is assumed to be one, since as long as yi*, β, and εi are 
unobserved, no scaling of the underlying model can be deduced from the observed data.  (The 
assumption of homoscedasticity is arguably a strong one.  We will relax that assumption in Section 
N14.2.)  Since the µs are free parameters, there is no significance to the unit distance between the set 
of observed values of y.  They merely provide the coding.  Estimates are obtained by maximum 
likelihood.  The probabilities which enter the log likelihood function are 
 
   Prob[yi  =  j]  =  Prob[yi* is in the jth range]. 
  
The model may be estimated either with individual data, with yi = 0, 1, 2, ... or with grouped data, in 
which case each observation consists of a full set of J+1 proportions, p0i,...,pJi. 
 
NOTE:  If your data are not coded correctly, this estimator will abort with one of several possible 
diagnostics – see below for discussion.  Your dependent variable must be coded 0,1,...,J.  We note 
that this differs from some other econometric packages which use a different coding convention. 
 
 There are numerous variants and extensions of this model which can be estimated. The 
underlying mathematical forms are shown below, where the CDF is denoted F(z) and the density is 
f(z).  (Familiar synonyms are given as well.)  (See, as well, Chapters E34-E36.)  The functional 
forms of the two models considered here are 
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Probit   
 

 F(z)  =  
2exp( / 2)

2
z t dt

−∞

−
π∫   =  Φ(z),   f(z)  =  φ(z), 

 
Logit    
 

 F(z)  =  exp( )
1 exp( )

z
z+

  =  Λ(z),    f(z)  =  Λ(z)[1 - Λ(z)]. 

 
The ordered probit model is an extension of the probit model for a binary outcome with normally 
distributed disturbances.  The ordered logit model results from the assumption that ε has a standard 
logistic distribution instead of a standard normal.  A variety of additional specifications and extensions 
are provided.   Basic models are treated in this chapter. Extensions such as censoring and sample 
selection are given in Chapter N14.  Panel data models for ordered choice are discussed in Chapter 
N15. 
 
N13.2 Command for Ordered Probability Models 
 
 The essential command for estimating ordered probability models  is 
 
 ORDERED  ; Lhs = y or p0,p1,...pJ ; Rhs = regressors $ 
  
Note that the estimator accepts proportions data for a set of J proportions.  The proportions would 
sum to one at each observation.  The probit model is the default specification.  To estimate an 
ordered logit model, add 
 
   ; Model = Logit 
 
to the command or change the verb to OLOGIT. The standardized logistic distribution (mean zero, 
standard deviation approximately 1.81) is used as the basis of the model instead of the standard 
normal. 
 This model must include a constant term, one, as the first Rhs variable.  Since the equation 
does include a constant term, one of the µs is not identified.  We normalize µ0 to zero.  (Consider the 
special case of the binary probit model with something other than zero as its threshold value.  If it 
contains a constant, this cannot be estimated.)  Data may be grouped or individual.  (Survey data 
might logically come in grouped form.)  If you provide individual data, the dependent variable is 
coded 0, 1, 2, ..., J.  There must be at least three values.  Otherwise, the binary probit model applies. 
If the data are grouped, a full set of proportions, p0, p1, ..., pJ, which sum to one at every observation 
must be provided.  In the individual data case, the data are examined to determine the value of J, 
which will be the largest observed value of y which appears in the sample.  In the grouped data case, 
J is one less than the number of Lhs variables you provide.  Once again, we note that other programs 
sometimes use different normalizations of the model.  For example, if the constant term is forced to 
equal zero, then one will instead, add a nonzero threshold parameter, µ0, which equals zero in the 
presence of a nonzero constant term.   
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N13.3 Data Problems 
 
 If you are using individual data, the Lhs variable must be coded 0,1,...,J.  All the values must 
be present in the data.  NLOGIT will look for empty cells.  If there are any, estimation is halted.  (If 
value ‘j’ is not represented in the data, then the threshold parameter, µj is not estimable.) In this 
circumstance, you will receive a diagnostic such as 
 

ORDE,Panel,BIVA PROBIT:A cell has (almost) no observations. 
Empty cell: Y        never takes value  2 

 
This diagnostic means exactly what it says.  The ordered probability model cannot be estimated 
unless all cells are represented in the data.  Users frequently overlook the coding requirement,           
y = 0,1,... If you have a dependent variable that is coded 1,2,..., you will see the following 
diagnostic: 
 

Models - Insufficient variation in dependent variable. 
 
The reason this particular diagnostic shows up is that NLOGIT creates a new variable from your 
dependent variable, say y, which equals zero when y equals zero, and one when y is greater than 
zero.  It then tries to obtain starting values for the model by fitting a regression model to this new 
variable.  If you have miscoded the Lhs variable, the transformed variable always equals one, which 
explains the diagnostic.  In fact, there is no variation in the transformed dependent variable.  If this is 
the case, you can simply use CREATE to subtract 1.0 from your dependent variable to use this 
estimator. 
 
N13.4 Output from the Ordered Probability Estimators 
 
 All of the ordered probit/logit models begin with an initial set of least squares results of 
some sort.  These are suppressed unless your command contains ; OLS.  The iterations are then 
followed by the maximum likelihood estimates in the usual tabular format.  The final output includes 
a listing of the cell frequencies for the outcomes.  When the data are stratified, this output will also 
include a table of the frequencies in the strata.  The log likelihood function, and a log likelihood 
computed assuming all slopes are zero are computed.  For the latter, the threshold parameters are still 
allowed to vary freely, so the model is simply one which assigns each cell a predicted probability 
equal to the sample proportion.  This appropriately measures the contribution of the nonconstant 
regressors to the log likelihood function.  As such, the chi squared statistic given is a valid test 
statistic for the hypothesis that all slopes on the nonconstant regressors are zero.  
 The sample below shows the standard output for a model with six outcomes.  These are the 
German health care data used in several earlier examples. The dependent variable is the self reported 
health satisfaction rating. For the purpose of a convenient sample application, we have truncated the 
health satisfaction variable at five by discarding observations – in the original data set, it is coded 
0,1,...,10. 
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HINT:  The ordered logit model typically produces the same sort of scaling of the coefficient vector 
that arises in the binary choice models discussed in Chapter E27.  As before, the difference becomes 
much less pronounced when the marginal effects are considered instead. We are unaware of a 
convenient specification test for distinguishing between the probit and logit models. A test of 
normality against the broader Pearson family of distributions is described in Glewwe (1997), but it is 
not especially convenient.  A test for skewness based on the Vuong test seems like a possibility.   
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                 HSAT 
Log likelihood function    -11284.68638 
Restricted log likelihood  -11308.02002 
Chi squared [   4 d.f.]        46.66728 
Significance level               .00000 
McFadden Pseudo R-squared      .0020635 
Estimation based on N =   8140, K =   9 
Inf.Cr.AIC  =22587.373 AIC/N =    2.775 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.32892***      .07276    18.27  .0000     1.18632   1.47152 
  FEMALE|     .04526*        .02546     1.78  .0755     -.00465    .09517 
  HHNINC|     .35590***      .07832     4.54  .0000      .20240    .50940 
  HHKIDS|     .10604***      .02665     3.98  .0001      .05381    .15827 
    EDUC|     .00928         .00630     1.47  .1407     -.00307    .02162 
        |Threshold parameters for index 
   Mu(1)|     .23635***      .01237    19.11  .0000      .21211    .26059 
   Mu(2)|     .62954***      .01440    43.72  .0000      .60132    .65777 
   Mu(3)|    1.10764***      .01406    78.78  .0000     1.08008   1.13519 
   Mu(4)|    1.55676***      .01527   101.94  .0000     1.52683   1.58669 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------------------------+ 
|                CELL FREQUENCIES FOR ORDERED CHOICES                | 
+--------------------------------------------------------------------+ 
|               Frequency        Cumulative  < =    Cumulative  > =  | 
|Outcome      Count    Percent   Count    Percent   Count    Percent | 
|----------- ------- ---------  ------- ---------  ------- --------- | 
|HSAT=00         447    5.4914      447    5.4914     8140  100.0000 | 
|HSAT=01         255    3.1327      702    8.6241     7693   94.5086 | 
|HSAT=02         642    7.8870     1344   16.5111     7438   91.3759 | 
|HSAT=03        1173   14.4103     2517   30.9214     6796   83.4889 | 
|HSAT=04        1390   17.0762     3907   47.9975     5623   69.0786 | 
|HSAT=05        4233   52.0025     8140  100.0000     4233   52.0025 | 
+--------------------------------------------------------------------+ 
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Cross tabulation of predictions and actual outcomes 
+------+-----+-----+-----+-----+-----+-----+-----+ 
|y(i,j)|  0  |  1  |  2  |  3  |  4  |  5  |Total| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
|   0  |    0|    0|    0|    0|    0|  447|  447| 
|   1  |    0|    0|    0|    0|    0|  255|  255| 
|   2  |    0|    0|    0|    0|    0|  642|  642| 
|   3  |    0|    0|    0|    0|    0| 1173| 1173| 
|   4  |    0|    0|    0|    0|    0| 1390| 1390| 
|   5  |    0|    0|    0|    0|    0| 4233| 4233| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
| Total|    0|    0|    0|    0|    0| 8140| 8140| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
Row = actual, Column = Prediction, Model = Probit 
Prediction is number of the most probable cell. 
 
Cross tabulation of outcomes and predicted probabilities. 
+------+-----+-----+-----+-----+-----+-----+-----+ 
|y(i,j)|  0  |  1  |  2  |  3  |  4  |  5  |Total| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
|   0  |   26|   15|   36|   66|   77|  228|  447| 
|   1  |   14|    8|   21|   37|   44|  131|  255| 
|   2  |   36|   20|   51|   93|  110|  331|  642| 
|   3  |   64|   37|   93|  170|  200|  609| 1173| 
|   4  |   75|   43|  109|  200|  237|  725| 1390| 
|   5  |  230|  132|  333|  610|  722| 2206| 4233| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
| Total|  445|  255|  644| 1176| 1389| 4230| 8140| 
+------+-----+-----+-----+-----+-----+-----+-----+ 
Row = actual, Column = Prediction, Model = Probit 
Value(j,m)=Sum(i=1,N)y(i,j)*p(i,m). 
Column totals may not match cell sums because of rounding error. 
 
 The model output is followed by a (J+1)×(J+1) frequency table of predicted versus actual 
values.  (This table is not given when data are grouped or when there are more than 10 outcomes.)  
The predicted outcome for this tabulation is the one with the largest predicted probability.  Even 
though the model appears to be highly significant, the table of predictions has seems to suggest a 
lack of predictive power.   Tables such as the one above are common with this model.  The driver of 
the result is the sample configuration of the data. Note in the frequency table that the sample is quite 
unbalanced, and the highest outcome is quite likely to have the highest probability for every 
observation.  The estimation criterion for the ordered probability model is unrelated to its ability to 
predict those cells, and you will rarely see a predictions table that closely matches the actual 
outcomes.  It often happens that even in a set of results with highly significant coefficients, only one 
or a few of the outcomes are predicted by the model.  The second table relates more closely to the 
aggregate predictions of the model.  The table entries are the sample proportions that would be 
predicted for each outcome. For example, the first row of the table shows that 447 individuals in the 
sample chose outcome 0.  For every individual, the model produces a full set of J+1 probabilities.  
For the 447 individuals, 8140 times the sum of the probabilities of outcome 0 equals 26, 8140 times 
the sum of the probabilities of outcome 1 equals 15, and so on. 
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N13.4.1 Robust Covariance Matrix Estimation 
 
The Sandwich Estimator 
 
 The standard robust covariance matrix is  
 

 Est.Asy.Var ˆ 
 β   =  

1 12 2

1 1 1

log log log log
ˆ ˆ ˆ ˆ ˆ

n n ni i i i
i i i

F F F F
− −

= = =

 ′      ∂ ∂ ∂ ∂           ′ ′ ∂ ∂ ∂ ∂ ∂ ∂         
∑ ∑ ∑γ γ γ γ γ γ

 

 
where γ̂  indicates the full set of parameters in the model.  To obtain this matrix with any of the 
forms of the ordered choice models, use 
 
   ; Robust 
 
in the ORDERED command.   
 
Clustering and Stratification 
 
 A related calculation is used when observations occur in groups which may be correlated.  
This is rather like a panel; one might use this approach in a random effects kind of setting in which 
observations have a common latent heterogeneity.  The parameter estimator is unchanged in this 
case, but an adjustment is made to the estimated asymptotic covariance matrix.  Full details on this 
estimator appear in Chapter R10.  To specify this estimator, use 
 
   ; Cluster = specification 
 
where the specification is either a fixed number of observations or the name of a variable that 
provides an identifier for the cluster, such as an id number.  Note that if there is exactly one 
observation per cluster, then this is G/(G-1) times the sandwich estimator discussed above.  Also, if 
you have fewer clusters than parameters, then this matrix is singular – it has rank equal to the 
minimum of G and K, the number of parameters. 
 The extension of this estimator to stratified data is described in detail in Section R10.3.  To 
use this with the ; Cluster specification, add 
 
   ; Stratum = specification.  
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N13.4.2 Saved Results 
 
 For each observation, the predicted probabilities for all J+1 outcomes are computed.  Then if 
you request ; List, the listing will contain 
 
 Predicted Y:  Y with the largest probability. 
 
 Residual:  the largest of the J+1 probabilities (i.e., Prob[y = fitted Y]). 
 

Var1:  the estimate of E[yi]  =  
=∑ i 0

J i ×  Prob[Yi  = i].   
  
 Var2:   the probability estimated for the observed Y. 
 
Estimation results kept by the estimator are as follows: 
  
 Matrices: b   =  estimate of β, 
         varb =  estimated asymptotic covariance, 
   mu =  J-1 estimated µs. 
 
 Scalars:  kreg, nreg, and logl. 
 
 Last Model: The labels are b_variables, mu1, ... 
 
 Last Function: Prob(y = highest outcome | x) 
  
The specification ; Par adds µ (the set of estimated threshold values) to b and varb.  The additional 
matrix, mu is kept regardless, but the estimated asymptotic covariance matrix is lost unless the 
command contains ; Par.  The Last Function is used in the SIMULATE and PARTIAL EFFECTS 
routines.  The default function is the probability of the highest outcome.  You can specify a different 
outcome in the command with 
 
   ; Outcome = j 
 
where j is the desired outcome.  For example, in our earlier application in which outcomes are 
0,1,2,3,4,5, the command might specify 
 
 PARTIAL EFECTS ; Effects: hhninc ; Outcome = 3 $ 
 
and likewise for SIMULATE.  A full examination of all outcomes is obtained by using 
 
   ; Outcome = *  
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N13.5 Partial Effects and Simulations 
 
 There is potentially a large amount of output for the ordered choice model, in addition to the 
basic model results.  There is no single conditional mean because the outcomes are labels, not 
measures.  There are J+1 probabilities to analyze, 
 
   Prob[cell j] = F(µj - β′xi) - F(µj-1 - β′xi). 
 
Typically, the highest or lowest cell is of interest. However, the PARTIAL EFFECTS (or just 
PARTIALS) and SIMULATE commands can be used to examine any or all of them. 
 Marginal effects in the ordered probability models are also quite involved.  Since there is no 
meaningful conditional mean function to manipulate, we compute, instead, the effects of changes in 
the covariates on the cell probabilities.  These are: 
 

   ∂Prob[cell j]/∂xi  =  [f(µj-1 - β′xi) - f(µj - β′xi)] × β, 
 
where f(.) is the appropriate density for the standard normal, φ(•), logistic density, Λ(•)(1-Λ(•)), 
Weibull, Gompertz or arctangent.  Each vector is a multiple of the coefficient vector. But it is worth 
noting that the magnitudes are likely to be very different.  In at least one case, Prob[cell 0], and 
probably more if there are more than three outcomes, the partial effects have exactly the opposite 
signs from the estimated coefficients.   
  
NOTE:  This estimator segregates dummy variables for separate computation in the marginal 
effects.  The marginal effect for a dummy variable is the difference of the two probabilities, with and 
without the variable. 
 
 Partial effects for the ordered probability models are obtained internally in the command  by 
adding 
   ; Partial Effects  
 
in the command.  This produces a table oriented to the outcomes, such as the one below.  A second 
summary that is oriented to the variables rather than the outcomes is requested with 
 
   ; Partial Effects ; Full 
 
The internal results are computed at the means of the data.  Partial effects can also be obtained with 
the PARTIALS command.  The third set of results below is obtained with 
 
 PARTIALS ; Effects: hhninc ; Outcome = * $ 
 
This command produces average partial effects by default, but you can request that they be 
computed at the data means by adding ; Means to the command.  Probabilities for particular 
outcomes are obtained with the SIMULATE command.  An example appears below. 
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----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
    HSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
 *FEMALE|    -.00498*       -.09207    -1.77  .0763     -.01049    .00053 
  HHNINC|    -.03907***     -.23836    -4.53  .0000     -.05599   -.02216 
 *HHKIDS|    -.01132***     -.20926    -4.08  .0000     -.01676   -.00588 
    EDUC|    -.00102        -.20477    -1.47  .1409     -.00237    .00034 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
 *FEMALE|    -.00210*       -.06711    -1.78  .0758     -.00441    .00022 
  HHNINC|    -.01647***     -.17397    -4.54  .0000     -.02358   -.00936 
 *HHKIDS|    -.00483***     -.15473    -4.04  .0001     -.00718   -.00249 
    EDUC|    -.00043        -.14945    -1.47  .1408     -.00100    .00014 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
 *FEMALE|    -.00414*       -.05244    -1.77  .0760     -.00872    .00043 
  HHNINC|    -.03257***     -.13605    -4.50  .0000     -.04675   -.01838 
 *HHKIDS|    -.00964***     -.12205    -3.98  .0001     -.01439   -.00489 
    EDUC|    -.00085        -.11688    -1.47  .1412     -.00198    .00028 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
 *FEMALE|    -.00473*       -.03273    -1.77  .0764     -.00997    .00050 
  HHNINC|    -.03727***     -.08501    -4.43  .0000     -.05375   -.02078 
 *HHKIDS|    -.01121***     -.07751    -3.87  .0001     -.01689   -.00554 
    EDUC|    -.00097        -.07303    -1.47  .1417     -.00227    .00032 
        |--------------[Partial effects on Prob[Y=04] at means]-------------- 
 *FEMALE|    -.00208*       -.01214    -1.77  .0762     -.00438    .00022 
  HHNINC|    -.01643***     -.03166    -4.34  .0000     -.02385   -.00901 
 *HHKIDS|    -.00518***     -.03026    -3.66  .0002     -.00795   -.00241 
    EDUC|    -.00043        -.02720    -1.47  .1427     -.00100    .00014 
        |--------------[Partial effects on Prob[Y=05] at means]-------------- 
 *FEMALE|     .01803*        .03469     1.78  .0755     -.00185    .03792 
  HHNINC|     .14181***      .09003     4.54  .0000      .08065    .20297 
 *HHKIDS|     .04219***      .08116     3.99  .0001      .02145    .06292 
    EDUC|     .00370         .07734     1.47  .1407     -.00122    .00861 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+----------------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Model (probit)   | 
| Effects computed at means.  Effects for binary variables (*) are     | 
| computed as differences of probabilities, other variables at means.  | 
| Binary variables change only by 1 unit so s.d. changes are not shown.| 
| Elasticities for binary variables = partial effect/probability = %chgP | 
+----------------------------------------------------------------------+ 
+----------------------------------------------------------------------+ 
|          Binary(0/1) Variable FEMALE      Changes in *FEMALE    % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00498    -.00498     .00000       -       -.00498    -.09207 
Y = 01    -.00210    -.00708     .00498       -       -.00210    -.06711 
Y = 02    -.00414    -.01122     .00708       -       -.00414    -.05244 
Y = 03    -.00473    -.01595     .01122       -       -.00473    -.03273 
Y = 04    -.00208    -.01803     .01595       -       -.00208    -.01214 
Y = 05     .01803     .00000     .01803       -        .01803     .03469 
+----------------------------------------------------------------------+ 
|           Continuous Variable HHNINC      Changes in HHNINC     % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.03907    -.03907     .00000    -.00655    -.11703    -.23836 
Y = 01    -.01647    -.05555     .03907    -.00276    -.04933    -.17397 
Y = 02    -.03257    -.08811     .05555    -.00546    -.09753    -.13605 
Y = 03    -.03727    -.12538     .08811    -.00625    -.11161    -.08501 
Y = 04    -.01643    -.14181     .12538    -.00275    -.04921    -.03166 
Y = 05     .14181     .00000     .14181     .02377     .42472     .09003 
+----------------------------------------------------------------------+ 
|          Binary(0/1) Variable HHKIDS      Changes in *HHKIDS    % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.01132    -.01132     .00000       -       -.01132    -.20926 
Y = 01    -.00483    -.01615     .01132       -       -.00483    -.15473 
Y = 02    -.00964    -.02579     .01615       -       -.00964    -.12205 
Y = 03    -.01121    -.03701     .02579       -       -.01121    -.07751 
Y = 04    -.00518    -.04219     .03701       -       -.00518    -.03026 
Y = 05     .04219     .00000     .04219       -        .04219     .08116 
+----------------------------------------------------------------------+ 
|           Continuous Variable EDUC        Changes in EDUC       % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00102    -.00102     .00000    -.00212    -.01120    -.20477 
Y = 01    -.00043    -.00145     .00102    -.00089    -.00472    -.14945 
Y = 02    -.00085    -.00230     .00145    -.00177    -.00934    -.11688 
Y = 03    -.00097    -.00327     .00230    -.00202    -.01069    -.07303 
Y = 04    -.00043    -.00370     .00327    -.00089    -.00471    -.02720 
Y = 05     .00370     .00000     .00370     .00770     .04066     .07734 
------------------------------------------------------------------------ 
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PARTIALS  ; Effects: hhninc ; Outcome = * $ 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Ordered Probit     Probability Y = 5 
--------------------------------------------------------------------- 
Effects on function with respect to HHNINC 
Results are computed by average over sample observations 
Partial effects for continuous HHNINC   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dHHNINC         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE Prob(y= 0)     -.03930     .00872    4.51     -.05640     -.02220 
APE Prob(y= 1)     -.01643     .00373    4.41     -.02374     -.00912 
APE Prob(y= 2)     -.03238     .00734    4.41     -.04677     -.01800 
APE Prob(y= 3)     -.03694     .00827    4.47     -.05315     -.02072 
APE Prob(y= 4)     -.01624     .00382    4.26     -.02372     -.00876 
APE Prob(y= 5)      .14129     .03099    4.56      .08055      .20204 
 

SIMULATE  ; Scenario: & hhninc = 0(.05)1 ; Plot(ci) ; Outcome = 4 $ 
 
--------------------------------------------------------------------- 
Model Simulation Analysis for Ordered Probit     Probability Y = 4 
--------------------------------------------------------------------- 
Simulations are computed by average over sample observations 
--------------------------------------------------------------------- 
User Function      Function   Standard 
(Delta method)      Value      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
Avrg. Function      .17068     .00988   17.27      .15131      .19005 
HHNINC  =   .00     .17528     .01026   17.09      .15517      .19538 
HHNINC  =   .05     .17477     .01021   17.11      .15476      .19479 
HHNINC  =   .10     .17421     .01016   17.14      .15429      .19413 
HHNINC  =   .15     .17360     .01011   17.17      .15379      .19342 
HHNINC  =   .20     .17294     .01005   17.20      .15324      .19265 
HHNINC  =   .25     .17223     .00999   17.23      .15264      .19182 
HHNINC  =   .30     .17147     .00993   17.26      .15199      .19094 
HHNINC  =   .35     .17065     .00987   17.28      .15130      .19001 
HHNINC  =   .40     .16979     .00982   17.30      .15055      .18903 
HHNINC  =   .45     .16888     .00976   17.30      .14975      .18801 
HHNINC  =   .50     .16793     .00971   17.30      .14890      .18695 
HHNINC  =   .55     .16692     .00966   17.28      .14799      .18586 
HHNINC  =   .60     .16587     .00962   17.24      .14701      .18473 
HHNINC  =   .65     .16478     .00959   17.18      .14598      .18358 
HHNINC  =   .70     .16364     .00957   17.09      .14488      .18241 
HHNINC  =   .75     .16246     .00957   16.98      .14371      .18122 
HHNINC  =   .80     .16124     .00958   16.84      .14247      .18001 
HHNINC  =   .85     .15998     .00960   16.66      .14116      .17880 
HHNINC  =   .90     .15868     .00965   16.45      .13978      .17758 
HHNINC  =   .95     .15734     .00971   16.21      .13832      .17637 
HHNINC  =  1.00     .15596     .00979   15.93      .13678      .17515 
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N14: Extended Ordered Choice Models 
 
N14.1 Introduction 
 
 The basic ordered choice model is based on the latent regression, 
 
   yi*   =  β′xi + εi,  εi ~ F(εi |θ), E[εi|xi] = 0, Var[εi|xi] = 1. 
 
The observation mechanism results from a complete censoring of the latent dependent variable as 
follows: 
   yi     =  0 if yi  ≤ µ0, 

    =  1 if µ0 < yi  ≤ µ1, 

    =  2 if µ1 < yi   ≤ µ2, 
    ... 

    =  J if  yi  > µJ-1. 
  
The latent ‘preference’ variable, yi* is not observed.  The observed counterpart to yi* is yi.  The 
probabilities which enter the log likelihood function are 
 
   Prob[yi  =  j]  =  Prob[yi* is in the jth range]. 
 
Estimation and analysis of the basic model are presented in Chapter N13 (and Chapter E34).  A 
variety of additional specifications and extensions are supported. 
 
N14.2 Weighting and Heteroscedasticity 
 
 An ordered probit model with simple heteroscedasticity,  
 
   Var[εi] = wi

2

 
,  

may be estimated with 
 
 ORDERED  ; Rhs = ... ; Lhs = ...  
   ; Wts = your weighting variable, wi 
   ; Heteroscedastic $ 
 
Your command gives the name of the variable which carries the observed individual specific 
standard deviations.  This formulation does not add new parameters to the model, and only instructs 
the estimator how the weighting variable is to be handled.   
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 This approach is different from estimating the model with weights.  Without ; Het, this 
model is treated as any other weighted log likelihood, and the estimator maximizes  
 
   log L   =   

1
log Pr ob(  )n

i ii
w observed outcome

=∑  

where   Prob[cell j] =  F(µj - β′xi) - F(µj-1 - β′xi). 
 
With ; Het, the probabilities are built up from the heteroscedastic random variable, but the terms in 
the log likelihood are unweighted.  With this form of the command, using ; Het, the model is 
 
   Prob[cell j] =  F[(µj - β′xi)/wi] - F[(µj-1 - β′xi)/wi] 

and   log L   =  
1

log Pr ob(  )n
ii

observed outcome
=∑   

 
N14.3 Multiplicative Heteroscedasticity 
 
 The model with multiplicative heteroscedasticity,  
 
   Var[εi]  =  [exp(γ′zi)]2,  
 
is requested with 
 
 ORDERED  ; Rhs = ... ; Lhs = ...  
   ; Het  
   ; Rh2 = list of variables in z $ 
 
NOTE:  Do not include a constant (one) in z.  A variable in z which has no variation, such as one, 
will lead to a singular Hessian, and the estimator will fail to converge.   
 
This formulation adds a vector of new parameters to the model.  For purposes of starting values, 
restrictions, and hypothesis tests, the full parameter vector becomes  
 
   Θ  =  [β1,...,βK,γ1,...,γL,µ1,...,µJ-1]. 
 
You can use ; Rst and ; CML: for imposing restrictions as usual.  As always, restrictions that force 
ancillary variance parameters (γh) to equal parameters in the conditional mean function (βk) will 
rarely produce satisfactory results.  In the saved results, the estimator of γ will always be included in 
b and varb.  Thus, if you want to extract parts of the parameter vector after estimation, you might use 
 
 NAMELIST ; x = ...  
   ; z = ... $ 
 ORDERED ; Lhs  = y ; Rhs = x   
   ; Rh2  = z ; Het $ 
 CALC  ; k = Col(x) ; k1 = k+1 ; kt = k + Col(z) $ 
 MATRIX ; beta = b(1:k)  
   ; gamma = b(k1:kt) $ 
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The µ threshold parameters are still the ancillary parameters.  Marginal effects, fitted values, and so 
on are requested exactly as before with this extension of the ordered probit model.  In the Last Model 
labels list, the variance parameters will be denoted c_variable, so with this model, the complete list 
of labels is 
   Last Model = [B_...,C_...,MU1,...]. 
  
The Last Function for the model is the probability including the exponential heteroscedasticity model 
 

   1Prob( 1| )
exp( ) exp( )

j jy F F −′ ′µ − µ −   
= = −   ′ ′   

x x
x,z

z z
β β

γ γ
 

 

N14.3.1 Testing for Heteroscedasticity 
 
 The model with homoscedastic disturbances is nested in this model (γ = 0) so the standard  
tests, i.e., LM, likelihood ratio, and Wald, are available for testing the specification. The first two of 
these will be very convenient.  To carry out an LM test, you could use the following:  First define the 
two variable lists. 
 
  NAMELIST ; x = ...  
   ; z = ... $ 
 
Fit the model without heteroscedasticity.  This command saves b and mu needed later. 
 
 ORDERED ; Lhs = y  ; Rhs = x $ 
 
Define the zero vector for the variance parameters. 
 
  MATRIX ; {h = Col(z)} ; gamma = Init (h,1,0) $ 
 
Now, fit the heteroscedastic model, but do not iterate.  This displays the LM statistic. 
 
  ORDERED ; Lhs = y ; Rhs = x ; Rh2 = z ; Het 
   ; Start = b,gamma,mu ; Maxit = 0 $ 
 
To use a likelihood ratio test, instead, the preceding is modified as follows: 
 

1. Add CALC ; lr = logl $ after the first ORDERED command. 
 

2. Omit ; Maxit = 0 from the second ORDERED command. 
 

3. Add the command  
 

CALC  ; List ; chi = 2*(logl - lr) $ 
 

after the second ORDERED command; chi is the chi squared statistic.  This can be referred 
to the table with 

 
CALC  ; cstar = Ctb(.95,L) $ 

 
which provides the necessary critical value. 
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 The following experiment illustrates these computations.  We test for heteroscedasticity in the 
health satisfaction model, using the three standard tests in an ordered logit model as the platform.  To 
simplify it a bit, we use a restricted sample of only those individuals observed in all seven periods. 
 
 SAMPLE  ; All $ 
 REJECT  ; _groupti < 7 $ 
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,female,hhninc,hhkids,educ  
   ; Logit $  
 CALC    ; lr = logl $ 
 
This command carries out the LM test. The starting values are from the previous model for β and µ 
and zeros for the elements of γ.  The test is requested with ; Maxit = 0. 
 
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,female,hhninc,hhkids,educ  
   ; Logit ; Het ; Rh2 = married,univ,working,female,hhninc 
   ; Start = b,0,0,0,mu ; Maxit = 0 $ 
 
This command estimates the full heteroscedastic model.  Based on these results, we then carry out 
the likelihood ratio and Wald tests. 
 
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,female,hhninc,hhkids,educ  
   ; Logit ; Het ; Rh2 = married,univ,working,female,hhninc $ 
 CALC    ; lu = logl $ 
 CALC    ; List ; lrtest = 2*(lu - lr) $ 
 MATRIX  ; gamma = b(6:10) ; vgamma = varb(6:10,6:10) $ 
 MATRIX  ; List  
   ; waldstat = gamma'<vgamma>gamma $ 
 
As might be expected in a sample this large, the three tests give the same answer.  The LM, LR and 
Wald statistics obtained are 84.16200, 84.26808 and 83.90174, respectively. 
 
The first set of results are for the restricted, homoscedastic model. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -12971.89392 
Restricted log likelihood  -13138.97978 
Chi squared [   4 d.f.]       334.17171 
Significance level               .00000 
McFadden Pseudo R-squared      .0127168 
Estimation based on N =   6209, K =  14 
Inf.Cr.AIC  =25971.788 AIC/N =    4.183 
Underlying probabilities based on Logistic 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    3.02189***      .13081    23.10  .0000     2.76551   3.27827 
  FEMALE|    -.31859***      .04729    -6.74  .0000     -.41129   -.22590 
  HHNINC|     .23133*        .13880     1.67  .0956     -.04072    .50338 
  HHKIDS|     .47849***      .04529    10.56  .0000      .38972    .56726 
    EDUC|     .10241***      .01122     9.12  .0000      .08041    .12441 
        |Threshold parameters for index 
   Mu(1)|     .49176***      .05264     9.34  .0000      .38859    .59493 
   Mu(2)|    1.26288***      .05011    25.20  .0000     1.16468   1.36109 
   Mu(3)|    1.94907***      .04093    47.62  .0000     1.86886   2.02929 
   Mu(4)|    2.48180***      .03468    71.57  .0000     2.41383   2.54976 
   Mu(5)|    3.48744***      .02747   126.94  .0000     3.43360   3.54129 
   Mu(6)|    3.94860***      .02594   152.22  .0000     3.89776   3.99944 
   Mu(7)|    4.61859***      .02627   175.79  .0000     4.56710   4.67009 
   Mu(8)|    5.70197***      .03154   180.78  .0000     5.64015   5.76378 
   Mu(9)|    6.48830***      .04110   157.86  .0000     6.40774   6.56886 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The next set of results is the computation of the Lagrange multiplier statistic.  This next command 
does not reestimate the model.  Note that the coefficient estimates are identical, save for the 
parameters in the variance function.  The estimated standard errors do change, however, because in 
the restricted model above, the Hessian is computed and inverted just for the parameters estimated.  
In the results below, the Hessian is computed as if the inserted zeros for γ were actually the 
parameter estimates.  These standard errors are not useful. 
 
Maximum iterations reached. Exit iterations with status=1. 
Maxit = 0. Computing LM statistic at starting values. 
No iterations computed and no parameter update done. 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
LM Stat. at start values       92.77220 
LM statistic kept as scalar    LMSTAT 
Log likelihood function    -12971.89392 
Restricted log likelihood  -13138.97978 
Chi squared [   9 d.f.]       334.17171 
Significance level               .00000 
McFadden Pseudo R-squared      .0127168 
Estimation based on N =   6209, K =  19 
Inf.Cr.AIC  =25981.788 AIC/N =    4.185 
Underlying probabilities based on Logistic 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    3.02189***      .18716    16.15  .0000     2.65507   3.38871 
  FEMALE|    -.31859***      .04747    -6.71  .0000     -.41164   -.22555 
  HHNINC|     .23133         .15162     1.53  .1271     -.06584    .52849 
  HHKIDS|     .47849***      .05058     9.46  .0000      .37936    .57762 
    EDUC|     .10241***      .01246     8.22  .0000      .07798    .12683 



N14: Extended Ordered Choice Models  N-215 

        |Variance function 
 MARRIED|        0.0         .02958      .00 1.0000 -.57975D-01  .57975D-01 
    UNIV|        0.0         .06508      .00 1.0000 -.12755D+00  .12755D+00 
 WORKING|        0.0         .02825      .00 1.0000 -.55371D-01  .55371D-01 
  FEMALE|        0.0         .02483      .00 1.0000 -.48663D-01  .48663D-01 
  HHNINC|        0.0         .07843      .00 1.0000 -.15372D+00  .15372D+00 
        |Threshold parameters for index 
   Mu(1)|     .49176***      .06836     7.19  .0000      .35778    .62574 
   Mu(2)|    1.26288***      .09719    12.99  .0000     1.07240   1.45336 
   Mu(3)|    1.94907***      .11474    16.99  .0000     1.72420   2.17395 
   Mu(4)|    2.48180***      .12755    19.46  .0000     2.23181   2.73178 
   Mu(5)|    3.48744***      .15442    22.58  .0000     3.18479   3.79010 
   Mu(6)|    3.94860***      .16835    23.45  .0000     3.61864   4.27856 
   Mu(7)|    4.61859***      .18971    24.35  .0000     4.24677   4.99041 
   Mu(8)|    5.70197***      .22651    25.17  .0000     5.25801   6.14592 
   Mu(9)|    6.48830***      .25426    25.52  .0000     5.98996   6.98664 
----------------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

These are the estimates for the full heteroscedastic model.  The test statistics appear after the 
estimated parameters. 
 

----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -12924.94799 
Restricted log likelihood  -13138.97978 
Chi squared [   9 d.f.]       428.06357 
Significance level               .00000 
McFadden Pseudo R-squared      .0162898 
Estimation based on N =   6209, K =  19 
Inf.Cr.AIC  =25887.896 AIC/N =    4.169 
Underlying probabilities based on Logistic 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.38708***      .14152    16.87  .0000     2.10971   2.66445 
  FEMALE|    -.22820***      .03379    -6.75  .0000     -.29442   -.16199 
  HHNINC|     .13810         .09576     1.44  .1492     -.04958    .32579 
  HHKIDS|     .33481***      .03573     9.37  .0000      .26478    .40485 
    EDUC|     .06415***      .00763     8.40  .0000      .04919    .07911 
        |Variance function 
 MARRIED|    -.13333***      .03198    -4.17  .0000     -.19601   -.07066 
    UNIV|    -.19916***      .05658    -3.52  .0004     -.31007   -.08826 
 WORKING|    -.18323***      .02928    -6.26  .0000     -.24062   -.12584 
  FEMALE|    -.03756         .02478    -1.52  .1296     -.08613    .01101 
  HHNINC|    -.19768***      .07590    -2.60  .0092     -.34643   -.04893 
        |Threshold parameters for index 
   Mu(1)|     .38333***      .05379     7.13  .0000      .27790    .48875 
   Mu(2)|     .97539***      .07759    12.57  .0000      .82333   1.12746 
   Mu(3)|    1.48986***      .09299    16.02  .0000     1.30761   1.67211 
   Mu(4)|    1.88162***      .10423    18.05  .0000     1.67733   2.08590 
   Mu(5)|    2.60926***      .12681    20.58  .0000     2.36072   2.85779 
   Mu(6)|    2.93848***      .13795    21.30  .0000     2.66810   3.20885 
   Mu(7)|    3.41196***      .15468    22.06  .0000     3.10880   3.71512 
   Mu(8)|    4.16905***      .18272    22.82  .0000     3.81092   4.52718 
   Mu(9)|    4.72049***      .20380    23.16  .0000     4.32105   5.11992 
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---------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The final results are the test statistics for the hypothesis of homoscedasticity.  The three results are, 
as expected, essentially the same. 
 
LM Stat. at start values       92.77220  (from the earlier results) 
 
[CALC] LRTEST  =     93.8918620 
 
WALDSTAT|             1 
--------+-------------- 
       1|       94.6903 
 
N14.3.2 Partial Effects in the Heteroscedasticity Model 
 
 Partial effects in the ordered choice models with heteroscedasticity appear from two sources, 
in the latent utility and in the variance function. When variables appear in both places, the total effect 
is the sum of the two terms. 
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Request the partial effects within the command with 
 
   ; Partial Effects  
 
 The following results show the computation for the full model fit earlier.  (Effects for 
outcomes 0 to 7 are omitted below.) 
 
+-------------------------------------------+ 
| Marginal Effects for OrdLogit             | 
| * Total effect = sum of terms             | 
+----------+----------+----------+----------+ 
| Variable | NEWHSA=8 | NEWHS=9  | NEWHS=10 | 
+----------+----------+----------+----------+ 
| FEMALE   |  -.02676 |  -.02181 |  -.02998 | 
| HHNINC   |   .01619 |   .01320 |   .01814 | 
| HHKIDS   |   .03925 |   .03200 |   .04399 | 
| EDUC     |   .00752 |   .00613 |   .00843 | 
| MARRIED  |   .01949 |  -.00278 |  -.02676 | 
| UNIV     |   .02911 |  -.00415 |  -.03997 | 
| WORKING  |   .02678 |  -.00382 |  -.03677 | 
| HHNINC   |   .02889 |  -.00412 |  -.03967 | 
| FEMALE   |   .00549 |  -.00078 |  -.00754 | 
| FEMALE  *|  -.02127 |  -.02260 |  -.03752 | 
| HHNINC  *|   .04508 |   .00908 |  -.02153 | 
+----------+----------+----------+----------+ 
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 The PARTIAL EFFECTS (or just PARTIALS) and SIMULATE commands receive the 
estimates form the heteroscedastic ordered choice model, so you can use them to analyze the 
probabilities or partial effects.   For example, to replace the preceding results, use 
 
 PARTIALS ; Effects: female / hhninc ; Outcome = * $ 
 
Three differences are first, this estimator uses average partial effects by default (or means if you 
request them), second, it uses partial differences for dummy variables while the built in computation 
uses scaled coefficients and, third, as seen below, the PARTIAL EFFECTS command produces 
standard errors and confidence intervals for the partial effects. 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Ordered Logit      (Het) Prob[Y = 10] 
--------------------------------------------------------------------- 
Effects on function with respect to FEMALE 
Results are computed by average over sample observations 
Partial effects for binary var FEMALE   computed by first difference 
--------------------------------------------------------------------- 
df/dFEMALE         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE Prob(y= 0)      .00195     .00148    1.32     -.00096      .00485 
APE Prob(y= 1)      .00166     .00075    2.23      .00020      .00312 
APE Prob(y= 2)      .00534     .00170    3.14      .00201      .00867 
APE Prob(y= 3)      .00959     .00218    4.40      .00532      .01387 
APE Prob(y= 4)      .01189     .00210    5.66      .00778      .01601 
APE Prob(y= 5)      .03070     .00447    6.87      .02194      .03946 
APE Prob(y= 6)      .01222     .00255    4.79      .00721      .01722 
APE Prob(y= 7)      .00646     .00381    1.70     -.00100      .01393 
APE Prob(y= 8)     -.02026     .00510    3.97     -.03025     -.01027 
APE Prob(y= 9)     -.02224     .00323    6.89     -.02857     -.01591 
APE Prob(y=10)     -.03732     .00645    5.79     -.04996     -.02468 
 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Ordered Logit      (Het) Prob[Y = 10] 
--------------------------------------------------------------------- 
Effects on function with respect to HHNINC 
Results are computed by average over sample observations 
Partial effects for continuous HHNINC   computed by differentiation 
Effect is computed as derivative     = df(.)/dx 
--------------------------------------------------------------------- 
df/dHHNINC         Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
APE Prob(y= 0)     -.01302     .00449    2.90     -.02183     -.00421 
APE Prob(y= 1)     -.00620     .00215    2.89     -.01041     -.00199 
APE Prob(y= 2)     -.01426     .00473    3.01     -.02354     -.00498 
APE Prob(y= 3)     -.01675     .00575    2.91     -.02803     -.00547 
APE Prob(y= 4)     -.01297     .00544    2.39     -.02362     -.00231 
APE Prob(y= 5)     -.00775     .01253     .62     -.03231      .01681 
APE Prob(y= 6)      .01008     .00739    1.36     -.00440      .02456 
APE Prob(y= 7)      .02766     .01108    2.50      .00593      .04938 
APE Prob(y= 8)      .04272     .01395    3.06      .01538      .07006 
APE Prob(y= 9)      .01063     .00909    1.17     -.00718      .02845 
APE Prob(y=10)     -.02014     .02072     .97     -.06076      .02047 
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N14.4 Sample Selection and Treatment Effects 
 
 The following describes an ordered probit counterpart to the standard sample selection 
model.  This is only available for the ordered probit specification.  The structural equations are, first, 
the main equation, the ordered choice model, 
 
   yi*   =  β′xi + εi,  εi ~ F(εi |θ), E[εi] = 0, Var[εi] = 1, 

   yi     =  0 if yi  ≤ µ0, 

    =  1 if µ0 < yi  ≤ µ1, 

    =  2 if µ1 < yi   ≤ µ2, 

    ... 

    =  J if  yi  > µJ-1. 
 
Second is the selection equation, a univariate probit model, 
 
   di*  =  α′zi + ui, 

   di    =  1 if di*
 

 > 0 and 0 otherwise, 

The observation mechanism is 
  
   [yi,xi] is observed if and only if di  =  1. 

   εi,ui  ~  N2[0,0,1,1,ρ]; there is ‘selectivity’ if ρ is not equal to zero. 
 
This model is a straightforward generalization of the bivariate probit model with sample selection in 
Section N12.4. 
 The treatment effects model includes di as an endogenous binary variable in the ordered 
probit equation; 
   yi*   =  β′xi + γdi +  εi,  εi ~ F(εi |θ), E[εi] = 0, Var[εi] = 1, 

   yi     =  j if µj-1 < yi* < µj, j = 0,1,…,J 

   di*  =  α′zi + ui, 

   di    =  1 if di*

   εi,ui  ~  N2[0,0,1,1,ρ]; di is endogenous if ρ is not equal to zero. 

 > 0 and 0 otherwise, 

 
This model is a generalization of the recursive bivariate probit model in Section N12.6. 
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N14.4.1 Command 
 
 These models require two passes to estimate.  In the first, you fit a probit model for the 
selection (or treatment) variable, d.  You then pass these values to the ordered probit model using a 
standard command for this operation, the ; Hold parameter in the probit command.  The two 
commands would be as follows:  (This model is requested in the same fashion as NLOGIT’s other 
sample selectivity models.)  Estimate first stage probit model and hold results for next step in the 
estimation. 
 
 PROBIT  ; Lhs = d ; Rhs = Z list ; Hold $ 
 
Second, estimate the ordered probit model with selectivity. 
 
 ORDERED  ; Lhs = y ; Rhs = X ; ... as usual ; Selection $ 
 
You need not make any other changes in the ordered probit command.  For the treatment effects 
case, the probit model is unchanged while the ORDERED command becomes 
 
 ORDERED  ; Lhs = y ; Rhs = X,d ; ... as usual ; Selection ; All $ 
 
Note that the treatment variable now appears on the right hand side of the ordered choice model. 
 The ; Rst = ... and ; CML: options for imposing restrictions can be used freely with this 
model to constrain β and α.  The parameter vector is 
 
   Θ  =  [β1,...,βK,α1,...,αL,µ1,...,µJ-1,ρ]. 
 
The usual warning about cross equation restrictions apply.  You may also give your own starting 
values with ; Start = list ..., though the internal values will usually be preferable. 
 
N14.4.2 Saved Results 
 
 All results kept for the basic model are also kept; b and varb still include only β, but ; Par 
adds all of [µ,α,ρ] to the parameter vector.  This model adds two additional scalars: 
 
   rho   =  estimate of ρ, 
   varrho   =  estimate of asymptotic variance of estimated ρ. 
 
NOTE:  The estimates of α update the estimates you stored with ; Hold when you fit the probit 
model. Thus, for example, if you were to follow your ORDERED command immediately with the 
identical command, the starting values used for α would be the MLEs from the prior ordered probit 
command, not the ones from the original probit model that you fit earlier.  Also, if you were to 
follow this model command with a SELECTION model command, this estimate of α would be used 
there, as well. 
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With the corrected estimates of [β,µ] in hand, predictions for this model are computed in the same 
manner as for the basic model without selection.  The only difference is that no prediction for y is 
computed in the selection model if d = 0. 
 The PARTIAL EFFECTS and SIMULATE commands are not available for these two 
specifications (because they only operate on single equation models).  An internal program for 
partial effects is provided.  An application below illustrates. 
 
N14.4.3 Applications 
 
 To illustrate the computations of this model, we have fit an equation for insurance purchase, 
then followed with an equation for health satisfaction in which insurance is taken to be a selection 
mechanism.  The treatment effects formulation is shown later. 
 

PROBIT  ; Lhs = public ; Rhs = one,age,hhninc,hhkids ; Hold $ 
ORDERED  ; Lhs = newhsat ; Rhs = one,age,educ,hhninc,female  

; Selection  
; Partial Effects $ 

 
This is the initial probit equation. 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               PUBLIC 
Log likelihood function     -1868.84461 
Restricted log likelihood   -1976.59009 
Chi squared [   3 d.f.]       215.49097 
Significance level               .00000 
McFadden Pseudo R-squared      .0545108 
Estimation based on N =   6209, K =   4 
Inf.Cr.AIC  = 3745.689 AIC/N =     .603 
Results retained for SELECTION model. 
Hosmer-Lemeshow chi-squared =  46.95244 
P-value=  .00000 with deg.fr. =       8 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  PUBLIC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.24898***      .13551     9.22  .0000      .98339   1.51458 
     AGE|     .01695***      .00285     5.96  .0000      .01137    .02253 
  HHNINC|   -1.73406***      .12491   -13.88  .0000    -1.97889  -1.48923 
  HHKIDS|    -.07027         .04906    -1.43  .1521     -.16643    .02589 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

  



N14: Extended Ordered Choice Models  N-221 

This ordered probit model is fit using the selected observations to obtain starting values for the full 
model. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -13609.65952 
Estimation based on N =   6209, K =  14 
Inf.Cr.AIC  =27247.319 AIC/N =    4.388 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.80968***      .11725    23.96  .0000     2.57986   3.03949 
     AGE|    -.02310***      .00153   -15.13  .0000     -.02609   -.02011 
    EDUC|     .04028***      .00808     4.99  .0000      .02445    .05611 
  HHNINC|     .24424***      .08883     2.75  .0060      .07015    .41833 
  FEMALE|    -.16710***      .02850    -5.86  .0000     -.22295   -.11124 
        |Threshold parameters for index 
   Mu(1)|     .20275***      .02260     8.97  .0000      .15846    .24703 
   Mu(2)|     .55416***      .02389    23.20  .0000      .50735    .60098 
   Mu(3)|     .88530***      .02158    41.03  .0000      .84301    .92759 
   Mu(4)|    1.16592***      .01973    59.10  .0000     1.12726   1.20459 
   Mu(5)|    1.75777***      .01743   100.82  .0000     1.72360   1.79194 
   Mu(6)|    2.04344***      .01695   120.56  .0000     2.01022   2.07667 
   Mu(7)|    2.45759***      .01729   142.18  .0000     2.42371   2.49147 
   Mu(8)|    3.11320***      .01946   160.01  .0000     3.07507   3.15133 
   Mu(9)|    3.53306***      .02325   151.96  .0000     3.48749   3.57863 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

This is the full information maximum likelihood estimate of the full model 
 
----------------------------------------------------------------------------- 
Ordered Probit Model with Selection. 
Dependent variable              NEWHSAT 
Log likelihood function    -13607.57507 
Restricted log likelihood  -13609.65952 
Chi squared [   1 d.f.]         4.16889 
Significance level               .04117 
McFadden Pseudo R-squared      .0001532 
Estimation based on N =   6209, K =  19 
Inf.Cr.AIC  =27253.150 AIC/N =    4.389 
--------+-------------------------------------------------------------------- 
  PUBLIC|                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.57206***      .16019    16.06  .0000     2.25809   2.88604 
     AGE|    -.01972***      .00194   -10.15  .0000     -.02353   -.01591 
    EDUC|     .04014***      .00784     5.12  .0000      .02478    .05550 
  HHNINC|    -.06053         .12872     -.47  .6382     -.31282    .19176 
  FEMALE|    -.16256***      .02716    -5.99  .0000     -.21579   -.10933 
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        |Threshold parameters for index 
   Mu(1)|     .19073***      .02687     7.10  .0000      .13807    .24340 
   Mu(2)|     .52241***      .04182    12.49  .0000      .44044    .60437 
   Mu(3)|     .83633***      .05229    15.99  .0000      .73385    .93881 
   Mu(4)|    1.10353***      .06012    18.35  .0000      .98569   1.22137 
   Mu(5)|    1.67048***      .07410    22.54  .0000     1.52524   1.81572 
   Mu(6)|    1.94557***      .07952    24.47  .0000     1.78972   2.10142 
   Mu(7)|    2.34576***      .08663    27.08  .0000     2.17597   2.51554 
   Mu(8)|    2.98257***      .09539    31.27  .0000     2.79561   3.16953 
   Mu(9)|    3.39287***      .09921    34.20  .0000     3.19843   3.58731 
        |Selection equation 
Constant|    1.33407***      .13228    10.09  .0000     1.07481   1.59333 
     AGE|     .01525***      .00287     5.32  .0000      .00963    .02087 
  HHNINC|   -1.72207***      .09850   -17.48  .0000    -1.91514  -1.52901 
  HHKIDS|    -.10648**       .04594    -2.32  .0205     -.19653   -.01643 
        |Cor[u(probit),e(ordered probit)] 
Rho(u,e)|     .50973***      .14253     3.58  .0003      .23038    .78908 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The FIML results provide two test statistics for ‘selectivity.’  The z statistic on the estimate of ρ is 
3.58, which is well over the critical value of 1.96.   The likelihood ratio test can be carried out using 
the initial results for the full model.  The restricted value in 
 
Log likelihood function    -13607.57507 
Restricted log likelihood  -13609.65952 
 
is based on the separate probit and ordered probit equations, which corresponds to the model with    
ρ = 0.  The LR statistic would be 2(-13607.57507 - (-13609.65952) = 4.169.  The critical chi squared 
with one degree of freedom would be 3.84, so the null hypothesis is rejected again. 

A table of partial effects for the conditional model is produced for each outcome.  Only the 
last one is shown here. 

 
----------------------------------------------------------------------------- 
Partial effects of variables on P[NEWHSAT  = 10|PUBLIC   = 1] 
--------+-------------------------------------------------------------------- 
  PUBLIC|     Partial      Standard            Prob.      95% Confidence 
 NEWHSAT|      Effect        Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Direct partial effect in ordered choice equation 
     AGE|    -.00245***      .00033    -7.45  .0000     -.00310   -.00181 
    EDUC|     .00499***      .00104     4.82  .0000      .00296    .00702 
  HHNINC|    -.00753         .01591     -.47  .6360     -.03872    .02365 
  FEMALE|    -.02022***      .00367    -5.52  .0000     -.02741   -.01304 
        |Indirect partial effect in sample selection equation 
     AGE|     .00052***      .00016     3.19  .0014      .00020    .00084 
  HHNINC|    -.05896***      .01285    -4.59  .0000     -.08414   -.03378 
  HHKIDS|    -.00365**       .00169    -2.16  .0307     -.00695   -.00034 
        |Full partial effect = direct effect + indirect effect 
     AGE|    -.00193***      .00046    -4.17  .0000     -.00284   -.00102 
  HHNINC|    -.06649**       .02627    -2.53  .0114     -.11799   -.01499 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The treatment effects model is obtained by adding public to the ; Rhs specification in the 
ORDERED command and ; All to the command. 
 
----------------------------------------------------------------------------- 
Treatment Effects Model: Treatment=PUBLIC 
Dependent variable              NEWHSAT 
Log likelihood function    -14765.42035 
Restricted log likelihood  -14770.39033 
Chi squared [   1 d.f.]         9.93996 
Significance level               .00162 
McFadden Pseudo R-squared      .0003365 
Estimation based on N =   6209, K =  20 
Inf.Cr.AIC  =29570.841 AIC/N =    4.763 
Model estimated: Jun 18, 2011, 15:38:04 
--------+-------------------------------------------------------------------- 
  PUBLIC|                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.27014***      .22312    10.17  .0000     1.83283   2.70746 
     AGE|    -.02027***      .00154   -13.13  .0000     -.02330   -.01724 
    EDUC|     .03917***      .00692     5.66  .0000      .02561    .05273 
  HHNINC|     .06610         .09022      .73  .4638     -.11072    .24292 
  FEMALE|    -.14568***      .02612    -5.58  .0000     -.19687   -.09450 
  PUBLIC|     .34172**       .13586     2.52  .0119      .07544    .60801 
        |Threshold parameters for index 
   Mu(1)|     .19408***      .02587     7.50  .0000      .14337    .24479 
   Mu(2)|     .52700***      .03637    14.49  .0000      .45572    .59828 
   Mu(3)|     .85528***      .04110    20.81  .0000      .77471    .93584 
   Mu(4)|    1.13190***      .04397    25.74  .0000     1.04573   1.21808 
   Mu(5)|    1.70234***      .04863    35.01  .0000     1.60703   1.79766 
   Mu(6)|    1.97911***      .05078    38.98  .0000     1.87959   2.07864 
   Mu(7)|    2.38797***      .05406    44.17  .0000     2.28201   2.49393 
   Mu(8)|    3.02974***      .05925    51.13  .0000     2.91361   3.14587 
   Mu(9)|    3.45667***      .06272    55.12  .0000     3.33375   3.57959 
  
       |Index function for probit equation 
Constant|    1.26527***      .13081     9.67  .0000     1.00889   1.52164 
     AGE|     .01641***      .00282     5.83  .0000      .01090    .02193 
  HHNINC|   -1.68223***      .10083   -16.68  .0000    -1.87986  -1.48459 
  HHKIDS|    -.09807**       .04589    -2.14  .0326     -.18802   -.00812 
        |Cor[u(probit),e(ordered probit)] 
Rho(1,2)|     .41059***      .08110     5.06  .0000      .25164    .56955 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N14.5 Hierarchical Ordered Probit Models 
 
 The hierarchical ordered probit model (or generalized ordered probit model) is a univariate 
ordered probit model in which the threshold parameters depend on variables.  (We opt for the 
acronym HOPIT model as slightly more melodious than GOPIT.  In the original proposal of this 
model (Pudney and Shields (2000)), the thresholds were modeled as linear functions of the data, 
producing the model 
 

   y*   =  β′x  +  ε 

   y =  0  if y* < 0, 

    =  1  if 0 < y* < µ1, 

    =  2  if µ1 < y* < µ2, 

    ... 

   µj =  δj′z. 
 
(There is no disturbance on the equation for the threshold variables.)  The model has an inherent 
identification problem, because in 
 
   Prob[y = j]  =  Φ(µj - β′x) - Φ(µj-1 - β′x), 
 
if x and z have variables in common, then (with a sign change) the same model is produced whether 
the common variable appears in µj or β′x.  (Pudney and Shields note and discuss this.)  The NLOGIT 
implementation avoids this indeterminacy by using a different functional form.  (That does imply 
that we achieve identification through functional form.) 
 Two forms of the model are provided. 
 
   Form 1: µj  =  exp(θj + δ′z) 

   Form 2: µj  =  exp(θj + δj′z) 
 
Note that in form 1, each µj has a different constant term, but the same coefficient vector, while in 
form 2, each threshold parameter has its own parameter vector.  (We note, for purposes of 
estimation, it is always necessary for µj to be greater than µj-1.  We are able to impose that on form 1 
fairly easily by parameterizing θj in a way that does so.  However, for form 2, this is much more 
difficult to obtain, and users should expect to see diagnostics about unordered thresholds when they 
use form 2.)  The threshold coefficients will be difficult to compare between the original ordered 
probit model and form 2 of the HOPIT model.  For form 1, the model reverts to the unmodified 
ordered probit model if the single vector δ equals 0. 
 The command for this model augments the usual ordered probit command with the 
specification for the thresholds,  
 
 ORDERED ; Lhs = ... ; Rhs = ... 
   ; HO1 = list of variables or ; HO2 = list of variables $ 
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The list of variables in the HO1 or HO2 part must not contain a constant term (one).  All other 
options for the ordered probit model are exactly as described previously, including fitted values, 
restrictions, marginal effects, and so on, unchanged.  This form of the ordered probit model can also 
be combined with the sample selection corrected ordered probit model described in Section N14.3.  
 In the example below, the model is first fit to the health satisfaction variable with no 
modification to the thresholds.  In the HOPIT model fit next, the thresholds vary with whether or not 
the family has kids in the household and with the number of types of insurance they have.  For 
purpose of a limited example, we use a subset of the sample. 
 
 SAMPLE ; All $ 
 CREATE ; insuranc = public + addon $ 
 ORDERED  ; Lhs = hsat ; Rhs = one,age,educ,female,hhninc  

; Partial Effects $ 
 ORDERED  ; Lhs = hsat ; Rhs = one,age,educ,female,hhninc 
   ; HO1 = hhkids,insuranc  
   ; Partial Effects $ 
 
These are the estimates for the base case.  (We have omitted the partial effects.) 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                 HSAT 
Log likelihood function    -56876.85183 
Restricted log likelihood  -57836.42214 
Chi squared [   4 d.f.]      1919.14061 
Significance level               .00000 
McFadden Pseudo R-squared      .0165911 
Estimation based on N =  27326, K =  14 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.68410***      .04392    61.12  .0000     2.59802   2.77018 
     AGE|    -.02096***      .00056   -37.71  .0000     -.02205   -.01987 
    EDUC|     .03341***      .00284    11.76  .0000      .02784    .03898 
  FEMALE|    -.05800***      .01259    -4.61  .0000     -.08268   -.03332 
  HHNINC|     .26478***      .03631     7.29  .0000      .19362    .33594 
        |Threshold parameters for index 
   Mu(1)|     .19340***      .01002    19.30  .0000      .17376    .21305 
   Mu(2)|     .49929***      .01087    45.93  .0000      .47799    .52060 
   Mu(3)|     .83548***      .00990    84.39  .0000      .81608    .85489 
   Mu(4)|    1.10462***      .00908   121.63  .0000     1.08682   1.12242 
   Mu(5)|    1.66162***      .00801   207.44  .0000     1.64592   1.67732 
   Mu(6)|    1.93021***      .00774   249.46  .0000     1.91504   1.94537 
   Mu(7)|    2.33753***      .00777   300.92  .0000     2.32230   2.35275 
   Mu(8)|    2.99283***      .00851   351.70  .0000     2.97615   3.00951 
   Mu(9)|    3.45210***      .01017   339.31  .0000     3.43216   3.47204 
--------+-------------------------------------------------------------------- 
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These are the estimates for the HO1 hierarchical model. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                 HSAT 
Log likelihood function    -56868.23498 
Restricted log likelihood  -57836.42214 
Chi squared [   4 d.f.]      1936.37431 
Underlying probabilities based on Normal 
HOPIT (covariates in thresholds) model 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.66036***      .04828    55.10  .0000     2.56573   2.75499 
     AGE|    -.02035***      .00058   -35.09  .0000     -.02149   -.01921 
    EDUC|     .03313***      .00293    11.30  .0000      .02738    .03887 
  FEMALE|    -.06072***      .01259    -4.83  .0000     -.08539   -.03606 
  HHNINC|     .26373***      .03648     7.23  .0000      .19222    .33523 
        |Estimates of t(j) in mu(j)=exp[t(j)+d*z] 
Theta(1)|   -1.62461***      .06134   -26.49  .0000    -1.74484  -1.50439 
Theta(2)|    -.67653***      .03254   -20.79  .0000     -.74029   -.61276 
Theta(3)|    -.16186***      .02193    -7.38  .0000     -.20485   -.11888 
Theta(4)|     .11739***      .01750     6.71  .0000      .08309    .15170 
Theta(5)|     .52583***      .01258    41.79  .0000      .50117    .55049 
Theta(6)|     .67578***      .01122    60.25  .0000      .65379    .69776 
Theta(7)|     .86747***      .00979    88.62  .0000      .84828    .88665 
Theta(8)|    1.11497***      .00843   132.20  .0000     1.09844   1.13150 
Theta(9)|    1.25794***      .00787   159.74  .0000     1.24250   1.27337 
        |Threshold covariates mu(j)=exp[t(j)+d*z] 
  HHKIDS|    -.01830***      .00526    -3.48  .0005     -.02862   -.00799 
INSURANC| .15082D-04**    .5872D-05     2.57  .0102  .35726D-05  .26592D-04 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
(Partial Effects for outcomes 0 – 9 are omitted) 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
    HSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=10] at means]-------------- 
     AGE|    -.00377***    -1.52276   -11.54  .0000     -.00441   -.00313 
    EDUC|     .00614***      .64474     9.12  .0000      .00482    .00746 
 *FEMALE|    -.01123        -.10424     -.50  .6182     -.05541    .03294 
  HHNINC|     .04887***      .15964     3.51  .0004      .02161    .07613 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N14.6 Zero Inflated Ordered Probit (ZIOP, ZIHOP) Models  
 
 Harris and Zhao (2007) have developed a zero inflated ordered probit (ZIOP) counterpart to 
the zero inflated Poisson model.  The ZIOP formulation would appear  
 
   d* =  α′w  +  u, d  = 1 (d* > 0) 

   y* =  β′x  +  ε,  y  = 0 if y* < 0  or d = 0 

         1 if 0 < y* < µ1 and d = 1, 

         2 if µ1 < y* < µ2 and d = 1, 

         and so on. 
 
The first equation is assumed to be a probit model (based on the normal distribution) – this estimator 
does not support a logit formulation.  The correlation between u and ε is ρ, which by default equals 
zero, but may be estimated instead.  The latent class nature of the formulation has the effect of 
inflating the number of observed zeros, even if u and ε are uncorrelated.  The model with correlation 
between u and ε is an optional specification that analysts might want to test.  The zero inflation 
model may also be combined with the hierarchical (generalized) model discussed in the previous 
section. Thus, it might also be specified as part of the model that 
 
   Form 1: µj  =  exp(θj + δ′z) 

   Form 2: µj  =  exp(θj + δj′z) 
 
The command structure for ZIOP and ZIHOP models are 
 
 PROBIT ; Lhs = d ; Rhs = variables in w ; Hold $ 
 ORDERED ; Lhs = y ; Rhs = variables in x 
   ; ZIOP $ 
 
This form of the model imposes ρ = 0.  To allow the correlation to be a free parameter, add 
 
   ; Correlation 
 
to the command.   
 
NOTE:  The ; HO1 and ; HO2 specifications discussed in the preceding section may also be used 
with this model. 
 

In the example below, we continue the analysis of the health care data.  The (artificial) 
model has the zero inflation probability based on the presence of ‘public’ insurance while the 
ordered outcome continues to be the self reported health satisfaction.  Here, we have used the entire 
sample of 27,236 observations. 
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The commands are: 
 
 SAMPLE  ; All $ 
 PROBIT  ; Lhs = public  
   ; Rhs = one,age,hhninc,hhkids,married ; Hold $ 
 ORDERED ; Lhs = hsat    
   ; Rhs = one,age,educ,female  
   ; ZIO ; Correlated $ 
 
----------------------------------------------------------------------------- 
Binomial Probit Model 
Dependent variable               PUBLIC 
Log likelihood function     -9229.32605 
Restricted log likelihood   -9711.25153 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  PUBLIC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.51862***      .05021    30.25  .0000     1.42022   1.61702 
     AGE|     .00553***      .00105     5.26  .0000      .00347    .00759 
  HHNINC|   -1.55524***      .05120   -30.37  .0000    -1.65560  -1.45489 
  HHKIDS|    -.08320***      .02370    -3.51  .0004     -.12966   -.03675 
 MARRIED|     .10035***      .02694     3.72  .0002      .04754    .15316 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                 HSAT 
Log likelihood function    -56903.42663 
Restricted log likelihood  -57836.42214 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.70343***      .04379    61.73  .0000     2.61760   2.78926 
     AGE|    -.02078***      .00056   -37.41  .0000     -.02186   -.01969 
    EDUC|     .03881***      .00274    14.16  .0000      .03344    .04419 
  FEMALE|    -.05742***      .01259    -4.56  .0000     -.08210   -.03274 
        |Threshold parameters for index 
   Mu(1)|     .19279***      .00999    19.29  .0000      .17320    .21238 
   Mu(2)|     .49771***      .01085    45.88  .0000      .47645    .51896 
   Mu(3)|     .83298***      .00989    84.26  .0000      .81361    .85236 
   Mu(4)|    1.10156***      .00907   121.43  .0000     1.08378   1.11934 
   Mu(5)|    1.65744***      .00800   207.07  .0000     1.64175   1.67313 
   Mu(6)|    1.92551***      .00773   249.00  .0000     1.91036   1.94067 
   Mu(7)|    2.33231***      .00776   300.37  .0000     2.31709   2.34753 
   Mu(8)|    2.98735***      .00851   351.12  .0000     2.97067   3.00402 
   Mu(9)|    3.44694***      .01018   338.75  .0000     3.42700   3.46688 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Zero Inflated Ordered Probit Model. 
Dependent variable                 HSAT 
Log likelihood function    -56895.22719 
Restricted log likelihood  -56903.42663 
--------+-------------------------------------------------------------------- 
  PUBLIC|                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.77007***      .04944    56.03  .0000     2.67317   2.86697 
     AGE|    -.02150***      .00057   -37.68  .0000     -.02262   -.02038 
    EDUC|     .03769***      .00284    13.27  .0000      .03212    .04325 
  FEMALE|    -.05844***      .01255    -4.66  .0000     -.08304   -.03384 
        |Threshold parameters for index 
   Mu(1)|     .19868***      .01235    16.08  .0000      .17447    .22289 
   Mu(2)|     .50918***      .01694    30.05  .0000      .47597    .54239 
   Mu(3)|     .84768***      .01897    44.70  .0000      .81051    .88486 
   Mu(4)|    1.11767***      .01978    56.50  .0000     1.07890   1.15644 
   Mu(5)|    1.67504***      .02062    81.25  .0000     1.63463   1.71545 
   Mu(6)|    1.94359***      .02087    93.15  .0000     1.90269   1.98449 
   Mu(7)|    2.35098***      .02119   110.97  .0000     2.30946   2.39251 
   Mu(8)|    3.00678***      .02174   138.30  .0000     2.96417   3.04939 
   Mu(9)|    3.46677***      .02222   156.00  .0000     3.42322   3.51033 
        |Zero inflation probit probability 
Constant|    -.30749        1.71064     -.18  .8573    -3.66028   3.04530 
     AGE|     .10718         .06555     1.63  .1021     -.02131    .23566 
  HHNINC|    -.19155         .62143     -.31  .7579    -1.40954   1.02644 
  HHKIDS|    -.59894**       .24410    -2.45  .0141    -1.07737   -.12051 
 MARRIED|    1.06982         .94393     1.13  .2571     -.78024   2.91988 
        |Cor[u(probit),e(ordered probit)] 
Rho(u,e)|    -.90968        1.40561     -.65  .5175    -3.66462   1.84525 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
N14.7 Bivariate Ordered Probit and Polychoric Correlation 
 
 The bivariate ordered probit model is analogous to the SUR model for the ordered probit 
case:   
   yji*  =   βj′xji + εji 

   yji    =   0 if yji* < 0,  

    1 if 0 < yji* < µ1,  

    2, ... and so on, j = 1,2, 
 
for a pair of ordered probit models that are linked by Cor(ε1i,ε2i) = ρ. The model can be estimated 
one equation at a time using the results described earlier. Full efficiency in estimation and an 
estimate of ρ are achieved by full information maximum likelihood estimation. NLOGIT’s 
implementation of the model uses FIML, rather than GMM.  Either variable (but not both) may be 
binary.  If both are binary, the bivariate probit model should be used.  (The development here draws 
on Butler and Chatterjee (1997) who analyzed maximum likelihood and GMM estimators for the 
bivariate extension of the ordered probit model.) 
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 The command structure requires prior estimation of the two univariate models to provide 
starting values for the iterations.  The third command then fits the bivariate model.  We assume that 
the first variable is multinomial.   
 
 ORDERED  ; Lhs = y1 ; Rhs = ... $ 
 MATRIX ; b1 = b ; mu1 = mu $ 
 
Use one of the following.  If the second variable has more than two outcomes, use 
 
 ORDERED ; Lhs = y2 ; Rhs = ... $ 
 MATRIX ; b2 = b ; mu2 = mu $ 
 
If the second variable is binary, use 
 
 PROBIT ; Lhs = y2 ; Rhs = ... $ 
 MATRIX ; b2 = b $ 
 
Then, estimate the bivariate model with 
 
 ORDERED ; Lhs = y1,y2 ; Rh1 = ... ; Rh2 = ... 
   ; Start = b1,mu1,b2,mu2, 0 $   
 
The variable mu2 is omitted if y2 is binary.  The final zero in the list of starting values is for ρ.  You 
may use some other value if you have one. 
 The standard options for estimation are available (iteration controls, technical output, cluster 
corrections, etc.). You may also retain fitted values with ; Keep = yf1,yf2  (note that both names are 
provided).  Probabilities for the joint observed outcome are retained with ; Prob = name.  Listings 
of probabilities for outcomes are obtained with ; List as usual. 
 To illustrate the estimator, we use the health care utilization data analyzed earlier.  The two 
outcomes are y1 = health care satisfaction, taking values 0 to 5 (we reduced the sample) and y2 = the 
number of types of health care insurance.  Results for a bivariate ordered probit model appear below.  
The initial univariate models are omitted. 
  
 SAMPLE ; All $ 
 REJECT ; newhsat > 5  | _groupti < 7  $ 
 ORDERED  ; Lhs = newhsat ; Rhs = one,age,educ,female,hhninc $ 
 MATRIX  ; b1 = b ; mu1 = mu $ 
 CREATE ; insuranc = public + addon $ 
      CROSSTAB ; Lhs = newhsat  ; Rhs = insuranc $ 
 ORDERED ; Lhs = insuranc ; Rhs = one,age,educ,hhninc,hhkids $ 
 MATRIX  ; b2 = b ; mu2 = mu $ 
 ORDERED  ; Lhs = newhsat,insuranc 
   ; Rh1 = one,age,educ,female,hhninc  
   ; Rh2 = one,age,educ,hhninc,hhkids 
   ; Start = b1,mu1,b2,mu2,0 $  
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----------------------------------------------------------------------------- 
Bivariate Ordered Probit Model 
Dependent variable             BivOrdPr 
Log likelihood function     -3099.59435 
Restricted log likelihood   -3100.36600 
--------+-------------------------------------------------------------------- 
 NEWHSAT|                  Standard            Prob.      95% Confidence 
INSURANC|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for Probability Model for NEWHSAT 
Constant|    1.98379***      .23742     8.36  .0000     1.51846   2.44913 
     AGE|    -.01233***      .00288    -4.28  .0000     -.01797   -.00668 
    EDUC|     .01815         .01667     1.09  .2762     -.01452    .05082 
  FEMALE|     .09626*        .05301     1.82  .0694     -.00764    .20016 
  HHNINC|     .13547         .17765      .76  .4457     -.21271    .48365 
        |Index function for Probability Model for INSURANC 
Constant|    2.57737***      .38142     6.76  .0000     1.82980   3.32493 
     AGE|     .01847***      .00609     3.03  .0024      .00654    .03040 
    EDUC|    -.13925***      .02090    -6.66  .0000     -.18022   -.09828 
  HHNINC|    -.63131*        .33803    -1.87  .0618    -1.29383    .03121 
  HHKIDS|    -.01720         .10527     -.16  .8702     -.22353    .18912 
        |Threshold Parameters for Probability Model for NEWHSAT 
  MU(01)|     .24263***      .03171     7.65  .0000      .18048    .30479 
  MU(02)|     .67851***      .04404    15.41  .0000      .59220    .76483 
  MU(03)|    1.15093***      .04917    23.41  .0000     1.05456   1.24730 
  MU(04)|    1.61433***      .05193    31.09  .0000     1.51255   1.71611 
        |Threshold Parameters for Probability Model for INSURANC 
LMDA(01)|    4.07012***      .09615    42.33  .0000     3.88168   4.25856 
        |Disturbance Correlation = RHO(1,2) 
RHO(1,2)|    -.06225         .06013    -1.04  .3005     -.18010    .05560 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+-----------------------------------------------------------------+ 
|Cross Tabulation                                                 | 
|Row variable is NEWHSAT  (Out of range 0-49:      0)             | 
|Number of Rows =  6      (NEWHSAT  =  0 to  5)                   | 
|Col variable is INSURANC (Out of range 0-49:      0)             | 
|Number of Cols =  3      (INSURANC =  0 to  2)                   | 
|Chi-squared independence tests:                                  | 
|Chi-squared[  10] =   17.61732   Prob value =  .06177            | 
|G-squared  [  10] =   27.62274   Prob value =  .00207            | 
+-----------------------------------------------------------------+ 
|               INSURANC                                          | 
+--------+---------------------+------+                           | 
| NEWHSAT|      0      1      2| Total|                           | 
+--------+---------------------+------+                           | 
|       0|      2     87      0|    89|                           | 
|       1|      1     54      0|    55|                           | 
|       2|      0    156      2|   158|                           | 
|       3|     14    250      3|   267|                           | 
|       4|     22    307      7|   336|                           | 
|       5|     59    963     12|  1034|                           | 
+--------+---------------------+------+                           | 
|   Total|     98   1817     24|  1939|                           | 
+-----------------------------------------------------------------+ 
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Polychoric Correlation 
 
 The polychoric correlation coefficient is used to quantify the correlation between discrete 
variables that are qualitative measures.  The standard interpretation is that the discrete variables are 
discretized counterparts to underlying quantitative measures.  We typically use ordered probit 
models to analyze such data.  The polychoric correlation measures the correlation between                
y1 = 0,1,...,J1 and y2 = 0,1,...,J2.  (Note, J1 need not equal J2.)  One of the two variables may be binary 
as well.   
 By this description, the polychoric correlation is simply the correlation coefficient in the 
bivariate ordered probit model when the two equations contain only constant terms.  Thus, to 
compute the polychoric correlation for a pair of qualitative variables, you can use NLOGIT’s 
bivariate ordered probit model.  The commands are as follows:  The first two model commands 
compute the starting values, and the final one computes the correlation. 
 
 ORDERED ; Lhs = y1 ; Rhs = one $ 
 MATRIX  ; b1 = b ; mu1 = mu $ 
 ORDERED ; Lhs = y2 ; Rhs = one $ 
 MATRIX ; b2 = b ; mu2 = mu $ 
 
or  PROBIT ; Lhs = y2 ; Rhs = one $ 
 MATRIX ; b2 = b $ 
 
Then, ORDERED ; Lhs = y1,y2 ; Rh1 = one ; Rh2 = one  
   ; Start = b1,mu1,b2,mu2,0 $ 
 
 For a simple example, we compute the polychoric correlation between self reported health 
status and sex in the health care usage data examined earlier.  Results appear below.  Note that the 
‘model’ for sex is simply a computational device. 
 
 ORDERED  ; Lhs = newhsat ; Rhs = one $ 
 MATRIX      ; b1 = b ; mu1 = mu $ 
 PROBIT      ; Lhs = female ; Rhs = one $ 
 MATRIX      ; b2 = b $ 
 ORDERED  ; Lhs = newhsat,female  
   ; Rh1 = one ; Rh2 = one ; Start = b1,mu1,b2,0 $ 
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----------------------------------------------------------------------------- 
Bivariate Ordered Probit Model 
Dependent variable             BivOrdPr 
Log likelihood function     -3976.40233 
Restricted log likelihood   -3977.17511 
--------+-------------------------------------------------------------------- 
 NEWHSAT|                  Standard            Prob.      95% Confidence 
  FEMALE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Mean inverse probability for NEWHSAT 
Constant|    1.68575***      .04935    34.16  .0000     1.58903   1.78248 
        |Mean inverse probability for FEMALE 
Constant|     .05109*        .02849     1.79  .0729     -.00475    .10693 
        |Threshold Parameters for Probability Model for NEWHSAT 
  MU(01)|     .24123***      .03150     7.66  .0000      .17950    .30296 
  MU(02)|     .67373***      .04341    15.52  .0000      .58864    .75882 
  MU(03)|    1.14226***      .04824    23.68  .0000     1.04770   1.23681 
  MU(04)|    1.60213***      .05087    31.49  .0000     1.50242   1.70184 
        |Polychoric Correlation for NEWHSAT  and FEMALE 
RHO(1,2)|     .03998         .03216     1.24  .2138     -.02305    .10302 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N15: Panel Data Models for Ordered Choice 
 
N15.1 Introduction 
 
 The basic ordered choice model is based on the following specification:  There is a latent 
regression, 
   yi*   =  β′xi + εi,  εi~ F(εi |θ), E[εi|xi] = 0, Var[εi|xi] = 1, 
 
The observation mechanism results from a complete censoring of the latent dependent variable as 
follows: 
   yi =  0 if yi ≤ µ0, 

    =  1 if µ0 < yi ≤ µ1, 

    =  2 if µ1 < yi ≤ µ2, 
    ... 

    =  J if  yi > µJ-1. 
 
The latent ‘preference’ variable, yi* is not observed.  The observed counterpart to yi* is yi.  Four 
stochastic specifications are provided for the basic model shown above.  The ordered probit model 
based on the normal distribution was developed by Zavoina and McElvey (1975).  It applies in 
applications such as surveys, in which the respondent expresses a preference with the above sort of 
ordinal ranking.  The variance of εi is assumed to be one, since as long as yi*, β, and εi are 
unobserved, no scaling of the underlying model can be deduced from the observed data.  Estimates 
are obtained by maximum likelihood.  The probabilities which enter the log likelihood function are 
 
   Prob[yi  =  j]  =  Prob[yi* is in the jth range]. 
 
The model may be estimated either with individual data, with yi = 0, 1, 2, ... or with grouped data, in 
which case each observation consists of a full set of J+1 proportions, p0i,...,pJi.  This chapter gives the 
panel data extensions of the ordered choice model. 
 
 
 
 
 There are four classes of panel data models in NLOGIT, fixed effects, random effects, 
random parameters, and latent class.  
 
 
  

NOTE:  The panel data versions of the ordered choice models require individual data. 



N15: Panel Data Models for Ordered Choice  N-235 

N15.2 Fixed Effects Ordered Choice Models 
 
 The fixed effects models are estimated by maximum likelihood.  The command for 
requesting the model is in two parts.  You must fit the model without fixed effects first, to provide 
the starting values, then the command for the fixed effects estimator follows.  The first command and 
the second must be identical, save for the panel specification in the second command and the 
constant term in the first, as noted below. 
 

ORDERED ; Lhs = dependent variable 
; Rhs = independent variables  
[ ; Model = Logit] $ 

ORDERED ; Lhs = dependent variable 
; Rhs = independent variables  
; Pds = fixed number of periods or count variable 
; Fixed Effects   
[ ; Model = Logit] $ 

 
NOTE:  The Rhs in your first command must contain a constant term, one as the first variable. Your 
Rhs list for a fixed effects model generally should not include a constant term as the fixed effects 
model fits a complete set of constants for the set of groups.  But, for the ordered probit model, you 
must provide the identical Rhs list as in the first command, so for this model, do include one. It will 
be removed prior to beginning estimation. When you set up your commands, leaving one in the Rhs 
list will help insure that your model specification is correct.  It will look correct.  Note, it is crucial 
that you fit the pooled model first so that NLOGIT can find the right starting values for the second 
estimation step. 
 
 The fixed effects model assumes a group specific effect: 
 
   Prob[yit =  j]  =  F( j,µ, β′xit  +  αi) 
 
where αi is the parameter to be estimated.  You may also fit a two way fixed effects model 
 
   Prob[yit  =  j]  =  F( j,µ, β′xit  +  αi + γt) 
 
where γt is an additional, time (period) specific effect.  The time specific effect is requested by 
adding 
   ; Time 
 
to the command if the panel is balanced, and  
 
   ; Time = variable name 
 
if the panel is unbalanced.  For the unbalanced panel, we assume that overall, the sample observation 
period is t  = 1,2,..., T and that the ‘Time’ variable gives for the specific group, the particular values 
of t that apply to the observations.  Thus, suppose your overall sample is five periods.  The first 
group is three observations, periods 1, 2, 4, while the second group is four observations, 2, 3, 4, 5.   
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 Then, your panel specification would be 
 
   ; Pds = Ti  for example, where Ti = 3, 3, 3, 4, 4, 4, 4 
and   ; Time = Pd for example, where Pd = 1, 2, 4, 2, 3, 4, 5. 
 
NOTE:  See the discussion below on how this model is estimated.  It places an important restriction 
on the two way fixed effects model. 
 
 You must provide the starting values for the iterations by fitting the basic model without 
fixed effects.  You will have a constant term in these results even though it is dropped from the fixed 
effects model.  This is used to get the starting value for the fixed effects.  Iterations begin with the 
restricted model that forces all the fixed effects to equal the constant term in the restricted model.   
 Results that are kept for this model are 
 
 Matrices: b =  estimate of β 
   varb =  asymptotic covariance matrix for estimate of β. 
   alphafe =  estimated fixed effects 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 

 

 Last Function: None 
  
The upper limit on the number of groups is 100,000. 
 
NOTE:  In the ordered probit model with fixed effects αi, the individual effect coefficient cannot be 
estimated if the dependent variable within the group takes the same value in every period.  The 
results will indicate how many such groups had to be removed from the sample. 
 
Application 
 
 We have fit a fixed effects ordered probit model with the German health care data used in 
the previous examples.  This is an unbalanced panel with 7,293 individuals.  The health status 
variable is coded 0 to 10.  The model is fit using the commands below.  We first fit the pooled 
model, then the fixed effects model. 
 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,hhninc,hhkids,educ ; Partial Effects $  
 ORDERED ; Lhs = newhsat 
   ; Rhs = one,hhninc,hhkids,educ ; Partial Effects   
   ; Fixed Effects ; Pds = _groupti $  
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----------------------------------------------------------------------------- 
FIXED EFFECTS OrdPrb Model 
Dependent variable              NEWHSAT 
Log likelihood function    -42217.91813 
Estimation based on N =  27326, K =5679 
Inf.Cr.AIC  =95793.836 AIC/N =    3.506 
Model estimated: Jun 19, 2011, 16:33:13 
Probability model based on Normal 
Unbalanced panel has   7293 individuals 
Skipped 1626 groups with inestimable ai 
Ordered probability model 
Ordered probit (normal) model 
LHS variable = values 0,1,...,10 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
  HHNINC|    -.38858***      .06374    -6.10  .0000     -.51351   -.26365 
  HHKIDS|     .07337***      .02718     2.70  .0069      .02010    .12665 
    EDUC|    -.04469*        .02635    -1.70  .0898     -.09633    .00695 
   MU(1)|     .32638***      .02045    15.96  .0000      .28630    .36646 
   MU(2)|     .84692***      .02743    30.88  .0000      .79316    .90068 
   MU(3)|    1.39245***      .03005    46.34  .0000     1.33355   1.45135 
   MU(4)|    1.81634***      .03102    58.55  .0000     1.75554   1.87714 
   MU(5)|    2.68396***      .03226    83.19  .0000     2.62072   2.74719 
   MU(6)|    3.10845***      .03272    95.01  .0000     3.04432   3.17258 
   MU(7)|    3.76428***      .03340   112.69  .0000     3.69880   3.82975 
   MU(8)|    4.79590***      .03478   137.88  .0000     4.72773   4.86407 
   MU(9)|    5.50760***      .03610   152.55  .0000     5.43684   5.57836 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The results below compare the estimated partial effects for the outcome y = 10 for the fixed effects 
model followed by the pooled model.  The differences are large. Note that the educ coefficient is 
significantly negative in the fixed effects model and significantly positive in the pooled model.  The log 
likelihood for the pooled model is -57420.08880, so the LR test statistic is about 30,000 with 7,293 
degrees freedom.  The critical chi squared for 7,292 degrees of freedom, given with the command  
 

CALC   ; List ; Ctb(.95,7292) $ 
 
is 7,491, which suggests that the fixed effects estimator, at least at this point is preferred.  The 
remains some question, however, because of the incidental parameters problem.  Based on received 
results, in the OP setting, the coefficient is biased away from zero, but not in sign, which still weighs 
in favor of the FEM result. 
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----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
 NEWHSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=10] at means]-------------- 
  HHNINC|     .00025         .52441      .93  .3532     -.00028    .00078 
 *HHKIDS|     .00469         .17144     1.46  .1431     -.00159    .01097 
    EDUC|    -.00282***    -1.16548   -10.59  .0000     -.00334   -.00230 
        |--------------[Partial effects on Prob[Y=10] at means]-------------- 
  HHNINC|     .03739***      .11620     5.36  .0000      .02372    .05105 
 *HHKIDS|     .04378***      .38649    16.73  .0000      .03865    .04891 
    EDUC|     .00996***      .99545    18.30  .0000      .00889    .01103 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
N15.3 Random Effects Ordered Choice Models 
 

The random effects model is 
 
   yit*  =  β‘xit  +  εit  +  ui 
 
where i = 1,...,N indexes groups and t = 1,...,Ti indexes periods.  (As always, the number of periods 
may vary by individual.)  The unique term, εit, is distributed as N[0,1], standard logistic, extreme 
value, or Gompertz as specified in the general model discussed earlier.  The group specific term, ui is 
distributed as N[0,σ2] for all cases.  Note that the unobserved heterogeneity, ui is the same in every 
period.   The parameters of the model are fit by maximum likelihood.  As in the binary choice 
models, the underlying variance, σ2 = σu

2 + σε
2 is not identified.  The reduced form parameter,           

ρ = ( )2 2 2/u uεσ σ + σ , is estimated directly.  With the normalization that we used earlier, σε
2 = 1, we can 

determine σu = /(1 )ρ − ρ . The ordered probability model with random effects is estimated in the 
same fashion as the binary probability models with random effects.  The heterogeneity is handled by 
using Hermite quadrature to integrate the effect out of the joint density of the Ti observations for the 
ith group.  Technical details appear at the end of this section. 
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N15.3.1 Commands 
 

The specification is for the ordered probability model.  Use 
 

ORDERED  ; Lhs = ... ; Rhs = ...  
; Panel spec.  
[ ; Model = Logit, Comploglog, Arctangent or Gompertz] $ 

 
where the ; Pds specification follows the standard convention, fixed T or variable name for variable 
T.  The default is the ordered probit.  Request the ordered logit just by adding ; Model = Logit etc. to 
the command.  The random effects model is the default panel data model for the ordered probability 
models, so you need only include the ; Pds specification in the command. 
 
NOTE:  The random effect, ui is assumed to be normally distributed in all models. Thus, the logit, 
arctangent, and other models contain a hybrid of distributions. 
 

All other options are the same as were listed earlier for the pooled ordered probability 
models.   
 Marginal effects are computed by setting the heterogeneity term, ui to its expected value of 
zero.  In order to do the computations of the marginal effects, it is also necessary to scale the 
coefficients.  The ordered probability model with the random effect in the equation is based on the 
index function (µj - β′xi) / (1 + σu

2). 
 This estimator can accommodate restrictions, so 
 
   ; Rst = list 
and   ; CML: specification 
 
are both available. Restrictions may be tested and imposed exactly as in the model with no 
heterogeneity.  Since restrictions can be imposed on all parameters, including ρ, you can fix the 
value of ρ at any desired value.  Do note that forcing the ancillary parameter, in this case, ρ, to equal 
a slope parameter will almost surely produce unsatisfactory results, and may impede or even prevent 
convergence of the iterations. 
 Starting values for the iterations are obtained by fitting the basic model without random 
effects.  Thus, the initial results in the output for these models will be the ordered choice models 
discussed earlier. You may provide your own starting values for the parameters with 
 
   ; Start = ... the list of values for β, values for µ, value for ρ 
 
There is no natural moment based estimator for ρ, so a relatively low guess is used as the starting 
value instead.  The starting value for ρ is approximately .2 (θ = [2ρ/(1-ρ)]1/2 ≈ .29 – see the technical 
details below.  Maximum likelihood estimates are then computed and reported, along with the usual 
diagnostic statistics.  (An example appears below.) 
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N15.3.2 Output and Results 
 
 Your data may not be consistent with the random effects model.  That is, there may be no 
discernible evidence of random effects in your data.  In this case, the estimate of ρ will turn out to be 
negligible.  If so, the estimation program issues a diagnostic and reverts back to the original, 
uncorrelated formulation and reports (again) the results for the basic model. 
 Results that are kept for this model are 
 
 Matrices: b =  estimate of β 
   varb =  asymptotic covariance matrix for estimate of β. 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
   rho =  estimated value of ρ 
   varrho =  estimated asymptotic variance of estimator of ρ. 
 
 Last Model: b_variables 
 
 Last Function: Prob(y = outcome | x) 
 
The additional specification 
 
   ; Par 
 
in the command requests that µ and σu be included in b and the additional rows and columns be 
included in varb.  The Last Model is [b_variable,ru].  The PARTIAL EFFECTS and SIMULATE 
commands use the same probability function as the pooled model.  The default outcome is the 
highest one, but you may use ; Outcome = j to specify a specific one, or ; Outcome = * for all. 
 
NOTE:  The hypothesis of no group effects can be tested with a Wald test (simple t test) or with a 
likelihood ratio test.  The LM approach, using ; Maxit = 0 with a zero starting value for ρ does not 
work in this setting because with ρ = 0, the last row of the covariance matrix turns out to contain 
zeros. 
 
NOTE: This model is fit by approximating the necessary integrals in the log likelihood function by 
Hermite quadrature.  An alternative approach to estimating the same model is by Monte Carlo 
simulation.  You can do exactly this by fitting the model as a random parameters model with only a 
random constant term.   
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N15.3.3 Application 
 
 In the following example, we fit random effects ordered probit models for the health status 
data.  The pooled estimator is fit with and without the clustered data correction.  Then, the random 
effects model is fit, first using the Butler and Moffitt method, then as a random parameters model 
with a random constant term.    
 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ $   
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ  

; Cluster = id $  
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ  

; Panel  $  
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ $   
 ORDERED ; Lhs = newhsat ; Rhs = one,hhninc,hhkids,educ    
   ; Panel ; RPM ; Fcn = one(n) ; Halton ; Pts = 25 $  
 
The first pair of estimation results shown below compares the cluster estimator of the covariance 
matrix to the pooled estimator which ignores the panel data structure.  As can be seen in the results, 
the robust standard errors are somewhat higher.  The second set of results compares two estimators 
of the random effects model. The first results are based on the quadrature estimator.  The second uses 
maximum simulated likelihood.  These two estimators give almost the same results.  They would be 
closer still had we used a larger number of Halton draws.  We set this to 25 to speed up the 
computation.  With, say, 250, the results of the two estimators would be extremely close. 
 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -57420.08880 
Restricted log likelihood  -57816.35761 
Chi squared [   3 d.f.]       792.53762 
Significance level               .00000 
McFadden Pseudo R-squared      .0068539 
Estimation based on N =  27326, K =  13 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.42634***      .03136    45.48  .0000     1.36487   1.48781 
  HHNINC|     .19469***      .03624     5.37  .0000      .12366    .26571 
  HHKIDS|     .22199***      .01261    17.61  .0000      .19728    .24669 
    EDUC|     .05187***      .00276    18.81  .0000      .04647    .05728 
        |Threshold parameters for index 
   Mu(1)|     .19061***      .00988    19.29  .0000      .17123    .20998 
   Mu(2)|     .49125***      .01073    45.80  .0000      .47023    .51228 
   Mu(3)|     .82152***      .00979    83.95  .0000      .80233    .84070 
   Mu(4)|    1.08609***      .00898   120.91  .0000     1.06849   1.10370 
   Mu(5)|    1.63179***      .00793   205.69  .0000     1.61624   1.64734 
   Mu(6)|    1.88965***      .00767   246.35  .0000     1.87462   1.90469 
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   Mu(7)|    2.28993***      .00770   297.40  .0000     2.27484   2.30503 
   Mu(8)|    2.92948***      .00843   347.32  .0000     2.91295   2.94601 
   Mu(9)|    3.38076***      .01008   335.50  .0000     3.36101   3.40051 
        |Index function for probability 
Constant|    1.42634***      .05039    28.30  .0000     1.32757   1.52511 
  HHNINC|     .19469***      .05008     3.89  .0001      .09653    .29284 
  HHKIDS|     .22199***      .01886    11.77  .0000      .18503    .25894 
    EDUC|     .05187***      .00432    12.00  .0000      .04340    .06035 
        |Threshold parameters for index 
   Mu(1)|     .19061***      .02054     9.28  .0000      .15035    .23086 
   Mu(2)|     .49125***      .03180    15.45  .0000      .42892    .55358 
   Mu(3)|     .82152***      .03548    23.16  .0000      .75198    .89105 
   Mu(4)|    1.08609***      .03432    31.64  .0000     1.01882   1.15337 
   Mu(5)|    1.63179***      .03334    48.95  .0000     1.56644   1.69713 
   Mu(6)|    1.88965***      .03261    57.95  .0000     1.82574   1.95357 
   Mu(7)|    2.28993***      .02965    77.24  .0000     2.23183   2.34804 
   Mu(8)|    2.92948***      .02827   103.62  .0000     2.87407   2.98489 
   Mu(9)|    3.38076***      .02920   115.77  .0000     3.32353   3.43800 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Effects Ordered Probability Model 
Dependent variable              NEWHSAT 
Log likelihood function    -53631.92165 
Underlying probabilities based on Normal 
Unbalanced panel has   7293 individuals 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    2.19480***      .07252    30.27  .0000     2.05267   2.33692 
  HHNINC|    -.03764         .04636     -.81  .4169     -.12850    .05323 
  HHKIDS|     .18979***      .01866    10.17  .0000      .15322    .22635 
    EDUC|     .07474***      .00609    12.27  .0000      .06280    .08668 
        |Threshold parameters for index model 
  Mu(01)|     .27725***      .01553    17.85  .0000      .24680    .30769 
  Mu(02)|     .71390***      .02041    34.98  .0000      .67391    .75390 
  Mu(03)|    1.18482***      .02235    53.01  .0000     1.14101   1.22863 
  Mu(04)|    1.55571***      .02305    67.49  .0000     1.51053   1.60089 
  Mu(05)|    2.32085***      .02394    96.95  .0000     2.27393   2.36777 
  Mu(06)|    2.68712***      .02427   110.74  .0000     2.63956   2.73469 
  Mu(07)|    3.25778***      .02467   132.08  .0000     3.20944   3.30612 
  Mu(08)|    4.16499***      .02560   162.70  .0000     4.11482   4.21517 
  Mu(09)|    4.79284***      .02605   183.99  .0000     4.74178   4.84390 
        |Std. Deviation of random effect 
   Sigma|    1.01361***      .01233    82.23  .0000      .98945   1.03778 
--------+-------------------------------------------------------------------- 
Random Coefficients  OrdProbs Model 
Dependent variable              NEWHSAT 
Log likelihood function    -53699.77298 
Ordered probit (normal) model 
Simulation based on  25 Halton draws 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
 NEWHSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
  HHNINC|    -.02668         .03421     -.78  .4354     -.09373    .04037 
  HHKIDS|     .18456***      .01227    15.05  .0000      .16052    .20860 
    EDUC|     .07680***      .00278    27.58  .0000      .07134    .08226 
        |Means for random parameters 
Constant|    2.13724***      .03627    58.93  .0000     2.06615   2.20832 
        |Scale parameters for dists. of random parameters 
Constant|    1.04507***      .00729   143.43  .0000     1.03079   1.05935 
        |Threshold parameters for probabilities 
   MU(1)|     .26755***      .01479    18.09  .0000      .23856    .29653 
   MU(2)|     .69343***      .01916    36.20  .0000      .65588    .73097 
   MU(3)|    1.15786***      .02068    55.98  .0000     1.11732   1.19840 
   MU(4)|    1.52579***      .02116    72.09  .0000     1.48431   1.56728 
   MU(5)|    2.28879***      .02177   105.11  .0000     2.24612   2.33147 
   MU(6)|    2.65507***      .02203   120.53  .0000     2.61189   2.69824 
   MU(7)|    3.22614***      .02239   144.06  .0000     3.18225   3.27003 
   MU(8)|    4.13325***      .02334   177.07  .0000     4.08750   4.17900 
   MU(9)|    4.75862***      .02385   199.56  .0000     4.71188   4.80535 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
N15.4 Random Parameters and Random Thresholds 
Ordered Choice Models 
 
 The structure of the random parameters model is based on the conditional probability 
 
   Prob[yit =  j| xit, βi]  =  F( j,µ, βi′xit  +  αi), i = 1,...,N, t = 1,...,Ti. 
 
where F(.) is the distribution discussed earlier (normal, logistic, extreme value, Gompertz).  The 
model assumes that parameters are randomly distributed with possibly heterogeneous (across 
individuals) parameters generated by 
 
   E[βi| zi]  =  β  +  ∆zi,   
 
(the second term is optional – the mean may be constant), 
 
   Var[βi| zi]  =  Σ. 
 
The model is operationalized by writing 
 
   βi  =  β  +  ∆zi  +  Γvi. 
 
As noted earlier, the heterogeneity term is optional.  In addition, it may be assumed that some of the 
parameters are nonrandom.  It is convenient to analyze the model in this fully general form here.    
We accommodate nonrandom parameters just by placing rows of zeros in the appropriate places in ∆ 
and Γ. 
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NOTE:  If there is no heterogeneity in the mean, and only the constant term is considered random – 
the model may specify that some parameters are nonrandom – then this model is functionally 
equivalent to the random effects model of the preceding section.  The estimation technique is 
different, however.  An application appears in the previous section. 
 
 Two major extensions of the RP-OC model are provided.  The threshold parameters, µij and 
disturbance variance of εi may also be random, in the form 
 
   µij  =  µi,j-1  +  exp(αj + δ′wi + θuij), µ0 = 0, uij ~ N[0,1] 
 
   εit ~ N[0,σi

2], σi = exp(γ′fi + τhi), hi ~ N[0,1] 
 
N15.4.1 Model Commands 
 
 The basic model command for this form of the model is, as is the fixed effects estimator, 
given in two parts. The model is fit conventionally first to provide the starting values, then fully 
specified. 
 
 ORDERED ; Lhs  = dependent variable 

; Rhs  = independent variables 
[ ; Model = Logit ] $ 

 ORDERED ; Lhs  = dependent variable 
; Rhs  = independent variables 
; Pds  = fixed periods or count variable 
; RPM 
; Fcn  = random parameters specification 
[ ; Model = Logit ] $ 

 
NOTE:  For this model, your Rhs list should include a constant term. 
 
 Starting values for the iterations are provided by the user by fitting the basic model without 
random parameters first.  Note in the applications below that the two random parameters ordered 
probit estimators are each preceded by an otherwise identical fixed parameters version.   
 
NOTE:  The command cannot reuse an earlier set of results.  You must refit the basic model without 
random parameters each time.  Thus, 
 
 ORDERED ; ... $ 
 ORDERED ; RPM ; ... $ 
 ORDERED ; RPM ; ... $ 
 
will not work properly.  Each random parameters model must be preceded by a set of starting values. 
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Correlated Random Parameters 
 
 The preceding defines an estimator for a model in which the covariance matrix of the 
random parameters is diagonal.  To extend it to a model in which the parameters are freely 
correlated, add 
   ; Correlation (or just ; Cor) 
 
to the command.  Note that this formulation of the model has an ambiguous interpretation if your 
parameters are not jointly normally distributed.  A correlated mixture of several distributions is 
difficult to interpret. 
 
Heterogeneity in the Means 
 
 The preceding examples have specified that the mean of the random variable is fixed over 
individuals.  If there is measured heterogeneity in the means, in the form of 
 
   E[βki]  =  βk  +  Σmδkmzmi 
 
where zm is a variable that is measured for each individual, then the command may be modified to 
 
   ; RPM  =  list of variables in z. 
 
In the data set, these variables must be repeated for each observation in the group. 
 
Autocorrelation 
 
 You may change the character of the heterogeneity from a time invariant effect to an AR(1) 
process, vkit = ρkvki,t-1 + wkit. 
 
Controlling the Simulation 
 
 There are two parameters of the simulations that you can change.  R is the number of points 
in the simulation. Authors differ in the appropriate value.  Train (2009) recommends several 
hundred.  Bhat suggests 1,000 is an appropriate value.  The program default is 100.  You can choose 
the value with 
   ; Pts  =  number of draws, R. 
 
The value of 50 that we set in our experiments above was chosen purely to produce an example that 
you could replicate without spending an inordinate amount of waiting for the results. 
 The standard approach to simulation estimation is to use random draws from the specified 
distribution.  As suggested immediately above, good performance in this connection requires very large 
numbers of draws.  The drawback to this approach is that with large samples and large models, this 
entails a huge amount of computation and can be very time consuming.  Some authors have 
documented dramatic speed gains with no degradation in simulation performance through the use of a 
small number of Halton draws instead of a large number of random draws.  Some authors (e.g., Bhat 
(2001)) have found that a Halton sequence of draws with only one tenth the number of draws as a 
random sequence is equally effective.  To use this approach, add 
 
   ; Halton 
 
to your model command. 



N15: Panel Data Models for Ordered Choice  N-246 

 In order to replicate an estimation, you must use the same random draws.  One implication 
of this is that if you give the identical model command twice in sequence, you will not get the 
identical set of results because the random draws in the sequences will be different.  To obtain the 
same results, you must reset the seed of the random number generator with a command such as 
 
 CALC   ;  Ran (seed value) $ 
 
(Note that we have used ; Ran(12345) before each of our examples above, precisely for this reason.  
The specific value you use for the seed is not of consequence; any odd number will do. 
 In this connection, we note a consideration which is crucial in this sort of estimation.  The 
random sequence used for the model estimation must be the same in order to obtain replicability.  In 
addition, during estimation of a particular model, the same set of random draws must be used for 
each person every time.  That is, the sequence vi1, vi2, ..., viR used for each individual must be the 
same every time it is used to calculate a probability, derivative, or likelihood function.  (If this is not 
the case, the likelihood function will be discontinuous in the parameters, and successful estimation 
becomes unlikely.  This has been called simulation ‘noise’ or ‘buzz’ in the literature. )  One way to 
achieve this which has been suggested in the literature is to store the random numbers in advance, 
and simply draw from this reservoir of values as needed.  Because NLOGIT is able to use very large 
samples, this is not a practical solution, especially if the number of draws is large as well.  We 
achieve the same result by assigning to each individual, i, in the sample, their own random generator 
seed which is a unique function of the global random number seed, S, and their group number, i; 
 
   Seed(S,i) =  S  +  123.0 ×i, then minus 1.0 if the result is even. 
 
Since the global seed, S, is a positive odd number, this seed value is unique, at least within the 
several million observation range of NLOGIT. 
 
Specifying Random Parameters 
 
 The ; Fcn = specification is used to define the random parameters.  It is constructed from 
the list of Rhs names as follows:  Suppose your model is specified by 
 
   ; Rhs = one, x1, x2, x3, x4. 
 
This involves five coefficients.  Any or all of them may be random; any not specified as random are 
assumed to be constant.  For those that you wish to specify as random, use 
 
   ; Fcn = variable name (distribution), variable name (distribution), ... 
 
Numerous distributions may be specified.  All random variables, vik, have mean zero.  Distributions 
can be specified with 
   c  for constant (zero variance), vi = 0 

n  for normally distributed, vi = a standard normally distributed variable 
u  for uniform, vi= a standard uniform distributed variable in (-1,+1) 
t   for triangular (the ‘tent’ distribution)  
l   for lognormal 
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Each of these is scaled as it enters the distribution, so the variance is only that of the random draw 
before multiplication.  The latter two distributions are provided as one may wish to reduce the 
amount of variation in the tails of the distribution of the parameters across individuals and to limit 
the range of variation.  (See Train, op. cit., for discussion.)  To specify that the constant term and the 
coefficient on x1 are normally distributed with fixed mean and variance, use 
 
   ; Fcn = one(n), x1(n). 
 
This specifies that the first and second coefficients are random while the remainder are not.  The 
parameters estimated will be the mean and standard deviations of the distributions of these two 
parameters and the fixed values of the other three.  
 
N15.4.2 Results 
 
 Results saved by this estimator are: 
 
 Matrices: b =  estimate of θ 
   varb =  asymptotic covariance matrix for estimate of θ. 
   beta_i =  individual specific parameters, if ; Par is requested. 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: Prob(yit = J|xit) = Probability of the highest cell.  

May be changed with ; Outcome = j or ; Outcome = *. 
 
N15.4.3 Application 
 
 The following example illustrates the random parameters ordered probit model.  The data are 
recoded to make a more compact example, and the sample is restricted to those groups that have 
seven observations, to speed up the simulations.  The first two ordered probit models are the fixed 
parameters, pooled estimator followed by the random parameters case in which two of the five 
coefficients are random.  After the random parameters model is estimated, the individual specific 
estimates of E[βeduc|hs,x] are collected in a variable then a kernel estimator describes the distribution 
of the conditional means across the sample.  The results are rearranged to compare the coefficient 
estimates then the partial effects across the specifications. 
 The results include estimates of the means and standard deviations of the distributions of the 
random parameters and the estimates of the nonrandom parameters.  The log likelihood shown is 
conditioned on the random draws, so one might be cautious about using it to test hypotheses, for 
example, that the parameters are random at all by comparing it to the log likelihood from the basic 
model with all nonrandom coefficients. 
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The commands are: 
 
SAMPLE ; All $ 
SETPANEL  ; Group = id ; Pds = ti $ 
NAMELIST  ; x = one,age,educ,hhninc,handdum $ 
CREATE  ; hs = newhsat $ 
RECODE  ; hs ; 0/3 = 0 ; 4/6 = 1 ; 7/8 = 2 ; 9/10 = 3 $ 
HISTOGRAM ; Rhs = hs $ 
REJECT  ; ti < 7 $ 
ORDERED  ; Lhs = hs ; Rhs = x ; Partial Effects  $ 
ORDERED ; Lhs = hs ; Rhs = x  

; RPM  ;  Panel ; Fcn = age(n),educ(n) ; Halton ; Pts = 25  
; Partial Effects ; Par $ 

SAMPLE  ; 1-887 $ 
MATRIX  ; mb_educ = beta_i(1:118,1:1) $ 
CREATE  ; be_educ = mb_educ $ 
KERNEL  ; Rhs = be_educ $ 
ORDERED  ; Lhs = hs ; Rhs = x ; Partial Effects  $ 
ORDERED ; Lhs = hs ; Rhs = x  

; RPM  ; Panel ; Fcn = age(n),educ(n) ; Halton ; Pts = 25  
; Correlated ; Partial Effects ; Par $ 

 
+--------------------------------------------------------------------+ 
|                CELL FREQUENCIES FOR ORDERED CHOICES                | 
+--------------------------------------------------------------------+ 
|               Frequency        Cumulative  < =    Cumulative  > =  | 
|Outcome      Count    Percent   Count    Percent   Count    Percent | 
|----------- ------- ---------  ------- ---------  ------- --------- | 
|HS=00           569    9.1641      569    9.1641     6209  100.0000 | 
|HS=01          2000   32.2113     2569   41.3754     5640   90.8359 | 
|HS=02          2342   37.7194     4911   79.0949     3640   58.6246 | 
|HS=03          1298   20.9051     6209  100.0000     1298   20.9051 | 
+--------------------------------------------------------------------+ 

 
----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable                   HS 
Log likelihood function     -7679.52077 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      HS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Index function for probability 
Constant|    1.72050***      .10585    16.25  .0000     1.51304   1.92796 
     AGE|    -.02354***      .00155   -15.19  .0000     -.02658   -.02051 
    EDUC|     .06417***      .00687     9.34  .0000      .05069    .07764 
  HHNINC|     .26574***      .08773     3.03  .0025      .09381    .43768 
 HANDDUM|    -.34752***      .03370   -10.31  .0000     -.41358   -.28146 
        |Threshold parameters for index 
   Mu(1)|    1.17217***      .01623    72.20  .0000     1.14035   1.20399 
   Mu(2)|    2.24966***      .01942   115.83  .0000     2.21160   2.28773 
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--------+-------------------------------------------------------------------- 
Random Coefficients  OrdProbs Model 
Dependent variable                   HS 
Log likelihood function     -6724.01324 
Estimation based on N =   6209, K =   9 
Unbalanced panel has    887 individuals 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      HS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
Constant|    2.56865***      .11016    23.32  .0000     2.35275   2.78455 
  HHNINC|     .18922**       .08693     2.18  .0295      .01884    .35960 
 HANDDUM|    -.18622***      .03508    -5.31  .0000     -.25497   -.11747 
        |Means for random parameters 
     AGE|    -.04128***      .00159   -26.01  .0000     -.04439   -.03817 
    EDUC|     .10807***      .00748    14.45  .0000      .09341    .12273 
        |Scale parameters for dists. of random parameters 
     AGE|     .01357***      .00034    39.55  .0000      .01289    .01424 
    EDUC|     .08208***      .00155    53.01  .0000      .07905    .08512 
        |Threshold parameters for probabilities 
   MU(1)|    1.64297***      .02744    59.87  .0000     1.58918   1.69676 
   MU(2)|    3.17465***      .03234    98.16  .0000     3.11126   3.23804 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Random Coefficients  OrdProbs Model 
Dependent variable                   HS 
Log likelihood function      -994.76038 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
      HS|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
Constant|    2.97520***      .25659    11.60  .0000     2.47230   3.47811 
  HHNINC|     .23351         .22085     1.06  .2903     -.19934    .66637 
 HANDDUM|    -.25589***      .09735    -2.63  .0086     -.44670   -.06508 
        |Means for random parameters 
     AGE|    -.04495***      .00386   -11.66  .0000     -.05250   -.03739 
    EDUC|     .06925***      .01533     4.52  .0000      .03921    .09930 
        |Diagonal elements of Cholesky matrix 
     AGE|     .00860***      .00262     3.29  .0010      .00347    .01373 
    EDUC|     .04047***      .00337    12.02  .0000      .03388    .04707 
        |Below diagonal elements of Cholesky matrix 
lEDU_AGE|     .03878***      .01003     3.87  .0001      .01912    .05844 
        |Threshold parameters for probabilities 
   MU(1)|    1.65758***      .08339    19.88  .0000     1.49414   1.82102 
   MU(2)|    3.11571***      .09843    31.65  .0000     2.92279   3.30864 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Implied covariance matrix of random parameters 
Var_Beta|             1             2 
--------+---------------------------- 
       1|   .739584E-04   .333495E-03 
       2|   .333495E-03     .00314200 
Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|     .00859991 
       2|      .0560536 
Implied correlation matrix of random parameters 
Cor_Beta|             1             2 
--------+---------------------------- 
       1|       1.00000       .691818 
       2|       .691818       1.00000 
 

 
Figure N15.1  Estimators of E[β(educ)|y,x] 

 
(Fixed parameters) 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
      HS|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
     AGE|     .00353***     1.93407    14.53  .0000      .00305    .00401 
    EDUC|    -.00962***    -1.30082    -9.18  .0000     -.01168   -.00757 
  HHNINC|    -.03986***     -.17200    -3.02  .0025     -.06570   -.01402 
 HANDDUM|     .05213***      .13505    10.09  .0000      .04200    .06225 
(outcomes 1 and 2 omitted) 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
     AGE|    -.00654***    -1.46872   -14.52  .0000     -.00742   -.00566 
    EDUC|     .01782***      .98783     9.17  .0000      .01401    .02163 
  HHNINC|     .07381***      .13061     3.02  .0025      .02598    .12164 
 HANDDUM|    -.09653***     -.10255   -10.15  .0000     -.11517   -.07788 
--------+-------------------------------------------------------------------- 
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(Random parameters) 
----------------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
     AGE|     .00247***     4.25914    16.65  .0000      .00218    .00276 
    EDUC|    -.00647***    -2.75143   -12.52  .0000     -.00748   -.00546 
  HHNINC|    -.01133**      -.15380    -2.16  .0306     -.02159   -.00106 
 HANDDUM|     .01115***      .09088     5.22  .0000      .00696    .01533 
 (Outcomes 1 and 2 omitted, effects reordered) 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
     AGE|    -.00776***    -3.12921   -22.25  .0000     -.00844   -.00708 
    EDUC|     .02031***     2.02149    13.54  .0000      .01737    .02325 
  HHNINC|     .03557**       .11300     2.17  .0296      .00351    .06762 
 HANDDUM|    -.03500***     -.06677    -5.27  .0000     -.04801   -.02199 
--------+-------------------------------------------------------------------- 
(Correlated random parameters) 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
     AGE|     .00344***     4.40201     6.82  .0000      .00245    .00443 
    EDUC|    -.00530***    -1.78538    -4.17  .0000     -.00779   -.00281 
  HHNINC|    -.01786        -.19039    -1.05  .2927     -.05114    .01541 
 HANDDUM|     .01958***      .13543     2.67  .0077      .00519    .03397 
        |--------------[Partial effects on Prob[Y=03] at means]-------------- 
     AGE|    -.00772***    -3.51945    -9.49  .0000     -.00931   -.00612 
    EDUC|     .01189***     1.42743     4.34  .0000      .00653    .01726 
  HHNINC|     .04010         .15222     1.06  .2906     -.03427    .11448 
 HANDDUM|    -.04395**      -.10827    -2.55  .0107     -.07768   -.01022 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

N15.4.4 Random Parameters HOPIT Model 
 

 This model extends the hierarchical ordered probit model in several directions.  The core 
model is an ordered probit specification: 
 

   yit*  =  β′xit  +  εit, 
   yit =  0  if yit* < 0, 
    =  1  if 0 < yit* <µ1, 
    =  2  if µ1< yit* <µ2, 
    ... 
    =  J if yit* > µJ 
 
as usual.  The model is constructed to include random coefficients, βi, random variance 
heterogeneity, σi, and random thresholds, µij. The random parameters form of the general model is 
 

   βi =  β  + ∆hi +  Γwi 
 

where Γ is a diagonal matrix of standard deviations and wik ~ N[0,1], k = 1,…,K.  The mean of the 
random parameter vector is β + ∆hi where hi may be a set of variables specified in the model.  The 
disturbance in the model may be heteroscedastic and distributed with random standard deviation as 
well, with 
   εit ~ N[0,σi

2],  σi  =  exp[γ′zi + τvi] where vi ~ N[0,1]. 
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Finally, the thresholds are formed as shown for the cross section variant of this model. 
 
   µij   =  µi,j-1  +  exp(αj + δ′wi +  θjuij], where uij ~ N[0,1] 

   µ0 =  0 and xit contains a constant term. 
  
The various parts are optional.  In addition, the model may be fit with cross section or panel data.  As 
usual, panel data are likely to be more effective.  The command for this model is 
 
 ORDERED ; Lhs = … ; Rhs = … 

   ; RPM      for the random coefficients, β 
or   ; RPM = list of variables in hi 

   ; RTM    for the random thresholds model 
   ; Limits = list of variables for the wi in the thresholds 
   ; Random Effects to use a common ui in the thresholds 

   ; RVM  for the random term i, vi in σi 
   ; Het ; Hfn = list of variables in zi for the heteroscedastic model $ 
 
When the model includes any of the three random components, the maximum simulated likelihood 
estimator is used.  The default model is an ordered probit specification.  You may specify an ordered 
logit model instead by adding 
 
   ; Logit 
 
to the command. 

The simulation can be modified with 
 
   ; Pts = the number of points or draws 
and   ; Halton 
 
to indicate that Halton sequences rather than random draws be used for the simulations.  Halton 
sequences are recommended.  The simulation is over the J elements in µij plus the element vi in σi 
plus the K variables in the Rhs specification.  If you specify a ‘random effects’ model, then the same 
single random term appears in all of the threshold equations. 

If you are using a panel data set, use either 
 
 SETPANEL ; Group = variable name  

; Pds = variable name $ 
with   ; Panel 
 
in the ORDERED command, or, if the Pds variable is already prepared, use 
 
   ; Pds = the group count variable. 
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Partial effects for this model are computed internally and requested with 
 
   ; Partial Effects. 
 
 This general form of the random parameters ordered probit model does not use the template 
random parameters form described in Chapter R24.  (Note that there is no ; Fcn = specification 
component in the command.)  As formulated, all parameters on the variables in the Rhs list are 
assumed to be random.  You can modify this by imposing a constraint that the corresponding 
diagonal element of Γ, which is the standard deviation of the random part of that element of βi, be 
equal to zero.  To do this, include in the command 
 
   ; Rh2 = list of variables with nonrandom parameters. 
 
Thus, the full list of variables in the model is those in the Rhs list plus those in the Rh2 list.  There is 
no overlap – variables must appear in only one of these two lists. 
 Results saved by this estimator are: 
 
 Matrices: b =  estimate of β 
   varb =  asymptotic covariance matrix for estimate of θ. 
   betartop =  full set of parameter estimates , if ; Par is requested. 
 
 Scalars: kreg =  number of variables in Rhs 
   nreg =  number of observations 
   logl =  log likelihood function 
 
 Last Model: b_variables 
 
 Last Function: None 
 
 The following application uses the subset of the GSOEP sample that have five observations 
in each group.  The application is further speeded up by using only 10 Halton draws in the 
simulations.  This is sufficient for a numerical example, but would be far too small for an actual 
application.  The estimated model allows for unobserved heterogeneity in all three places, the 
parameters, thresholds and disturbance variance. 
 

SAMPLE ; All $ 
SETPANEL ; Group = id ; Pds = ti $ 
REJECT ; ti # 5 $ 
ORDERED ; Lhs = hsat ; Rhs = one,age,educ ; Rh2 = hhninc,married,hhkids 

; RPM ; RTM ; RVM 
; Limits = female ; Pts = 10  
; Halton ; Panel ; Maxit = 25 $ 
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----------------------------------------------------------------------------- 
Random Thresholds Ordered Choice Model 
Dependent variable                 HSAT 
Log likelihood function    -10134.79176 
Restricted log likelihood  -10899.81624 
Chi squared [  17 d.f.]      1530.04896 
Significance level               .00000 
McFadden Pseudo R-squared      .0701869 
Estimation based on N =   5255, K =  29 
Inf.Cr.AIC  =20327.584 AIC/N =    3.868 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Latent Regression Equation 
Constant|    4.17571***      .16744    24.94  .0000     3.84754   4.50388 
     AGE|    -.04388***      .00218   -20.13  .0000     -.04815   -.03961 
    EDUC|     .06261***      .00965     6.49  .0000      .04370    .08153 
  HHNINC|     .35696***      .11753     3.04  .0024      .12662    .58731 
 MARRIED|     .09078*        .04999     1.82  .0694     -.00719    .18876 
  HHKIDS|    -.09768**       .04371    -2.23  .0254     -.18334   -.01201 
        |Intercept Terms in Random Thresholds 
Alpha-01|   -1.19538***      .13834    -8.64  .0000    -1.46653   -.92423 
Alpha-02|    -.69311***      .08966    -7.73  .0000     -.86884   -.51739 
Alpha-03|    -.70446***      .06420   -10.97  .0000     -.83029   -.57862 
Alpha-04|   -1.14567***      .08731   -13.12  .0000    -1.31679   -.97455 
Alpha-05|    -.19232***      .03307    -5.82  .0000     -.25713   -.12751 
Alpha-06|   -1.03759***      .05273   -19.68  .0000    -1.14094   -.93424 
Alpha-07|    -.58017***      .03466   -16.74  .0000     -.64810   -.51224 
Alpha-08|    -.04815*        .02878    -1.67  .0943     -.10456    .00826 
Alpha-09|    -.39987***      .04048    -9.88  .0000     -.47920   -.32054 
        |Standard Deviations of Random Thresholds 
Alpha-01|     .24187***      .07688     3.15  .0017      .09118    .39256 
Alpha-02|     .34510***      .06721     5.14  .0000      .21338    .47682 
Alpha-03|     .19508**       .08818     2.21  .0270      .02224    .36792 
Alpha-04|     .26252***      .08332     3.15  .0016      .09922    .42582 
Alpha-05|     .11536***      .03689     3.13  .0018      .04305    .18767 
Alpha-06|     .17729***      .06490     2.73  .0063      .05009    .30448 
Alpha-07|     .23047***      .03758     6.13  .0000      .15683    .30412 
Alpha-08|     .15433***      .02927     5.27  .0000      .09697    .21170 
Alpha-09|     .04443         .04045     1.10  .2721     -.03486    .12371 
        |Variables in Random Thresholds 
  FEMALE|    -.03079**       .01291    -2.38  .0171     -.05609   -.00549 
        |Standard Deviations of Random Regression Parameters 
Constant|     .06490         .05458     1.19  .2344     -.04208    .17187 
     AGE|     .02166***      .00083    26.18  .0000      .02004    .02328 
    EDUC|     .00519**       .00234     2.22  .0264      .00061    .00977 
  HHNINC|        0.0    .....(Fixed Parameter)..... 
 MARRIED|        0.0    .....(Fixed Parameter)..... 
  HHKIDS|        0.0    .....(Fixed Parameter)..... 
        |Latent Heterogeneity in Variance of Epsilon 
  Tau(v)|     .29096***      .01860    15.65  .0000      .25451    .32741 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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+----------------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Model (probit)   | 
| Effects are computed by averaging  over observs. during simulations. | 
| Binary variables change only by 1 unit so s.d. changes are not shown.| 
| Elasticities for binary variables = partial effect/probability = %chgP | 
+----------------------------------------------------------------------+ 
+----------------------------------------------------------------------+ 
|           Regression Variable AGE         Changes in AGE        % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00     .00158     .00158     .00000     .01766     .06166    5.85945 
Y = 01     .00057     .00215    -.00158     .00640     .02235    3.00925 
Y = 02     .00128     .00343    -.00215     .01425     .04973    2.42584 
Y = 03     .00168     .00511    -.00343     .01876     .06548    1.83159 
Y = 04     .00130     .00641    -.00511     .01451     .05065    1.18846 
Y = 05     .00336     .00977    -.00641     .03753     .13101     .94528 
Y = 06     .00154     .01131    -.00977     .01720     .06003     .70612 
Y = 07     .00046     .01176    -.01131     .00511     .01782     .12789 
Y = 08    -.00304     .00872    -.01176    -.03401    -.11873    -.56476 
Y = 09    -.00344     .00528    -.00872    -.03840    -.13403   -1.42223 
Y = 10    -.00528     .00000    -.00528    -.05901    -.20598   -2.34240 
+----------------------------------------------------------------------+ 
|           Regression Variable EDUC        Changes in EDUC       % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00226    -.00226     .00000    -.00540    -.02482   -2.13858 
Y = 01    -.00082    -.00307     .00226    -.00196    -.00900   -1.09832 
Y = 02    -.00182    -.00489     .00307    -.00435    -.02002    -.88538 
Y = 03    -.00240    -.00729     .00489    -.00573    -.02636    -.66849 
Y = 04    -.00185    -.00914     .00729    -.00443    -.02039    -.43376 
Y = 05    -.00479    -.01394     .00914    -.01147    -.05273    -.34501 
Y = 06    -.00220    -.01613     .01394    -.00525    -.02416    -.25772 
Y = 07    -.00065    -.01679     .01613    -.00156    -.00717    -.04668 
Y = 08     .00434    -.01244     .01679     .01039     .04779     .20613 
Y = 09     .00490    -.00754     .01244     .01173     .05395     .51909 
Y = 10     .00754     .00000     .00754     .01803     .08291     .85493 
+----------------------------------------------------------------------+ 
|           Regression Variable HHNINC      Changes in HHNINC     % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.01286    -.01286     .00000    -.00229    -.03857    -.37184 
Y = 01    -.00466    -.01752     .01286    -.00083    -.01398    -.19097 
Y = 02    -.01037    -.02790     .01752    -.00185    -.03111    -.15394 
Y = 03    -.01366    -.04156     .02790    -.00244    -.04096    -.11623 
Y = 04    -.01057    -.05213     .04156    -.00188    -.03168    -.07542 
Y = 05    -.02733    -.07946     .05213    -.00487    -.08195    -.05999 
Y = 06    -.01252    -.09198     .07946    -.00223    -.03755    -.04481 
Y = 07    -.00372    -.09570     .09198    -.00066    -.01115    -.00812 
Y = 08     .02477    -.07093     .09570     .00442     .07427     .03584 
Y = 09     .02796    -.04297     .07093     .00499     .08384     .09025 
Y = 10     .04297     .00000     .04297     .00766     .12884     .14865 
+----------------------------------------------------------------------+ 
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+----------------------------------------------------------------------+ 
|           Regression Variable MARRIED     Changes in MARRIED    % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00    -.00327    -.00327     .00000    -.00138    -.00327    -.20824 
Y = 01    -.00119    -.00446     .00327    -.00050    -.00119    -.10695 
Y = 02    -.00264    -.00710     .00446    -.00111    -.00264    -.08621 
Y = 03    -.00347    -.01057     .00710    -.00147    -.00347    -.06509 
Y = 04    -.00269    -.01326     .01057    -.00113    -.00269    -.04224 
Y = 05    -.00695    -.02021     .01326    -.00293    -.00695    -.03359 
Y = 06    -.00318    -.02339     .02021    -.00134    -.00318    -.02509 
Y = 07    -.00095    -.02434     .02339    -.00040    -.00095    -.00455 
Y = 08     .00630    -.01804     .02434     .00266     .00630     .02007 
Y = 09     .00711    -.01093     .01804     .00300     .00711     .05054 
Y = 10     .01093     .00000     .01093     .00461     .01093     .08325 
+----------------------------------------------------------------------+ 
|           Regression Variable HHKIDS      Changes in HHKIDS     % chg| 
|        ------------------------------   ------------------------------ 
Outcome   Effect  dPy<=nn/dX dPy>=nn/dX   1 StdDev   Low to High   Elast 
-------  ------------------------------   ------------------------------ 
Y = 00     .00352     .00352     .00000     .00173     .00352     .11752 
Y = 01     .00128     .00480    -.00352     .00063     .00128     .06036 
Y = 02     .00284     .00763    -.00480     .00139     .00284     .04865 
Y = 03     .00374     .01137    -.00763     .00183     .00374     .03674 
Y = 04     .00289     .01426    -.01137     .00142     .00289     .02384 
Y = 05     .00748     .02174    -.01426     .00367     .00748     .01896 
Y = 06     .00343     .02517    -.02174     .00168     .00343     .01416 
Y = 07     .00102     .02619    -.02517     .00050     .00102     .00257 
Y = 08    -.00678     .01941    -.02619    -.00332    -.00678    -.01133 
Y = 09    -.00765     .01176    -.01941    -.00375    -.00765    -.02853 
Y = 10    -.01176     .00000    -.01176    -.00577    -.01176    -.04698 
------------------------------------------------------------------------ 
Indirect Partial Effects for Ordered Choice Model 
Variables in thresholds 
Outcome  FEMALE 
Y = 00    .000000 
Y = 01   -.000468 
Y = 02   -.001603 
Y = 03   -.002728 
Y = 04   -.002883 
Y = 05   -.009219 
Y = 06   -.005379 
Y = 07   -.005158 
Y = 08    .002091 
Y = 09    .007557 
Y = 10    .017791 
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N15.5 Latent Class Ordered Choice Models 
 

The ordered choice model for a panel of data, i = 1,...,N, t = 1,...,Ti  is 
 

  Prob[Yit = yit| xit]   =  F(yit, µ, β′xit)  =  P(i,t), yit = 0, 1,...,. 
 
Henceforth, we use the term ‘group’ to indicate the Ti observations on respondent i in periods            
t = 1,...,Ti.  Unobserved heterogeneity in the distribution of Yit is assumed to impact the density in the 
form of a random effect.  The continuous distribution of the heterogeneity is approximated by using 
a finite number of ‘points of support.’  The distribution is approximated by estimating the location of 
the support points and the mass (probability) in each interval.  In implementation, it is convenient 
and useful to interpret this discrete approximation as producing a sorting of individuals (by 
heterogeneity) into J classes, j = 1,...,J. (Since this is an approximation, J is chosen by the analyst.) 

Thus, we modify the model for a latent sorting of yit into J ‘classes’ with a model which 
allows for heterogeneity as follows:  The  probability of observing yit given that regime j applies is 

 
  P(i,t|j)  =  Prob[Yit = yit| xit, j] 

 
where the density is now specific to the group.  The analyst does not observe directly which class,      
j = 1,...,J generated observation yit|j, and class membership must be estimated.  Heckman and Singer 
(1984) suggest a simple form of the class variation in which only the constant term varies across the 
classes.  This would produce the model 
 
   P(i,t|j)  =  F[yit, µ, β′xit  +  δj], Prob[class = j]  =  Fj 
 
We formulate this approximation more generally as, 
 
   P(i,t|j)  =  F[yit, µ, β′xit  +  δj′xit], Fj =  exp(θj) / Σj exp(θj), with θJ  = 0. 
 
In this formulation, each group has its own parameter vector, βj′ = β + δj, though the variables that 
enter the mean are assumed to be the same.  (This can be changed by imposing restrictions on the 
full parameter vector, as described below.)  This allows the Heckman and Singer formulation as a 
special case by imposing restrictions on the parameters – each δj has only one nonzero element in the 
location of the constant term.  You may also specify that the latent class probabilities depend on 
person specific characteristics, so that 
 
   θij  =  θj′zi, θJ  =  0. 
 
N15.5.1 Command 
 
 The estimation command for this model is 
 
 ORDERED ; Lhs = ... 

; Rhs = independent variables 
[; Model = Weibull, Logit or Gompertz] 
; LCM (for latent class model)   
[; LCM = list of variables in zi for multinomial logit class probabilities] 
; Pds = panel data specification $ 
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The default number of support points is five.  You may set J to 2, 3, ..., 10 with 
 
   ; Pts = the value you wish. 
 
Some particular values computed for the latent class model are 
 
   ; Group = the index of the most likely latent class 
   ; Cprob = estimated posterior probability for the most likely  

 latent class 
 
You can obtain a listing of these two results by using 
 
   ; List. 
 
You can use the ; Rst = list option to structure the latent class model so that different variables 
appear in different classes.  Alternatively, you can use this to force the Heckman and Singer form of 
the model as follows, where we use a three class model as an example: 
 
 NAMELIST ; x = ... one, list of variables $ 
 CALC  ; k1 = Col(x) - 1 ; kmu = Max(y) - 1 $ 
 ORDERED ; Lhs  = ... ; Rhs = x ; LCM ; Pts = 3 
   ; Rst  = d1, k1_b, kmu_mu, 

 d2, k1_b, kmu_mu, 
 d3, k1_b, kmu_mu,  t1,t2,t3 $ 

 
N15.5.2 Results 
 
 Results saved by this estimator are 
 

Matrices: b   =  full parameter vector, [β1′, β2′,... F1,...,FJ] 
   varb   =  full covariance matrix 
    
   (Note that b and varb involve J×(K+#outcomes - 1) estimates.) 
  
   beta_ =  individual specific parameters, if ; Par is requested 

  b_class  =  a J×K matrix with each row equal to the corresponding βj 

   class_pr =  a J×1 vector containing the estimated class probabilities 
 
Scalars: kreg =  number of variables in Rhs list 

   nreg =  total number of observations used for estimation 
  logl =  maximized value of the log likelihood function 

   exitcode =  exit status of the estimation procedure 
  

Last Function: None 
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Application 
 
 To illustrate the model, we will fit an ordered probit model with three latent classes.  We 
have modified the health care data set to set up a compact example. (The latent class estimator is 
actually unable to resolve more than one class with nine threshold parameters.) We have censored 
the health satisfaction measure to three classes for purpose of this exercise. The ordered probit model 
is the same one specified earlier. Some of the numerical results are omitted to simplify comparison 
of the estimated models. The first set of commands creates the data set. 
 
 SAMPLE  ; All $ 
 SETPANEL ; Group = id ; Pds = ti $ 
 CREATE  ; health = newhsat $ 
 RECODE  ; health ; 0/4 = 0 ; 5/8 = 1 ; 9/10 = 2 $ 
 NAMELIST  ; x = one,hhninc,hhkids,educ $ 
 
We now fit the base case pooled model. 
 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects $ 
 
This is a three class latent class model. 
 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects 
   ; LCM ; Pts = 3 ; Panel $ 
 
This fits two random effects models, the continuous, normally distributed effects model and 
Heckman and Singer’s discrete approximation. 
 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects ; Panel $ 
 ORDERED  ; Quietly ; Lhs = health ; Rhs = x $ 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects 
   ; LCM  ; Pts = 3 ; Panel 
   ; Rst = alpha0,3_b,cmu,alpha1,3_b,cmu, 
    alpha2,3_b,cmu,theta0,theta1,theta2 $ 
 
This model specifies that the class probabilities depend on age and sex. 
 
 SAMPLE ; All $ 
 ORDERED  ; Quietly ; Lhs = health ; Rhs = x $ 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects 
   ; LCM = one,age,female ; Pts = 3 ; Panel $ 
 
Finally, we use a small subsample to show the listing of the posterior class probabilities. 
 

REJECT ; ti # 3 $ 
 ORDERED  ; Quietly ; Lhs = health ; Rhs = x $ 
 ORDERED  ; Lhs = health ; Rhs = x ; Partial Effects  
   ; LCM = one,age,female ; Pts = 3 ; Panel ; List $ 
 
This is the base case, pooled ordered probit model, with no group effects followed by the estimates 
of the parameters of the three class latent class model. 
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----------------------------------------------------------------------------- 
Ordered Probability Model 
Dependent variable               HEALTH 
Log likelihood function    -24522.47670 
Restricted log likelihood  -24801.77601 
Chi squared [   3 d.f.]       558.59861 
Significance level               .00000 
McFadden Pseudo R-squared      .0112613 
Estimation based on N =  27326, K =   5 
Inf.Cr.AIC  =49054.953 AIC/N =    1.795 
Underlying probabilities based on Normal 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
Constant|     .38694***      .03538    10.94  .0000      .31761    .45628 
  HHNINC|     .15134***      .04069     3.72  .0002      .07160    .23109 
  HHKIDS|     .21408***      .01419    15.09  .0000      .18627    .24188 
    EDUC|     .04904***      .00311    15.77  .0000      .04294    .05513 
        | Threshold parameters for index 
   Mu(1)|    1.83426***      .01130   162.26  .0000     1.81210   1.85641 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Latent Class / Panel OrdProbs Model 
Dependent variable               HEALTH 
Log likelihood function    -21956.55643 
Estimation based on N =  27326, K =  17 
Inf.Cr.AIC  =43947.113 AIC/N =    1.608 
Model estimated: Jul 19, 2011, 18:58:26 
Unbalanced panel has   7293 individuals 
Ordered probability model 
Ordered probit (normal) model 
LHS variable = values 0,1,..., 2 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Model parameters for latent class 1 
Constant|    1.16608***      .10831    10.77  .0000      .95379   1.37838 
  HHNINC|    -.22927**       .08945    -2.56  .0104     -.40458   -.05395 
  HHKIDS|     .10979***      .03316     3.31  .0009      .04480    .17479 
    EDUC|     .08077***      .00937     8.62  .0000      .06241    .09913 
   MU(1)|    1.73212***      .04607    37.60  .0000     1.64184   1.82241 
        | Model parameters for latent class 2 
Constant|     .62012***      .07038     8.81  .0000      .48218    .75805 
  HHNINC|    -.06265         .07865     -.80  .4257     -.21681    .09151 
  HHKIDS|     .24254***      .02664     9.11  .0000      .19034    .29475 
    EDUC|     .06115***      .00621     9.85  .0000      .04899    .07332 
   MU(1)|    2.68221***      .02902    92.43  .0000     2.62533   2.73909 
        | Model parameters for latent class 3 
Constant|   -1.00572***      .11321    -8.88  .0000    -1.22762   -.78383 
  HHNINC|     .52603***      .12473     4.22  .0000      .28157    .77050 
  HHKIDS|     .24566***      .04766     5.15  .0000      .15225    .33908 
    EDUC|     .05198***      .01000     5.20  .0000      .03239    .07157 
   MU(1)|    1.88097***      .06379    29.49  .0000     1.75595   2.00600 
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        | Estimated prior probabilities for class membership 
Class1Pr|     .27635***      .00916    30.17  .0000      .25839    .29430 
Class2Pr|     .56896***      .01168    48.69  .0000      .54605    .59186 
Class3Pr|     .15470***      .00823    18.80  .0000      .13857    .17083 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the estimated marginal effects for the two models presented above, with the pooled 
estimates first followed by those derived from the latent class model. 
 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HEALTH|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
  HHNINC|    -.03364***     -.08477    -3.72  .0002     -.05137   -.01591 
 *HHKIDS|    -.04653***     -.33304   -15.36  .0000     -.05247   -.04060 
    EDUC|    -.01090***     -.88316   -15.70  .0000     -.01226   -.00954 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
  HHNINC|    -.01184***     -.00657    -3.63  .0003     -.01824   -.00545 
 *HHKIDS|    -.01875***     -.02955   -11.05  .0000     -.02208   -.01542 
    EDUC|    -.00384***     -.06848   -11.47  .0000     -.00449   -.00318 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
  HHNINC|     .04548***      .07091     3.72  .0002      .02150    .06947 
 *HHKIDS|     .06528***      .28908    14.74  .0000      .05660    .07396 
    EDUC|     .01474***      .73880    15.58  .0000      .01288    .01659 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HEALTH|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
  HHNINC|     .00289         .01116      .34  .7345     -.01381    .01959 
 *HHKIDS|    -.03296***     -.36179   -10.53  .0000     -.03910   -.02683 
    EDUC|    -.01068***    -1.32670   -12.47  .0000     -.01236   -.00900 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
  HHNINC|     .00154         .00073      .34  .7350     -.00738    .01046 
 *HHKIDS|    -.01987***     -.02682    -7.68  .0000     -.02494   -.01479 
    EDUC|    -.00569***     -.08698    -8.07  .0000     -.00707   -.00431 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
  HHNINC|    -.00443        -.00928     -.34  .7347     -.03004    .02118 
 *HHKIDS|     .05283***      .31427    10.18  .0000      .04265    .06300 
    EDUC|     .01637***     1.10240    12.05  .0000      .01371    .01903 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This is the random effects model.  It is comparable to the Heckman and Singer form that follows. 
The first model with continuously distributed effects suggests a random constant term with mean 
2.33642 and standard deviation 0.99095.  From the Heckman and Singer model, using the three 
estimated constants and the three estimated prior probabilities, we find a mean of 2.19016 and 
standard deviation 0.90994.  Since the remaining coefficients in the latent class model do not differ 
across classes, they are directly comparable to the random effects model.  The overall similarity is to 
be expected, but there are some substantive differences. For example, the latent class model predicts 
a much smaller influence of marital status than does the random effects model. 
 
----------------------------------------------------------------------------- 
Random Effects Ordered Probability Model 
Dependent variable               HEALTH 
Log likelihood function    -22042.38298 
Restricted log likelihood  -24522.47670 
Chi squared [   1 d.f.]      4960.18744 
Significance level               .00000 
McFadden Pseudo R-squared      .1011355 
Estimation based on N =  27326, K =   6 
Inf.Cr.AIC  =44096.766 AIC/N =    1.614 
Underlying probabilities based on Normal 
Unbalanced panel has   7293 individuals 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Index function for probability 
Constant|     .64927***      .07239     8.97  .0000      .50739    .79115 
  HHNINC|    -.03500         .05665     -.62  .5367     -.14603    .07603 
  HHKIDS|     .20576***      .02188     9.40  .0000      .16288    .24865 
    EDUC|     .07118***      .00625    11.40  .0000      .05894    .08343 
        | Threshold parameters for index model 
  Mu(01)|    2.56175***      .01686   151.90  .0000     2.52870   2.59480 
        | Std. Deviation of random effect 
   Sigma|    1.00299***      .01483    67.63  .0000      .97392   1.03206 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Latent Class / Panel OrdProbs Model 
Dependent variable               HEALTH 
Log likelihood function    -22048.67454 
Estimation based on N =  27326, K =   9 
Inf.Cr.AIC  =44115.349 AIC/N =    1.614 
Unbalanced panel has   7293 individuals 
Ordered probability model 
Ordered probit (normal) model 
LHS variable = values 0,1,..., 2 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Model parameters for latent class 1 
Constant|    2.12385***      .06069    35.00  .0000     2.00490   2.24279 
  HHNINC|    -.07289         .05188    -1.40  .1601     -.17458    .02880 
  HHKIDS|     .20014***      .01936    10.34  .0000      .16220    .23808 
    EDUC|     .05987***      .00507    11.81  .0000      .04994    .06981 
   MU(1)|    2.46535***      .01693   145.63  .0000     2.43217   2.49853 
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        | Model parameters for latent class 2 
Constant|    -.95230***      .06385   -14.92  .0000    -1.07743   -.82717 
  HHNINC|    -.07289         .05188    -1.40  .1601     -.17458    .02880 
  HHKIDS|     .20014***      .01936    10.34  .0000      .16220    .23808 
    EDUC|     .05987***      .00507    11.81  .0000      .04994    .06981 
   MU(1)|    2.46535***      .01693   145.63  .0000     2.43217   2.49853 
        | Model parameters for latent class 3 
Constant|     .56180***      .05806     9.68  .0000      .44801    .67560 
  HHNINC|    -.07289         .05188    -1.40  .1601     -.17458    .02880 
  HHKIDS|     .20014***      .01936    10.34  .0000      .16220    .23808 
    EDUC|     .05987***      .00507    11.81  .0000      .04994    .06981 
   MU(1)|    2.46535***      .01693   145.63  .0000     2.43217   2.49853 
        | Estimated prior probabilities for class membership 
Class1Pr|     .23642***      .00833    28.38  .0000      .22009    .25275 
Class2Pr|     .13069***      .00723    18.07  .0000      .11652    .14487 
Class3Pr|     .63289***      .00995    63.60  .0000      .61338    .65239 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 The following takes a closer look at the distributions of heterogeneity implied by the continuous 
random effects model and the discrete distribution implied by the Heckman and Singer model.  The 
program below plots the two distributions.  The densities are evaluated at 500 points ranging from the 
mean of the continuous distribution plus and minus three standard deviations.  (The program could be 
made generic based on the model results.  We have used the actual values in a few commands.) 
 
 MATRIX ; ah = [2.12385/-.95230/.56180] $ 
 MATRIX ; ph = [.23642/.13069/.63289] $ 
 SAMPLE  ; 1-500 $ 
 CALC    ; min = .64927 - 3*1.00299 
   ; max = .64927 + 3*1.00929 
   ; delta = .002 * (max-min) $ 
 CREATE   ; alpha = Trn(min,delta) $ 
 CREATE  ; Normal = 1/1.00929  * N01((alpha - .64927)/1.00929) $ 
 CALC    ; ahs1 = ah(2) ; ahs2 = ah(3) ; ahs3 = ah(1) $ 
 CALC    ; mid12 = .5*(ahs2+ahs1) ; mid23 = .5*(ahs2+ahs3) $ 
 CALC    ; dhs1 = ph(2)/(mid12-min) $ 
 CALC    ; dhs2 = ph(3)/(mid23-mid12) $ 
 CALC    ; dhs3 = ph(1)/(max-mid23) $ 
 CREATE ; hecksing = dhs1*(alpha < mid12) +  
     dhs2*(alpha >= mid12) * (alpha < mid23) + 
     dhs3*(alpha >= mid23) $ 
 PLOT    ; Lhs = alpha ; Rhs = normal,hecksing 
   ; Fill ; Limits = 0,.45 ; Endpoints = min,max 
   ; Title = Discrete & Continuous Distributions of Heterogeneity 
   ; Yaxis = RndmEfct $ 
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Figure E36.2  Discrete and Continuous Distributions of Heterogeneity 

 
These are the estimated marginal effects for the two models.  Once again, they are quite similar, as 
might be expected. 
 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HEALTH|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
  HHNINC|     .00552         .01381      .62  .5368     -.01199    .02303 
 *HHKIDS|    -.03196***     -.22713    -9.53  .0000     -.03853   -.02539 
    EDUC|    -.01122***     -.90314   -11.26  .0000     -.01318   -.00927 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
  HHNINC|     .00203         .00114      .62  .5350     -.00437    .00842 
 *HHKIDS|    -.01283***     -.02046    -6.92  .0000     -.01646   -.00920 
    EDUC|    -.00412***     -.07437    -8.19  .0000     -.00511   -.00313 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
  HHNINC|    -.00754        -.01144     -.62  .5362     -.03145    .01636 
 *HHKIDS|     .04479***      .19287     9.10  .0000      .03514    .05444 
    EDUC|     .01534***      .74797    11.24  .0000      .01267    .01802 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

This is the Heckman and Singer form of the model. 
 
----------------------------------------------------------------------------- 
Marginal effects for ordered probability model 
M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] 
Names for dummy variables are marked by *. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
  HEALTH|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
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        |--------------[Partial effects on Prob[Y=00] at means]-------------- 
  HHNINC|     .00993         .04901     1.40  .1606     -.00394    .02380 
 *HHKIDS|    -.02655***     -.37215   -10.42  .0000     -.03154   -.02155 
    EDUC|    -.00816***    -1.29445   -11.47  .0000     -.00955   -.00676 
        |--------------[Partial effects on Prob[Y=01] at means]-------------- 
  HHNINC|     .00772         .00353     1.40  .1614     -.00308    .01852 
 *HHKIDS|    -.02285***     -.02968    -7.96  .0000     -.02848   -.01723 
    EDUC|    -.00634***     -.09323    -8.90  .0000     -.00774   -.00494 
        |--------------[Partial effects on Prob[Y=02] at means]-------------- 
  HHNINC|    -.01765        -.03913    -1.41  .1600     -.04227    .00697 
 *HHKIDS|     .04940***      .31106     9.90  .0000      .03962    .05917 
    EDUC|     .01450***     1.03341    11.49  .0000      .01202    .01697 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
In the model below, the class probabilities depend on age and sex.  These are averaged over the data 
in the table at the end of the results.  The constant probabilities from the model estimated earlier are 
shown with them.  An important feature to note here is that there is no natural ordering of classes in 
the latent class model.  The ordering of the second and third classes has changed from the earlier 
model to this one. 
 
----------------------------------------------------------------------------- 
Latent Class / Panel OrdProbs Model 
Dependent variable               HEALTH 
Log likelihood function    -21779.75836 
Estimation based on N =  27326, K =  21 
Inf.Cr.AIC  =43601.517 AIC/N =    1.596 
Model estimated: Jul 19, 2011, 19:27:39 
Unbalanced panel has   7293 individuals 
Ordered probability model 
Ordered probit (normal) model 
LHS variable = values 0,1,..., 2 
Model fit with  3 latent classes. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  HEALTH|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model parameters for latent class 1 
Constant|    1.41223***      .10283    13.73  .0000     1.21070   1.61377 
  HHNINC|    -.24084***      .08785    -2.74  .0061     -.41301   -.06866 
  HHKIDS|     .02548         .03257      .78  .4340     -.03836    .08932 
    EDUC|     .06130***      .00862     7.11  .0000      .04441    .07819 
   MU(1)|    1.72679***      .04553    37.93  .0000     1.63756   1.81602 
        |Model parameters for latent class 2 
Constant|    -.80867***      .12257    -6.60  .0000    -1.04890   -.56845 
  HHNINC|     .55004***      .12874     4.27  .0000      .29771    .80236 
  HHKIDS|     .11778**       .05227     2.25  .0242      .01533    .22023 
    EDUC|     .03595***      .01105     3.25  .0011      .01430    .05760 
   MU(1)|    1.93880***      .06839    28.35  .0000     1.80477   2.07284 
        |Model parameters for latent class 3 
Constant|     .80114***      .07069    11.33  .0000      .66260    .93969 
  HHNINC|    -.08541         .07783    -1.10  .2725     -.23796    .06713 
  HHKIDS|     .16879***      .02640     6.39  .0000      .11706    .22052 
    EDUC|     .04689***      .00614     7.64  .0000      .03487    .05892 
   MU(1)|    2.66629***      .02734    97.53  .0000     2.61270   2.71987 
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        |Estimated prior probabilities for class membership 
   ONE_1|     .81468***      .13922     5.85  .0000      .54181   1.08755 
   AGE_1|    -.03807***      .00345   -11.05  .0000     -.04482   -.03131 
FEMALE_1|    -.13830*        .07356    -1.88  .0601     -.28247    .00586 
   ONE_2|   -3.09023***      .22351   -13.83  .0000    -3.52830  -2.65215 
   AGE_2|     .04049***      .00447     9.07  .0000      .03174    .04924 
FEMALE_2|    -.01649         .09674     -.17  .8647     -.20609    .17312 
   ONE_3|        0.0    .....(Fixed Parameter)..... 
   AGE_3|        0.0    .....(Fixed Parameter)..... 
FEMALE_3|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
+------------------------------------------------------------+ 
|  Prior class probabilities at data means for LCM variables | 
|   Class 1     Class 2     Class 3     Class 4     Class 5  | 
|    .24199      .15782      .60019      .00000      .00000  | 
+------------------------------------------------------------+ 
 
 The model estimates include the estimates of the prior probabilities of group membership. It 
is also possible to compute the posterior probabilities for the groups, conditioned on the data.  The     
; List specification will request a listing of these.  The following illustration shows this feature for a 
small subset of the data used above. 
 
Predictions computed for the group with the largest posterior probability 
Obs.  Periods Fitted outcomes 
============================================================================= 
Ind.=    1  J* = 2  P(j)=  .008  .881  .111 
Ind.=    2  J* = 2  P(j)=  .401  .491  .109 
Ind.=    3  J* = 2  P(j)=  .203  .737  .060 
Ind.=    4  J* = 2  P(j)=  .050  .909  .041 
Ind.=    5  J* = 2  P(j)=  .186  .702  .113 
Ind.=    6  J* = 2  P(j)=  .172  .735  .094 
Ind.=    7  J* = 2  P(j)=  .177  .735  .088 
Ind.=    8  J* = 2  P(j)=  .039  .869  .092 
Ind.=    9  J* = 3  P(j)=  .002  .334  .663 
Ind.=   10  J* = 3  P(j)=  .000  .003  .997 
Ind.=   11  J* = 2  P(j)=  .106  .836  .057 
Ind.=   12  J* = 2  P(j)=  .079  .758  .164 
Ind.=   13  J* = 2  P(j)=  .023  .928  .049 
Ind.=   14  J* = 2  P(j)=  .017  .959  .024 
Ind.=   15  J* = 2  P(j)=  .106  .829  .065 
Ind.=   16  J* = 2  P(j)=  .070  .895  .036 
Ind.=   17  J* = 2  P(j)=  .388  .497  .114 
Ind.=   18  J* = 2  P(j)=  .065  .842  .093 
Ind.=   19  J* = 3  P(j)=  .006  .111  .884 
Ind.=   20  J* = 3  P(j)=  .017  .391  .592 
Ind.=   21  J* = 3  P(j)=  .010  .353  .637 
Ind.=   22  J* = 2  P(j)=  .140  .735  .125 
Ind.=   23  J* = 3  P(j)=  .003  .422  .575 
Ind.=   24  J* = 2  P(j)=  .101  .826  .073 
Ind.=   25  J* = 2  P(j)=  .043  .920  .037 
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N16: The Multinomial Logit Model 
 
N16.1 Introduction 
 
 Chapters N16 and N17 describe two forms of the ‘multinomial logit’ model.  These models 
are also known variously as ‘conditional logit,’ ‘discrete choice,’ and ‘universal logit’ models, 
among other names.  All of them can be viewed as special cases of a general model of utility 
maximization:  An individual is assumed to have preferences defined over a set of alternatives (travel 
modes, occupations, food groups, etc.) 
 
   U(alternative 0)  =  β0′xi0  +  ε i0 

   U(alternative 1)  =  β1′xi1  +  ε i1 

    ... 

    U(alternative J)  =  βJ ′xiJ  +  εiJ 

   Observed Yi  = choice j if  Ui(alternative j) > Ui(alternative k) ∀ k ≠ j. 
 
The ‘disturbances’ in this framework (individual heterogeneity terms) are assumed to be 
independently and identically distributed with identical extreme value distribution; the CDF is 
 
   F(εj)  =  exp(-exp(-εj)) 
 
Based on this specification, the choice probabilities, 
 
   Prob[ choice j ] =  Prob[Uj > Uk], ∀ k ≠ j 
 

     =  
0

exp( )

exp( )
j ji

J
m mim=

′

′∑
x

x

β

β
, j = 0,...,J, 

 
where ‘i’ indexes the observation, or individual, and ‘j’ and ‘m’ index the choices.  We note at the 
outset, the IID assumptions made about εj are quite stringent, and lead to the ‘Independence from 
Irrelevant Alternatives’ or IIA implications that characterize the model.  Much (perhaps all) of the 
research on forms of this model consists of development of alternative functional forms and 
stochastic specifications that avoid this feature.   
 The observed data consist of the Rhs vectors, xjt, and the outcome, or choice, yt.  (We also 
consider a number of variants.)   There are many forms of the multinomial logit, or multinomial 
choice model supported in NLOGIT and LIMDEP.   LIMDEP contains two basic forms of the model. 
The NLOGIT program provides the major extensions that are documented in this and the remaining 
chapters of this manual.   
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 This chapter will examine what we call the multinomial logit model.  In this setting, it is 
assumed that the Rhs variables consist of a set of individual specific characteristics, such as age, 
education, marital status, etc.  These are the same for all choices, so the choice subscript on x in the 
formula above is dropped.  The observation setting is the individual’s choice among a set of 
alternatives, where it is assumed that the determinant of the choice is the characteristics of the 
individual.  An example might be a model of choice of occupation.  (This is the model originally 
devised by Nerlove and Press (1973).)  For convenience at this point, we label this the multinomial 
logit model.  Essential features of the model and commands are documented here.  This form of the 
multinomial logit model is supported in LIMDEP as well as NLOGIT.  Further details appear in 
Chapter E37. 
 Chapter N17 will examine what we call (again, purely for convenience) the discrete choice 
model and, also, to differentiate the command, the conditional logit model.  In this framework, we 
observe the attributes of the choices, as well as (or, possibly, instead of) the characteristics of the 
individual.  A well known example is travel mode choice.  Samples of observations often consist of 
the attributes of the different modes and the choice actually made.  Sometimes, no characteristics of 
the individuals are observed beyond their actual choice.  Models may also contain mixtures of the 
two types of choice determinants.  (We emphasize, these naming distinctions are meaningless in the 
modeling framework – we just use them here only to organize the applicable parts of LIMDEP and 
NLOGIT.   In practice, all of the models considered in this chapter and Chapter N17 are multinomial 
logit models. The basic CLOGIT model is also supported by LIMDEP and discussed in Chapter E38.   
 
N16.2 The Multinomial Logit Model – MLOGIT 
 
 The general form of the multinomial logit model is 
 

   Prob[ choice j ]  =  
1

exp( )

exp( )
j t

J
m tm=

′

′∑
x

x

β

β
, j = 0,...,J, 

 
A possible J+1 unordered outcomes can occur.  In order to identify the parameters of the model, we 
impose the normalization  β0 = 0.  This model is typically employed for individual or grouped data in 
which the ‘x’ variables are characteristics of the observed individual(s), not the choices.  For present 
purposes, that is the main distinction between this and the discrete choice model described in 
Chapter N17.  The characteristics are the same across all outcomes.  The study of occupational 
choice, by Schmidt and Strauss (1975) provides a well known application. 
 The data will appear as follows:   
 

• Individual data: yt coded 0, 1, ..., J, 
• Grouped data:  y0t, y1t,...,yJt give proportions or shares. 

 
In the grouped data case, a weighting variable, nt, may also be provided if the observations happen to 
be frequencies.  The proportions variables must range from zero to one and sum to one at each 
observation.  The full set must be provided, even though one is redundant.  The data are inspected to 
determine which specification is appropriate.  The number of Lhs variables given and the coding of 
the data provide the full set of information necessary to estimate the model, so no additional 
information about the dependent variable is needed. There is a single line of data for each individual. 
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 This model proliferates parameters.  There are J×K nonzero parameters in all, since there is a 
vector βj for each probability except the first.  Consequently, even moderately sized models quickly 
become very large ones if your outcome variable, y, takes many values. The maximum number of 
parameters which can be estimated in a model is 150 as usual with the standard configuration.  
However, if you are able to forego certain other optional features, the number of parameters can 
increase to 300.  The model size is detected internally.  If your configuration contains more than 150 
parameters, the following options and features become unavailable: 
 

• marginal effects 
• choice based sampling 
• ; Rst = list for imposing restrictions 
• ; CML: specification for imposing linear constraints 
• ; Hold for using the multinomial logit model as a sample selection equation 

 
In addition, if your model size exceeds 150 parameters, the matrices b and varb cannot be retained.  
(But, see below for another way to retrieve large parameter matrices.) 
 The choice set should be restricted to no more than 25 choices.  If you have more than 25 
choices, the number of characteristics that may be used becomes very small.  Nonetheless, it is 
possible to fit models with up to 500 choices by using CLOGIT, as discussed in Chapter N17. 
 
N16.3 Model Command for the Multinomial Logit Model 
 
 The command for fitting this form of multinomial logit model is 
 
 MLOGIT  ; Lhs = y     or     y0,y1,...yJ   
   ; Rhs = regressors $  
 
(The command may also be LOGIT, which is what has always been used in previous versions of 
LIMDEP.)  All general options for controlling output and iterations are available except ; Keep = 
name.  (A program which can be used to obtain the fitted probabilities is listed below.)  There are 
internally computed predictions for the multinomial logit model.   
 
N16.3.1 Imposing Constraints on Parameters 
 
 The ; Rst = list form of restrictions is supported for imposing constraints on model 
parameters, either fixed value or equality.  One possible application of the constrained model 
involves making the entire vector of coefficients in one probability equal that in another.  You can do 
this as follows: 
  
 NAMELIST ; x = the entire set of Rhs variables $ 
 CALC  ; k = Col(x) $ 
 MLOGIT ; Lhs = y 
   ; Rhs = x 
   ; Rst = k_b, k_b, ... , k_b $ 
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This would force the corresponding coefficients in all probabilities to be equal.  You could also 
apply this to some, but not all of the outcomes, as in 
 
   ; Rst = k_b, k_b, k_b2, k_b3 
 
HINT:  The coefficients in this model are not the marginal effects.  But, forcing the coefficient on a 
characteristic in probability j to equal its counterpart in probability m also forces the two marginal 
effects to be equal. 
 
N16.3.2 Starting Values  
 
 The parameter vector for this model is a J×K column vector, 
 
   Θ  =  [β1′ ,β2′ , ...,βJ′ ]′ . 
 
You may provide starting values with ; Start = list.  
 
N16.4 Robust Covariance Matrix 
 
 You can compute a ‘robust covariance matrix’ for the MLE.  (The misspecification to which 
the matrix is robust is left unspecified in most cases.)  The desired robust covariance matrix would 
result in the preceding computation if wi equals one for all observations.  This suggests a simple way 
to obtain it, just by specifying  
 
   ; Robust.   
 
The estimator of the asymptotic covariance matrix produced with this request is the standard 
‘sandwich’ estimator, 
 
   V  =  [-H]-1 (G′G) [-H]-1 
 
where H is the estimated second derivatives matrix of the log likelihood and G is the matrix with 
rows equal to the first derivatives, usually labeled the OPG or ‘outer product of gradients’ estimator. 
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N16.5 Cluster Correction 
 
 A related calculation is used when observations occur in groups which may be correlated.  
This is rather like a panel; one might use this approach in a random effects kind of setting in which 
observations have a common latent heterogeneity.  The parameter estimator is unchanged in this 
case, but an adjustment is made to the estimated asymptotic covariance matrix.  The calculation is 
done as follows: Suppose the n observations are assembled in C clusters of observations, in which 
the number of observations in the cth cluster is nc.  Thus, 
 
   

1

C
cc

n
=∑   =  n. 

 
Denote by β the full set of model parameters, [β1′, ..., βJ′]′.  Let the observation specific gradients 
and Hessians for individual i in cluster c be 
 

   gic   =  log icL∂
∂β

 

 

   Hic  =  
2 log

'
icL∂

∂ ∂β β
. 

 
The uncorrected estimator of the asymptotic covariance matrix based on the Hessian is 
 

   VH   =   -H-1  =  ( ) 1

1 1
cC n

icc i

−

= =
−∑ ∑ H  

 

The corrected asymptotic covariance matrix is 
 

   Est.Asy.Var 






∧
β   =  ( )( )1 1 1

'
1

c cC n n
H ic ic Hc i i

C
C = = =

 
  − ∑ ∑ ∑V  g g  V  

 
Note that if there is exactly one observation per cluster, then this is C/(C-1) times the sandwich 
(robust) estimator discussed above.  Also, if you have fewer clusters than parameters, then this 
matrix is singular – it has rank equal to the minimum of C and JK, the number of parameters.  This 
estimator is requested with 
 
   ; Cluster = specification  
 
where the specification is either a fixed number of observations per cluster, or an identifier that 
distinguishes clusters, such as an identification number.  This estimator can also be extended to 
stratified as well as clustered data, using 
 
   ; Stratum = specification. 
 
The full description of using these procedures appears in Chapter R10. 
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N16.6 Choice Based Sampling  
 
 The choice based sampling methodology for individual data can be applied here.  You must 
provide a weighting variable which gives the sampling ratios.  The variable gives the ratio of the 
true, population proportion to the sample proportions.  This presumes that you know the population 
proportions, φ0,...,φJ.  If you know the sample proportions, f0,...,fJ, as well, then you can calculate the 
necessary ratios, w0,...,wJ = φj/fj needed for the calculations to follow.  With these in hand, you can 
create the weights using RECODE as follows: 
 
 CREATE  ; wts = y (your dependent variable) $ 
 RECODE  ; wts  ; 0 = weight for 0 ; 1 = weight for 1 ; ... $ 
 
A convenient way to do the same computation is to create a vector with the weights,  
 
 MATRIX ; cbwt  = [w0, w1,...,wJ] $ 
 
then you can use the following: 
 
 CREATE ; yplus1 = y + 1 ; wts = cbwt(yplus1) $  Zero is not a valid subscript. 
 
Regardless, you must have the population proportions in hand.  If you do not know the appropriate 
sample proportions, there is a special MATRIX function, Prpn(variable), for this purpose, which 
you can use as follows: 
 
 CREATE ; yplus1 = y + 1 $ 
 MATRIX ; f = Prpn (yplus1) $ 
 
Since you have φj in hand, you can now proceed as follows: 
 
 MATRIX ; phi = [ φ0,...,φJ] $  You provide the values. 
 MATRIX ; cbwt = diag(f) ; cbwt = phi * <cbwt> $ 
 CREATE ; wts = cbwt(yplus1) $ 
 
(Note, the Prpn(variable) function is used specifically for this purpose.  It creates a vector with one 
column and number of rows equal to the minimum of 100 and the maximum of yplus1.  Values 
larger than 100 or less than one are discarded, and not counted in the proportions.) 
 Be sure to provide a sampling ratio for every outcome.  With the weights in place, your 
MLOGIT command is 
 
 MLOGIT     ; Lhs = y ; Rhs = regressors 
   ; Wts = weights ; Choice Based Sampling $  
 
This adjustment changes the estimator in two ways.  First, the observations are weighted in 
computing the parameter estimates. Second, after estimation, the standard errors are adjusted.  The 
estimator of the asymptotic covariance matrix for the choice based sampling case is 
 
   Asy.Var[bCBWT]  =  (-H)-1BHHH (-H)-1 
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where the weighted matrices are constructed from the Hessian and first derivatives using 
 
   ∂2log L/∂βl∂βm′    =  Σt

 wt{-[1(l=m)Pl - PlPm ]}X′X. 
 

   ∂log L/∂βj   =  Σt wi(dtj - tij)xt where dtj = 1 if person t makes choice j; 
 
   BHHH(in blocks) =  Σt wi(dtl - Ptl)(dtm - Ptm)xtxt′ 
 
and   wt = population frequency for choice made by individual t 
         divided by sample proportion for choice made by 
     individual t. 
 

N16.7 Output for the Logit Models 
 
 Initial ordinary least squares results are used for the starting values for this model.  For 
individual data, J binary variables are implied by the model.  These are used in a least squares 
regression.  For the grouped data case, a minimum chi squared, generalized least squares estimate is 
obtained by the weighted regression of 
 
   qij =  log(Pij / Pi0)  
 
on the regressors, with weights wij = (niPijPi0)1/2 (ni may be 1.0).  The OLS estimates based on the 
individual data are inconsistent, but the grouped data estimates are consistent (and, in the binomial 
case, efficient).  The least squares estimates are included in the displayed results by including 
 
   ; OLS 
 
in the model command.  The iterations are followed by the maximum likelihood estimates with the 
usual diagnostic statistics.  An example is shown below. 
 
NOTE:  Minimum chi squared (MCS) is an estimator, not a model.  Moreover, the MCS estimator 
has the same properties as, but is different from the maximum likelihood estimator.  Since the MCS 
estimator in NLOGIT is not iterated, it should not be used as the final results of estimation.  Without 
iteration, the MCS estimator is not a fixed point – the weights are functions only of the sample 
proportions, not the parameters.  For current purposes, these are only useful as starting values. 
 
 Standard output for the logit model will begin with a table such as the following which 
results from estimation of a model in which the dependent variable takes values 0,1,2,3,4,5: 
 
 SAMPLE ; All $ 
 REJECT ; hsat > 5 $ 
 MLOGIT ; Lhs = hsat ; Rhs = one,educ,hhninc,age,hhkids $ 
 
(This is based on the health satisfaction variable analyzed in the preceding chapter. We reduced the 
sample to those with hsat reported zero to five. We would note, though these make for a fine 
numerical example, the multinomial logit model would be inappropriate for these ordered data.) The 
restricted log likelihood is computed for a model in which one is the only Rhs variable.  In this case, 
 
   log L0   =  Σj nj logPj 
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where nj is the number of individuals who choose outcome j and Pj = nj/n = the jth sample 
proportion.  The chi squared statistic is 2(log L - log L0).  If your model does not contain a constant 
term, this statistic need not be positive, in which case it is not reported.  But, even if it is computable, 
the statistic is meaningless if your model does not contain a constant. 
 The diagnostic statistics are followed by the coefficient estimates:  These are β1,...,βJ.  Recall 
β0 is normalized to zero, and not reported. 
 
----------------------------------------------------------------------------- 
Multinomial Logit Model 
Dependent variable                 HSAT 
Log likelihood function    -11246.96937 
Restricted log likelihood  -11308.02002 
Chi squared [  20 d.f.]       122.10132 
Significance level               .00000 
McFadden Pseudo R-squared      .0053989 
Estimation based on N =   8140, K =  25 
Inf.Cr.AIC  =22543.939 AIC/N =    2.770 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|   -1.77566**       .69486    -2.56  .0106    -3.13756   -.41376 
    EDUC|     .07326         .04476     1.64  .1017     -.01447    .16099 
  HHNINC|     .28572         .58129      .49  .6231     -.85359   1.42503 
     AGE|     .00566         .00838      .68  .4996     -.01077    .02209 
  HHKIDS|     .27188         .19642     1.38  .1663     -.11311    .65686 
        |Characteristics in numerator of Prob[Y = 2] 
Constant|    -.54217         .54866     -.99  .3231    -1.61752    .53318 
    EDUC|     .06152*        .03617     1.70  .0890     -.00937    .13240 
  HHNINC|     .85929*        .44943     1.91  .0559     -.02158   1.74017 
     AGE|    -.00090         .00651     -.14  .8903     -.01365    .01185 
  HHKIDS|     .13921         .15530      .90  .3700     -.16517    .44359 
        |Characteristics in numerator of Prob[Y = 3] 
Constant|    -.25433         .49206     -.52  .6053    -1.21876    .71010 
    EDUC|     .10996***      .03247     3.39  .0007      .04632    .17359 
  HHNINC|    1.54517***      .40167     3.85  .0001      .75791   2.33242 
     AGE|    -.00955         .00584    -1.64  .1017     -.02099    .00189 
  HHKIDS|     .08178         .14014      .58  .5595     -.19289    .35645 
        |Characteristics in numerator of Prob[Y = 4] 
Constant|     .09378         .48301      .19  .8461     -.85291   1.04047 
    EDUC|     .10453***      .03202     3.26  .0011      .04178    .16729 
  HHNINC|    1.74362***      .39382     4.43  .0000      .97175   2.51550 
     AGE|    -.01430**       .00571    -2.50  .0123     -.02550   -.00310 
  HHKIDS|     .19549         .13660     1.43  .1524     -.07224    .46321 
        |Characteristics in numerator of Prob[Y = 5] 
Constant|    1.58459***      .45170     3.51  .0005      .69927   2.46991 
    EDUC|     .07527**       .03035     2.48  .0131      .01579    .13475 
  HHNINC|    1.64030***      .37209     4.41  .0000      .91101   2.36959 
     AGE|    -.01481***      .00526    -2.82  .0049     -.02512   -.00450 
  HHKIDS|     .19988         .12655     1.58  .1142     -.04815    .44791 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 The statistical output for the coefficient estimates is followed by a table of predicted and 
actual frequencies, such as the following:  This table is requested by adding 
 
   ; Summary 
 
to the MLOGIT command. 
 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
 
            Predicted 
------  ------------------------------  +  ----- 
Actual      0    1    2    3    4    5  |  Total 
------  ------------------------------  +  ----- 
  0         0    0    0    0    0  447  |    447 
  1         0    0    0    0    0  255  |    255 
  2         0    0    0    0    0  642  |    642 
  3         0    0    0    0    0 1173  |   1173 
  4         0    0    0    0    0 1390  |   1390 
  5         0    0    0    0    0 4233  |   4233 
------  ------------------------------  +  ----- 
Total       0    0    0    0    0 8140  |   8140 
 
The prediction for any observation is the cell with the largest predicted probability for that 
observation. 
 
NOTE:  If you have more than three outcomes, it is very common, as occurred above, for the model 
to predict zero outcomes in one or more of the cells.  Even in a model with very high t ratios and 
great statistical significance, it takes a very well developed model to make predictions in all cells. 
 
 The ; List specification produces a listing such as the following: 
 
Predicted Values          (* => observation was not in estimating sample.) 
Observation        Observed Y   Predicted Y   Residual      MaxPr(i)  Prob[Y*=y] 
       20          2.0000000    5.0000000      .000000     .6845695     .0631146 
       24            .000000    4.0000000      .000000     .3196778     .0885942 
       38          5.0000000    5.0000000      .000000     .6041918     .6041918 
       39          2.0000000    5.0000000      .000000     .6439476     .1224276 
       57          5.0000000    5.0000000      .000000     .5050133     .5050133 
       59          5.0000000    5.0000000      .000000     .4284611     .4284611 
       60          5.0000000    5.0000000      .000000     .4173034     .4173034 
 
In the listing, the MaxPr(i) is the probability attached to the outcome with the largest predicted 
probability; the outcome is shown as the Predicted Y.  The last column shows the predicted 
probability for the observed outcome.  Residuals are not computed – there is no significance to the 
reported zero.  (The results above illustrate the format of the table.  They were complete with a small 
handful of observations, not the 8,140 used to fit the model shown earlier.) 
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 The results kept for further use are: 
 
 Matrices:  b and varb.  
    b_logit = (J+1)×K.  
    This additional matrix contains the parameters arranged so that βj′ is the jth  
    row. The first row is zero. This matrix can be used to obtain fitted  
    probabilities, as discussed below. 
 
 Scalars: kreg, nreg, logl, and exitcode.  
 
 Labels for WALD are constructed from the outcome and variable numbers.  For example, if 
there are three outcomes and ; Rhs = one,x1,x2, the labels will be 
 
 Last Model: [b1_1,b1_2,b1_3,b2_1,b2_2,b2_3]. 
 
 Last Function: Prob(y = J|x).   
 
You may specify other outcomes in the PARTIALS and SIMULATE commands. 
 
N16.8 Partial Effects 
 
 The partial effects in this model are 
  
   δj   =  ∂Pj/∂x,  j = 0,1,...,J. 
  
For the present, ignore the normalization β0 = 0.  The notation Pj is used for Prob[y = j].  After some 
tedious algebra, we find  
 

   δj   =  Pj(βj  - β )   

where   β  = ∑ =

J
j 0

Pj βj. 

 
It follows that neither the sign nor the magnitude of δj need bear any relationship to those of βj.   
(This is worth bearing in mind when reporting results.)  The asymptotic covariance matrix for the 
estimator of δj would be computed using 
 

   Asy.Var. δ
∧





j   =  Gj Asy.Var β
∧





Gj′ 

 
where β is the full parameter vector.  It can be shown that  

   Asy.Var. δ
∧





j   =  Σl Σm  Vjl Asy.Cov.[ 
∧
β l, 

∧
β m′]Vjm′, j=0,...,J, 

where   Vjl   =  [1(j = l) - Pl ]{PjI  + δjx′} - Pjδlx′ 

and   1(j = l) =  1 if j = l, and 0 otherwise. 
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N16.8.1 Computation of Partial Effects with the Model 
 

This full set of results is produced automatically when your LOGIT command includes 
 
   ; Partial Effects. 
 
NOTE:  Marginal effects are computed at the sample averages of the Rhs variables in the model. 
  
There is no conditional mean function in this model, so marginal effects are interpreted a bit 
differently from the usual case.  What is reported are the derivatives and elasticities of the 
probabilities.  (Note this is the same as the ordered probability models.)  These derivatives are saved 
in a matrix named partials which has J+1 rows and K columns.  Each row is the vector of partial 
effects of the corresponding probability.  Since the probabilities will always sum to one, the column 
sums in this matrix will always be zero.  That is, 
 
 MATRIX ; List ; 1 ’ partials $ 
 
will display a row matrix of zeros.  The elasticities of the probabilities, (∂Pj/∂xk)×(xk/Pj) are placed in 
a (J+1)×K matrix named elast_ml.  The format of the results is illustrated in the example below. 
 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
Observations used for means are  All Obs. 
A full set is given for the entire set of 
outcomes, HSAT     =  0 to HSAT     =   5 
Probabilities at the mean values of X are 
  0= .052 1= .030 2= .078 3= .145 4= .171 
  5= .523 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
    HSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Marginal effects on Prob[Y = 0] 
    EDUC|    -.00415***     -.87310    -2.87  .0042     -.00699   -.00131 
  HHNINC|    -.07533***     -.48081    -4.28  .0000     -.10982   -.04085 
     AGE|     .00059**       .53969     2.36  .0184      .00010    .00109 
  HHKIDS|    -.00875        -.05610    -1.44  .1505     -.02067    .00317 
        |Marginal effects on Prob[Y = 1] 
    EDUC|    -.00021        -.07636     -.21  .8331     -.00220    .00178 
  HHNINC|    -.03570***     -.38652    -2.64  .0083     -.06222   -.00918 
     AGE|     .00052***      .80559     2.62  .0087      .00013    .00091 
  HHKIDS|     .00313         .03408      .68  .4994     -.00596    .01222 
        |Marginal effects on Prob[Y = 2] 
    EDUC|    -.00147        -.20405     -.92  .3557     -.00458    .00165 
  HHNINC|    -.04677**      -.19725    -2.31  .0211     -.08652   -.00703 
     AGE|     .00083***      .49750     2.67  .0075      .00022    .00144 
  HHKIDS|    -.00234        -.00993     -.32  .7478     -.01662    .01194 
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        |Marginal effects on Prob[Y = 3] 
    EDUC|     .00430**       .32277     2.29  .0218      .00063    .00797 
  HHNINC|     .01276         .02908      .53  .5938     -.03413    .05965 
     AGE|     .00028         .09081      .70  .4822     -.00050    .00106 
  HHKIDS|    -.01265        -.02898    -1.35  .1760     -.03097    .00567 
        |Marginal effects on Prob[Y = 4] 
    EDUC|     .00416**       .26381     2.07  .0385      .00022    .00810 
  HHNINC|     .04913**       .09457     1.98  .0482      .00040    .09787 
     AGE|    -.00048        -.13248    -1.14  .2552     -.00132    .00035 
  HHKIDS|     .00452         .00874      .46  .6444     -.01466    .02370 
        |Marginal effects on Prob[Y = 5] 
    EDUC|    -.00262        -.05450     -.94  .3475     -.00809    .00285 
  HHNINC|     .09591***      .06048     2.78  .0054      .02827    .16355 
     AGE|    -.00174***     -.15634    -3.07  .0021     -.00285   -.00063 
  HHKIDS|     .01609         .01020     1.23  .2205     -.00965    .04183 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Marginal Effects Averaged Over Individuals 
--------+---------+---------+---------+---------+---------+---------+ 
Variable|    Y=00 |    Y=01 |    Y=02 |    Y=03 |    Y=04 |    Y=05 | 
--------+---------+---------+---------+---------+---------+---------+ 
ONE     |  -.0377 |  -.0772 |  -.0975 |  -.1380 |  -.1051 |   .4556 | 
EDUC    |  -.0044 |  -.0002 |  -.0014 |   .0043 |   .0042 |  -.0025 | 
HHNINC  |  -.0786 |  -.0361 |  -.0459 |   .0136 |   .0494 |   .0977 | 
AGE     |   .0006 |   .0005 |   .0008 |   .0003 |  -.0005 |  -.0018 | 
HHKIDS  |  -.0092 |   .0033 |  -.0023 |  -.0125 |   .0045 |   .0162 | 
--------+---------+---------+---------+---------+---------+---------+ 
 
Averages of Individual Elasticities of Probabilities 
--------+---------+---------+---------+---------+---------+---------+ 
Variable|    Y=00 |    Y=01 |    Y=02 |    Y=03 |    Y=04 |    Y=05 | 
--------+---------+---------+---------+---------+---------+---------+ 
ONE     |  -.7050 | -2.4807 | -1.2472 |  -.9593 |  -.6112 |   .8796 | 
EDUC    |  -.8732 |  -.0764 |  -.2041 |   .3227 |   .2638 |  -.0545 | 
HHNINC  |  -.4847 |  -.3904 |  -.2011 |   .0252 |   .0907 |   .0566 | 
AGE     |   .5315 |   .7974 |   .4894 |   .0827 |  -.1406 |  -.1645 | 
HHKIDS  |  -.0571 |   .0330 |  -.0110 |  -.0300 |   .0077 |   .0092 | 
--------+---------+---------+---------+---------+---------+---------+ 
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Figure N16.1  Matrices Created by MLOGIT 

 
Marginal effects are computed by averaging the effects over individuals rather than computing them 
at the means.  The difference between the two is likely to be quite small.  Current practice favors the 
averaged individual effects, rather than the effects computed at the means.  MLOGIT also reports 
elasticities with the marginal effects.  An example appears above. 
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N16.8.2 Partial Effects Using the PARTIALS EFFECTS Command 
 
 The ; Partials specification in the MLOGIT command computes the partial effects at the 
means of the variables.  The post estimation command, PARTIAL EFFECTS (or just PARTIALS), 
can be used to compute average partial effects, and to compute various simulations of the outcome.  
For example, we compute the partial effects on Prob(hsat = 5|x) for the model estimated above with 
 
 SAMPLE ; All $ 
 REJECT ; hsat > 5 $ 
 LOGIT ; Lhs = hsat ; Rhs = one,educ,hhninc,age,hhkids ; Partials $ 
 PARTIALS ; Effects: educ / hhninc / age / hhkids ; Summary $ 
 
The first results below are those reported earlier.  The second set are the average partial effects.  (The 
similarity is striking.) 
 
----------------------------------------------------------------------------- 
Partial derivatives of probabilities with 
respect to the vector of characteristics. 
They are computed at the means of the Xs. 
--------+-------------------------------------------------------------------- 
        |     Partial                          Prob.      95% Confidence 
    HSAT|      Effect    Elasticity      z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Marginal effects on Prob[Y = 5] 
    EDUC|    -.00262        -.05450     -.94  .3475     -.00809    .00285 
  HHNINC|     .09591***      .06048     2.78  .0054      .02827    .16355 
     AGE|    -.00174***     -.15634    -3.07  .0021     -.00285   -.00063 
  HHKIDS|     .01609         .01020     1.23  .2205     -.00965    .04183 
--------+-------------------------------------------------------------------- 
z, prob values and confidence intervals are given for the partial effect 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

--------------------------------------------------------------------- 
Partial Effects for Multinomial Logit Probability Y =  5 
Partial Effects Averaged Over Observations 
* ==> Partial Effect for a Binary Variable 
--------------------------------------------------------------------- 
                   Partial    Standard 
(Delta method)     Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
      EDUC         -.00249     .00279     .89     -.00796      .00298 
      HHNINC        .09767     .03445    2.84      .03015      .16519 
      AGE          -.00175     .00056    3.11     -.00286     -.00065 
   *  HHKIDS        .01592     .01310    1.22     -.00976      .04160 
--------------------------------------------------------------------- 
 
The various optional specifications in PARTIALS may be used here.  For example, 
 
 PARTIALS ; Effects: hhkids & hhninc=.05(.5)3 ; Outcome = 4 ; Plot $ 
 
plots the effect of hhkids on Prob(hsat=4) for several values of hhninc.  The PARTIALS command 
will also report elasticities with respect to continuous variables such as hhnnc by enclosing the name 
in brackets, such as 
 
 PARTIALS ; Effects:  <hhninc> $ 
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N16.9 Predicted Probabilities 
 
 Predicted probabilities can be computed automatically for the multinomial logit model.  
Since there are multiple outcomes, this must be handled a bit differently from other models.  The 
procedure is as follows:  Request the computation with 
 
   ; Prob = name 
 
as you would normally for a discrete choice model.  However, for this model, NLOGIT does the 
following: 
 

1. A namelist is created with name consisting of up to the first four letters of ‘name’ and prob 
is appended to it.  Thus, if you use ; Prob = pfit, the namelist will be named pfitprob. 

 
2. The set of variables, one for each outcome, are named with the same convention, with prjj 

instead of prob.  
 
For example, in a five outcome model, the specification  
 
   ; Prob = job 
 
produces a namelist 
 
   jpbprob  =  jobpr00, jobpr01, jobpr02, jobpr03, jobpr04. 
 
For our running example, 
 
   ; Prob = hsat 
 
produces the namelist named hsatprob and variables hsatpr00, hsatpr01, …, hsatpr05.  The variables 
will then contain the respective probabilities.  You may also use 
 
   ; Fill 
 
with this procedure to compute probabilities for observations that were not in the sample.  
Observations which contain missing data are bypassed as usual. 
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N16.10 Generalized Maximum Entropy (GME) Estimation 
 
 This is an alternative estimator for the multinomial logit model.  The GME criterion is based 
on the entropy of the probability distribution, 
 
   E(p0,...,pJ)  =  -Σj pj lnpj. 
 
The implementation of the GME estimator in NLOGIT’s multinomial logit model is done by 
augmenting the likelihood function with a term that accounts for the entropy of the choice 
probability set.  Let 
 
   H =  the number of support points for the entropy distribution. 
 
and   V =  an H specific set of weights.  These are 

   V =  -1/ N , +1/ N      for H = 2 

       =  -1/ N , 0, +1/ N     for H = 3 

       =  -1/ N , -.5/ N , [0], +.5/ N , +1/ N   for H = 4 or 5 

       =   ...  [0], +.33/ N , +.67/ N , +1/ N    for H = 6 or 7 

       =   ...  [0], +.25/ N , +.50/ N , +.75/ N , +1/ N  for H = 8 or 9 
 
(You may optionally choose to scale the entire V by 1/ N ).  Then, 
 
   Ψij = exp[H

h j ih
V

=
′∑ xβ

1
]  

 
Then, the additional term which augments the contribution to the log likelihood for individual i is 
 
   FΨi = 

0
lnJ

ijj=
Ψ∑  

 
This estimator is invoked simply by adding 
 
   ; GME = the number of support points, H 
 
to the LOGIT command.  You may choose to scale the weighting vector with 
 
   ; Scale 
 
You may also choose the GME estimator in the command builder. 
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 In the example below, we have treated the self reported health satisfaction measure as a 
discrete choice (doubtlessly inappropriately – just for the purpose of a numerical example).  The first 
set of estimates given are the GME results.  The model is refit by maximum likelihood in the second 
set.  As can be seen, the GME estimator triggers some additional results in the table of summary 
statistics.  It also brings some relatively modest changes in the estimated parameters. 
 
----------------------------------------------------------------------------- 
Generalized Maximum Entropy (Logit) 
Dependent variable                 HSAT 
Log likelihood function   -106287.21094 
Estimation based on N =   8140, K =  25 
Number of support points =            7 
Weights in support scaled to 1/sqr(N) 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|   -1.76249**       .69184    -2.55  .0108    -3.11848   -.40650 
    EDUC|     .07199         .04453     1.62  .1059     -.01529    .15926 
  HHNINC|     .26975         .57843      .47  .6410     -.86396   1.40346 
     AGE|     .00570         .00835      .68  .4951     -.01067    .02207 
  HHKIDS|     .26950         .19568     1.38  .1684     -.11402    .65302 
        |Characteristics in numerator of Prob[Y = 2] 
Constant|    -.53230         .54599     -.97  .3296    -1.60243    .53782 
    EDUC|     .06033*        .03595     1.68  .0933     -.01012    .13078 
  HHNINC|     .84177*        .44699     1.88  .0597     -.03432   1.71786 
     AGE|    -.00083         .00648     -.13  .8986     -.01353    .01188 
  HHKIDS|     .13734         .15466      .89  .3745     -.16579    .44047 
        |Characteristics in numerator of Prob[Y = 3] 
Constant|    -.24497         .48927     -.50  .6166    -1.20392    .71398 
    EDUC|     .10879***      .03223     3.38  .0007      .04562    .17197 
  HHNINC|    1.52790***      .39910     3.83  .0001      .74567   2.31013 
     AGE|    -.00948         .00581    -1.63  .1030     -.02087    .00191 
  HHKIDS|     .07994         .13948      .57  .5666     -.19344    .35332 
        |Characteristics in numerator of Prob[Y = 4] 
Constant|     .10311         .48018      .21  .8300     -.83803   1.04426 
    EDUC|     .10338***      .03178     3.25  .0011      .04108    .16567 
  HHNINC|    1.72645***      .39122     4.41  .0000      .95966   2.49323 
     AGE|    -.01423**       .00569    -2.50  .0124     -.02538   -.00308 
  HHKIDS|     .19367         .13593     1.42  .1542     -.07276    .46009 
        |Characteristics in numerator of Prob[Y = 5] 
Constant|    1.59393***      .44877     3.55  .0004      .71437   2.47350 
    EDUC|     .07412**       .03010     2.46  .0138      .01512    .13312 
  HHNINC|    1.62344***      .36941     4.39  .0000      .89940   2.34748 
     AGE|    -.01474***      .00523    -2.82  .0049     -.02500   -.00448 
  HHKIDS|     .19810         .12585     1.57  .1155     -.04857    .44477 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+--------------------------------------------------------------------+ 
| Information Statistics for Discrete Choice Model.                  | 
|                            M=Model MC=Constants Only   M0=No Model | 
| Criterion F (log L)  -106287.21094     -106347.98256 -109623.17376 | 
| LR Statistic vs. MC      121.54324            .00000        .00000 | 
| Degrees of Freedom        20.00000            .00000        .00000 | 
| Prob. Value for LR          .00000            .00000        .00000 | 
| Entropy for probs.     11250.94128       11311.43749   14584.92208 | 
| Normalized Entropy          .77141            .77556       1.00000 | 
| Entropy Ratio Stat.     6667.96160        6546.96918        .00000 | 
| Bayes Info Criterion      26.13692          26.15185      26.95656 | 
| BIC(no model) - BIC         .81965            .80472        .00000 | 
| Pseudo R-squared            .22859            .00000        .00000 | 
| Pct. Correct Pred.        52.00246          52.00246      16.66667 | 
| Means:       y=0    y=1    y=2    y=3    y=4    y=5     y=6   y>=7 | 
| Outcome     .0549  .0313  .0789  .1441  .1708  .5200  .0000  .0000 | 
| Pred.Pr     .0552  .0314  .0788  .1440  .1707  .5199  .0000  .0000 | 
| Notes: Entropy computed as Sum(i)Sum(j)Pfit(i,j)*logPfit(i,j).     | 
|        Normalized entropy is computed against M0.                  | 
|        Entropy ratio statistic is computed against M0.             | 
|        BIC = 2*criterion - log(N)*degrees of freedom.              | 
|        If the model has only constants or if it has no constants,  | 
|        the statistics reported here are not useable.               | 
+--------------------------------------------------------------------+ 
 
N16.11 Technical Details on Optimization  
 
 Newton’s method is used to obtain the estimates in all cases.  The log likelihood function for 
the multinomial logit model is 
 
   log L    =  ΣtΣjdtj logPtj, 
 
where Ptj is the probability defined earlier and dtj  =  1 if yt = j, 0 otherwise, j = 0,...,J or dtj equals the 
proportion for choice j for individual t in the grouped data case.  The first and second derivatives are 
 
   ∂log L/∂βj   =  Σt (dtj - Ptj)xt. 

   ∂2log L/∂βl∂βm′ =  Σt -[1(l=m)Ptl - PtlPtm ]xtxt′. 
 
The negative inverse of the Hessian provides the asymptotic covariance matrix. 
 The log likelihood function for the multinomial logit model is globally concave.  With the 
exception of OLS and possibly the Poisson regression model, this is the most benign optimization 
problem in NLOGIT, and convergence should always be routine.  As such, you should not need to 
change the default algorithm or the convergence criteria.  If you do observe convergence problems, 
such as more than a handful of iterations, you should suspect the data.  Occasionally, a data set will 
contain some peculiarities that impede Newton’s method.  In most cases, switching the algorithm to 
BFGS with 
   ; Alg = BFGS 
 
will solve the problem. 
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N16.12 Panel Data Multinomial Logit Models 
 
 The random parameters model described in Chapter R24 is useful for constructing two types 
of panel data structures for the multinomial logit model, random effects and a dynamic model. 
 
N16.12.1 Random Effects and Common (True) Random Effects 
 
 The structural equations of the multinomial logit model are 
 
   Uijt  =  βj′xit  +  εijt, t = 1,...,Ti, j = 0,1,...,J, i = 1,...,N, 
 
where Uijt gives the utility of choice j by person i in period t – we assume a panel data application 
with t = 1,...,Ti.  The model about to be described can be applied to cross sections, where Ti = 1.  
Note also that as usual, we assume that panels may be unbalanced.  We also assume that εijt has a 
type 1 extreme value (Gumbel) distribution and that the J random terms are independent.  Finally, 
we assume that the individual makes the choice with maximum utility.  Under these (IIA inducing) 
assumptions, the probability that individual i makes choice j in period t is 
 

   Pijt  =  
0

exp( )

exp( )
j it

J
j itj=

′

′∑
x

x

β

β
. 

 
Note that this is the MLOGIT form of the model – the Rhs data are in the form of individual 
characteristics, not attributes of the choices.  That would be handled by CLOGIT.  We now suppose 
that individual i has latent, unobserved, time invariant heterogeneity that enters the utility functions 
in the form of a random effect, so that 
 
    Uijt  =  βj′xit  + αij + εijt, t = 1,...,Ti, j = 0,1,...,J, i = 1,...,N. 
 
The resulting choice probabilities, conditioned on the random effects, are 
 

   Pijt | αi1,...,αiJ =  
0

exp( )

exp( )
j it ij

J
j it ijj=

′ + α

′ + α∑
x

x

β

β
. 

 
To complete the model, we assume that heterogeneity is normally distributed with zero means and 
(J+1)×(J+1) covariance matrix, Σ.  For identification purposes, one of the coefficient vectors must 
be normalized to zero and one of the αijs is set to zero. We normalize the first element – subscript 0 – 
to zero.  For convenience, this normalization is left implicit in what follows.  It is automatically 
imposed by the software.  To allow the remaining random effects to be freely correlated, we write 
the J×1 vector of nonzero αs as 
 
   αi  =  Γ vi 
 
where Γ is a lower triangular matrix to be estimated and vi is a standard normally distributed (mean 
zero, covariance matrix, I) vector. 
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 The preceding extends the random effects model to the multinomial logit framework.  It is 
also of the form of NLOGIT’s other random parameter models, which is how we do the estimation, 
by maximum simulated likelihood. There are two additional versions of the essential structure: 
 

1. Independent effects: Γ = A diagonal matrix. 
 

2. True random effects:   Γ = A diagonal matrix,  
   and vji = vi = the same random variable in all utility functions. 

 
Thus, in the second case, the preference heterogeneity is a choice invariant characteristic of the 
person. 
 The command structure for this model has two parts.  In the first, the logit model is fit 
without the effects in order to obtain the starting values.  In the second, we use a standard form of the 
random parameters model; 
 
 MLOGIT  ; Lhs = dependent variable  
   ; Rhs  = list of variables including one $ 
 MLOGIT ; Lhs  = dependent variable  
   ; Rhs  = list of variables including one 
   ; RPM ; Fcn = one(n) 
   [; Halton] 
   [; Pts  = ...] 
   ; Pds  = panel specification  $ 
 
The items in the square brackets are optional.  This requests the type 1, independent effects model.  
To estimate the second model, type 2, true random effects model, add 
 
   ; Common Effect 
 
to the commands.  To fit the general model with freely correlated effects, use, instead, 
 
   ; Correlated. 
 
 To illustrate this estimator, we constructed an example using the health care data.  The Lhs 
variable is health satisfaction.  We restricted the sample by first, keeping only groups with Ti = 7.  
We then eliminated all observations with Lhs variable greater than four.  This leaves a dependent 
variable that takes five outcomes, 0,1,2,3,4, and a total sample of 905 observations in 394 groups 
ranging in size from one to seven.  So, the resulting panel is unbalanced.  The Rhs variables are one, 
age, income and hhkids that is kids in the household.  We fit all three models described above.  
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The commands are as follows: 
 

 REJECT  ; _groupti < 7 $  
REJECT  ; hsat > 4 $ 
SETPANEL ; Group = it ; Pds = ti $ 
MLOGIT  ; Lhs = hsat  ; Rhs = one,age,hhninc,hhkids $ 
MLOGIT  ; Lhs = hsat  ; Rhs = one,age,hhninc,hhkids 

; RPM ; Fcn = one(n) ; Common ; Halton ; Pts = 50 ; Panel $ 
MLOGIT  ; Lhs = hsat ; Rhs = one,age,hhninc,hhkids ; Quietly $ 
MLOGIT  ; Lhs = hsat ; Rhs = one,age,hhninc,hhkids 
   ; RPM ; Fcn = one(n)  ; Halton ; Pts = 50 ; Panel $ 
MLOGIT  ; Lhs = hsat ; Rhs = one,age,hhninc,hhkids ; Quietly $ 
MLOGIT  ; Lhs = hsat ; Rhs = one,age,hhninc,hhkids 

; RPM ; Fcn = one(n) ; Correlated ; Halton ; Pts = 50 ; Panel $ 
 
These are the initial values, without latent effects. 
 
----------------------------------------------------------------------------- 
Multinomial Logit Model 
Dependent variable                 HSAT 
Log likelihood function     -1289.68419 
Restricted log likelihood   -1295.05441 
Chi squared [  12 d.f.]        10.74042 
Significance level               .55129 
McFadden Pseudo R-squared      .0041467 
Estimation based on N =    905, K =  16 
Inf.Cr.AIC  = 2611.368 AIC/N =    2.885 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[Y = 1] 
Constant|    -.97586        1.20831     -.81  .4193    -3.34410   1.39238 
     AGE|     .00500         .02273      .22  .8259     -.03954    .04954 
  HHNINC|     .29496        1.23304      .24  .8109    -2.12176   2.71167 
  HHKIDS|     .47793         .42941     1.11  .2657     -.36370   1.31957 
        |Characteristics in numerator of Prob[Y = 2] 
Constant|    -.58489         .93591     -.62  .5320    -2.41923   1.24946 
     AGE|     .01279         .01758      .73  .4667     -.02166    .04724 
  HHNINC|    1.48473         .93548     1.59  .1125     -.34877   3.31823 
  HHKIDS|     .22135         .33932      .65  .5142     -.44370    .88641 
        |Characteristics in numerator of Prob[Y = 3] 
Constant|    1.05098         .84361     1.25  .2128     -.60247   2.70442 
     AGE|    -.00744         .01590     -.47  .6400     -.03860    .02373 
  HHNINC|    1.28703         .87733     1.47  .1424     -.43251   3.00657 
  HHKIDS|    -.03754         .31211     -.12  .9043     -.64926    .57419 
        |Characteristics in numerator of Prob[Y = 4] 
Constant|     .56268         .83149      .68  .4986    -1.06700   2.19237 
     AGE|     .00343         .01564      .22  .8263     -.02723    .03409 
  HHNINC|    1.55568*        .85486     1.82  .0688     -.11982   3.23118 
  HHKIDS|     .30585         .30374     1.01  .3140     -.28946    .90116 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This model has a separate, independent effect in each utility function. 
 
+---------------------------------------------+ 
| Random Coefficients  MltLogit Model         | 
| Dependent variable                 HSAT     | 
| Log likelihood function     -1232.79687     | 
| Estimation based on N =    905, K =  20     | 
| Inf.Cr.AIC  = 2505.594 AIC/N =    2.769     | 
| Model estimated: Jul 21, 2011, 22:49:15     | 
| Unbalanced panel has    394 individuals     | 
+---------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Random Coefficients  MltLogit Model 
All parameters have the same random effect 
Multinomial logit with random effects 
Simulation based on  50 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|     .00522         .01994      .26  .7936     -.03387    .04431 
  HHNINC|     .18002        1.04166      .17  .8628    -1.86160   2.22165 
  HHKIDS|     .48013         .38705     1.24  .2148     -.27848   1.23874 
     AGE|     .02077         .01814     1.15  .2520     -.01477    .05632 
  HHNINC|    1.20948         .82664     1.46  .1434     -.41070   2.82967 
  HHKIDS|     .23686         .35048      .68  .4992     -.45007    .92379 
     AGE|     .00077         .01694      .05  .9636     -.03243    .03397 
  HHNINC|     .96235         .86369     1.11  .2652     -.73045   2.65516 
  HHKIDS|    -.01765         .35090     -.05  .9599     -.70539    .67010 
     AGE|     .01048         .01741      .60  .5472     -.02364    .04460 
  HHNINC|    1.19343         .87672     1.36  .1734     -.52492   2.91177 
  HHKIDS|     .31389         .34815      .90  .3673     -.36847    .99625 
        |Means for random parameters 
Constant|    -.97734        1.00299     -.97  .3298    -2.94317    .98849 
Constant|     .23872         .96599      .25  .8048    -1.65459   2.13202 
Constant|    2.06626**       .88897     2.32  .0201      .32392   3.80860 
Constant|    1.56019*        .90344     1.73  .0842     -.21052   3.33089 
        |Scale parameters for dists. of random parameters 
Constant|     .02031         .19069      .11  .9152     -.35343    .39406 
Constant|    1.22214***      .17722     6.90  .0000      .87480   1.56948 
Constant|    1.73095***      .17833     9.71  .0000     1.38142   2.08048 
Constant|    2.55108***      .18704    13.64  .0000     2.18448   2.91768 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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This model has the same latent effect in each utility function, though different scale factors. 
 
----------------------------------------------------------------------------- 
Random Coefficients  MltLogit Model 
Dependent variable                 HSAT 
Log likelihood function     -1258.50063 
Estimation based on N =    905, K =  20 
Inf.Cr.AIC  = 2557.001 AIC/N =    2.825 
Unbalanced panel has    394 individuals 
Multinomial logit with random effects 
Simulation based on  50 Halton draws 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters 
     AGE|    -.00209         .02263     -.09  .9264     -.04644    .04226 
  HHNINC|     .48018        1.17852      .41  .6837    -1.82968   2.79003 
  HHKIDS|     .29347         .43402      .68  .4989     -.55720   1.14414 
     AGE|     .01538         .01558      .99  .3234     -.01515    .04591 
  HHNINC|    1.34339*        .70838     1.90  .0579     -.04501   2.73178 
  HHKIDS|     .21473         .32248      .67  .5055     -.41733    .84679 
     AGE|    -.00776         .01237     -.63  .5304     -.03201    .01649 
  HHNINC|    1.19572*        .65055     1.84  .0661     -.07933   2.47077 
  HHKIDS|    -.05011         .29433     -.17  .8648     -.62699    .52676 
     AGE|     .00310         .01324      .23  .8149     -.02286    .02906 
  HHNINC|    1.44279**       .70145     2.06  .0397      .06796   2.81761 
  HHKIDS|     .31137         .29645     1.05  .2936     -.26967    .89241 
        |Means for random parameters 
Constant|   -1.47532        1.20016    -1.23  .2190    -3.82759    .87696 
Constant|    -.70734         .82080     -.86  .3888    -2.31608    .90140 
Constant|    1.09794*        .62345     1.76  .0782     -.12401   2.31988 
Constant|     .64952         .67371      .96  .3350     -.67094   1.96998 
        |Scale parameters for dists. of random parameters 
Constant|    1.38963***      .18611     7.47  .0000     1.02486   1.75439 
Constant|     .40740***      .09464     4.30  .0000      .22192    .59289 
Constant|     .26460***      .07701     3.44  .0006      .11367    .41553 
Constant|    1.27599***      .10406    12.26  .0000     1.07203   1.47995 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
This model has separate, correlated effects in all utility functions. 
 
----------------------------------------------------------------------------- 
Random Coefficients  MltLogit Model 
Dependent variable                 HSAT 
Log likelihood function     -1228.68780 
Estimation based on N =    905, K =  26 
Inf.Cr.AIC  = 2509.376 AIC/N =    2.773 
Unbalanced panel has    394 individuals 
Multinomial logit with random effects 
Simulation based on  50 Halton draws 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    HSAT|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        | Nonrandom parameters 
     AGE|    -.00277         .01900     -.15  .8840     -.04001    .03447 
  HHNINC|     .18258        1.05908      .17  .8631    -1.89318   2.25833 
  HHKIDS|     .44728         .39924     1.12  .2626     -.33522   1.22978 
     AGE|     .01952         .01979      .99  .3239     -.01927    .05832 
  HHNINC|     .99148         .88908     1.12  .2648     -.75109   2.73405 
  HHKIDS|     .19586         .36220      .54  .5887     -.51404    .90577 
     AGE|    -.00134         .01802     -.07  .9407     -.03667    .03398 
  HHNINC|     .74182         .88342      .84  .4011     -.98965   2.47329 
  HHKIDS|    -.06698         .35619     -.19  .8508     -.76510    .63114 
     AGE|     .00795         .01824      .44  .6631     -.02780    .04369 
  HHNINC|     .95944         .89476     1.07  .2836     -.79425   2.71313 
  HHKIDS|     .26625         .34917      .76  .4457     -.41811    .95061 
        | Means for random parameters 
Constant|   -1.44262         .98772    -1.46  .1441    -3.37851    .49327 
Constant|     .03520        1.05196      .03  .9733    -2.02660   2.09700 
Constant|    2.00734**       .94721     2.12  .0341      .15083   3.86384 
Constant|    1.54147         .94470     1.63  .1027     -.31011   3.39305 
        | Diagonal elements of Cholesky matrix 
Constant|     .77973***      .21166     3.68  .0002      .36489   1.19458 
Constant|    1.02801***      .14489     7.10  .0000      .74403   1.31199 
Constant|     .22445**       .09346     2.40  .0163      .04127    .40763 
Constant|     .18188**       .08031     2.26  .0235      .02447    .33929 
        | Below diagonal elements of Cholesky matrix 
lONE_ONE|     .50481***      .18120     2.79  .0053      .14966    .85995 
lONE_ONE|    1.08605***      .17694     6.14  .0000      .73926   1.43284 
lONE_ONE|     .94188***      .13768     6.84  .0000      .67204   1.21172 
lONE_ONE|    1.88987***      .18720    10.10  .0000     1.52296   2.25677 
lONE_ONE|    1.07104***      .14041     7.63  .0000      .79584   1.34624 
lONE_ONE|     .37947***      .09765     3.89  .0001      .18807    .57086 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

Implied covariance matrix of random parameters 
Var_Beta|             1             2             3             4 
--------+-------------------------------------------------------------------- 
       1|       .607984       .393614       .846831       1.47359 
       2|       .393614       1.31163       1.51651       2.05506 
       3|       .846831       1.51651       2.11703       3.14646 
       4|       1.47359       2.05506       3.14646       4.89580 
 

Implied standard deviations of random parameters 
S.D_Beta|             1 
--------+-------------- 
       1|       .779734 
       2|       1.14527 
       3|       1.45500 
       4|       2.21265 
 

Implied correlation matrix of random parameters 
Cor_Beta|             1             2             3             4 
--------+-------------------------------------------------------------------- 
       1|       1.00000       .440776       .746426       .854121 
       2|       .440776       1.00000       .910072       .810972 
       3|       .746426       .910072       1.00000       .977343 
       4|       .854121       .810972       .977343       1.00000 
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N16.12.2 Dynamic Multinomial Logit Model 
 
 The preceding random effects model can be modified to produce the dynamic multinomial 
logit model analyzed in Gong, van Soest and Villagomez (2000).  Then  
 

  Pijt | αi1,...,αiJ =  
1

exp( )

exp( )
j it j it ij

J
j it j it ijj=

′ ′+ + α

′ ′+ + α∑
x z

x z

β γ

β γ
 t = 1,...,Ti, j = 0,1,...,J, i = 1,...,N 

 
where zit contains lagged values of the dependent variables (these are binary choice indicators for the 
choice made in period t) and possibly interactions with other variables.  The zit variables are now 
endogenous, and conventional maximum likelihood estimation is inconsistent.  The authors argue 
that Heckman’s treatment of initial conditions is sufficient to produce a consistent estimator.  The 
core of the treatment is to treat the first period as an equilibrium, with no lagged effects, 
 

  Pij0 | θi1,...,θiJ =  0

01
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J
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where the vector of effects, θ, is built from the same primitives as α in the later choice probabilities.  
Thus, αi = Γvi and θ = Φ vi, for the same vi, but different lower triangular scaling matrices.  This 
treatment slightly less than doubles the size of the model – it amounts to a separate treatment for the 
first period.)  Full information maximum likelihood estimates of the model parameters, 
(β1,...,βJ,γ1,...,γJ,δ1,...,δJ,Γ,Φ) are obtained by maximum simulated likelihood, by modifying the 
random effects model.  The likelihood function for individual i consists of the period 0 probability as 
shown above times the product of the period 1,2,...,Ti probabilities defined earlier. 
 In order to use this procedure, you must create the lagged values of the variables, and the 
products with other variables if any are to be present – that is, the elements of zit.  Then, starting 
values for both parameter vectors must be provided for the iterations.  The program below shows the 
several steps involved.  In terms of the broad command structure, the essential new ingredient will be 
the addition of 
   ; Rh2 = the variables in z 
 
to the model definition.  However, again, several steps must precede this, as shown in the command 
set below. 
 To construct this estimator in generic form,  we assume the dependent variable is named y 
and the independent variables are to be contained in a namelist x.  Several commands remain 
application specific.  These are modified for the specific model.  We need a time variable first.  For 
convenience, periods are numbered 1,...,T with t = 1 being the initial period. 
 
 NAMELIST  ; x = the x variables in the model, including one $ 
 SAMPLE  ; All $ 
 CREATE  ; time = Trn(-T,0) $ Fixed number of periods 
or  CREATE  ; time = Ndx(ID,1) $ Unbalanced panel, variable T(i) 
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Compute the binary variables for the outcomes - endogenous variables. 
 
 CREATE  ; dit1 = (y=1) ; dit2 = (y=2) ; dit3 = (y=3) ... and so on ... $ 
 
Create lagged values of the dummy variables and interactions of lagged dummy variables with other 
variables in the model if desired. You will name variables according to your application. This is just 
a template. (And repeat likewise for a second, third, ... x variable.) 
 
 CREATE  ; dit1lag = dit1[-1] ; dit2lag = dit2[-1]  
   ; dit3lag = dit3[-1] ... and so on $ 
 CREATE  ; d1x1lag = dit1lag*x1 ; d2x1lag = dit2lag*x1 ... $ 
 NAMELIST  ; z = dit1L,dit2L,...,d1x1L,...,... for the z variables $ 
 
Fit the time invariant model for the first period and retain the coefficients. 
 
     REJECT  ; time > 1 $ 
 MLOGIT  ; Lhs = y ; Rhs = x $ 
 MATRIX  ; delta = b $ 
 
Fit the dynamic part for 2,...,Ti and again, save the coefficients. 
 
     INCLUDE  ; New ; T > 1 $ 
     MLOGIT  ; Lhs = y ; Rhs = x,z $ 
     MATRIX  ; betagama = b $ 
 
The full model for all periods is a random parameters model. 
 
     SAMPLE  ; All $ 
     MLOGIT  ; Lhs = y ; Rhs = x  
                 ; Rh2 = z ?  This indicates the dynamic MNL model. 
                  ; Start = delta,betagama 
   ; RPM ; (options including ; Halton, ; Pts = replications) 
                  ; Panel specification 
   ; Fcn = one(n) ; Common $ (; Correlated may be specified) 
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N17: Conditional Logit Model 
 
N17.1 Introduction 
 
 An individual is assumed to have preferences defined over a set of alternatives (travel 
modes, occupations, food groups, etc.) 
 
   U(alternative 1) =  β1′xi1  + γ1′zi +  ε i1 
    ... 

    U(alternative J) =  βJ ′xiJ  + γJ′zi +  εiJ 

   Observed Yi   = choice j if  Ui(alternative j) > Ui(alternative k) ∀ k ≠ j. 
 
In this expanded specification, we use xij to denote the attributes of choice j that face individual i – 
attributes generally differ across choices and across individuals. We use zi to denote characteristics 
of individual i, such as age, income, gender, etc.  Characteristics differ across individuals, but not 
across choices.  The ‘disturbances’ in this framework (individual heterogeneity terms) are assumed 
to be independently and identically distributed with identical extreme value distribution; the CDF is 
 
   F(εj)  =  exp(-exp(-εj)). 
 
Based on this specification, the choice probabilities, 
 
   Prob[ choice j ] =  Prob[Uj > Uk], ∀ k ≠ j 
 

     =  
1

exp( )
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, j = 1,...,J, 

 
where ‘i’ indexes the observation, or individual, and ‘j’ and ‘m’ index the choices.  We note at the 
outset, the IID assumptions made about εj are quite stringent, and lead to the ‘Independence from 
Irrelevant Alternatives’ or IIA implications that characterize the model.  Much (perhaps all) the 
research on forms of this model consists of development of alternative functional forms and 
stochastic specifications that avoid this feature.  
 The observed data consist of the vectors, xjt and zi and the outcome, or choice, yi.  (We also 
consider a number of variants.)  A well known example is travel mode choice.  Samples of 
observations often consist of the attributes of the different modes and the choice actually made.  
Usually, no characteristics of the individuals are observed beyond their actual choice, though survey 
data may include familiar sociodemographics such as age and income.  Models may also contain 
mixtures of the two types of choice determinants.  Chapters E38-E40 present the various aspects of 
this model contained in LIMDEP.  This chapter describes the basic model specification and 
estimation.  Other features of the model, including those extensions contained in LIMDEP and 
NLOGIT are described in Chapters N18-N22.  
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N17.2 The Conditional Logit Model – CLOGIT 
 
 In the multinomial logit model described in Chapter N16, there is a single vector of 
characteristics that describes the individual, and a set of J parameter vectors.  In the ‘discrete choice’ 
setting of this chapter, these are essentially reversed.  The J (not J+1 – we will be changing the 
notation slightly here) alternatives are each characterized by a set of K ‘attributes,’ xij. Respondent ‘i’ 
chooses among the J alternatives.  In the example we will use throughout this discussion, a sampled 
individual making a trip between Sydney and Melbourne chooses one of four modes of travel, air, 
train, bus or car.  The attributes include cost, travel time and terminal time, which differ by mode, 
and characterize the choice, not the person.  The data also include a characteristic of the chooser, 
household income.  It will emerge shortly however, that MLOGIT and CLOGIT are not different 
models at all.  The estimator described here accommodates both cases, and mixtures of the two.  For 
example, for the commuting application just noted, we also have income for the person and traveling 
party size, both of which are choice invariant. 
 For the present, we develop the model with a single parameter vector, β.  The model 
underlying the observed data is assumed to be the following random utility specification: 
 
   U(choice j for individual i)  =  Uij  =  β′xij  +  γ′zi +  εij, j = 1,...,J. 
  
The random, individual specific terms, (εi1,εi2,...,εiJ) are once again assumed to be independently 
distributed across the utilities, each with the same type 1 extreme value distribution 
 
   F(εij)  =  exp(-exp(-εij)). 
 
Under these assumptions, the probability that individual i chooses alternative j is 
 
   Prob[Uij > Uim] for all m ≠ j. 
  
It has been shown that for independent extreme value (Gumbel) distributions, as above, this 
probability is 

   Prob[yi = j]  =  ( )
( )1

exp

exp
ij j i

J
im m im=

′ ′+
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x z

x z

β γ
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where yi is the index of the choice made.  As before, we note at the outset that the IID assumptions 
made about εj are quite stringent, and induce the ‘Independence from Irrelevant Alternatives’ or IIA 
features that characterize the model. We will return to this restriction later in Chapter E40. 
Regardless of the number of choices, there is a single vector of K parameters to be estimated.  This 
model does not suffer from the proliferation of parameters that appears in the MLOGIT model 
described in Section N16.2. 
 For convenience in what follows, we will refer to the estimator as CLOGIT, keeping in 
mind, this refers to a command and class of models in LIMDEP and NLOGIT, not a separate 
program. 
  



N17: Conditional Logit Model N-295 

 The basic setup for this model consists of observations on n individuals, each of whom 
makes a single choice among Ji choices, or alternatives.  There is a subscript on Ji because 
ultimately, we will not restrict the choice sets to have the same number of choices for every 
individual.  The data will typically consist of the choices and observations on K ‘attributes’ for each 
choice.  The attributes that describe each choice, i.e., the variables that enter the utility functions, 
may be the same for all choices, or may be defined differently for each utility function.  The 
estimator described in this chapter allows a large number of variations of this basic model.  In the 
discrete choice framework, the observed ‘dependent variable’ usually consists of an indicator of 
which among Ji alternatives was most preferred by the respondent.  All that is known about the 
others is that they were judged inferior to the one chosen.  But, there are cases in which information 
is more complete and consists of a subjective ranking of all Ji alternatives by the individual.  
CLOGIT allows specification of the model for estimation with ‘ranks data.’  In addition, in some 
settings, the sample data might consist of aggregates for the choices, such as proportions (market 
shares) or frequency counts.  CLOGIT  will accommodate these cases as well. 
 

N17.3 Clogit Data for the Applications 
 The documentation of the CLOGIT program below includes numerous applications based on 
the data set clogit.dat, that is distributed with LIMDEP and NLOGIT  These data provide a compact 
illustration of how data should be arranged for the CLOGIT model.  The data set is a survey of the 
transport mode chosen by a sample of 210 travelers between Sydney and Melbourne (about 500 
miles) and other points in nonmetropolitan New South Wales.  As will be shown, clogit data will 
generally consist of a record (row of data) for each alternative in the choice set, for each individual.  
Thus, the data file contains 210 observations, or 840 records.  The variables in the data set are as 
follows: 
 
Original Data 
 
 mode  =  0/1 for four alternatives: air, train, bus, car 
      (this variable equals one for the choice made, labeled choice below), 
 ttme  =  terminal waiting time, 
 invc  =  invehicle cost for all stages, 
 invt  =  invehicle time for all stages, 
 gc    =  generalized cost measure = Invc + Invt × value of time, 
 chair  =  dummy variable for chosen mode is air, 
 hinc  =  household income in thousands, 
 psize  =  traveling party size. 
 
Transformed Variables 
 
 aasc  =  choice specific dummy for air (generated internally), 
 tasc  =  choice specific dummy for train, 
 basc  =  choice specific dummy for bus, 
 casc  =  choice specific dummy for car, 
 hinca  =  hinc × aasc, 
 psizea  =  psize × aasc. 
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The table below lists the first 10 observations in the data set.  In the terms used here, each 
‘observation’ is a block of four rows.  The mode chosen in each block is boldfaced. 
 
mode  choice  ttme   invc    invt        gc  chair  hinc  psize  aasc tasc basc casc hinca psizea   obs. 
 
Air   0   69    59   100    70   0   35   1   1   0   0   0  35   1    i=1 
Train  0   34    31   372    71   0   35    1   0   1   0   0   0   0   
Bus    0   35    25   417    70   0   35    1   0   0   1   0   0   0   
Car    1    0    10   180    30   0   35    1   0   0   0   1   0   0        

Air    0   64    58    68    68   0   30    2   1   0   0   0  30   2    i=2 
Train  0   44    31   354    84   0   30    2   0   1   0   0   0   0   
Bus    0   53    25   399    85   0   30    2   0   0   1   0   0   0   
Car    1    0    11   255    50   0   30    2   0   0   0   1   0   0     

Air    0   69   115   125   129   0   40    1   1   0   0   0  40   1    i=3 
Train  0   34    98   892   195   0   40    1   0   1   0   0   0   0   
Bus    0   35    53   882   149   0   40    1   0   0   1   0   0   0   
Car    1    0    23   720   101   0   40    1   0   0   0   1   0   0         

Air    0   64    49    68    59   0   70    3   1   0   0   0  70   3    i=4 
Train  0   44    26   354    79   0   70    3   0   1   0   0   0   0   
Bus    0   53    21   399    81   0   70    3   0   0   1   0   0   0   
Car    1    0     5   180    32   0   70    3   0   0   0   1   0   0         

Air    0   64    60   144    82   0   45    2   1   0   0   0  45   2    i=5 
Train  0   44    32   404    93   0   45    2   0   1   0   0   0   0   
Bus    0   53    26   449    94   0   45    2   0   0   1   0   0   0   
Car    1    0     8   600    99   0   45    2   0   0   0   1   0   0         

Air    0   69    59   100    70   0   20    1   1   0   0   0  20   1    i=6 
Train  1   40    20   345    57   0   20    1   0   1   0   0   0   0   
Bus    0   35    13   417    58   0   20    1   0   0   1   0   0   0   
Car    0    0    12   284    43   0   20    1   0   0   0   1   0   0    

Air    1   45   148   115   160   1   45    1   1   0   0   0  45   1    i=7 
Train  0   34   111   945   213   1   45    1   0   1   0   0   0   0   
Bus    0   35    66   935   167   1   45    1   0   0   1   0   0   0   
Car    0    0    36   821   125   1   45    1   0   0   0   1   0   0        

Air    0   69   121   152   137   0   12    1   1   0   0   0  12   1    i=8 
Train  0   34    52   889   149   0   12    1   0   1   0   0   0   0   
Bus    0   35    50   879   146   0   12    1   0   0   1   0   0   0   
Car    1    0    50   780   135   0   12    1   0   0   0   1   0   0      

Air    0   69    59   100    70   0   40    1   1   0   0   0  40   1    i=9 
Train  0   34    31   372    71   0   40    1   0   1   0   0   0   0   
Bus    0   35    25   417    70   0   40    1   0   0   1   0   0   0   
Car    1    0    17   210    40   0   40    1   0   0   0   1   0   0         

Air    0   69    58    68    65   0   70    2   1   0   0   0  70   2    i=10 
Train  0   34    31   357    69   0   70    2   0   1   0   0   0   0   
Bus    0   35    25   402    68   0   70    2   0   0   1   0   0   0   
Car    1    0     7   210    30   0   70    2   0   0   0   1   0   0         
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N17.3.1 Setting Up the Data 
 
 The clogit data are arranged as follows, where we use a specific set of values for the problem 
to illustrate.  Suppose you observe 25 individuals.  Each individual in the sample faces three choices 
and there are two attributes, q and w.  For each observation, we also observe which choice was made.  
Suppose further that in the first three observations, the choices made were two, three, and one, 
respectively.  The data matrix would consist of 75 rows, with 25 blocks of three rows.  Within each 
block, there would be the set of attributes and a variable y, which, at each row, takes the value one if 
the alternative is chosen and zero if not.  Thus, within each block of J rows, y will be one once and 
only once.  For the hypothetical case, then, we have: 
 

  y        q        w     
 i=1 0        q1,1     w1,1  
     >1        q2,1     w2,1  
        0        q3,1     w3,1  
          
 i=2 0        q1,2     w1,2  
  0        q2,2     w2,2  
     >1        q3,2     w3,2  
          
 i=3 >1        q1,3     w1,3  
  0        q2,3     w2,3  
  0        q3,3     w3,3  

 
and so on, continuing to i = 25, where ‘>’marks the row of the respondent’s actual choice.  The 
clogit.dat data set shown earlier illustrates the general construction of the data set.  Note that for 
purposes of CLOGIT, the data are set up in the same fashion as a panel data set in other settings. 
 When you IMPORT or READ the data for this model, the data set is not treated any 
differently. Nobs would be the total number of rows in the data set, in the hypothetical case, 75, not 
25, and 840 for clogit.dat.  The separation of the data set into the above groupings would be done at 
the time this particular model is estimated – that is, after the data are read into the program. 
 
NOTE:  Missing values are handled automatically by this estimator.  Do not reset the sample or use 
SKIP with CLOGIT.  Observations which have missing values are bypassed as a group.  We note 
an implication of this: the multiple imputation programs in LIMDEP and NLOGIT cannot be used to 
fill missing values in a multinomial choice setting. 
 
 Thus far, it is assumed that the observed outcome is an indicator of which choice was made 
among a fixed set of up to 500 choices.  There are numerous possible variations: 
 

• Data on the observed outcome may be in the form of frequencies, market shares or ranks. 
• The number of choices may differ across observations.    

 
See Chapters N18 and N20 for further details on choice sets and data types also fixed and variable 
number of choices and restricting the choice set during estimation. 
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N17.4 Command for the Discrete Choice Model 
 
 The essential command for the discrete choice models is 
 
 CLOGIT  ; Lhs = variable which indicates the choice made 
                  ; Choices = a set of J names for the set of choices  
   ; Rhs = choice varying attributes in the utility functions  
   ; Rh2 = choice invariant variables, including one for ASCs $ 
 
(The commands DISCRETE CHOICE and NLOGIT in this form may also be used.)   
 The command builder for this model is found in Model:Discrete Choice/Discrete Choice.  
The model and the choice set are set up on the Main page.  The Rhs variables (attributes) and Rh2 
variables (characteristics) are defined on the Options page.  Note in the two windows on the 
Options page, the Rhs of the model is defined in the left window and the Rh2 variables are specified 
in the right window.   
 A set of exactly J choice labels must be provided in the command.  These are used to label 
the choices in the output.  The number you provide is used to determine the number of choices there 
are in the model.  Therefore, the set of the right number of labels is essential.  Use any descriptor of 
eight or fewer characters desired – these do not have to be valid names, just a set of labels, separated 
in the list by commas. 
 
 The internal limit on J, the number of choices, is 500. 
 
 There are K attributes (Rhs variables) measured for the choices.  The next chapter will 
describe variations of this for different formulations and options.  The total number of parameters in 
the utility functions will include K1 for the Rhs variables and (J-1)K2 for the Rh2 variables.  The total 
number of  utility function parameters is thus K = K1 + (J-1)K2. 
 
 The internal limit on K, the number of utility function parameters, is 300. 
 
 The random utility model specified by this setup is precisely of the form 
 
   Ui,j  =  β1xi,1 + β2xi,2 + ... + βK1xi,K1  +  γ1,jzi,1 + ... + γK2,jzi,K2 + εi,j 
 
where the x variables are given by the Rhs list and the z variables are in the Rh2 list.  By this 
specification, the same attributes and the same characteristics appear in all equations, at the same 
position.  The parameters, βk appear in all equations, and so on.  There are various ways to change 
this specification of the utility functions – i.e., the Rhs of the equations that underlie the model, and 
several different ways to specify the choice set.  These will be discussed at various points below. 
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Figure N17.1  Command Builder for the Conditional Logit Model 
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N17.5 Results for the Conditional Logit Model 
 
 The output for the CLOGIT estimator may contain a description of the model before the 
statistical results.  The description consists of a table that shows the sample proportions (and a ‘tree’ 
structure that is not useful here) and one that lists the components of the utility functions.  You can 
request these two listings by adding 
 
   ; Show Model 
 
to your CLOGIT command.   Starting values for the iterations are either zeros or the values you 
provide with ; Start = list.  As such, there is no initial listing of OLS results.  Output begins with the 
final results for the model.  Here is a sample:  The command is 
 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc 

   ; Rh2 = one,hinc 
   ; Show Model $ 
 
The full set of results is as follows: 
 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .27619| 1.000| 
|TRAIN     .30000| 1.000| 
|BUS       .14286| 1.000| 
|CAR       .28095| 1.000| 
+----------------+------+--- 
+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| INVC     INVT     GC       A_AIR    AIR_HIN1  | 
|        |Row  2| A_TRAIN  TRA_HIN2 A_BUS    BUS_HIN3           | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| INVC     INVT     GC       Constant HINC      | 
|        |     2| none     none     none     none               | 
|TRAIN   |     1| INVC     INVT     GC       none     none      | 
|        |     2| Constant HINC     none     none               | 
|BUS     |     1| INVC     INVT     GC       none     none      | 
|        |     2| none     none     Constant HINC               | 
|CAR     |     1| INVC     INVT     GC       none     none      | 
|        |     2| none     none     none     none               | 
+---------------------------------------------------------------+ 
Normal exit:   5 iterations. Status=0, F=    246.1098 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -246.10979 
Estimation based on N =    210, K =   9 
Inf.Cr.AIC  =  510.220 AIC/N =    2.430 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .1327 .1201 
Chi-squared[ 6]          =     75.29796 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.04613***      .01665    -2.77  .0056     -.07876   -.01349 
    INVT|    -.00839***      .00214    -3.92  .0001     -.01258   -.00419 
      GC|     .03633**       .01478     2.46  .0139      .00737    .06530 
   A_AIR|   -1.31602*        .72323    -1.82  .0688    -2.73353    .10148 
AIR_HIN1|     .00649         .01079      .60  .5477     -.01467    .02765 
 A_TRAIN|    2.10710***      .43180     4.88  .0000     1.26079   2.95341 
TRA_HIN2|    -.05058***      .01207    -4.19  .0000     -.07424   -.02693 
   A_BUS|     .86502*        .50319     1.72  .0856     -.12120   1.85125 
BUS_HIN3|    -.03316**       .01299    -2.55  .0107     -.05862   -.00770 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
NOTE:  (This is one of our frequently asked questions.)  The ‘R-squareds’ shown in the output are 
R2s in name only.  They do not measure the fit of the model to the data.  It has become common for 
researchers to report these with results as a measure of the improvement that the model gives over 
one that contains only a constant.  But, users are cautioned not to interpret these measures as 
suggesting how well the model predicts the outcome variable.  It is essentially unrelated to this. 
 
 To underscore the point, we will examine in detail the computations in the diagnostic 
measures shown in the box that precedes the coefficient estimates.  Consider the example below, 
which was produced by fitting a model with five coefficients subject to two restrictions, or three free 
coefficients – npfree = 3.  (The effect is achieved by specifying ; Choices = air,(train),(bus),car. 
 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  93 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .49573| 1.000| 
|TRAIN     .00000| 1.000|* 
|BUS       .00000| 1.000|* 
|CAR       .50427| 1.000| 
+----------------+------+--- 
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+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| GC       TTME     A_AIR    A_TRAIN  A_BUS     | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| GC       TTME     Constant none     none      | 
|TRAIN   |     1| GC       TTME     none     Constant none      | 
|BUS     |     1| GC       TTME     none     none     Constant  | 
|CAR     |     1| GC       TTME     none     none     none      | 
+---------------------------------------------------------------+ 
Normal exit from iterations. Exit status=0. 
 

----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function       -62.58418 
Estimation based on N =    117, K =   3 
Inf.Cr.AIC  =  131.168 AIC/N =    1.121 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only    -81.0939  .2283 .2079 
Chi-squared[ 2]          =     37.01953 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped   93 obs 
Restricted choice set. Excluded choices are 
TRAIN    BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|     .01320*        .00695     1.90  .0574     -.00042    .02682 
    TTME|    -.07141***      .01605    -4.45  .0000     -.10286   -.03996 
   A_AIR|    3.96117***      .98004     4.04  .0001     2.04032   5.88201 
 A_TRAIN|        0.0    .....(Fixed Parameter)..... 
   A_BUS|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
There are 210 individuals in the data set, but this model was fit to a restricted choice set which 
reduced the data set to n = 210 - 93 = 117 useable observations.  The original choice set had Ji = 4 
choices, but two were excluded, leaving Ji = 2 in the sample.  The log likelihood of -62.58418 is 
computed as shown in Section N23.6.  The ‘constants only’ log likelihood is obtained by setting each 
choice probability to the sample share for each outcome in the choice set.  For this application, those 
are 0.49573 for air and 0.50427 for car.  (This computation cannot be done if the choice set varies by 
person or if weights or frequencies are used.)  Thus, the log likelihood for the restricted model is  
 
 Log L0  =  117 ( 0.49573 × log 0.49573 + 0.50427 × log 0.50427 )  =  -81.09395. 
 
The ‘R2’ is 1 - (-62.54818/-81.0939) = 0.22869 (including some rounding error).  The adjustment factor 
is  
 K  =  (Σi Ji - n) / [(Σi Ji - n) - npfree]  =  (234 - 117)/(234 - 117 - 3)  =  1.02632. 
 
and the ‘Adjusted R2’ is 1 - K(log L /LogL0) 
 
 Adjusted R2  =  1  -  1.02632 (-62.54818/-81.0939)  =  0.20794. 



N17: Conditional Logit Model N-303 

 Results kept by this estimator are: 
 
 Matrices: b and varb =  coefficient vector and asymptotic covariance matrix 
 
 Scalars:  logl   =  log likelihood function 
   nreg   =  N, the number of observational units 
   kreg   =  the number of Rhs variables 
 
 Last Model: b_variable =  the labels kept for the WALD command 
 
NOTE: This estimator does not use PARTIALS or SIMULATE after estimation.  Self contained 
routines are contained in the estimator.  These are described in Chapters N21 and N22. 
 
 In the Last Model, groups of coefficients for variables that are interacted with constants get 
labels choice_variable, as in trai_gco.  (Note that the names are truncated – up to four characters for 
the choice and three for the attribute.)  The alternative specific constants are a_choice, with names 
truncated to no more than six characters.  For example, the sum of the three estimated choice specific 
constants could be analyzed as follows: 
 
 WALD  ; Fn1 = a_air + a_train + a_bus $ 
 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors for nonlinear 
functions and joint test of nonlinear restrictions. 
Wald Statistic             =     16.33643 
Prob. from Chi-squared[ 1] =       .00005 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|    3.96117***      .98004     4.04  .0001     2.04032   5.88201 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
N17.5.1 Robust Standard Errors   
 
 The ‘cluster’ estimator is available in CLOGIT. However, this routine does not support 
hierarchical samples. There may be only one level of clustering. Also, the cluster specification is 
defined with respect to the CLOGIT groups of data, not the data set.  CLOGIT sorts out how many 
clusters there are and how they are delineated.  But, since the row count of the data set is used in 
constructing the estimator, you must treat a group of NALT observations as one.  For example, our 
sample data used in this section contain 210 groups of four rows of data.  Each group of four is an 
observation.  Suppose that these data were grouped in clusters of three choice situations.  The 
estimation command with the cluster estimator would appear 
 
 CLOGIT  ; ... (the model) ; Cluster = 3 $ 
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The relevant part of the output would appear as follows: 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of    210 observations contained     70 clusters defined by  | 
|      3 observations (fixed number) in each cluster.                 | 
+---------------------------------------------------------------------+ 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Estimation based on N =    210, K =   9 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.04613**       .01836    -2.51  .0120     -.08211   -.01014 
(rows omitted) 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

Use ; Cluster as per the other models in LIMDEP and NLOGIT – the same construction is 
used here.   
 
N17.5.2 Descriptive Statistics 
 
 Request a set of descriptive statistics for your model by adding 
 
   ; Describe 
 
to the model command.  For each alternative, a table is given which lists the nonzero terms in the 
utility function and the means and standard deviations for the variables that appear in the utility 
function.  Values are given for all observations and for the individuals that chose that alternative.  
For the example shown above, the following tables would be produced: 
 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc ; Rh2 = one,hinc 

   ; Describe $ 
 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative AIR                  | 
|     Utility Function          |                    |     58.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose AIR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   85.252     27.409|   97.569    31.733 | 
| INVT         -.0084  INVT     |  133.710     48.521|  124.828    50.288 | 
| GC            .0363  GC       |  102.648     30.575|  113.552    33.198 | 
| A_AIR       -1.3160  ONE      |    1.000       .000|    1.000      .000 | 
| AIR_HIN1      .0065  HINC     |   34.548     19.711|   41.724    19.115 | 
+-------------------------------------------------------------------------+ 
  



N17: Conditional Logit Model N-305 

+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative TRAIN                | 
|     Utility Function          |                    |     63.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose TRAIN    | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   51.338     27.032|   37.460    20.676 | 
| INVT         -.0084  INVT     |  608.286    251.797|  532.667   249.360 | 
| GC            .0363  GC       |  130.200     58.235|  106.619    49.601 | 
| A_TRAIN      2.1071  ONE      |    1.000       .000|    1.000      .000 | 
| TRA_HIN2     -.0506  HINC     |   34.548     19.711|   23.063    17.287 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative BUS                  | 
|     Utility Function          |                    |     30.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose BUS      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   33.457     12.591|   33.733    11.023 | 
| INVT         -.0084  INVT     |  629.462    235.408|  618.833   273.610 | 
| GC            .0363  GC       |  115.257     44.934|  108.133    43.244 | 
| A_BUS         .8650  ONE      |    1.000       .000|    1.000      .000 | 
| BUS_HIN3     -.0332  HINC     |   34.548     19.711|   29.700    16.851 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative CAR                  | 
|     Utility Function          |                    |     59.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose CAR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   20.995     14.678|   15.644     9.629 | 
| INVT         -.0084  INVT     |  573.205    274.855|  527.373   301.131 | 
| GC            .0363  GC       |   95.414     46.827|   89.085    49.833 | 
+-------------------------------------------------------------------------+ 
 

 You may also request a cross tabulation of the model predictions against the actual choices. 
(The predictions are obtained as the integer part of Σt P̂ jt yjt.)  Add 
 
   ; Crosstab 
 
to your model command.  For the same model, this would produce 
 
+-------------------------------------------------------+ 
| Cross tabulation of actual choice vs. predicted P(j)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i).  | 
| Column totals may be subject to rounding error.       | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            19            13             8            18            58 
   TRAIN|            12            30             9            12            63 
     BUS|            10             8             6             6            30 
     CAR|            17            12             7            23            59 
--------+---------------------------------------------------------------------- 
   Total|            58            63            30            59           210 
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+-------------------------------------------------------+ 
| Cross tabulation of actual y(ij) vs. predicted y(ij)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is N(k,j,i)=Sum(i=1,...,N) Y(k,j,i).  | 
| Predicted y(ij)=1 is the j with largest probability.  | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            23            15             0            20            58 
   TRAIN|             8            49             0             6            63 
     BUS|            13            12             1             4            30 
     CAR|            15            13             0            31            59 
--------+---------------------------------------------------------------------- 
   Total|            59            89             1            61           210 
 
N17.6 Estimating and Fixing Coefficients 
 
 Maximum likelihood estimates are obtained by Newton’s method.  Since this is a 
particularly well behaved estimation problem, zeros are used for the start values with little loss in 
computational efficiency.  The gradient and Hessian used in iterations and for the asymptotic 
covariance matrix are computed as follows: 
 
   dji  = 1 if individual i makes choice j and 0 otherwise 
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Occasionally, a data set will be such that Newton’s method does not work – this tends to occur when 
the log likelihood is flat in a broad range of the parameter space.  There is no way that you can 
discern this from looking at the data, however.  If Newton’s method fails to converge in a small 
number of iterations, unless the data make estimation impossible, you should be able to estimate the 
model by using 
   ; Alg = BFGS  
 
as an alternative.  The BFGS algorithm will take slightly longer, but for most data sets, the difference 
will be a few seconds. If this method fails as well, you should conclude that your model is 
inestimable. 
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 You may provide your own starting values with 
  
   ; Start = list of K values 
  
If you have requested a set of alternative specific constants, you must provide starting values for 
them as well.  Regardless of where ‘one’ appears in the Rhs list, the ASCs will be the last J-1 
coefficients corresponding to that list.  If you have Rh2 variables, the coefficients will follow the Rhs 
coefficients, including the list of ASCs. 
 Coefficients may be fixed at specific values during optimization.  Use 
 
   ; Fix = variable name [ value ] 
 
for example,   ; Fix = ttme [ .01 ] 
 
The following results are obtained from 
 
 CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme 
   ; Rh2 = one 
   ; Fix = ttme[.01] $ 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -287.31412 
Estimation based on N =    210, K =   4 
Inf.Cr.AIC  =  582.628 AIC/N =    2.774 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588 -.0125-.0190 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.02118***      .00403    -5.26  .0000     -.02908   -.01329 
    TTME|     .01000    .....(Fixed Parameter)..... 
   A_AIR|    -.53263***      .19044    -2.80  .0052     -.90589   -.15937 
 A_TRAIN|     .40186*        .22238     1.81  .0708     -.03400    .83773 
   A_BUS|    -.66610***      .23961    -2.78  .0054    -1.13572   -.19648 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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N17.7 Generalized Maximum Entropy Estimator 
 

The CLOGIT multinomial logit model may be estimated using the generalized maximum 
entropy estimator described in Section N16.10 for the MLOGIT model.  The estimator is the same – 
the difference between there and here is only the constraint on the parameter vectors – there is only a 
single parameter vector in the CLOGIT model.  The computations are identical; the only difference 
is the format of the data. The estimator is requested by adding  

 
  ; GME 

or   ; GME = number of support points 
 
to the CLOGIT command.  In the application below, we reestimate the model used in several 
examples, using GME instead of MLE.  The MLE is shown at the end of the results for ease of 
comparison.  The command would be 
 
 CLOGIT ; Lhs = mode  

; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; GME = 5 $ 
 
----------------------------------------------------------------------------- 
Generalized Maximum Entropy LOGIT Estimator 
Dependent variable               Choice 
Log likelihood function     -1556.27248 
Estimation based on N =    210, K =   5 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01014***      .00356    -2.85  .0044     -.01711   -.00316 
    TTME|    -.09407***      .01002    -9.38  .0000     -.11371   -.07442 
   A_AIR|    5.62289***      .63242     8.89  .0000     4.38337   6.86241 
 A_TRAIN|    3.68504***      .41687     8.84  .0000     2.86800   4.50209 
   A_BUS|    3.10729***      .43557     7.13  .0000     2.25360   3.96098 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+--------------------------------------------------------------------+ 
| Information Statistics for Conditional Logit Model fit by GME      | 
| Number of support points =5. Weights in support scaled to 1/sqr(N) | 
|                            M=Model MC=Constants Only   M0=No Model | 
| Criterion Function     -1556.27248       -1635.80211   -2516.41511 | 
| LR Statistic vs. MC      159.05926            .00000        .00000 | 
| Degrees of Freedom         2.00000            .00000        .00000 | 
| Prob. Value for LR          .00000            .00000        .00000 | 
| Entropy for probs.       207.71575         283.75877     291.12182 | 
| Normalized Entropy          .71350            .97471       1.00000 | 
| Entropy Ratio Stat.      166.81214          14.72609        .00000 | 
| Bayes Info Criterion    3133.93338        3292.99265    5054.21865 | 
| BIC - BIC(no model)     1920.28527        1761.22600        .00000 | 
| Pseudo R-squared            .04862            .00000        .00000 | 
| Pct. Correct Prec.        70.47619          30.00000      25.00000 | 
| Notes: Entropy computed as Sum(i)Sum(j)Pfit(i,j)*logPfit(i,j).     | 
|        Normalized entropy is computed against M0.                  | 
|        Entropy ratio statistic is computed against M0.             | 
|        BIC = 2*criterion - log(N)*degrees of freedom.              | 
|        If the model has only constants or if it has no constants,  | 
|        the statistics reported here are not useable.               | 
|        If choice sets vary in size, MC and M0 are inexact.         | 
+--------------------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -199.97662 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01578***      .00438    -3.60  .0003     -.02437   -.00719 
    TTME|    -.09709***      .01044    -9.30  .0000     -.11754   -.07664 
   A_AIR|    5.77636***      .65592     8.81  .0000     4.49078   7.06193 
 A_TRAIN|    3.92300***      .44199     8.88  .0000     3.05671   4.78929 
   A_BUS|    3.21073***      .44965     7.14  .0000     2.32943   4.09204 
--------+-------------------------------------------------------------------- 
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N17.8 MLOGIT and CLOGIT 
 
 When there are no choice varying attributes, CLOGIT is the same model as MLOGIT.  
From Chapter N16, the functional form for MLOGIT is 
 

   Prob(yi = j|xi) =  
1
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From the introduction in this chapter, 
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In the second equation, if β equals zero – there are no choice varying attributes – then the second 
probability is the same as the first, after a simple renaming of the parts; γj in the second replacing βj 
in the first, and zi replacing xi.  (The alternatives are renumbered, indexing from 1 to J rather than 
from 0 to J.)  The following illustrates the result: 
 
 ? CLOGIT using the original data 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
; Rhs = one ; Rh2 = hinc 
; Effects: hinc(*) $ 

 ? Create the dependent variable for MLOGIT, using the first row of clogit data 
CREATE ; pick = mode*(0*aasc+1*tasc+2*basc+3*casc) $ 
CREATE ; choice = 3 - (pick+pick[+1]+pick[+2]+pick[+3]) $ 
? Use only the first row for MLOGIT 
MLOGIT ; If[aasc = 1 ] ; Lhs=choice ; Rhs=one,hinc  

; Partial Effects  
; Labels = car,bus,train,air $ 

 
We have normalized MLOGIT so that choice = 0 means pick car and choice = 3 means pick air.  
The elasticities then correspond to those in the CLOGIT results, and the coefficients are the same. 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -261.74506 
Estimation based on N =    210, K =   6 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
   A_AIR|     .04252         .45456      .09  .9255     -.84840    .93345 
 A_TRAIN|    2.00595***      .42180     4.76  .0000     1.17923   2.83266 
   A_BUS|     .64169         .49249     1.30  .1926     -.32358   1.60696 
AIR_HIN1|    -.00142         .00989     -.14  .8858     -.02081    .01797 
TRA_HIN2|    -.06048***      .01169    -5.17  .0000     -.08339   -.03756 
BUS_HIN3|    -.03677***      .01282    -2.87  .0041     -.06190   -.01165 
--------+-------------------------------------------------------------------- 
 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Elasticity of Choice Probabilities with Respect to HINC 
--------+----------------------------------- 
        |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
    HINC|   .5418  -1.4986   -.6796    .5908 
 
----------------------------------------------------------------------------- 
Multinomial Logit Model 
Dependent variable               CHOICE 
Log likelihood function      -261.74506 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Characteristics in numerator of Prob[BUS     ] 
Constant|     .64169         .49249     1.30  .1926     -.32358   1.60696 
    HINC|    -.03677***      .01282    -2.87  .0041     -.06190   -.01165 
        |Characteristics in numerator of Prob[TRAIN   ] 
Constant|    2.00595***      .42180     4.76  .0000     1.17923   2.83266 
    HINC|    -.06048***      .01169    -5.17  .0000     -.08339   -.03756 
        |Characteristics in numerator of Prob[AIR     ] 
Constant|     .04252         .45456      .09  .9255     -.84840    .93345 
    HINC|    -.00142         .00989     -.14  .8858     -.02081    .01797 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Averages of Individual Elasticities of Probabilities 
--------+---------+---------+---------+---------+ 
Variable|     CAR |     BUS |   TRAIN |     AIR | 
--------+---------+---------+---------+---------+ 
HINC    |   .5908 |  -.6796 | -1.4986 |   .5418 | 
--------+---------+---------+---------+---------+ 
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N18: Data Setup for NLOGIT 
 
N18.1 Introduction 
 
 In general, the data for the models described in Chapters N23-N33 will be arranged in a 
format that is set up to work well with the specific NLOGIT estimators.  In almost all cases, the data 
used for all models that you fit with NLOGIT will be set up as if they were a panel.  That is, each 
individual choice situation will have a set of observations, with one ‘line’ of data for each choice in 
the choice set.  Thus, in the analogy to a panel, the ‘group’ is a person and the group size would be 
the number of choices.  You will use this arrangement in nearly all cases.  This chapter will explain 
the various aspects of setting up the data for the NLOGIT models.  We note one specific feature of 
the data set that is unusual is the ‘ignored value code,’ -888, described in Section N18.9.  This 
special code is used to signal values that are deliberately omitted from the data set by the observed 
individual – they are ‘missing values,’ with a specific understanding for why they are missing. 
 
N18.2 Basic Data Setup for NLOGIT 
 
 In the base case, the data are arranged as follows, where we use a specific set of values for 
the problem to illustrate.  Suppose you observe 25 individuals.  Each individual in the sample faces 
three choices and there are two attributes, q and w.  For each observation, we also observe which 
choice was made.  Suppose further that in the first three observations, the choices made were two, 
three, and one, respectively.  The data matrix would consist of 75 rows, with 25 blocks of three rows.  
Within each block, there would be the set of attributes and a variable y, which, at each row, takes the 
value one if the alternative is chosen and zero if not.  Thus, within each block of J rows, y will be 
one once and only once.  For the hypothetical case, then, we have: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and so on, continuing to i = 25, where the arrow marks the row of the respondent’s actual choice. 
 When you read these data, the data set is not treated any differently from any other panel.  
Nobs would be the total number of rows in the data set, in the hypothetical case, 75, not 25.  The 
separation of the data set into the above groupings would be done at the time your particular model is 
estimated. 
 

 YQW 
i=1 0       q1,1     w1,1 
 1       q2,1     w2,1 
 0       q3,1     w3,1 
  
i=2 0       q1,2     w1,2 
 0       q2,2     w2,2 
 1       q3,2     w3,2 
  
i=3 1       q1,3     w1,3 
 0       q2,3     w2,3 
 0       q3,3     w3,3  
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NOTE:  Missing values are handled automatically by estimation programs in NLOGIT.  You should 
not reset the sample or use SKIP with the NLOGIT models.  Observations that have missing values 
are bypassed as a group. 
 
 Thus far, it is assumed that the observed outcome is an indicator of which choice was made 
among a fixed set of up to 100 choices.  Numerous variations on this are possible: 
 

• Data on the observed outcome may be in the form of frequencies, market shares, or ranks.  
These possibilities are discussed further in Section N18.3. 

 
• The number of choices may differ across observations.  This is discussed further in Section 

N20.2. 
 
 The preceding described the base case model for a fixed number of choices using individual 
level data.  There are several alternative formulations that might apply to the data set you are using.   
 
N18.3 Types of Data on the Choice Variable 
 
 We allow several types of data on the choice variable, y.  If you have grouped data, the 
values of y will be proportions or frequencies, instead of individual choices.  In the first case, within 
each observation (J data points), the values of y will sum to one when summed down the J rows.  
(This will be the only difference in the grouped data treatment.)  In the second case, y will simply be 
a set of nonnegative integers.  An example of a setting in which such data might arise would be in 
marketing, where the proportions might be market shares of several brands of a commodity.  Or, the 
data might be counts of responses to particular questions in a survey in which groups of people in 
different locations or at different times were surveyed.  Finally, y might be a set of ranks, in which 
case, instead of zeros and ones, y would take values 1,2,...,J (not necessarily in that order) within, 
and reading down, each block. 
 More specifically, data on the dependent (Lhs) variable may come in these four forms: 
 

• Individual Data:  The Lhs variable consists of zeros and a single one which indicates the 
choice that the individual made.  When data are individual, the observations on the Lhs 
variable will sum exactly to 1.0 for every person in the sample.  A sum of 0.0 or some other 
value will only arise if a data error has occurred.  Individual choice data may also be 
simulated.  See Section N18.3.1 below. 

 
• Proportions Data:  The Lhs variable consists of a set of sample proportions.  Values range 

from zero to one, and again, they sum to 1.0 over the set of choices in the choice set. 
Observed proportions may equal 1.0 or 0.0 for some individuals. 

 
• Frequency Data:  The Lhs variable consists of a set of frequency counts for the outcomes. 

Frequencies are nonnegative integers for the outcomes in the choice set and may be zero.  
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• Ranks Data:  The Lhs variable consists of a complete set of ranks of the alternatives in the 
individual’s choice set.  Thus, if there are J alternatives available, the observation will 
consist of a full set of the integers 1,...,J not necessarily in that order, which indicate the 
individual’s ranking of the alternatives. The number of choices may still differ by 
observation.  Thus, we might have [(unranked),0,1,0,0,0] in the usual case, and [(ranked) 
4,1,3,2,5] with ranks data.  Note that the positions of the ones are the same for both sets, by 
definition.  (See Beggs, Cardell, and Hausman (1981).)  You may also have partial rankings.  
For example, suppose respondents are given 10 choices and asked to rank their top three. 
Then, the remaining six choices should be coded 4.0.  A set of ranks might appear thusly:  
[1,4,2,4,3,4,4,4,4,4].  The ties must only appear at the lowest level. Ties in the data are 
detected automatically.  No indication is needed. For later reference, we note the following 
for the model based on ranks data: 
 

° You may have observation weights, but no choice based sampling. 
° The IIA test described in Section N21.4.1 is not available. 
° The number of choices may be fixed or variable, as described above. 
° You may keep probabilities or inclusive values as described in Chapter N21. 
° Ranks data may only be used with the conditional logit model (CLOGIT) and the 

mixed logit (random parameters) model (RPLOGIT). 
 
 The first three data types are detected automatically by NLOGIT.  You do not have to give 
any additional information about the data set, since the type of data being provided can usually be 
deduced from the values.  (See below for one exception.)  The ranks data are an exception for which 
you would use 
 
 NLOGIT ; ... as usual ...; Ranks $ 
 

If you are using frequency or proportions data, and your data contain zeros or ones, certain 
kinds of observations cannot be distinguished from erroneous individual data, and they may be 
flagged as such.  For example, in a frequency data set, the observation [0,0,1,1,0,0] is a valid 
observation, but for individual data, it looks like a badly coded observation.  In order to avoid this 
kind of ambiguity, if you have frequency data containing zeros, add 
 
   ; Frequencies 
 
to your NLOGIT command.  (You may use this in any event to be sure that the data are always 
recognized correctly.)   If you have proportions data, instead, you may use 
 
   ; Shares 
 
to be sure that the data are correctly marked.  (Again, this will only be relevant if your data contain 
zeros and/or ones.) 
 Data are checked for validity and consistency.  An unrecognizable mixture of the three types 
will cause an error.  For example, a mixture of frequency and proportions data cannot be properly 
analyzed.  For the ranks data, an error will occur if the set of ranks is miscoded or incomplete or if 
ties are detected at any ranks other than the lowest. 
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N18.3.1 Unlabeled Choice Sets 
 
 In some situations, particularly in choice experiments and survey data, the choices will not 
be a well defined set of alternatives such as (air, train, bus, car), but, rather will simply be a set of 
unordered choices distinguished only by the different attributes.  For example, in a marketing 
experiment, the choice set might consist of (first, second, third, none of these).  When the choice set 
does not have natural labels, you may use 
 
   ; Choices = number_name 
 
to define the list.  For our example, we might use 
 
   ; Choices = 3_brand,none 
 
which produces the list (brand1,brand2,brand3,none). 
 
N18.3.2 Simulated Choice Data 
 
 For some kinds of experiments and simulations, you might want to draw a random sample of 
choices given known utility functions.  NLOGIT allows simulation of the Lhs variable in a choice 
model using  

  Y = j*  from Max(Uij), 
 
where Uij = vij + a simulated random term.  You must provide the utility values as the Lhs variable.  
The choice outcome is then simulated by adding a type 1 extreme value error term to each utility 
value, and choosing the j associated with the largest simulated utility.  Request this computation by 
adding 

  ; MCS (for Monte Carlo Simulation) 
 
to the NLOGIT or CLOGIT command.  (The utilities are not lost.  You can reuse them, for 
example to do another simulation.  On the other hand, the simulated data are lost at the end of the 
estimation.) Keep in mind, if you want to reuse the data for a simulation, you have to reset the seed 
for the random number generator.  You might for example want to fit different models with the same 
simulated data set.  For example, suppose you wanted to compare the results of two different nesting 
specifications using the simulated data.  The utilities are in variable utility.   
 The command set might appear as follows: 
 
 CALC  ; Ran(56791) $ 
 NLOGIT ; Lhs = utility ; Choices = air,train,bus,car 
   ; Tree = (air,train,bus),(car)  
   ; ... $ 
 CALC  ; Ran(56791) $ 
 NLOGIT ; Lhs = utility ; Choices = air,train,bus,car 
   ; Tree = (train,bus),(air,car)  
   ; ... $ 
 



N18: Data Setup for NLOGIT N-316 

N18.3.3 Checking Data Validity   
 
 NLOGIT does a full check of the data for bad observations (usually coding errors or missing 
values) before estimation is done.  The program output will contain a simple count of the number of 
invalid observations that have been bypassed.  For example, we sprinkled some missing values into 
the clogit.dat data set, and fit a model.  The initial output contains the count: 
 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found   3 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -181.67965 
Estimation based on N =    207, K =   7 
Inf.Cr.AIC  =  377.359 AIC/N =    1.823 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -279.9949  .3511 .3437 
Chi-squared[ 4]          =    196.63055 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    3 obs 
--------+-------------------------------------------------------------------- 
 
You may request the program  to show you exactly where the problem observations are by adding 
 

  ; Check Data  
 
to the command.  A complete listing of the bad observations is produced – note in a large data set, 
this could be quite long.  For the preceding, we obtained  
 
+----------------------------------------------------------+ 
| Inspecting the data set before estimation.               | 
| These errors mark observations which will be skipped.    | 
| Row Individual = 1st row then group number of data block | 
+----------------------------------------------------------+ 
    1      1  Individual data, LHS variable is not 0 or 1 
    9      3  Missing value found for characteristic or attribute in utility 
   17      5  Missing value found for LHS variable 
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N18.4 Weighting  
 
 You can, in principle, use any weighting variable you wish with this model to weight 
observations.  The model does not require that weights be the same for all outcomes for a given 
observation.  For example, in a grouped data case, you might have at hand the total number of 
observations which gave rise to each of the proportions in the proportions data.  If so, you could use 
the information to replicate each observation the appropriate number of times.  In this case, use the 
 
   ; Wts = name 
 
option on the CLOGIT command, as you would with any other model.  Normally, this variable 
would take the same value for each of the J data vectors associated with observation i.  (Suppose 
instead of 0,1,0 for the first observation, we observed .4, .5, .1 based on 200 observations.  Then, 
‘name’ would take the value 200 for the first three observations, etc.)  (Of course, you could achieve 
the same result by providing the frequencies as the Lhs variable.) 
 
N18.5 Choice Based Sampling 
 
 The weighting may be based on the outcomes. For example, suppose the model predicts 
mode of travel, car, train, or horse.  The true population proportions are known to be .6, .35, and .05. 
But, we deliberately oversample the last category so that the sample proportions are, say, .5, .3, and 
.2.  In estimation, to account for the nonrandom sampling, we would use a weighting scheme which 
gives observations in which outcome 1 (car) received a weight of .6/.5 = 1.2, outcome 2 (train), 
.35/.3 = 1.16667, and outcome 3 (horse), .05/.2 = .25.  Notice that regardless of the number of 
observations, the weighting variable in this scenario takes only J values, where J is the number of 
outcomes.  The Lerman-Manski (1981) correction to the variance matrix of the estimates is used at 
convergence to obtain the appropriate standard errors.  The covariance matrix used is V = H-1DH-1, 
where H is the weighted Hessian and D is the weighted sum of the outer products of the first 
derivatives, as opposed to V = H-1 which would be used normally. 
 To request this procedure, it is only necessary for you to provide the J population weights. 
Everything else is automated.  The weights are provided after the labels for the outcomes following a 
slash.  The following example is consistent with the discussion above.  The unweighted specification 
would be 
 
 CLOGIT  ; ... ; Choices = car,train,horse $ 
 
The choice based sampling weights would be provided in 
 
 CLOGIT  ; ... ; Choices = car,train,horse / .6,.35,.05 $ 
 
Notice that you only provide the population weights.  The program obtains the sample proportions 
and computes the appropriate weights for the estimator.  This is a bit different from the earlier 
applications (probit and logit), and it is the only estimator in NLOGIT for which you provide only the 
population weights, as opposed to the sampling ratios. 
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 Everything else is the same as before.  Note, you do not use a weighting (; Wts) variable 
here.  Your population weights must sum to 1.0; if not, an error occurs and estimation is halted.  If 
you provide population weights, you must give a full set.  Thus, if your list has the slash 
specification, the number of values after the slash must match exactly the number of labels before it. 
 The data used in our examples are choice based.  The example below shows the use of this 
option to make the appropriate corrections to the estimates: 
 

CLOGIT ; Lhs = mode 
; Rhs = invc,invt,gc,ttme 
; Rh2 = one 

   ; Choices = air,train,bus,car / .14,.13,.09,.64  
   ; Show $ 
 
The ; Show parameter requests the display of the table below. Otherwise, only the note in the box of 
diagnostic statistics indicates use of the choice based sampling estimator.) 
 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .27619|  .507| 
|TRAIN     .30000|  .433| 
|BUS       .14286|  .630| 
|CAR       .28095| 2.278| 
+----------------+------+--- 
+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| INVC     INVT     GC       TTME     A_AIR     | 
|        |Row  2| A_TRAIN  A_BUS                                | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| INVC     INVT     GC       TTME     Constant  | 
|        |     2| none     none                                 | 
|TRAIN   |     1| INVC     INVT     GC       TTME     none      | 
|        |     2| Constant none                                 | 
|BUS     |     1| INVC     INVT     GC       TTME     none      | 
|        |     2| none     Constant                             | 
|CAR     |     1| INVC     INVT     GC       TTME     none      | 
|        |     2| none     none                                 | 
+---------------------------------------------------------------+ 
Normal exit:   6 iterations. Status=0, F=    132.5388 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -132.53879 
Estimation based on N =    210, K =   7 
Vars. corrected for choice based sampling 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.11080***      .02336    -4.74  .0000     -.15659   -.06502 
    INVT|    -.01736***      .00299    -5.81  .0000     -.02322   -.01151 
      GC|     .09787***      .01967     4.98  .0000      .05931    .13643 
    TTME|    -.13929***      .02589    -5.38  .0000     -.19003   -.08855 
   A_AIR|    5.68250***     1.58789     3.58  .0003     2.57029   8.79472 
 A_TRAIN|    4.09890***      .90704     4.52  .0000     2.32113   5.87667 
   A_BUS|    3.91452***      .92554     4.23  .0000     2.10050   5.72854 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
These are the parameter estimates computed without the correction for choice based sampling.  This 
is not only a correction to the covariance matrix.  The parameter estimates will change as well. 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.08493***      .01938    -4.38  .0000     -.12292   -.04694 
    INVT|    -.01333***      .00252    -5.30  .0000     -.01827   -.00840 
      GC|     .06930***      .01743     3.97  .0001      .03513    .10346 
    TTME|    -.10365***      .01094    -9.48  .0000     -.12509   -.08221 
   A_AIR|    5.20474***      .90521     5.75  .0000     3.43056   6.97893 
 A_TRAIN|    4.36060***      .51067     8.54  .0000     3.35972   5.36149 
   A_BUS|    3.76323***      .50626     7.43  .0000     2.77098   4.75548 
--------+-------------------------------------------------------------------- 
 

N18.6 Entering Data on a Single Line 
 
 Data for NLOGIT are generally provided as if in a panel data set, in blocks of Ji observations 
per individual, where Ji is the number of choices.  The following describes an alternative format in 
which data for these models are provided in one line per individual.  This construction can only be used 
for discrete choice models with a fixed number of alternatives available to each individual.  This 
feature is not available for cases in which the choice set varies across individuals.  (We have seen this 
arrangement of data called the ‘wide form,’ with the data arranged as earlier in the ‘long form.’) 

In general, discrete choice models require that the data set be arranged with a line of data 
(observation) for each alternative in the model, essentially as a panel.  For purposes of the 
discussion, it will be useful to consider an example.  Suppose individuals choose among four 
alternatives, (air,train,bus,car), and the attributes are cost and traveltime, which vary across choice, 
and income which is fixed.  The actual data for an observation would consist of four variables on 
four records, arranged as follows:  (The yj variable consists of three zeros and a one to indicate the 
choice made.) 
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The arrangement is 
 

            Choice Cost     Time   Income
Air

Train
   

Bus
Car

air air air

train train train

bus bus bus

car car car

y cost time income
y cost time income
y cost time income
y cost time income

 
 
 
 
 
 

 

 
The model observation would be constructed from the four variables, and would, with alternative 
specific  constants for the first three alternatives, ultimately appear as follows: 
 

   

choice  cost time   constants                   income         
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0 0

air a a

train t t
i

bus b b

car c c

y c t income
y c t income
y c t income
y c t

 
 
 =
 
 
 

X
 

 
 This setup normally requires four lines of data.  But, an alternative way to arrange the same 
data would be in a single line of data, consisting of 
 

Choice(coded 0,1,2,3)  ca  ct  cb  cc  ta  tt  tb  tc  one  income 
 
from which it would be straightforward to construct the observation above. 

The command for this arrangement will contain the following to set this up:  First, the choice 
set is specified as follows: 
 
   ; Lhs =  the name of the choice variable (here, choice) 

  ; Choices = the list of J choice labels [coding of Lhs variable] 
 
The coding is contained in square brackets.  If the dependent variable is coded as consecutive 
integers, such as 0,1,2,3, then just put the first value in the brackets.  Thus, 0,1,2,3 is indicated with 
[0], while 1,2,3,4 is [1].  For our example, this is going to appear 
 
   ; Lhs = choice 
   ; Choices = air,train,bus,car [0] 
 
If the coding is some other set of integers, put the set of integers in the square brackets.  Suppose, for 
example, in our model, we eliminated train as a choice. Then, the coding might be [0,2,3]. 
 
NOTE:  It is only the square brackets in the ; Choices specification which indicates that you will be 
using this data arrangement instead of the standard one. 
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Second, for variables which provide attributes which vary by choice, such as cost and time 
above, a; Rhs specification must contain blocks of J variable names.  For the example, this might be 

 
   ; Rhs = cair,ctrain,cbus,ccar,tair,ttrain,tbus,tcar 
 
For variables which are to be interacted with alternative specific constants, as well as the constants 
themselves, use ; Rh2 instead of ; Rhs.  Thus, for the example above, we might use 
 
   ; Rh2 = one,income 
 
NOTE:  To request a set of alternative specific constants, include one in the Rh2 list, not the Rhs 
list. 
 
Notice that when these interactions are created, the last one in the set is dropped.  In the example 
above, only three constants and three income terms appear in the four choice model. 

Third, for the Rhs groups, a name is created for the group, attrib01, attrib02, and so on.  If 
you would like to provide your own names for the blocks, use 
 
   ; Attr = list of k labels 
 
To combine all of these in our example, we might use 
 

  ; Lhs = mode 
   ; Choices = air,train,bus,car [ 0 ] 

  ; Rhs  = cair,ctrain,cbus,ccar,tair,ttrain,tbus,tcar 
   ; Rh2 = one,income 

  ; Attr = cost,time 
 

The following options are unavailable when data are arranged on a single line: 
 

• Data scaling:  See Section N18.10. 
• Ranks data:  See Section N18.3 
• Keeping predictions, probabilities, inclusive values, etc.  See the relevant parts of Chapter N21. 
• Model: U(...) = spec...:  You must use ; Rhs and/or ; Rh2.  See Chapter N19. 
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N18.7 Converting One Line Data Sets for NLOGIT 
 
 Data for the several discrete choice models in NLOGIT are assumed to be arranged in a 
‘stack’ for each observation.  For example, suppose you are studying mode choice for transportation 
(of course), and your observation consists of the following (as in the preceding example): 
 

• The choice variable,  choice = 1, 2, or 3 for car, train, bus, 
• For each mode,  time, cost – note that this differs by choice 
• For the individual,  age, income – note that this does not differ by choice. 

 
NLOGIT would usually expect each observation in the sample to consist of three rows, such as the 
following 

   

                 choice time cost   age income
car 0       44   125    37    56.5

train           1       29    40    37    56.5
bus 0       56    25    37    56.6

 
 
 
  

. 

 
Suppose that your data were arranged not in this fashion, but in a single observation, as in 
 

 
2 44 29 56 125 40 25 37 56.6

choicei ctime ttime btime ccost tcost bcost agei incomei 
 
 

. 

 
The estimator in NLOGIT can handle either arrangement, but for several purposes it will usually be 
more convenient to use the first.  You can convert this one line observation to the three record format 
in order to use NLOGIT’s estimation programs.   There are two ways to do so.  NLOGIT provides a 
command that does the full conversion of the data set internally for you – essentially it creates a new 
data set for you.  The second way to convert the data set is to write a new data file (using NLOGIT’s 
commands) containing the necessary variables, and read in the newly created data set.  You could 
use this operation to create a data set for export as well.  We note, there are relatively few 
commercial packages available that do the kinds of modeling that you will do with NLOGIT – for 
several of the models, NLOGIT is unique.  As far as we are aware, other software generally use the 
more cumbersome single line format.  You will find the operation useful when you import data from 
other programs into NLOGIT. 
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N18.7.1 Converting the Data Set to Multiple Line Format 
 
 The single line format for multinomial choice  modeling is clumsy, and will become extremely 
unwieldy if the choice set has more than a few alternatives or the model has more than two or three 
attributes.  A utility program is provided for you to convert single line choice data to the more 
convenient format. 
 We wish to transform the data set so that one observation in the second form shown above 
becomes three observations in the first form above.  The general command is 
 
 NLCONVERT ; Lhs  = one or more choice variables 
   ; Choices = the J names for the choices in the choice set 
   ; Rhs  = K sets of J variable names – the attributes 
   ; Rh2 = M characteristics variables 
   ; Names = names for new choice variables, 
     names for new attribute variables, 
     names for new characteristic variables $   
   
For the example above, the command would be 
 
 NLCONVERT ; Lhs  = choicei 
   ; Choices = car,train,bus 
   ; Rhs  = ctime,ttime,btime,ccost,tcost,bcost 
   ; Rh2  = agei,incomei 
   ; Names = choice,time,cost,age,income $    
 
This command is set up to resemble a model command to make it simple to construct.  But, it does 
nothing but rearrange the data set.   
 Some points to note about NLCONVERT are: 
 

• It is only for choice settings with fixed numbers of choices for every observation 
 

• You can recode more than one choice variable with the other data 
 

• You can rearrange the entire data set, not just the variables for a particular model.  The 
appearance of the command as a model command is only for convenience. 
 

• After the data are converted, the new data are placed at the top of the data array, regardless 
of where they were before.  You can, for example, convert rows 201 to 250 in your data set.  
If this is a three choice setting, the new data will be observations 1 to 150. 
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There are also several conventions that must be followed: 
 

• The new names must not be in use for anything else already in your project, including other 
variables.  NLCONVERT cannot replace existing variables. 
 

• You must provide the ; Names and ; Choices specifications.  These are mandatory. 
 

• You must provide at least one of ; Rhs or ; Rh2 variable.  Either is optional, but at least one 
of the two must be present. 

 
• Note that the count of Rhs variables is an exact multiple of the number of choices in the ; 

Choices list. 
 

• The number of names in the ; Names list is the sum of 
 

° the number of Lhs variables 
° the number of sets of Rhs variables 
° the number of Rh2 variables. 

 
Note that the count of Rhs variables is an exact multiple of the number of choices in the ; Choices 
list. 
 When NLCONVERT is executed, the sample is reset to the number of observations in the 
new sample.  There is an additional option with NLCONVERT.  After the data are converted, you 
can discard the original data set with 
 
   ; Clear 
 
This leaves the entire data set consisting of the variables that are in your ; Names list.  (Use this with 
caution.  The operation cannot be reversed.) 
 To illustrate the operation of this command, suppose the data set consists of these three 
observations: 
 

 

1 2
2 3 44 29 56 125 40 25 37 56.6
1 1 19 44 20 160 18 50 42 98.6
3 2 28 55 15 85 50 9 10 22.0

choicei choicei ctime ttime btime ccost tcost bcost agei incomei 
 
 
 
 
 

. 

 
We wish to convert this data set to NLOGIT’s multiple line format.  There are three choices in the 
choice set, so there will be three rows of data for each observation.   
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The command and the results are as follows: 
 

IMPORT $ 
choicei1,choicei2,ctime,ttime,btime,ccost,tcost,bcost,agei,incomei 
2,3,44,29,56,125,40,25,37,56.6 
1,1,19,44,20,160,18,50,42,98.6 

 3,2,28,55,15, 85,50, 9,10,22.0 

 ENDDATA $ 
 NLCONVERT ; Lhs = choicei1,choicei2 
   ; Choices = car,train,bus 
   ; Rhs = ctime,ttime,btime,ccost,tcost,bcost 
   ; Rh2 = agei,incomei 
   ; Names = choice1,choice2,time,cost,age,income ; Clear $ 
 

 
Figure N18.1  Converted Data Set 

 

================================================================= 
Data Conversion from One Line Format for NLOGIT 
Original data were cleared. This is now the whole data set. 
The new sample contains      9 observations. 
================================================================= 
Choice set in new data set has  3 choices: 
CAR      TRAIN    BUS 
----------------------------------------------------------------- 
There were  2 choice variables coded 1,..., 3 converted to binary 
Old variable = CHOICEI1, New variable = CHOICE1 
Old variable = CHOICEI2, New variable = CHOICE2 
----------------------------------------------------------------- 
There were  2 sets of variables on attributes converted.  Each 
set of  3 variables is converted to one new variable 
New Attribute variable TIME     is constructed from 
CTIME    TTIME    BTIME 
New Attribute variable COST     is constructed from 
CCOST    TCOST    BCOST 
----------------------------------------------------------------- 
There were  2 characteristics that are the same for all choices. 
Old variable = AGEI    , New variable = AGE 
Old variable = INCOMEI , New variable = INCOME 
================================================================= 
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N18.7.2 Writing a Multiple Line Data File for NLOGIT 
 
 If you need to create a data file in the multiple line format, you can, of course, use 
NLCONVERT, then just use WRITE to create the file.  The following shows a way that you can 
bypass NLCONVERT if you wish.  The first command creates the three choice variables (one will 
appear in each row of the new data set). 
 
 CREATE ; car = (choice=1) ; train = (choice=2) ; bus = (choice=3) $ 
 
The next command writes out the 15 variables, but only allows five items to appear on each line, 
which is what you need to recreate the data file. 
 
 WRITE ; car, ctime, ccost, age,  income, 
     train, ttime, tcost, age,  income, 
     bus, btime, bcost, age,  income 
   ; File = whatever you choose 
   ; Format = (exactly 5 format codes, not 15)  $ 
 
For example, ; Format = ( 5F10.3).  See Chapter R3 for discussion of using formats for reading and 
writing data files. 
 The WRITE command takes advantage of a very useful feature of this type of formatting.  
The WRITE command instructs NLOGIT to write 15 values, but it provides only five format codes.  
What happens is that the program will write the first five values according to the format given, then 
start over in the same format, on a new line.  That is exactly what we want.  This WRITE command 
writes three lines per observation. When it is done, the data can be read back into NLOGIT with no 
further processing necessary, in the format required for NLOGIT. 
 

N18.8 Merging Invariant Variables into a Panel 
 
 Some panel data sets contain variables that do not vary across the observations in a group.  A 
common example is the data shown in the preceding two sections.  Some variables in the data set 
will be attributes of the choices, and, as such, will be different for each choice.  Others may be 
characteristics of the individual, and will, therefore, be repeated on each record in the panel.  
NLOGIT allows you to keep separate data files for the variable and invariant data.  This may result in 
a large amount of space saving.  The data may be merged when they are read into NLOGIT, rather 
than in the data set.  For example, consider a panel with three individuals, and a variable number of 
observations per individual, two, then three, then two.  The two data sets might look like 
 

 
       File=var.dat            File=invar.dat 
       Variable data           Invariant data 
  xyniz 
  ind=1  1.1  4  2             ind=1   100.7 
         1.2  2  2             ind=2    93.6 
  ind=2  3.7  8  3             ind=3    88.2 
         4.9  3  3 
         5.0  1  3 
  ind=3  0.1  2  2 
         1.2  5  2 
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Note the usual count variable for handling panels.  To merge these files, use this setup 
 
 READ   ; File = var.dat ; Nobs = 7 ; Nvar = 3  ; Names = x,y,ni $ 
 
This reads the original panel data set.  Now, to expand the invariant data, the syntax is 
 
 READ   ; File = invar.dat ; Nobs = 3 ; Nvar = 1 ; Names = z ; Group = ni $ 
 
The new feature is the ; Group = ... specification.  ; Group specifies either a count variable, as 
above, or a fixed group size, as usual for NLOGIT’s handling of panel data sets.  The resulting data 
will be 
 
                  x   y  ni    z 
          ind=1  1.1  4  2   100.7 
                 1.2  2  2   100.7 
          ind=2  3.7  8  3    93.6 
                 4.9  3  3    93.6 
                 5.0  1  3    93.6 
          ind=3  0.1  2  2    88.2 
                 1.2  5  2    88.2 
 

 
Note the following checks and errors:  
 

• Nobs must be given on the second READ command. 
 

• Nobs must match exactly the number of groups in the existing data set. 
 

• The existing panel must be properly blocked out by the ; Groups variable or by a constant 
group size. 

 
• This form may not be used with spreadsheet files. 

 
• This form may not be used to read data ; By Variables. 

 
• This form may not be used with the APPEND command. 

 
• The first data set could be read with a simple IMPORT ; File = var.dat $ command, 

however, the second requires a fully specified READ command because of the merging 
feature. 
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N18.9 Modeling Choice Strategy 
 

 In some occasions in survey data, particularly in stated preference experiments, respondents 
will indicate that they did not consider certain attributes among a set of attributes in making their 
choices.  When this aspect of the data is known, it has been conventional to insert zeros for the 
attribute in the choice model, thereby to remove that attribute from the utility function.  However, in 
fact, that does not remove the attribute from the choice probability; it forces it to enter with a 
peculiar, possibly extreme value.  Consider, for example, a price variable.  If a respondent indicates 
that they ignored price in a choice, then setting the price to zero in the choice set would force an 
extreme value on the choice process. Hensher, Rose, and Greene (2005b) argued that if a respondent 
truly ignores an attribute in a choice situation, then what should be zero in the choice model is not 
the attribute, but its coefficient in the utility function.  That restriction definitely removes the 
attribute from the choice consideration by taking it out of the model altogether. 
 Accommodating this idea requires, in essence, that there be a possibly different model for 
each respondent. That is, one with possibly different zero restrictions imposed for different 
individuals.  NLOGIT allows you to automate precisely this formulation in all discrete choice models 
with a special data coding. 
 

For respondents which ignore attributes (it must be known in the data) simply code the 
attribute with value -888 for this respondent. 

 

With this data convention, the program autodetects this feature and adjusts the model accordingly.  
You do not have to add any other codes to any NLOGIT commands to signal this aspect of the data.  
The model output will contain a diagnostic box noting when this option is being used when NLOGIT 
finds these values in the data.  Some aspects of this convention are: 
 

• At least some respondents must actually consider the attribute.  It cannot be omitted from the 
model for everyone. 
 

• In the multinomial, multiperiod probit model, if an attribute is ever ignored, it must be 
ignored in all periods.  This is not the case for LCM or RPL which use repeated choice 
situation data. A respondent may ignore attributes in some choice situations (say the later 
ones in an experiment) and not in others (say the early ones). 
 

• In nested logit models, this feature can only be used at the lowest, twig level of the tree. It 
will not be picked up if it used at branch or higher levels.  For example, in nested logit  
models, one often puts the demographic data in the model at the branch level.  This feature 
will not be picked up in branch level variables. 

 

• In computing elasticities, if ; Means is used, it may distort the means slightly.  How much so 
depends on how many observations are in use and how often the attribute is ignored. No 
generalizations are possible. 

 

• In computing descriptive statistics with the ; Describe option, this may distort the means 
because the -888 values are not skipped, they are changed to 0.0.  Output will contain a 
warning to this effect if it is noticed. 
 

• In models that can produce person specific parameters (mixed logit, latent class), the saved 
parameters for the individual will contain the requested zeros if the indicated attribute is 
noted as not used. 
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N18.10 Scaling the Data 
 
 In some applications involving stated preference data, it is useful to estimate the model with 
different scales of the same data.  That is, if all of the data on all attributes are collected in a matrix, 
X, then we estimate the discrete choice model with the data set 
 
   X* =  θX, 
 
for different values (near 1.0) of the scalar θ.  There are two ways to do this.  Suppose the attributes 
in X are named x1, x2, ..., xk.  To set up the procedure, we create a placeholder for X*: 
 
 CREATE  ; x1s = x1 ; x2s = x2 ; ... $ 
 
Now, define the matrices: 
 
 NAMELIST  ; x = x1, x2,..., xk 
   ; xs = x1s, x2s, ... , xks $ 
 
Finally, define a procedure which sets up the NLOGIT estimation in terms of the variables in xs 
instead of x, along with a MATRIX command that does the scaling: 
 
 PROCEDURE 
    CREATE   ; xs = x $ 
    MATRIX ; xs = Xmlt(theta) $ 
    NLOGIT ; ... $ 
 ENDPROCEDURE 
 
Now, the model can be fit with any desired scaling of the data with the command 
 
 EXECUTE ; theta = the desired value $ 
 
 NLOGIT also provides a more fully automated procedure for scaling when you wish to 
change only some of the variables in a model.  You can specify as part of the command 
 
   ; Scale ( list of variables ) = θlow , θhigh , number of points. 
 
This requests NLOGIT to examine ‘number of points’ equally spaced values ranging from θlow to 
θhigh.  The value associated with the highest value of the log likelihood is then used to reestimate the 
model.  (No output is produced during the search.)  You may also specify a second round, finer 
search with 
   ; Scale (list of variables ) = θlow , θhigh , number of points , nfine. 
 
If you specify the second round search (nfine), evenly spaced points ranging from the adjacent 
values below and above the value found in the first search are examined to try to improve the value 
of the log likelihood. For example, if you specify the grid .5,1.5,11,11, the first search will examine 
the values .5, .6, ..., 1.5.  If the best value were found at, say, 1.2, then the finer search would 
examine 1.10, 1.12, .., 1.30. 
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N18.11 Data for the Applications 
 
 The documentation of the NLOGIT program in the chapters to follow includes numerous 
applications based on the data set clogit.dat, that is distributed with NLOGIT.  These data are a 
survey of the transport mode chosen by a sample of 210 travelers between Sydney and Melbourne 
(about 500 miles) and other points in nonmetropolitan New South Wales.  Data for NLOGIT will 
generally consist of a record (row of data) for each alternative in the choice set, for each individual.  
Thus, the data file contains 210 observations, or 840 records.  The variables in the data set are as 
follows: 
 

Original Data 
 
 mode =  0/1 for four alternatives: air, train, bus, car 
      (this variable equals one for the choice made, labeled choice below), 
 ttme =  terminal waiting time, 
 invc =  invehicle cost for all stages, 
 invt =  invehicle time for all stages, 
 gc =  generalized cost measure = Invc + Invt × value of time, 
 chair =  dummy variable for chosen mode is air, 
 hinc =  household income in thousands, 
 psize =  traveling party size. 
 

Transformed variables 
 
 aasc =  choice specific dummy for air (generated internally), 
 tasc =  choice specific dummy for train, 
 basc =  choice specific dummy for bus, 
 casc =  choice specific dummy for car, 
 hinca =  hinc×aasc, 
 psizea =  psize×aasc. 
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The table below lists the first 10 observations in the data set.  In the terms used here, each 
‘observation’ is a block of four rows.  The mode chosen in each block is boldfaced. 
 
mode  choice  ttme   invc      invt         gc   chair  hinc  psize  aasc tasc basc casc  hinca  psizea  obs. 
 
Air   0   69    59   100    70   0   35   1   1   0   0   0  35   1    i=1 
Train 0   34    31   372    71   0   35   1   0   1   0   0   0   0   
Bus   0   35    25   417    70   0   35   1   0   0   1   0   0   0   
Car   1    0    10   180    30   0   35   1   0   0   0   1   0   0        

Air   0   64    58    68    68   0   30   2   1   0   0   0  30   2    i=2 
Train 0   44    31   354    84   0   30   2   0   1   0   0   0   0   
Bus   0   53    25   399    85   0   30   2   0   0   1   0   0   0   
Car   1    0    11   255    50   0   30   2   0   0   0   1   0   0     

Air   0   69   115   125   129   0   40   1   1   0   0   0  40   1    i=3 
Train 0   34    98   892   195   0   40   1   0   1   0   0   0   0   
Bus   0   35    53   882   149   0   40   1   0   0   1   0   0   0   
Car   1    0    23   720   101   0   40   1   0   0   0   1   0   0         

Air   0   64    49    68    59   0   70   3   1   0   0   0  70   3    i=4 
Train 0   44    26   354    79   0   70   3   0   1   0   0   0   0   
Bus   0   53    21   399    81   0   70   3   0   0   1   0   0   0   
Car   1    0     5   180    32   0    0   3   0   0   0   1   0   0         

Air   0   64    60   144    82   0   45   2   1   0   0   0  45   2    i=5 
Train 0   44    32   404    93   0   45   2   0   1   0   0   0   0   
Bus   0   53    26   449    94   0   45   2   0   0   1   0   0   0   
Car   1    0     8   600    99   0   45   2   0   0   0   1   0   0         

Air   0   69    59   100    70   0   20   1   1   0   0   0  20   1    i=6 
Train 1   40    20   345    57   0   20   1   0   1   0   0   0   0   
Bus   0   35    13   417    58   0   20   1   0   0   1   0   0   0   
Car   0    0    12   284    43   0   20   1   0   0   0   1   0   0    

Air   1   45   148   115   160   1   45   1   1   0   0   0  45   1    i=7 
Train 0   34   111   945   213   1   45   1   0   1   0   0   0   0   
Bus   0   35    66   935   167   1   45   1   0   0   1   0   0   0   
Car   0    0    36   821   125   1   45   1   0   0   0   1   0   0        

Air   0   69   121   152   137   0   12   1   1   0   0   0  12   1    i=8 
Train 0   34    52   889   149   0   12   1   0   1   0   0   0   0   
Bus   0   35    50   879   146   0   12   1   0   0   1   0   0   0   
Car   1    0    50   780   135   0   12   1   0   0   0   1   0   0      

Air   0   69    59   100    70   0   40   1   1   0   0   0  40   1    i=9 
Train 0   34    31   372    71   0   40   1   0   1   0   0   0   0   
Bus   0   35    25   417    70   0   40   1   0   0   1   0   0   0   
Car   1    0    17   210    40   0   40   1   0   0   0   1   0   0         

Air   0   69    58    68    65   0   70   2   1   0   0   0  70   2    i=10 
Train 0   34    31   357    69   0   70   2   0   1   0   0   0   0   
Bus   0   35    25   402    68   0   70   2   0   0   1   0   0   0   
Car   1    0     7   210    30   0   70   2   0   0   0   1   0   0        
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N18.12 Merging Revealed Preference (RP) and Stated 
Preference (SP) Data Sets 
 

For applications in which you wish to merge RP and SP data sets, we assume that a data set 
is built up for each individual in the sample from an RP observation and one or more SP 
observations, for the same person.  To construct the data for the simulation, you will require two 
variables: 
 

1. a numeric identification (id) that is the same for the RP and SP observations, 
 

2. a treatment or choice set type index, coded 0 for the RP observation and 1,...,T (may vary by 
person) for the SP data. 

 
It is assumed that there is exactly one RP observation and any number up to T SP observations.  The 
type code need not obey any particular convention; you may code it any way you wish.  What is 
essential is that this type code equal zero for the RP observation and some positive value for the SP 
observation(s).  The SP observations may have the same or different values for this coding.  From 
this information NLOGIT can deduce the form of the choice set. 
 
NOTE: This feature of the simulator cannot be used if the data are already arranged as  
RP,SP1,RP,SP2,RP,SP3,RP…  That is, the RP observation must not be repeated. 
 

The ; Choices = list specification in the model command must include the full universal 
choice list for both RP and SP.  In most applications of this sort, the RP observations will use one 
subset and the SP observations will use the remainder and there will be no overlap.  For example, the 
universal choice set might include a set of, say, five RP choices and 15 SP choices in which each RP 
choice setting involves some smaller number, say four, of the latter.  However, this partitioning is 
not necessary.  For example, you might have survey data in which variants on an existing choice set 
are presented to individuals, for example, as in ‘would you choose option A,B,C... if price were 
changed by ...?’.  The additional specification for NLOGIT will be 

 
   ; MergeSPRP (id   = name of unique identifier, 

            type = the name of the treatment indicator variable) 
 
where id is the unique identifying variable that links the SP and RP observations (or any 
observations associated with the same id from two data sets). 
 The effect of the preceding specification is to expand each observation into T combined sets 
of data, in the form shown above.  (NLOGIT wants to do the expansion itself.)  This does not 
actually modify your data set.  The observations are created temporarily during the computations. 
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N19: NLOGIT Commands and Results 
 
N19.1 Introduction 
 
 This and the next three chapters will describe the common features of the NLOGIT models 
and commands used to fit them.  Section N19.2 presents the generic command structure for 
NLOGIT.  The specification of models for NLOGIT follows the general pattern for model commands 
in LIMDEP.  Section N19.3 describes optional command specifications.  The different models, such 
as nested logit, mixed logit and multivariate probit, are requested by modifying the basic command.  
Section N19.4 describes output features, such as estimation results and elasticities, that are common 
to all the models.  The subsequent chapters, N20-N22 will provide greater details on the model 
specifications, including choice sets and utility functions in Chapter N20, partial effects and 
hypothesis tests in Chapter N21 and model simulations in Chapter N23.   
 NLOGIT is built around estimation of the parameters of the random utility model for discrete 
choice, 

U(choice j for individual i)  =  Uij  =  βij′xij  +  εij, j = 1,...,Ji, 
 
in which individual i makes choice j if Uij is the largest among the Ji utilities in the choice set.  The 
parameters in the model are the weights in the utility functions and the deeper parameters of the 
distribution of the random terms.  In some cases, the ‘taste’ parameters in the utility functions might 
vary across individuals and in most cases, they will vary across choices.  The latter is simple to 
accommodate just by merging all parameters into one grand β and redefining x with some zeros in 
the appropriate places.  But, for the former case, we will be interested in a lower level 
parameterization  that involves what are sometimes labeled the ‘hyperparameters.’  Thus, it might be 
the extreme case (as in the random parameters logit model) that βij  =  f(zi, ∆, Γ, β, vi) where ∆, Γ, β 
are lower level parameters, zi is observed data, and vi is a set of latent unobserved variables.  The 
parameters of the random terms will generally be few in number, usually consisting of a small 
number of scaling parameters as in the heteroscedastic logit model, but they might be quite 
numerous, again in the random parameters model.  In all cases, the main function of the routines is 
estimation of the structural parameters, then use of the estimated model for analysis of individual and 
aggregate behavior. 
 
N19.2 NLOGIT Commands 
 
 The essential command for the set of discrete choice models in NLOGIT is the same for all, 
with the exception of the model name: 
 
 Model   ; Lhs  = variable which indicates the choice made 
                  ; Choices = a set of J names for the set of choices  
      (utility functions) 
   ; Rhs = choice varying attributes in the utility functions  
   ; Rh2 = choice invariant variables, including one for ASCs $ 
 (or) 
   ; Model: utility specifications… $ 
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The various models are as follows, where either of the two forms given may be used: 
 
Model               Command         Alternative Command Form 
Conditional Logit   CLOGIT   NLOGIT 
Random Regret Logit   RRLOGIT   NLOGIT ; RRM 
Scaled Multinomial Logit  SMNLOGIT   NLOGIT ; SMNL 
Error Components Logit  ECLOGIT   NLOGIT ; ECM = ... 
Heteroscedastic Extreme Value  HLOGIT   NLOGIT ; HET 
Nested Logit    NLOGIT   NLOGIT ; Tree = ... 
Generalized Nested Logit  GNLOGIT   NLOGIT ; GNL 
Random Parameters Logit  RPLOGIT   NLOGIT ; RPL 
Generalized Mixed Logit  GMCLOGIT   NLOGIT ; GMX 
Nonlinear Random Parameters  NLRPLOGIT   NLOGIT ; NLRP = 
Latent Class Logit   LCLOGIT   NLOGIT ; LCM 
Latent Class Random Parameters LCRPLOGIT   NLOGIT ; RPL ; LCM 
Multinomial Probit   MNPROBIT   NLOGIT ; MNP 
 
The description to follow in the rest of this chapter applies equally to all models.  For convenience, 
we will use the generic NLOGIT command in most of the discussion, while you can use the specific 
model names in your estimation commands.    
 The command builders for these models can be found in Model:Discrete Choice.  There 
are several model options as shown in Figure N19.1 
  

 
Figure N19.1 Command Builders for NLOGIT Models 
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The Main and Options pages of the command builder for the conditional logit model are shown in 
Figures N19.2, N19.3 and N19.4. (Some features of the models, and the ECM model, are not 
provided by the command builders.  Most of the features of these models are much easier to specify 
in the editor using the command mode of entry.)  The model and the choice set are set up on the 
Main page.  The Rhs variables (attributes) and Rh2 variables (characteristics) are defined on the 
Options page.  Note in the two windows on the Options page, the Rhs variables of the model are 
defined in the left window and the Rh2 variables are specified in the right window. 
 

 
N19.2  Discrete Choice Command Builder Main Page 

 
 A set of exactly J choice labels must be provided in the command.  These are used to label 
the choices in the output.  The number you provide is used to determine the number of choices there 
are in the model.  Therefore, the set of the right number of labels is essential.  Use any descriptor of 
eight or fewer characters desired – these do not have to be valid names, just a set of labels, separated 
in the list by commas. 
 
 The internal limit on J, the number of choices, is 100. 
 
 There are K attributes (Rhs variables) measured for the choices.  The sections below will 
describe variations of this for different formulations and options.  The total number of parameters in 
the utility functions will include K1 for the Rhs variables and (J-1)K2 for the Rh2 variables.  The total 
number of  utility function parameters is thus K = K1 + (J-1)K2. 
 
 The internal limit on K, the number of utility function parameters, is 100. 
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Figure N19.3  Specifying Choices on Command Builder Main Page 

 

 
Figure N19.4  Options Page of Command Builder for Conditional Logit Model 

 

The random utility model specified by this setup is precisely of the form 
 

   Ui,j  =  β1xi,1 + β2xi,2 + ... + βK1xi,K1  +  γ1,jzi,1 + ... + γK2,jzi,K2 + εi,j, 
 

where the x variables are given by the Rhs list and the z variables are in the Rh2 list.  By this 
specification, the same attributes and the same characteristics appear in all equations, at the same 
position.  The parameters, βk appear in all equations, and so on.  There are various ways to change 
this specification of the utility functions – i.e., the Rhs of the equations that underlie the model, and 
several different ways to specify the choice set.  These will be discussed at several points below. 



N19: NLOGIT Commands and Results  N-337 

N19.3 Other Optional Specifications on NLOGIT Commands 
 
 The NLOGIT command operates like other LIMDEP model commands.  The following lists 
command features and options that are used with this command.  There are numerous additional 
command specifications that are used with the specific models fit with NLOGIT, such as ; RPM to 
specify a random parameters model, and ; Umax which is a technical specification if it is necessary 
to control the accumulation of rounding error in estimating certain models. 
 
Controlling Output from Model Commands 
 

; Par  saves person specific parameter vectors, used with the random parameters 
 logit model and heteroscedastic extreme value model. 

; Effects: spec displays partial effects and elasticities of probabilities.  
; Table = name adds model results to stored tables. 

 
Robust Asymptotic Covariance Matrices 
 

; Covariance Matrix displays estimated asymptotic covariance matrix (normally not shown), 
   same as ; Printvc. 

 ; Cluster = spec computes robust cluster corrected asymptotic covariance matrix. 
 ; Robust computes robust sandwich estimator for asymptotic covariance matrix. 
 
Optimization Controls for Nonlinear Optimization 
 

; Start = list provides starting values for a nonlinear model. 
 ; Tlg [ = value] sets the convergence value for convergence on the gradient. 
 ; Tlf [ = value] sets the convergence value for function convergence. 
 ; Tlb [ = value] sets the convergence value for convergence on change in parameters. 
 ; Alg = name specifies optimization method. Newton’s method is best. BFGS is  
    occasionally needed. 
 ; Maxit = n sets the maximum iterations. 
 ; Output = n requests technical output during iterations; the level ‘n’ is 1, 2, 3 or 4. 
 ; Set   keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  lists predicted probabilities and predicted outcomes with model results. 
 ; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
    (Several other similar specifications are used with NLOGIT.) 
 ; Prob = name keeps probabilities as a new (or replacement) variable. 
 
Hypothesis Tests and Restrictions 
 

; CML: spec  defines a constrained maximum likelihood estimator. 
; Test: spec defines a Wald test of linear restrictions. 
; Wald: spec defines a Wald test of linear restrictions, same as ; Test: spec. 
; Rst = list imposes fixed value and equality constraints. 

 ; Maxit = 0 ; Start = the restricted values specifies Lagrange multiplier test. 
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N19.4 Estimation Results 
 
 This section will detail the common results produced by the different models in NLOGIT.   
 
N19.4.1 Descriptive Headers for NLOGIT Models 
 
 The output for the NLOGIT estimators may contain a description of the model before the 
statistical results.  The description consists of a table that shows the sample proportions and the tree 
structure if you fit a nested logit model, and a table that lists the components of the utility functions.  
You can request these listings by adding 
 
   ; Show Model 
 
to your NLOGIT command.  (We used this device in several earlier examples.)   Starting values for 
the iterations are either zeros or the values you provide with ; Start = list.  As such, there is no initial 
listing of OLS results.  Output begins with the final results for the model.  Here is a sample:  The 
command is 
 

NLOGIT ; Lhs  = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc 

   ; Rh2 = one,hinc 
   ; Show Model $ 
 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .27619| 1.000| 
|TRAIN     .30000| 1.000| 
|BUS       .14286| 1.000| 
|CAR       .28095| 1.000| 
+----------------+------+--- 
+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| INVC     INVT     GC       A_AIR    AIR_HIN1  | 
|        |Row  2| A_TRAIN  TRA_HIN2 A_BUS    BUS_HIN3           | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| INVC     INVT     GC       Constant HINC      | 
|        |     2| none     none     none     none               | 
|TRAIN   |     1| INVC     INVT     GC       none     none      | 
|        |     2| Constant HINC     none     none               | 
|BUS     |     1| INVC     INVT     GC       none     none      | 
|        |     2| none     none     Constant HINC               | 
|CAR     |     1| INVC     INVT     GC       none     none      | 
|        |     2| none     none     none     none               | 
+---------------------------------------------------------------+ 
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The initial header includes a display of the tree structure when you fit a nested logit model.  For 
example, the command 

 
NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  

; Rhs = invc,invt,gc 
   ; Rh2 = one,hinc 
   ; Tree = Public[(air),(train,bus)],Private[(car)] 
   ; Show Model $ 
 
produces the header: 
 
Tree Structure Specified for the Nested Logit Model 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
----------------+----------------+----------------+----------------+------+--- 
Trunk    (prop.)|Limb     (prop.)|Branch   (prop.)|Choice   (prop.)|Weight|IIA 
----------------+----------------+----------------+----------------+------+--- 
Trunk{1} 1.00000|PUBLIC    .71905|B(1|1,1)  .27619|AIR       .27619| 1.000| 
                |                |B(2|1,1)  .44286|TRAIN     .30000| 1.000| 
                |                |                |BUS       .14286| 1.000| 
                |PRIVATE   .28095|B(1|2,1)  .28095|CAR       .28095| 1.000| 
----------------+----------------+----------------+----------------+------+--- 
 
(Note, this particular model is not identified – we specified it only for purpose of illustrating the 
display of its tree structure.) 
 
N19.4.2 Standard Model Results 
 
 Estimation results for the model commands consist of the initial display of diagnostic 
followed by notes about the model, then the estimated coefficients.  The preceding command, 
without the tree structure or the initial echo of the model specification,  
 

NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc 

   ; Rh2 = one,hinc $ 
 
produces the following results: 
 
Normal exit from iterations. Exit status=0. 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -246.10979 
Estimation based on N =    210, K =   9 
Inf.Cr.AIC  =    510.2 AIC/N =    2.430 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .1327 .1201 
Chi-squared[ 6]          =     75.29796 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.04613***      .01665    -2.77  .0056     -.07876   -.01349 
    INVT|    -.00839***      .00214    -3.92  .0001     -.01258   -.00419 
      GC|     .03633**       .01478     2.46  .0139      .00737    .06530 
   A_AIR|   -1.31602*        .72323    -1.82  .0688    -2.73353    .10148 
AIR_HIN1|     .00649         .01079      .60  .5477     -.01467    .02765 
 A_TRAIN|    2.10710***      .43180     4.88  .0000     1.26079   2.95341 
TRA_HIN2|    -.05058***      .01207    -4.19  .0000     -.07424   -.02693 
   A_BUS|     .86502*        .50319     1.72  .0856     -.12120   1.85125 
BUS_HIN3|    -.03316**       .01299    -2.55  .0107     -.05862   -.00770 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
NOTE:  (This is one of our frequently asked questions.)  The ‘R-squareds’ shown in the output are 
R2s in name only.  They do not measure the fit of the model to the data.  It has become common for 
researchers to report these with results as a measure of the improvement that the model gives over 
one that contains only a constant.  But, users are cautioned not to interpret these measures as 
suggesting how well the model predicts the outcome variable.  It is essentially unrelated to this. 
 
 To underscore the point, we will examine in detail the computations in the diagnostic 
measures shown in the box that precedes the coefficient estimates.  Consider the example below, 
which was produced by fitting a model with five coefficients subject to two restrictions, or three free 
coefficients – npfree = 3.  The effect is achieved by specifying  
 

NLOGIT ; Lhs = mode ; Show 
; Choices = air,(train),(bus),car 
; Rhs = gc,ttme ; Rh2 = one $ 

 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  93 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Sample proportions are marginal, not conditional. 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .49573| 1.000| 
|TRAIN     .00000| 1.000|* 
|BUS       .00000| 1.000|* 
|CAR       .50427| 1.000| 
+----------------+------+--- 
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+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| GC       TTME     A_AIR    A_TRAIN  A_BUS     | 
+--------+------+-----------------------------------------------+ 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| GC       TTME     Constant none     none      | 
|TRAIN   |     1| GC       TTME     none     Constant none      | 
|BUS     |     1| GC       TTME     none     none     Constant  | 
|CAR     |     1| GC       TTME     none     none     none      | 
+---------------------------------------------------------------+ 
Normal exit:   6 iterations. Status=0, F=    62.58418 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function       -62.58418 
Estimation based on N =    117, K =   3 
Inf.Cr.AIC  =    131.2 AIC/N =    1.121 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only    -81.0939  .2283 .2079 
Chi-squared[ 2]          =     37.01953 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped   93 obs 
Restricted choice set. Excluded choices are 
TRAIN    BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|     .01320*        .00695     1.90  .0574     -.00042    .02682 
    TTME|    -.07141***      .01605    -4.45  .0000     -.10286   -.03996 
   A_AIR|    3.96117***      .98004     4.04  .0001     2.04032   5.88201 
 A_TRAIN|        0.0    .....(Fixed Parameter)..... 
   A_BUS|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
There are 210 individuals in the data set, but this model was fit to a restricted choice set which 
reduced the data set to n = 210 - 93 = 117 useable observations.  The original choice set had Ji = 4 
choices, but two were excluded, leaving Ji = 2 in the sample.  The log likelihood is -62.58418.  The 
‘constants only’ log likelihood is obtained by setting each choice probability to the sample share for 
each outcome in the choice set.  For this application, those are 0.49573 for air and 0.50427 for car.  
(This computation cannot be done if the choice set varies by person or if weights or frequencies are 
used.)   
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 Thus, the log likelihood for the restricted model is  
 
 Log L0  =  117 ( 0.49573 × log 0.49573 + 0.50427 × log 0.50427 )  =  -81.09395. 
 
The ‘R2’ is 1 - (-62.54818/-81.0939) = 0.22829 (including some rounding error).  The adjustment 
factor is  
 
 K  =  (Σi Ji - n) / [(Σi Ji - n) - npfree]  =  (234 - 117)/(234 - 117 - 3)  =  1.02632. 
 
and the ‘Adjusted R2’ is 1 - K(log L /LogL0); 
 
 Adjusted R2  =  1  -  1.02632 (-62.54818/-81.0939)  =  0.20794. 
 
N19.4.3 Retained Results 
 
 Results kept by this estimator are: 
 
 Matrices: b and varb =  coefficient vector and asymptotic covariance matrix 
 
 Scalars:  logl  =  log likelihood function 
   nreg  =  N, the number of observational units 
   kreg  =  the number of Rhs variables 
 
 Last Model: b_variable =  the labels kept for the WALD command 
 
 In the Last Model, groups of coefficients for variables that are interacted with constants get 
labels choice_variable, as in trai_gco.  (Note that the names are truncated – up to four characters for 
the choice and three for the attribute.)  The alternative specific constants are a_choice, with names 
truncated to no more than six characters.  For example, the sum of the three estimated choice specific 
constants could be analyzed as follows: 
 

NLOGIT ; Lhs = mode ; Show 
; Choices = air,train,bus,car 
; Rhs = gc,ttme ; Rh2 = one $ 

 WALD  ; Fn1 = a_air + a_train + a_bus $ 
 
----------------------------------------------------------------------------- 
WALD procedure. Estimates and standard errors 
for nonlinear functions and joint test of 
nonlinear restrictions. 
Wald Statistic             =     78.54713 
Prob. from Chi-squared[ 1] =       .00000 
Functions are computed at means of variables 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
WaldFcns|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
 Fncn(1)|    12.9101***     1.45668     8.86  .0000     10.0550   15.7651 
--------+-------------------------------------------------------------------- 
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N19.4.4 Descriptive Statistics for Alternatives 
 
 You may request a set of descriptive statistics for your model by adding 
 
   ; Describe 
 
to the model command.  For each alternative, a table is given which lists the nonzero terms in the 
utility function and the means and standard deviations for the variables that appear in the utility 
function.  Values are given for all observations and for the individuals that chose that alternative.  
For the example shown above, the following tables would be produced: 
 

NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc ; Rh2 = one,hinc 

   ; Show Model  
   ; Describe $ 
 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative AIR                  | 
|     Utility Function          |                    |     58.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose AIR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   85.252     27.409|   97.569    31.733 | 
| INVT         -.0084  INVT     |  133.710     48.521|  124.828    50.288 | 
| GC            .0363  GC       |  102.648     30.575|  113.552    33.198 | 
| A_AIR       -1.3160  ONE      |    1.000       .000|    1.000      .000 | 
| AIR_HIN1      .0065  HINC     |   34.548     19.711|   41.724    19.115 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative TRAIN                | 
|     Utility Function          |                    |     63.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose TRAIN    | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   51.338     27.032|   37.460    20.676 | 
| INVT         -.0084  INVT     |  608.286    251.797|  532.667   249.360 | 
| GC            .0363  GC       |  130.200     58.235|  106.619    49.601 | 
| A_TRAIN      2.1071  ONE      |    1.000       .000|    1.000      .000 | 
| TRA_HIN2     -.0506  HINC     |   34.548     19.711|   23.063    17.287 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative BUS                  | 
|     Utility Function          |                    |     30.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose BUS      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   33.457     12.591|   33.733    11.023 | 
| INVT         -.0084  INVT     |  629.462    235.408|  618.833   273.610 | 
| GC            .0363  GC       |  115.257     44.934|  108.133    43.244 | 
| A_BUS         .8650  ONE      |    1.000       .000|    1.000      .000 | 
| BUS_HIN3     -.0332  HINC     |   34.548     19.711|   29.700    16.851 | 
+-------------------------------------------------------------------------+ 
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+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative CAR                  | 
|     Utility Function          |                    |     59.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose CAR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   20.995     14.678|   15.644     9.629 | 
| INVT         -.0084  INVT     |  573.205    274.855|  527.373   301.131 | 
| GC            .0363  GC       |   95.414     46.827|   89.085    49.833 | 
+-------------------------------------------------------------------------+ 
 
 You may also request a cross tabulation of the model predictions against the actual choices. 
(The predictions are obtained as the integer part of Σt P̂ jt yjt.)  Add 
 
   ; Crosstab 
 
to your model command.  For the same model, this would produce the two sets of results below.  
Note the first cross tabulation is based on the fitted probabilities while the second is based on the 
observed choices. 
 
+-------------------------------------------------------+ 
| Cross tabulation of actual choice vs. predicted P(j)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i).  | 
| Column totals may be subject to rounding error.       | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            19            13             8            18            58 
   TRAIN|            12            30             9            12            63 
     BUS|            10             8             6             6            30 
     CAR|            17            12             7            23            59 
--------+---------------------------------------------------------------------- 
   Total|            58            63            30            59           210 
 
+-------------------------------------------------------+ 
| Cross tabulation of actual y(ij) vs. predicted y(ij)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is N(k,j,i)=Sum(i=1,...,N) Y(k,j,i).  | 
| Predicted y(ij)=1 is the j with largest probability.  | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            23            15             0            20            58 
   TRAIN|             8            49             0             6            63 
     BUS|            13            12             1             4            30 
     CAR|            15            13             0            31            59 
--------+---------------------------------------------------------------------- 
   Total|            59            89             1            61           210 
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N19.5 Calibrating a Model 
 
 When the data consists of two subsets, for example an RP data set and a counterpart SP data 
set, it is sometimes useful to fit the model with one of the data sets, then refit the second one while 
retaining the original coefficients, and just adjusting the constants.  Consider the application below: 
 
 SAMPLE  ; 1-420 $ 
 CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Model: U(air)  = aa + gc * gc + ttme * ttme + invt * invt / 
    U(train) = at  + gc * gc + ttme * ttme  / 
    U(bus)   = ab + gc * gc + ttme * ttme  / 
    U(car)   =    + gc * gc + ttme * ttme  $ 
 SAMPLE  ; 421-840 $ 
 CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Model: U(air)   = aa + gc[ ] * gc + ttme[ ] * ttme + invt[ ] * invt / 
    U(train) = at  + gc * gc + ttme * ttme / 
    U(bus)   = ab + gc * gc + ttme * ttme / 
    U(car)   =    + gc * gc + ttme * ttme $ 
 
The model is first fit with the first half of the data set (observations 1 - 105).  Then, for the second 
estimation, we want to refit the model, but only recompute the constant terms but keep the 
previously estimates slope parameters.  The device to use for the second model is the ‘[ ]’ 
specification, which indicates that you wish to use the previously estimated parameters.  The 
commands above will, in principle, produce the desired result, with one consideration.  Newton’s 
method is very sensitive to the starting values for this model, and with the constraints imposed in the 
second model, will generally fail to converge.  (See the example below.)  The practical solution is to 
change the algorithm to BFGS, which will then produce the desired result.  You can do this just by 
adding 
   ; Alg = BFGS 
 
to the second command.  An additional detail is that the second model will now replace the first as 
the ‘previous’ model.  So, if you want to do a second calibration, you have to refit the first model.  
To preempt this, you can use 
 
   ; Calibrate 
 
in the second command.  This specification changes the algorithm and also instructs NLOGIT not to 
replace the previous estimates with the current ones.  Three notes about this procedure: 
 

• You may use this device with any discrete choice model that you fit with NLOGIT. 
• The second sample must have the same configuration as the first. 
• The device can only be used to fix the utility function parameters. 

 
The third point implies that if you do this with a random parameters model, the random parameters 
will become fixed – have the variances fixed at zero. 
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 The commands above (with the addition of ; Calibrate to the second CLOGIT command) 
produce the following results:  (Some parts of the results are omitted.)  The note before the second 
set of results has been produced because the estimator converges very quickly – this will usually 
happen when the model contains only the alternative specific constants. 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function       -93.51621 
Estimation based on N =    105, K =   6 
Inf.Cr.AIC  =    199.0 AIC/N =    1.896 
Number of obs.=   105, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      AA|    7.94929***     1.44243     5.51  .0000     5.12217  10.77641 
      GC|    -.01705***      .00626    -2.72  .0064     -.02931   -.00478 
    TTME|    -.08983***      .01452    -6.19  .0000     -.11829   -.06136 
    INVT|    -.01974**       .00775    -2.55  .0109     -.03494   -.00455 
      AT|    4.31669***      .64859     6.66  .0000     3.04549   5.58790 
      AB|    2.60715***      .72991     3.57  .0004     1.17656   4.03774 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      AA|-.22520D+33***     1.00000 ********  .0000 -.22520D+33  -.22520D+33 
      GC|    -.01705    .....(Fixed Parameter)..... 
    TTME|    -.08983    .....(Fixed Parameter)..... 
    INVT|    -.01974    .....(Fixed Parameter)..... 
      AT| .24951D+34    .....(Fixed Parameter)..... 
      AB| .68897D+33    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function       -97.65109 
Number of obs.=   105, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      AA|    8.06593***      .29707    27.15  .0000     7.48368   8.64817 
      GC|    -.01705    .....(Fixed Parameter)..... 
    TTME|    -.08983    .....(Fixed Parameter)..... 
    INVT|    -.01974    .....(Fixed Parameter)..... 
      AT|    2.94882***      .34838     8.46  .0000     2.26600   3.63164 
      AB|    3.09656***      .31503     9.83  .0000     2.47910   3.71402 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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N20: Choice Sets and Utility Functions 
 
N20.1 Introduction 
 
 Chapter N17 described how to fit the generic form of the multinomial logit model for 
multinomial choice. This chapter presents some modifications of the basic command that 
accommodate more general choice sets (possibly varying across individuals) and a convenient 
alternative command format that allows more general specifications of the utility functions. 
 
N20.2 Choice Sets 
 
 Every multinomial model fit by NLOGIT must include a specification for the choice variable 
and a definition of the choice set.  The basic formulation would appear as 
 
   ; Lhs = the dependent, or choice variable 
   ; Choices = the names of the choices in the model 
 
Several variations on this formula appear in Sections N20.3 and N20.4.  In general, your dependent 
variable is the name of a variable which indicates by a one or zero whether a particular alternative is 
selected, or it gives the proportion or frequency of individuals sampled that selected a particular 
alternative.  When they are enumerated, the ; Choices list gives names and possibly sampling 
weights for the set of alternatives. 
 All command builders begin with these two specifications.  The discrete choice and nested 
logit models allow the full set of variants discussed in this section while the other command builders 
expect the simple form with a fixed choice set.  The Main page of the conditional logit command 
builder shown in Figure N20.1 illustrates.  (A similar Main page is used for the nested logit 
command builder.)  The command builder allows you to specify the choice variable and type of 
choice set in the three sections of this dialog box. 
 
NOTE:  The command builder for the multinomial probit, HEV and RPL models requires you to 
provide a fixed sized choice set.  This is a limitation of the command builder window, not the 
estimator.  With the exception of the multinomial probit model, this is not a requirement of the 
models themselves.  Only the multinomial probit model requires the number of choices to be fixed.  
For the HEV and RPL models, if you build your command in the text editor, rather than with the 
command builder, you may specify a variable choice set, as described in Section N20.2.1. 
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Figure N20.1  Main Page of Command Builder for Conditional Logit Model 

 
 In the standard case, data on the Lhs variable will consist of a column of J-1 zeros and a one 
for the choice made, when reading down the J rows of data for the individual.  We allow other types 
of data on the choice variable.  If you have grouped data, the values will be proportions or 
frequencies, instead.  For proportions data, within each observation (J data points), the values of the 
Lhs variable will sum to one when summed down the J rows.  (This will be the only difference in the 
grouped data treatment.)  With frequencies, the values will simply be a set of nonnegative integers.  
An example of a setting in which such data might arise would be in marketing, where the proportions 
might be market shares of several brands of a commodity.  Alternatively, the choice variable might 
be a set of ranks, in which case, instead of zeros and ones, the Lhs variable would take values 
1,2,...,J (not necessarily in that order) within, and reading down, each block. 
 The following modifications apply to all multinomial models that are fit with NLOGIT.  We 
use NLOGIT as the generic verb for this description.  Any of the others described in the next 
chapter will be treated the same.  Note, as well, the NLOGIT commands, which do not contain any 
additional model specifications, will be equivalent to and act like CLOGIT commands.  That is, the 
command, NLOGIT, with no additional model specifications is equivalent to CLOGIT.  (It is also 
the same as DISCRETE CHOICE, which although no longer used by NLOGIT, remains acceptable 
as the basic model verb.) 
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N20.2.1 Fixed and Variable Numbers of Choices 
 
 When every individual in the sample chooses from the same choice set, and all alternatives 
are available to all individuals, then the data set will appear as in the example developed in Chapter 
N17, and will consist of n sets of J ‘observations.’  You indicate this case with a command such as: 
   
 NLOGIT ; Lhs = the choice variable 
   ; Choices = ... a list of J names for the choices 
   ; ... the rest of the command $ 
For example, 
 
 NLOGIT ; Lhs = mode  
   ; Choices = air,train,bus,car 
   ; etc. $ 
 
A fixed choice set can be specified in the command builder as shown in Figure N20.2. 
 

 
  Figure N20.2  Fixed Choice Set Specified in Command Builder 
 
There are many cases in which the choice set will vary from one individual to another.  We consider 
the random choice model first in which the number of choices is not constant from one observation 
to the next.  Ranks data are considered later.   
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 Two possible arrangements that might produce variable sized choice sets are as follows: 
 

• There is a universal choice set, from which individuals make their choice.  But, not all 
choices are available to all individuals.  Consider, for example, the choice of travel mode 
among train, bus, car, ferry.  If respondents are observed at many different locations, one or 
more of the choices, such as ferry or train, might be unavailable to them, and those might 
vary from person to person.   In this case, there is a fixed set of J alternatives, but each 
individual chooses among their own Ji choices.  This is called a ‘labeled’ choice set. 

 
• Individuals each choose among their own set of Ji alternatives.  However, there is no 

universal choice set.  Consider, for example, the choice of which shopping center to shop at. 
If observations are taken in many different cities, we will observe numerous different choice 
sets, but there is no well defined universal choice set.  This is called an ‘unlabeled’ choice 
set. 
 

Unlabeled choice sets often arise in survey data, or ‘stated choice experiments.’  In a stated choice 
experiment, an individual might be offered a set of Ji alternatives that are only differentiated by their 
attributes.  Configurations of features in a choice set of cars or appliances might be such a case.  In 
this instance, the choices are simply numbered, 1,2,… 
 Any of these cases can be accommodated with NLOGIT.  For both cases, you will provide a 
variable which gives the number of choices for each observation.  This variable is then a second  
; Lhs specification. The command for an unlabeled choice set, which is the simpler case, becomes 
 
 NLOGIT  ; Lhs = y,nij 
   ; ... specification of the utility functions 
   ; ... the rest of the command $ 
 
Note that the ; Choices = list is not defined in the command, since in this case, there is no clearly 
defined choice set.  Nothing else need be changed.  NLOGIT does all of the accounting internally. In 
this case, it is simply assumed that each individual has their own choice set.   
 For example, one such data set might appear as follows. 

 
  y        q       w        nij    
 i=1 0        q1,1     w1,1 3 
     >1        q2,1     w2,1 3 
        0        q3,1     w3,1 3 
         
 i=2 0        q1,2     w1,2 4 
  0        q2,2     w2,2 4 
     >1        q3,2     w3,2 4 
  0        q4,2     w4,2 4 
         
 i=3 >1        q1,3     w1,3 2 
  0        q2,3     w2,3 2 
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Note that nij is the usual group size variable for a panel in NLOGIT.  The model command might be  
 
 NLOGIT  ; Lhs = y,nij ; Rhs = q,w $   
 
Notice, once again, that the command does not contain a definition of the choice set, such as  
; Choices = list specification.   
 
 For the case of a universal choice set, suppose that the data set above were, instead: 
 
 
   Y        q       w        nij   altij     

 i=1 0        q1,1     w1,1 3 1 (Air) 
     >1        q2,1     w2,1 3 2 (Train) 
        0        q3,1     w3,1 3 4 (Car) 
         
 i=2 0        q1,2     w1,2 4 1 (Air) 
  0        q2,2     w2,2 4 2 (Train) 
     >1        q3,2     w3,2 4 3 (Bus) 
  0        q4,2     w4,2 4 4 (Car) 
          
 i=3 >1        q1,3     w1,3 2 3 (Bus) 
  0        q2,3     w2,3 2 4 (Car) 

 
 

The specific choice identifier, when it is needed, is provided as a third Lhs variable.  For this case, 
the choice set would have to be defined.  For example, 
 
 NLOGIT  ; Lhs = y,nij,altij  
   ; Choices = air,train,bus,car  
   ; Rhs = q,w $ 
 
In this case, every individual is assumed to choose from a set of four alternatives, though the altij 
variable indicates that some of these choices are unavailable to some individuals. 
 Do note that if you are not defining a universal choice set, NLOGIT simply uses the largest 
number of choices for any individual in the sample to determine J for the model. As such, an 
expanded set of choice specific constants is not likely to be meaningful, though you can create one 
with ; Rh2 = one.  Also, if you do not specify a universal choice set, the variable altij will not be 
meaningful.   
 
N20.2.2 Restricting the Choice Set 
 
 The IIA test described later in Section N21.4.1 is carried out by fitting the model to a 
restricted choice set, then comparing the two sets of parameter estimates.  You can restrict the choice 
set used in estimation, irrespective of the IIA test, by a slight change in the command.  In the 
; Choices = list of alternatives specification, enclose any choices to be excluded in parentheses.  For 
example, in our CLOGIT application, the specification 
 
   ; Choices = air,(train),(bus),car 
 
produces the following display in the model output: 
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+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  93 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .49573| 1.000| 
|TRAIN     .00000| 1.000|* 
|BUS       .00000| 1.000|* 
|CAR       .50427| 1.000| 
+----------------+------+--- 
Normal exit:   6 iterations. Status=0, F=    52.79148 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function       -52.79148 
Estimation based on N =    117, K =   5 
Number of obs.=   210, skipped   93 obs 
Restricted choice set. Excluded choices are 
TRAIN    BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.04871*        .02757    -1.77  .0772     -.10274    .00532 
    INVT|    -.01195***      .00395    -3.03  .0025     -.01969   -.00422 
      GC|     .08576***      .02654     3.23  .0012      .03374    .13778 
    TTME|    -.08222***      .01854    -4.43  .0000     -.11855   -.04588 
   A_AIR|    2.12899*       1.20531     1.77  .0773     -.23337   4.49135 
 A_TRAIN|        0.0    .....(Fixed Parameter)..... 
   A_BUS|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
 
Note that as in the IIA test, this procedure results in exclusion of some ‘bad’ observations, that is, the 
ones that selected the excluded choices.  Because of the model specification, the ASCs for train and 
bus have been fixed at zero. 
 You may combine the choice based sampling estimator with the restricted choice set.  All 
the necessary adjustments of the weights are made internally.  Thus, the specification 
 
       ; Choices = air,(train),(bus),car / .14,.13,.09,.64  
 

produces the following listing: 
 
+----------------+------+---+ 
|Choice   (prop.)|Weight|IIA| 
+----------------+------+---+ 
|AIR       .49573|  .387|   | 
|TRAIN     .00000|  .000| * | 
|BUS       .00000|  .000| * | 
|CAR       .50427| 1.739|   | 
+----------------+------+---+ 
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N20.2.3 A Shorthand for Choice Sets 
 
 You may use 
   ; Choices = number_name  
 
To define a set of choice labels of the form name1, name2, …  For example, 
 
   ; Choices = 5_brand 
 
Creates choice labels brand1, brand2, brand3, brand4, brand5.  This sort of construction is likely to 
be useful for unlabeled choice experiments. 
 
N20.2.4 Large Choice Sets – A Panel Data Equivalence 
 
 The conditional logit estimator can fit a model with up to 500 choices, which is quite large.  
Chamberlain’s fixed effects model for the binary logit model described in Section N9.5 can also be 
used to fit a discrete choice model.  The log likelihood function for this model is 
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If the group of observations has exactly one ‘1’ and Ti - 1 ‘0s,’ then this is exactly the log likelihood 
for the discrete choice model that we have analyzed in Chapter N17.  Thus, if the group of 
observations for individual i is treated as if this were a fixed effects model, then this estimator can be 
used to obtain parameter estimates.  The command setup would be 
 
 LOGIT ; Lhs = choice  
   ; Rhs = the set of variables   
   ; Pds = the number of choices $ 
 
 This arrangement will allow up to 200 choices.  A shortcoming (aside from the greatly 
restricted number of optional features) is that unless you can provide the actual dummy variables, as 
we do below, it is not possible to specify a set of choice specific constants with this estimator.  Two 
ways to fit the model in our example would be 
 

CLOGIT ; Lhs = mode 
; Rhs = invc,invt,gc,ttme 
; Rh2 = one 

       ; Choices = air,train,bus,car $ 
 LOGIT ; Lhs  = mode  
   ; Rhs  = aasc,tasc,basc,invc,invt,gc,ttme  
   ; Pds  = 4 $ 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -184.50669 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.08493***      .01938    -4.38  .0000     -.12292   -.04694 
    INVT|    -.01333***      .00252    -5.30  .0000     -.01827   -.00840 
      GC|     .06930***      .01743     3.97  .0001      .03513    .10346 
    TTME|    -.10365***      .01094    -9.48  .0000     -.12509   -.08221 
   A_AIR|    5.20474***      .90521     5.75  .0000     3.43056   6.97893 
 A_TRAIN|    4.36060***      .51067     8.54  .0000     3.35972   5.36149 
   A_BUS|    3.76323***      .50626     7.43  .0000     2.77098   4.75548 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+--------------------------------------------------+ 
| Panel Data Binomial Logit Model                  | 
| Number of individuals          =     210         | 
| Number of periods              =       4         | 
| Conditioning event is the sum of MODE            | 
| Distribution of sums over the  4 periods:        | 
| Sum        0     1     2     3     4     5     6 | 
| Number     0   210     0     0     0     5     6 | 
| Pct.     .00100.00   .00   .00   .00   .00   .00 | 
+--------------------------------------------------+ 
Normal exit:   6 iterations. Status=0, F=    184.5067 
 
----------------------------------------------------------------------------- 
Logit Model for Panel Data 
Dependent variable                 MODE 
Log likelihood function      -184.50669 
Estimation based on N =    840, K =   7 
Fixed Effect Logit Model for Panel Data 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    AASC|    5.20474***      .90521     5.75  .0000     3.43056   6.97893 
    TASC|    4.36060***      .51067     8.54  .0000     3.35972   5.36149 
    BASC|    3.76323***      .50626     7.43  .0000     2.77098   4.75548 
    INVC|    -.08493***      .01938    -4.38  .0000     -.12292   -.04694 
    INVT|    -.01333***      .00252    -5.30  .0000     -.01827   -.00840 
      GC|     .06930***      .01743     3.97  .0001      .03513    .10346 
    TTME|    -.10365***      .01094    -9.48  .0000     -.12509   -.08221 
--------+-------------------------------------------------------------------- 
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N20.3 Specifying the Utility Functions with Rhs and Rh2 
 
 There are several ways to specify the utility functions in your NLOGIT command, in the 
text editor and in the command builder.  In order to provide a simple explanation that covers the 
cases, we will develop the application that will be used in the chapters to follow to illustrate the 
models.  The application is based on the data summarized in Section N18.11.  We will model travel 
mode choice for trips between Sydney and Melbourne with utility functions for the four choices as 
follows: 
 
            gc   ttme   one    hinc     one    hinc     one   hinc     one  hinc 

U(air) =  GC   TTME  A_AIR  AIR_HIN1   0       0       0      0       0     0 

U(train) =  GC   TTME    0       0    A_TRAIN  TRA_HIN2  0      0       0     0 

U(bus) =  GC   TTME    0       0       0       0     A_BUS  BUS_HIN3  0     0 

U(car) =  GC   TTME    0       0       0       0       0      0       0     0 
 
 

The columns are headed by the names of variables, generalized cost (gc), terminal time (ttme) and 
household income (hinc).  The entries in the body of the table are the names given to coefficients that 
will multiply the variables.  Note that the generic coefficients in the first two columns are given the 
names of the variables they multiply while the interactions with the constants are given compound 
names.  It is important to note the last two columns.  The last one in a set of choice specific constants 
or variables that are interacted with them must be dropped to avoid a problem of collinearity in the 
model.  In what follows, for brevity, we will omit these two columns.  Before proceeding, we note 
the format of a set of parameter estimates for a model set up in exactly this fashion: 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01093**       .00459    -2.38  .0172     -.01992   -.00194 
    TTME|    -.09546***      .01047    -9.11  .0000     -.11599   -.07493 
   A_AIR|    5.87481***      .80209     7.32  .0000     4.30275   7.44688 
AIR_HIN1|    -.00537         .01153     -.47  .6412     -.02797    .01722 
 A_TRAIN|    5.54986***      .64042     8.67  .0000     4.29465   6.80507 
TRA_HIN2|    -.05656***      .01397    -4.05  .0001     -.08395   -.02917 
   A_BUS|    4.13028***      .67636     6.11  .0000     2.80464   5.45593 
BUS_HIN3|    -.02858*        .01544    -1.85  .0642     -.05885    .00169 
--------+-------------------------------------------------------------------- 
 
Note the construction of the compound names includes what might seem to be a redundant number at 
the end. This is necessary to avoid constructing identical names for different variables.  
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N20.3.1 Utility Functions 
 
 A basic four choice model which contains cost, time, one and income will have utility 
functions 
 
 Ui,air =  βcost costi,air  +  βtime timei,air  +  αair  +  γair incomei   +  εi,air, 
 Ui,train =  βcost costi,train  +  βtime timei,train  +  αtrain  +  γtrain incomei   +  εi,train, 
 Ui,bus =  βcost costi,bus   +  βtime timei,bus   +  αbus   +  γbus incomei    +  εi,bus, 
 Ui,car =  βcost costi,car   +  βtime timei,car                          +  εi,bus. 
 
 The device you will use to construct utility functions in this fashion is  
 
   ; Rhs = list of attributes that vary across choices 
and   ; Rh2 = list of variables that do not vary across choices 
 
The Rh2 variables are automatically expanded into a set of J-1 interactions with the choice specific 
constants, as they are in the matrix shown above.  The implication is that, generally, you do not need 
to have these variables in your data set.  They are automatically created by your command.  (Note 
that our clogit.dat data set in Section N18.11 actually does contain the superfluous set of four choice 
specific constants, aasc, tasc, basc and casc. 
 
NOTE:  If you include one in your Rhs list, it is automatically expanded to become a set of 
alternative specific constants.  That is, one is automatically moved to the Rh2 list if it is placed in the 
Rhs list. 
 
The model specification for the four utility functions shown above would be 
 
   ; Rhs = cost,time ; Rh2 = one,income 
 
Note that the distinction between Rh2 and Rhs variables is that all variables in the first category are 
expanded by interacting with the choice specific binary variables.  (The last term is dropped.) 
 
N20.3.2 Generic Coefficients 
 
 The way to specify generic coefficients in a model is to use NLOGIT’s standard 
construction, by specifying a set of Rhs variables.  The specification 
 
   ; Rhs = gc,ttme 
 
produces the utility functions in the first two columns in the table. Rhs variables are assumed to vary 
across the choices and will receive generic coefficients. 
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N20.3.3 Alternative Specific Constants and Interactions with 
Constants 
 
 The logit model is homogeneous of degree zero in the attributes.  Any attribute which does 
not vary across the choices, such as age, marital status, income etc., will simply fall out of the 
probability.  Consider an example with a constant, one attribute and one characteristic, 
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 With a generic coefficient, the choice invariant characteristic and the single constant term 
fall out of the model.  A model which contains such a characteristic with a generic coefficient is not 
estimable.  This carries over to all of the more elaborate models such as the HEV, nested logit and 
MNP models as well.  The solution to this complication is to create choice specific constant terms 
and, if need be, interact the invariant characteristic with the constant term.  This is what appears in 
the last eight columns in the example above.  (This is how the MLOGIT model in Chapter N16 arises 
– in that model, all variables are choice invariant.)  Here, it produces a hybrid model, which can have 
both types of variables in the utility functions. 
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There remains an indeterminacy in the model after it is expanded in this fashion.  Suppose the same 
constant, say θ, is added to each γj.  The resulting model is 
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So, the identical model arises for any θ.  This means that the model still cannot be estimated in this 
form.  The solution to this remaining issue is to normalize the coefficients so that one of the choice 
varying parameters is equal to zero.  NLOGIT sets the last one to zero.  The same result applies to the 
choice specific constant terms that you create with one.  This produces the data matrix shown earlier, 
with the last two columns (in the dashed box) normalized to zeros. 
 Finally, while it is necessary for choice invariant variables to appear in the Rh2 list, it is not 
necessary that all variables in the Rh2 list actually be choice invariant.  Indeed, one could specify the 
preceding model with choice specific coefficients on the cost variable; it would appear 
 
 Ui,air =  γcost,air costi,air  +  βtime timei,air   +  αair   +  γair incomei  +  εi,air, 
 Ui,train =  γcost,train costi,train  +  βtime timei,train +  αtrain  +  γtrain incomei  +  εi,train, 
 Ui,bus =  γcost,bus costi,bus   +  βtime timei,bus  +  αbus   +  γbus incomei   +  εi,bus, 
 Ui,car =  γcost,car costi,car   +  βtime timei,car      +  εi,bus. 
 
Note also, that there is no need to drop one of the cost coefficients because the variable cost varies 
by choices.  You can estimate a model with four separate coefficients for cost, one in each utility 
function.  However, it is not possible to do it by including cost in the Rh2 list as described above, 
because this form will automatically drop the last term (the one in the car utility function).  You 
could obtain this form, albeit a bit clumsily, by creating the four interaction terms yourself and 
including them on the right hand side.  We already have the alternative specific constants, so the 
following would work: 
 
 CREATE ; cost_a = gc * aasc 
   ; cost_t = gc * tasc 
   ; cost_b = gc * basc 
   ; cost_c = gc * casc $ 
 NLOGIT  ; ...   ; Rhs = time,cost_a,cost_t,cost_b,cost_c 
    ; Rh2 = one,income $ 
 
Having to create the interaction variables is going to be inconvenient.  The alternative method of 
specifying the model described in the next section will be much more convenient.  This method also 
allows you much greater flexibility in specifying utility functions. 
 
HINT:  There are many different possible configurations of alternative specific constants (ASCs) 
and alternative specific variables.  In estimating a model, it is not possible to determine a priori if a 
singularity will arise as a consequence of the specification.  You will have to discern this from the 
estimation results for the particular model. 
 
 The constant term, one fits the hint above.  Recognizing this, NLOGIT assumes that if your 
Rhs list includes one, you are requesting a set of alternative specific constants.  As such, when the 
Rhs list includes one, NLOGIT will create a full set of J-1 choice specific constants.  (One of them 
must be dropped to avoid what amounts to the dummy variable trap.)   
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HINT:  You need not have choice specific dummy variables in your data set.  The Rh2 setup 
described here allows you to produce these variables as part of the model specification. 
 
The remaining columns of the utility functions in the example above are produced with 
 
   ; Rh2 = one,hinc 
 
You should note, in addition, how the variables are expanded, as a set, in constructing the utility 
functions. 
 
N20.3.4 Command Builders 
 
 You can specify utility functions in this format in any of the command builders, as shown in 
Figure N20.3.  The two windows allow you to select variables from the list at the right and assemble 
the Rhs list at the left or the Rh2 list in the center. 
 

 
Figure N20.3  Specifying Utility Functions in the Command Builder 
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N20.4 Building the Utility Functions 
 
 The utility functions need not be the same for all choices.  Different attributes may enter and 
the coefficients may be constrained in different ways.  The following more flexible format can be 
used instead of the ; Rhs = list and ; Rh2 = list parts of the command described above.  This format 
also provides a way to supply starting values for parameters, so this can also replace the ; Start = list 
specification.  Finally, you will also be able to use this format to fix coefficients, so it will be an easy 
way to replace the ; Rst = list and ; Fix = name[value] specifications. 
 The model specification thus far builds the utility functions from the common Rhs and Rh2 
specifications.  For example, in our four outcome model which contains cost, time, one and income, 
the data for the choice variable and the utility functions are contained in 
 

  

        choice  cost time  constants                   income
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0 0

air a a

train t t
i

bus b b

car c c

y c t income
y c t income
y c t income
y c t

 
 
 =
 
 
 

Z
. 

 
The utility functions are all the same; 
 
  Ui,air   =  βcostcosti,air  + βtimetimei,air  + αair  + γairincomei  + εi,air 
  Ui,train   =  βcostcosti,train  + βtimetimei,train  + αtrain  + γtrainincomei  + εi,train 
  Ui,bus   =  βcostcosti,bus  + βtimetimei,bus  + αbus  + γbusincomei  + εi,bus 
  Ui,car   =  βcostcosti,car  + βtimetimei,car  + αcar  + γcarincomei  + εi,car 
 
In order to prevent a multicollinearity problem, αcar = γcar = 0.  One might want to have different 
attributes appear in the different utility functions, or impose other kinds of constraints on the 
parameters, or allow a generic coefficient such as β1 to differ across groups of observations.  In 
general, these sorts of modifications can be obtained by using transformations of the variables.   For 
example, to have β1 have one value for air and car and a different value for train and bus, we would 
use 
  CREATE   ; costac = cost*(aasc + casc) ; costtb = cost*(tasc + basc) $ 
 
Then, we would replace cost with costac,costtb in the Rhs specification of the model.  The resulting 
model would be 
 
 Ui,air   =  βcost1costi,air    + βtimetimei,air  + αair  + γairincomei  + εi,air 
 Ui,train   =    βcost2costi,train  + βtimetimei,train  + αtrain  + γtrainincomei  + εi,train 
 Ui,bus   =    βcost2costi,bus  + βtimetimei,bus  + αbus  + γbusincomei  + εi,bus 
 Ui,car   =  βcost1costi,car    + βtimetimei,car  + αcar  + γcarincomei  + εi,car 
 
This section will describe how to structure the utility functions individually, rather than generically 
with Rhs and Rh2 and transformations of variables. 
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 We begin with the case of a fixed (and named) set of choices, then turn to the cases of 
variable numbers of choices.  We replace the Rhs/Rh2 setup with explicit definitions of the utility 
functions for the alternatives.  Utility functions are built up from the format 
 
   ; Model: U(choice 1) = linear equation  / 
    U(choice 2) = linear equation / 
    ... 
    U(choice J) = linear equation $ 
 
Though we have shown all J utility functions, for a given model specification, you could, in 
principle, not specify a utility function in the list.  The implied specification would be Uij = εij.  The  
: U(list) is mandatory if the command contains ; Model : …. NLOGIT now scans for the ‘U’ and the 
parentheses.  For example: 
 
   ; Model:  U(air) = ba + bcost * gc 
 
Note that the specification begins with ‘; Model:’ – the colon (‘:’) is also mandatory.  Parameters 
always come first, then variables.  Constant terms need not multiply variables.  Thus, ba in this could 
be an ‘Air specific constant.’  (It depends on whether ba appears elsewhere in the model.)  Notice 
that the utility function defines both the variables and the parameters.  Usually, you would give an 
equation for each choice in the model.  For example: 
 
 NLOGIT ; Lhs = mode   
   ; Choices = air,train,bus,car 
   ; Model: U(air) = ba + bcost * gc + btime * ttme / 
                           U(car) = bc + bcost * gc   / 
                                U(bus) = bb + bcost * gc   / 
                                U(train) =   bcost * gc + btime * ttme $ 
  
Utility functions are separated by slashes.  Note also that the alternative specific constants stand 
alone without multiplying a variable.  Your utility definitions also provide the names for the 
parameters.  The estimates produced by this model command are as follows: 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -223.43803 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      BA|    1.55491***      .37580     4.14  .0000      .81835   2.29147 
   BCOST|    -.02021***      .00435    -4.65  .0000     -.02873   -.01168 
   BTIME|    -.08680***      .01122    -7.73  .0000     -.10880   -.06481 
      BC|   -3.65316***      .46378    -7.88  .0000    -4.56216  -2.74417 
      BB|   -3.91983***      .45611    -8.59  .0000    -4.81379  -3.02586 
--------+-------------------------------------------------------------------- 
 
One point that you might find useful to note.  The order of the parameters in this list is determined by 
moving through the model definition from beginning to end.  Each time a new parameter name is 
encountered, it is added to the list.  Looking at the model command above, you can now see how the 
order in the displayed output arose. 
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 The last example in the preceding subsection, which has four separate coefficients on a cost 
variable could be specified using 
 

NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
  ; Model: U(air)   = bc*invc+bt*invt+aa+cha*hinc+cga*gc / 
    U(train) = bc*invc+bt*invt+at +cht *hinc+cgt *gc / 
    U(bus)  = bc*invc+bt*invt+ab+chb*hinc+cgb*gc / 
    U(car)   = bc*invc+bt*invt                       +cgc *gc $ 

The estimates are 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      BC|    -.04387**       .01713    -2.56  .0104     -.07744   -.01029 
      BT|    -.00815***      .00242    -3.37  .0008     -.01289   -.00341 
      AA|   -1.37474         .83837    -1.64  .1011    -3.01791    .26844 
     CHA|     .00703         .01079      .65  .5145     -.01411    .02818 
     CGA|     .03762**       .01677     2.24  .0248      .00476    .07048 
      AT|    2.53157***      .60801     4.16  .0000     1.33990   3.72324 
     CHT|    -.05097***      .01214    -4.20  .0000     -.07477   -.02717 
     CGT|     .03349**       .01506     2.22  .0262      .00397    .06301 
      AB|    1.17858         .73949     1.59  .1110     -.27080   2.62795 
     CHB|    -.03339**       .01300    -2.57  .0102     -.05886   -.00792 
     CGB|     .03456**       .01516     2.28  .0227      .00484    .06428 
     CGC|     .03808**       .01524     2.50  .0125      .00821    .06795 
--------+-------------------------------------------------------------------- 
 

N20.4.1 Notations for Sets of Utility Functions 
 
 There are several shorthands which will allow you to make the model specification much more 
compact.  If the utility functions for several alternatives are the same, you can group them in one 
definition.  Thus, 
   ; Model: U(air) = b0 + bcost * gc   / 
                        U(car) = b0 + bcost * gc   $ 
could be specified as   
   ; Model: U(air, car) = b0 + bcost * gc $ 
  
For the model we have been considering, i.e., 
  
   ; Choices = air,train,bus,car 
  
all of the following are the same 
 
   ; Model: U(air)  = b1 * ttme + bcost * gc   / 
                         U(train) = b1 * ttme + bcost * gc   / 
                         U(bus)  = b1 * ttme + bcost * gc   / 
                         U(car)  = b1 * ttme + bcost * gc   $ 
 
and   ; Model: U(air,train,bus,car) = b1 * ttme  + bcost * gc $ 
and   ; Model: U(*) = b1 * ttme  + bcost * gc $ 
and   ; Rhs = ttme, gc 
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The last would use the variable names instead of the supplied parameter names for the two 
parameters, but the models will be the same. 
 
N20.4.2 Alternative Specific Constants and Interactions 
  
 You can also specify alternative specific constants in this format, by using a special notation.  
When you have a U(a1, a2, ..., aJ) for J alternatives, then you may specify, instead of a single 
parameter, a list of parameters enclosed in pointed brackets, to signify interaction with choice 
specific constants.  Thus, <b1,b2,...,bL> indicates L interactions with choice specific dummy 
variables.  L may be any number up to the number of alternatives.  Use a zero in any location in 
which the variable does not appear in the corresponding equation.  For example, 
 
    ; Choices = air,train,bus,car 
   ; Model: U(air)  = ba + bcost * gc   / 
                            U(car)  = bc + bcost * gc   / 
                            U(bus)  =           bcost * gc   / 
                            U(train) = bt + bcost * gc   $ 
could be specified as  
   ; Model: U(air,car,bus,train) = <ba,bc,0,bt> + bcost * gc $ 
 
NOTE:  Within a < ... > construction, the correspondence between positions in the list is with the  
U(... list ...)  list, not with the original ; Choices list.  Note these are different (deliberately) in the 
example above. 
 
 Note the considerable savings in notation. The same device may also be used in interactions 
with attributes.  For example: 
 
  ; Model: U(air)  = ba + bcprv * gc   / 
                            U(car)  = bc + bcprv * gc   / 
                            U(bus)  =          bcpub * gc   / 
                            U(train) = bt + bcpub * gc   $ 
 
There are two cost coefficients, but the variable gc is common.  This entire model can be collapsed 
into the single specification 
 
   ; Model: U(air,car,bus,train) = <ba,bc,0,bt> +  
    <bcprv,bcprv,bcpub,bcpub> * gc $ 
 
Parameters inside the brackets need not all be different if you wish to impose equality constraints.  
The example above imposes the two equality constraints shown in the model specification. 
 The command builders provide space for you to build the utility functions in this fashion.  
See Figure N20.4.  Since this is done by typing out the functions in the windows – there is no menu 
construction that would allow this – these will not save much effort. 
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Figure N20.4  Utility Functions Assembled in Command Builder Window 

 
Note that in the window, you must provide the entire specification for the utility functions, including 
the listing of which alternatives the definitions are to apply to.  The model shown in the window in 
Figure N11.5 produces these results. 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -199.68246 
Estimation based on N =    210, K =   6 
Inf.Cr.AIC  =    411.4 AIC/N =    1.959 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .2963 .2895 
Chi-squared[ 3]          =    168.15262 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      AA|    6.41354***     1.10452     5.81  .0000     4.24871   8.57836 
      AT|    3.69564***      .52116     7.09  .0000     2.67418   4.71711 
      AB|    2.96222***      .54485     5.44  .0000     1.89433   4.03011 
      BC|    -.01702***      .00471    -3.61  .0003     -.02626   -.00778 
     BTA|    -.10758***      .01792    -6.00  .0000     -.14270   -.07246 
     BTG|    -.08940***      .01419    -6.30  .0000     -.11722   -.06158 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N20.4.3 Logs and the Box Cox Transformation 
 
 Variables may be specified in logarithms.  This will be useful when you are using aggregate 
data and you wish to include, e.g., market size in a choice.  To indicate that you wish to use logs, use 
Log(variable name) instead of just variable name in the utility definition. (The syntax                        
; Rhs = ... Log(x) as described above is not available.  This option may only be used when you are 
explicitly defining the utility functions.)  Thus, the model above might have been 
 
 NLOGIT ; Lhs = mode  
   ; Choices = air,train,bus,car 
           ; Model: U(air) = ba + bcost * Log(gc)   / 
                            U(car)  = bc + bcost * Log(gc)   / 
                            U(bus)  = bb + bcost * Log(gc)   / 
                            U(train) =          bcost * Log(gc)   $ 
 
When a variable appears in more than one utility function, you should take logs each time it appears.  
Although this is not mandatory, if you do not, your model will contain a mix of levels and logs, which 
is probably not what you want.  Also, it will be necessary for you to be aware in your results when you 
have used this transformation.  The model results will not contain any indication that logs have 
appeared in the equation.  The preceding, for example, produces the following estimation results: 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      BA|    -.59298***      .21340    -2.78  .0055    -1.01124   -.17473 
   BCOST|   -2.63022***      .45171    -5.82  .0000    -3.51555  -1.74489 
      BC|    -.95454***      .24331    -3.92  .0001    -1.43141   -.47767 
      BB|    -.97857***      .22952    -4.26  .0000    -1.42841   -.52872 
--------+-------------------------------------------------------------------- 
 
 You may also use the Box-Cox transformation to transform variables.  Indicate this with 
Bcx(x) where x is the variable (which must be positive).  The transformation is 
 

Bcx(x)  =  (xλ  -  1)  /  λ, 
 
which is Log(x) if λ equals 0 and is x-1 (not x) if λ equals 1.  The Bcx(.) function may appear any 
number of times in the model specification.  In general, if a variable is transformed with this 
function, it should be transformed every time it appears in the model.  Not doing so is analogous to 
including both levels and logs of a variable, which while not invalid, is usually avoided. The default 
value of the transformation parameter, λ, is 1.0. The same value is used in all transformations.  You 
may specify a different value by including the specification 
 

  ; Lambda = value 
 
in your NLOGIT command.  Lambda is treated as a fixed value during estimation, not an estimated 
parameter.  Thus, no standard error is computed for lambda (since you provide the fixed value) and 
the standard errors for the other estimates are not adjusted for the presence of lambda.  I.e., by this 
construction, the Box-Cox transformation is treated like the log function – just a transformation.  In 
this case, the model results will contain an indication that the transformation has appeared in the 
utility functions.  For example, the preceding, with λ = 0.5, produces: 
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Normal exit:   4 iterations. Status=0, F=    267.4253 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -267.42533 
Estimation based on N =    210, K =   4 
Inf.Cr.AIC  =    542.9 AIC/N =    2.585 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .0576 .0515 
Chi-squared[ 1]          =     32.66687 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Box-Cox model. LAMBDA used is    .50000 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      BA|    -.64256***      .21843    -2.94  .0033    -1.07068   -.21445 
   BCOST|    -.24334***      .04456    -5.46  .0000     -.33068   -.15601 
      BC|    -.84570***      .23246    -3.64  .0003    -1.30132   -.39008 
      BB|    -.99967***      .22980    -4.35  .0000    -1.45007   -.54927 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Do note, however, that the results can only indicate that a Box-Cox transformation using λ = 0.5 has 
appeared in the model.  It is not possible to report where it appears. 
 
N20.4.4 Equality Constraints 
 
 There is no requirement that parameters be unique across any specification. Equality 
constraints may be imposed anywhere in the model, just by using the same parameter name.  For 
example, nothing precludes 
 
   ; Model: U(air,car,bus,train) = <ba,bc,0,bt> +  
    <ba,bc,bcpub,bcpub> * gc $ 
 
This forces two of the slope coefficients to equal the alternative specific constants.  Expanded, this 
specification would be equivalent to 
 
   ; Model: U(air)  = ba + ba  * gc   / 
                            U(car)  = bc + bc        * gc   / 
                            U(bus)  =          bcpub * gc   / 
                            U(train) = bt + bcpub * gc   $ 
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N20.5 Starting and Fixed Values for Parameters 
 
 The default starting values for all slope parameters in the utility functions specified as above 
are 0.0.  You may provide a starting value for any parameter defined in a utility equation by 
including the value in parentheses after the first occurrence of the parameter definition. 
 For example: 
   ; Model: U(air) = ba(.53) + bcprv(-1.25) * gc   / 
                       U(car) = bc         +  bcprv            * gc   / 
                            U(bus)  =                 bcpub             * gc   / 
                            U(train)  = bt(.04) + bcpub            * gc   $ 
 
Starting values of 0.53 for ba, -1.25 for bcprv, and 0.04 for bt are given.  The other parameters, 
bcpub and bc both start at 0.0.  Note that the starting value for bcprv is given with the first 
occurrence of this name in the model.  It is not necessary to give additional starting values for bcprv; 
the first will suffice.  (If a parameter name appears more than once in a model definition, one might 
inadvertently give different starting values for the definitions. For example, if the second line above 
were U(car) = bc+bcprv(1.3)*gc/ then values of -1.25 and 1.3 are being given for the same 
parameter, bcprv.  The last definition is the one that controls.  Thus, in this example, the starting 
value for bcprv would be 1.3, not -1.25.  Note that this is not meant to be an option that is used for 
any purpose.  This is only meant to explain how this erroneous specification will be handled.) 
 In a multiple parameter specification, the same value is given to all parameters that appear in 
the specification.  Thus, in our earlier example: 
 
   ; Model: U(air,car,bus,train) = <ba,bc,0,bt> (1.27439) + bcost * gc 
 
the three parameters, ba, bc, and bt, are all started at 1.27439. 
 In the generic form of the utility functions, when you use ; Rhs and ; Rh2, you may also 
provide starting values for your parameters with 
 
   ; Start = the list of values 
 
The values must be provided in the order in which the model constructs them from your lists.  Thus, 
the Rhs variables appear first, followed by the Rh2 variables interacted with the alternative specific 
constants.  For the example earlier, 
 
   ; Rhs = gc,ttme ; Rh2 = one,income 
 
the coefficients are β = (βgc,βttme,αair, γair,αtrain, γtrain,αbus,γbus). 
 There are cases in which some starting values are better than others in terms of the path of 
the iterations to a solution.  However, since the log likelihood function is globally concave, if the 
solver is going to find the MLE, it will find the same MLE regardless of the starting values.  In 
principle, this makes starting values irrelevant.  But, providing starting values does allow you to 
compute the log likelihood function at a particular set of parameters.  You can also use ; Maxit = 0 
to instruct the estimator to compute a Lagrange multiplier statistic based on a particular set of values.  
The LM statistic is discussed in Chapter N21. 
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N20.5.1 Fixed Values 
 
 Any parameter that appears in the model may be fixed at a given value, rather than 
estimated. This might be useful, for example, for testing hypotheses.  To fix a parameter, use the 
setup described immediately above as if you were providing a starting value.  But, instead of 
enclosing the value in parentheses, enclose it in square brackets.  For example, in the model above, 
the coefficient bcost might be fixed at 0.05 with the command 
 

  ; Model: U(air,car,bus,train) = <ba,bc,0,bt> (1.27439) + bcost [0.05] * gc 
 
The fixed value will appear in the model output with all of the other estimated results, with a 
notation that this coefficient has been fixed rather than estimated. 
 For the generic utility function setup using the Rhs and Rh2 lists, you can also fix 
coefficients at specific values by using 
 
   ; Fix = name[value], ... 
 
for as many coefficients as you like.  The ‘name’ is the name that is given to the coefficient.  If the 
coefficient multiplies a Rhs variable, that is just the variable name.  If it is an Rh2 variable, that will 
be the compound constructed name.  These are a bit complex, but a strategy you can use is to fit the 
model first without the fixed value constraint.  The output will show the constructed names that you 
can then use in your specification. 
 
N20.5.2 Starting Values and Fixed Values from a Previous Model 
 
 Each time you fit a model with CLOGIT, the coefficients and the names that you gave them 
are stored permanently for later use.  (This is separate from the coefficients saved for the WALD 
testing procedure.)  You may reuse these coefficients in the current model by specifying starting or 
fixed values with a simple ‘[  ]’ or ‘(  )’ with no specific values provided.  For example, 
 

   bcost (  ) * gc 
 
would instruct CLOGIT to examine the previous model that you fit.  If you had used the name bcost 
for one of the coefficients, then the estimated value from that model would be used as the starting 
value for this model. 
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N21: Post Estimation Results for Conditional 
Logit Models 

 
N21.1 Introduction 
 
 This chapter documents the three post estimation calculations: 
 

• Partial effects and elasticities 
• Predictions of probabilities, utilities and several other variables, 
• Specification testing for the IIA assumption 

 
A fourth post estimation computation is described in Chapter N22: 
 

• Model simulation and examination of the effects of changing scenarios on market shares. 
 
N21.2 Partial Effects and Elasticities 
 
 In the discrete choice model, the effect of a change in attribute ‘k’ of alternative ‘j’ on the 
probability that individual i would choose alternative ‘m’ (where m may or may not equal j) is 
 
   δim(k|j)  =  ∂Prob[yi = m]/∂xi(k|j)  =  [1(j = m) – Pij]Pimβk. 
 
You can request a listing of the effects of a specific attribute on a specified set of outcomes with 
 
   ; Effects: attribute [list of outcomes]. 
 
The outcomes listing defines the variables ‘j’ in the definition above.  The attribute is the ‘kth.’  A 
calculated partial effect is then listed for all alternatives (i.e., all ‘m’) in the model.  You can request 
additional tables by separating additional specifications with slashes.  For example: 
 
   ; Effects: gc [car, train] / ttme [bus,train]. 
 
HINT:  It may generate quite a lot of output if your model is large, but you can request an analysis 
of ‘all’ alternatives by using the wildcard, attribute [ * ].   
 
 The table below is produced by 
 

NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc 

   ; Rh2 = one,hinc 
   ; Effects: gc [*] $ 
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Derivative wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|   .0060   -.0020   -.0012   -.0028 
   TRAIN|  -.0020    .0062   -.0018   -.0024 
     BUS|  -.0012   -.0018    .0043   -.0013 
     CAR|  -.0028   -.0024   -.0013    .0066 
 
The effects are computed by averaging the individual specific results, so the report contains the 
average partial effects.  Since the mean is computed over a sample of observations, we also report 
the standard deviation of the estimates. 
 As noted in the tables, the marginal effects are computed by averaging the individual sample 
observations.  An alternative way to compute these is to use the sample means of the data, and 
compute the effects for this one hypothetical observation.  Request this with 
 
   ; Means 
 
For the table above, the results would be as follows: 
 
Derivative wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|   .0073   -.0030   -.0014   -.0028 
   TRAIN|  -.0030    .0076   -.0016   -.0031 
     BUS|  -.0014   -.0016    .0044   -.0015 
     CAR|  -.0028   -.0031   -.0015    .0073 
 
Note that the changes are substantive. The literature is divided on this computation. Current practice 
favors the first (default) approach. 
 The results above are only the average partial effects.  In order to obtain a full listing of the 
effects and an estimator of the sample variance, use 
 
   ; Full 
 
For the preceding, we obtain 
 
+---------------------------------------------------+ 
| Derivative             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Average partial effect  on prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|     .00604***      .00017    36.54  .0000      .00572    .00637 
   TRAIN|    -.00201***   .7814D-04   -25.69  .0000     -.00216   -.00185 
     BUS|    -.00124***   .5504D-04   -22.48  .0000     -.00134   -.00113 
     CAR|    -.00280***      .00014   -19.84  .0000     -.00307   -.00252 
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--------+-------------------------------------------------------------------- 
Average partial effect  on prob(alt) wrt GC       in TRAIN 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.00201***   .7814D-04   -25.69  .0000     -.00216   -.00185 
   TRAIN|     .00618***      .00018    34.29  .0000      .00583    .00653 
     BUS|    -.00175***   .9502D-04   -18.46  .0000     -.00194   -.00157 
     CAR|    -.00242***   .9003D-04   -26.88  .0000     -.00260   -.00224 
--------+-------------------------------------------------------------------- 
Average partial effect  on prob(alt) wrt GC       in BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.00124***   .5504D-04   -22.48  .0000     -.00134   -.00113 
   TRAIN|    -.00175***   .9502D-04   -18.46  .0000     -.00194   -.00157 
     BUS|     .00433***   .9872D-04    43.88  .0000      .00414    .00453 
     CAR|    -.00134***   .4473D-04   -29.99  .0000     -.00143   -.00125 
--------+-------------------------------------------------------------------- 
Average partial effect  on prob(alt) wrt GC       in CAR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.00280***      .00014   -19.84  .0000     -.00307   -.00252 
   TRAIN|    -.00242***   .9003D-04   -26.88  .0000     -.00260   -.00224 
     BUS|    -.00134***   .4473D-04   -29.99  .0000     -.00143   -.00125 
     CAR|     .00656***      .00015    44.02  .0000      .00627    .00685 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
The ‘standard errors’ in these results are computed as the sample standard deviations of the sample 
of observations on the derivatives.  These are not identical to what would be obtained if the delta 
method were applied to the nonlinear function used to obtain the elasticities though they should be 
reasonably close. 
 

N21.2.1 Elasticities 
 
 Rather than see the partial effects, you may want to see elasticities, 
 

   ηim(k|j)  =  ∂logProb[yi = m]/∂logxi(k|j) =  xi(k|j)/Pim×δim(k|j) 

     =  [1(j = m) - Pij] xi(k|j)βk 
 

Notice that this is not a function of Pim.  The implication is that all the cross elasticities are identical. 
This will be obvious in the results, as shown in the example below. 
 You may request elasticities instead of partial effects simply by changing the square brackets 
above to parentheses, as in 
 
   ; Effects: attribute (list of outcomes). 
 
The first set of results above would become as shown in the following table: 
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Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  2.6002  -1.1293  -1.1293  -1.1293 
   TRAIN| -1.2046   3.5259  -1.2046  -1.2046 
     BUS|  -.5695   -.5695   3.6181   -.5695 
     CAR|  -.8688   -.8688   -.8688   2.5979 
 

With ; Full, the expanded set of elasticities is produced. 
 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    2.60021***      .05667    45.89  .0000     2.48915   2.71128 
   TRAIN|   -1.12927***      .06414   -17.61  .0000    -1.25498  -1.00356 
     BUS|   -1.12927***      .06414   -17.61  .0000    -1.25498  -1.00356 
     CAR|   -1.12927***      .06414   -17.61  .0000    -1.25498  -1.00356 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in TRAIN 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|   -1.20461***      .05673   -21.23  .0000    -1.31580  -1.09343 
   TRAIN|    3.52593***      .14909    23.65  .0000     3.23373   3.81813 
     BUS|   -1.20461***      .05673   -21.23  .0000    -1.31580  -1.09343 
     CAR|   -1.20461***      .05673   -21.23  .0000    -1.31580  -1.09343 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.56952***      .01973   -28.87  .0000     -.60818   -.53086 
   TRAIN|    -.56952***      .01973   -28.87  .0000     -.60818   -.53086 
     BUS|    3.61811***      .10298    35.13  .0000     3.41627   3.81995 
     CAR|    -.56952***      .01973   -28.87  .0000     -.60818   -.53086 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in CAR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.86881***      .03532   -24.59  .0000     -.93805   -.79958 
   TRAIN|    -.86881***      .03532   -24.59  .0000     -.93805   -.79958 
     BUS|    -.86881***      .03532   -24.59  .0000     -.93805   -.79958 
     CAR|    2.59786***      .10768    24.13  .0000     2.38682   2.80891 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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The force of the independence from irrelevant alternatives (IIA) assumption of the multinomial logit 
model can be seen in the identical cross elasticities in the tables above. The table also shows two other 
aspects of the model. First, the meaning of the raw coefficients in a multinomial logit model, all of 
sign, magnitude and significance, are ambiguous. It is always necessary to do some kind of post 
estimation such as this to determine the implications of the estimates. Second, in light of this, we can 
see that the particular model estimated must be misspecified. The estimates imply that as the 
generalized cost of each mode rises, it becomes more attractive.  The gc coefficient has the ‘wrong’ 
sign. 
 
NOTE:  The standard deviations are not the asymptotic standard errors for the estimators of the 
marginal effects.  In principle, that could be computed using the delta method.  However, the 
estimates computed by NLOGIT are average partial effects.  They are computed for each individual 
in the sample, then averaged.  Computing an appropriate standard error for that statistic is difficult to 
impossible owing to its extreme nonlinearity and due to the fact that all observations in the average 
are correlated – they use the same estimated parameter vector.  Nonetheless, it may be tempting to 
use the standard deviations for tests of hypotheses that the marginal effects are zero.  We advise 
against this.  There is no meaning that could be attached to an elasticity or marginal effect being zero 
– these are complicated functions of all parameters in the model.  The hypothesis that a variable is 
not influential in the determination of the choices should be tested at the coefficient level. 
 
N21.2.2 Influential Observations and Probability Weights 
 
 Elasticities and partial effects in NLOGIT are computed by averaging the individual 
observations on these quantities.  Observations receive equal weight (1/n) in the average.  A 
problem can arise when computing elasticities in this fashion.  If an observation in the sample has 
an extreme configuration of attributes for some reason, then the elasticity or marginal effect for that 
observation can be extremely large (up to 10,000,000 for some cases).  With the simple weighting 
wi = 1/n, regardless of the rest of the sample, this observation (or observations if it happens more 
than once), will cause the average to be huge, producing nonsense values.  NLOGIT provides two 
alternative methods of computing marginal effects and elasticities: 

 
1. If elasticities are computed just once at the sample means of the attributes, extreme values 

will almost surely be averaged out, and the end result will almost always be reasonable 
values.  You  can request this computation with 

 
   ; Effects:... (as usual) ; Means 
 

2. Some authors have advocated a probability weighted average scheme instead.  This uses a 
weight which differs by alternative.  The computation uses 

 
  w(t,j) = Estimated P(t,j) / Σt Estimated P(t,j) 

 
where t indexes individual observations and j indexes alternatives.  By this construction, if 
an individual probability is very small, the resulting extreme value for the marginal effect is 
multiplied by a very small probability weight, which offsets the extreme value.  This 
likewise produces reasonable values for elasticities in almost all cases.  You can request this 
computation with 

 

  ; Effects:... (as usual) ; Pwt 
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This weighting scheme does cause a problem. In the simple discrete choice model, the 
elasticities are 

 

   ηim(k|j)  =  ∂logProb[yi = m]/∂logxi(k|j)  =  xi(k|j)/Pim×δim(k|j) 
 

which means that the cross elasticity of change in probability j when the x in the attributes 
for  choice m changes is the same for all of the alternatives.  (E.g., the elasticity of the 
probabilities of alternatives 2,3,... with respect to changes in x(k) in the attributes of 
alternative 1 are all equal to βkP(1)x(1,k).  This will be true for individual observations.  But, 
when probability weights are used, this will not be true for the weighted averages.  It is true 
for the unweighted averages.  The implication will be that the elasticities computed with        
; Pwt will suggest that the IIA property of the model has been relaxed.  But, it has not.  This 
is a result of the way the elasticity is computed.  The IIA property of the model remains.  
The following shows the comparison of using ; Pwt to the unweighted case for our example. 
 

 
(Probability weighted) 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  2.3722   -.7268   -.9638  -1.0659 
   TRAIN|  -.9844   2.4338  -1.3509   -.9442 
     BUS|  -.5596   -.6035   3.3527   -.5102 
     CAR| -1.0170   -.6356   -.7857   2.0780 
 
(Unweighted) 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  2.6002  -1.1293  -1.1293  -1.1293 
   TRAIN| -1.2046   3.5259  -1.2046  -1.2046 
     BUS|  -.5695   -.5695   3.6181   -.5695 
     CAR|  -.8688   -.8688   -.8688   2.5979 
 
N21.2.3 Saving Elasticities in the Data Set 
 
 You can save the individual estimates of the own and cross elasticities as a variable in the 
data set by using 
   ; Effects: attribute(alternative) = variable. 
 
This must provide the name of a specific attribute and a specific alternative.  Only one variable may 
be saved by the model command.  The following extends our earlier example by saving the 
elasticities with respect to the generalized cost of air.  This saves as a variable the estimates that are 
averaged to produce the first row of the table of unweighted elasticities above.  The table of 
descriptive statistics confirms the computations.  Figure N21.1 shows the first few observations in 
the data area. 
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The commands are: 
 
NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  

; Rhs = invc,invt,gc; Rh2 = one,hinc 
; Effects: gc(air) = gcair $ 

CREATE ; alt = Trn(-4,0) $ 
DSTAT ; Rhs = gcair ; Str = alt $ 

 
------------------------------------------------------------------------- 
Descriptive Statistics for GCAIR 
Stratification is based on ALT 
-----------------+------------------------------------------------------- 
Subsample        |        Mean     Std.Dev.    Cases  Sum of wts  Missing 
-----------------+------------------------------------------------------- 
ALT         =  1 |    2.600215      .823141      210      210.00        0 
ALT         =  2 |   -1.129273      .931694      210      210.00        0 
ALT         =  3 |   -1.129273      .931694      210      210.00        0 
ALT         =  4 |   -1.129273      .931694      210      210.00        0 
Full Sample      |    -.196901     1.851636      840      840.00        0 
-----------------+------------------------------------------------------- 
 

 
Figure N21.1  Estimated Elasticities 

 
  



N21: Post Estimation Results for Conditional Logit Models  N-376 

N21.2.4 Computing Partial Effects at Data Means 
 
 As noted in the tables, the marginal effects are computed by averaging the individual sample 
observations.  An alternative way to compute these is to use the sample means of the data, and 
compute the effects for this one hypothetical observation.  Request this with 
 
   ; Means 
 
For the first table above, the results would be as follows: 
 
+---------------------------------------------------+ 
| Derivative (times 100) Computed at sample means.  | 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR                .7263     .0000   | 
|       Choice=TRAIN             -.3010     .0000   | 
|       Choice=BUS               -.1434     .0000   | 
|       Choice=CAR               -.2819     .0000   | 
+---------------------------------------------------+ 
 
Note that the changes are substantial.  The literature is divided on this computation.  Current practice 
seems to favor the first approach. 
 Rather than see the partial effects, you may want to see elasticities, 
 
   ηim(k|j)  =  ∂logProb[yi = m]/∂logxi(k|j) =  xi(k|j)/Pim×δim(k|j) 
        =  [1(j = m) – Pij] xi(k|j)βk. 
 
Notice that this is not a function of Pim.  The implication is that all the cross elasticities are identical. 
This will be obvious in the results below.  This aspect of the model is specific to the basic 
multinomial logit model.  As will emerge in the chapters to follow, the IIA property which produces 
this result is absent from every other model in NLOGIT. 
 You may request elasticities instead of partial effects simply by changing the square brackets 
above to parentheses, as in 
 
   ; Effects: attribute (list of outcomes). 
 
The first set of results above would become as shown in the following table: 
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+---------------------------------------------------+ 
| Elasticity             Averaged over observations.| 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR               2.6002     .8212   | 
|       Choice=TRAIN            -1.1293     .9295   | 
|       Choice=BUS              -1.1293     .9295   | 
|       Choice=CAR              -1.1293     .9295   | 
+---------------------------------------------------+ 
+---------------------------------------------------+ 
| Elasticity             Averaged over observations.| 
| Attribute is GC       in choice TRAIN             | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR              -1.2046     .8221   | 
| *     Choice=TRAIN             3.5259    2.1605   | 
|       Choice=BUS              -1.2046     .8221   | 
|       Choice=CAR              -1.2046     .8221   | 
+---------------------------------------------------+ 
| Elasticity             Averaged over observations.| 
| Attribute is GC       in choice BUS               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR               -.5695     .2859   | 
|       Choice=TRAIN             -.5695     .2859   | 
| *     Choice=BUS               3.6181    1.4924   | 
|       Choice=CAR               -.5695     .2859   | 
+---------------------------------------------------+ 
 
+---------------------------------------------------+ 
| Elasticity             Averaged over observations.| 
| Attribute is GC       in choice CAR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR               -.8688     .5119   | 
|       Choice=TRAIN             -.8688     .5119   | 
|       Choice=BUS               -.8688     .5119   | 
| *     Choice=CAR               2.5979    1.5604   | 
+---------------------------------------------------+ 
 
The force of the independence from irrelevant alternatives (IIA) assumption of the multinomial logit 
model can be seen in the identical elasticities in the tables above.  The table also shows two aspects 
of the model.  First, the meaning of the raw coefficients in a multinomial logit model, all of sign, 
magnitude and significance, are ambiguous.  It is always necessary to do some kind of post 
estimation such as this to determine the implications of the estimates.  Second, in light of this, we 
can see that the particular model we estimated seems to be misspecified.  The estimates imply that as 
the generalized cost of each mode rises, it becomes more attractive.  The gc coefficient has the 
‘wrong’ sign. 
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N21.2.5 Exporting Results in a Spreadsheet 
 
 Model results and estimated partial effects or elasticities may be exported to a spreadsheet 
file.  Before doing this, you must open the export file with 
 
 OPEN  ; Export = filename $ 
 
The file will be written in the generic .csv format, so you should open the file with a .csv extension, 
for example 
 
 OPEN  ; Export = “C:\workspace\elasticities.csv” $ 
 
The request to export the results is then done by adding 
 
   ; Export = table 
 
to your model command.  Once the export file is open, you can use it for a sequence of models.   

The spreadsheet file below was created with this sequence of commands: 
 

OPEN  ; Export = “C:\ … \elasticities.csv” $ 
CLOGIT ; Lhs = mode; Choices = air,train,bus,car 

; Rhs = gc,ttme,invc,invt ; Rh2=one,hinc 
; Export output 
; Export = table 
; Effects: gc(*),ttme(*) ; Full $ 

 
The ; Export output setting requests that the model estimates also be included in the export file.  
This is followed by the tables of elasticities.  The figure shows the results after the file has been read 
into Excel. 
 The exported results are in the form of the standard statistical table for estimated parameters.   
The format of the results in the .csv file may be changed to a matrix format by using  
 
   ; Export = matrix 
 
instead.  Figure N21.3 shows the effect on the table shown in Figure N21.2. 
 
HINT:  The export file is created while the computations are being done.  However, there is a delay 
between when results are computed (by NLOGIT) and when they arrive in the file (by Windows).  
You should not try to open the export file (for example in Excel) while NLOGIT is still creating it.  
The results will be incomplete.  Open the export file after you exit NLOGIT.  Also, you should not 
try to write to an export file from NLOGIT while it is open by another program, such as Excel.  This 
will cause a write error.  You cannot modify with another program a spreadsheet file that Excel is 
using. 
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Figure N21.2  Exported Model Results and Elasticities 

 

 
Figure N21.3  Exported Elasticities in Matrix Format 
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N21.3 Predicted Probabilities and Logsums (Inclusive Values) 
 
 There are several variables in addition to the elasticities that you can save in the data area 
while they are created by NLOGIT. 
 
N21.3.1 Fitted Probabilities 
 
 There are some models which make use of the predicted probabilities from the discrete 
choice model.  See, for example, Lee (1983).  Or, you may have some other use for them.  You can 
compute a column of predicted probabilities for the discrete choice model.  Each ‘observation’ 
consists of Ji rows of data, where the number of choices may be fixed or variable.  Use the command 
 
 NLOGIT  ; Lhs = ... ; ...  
   ; Prob = name $ 
 
The variable name will contain the predicted probabilities.  The probabilities will sum to 1.0 for each 
observation, that is, down each set of Ji choices.  The ; Prob option will put the probabilities in the 
right places in your data set regardless of the setting of the current sample.  For example, if you 
happen to be estimating a model after having REJECTED some observations, the predictions will 
be placed with the outcomes for the observations actually used.  Unused rows of the data matrix are 
left undefined. 
 If your model has 14 or fewer choices, you can also include  
 
   ; List 
 
in your command to request a listing of the predicted probabilities.  These will be listed a full 
observation at a time, rowwise, with an indicator of the choice that was made by that individual.  For 
example, the first 10 observations (individuals) in the sample for the model above are 
 
 CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 

; Rhs = gc,ttme,invc,invt ; Rh2 = one ; Rh2 = hinc 
; List $ 

 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .0918     .1574     .1124     .6384*+ 
    2   .1110     .1481     .0790     .6618*+ 
    3   .4621 +   .1106     .0953     .3320* 
    4   .2112     .2639     .1240     .4008*+ 
    5   .1976     .2711     .1379     .3935*+ 
    6   .0901     .1306*    .1181     .6612 + 
    7   .8128*+   .0462     .0392     .1018 
    8   .3101     .0908     .0868     .5123*+ 
    9   .1098     .1867     .1312     .5724*+ 
   10   .1892     .2881     .1840     .3387*+ 
 
The ‘+’ and ‘*’ indicate the actual and predicted choices, respectively.  Where these mark the same 
probability, the model predicted the outcome correctly.  The predicted choice is the one that has the 
largest fitted probability 
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N21.3.2 Computing and Listing Model Probabilities 
 

 You can use an estimated model to compute (list and/or save) all probabilities, utilities, 
elasticities, and all descriptive statistics and crosstabulations for any specified set of observations, 
whether they were used in estimating the model or not.  For example, this feature will allow you to 
compute predicted probabilities for a ‘control’ sample, to assess how well the model predicts outcomes 
for observations outside the estimation sample.  To use this feature, use the following steps. 
 
Step 1. Set up the full model for estimation, and estimate the model parameters. 
 
Step 2. Reset the sample to specify the observations for which you wish to simulate the model. 
 
Step 3. Use the identical CLOGIT command, but add the specification ; Prlist to the command. 
 
The sample that you specify at Step 2 may contain as many observations as you wish; it may be just 
one individual or it may be an altogether different set of data – as long as the variables match in 
name and form the variables in the original model. 
 
NOTE:  The observations in the new sample must be consistent with the specification of the model. 
The usual data checking is done to ensure this. 
 
WARNING:  You must not change the specification of the model between Steps 1 and 3.  The 
coefficient vector produced by Step 1 is used for the simulation at Step 3.  But it is not possible to 
check whether the coefficient vector used at Step 3 is actually the correct one for the model 
command used at Step 3.  It will be if your model commands at Steps 1 and 3 are identical. 
 
 The following sequence fits the model in the preceding examples using the first 200 
observations (800 data rows), then simulates the probabilities for the remaining 10 observations in 
the full sample: 

 
SAMPLE ; 1-800 $ 
CLOGIT ; Lhs = mode 

; Choices = air,train,bus,car 
; Rhs = invc,invt,gc,ttme ; Rh2 = one $ 

 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -174.83929 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.08826***      .01987    -4.44  .0000     -.12721   -.04931 
    INVT|    -.01344***      .00257    -5.23  .0000     -.01847   -.00841 
      GC|     .07053***      .01778     3.97  .0001      .03568    .10539 
    TTME|    -.10176***      .01117    -9.11  .0000     -.12366   -.07986 
   A_AIR|    5.33347***      .92159     5.79  .0000     3.52720   7.13975 
 A_TRAIN|    4.44686***      .52778     8.43  .0000     3.41244   5.48129 
   A_BUS|    3.69334***      .52916     6.98  .0000     2.65620   4.73048 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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To continue our example, 
 

SAMPLE ; 801-840 $ 
CLOGIT ; Lhs = mode 

; Choices = air,train,bus,car 
; Rhs = invc,invt,gc,ttme ; Rh2 = one 
; Prlist $ 

 
+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations               10     | 
+---------------------------------------------+ 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .0543     .0445     .7540*+   .1472 
    2   .2402     .2189     .2014     .3395*+ 
    3   .0137     .0885     .8571*+   .0406 
    4   .0203     .0890     .8287*+   .0620 
    5   .4058 +   .1092     .3745*    .1105 
    6   .2766     .3248 +   .2785     .1201* 
    7   .6129*+   .1446     .1240     .1185 
    8   .0824     .5444 +   .0648*    .3084 
    9   .1815     .3629 +   .1795     .2761* 
   10   .1958     .1863     .0514     .5665*+ 
 
This arrangement of the model may also include 
 
   ; Describe 
   ; Show Model to display the model configuration 
   ; Effects: desired elasticities or marginal effects 
   ; Prob = name to save probabilities 
   ; Ivb = name to save inclusive values 
 
All of these computations are done for the current sample. This process is the same as the full model 
computations listed earlier. But, with ; Prlist in place, the model estimated previously is used; it is 
not reestimated. 
 
N21.3.3 Utilities and Inclusive Values 
 
 The utility functions used to compute the probabilities are 
 
   Uij =  β′xij. 
 
These may be saved in the data set as a new variable with the specification 
 
   ; Utility = name. 
 
The inclusive value, or log sum, for the discrete choice model is 
 
   IVi =  log Σjexp(β′xi,j). 
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Inclusive values are used for a number of purposes, including computing consumer surplus 
measures.  You can keep the inclusive values for your model and data with the specification 
 
   ; Ivb = name 
 
The specification, Ivb stands for ‘inclusive value for branch.’  Inclusive values are stored the same way 
that predicted probabilities are stored.  Since each observation has only one inclusive value, the same 
value will be stored for all rows (choices) for the observation (person).  An example is given below. 
 
N21.3.4 Fitted Values of the Choice Variable 
 
 The actual and predicted outcomes for the model are saved with 
 
   ; Fittedy = name and ; Actualy = name 
 
The actual value is the index of the choice actually made, repeated in each row of the choice set for 
the observation.  The fitted value is the index of the alternative that has the largest probability based 
on the estimated model.  The example below combines all of these features in a single command. 
 

SAMPLE ; All $ 
CLOGIT ; Lhs = mode 

; Choices = air,train,bus,car 
; Rhs = invc,invt,gc,ttme ; Rh2 = one 
; Utility = utility ; Prob = probs ; Ivb = incvalue  
; Actualy = actual ; Fittedy = fitted $ 

 

 
Figure N21.4  Model Predictions 
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N21.4 Specification Tests of IIA and Hypothesis  
 
 We consider two types of hypothesis tests.  The first is a specification test of the IID extreme 
value specification.  The model assumptions induce the most prominent shortcoming of the 
multinomial logit model, the independence from irrelevant alternatives (IIA) property.  The fact that 
the ratio of any two probabilities in the model involves only the utilities for those two alternatives 
produces a number of undesirable implications, including the striking pattern in the elasticities in the 
model shown earlier.  We consider a test of the IIA assumption.  The second part of this section 
considers more conventional hypothesis tests about the coefficients in the model. 
 
N21.4.1 Hausman-McFadden Test of the IIA Assumption 
 
 Hausman and McFadden (1984) proposed a specification test for this model to test the inherent 
assumption of the independence from irrelevant alternatives (IIA). (IIA is a consequence of the initial 
assumption that the stochastic terms in the utility functions are independent and extreme value 
distributed.  Discussion may be found in standard texts on qualitative choice modeling, such as 
Hensher, Rose and Greene (2005a) and Greene (2011).) The procedure is, first, to estimate the model 
with all choices.  The alternative specification is the model with a smaller set of choices.  Thus, the 
model is estimated with this restricted set of alternatives and the same model specification.  The set of 
observations is reduced to those in which one of the smaller set of choices is made.  The test statistic is 
 
   q = [br - bu]′[Vr - Vu]-1[br - bu] 
 
where ‘u’ and ‘r’ indicate unrestricted and restricted (smaller choice set) models and V is an 
estimated variance matrix for the estimates.  To use NLOGIT to carry out this test, it is necessary to 
estimate both models.  In the second, it is necessary to drop the outcomes indicated.  This is done 
with the  
   ; Ias = list 
 
specification.  The list gives the names of the outcomes to be dropped.  This procedure is automated 
as shown in the following example: 
 
 CLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car  
   ; Rhs = invc,invt,gc,ttme $ 
 CLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car    
   ; Ias = car  
   ; Rhs = invc,invt,gc,ttme $ 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -244.13419 
Estimation based on N =    210, K =   4 
Inf.Cr.AIC  =  496.268 AIC/N =    2.363 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .1396 .1341 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.02243         .01435    -1.56  .1181     -.05056    .00570 
    INVT|    -.00634***      .00184    -3.45  .0006     -.00995   -.00274 
      GC|     .03183**       .01373     2.32  .0204      .00492    .05874 
    TTME|    -.03481***      .00469    -7.42  .0000     -.04401   -.02561 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  59 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Normal exit:   6 iterations. Status=0, F=    103.2012 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -103.20124 
Estimation based on N =    151, K =   4 
Inf.Cr.AIC  =  214.402 AIC/N =    1.420 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -159.0502  .3511 .3424 
Response data are given as ind. choices 
Number of obs.=   210, skipped   59 obs 
Hausman test for IIA. Excluded choices are 
CAR 
ChiSqrd[ 4] =  51.9631, Pr(C>c) =  .000000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    INVC|    -.04642**       .02109    -2.20  .0277     -.08775   -.00508 
    INVT|    -.00963***      .00271    -3.55  .0004     -.01495   -.00432 
      GC|     .04116**       .01984     2.07  .0380      .00227    .08005 
    TTME|    -.07939***      .00992    -8.01  .0000     -.09882   -.05996 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 In order to compute the coefficients in the restricted model, it is necessary to drop those 
observations that choose the omitted choice(s).  In the example above, 59 observations were skipped.  
They are marked as bad data because with car excluded, no choice is made for those observations.  
As a consequence, the log likelihood functions are not comparable.  The Hausman statistic is used to 
carry out the test.  In the preceding example, the large value suggests that the IIA restriction should 
be rejected. 

Note that you can carry out several tests with different subsets of the choices without 
refitting the benchmark model.  Thus, in the example above, you could follow with a third model in 
which ; Ias = bus instead of car. 
 There is a possibility that restricting the choice set can lead to a singularity.  It is possible 
that when you drop one or more alternatives, some attribute will be constant among the remaining 
choices.  Thus, you might induce the case in which there is a ‘regressor’ which is constant across the 
choices.  In this case, NLOGIT will send up a diagnostic about a singular Hessian (it is).  Hausman 
and McFadden suggest estimating the model with the smaller number of choice sets and a smaller 
number of attributes.  There is no question of consistency, or omission of a relevant attribute, since if 
the attribute is always constant among the choices, variation in it is obviously not affecting the 
choice. After estimation, the subvector of the larger parameter vector in the first model can be 
measured against the parameter vector from the second model using the Hausman statistic given 
earlier.  This possibility arises in the model with alternative specific constants, so it is going to be a 
common case.  The examples below suggest one way you might proceed in such as case. 
 The first step is to fit the original model using the entire sample and retrieve the results. 
 
 CLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car  
   ; Rhs = gc,invc,invt,tasc,basc,aasc,hinca $ 
 MATRIX ; bu = b(1:5) ; vu = Varb(1:5,1:5) $ 
 
The variable choice takes values 1,2,3,4,1,2,3,4... indicating the indexing scheme for the choices. 
 
 CREATE ; choice = Trn(-4,0) $ 
 
Chair is a dummy variable that equals one for all four rows when choice made is air. Now restrict 
the sample to the observations for choices train, bus, car. 
 
 REJECT ; chair = 1 | choice = 1 $ 
 
Fit the model with the restricted sample (choice set) and without the air ASC and hinca; 
 
 CLOGIT ; Lhs = mode   
   ; Choices = train,bus,car   
   ; Rhs = gc,invc,invt,tasc,basc $ 
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Retrieve the restricted results and compute the Hausman statistic. 
 
 MATRIX ; br = b(1:5) ; vr = Varb(1:5,1:5) 
   ; db = br - bu ; vdb = Nvsm(vr,-vu) $ 
 CALC  ; List   
   ; q = Qfr(db,vdb)  
   ; 1 - Chi(q,5) $ 
The results are: 
 
[CALC] Q       =     40.5144139 
[CALC] *Result*=       .0000008 
Calculator: Computed   2 scalar results 
 
NOTE: (We’ve been asked this one several times.)  The difference matrix in this calculation, vdb, 
might be nonsingular (have an inverse), but not be positive definite.  In such a case, the chi squared 
can be negative.  If this happens, the right conclusion is probably that it should be zero. 
 
N21.4.2 Small-Hsiao Likelihood Ratio Test of IIA 
 
 Small and Hsiao (1985) proposed an alternative procedure for testing IIA in the context of 
the CLOGIT model.  The approach is similar to Hausman and McFadden, in that it is based on 
comparing two estimates of β that should be similar under IIA but will not be if the assumption is not 
met.  This test is carried out via a packaged command set, rather than in internal procedure.  We will 
lay out this routine around the specific application.  Modifications needed for a different problem 
will be obvious.  In the NLOGIT estimation commands, ; Quietly is used to suppress the 
intermediate results. 
 The Small-Hsiao test is based on the likelihood function, rather than the Wald distance.  The 
test is carried out in four steps as follows: 
 
Step 1. Split the sample roughly equally into groups 0 and 1. 

Using group 0, estimate β and retain as b0. 
 

Step 2. Using group 1, refit the model and retain the estimator as b1. 
Compute b01 = (1/√2)b0 + [1-(1/√2)]b1. 
 

Step 3. Using group 1 again, fit the model using the restricted choice set. 
Retain the log likelihood function, LogL1. 
 

Step 4. Still using group 1 and the restricted choice set, recompute the log likelihood function at b01.   
The log likelihood function is logL01. 

 
The likelihood ratio statistic is 2*(logL1 – logl01).  By construction, this is positive, since logL1 is the 
maximized value of a log likelihood while logL01 is the same log likelihood function computed at a 
value of the parameters that does not maximize it.  Under the assumption of IIA, the first three steps 
produce what should be estimates of the same parameter vector.  The logic of the test is based on the 
difference between b01 and the result at Step 3.  The log likelihood function is used instead of a Wald 
statistic to measure the difference. 
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Small-Hsiao Test of IIA   
 

The model is estimated using the full choice set, {A}= A1,….,AJ, and a restricted set of 
choices, B1,B2,…,BM which is a subset of {A}.  (In the previous example, {A} = (air,train,bus,car) 
and {B} = (train,bus,car). The model contains x in two parts, xtheta is variables that are identified in 
both choice situations [e.g., (gc,invc,invt,tasc,basc) and xgamma is variables that are not identified 
by the restricted choice set [e.g., (aasc,hinca)].  The routine is as follows:  

 
NAMELIST  ; xgamma = gc,invc,invt,tasc,basc ; xtheta = aasc,hinca  

; x = xgamma,xtheta $ 
CALC    ; kgamma = Col(xgamma) ; nperson = 210 ; numalt = 4 $ 
CREATE ; y = the choice variable $ 
CLIST  ; alts = air,train,bus,car $ 

 
We randomly select blocks of observations to split the sample.  The following assumes a fixed 
choice set size.  If not, then there must exist a variable in the data set that gives a sequential 
identification number to the person, repeated for each alternative within the choice set.  (For the first 
person, if J = 5, this variable would equal 1,1,1,1,1. 
 
 SAMPLE ; All $ 
 CREATE ; i = Trn(numalt,0) $ 
 
From this point, the program is generic, and need not be changed by the user. We now randomly split 
the sample into two sets of observations. 
 
 CALC  ; Ran(123457) $ 
 MATRIX ; split = Rndm(nperson) $ 
 CREATE ; ab_split = split(i) > 0 $ 
 
The following now carries out the test: 
 
 NLOGIT 1 ; For[ab_split = 0] ; Quietly ; Lhs = y ; Choices = alts ; Rhs = x $ 
 MATRIX ; gamma0 = b(1:kgamma) $ 
 NLOGIT 2 ; For[ab_split = 1] ; Quietly ; Lhs = y ; Choices = alts ; Rhs = x $ 
 MATRIX ; gamma1 = b(1:kgamma) $ 
 MATRIX ; gamma01 = .7071*gamma0 + .2929*gamma1 $ 
 NLOGIT 3 ; For[ab_split = 1] ; Quietly ; Lhs = y ; Choices = alts  

; IAS = air ; Rhs = xgamma $ 
 CALC  ; logl1 = logl $ 
 NLOGIT 4 ; For[ab_split = 1] ; Quietly ; Lhs = y ; Choices = alts  

; IAS = air ; Rhs = xgamma  ; Start = gamma01 ; Maxit = 0 $ 
CALC LR ; List ; hs_stat = 2*(logl1 - logl) ; cvalue = Ctb(.95,kgamma) $ 
 
The results of this test are shown below.  The chi squared statistic with five degrees of 

freedom is 69.921.  The critical value is 11.07, so on the basis of this test, the IIA restriction is 
rejected.  Using the Hausman-McFadden procedure in the preceding section produced a chi squared 
value of 40.514.  The hypothesis is once again rejected. 
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----------------------------------------------------- 
Setting up an iteration over the values of AB_SPLIT 
The model command will be executed for     1 values 
of this variable.  In the current sample of     840 
observations, the following counts were found: 
Subsample   Observations    Subsample  Observations 
AB_SPLIT =   0       448 
---------------------------------------------------- 
Actual subsamples may be smaller if missing values 
are being bypassed.  Subsamples with 0 observations 
will be bypassed. 
----------------------------------------------------- 
Setting up an iteration over the values of AB_SPLIT 
The model command will be executed for     1 values 
of this variable.  In the current sample of     840 
observations, the following counts were found: 
Subsample   Observations    Subsample  Observations 
AB_SPLIT =   1       392 
---------------------------------------------------- 
----------------------------------------------------------------- 
Subsample analyzed for this command is AB_SPLIT =       1 
----------------------------------------------------------------- 
--> CALC  ; List ; hs_stat = 2*(logl1 - logl) 
      ; cvalue = ctb(.95,kgamma) $ 
[CALC] HS_STAT =     69.9219965 
[CALC] CVALUE  =     11.0704978 
Calculator: Computed   2 scalar results 
 
N21.4.3 Lagrange Multiplier, Wald, and Likelihood Ratio Tests 
 
 NLOGIT keeps the usual statistics for the classical hypothesis tests.  After estimation, the 
matrices b and varb will be kept and can be further manipulated for any purposes, for example, in the 
WALD command.  You can use 
 
   ; Test: ... restrictions 
 
as well within the NLOGIT command to set up Wald tests of linear restrictions on the parameters.    
In general, the names are constructed during estimation, so it may be necessary to estimate the model 
without restrictions to determine what compound names are being used for the parameters.  The 
example below shows a test of the hypothesis that the income coefficients in the air and train utility 
functions are the same.  The names are constructed by the program, so it is necessary to fit the model 
first without restriction to determine the names to use in the restriction. 
 

NLOGIT  ; Lhs = mode ; Choices = air,train,bus,car 
; Rhs = gc,ttme ; Rh2 = one,hinc 
; Test: air_hin1 - tra_hin2 $ 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -189.52515 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    395.1 AIC/N =    1.881 
Model estimated: Sep 11, 2011, 21:48:50 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .3321 .3235 
Chi-squared[ 5]          =    188.46723 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
Wald test of  1 linear restrictions 
Chi-squared =  12.07, P value =  .00051 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01093**       .00459    -2.38  .0172     -.01992   -.00194 
    TTME|    -.09546***      .01047    -9.11  .0000     -.11599   -.07493 
   A_AIR|    5.87481***      .80209     7.32  .0000     4.30275   7.44688 
AIR_HIN1|    -.00537         .01153     -.47  .6412     -.02797    .01722 
 A_TRAIN|    5.54986***      .64042     8.67  .0000     4.29465   6.80507 
TRA_HIN2|    -.05656***      .01397    -4.05  .0001     -.08395   -.02917 
   A_BUS|    4.13028***      .67636     6.11  .0000     2.80464   5.45593 
BUS_HIN3|    -.02858*        .01544    -1.85  .0642     -.05885    .00169 
--------+-------------------------------------------------------------------- 
 
 Likelihood ratio tests can be carried out by using the scalar logl, which will be available after 
estimation.  The value of the log likelihood function for a model which contains only J-1 alternative 
specific constants will be reported in the output as well (see the sample outputs above).  If your 
model actually contains the ASCs, NLOGIT will also report the chi squared test statistic and its 
significance level for the hypothesis that the other coefficients in the model are all 0.0. 
 
HINT:  NLOGIT can detect that a model contains a set of ASCs if you have used one in an ; Rhs 
specification.  But, it cannot determine from a set of dummy variables that you, yourself, provide, if 
they are a set of ASCs, because it inspects the model, not the data, to make the determination.  As 
such, there is an advantage, when possible, to letting NLOGIT set up the set of alternative specific 
constants for you. 
 
 Finally, an LM statistic for testing the hypothesis that the starting values are not significantly 
different from the MLEs (the standard LM test) is requested by adding  
 
   ; Maxit  =  0 
 
to the CLOGIT command. 
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N22: Simulating Probabilities in Discrete 
Choice Models 

 
N22.1 Introduction 
 
 The simulation program described here allows you to fit a model, use it to predict the set of 
choices for your sample, then examine how those choices would change if the attributes of the 
choices changed.   You can also examine scenarios that involve restricting the choice set from the 
original one.  Finally, you can use your estimated model and this simulator to do these analyses with 
data sets that were not actually used to fit the model. The calculation proceeds as follows: 
 
Step 1. Set the desired sample for the model estimation.  Estimate the model using NLOGIT.  This 

processor is supported for the following discrete choice models that are specific to NLOGIT: 
 
 Model    Command  Alternative Command 
 Conditional Logit  CLOGIT  NLOGIT 
 Scaled Multinomial Logit SMNLOGIT  NLOGIT ; SMNL 
 Random Regret Logit  RRLOGIT  NLOGIT ; RRM 
 Error Components Logit ECLOGIT  NLOGIT ; ECM = ... 
 Heteroscedastic Extreme Value HLOGIT  NLOGIT ; HEV 
 Nested Logit   NLOGIT  NLOGIT ; Tree = ... 
 Generalized Nested Logit GNLOGIT  NLOGIT ; GNL 
 Random Parameters Logit RPLOGIT  NLOGIT ; RPL 
 Generalized Mixed Logit GMXLOGIT  NLOGIT ; GMXL 
 Nonlinear Random Par.  NLRPLOGIT  none 
 Latent Class Logit  LCLOGIT  NLOGIT ; LCM 
 Latent Class Random Par. LCRPLOGIT  none 
 Multinomial Probit  MNPROBIT  NLOGIT ; MNP 
 
Step 2. The model is viewed as a random utility model in which the utility functions are functions of 

attributes x1,...,xK.  The model is then fit to describe the choice among J alternatives, 
C1,...,CJ.  This may be a very simple model such as the basic multinomial logit model 
(MNL) of Chapter N16 or as complicated as a four level nested logit model as described in 
Chapter N28.  In any event, the model is ultimately viewed in terms of these attributes and 
choices. 

 
Step 3. (If desired) Reset the sample to any desired setup that is consistent with the model. This may 

be all or a subset of the data used to fit the model, or a set of individuals that were not used 
in fitting the model, or any mixture of the two. 

 
Step 4. Specify which of the choices (possibly but not necessarily all) are to be used as the choice 

set for the simulation.  The simulation is then produced to predict choice among this possibly 
reduced set of choices.  (Probabilities for the full choice set are reallocated, but not 
necessarily proportionally.  This would only occur in the MNL model which satisfies IIA.) 
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Step 5. Specify how the attributes that enter the utility functions will change – for example that a 
particular price is to rise by 25%. 

 
Step 6. Simulate the model by computing the probabilities and predicting the outcomes for the 

specified sample and summarize the results, comparing them to the original, base case. 
 
Steps 3-6 may be repeated as many times as desired once a model has been estimated.  The model is 
not reestimated; the existing model is used to compute the simulation results.  The simulation 
produces an output table that compares absolute frequencies and shares for each alternative in the 
full or a restricted choice set to the base case in which the predicted shares are the means of the 
sample predictions from the model absent the changes specified in the scenario. 
 In addition, this feature provides a capability for implementing simulation/scenario analysis 
when one is using mixtures of data (for example stated preference and revealed preference).  This 
option allows you to combine the two types of data in a simulation.  An example is shown in the case 
study below. 
 
N22.2 Essential Subcommands 
 

NLOGIT’s models are all built around the specification which indicates the choice set being 
modeled: 

 ; Choices = the full list of alternatives in the model 
 
This simulation program is used to compute simulated probabilities assuming that the individuals in 
the sample being simulated are choosing among some or all of these alternatives.  The first 
subcommand for the simulation is 
 

 ; Simulation = a list of names of alternatives 
 
The list of names must be some or all of the names in the ; Choices list.  If they are to be all of them, 
then you may use 
   ; Simulation = * (or, just ; Simulation) 
 
NOTE:  Simulation on a subset of alternatives in the full choice set is done by analyzing the full set 
of data while, in process, pretending (simulating) that alternatives not in the simulation list are not 
available to these individuals even if they are physically in the data set and actually available. (Note, 
this is just for the purposes of the simulation.)  You must not change the sample settings in any way 
to produce this effect yourself.  It is handled completely internally by this program simply by using a 
set of switches (‘on’ for included, ‘off’ for excluded) for the choice set while numerical results are 
computed. 
 

The second specification you will provide is the name of the attribute that is being set or 
changed and the names of the alternatives in which this attribute is changing.  This is the ‘scenario.’  
The base case, for a single changing attribute is 

 
; Scenario: attribute name (list of alternatives whose attribute levels will change) 
  = [ action ] magnitude of action 
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If you wish to include in the scenario, all the alternatives that are defined in the simulation, simply use 
the wildcard character, * as the list.  Note that this ‘all items in list’ refers back to your ; Simulation 
list, not to the ; Choices list.  The actions in the scenario specification are as follows: 
 

  =  specific value to force the attribute to take this value in all cases, 
or  =  [*] value to multiply observed values by the value, 
or  =  [+] value to add ‘value’ to the observed values, 
or  =  [/ ] value to divide the attribute by the specified value, 
or  =  [- ] value to subtract ‘value’ from the observed values. 

 
The following example: 
 

; Choices = air,train,bus,car 
   ; Simulation = air,car  

; Scenario: gc(car) = [*] 1.5 
 
specifies a simulation over two choices in a four choice model.  The scenario is enacted by changing 
the gc attribute for car only by multiplying whatever value is found in the original sample by 1.5. 
 
N22.3 Multiple Attribute Specifications and Scenarios 
 
 The simulation may specify that more than one attribute is to change.  The multiple settings 
may provide for changes in different alternatives.  The specification is 
 

; Scenario: attribute name 1 (list of alternatives) = [ action ] magnitude of action   /  
  attribute name 2 (list of alternatives) = [ action ] magnitude of action   / 

      ...   repeated up to a maximum of 20 attributes specifications 
 
The different change specifications are separated by slashes.  To continue the earlier example, we 
might specify 
   ; Choices = air,train,bus,car 

  ; Simulation = air,train, car 
  ; Scenario: gc(car)  = [ * ] 1.5 / 
   ttme (air,train) = [ * ] 1.25 

 
You may also provide more than one full scenario for the simulation.  In this case, each 

scenario is compared to the base case, then the scenarios are compared to each other.  You may 
compare up to five scenarios in one run with this tool.  Use 
 

; Scenario: attribute name 1 (list of alternatives) = [ action ] magnitude of action ... 
  & 
  attribute name 2 (list of alternatives) = [ action ] magnitude of action ... 

 
Use ampersands (&) to separate the scenarios.  Within each scenario, you may have up to 20 
attribute specifications separated by slashes. 
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N22.4 Simulation Commands 
 
 The simulation instruction does not produce new model estimates.  However all other 
NLOGIT options can be invoked with the command, such as descriptive statistics and computing 
and retaining predicted probabilities. 
 
N22.4.1 Observations Used for the Simulations 
 

The data set used in the simulation can be the original data set used to estimate the model or 
a new data set.   The base model is fit with an ‘estimation’ data set.  After this operation (Steps 1 and 
2 in the introduction), if desired, you may respecify the sample to direct the simulator to do the 
calculations with a completely different set of observations.  This would precede Step 4 above.  If 
you do not change the sample setting, the same data are used for the simulation.  (The simulation 
must follow the estimation.  In any case, it will require a second command, which will generally be 
identical to the first save for the specification of the simulation.) 
 
N22.4.2 Variables Used for the Simulations 
 

If a new data set is used, the attributes must have the exact same names and measurement 
units and the alternatives must also have the same names as the full or a restricted set of those used 
in model estimation.  A natural application that would obey this convention would be to use one half 
of a sample to estimate the model, then repeat the simulation using the other half of the same sample. 
 
N22.4.3 Choices Simulated 
 

One can undertake simulation either on the full choice set used in estimation or a restricted 
set. This latter option is very useful for modelers using mixtures of data (e.g., combined stated and 
revealed preference data), where some alternatives are only included in estimation but not in 
application.  An extensive example is shown below in the case study. 
 
N22.4.4 Other NLOGIT Options 
 

The routine that does simulation also allows you to compute the various elasticities and/or 
derivatives (; Effects: ...) and descriptive statistics (; Describe and ; Crosstab) as described in 
Chapter N19, and will produce the standard results for these.  You might already have done this at 
the estimation step, but if you change the sample as described in Section N22.4.1, you can use this 
simulation program to recompute those values. 
 
N22.4.5 Observations Used for the Simulations 
 

This program also allows you to compute, display, and save fitted probabilities, utilities and 
inclusive values for specific observations, using the standard setup for these as described in the 
LIMDEP documentation.  Once again, this is likely to be useful when your estimation and simulation 
steps are based on different sets of observations. 
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N22.5 Arc Elasticities 
 
 Since the simulated scenarios produce discrete changes in the probabilities from discrete 
changes in attributes, it is convenient to compute arc elasticities using the results.  You can request 
estimates of arc elasticities in ; Simulation by adding ; Arc to the command. Like point elasticities, 
these be computed either unweighted or probability weighted by adding ; Pwt to the command.  The 
following results are produced by adding ; Arc to the application at the beginning of the next section: 
 
----------------------------------------------------------------------------- 
Estimated Arc Elasticities Based on the Specified Scenario. Rows in the table 
report 0.00 if the indicated attribute did not change in the scenario or if  
the average probability or average attribute was zero in the sample. 
Estimated values are averaged over all individuals used in the simulation. 
Rows of the table in which no changes took place are not shown. 
----------------------------------------------------------------------------- 
Attr Changed in | Change in Probability of Alternative 
----------------------------------------------------------------------------- 
Choice AIR      | AIR       TRAIN     BUS       CAR 
   x = TTME     |   -3.003     2.948     2.948    -9.000 
----------------------------------------------------------------------------- 
 

N22.6 Applications 
 
 Another way to analyze the estimated model is to examine the effect on predicted ‘market’ 
shares of changes in the attribute levels.  We compute the shares as 
 

   S(alternative j) =  N×
1

N
iji

P
∧

=∑  
 

Thus, save for the rounding error which is distributed, the model predicts the number of individuals 
in the sample who will choose each alternative.  The crosstab described earlier summarizes this 
calculation.  For our application, 
 
 NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
   ; Rhs = invc,invt,gc,ttme ; Rh2 = one,hinc  
   ; Crosstab $ 
 
+-------------------------------------------------------+ 
| Cross tabulation of actual choice vs. predicted P(j)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i).  | 
| Column totals may be subject to rounding error.       | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|             7            13            18             3            42 
   TRAIN|             3            19            10             2            34 
     BUS|             5            11            24             2            42 
     CAR|             6            10            14             4            34 
--------+---------------------------------------------------------------------- 
   Total|            21            53            66            12           152 
--------+---------------------------------------------------------------------- 
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+-------------------------------------------------------+ 
| Cross tabulation of actual y(ij) vs. predicted y(ij)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is N(k,j,i)=Sum(i=1,...,N) Y(k,j,i).  | 
| Predicted y(ij)=1 is the j with largest probability.  | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|             5            10            27             0            42 
   TRAIN|             1            27             4             2            34 
     BUS|             4             7            29             2            42 
     CAR|             5            10            18             1            34 
--------+---------------------------------------------------------------------- 
   Total|            15            54            78             5           152 
 
The feature described here is used to examine what becomes of these predictions when the value of 
an attribute changes.  For example, how the predictions change when the generalized cost of air 
travel changes. 
 The simulator is used as follows: 
 
Step 1. Fit the model. 
 
Step 2. Use the identical model specification, but add to the command 
 

  ;  Simulation  [ = a subset of the choices, if desired – see below] 
   ;  Scenario =  what changes and how 
 
We take the base case first, in which all alternatives are considered in the simulation.  A scenario is 
defined using 
   ; Scenario :  attribute (choices in which it appears)  =  the change    
 
The change is defined using 
 
   =  specific value to force the attribute to take this value in all cases 
or   =  [*] value to multiply observed values by the value 
or   =  [+] value to add ‘value’ to the observed values. 
 
The results of the computation will show the market shares before and after the change. 
 For example, we will refit our transport mode model, then examine the effect of increasing 
by 25% the terminal time spent waiting for air transport. 
 
 SAMPLE ; 1-840 $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; Simulation ; Scenario: ttme (air) = [*]1.25 $ 
 
Results are shown below. 
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+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 15.118    32 |-12.501%      -26 | 
|TRAIN     | 30.000    63 | 33.694    71 |  3.694%        8 | 
|BUS       | 14.286    30 | 16.126    34 |  1.841%        4 | 
|CAR       | 28.095    59 | 35.061    74 |  6.966%       15 | 
|Total     |100.000   210 |100.000   211 |   .000%        1 | 
+----------+--------------+--------------+------------------+ 
 

The model predicts the base case using the actual data, shown in the left side and what would 
become of this case if the scenario is assumed.  In this case, each person’s ttme for air travel is 
increased by 25%, and the probabilities are recomputed.  We see a fairly strong effect is predicted; 
26 of 58 people who chose air are now expected to take other modes, eight changing to train, four to 
bus, and 15 to car (and one apparently deciding to walk – this is rounding error). 
 You may combine up to five scenarios in each simulation.  This allows you to have 
simultaneous changes in attributes.  Use 
 

 ; Scenario :   attribute (choices in which it appears) = the change / 
   attribute (choices in which it appears) = the change  /  

... 
 

For example, suppose terminal time for both air and train increased by 25%.  We would extend our 
previous setup as follows: 
 
 SAMPLE ; 1-840 $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; Simulation ; Scenario: ttme (air)  = [*] 1.25  / 
     ttme (train) = [*] 1.25  $ 
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+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
TTME       TRAIN                            Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 16.417    34 |-11.202%      -24 | 
|TRAIN     | 30.000    63 | 23.178    49 | -6.822%      -14 | 
|BUS       | 14.286    30 | 18.796    39 |  4.510%        9 | 
|CAR       | 28.095    59 | 41.609    87 | 13.514%       28 | 
|Total     |100.000   210 |100.000   209 |   .000%       -1 | 
+----------+--------------+--------------+------------------+ 
 

 You may also compare the effects of different scenarios as well.  For example, rather than 
assume that ttme for both air and train changed, you might compare the two scenarios.  To do a 
pairwise comparison of scenarios, separate them with ‘&’ in the command.  For example, 
 

 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; Simulation ; Scenario: ttme (air)  = [*] 1.25 & 
     ttme (train) = [*] 1.25  $ 
 

produces the following: 
 
+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
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------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 15.118    32 |-12.501%      -26 | 
|TRAIN     | 30.000    63 | 33.694    71 |  3.694%        8 | 
|BUS       | 14.286    30 | 16.126    34 |  1.841%        4 | 
|CAR       | 28.095    59 | 35.061    74 |  6.966%       15 | 
|Total     |100.000   210 |100.000   211 |   .000%        1 | 
+----------+--------------+--------------+------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 2 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       TRAIN                            Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 30.168    63 |  2.548%        5 | 
|TRAIN     | 30.000    63 | 20.787    44 | -9.213%      -19 | 
|BUS       | 14.286    30 | 16.383    34 |  2.097%        4 | 
|CAR       | 28.095    59 | 32.662    69 |  4.567%       10 | 
|Total     |100.000   210 |100.000   210 |   .000%        0 | 
+----------+--------------+--------------+------------------+ 
 
The simulator located    209 observations for this scenario. 
Pairwise Comparisons of Specified Scenarios 
Base     for this comparison is scenario 1. 
Scenario for this comparison is scenario 2. 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 15.118    32 | 30.168    63 | 15.049%       31 | 
|TRAIN     | 33.694    71 | 20.787    44 |-12.907%      -27 | 
|BUS       | 16.126    34 | 16.383    34 |   .257%        0 | 
|CAR       | 35.061    74 | 32.662    69 | -2.399%       -5 | 
|Total     |100.000   211 |100.000   210 |   .000%       -1 | 
+----------+--------------+--------------+------------------+ 
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 Simulations and scenarios can be combined and extended. You may have multiple scenarios 
and each scenario can involve several attributes.  Separate the specifications within a scenario with 
slashes (/) and separate scenarios with ampersands (&).  Finally, you can use the simulator to restrict 
the choice set.  The computed probabilities are computed assuming only the specified alternatives are 
available.  To do this, use 
 
   ; Simulation = the subset of alternatives 
 
 To continue the example, we simulate the model assuming that people could not drive, and 
examine what the effect of increasing terminal time in airports would do to the market shares for the 
remaining three alternatives. 
 
 SAMPLE ; 1-840 $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car $ 
 NLOGIT ; Lhs  = mode 

; Rhs = one,gc,ttme 
   ; Choices = air,train,bus,car  
   ; Simulation = air,train,bus 

 ; Scenario: ttme (air) = [*] 1.25  $ 
 
+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 39.353    83 | 22.933    48 |-16.420%      -35 | 
|TRAIN     | 40.985    86 | 52.281   110 | 11.297%       24 | 
|BUS       | 19.662    41 | 24.786    52 |  5.123%       11 | 
|Total     |100.000   210 |100.000   210 |   .000%        0 | 
+----------+--------------+--------------+------------------+ 
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N22.7 A Case Study 
 

The data set used to illustrate the application of simulation/scenario analysis is a combined 
RP-SP data set associated with single-vehicle households choosing among vehicle types. The RP 
data are a single observation per household and involved choosing among 12 vehicle classes 
(MC,SM,MD,UA,UB,LG,LX,LC,FD,LT), all of which are vehicles fueled by conventional fuels (i.e. 
gasoline and diesel). The SP data are three observations per household, often called treatments or 
choice sets. These observations are correlated and so it is preferable to run a model such as mixed 
logit (RPL) to allow for choice set correlation. We have done this in Hensher and Greene (2003), but 
in the example below we have used the simple multinomial logit form.  The SP data set involved 
households choosing among four conventionally fueled vehicle (C1,C2,C3,C4), four electric vehicles 
(E1,E2,E3,E4) and four alternatively fueled vehicles (A1,A2,A3,A4).  The case study involves 
running a number of scenarios in which we are interested in only the four electric vehicles, the four 
alternative fueled vehicles and the 12 conventional fueled vehicles. The reason for excluding C1-C4 
is that they are equivalent to the RP alternatives and are only used to establish more robust parameter 
estimates in the SP data set that can be used to enrich the RP estimates. See Hensher and Greene for 
more details. 

The initial data setup proceeds as follows, where mnemonics for the variables are suggestive 
of their content. 

 
READ   ; File=“C:\projects\ggedata\vehtype\sprp1data\sprp1.txt” 

 ; Nvar = 24 ; Nobs = 14120 
 ; Names = id,chosen,cset,altz,hweight,price,princ,opcost,rg,ls, 

         lage,acc,ncylind,encap,yr2,yr5,yr10,elec,accevaf, 
         bsize,range,small,altfuel,vexper $ 

CREATE ; If(ncylind>0) rpobs=1 ? defining RP vs SP observations by # cyls. > 0 
   ; If(rpobs=1 & altz=1)altz=13 ; If(rpobs=1 & altz=2)altz=14 

 ; If(rpobs=1 & altz=3)altz=15 ; If(rpobs=1 & altz=4)altz=16 
 ; If(rpobs=1 & altz=5)altz=17 ; If(rpobs=1 & altz=6)altz=18 
 ; If(rpobs=1 & altz=7)altz=19 ; If(rpobs=1 & altz=8)altz=20 

   ; If(rpobs=1 & altz=9)altz=21 ; If(rpobs=1 & altz=10)altz=22 
   ; If(altz>12)cset=10 ; If(altz<13)sp=1  
   ; pricea = price/1000 
   ; hinc = princ/price ; hincn = hinc*1000000 
   ; priccalc = princ/hinc ; pricez = -price  
   ; opcostz = opcost 
   ; If(rpobs=0)pdsz=3 ; If(rpobs=1)pdsz=1 $ 

DSTAT   ; Rhs = * $ 
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Descriptive Statistics 
All results based on nonmissing observations. 
------------------------------------------------------------------------------- 
Variable        Mean         Std.Dev.        Minimum         Maximum      Cases 
------------------------------------------------------------------------------- 
ID        2756.73399      1292.93923      1006.00000      6501.00000      14120 
CHOSEN    .089164306      .284990850      .000000000      1.00000000      14120 
CSET      11.3002833      .953883844      10.0000000      12.0000000      14120 
ALTZ      10.3484419      6.17728995      1.00000000      22.0000000      14120 
HWEIGHT   1.22935552      .326829180      .553000000      2.27400000      14120 
PRICE     23239.6936      18854.2894      1552.00000      110000.000      14120 
PRINC     947.053091      1094.13538      7.08600000      15400.0000      14120 
OPCOST    8.52293909      4.28526201      2.00000000      24.0000000      14120 
RG        218.160411      98.4963414      50.0000000      550.000000      14120 
LS        .321991723      .808399213      .000000000      6.13000000      14120 
LAGE      .647481834      1.03715689      .000000000      2.77259000      14120 
ACC       5.64133853      8.04051105      .000000000      23.1000000      14120 
NCYLIND   1.89123938      2.68257443      .000000000      8.00000000      14120 
ENCAP     932.266218      1408.75909      .000000000      4994.00000      14120 
YR2       .160764873      .367326945      .000000000      1.00000000      14120 
YR5       .161685552      .368175141      .000000000      1.00000000      14120 
YR10      .157365439      .364157863      .000000000      1.00000000      14120 
ELEC      .216713881      .412020628      .000000000      1.00000000      14120 
ACCEVAF   10.9891289      9.19275986      .000000000      29.0000000      14120 
BSIZE     .345835694      .286489598      .000000000      .750000000      14120 
RANGE     321.076416      248.536479      .000000000      580.000000      14120 
SMALL     .219688385      .414050166      .000000000      1.00000000      14120 
ALTFUEL   .216713881      .412020628      .000000000      1.00000000      14120 
VEXPER    1.30028329      1.15903100      .000000000      3.00000000      14120 
RPOBS     .349858357      .476941922      .000000000      1.00000000      14120 
SP        .650141643      .476941922      .000000000      1.00000000      14120 
PRICEA    23.2396936      18.8542894      1.55200000      110.000000      14120 
HINC      .040000427      .024639760      .003000000      .140000000      14120 
PRICCALC  23239.6936      18854.2894      1552.00000      110000.000      14120 
HINCN     40000.4275      24639.7600      3000.00000      140000.000      14120 
PRICEZ   -23239.6936      18854.2894     -110000.000     -1552.00000      14120 
OPCOSTZ  -8.52293909      4.28526201     -24.0000000     -2.00000000      14120 
PDSZ      2.30028329      .953883844      1.00000000      3.00000000      14120 
 

N22.7.1 Base Model – Multinomial Logit (MNL) 
 

 The base model is a MNL model with a fairly complicated set of utility functions. 
 

NLOGIT  ; Lhs = chosen,cset,altz 
   ; Choices = c1,c2,c3,c4,e1,e2,e3,e4,a1,a2,a3,a4,mc,sm,md,ua,ub,lg,lx,lc,fd,lt 
   ; Model: U(c1,c2,c3,c4) = prc*pricez + pic*princ + opc*opcost  
       + y2*yr2 + y5*yr5 + y10*yr10/ 
     U(e1,e2,e3,e4) = el*elec + prc*pricez + pic*princ + opc*opcost 
       + accev*accevaf + rangevaf*range + smev*small 
      + y2*yr2 + y5*yr5 + y10*yr10/ 

    U(a1,a2,a3,a4) = af*altfuel + prc*pricez + pic*princ  
      + opc*opcost + rangevaf*range + smaf*small 

       + y2*yr2 + y5*yr 5 + y10*yr10/ 
   U(mc,sm,md,ua,ub,lg,lx,lc,fd,lt)=<mc,sm,md,ua,ub,lg,lx,lc,fd,0> 

      + prc*pricez + pic*princ + opc*opcost + ag*lage + ac*acc 
      + <ncy4,ncy4,ncy4,0,0,0,0,0,0,0>*ncylinds $ 
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Normal exit from iterations. Exit status=0. 
 
------------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model    
Maximum Likelihood Estimates                 
Dependent variable               Choice      
Number of observations             1259      
Iterations completed                  6      
Log likelihood function       -2636.317      
Log-L for Choice   model =   -2636.3166      
R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj  
No coefficients  -3891.6224  .32257  .32130  
Constants only.  Must be computed directly.  
                 Use NLOGIT ;...; RHS=ONE $  
Response data are given as ind. choice.      
Number of obs.=  1259, skipped   0 bad obs.  
------------------------------------------------------------------------------- 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
------------------------------------------------------------------------------- 
 PRC       .7222769180E-04  .59254181E-05   12.189   .0000 
 PIC       .5707622560E-03  .79760574E-04    7.156   .0000 
 OPC      -.2789975405E-01  .10864813E-01   -2.568   .0102 
 Y2          -.8517427857       .10381185   -8.205   .0000 
 Y5          -1.133299963       .11084551  -10.224   .0000 
 Y10         -2.019371339       .13924674  -14.502   .0000 
 EL           .2578529016       .34663340     .744   .4570 
 ACCEV    -.3375590631E-01  .13000471E-01   -2.597   .0094 
 RANGEVAF  .1543507538E-02  .58049882E-03    2.659   .0078 
 SMEV        -.1436671461       .14858417    -.967   .3336 
 AF          -.2122986044       .30794448    -.689   .4906 
 SMAF        -.5259584270       .13516611   -3.891   .0001 
 MC          -4.715718940       2.6638968   -1.770   .0767 
 SM          -4.415489351       2.9062069   -1.519   .1287 
 MD          -4.425306017       2.9075390   -1.522   .1280 
 UA           .2883292576       .73695696     .391   .6956 
 UB           1.116433455       .76581936    1.458   .1449 
 LG          -.5133101006       .85317833    -.602   .5474 
 LX       -.6684748282E-01      .86242554    -.078   .9382 
 LC           1.342303824       .44512975    3.016   .0026 
 FD           .8089115596       .46962284    1.722   .0850 
 AG          -.2728581631   .80614539E-01   -3.385   .0007 
 AC          -.1817342201   .76184184E-01   -2.385   .0171 
 NCY4         1.518454640       .71367281    2.128   .0334 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
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N22.7.2 Scenarios 
 
 We now simulate the model, using several different specifications for different scenarios. 
 
 NLOGIT  ; Lhs = chosen,cset,altz 
   ; Choices = c1,c2,c3,c4,e1,e2,e3,e4,a1,a2,a3,a4,mc,sm,md,ua,ub,lg,lx,lc,fd,lt  
   ; Model: ... exactly as above ... 

  ; Simulation = *  
  ; MergeSPRP (id = id, type = vexper)  

 
These are added to the command above and the command is terminated after the setup: 
 
Scenario 1.  Increase prices by 50% for mc to lt. 
 

; Scenario:   pricez(mc,sm,md,ua,ub,lg,lx,lc,fd,lt) =  [*]  1.5 / 
princ(mc,sm,md,ua,ub,lg,lx,lc,fd,lt) =  [*]  1.5  

 
Scenario 2.  For the second case, we exclude c1 - c4. 
 

; Simulation  = e1,e2,e3,e4,a1,a2,a3,a4,mc,sm,md,ua,ub,lg,lx,lc,fd,lt 
 

Scenario 3.  Increase prices by 50% for e1, e2, e3, e4. 
 

; Simulation  = e1,e2,e3,e4,a1,a2,a3,a4,mc,sm,md,ua,ub,lg,lx,lc,fd,lt 
; Scenario: pricez(e1,e2,e3,e4)   =  [*]  1.5 / 

princ(e1,e2,e3,e4)   =  [*]  1.5      
 
Scenario 4.  Reduce prices by 50% for e1, e2, e3, e4 and increase price by 50% for mc to lt. 

 
; Simulation  = e1,e2,e3,e4,a1,a2,a3,a4,mc,sm,md,ua,ub,lg,lx,lc,fd,lt 
; Scenario: pricez(e1,e2,e3,e4)   =  [*]  0.5 / 

princ(e1,e2,e3,e4)   =  [*]  0.5      
& 
pricez(mc,sm,md,ua,ub,lg,lx,lc,fd,lt) =  [*]  1.5  / 
princ(mc,sm,md,ua,ub,lg,lx,lc,fd,lt) =  [*]  0.5    
 

Scenario 5. Increase acceleration by 50% for e1,e2,e3,e4. 
 
; Simulation  = e1,e2,e3,e4,a1,a2,a3,a4,mc,sm,md,ua,ub,lg,lx,lc,fd,lt 
; Scenario: accevaf(e1,e2,e3,e4)   =  [*]  1.5    
 

Scenario 6.  Make yr2, yr5 and yr10 take on fixed values for e1,e2,e3,e4, a1,a2,a3,a4. 
 

; Simulation  = e1,e2,e3,e4,a1,a2,a3,a4,mc,sm,md,ua,ub,lg,lx,lc,fd,lt 
; Scenario: yr2(e1,e2,e3,e4,a1,a2,a3,a4)  =  0.5/ 

yr5(e1,e2,e3,e4, a1,a2,a3,a4)  =  0.25/   
yr10(e1,e2,e3,e4, a1,a2,a3,a4)  =  0.25   
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Scenario 1 – All Alternatives 
 

+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with   1259 observations.| 
|RP and SP data are merged for this set of simulations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
PRICEZ     MC       SM       MD       more  Scale base by value     1.500 
PRINC      MC       SM       MD       more  Scale base by value     1.500 
------------------------------------------------------------------------- 
+-------------------------------------------------------+ 
|REVEALED PREFERENCE (RP) / STATED PREFERENCE (SP) DATA | 
+-------------------------------------------------------+ 
| This scenario is based on merged RP and SP data sets  | 
| The sample contains    494 observations marked as RP. | 
| Data search located    744 SP scenarios that matched  | 
| IDs with an RP observation and     21 SP scenarios    | 
| with IDs that did not match any RP observation in the | 
| full sample of   1259 total observations. Any remain- | 
| ing observations were erroneous or unusable.          | 
+-------------------------------------------------------+ 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|C1        |  8.973    67 |  9.439    70 |   .465%        3 | 
|C2        |  5.083    38 |  5.349    40 |   .266%        2 | 
|C3        |  3.817    28 |  4.010    30 |   .192%        2 | 
|C4        |  2.730    20 |  2.870    21 |   .141%        1 | 
|E1        |  9.456    70 |  9.931    74 |   .475%        4 | 
|E2        |  6.772    50 |  7.103    53 |   .332%        3 | 
|E3        |  4.800    36 |  5.029    37 |   .228%        1 | 
|E4        |  3.549    26 |  3.718    28 |   .170%        2 | 
|A1        | 10.189    76 | 10.708    80 |   .519%        4 | 
|A2        |  7.928    59 |  8.332    62 |   .404%        3 | 
|A3        |  7.189    53 |  7.551    56 |   .363%        3 | 
|A4        |  5.564    41 |  5.840    43 |   .277%        2 | 
|MC        |  1.826    14 |  1.645    12 |  -.181%       -2 | 
|SM        |  6.498    48 |  5.591    42 |  -.907%       -6 | 
|MD        |  5.583    42 |  4.617    34 |  -.967%       -8 | 
|UA        |  1.603    12 |  1.305    10 |  -.298%       -2 | 
|UB        |  5.077    38 |  4.258    32 |  -.819%       -6 | 
|LG        |   .838     6 |   .683     5 |  -.155%       -1 | 
|LX        |   .392     3 |   .210     2 |  -.182%       -1 | 
|LC        |  1.164     9 |  1.025     8 |  -.138%       -1 | 
|FD        |   .634     5 |   .500     4 |  -.134%       -1 | 
|LT        |   .335     2 |   .285     2 |  -.050%        0 | 
|Total     |100.000   743 |100.000   745 |   .000%        2 | 
+----------+--------------+--------------+------------------+ 
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Scenario 2 – Excluding Alternatives C1-C4 
 

+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with   1259 observations.| 
|RP and SP data are merged for this set of simulations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
PRICEZ     MC       SM       MD       more  Scale base by value     1.500 
PRINC      MC       SM       MD       more  Scale base by value     1.500 
------------------------------------------------------------------------- 
+-------------------------------------------------------+ 
|REVEALED PREFERENCE (RP) / STATED PREFERENCE (SP) DATA | 
+-------------------------------------------------------+ 
| This scenario is based on merged RP and SP data sets  | 
| The sample contains    494 observations marked as RP. | 
| Data search located    744 SP scenarios that matched  | 
| IDs with an RP observation and     21 SP scenarios    | 
| with IDs that did not match any RP observation in the | 
| full sample of   1259 total observations. Any remain- | 
| ing observations were erroneous or unusable.          | 
+-------------------------------------------------------+ 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|E1        | 11.836    88 | 12.599    94 |   .763%        6 | 
|E2        |  8.470    63 |  9.001    67 |   .532%        4 | 
|E3        |  5.979    44 |  6.341    47 |   .362%        3 | 
|E4        |  4.412    33 |  4.680    35 |   .268%        2 | 
|A1        | 12.831    95 | 13.679   102 |   .848%        7 | 
|A2        | 10.010    74 | 10.673    79 |   .663%        5 | 
|A3        |  9.012    67 |  9.594    71 |   .582%        4 | 
|A4        |  6.961    52 |  7.404    55 |   .443%        3 | 
|MC        |  2.320    17 |  2.123    16 |  -.197%       -1 | 
|SM        |  8.269    62 |  7.229    54 | -1.039%       -8 | 
|MD        |  7.116    53 |  5.983    45 | -1.133%       -8 | 
|UA        |  2.040    15 |  1.687    13 |  -.353%       -2 | 
|UB        |  6.460    48 |  5.506    41 |  -.954%       -7 | 
|LG        |  1.069     8 |   .886     7 |  -.182%       -1 | 
|LX        |   .499     4 |   .270     2 |  -.229%       -2 | 
|LC        |  1.482    11 |  1.326    10 |  -.156%       -1 | 
|FD        |   .808     6 |   .649     5 |  -.160%       -1 | 
|LT        |   .426     3 |   .368     3 |  -.058%        0 | 
|Total     |100.000   743 |100.000   746 |   .000%        3 | 
+----------+--------------+--------------+------------------+ 
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Scenario 3 
 

+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with   1259 observations.| 
|RP and SP data are merged for this set of simulations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
PRICEZ     E1       E2       E3       more  Scale base by value     1.500 
PRINC      E1       E2       E3       more  Scale base by value     1.500 
------------------------------------------------------------------------- 
+-------------------------------------------------------+ 
|REVEALED PREFERENCE (RP) / STATED PREFERENCE (SP) DATA | 
+-------------------------------------------------------+ 
| This scenario is based on merged RP and SP data sets  | 
| The sample contains    494 observations marked as RP. | 
| Data search located    744 SP scenarios that matched  | 
| IDs with an RP observation and     21 SP scenarios    | 
| with IDs that did not match any RP observation in the | 
| full sample of   1259 total observations. Any remain- | 
| ing observations were erroneous or unusable.          | 
+-------------------------------------------------------+ 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|E1        | 11.836    88 |  8.419    63 | -3.417%      -25 | 
|E2        |  8.470    63 |  5.932    44 | -2.538%      -19 | 
|E3        |  5.979    44 |  3.916    29 | -2.063%      -15 | 
|E4        |  4.412    33 |  2.895    22 | -1.517%      -11 | 
|A1        | 12.831    95 | 14.563   108 |  1.732%       13 | 
|A2        | 10.010    74 | 11.349    84 |  1.338%       10 | 
|A3        |  9.012    67 | 10.189    76 |  1.177%        9 | 
|A4        |  6.961    52 |  7.870    59 |   .908%        7 | 
|MC        |  2.320    17 |  2.656    20 |   .336%        3 | 
|SM        |  8.269    62 |  9.458    70 |  1.189%        8 | 
|MD        |  7.116    53 |  8.140    61 |  1.024%        8 | 
|UA        |  2.040    15 |  2.332    17 |   .292%        2 | 
|UB        |  6.460    48 |  7.387    55 |   .927%        7 | 
|LG        |  1.069     8 |  1.222     9 |   .153%        1 | 
|LX        |   .499     4 |   .565     4 |   .066%        0 | 
|LC        |  1.482    11 |  1.697    13 |   .215%        2 | 
|FD        |   .808     6 |   .924     7 |   .115%        1 | 
|LT        |   .426     3 |   .488     4 |   .062%        1 | 
|Total     |100.000   743 |100.000   745 |   .000%        2 | 
+----------+--------------+--------------+------------------+ 
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Scenario 4 
 

+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations             1259     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with   1259 observations.| 
|RP and SP data are merged for this set of simulations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
PRICEZ     E1       E2       E3       more  Scale base by value      .500 
PRINC      E1       E2       E3       more  Scale base by value      .500 
------------------------------------------------------------------------- 
+-------------------------------------------------------+ 
|REVEALED PREFERENCE (RP) / STATED PREFERENCE (SP) DATA | 
+-------------------------------------------------------+ 
| This scenario is based on merged RP and SP data sets  | 
| The sample contains    494 observations marked as RP. | 
| Data search located    744 SP scenarios that matched  | 
| IDs with an RP observation and     21 SP scenarios    | 
| with IDs that did not match any RP observation in the | 
| full sample of   1259 total observations. Any remain- | 
| ing observations were erroneous or unusable.          | 
+-------------------------------------------------------+ 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|E1        | 11.836    88 | 16.127   120 |  4.290%       32 | 
|E2        |  8.470    63 | 12.072    90 |  3.602%       27 | 
|E3        |  5.979    44 |  9.653    72 |  3.674%       28 | 
|E4        |  4.412    33 |  7.144    53 |  2.732%       20 | 
|A1        | 12.831    95 | 10.225    76 | -2.606%      -19 | 
|A2        | 10.010    74 |  8.000    60 | -2.010%      -14 | 
|A3        |  9.012    67 |  7.245    54 | -1.767%      -13 | 
|A4        |  6.961    52 |  5.597    42 | -1.365%      -10 | 
|MC        |  2.320    17 |  1.817    14 |  -.504%       -3 | 
|SM        |  8.269    62 |  6.491    48 | -1.778%      -14 | 
|MD        |  7.116    53 |  5.585    42 | -1.531%      -11 | 
|UA        |  2.040    15 |  1.603    12 |  -.437%       -3 | 
|UB        |  6.460    48 |  5.072    38 | -1.388%      -10 | 
|LG        |  1.069     8 |   .838     6 |  -.231%       -2 | 
|LX        |   .499     4 |   .402     3 |  -.097%       -1 | 
|LC        |  1.482    11 |  1.160     9 |  -.322%       -2 | 
|FD        |   .808     6 |   .636     5 |  -.173%       -1 | 
|LT        |   .426     3 |   .334     2 |  -.092%       -1 | 
|Total     |100.000   743 |100.000   746 |   .000%        3 | 
+----------+--------------+--------------+------------------+ 
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------------------------------------------------------------------------- 
Specification of scenario 2 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
PRICEZ     MC       SM       MD       more  Scale base by value     1.500 
PRINC      MC       SM       MD       more  Scale base by value      .500 
------------------------------------------------------------------------- 
This scenario is based on merged RP and SP data sets 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|E1        | 11.836    88 | 13.176    98 |  1.340%       10 | 
|E2        |  8.470    63 |  9.429    70 |   .960%        7 | 
|E3        |  5.979    44 |  6.638    49 |   .659%        5 | 
|E4        |  4.412    33 |  4.900    36 |   .488%        3 | 
|A1        | 12.831    95 | 14.298   106 |  1.468%       11 | 
|A2        | 10.010    74 | 11.173    83 |  1.162%        9 | 
|A3        |  9.012    67 | 10.050    75 |  1.038%        8 | 
|A4        |  6.961    52 |  7.745    58 |   .783%        6 | 
|MC        |  2.320    17 |  1.964    15 |  -.356%       -2 | 
|SM        |  8.269    62 |  6.367    47 | -1.902%      -15 | 
|MD        |  7.116    53 |  5.130    38 | -1.985%      -15 | 
|UA        |  2.040    15 |  1.442    11 |  -.597%       -4 | 
|UB        |  6.460    48 |  4.744    35 | -1.716%      -13 | 
|LG        |  1.069     8 |   .758     6 |  -.311%       -2 | 
|LX        |   .499     4 |   .121     1 |  -.378%       -3 | 
|LC        |  1.482    11 |  1.206     9 |  -.276%       -2 | 
|FD        |   .808     6 |   .536     4 |  -.273%       -2 | 
|LT        |   .426     3 |   .322     2 |  -.104%       -1 | 
|Total     |100.000   743 |100.000   743 |   .000%        0 | 
+----------+--------------+--------------+------------------+ 
Pairwise Comparisons of Specified Scenarios 
Base     for this comparison is scenario 1. 
Scenario for this comparison is scenario 2. 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|E1        | 16.127   120 | 13.176    98 | -2.950%      -22 | 
|E2        | 12.072    90 |  9.429    70 | -2.642%      -20 | 
|E3        |  9.653    72 |  6.638    49 | -3.016%      -23 | 
|E4        |  7.144    53 |  4.900    36 | -2.244%      -17 | 
|A1        | 10.225    76 | 14.298   106 |  4.073%       30 | 
|A2        |  8.000    60 | 11.173    83 |  3.173%       23 | 
|A3        |  7.245    54 | 10.050    75 |  2.805%       21 | 
|A4        |  5.597    42 |  7.745    58 |  2.148%       16 | 
|MC        |  1.817    14 |  1.964    15 |   .147%        1 | 
|SM        |  6.491    48 |  6.367    47 |  -.124%       -1 | 
|MD        |  5.585    42 |  5.130    38 |  -.454%       -4 | 
|UA        |  1.603    12 |  1.442    11 |  -.160%       -1 | 
|UB        |  5.072    38 |  4.744    35 |  -.328%       -3 | 
|LG        |   .838     6 |   .758     6 |  -.080%        0 | 
|LX        |   .402     3 |   .121     1 |  -.281%       -2 | 
|LC        |  1.160     9 |  1.206     9 |   .046%        0 | 
|FD        |   .636     5 |   .536     4 |  -.100%       -1 | 
|LT        |   .334     2 |   .322     2 |  -.012%        0 | 
|Total     |100.000   746 |100.000   743 |   .000%       -3 | 
+----------+--------------+--------------+------------------+ 
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Scenario 5 
 

+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with   1259 observations.| 
|RP and SP data are merged for this set of simulations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
ACCEVAF    E1       E2       E3       more  Scale base by value     1.500 
------------------------------------------------------------------------- 
+-------------------------------------------------------+ 
|REVEALED PREFERENCE (RP) / STATED PREFERENCE (SP) DATA | 
+-------------------------------------------------------+ 
| This scenario is based on merged RP and SP data sets  | 
| The sample contains    494 observations marked as RP. | 
| Data search located    744 SP scenarios that matched  | 
| IDs with an RP observation and     21 SP scenarios    | 
| with IDs that did not match any RP observation in the | 
| full sample of   1259 total observations. Any remain- | 
| ing observations were erroneous or unusable.          | 
+-------------------------------------------------------+ 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|E1        | 11.836    88 |  9.434    70 | -2.402%      -18 | 
|E2        |  8.470    63 |  6.858    51 | -1.611%      -12 | 
|E3        |  5.979    44 |  4.919    37 | -1.061%       -7 | 
|E4        |  4.412    33 |  3.686    27 |  -.726%       -6 | 
|A1        | 12.831    95 | 13.896   103 |  1.065%        8 | 
|A2        | 10.010    74 | 10.839    81 |   .828%        7 | 
|A3        |  9.012    67 |  9.757    73 |   .745%        6 | 
|A4        |  6.961    52 |  7.538    56 |   .577%        4 | 
|MC        |  2.320    17 |  2.516    19 |   .195%        2 | 
|SM        |  8.269    62 |  8.970    67 |   .701%        5 | 
|MD        |  7.116    53 |  7.719    57 |   .603%        4 | 
|UA        |  2.040    15 |  2.213    16 |   .173%        1 | 
|UB        |  6.460    48 |  7.008    52 |   .548%        4 | 
|LG        |  1.069     8 |  1.159     9 |   .090%        1 | 
|LX        |   .499     4 |   .543     4 |   .044%        0 | 
|LC        |  1.482    11 |  1.607    12 |   .126%        1 | 
|FD        |   .808     6 |   .877     7 |   .069%        1 | 
|LT        |   .426     3 |   .462     3 |   .036%        0 | 
|Total     |100.000   743 |100.000   744 |   .000%        1 | 
+----------+--------------+--------------+------------------+ 
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Scenario 6 
 

+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with   1259 observations.| 
|RP and SP data are merged for this set of simulations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
YR2        E1       E2       E3       more  Fix at new value         .500 
YR5        E1       E2       E3       more  Fix at new value         .250 
YR10       E1       E2       E3       more  Fix at new value         .250 
------------------------------------------------------------------------- 
+-------------------------------------------------------+ 
|REVEALED PREFERENCE (RP) / STATED PREFERENCE (SP) DATA | 
+-------------------------------------------------------+ 
| This scenario is based on merged RP and SP data sets  | 
| The sample contains    494 observations marked as RP. | 
| Data search located    744 SP scenarios that matched  | 
| IDs with an RP observation and     21 SP scenarios    | 
| with IDs that did not match any RP observation in the | 
| full sample of   1259 total observations. Any remain- | 
| ing observations were erroneous or unusable.          | 
+-------------------------------------------------------+ 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|E1        | 11.836    88 |  8.108    60 | -3.728%      -28 | 
|E2        |  8.470    63 |  8.201    61 |  -.269%       -2 | 
|E3        |  5.979    44 |  6.318    47 |   .339%        3 | 
|E4        |  4.412    33 |  5.558    41 |  1.146%        8 | 
|A1        | 12.831    95 |  8.815    66 | -4.015%      -29 | 
|A2        | 10.010    74 |  9.988    74 |  -.023%        0 | 
|A3        |  9.012    67 |  8.921    66 |  -.091%       -1 | 
|A4        |  6.961    52 |  8.903    66 |  1.942%       14 | 
|MC        |  2.320    17 |  2.672    20 |   .351%        3 | 
|SM        |  8.269    62 |  9.526    71 |  1.258%        9 | 
|MD        |  7.116    53 |  8.222    61 |  1.106%        8 | 
|UA        |  2.040    15 |  2.359    18 |   .319%        3 | 
|UB        |  6.460    48 |  7.454    55 |   .994%        7 | 
|LG        |  1.069     8 |  1.230     9 |   .161%        1 | 
|LX        |   .499     4 |   .596     4 |   .097%        0 | 
|LC        |  1.482    11 |  1.704    13 |   .222%        2 | 
|FD        |   .808     6 |   .936     7 |   .127%        1 | 
|LT        |   .426     3 |   .490     4 |   .064%        1 | 
|Total     |100.000   743 |100.000   743 |   .000%        0 | 
+----------+--------------+--------------+------------------+ 
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N23: The Multinomial Logit and Random 
Regret Models 

 
N23.1 Introduction 
 
 In the multinomial logit model described in Chapter N16, there is a single vector of 
characteristics, which describes the individual, and a set of J parameter vectors.  In the ‘discrete 
choice’ setting of this section, these are essentially reversed.  The J alternatives are each 
characterized by a set of K ‘attributes,’ xij. Respondent ‘i’ chooses among the J alternatives.  There is 
a single parameter vector, β.  The model underlying the observed data is assumed to be the following 
random utility specification: 
 
   U(choice j for individual i)  =  Uij  =  β′xij  +  εij, j = 1,...,Ji. 
 
The random, individual specific terms, (εi1,εi2,...,εiJ) are assumed to be independently distributed, 
each with an extreme value distribution.  Under these assumptions, the probability that individual i 
chooses alternative j is 
 
   Prob(Uij > Uiq) for all q ≠ j. 
  
It has been shown that for independent extreme value distributions, as above, this probability is 
 

   Prob(yi = j)  =  
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ij
J

imm=
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where yi is the index of the choice made.  Regardless of the number of choices, there is a single 
vector of K parameters to be estimated.  This model does not suffer from the proliferation of 
parameters that appears in the logit model described in Chapter N16.  It does, however, make the 
very strong ‘Independence from Irrelevant Alternatives’ assumption which will be discussed below. 
 
NOTE:  The distinction made here between ‘discrete choice’ and ‘multinomial logit’ is not hard and 
fast.  It is made purely for convenience in the discussion.  As noted in Chapters N16 and N17, by 
interacting the characteristics with the alternative specific constants, the discrete choice model of this 
chapter becomes the multinomial logit model of Chapter N16.  From this point, in the remainder of 
this reference guide for NLOGIT, we will refer to the model described in this chapter, with 
mathematical formulation as given above, as the ‘multinomial logit model,’ or MNL model as is 
common in the literature. 
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 The basic setup for this model consists of observations on n individuals, each of whom 
makes a single choice among Ji choices, or alternatives.  There is a subscript on Ji because we do not 
restrict the choice sets to have the same number of choices for every individual.  The data will 
typically consist of the choices and observations on K ‘attributes’ for each choice.  The attributes that 
describe each choice, i.e., the arguments that enter the utility functions, may be the same for all 
choices, or may be defined differently for each utility function.  The estimator described in this 
chapter allows a large number of variations of this basic model.  In the discrete choice framework, 
the observed ‘dependent variable’ usually consists of an indicator of which among Ji alternatives was 
most preferred by the respondent.  All that is known about the others is that they were judged inferior 
to the one chosen.  But, there are cases in which information is more complete and consists of a 
subjective ranking of all Ji alternatives by the individual.  NLOGIT allows specification of the model 
for estimation with ‘ranks data.’  In addition, in some settings, the sample data might consist of 
aggregates for the choices, such as proportions (market shares) or frequency counts.  NLOGIT will 
accommodate these cases as well.  All these variations are discussed Chapter N18. 
 
N23.2 Command for the Multinomial Logit Model 
 
 The simplest form of the command for the discrete choice models is 
 
 NLOGIT  ; Lhs  = variable which indicates the choice made 
                  ; Choices = a set of J names for the set of choices  
   ; Rhs = choice varying attributes in the utility functions  
   ; Rh2 = choice invariant characteristics $ 
 
(With no qualifiers to indicate a different model, such as RPL or MNP, NLOGIT and CLOGIT are 
the same.)  There are various ways to specify the utility functions – i.e., the right hand sides of the 
equations that underlie the model, and several different ways to specify the choice set.  These are 
discussed in Chapter N20.  The ; Rhs specification may be replaced with an explicit definition of the 
utility functions, using ; Model ...  
 A set of exactly J choice labels must be provided in the command.  These are used to label 
the choices in the output.  The number you provide is used to determine the number of choices there 
are in the model.  Therefore, the set of the right number of labels is essential.  Use any descriptor of 
eight or fewer characters desired – these do not have to be valid names, just a set of labels, separated 
in the list by commas. 
 The command builder for this model is found in Model:Discrete Choice/Discrete Choice.  
The Main and Options pages are both used to set up the model.  The model and the choice set are 
defined in the Main page; the attributes are defined in the Options page.  See Figure N23.1. 
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Figure N23.1  Command Builder for Multinomial Logit Model 
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N23.3 Results for the Multinomial Logit Model 
 
 Results for the multinomial logit model will consist of the standard model results and any 
additional descriptive output you have requested.  The application below will display the full set of 
available results.  Results kept by this estimator are: 
 
 Matrices:  b and varb =  coefficient vector and asymptotic covariance matrix 
 
 Scalars:  logl   =  log likelihood function 
   nreg   =  N, the number of observational units 
   kreg   =  the number of Rhs variables 
 
 Last Model:  b_variable =  the labels kept for the WALD command. 
 
 In the Last Model, groups of coefficients for variables that are integrated with constants get 
labels choice_variable, as in trai_gco.  (Note that the names are truncated – up to four characters for 
the choice and three for the attribute.)  The alternative specific constants are a_choice, with names 
truncated to no more than six characters.  For example, the sum of the three estimated choice specific 
constants could be analyzed as follows: 
 
 WALD   ; Fn1 = a_air + a_train + a_bus $ 
 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =     57.91928     | 
| Prob. from Chi-squared[ 1] =       .00000     | 
+-----------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 Fncn(1)      13.32858178       1.7513477    7.610   .0000 
 
N23.4 Application 
 
 The MNL model based on the clogit data is estimated with the command 
 
 NLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme  
   ; Rh2 = one,hinc 
   ; Show Model 
   ; Describe 
   ; Crosstab 
   ; Effects: gc(*)  
   ; Full 
   ; Ivb = incvlu 
   ; Prob = pmnl  

; List $ 
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This requests all the optional output from the model.  The ; Describe specification detailed in 
Section N19.4.4  requests a set of descriptive statistics for the variables in the model, by choice.  The 
leftmost set of results gives the coefficient estimates.  Note that in this model, they are the same for 
the two generic coefficients, on gc and ttme, but they vary by choice for the alternative specific 
constant and its interaction with income. Also, since there is no ASC for car (it was dropped to avoid 
the dummy variable trap), there are no coefficients for the car grouping.  The second set of values in 
the center section gives the mean and standard deviation for that attribute in that outcome for all 
observations in the sample.  The third set of results gives the mean and variance for the particular 
attribute for the individuals that made that choice.  The full set of results from the model is as 
follows.  (The various parts of the output are described in Section N19.4.2.) 
 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .27619| 1.000| 
|TRAIN     .30000| 1.000| 
|BUS       .14286| 1.000| 
|CAR       .28095| 1.000| 
+----------------+------+--- 
+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| GC       TTME     A_AIR    AIR_HIN1 A_TRAIN   | 
|        |Row  2| TRA_HIN2 A_BUS    BUS_HIN3                    | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| GC       TTME     Constant HINC     none      | 
|        |     2| none     none     none                        | 
|TRAIN   |     1| GC       TTME     none     none     Constant  | 
|        |     2| HINC     none     none                        | 
|BUS     |     1| GC       TTME     none     none     none      | 
|        |     2| none     Constant HINC                        | 
|CAR     |     1| GC       TTME     none     none     none      | 
|        |     2| none     none     none                        | 
+---------------------------------------------------------------+ 
 
Normal exit:   6 iterations. Status=0, F=    189.5252 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -189.52515 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    395.1 AIC/N =    1.881 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .3321 .3235 
Chi-squared[ 5]          =    188.46723 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
----------------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01093**       .00459    -2.38  .0172     -.01992   -.00194 
    TTME|    -.09546***      .01047    -9.11  .0000     -.11599   -.07493 
   A_AIR|    5.87481***      .80209     7.32  .0000     4.30275   7.44688 
AIR_HIN1|    -.00537         .01153     -.47  .6412     -.02797    .01722 
 A_TRAIN|    5.54986***      .64042     8.67  .0000     4.29465   6.80507 
TRA_HIN2|    -.05656***      .01397    -4.05  .0001     -.08395   -.02917 
   A_BUS|    4.13028***      .67636     6.11  .0000     2.80464   5.45593 
BUS_HIN3|    -.02858*        .01544    -1.85  .0642     -.05885    .00169 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative AIR                  | 
|     Utility Function          |                    |     58.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose AIR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| GC           -.0109  GC       |  102.648     30.575|  113.552    33.198 | 
| TTME         -.0955  TTME     |   61.010     15.719|   46.534    24.389 | 
| A_AIR        5.8748  ONE      |    1.000       .000|    1.000      .000 | 
| AIR_HIN1     -.0054  HINC     |   34.548     19.711|   41.724    19.115 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative TRAIN                | 
|     Utility Function          |                    |     63.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose TRAIN    | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| GC           -.0109  GC       |  130.200     58.235|  106.619    49.601 | 
| TTME         -.0955  TTME     |   35.690     12.279|   28.524    19.354 | 
| A_TRAIN      5.5499  ONE      |    1.000       .000|    1.000      .000 | 
| TRA_HIN2     -.0566  HINC     |   34.548     19.711|   23.063    17.287 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative BUS                  | 
|     Utility Function          |                    |     30.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose BUS      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| GC           -.0109  GC       |  115.257     44.934|  108.133    43.244 | 
| TTME         -.0955  TTME     |   41.657     12.077|   25.200    14.919 | 
| A_BUS        4.1303  ONE      |    1.000       .000|    1.000      .000 | 
| BUS_HIN3     -.0286  HINC     |   34.548     19.711|   29.700    16.851 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative CAR                  | 
|     Utility Function          |                    |     59.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose CAR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| GC           -.0109  GC       |   95.414     46.827|   89.085    49.833 | 
| TTME         -.0955  TTME     |     .000       .000|     .000      .000 | 
+-------------------------------------------------------------------------+ 
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+-------------------------------------------------------+ 
| Cross tabulation of actual choice vs. predicted P(j)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i).  | 
| Column totals may be subject to rounding error.       | 
+-------------------------------------------------------+ 
 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            33             7             4            14            58 
   TRAIN|             7            39             5            12            63 
     BUS|             3             6            15             6            30 
     CAR|            15            11             6            27            59 
--------+---------------------------------------------------------------------- 
   Total|            58            63            30            59           210 
 
+-------------------------------------------------------+ 
| Cross tabulation of actual y(ij) vs. predicted y(ij)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is N(k,j,i)=Sum(i=1,...,N) Y(k,j,i).  | 
| Predicted y(ij)=1 is the j with largest probability.  | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            38             4             0            16            58 
   TRAIN|             3            49             1            10            63 
     BUS|             0             3            23             4            30 
     CAR|             4            10             0            45            59 
--------+---------------------------------------------------------------------- 
   Total|            45            66            24            75           210 
 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .0984     .3311     .1959     .3746*+ 
    2   .2566     .2262     .0530     .4641*+ 
    3   .1401     .1795     .1997     .4808*+ 
    4   .2732     .0297     .0211     .6759*+ 
    5   .3421     .1478     .0527     .4575*+ 
    6   .0831     .3962*+   .2673     .2534 
    7   .6066*+   .0701     .0898     .2335 
    8   .0626     .6059 +   .1925     .1390* 
    9   .1125     .2932     .1995     .3947*+ 
   10   .1482     .0804     .1267     .6447*+ 
 
   (Rows 11-210 are omitted.) 
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+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
+---------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.80189***      .02645   -30.31  .0000     -.85374   -.75004 
   TRAIN|     .31977***      .02326    13.75  .0000      .27419    .36536 
     BUS|     .31977***      .02326    13.75  .0000      .27419    .36536 
     CAR|     .31977***      .02326    13.75  .0000      .27419    .36536 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in TRAIN 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|     .35343***      .02423    14.59  .0000      .30595    .40091 
   TRAIN|   -1.06931***      .04923   -21.72  .0000    -1.16580   -.97282 
     BUS|     .35343***      .02423    14.59  .0000      .30595    .40091 
     CAR|     .35343***      .02423    14.59  .0000      .30595    .40091 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in BUS 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|     .16787***      .01593    10.54  .0000      .13666    .19908 
   TRAIN|     .16787***      .01593    10.54  .0000      .13666    .19908 
     BUS|   -1.09159***      .03576   -30.52  .0000    -1.16168  -1.02149 
     CAR|     .16787***      .01593    10.54  .0000      .13666    .19908 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in CAR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|     .29344***      .01845    15.90  .0000      .25727    .32961 
   TRAIN|     .29344***      .01845    15.90  .0000      .25727    .32961 
     BUS|     .29344***      .01845    15.90  .0000      .25727    .32961 
     CAR|    -.74918***      .03057   -24.51  .0000     -.80909   -.68927 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.8019    .3198    .3198    .3198 
   TRAIN|   .3534  -1.0693    .3534    .3534 
     BUS|   .1679    .1679  -1.0916    .1679 
     CAR|   .2934    .2934    .2934   -.7492 
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N23.5 Partial Effects 
 
 We define the partial effects in the multinomial logit model as the derivatives of the 
probability of choice j with respect to attribute k in alternative m.  This is 
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where the function 1(j = m) equals one if j equals m and zero otherwise.  These are naturally scaled 
since the probability is bounded.  They are usually very small, so NLOGIT reports 100 times the 
value obtained, as in the example below, which is produced by  
 
   ; Effects: gc[air]  

; Full 
 
+---------------------------------------------------+ 
| Derivative             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
+---------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Average partial effect  on prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.00134***   .6076D-04   -22.04  .0000     -.00146   -.00122 
   TRAIN|     .00036***   .2132D-04    16.98  .0000      .00032    .00040 
     BUS|     .00020***   .1406D-04    14.48  .0000      .00018    .00023 
     CAR|     .00077***   .5266D-04    14.69  .0000      .00067    .00088 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Derivative wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.0013    .0004    .0002    .0008 
 

Derivatives and elasticities are obtained by averaging the observation specific values, rather 
than by computing them at the sample means.  The listing reports the sample mean (average partial 
effect) and the sample standard deviation. Alternative approaches are discussed in Section N21.2. 

It is common to report elasticities rather than the derivatives.  These are 
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The example below shows the counterpart to the preceding results produced by 
 
   ; Effects: gc(air)  

; Full 
 
which requests a table of elasticities for the effect of changing gc in the air alternative.   
 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
+---------------------------------------------------+ 
 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.80189***      .02645   -30.31  .0000     -.85374   -.75004 
   TRAIN|     .31977***      .02326    13.75  .0000      .27419    .36536 
     BUS|     .31977***      .02326    13.75  .0000      .27419    .36536 
     CAR|     .31977***      .02326    13.75  .0000      .27419    .36536 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.8019    .3198    .3198    .3198 
 
The difference between the two commands is the use of ‘[air]’ for derivatives and ‘(air)’ for 
elasticities.  The full set of tables, one for each alternative, is requested with 
 
   alternative[*]   
or    alternative(*). 
 
 Note that for this model, the elasticities take only two values, the ‘own’ value when j equals 
m and the ‘cross’ elasticity when j is not equal to m.  The fact that the cross elasticities are all the 
same is one of the undesirable consequences of the IIA property of this model.  
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N23.6 Technical Details on Maximum Likelihood Estimation 
 
 Maximum likelihood estimates are obtained by Newton’s method.  Since this is a 
particularly well behaved estimation problem, zeros are used for the start values with little loss in 
computational efficiency.  The gradient and Hessian used in iterations and for the asymptotic 
covariance matrix are computed as follows: 
 
   dij  = 1 if individual i makes choice j and 0 otherwise, 
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Occasionally, a data set will be such that Newton’s method does not work – this tends to occur when 
the log likelihood is flat in a broad range of the parameter space or (we have observed) with some 
particular data sets.  There is no way that you can discern this from looking at the data, however.  If 
Newton’s method fails to converge in a small number of iterations, unless the data are such as to 
make estimation impossible, you should be able to estimate the model by using 
 
   ; Alg = BFGS  
 
as an alternative.  If this method fails as well, you should conclude that your model is inestimable.  
Section N19.5 describes a constrained estimator that is computed to calibrate the parameters to a 
model computed previously.  Newton’s method is very sensitive to this exercise – it frequently 
breaks down when parameters are fixed in this fashion.  In this case, NLOGIT automatically switches 
to the BFGS method.  This is one of the effects of the ; Calibrate specification. 
 You may provide your own starting values for the iterations with 
  
   ; Start = list of K values 
  
If you have requested a set of alternative specific constants, you must provide starting values for 
them as well. If you do not have alternative specific constants in the model (with ; Rh2 = one), then 
the parameters will appear in the same order as the Rhs variables.  If you have alternative specific 
constant terms but you have no other Rh2 variables, then regardless of where one appears in the Rhs 
list, the ASCs will be the last J-1 coefficients corresponding to that list.   
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 For example, in our earlier application, if the model were specified with ; Rhs = gc,one,ttme, 
then the following final arrangement of the parameters would result, and it is this order in which you 
would provide the starting values: 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01578***      .00438    -3.60  .0003     -.02437   -.00719 
    TTME|    -.09709***      .01044    -9.30  .0000     -.11754   -.07664 
   A_AIR|    5.77636***      .65592     8.81  .0000     4.49078   7.06193 
 A_TRAIN|    3.92300***      .44199     8.88  .0000     3.05671   4.78929 
   A_BUS|    3.21073***      .44965     7.14  .0000     2.32943   4.09204 
--------+-------------------------------------------------------------------- 
 
If you have other Rh2 variables, the coefficients will be interleaved with the constants.  The earlier 
application in Section N23.4 shows the result of ; Rhs = gc,ttme ; Rh2 = one,hinc.   
 The log likelihood is somewhat different when the data consist of a set of ranks.  The 
probability that enters the likelihood is as follows:  Suppose there are a total of J ranks provided, and 
the outcomes are labeled (1), (2), ..., (J) where the sequencing indicates the ranking.  (We continue to 
allow the number of alternatives to vary by individual.)  Thus, alternative (1) is the most preferred, 
alternative (2) is second, and so on.  For the present, assume that there are no ties.  Then, the 
observation of a set of ranks is equivalent to the following compound event: 
 
   Alternative (1) is preferred to alternatives (2), ...(J), 
   Alternative (2) is preferred to alternatives (3), ...(J), 
   ... 
   Alternative (J-1) is preferred to alternative (J). 
 
The joint probability is the product of the probabilities of these events.  There are, therefore, J-1 
terms in the log likelihood, each of which is similar to the one shown above, but each has a different 
choice set.  Combining terms, we have the following contribution of an individual to the log 
likelihood 
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Note that the number of terms in the denominator is different for each j in the outer summation.  The 
first and second derivatives can be constructed from results already given, and are not appreciably 
more complicated.  They involve the same terms as given earlier, with an outer summation.  If there 
are unranked alternatives, then the outer summation is from 1 to Ji - 1 - nties, where nties is the 
number of alternatives in the lowest ranked group less one.  (E.g., 1,2,3,4,4,4 has nties = 2.) 
 
  



N23: The Multinomial Logit and Random Regret Models  N-424 

N23.7 Random Regret Model 
 
 The random regret model begins from an assumption that when choosing between 
alternatives, decision makers seek to minimize anticipated random regret, where random regret 
consists of the sum of the familiar iid extreme value and a regret function defined below.  Systematic 
regret for choice i, is Ri, which consists of the sum of the binary regrets associated with bilateral 
comparisons of the attributes of the chosen alternative and the available alternatives. (See Chorus 
(2010), and Chorus, Greene and Hensher (2011).)   
 Attribute level regret for the kth attribute for alternative i compared to available alternative j is 
 
   Rij(k)  =  log{1 exp[ ( )]}k jk ikx x+ β − . 
 
Systematic regret for choice i is the sum over the available alternatives of the systematic regret, 
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Random regret for alternative i is Ri + εi.  Minimization of regret is equivalent to maximization of the 
negative of regret.  This produces the familiar form for the probability, 
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We also consider a hybrid form, in which some attributes are treated in random regret form and 
others are contributors to random utility.  The result is 
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The maximum likelihood estimator is developed from this expression for the probabilities of the 
outcomes.  Results produced by this model take the general form for multinomial choice models, as 
shown in the example below.  Elasticities produced by ; Effects:… are derived in Section N23.7.3. 
 
N23.7.1 Commands for Random Regret 
 
 The command for the random regret model is 
 
 RRLOGIT ; Lhs = choice variable ; Choices = … specification of the choice set 
   ; Rhs = attributes to be treated in the random regret form 
   ; Rh2 = attributes interacted with ASCs, also in random regret form 
   ; RUM = attributes that are treated in the random utility form 
   ; … other options the same as used for CLOGIT … $ 
 
Note that for purposes of the functional form, the Rh2 variables are treated as if they were in the RR 
form.  This is probably not a useful format, so the RUM list is provided for variables that should 
appear linearly in the utility function.  For example, alternative specific constants should generally 
be explicit in the RUM list, rather than expanded in the Rh2 list.  An example appears below. 
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N23.7.2 Application 
 
 In the specification below, the model is fit first in random utility form, including alternative 
specific constants.  The second model treats the first three attributes in random regret form. 
 

CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
; Rhs = gc,ttme,invt,invc,aasc,tasc,basc,hinca 
; Effects: gc(*)/invc(*)$ 

RRLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
; Rhs = gc,ttme,invt 
; RUM = invc,aasc,tasc,basc,hinca 
; Effects: gc(*)/invc(*)$ 

 
The models are not nested, so one cannot use a likelihood ratio test to search for the functional form.  
The noticeable increase in the log likelihood with the RR form below is suggestive of an improved 
fit, but it cannot be used formally as the basis for a test. 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -182.33831 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    380.7 AIC/N =    1.813 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .3574 .3492 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|     .07560***      .01825     4.14  .0000      .03983    .11137 
    TTME|    -.10290***      .01099    -9.37  .0000     -.12444   -.08137 
    INVT|    -.01435***      .00265    -5.41  .0000     -.01955   -.00915 
    INVC|    -.08952***      .01995    -4.49  .0000     -.12863   -.05042 
    AASC|    4.06574***     1.05260     3.86  .0001     2.00268   6.12881 
    TASC|    4.27393***      .51214     8.35  .0000     3.27015   5.27772 
    BASC|    3.71445***      .50856     7.30  .0000     2.71769   4.71121 
   HINCA|     .02364**       .01155     2.05  .0407      .00100    .04628 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  5.4152  -2.3448  -2.3448  -2.3448 
   TRAIN| -2.3946   7.4483  -2.3946  -2.3946 
     BUS| -1.1512  -1.1512   7.5620  -1.1512 
     CAR| -1.9584  -1.9584  -1.9584   5.2548 
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Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
INVC    |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -5.2895   2.3425   2.3425   2.3425 
   TRAIN|  1.0567  -3.5392   1.0567   1.0567 
     BUS|   .4276    .4276  -2.5676    .4276 
     CAR|   .4166    .4166    .4166  -1.4630 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -173.31398 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    362.6 AIC/N =    1.727 
Model estimated: Sep 15, 2011, 06:18:41 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .3892 .3814 
>>> Random Regret Form of MNL Model <<< 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|     .02634***      .00458     5.75  .0000      .01735    .03532 
    TTME|    -.03606***      .00426    -8.46  .0000     -.04441   -.02771 
    INVT|    -.00877***      .00121    -7.28  .0000     -.01113   -.00641 
        |Attributes Attended to in Random Utility Form 
    INVC|    -.05957***      .01049    -5.68  .0000     -.08012   -.03902 
    AASC|    1.85720**       .86496     2.15  .0318      .16190   3.55250 
    TASC|    2.59183***      .33957     7.63  .0000     1.92629   3.25736 
    BASC|    1.99911***      .33786     5.92  .0000     1.33692   2.66130 
   HINCA|     .02048**       .01021     2.01  .0448      .00047    .04048 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  1.6493  -1.0544  -1.0544  -1.0544 
   TRAIN|  -.6910   2.7384   -.6910   -.6910 
     BUS|  -.4518   -.4518   2.5840   -.4518 
     CAR|  -.4492   -.4492   -.4492   2.0639 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
INVC    |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -3.1053   1.9733   1.9733   1.9733 
   TRAIN|   .5619  -2.4964    .5619    .5619 
     BUS|   .3116    .3116  -1.6814    .3116 
     CAR|   .1941    .1941    .1941  -1.0566 
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N23.7.3 Technical Details: Random Regret Elasticities 
 

The definition of Ri is 
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To simplify the expression, add back then subtract the ith term in the outer sum, 
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Remove the lth term from this sum to obtain 
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Now, restore the lth term, which will equal zero, since it contains  Pl - Pl to obtain the final result: 
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For i not equal to l, i.e., the cross elasticity, this produces 
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For i equal to l, i.e., the own elasticity,  
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N24: The Scaled Multinomial Logit Model 
 
N24.1 Introduction 
 
 The scaled multinomial logit (SML) model incorporates individual heterogeneity in the 
multinomial logit model.  The model is a particular form of the generalized mixed multinomial logit 
model discussed in Chapters N29 and N33.  The general form of the scaled MNL derives from a 
random utility model with heteroscedasticity across individuals, rather than across choices; 
 
   Uit,j  =  β′xit,j  +  (1/σi)εit,j. 
 
where εit,j has the usual type I extreme value distribution.  Note that the scaling is choice invariant but 
varies across individuals.   The model is equivalent to the multinomial logit model of Chapter N17 with 
individual specific parameter vector, βi  =  σiβ; 
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where   βi  =  σiβ.  

 
When the variation across individuals is modeled as due to unobserved heterogeneity, we specify 
 
   σi  =  exp(-τ2/2 + τwi). 
 
The term, wi in the scale factor is random variation across individuals.  The structural parameter, τ, 
carries the model.   With τ = 0, the model reverts to the original multinomial logit model.  It is not 
possible to identify a separate location parameter in σi – this would correspond to the overall constant 
scale factor for the variance, which is already present; Var[εit,j] = γ0 = π2/6.  The constant -τ2/2 is chosen 
so that E[σi] = 1 if wi ~N[0,1].  Note that if wi is normally distributed, which is assumed, then σi has a 
lognormal distribution with mean equal to 1. The model thus far treats the heterogeneity in σi as all 
unobserved.  The specification can be extended to allow observed heterogeneity in the scale factor as 
well, as in 
   σi  =  exp(-τ2/2 + τwi + δ′zi). 
 
 The model takes some aspects of the random parameters logit (RPLOGIT) model discussed in 
Chapter N29.  The formulation above suggests a panel data – or stated choice experiment form for 
repeated choice situations.  The assumption is that σi is constant through time.  This can be relaxed, as 
shown below, if one treats the panel as if it were a cross section. 
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N24.2 Command for the Scaled MNL Model 
 
 The general command form for this model is 
 
 SMNLOGIT ; Lhs = choice variable 
   ; Choices = choice set specification 
   ; Rhs = attributes …   
   ; Rh2 = interactions with ASCs $ 
 
Utility functions may be specified using the explicit form shown in Chapter N20.  The scaling is 
applied to the full coefficient vector regardless of which way it is specified.  Several variations on this 
basic form will be useful.  The heteroscedasticity in observable variables is specified with 
 
   ; Hft = variables in z (does not contain a constant term, one). 
 
All random parameters models in NLOGIT can be fit with ‘panel’ or repeated choice experiment 
data.  The panel is specified as always, with 
 
   ; Pds = number of choice situations … 
 
See Chapters N18, N29 and N33 for further discussion of panel data sets.  The model is fit by 
maximum simulated likelihood.  You can control two important aspects of this computation.  Use 
 
   ; Pts = number of random draws for the simulations 
and   ; Halton 
 
to specify using Halton sequences rather than random draws (samples) to do the integration. 
 Elasticities, saved probabilities, and other optional features associated with the MNL model 
are all provided the same way as in the simpler formulations. 
 
N24.3 Application 
 
 Two applications below illustrate the estimator.  The first modifies the basic MNL 
 
 SMNLOGIT ; Lhs = Mode ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme,invc,invt,one 
   ; Halton  
   ; Pts = 25 $ 
 
The second adds observed heterogeneity, household income, to the model for the variance.  To 
illustrate the estimator, we have specified that the sample is composed of groups of three choice 
situations (this is purely artificial – the sample is actually a cross section). 
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----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable                 MODE 
Log likelihood function      -184.50669 
Estimation based on N =    210, K =   7 
Inf.Cr.AIC  =    383.0 AIC/N =    1.824 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .3498 .3425 
Chi-squared[ 4]          =    198.50415 
Prob [ chi squared > value ] =   .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|     .06930***      .01743     3.97  .0001      .03513    .10346 
    TTME|    -.10365***      .01094    -9.48  .0000     -.12509   -.08221 
    INVC|    -.08493***      .01938    -4.38  .0000     -.12292   -.04694 
    INVT|    -.01333***      .00252    -5.30  .0000     -.01827   -.00840 
   A_AIR|    5.20474***      .90521     5.75  .0000     3.43056   6.97893 
 A_TRAIN|    4.36060***      .51067     8.54  .0000     3.35972   5.36149 
   A_BUS|    3.76323***      .50626     7.43  .0000     2.77098   4.75548 
--------+-------------------------------------------------------------------- 
Scaled Multinomial Logit Model 
Log likelihood function      -170.10469 
McFadden Pseudo R-squared      .4156924 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    356.2 AIC/N =    1.696 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .4157 .4082 
Constants only   -283.7588  .4005 .3928 
At start values  -184.0543  .0758 .0639 
Response data are given as ind. choices 
Replications for simulated probs. =  25 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|     .12856*        .07138     1.80  .0717     -.01135    .26847 
    TTME|    -.24605***      .05469    -4.50  .0000     -.35324   -.13885 
    INVC|    -.15957*        .08376    -1.91  .0568     -.32375    .00460 
    INVT|    -.02319**       .01134    -2.05  .0408     -.04541   -.00097 
   A_AIR|    13.1526***     3.87351     3.40  .0007      5.5607   20.7445 
 A_TRAIN|    9.64084***     2.50951     3.84  .0001     4.72228  14.55939 
   A_BUS|    8.35466***     2.08397     4.01  .0001     4.27015  12.43917 
        |Variance parameter tau in GMX scale parameter 
TauScale|    1.11114***      .12892     8.62  .0000      .85846   1.36381 
        |Weighting parameter gamma in GMX model 
GammaMXL|        0.0    .....(Fixed Parameter)..... 
        |  Sample Mean    Sample Std.Dev. 
Sigma(i)|     .99942        1.48264      .67  .5003    -1.90650   3.90534 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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These are the estimated elasticities of the probabilities with respect to the generalized cost of travel.  
(This seems not to be a very good specification.  The elasticity appears to have the wrong sign.  The 
signs of the other variables that involve cost and time of travel have expected negative signs.)  The 
elasticities for the unscaled multinomial logit model are shown first. 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  4.9664  -2.1466  -2.1466  -2.1466 
   TRAIN| -2.1912   6.8310  -2.1912  -2.1912 
     BUS| -1.0547  -1.0547   6.9321  -1.0547 
     CAR| -1.8020  -1.8020  -1.8020   4.8097 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  3.2009   -.9987   -.8911  -1.2166 
   TRAIN| -1.1497   4.6046  -1.1497  -1.6580 
     BUS|  -.6515   -.6636   3.4699   -.7324 
     CAR| -1.6106  -1.7145  -1.1722   3.1863 
 
 The second example adds observed heterogeneity to the scale factor. 
 
 SMNLOGIT ; Lhs = Mode ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme,invc,invt,one 
   ; Hft = hinc 
   ; Pds = 3  
   ; Halson  
   ; Pts = 25 $ 
 
----------------------------------------------------------------------------- 
Scaled Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -175.97384 
Restricted log likelihood    -291.12182 
Chi squared [   9 d.f.]       230.29595 
Significance level               .00000 
McFadden Pseudo R-squared      .3955319 
Estimation based on N =    210, K =   9 
Inf.Cr.AIC  =    369.9 AIC/N =    1.762 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3955 .3868 
Constants only   -283.7588  .3798 .3709 
At start values  -183.9030  .0431 .0292 
Response data are given as ind. choices 
Replications for simulated probs. =  25 
RPL model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Number of obs.=   210, skipped    0 obs 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|     .13113*        .07373     1.78  .0753     -.01338    .27565 
    TTME|    -.23196**       .09485    -2.45  .0145     -.41786   -.04606 
    INVC|    -.16089*        .08297    -1.94  .0525     -.32351    .00173 
    INVT|    -.02384**       .01186    -2.01  .0443     -.04708   -.00061 
   A_AIR|    12.1298**      5.24495     2.31  .0207      1.8499   22.4097 
 A_TRAIN|    8.92354**      3.84111     2.32  .0202     1.39511  16.45197 
   A_BUS|    8.09167**      3.53386     2.29  .0220     1.16543  15.01791 
        |Variance parameter tau in GMX scale parameter 
TauScale|    1.19427***      .33152     3.60  .0003      .54451   1.84404 
        |Heterogeneity in tau(i) 
 TauHINC|    -.00243         .00535     -.45  .6500     -.01292    .00806 
        |Weighting parameter gamma in GMX model 
GammaMXL|        0.0    .....(Fixed Parameter)..... 
        |  Sample Mean    Sample Std.Dev. 
Sigma(i)|    1.04732        1.51238      .69  .4886    -1.91688   4.01152 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  3.3612  -1.0638  -1.0117  -1.3494 
   TRAIN| -1.1292   4.7327  -1.1091  -1.5165 
     BUS|  -.7581   -.7294   3.7079   -.8212 
     CAR| -1.6461  -1.6820  -1.2590   3.2577 
 
N24.4 Technical Details 
 
 The model is estimated using maximum simulated likelihood.  The full likelihood function is 
that of the generalized mixed logit model in Chapters N29 and N33.  The restrictions used to produce 
this model are Γ = 0 in the mixed logit part of the model – see Chapter N29 and γ = 0 in the 
GMXLOGIT formulation – see Chapter N33.  (All of the other parameters that produce the random 
parameters model are also suppressed.)  The scaled MNL thus adds a single new parameter to the 
MNL model, τ. 
 The value of σi reported in the final model results is the sample average value, where the 
average is taken in two directions.  The value of σi is obtained as the average over the random draws 
or Halton draws.  Then, the average reported (with the sample standard deviation) is averaged over 
the individuals in the sample.  The model specifies that the population expected value of σi equals 
one.  The average reported is near one (in accordance with the law of large numbers) but differs 
slightly because of sampling variability. 
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N25: Latent Class and 2K Multinomial Logit 
Model 

 
N25.1 Introduction 
 

The latent class model is similar to the random parameters model of Chapter N29. In the 
latent class formulation, parameter heterogeneity across individuals is modeled with a discrete 
distribution, or set of ‘classes.’  The situation can be viewed as one in which the individual resides in 
a ‘latent’ class, c, which is not revealed to the analyst.  There are a fixed number of classes, C.  
Estimates consist of the class specific parameters and for each person, a set of probabilities defined 
over the classes.  Individual i’s choice among J alternatives at choice situation t given that they are in 
class c is the one with maximum utility, where the utility functions are 

 
      Ujit  =  βc′xjit  +  εjit, 
 
where   Ujit = utility of alternative j to individual i in choice situation t, 
 

  xjit = union of all attributes and characteristics that appear in all utility  
    functions. For some alternatives, xjit,k may be zero by construction  
    for some attribute k which does not enter their utility function for  
    alternative j, 

 
  εjit  = unobserved heterogeneity for individual i and alternative j in choice  
    situation t, 
 
  βc   = class specific parameter vector. 

 
Within the class, choice probabilities are assumed to be generated by the multinomial logit model.  
 As noted, the class membership is not observed. (Unconditional class probabilities are 
specified by the multinomial logit form.)  The class specific probabilities may be a set of fixed 
constants if no  observable characteristics that help in class separation are observed.  In this case, the 
class probabilities are simply functions of C parameters, θc, the last of which is fixed at zero. You 
will specify the number of classes, C, from two to five.  This model does not impose the IIA property 
on the observed unconditional probabilities (though it does within each class.)  For a given 
individual, the model’s estimate of the probability of a specific choice is the expected value (over 
classes) of the class specific probabilities.  See technical details in Section N25.8.    
 
  



N25: Latent Class and 2K Multinomial Logit Model  N-435 

N25.2 Model Command 
 

The latent class model is a one level (nonnested) model.  To request it, use 
 
         LCLOGIT  ; Lhs  = ... ; Choices = ... 

               ; Rhs = ...  
or   ; Model: U(...)=... / U(...) = ... all as usual 
  ; ... any other options  

; Pds = number of choice situations fixed or variable (omit if one) 
; Pts = C, the number of classes $ 

 
(The model command NLOGIT ; LCM may also be used.)  The preceding format assumes that the 
latent class probabilities are constants.  If you have variables that are person specific, and constant 
across choices and choice situations (such as age or income), then you can build them into the model 
with 
   ; LCM = list of variables 
 
(Do not include one in the list.)  Other common options include 
 
                 ; Prob = name  to use for estimated probabilities 
                 ; Utility = name  to use for estimated utilities 
 
and the usual other options for output, technical output, elasticities, descriptive statistics, etc.  (See 
Chapters N19-N22 for details.)  Note that for this estimator,  
 

• Choice based sampling is not supported, though you can use ordinary weights with ; Wts. 
• Data may be individual or proportions. 

 
As in the mixed logit model (Chapter N29), the number of choice situations may vary across 
individuals.  This model may be fit with cross section or repeated choice situation (panel) data. If 
you do not specify the ; Pds = setting or ; Panel specification, it will be assumed that you are using 
a cross section.  In principle, this works, but estimates may have large standard errors.  The estimator 
becomes sharper as the number of observations per person increases.   
 The number of latent classes must be specified on the command.  There is no theory for the 
right number of classes. If you specify too many, some parameters will be estimated with huge 
standard errors, or after estimation, the estimated asymptotic covariance matrix will not be positive 
definite. If you observe either of these conditions, try reducing C in the command. 

There is no command builder for this version of the choice model.  The command must be 
provided in text form as shown above.  The following general options are not available for the latent 
class model: 
 
   ; Ivb = name  No inclusive values are computed. 
   ; IAS = list   IIA is not testable here, since it is not imposed. 
   ; Cprob = name Conditional and unconditional probabilities are the same. 
   ; Ranks     This estimator may not be based on ranks data. 
   ; Scale ...   Data scaling is only for the nested logit model. 
 
The remainder of the setup is identical to the multinomial logit model. 
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N25.3 Individual Specific Results 
 
Denote the class probabilities by πic and the conditional choice probabilities by Pjit|c.  Within 

the class, the individual choices from one situation to the next are assumed to be independent. Thus, 
the conditional probability for the observed sequence of choices for person t is 

 
   Pji|c  =  

1
|iT

jimm
P c

=∏ , 

 
where Ti denotes the number of choice situations for person i – this may vary by person; you provide 
this in your command with the ; Pds = setting specification.  The unconditional probability for the 
sequence of choices is the expected value, 
 

  Pji  =  
1 1

|iTC
ic jimc m

P c
= =∑ ∏π   =  

1
Prob( )Prob( | )C

c
class c choices c

=
=∑ . 

 
This is the term that enters the log likelihood for estimation of the model.  In this formula, it is 
implied that the ‘j’ indicates the choice that the individual actually makes.  We can use Bayes 
theorem to obtain a ‘posterior’ estimate of the individual specific class probabilities,  
 

  Prob(class = c | choices, data)  =  1

1 1

|

|

i

i

T
ic jimm

TC
ic jimc m

P c

P c
=

= =

∏
∑ ∏

π

π
. 

 
This provides a person specific set of conditional (posterior) estimates of the class probabilities, 

*ˆicπ .  
With this in hand, we can obtain an individual specific posterior estimate of the parameters, 
 

  *
1

ˆ ˆˆC
i ic cc=

= ∑β βπ . 
 
You can request NLOGIT to construct a matrix named beta_i containing these individual specific 
estimates by adding 
 

   ; Parameters 
 
to the model command.  This will create a matrix named beta_i that has number of rows equal to the 
number of individuals (not the number of observations, as you are using a panel) and number of 
columns equal to the number of elements in β.  Each row will contain ˆ

i′β .  A second matrix, classp_i, 
that is N×C will contain the estimated conditional class probabilities, *ˆicπ , for each individual. An 
example appears in Section N25.7. 
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N25.4 Constraining the Model Parameters 
 
You may specify that certain parameters are to be the same in all classes.  Use 
 
   ; Fix = names of variables if you use ; Rhs  
                   or names of parameters if you use ; Model:... 

 
For example, the model fit in the next section uses the command 
 
 LCLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme ; Rh2 = one 
   ; Pts = 2 
   ; ... $ 
 
This is a two class model.  When we add the specification 
 
   ; Fix = gc 
 
the estimates for the model parameters appear as below.  The coefficient on gc is the same in the two 
classes.  (We have artificially grouped the observation into 30 groups of seven for the illustration.) 
 
 LCLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme ; Rh2 = one 
   ; Pts = 2 
   ; Fix = gc  
   ; LCM = hinc ; Pds = 7 $ 
 
----------------------------------------------------------------------------- 
Latent Class Logit Model 
Dependent variable                 MODE 
Log likelihood function      -158.60029 
Restricted log likelihood    -291.12182 
Chi squared [  11 d.f.]       265.04305 
Significance level               .00000 
McFadden Pseudo R-squared      .4552099 
Estimation based on N =    210, K =  11 
Inf.Cr.AIC  =    339.2 AIC/N =    1.615 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .4552 .4455 
Constants only   -283.7588  .4411 .4311 
At start values  -199.9800  .2069 .1928 
Response data are given as ind. choices 
Number of latent classes =            2 
Average Class Probabilities 
     .573  .427 
LCM model with panel has      30 groups 
Fixed number of obsrvs./group=        7 
Number of obs.=   210, skipped    0 obs 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Utility parameters in latent class -->> 1 
    GC|1|    -.01366***      .00491    -2.78  .0054     -.02329   -.00404 
  TTME|1|    -.18606***      .02726    -6.82  .0000     -.23949   -.13263 
 A_AIR|1|    9.68918***     1.76652     5.48  .0000     6.22686  13.15150 
A_TRAI|1|    5.36413***      .96114     5.58  .0000     3.48033   7.24793 
 A_BUS|1|    6.01580***     1.00863     5.96  .0000     4.03892   7.99268 
        |Utility parameters in latent class -->> 2 
    GC|2|    -.01366***      .00491    -2.78  .0054     -.02329   -.00404 
  TTME|2|    -.04828***      .01660    -2.91  .0036     -.08082   -.01573 
 A_AIR|2|    6.24727***     1.31891     4.74  .0000     3.66225   8.83229 
A_TRAI|2|    5.52786***     1.06461     5.19  .0000     3.44127   7.61446 
 A_BUS|2|    3.62508***     1.13892     3.18  .0015     1.39283   5.85733 
        |This is THETA(01) in class probability model. 
Constant|     .54095        1.48777      .36  .7162    -2.37503   3.45693 
 _HINC|1|    -.00672         .03534     -.19  .8492     -.07597    .06254 
        |This is THETA(02) in class probability model. 
Constant|        0.0    .....(Fixed Parameter)..... 
 _HINC|2|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
 A possibly more flexible method of constraining the model parameters is to use 
 
   ; Rst = list 
 
This can be used generally to impose fixed value and equality constraints on the latent class model in 
NLOGIT.  You must provide the full set of specifications for all J classes.  No specifications are 
provided for the class probability model, which must be unrestricted.  If you have K variables 
including constants in the utility model, and J classes, then you must provide JK specifications here.  
Note also, if you use one to set up the constants, keep in mind, these are put at the end of the 
parameter vector.  If you use ; Rh2 = list, the variables are expanded and multiplied by the ASCs.  In 
general, it will be useful to fit the model without the ; Rst restrictions to see how the parameters are 
arranged. 
 An example that illustrates this would be 
 
 LCLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = one,gc,ttme 
   ; LCM  

; Pts = 2 $ 
 
To force the coefficients on gc and ttme to be the same in both classes, you could use 
 
   ; Rst = bgc,bttme,aa1,at1,ab1, 

bgc,bttme,aa2,at2,ab2 
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This sets up the parameter vector shown in the results below.  Note that the first two coefficients are 
the same in the two classes. 
 
----------------------------------------------------------------------------- 
Latent Class Logit Model 
Dependent variable                 MODE 
Log likelihood function      -174.42942 
Restricted log likelihood    -291.12182 
Chi squared [   9 d.f.]       233.38480 
Significance level               .00000 
McFadden Pseudo R-squared      .4008370 
Estimation based on N =    210, K =   9 
Inf.Cr.AIC  =    366.9 AIC/N =    1.747 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .4008 .3922 
Constants only   -283.7588  .3853 .3764 
At start values  -199.9272  .1275 .1149 
Response data are given as ind. choices 
Number of latent classes =            2 
Average Class Probabilities 
     .612  .388 
LCM model with panel has      30 groups 
Fixed number of obsrvs./group=        7 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Utility parameters in latent class -->> 1 
    GC|1|    -.00859*        .00498    -1.72  .0846     -.01836    .00117 
  TTME|1|    -.10408***      .01704    -6.11  .0000     -.13748   -.07068 
 A_AIR|1|    7.83473***     1.04467     7.50  .0000     5.78720   9.88225 
A_TRAI|1|    5.71646***      .71747     7.97  .0000     4.31024   7.12268 
 A_BUS|1|    3.88956***      .76829     5.06  .0000     2.38373   5.39539 
        |Utility parameters in latent class -->> 2 
    GC|2|    -.00859*        .00498    -1.72  .0846     -.01836    .00117 
  TTME|2|    -.10408***      .01704    -6.11  .0000     -.13748   -.07068 
 A_AIR|2|    4.36673***     1.09525     3.99  .0001     2.22007   6.51339 
A_TRAI|2|    1.69393**       .79868     2.12  .0339      .12855   3.25932 
 A_BUS|2|    2.90232***      .71358     4.07  .0000     1.50372   4.30092 
        |Estimated latent class probabilities 
 PrbCls1|     .61159***      .14705     4.16  .0000      .32337    .89980 
 PrbCls2|     .38841***      .14705     2.64  .0083      .10020    .67663 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
This would be the same as ; Fix = gc,ttme.  However, ; Rst = list allows for more general 
constraints, and allows you to fix coefficients at particular values as well.  For a two class model, 
rather little is gained over the ; Fix specification.  However, when the model contains more than two 
classes, it becomes possible to force coefficients to be equal across a subset of the classes, but not all 
of them. 
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N25.5 An Application 
 
 A latent class model based on the clogit data is estimated with the commands 
 
 NLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme ; Rh2 = one 
   ; Effects: gc(air)  
   ; Crosstab 
   ; Pts = 2 ; Pds = 7  
   ; LCM = hinc  

; Parameters ; List $ 
 
Note that we have artificially grouped the sample into 30 groups of seven observations.  This is the 
model that was fit as an MNL model in Chapter N17.  Results are shown below.  The MNL model is 
fit first to obtain the starting values for the iterations.  The results for the latent class model are given 
next. 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -199.97662 
Estimation based on N =    210, K =   5 
Inf.Cr.AIC  =    410.0 AIC/N =    1.952 
Model estimated: Sep 18, 2011, 21:32:34 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .2953 .2816 
Chi-squared[ 2]          =    167.56429 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
    GC|1|    -.01578***      .00438    -3.60  .0003     -.02437   -.00719 
  TTME|1|    -.09709***      .01044    -9.30  .0000     -.11754   -.07664 
 A_AIR|1|    5.77636***      .65592     8.81  .0000     4.49078   7.06193 
A_TRAI|1|    3.92300***      .44199     8.88  .0000     3.05671   4.78929 
 A_BUS|1|    3.21073***      .44965     7.14  .0000     2.32943   4.09204 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Normal exit:  20 iterations. Status=0, F=    158.5813 
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----------------------------------------------------------------------------- 
Latent Class Logit Model 
Dependent variable                 MODE 
Log likelihood function      -158.58128 
Restricted log likelihood    -291.12182 
Chi squared [  12 d.f.]       265.08108 
Significance level               .00000 
McFadden Pseudo R-squared      .4552752 
Estimation based on N =    210, K =  12 
Inf.Cr.AIC  =    341.2 AIC/N =    1.625 
Model estimated: Sep 18, 2011, 21:32:35 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .4553 .4447 
Constants only   -283.7588  .4411 .4303 
At start values  -199.9783  .2070 .1916 
Response data are given as ind. choices 
Number of latent classes =            2 
Average Class Probabilities 
     .573  .427 
LCM model with panel has      30 groups 
Fixed number of obsrvs./group=        7 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Utility parameters in latent class -->> 1 
    GC|1|    -.01480*        .00764    -1.94  .0528     -.02977    .00018 
  TTME|1|    -.18597***      .02737    -6.79  .0000     -.23961   -.13233 
 A_AIR|1|    9.67515***     1.77945     5.44  .0000     6.18750  13.16280 
A_TRAI|1|    5.39833***      .98043     5.51  .0000     3.47672   7.31995 
 A_BUS|1|    6.02787***     1.01332     5.95  .0000     4.04181   8.01394 
        |Utility parameters in latent class -->> 2 
    GC|2|    -.01286**       .00635    -2.02  .0429     -.02531   -.00041 
  TTME|2|    -.04842***      .01652    -2.93  .0034     -.08080   -.01605 
 A_AIR|2|    6.25612***     1.31406     4.76  .0000     3.68061   8.83163 
A_TRAI|2|    5.51199***     1.06768     5.16  .0000     3.41938   7.60461 
 A_BUS|2|    3.62297***     1.13691     3.19  .0014     1.39467   5.85126 
        |This is THETA(01) in class probability model. 
Constant|     .53114        1.47670      .36  .7191    -2.36313   3.42542 
 _HINC|1|    -.00653         .03508     -.19  .8524     -.07529    .06224 
        |This is THETA(02) in class probability model. 
Constant|        0.0    .....(Fixed Parameter)..... 
 _HINC|2|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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+-------------------------------------------------------+ 
| Cross tabulation of actual choice vs. predicted P(j)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i).  | 
| Column totals may be subject to rounding error.       | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            40            12             4             3            58 
   TRAIN|            12            44             4             3            63 
     BUS|             2             4            20             4            30 
     CAR|             5             4             6            44            59 
--------+---------------------------------------------------------------------- 
   Total|            59            64            34            53           210 
+-------------------------------------------------------+ 
| Cross tabulation of actual y(ij) vs. predicted y(ij)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is N(k,j,i)=Sum(i=1,...,N) Y(k,j,i).  | 
| Predicted y(ij)=1 is the j with largest probability.  | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            43            15             0             0            58 
   TRAIN|            11            52             0             0            63 
     BUS|             0             6            23             1            30 
     CAR|             0             0             0            59            59 
--------+---------------------------------------------------------------------- 
   Total|            54            73            23            60           210 
 
N25.6 The 2K Model 
 
 Section N18.9 describes a situation in which some individuals in a sample explicitly indicate 
that they ignored certain attributes.  To consider a simple example (using our clogit data as a 
backdrop), assume the model were 
 
 U(air,train,bus,car)  =  <αa,αt,αb,0>  +  β1 gc + β2 invt + β3 invc +  <εa εt εb εc>. 
 
This defines the utility functions for an individual in the sample.  Suppose some individuals indicate 
that they did not consider the in-vehicle time, invt, in their decision.  Then, for those individuals, the 
appropriate utility functions are 
 
 U(air,train,bus,car)  =  <αa,αt,αb,0>  +  β1 gc +                 β3 invc +  <εa εt εb εc>. 
 
That is, the appropriate adjustment is to force the coefficient on invt to equal zero for those 
individuals.  That is what NLOGIT does internally when the -888 value is used as described in 
Section N18.9. 
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 We now consider the possibility that individuals do ignore certain attributes, but we do not 
know explicitly who ignores which one or both, or neither.  Suppose that attributes gc and invt are 
involved.  (See Hensher, Rose and Greene (2011).)  The description suggests a latent class model 
such as 

 
Class 1   U(air,train,bus,car)  =  <αa,αt,αb,0>  +  β1 gc +  β2 invt + β3 invc +  <εa εt εb εc>. 
Class 2   U(air,train,bus,car)  =  <αa,αt,αb,0>  +               β2 invt + β3 invc +  <εa εt εb εc>. 
Class 3   U(air,train,bus,car)  =  <αa,αt,αb,0>  +  β1 gc +                 β3 invc +  <εa εt εb εc>. 
Class 4   U(air,train,bus,car)  =  <αa,αt,αb,0>  +                              β3 invc +  <εa εt εb εc>. 

 
If there are K attributes being treated this way, then the latent class model has 2K classes – hence the 
name of the model. 
 The command structure for this model modifies the LCLOGIT command as follows: 
 
 LCLOGIT ; Lhs = choice variable  

; Choices = choice set definition 
   ; Rhs = x1, x2, …, xK, …, other xs 
   ; Rh2 = variables interacted with ASCs 
   ; LCM or ; LCM = list of variables 
   ; Pds = panel data setup if any 
   ; Pts = 102 or 103 or 104 $ 
 
The number of classes is set up from the ;Pts specification, which specifies K as the third digit.  This 
is also the number of variables at the beginning of the Rhs list that will be analyzed in this model.  
The number of such variables may be 2, 3, or 4.  With 4 attributes, there will be 16 classes.  The 
following specifies a 22 = 4 class model: 
 
 LCLOGIT ; Lhs = mode  

; Choices = air,train,bus,car 
   ; Rhs = gc,invt,invc  

; Rh2 = one,hinc 
   ; Pts = 102 $ 
 
The results below illustrate the estimator.  Note that the coefficients are assumed to be the same 
across classes.  The results suggest that the data do not contain evidence that individuals ignored 
only gc, however quite a large fraction appeared to have ignored both gc and invt.  (That is how the 
results would be interpreted.  Since we have artificially grouped the observations, the results are only 
illustrative.) 
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----------------------------------------------------------------------------- 
Endog. Attrib. Choice LC Model 
Dependent variable                 MODE 
Log likelihood function      -223.79636 
LCM model with panel has      30 groups 
Fixed number of obsrvs./group=        7 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Utility parameters in latent class -->> 1 
    GC|1|     .04888***      .01633     2.99  .0028      .01687    .08089 
  INVT|1|    -.01255***      .00117   -10.74  .0000     -.01484   -.01026 
  INVC|1|    -.04514***      .00726    -6.22  .0000     -.05937   -.03091 
 A_AIR|1|    -.85055         .53993    -1.58  .1152    -1.90881    .20770 
A_TRAI|1|    1.14329***      .23175     4.93  .0000      .68908   1.59751 
 A_BUS|1|     .01526         .29490      .05  .9587     -.56273    .59325 
        |Utility parameters in latent class -->> 2 
    GC|2|     .04888***      .01633     2.99  .0028      .01687    .08089 
  INVT|2|        0.0    .....(Fixed Parameter)..... 
  INVC|2|    -.04514***      .00726    -6.22  .0000     -.05937   -.03091 
 A_AIR|2|    -.85055         .53993    -1.58  .1152    -1.90881    .20770 
A_TRAI|2|    1.14329***      .23175     4.93  .0000      .68908   1.59751 
 A_BUS|2|     .01526         .29490      .05  .9587     -.56273    .59325 
        |Utility parameters in latent class -->> 3 
    GC|3|        0.0    .....(Fixed Parameter)..... 
  INVT|3|    -.01255***      .00117   -10.74  .0000     -.01484   -.01026 
  INVC|3|    -.04514***      .00726    -6.22  .0000     -.05937   -.03091 
 A_AIR|3|    -.85055         .53993    -1.58  .1152    -1.90881    .20770 
A_TRAI|3|    1.14329***      .23175     4.93  .0000      .68908   1.59751 
 A_BUS|3|     .01526         .29490      .05  .9587     -.56273    .59325 
        |Utility parameters in latent class -->> 4 
    GC|4|        0.0    .....(Fixed Parameter)..... 
  INVT|4|        0.0    .....(Fixed Parameter)..... 
  INVC|4|    -.04514***      .00726    -6.22  .0000     -.05937   -.03091 
 A_AIR|4|    -.85055         .53993    -1.58  .1152    -1.90881    .20770 
A_TRAI|4|    1.14329***      .23175     4.93  .0000      .68908   1.59751 
 A_BUS|4|     .01526         .29490      .05  .9587     -.56273    .59325 
        |Estimated latent class probabilities 
 PrbCls1|     .39047**       .15245     2.56  .0104      .09167    .68927 
 PrbCls2|        0.0         .18530      .00 1.0000 -.36318D+00  .36318D+00 
 PrbCls3|     .14715         .13433     1.10  .2733     -.11613    .41042 
 PrbCls4|     .46238***      .15199     3.04  .0023      .16448    .76028 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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N25.7 Individual Results 
 
 The components of the latent class model are the prior class probabilities, πic and the 
conditional choice probabilities, P(j|c).  The posterior estimates of the class probabilities are 
 

   *
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ˆˆ ( | )ˆ
ˆˆ ( | )

ic i
ic C

ic ic

P j c
P j c
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π
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π∑
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These revised probabilities are used to compute individual specific estimates of β as well as the 
elasticities and willingness to pay measures.  The model below is estimated with the commands 
 

CREATE  ; p1,p2 $ 
NAMELIST ; pc = p1,p2 $ 
LCLOGIT ; Lhs = mode ; Choices = air,train,bus,car 

; Rhs = invc,invt,gc ; Rh2 = one,hinc  
; Effects: invc(*) ; Full 
; Pts = 2 ; Pds = 7 
; WTP = invt/invc ; par ; Classp = pc $ 

 
----------------------------------------------------------------------------- 
Latent Class Logit Model 
Dependent variable                 MODE 
Log likelihood function      -188.36102 
LCM model with panel has      30 groups 
Fixed number of obsrvs./group=        7 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Utility parameters in latent class -->> 1 
  INVC|1|    -.22612**       .09582    -2.36  .0183     -.41393   -.03832 
  INVT|1|    -.03557***      .01340    -2.65  .0079     -.06183   -.00931 
    GC|1|     .18821**       .09323     2.02  .0435      .00548    .37094 
 A_AIR|1|   -7.88152***     2.87482    -2.74  .0061   -13.51607  -2.24696 
AIR_HI|1|    -.01646         .04148     -.40  .6915     -.09776    .06484 
A_TRAI|1|    2.60857***      .65694     3.97  .0001     1.32100   3.89615 
TRA_HI|1|    -.03867**       .01650    -2.34  .0191     -.07101   -.00634 
 A_BUS|1|     .80457         .75708     1.06  .2879     -.67928   2.28842 
BUS_HI|1|    -.02065         .01994    -1.04  .3003     -.05974    .01843 
        |Utility parameters in latent class -->> 2 
  INVC|2|     .00105         .03516      .03  .9762     -.06787    .06997 
  INVT|2|    -.00869*        .00471    -1.84  .0654     -.01793    .00055 
    GC|2|     .01163         .03222      .36  .7181     -.05152    .07478 
 A_AIR|2|   -2.30014**      1.14299    -2.01  .0442    -4.54036   -.05992 
AIR_HI|2|     .01813         .02112      .86  .3905     -.02326    .05952 
A_TRAI|2|    1.60981*        .82931     1.94  .0522     -.01562   3.23523 
TRA_HI|2|    -.02850         .02289    -1.24  .2132     -.07336    .01637 
 A_BUS|2|    1.31031         .88693     1.48  .1396     -.42804   3.04865 
BUS_HI|2|    -.02545         .02508    -1.01  .3103     -.07461    .02372 
        |Estimated latent class probabilities 
 PrbCls1|     .52595***      .09375     5.61  .0000      .34219    .70970 
 PrbCls2|     .47405***      .09375     5.06  .0000      .29030    .65781 
--------+-------------------------------------------------------------------- 
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N25.7.1 Parameters 
 
 A best guess of the parameter vector for each individual can be computed using 
 
   E[β|choices]  =  *

1
ˆˆC

ic cc=
π∑  β  

 
The results for the model estimated above are shown in Figure N25.1.  (Note that we have artificially 
grouped the sampled individuals into panels of seven observations for this example.) 
 

 
Figure N25.1  Estimated Posterior Probabilities and Parameters 

 
N25.7.2 Willingness to Pay 
 
 The latent class model can also compute the estimated willingness to pay measure for each 
individual in the sample based on the preceding estimates of their parameters.  The model request is 
identical to that used for the random parameters model. With the LCLOGIT command, use 
 
   ; Par ; WTP = parameter1 / parameter2 
 
where the two parameters are identified by variable name if you have used ; Rhs = list to specify the 
utility functions or parameter names if you have used ; Model: to specify utility functions.  The 
latent class estimator computes the mean, wtp_i.  In general, the WTP calculation will have an 
attribute level coefficient in the numerator and a cost or income measure in the denominator.  
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 In the example above, we have specified 
 
   ; Par ; WTP = invt / invc  
 
to estimate the willingness to pay for a shorter trip.  Results are shown below.  The WTP values are 
shown in the rightmost column.  The posterior probabilities are shown at the left and the posterior 
estimates of β are shown in the center.  Note that WTP appears to have the wrong sign for some of 
the individuals.  This is a consequence of the invc parameter having the wrong sign in class 2 in the 
estimated model.  When the posterior probability is high (or one) for class 2, this estimate gets a 
dominant weight in the result.  This suggests the consequence of a badly specified model, which our 
numerical illustration here seems to exemplify. 
 

 
Figure N25.2  Willingness to Pay Values and Posterior Probabilities 
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N25.7.3 Elasticities 
 
 Elasticities and partial effects are computed using the posterior estimate of βi as shown 
above.  The IIA assumptions apply within the classes.  However, the mixed model has a different 
posterior estimate of β for each individual, so the assumptions do not extend to the latent class model 
as averaged across individuals.  The elasticities for the corresponding MNL model are shown below 
for comparison. 
 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt INVC     in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|   -3.64460***      .52294    -6.97  .0000    -4.66954  -2.61966 
   TRAIN|     .45876***      .10100     4.54  .0000      .26080    .65673 
     BUS|     .72156***      .20005     3.61  .0003      .32946   1.11365 
     CAR|    1.12303***      .31908     3.52  .0004      .49765   1.74840 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt INVC     in TRAIN 
     AIR|     .48297***      .10649     4.54  .0000      .27426    .69169 
   TRAIN|   -4.77019***      .39592   -12.05  .0000    -5.54618  -3.99419 
     BUS|    1.66479***      .13855    12.02  .0000     1.39322   1.93635 
     CAR|    2.20779***      .17851    12.37  .0000     1.85791   2.55768 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt INVC     in BUS 
     AIR|     .33890***      .07881     4.30  .0000      .18444    .49337 
   TRAIN|     .78575***      .08516     9.23  .0000      .61884    .95265 
     BUS|   -3.77555***      .27281   -13.84  .0000    -4.31024  -3.24086 
     CAR|    1.13704***      .13530     8.40  .0000      .87186   1.40223 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt INVC     in CAR 
     AIR|     .43901***      .07427     5.91  .0000      .29345    .58457 
   TRAIN|     .94205***      .08747    10.77  .0000      .77061   1.11348 
     BUS|    1.14673***      .13308     8.62  .0000      .88590   1.40756 
     CAR|   -2.50537***      .27334    -9.17  .0000    -3.04111  -1.96962 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------+----------------------------------- 
INVC    |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -3.6446    .4588    .7216   1.1230 
   TRAIN|   .4830  -4.7702   1.6648   2.2078 
     BUS|   .3389    .7857  -3.7755   1.1370 
     CAR|   .4390    .9420   1.1467  -2.5054 
(Multinomial Logit Model) 
--------+----------------------------------- 
INVC    |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -2.7340   1.1983   1.1983   1.1983 
   TRAIN|   .5536  -1.8144    .5536    .5536 
     BUS|   .2104    .2104  -1.3328    .2104 
     CAR|   .2241    .2241    .2241   -.7443 
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N25.8 Technical Details 
 

The log likelihood function for this model is the sum of the logs of Pji as given in Section 
N25.3.  The log likelihood function is maximized directly using NLOGIT’s general optimization 
package.  Applications in the literature have suggested the EM method as a preferable approach, but 
we have not found this to be the case.  (In addition, the EM algorithm does not allow the imposition 
of cross class restrictions, such as those used to form the 2K model.) The estimated asymptotic 
covariance matrix is based on the second derivatives.  If the latent class parameters are not precisely 
estimated, because of rounding error, this matrix may fail to be positive definite. In this case, the 
BHHH estimator is used instead.  Starting values for the iterations are obtained by assuming the 
classes are equally probable, but the class specific (bold beta) vectors differ slightly from the MNL 
estimates.  If they and the class probabilities are assumed to be equal, then all derivatives of the log 
likelihood will equal zero. This is a local maximizer of the log likelihood. To avoid this point, the 
starting MNL values are perturbed slightly. 

Within the class, choice probabilities are assumed to be generated by the multinomial logit 
model.  

   Prob(yit = j | class = c) = 
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As noted, the class membership is not observed.  Class probabilities are specified by the multinomial 
logit form, 

   Prob(class = c)  =  Qic  =  ( )
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where zi is an optional set of person, situation invariant characteristics.  The class specific 
probabilities may be a set of fixed constants if no such characteristics are observed.  In this case, the 
class probabilities are simply functions of C parameters, θc, the last of which is fixed at zero. This 
model does not impose the IIA property on the observed probabilities. 
 For a given individual, the model’s estimate of the probability of a specific choice is the 
expected value (over classes) of the class specific probabilities.  Thus, 
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When there are Ti choice situations, the choices are independent conditioned on the class, so 
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N26: Heteroscedastic Extreme Value Model 
 
N26.1 Introduction 
 
 The main virtues of the heteroscedastic extreme value (HEV) model are its freedom from the 
IIA assumption and its allowance of differential cross elasticities among all pairs of alternatives.  
(See Bhat (1995) and Allenby and Ginter (1995).  The algorithm and interpretation adopted in 
NLOGIT are those in Bhat’s paper.)  Unlike the nested logit model, the HEV model does not require 
prior partitioning of the choice set into mutually exclusive branches to achieve this result.  The 
model is a random utility formulation as usual, 
 
   Uij   =  β′xij +  εij  

    =  Vij   +  εij, 
 
   Choice j is made if Uij > Uiq for all q not equal to j. 
 
The CDF for each εij is the type 1 extreme value distribution with precision parameter θj – the scale 
parameter is σj  = 1/θj, 
 

  F(εij)   =  exp(-exp(-θjεij)). 
 
The εijs are independent, but not identically distributed – they have mean zero, but variance π²/(6θj²).  
Thus, each one has a different scale factor.  For identification purposes, one of the θs is set to one.  
In NLOGIT’s estimator, this is the last one. This model does not have the IIA property of the 
multinomial logit model.  The derivatives and elasticities of the probabilities differ across all 
alternatives and attributes.  Elasticities and derivatives are computed with the evaluation of 
 

  ∂Pij / ∂xk,iq =  (∂Pij / ∂Viq) (∂Viq /∂xk,iq) 

   =  (∂Pij / ∂Viq) βk, 
 
in which Pij is the probability of the jth alternative and xk,iq is the kth attribute in the qth utility function 
(q and j may be unequal).  These derivatives are discussed in the technical notes in Section N26.6.    
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N26.2 Command for the HEV Model 
 

The command for this model is 
 

HLOGIT ; Lhs = dependent variable 
  ; Choices = ... specification of the choice set 
  ; ... specification of utility functions 
  ; ... any other options $ 

 
(The alternative format, NLOGIT ; Heteroscedastic may be used instead.)  The model is setup 
otherwise exactly as described in Chapters N17-N22 – this is a modification of the MNL model 
described in Chapter N17.   

The command builder may also be used for this model by selecting Model:Discrete 
Choice/Multinomial Probit, HEV, RPL.  The discrete choice model is defined on the Main page 
and the HEV format of the model is selected on the Options page.  See Figures N26.1 and N26.2 for 
the setup of the model shown in the application in Section N26.3. 

The following features of NLOGIT are not available for this model: 
 

; Cprob = name Conditional and unconditional probabilities are the same. 
; Ranks  This estimator may not be based on ranks data. 
; Scale ...   Data scaling is only for the nested logit model. 
; IIA = list   IIA is not testable here, since it is not imposed. 

 
In principle, one could test IIA as a restriction on the HEV model, since the restriction θj = 1 does 
produce the MNL.  However, this test is rather indirect, since IIA relates to more than just 
heteroscedasticity.  The remainder of the setup is identical to the multinomial logit model.  All other 
options are available, including 
 

; Probs = name to retain the predicted probabilities 
; Utility = name to retain the predicted systematic utilities 

 
and so on. 
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Figure N26.1  Main Page of Command Builder for the HEV Model 

 

 
Figure N26.2  Options Page of Command Builder for the HEV Model 

 
  



N26: Heteroscedastic Extreme Value Model  N-454 

N26.3 Application 
 
 The HEV model based on the clogit data is estimated with the command 
 
 HLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme 
   ; Rh2 = one,hinc 
   ; Effects: gc(air) ; Lpt = 60 $ 
 
This is the model that was fit as an MNL model in Chapter N17.  We have now relaxed the equal 
variances assumption.  Results are shown below.  The MNL model is fit first to obtain the starting 
values for the iterations.  The results for the HEV model are given next. 
 
----------------------------------------------------------------------------- 
Start values obtained using MNL model 
Dependent variable               Choice 
Log likelihood function      -189.52515 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    395.1 AIC/N =    1.881 
Model estimated: Sep 19, 2011, 08:08:35 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .3321 .3202 
Chi-squared[ 5]          =    188.46723 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01093**       .00459    -2.38  .0172     -.01992   -.00194 
    TTME|    -.09546***      .01047    -9.11  .0000     -.11599   -.07493 
   A_AIR|    5.87481***      .80209     7.32  .0000     4.30275   7.44688 
AIR_HIN1|    -.00537         .01153     -.47  .6412     -.02797    .01722 
 A_TRAIN|    5.54986***      .64042     8.67  .0000     4.29465   6.80507 
TRA_HIN2|    -.05656***      .01397    -4.05  .0001     -.08395   -.02917 
   A_BUS|    4.13028***      .67636     6.11  .0000     2.80464   5.45593 
BUS_HIN3|    -.02858*        .01544    -1.85  .0642     -.05885    .00169 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 These are the estimates for the HEV model.  Note, the scale parameters are normalized to 
1.0, so the reported results show the departure from the MNL model – zero values here imply scale 
factors of 1.0, which are the values for MNL.  The additional set of derived parameters show the 
implied estimates of the standard deviations of εj in the random utility model.  The value 1.28255 is 
the standard deviation under the MNL assumption. 
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----------------------------------------------------------------------------- 
Heteroscedastic Extreme Value Model 
Dependent variable                 MODE 
Log likelihood function      -181.14819 
Restricted log likelihood    -291.12182 
Chi squared [  11 d.f.]       219.94725 
Significance level               .00000 
McFadden Pseudo R-squared      .3777581 
Estimation based on N =    210, K =  11 
Inf.Cr.AIC  =    384.3 AIC/N =    1.830 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3778 .3667 
Constants only   -283.7588  .3616 .3503 
At start values  -193.7765  .0652 .0486 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|    -.16389         .33857     -.48  .6283     -.82749    .49970 
    TTME|   -1.03949        2.12090     -.49  .6241    -5.19638   3.11740 
   A_AIR|    49.8163       102.0271      .49  .6254   -150.1531  249.7858 
AIR_HIN1|     .04693         .15650      .30  .7643     -.25981    .35368 
 A_TRAIN|    48.9298       99.63430      .49  .6234   -146.3499  244.2094 
TRA_HIN2|    -.51323        1.16507     -.44  .6596    -2.79672   1.77025 
   A_BUS|    35.1788       72.62915      .48  .6281   -107.1717  177.5293 
BUS_HIN3|    -.09161         .25306     -.36  .7173     -.58759    .40437 
        |Scale Parameters of Extreme Value Distns Minus 1.0 
   s_AIR|    -.94107***      .11924    -7.89  .0000    -1.17477   -.70736 
 s_TRAIN|    -.94110***      .13093    -7.19  .0000    -1.19771   -.68449 
   s_BUS|    -.89553***      .20698    -4.33  .0000    -1.30121   -.48985 
   s_CAR|        0.0    .....(Fixed Parameter)..... 
        |Std.Dev=pi/(theta*sqr(6)) for H.E.V. distribution. 
   s_AIR|    21.7632       44.03379      .49  .6211    -64.5415  108.0678 
 s_TRAIN|    21.7758       48.40609      .45  .6528    -73.0984  116.6500 
   s_BUS|    12.2767       24.32362      .50  .6138    -35.3967   59.9501 
   s_CAR|    1.28255    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
 These results compare the HEV model to the MNL.  The HEV elasticities show that the IIA 
assumption has been relaxed.  At the same time, the predictions from the two models are roughly the 
same. 
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Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.8034    .2257    .4483    .8478 
   TRAIN|   .2599  -1.0425    .4369    .9638 
     BUS|   .1578    .1596  -1.6786   1.2149 
     CAR|   .3800    .3701    .5630  -2.8586 
 
 (These are the estimated elasticities from the MNL model in Chapter N24.) 
 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.8019    .3198    .3198    .3198 
   TRAIN|   .3534  -1.0693    .3534    .3534 
     BUS|   .1679    .1679  -1.0916    .1679 
     CAR|   .2934    .2934    .2934   -.7492 
 
N26.4 Constraining the Precision Parameters 
 

You may constrain the precision parameters to fixed values or equality.  Equating groups of 
them to each other produces a hybrid of the heteroscedastic model and multinomial logit model.  The 
; Ivset: parameter can be used for this purpose, the same as if the parameters were inclusive value 
parameters (see Chapter N29).   The general form of the specification is 
 

  ; Ivset: (group of names) = [value]  /   
   (group of names) = [value]  and so on 

 
You may specify as many groups as desired.  Of course, the lists of names must not overlap.  Also, 
the = [value] is optional.  If you omit it, then the precision parameters are forced to equal each other 
within each set, but the value is free.  If  = [value] is included, then the set of precision parameters 
are all forced to equal that specific value (and are not estimated.)  For example, in a four outcome 
model, [air,train,bus,car], one might be interested in examining a partition of private(air,car) and 
public(bus,train)  Since the fourth precision parameter (train) is going to be set to one (for 
identification), one might proceed as follows: 
 

  ; Ivset: (air,car) / (bus) = [1] $ 
 
One of the precision parameters in the model must be normalized at 1.0.  At the outset, NLOGIT 
does this by constraining the last variance to equal 1.0.  Since your ; Ivset: specification sets a 
different variance to 1.0, NLOGIT accepts this as renormalizing the model on this alternative instead 
of the last one.  In this instance, given this specification, the normalized choice becomes bus instead 
of car.  This is shown in the example below, which is produced by this specification.  The crucial 
point is that for identification, at least one restriction must be placed on the variances in the HEV 
model.  If you specify a restriction, then the model is automatically identified by your restriction, so 
you can, as we did above, remove the initial normalization. 
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----------------------------------------------------------------------------- 
Heteroscedastic Extreme Value Model 
Dependent variable                 MODE 
Log likelihood function      -188.33965 
Restricted log likelihood    -291.12182 
Chi squared [  10 d.f.]       205.56434 
Significance level               .00000 
McFadden Pseudo R-squared      .3530555 
Estimation based on N =    210, K =  10 
Inf.Cr.AIC  =    396.7 AIC/N =    1.889 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3531 .3426 
Constants only   -283.7588  .3363 .3256 
At start values  -193.7765  .0281 .0124 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|    -.02138**       .01044    -2.05  .0405     -.04184   -.00093 
    TTME|    -.14690***      .04848    -3.03  .0024     -.24192   -.05188 
   A_AIR|    9.15848***     3.22179     2.84  .0045     2.84389  15.47308 
AIR_HIN1|    -.01124         .02544     -.44  .6587     -.06111    .03863 
 A_TRAIN|    9.34066***     3.05853     3.05  .0023     3.34605  15.33527 
TRA_HIN2|    -.10305***      .03912    -2.63  .0084     -.17973   -.02636 
   A_BUS|    7.40705**      2.96948     2.49  .0126     1.58698  13.22712 
BUS_HIN3|    -.04341*        .02595    -1.67  .0944     -.09428    .00745 
        |Scale Parameters of Extreme Value Distns Minus 1.0 
   s_AIR|    -.49213***      .18989    -2.59  .0096     -.86430   -.11996 
 s_TRAIN|    -.47456**       .20992    -2.26  .0238     -.88599   -.06313 
   s_BUS|        0.0    .....(Fixed Parameter)..... 
   s_CAR|    -.49213***      .18989    -2.59  .0096     -.86430   -.11996 
        |Std.Dev=pi/(theta*sqr(6)) for H.E.V. distribution. 
   s_AIR|    2.52534***      .94419     2.67  .0075      .67476   4.37591 
 s_TRAIN|    2.44089**       .97514     2.50  .0123      .52964   4.35214 
   s_BUS|    1.28255    .....(Fixed Parameter)..... 
   s_CAR|    2.52534***      .94419     2.67  .0075      .67476   4.37591 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.8535    .4320    .7673    .3032 
   TRAIN|   .3659  -1.2871    .8742    .3440 
     BUS|   .2208    .2258  -2.5936    .2199 
     CAR|   .2675    .2849    .5769   -.7783 
 
 In principle, one should be able to use this device to reproduce the MNL model.  For our 
application, we would use 
 
   ; Ivset: (air,train,bus,car) = [1]  
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The results are reasonably close.  They are not exact because even with 60 quadrature points, there is 
some rounding error in the Laguerre quadrature approximation to the integrals. 
 
----------------------------------------------------------------------------- 
Heteroscedastic Extreme Value Model 
Dependent variable                 MODE 
Log likelihood function      -191.32689 
Restricted log likelihood    -291.12182 
Chi squared [   8 d.f.]       199.58985 
Significance level               .00000 
McFadden Pseudo R-squared      .3427944 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    398.7 AIC/N =    1.898 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3428 .3343 
Constants only   -283.7588  .3257 .3171 
At start values  -193.7765  .0126-.0001 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|    -.01067**       .00424    -2.52  .0119     -.01898   -.00236 
    TTME|    -.08300***      .00597   -13.90  .0000     -.09470   -.07130 
   A_AIR|    5.18885***      .69095     7.51  .0000     3.83462   6.54309 
AIR_HIN1|    -.00608         .01289     -.47  .6369     -.03135    .01918 
 A_TRAIN|    5.24358***      .61076     8.59  .0000     4.04651   6.44065 
TRA_HIN2|    -.05933***      .01271    -4.67  .0000     -.08425   -.03442 
   A_BUS|    3.77023***      .71256     5.29  .0000     2.37363   5.16682 
BUS_HIN3|    -.03053*        .01764    -1.73  .0835     -.06512    .00405 
        |Scale Parameters of Extreme Value Distns Minus 1.0 
   s_AIR|        0.0    .....(Fixed Parameter)..... 
 s_TRAIN|        0.0    .....(Fixed Parameter)..... 
   s_BUS|        0.0    .....(Fixed Parameter)..... 
   s_CAR|        0.0    .....(Fixed Parameter)..... 
        |Std.Dev=pi/(theta*sqr(6)) for H.E.V. distribution. 
   s_AIR|    1.28255    .....(Fixed Parameter)..... 
 s_TRAIN|    1.28255    .....(Fixed Parameter)..... 
   s_BUS|    1.28255    .....(Fixed Parameter)..... 
   s_CAR|    1.28255    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
Multinomial Logit Estimates 
--------+-------------------------------------------------------------------- 
      GC|    -.01093**       .00459    -2.38  .0172     -.01992   -.00194 
    TTME|    -.09546***      .01047    -9.11  .0000     -.11599   -.07493 
   A_AIR|    5.87481***      .80209     7.32  .0000     4.30275   7.44688 
AIR_HIN1|    -.00537         .01153     -.47  .6412     -.02797    .01722 
 A_TRAIN|    5.54986***      .64042     8.67  .0000     4.29465   6.80507 
TRA_HIN2|    -.05656***      .01397    -4.05  .0001     -.08395   -.02917 
   A_BUS|    4.13028***      .67636     6.11  .0000     2.80464   5.45593 
BUS_HIN3|    -.02858*        .01544    -1.85  .0642     -.05885    .00169 
----------------------------------------------------------------------------- 
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Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.8617    .4630    .4446    .3185 
   TRAIN|   .4085  -1.2802    .3932    .3698 
     BUS|   .1680    .1655  -1.2823    .1632 
     CAR|   .2836    .2966    .2924   -.7596 
 
These are the elasticities from the multinomial logit model. 
 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.8019    .3198    .3198    .3198 
   TRAIN|   .3534  -1.0693    .3534    .3534 
     BUS|   .1679    .1679  -1.0916    .1679 
     CAR|   .2934    .2934    .2934   -.7492 
 
There is an alternative way to fix the precision parameters.  Use the specification 
 
   ; Sdv = list of symbols and values 
 
This specification operates the same as ; Rst = list.  To impose fixed values, put that value in the list.  
For example, the preceding example could also be done with 
 
   ; Sdv = 1,1,1,1 
 
To allow a parameter to be unrestricted, just insert a name for it.  For example, the original model is 
specified with 
   ; Sdv = s1, s2, s3, 1.0 
 
Finally, to force parameters to be equal, give them the same name.   For example, 
 

  ; Ivset: (air,car) / (bus) = [1]  
and   ; Sdv = s_aircar, s_train, 1, s_aircar 
 
are the same.  To illustrate, 
 
 HLOGIT ; Lhs = mode 
   ; Rhs = gc,ttme ; Rh2 = one,hinc 
   ; Choices = air,train,bus,car 
   ; Sdv = 1,1,v3,v4 ; Lpt = 60 $ 
 
produces the following results: 
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----------------------------------------------------------------------------- 
Heteroscedastic Extreme Value Model 
Dependent variable                 MODE 
Log likelihood function      -181.12685 
Restricted log likelihood    -291.12182 
Chi squared [  10 d.f.]       219.98994 
Significance level               .00000 
McFadden Pseudo R-squared      .3778314 
Estimation based on N =    210, K =  10 
Inf.Cr.AIC  =    382.3 AIC/N =    1.820 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3778 .3678 
Constants only   -283.7588  .3617 .3514 
At start values  -193.7765  .0653 .0502 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|    -.00980***      .00247    -3.96  .0001     -.01465   -.00495 
    TTME|    -.06114***      .00643    -9.50  .0000     -.07375   -.04853 
   A_AIR|    2.95197***      .54997     5.37  .0000     1.87405   4.02989 
AIR_HIN1|     .00226         .00791      .29  .7751     -.01324    .01776 
 A_TRAIN|    2.86278***      .41544     6.89  .0000     2.04853   3.67704 
TRA_HIN2|    -.02996***      .00594    -5.04  .0000     -.04161   -.01831 
   A_BUS|    2.06693***      .33521     6.17  .0000     1.40993   2.72393 
BUS_HIN3|    -.00493         .00858     -.57  .5655     -.02175    .01188 
        |Scale Parameters of Extreme Value Distns Minus 1.0 
   s_AIR|        0.0    .....(Fixed Parameter)..... 
 s_TRAIN|        0.0    .....(Fixed Parameter)..... 
      V3|     .79409*        .45379     1.75  .0801     -.09531   1.68349 
      V4|    15.9977       22.60142      .71  .4791    -28.3003   60.2957 
        |Std.Dev=pi/(theta*sqr(6)) for H.E.V. distribution. 
   s_AIR|    1.28255    .....(Fixed Parameter)..... 
 s_TRAIN|    1.28255    .....(Fixed Parameter)..... 
      V3|     .71487***      .18082     3.95  .0001      .36048   1.06927 
      V4|     .07545         .10033      .75  .4520     -.12119    .27210 
--------+-------------------------------------------------------------------- 
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N26.5 Individual Heterogeneity in the Variances 
 

The variances in the HEV model may be specified to be individually heterogeneous of the 
form 
   θij  =  θj exp(γ′hi), 
 
(save for the last one, in which θij = 1).  This estimator is requested with 
 

HLOGIT  ; ... as before  
  ; Hfn = list 

 
For example, respecifying the earlier application with 
 
 HLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car  
   ; Rhs = gc,ttme ; Rh2 = one 
   ; Hfn = hinc  
   ; Crosstab ; Effects: gc(air) ; Lpt = 60 $ 
 
produces the results below. 
 
----------------------------------------------------------------------------- 
Heteroscedastic Extreme Value Model 
Dependent variable                 MODE 
Log likelihood function      -190.28652 
Restricted log likelihood    -291.12182 
Chi squared [   9 d.f.]       201.67059 
Significance level               .00000 
McFadden Pseudo R-squared      .3463681 
Estimation based on N =    210, K =   9 
Inf.Cr.AIC  =    398.6 AIC/N =    1.898 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3464 .3369 
Constants only   -283.7588  .3294 .3197 
At start values  -217.1216  .1236 .1109 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|    -.17091         .34905     -.49  .6244     -.85504    .51321 
    TTME|    -.83099        1.70270     -.49  .6255    -4.16823   2.50624 
   A_AIR|    40.0347       81.38851      .49  .6228   -119.4839  199.5532 
 A_TRAIN|    26.0510       50.83392      .51  .6083    -73.5816  125.6837 
   A_BUS|    25.6262       52.25164      .49  .6238    -76.7851  128.0375 
        |Scale Parameters of Extreme Value Distributions 
   s_AIR|     .05344         .11014      .49  .6275     -.16243    .26931 
 s_TRAIN|     .05971         .13053      .46  .6474     -.19612    .31554 
   s_BUS|     .10324         .20895      .49  .6212     -.30630    .51278 
   s_CAR|        1.0    .....(Fixed Parameter)..... 
        |Heterogeneity in Scales of Ext.Value Distns. 
    HINC|     .00492         .00387     1.27  .2029     -.00265    .01250 
--------+-------------------------------------------------------------------- 
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--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
+-------------------------------------------------------+ 
| Cross tabulation of actual choice vs. predicted P(j)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i).  | 
| Column totals may be subject to rounding error.       | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            29            10             6            13            58 
   TRAIN|            12            33             6            12            63 
     BUS|             5             6            15             4            30 
     CAR|            15            13             5            26            59 
--------+---------------------------------------------------------------------- 
   Total|            62            62            32            54           210 
+-------------------------------------------------------+ 
| Cross tabulation of actual y(ij) vs. predicted y(ij)  | 
| Row indicator is actual, column is predicted.         | 
| Predicted total is N(k,j,i)=Sum(i=1,...,N) Y(k,j,i).  | 
| Predicted y(ij)=1 is the j with largest probability.  | 
+-------------------------------------------------------+ 
--------+---------------------------------------------------------------------- 
NLOGIT Cross Tabulation for 4 outcome Multinomial Choice Model 
CrossTab|           AIR         TRAIN           BUS           CAR         Total 
--------+---------------------------------------------------------------------- 
     AIR|            40             2             2            14            58 
   TRAIN|             3            50             1             9            63 
     BUS|             0             3            23             4            30 
     CAR|             5            11             1            42            59 
--------+---------------------------------------------------------------------- 
   Total|            48            66            27            69           210 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.92370***      .04727   -19.54  .0000    -1.01635   -.83105 
   TRAIN|     .38685***      .02448    15.80  .0000      .33887    .43483 
     BUS|     .83207***      .05967    13.94  .0000      .71511    .94902 
     CAR|     .45277***      .02885    15.70  .0000      .39623    .50931 
--------+-------------------------------------------------------------------- 
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N26.6 Technical Details 
 
 The probability that choice j is made is 
 

  Pj  =  Prob[Uj > Uq] for all q not equal to j. 

    =  [ ( )] ( )q j q j j j j jq j
F V V f d

∞

≠−∞
θ − + ε θ θ ε ε∏∫ , 

 
where f(t) is the density, f(t) = exp(-t)exp(-exp(-t)) = -F(t)log(F(t)).  The probabilities and derivatives 
must be evaluated numerically, as there is no closed form for the integral.  As Bhat notes, they can 
be approximated using Gauss-Laguerre quadrature.  The method is discussed below. 

To compute the probabilities, first make the change of variable uj = exp[-θjεj].  Then, the 
probability becomes 
 

                  Pj   =  [ ( (log ) / )]exp( )q j q j j j jq j
F V V u u du

∞

≠−∞
θ − − θ −∏∫  

    =  [ ( | )]exp( )j jq j
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∞
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−∏∫  

 
where, again, F(t) = exp(-exp(-t)) and t(q|j) = θq [Vj - Vq - (log uj)/θj].  There is no closed form for this 
integral.  However, it can be approximated using Gauss-Laguerre quadrature. Thus, we use 
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where wl is the weight and hl is the abscissa of the Gauss-Laguerre polynomial.  We have used a 60 
point approximation.  (The weights and abscissas may be found in Abramovitz and Stegun (1972).) 
You can set the number of points in your command with ; Lpt = n, where n is from 2 to 64.  The 
commands in the examples include ; Lpt = 60. 

The derivatives of the probabilities must also be approximated.  These are, for cross terms in 
which m is not equal to j, 
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and, for the own terms, 
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All of these are evaluated using the quadrature method.  The derivatives are then used in constructing 
the log likelihood and the elasticities and partial (marginal) effects. 
 The model with heterogeneous variances, 
 
   θij  =  θj exp(γ′hi), 
 
is a straightforward extension.  The functions are assembled for the purpose of computing the log 
likelihood and the derivatives.  Then, 
 

   exp( )hij ij
i

q iq

P P∂ ∂
′=

∂θ ∂θ
γ , 

 
where ∂Pij/∂θiq is evaluated using the expression given earlier for  ∂Pj/∂θq.  Finally, 
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hiJij ij
iq iq

iq

P P
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N27: Multinomial Probit Model 
 
N27.1 Introduction 
 

In the multinomial probit (MNP) model, the individual’s choice among J alternatives is the 
one with maximum utility, where the utility functions are 
 
      Uji  = β′xji  +  εji, 
 
where   Uji  = utility of alternative j to individual i, 
 

  xji  = union of all attributes that appear in all utility functions.  For some  
    alternatives, xi,tk may be zero by construction for some attribute k 
    which does not enter their utility function for alternative j, 
 
  εji  =  unobserved heterogeneity for individual i and alternative j. 

 
The multinomial logit model specifies that εji are draws from independent extreme value 
distributions (which induces the IIA condition).  In the multinomial probit model, we assume that εji 
are normally distributed with standard deviations Sdv[εji] = σj and correlations Cor[εji, εmi]  =  ρjm 
(the same for all individuals).  Observations are independent, so Cor[εji,εms ] = 0 if i is not equal to s, 
for all j and m.  A variation of the model allows the standard deviations and covariances to be scaled 
by a function of the data, which allows some heteroscedasticity across individuals. 

The correlations ρjm are restricted to -1 < ρjm < 1, but they are otherwise unrestricted save for 
a necessarily normalization.  The correlations is that the last row of the correlation matrix must be 
fixed at zero.   The standard deviations are unrestricted with the exception of a normalization – two 
standard deviations are fixed at 1.0 – NLOGIT fixes the last two.  In principle, up to 20 alternatives 
may be in the model, but our experience thus far is that this model is extremely difficult to estimate, 
and will usually not be estimable with a completely free correlation matrix even with only five 
alternatives. The difficulty increases greatly with the number of alternatives.  (Imposition of 
constraints which may improve this situation is discussed below.) 
 This model may also be fit with panel data.  In this case, the utility function is modified as 
follows: 
      Uji,t  =  β′xjt,t  +  εji,t  +  vji,t, 
 
where ‘t’ indexes the periods or replications.  There are two formulations for vji,t,  
 
 Random effects   vji,t =  vji,s  (the same in all periods), 

 First order autoregressive vji,t   =  αj vji,t-1  +   aji,t. 
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N27.2 Model Command 
 

This is a one level (nonnested) model.  The setup is identical to the multinomial logit model 
with one level. To request it, use 
 
         MNPROBIT  ; Lhs = ... ; Choices = ... 

               ; Rhs = ... or ; Model: U (...) =... / U (...) = ... all as usual 
  ; ... any other options  $ 

 
(The alternative model command used in earlier versions of NLOGIT, NLOGIT ; MNP is equivalent 
and may be used instead.)   

Options include 
 
                 ; Prob = name  to use for estimated probabilities 
                 ; Utility = name  to use for estimated utilities 
 
and the usual other options for output, technical output, elasticities, descriptive statistics, etc.  (See 
Chapters N17-N22 for details.)  There are some special cases for this estimator:  
 

• The number of alternatives must be fixed – it may not vary across observations. 
• The choice set must be fixed.   
• Choice based sampling is not supported, though you can use ordinary weights. 
• Data may be individual, proportions, or frequencies. 

 
(The second derivatives matrix is not computed for this model, so it is not possible to compute a 
robust covariance matrix estimator.)  An additional option is 
 
   ; Pts = number of replications to compute multivariate normal probabilities 
 
Computation of multivariate normal probabilities is discussed in Section N27.9.  

The following features of NLOGIT are not available for this model: 
 

  ; Tree ... This is not a nested logit model. 
  ; Ivb = name, ; Ivl = name, ; Ivt = name  No inclusive values are computed. 
  ; IIA = list   IIA is not testable here, since it is not imposed. 
  ; Cprob = name Conditional and unconditional probabilities are the same. 
  ; Ranks   This estimator may not be based on ranks data. 
  ; Scale ...   Data scaling is only for the nested logit model. 
 
The command builder may also be used for this model by selecting Model/Discrete 

Choice/Multinomial Probit, HEV, RPL.  The choice set and utility functions for the model are 
defined on the Main page and the MNP format of the model is selected on the Options page.  
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N27.3 An Application 
 
 The multinomial probit model based on the clogit data is estimated with the command 
 
 MNPROBIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme 
   ; Rh2 = one,hinc 
   ; Effects: gc(air)  
   ; Pts  = 10 $ 
 
This is the model that was fit as an MNL model in Chapter N17.  We have now relaxed the equal 
variances assumption and replaced the four independent extreme value distributions with a 
multivariate (four variate) normal distribution.  The probabilities are computed with 20 replications, 
which is fairly small; we do this for purposes of a simple illustration.  Results are shown below.  The 
MNL model is fit first to obtain the starting values for the iterations.  The results for the MNP model 
are given next.  The two sets of results are merged in the display below. 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -189.52515 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    395.1 AIC/N =    1.881 
Model estimated: Sep 15, 2011, 16:05:56 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .3321 .3202 
Chi-squared[ 5]          =    188.46723 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01093**       .00459    -2.38  .0172     -.01992   -.00194 
    TTME|    -.09546***      .01047    -9.11  .0000     -.11599   -.07493 
   A_AIR|    5.87481***      .80209     7.32  .0000     4.30275   7.44688 
AIR_HIN1|    -.00537         .01153     -.47  .6412     -.02797    .01722 
 A_TRAIN|    5.54986***      .64042     8.67  .0000     4.29465   6.80507 
TRA_HIN2|    -.05656***      .01397    -4.05  .0001     -.08395   -.02917 
   A_BUS|    4.13028***      .67636     6.11  .0000     2.80464   5.45593 
BUS_HIN3|    -.02858*        .01544    -1.85  .0642     -.05885    .00169 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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These are the estimates for the multinomial probit model: 
 
----------------------------------------------------------------------------- 
Multinomial Probit Model 
Dependent variable                 MODE 
Log likelihood function      -188.52929 
Restricted log likelihood    -291.12182 
Chi squared [  13 d.f.]       205.18505 
Significance level               .00000 
McFadden Pseudo R-squared      .3524041 
Estimation based on N =    210, K =  13 
Inf.Cr.AIC  =    403.1 AIC/N =    1.919 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3524 .3388 
Constants only   -283.7588  .3356 .3216 
At start values  -214.6841  .1218 .1033 
Response data are given as ind. choices 
Replications for simulated probs. =  10 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|    -.02164**       .00857    -2.52  .0116     -.03843   -.00484 
    TTME|    -.09385**       .03695    -2.54  .0111     -.16626   -.02144 
   A_AIR|    5.00370**      2.01840     2.48  .0132     1.04771   8.95968 
AIR_HIN1|     .00522         .02788      .19  .8516     -.04942    .05985 
 A_TRAIN|    6.03988***     1.93044     3.13  .0018     2.25629   9.82347 
TRA_HIN2|    -.06621***      .02340    -2.83  .0047     -.11207   -.02035 
   A_BUS|    4.46541***     1.20839     3.70  .0002     2.09701   6.83382 
BUS_HIN3|    -.01989         .01777    -1.12  .2629     -.05472    .01493 
        |Std. Devs. of the Normal Distribution. 
  s[AIR]|    2.58879**      1.20019     2.16  .0310      .23646   4.94112 
s[TRAIN]|    2.14401**      1.05964     2.02  .0430      .06716   4.22086 
  s[BUS]|        1.0    .....(Fixed Parameter)..... 
  s[CAR]|        1.0    .....(Fixed Parameter)..... 
        |Correlations in the Normal Distribution 
rAIR,TRA|     .11088        1.04655      .11  .9156    -1.94032   2.16208 
rAIR,BUS|    -.10316        1.21174     -.09  .9322    -2.47813   2.27181 
rTRA,BUS|     .66132         .46589     1.42  .1558     -.25180   1.57445 
rAIR,CAR|        0.0    .....(Fixed Parameter)..... 
rTRA,CAR|        0.0    .....(Fixed Parameter)..... 
rBUS,CAR|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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The table below compares the elasticities from the MNP model to the MNL model.  The MNL 
results appear first.  They are clearly similar, but the specification does make a difference. 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.8019    .3198    .3198    .3198 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -1.0001    .3754    .4357    .4619 
 
N27.4 Modifying the Covariance Structure 
 
 In the base case, the covariance and correlation matrix of the utility functions in the model is 
assumed to be of the following form, where we use a four choice model to illustrate: 
 

  Σ =  

1

12 2

13 23 1
0 0 0 1

σ 
 ρ σ 
 ρ ρ
 
 

. 

 
(Correlations instead of covariances are shown below the diagonal – this is schematic, not a 
covariance matrix as such.)  The last row and the second to last variance must be restricted as shown 
(or equivalent restrictions must appear elsewhere in the matrix).  (See the results in the preceding 
section for an illustration of these constraints.)  However, at least in principle, there remain three free 
correlations in the matrix, those enclosed in parentheses.  You can modify the structure of this matrix 
to change the standard deviations and to allow other correlations to be nonzero. 
 If you are not going to use the program default specification of the covariance matrix, then 
you must be cognizant of the identification problem in this model. The issue of identification 
concerns a limit on which and how many parameters can be estimated with the model, no matter how 
much data are in hand or how good those data are.  In general, this model identifies a total of J-2 free 
standard deviations and (J-1)(J-2)/2 free correlations.  You can restrict these two components of the 
model, so long as the counting rule is satisfied in the main.  The usual way to do so will be to specify 
the standard deviations and the correlations separately, while maintaining identification.  The 
standard deviations are straightforward, but you will have to be careful with the correlations.  It is 
easy to specify an unidentified model, and NLOGIT cannot prevent you from doing so.  You will 
know that the model you have specified has too many free parameters specified if the solver reaches 
maximum iterations without finding a solution, or it claims to reach a solution but the estimated 
standard errors are huge. 
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N27.4.1 Specifying the Standard Deviations 
 

The standard deviations in the model are restricted in that two of them (the last two as 
NLOGIT formulates the model) must be set equal to 1.0.  You may specify the vector of standard 
deviations with 

  ; Sdv = list 
 
You must provide exactly J specifications (J is the number of alternatives).  Note that the last  two 
specifications that you give will be redundant, since the σ(J-1) = σ(J) = 1 regardless.  Nonetheless, 
you must provide the full set of J values (this is an internal consistency check).  Names are used to 
specify free parameters or to impose equality constraints.  Values are given to specify fixed 
parameters.  All specified standard deviations must be strictly positive.  For an example, to specify 
that only the first standard deviation in our four choice example is free, we might use 
 
   ; Sdv = sigma1, 1, 1, 1 
 
You may specify a homoscedastic model with 
 

  ; Sdv = a single value or name 
 
for a single specification.  But, two of the standard deviations, σ(J-1)  and σ(J), are already fixed at 
1.000.  So, if all standard deviations are to be equal, then all must equal 1.000.  As such, in a 
homoscedastic model, all standard deviations must be fixed at 1.000.  To specify this variant of the 
model, you may use any value, but this will then be the same as   
 
   ; Sdv = 1 
 

One useful way to specify these parameters will be to use named scalars.  You might want to  
experiment with different values for some correlation or variance parameter.  But, if your list             
; Sdv = list contains the name of a scalar that you created with CALC, then this is a fixed value, not 
a free parameter.  Thus, 

 
CALC   ; sd = 1.23 $ 
MNPROBIT  ; ... ; Sdv = sd,sd,1.0 $ (There are three choices.) 
 

imposes the restriction that all three standard deviations are fixed (not to be estimated). The first two 
will be fixed at 1.23.  But, if sd is not the name of an existing scalar, then the preceding will specify 
a model in which there is one free standard deviation parameter, which applies to both the first and 
second alternatives. 
 To illustrate this feature, we have fit the MNP model estimated earlier while imposing 
homoscedasticity.  The command is 
 
 MNPROBIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme  
   ; Rh2 = one,hinc 
   ; Effects: gc(air) 
   ; Pts = 10 
   ; Sdv = 1,1,1,1 $ 
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Results for this model are shown below.  The imposition of the restriction actually has a minimal 
effect on the results, as can be seen in the results below, compared with those given earlier.  
Nonetheless, the log likelihood falls from -189.52929 to -191.67856.  The chi squared for this test of 
homoscedasticity is only 4.299, which does not exceeds 5.99.  The hypothesis of homoscedasticity 
and independence would not be rejected, in contrast to Chapter N26 by comparing the MNL and 
HEV models.  The corresponding chi squared there was 16.754 with three degrees of freedom – the 
critical value is 7.815.) 
 
----------------------------------------------------------------------------- 
Multinomial Probit Model 
Dependent variable                 MODE 
Log likelihood function      -191.67856 
Restricted log likelihood    -291.12182 
Chi squared [  11 d.f.]       198.88651 
Significance level               .00000 
McFadden Pseudo R-squared      .3415864 
Estimation based on N =    210, K =  11 
Inf.Cr.AIC  =    405.4 AIC/N =    1.930 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3416 .3299 
Constants only   -283.7588  .3245 .3125 
At start values  -214.6841  .1072 .0913 
Response data are given as ind. choices 
Replications for simulated probs. =  10 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|    -.01178***      .00319    -3.69  .0002     -.01803   -.00553 
    TTME|    -.05537***      .01085    -5.10  .0000     -.07663   -.03411 
   A_AIR|    3.16417***      .72595     4.36  .0000     1.74134   4.58701 
AIR_HIN1|     .00107         .01392      .08  .9387     -.02622    .02836 
 A_TRAIN|    3.68996***      .55807     6.61  .0000     2.59617   4.78376 
TRA_HIN2|    -.04330***      .00987    -4.39  .0000     -.06265   -.02395 
   A_BUS|    2.79244***      .45752     6.10  .0000     1.89572   3.68916 
BUS_HIN3|    -.02220*        .01146    -1.94  .0528     -.04466    .00026 
        |Std. Devs. of the Normal Distribution. 
  s[AIR]|        1.0    .....(Fixed Parameter)..... 
s[TRAIN]|        1.0    .....(Fixed Parameter)..... 
  s[BUS]|        1.0    .....(Fixed Parameter)..... 
  s[CAR]|        1.0    .....(Fixed Parameter)..... 
        |Correlations in the Normal Distribution 
rAIR,TRA|    -.93899        1.72238     -.55  .5856    -4.31480   2.43682 
rAIR,BUS|    -.17167         .80366     -.21  .8308    -1.74681   1.40346 
rTRA,BUS|     .55039*        .28791     1.91  .0559     -.01390   1.11467 
rAIR,CAR|        0.0    .....(Fixed Parameter)..... 
rTRA,CAR|        0.0    .....(Fixed Parameter)..... 
rBUS,CAR|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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Elasticities for the homoscedastic model are shown in the top panel of the table below. 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -1.0448    .2400    .7513    .5672 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -1.0001    .3754    .4357    .4619 
 
N27.4.2 Specifying the Correlation Matrix 
 

Unless your model is fairly small (generally not more than five choices) a completely 
unrestricted correlation matrix is usually going to cause convergence problems.  (Keep in mind, you 
are estimating a correlation matrix for a set of variables that is unobserved.)  You can specify the 
correlation matrix in two ways.  You may impose both fixed value and equality constraints with 

 
  ; Cor = list of specifications 

 
where the list of specifications defines either a free parameter or the name of a previous parameter, 
or a fixed value.  The setup has the same form as that for ; Sdv = list described above.  The list is for 
the lower triangle of the correlation matrix, not including the elements on the diagonal.  For 
example, suppose the alternatives are air,train,bus,car.  The correlation part of the disturbance 
covariance matrix (below the diagonal) is 
 

ρ(train,air) 

ρ(bus,air)  ρ(bus,train) 

ρ(car,air)  ρ(car,train)  ρ(car,bus). 
Then,  
    ; Cor = Rta, Rba, 0.5, Rc, Rc, Rc 
 
imposes one fixed value constraint and two equality constraints.  There are three free parameters.  
Note in the general specification for a four choice model, identification allows only three free 
correlations, so the preceding merely rearranges the free correlations.  This will change the 
parameter values, but it will not change the log likelihood.   

In this specification, you must specify the full list of J(J-1)/2 symbols, where J is the number 
of alternatives (including repetitions if you are imposing equality constraints).  Symbols may be any 
alphanumeric character string you desire.  Numeric values which fix correlations must be strictly 
between -1 and +1.  Note once again the warning noted earlier.  The name of an existing scalar 
provides a fixed value. 
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NOTE:  Although you are providing J(J-1)/2 symbols for the correlation matrix, in fact, the model 
allows only (J-1)(J-2)/2 free parameters in the correlation matrix.  You will normally satisfy the 
identification restriction by placing zeros in the matrix, but this is not strictly necessary.  Having two 
correlations free but equal to each other is the same (for identification purposes) as having one free 
correlation and one set equal to zero.  Note the application of this result in the example above – the 
equality of the last three correlations imposes two restrictions. 
 
 You can fix certain pairwise equalities of the correlations with the following shortcut: 
 
   ; Eqc = choice, choice, …, choice.  
 
This forces all pairwise correlations for the group of outcomes to be equal.  For example, 
 

  ; Eqc = air,train,car 
 
imposes the restriction ρ(train,air) = ρ(train,car) = ρ(air,car).  You may further impose this 
equality to a fixed value by adding the value in parentheses after the list.  For example, 
 

  ; Eqc = air,train,car (.75). 
 

Finally, you may force all pairwise correlations in the model to be equal by giving a single 
specification.  Use 

  ; Cor = value 
 

to fix all correlations at the value.  For example, ; Cor = 0 would be typical – this would fix all 
correlations at zero.  (This would produce a version of the HEV model, with normally distributed 
disturbances rather than extreme value.)  Or, you may specify that there be a single correlation 
coefficient to be estimated, with 
 

  ; Cor = name. 
 
For our four choice example, you might specify ; Cor = r which would force all six correlations to 
be equal, and there would be one parameter to be estimated.  Note that the default option here is a 
free, unrestricted correlation matrix.  (Note, ; Cor = rho would fix all correlations at the current 
value of the scalar rho.) 
 To illustrate this feature, we now fit a true counterpart to the MNL model.  The command 
would be 
 
 MNPROBIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme 
   ; Rh2 = one,hinc 
   ; Effects: gc(air) 
   ; Pts = 10 

; Sdv = 1,1,1,1 
   ; Cor = 0  $ 
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The results are shown below.  The log likelihood function now falls to -197.46059.  The value in the 
unrestricted model was -188.52929.  Thus, the chi squared statistic for testing this most restrictive 
model against the unrestricted model is twice the difference, or 17.863.  The critical value is 11.07, 
so the five restrictions are rejected, albeit, not decisively.  Note, also, that the restriction of no cross 
correlation, once homoscedasticity is assumed, produces a change in the log likelihood from  
-191.67856  to -197.46059, which is also significant. 
 
----------------------------------------------------------------------------- 
Multinomial Probit Model 
Dependent variable                 MODE 
Log likelihood function      -197.46059 
Restricted log likelihood    -291.12182 
Chi squared [   8 d.f.]       187.32244 
Significance level               .00000 
McFadden Pseudo R-squared      .3217252 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    410.9 AIC/N =    1.957 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3217 .3130 
Constants only   -283.7588  .3041 .2952 
At start values  -216.9267  .0897 .0780 
Response data are given as ind. choices 
Replications for simulated probs. =  20 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|    -.00826***      .00298    -2.77  .0055     -.01409   -.00242 
    TTME|    -.05773***      .00456   -12.66  .0000     -.06667   -.04879 
   A_AIR|    3.70565***      .52264     7.09  .0000     2.68129   4.73000 
AIR_HIN1|    -.00444         .00946     -.47  .6386     -.02298    .01410 
 A_TRAIN|    3.73707***      .43113     8.67  .0000     2.89206   4.58207 
TRA_HIN2|    -.04227***      .00860    -4.91  .0000     -.05914   -.02541 
   A_BUS|    2.58935***      .47092     5.50  .0000     1.66636   3.51233 
BUS_HIN3|    -.02058*        .01135    -1.81  .0699     -.04283    .00167 
        |Std. Devs. of the Normal Distribution. 
  s[AIR]|        1.0    .....(Fixed Parameter)..... 
s[TRAIN]|        1.0    .....(Fixed Parameter)..... 
  s[BUS]|        1.0    .....(Fixed Parameter)..... 
  s[CAR]|        1.0    .....(Fixed Parameter)..... 
        |Correlations in the Normal Distribution 
rAIR,TRA|        0.0    .....(Fixed Parameter)..... 
rAIR,BUS|        0.0    .....(Fixed Parameter)..... 
rTRA,BUS|        0.0    .....(Fixed Parameter)..... 
rAIR,CAR|        0.0    .....(Fixed Parameter)..... 
rTRA,CAR|        0.0    .....(Fixed Parameter)..... 
rBUS,CAR|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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The table below compares the elasticities from the most restrictive model in the top panel to those 
from the least restrictive one, in the bottom.  Once again, the effect is substantive, but not radical. 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.8984    .4086    .4462    .3444 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -1.0001    .3754    .4357    .4619 
 

N27.5 Testing IIA with a Multinomial Probit Model 
 

A multinomial probit model with all standard deviations equal to one and uncorrelated 
random terms specifies a model that is comparable to the multinomial logit model.  This suggests 
that you could test the IIA property by using an LR or LM test of the assumption that all of the 
standard deviations in a model with uncorrelated disturbances are equal.  The test would be carried 
out as follows: 

 
CALC  ; Ran (seed for generator) $ 
MNPROBIT ; ... specify the choices and utility functions  
  ; Cor = 0 $ 
CALC  ; lu = logl $ 
CALC  ; Ran (same seed for generator) $ 
MNPROBIT ; ... specify the choices and utility functions 
  ; Sdv = 1  

; Cor = 0 $ 
CALC  ; lr = logl 
  ; List  

; lrstat = 2 * (lu - lr) $ 
 
We applied this procedure in passing in the preceding section. The log likelihoods for the three 
models estimated were 
 

Most restrictive:   σj = 1, ρjm = 0 Log likelihood = -197.46059 

Restrictive:  σj = 1  Log likelihood = -191.67856 

Unrestricted:    Log likelihood = -189.52515. 
 
In principle, a test of the first assumption as the null hypothesis against the alternative of the second 
is sufficient to reject IIA.  We found the chi squared to be 11.564 with two degrees of freedom.  The 
critical value is 5.99, so the hypothesis is rejected.  A test of the third model against the null of the 
first produced a chi squared of 15.871 with five degrees of freedom.  The critical value is 11.07, so 
once again the hypothesis is rejected.  Which test should be preferred is uncertain.  Under the null 
hypothesis, the estimated parameters in the second model are more precisely estimated, so this may 
favor it.  We are unaware of any other evidence on the question. 
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N27.6 A Model of Covariance Heterogeneity 
 

You can add a form of individual heterogeneity to the disturbance covariance matrix.  The 
model extension is 
 

  Var[εi]  =  exp[γ′h(t)] × Σ, 
 
where Σ is the matrix defined earlier (the same for all individuals), and h(i) is an individual (not 
alternative) specific set of variables that does not include a constant.  The new parameters to be 
estimated are γ1,...,γH.  Request this feature with 
 

  ; Hfn = list of variables in h. 
 
The parameters in γ can be restricted like those in β and Ω, using 
 

  ; Rst = list of specifications for γ (only). 
 
In the same fashion as ; Sdv and ; Cor, ; Rst = a single value or symbol will constrain all 
parameters in γ to equal each other, and, if a value is given, to be fixed at that value. 
 
N27.7 Panel Data – The Multinomial Multiperiod Probit Model 
 
 The multinomial probit model may be estimated with a panel of data.  In this case, the utility 
function is modified as follows: 
 
      Uji,t  =  β′xji,t  +  εji,t  +  vji,t, 
 
where ‘t’ indexes the periods or replications.  There are two formulations for vjt,p,  
 
 Random effects   vji,t =  vji,s  (the same in all periods), 

 First order autoregressive vji,t   =  αj vji,t-1  +   aji,t. 
 
It is assumed that you have a total of Ti observations (choice situations) for person i.  Two situations 
might lend themselves to this treatment.   If the individual is faced with a set of choice situations that 
are similar and occur close together in time, then the random effects formulation is likely to be 
appropriate.  However, if the choice situations are fairly far apart in time, or if habits or knowledge 
accumulation are likely to influence the latter choices, then the autoregressive model might be the 
better one. 
 The data set for individual ‘i’ consists of Ti sets of observations.  Each ‘set’ is a choice 
situation.  Consider, for example, a four choice model.  If individual ‘t’ has 10 choice situations in 
their data set, then for that person, your physical data set for this person contains 10 times four, or 40 
rows of data.  As suggested, the number of situations may vary by person though the number of 
choices in the choice set in each situation must be the same, and the same for all individuals. The 
number of choice situations is specified as usual for panel data with 
 
   ; Pds = the specification. 



N27: Multinomial Probit Model  N-477 

Again, ‘specification’ gives either the fixed T or a variable which contains the fixed Ti for that 
person.  Do note, however, that the count here is a count of groups, not a count of rows of data.  To 
continue our example, with four choices, and 10 situations, you would have 40 lines of data for this 
person, but would use ; Pds = 10 not ; Pds = 40.  Likewise, if you were using a count variable, your 
count variable for this person would equal 10.0 on each of the 40 lines of data.  This feature cannot 
be specified in the command builder; it must be part of the command.   
 The default specification is the random effects model.  This is specified simply by specifying 
the number of periods.  The AR(1) model is specified by adding ; AR1 to the model command.  You 
can restrict the autoregression parameters by using 
 

   ; AR1 = list of symbols 
 

in the same fashion as the correlations and standard deviations discussed in the preceding section.   
 There are some important restrictions that constrain this model.  First, this is for very small 
panels.  The reason is that the full data set for the individual must be used in the integration.  Thus, if 
you have a four choice model, and four periods, then it is necessary to evaluate 16 variate integrals to 
compute the log likelihood (actually 12-variate as the differences enter the computations).  This will 
tightly restrict the size of model that this can apply to.  The limit in the simulator is 20.  Second, in 
this model, only J-1 random effects are identified, so the last row of the covariance matrix and the 
last autocorrelation coefficient are fixed at zero. 
 

N27.8 Technical Details 
 

The log likelihood function for this model is formulated as follows:  Suppose alternative j is 
chosen.  Let the matrix 
 

  S  =  21

31 32

1
1

1
r
r r

 
 
 
  

, 

 

(with appropriate zeros inserted and larger for a model with more than three choices) be the J×J 
correlation matrix for the J disturbances. Then, by construction, 
 

  Uji  >  Uqi  for all q not equal to j. 
 

The probability of this outcome occurring is 
 

  Prob (ε1i  - εji  <  β′(x1i – xji ), 
                         ... 
                      εqi  - εji  <  β′(xqi – xji ) for the J-1 alternatives that are not j). 
 

This is a (J-1) variate integral for the normal CDF with covariance matrix V  =  TST′, where T has 
J-1 rows,  [1  0  0 ... -1  0  0 / 0  1  0  ... -1 0 ... /...] and where in the qth row, the +1 appears in the 
qth position and the -1 appears in the jth position.  Row j is all zeros, and is dropped.  The J-1 fold 
integral for the normal CDF with zero mean vector, covariance matrix V, lower limits -∞ and upper 
limit β′(x jt - xqt ) is the probability that enters the log likelihood.   

All derivatives are computed numerically, so added to the time consumption of the function 
evaluation is the need to compute the probability many times for each observation.  As a general 
rule, this time will be long.  Estimation of the MNP model is the most time consuming among those 
supported by NLOGIT. 
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N27.9 Multivariate Normal Probabilities 
 

NLOGIT uses the GHK (Geweke, Hajivassiliou, Keane) simulation methodology to 
approximate the multivariate normal CDF.  (See Greene (2011) for details.)  The technique produces 
relatively fast and accurate approximations to the M fold integral 
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where f(...) is the M-variate normal density function for x with mean vector zero and M×M positive 
definite covariance matrix, Ω.  The approximation is obtained by averaging a set of R replications 
obtained by transforming draws produced by a random number generator.  The simulation estimator 
of P is consistent in R.  Further details may be found in Greene (2011) and in the symposium in the 
November, 1994, Review of Economics and Statistics and the references cited there. Usage, 
including how to set R is discussed below.  M may be up to 20, though the accuracy for a given R 
declines with M, though for any M, it increases with R.  Again, the estimated P is  consistent in R.  

The value of R, the number of replications, is set globally, at the time you start NLOGIT, at 
100.  Authors differ on how large R must be to get good approximations.  The default 100 is a 
compromise.  Some have mentioned 500.  You may change R, but be aware that higher R leads to 
greatly increased amounts of computation; estimators which use this technique are slow.  The ways 
to set R are with CALC and in the estimation commands.  To set R permanently, use 
 
        CALC   ; Rep (r) $       (for example, CALC ; Rep (100) $). 
 
To set the number of replications in the command, use 
 
 MNPROBIT   ;  ... ; Pts = the desired value of R $ 
 
 The full method of computing the integrals is detailed in Greene (2011).  We will provide 
only a sketch here.  The desired probability is Prob[ai < xi < bi, i = 1,...,K], where the K variables 
have zero means and covariance matrix Σ.  (Nonzero means are accommodated just by 
transformation to simple deviations.)  The probability is approximated by  
 

   P  =  ∑ ∏= =

R
r

K
k rkQ

R 1 1
1 , 

 
where R is the number of points used in the simulation.  The Cholesky factorization of Σ is LL′ 
where L = [l]km is lower triangular.  Note lkm = 0 if m > k.  The recursive computation of P is begun 
with Qr1 = Φ(b1/l11) - Φ(a1/l11), where Φ(t) is the standard normal CDF evaluated at t.  Using the 
random number generator, εr1 is a random draw from the standard normal distribution truncated in 
the range Ar1 = a1/l11 to Br1 = b1/l11.  The draw from this distribution is obtained using Geweke’s 
method.  For a draw from the N[µ,σ2] distribution truncated in the range A to B, we obtain u = a draw 
from the U[0,1] distribution.  Then, the desired draw is 
 
   z = µ + σΦ-1[(1-u)Φ((B-µ)/σ)  + uΦ((A-µ)/σ)].   
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For k = 2,...,K, use the recursion  
 

   kk
k
m rmkmkrk llaA /1

1 



 −= ∑ −

=
ε ,  kk

k
m rmkmkrk llbB /1

1 



 −= ∑ −

=
ε ,  

 
   Qrk = Φ(Brk) - Φ(Ark). 
 
Then, P is the average of the R draws of products of K probabilities.  Numerical properties and 
efficiency of this simulator are discussed at many places in the literature.  References are given in 
Greene (2011). 
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N28: Nested Logit and Covariance 
Heterogeneity Models 

 
N28.1 Introduction 
 
 The nested logit model is an extension of the multinomial model presented in Chapter N17.  
The models described here are based on variations of a four level tree structure such as the 
following: 
 
ROOT                                  root 
                                        │ 
                        ┌───────────────┴────────────────┐ 
                        │                                │ 
TRUNKS                trunk1                             trunk2               
                        │                                │ 
                ┌───────┴───────┐               ┌────────┴──────┐ 
                │               │               │               │ 
LIMBS                        limb1                             limb2                             limb3                             limb4        
                │               │               │               │ 
            ┌───┴───┐       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐ 
            │       │       │       │       │       │       │       │ 
BRANCHES   branch1      branch2     branch3     branch4     branch5     branch6     branch7     branch8 
            │       │       │       │       │       │       │       │ 
          ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐ 
          │   │   │   │   │   │   │   │   │   │   │   │   │   │   │   │ 
ALTS              a1      a2     a3      a4     a5      a6      a7     a8     a9     a10   a11   a12    a13   a14    a15    a16 
 
Individuals are assumed to make a choice among NALT = J alternatives (alts) in a choice set.  The 
‘twigs’ in the tree are the elemental alternatives in the choice set.  There may be up to 500 
alternatives in the model, a total of 25 branches throughout the tree, 10 limbs, and five trunks.  The 
model may contain one or more limbs.  Each limb may contain one or more branches, and each 
branch may contain one or more twigs (choices).  If there is only one trunk and one limb, the model 
is, by implication, a two level model.  As for single level models, choice sets may vary by individual.  
However, in order to construct a tree for such a setting, a universal choice set, as described in Section 
N20.2.1, is necessary.  The variable sized choice set is then indicated by setting up the full tree 
structure, and indicating that certain choices are unavailable for the particular individual. 
 The command for fitting nested logit models is the same as described in Chapters N19-N20 
for one level models, save for the addition of the tree definition in the command and, optionally, the 
specification of additional utility functions for choices made at higher levels in the tree.  The nested 
logit model is limited to four level models for full information maximum likelihood (FIML) 
estimation. It also allows estimation of two and higher level models by sequential, or two step 
estimation. 
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 Utility functions can be specified for trunks the same as for limbs and branches (though it is 
unlikely that there will be very many attributes at this level in a tree).  All options are available, 
including logs, Box-Cox transformation, fixed values, starting values, trunk specific constants, 
interaction terms, and so on.  Utility functions for the trunks may include up to 10 variables 
including the set of constant terms if used.  Since the command structure and options for the nested 
logit model are the same as those for the one level model, we will present in this chapter only the 
parts of the command setup that are specific to nested models.  All users of this program should read 
Chapters N18-N22 before proceeding.   

Most of the discussion to follow concerns full information maximum likelihood estimation 
of the nested logit model.  The ‘standard’ (nonnormalized) model is discussed in Sections N28.2- 
N28.6.  Two important variants on the model are discussed in Section N28.7.  After setting up the 
model, users will generally want to use one of the alternative specifications discussed here.  Section 
N28.9 presents a method of sequential, limited information maximum likelihood estimation.  There 
are ever fewer settings in which this is a preferable estimator to FIML, but they do arise 
occasionally.   The last three sections present two extensions of the nested logit model, one that 
accommodates observed individual heterogeneity and the second, that relaxes the assumption that 
each alternative is limited to appear in a single branch.  
 
N28.2 Mathematical Specification of the Model 
 
 Individuals are assumed to choose one of the alternatives at the lowest level of the tree.  
Thus, they also choose a branch, a limb and a trunk.  We denote by j|b,l,r the choice of alternative j 
in branch b in limb l in trunk r.  The number of alternatives in the branch/limb/trunk, Nb|l,r, can vary 
in every branch, limb, and trunk, and the number of branches in the l,rth limb/trunk, Nl|r is likely to 
vary across limbs and trunks as well.  No assumption of equal choice set sizes is made at any point in 
the following.  (Note that for ease of presentation, we have dropped the observation subscript.) 
 The choice probability defined in Chapter N17 is now redefined to be the conditional 
probability of alternative j in branch b, limb l, and trunk r, j|b,l,r: 
 

   P(j|b,l,r) = | , , | , ,

| , , | ,| , ,

exp( ) exp( )
exp( ) exp( )

x x
   =   

x
j b l r j b l r

q b l r b l rq b l r
J

′ ′

′∑
β β

β
, 

 
where Jb|l,r is the inclusive value for branch b in limb l, trunk r, Jb|l,r = log Σq|b,l,r exp(β′xq|b,l,r).  At the 
next level up the tree, we define the conditional probability of choosing a particular branch in limb l, 
trunk r, 

   P(b|l,r) = | , | , | , | , | , | ,

| , | , | , || ,

exp( ) exp( )
exp( ) exp( )

y y
   =   

y
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where Il|r is the inclusive value for limb l in trunk r, Il|r = log Σs|l,r exp(α′ys|l,r + τs|l,rJs|l,r).  The 
probability of choosing limb l in trunk r is 
 

   P(l|r)   =   | | | | | |

| | ||

exp( ) exp( )
exp( ) exp( )

z z
   =   

z
l r l r l r l r l r l r
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where Hr is the inclusive value for trunk r, Hr = log Σs|r exp(δ′zs|r + σs|r Is|r).  Finally, the probability 
of choosing a particular limb, r, is  
 

   P(r)  =  exp( ) .
exp( )

h
h

r r r

s s ss

H
H

′ + φ
′ + φ∑

θ
θ

 

 
By the laws of probability, the unconditional probability of the observed choice made by an 
individual is 
 

  P(j,b,l,r)  =  P(j|b,l,r) × P(b|l,r) × P(l|r) × P(r). 
 
This is the contribution of an individual observation to the likelihood function for the sample. 
 The ‘nested logit’ aspect of the model arises when any of the τj|i,l or σi|l or φl differ from 1.0.  
If all of these deep parameters are set equal to 1.0, the unconditional probability specializes to 
 

   P(j,bj,l,r)  =  | , , | , |

, , , ,

exp( )
exp( )

x y z h
x y z h

j b l r b l r l r r

jmb ml r b l r l r rr l b j

′ ′ ′ ′+ + +
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β α δ θ
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which is the probability for a one level model.  The model is written in a very general form.  The 
parameters of the model are, in exactly this order: 
 
   β1,β2,...,βnx,α1,α2,...,αny,δ1,δ2,...δnz,θ1,θ2,...,θnh,τ1...τB,σ1...,σL,φ1,...,φR 
 
where B is the total number of branches in the model, L is the number of limbs, and R is the number 
of trunks in the model.  The x, y, z, and h vectors in the formulation above include all basic variables 
as well as all variables that interact with choice, branch, or limb specific dummy variables, etc.  Once 
again, in this form, there may be different utility functions for each choice and, as described below, 
different utility functions defined for branches and limbs. 
 There is a vector of ‘shallow’ parameters, [β,α,δ,θ] at each level, which multiplies the 
attributes (at the lowest level), or, e.g., demographics, at a higher level.  There are also three vectors 
of ‘deep’ parameters, which multiply the inclusive values at the middle and high levels.  In principle, 
there is one free inclusive value parameter for each branch in the model (Jb|l,r), one for each limb 
(σl|r), and one for each trunk (φr).  But, some may have to be restricted to equal 1.0 for identification 
purposes. There are some degenerate cases: 
  

• If the model has one trunk, then the one φ equals 1.0. 
• If the model has one limb in a trunk, the one σ also equals 1.0. 
• If a limb contains a single branch, the τ for that branch equals 1.0. 

 
 The preceding describes a ‘nonnormalized’ model.  The nested logit model also 
accommodates an explicit scaling factor at each level.  The alternative normalizations that will reveal 
these scaling factors are shown in Section N28.7. 
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N28.3 Commands for FIML Estimation 
 
 This section will describe how to set up a nested logit model.  The default estimation 
technique is full information maximum likelihood (FIML).  That is, the entire model is estimated in a 
single pass.  In Section N28.9, we will describe how to obtain two step, limited information 
maximum likelihood (LIML) estimators for a two level model.  In general, LIML has no advantage 
when FIML is available, and is generally inferior.  Moreover, as will emerge below, the LIML 
estimator is not able to impose many of the parametric restrictions inherent in the model. 
 
N28.3.1 Data Setup 
 
 The arrangement of the data set for estimation of the nested logit model is exactly the same 
as shown in Chapter N19.  There is no requirement that the choice sets be the same across 
individuals, but the nested logit model will require a definition of a universal choice set, so the 
command must contain the 
 

  ; Choices = list of labels ... 
 
specification.  The nested model structure does mandate one special consideration if you are going to 
define utility functions for branches (ys), or limbs (zs).  Since you have one line of data for each 
alternative, you will have more than one line of data for the variables in any branch or limb.  In these 
cases, the values of y and z must be repeated for each alternative in the branch or limb. 
 The following model and setup illustrate this for a three level model: (all in trunk 1) 
 
      x1   x2   y1    y2     z1     z2 
 limb 1 branch 1|1 twig 1|1,1 .6     1     3   .02    104    .9 
    twig 2|1,1 .1     2     3   .02    104    .9 
  branch 2|1 twig 1|2,1 .8     2     7   .15    104    .9 
    twig 2|2,1 .2     3     7   .15    104    .9 
 limb 2 branch 1|2 twig 1|1,2 .9     6    11   .08     96    .4 
    twig 2|1,2 .3     1    11   .08     96    .4 
    twig 3|1,2 .4     0    11   .08     96    .4 
 
N28.3.2 Tree Definition 
 
 The model command for estimating nested logit models is exactly as described in Chapter 
N19 for single level models, where the model name is now the generic NLOGIT; 
 
 NLOGIT  ; Lhs = ... ; Choices = ... definition of choice set 
   ; ... definition of utility functions for alternatives 
 
All of the options described earlier are available.  The nested logit model is requested by adding 
 
   ; Tree = ... definition of the tree structure 
 
to the command.   
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 In order to specify the tree, use these conventions: 
 
   {  }  specifies a trunk, 
   [   ]  specifies a limb within a trunk, 
   (   )  specifies a branch within a limb in a trunk. 
  
Entries in a list are separated by commas.  Names for trunks, limbs and branches are optional before 
the opening ‘{’  or ‘[’  or ‘(’.  If you elect not to provide names, the defaults chosen will be Trunk{l}, 
Lmb[i|l] and Br(j|i,l) respectively, where the numbering is developed reading from left to right in 
your tree definition.  Alternative names appear inside the parentheses.  Some examples are as 
follows: 
 
 One limb: 
 

   ; Tree  = travel [fly(air), ground(train,bus,car)] 
 
 One limb:  (With one limb, the [ ] is optional.) 
 
   ; Tree  = fly(air), ground(train,bus,car) 
 
 One limb:  (Branch names are optional. These would be Limb[1], Br(1|1) and Br(2|1).) 
 
   ; Tree  = (air), (train,bus,car) 
 
 One limb, one branch, no nesting: (This would be unnecessary and could be omitted.) 
 
   ; Tree  = (air,train,bus,car) 
 
 Nested logit model – two limbs, one with one branch: 
 
   ; Tree  = private [fly(air), ground(car_pas, car_drv)], 
          public [(train,bus)] 
 
The fully nested 2×2×2×2 model shown in Section N28.1 could be specified with 
 

; Choices = a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16 
; Tree = Trunk1 {limb1 [branch1 (a1, a2), branch2 (a3, a4) ],  
         limb2 [branch3 (a5, a6), branch4 (a7, a8) ] }, 

           Trunk2 {limb3 [branch5 (a9, a10), branch6 (a11, a12) ],  
          limb4 [branch7 (a13, a14), branch8 (a15, a16) ] }  
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N28.3.3 Utility Functions 
 
 You may define the utility functions exactly as described in Chapter N20 for one level 
models.  You may also define utility functions for branches and limbs and trunks, but note that in 
order to do so, you must use the explicit form described in Section N20.4.  These are specified 
exactly the same as those for elemental alternatives.  For example, in a two level model, you might 
put demographic characteristics, such as income or family size, at the top level.  A complete model 
might appear as follows: 
  
        NLOGIT  ; Lhs = mode ; Choices = air,train,bus,car 
   ; Tree = travel [public(bus,train), private(air,car)] 
   ; Model: U(air) = ba + bcost * gc + btime * ttme   / 
                             U(train) = bt  +  bcost * gc + btime * ttme   / 
                             U(car) = bc +  bcost * gc + btime * ttme   / 
                             U(bus) =          bcost * gc + btime * ttme   / 
                             U(public) = ap + apub * hinc / 
                              U(private) =        aprv  * hinc $ 
 
This model can be considerably collapsed; 
 
   ; Model: U(air,train,bus,car) = <ba,bc,0,bt> + 
           bcost * gc + btime * ttme / 
                     U(public,private)     = <ap,0> +  
        <apub, aprv> * income $ 
 
Note that the same function specification U(...) is used for all three kinds of equations, for 
alternatives, branches, and limbs. 
        Finally, as noted earlier, you may impose equality constraints at any points in the model, just by 
using the same parameter name where you want the equality imposed.  For example, if, for some 
reason, you desired to force the parameters apub and bcost to be equal, you could just change apub 
to bcost in the utility equation for public.  That is, you can, if you wish, force equality of parameters 
at different levels of a model, once again, just by using the same parameter name in the model 
specification.  (Given the impact of the scale parameters, this is probably inadvisable, but the 
program will allow you to do it nonetheless.) 
 The interaction of alternative specific constants, and branch and limb specific constants is 
complex, and it is difficult to draw generalities.  As a general rule, models will usually become 
overdetermined, resulting in a singular Hessian, when there are more than NALT-1 constants, of all 
three types, in the entire model.  Likewise, interactions of attributes and choice specific dummy 
variables can produce this effect as well.  Users who encounter problems in which NLOGIT claims 
either that it is impossible to maximize the log likelihood function, or there is a singular Hessian, 
should examine the model for this pitfall. 
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N28.3.4 Setting and Constraining Inclusive Value Parameters 
 
 There is an inclusive value parameter for each limb, branch, and trunk in the model.  For 
example, in the tree 
   ; Choices = air,train,bus,car 
   ; Tree = travel [public(bus,train), private(air,car)] 
 
with the other parameters, we estimate τpublic|travel, τprivate|travel, σtravel.  Since there is only one limb, 
travel, σtravel = 1.0.  The other two parameters are free and unrestricted.  You can modify the 
specification of these parameters in two ways: 
 

• You may specify that they are equal to each other. 
• You may specify that they are fixed values instead of free parameters to estimate. 

 
To use these features, add the specification 
 
   ; Ivset: ... specification.  
 
Note, once again, the presence of a colon in this specification.  For purposes of this specification, τs, 
σs, and φs are treated the same.  To force parameters to be equal, put the names of the branches 
and/or limbs together in parentheses in the ; Ivset: specification. 
 For the example given above, to force the two τs to be equal in the estimated model, use 
 
   ;  Ivset: (public,private). 
 
For a second example, consider this larger tree: 
 
                                Commute     TRUNK 
                                   │ 
                   ┌───────────────┴────────────────┐ 
                   │                                │ 
                Private                                  Public            LIMBS  
                   │                                │ 
           ┌───────┴───────┐               ┌────────┴──────┐ 
           │               │               │               │ 
          Fly             Drive            Land            Water     BRANCHES 
           │               │               │               │ 
       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐ 
       │       │       │       │       │       │       │       │ 
    Plane     Helicopter    Car_Drv   Car_Ride  Train           Bus        Ferry           Raft   TWIGS 
 
We would define this with 
 

   ; Tree  = private [fly(plane,helicptr), drive(car_ride,car_drv)], 
          public [land(train,bus), water(ferry,raft)]. 
  
There are six IV parameters, τi|l for each of fly, drive, land, and water, and σl for private and public.  
If it were desired to force σprivate = σpublic, τfly|private = τland|public, and τwater|public (for some reason) to 
equal σpublic, you could use 
 
   ; Ivset: (private,public,water) / (fly,land). 
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Note, once again, separate specifications are separated by slashes.  Also, there is no problem using 
this device to force IV parameters at one level to equal those at another. Thus, 
‘(private,public,water)’ forces σpublic to equal τwater|public and σprivate. 
 In addition to the preceding, you may fix inclusive value parameters.  The setup is the same 
as above with the additional specification of the value in square brackets.  I.e., 
 
   ; Ivset: ( ... ) = [the value]. 
  
The list in parentheses may contain a single name, so as to fix a particular coefficient at a given 
value.  You might have 
  
   ; Ivset: (private,public) / (fly,ground) = [.75] / (land) = [.95] $ 
  
You will see a diagnostic message if you attempt to modify an inclusive value parameter that is fixed 
at 1.0 for identification purposes.  For example, this specification of a two level model: 
  
   ; Tree = travel [public(bus,train), private(air,car)] 
   ; Ivset: (travel) = [.75] 
  
generates an error message, since σtravel = 1.0  (one limb).  Note, also, that fixed IV parameters are 
off limits to equality constraints, as well.  Thus, for this example, the specification 
 
   ; Ivset: (travel,public) 
 
also generates an error.  
 

Error:  1093: You have given a spec for an IV parm that is fixed at 1. 
 
You may not change the specification of φtravel. 
 In the output of the estimation procedure, inclusive value parameters are denoted by the 
name of the branch or limb to which they are attached (or the default names given earlier). 
 
N28.3.5 Starting Values  
 
 The preceding section shows how to specify that certain IV parameters are to be fixed at 
specified values.  If you wish, instead, to provide starting values for the iterations, just remove the 
square brackets.  Thus, for our earlier example: 
 
   ; Ivset: (private,public) / (fly,land ) = .75 / (water) = .95 
 
makes σprivate = σpublic in the model.  The starting value for this one parameter is 1.0 (since none is 
provided).  τfly|private = τland|public in estimation, and the starting value is .75.  τwater|public starts at .95.  
Since τdrive|private is not specified, it is a free parameter, and the starting value is 1.0. 
 
NOTE:  The default starting value for all IV parameters is 1.0. 
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 The simple nonnested multinomial logit estimator is used to obtain the starting values.  The 
model is fit as such by treating each level of the model as a simple, nonnested discrete choice model.  
Models are constructed as discrete choices among the choices at each level.  Consider, for instance, 
the three level model in the example above.  NLOGIT would compute three sets of estimates 
 
   β for the model of choice among the eight elemental choices, 

   α for the model of choice among the four branches, 

   δ for the model of choice between the two limbs. 
  
The first of these is a consistent, albeit inefficient estimator of the elements of β.  This is reported 
with the model results.  However, the second and third are inconsistent because they omit the 
inclusive values from the parameters.  The purpose is to provide a starting value that may be better 
than 0.0 (which is also inconsistent).  The log likelihood function for the nested logit model is 
nonconvex, and in a complicated model, there may be some benefit to providing a good starting 
value.  (These latter two sets of estimates are not reported.  They are kept internally.) 
 You can use the output of this step to test the hypothesis of the nested logit model versus a 
nonnested model.  An easy way to do that is to use a likelihood ratio test.  The preliminary results are 
equivalent to a model in which all the IV parameters equal one.  The later results will allow these 
parameters to be unrestricted.  Twice the difference in the log likelihoods produces a chi squared test 
statistic with degrees of freedom equal to the number of free IV parameters.  After each model is 
estimated, the scalar, logl will contain the log likelihood function that you will need to set up the test 
statistic.  An example below shows these results.  (Most of the model output is omitted.)  The first 
box is produced by the initial estimator while the second is produced by the FIML estimator.  Twice 
the difference in the two log likelihoods is about 18.4, which is larger than the critical value for two 
degrees of freedom of 5.99, so the hypothesis of the MNL is rejected. 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -199.97662 
Estimation based on N =    210, K =   5 
Inf.Cr.AIC  =    410.0 AIC/N =    1.952 
----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -190.75302 
The model has 2 levels. 
Nested Logit form:IVparms=Taub|l,r,Sl|r 
& Fr.No normalizations imposed a priori 
--------+-------------------------------------------------------------------- 
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N28.3.6 Command Builder 
 
 The command builders can be used to specify the nested logit models.  Select 
Model:Discrete Choice/Nested Logit to access the command builder.  The choice variable is 
defined on the Main page and the rest of the model may be specified on the Options page.  See 
Figures N28.1 and N28.2. 
 

 
Figure N28.1 Main Page of Command Builder for Nested Logit Models 

 

 
Figure N28.2  Options Page of Command Builder for Nested Logit Models 
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The tree is specified in a subsidiary dialog box by selecting Tree Specification at the bottom of the 
Options page.  The dialog box, shown in Figure N28.3, allows you to define the tree graphically.  
Note in the dialog shown, public and private are siblings while bus is a child node of public. 
 

 
Figure N28.3  Tree Specification Dialog Box for Defining the Tree Structure 

 
The remaining options for output and results to be saved are defined in the Output page as shown in 
Figure N28.4. 
 

 
Figure N28.4  Output Page of Command Builder for Nested Logit Models 
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N28.4 Partial Effects and Elasticities 
 
 In the nested logit model with P(j,b,l,r) = P(j|b,l,r) × P(b|l,r) × P(l|r) × P(r), the marginal 
effect of a change in attribute k in the utility function for alternative J in branch B of limb L of trunk 
R on the probability of choice j in branch b of limb l of trunk r is computed using the following 
result: Lower case letters indicate the twig, branch, limb and trunk of the outcome upon which the 
effect is being exerted.  Upper case letters indicate the twig, branch, limb and trunk which contain 
the outcome whose attribute is being changed: 
 

  log ( , , , ) ( | , , , ) ( )
( ) | , , , )

P alt j limb l branch b trunk r D k J B L R k F
x k alt J limb L branch B trunk R
∂ = = = =

= = ∆ ×
∂ = = = =

, 

 
where  ∆(k) = coefficient on x(k) in U(J|B,L,R) 
 
and F = 1(r=R) ×  1(l=L) ×  1(b=B) ×  [1(j=J)   -  P(J|BLR)]                   (trunk effect), 
   1(r=R) ×  1(l=L) × [1(b=B)  - P(B|LR)] ×  P(J|BLR) × τB|LR           (limb effect), 
   1(r=R) × [1(l=L)  -  P(L|R)] × P(B|LR)  ×  P(J|BLR) × τB|LR × σL|R  (branch effect), 
     [1(r=R)  -   P(R)]  ×  P(L|R) × P(B|LR) ×  P(J|BLR)  × τB|LR × σL|R × φR  (twig effect). 
 
(Note, in this expression, J, B, L and R are being used generically to indicate a particular choice, 
branch, limb and trunk, not the total numbers of twigs, branches, limbs and trunks.)  The marginal 
effect is 

 ∂ P(j,b,l,r)/∂x(k)|J,B,L,R  =  P(j,b,l,r) ∆(k) F. 
 
A marginal effect has four components, an effect on the probability of the particular trunk, one on 
the probability for the limb, one for the branch, and one for the probability for the twig.  (Note that 
with one trunk, P(l) = P(1) = 1, and likewise for limbs and branches.)  For continuous variables, such 
as cost, you might be interested, instead, in the 
 
   Elasticity = x(k)|J,B,L,R × ∆(k|J,B,L,R) × F. 
 
NLOGIT will provide either.  As in the case of nonnested models, marginal effects are requested 
with 
   ; Effects: attribute [list of outcomes] / ...  
or    ; Effects: attribute (list) / ... for elasticities 
 
This generates a table of results for each of the outcomes listed. For example, 
 
 NLOGIT    ; Lhs = mode  
   ; Choices = air,train,bus,car 
   ; Tree = travel [public(bus,train), private(air,car)] 
   ; Model: U(air) = ba + bcost * gc + btime * ttme / 
                             U(train) = bc + bcost * gc + btime * ttme / 
                             U(bus) =  bcost * gc + btime * ttme / 
                             U(car) = bc + bcost * gc 
   ; Effects: gc(car) ; Full $ 
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This lists the effects on all four probabilities of changes in attribute generalized cost (gc) of choice car. 
 
+------------------------------------------------------------+ 
| Partial effects = average over observations                | 
|                                                            | 
| dlnP[alt=j,br=b,lmb=l,tr=r]                                | 
| ---------------------------- = D(k:J,B,L,R) = delta(k)*F   | 
| dx(k):alt=J,br=B,lmb=L,tr=R]                               | 
|                                                            | 
| delta(k) = coefficient on x(k) in U(J|B,L,R)               | 
| F = (r=R)  (l=L) (b=B) [(j=J)-P(J|BLR)]                    | 
|  +  (r=R)  (l=L) [(b=B) -P(B|LR)]P(J|BLR)t(B|LR)           | 
|  +  (r=R) [(l=L)-P(L|R)] P(B|LR) P(J|BLR)t(B|LR)s(L|R)     | 
|  + [(r=R) -P(R)] P(L|R)  P(B|IR) P(J|BIR)t(B|LR)s(L|R)f(R) | 
|                                                            | 
| P(J|BLR)=Prob[choice=J |branch=B,limb=L,trunk=R]           | 
| P(B|LR), P(L|R), P(R) defined likewise.                    | 
| (n=N) = 1 if n=N, 0 else, for n=j,b,l,r and N=J,B,L,R.     | 
| Elasticity = x(k) * D(j|B,L,R)                             | 
| Marginal effect = P(JBLR)*D = P(J|BLR)P(B|LR)P(L|R)P(R)D   | 
| F is decomposed into the 4 parts in the tables.            | 
+------------------------------------------------------------+ 
+-----------------------------------------------------------------------+ 
| Elasticity             averaged over observations.                    | 
| Effects on probabilities of all choices in the model:                 | 
| * indicates direct Elasticity effect of the attribute.                | 
+-----------------------------------------------------------------------+ 
+-----------------------------------------------------------------------+ 
| Attribute is GC       in choice CAR                                   | 
|                        Decomposition of Effect if Nest    Total Effect| 
|                        Trunk   Limb   Branch   Choice     Mean  St.Dev| 
| Trunk=Trunk{1}                                                        | 
| Limb=TRAVEL                                                           | 
|    Branch=PUBLIC                                                      | 
|       Choice=BUS        .000   .000    .857    .000       .857   .037 | 
|       Choice=TRAIN      .000   .000    .857    .000       .857   .037 | 
|    Branch=PRIVATE                                                     | 
|       Choice=AIR        .000   .000  -1.015    .571      -.444   .051 | 
| *     Choice=CAR        .000   .000  -1.015   -.338     -1.353   .073 | 
+-----------------------------------------------------------------------+ 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     BUS    TRAIN      AIR      CAR 
--------+----------------------------------- 
     CAR|   .8570    .8570   -.4441  -1.3530 
 
Note that across a row, the effects sum to the total effect given.  The default method of computing 
the elasticities is to average the observation specific results.  The results show the mean and the 
sample standard deviations.  If you use the ; Means specification, then the elasticities are computed 
once, and the results reflect the change, as shown below. (The differences are noticeably large.) 
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+-----------------------------------------------------------------------+ 
| Elasticity             computed at sample means.                      | 
| Effects on probabilities of all choices in the model:                 | 
| * indicates direct Elasticity effect of the attribute.                | 
+-----------------------------------------------------------------------+ 
+-----------------------------------------------------------------------+ 
| Attribute is GC       in choice CAR                                   | 
|                        Decomposition of Effect if Nest    Total Effect| 
|                        Trunk   Limb   Branch   Choice     Mean  St.Dev| 
| Trunk=Trunk{1}                                                        | 
| Limb=TRAVEL                                                           | 
|    Branch=PUBLIC                                                      | 
|       Choice=BUS        .000   .000    .584    .000       .584   .000 | 
|       Choice=TRAIN      .000   .000    .584    .000       .584   .000 | 
|    Branch=PRIVATE                                                     | 
|       Choice=AIR        .000   .000   -.411    .303      -.107   .000 | 
| *     Choice=CAR        .000   .000   -.411   -.605     -1.016   .000 | 
+-----------------------------------------------------------------------+ 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     BUS    TRAIN      AIR      CAR 
--------+----------------------------------- 
     CAR|   .5843    .5843   -.1070  -1.0159 
 
N28.5 Inclusive Values, Utilities, and Probabilities 
 
 You can request a listing of the actual outcomes and predicted probabilities with 
 
   ; List 
 
For large nested logit models, the listing would be extremely cumbersome, so a list can only be 
produced for models with seven or fewer elemental alternatives.  You can also keep as variables the 
fitted probabilities and the branch, limb, and trunk inclusive values.  The predicted probabilities are 
P(j,b,l,r).  The inclusive values for the branches are repeated for each choice (row of data) within the 
branches.  The inclusive values for the limbs are, likewise, repeated for every alternative in the limb 
and similarly for trunks.  An example appears in Section N21.3.  The command specifications are: 
 
   ; Prob = name  to retain predicted probabilities as a variable 
    ; Ivb = name  to retain the branch level inclusive values as a variable 
    ; Ivl = name  to retain the limb level inclusive values as a variable 

 ; Ivt = name to retain the trunk level inclusive values as a variable 
 
Normally, in this setting, the unconditional probability, P(j,b,l,r), is the one of interest.  However, for 
some purpose, you might want, instead, the conditional probabilities at the twig level, P(j,b,l,r).  You 
can request to have this retained as a variable with 
  
   ; Cprob = name to retain estimated conditional probabilities. 
  
  



N28: Nested Logit and Covariance Heterogeneity Models  N-494 

Lastly, the utility values at the twig level of the tree are 
  
   U(j|b,l,r)  =  β′xj|b,l,r . 
 
These are the values that you define in your ; Model: ... specification.  You may request to retain these 
for later use with 
    ; Utility = name of the variable. 
 
If you have not defined a utility function for an alternative, the value returned for that row of data is 
0.0, not missing (-999).  Utility values may be further processed like any other variable.  You may 
find them useful, for example, for computing inclusive values in another model. An example of the 
use of these features is shown in the next section. 
 

N28.6 Application of a Nested Logit Model 
 
 The following estimates a two level model.  The tree has a ‘degenerate’ branch; the air 
branch has only a single alternative, fly.  It also uses most of the optional features mentioned above. 
 
 NLOGIT ; Lhs = mode   
   ; Start = logit 
   ; Choices = air,train,bus,car 
   ; Tree = travel[fly(air), ground(train,bus,car)] 
   ; Model: U(air,train,bus,car) = bt *tasc +bb*basc+bg*gc+at*ttme / 
    U(fly,ground) = aa *aasc +ah*hinca 
   ; Describe  
   ; Effects: gc(car) ; Pwt ; Full  
   ; List  
   ; Ivb = branchiv  
   ; Ivl = limbiv  
   ; Utility = u_choice  
   ; Prob = pkji   
   ; Cprob = pk_ji $ 
 
 Starting values for the iterations are obtained by a one level multinomial logit model. The MNL 
also reports results of estimation of the branch choice model. These are the (inconsistent) estimates of α 
in the branch choice model. The MNL estimates are followed by the nested logit estimates. 
 
----------------------------------------------------------------------------- 
Start values obtained using MNL model 
Dependent variable               Choice 
Log likelihood function      -378.59201 
Estimation based on N =    210, K =   6 
Inf.Cr.AIC  =    769.2 AIC/N =    3.663 
Log-L for Choice   model =    -260.1975 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .0830 .0712 
Log-L for Branch   model =    -118.3945 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
----------------------------------------------------------------------------- 



N28: Nested Logit and Covariance Heterogeneity Models  N-495 

--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model for Choice Among Alternatives 
      BT|     .77779***      .20793     3.74  .0002      .37025   1.18532 
      BB|    -.13076         .22872     -.57  .5675     -.57905    .31753 
      BG|    -.01774***      .00405    -4.37  .0000     -.02569   -.00979 
      AT|    -.01340***      .00318    -4.22  .0000     -.01963   -.00717 
        |Model for Choice Among Branches 
      AA|   -1.92254***      .35420    -5.43  .0000    -2.61677  -1.22832 
      AH|     .02612***      .00817     3.20  .0014      .01010    .04214 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Normal exit:  27 iterations. Status=0, F=    193.6561 
----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -193.65615 
Restricted log likelihood    -312.54998 
Chi squared [   8 d.f.]       237.78765 
Significance level               .00000 
McFadden Pseudo R-squared      .3803994 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    403.3 AIC/N =    1.921 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -312.5500  .3804 .3724 
Constants only   -283.7588  .3175 .3088 
At start values  -287.6816  .3268 .3182 
Response data are given as ind. choices 
The model has 2 levels. 
Nested Logit form:IVparms=Taub|l,r,Sl|r 
& Fr.No normalizations imposed a priori 
Coefs. for branch level begin with AA 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      BT|    5.06460***      .66202     7.65  .0000     3.76706   6.36214 
      BB|    4.09631***      .61516     6.66  .0000     2.89063   5.30200 
      BG|    -.03159***      .00816    -3.87  .0001     -.04757   -.01560 
      AT|    -.11262***      .01413    -7.97  .0000     -.14031   -.08492 
        |Attributes of Branch Choice Equations (alpha) 
      AA|    3.54087***     1.20813     2.93  .0034     1.17298   5.90875 
      AH|     .01533         .00938     1.63  .1022     -.00306    .03372 
        |IV parameters, tau(b|l,r),sigma(l|r),phi(r) 
     FLY|     .58601***      .14062     4.17  .0000      .31040    .86162 
  GROUND|     .38896***      .12367     3.15  .0017      .14658    .63134 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative AIR                  | 
|     Utility Function          |                    |     58.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose AIR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| BT           5.0646  TASC     |     .000       .000|     .000      .000 | 
| BB           4.0963  BASC     |     .000       .000|     .000      .000 | 
| BG           -.0316  GC       |  102.648     30.575|  113.552    33.198 | 
| AT           -.1126  TTME     |   61.010     15.719|   46.534    24.389 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative TRAIN                | 
|     Utility Function          |                    |     63.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose TRAIN    | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| BT           5.0646  TASC     |    1.000       .000|    1.000      .000 | 
| BB           4.0963  BASC     |     .000       .000|     .000      .000 | 
| BG           -.0316  GC       |  130.200     58.235|  106.619    49.601 | 
| AT           -.1126  TTME     |   35.690     12.279|   28.524    19.354 | 
+-------------------------------------------------------------------------+ 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .1515     .3518     .1232     .3734*+ 
    2   .2676     .1949     .0260     .5114*+ 
    3   .1563     .1040     .1509     .5888*+ 
    4   .3998     .1180     .0153     .4669*+ 
    5   .3418     .3510 +   .0469     .2603* 
    6   .1323     .3423*+   .2212     .3043 
    7   .4186*+   .0815     .1182     .3817 
    8   .0955     .4956 +   .1848     .2241* 
    9   .1685     .3915 +   .1371     .3030* 
   10   .2484     .3203 +   .1122     .3191* 
   11   .1965     .2143     .0269     .5623*+ 
   12   .2371     .1536     .0205     .5888*+ 
   13   .3324     .1552     .0201     .4922*+ 
   14   .2979     .2169     .0290     .4562*+ 
   15   .4731 +   .1921     .0583     .2765* 
   16   .0814     .8298*+   .0340     .0548 
   17   .0809     .8357*+   .0313     .0521 
   18   .0573     .8456*+   .0446     .0524 
   19   .1389     .3430*+   .2750     .2431 
   20   .1771     .7935*+   .0022     .0273 
   21   .0643     .8232*+   .0509     .0617 
   22   .2078     .2684*    .0485     .4754 + 
 
(Observations 11 - 210 are omitted.) 
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+------------------------------------------------------------+ 
| Partial effects = prob. weighted avg.                      | 
|                                                            | 
| dlnP[alt=j,br=b,lmb=l,tr=r]                                | 
| ---------------------------- = D(k:J,B,L,R) = delta(k)*F   | 
| dx(k):alt=J,br=B,lmb=L,tr=R]                               | 
|                                                            | 
| delta(k) = coefficient on x(k) in U(J|B,L,R)               | 
| F = (r=R)  (l=L) (b=B) [(j=J)-P(J|BLR)]                    | 
|  +  (r=R)  (l=L) [(b=B) -P(B|LR)]P(J|BLR)t(B|LR)           | 
|  +  (r=R) [(l=L)-P(L|R)] P(B|LR) P(J|BLR)t(B|LR)s(L|R)     | 
|  + [(r=R) -P(R)] P(L|R)  P(B|IR) P(J|BIR)t(B|LR)s(L|R)f(R) | 
|                                                            | 
| P(J|BLR)=Prob[choice=J |branch=B,limb=L,trunk=R]           | 
| P(B|LR), P(L|R), P(R) defined likewise.                    | 
| (n=N) = 1 if n=N, 0 else, for n=j,b,l,r and N=J,B,L,R.     | 
| Elasticity = x(k) * D(j|B,L,R)                             | 
| Marginal effect = P(JBLR)*D = P(J|BLR)P(B|LR)P(L|R)P(R)D   | 
| F is decomposed into the 4 parts in the tables.            | 
+------------------------------------------------------------+ 
+-----------------------------------------------------------------------+ 
| Elasticity             averaged over observations.                    | 
| Effects on probabilities of all choices in the model:                 | 
| * indicates direct Elasticity effect of the attribute.                | 
+-----------------------------------------------------------------------+ 
+-----------------------------------------------------------------------+ 
| Attribute is GC       in choice CAR                                   | 
|                        Decomposition of Effect if Nest    Total Effect| 
|                        Trunk   Limb   Branch   Choice     Mean  St.Dev| 
| Trunk=Trunk{1}                                                        | 
| Limb=TRAVEL                                                           | 
|    Branch=FLY                                                         | 
|       Choice=AIR        .000   .000    .336    .000       .336   .022 | 
|    Branch=GROUND                                                      | 
|       Choice=TRAIN      .000   .000   -.063    .646       .583   .049 | 
|       Choice=BUS        .000   .000   -.074    .849       .775   .049 | 
| *     Choice=CAR        .000   .000   -.226  -1.128     -1.353   .066 | 
+-----------------------------------------------------------------------+ 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     CAR|   .3359    .5829    .7752  -1.3532 
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N28.7 Alternative Normalizations 
 
 The formulation of the nested logit model in Section N28.2 imposes no restrictions on the 
inclusive value parameters.  However, the assumption of utility maximization and the stochastic 
underpinnings of the model do imply certain restrictions.  For the former, in principle, the inclusive 
value parameters must be between zero and one.  For the latter, the restrictions are implied by the 
way that the random terms in the utility functions are constructed.  In particular, the nesting aspect of 
the model is obtained by writing 
 
   εj|b,l,r =  uj|b,l,r  +  vb|l,r. 
 
That is, within a branch, the random terms are viewed as the sum of a unique component and a 
common component.  This has certain implications for the structure of the scale parameters in the 
model.  In particular, it is the source of the oft cited (and oft violated) constraint that the IV parameters 
must lie between zero and one.  These are explored in Hunt (2000) and Hensher and Greene (2002).  
NLOGIT provides a method of imposing the restrictions implied by the underlying theory.   
 There are three possible normalizations of the inclusive value parameters which will produce 
the desired results.  These are provided in this estimator for two and three level models only.  This 
includes most of the received applications.  We will detail these and how to estimate these here. 
Readers are referred to the aforementioned papers for discussion.  For convenience, we label these 
random utility formulations RU1, RU2 and RU3. 
 
RU1 
 

 The first form is  
 

   P(j|b,l)  =  | , | ,

| , || ,

exp( ) exp( )
exp( ) exp( )

j b l j b l

q j l b lq b l
J

′ ′

′∑
x x

   =   
x

β β

β
, 

 
where Jb|l is the inclusive value for branch b in limb l,  
 
   Jb|l  =  log Σq|b,l exp(β′xq|b,l).   
 
At the next level up the tree, we define the conditional probability of choosing a particular branch in 
limb l, 

   P(b|l)  =  | | | | | |

| | ||

exp ( ) exp ( )
exp( )exp ( )

b l b l b l b l b l b l

ls l s l s ls l

J J
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y y
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α
, 

 
where Il is the inclusive value for limb l, 
 
   Il  =  log Σs|l exp[λs|l (α′ys|l + Js|l)].   
 
The probability of choosing limb l is 
 

   P(l)  =  
[ ]

|exp[ ( )] exp[ ( )]
exp ( ) exp( )

l l l l l l

s s ss

I I
I H

′γ + ′γ +
′γ +∑

z z   =   
z

δ δ
δ

. 
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Note that this the same as the familiar normalization used earlier; this form just makes the scaling 
explicit at each level.  If there are no branch level utility functions, then the default model will 
produce results according to RU1. 
 
RU2 
 
 The second form moves the scaling down to the twig level, rather than at the branch level.  
Here it is made explicit that within a branch, the scaling must be the same for alternatives. 
 

   P(j|b,l) =  | | , | | ,

|| | ,| ,

exp ( ) exp ( )
exp( )exp ( )

b l j b l b l j b l

b lb l q b lq b l
J

′ ′   µ µ   
′ µ ∑

x x
   =   

x

β β

β
. 

 
Note in the summation in the inclusive value that the scaling parameter is not varying with the 
summation index.  It is the same for all twigs in the branch.  Now, Jb|l is the inclusive value for 
branch j in limb l,  

   Jb|l =  log Σq|b,l exp[µb|l  (β′xq|b,l)].     
 
At the next level up the tree, we define the conditional probability of choosing a particular branch in 
limb l, 

      P(b|l)  =  
( )

( )
( )| | | | | |

| | |

exp (1/ ) exp (1/ )

exp( )exp (1/ )
l b l b l b l l b l b l b l

ls s l s l s ls
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where Il is the inclusive value for limb l, 
 
   Il  =  ( )| | ||

log exp ' (1/ )l s l s l s ls l
J γ + µ ∑ yα . 

 
Finally, the probability of choosing limb l is 
 

   P(l)  =  
[ ]

[ ]
[ ]exp (1/ ) exp (1/ )

exp (1/ ) exp( )
l l l l l l

s s ss

I I
I H

′ ′+ γ + γ
′ + γ∑
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   =   
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δ δ

δ
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where the log sum for the full model is 
 
   H  =  [ ]log exp ' (1/ )s s ss

I+ γ∑ zδ . 
 
In the RU2 form, with two levels (ignore γl above), global utility maximization requires that 0 < 
1/µb|l < 1.  It is possible to impose this restriction on the estimated parameters.  NLOGIT does not 
impose the restriction because finding that the estimates are outside this range is a helpful indicator 
that your specification might be inadequate.  By imposing the restriction, the program would 
preempt this diagnostic information. 
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RU3 
 
 A third random utility form, suggested by Bates (1999), is actually identical to the second – 
it is merely a transformation of the parameters.  It does, however, have some intrinsic convenience, 
and, in a different way, emphasizes the roles of the scaling at each level of the tree.  The twig 
probability is 

    P(j|b,l)  =  
( )

( )
( )| | , | | ,

|| | ,| ,

exp 1/( ) ( ' ) exp 1/( ) ( ' )

exp( )exp 1/( ) ( ' )
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J

   λ θ λ θ   
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x x
 = 

x

β β

β
. 

 
Now, Jb|l is the inclusive value for branch b in limb l,  
 
   Jb|l  =  log Σq|b,l  exp[(1/(λb|l θl ))(β′xq|b,l)].   
 
At the next level up the tree, we define the conditional probability of choosing a particular branch in 
limb l, 

   P(b|l)  =  
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| ||
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where Il is the inclusive value for limb l, 
 
   Il  =  ( )| ||

log exp (1/ ) 'yl s l s ls l
J θ + ∑ α . 

 
Finally, the probability of choosing limb l is 
 

   P(l)  =  
[ ]

[ ]
[ ]exp ' exp '

exp ' exp( )
z z

   =   
z

l l l l

s ss

I I
I H

+ +
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where the log sum for the full model is 
 
   H  =  [ ]log exp 'z s ss

I+∑ γ . 
 
A moment’s inspection reveals that RU2 and RU3 are the same.  Also, comparing RU3 and RU1, it 
can be seen that in RU3, the scaling is moved down from the highest (limb) level to the lowest 
(twig).  However, RU1 is not the same as RU2 and RU3 in general.  They are equivalent under the 
restriction that the IV parameters are equal, as can be seen in the examples below –  the signature of 
the equivalence is the equality of the log likelihoods.  Also, as the results below show, the RU3 form 
IV parameters are simply the reciprocals of their counterparts in RU2.  To emphasize the point, the 
results for RU3 will include the RU2 equivalents. 
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N28.7.1 Nondegenerate Cases 
 
 The various normalizations are not equivalent unless the IV parameters are forced to 
equality, as can be seen in the estimates of the model below.  We consider, first, the cases in which 
all branches have at least two alternatives –  these are ‘nondegenerate cases.’  The first case is RU1 
with no equality restriction on the two IV parameters. 
 

NLOGIT ; Lhs  = mode  
  ; Choices = air,train,bus,car 

; Model: U(air,train,bus,car) = 
 <aa,at,ab,0>+<bh,bh,bh,0>*hinc+bg*gc+<bt,bt,bt,0>*ttme 

; Tree = private(air,car), public(train,bus) 
; RU1 or RU2 or RU3 $ 
; Ivset: (private,public) is optional  

 
----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -189.25341 
The model has 2 levels. 
Random Utility Form 1:IVparms = LMDAb|l 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      AA|    5.35139***      .80836     6.62  .0000     3.76703   6.93575 
      AT|    3.23177***      .56454     5.72  .0000     2.12530   4.33824 
      AB|    2.40948***      .59755     4.03  .0001     1.23829   3.58067 
      BH|    -.01496*        .00866    -1.73  .0842     -.03194    .00202 
      BG|    -.01710***      .00394    -4.34  .0000     -.02482   -.00938 
      BT|    -.08355***      .01168    -7.15  .0000     -.10644   -.06066 
        |IV parameters, lambda(b|l),gamma(l) 
 PRIVATE|    2.45644***      .49136     5.00  .0000     1.49340   3.41948 
  PUBLIC|    1.45631***      .26533     5.49  .0000      .93627   1.97634 
        |Underlying standard deviation = pi/(IVparm*sqr(6)) 
 PRIVATE|     .52212***      .10444     5.00  .0000      .31742    .72681 
  PUBLIC|     .88069***      .16045     5.49  .0000      .56620   1.19517 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -191.57011 
Restricted log likelihood    -291.12182 
Chi squared [   8 d.f.]       199.10341 
Significance level               .00000 
McFadden Pseudo R-squared      .3419589 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    399.1 AIC/N =    1.901 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3420 .3335 
Constants only   -283.7588  .3249 .3162 
At start values  -196.2454  .0238 .0113 
Response data are given as ind. choices 
Hessian is not PD. Using BHHH estimator 
The model has 2 levels. 
Random Utility Form 2:IVparms = Mb|l,Gl 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      AA|    7.73093***     1.30062     5.94  .0000     5.18176  10.28011 
      AT|    6.55253***     1.20025     5.46  .0000     4.20008   8.90498 
      AB|    5.69567***     1.06585     5.34  .0000     3.60664   7.78470 
      BH|    -.03931**       .01537    -2.56  .0105     -.06943   -.00920 
      BG|    -.02340***      .00631    -3.71  .0002     -.03577   -.01103 
      BT|    -.10933***      .02020    -5.41  .0000     -.14891   -.06974 
        |IV parameters, RU2 form = mu(b|l),gamma(l) 
 PRIVATE|    2.08081***      .62713     3.32  .0009      .85166   3.30997 
  PUBLIC|     .97434***      .29856     3.26  .0011      .38916   1.55952 
        |Underlying standard deviation = pi/(IVparm*sqr(6)) 
 PRIVATE|     .61637***      .18577     3.32  .0009      .25228    .98046 
  PUBLIC|    1.31633***      .40336     3.26  .0011      .52576   2.10689 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 When the IV parameters are restricted to be equal, the results for all three models are 
identical save for the normalizations of the IV parameters and the scaling of the utility parameters.  
Note that the log likelihoods are identical in these cases.    
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----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -194.39015 
The model has 2 levels. 
Random Utility Form 1:IVparms = LMDAb|l 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      AA|    5.70390***      .83296     6.85  .0000     4.07133   7.33646 
      AT|    4.13484***      .57986     7.13  .0000     2.99834   5.27134 
      AB|    3.50510***      .57321     6.11  .0000     2.38163   4.62857 
      BH|    -.02289***      .00835    -2.74  .0061     -.03925   -.00652 
      BG|    -.01180***      .00409    -2.89  .0039     -.01981   -.00379 
      BT|    -.08290***      .01147    -7.23  .0000     -.10538   -.06042 
        |IV parameters, lambda(b|l),gamma(l) 
 PRIVATE|    1.42231***      .25732     5.53  .0000      .91797   1.92665 
  PUBLIC|    1.42231***      .25732     5.53  .0000      .91797   1.92665 
        |Underlying standard deviation = pi/(IVparm*sqr(6)) 
 PRIVATE|     .90174***      .16314     5.53  .0000      .58199   1.22148 
  PUBLIC|     .90174***      .16314     5.53  .0000      .58199   1.22148 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -194.39015 
The model has 2 levels. 
Random Utility Form 2:IVparms = Mb|l,Gl 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      AA|    8.11271***     1.27720     6.35  .0000     5.60944  10.61597 
      AT|    5.88103***     1.06493     5.52  .0000     3.79380   7.96825 
      AB|    4.98534***      .90735     5.49  .0000     3.20697   6.76371 
      BH|    -.03255**       .01320    -2.47  .0137     -.05842   -.00668 
      BG|    -.01678***      .00554    -3.03  .0024     -.02764   -.00593 
      BT|    -.11791***      .01981    -5.95  .0000     -.15673   -.07909 
        |IV parameters, RU2 form = mu(b|l),gamma(l) 
 PRIVATE|    1.42231***      .35310     4.03  .0001      .73024   2.11438 
  PUBLIC|    1.42231***      .35310     4.03  .0001      .73024   2.11438 
        |Underlying standard deviation = pi/(IVparm*sqr(6)) 
 PRIVATE|     .90174***      .22387     4.03  .0001      .46297   1.34051 
  PUBLIC|     .90174***      .22387     4.03  .0001      .46297   1.34051 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N28.7.2 Degenerate Cases 
 
 The problematic case is the common one in which there are one or more degenerate branches 
(branches with only one alternative) in the model.  To illustrate, we formulate the tree with 
 
   ; Tree = fly(air), ground(train,bus,car) ; Ivset(fly,ground) 
 
In this instance, Hunt (2000) argues that the model above is overparameterized.  RU1 allows free 
parameters in both branches regardless, but, in fact, the scaling in the fly branch is not actually 
identified.  The results below show the two cases, again, with and without the equality constraint 
imposed on the IV parameters.  In the first case, a problem arises in RU2 and RU3, as NLOGIT, 
recognizing the identification issue, enforces the prior restriction that the IV parameter on a 
degenerate branch must be 1.0.  When the restriction is released, the diagnostic does not recur, and 
the previous pattern emerges, with RU2 and RU3 equivalent apart from the scaling. 

The RU2 form is not estimable in this fashion, as shown by the diagnostic.  RU3 produces 
the same error message. 
 
Error:  1093: You have given a spec for an IV parm that is fixed at 1. 
Error:  1093: You have given a spec for an IV parm that is fixed at 1. 
 
RU1 is estimable with degenerate branches: 
 
----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -192.86849 
The model has 2 levels. 
Random Utility Form 1:IVparms = LMDAb|l 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      AA|    7.39001***      .97196     7.60  .0000     5.48502   9.29501 
      AT|    5.92704***      .79701     7.44  .0000     4.36493   7.48914 
      AB|    5.05369***      .75511     6.69  .0000     3.57369   6.53368 
      BH|    -.02876**       .01146    -2.51  .0121     -.05123   -.00630 
      BG|    -.02466***      .00771    -3.20  .0014     -.03977   -.00955 
      BT|    -.11463***      .01410    -8.13  .0000     -.14226   -.08700 
        |IV parameters, lambda(b|l),gamma(l) 
     FLY|     .57124***      .12946     4.41  .0000      .31750    .82497 
  GROUND|     .57124***      .12946     4.41  .0000      .31750    .82497 
        |Underlying standard deviation = pi/(IVparm*sqr(6)) 
     FLY|    2.24521***      .50883     4.41  .0000     1.24793   3.24249 
  GROUND|    2.24521***      .50883     4.41  .0000     1.24793   3.24249 
--------+-------------------------------------------------------------------- 
 
Both models are estimable when the IV parameters are unrestricted. 
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----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -192.66566 
The model has 2 levels. 
Nested Logit form:IVparms=Taub|l,r,Sl|r 
& Fr.No normalizations imposed a priori 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      AA|    7.58747***     1.02396     7.41  .0000     5.58055   9.59439 
      AT|    5.86134***      .80223     7.31  .0000     4.28900   7.43368 
      AB|    4.94585***      .76985     6.42  .0000     3.43696   6.45473 
      BH|    -.02513**       .01238    -2.03  .0425     -.04940   -.00085 
      BG|    -.02707***      .00836    -3.24  .0012     -.04345   -.01069 
      BT|    -.11393***      .01409    -8.09  .0000     -.14154   -.08632 
        |IV parameters, tau(b|l,r),sigma(l|r),phi(r) 
     FLY|     .59492***      .13720     4.34  .0000      .32602    .86383 
  GROUND|     .49562***      .15442     3.21  .0013      .19296    .79828 
--------+-------------------------------------------------------------------- 
  
----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -192.86849 
The model has 2 levels. 
Random Utility Form 2:IVparms = Mb|l,Gl 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      AA|    4.22146***      .95797     4.41  .0000     2.34386   6.09905 
      AT|    3.38575***      .59926     5.65  .0000     2.21122   4.56027 
      AB|    2.88686***      .55032     5.25  .0000     1.80825   3.96547 
      BH|    -.01643**       .00751    -2.19  .0286     -.03114   -.00172 
      BG|    -.01409***      .00364    -3.87  .0001     -.02122   -.00696 
      BT|    -.06548***      .01045    -6.27  .0000     -.08596   -.04500 
        |IV parameters, RU2 form = mu(b|l),gamma(l) 
     FLY|        1.0    .....(Fixed Parameter)..... 
  GROUND|     .57124***      .11465     4.98  .0000      .34652    .79595 
        |Underlying standard deviation = pi/(IVparm*sqr(6)) 
     FLY|    1.28255    .....(Fixed Parameter)..... 
  GROUND|    2.24521***      .45063     4.98  .0000     1.36199   3.12843 
--------+-------------------------------------------------------------------- 
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N28.8 Technical Details 
 
 This section will present the functions and gradients for a three level nested logit model.  
The probabilities for the four level model are shown in Section N28.2.  The derivations for the four 
level model are essentially similar, but the amount of notation increases geometrically.  The 
following will show the forms and patterns of the computations.  In what follows, we denote the 
choice of alternative j in branch b of limb l by j|b,l.  Branch b in limb l is denoted b|l.  When it is 
necessary to sum terms, we denote summation over the alternatives in branch b|l as Σq|b,l.  That is, q 
will be the running index for summation over the terms in the branch. Likewise, we use Σs|l to denote 
summation over the branches in limb l and Σl to denote summation over the limbs in the model.  The 
probabilities in the nonnormalized nested logit model are as follows: The choice probability is the 
conditional probability of alternative j in branch b, limb l, and trunk r, j|b,l,r: 
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The unconditional probability of the observed choice made by an individual is 
 

 P(j,b,l)  =  P(j|b,l) × P(b|l) × P(l) . 
 

This section will list the first derivatives used in maximizing the log likelihood function and in 
obtaining the asymptotic covariance matrix for the estimates.  The following definitions will be useful: 
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 The contribution of an observation i to the log likelihood for the model is 
 
   Log Li  =  log Pi(j,b,l)  =  log[Pi(j|b,l) × Pi(b|l) × Pi(l)] 

      =  log Pi(j|b,l) + log Pi(b|l) + log Pi(l), 
 
where the subscript indicates evaluation at the data for individual i.  Note that the full set of results 
for a one level model is obtained by examining the terms below that relate to Pi(j|b,l) with b = l = 1, 
while a two level model is built up from Pi(j|b,l)Pi(b|l).  The parameters of the model are, in order, 
[β, α, γ, τ..., σ...].  Gradients and Hessians are obtained as the sums of the derivatives of the three 
parts.  The definitions of deviations, ∆w... given with the gradients are used to produce a convenient 
format for the Hessians, which are built up recursively.  The function, 1[i=j], equals 1.0 if i equals j 
and equals 0.0 if not.  For interpretation, note that in a term in a Hessian that relates, say, b|l and s|m, 
1[l=m] means ‘in the same limb,’ while 1[b=s] means ‘in the same branch.’ This is only possible if l 
equals m.  For convenience in the derivations below, we will drop the observation subscript. 
 
   ∂logP(j|b,l)/∂β   = | , | | ,x x xj b l b l j b l− = ∆ , 

   ∂log P(j|b,l)/∂ • = 0  for α, τsq, γ, σs, 

   ∂log P(b|l)/∂β   = | | |x x xb l b l l b lτ − = ∆ , 

   ∂log P(b|l)/∂α   = | |y y yb l l b l− = ∆ , 

   ∂log P(b|l)/∂τs|q = 1[l=q][1(b=s) - P(s|q)] Js|q, 

   ∂log P(b|l)/∂ •  = 0  for γ, σs, 

   ∂logP(l)/∂β   = x x xl l lσ − = ∆ , 

   ∂logP(l)/∂α   = y y yl l lσ − = ∆ , 

   ∂logP(l)/∂γ = z z zl l− = ∆ , 

   ∂logP(l)/∂τs|q = σl[1(q=l) - P(q)]P(s|q)] Js|q, 

   ∂logP(l)/∂σs = [1(l=s) - P(s)]Is. 
 
The analytic second derivatives are used to compute the asymptotic covariance matrix of the MLE.  
The log likelihood function is nonconvex because of the IV parameters, and, as such, Newton’s 
method is a poor algorithm for optimization.  We use BFGS, instead.  The RU1 and RU2 forms of 
the model add additional nonlinearities.  The preceding are the base case – these are modified to 
produce RU1 and RU2.  RU3 is a simple reparameterization of RU2, so it is not developed 
separately. 
 
  



N28: Nested Logit and Covariance Heterogeneity Models  N-508 

N28.9 Sequential (Two Step) Estimation of Nested Logit 
Models 
 
 The preceding applies to full information maximum likelihood (FIML) estimation of nested 
logit models.  In brief, the technique estimates all of the parameters simultaneously by maximizing 
the unconditional log likelihood, 
 
 Log L  =  Σi logPi(j,b,l,r)  =  Σi logPi(j|b,l,r) + logPi(b|l,r) + logPi(l|r) + logPi(r). 
 
An alternative way to fit a special case of the model is by sequential, or two step estimation.  We 
consider two level models, though as shown below, the technique can be extended to higher level 
models as well.  An essential element for our purposes, however, is the restriction that at the upper 
level, the inclusive value parameters are constrained to be equal. 
 At the first step, we estimate the parameters of the conditional log likelihood, 
 
   Log Lc   =  Σi log Pi(j|b)   

    =  Σi log[exp(β′xj|b) / Σqexp(β′xq|b)] 

    =  Σi log[exp(β′xj|b) / exp(Jb)]. 
 
(Since this is strictly for two level models, we have dropped the ‘l,r’ from the probabilities.)  This 
simple discrete choice model provides estimates of β and, using β and the observed data, individual 
estimates of the inclusive values, Jb.  The conditional model estimated at the second step is 
 

  Pi(b) =  exp(α′yb + τJb) / Σs exp(α′ys + τJs). 
  
Note that there is only a single τ parameter regardless of the number of branches.  With a minor 
modification of the NLOGIT command to create interactions of the inclusive value with branch 
specific constants, this constraint could be relaxed.  However, the subsequent computation of the 
appropriate asymptotic covariance matrix is considerably more complicated.  (In principle, this 
restriction need not be imposed – see McFadden (1981).  However, the extension to the case in 
which the restriction is relaxed is quite complex and difficult to justify given the availability of 
FIML.)  With the individual estimates of the inclusive values in hand, this can also be interpreted as 
a simple discrete choice model, 
 

  Pi(b) =  exp(α*′yb ) / Σs exp(α*′ys), 
 
in which the inclusive value is one of the attributes (the last).  The lower level parameters are 
consistently, albeit inefficiently, estimated by just maximizing the conditional log likelihood 
function, and no special consideration need be made for the estimation of standard errors.  At the 
second step, the estimates of α* are consistent, but the usual estimator of the standard errors (the 
inverse of the Hessian) needs to be adjusted to account for the fact that the parameters of the 
inclusive values are themselves estimates.  The computations are detailed in the example below. 
 The computations for this estimator are automated in NLOGIT.  To request this procedure, 
set up the full two level nested logit model as if you were using FIML.  Then, change the normal 
command request as follows: 
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Step 1. For the first step of the estimation, add 
  
   ; Ivb = name for inclusive value   
   ; Conditional 
  

to the NLOGIT command.  Do not include the inclusive value in the branch level utility 
functions. 

 
Step 2. For the second step of the estimation, use exactly the same NLOGIT command, except 

change the preceding to  
 
   ; Sequential 
 

The inclusive value that you created in Step 2 must now be added as the last attribute in the 
utility function(s) for the branch level. 

 
 The asymptotic covariance matrix is computed as follows.  Let H11 equal the Hessian from 
the first step estimation.  Let H22 be the Hessian from the second step estimation, including the 
estimate of τ.  Let 

   H21 =  Σb [yb*  -  y
_

*][J( x
_

b  -  x
_

)]′ (and H12 = H

where   x
_

b   =  Σq|b P(q|b)xq|b,  x
_

  =  Σb P(b)x
_

b,  y
_

*  =  Σb P(b)y

21′), 

 
b. 

Then, the appropriate asymptotic covariance matrix for the two step estimator of α* is 
 
   V  =  [H22 - H21[H11 + H12H 2

-1

 
H21]-1H12]-1. 

A simple example follows:  
 
 NLOGIT  ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Tree = fly(air), ground(train,bus,car) 
   ; Model: U(air,train,bus,car) = <0,at,ab,0> + bc * gc / 
         U(fly,ground)    = ah * hinca 
   ; Ivb = incvlu  
   ; Conditional $ 
  NLOGIT  ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Tree  = fly(air), ground(train,bus,car) 
   ; Model: U(air,train,bus,car) = <0,at,ab,0> + bc * gc / 
    U(fly,ground) = ah * hinca + aiv * incvlu 
   ; Sequential $ 
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----------------------------------------------------------------------------- 
Conditional logit model for choices only 
Dependent variable               Choice 
Log likelihood function      -101.63595 
Estimation based on N =    210, K =   4 
Inf.Cr.AIC  =    211.3 AIC/N =    1.006 
Log-L for Choice   model =    -101.6360 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .6418 .6346 
Log-L for Branch   model =        .0000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model for Choice Among Alternatives 
      AT|    2.38614***      .36950     6.46  .0000     1.66193   3.11035 
      AB|     .76659**       .32387     2.37  .0179      .13182   1.40136 
      BC|    -.07659***      .01004    -7.63  .0000     -.09627   -.05691 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------- 
Second step estimates of nested logit model 
Dependent variable               Choice 
Log likelihood function      -476.57959 
Estimation based on N =    210, K =   2 
Inf.Cr.AIC  =    957.2 AIC/N =    4.558 
Log-L for Choice   model =    -340.3202 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588 -.1993-.2128 
Log-L for Branch   model =    -136.2594 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Model for Choice Among Alternatives 
      AT|    2.38614***      .36950     6.46  .0000     1.66193   3.11035 
      AB|     .76659**       .32387     2.37  .0179      .13182   1.40136 
      BC|    -.07659***      .01004    -7.63  .0000     -.09627   -.05691 
        |Model for Choice Among Branches 
      AH|    -.01386***      .00428    -3.24  .0012     -.02225   -.00548 
     AIV|     .04165         .05691      .73  .4642     -.06989    .15319 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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N28.10 Combining Data Sets and Scaling in Discrete 
Choice Models 
 
 An important property of the discrete choice model is the independence from irrelevant 
alternatives (IIA).  This condition is induced by the assumed independence of the unobserved 
individual effects in the utility functions that define the model.  Mathematically, an important part of 
the assumption is that the covariance matrix for [ε0,ε1,...,εJ] equals σ2I - identical variances and zero 
covariances.  The nested logit model is a device for partitioning the choice set to reduce or minimize 
the influence of the IIA/IID property.  The model does not necessarily imply an interpretation of 
behavior or a particular behavioral hypothesis based on a hierarchical relationship among 
alternatives in a choice set. 
 In recent years, researchers and practitioners in transportation and marketing have examined 
logit models based on stated preference (SP) experiments in which individuals are given hypothetical 
combinations of attributes associated with each alternative in a choice set and asked to choose one.  
The experiment is repeated a number of times with varying attribute levels and stated responses.  
These methods are popular in cases in which one is ‘stretching’ the attribute levels beyond observed 
levels and in which one is evaluating the demand for a new alternative.  (An early application of this 
approach is Beggs, Cardell, and Hausman’s (1981) study of the demand for electric cars.  We 
examined another large application in Chapter N22.)  Although stated choice experiments are rich in 
information designed to elicit marginal rates of substitution between attributes, they are limited in 
their ability to represent the revealed preferences (RP) of individuals and hence to reproduce 
observed market shares.  Revealed preference data are richer in information that can reproduce 
observed base market shares, but usually not so rich in the data needed to evaluate switching 
behavior associated with the introduction of new alternatives or changes in the levels of attributes.  A 
combination of the two types of data can provide an attractive alternative estimation strategy. 
 When data from two different choice studies are derived (whether for the same individuals 
or for different samples), we cannot naively assume that the IIA/IID condition of equal variances 
holds across both data sets for the set of common alternatives.  For example, we might have a 
revealed preference data set of four modes (drive alone, ride share, train, and bus); we might also 
have a stated choice experiment data set for the same four modes.  If we were naively to pool the two 
data sets, ignoring the fact that they are not strictly independent when derived from the same sample 
of individuals, then we are implicitly assuming that the variances are the same across all eight 
alternatives – the four revealed preference models and the four stated choice experiment modes.  If 
the variances are, indeed, the same, then the ratio of any two of them equals 1.0.  This provides the 
basis for a test of equality. When they are not equal, setting the variance in one data set to 1.0 and 
estimating the variance in the other will provide the appropriate scaling parameter needed to validate 
pooling the two data sets.   
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Formally, for a common alternative in the two choice sets, let 
 
   U(choicerp) = α  +  β′xrp  +  γ′y  +  εrp, 

   U(choicesp) = δ  +  β′xsp  +  θ′z  +  εsp, 

   σ2 = Var[εrp]/Var[εsp]  

    = a scaling parameter such that Var[Urp] = σ2Var[Usp]   
     so that pooling of the two data sets is valid, 
where   xrp, xsp = attributes common to the RP and SP data sets, 

   y, z = observed attributes specific to the RP or SP data sets, 

    [α,β,γ,δ,θ] = the unknown parameters to be estimated, 

    εj, j = RP,SP = unobserved individual effects. 
  
 NLOGIT automates the scaling procedure for two applications – joint estimation for any tree 
structure (nested logit) model and sequential estimation for a single level (discrete choice) model.  
Although scaling sequentially a nested logit model with more than one level is feasible, NLOGIT 
currently limits the rescaling to a single optimal parameter, which may not be valid for a tree 
structure in which the variances can be different at each branch within the tree.  We suggest that joint 
estimation be the preferred approach for trees up to four levels, and that sequential estimation be 
used for single level models and for each level in a tree structure with more than four levels.  
(NLOGIT provides FIML estimates for up to four levels.) 
 
N28.10.1 Joint Estimation 
 
 The RP parameters to be estimated are [α,β,γ].  The SP parameters are [σδ,σβ,σγ].  The 
scaling has no other effect on the distributional assumptions or on the conversion of the indirect 
utility expressions to choice probabilities.  The scaling of σβ is the essential link between the two 
data models.  The SP model, however, is nonlinear.  This estimation problem can be solved with 
NLOGIT by setting up an artificial tree structure as follows:  The artificial nest is constructed to have 
at least twice as many alternatives as are actually observed.  One subset is labeled the RP alternatives 
and the other is labeled the SP alternatives.  The indirect utility functions in each case are defined by 
the Urp and Usp expressions shown earlier, without σ.  The RP alternatives are placed just below the 
‘root’ of the tree, whereas the SP alternatives are each placed in a single alternative branch.  For the 
SP observations, the average indirect utility of each of the ‘dummy composite’ alternatives (see the 
figure below) uses the theoretical basis of the inclusive value concept associated with linking levels 
in a nested logit model (McFadden (1981)) to define  
 

   Ucomp  =  σlog 
j

J sp

=∑ 1
exp(U j), 
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in which the summation is taken over all alternatives in the nest corresponding to the composite 
alternative. Because each nest contains only one SP alternative, Ucomp reduces to σUsp, the expression 
for a single SP alternative, with every parameter including the unobserved component associated 
with the SP alternative scaled by σ.  We refer to the estimation of the scaling approach as an 
artificial nested logit model because the approach acts as if we are estimating a traditional nested 
logit model.  It draws on the empirical content of the inclusive value which links levels in a tree 
structure.  The scaling parameter, σ, does not have to lie in the unit interval, the condition for 
consistency with random utility maximization (Hensher and Johnson (1981)), because individuals 
are not modeled as choosing from the full set of RP+SP alternatives.  The scale for SP relative to RP 
can be greater than one. 
 
                           Root          
                 RP         SP               
                 +-----------+---+---+---+  
                 |           |   |   |   |  
           +---+---+---+     |   |   |   |  
           |   |   |   |     |   |   |   |  
          RP1 RP2 RP3 RP4   SP1 SP2 SP3 SP4 
 
Joint estimation involves ‘stacking’ the data.  Consider an example of commuter mode choice, where 
we have one revealed preference and two stated choice observations, all from the same individual.  
As a practical consideration, we prefer to replicate the RP observations to make equal the RP and SP 
sample sizes.  Otherwise, the SP data tend to dominate in estimation.  The data are set up as follows, 
assuming two attributes, time and cost: 
 
   Mode  Time Cost Chosen     Index 
   RP car    40   2    1        1 
   RP train  60   3    0        2 
   RP bus    50   2    0        3 
   SP1 car  50   3    0        4 
   SP1 train  30   3    1        5 
   SP1 bus  40   2    0        6 
   RP car   40   2    1        1 
   RP train  60   3    0        2 
   RP bus   50   2    0        3 
   SP2 car  40   2    0        4 
   SP2 train  35   4    0        5 
   SP2 bus  50   3    1        6 
 
In order to use this data set, it is necessary to replicate the full set of observations once for each RP 
choice situation, so that in each instance, only one choice is actually made.  For the first SP choice 
situation in the three choice model above, we would have the expanded data set (rpcar*,rptrain, 
rpbus,spcar,sptrain,spbus), (rpcar*,rptrain,rpbus,spcar,sptrain*,spbus), where the starred choices 
are the ones chosen in each combined situation.  The combined and expanded RP-SP data set is 
analyzed as the following tree: 
  
   ; Tree = mode [(rpcar,rptrain,rpbus),(spcar),(sptrain),(spbus)] 
   ; Ivset:  (spcar,sptrain,spbus) 
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This tree structure will produce an inclusive value for the SP branches which is set to be the same 
across all three branches.  Note that each branch in the SP part of the tree has only one degenerate 
alternative.  We are actually ‘tricking’ the program in order to obtain an inclusive value parameter 
because this is the only observable way of identifying the scaling parameter, which is the parameter 
of the inclusive value.   

If the sampling is choice based, rather than random, then a weighting scheme is appropriate.  
But, there will be no natural weighting in the population for the SP choices, so if a choice based 
sampling (WESML) estimator is to be used, the weights are only to apply to the RP choices.  You 
can do this with NLOGIT with a minor variation to the usual setup.  Suppose the model is built up 
from n RP alternatives and m SP choices.  The ; Choices setup with weights would appear as 
 

 ; Choices  = rp1, rp2,  ..., rpn, sp1,  sp2, ..., spm / 
     wr1, wr2, ..., wrn,  1.0,   1.0,  ..., 1.0 
 
That is, the usual set of weights is supplied for the RP alternatives (note that the order in your model 
might be different), while a 1.0 is given for the SP alternatives.  The weights for the RP alternatives 
will sum to 1.0.  When weights are given in this form, the choice based sampling weights, 
 
   W(j)  =  wRj / (pRj/Σ j=RP altspRj) 
 
are computed for the RP alternatives while the counterpart for the SP alternatives is 1.0.  Note that in 
the denominator, pRj is the sample proportion of individuals who chose alternative Rj among the full 
set of n+m alternatives, and that this is normalized by the sum over the RP alternatives.  This way, 
the denominators in the W(j)s sum to 1.0 – but note that the W(j)s themselves do not sum to 1.0 
because at least some of them are greater than 1.0. 
 
N28.10.2 Sequential Estimation 
 
 The two data specifications can also be combined in the following way: 
 
Step 1. Use the SP data by themselves to establish robust estimates of the individual’s tradeoffs of 

the attributes in the stated choice experiment through the vector βsp corresponding to Xsp. 
 
Step 2. Use the RP data to ‘ground’ the model in reality by estimating the alternative specific 

constants for the alternatives which are observed in the market.  This ensures that the 
predicted aggregate model shares equal the observed RP shares.  The RP model can be 
estimated with choice based weights.  In estimating the choice specific constants, we make 
them conditional on the βrp being constrained to equal βsp, but allowing for an errors-in- 
variables correction to Xrp through the estimation of a multiplicative scale factor, θ to rescale 
Xrp into the same units as Xsp.  The value of θ is selected so as to maximize the log 
likelihood for the overall model. 

 
NLOGIT automates the search for θ with ; Scale (list of variables) = low,high,ncrude,nfine.  (For 
example, ; Scale (time,cost) = 0.2,1.2,11,11.)  See Section N18.10 for further discussion.  Note that 
in sequential or joint estimation, the only attributes which are rescaled are those common to an 
alternative in both data sets and all of the attributes of an alternative which appears only in the SP 
model.  Thus, the only attributes in the RP model which are not rescaled are those which are unique 
to the RP model. 
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N28.11 A Model of Covariance Heterogeneity 
 

This is a modification of the two level nested logit model.  The base case for the model is 
 

  |
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Denote the logsum, the log of the denominator, as Ib = inclusive value for branch b = IV(b).  Then, 
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The covariance heterogeneity model allows the τj inclusive value parameters to be functions of a set 
of attributes, vj , in the form 
 

  τb* = τb × exp[δ′vb ], 
 
where δ is a new vector of parameters to be estimated.  Since the inclusive parameter is a scaling 
parameter for a common random component in the alternatives within a branch, this is equivalent to 
a model of heteroscedasticity. 

The attributes, vb may be any attributes – they are assumed to be the same for all alternatives 
in the branch, b.  Also, vb must not contain a constant (one).  To use this option, just add 

 
   ; Hfn = list of variables in vb 
 
to the NLOGIT command.  Once again, this option is available only for two level models.  All other 
options for two level models remain as before.  You can also obtain elasticities and marginal effects 
for probabilities with respect to the elements of vb.  Just use 
 

  ; Effects: variable [alts] 
 
as usual.  NLOGIT will figure out which branch applies from the tree structure.  A separate set of 
results is given for variables in vb.  If an attribute appears both in yb and vb, there will be a separate 
table for the two different appearances.  (This model must be specified in a command; it is not 
available in the command builder.) 
 The following illustrates the use of this model 
 
 NLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Tree = public(bus,train), private(air,car) 
   ; Model: U(air) = ba + bcost * gc + btime * ttme    / 
                             U(train) = bt + bcost * gc + btime * ttme   / 
                             U(car) = bc + bcost * gc + btime * ttme    / 
                             U(bus)  =         bcost * gc + btime * ttme     
   ; Hfn = hinc 
   ; Effects: hinc(*)/gc(*) $ 



N28: Nested Logit and Covariance Heterogeneity Models  N-516 

----------------------------------------------------------------------------- 
Covariance Heterogeneity Model 
Dependent variable                 MODE 
Log likelihood function      -188.96833 
The model has 2 levels. 
Nested Logit form:IVparms=Taub|l,r,Sl|r 
& Fr.No normalizations imposed a priori 
Variable IV parameters are denoted s_... 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      BA|    3.92427***      .72034     5.45  .0000     2.51242   5.33612 
   BCOST|    -.01750***      .00435    -4.02  .0001     -.02603   -.00897 
   BTIME|    -.08606***      .01173    -7.34  .0000     -.10904   -.06308 
      BT|     .90908***      .33711     2.70  .0070      .24835   1.56982 
      BC|   -1.02251***      .37116    -2.75  .0059    -1.74997   -.29505 
        |Inclusive Value Parameters 
  PUBLIC|     .94983***      .31909     2.98  .0029      .32441   1.57524 
 PRIVATE|    1.65970***      .61495     2.70  .0070      .45441   2.86498 
Lmb[1|1]|        1.0    .....(Fixed Parameter)..... 
Trunk{1}|        1.0    .....(Fixed Parameter)..... 
        |Covariates in Inclusive Value Parameters 
  s_HINC|     .01324**       .00662     2.00  .0454      .00027    .02621 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
HINC    | 
--------+----------------------------------- 
     BUS|   .5592    .5592   -.2583   -.2583 
   TRAIN|   .5592    .5592   -.2583   -.2583 
     AIR|  -.9771   -.9771    .4513    .4513 
     CAR|  -.9771   -.9771    .4513    .4513 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     BUS    TRAIN      AIR      CAR 
--------+----------------------------------- 
     BUS| -1.9762    .0409    .3905    .3905 
   TRAIN|  -.0793  -2.3578    .8340    .8340 
     AIR|  1.4332   1.4332  -1.6629    .1335 
     CAR|  1.3260   1.3260   -.2692  -1.9390 
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N28.12 The Generalized Nested Logit Model 
 

The generalized nested logit model is an extension of the nested logit model in which 
alternatives may appear in more than one branch.  (The behavioral assumptions underlying this 
model are up to the user.)  Alternatives which appear in more than one branch are allocated across 
branches probabilistically.  The model estimated includes the usual nested logit framework (only two 
levels are supported in this framework), as well as the matrix of allocation parameters.  The only 
difference between this and the more basic nested logit model is the specification of the tree.  The 
model is requested by changing the command name to GNLOGIT.  Otherwise, the model is the 
same as the nested logit model.  The alternative form  

 
NLOGIT  ; GNL ; ... 
 

is also useable.  All features of NLOGIT, including marginal effects, simulations, etc. are the same as 
for all other models.  The difference here is that when you specify the tree, you may specify that a 
given alternative appears in more than one branch.  (Technical details appear at the end of this 
section.) 

A small example appears below.  In this nested logit model, the choice car appears in both 
branches.  The probabilities for the allocation are estimated to be .16 and .84.  The base case 
multinomial logit model appears first. 

 
GNLOGIT ; Lhs = mode 

   ; Choices = air,train,bus,car 
       ; Rhs = one,gc,ttme 
       ; Tree = private(air,car), ground(car,train,bus) 
   ; Effects: gc(*) $ 
 
----------------------------------------------------------------------------- 
Discrete choice (multinomial logit) model 
Dependent variable               Choice 
Log likelihood function      -199.97662 
Estimation based on N =    210, K =   5 
Inf.Cr.AIC  =    410.0 AIC/N =    1.952 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .2953 .2862 
Chi-squared[ 2]          =    167.56429 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01578***      .00438    -3.60  .0003     -.02437   -.00719 
    TTME|    -.09709***      .01044    -9.30  .0000     -.11754   -.07664 
   A_AIR|    5.77636***      .65592     8.81  .0000     4.49078   7.06194 
   A_CAR|    3.92300***      .44199     8.88  .0000     3.05671   4.78929 
  A_1BUS|    3.21073***      .44965     7.14  .0000     2.32943   4.09204 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Generalized Nested Logit Model 
Dependent variable                 MODE 
Log likelihood function      -195.43541 
The model has 2 levels. 
GNL: Model uses random utility form RU1 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|    -.02140**       .01030    -2.08  .0379     -.04159   -.00120 
    TTME|    -.09368**       .04016    -2.33  .0197     -.17240   -.01496 
   A_AIR|    5.30728**      2.67168     1.99  .0470      .07088  10.54367 
   A_CAR|    4.21064**      2.00982     2.10  .0362      .27147   8.14980 
  A_1BUS|    3.47823**      1.68141     2.07  .0386      .18273   6.77373 
        |Dissimilarity parameters. These are mu(branch). 
 PRIVATE|    1.95202        1.30315     1.50  .1342     -.60211   4.50615 
  GROUND|     .80675         .56368     1.43  .1524     -.29805   1.91155 
        |Structural MLOGIT Allocation Model: Constants 
tAIR_PRI|        0.0    .....(Fixed Parameter)..... 
tTRA_GRO|        0.0    .....(Fixed Parameter)..... 
tBUS_GRO|        0.0    .....(Fixed Parameter)..... 
tCAR_PRI|   -1.62462       16.42213     -.10  .9212   -33.81141  30.56217 
tCAR_GRO|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
Generalized Nested Logit 
Estimated Allocations of Choices to Branches 
Estimated standard errors in parentheses for 
allocation values not fixed at 1.0 or 0.0. 
        |Branch 
--------+----------------- 
CHOICE  |PRIVATE  GROUND 
--------+--------+-------- 
AIR      1.0000    .0000 
TRAIN     .0000   1.0000 
BUS       .0000   1.0000 
CAR       .1646    .8354 
        ( .0000) ( .0000) 
Note: Allocations are multinomial logit 
probabilities. Underlying parameters are not 
shown in the output: 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR      CAR      CAR    TRAIN 
--------+----------------------------------- 
     AIR| -1.2007    .6088    .6088    .2953 
     CAR|   .6587  -2.5515    .9015    .7905 
     CAR|   .3285    .4473  -2.6094    .3941 
   TRAIN|   .2449    .7727    .7727  -1.3112 
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 Aside from the expanded specification of the tree, the model is otherwise the same as the 
nested logit model shown earlier.  The model contains an allocation matrix, 
 
   α  =  [αk|j], 
 
which defines the probabilistic allocation of alternatives k to branches j.  The columns of the matrix 
relate to the branches while the rows refer to the alternatives.  The model construction specifies that 
the rows of the matrix each sum to 1.0.  The matrix that was estimated for the model in the example 
was 
 
        |Branch 
--------+----------------- 
CHOICE  |PRIVATE  GROUND 
--------+--------+-------- 
AIR      1.0000    .0000 
TRAIN     .0000   1.0000 
BUS       .0000   1.0000 
CAR       .1646    .8354 
 
The locations of the nonzero entries are specified by the tree definition.  In the nested logit model, 
each row will contain a single 1.0000 and J-1 0.0000s.  When alternatives appear in more than one 
branch, then a set of allocation parameters appear in the matrix.  These are parameters to be 
estimated.  When there are free parameters to be estimated in α, the adding up constraint is imposed 
by using a multinomial logit form, 
 
   αk|j  =  Prob(alternative k is in branch j)  =  exp(θk|j) / Σk,m exp(θj|m), 
 
where the parameters θ are actually estimated by the program.  Note the denominator summation is 
over branches that the alternative appears in.  The probabilities sum to one.  The identification rule 
that one of the θs for each alt modeled equals one is imposed.  Thus, in the output results above, 
θcar,ground = 0 and θcar,private = -1.625, so that the probability allocated to the private branch is          
exp(-1.625)/[exp(0)+exp(-1.625)] = 0.1646, which can be seen in the final table of results.  You may 
also specify that these allocations depend on an individual characteristic (not a choice attribute), such 
as income, by using 
 

   ; GNL = the name of a variable 
 
(Note that even if you use the GNLOGIT command, you must have the ; GNL specification in the 
command.)  In this instance, the multinomial logit probabilities become functions of this variable,  
 
   αk|j  =  Prob(alternative k is in branch j)  =  exp(θk|j+γk|j) / Σk,m exp(θj|m+γk|m). 
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Again, to achieve identification, one of the θs and one of the γs is set equal to zero. The log 
likelihood function is then assembled from these parameters as follows: 
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Derivatives of this log likelihood function are computed numerically, using two sided finite 
differences.  The BHHH estimator is used for the asymptotic covariance matrix. 
 

N28.13 Box-Cox Nested Logit Model 
 
 This variant of the nested logit model allows some attributes to be transformed using the 
Box-Cox transformation.  The model specification adds a degree of flexibility to the functional form.  
The model specification is the general nested logit form, with 
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The utility function contains B attributes, xjb that are transformed, each by an attribute specific 
transformation parameter, λb.  It also contains K attributes, xjk that are untransformed – this is the 
form we have assumed up to this point.  Finally, there may be C variables, zc that are interacted with 
alternative specific constants.  Again, this is the form we have used up to this point.  Save for the 
first term, this is the same model we have used before.  
 The command setup is 
 
 NLOGIT ; Lhs = … ; Choices = … 
   ; Tree = specification 
   ; Rhs = choice varying attributes 
   ; Rh2 = choice invariant characteristics and one 
   ; … any other options 
   ; Bcl =  list of attributes among the Rhs variables that are 
    subject to the Box-Cox transformation $ 
 
The utility functions must be in the Rhs/Rh2 format for this specification.  An example is 
 
 NLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Tree = private(air,car),public(train,bus) 
   ; Rhs = gc,invc,invt 
   ; Rh2 = one,hinc 
   ; Bcl = invc,invt 
   ; Effects: gc(*) / invt(*) $ 
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The results below compare the Box-Cox model to the model based on the untransformed variables. 
 
----------------------------------------------------------------------------- 
Box-Cox Nested Logit Model 
Dependent variable                 MODE 
Log likelihood function      -212.68485 
The model has 2 levels. 
Nested Logit form:IVparms=Taub|l,r,Sl|r 
& Fr.No normalizations imposed a priori 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|     .01954**       .00887     2.20  .0276      .00216    .03693 
    INVC|    -.06628         .04760    -1.39  .1638     -.15957    .02701 
    INVT|    -.28549         .27341    -1.04  .2964     -.82136    .25038 
   A_AIR|   -3.53251***     1.18141    -2.99  .0028    -5.84802  -1.21699 
AIR_HIN1|     .01245         .01145     1.09  .2769     -.01000    .03490 
 A_TRAIN|    -.01422         .50666     -.03  .9776    -1.00726    .97883 
TRA_HIN3|    -.00582         .00761     -.76  .4446     -.02073    .00910 
   A_BUS|    -.83602         .62644    -1.33  .1820    -2.06382    .39179 
BUS_HIN4|     .00063         .01241      .05  .9598     -.02371    .02496 
        |IV parameters, tau(b|l,r),sigma(l|r),phi(r) 
 PRIVATE|    4.61679***     1.73915     2.65  .0079     1.20811   8.02547 
  PUBLIC|    4.19463***     1.57932     2.66  .0079     1.09922   7.29005 
        |Box-Cox Transformation Parameters 
  bcINVC|     .76751***      .19128     4.01  .0001      .39261   1.14241 
  bcINVT|     .41250***      .15108     2.73  .0063      .11640    .70860 
--------+-------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR      CAR    TRAIN      BUS 
--------+----------------------------------- 
     AIR|  2.8005    .7946  -2.2198  -2.2198 
     CAR|  1.2956   3.1602  -2.4029  -2.4029 
   TRAIN| -2.8203  -2.8203   4.7134   2.1691 
     BUS| -1.3942  -1.3942   1.2654   3.5177 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
INVT    |     AIR      CAR    TRAIN      BUS 
--------+----------------------------------- 
     AIR| -2.9548   -.8361   2.1269   2.1269 
     CAR| -2.7409  -6.5490   5.3720   5.3720 
   TRAIN|  4.8023   4.8023  -7.0336  -3.1028 
     BUS|  2.5239   2.5239  -2.1424  -6.1462 
 
  



N28: Nested Logit and Covariance Heterogeneity Models  N-522 

----------------------------------------------------------------------------- 
FIML Nested Multinomial Logit Model 
Dependent variable                 MODE 
Log likelihood function      -223.81970 
The model has 2 levels. 
Nested Logit form:IVparms=Taub|l,r,Sl|r 
& Fr.No normalizations imposed a priori 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Attributes in the Utility Functions (beta) 
      GC|     .00199         .00827      .24  .8099     -.01421    .01819 
    INVC|    -.00266         .00863     -.31  .7578     -.01958    .01426 
    INVT|    -.00325**       .00133    -2.45  .0143     -.00586   -.00065 
   A_AIR|   -1.40526***      .35771    -3.93  .0001    -2.10635   -.70417 
AIR_HIN1|     .00192         .00468      .41  .6810     -.00725    .01109 
 A_TRAIN|     .01699         .21993      .08  .9384     -.41406    .44803 
TRA_HIN3|    -.00813         .00582    -1.40  .1625     -.01954    .00328 
   A_BUS|    -.97208***      .32416    -3.00  .0027    -1.60743   -.33673 
BUS_HIN4|     .00173         .00852      .20  .8393     -.01497    .01843 
        |IV parameters, tau(b|l,r),sigma(l|r),phi(r) 
 PRIVATE|    12.2211***     3.50815     3.48  .0005      5.3453   19.0970 
  PUBLIC|    7.49804***     2.15617     3.48  .0005     3.27203  11.72405 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR      CAR    TRAIN      BUS 
--------+----------------------------------- 
     AIR|   .7003    .4962   -.6973   -.6973 
     CAR|   .3736    .5633   -.5596   -.5596 
   TRAIN|  -.5419   -.5419    .8111    .5523 
     BUS|  -.2299   -.2299    .2749    .5040 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
INVT    |     AIR      CAR    TRAIN      BUS 
--------+----------------------------------- 
     AIR| -1.5410  -1.1059   1.4256   1.4256 
     CAR| -3.7304  -5.5957   5.4474   5.4474 
   TRAIN|  4.3326   4.3326  -6.0594  -4.0800 
     BUS|  2.0758   2.0758  -2.4286  -4.4770 
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N29: Random Parameters Logit Model 
 
N29.1 Introduction 
 
 The random parameters logit (RPL) model, also referred to as the mixed logit model, is the 
most general model form in NLOGIT in terms of the variety of model specifications it can 
accommodate and in terms of the range of behavior that it can model.  (On this latter point, see 
McFadden and Train (2000).)  This chapter will develop the numerous different specifications of the 
model that can be accommodated.   
 NLOGIT offers an extensive set of specifications within the mixed logit structure. This 
model is gaining great popularity in applications. Capabilities provided by the estimator include  
 

• Choosing from among a large number of analytical distributions for each random parameter 
 

• Accounting for the non-independence between observations associated with the same 
respondent (a theme of importance in stated choice studies)  

 
• Decomposing the mean and standard deviation of one or more random parameters to reveal 

sources of systematic taste heterogeneity  
 

• Accounting for correlation of random parameters  
 

• Imposing priors based on known choices in model estimation  
 

• Imposing constraints on distributions (e.g. constraining the triangular or normal to ensure 
that it does not change sign over its range)  

 
• Selecting subsets of pre-specified variables to interact with the mean and standard deviation 

of random parameterized attributes 
 

• Deriving willingness to pay estimates when both the numerator and denominator are random 
parameter estimates 

 
 We note before beginning that this model also includes the error components model 
presented in Chapter N30.  The error components can be simply included as part of the mixed logit 
model.  This is described in Section N29.5.  The random parameters model also includes the 
nonlinear random parameters model in Chapter N31, the latent class random parameters model in 
Chapter N32 and the generalized mixed logit model in Chapter N33. 
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N29.2 Random Parameters (Mixed) Logit Models 
 

 This model is somewhat similar to the random coefficients model for linear regressions.  
(See Bhat (1996), Jain, Vilcassim, and Chintagunta (1994), Revelt and Train (1998), and Berry, 
Levinsohn, and Pakes (1995).)  The model formulation is a one level multinomial logit model, for 
individuals i = 1,...,N in choice setting t.  Neglecting for the moment the error components aspect of 
the model, we begin with the basic form of the multinomial logit model, with (optional) alternative 
specific constants αji and attributes xji, 
 

   Prob(yit = j)  =  
( )

( )1

exp

exp

x

xi

ji i ji
J

qi i qiq=
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′α∑
+ β

+ β
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The RPL model emerges as the form of the individual specific parameter vector, βi is developed. The 
most familiar, simplest version of the model specifies 
 
   βki =  βk  +  σkvik, 

and   αji =  αj +  σjvji, 
 
where βk is the population mean, vik is the individual specific heterogeneity, with mean zero and 
standard deviation one, and σk is the standard deviation of the distribution of βiks around βk. The term 
‘mixed logit’ is often used in the literature (e.g., Revelt and Train (1998)) for this model.  The choice 
specific constants, αji and the elements of βi are distributed randomly across individuals with fixed 
means.  A refinement of the model is to allow the means of the parameter distributions to be 
heterogeneous with observed data, zi, (which does not include one).  This would be a set of choice 
invariant characteristics that produce individual heterogeneity in the means of the randomly distributed 
coefficients so that 
   βki =  βk  +  δk′zi  +  σkvki, 
 
and likewise for the constants.  The model is not limited to the normal distribution.  We consider 
several alternatives below.  One important variation is the lognormal model, 
 
   βki =  exp(ρk  +  δk′zi  +  σkvki). 
 
The vjkis are individual and choice specific, unobserved random disturbances – the source of the 
heterogeneity.  Thus, as stated above, in the population, if the random terms are normally distributed, 
 
   αji or βki  ~  Normal or Lognormal [ρj or k + δj or k′zi, σj or k

2]. 
 
(Other distributions may be specified.)  For the full vector of K random coefficients in the model, we 
may write the full set of random parameters as 
 
   ρi =  ρ  +  ∆zi +  Γvi. 
 
where Γ is a diagonal matrix which contains σk on its diagonal.  For convenience at this point, we 
will simply gather the parameters, choice specific or not, under the subscript ‘k.’  (The notation is a 
bit more cumbersome for the lognormally distributed parameters.  We will return to that in the 
technical details.)   
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 We can go a step further and allow the random parameters to be correlated.  All that is 
needed to obtain this additional generality is to allow Γ to be a triangular matrix with nonzero 
elements below the main diagonal.  Then, the full covariance matrix of the random coefficients is      
Σ = ΓΓ′.  The standard case of uncorrelated coefficients has Γ = diag(σ1,σ2 ,…,σk). If the coefficients 
are freely correlated, Γ is a full, unrestricted, lower triangular matrix and Σ will have nonzero off 
diagonal elements.  (It will be convenient to aggregate this one step further.  We may gather the 
entire parameter vector for the model in this formulation simply by specifying that for the 
nonrandom parameters in the model, the corresponding rows in ∆and Γ are zero.)  We will also 
define the data and parameter vector so that any choice specific aspects are handled by appropriate 
placements of zeros in the applicable parameter vector. 
 An additional extension of the model allows the distribution of the random parameters to be 
heteroscedastic.  As stated above, the variance of vik is taken to be a constant.  The model is made 
heteroscedastic by assuming, instead, that 
 
   Var[vik]  =  σjk

2 [exp(ωk′hri)]2. 
 
A convenient way to parameterize this is to write the full model as 
 
   ρi =  ρ  +  ∆zi +  ΓΩivi 
 
where Ωi is the diagonal matrix of individual specific variance terms; ωik = exp(ωk′hri). 
 The list of variations above produces an extremely flexible, general model. Typically, you 
would use only some of them, though in principle, all could appear in the model at once. We will 
develop them in parts in the sections to follow. A convenient form of the full random parameters 
logit model to begin with is 
 

  Prob(yit = j)  =  
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Finally, an additional layer of individual heterogeneity may be added to the model in the form of the 
error components detailed in Chapter N30.  The full model with all components is 
 

   Prob(yit = j)  =  1
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where the components of the model are as follows: 
 
Random Alternative Specific Constants and Taste Parameters: 
 

 ( , ) ( , )ji i j i i iα = α + +  z vβ β ∆ ΓΩ , Ωi =  diag(ωi1, ωi2, ...) or Ωi = diag(σ1,...,σk) 

 β,αji  = constant terms in the distributions of the random taste parameters 
 
 Uncorrelated Parameters with Homogeneous Means and Variances 
 

 βik = βk + σkvik when ∆ = 0, Γ = I, Ωi = diag(σ1,...,σk)  

 xjit = all observed choice attributes and individual characteristics 

 vi = random unobserved taste variation, with mean vector 0 and covariance matrix I 
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 Uncorrelated Parameters with Heterogeneous Means and Variances 
 
 βik = βk + δk′zi + σk exp(ωk′hri)vik when Γ = I, Ωi = diag(ωi1, ωi2, ...) 

 ∆ = parameters that enter the heterogeneous means of the distributions of the random 
   parameters; β + ∆zi = the heterogeneous means 

 ωik = exp(ωk′hri) = heterogeneity in the variances of the distributions of the random 
   parameters 

 ωk = parameters in the variance heterogeneity of the random parameters 

 σik = σkωik = heterogeneous standard deviations in the distributions of the random 
   parameters; σik = σk in a homoscedastic model 

 zi = observed variables that measure the heterogeneity in the means of the random  
   parameters 

 hri = observed variables that measure the heterogeneity in the variances of the random 
   parameters 
 
 Correlated Parameters with Heterogeneous Means 
 
 βik = βk + δk′zi + 1

k
s=Σ Γksvis when Γ ≠ I, and Ωi = diag(σ1,...,σk) 

 Γ = lower triangular matrix with ones on the diagonal that allows correlation across  
   random parameters when Γ ≠ I 
 
Individual Error Components 
 
 Eim = the individual specific underlying random error components,  
   m = 1,...,M, Eim ~ N[0,1] 

 djm = 1 if Eim appears in utility for alternative j and 0 otherwise 

 θm = scale factor for error component m 

 γim = exp(γm′hei) = heterogeneity in the variances of the error components 

 λim = θmγim = standard deviations of random error components 

 γm = parameters in the heteroscedastic variances of the error components 

 hei = individual choice invariant characteristics that produce heterogeneity in the 
   variances of the error components 
 
The model specification will dictate which parameters are random and which are not, how the 
heteroscedasticity, if any, is parameterized, the distributions of the random terms, and how the error 
components enter the model. 
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 The probabilities defined above are conditioned on the random terms, vi and the error 
components, Ei.  The unconditional probabilities are obtained by integrating vik and Eim out of the 
conditional probabilities: Pj = Ev,E[P(j|vi,Ei)].  This is a multiple integral which does not exist in 
closed form. The integral is approximated by sampling nrep draws from the assumed populations 
and averaging.  (See Bhat (1996) and Revelt and Train (1998) and Greene (2011) for discussion.) 
Parameters are estimated by maximizing the simulated log likelihood, 
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1 1 1
1 ,1

exp exp( )1log
exp exp( )

i

i

M
TN R ji ir jit m jm m m i im r

Ji r t M
qi ir qit m qm m m i im rq

d E
R d E

=

= = =
==

′ ′ α + + θ 
′ ′ α + + θ 

∑ ∑ ∏
∑

x he

x he

β Σ γ

β Σ γ
, 

 

with respect to (β, ∆, Γ,Ω, θ, γ), where 
 
   R = the number of replications, 

   βir = β  +  ∆zi  +  ΓΩivir  =  the rth draw on βi, 

   vir = the rth multivariate draw for individual i, 

   Eim,r = the rth univariate normal draw on the underlying effect for individual i. 
 
(Note that the multivariate draw, vir is actually K independent draws.  The heteroscedasticity is 
induced first by multiplying by Ωi, then the correlation is induced by multiplying Ωivir by Γ.) 
Technical details on the estimation procedure are given in Section N29.11.  
 The model components may be restricted and varied in several ways. 
 

• A variety of distributions may be chosen for the random parameters, and they need not be 
the same for all parameters. 

 

• The observed heterogeneity, ∆zi, is optional. You may specify that a coefficient is randomly 
distributed around a fixed mean.  Thus, δk may be set to a zero vector for some or all random 
coefficients. 

 

• σk may be set equal to zero for some coefficients.  This may change the way a coefficient 
enters the model.  If σk = 0 and δk= 0, then the coefficient is a nonrandom fixed parameter.  
But, including it in β allows you to force a coefficient to be positive.  This device also allows 
you to form a hierarchical model with nonrandom coefficients. 

 

• Any coefficient in the model may be fixed at a specific value. 
 

• The heteroscedasticity may apply to some or all (or none) of the random parameters. 
 

• Different variables may be placed in the heterogeneous means (∆zi) or the heteroscedastic 
variances (Ωi) of any of the random parameters. 

 

• The variables that enter the heteroscedasticity of the error components may be different. 
 

• The model with both heteroscedasticity and cross parameter correlation is not estimable.  
(There is no way to make the covariance heterogeneous.) 

 
A number of additional features are listed in the sections to follow. 



N29: Random Parameters Logit Model  N-528 

N29.3 Command for the Random Parameters Logit Models 
 

The command for the mixed logit model is as follows: 
 
 RPLOGIT   ; Lhs = ... as usual 

; Choices = ...   
; ... Utility function specification using  
; Rhs = ... ; Rh2 = ...  or 
; Model: U(...) = ... to specify utilities 
; Fcn = specification of random parameters $ 

 
(The model command NLOGIT ; RPL is equivalent.)  The last specification is used to define the 
random parameters.  There are many variants.  We begin with the simplest, and add features as we 
proceed.   The ; Fcn specification takes the basic form 
 
   ; Fcn = parameter label (type) 
 
where ‘parameter label’ is defined either by a variable name that you use in your ; Rhs specification 
or by the name you give in your ; Model:... definitions and the ‘type’ is one of the distributions 
defined in the next section.  Alternative specific constants are a special case.  You will generally not 
want to specify the parameters that multiply Rh2 variables as random.  These two cases are 
considered specifically below.  For example, the following specifies two normally distributed 
random parameters: 
 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme,invc ; Rh2 = hinc 
   ; Fcn = gc(n),ttme(n) $ 
 
(The ‘type’ in the example is ‘n’ indicating normally distributed parameters.  Several other 
specifications would probably be added.)  Alternatively, you might use the following to specify a 
model with two random parameters: 
 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Model: U(air) = a_air+bgc*gc+btt*ttme+binvc*invc+ghinc*hinc/ 
     U(train,bus,car) = a_ground+bgc*gc   
   ; Fcn = a_ground(n),btt(n) $ 
 
Note that the specifications of the random parameters are separated by commas, not semicolons.  The 
next several subsections will describe the various parts of the specifications of the random 
parameters.  The last part of this section describes the command builder for this model.  Because so 
much of this model is custom made for the particular application, the command builder is somewhat 
limited compared to the command form indicated above. 
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N29.3.1 Distributions of Random Parameters in the Model 
 
 There are many distributions that can be (and have been) used for the random parameters.  
The most common will be the normal, which is used in the example above.  Many alternatives are 
supported, however.  Some of these should be viewed as experimental.  Moreover, we note that as 
such, some of these choices may not perform well in a particular data set.  The normal distribution is 
a natural choice for a random parameter, based on ideas of individual heterogeneity and the central 
limit theorem.  It is difficult to motivate, e.g., the scaled beta on this basis. Some useful special cases 
others are described further in Section N29.3.8.)  The basic distributions are specified with the 
following: 
   ; Fcn = parameter name (type), ... 
 
The types are 
 

 1 c nonstochastic  βi =  β 
 2 n normal βi  =  β + σvi,vi ~ N[0,1] 
 3 s skew normal βi  =  β + σvi + λ|wi|, vi, wi ~ N[0,1] 
 4 l  lognormal βi  =  exp(β + σvi), vi ~ N[0.1] 
 5 z truncated normal βi  =  β + σvi, vi ~ truncated normal (-1.96 to 1.96) 
 6 u uniform βi  =  β + σvi, vi ~ U[-1,1] 

  7 f one sided uniform βi  =  β + βvi, vi ~ uniform[-1,1] 
 8 t  triangular βi  =  β + σvi, vi ~ triangle[-1,1] 
 9 o one sided triangular βi  =  β + βvi, vi ~ triangle[-1,1] 
10 d beta, dome βi  =  β + σvi, vi ~ 2×beta(2,2) - 1 
11 b beta, scaled βi  =  βvi, vi ~ beta(3,3) 
12 e Erlang βi  =  β + σvi, vi ~ gamma(1,4) - 4 
13 g gamma βi  =  exp(β + σvi), vi = log(-log(u1*u2*u3*u4)) 
14 w Weibull βi  =  β + σvi, vi = 2(-logui)√.5, ui~ U[0,1] 
15 r Rayleigh βi  =  exp(βi (Weibull)) 
16 p exponential βi  =  β + σvi, vi ~ exponential - 1 
17 q exponential, scaled βi  =  βvi, vi ~ exponential 
18 x censored (left) βi  =  max(0, βi (normal)) 
19 m censored (right) βi  =  min(0, βi (normal)) 
20 v exp(triangle) βi  =  exp(βi (triangular)) 
21 i type I extreme value βi  =  β + σvi, vi ~ standard Gumbel 

 
In the list above, we have denoted the constant in the distribution as ‘β.’  However, the parameter 
definition may involve heterogeneity in the mean – see Section N29.3.4 – so, what appears there may 
be of the form θi = β + δ′zi.  We have also written the scaling parameter in each form as ‘σ,’ 
however, you may also specify heterogeneity in the variances – see Section N29.4 – so what appears 
there may be of the form σi = σexp(ω′hi).  The list above suggests the variety of different 
distributions that may be used. Numerous modifications and restrictions are shown in Section 
N29.3.8. 
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 Any distribution may be used for any parameter.  The normal distribution will be the usual 
choice.  However, you may wish to restrict a particular coefficient in the model to be positive.  The 
lognormal distribution is the obvious choice, though there are several other possibilities.  The 
normal, lognormal, skew normal, exponential, Erlang, Rayleigh and Weibull distributions all have 
infinite ranges. If you wish to restrict the range of variation of a parameter, then the triangular, dome 
or uniform can be used.  The lognormal distribution has an infinite tail in the positive direction and is 
anchored at zero while the exponential, Erlang and Weibull models as specified have infinite range 
from [ ]iE vβ − σ  to +∞.  Section N29.3.8 shows how to restrict these distributions so that they, like 
the lognormal, are anchored at zero.  As shown there, however, these models will differ in that the 
support of the distributions may be the negative or the positive half line. 
 It is important to note that the means and variances of the distributions are not always simple 
functions when the parameters are not linear functions of the underlying random variables.  For 
many of the distributions shown above, the mean of vi is zero, which centers the distributions at β.  
For the lognormal, skew normal, Weibull and several other models, the mean depends on the 
parameters. This is also true of the modified distributions shown below.  This means that one must 
be careful in interpreting the estimated coefficients, even in simple cases in which there is no 
heterogeneity in the means or variances. It is possible to learn about these empirically, as described 
in Section N29.8, however, it is often not possible to state a priori what the population means are for 
most of the distributions. The problem becomes yet more complicated as additional features such as 
heterogeneity in the means and heteroscedasticity are added to the model. 
 Some practical aspects of the specifications are as follows: 
 
• If you will be mixing distributions, the specification of correlated parameters, while 

allowable, produces ambiguous results.  The nature of the correlation is difficult to define.  
However, the program will have no unusual difficulty estimating a model in which 
correlated parameters have different distributions.  One particular case worth noting is a 
mixture of normal and lognormal parameters.  In such a model, the reported correlation will 
be between the normally distributed parameter and the log of the lognormally distributed 
parameter.  This is probably not a useful result. 

 
• Researchers often find that the long, thick tail of the lognormal distribution produces an 

implausible distribution of parameters.  The restricted triangular distribution as well as 
several alternatives described in Section N29.3.8 may be preferable.  The skew normal 
distribution appears to be a very promising alternative. 

 
• Type ‘c’ is the same as not including the parameter in the Fcn list, which is how this usually 

should be done. But sometimes, for convenience, this might be preferred. Variable name(c) 
specifies a free mean and zero variance of the parameter. 

 
 Model results for these distributions will display the structural parameters, not necessarily 
the means and variances of the parameter distributions.  Note, for example, that the means of the 
lognormal and the Weibull distributions are not equal to β; for the lognormal it is exp(β+σ2/2) while 
for the Weibull it is β+2σΓ(1+1/√2).  Consider an example.  The following estimates a model with 
two random parameters.  We will use the normal, Weibull and exponentiated Weibull (our 
‘Rayleigh’) distributions.  Since the exponentiated Weibull estimator forces the coefficient to be 
positive, and the coefficients on the two variables would naturally be negative, we reverse the signs 
on the data before estimation. 
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The commands are: 
 
 CREATE ; mgc = -gc ; mttme = -ttme $ 

RPLOGIT ; Lhs = mode  ; Choices = air,train,bus,car 
; Rhs  = mgc,mttme 
; Rh2  = one 
; Fcn  = mgc(n),mttme(n) ? Normally distributed parameters 
; Maxit = 50 ; Pts = 25 ; Halton ; Pds = 3 $ 

RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
; Rhs  = mgc,mttme 
; Rh2 = one 
; Fcn  = mgc(w),mttme(w) ? Weibull distributed parameters 
; Maxit = 50 ; Pts = 25 ; Halton ; Pds = 3 $ 

RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
; Rhs  = mgc,mttme 
; Rh2  = one 
; Fcn = mgc(r),mttme(r) ? Modified Weibull distributed parameters 
; Maxit = 50 ; Pts = 25 ; Halton ; Pds = 3 $ 

 
These are the reported random parameter estimates.  (The nonrandom alternative specific constants 
are not shown.)  The values for the random parameters are β and σ.  For the normally distributed 
variables, these are the means and standard deviations.  For the other distributions, they are only the 
structural parameters.  To see the similarity, however, note for the coefficient on mgc in the Rayleigh 
model, exp(-3.35979) is about 0.034, which resembles the value for the normal distribution.  
Accounting for σ would likely bring them yet closer.  Section N29.8 considers methods of 
examining these effects empirically. 
 
--------+Multinomial logit with nonrandom parameters 
     MGC|     .01578***      .00438     3.60  .0003      .00719    .02437 
   MTTME|     .09709***      .01044     9.30  .0000      .07664    .11754 
--------+Normal Random parameters in utility functions 
        |Random parameters in utility functions 
     MGC|     .02167***      .00676     3.20  .0014      .00842    .03493 
   MTTME|     .14113***      .01952     7.23  .0000      .10287    .17938 
        |Distns. of RPs. Std.Devs or limits of triangular 
   NsMGC|     .00762         .01342      .57  .5702     -.01869    .03393 
 NsMTTME|     .07420***      .01494     4.97  .0000      .04492    .10347 
--------+Weibull Random parameters in utility functions 
        |Random parameters in utility functions 
     MGC|     .03194         .01957     1.63  .1027     -.00642    .07030 
   MTTME|     .23823***      .03315     7.19  .0000      .17327    .30320 
        |Distns. of RPs. Std.Devs or limits of triangular 
   WsMGC|     .00507         .00887      .57  .5673     -.01231    .02246 
 WsMTTME|     .05594***      .01258     4.45  .0000      .03129    .08059 
--------+Rayleigh  Random parameters in utility functions 
     MGC|   -3.35979**      1.38032    -2.43  .0149    -6.06516   -.65442 
   MTTME|   -1.26343***      .21593    -5.85  .0000    -1.68664   -.84021 
        |Distns. of RPs. Std.Devs or limits of triangular 
   RsMGC|     .32940         .90086      .37  .7146    -1.43626   2.09507 
 RsMTTME|     .47275***      .10965     4.31  .0000      .25784    .68765 
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N29.3.2 Spreads, Scaling Parameters and Standard Deviations 
 
 As evident in Section N29.2, with all its different components, the RPL model is 
complicated.  It is also necessary to note that the interpretation of the parameters is partly a function 
of the specification chosen.  What are described earlier as the ‘means’ and ‘variances’ are actually 
only those parameters in the simplest cases.  The reported parameters may need to be interpreted, 
and manipulated further to obtain the expected results.  We consider several examples.  In a model 
with a normally distributed parameter, 
 
   βi  =  β  +  δzi +  σvi, vi ~ N[0,1], 
 
(β + δzi) is, indeed, the conditional mean and σ is the standard deviation.  The model results might 
appear as follows, in which the parameter on variable mgc is specified to have a normal distribution 
with a mean that is a function of hinc, which has a mean of about 35.  The specification is 
 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = mgc,ttme,one 
   ; RPL = hinc ; Pts = 15 ; Maxit = 10 ; Pds = 3 ; Halton 
   ; Fcn = mgc(n) $ 
 
        |Random parameters in utility functions 
     MGC|     .01123         .01082     1.04  .2995     -.00999    .03245 
        |Nonrandom parameters in utility functions 
    TTME|    -.09941***      .01086    -9.15  .0000     -.12069   -.07813 
   A_AIR|    5.98884***      .69676     8.60  .0000     4.62321   7.35447 
 A_TRAIN|    4.08360***      .47295     8.63  .0000     3.15663   5.01057 
   A_BUS|    3.38479***      .48263     7.01  .0000     2.43886   4.33072 
        |Heterogeneity in mean, Parameter:Variable 
 MGC:HIN|     .00024         .00024      .99  .3241     -.00024    .00071 
        |Distns. of RPs. Std.Devs or limits of triangular 
   NsMGC|     .01924**       .00895     2.15  .0316      .00170    .03677 
 
According to these results, the population mean of parameters on mgc computed at the mean income, 
or an estimate of E[βi|E[zi]] ≈ EzE[βi|z]] is roughly .01123 + 35(.00024) = .01963 and the population 
standard deviation is about .01924.  Suppose in the same model, we change the distribution to 
lognormal with ; Fcn = mgc(l).  The results change to 
 
        |Random parameters in utility functions 
     MGC|   -4.68371***      .81153    -5.77  .0000    -6.27428  -3.09313 
        |Nonrandom parameters in utility functions 
    TTME|    -.09838***      .01033    -9.52  .0000     -.11863   -.07812 
   A_AIR|    5.90948***      .70945     8.33  .0000     4.51898   7.29998 
 A_TRAIN|    4.03754***      .49729     8.12  .0000     3.06287   5.01221 
   A_BUS|    3.32542***      .53657     6.20  .0000     2.27377   4.37707 
        |Heterogeneity in mean, Parameter:Variable 
 MGC:HIN|     .01198         .01477      .81  .4172     -.01696    .04092 
        |Distns. of RPs. Std.Devs or limits of triangular 
   LsMGC|     .77048         .65552     1.18  .2398     -.51431   2.05527 
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But, the reported parameters are those of the underlying normal distribution.  In this model, 
 
   βi  =  exp(β  +  δzi +  σvi), vi~ N[0,1]. 
 
The conditional (population) mean of the distribution will be 
 
   E[βi|zi]  =  exp(β  +  δzi+ σ2/2). 
 
Inserting the estimated parameters and the mean of 35 for income, we obtain an estimate of the 
overall population mean of 0.01892, which is quite similar to the .01963 for the normal distribution.  
The variance for the lognormal is obtained as 
 
   Var[βi|zi]  =  {E[βi|zi]}2 [exp(σ2) - 1]. 
 
Inserting our estimates and taking the square root produces an estimate of the population standard 
deviation of 0.017035.  The result for the normal distribution is .01925.  (We emphasize, we are 
implicitly averaging over incomes in these computations – the results are close to, but not exactly 
equal to the analytical results.) 
 The results for the lognormal distribution, correctly interpreted, are quite similar to those for 
the normal distribution.  The structural parameters, however, are quite different.  A similar 
characterization applies to the other distributions that are obtained as transformations of the 
underlying random terms.  In most cases, it is not possible to obtain closed form results for the 
overall means and variances – the lognormal distribution is a convenient special case.  The program 
will report its estimates of the structural parameters, but it is not generally possible to disentangle the 
reduced form to report the actual ‘mean’ and ‘standard deviation’ in spite of the labeling of the 
estimates in the program output. 
 Random parameter distributions that depend on the uniform distribution present another 
ambiguity in the interpretation of the results.  For the uniform distribution, we estimate the spread of 
the distribution, not the standard deviation or the variance.  Suppose we now change the earlier 
model to ; Fcn = mgc(u).  By this construction,  
 
   βi  =  β  +  δzi +  σvi, vi ~ U[-1,1], 
 
the values of βi are distributed uniformly between (β+ δzi - σ)  and (β+ δzi + σ).  The mean is β + δzi, 
but the variance is 4σ2/12, with a standard deviation of σ/√3.  The estimated parameters are as 
follows: 
 
        |Random parameters in utility functions 
     MGC|     .01081         .01051     1.03  .3037     -.00979    .03142 
        |Nonrandom parameters in utility functions 
    TTME|    -.09888***      .01077    -9.18  .0000     -.11999   -.07776 
   A_AIR|    5.95871***      .69349     8.59  .0000     4.59950   7.31792 
 A_TRAIN|    4.06604***      .47177     8.62  .0000     3.14139   4.99070 
   A_BUS|    3.36060***      .48065     6.99  .0000     2.41854   4.30266 
        |Heterogeneity in mean, Parameter:Variable 
 MGC:HIN|     .00024         .00024     1.00  .3161     -.00023    .00070 
        |Distns. of RPs. Std.Devs or limits of triangular 
   UsMGC|     .02859*        .01476     1.94  .0529     -.00035    .05753 
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Based on these results, the overall mean is about .01081 + 35(.00024) = .01921, again comparable, 
and the standard deviation is .016506.  What is reported is a scale factor, or spread parameter, not the 
standard deviation of the distribution.  The standard deviation would be .02859/√3. 
 The triangular distribution presents the same ambiguity.  In this model,  
 
   βi  =  β  +  δzi +  σvi, vi ~ Triangular[-1,1], 
 
The distribution has the shape shown in Figure N29.2 in Section N29.3.8.  The mean is β + δzi, but 
the variance is σ2/6, which is one half the variance of the uniform distribution with the same spread 
(and mean).  Repeating the previous estimation, now with ; Fcn =  mgc(t), we obtain the results 
below. 
 
        |Random parameters in utility functions 
     MGC|     .01083         .01061     1.02  .3077     -.00998    .03163 
        |Nonrandom parameters in utility functions 
    TTME|    -.09906***      .01081    -9.17  .0000     -.12024   -.07788 
   A_AIR|    5.96646***      .69391     8.60  .0000     4.60642   7.32651 
 A_TRAIN|    4.06893***      .47113     8.64  .0000     3.14554   4.99233 
   A_BUS|    3.36673***      .48073     7.00  .0000     2.42451   4.30895 
        |Heterogeneity in mean, Parameter:Variable 
 MGC:HIN|     .00024         .00024      .99  .3209     -.00023    .00071 
        |Distns. of RPs. Std.Devs or limits of triangular 
   TsMGC|     .04296**       .02159     1.99  .0466      .00064    .08529 
 
Now, the mean is .01923 and the standard deviation is .04296/√6 = .17538, 
 The preceding serves to emphasize the need to interpret the estimated model parameters on a 
case by case basis.  Each distribution has different characteristics.  Worse yet, in some of those cases, 
we do not even have the convenient formulas given above to use to convert the parameters to 
population moments.  Consider the Rayleigh distribution, which we obtain with ; Fcn = mgc(r).  For 
this model, 
   exp(β + δzi + σvi), vi = (-2log ui) √.5, ui ~ U[0,1]. 
 
The estimated parameters of the model are as follows: 
 
        |Random parameters in utility functions 
     MGC|   -3.23112***      .94955    -3.40  .0007    -5.09220  -1.37004 
        |Nonrandom parameters in utility functions 
    TTME|    -.09851***      .01046    -9.42  .0000     -.11900   -.07802 
   A_AIR|    5.93604***      .71733     8.28  .0000     4.53009   7.34199 
 A_TRAIN|    4.05857***      .50264     8.07  .0000     3.07341   5.04373 
   A_BUS|    3.34994***      .53989     6.20  .0000     2.29177   4.40811 
        |Heterogeneity in mean, Parameter:Variable 
 MGC:HIN|     .01252         .01541      .81  .4164     -.01767    .04271 
        |Distns. of RPs. Std.Devs or limits of triangular 
   RsMGC|     .90592         .75815     1.19  .2321     -.58004   2.39187 
 
There is no obvious way to translate these back to a mean and variance.  But, there is an indirect 
method that is developed further in Section N29.8.   
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If you add 
 

   ; Parameters 
 
to your RPLOGIT command, then NLOGIT creates two matrices from the model results.  The 
matrix beta_i contains for each random parameter (column) and each individual (row), an estimate of 
 
   ˆ ˆ[ | all information about individual ]ik ikE iβ = β . 
 
(The method of computation is discussed in Section N29.8.) The information about individual i 
includes their choices, so this is not quite the same as the estimator that we are using above, E[βi|zi].  
But, since the average of conditional means gives the unconditional mean, the average of the 
estimates contained in beta_i provides an estimator of the conditional population mean that we are 
estimating above.  A second matrix named sdbeta_i reports the estimated standard deviations of this 
distribution.  Figure N29.1 below shows the first 20 rows of this 70×1 matrix as created by the model 
command that generated the Weibull results above. 
 

 
Figure N29.1  Estimated Conditional Means and Standard Deviations 

 
We can estimate the overall mean by averaging the elements in beta_i.  This produces 
 
 MATRIX ; List ; ebi = 1/70*beta_i'1 $ 
 
       EBI|             1 
  --------+-------------- 
         1|      .0197955 
 
which is the now familiar result.  Estimating the population variance is a bit more complicated 
because the population variance is not the average of the conditional variances.  Rather, the variance 
we seek equals the average of the conditional variances (squares of the elements in sdbeta_i) plus the 
variance of the conditional means.  This is pursued in greater detail in Section N29.8.   
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The computation can be done (a bit inelegantly) with 
 
 MATRIX ; vi = Dirp(sdbeta_i,sdbeta_i) $ 
 MATRIX ; evi = 1/70*vi'1 ; vei = 1/70*beta_i'beta_i - ebi*ebi $ 
 MATRIX ; v = evi + vei ; Peek ; sd = Sqrt(v) $ 
 
Display of all internal digits of matrix SD 
SD      [0001] =    .16969722289433440D-01 
 
The result of this computation is 0.01696972.  Recall, the counterpart for the normal distribution that 
we examined at the outset was .01924. 
 
N29.3.3 Alternative Specific Constants 
 

If you have used the ; Rhs = list specification with choices specific constants, then the 
constants will be labeled a_name.  For example, if you have used 
 

; Choices = bus,train,car 
; Rhs = one,cost 

 
then to specify the model for random ASCs, you might use  
 

; Fcn = a_bus(n),a_train(n) 
 
If you are using the ; Model: form, then you will have supplied your own names for the ASCs. 
 Random choice specific constants in the random utility model with cross section data 
produce a random term that is a convolution of the original extreme value random variable and the 
one specified in your model command.  Suppose, for example, that you specify a normally 
distributed random constant for ‘car.’  Then, the utility function for car will be 
 
   U(car) =  αcar  +  (the rest of the utility function)  +  σcarvcar  +  εcar 

    =  αcar  +  (the rest of the utility function)  +  ucar. 
 
The random term in this equation is the sum of a normally distributed variable and one with an 
extreme value distribution.  This produces a different stochastic model, but probably not a useful 
extension of the model in general.  For this reason, unless you are using panel data – see Section 
N29.10 – it is generally not useful to specify random constant terms in the random parameters logit 
model.  That said, however, there is an exception which might prove useful.  Random constant terms 
that are correlated will produce correlation across the alternatives, which is one of the oft cited 
virtues of the multinomial probit model.  In addition, the error components logit specification 
produces a useful extension that serves much the same function as a random constant term. 
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N29.3.4 Heterogeneity in the Means of the Random Parameters 
 

The RPLOGIT command requests the random parameters model generally, with the 
parameters specified in the ; Fcn list varying around a mean that is the same for all individuals.  The 
variables in zi provide the variation of the mean across individuals.  To specify the variables in zi, use 

 
; RPL = list of variables in zi 

 
If you desire to specify that zi enter the means of some of the coefficients but not all, you can change 
the specification of the random coefficients in the ; Fcn specification as follows: 
 
   name (type) implies zi enters the mean 
   name [type] implies that zi does not enter the mean. 
 
The difference here is the parentheses in the first as opposed to the brackets in the second.  The 
second of these forces the applicable row of ∆ to contain zeros instead of free parameters.  There are 
also some variations on this specification that allow some flexibility in the construction of ∆.  First, 
an alternative, equivalent form of name [type] is 
 

  name (type | #)  
 
This requests that if there are RPL variables (; RPL = list), these not appear in the mean for this 
parameter. This puts a row of zeros in the ∆ matrix.  For example, 
 
   ; RPL = income  

  ; Fcn = gc(n),ttme(n|#)  
 
specifies that income does not appear in the mean of the ttme parameter. This form may be extended 
to exclude and include specific variables from the RPL list in the mean of a particular parameter.  
The specification is 

  name (type | # pattern)  
 
where the pattern consists of ones and zeros which indicate which variables in the list are included 
(ones) and excluded (zeros).  There must be the same number of items in the pattern as there are in 
the list. For example, the specification 

 
  ; RPL = age,sex,income  
  ; Fcn  = gc(n), 
    ttme (n|#101) 
    invt (n|#011) 
    invc (n|#000) 

 
includes all three variables in the mean of gc, excludes sex from the mean of ttme, excludes age from 
the men of invt, and excludes all three variables from the mean of invc.  All parameters may be 
specified independently, and there is no restriction on how this feature is used.  Do note, however, if 
you exclude an RPL variable from all parameters, the model becomes inestimable. 
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N29.3.5 Fixed Coefficients 
 

You may use 
 

; Fix = variable [value],...   
or    ; Fix = name [value] 
 
to fix the coefficient on the specified variable at the value given in the ; Rhs = list form and label 
[value] in the utility specification.  This will override this entire specification for the indicated 
coefficient, in that ; Fix specifies not only that zi not enter the mean of the coefficient, but that the 
variance be zero as well.  
 
N29.3.6 Correlated Parameters 
 

The model specified thus far assumes that the random parameters are uncorrelated.  Use 
 

   ; Correlation 
 
to allow free correlation among the parameters.  In this case, estimates of the below diagonal 
elements of Γ will be obtained with the other parameters of the model.  After these are presented, the 
elements of Σ = ΓΓ′ are given. An example appears below.  Some ambiguity in the results will be 
unavoidable when this feature is used with other modifications of the model, such as mixed 
distributions and heteroscedasticity.  The most favorable case for use of this feature would be a 
sparse model, 
   βi  =  β  +  Γvi. 
 
We would note, many, perhaps most of the received applications of the mixed logit model are of this 
form – it is much less restrictive than its bare appearance would suggest. 
 In the model developed thus far, the covariance matrix for the random components for the 
simple distributions (normal, uniform, triangle) is 
 
   Var[βi|xi,zi]  =  Σ  =  ΓΓ′. 
 
In the uncorrelated case, Γ is a diagonal matrix, and the variance of βik is simply σk

2.  When the 
parameters are correlated, then the diagonal element of Σ is γk′γk where γk is the kth row of Γ.   The 
model results will show the elements of Γ and the implied standard deviations.  The following 
demonstrates the computations.  The command below specifies two correlated random parameters. 
 

RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
; Rhs  = gc,ttme 
; Rh2  = one 
; Fcn  = gc(n),ttme(n)  
; Correlated 
; Maxit = 50 ; Pts = 25 ; Halton ; Output = 3 ; Pds = 3 $ 
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The relevant results from estimation are as follows.  The coefficients reported are, first, β from the 
random parameter distributions, then the nonstochastic β from the distributions of the nonrandom 
alternative specific constants.  The next results display the elements of the 2×2 lower triangular matrix, 
Γ.  The diagonal elements appear first, then the below diagonal element(s).  The ‘Standard deviations 
of parameter distributions’ are derived from Γ.  The first is (.009732)1/2 = .00973.  The second is          
((-.07128)2 + .036162)1/2 = .07993.  The standard errors for these estimators are computed using the 
delta method.  Hensher, Rose and Greene (2005a) discuss the Cholesky decomposition in detail.  
 
----------------------------------------------------------------------------- 
Random Parameters Logit Model 
Dependent variable                 MODE 
Log likelihood function      -169.41265 
Restricted log likelihood    -291.12182 
Chi squared [   8 d.f.]       243.41833 
Significance level               .00000 
McFadden Pseudo R-squared      .4180695 
Estimation based on N =    210, K =   8 
Inf.Cr.AIC  =    354.8 AIC/N =    1.690 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .4181 .4106 
Constants only   -283.7588  .4030 .3953 
At start values  -199.9766  .1528 .1419 
Response data are given as ind. choices 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
RPL model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|    -.02240***      .00644    -3.48  .0005     -.03502   -.00977 
    TTME|    -.14423***      .02184    -6.61  .0000     -.18703   -.10143 
        |Nonrandom parameters in utility functions 
   A_AIR|    8.61917***     1.07974     7.98  .0000     6.50292  10.73542 
 A_TRAIN|    6.87634***      .91972     7.48  .0000     5.07372   8.67896 
   A_BUS|    6.03178***      .90733     6.65  .0000     4.25345   7.81012 
        |Diagonal values in Cholesky matrix, L. 
    NsGC|     .00973         .00762     1.28  .2019     -.00521    .02466 
  NsTTME|     .03616         .03176     1.14  .2549     -.02610    .09842 
        |Below diagonal values in L matrix. V = L*Lt 
 TTME:GC|    -.07128***      .02311    -3.08  .0020     -.11657   -.02599 
        |Standard deviations of parameter distributions 
    sdGC|     .00973         .00762     1.28  .2019     -.00521    .02466 
  sdTTME|     .07993***      .01792     4.46  .0000      .04480    .11506 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Correlation Matrix for Random Parameters 
--------+---------------------------- 
Cor.Mat.|            GC          TTME 
--------+---------------------------- 
      GC|       1.00000      -.891811 
    TTME|      -.891811       1.00000 
--------+---------------------------- 
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 We emphasize, these results apply to the linear functions of the underlying random variables, 
not necessarily to the implied distributions of the random parameters themselves.  In most of the 
specifications, the parameters involve nonlinear transformations of these variables.  A method of 
examining the results empirically is suggested in Section N29.8. 
 You may impose some restrictions on the correlation matrix by using 
 
   ; Cor = pattern list 
 
where the pattern list defines where zero and nonzero entries appear in Γ.  The entire matrix must be 
specified.  For example, 
 
   ; Cor = 1, 1,1, 0,0,1, 0,0,0,1, 0,0,0,1,1 
 
specifies a matrix in which parameter 3 is uncorrelated with all the others, and several other 
restrictions.  Some cautions: A zero on the diagonal will prevent convergence.  This is a somewhat 
volatile feature; some patterns will produce an inestimable model.  This is data dependent, so it is not 
possible to enumerate the situations.  The following uses this device to make the parameters on gc 
and ttme uncorrelated in this model. 
 

RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
; Rhs  = gc,ttme,invc 
; Rh2  = one 
; Fcn  = gc(n),ttme(n),invc(n) 
; Cor=1, 0,1, 1,1,1 
; Maxit = 50 ; Pts = 25 ; Halton ; Output = 3 ; Pds = 3 $ 

 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|    -.02610**       .01026    -2.54  .0110     -.04622   -.00598 
    TTME|    -.07707***      .01090    -7.07  .0000     -.09843   -.05571 
    INVC|     .01304         .01099     1.19  .2354     -.00850    .03458 
        |Nonrandom parameters in utility functions 
   A_AIR|    5.35798***     1.18878     4.51  .0000     3.02802   7.68794 
 A_TRAIN|    3.82199***      .55031     6.95  .0000     2.74340   4.90058 
   A_BUS|    3.17271***      .53329     5.95  .0000     2.12748   4.21794 
        |Diagonal values in Cholesky matrix, L. 
    NsGC|     .01683         .01028     1.64  .1017     -.00333    .03699 
  NsTTME|     .01281         .02760      .46  .6425     -.04129    .06692 
  NsINVC|     .01533         .01049     1.46  .1442     -.00524    .03589 
        |Below diagonal values in L matrix. V = L*Lt 
 TTME:GC|        0.0    .....(Fixed Parameter)..... 
 INVC:GC|    -.00796         .01005     -.79  .4283     -.02766    .01174 
INVC:TTM|    1.00010***      .07133    14.02  .0000      .86030   1.13990 
        |Standard deviations of parameter distributions 
    sdGC|     .01683         .01028     1.64  .1017     -.00333    .03699 
  sdTTME|     .01281         .02760      .46  .6425     -.04129    .06692 
  sdINVC|    1.00025***      .07133    14.02  .0000      .86044   1.14005 
--------+-------------------------------------------------------------------- 
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Correlation Matrix for Random Parameters 
--------+------------------------------------------ 
Cor.Mat.|            GC          TTME          INVC 
--------+------------------------------------------ 
      GC|       1.00000       .000000    -.00796080 
    TTME|       .000000       1.00000       .999851 
    INVC|    -.00796080       .999851       1.00000 
--------+------------------------------------------ 
 
N29.3.7 Restricted Standard Deviations and Hierarchical Logit 
Models 
 

The unconditional standard deviations of the random parameters (before any consideration 
of heteroscedasticity), σk are placed on the diagonal of Γ for purpose of estimation. You may restrict 
the diagonal elements of Γ by specifying that they be either free parameters or be fixed at specific 
values.  The device is 
 
   ; SDV = list of specifications 
 
The list of specifications is one symbol for each random parameter, in the order in which they are 
given in your ; Fcn specification.  Use any alphabetic symbol for a free parameter, or the desired 
fixed value, including 0.0 if desired, for the fixed parameters.  For example, suppose your 
specification were 
   ; Fcn = gc(n),ttme(n),invt(n) 
 
(invt is in vehicle time).  You could specify 
 
   ; SDV = 0,stt,sit 
 
This makes the coefficient on gc (generalized cost) nonrandom, as its standard deviation is zero.  As 
stated, with no other specifications, this is an ambiguous specification.  The same effect could be 
achieved just by putting gc among the nonrandom parameters.  But, you can use this device to create 
a ‘hierarchical’ model.  Consider the specification 
 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme,invt 
   ; Rh2 = one 
   ; RPL = age,income 
   ; Fcn = gc(n),ttme[n],invt[n] 
   ; SDV = 0,stt,sit 
 
This produces the model 
 
 U(air) = αair + (β + δ1age + δ2income) ×gc + (βttme + vttme) ×ttme + (βinvt + vinvt) ×invt + εa 

 U(train) = αtrain + (β + δ1age + δ2income) ×gc + (βttme + vttme) ×ttme + (βinvt + vinvt) ×invt + εt 
 U(bus) = αbus + (β + δ1age + δ2income) ×gc + (βttme + vttme) ×ttme + (βinvt + vinvt) ×invt + εb 
 U(car) =  (β + δ1age + δ2income) ×gc + (βttme + vttme) ×ttme + (βinvt + vinvt) ×invt + εc 



N29: Random Parameters Logit Model  N-542 

NOTE:  Using ‘name(c)’ in the ; Fcn specification is the same as setting a standard deviation to 
zero with ; SDV. 
 
 You can take this a bit further and use this device to specify an entirely nonrandom, 
hierarchical parameter vector.  The simplest way to do so is to use 
 
   ; RPL = the list of variables  
   ; Fcn = name(c),name(c), ... 
 
This specifies that all parameters are to be nonrandom, and to have means that are functions of the 
variables in the RPL list.  For example, 
 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme 
   ; Rh2 = one 
   ; RPL = age,income 
   ; Fcn = gc(c),ttme(c) 
 
This produces the model 
 
 U(air) = αair + (βgc + δ1gage + δ2gincome) ×gc + (βtt + δ1tage + δ2tincome) ×ttme + εa 

 U(train) = αtrain + (βgc + δ1gage + δ2gincome) ×gc + (βtt + δ1tage + δ2tincome) ×ttme + εt 
 U(bus) = αbus + (βgc + δ1gage + δ2gincome) ×gc + (βtt + δ1tage + δ2tincome) ×ttme + εb 
 U(car) =            (βgc + δ1gage + δ2gincome) ×gc + (βtt + δ1tage + δ2tincome) ×ttme + εc 
 
This is a convenient way to create interactions between attributes (such as gc) and characteristics 
(such as age and income). 
 This method of formulating the model can produce large numbers of parameters and produce 
instability in the estimator.  One possibility in this event is to create interaction terms and specify 
them with random parameters.  For example, 
 
 CREATE : gc_age = gc*age $ 
 RPLOGIT ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme,gc_age 
   ; Rh2 = one 
   ; RPL  
   ; Fcn = gc(c),ttme(c),gc_age(n) $ 
 
corresponds to the model 
 
 U(air) = αair + βgc×gc + βtt×ttme + (βgc_age + v) ×gc×age + εa 

 U(train) = αtrain + βgc×gc + βtt×ttme + (βgc_age + v) ×gc×age + εt 
 U(bus) = αbus + βgc×gc + βtt×ttme + (βgc_age + v) ×gc×age + εb 
 U(car) =          βgc×gc + βtt×ttme + (βgc_age + v) ×gc×age + εc 
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N29.3.8 Special Forms of Random Parameter Specifications 
 
 Several particular forms of random parameter specifications are provided for particular 
model aspects. 
 
Restricting the Sign of a Parameter 
 
 There are many applications in which it is believed a priori that the sign of a coefficient must 
always be positive (or negative).  Several of the available distributions allow you to force the sign of 
a coefficient to be positive.  These include the following types 
 
 o one sided triangular βi  =  β  + βvi, vi ~ triangular (-1,1) (σ = β) 

 l  lognormal  βi  =  exp(β + σvi), vi ~ N[0.1] 

 x maximum  βi =  Max(0, β + σ vi) vi ~ N[0.1] 

 r Rayleigh  βi  =  exp(β + σvi), vi = 2(-log ui) √.5, ui ~ U[0,1] 

b beta, scaled  βi  =  βvi, vi ~ beta(3,3) 

q exponential, scaled βi  =  βvi, vi ~ exponential(1) 

v exp(triangle)  βi  =  exp(βi (triangular)) 

 
If you need to force a coefficient to be negative, rather than positive, you can use these distributions 
anyway – just multiply the variable by -1 before estimation.  (Note, what we have labeled the 
‘Rayleigh’ variable is not actually a Rayleigh variable, though it does resemble one. (We are using 
up the available symbols, however, so we have borrowed this one.)  It has a shape similar to the 
lognormal, however, its tail is thinner, so it may be a more plausible model. Do note, however, if you 
specify these distributions for a coefficient which would be negative if unrestricted, the estimator 
will fail to converge, and issue a diagnostic that it could not locate an optimum of the function (log 
likelihood). Note, as well, the maximum and minimum specifications are not continuous in the 
parameters, and will often not be estimable. 
 
Restricting the Range of a Parameter 
 
 Researchers often find that the infinite range of the normal distribution is unsatisfactory for the 
parameter in question.  The fact that it allows coefficients, such as a price coefficient to take either sign 
is also implausible.  The distributions noted above can be used to restrict the sign of a coefficient.  You 
can also restrict the range of a coefficient.  The following tighten the restrictions on the parameter 
distribution.  Some distributions construct the range of variation to be β+σ.  What we have labeled the 
‘dome’ distribution is constructed from the beta(2,2) which has a smooth, symmetric, dome shaped 
distribution in (0,1).  These two distributions specifically limit the range of a coefficient. 
 
 u uniform   βi  =  β + σvi, vi ~ U[-1.1] 

 t  triangular  βi  =  β + σvi, vi ~ triangle[-1.1] 

 d dome   βi  =  β + σvi, vi ~ 2beta(2,2) - 1 
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Anchoring a Distribution at Zero 
 
 Seven alternative specifications allow you to force the entire parameter distribution to lie on 
one side of zero.  These are  
 
 g gamma   βi  =  βvi, vi ~ gamma(1,4), 

 q exponential, scaled βi  =  βvi, vi ~ exponential 

 a Rayleigh  βi  =  exp(β+ σvi),vi~ Weibull, 

 b beta, scaled  βi  =  βvi, vi~ beta(2,2), 

 t triangle   βi  =  β + βvi, vi ~ triangle[-1,1], 

 u uniform   βi  =  β + βvi, vi ~ U[0,1], 

 l lognormal  βi  =  exp(β + σvi), vi ~ N(0,1). 
 
The effect is achieved in three ways in the preceding list.  The lognormal variable naturally ranges 
from 0.0 to +∞.  For the gamma, exponential-A, Weibull-A and beta cases, the estimated 
parameter ‘mean’ now acts as a scale factor against the underlying random variable, which is 
positive.  These four specifications anchor the distribution at zero at one end.  The direction of the 
variation is determined by β.  This is not restricted.  Note that no σ parameter is specified.  If you 
use this model, σ is constrained to equal zero, and any variance heterogeneity specified is not 
applied to this parameter.  Also, if parameters are assumed to be correlated, that feature is disabled 
for these parameters as well.  For the gamma distribution, the mean of the underlying variable is 4, 
so the mean of the parameter distribution is 4β.  For the beta distribution, it is β/2, while for the 
Rayleigh, the form we have chosen has a mean of 2Γ(1+0.50.5) = 2(.910005) = 1.82001.  (See 
http://mathworld.wolfram.com/WeibullDistribution.html.)  Hence, the mean of the scaled Rayleigh 
distribution is β×1.82001.  The exponential random variable has a mean of one, so the mean of the 
parameter distribution in this case is β.  Note that in all four cases, we are restricting the shape of 
the distribution as well as the mean and variance.  The first three of these are likely to be attractive 
alternatives to the lognormal distribution.  Finally, the triangle and uniform distributions are 
constructed so that the spread parameter equals the mean parameter.  This construction is 
described in the next section.  The beta model is likely to be an attractive alternative to the triangle 
and uniform models because of the smoothness of the distribution. 
 
Restricting the Sign and Range of a Triangular Parameter 
 

A common device used to fix the sign of a parameter is to specify that it have a lognormal 
distribution.  However, the lognormal distribution has a long, thick tail, which can imply an 
implausible empirical distribution of parameter values.  An alternative is to use a random parameter 
with a finite range of variation.  You may do this with the triangular, uniform or beta distribution, using 
 
 ; Fcn = name(o) for triangular, or ; Fcn = name(f) for uniform or (h) for beta 
 
This specifies that the mean of the distribution is a free parameter, β, but the two endpoints of the 
distribution are fixed at zero and 2β, so there is no free variance (scaling) parameter.  The parameter 
can be positive or negative.  Figure N29.2 shows the result of this specification for these three 
distributions with β = 1.375. 

http://mathworld.wolfram.com/WeibullDistribution.html�
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Figure N29.2  Estimated Constrained Triangular Distribution 

 
Fixing the Mean of a Parameter 

 
Use 
  ; Fcn = name(type|value) 

 
to fix the parameter at the specified value (with zero variance). The type is actually irrelevant, but 
something must be there as a placeholder.  For example, 

 
  ; Fcn = gc(c | -.02)   

 
fixes the parameter at -.02.  If you use this feature in a model with a heterogeneous mean, then the 
parameters in the heterogeneity component are fixed at zero.  We do note a caution.  If you attempt 
to fix a parameter at a value that is far from the unrestricted value, you may cause instability in the 
estimator.  Nonsense values of parameters will produce nonsense results.  The indicator that this 
happens will sometimes be instant convergence of the iterations at implausible estimates of the 
model parameters. 
 
Fixing the Scaling Parameter 

 
The specification 
 
  ; Fcn = name (type, value) 

 
specifies that the scaling parameter is equal to the absolute value of the mean of the distribution 
times the value given.  The value given may equal one.  For example, 
 
   ; RPL = income  

  ; Fcn = invt(n,1)  
 
says the σinvt = 1 * |βinvt|  The parameter that enters the absolute value function is the constant term in 
the parameter mean.   
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In the preceding example, we would have 
 
   βi,invt = β + δincome + σinvtvi,invt, 

   σinvt = 1 × |β|. 
 
(Note that when you have a heterogeneous mean, this construction becomes somewhat ambiguous.  
For the specification above, for example, if the uniform distribution were specified, the range of 
variation of the parameter, for a given value of income is from δincome to δincome + 2β.)  The 
uniform and triangular distributions with value = 1 are special cases, as this device allows you to 
anchor the distribution at zero for this case. 
 
Constraining Both Mean and Scaling Parameter 
 
 The specification 
 

  ; Fcn = name (type,#,value)  
 
places a zero row in ∆and constrains the corresponding σ to equal value * |β|.  This specifies the 
same as (type,value) except in addition, if there are variables in the ;RPL = list, these variables do 
not enter the mean of this parameter. This combines (type,value) and (type|#). When specifying a 
fixed coefficient, you can use name(type,#,1). 
 
Fixing the Mean at a Value 

 
The specification 
 
  ; Fcn = name (type,*,value)  

 
specifies that the mean of the parameter distribution is fixed at this value and the variance is free.  
This also makes sure that any ;RPL = list variables do not enter the mean of this parameter.  This 
may not be used with the triangular or uniform distribution.  Note: this allows a type of ‘random 
effects’ model by fixing a parameter at zero but allowing its variance to be free. (The error 
components logit model of Chapter N30 and Section N29.5 is another, more direct approach for this 
same application.) This specification must be used carefully. Fixing parameters in MNL models at 
values far from the MLEs can produce numerical instability in the estimator.  The following shows a 
small application of this specification.  This is a random effects model with two common effects, one 
shared by the private modes, air and car, and the other shared by the public modes, bus and train. 

The commands are: 
 

CREATE ; apriv = aasc + casc ; apub = tasc + basc $ 
RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 

; Rhs  = gc,ttme,apriv,apub ; Rh2 = one 
; Fcn  = apriv(n,*,0),apub(n,*,0) 
; Maxit = 50 ; Pts = 25 ; Halton ; Output = 3 ; Pds = 3 $ 
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----------------------------------------------------------------------------- 
Random Parameters Logit Model 
Dependent variable                 MODE 
Log likelihood function      -196.32280 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
RPL model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
   APRIV|        0.0    .....(Fixed Parameter)..... 
    APUB|        0.0    .....(Fixed Parameter)..... 
        |Nonrandom parameters in utility functions 
      GC|    -.01587***      .00480    -3.30  .0010     -.02528   -.00646 
    TTME|    -.10009***      .01143    -8.75  .0000     -.12249   -.07768 
   A_AIR|    6.00286***      .72222     8.31  .0000     4.58733   7.41840 
 A_TRAIN|    4.04405***      .54052     7.48  .0000     2.98464   5.10345 
   A_BUS|    3.34499***      .54667     6.12  .0000     2.27353   4.41645 
        |Distns. of RPs. Std.Devs or limits of triangular 
 NsAPRIV|     .17603        3.19219      .06  .9560    -6.08055   6.43261 
  NsAPUB|    1.38597**       .61866     2.24  .0251      .17343   2.59852 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 

N29.3.9 Other Optional Specifications 
 

Elasticities, marginal effects, etc. are requested as usual, as are ; Prob = name, ; Ivb = name, 
and ; Utility = name for keeping estimated probabilities, inclusive values, and estimated utilities.  The 
inclusive value is the IV for the entire model, since this is a one level model.  IVs are sometimes used 
for computing consumer surplus measures.  Other standard output and optimization options are also 
used as in other models.  (See Chapter N19.) The parameters used in computing the probabilities, 
elasticities, utilities, simulations (see Chapters N21 and N22), and so on, are the individual specific 
estimates described in Section N29.8.  Elasticities and partial effects reported by this model account for 
all the aspects of the model, and include multiple effects if a variable appears in more than one place in 
the model. 
 The following options are not available for this model: 
 

• Choice based sampling 
• Scaling of the data and searching for a scale factor 
• Nesting – this is a one level model 
• Conditional probabilities – probabilities in this model are unconditional 

 
Also, though there are several ways for you to set the starting values for the estimator, unless there is 
some compelling reason to do so, it is best to let the program choose its own values. 
 The model may be fit with ranks data.  However, in order to set up that model properly, you 
must fit the model first without ranks data, using the first ranked choice in the choice model.  (This 
would be a natural step in any event.) 
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N29.4 Heteroscedasticity and Heterogeneity in the Variances 
 

 The random parameters model allows heterogeneity in the variances as well as in the means 
in the distributions of the random parameters.  The model is expanded to 
 

  σik  = σk exp[ωk′hri], 
 

If γ equals 0, this returns the homoscedastic model.  The implied form of the RPL model is 
 
   βik =  β + δk′zi  +  σikvik. 
    =  β + δk′zi  +  σk exp(ωk′hri)vik. 
 
 Request the heteroscedasticity model with 
 

  ; Hfr  = list of variables in hri 
 
The variables in hri may be any variables, but they must be choice invariant. Only the last value in J 
rows for choice situation it is used. This specification will produce the same form of heteroscedasticity 
in each parameter distribution – note that each parameter has its own parameter vector, γk. 
 Section N29.3.4 describes a method of modifying the specification of the heterogeneous 
means of the parameters so that some RPL variables in zi may appear in the means of some 
parameters and not others.  A similar construction may be used for the variances.  The general form 
of the specification is as follows:  For any parameter specification, 
 
   ; Fcn  = name (type ...) 
 
(it may contain more information beyond just the distribution type), the specification may end with 
an exclamation point, ‘!’ to indicate that the particular parameter is to be homoscedastic even if 
others are heteroscedastic.  For example, the following produces a model with heterogeneous means, 
and one heteroscedastic variance: 
 
   ; RPL = age,sex 
   ; Hfr = income 
   ; Fcn = gc(n),ttme(n | # 01 !) 
 
The parameter on gc has both heterogeneous mean and heteroscedastic variance.  The parameter on 
ttme has heterogeneous mean, but age is excluded, and homogeneous variance.  Note that there are 
no commas before or after the !.  As in the case of the means, when there is more than one Hfr 
variable, you may add a pattern to the specification to include and exclude them from the model.  To 
continue the previous example, consider 
 
   ; RPL = age,sex 
   ; Hfr = income,family,urban 
   ; Fcn = gc(n),ttme(n | # 01 ! 101) 
 

Now, the variance for gc includes all three variables, but the variance for ttme excludes family. 
 

NOTE:  The model with both correlated parameters (; Correlated) and heteroscedastic random 
parameters is not estimable.  If your model command contains both ; Correlated and ; Hfr = list, 
the heteroscedasticity takes precedence, and the ; Correlated is ignored. 
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N29.5 Error Components 
 
 In the model thus far, unobserved heterogeneity is introduced into the model through the 
random parameters.  The probability for alternative j by individual i in choice situation t is 
  

   Prob(yit = j)  =  
1

exp

expi

ji i jit
J

qi i qitq=

′ α + 
′ α + ∑

x

x

β

β
, 

 
Chapter N30 introduces an alternative model in which the unobserved heterogeneity is brought into 
the model in the form of individual specific random effects that are associated with the choices, not 
the parameters.  The probability for alternative j by individual i in choice situation t in that model is 
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Note that the taste parameters in this model, β, and the alternative specific constants, αj are fixed 
(nonrandom).  The random parameters model described in this chapter and the error components 
model described in Chapter N30 may be combined simply by adding the error components 
specification to the random parameters model already described.  The new specification is 
 
   ; ECM = the specification of the error components 
 
The specification is described in detail in Section N30.2.  With this specification, the random 
parameters model is expanded to 
 

   Prob(yit = j)  =  1
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Nothing in the random parameters model is changed.  This feature is simply layered on top of it.  All 
of the features of the error components model are supported as well.  This includes heterogeneity in 
the variances (heteroscedasticity) of the error components.  The model now becomes the most 
general form of the random parameters model, 
 

   Prob(yit = j)  =  1
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This model is specified with 
 
   ; Hfe = the list of variables in hei 
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(Note, ; Hfr specifies the heteroscedasticity in the random parameters and ; Hfe specifies the 
heteroscedasticity in the random error components.)  The full specification of this model appears in 
Section N29.3.  
 The following shows a small example.  The model contains two correlated random 
parameters: 
 
 CREATE ; mgc = -gc ; mttme = -ttme $ 

RPLOGIT ; Lhs = mode   
  ; Choices = air,train,bus,car 

; Rhs = mgc,mttme 
; Rh2 = one 
; Fcn = mgc(n),mttme(n)  
; Correlated  
; ECM = (air,car),(train,bus) 
; Maxit = 50 ; Pts = 25 
; Halton ; Pds  = 3 $ 

 
The full set of results for this model is shown below. 
 
----------------------------------------------------------------------------- 
Start values obtained using MNL model 
Dependent variable               Choice 
Log likelihood function      -199.97662 
Estimation based on N =    210, K =   5 
Inf.Cr.AIC  =    410.0 AIC/N =    1.952 
Model estimated: Sep 20, 2011, 22:21:26 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .2953 .2839 
Chi-squared[ 2]          =    167.56429 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     MGC|     .01578***      .00438     3.60  .0003      .00719    .02437 
   MTTME|     .09709***      .01044     9.30  .0000      .07664    .11754 
   A_AIR|    5.77636***      .65592     8.81  .0000     4.49078   7.06194 
 A_TRAIN|    3.92300***      .44199     8.88  .0000     3.05671   4.78929 
   A_BUS|    3.21073***      .44965     7.14  .0000     2.32943   4.09204 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Line search at iteration   29 does not improve fn. Exiting optimization. 
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----------------------------------------------------------------------------- 
Random Parms/Error Comps. Logit Model 
Dependent variable                 MODE 
Log likelihood function      -162.36216 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
RPL model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Hessian is not PD. Using BHHH estimator 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
     MGC|     .03217***      .00751     4.29  .0000      .01746    .04688 
   MTTME|     .16313***      .02901     5.62  .0000      .10628    .21998 
        |Nonrandom parameters in utility functions 
   A_AIR|    10.2395***     1.73855     5.89  .0000      6.8320   13.6470 
 A_TRAIN|    8.57301***     1.68226     5.10  .0000     5.27585  11.87018 
   A_BUS|    7.56924***     1.84504     4.10  .0000     3.95303  11.18546 
        |Diagonal values in Cholesky matrix, L. 
   NsMGC|     .01267         .01142     1.11  .2669     -.00970    .03505 
 NsMTTME| .14029D-04         .03499      .00  .9997 -.68561D-01  .68589D-01 
        |Below diagonal values in L matrix. V = L*Lt 
MTTM:MGC|     .08814***      .02594     3.40  .0007      .03730    .13897 
        |Standard deviations of latent random effects 
SigmaE01|    2.16127**       .87386     2.47  .0134      .44852   3.87401 
SigmaE02|     .69870        1.37520      .51  .6114    -1.99665   3.39405 
        |Standard deviations of parameter distributions 
   sdMGC|     .01267         .01142     1.11  .2669     -.00970    .03505 
 sdMTTME|     .08814***      .02594     3.40  .0007      .03730    .13897 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 Random Effects Logit Model 
 Appearance of Latent Random Effects in Utilities 
 Alternative   E01 E02 
+-------------+---+---+ 
|  AIR        | * |   | 
+-------------+---+---+ 
|  TRAIN      |   | * | 
+-------------+---+---+ 
|  BUS        |   | * | 
+-------------+---+---+ 
|  CAR        | * |   | 
+-------------+---+---+ 
 
Covariance Matrix for Random Parameters 
Matrix COV.MAT. has  2 rows and  2 columns. 
         MGC           MTTME 
        +---------------------------- 
MGC     |     .00016       .00114 
MTTME   |     .00114       .00788 
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N29.6 Controlling the Simulations 
 

 There are two parameters of the simulations that you can change, the number of draws used 
in the replications and the type of sequence used to effect the integration. 
 

N29.6.1 Number and Initiation of the Random Draws 
 

 R is the number of points (replications) in the simulation.  Authors differ in the appropriate 
value. Generally, the more complex the model is, and the greater the number of random parameters in 
it, the larger will be the number of draws required to stabilize the estimates. Train (2009) recommends 
several hundred.  Bhat (2001) suggests 1,000 is an appropriate value.  The program default is 100.  You 
can choose the value with 
 

   ; Pts  =  number of draws, R 
 
The RPL model is fairly time consuming to estimate.  For exploratory work while you develop a 
final model specification, you will find that setting R to a small value such as 10 or 20 (as we do in 
the examples in this chapter) will be a useful time saver.  Once a specification is finalized, a larger 
value will be appropriate. 
 In order to replicate an estimation, you must use the same random draws.  One implication 
of this is that if you give the identical model command twice in sequence, you will not get the 
identical set of results because the random draws in the sequences will be different.  To obtain the 
same results, you must reset the seed of the random number generator with a command such as 
 
 CALC  ; Ran(seed value) $ 
 
We generally use CALC ; Ran(12345) $ before each of our examples, precisely for this reason.  The 
specific value you use for the seed is not of consequence; any odd number will do. 
 

N29.6.2 Halton Draws and Random Draws for Simulations 
 

 The standard approach to simulation estimation is to use random draws from the specified 
distribution.  As suggested immediately above, good performance in this connection usually requires 
fairly large numbers of draws.  The drawback to this approach is that with large samples and large 
models, this entails a huge amount of computation and can be very time consuming.  A currently 
emerging literature has documented dramatic speed gains with no degradation in simulation 
performance through the use of a smaller number of Halton draws instead of a large number of 
random draws.  Some authors (e.g., Bhat (2001) have found that a Halton sequence with a far small 
number of replications (as low as a tenth for a single parameter) is often as effective as a far larger 
number of random draws.  To use this approach, add 
 

   ; Halton 
 
to your model command.  Halton draws and this approach to estimation are described in the technical 
details in Section N29.11.3. Train et al. (2004) and others have examined a refinement of the method 
of Halton sequences that involves assembling the pool of draws, which are a deterministic Markov 
chain, and shuffling them before using them in estimation.  The authors document improvements in 
the performance of estimators using this technique.  You can use this method by changing ; Halton 
to ; Shuffled in the command.  We note, this seems to speed the estimation up very slightly, but also 
appears to make very little difference in the estimation results. 
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N29.7 Model Estimates 
 
 Because of the numerous components of the model, the results for a random parameters 
model are somewhat more involved than for other specifications.  For an example, we use the 
command below, which specifies a fairly involved, heterogeneous RPL model with two error 
components. 
 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme,one 
   ; Effects: gc(air) ; RPL = hinc ; Pts = 25  
   ; Maxit = 100 ; Halton ; Fcn = gc(n),ttme(n)  
   ; Correlated ; ECM = (air,car),(train,bus) $ 
 
The initial display options for the model requested with ; Show are the same as in other cases.  The    
; Describe and ; Crosstab are as well.  These were not requested below.  As usual, the estimates for 
the MNL model are given first.  These are used as starting values for the estimates.  Other 
parameters of the distributions of the random components are started at zeros. 
 
----------------------------------------------------------------------------- 
Start values obtained using MNL model 
Dependent variable               Choice 
Log likelihood function      -199.97662 
Estimation based on N =    210, K =   5 
Inf.Cr.AIC  =    410.0 AIC/N =    1.952 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .2953 .2816 
Chi-squared[ 2]          =    167.56429 
Prob [ chi squared > value ] =   .00000 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|    -.01578***      .00438    -3.60  .0003     -.02437   -.00719 
    TTME|    -.09709***      .01044    -9.30  .0000     -.11754   -.07664 
   A_AIR|    5.77636***      .65592     8.81  .0000     4.49078   7.06194 
 A_TRAIN|    3.92300***      .44199     8.88  .0000     3.05671   4.78929 
   A_BUS|    3.21073***      .44965     7.14  .0000     2.32943   4.09204 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

 Results from the random parameters logit model display the standard pattern, an initial box 
containing diagnostic statistics, followed by an indication of the size (R) and type (random or 
Halton) of the simulation, then the output for the model. In this model, there are likely to be many 
different components of the probability function, such as in the earlier example.  As shown in the 
sample output below, the results will contain the lowest level structural parameters, first the constant 
terms in the random parameters in the utility functions, then the nonrandom parameters, and, finally, 
the parameters of the underlying distribution. The final parameters shown are the scale factors for the 
underlying random terms in the parameters. The leading character matches your specification in the  
; Fcn part of your command. The ‘s’ to follow indicates this is a diagonal element of Γ.  Finally, up 
to five characters of the original name are appended. 
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Random Parms/Error Comps. Logit Model 
Dependent variable                 MODE 
Log likelihood function      -178.27968 
Restricted log likelihood    -291.12182 
Chi squared [  12 d.f.]       225.68428 
Significance level               .00000 
McFadden Pseudo R-squared      .3876114 
Estimation based on N =    210, K =  12 
Inf.Cr.AIC  =    380.6 AIC/N =    1.812 
Model estimated: Sep 20, 2011, 22:28:30 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3876 .3757 
Constants only   -283.7588  .3717 .3595 
At start values  -199.9766  .1085 .0912 
Response data are given as ind. choices 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
Hessian is not PD. Using BHHH estimator 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|    -.03364         .02517    -1.34  .1813     -.08296    .01568 
    TTME|    -.23249***      .08747    -2.66  .0079     -.40393   -.06105 
        |Nonrandom parameters in utility functions 
   A_AIR|    15.3078***     5.04275     3.04  .0024      5.4242   25.1914 
 A_TRAIN|    12.8244***     4.57845     2.80  .0051      3.8508   21.7980 
   A_BUS|    11.5665**      4.52366     2.56  .0106      2.7003   20.4327 
        |Heterogeneity in mean, Parameter:Variable 
  GC:HIN|    -.00049         .00053     -.93  .3534     -.00153    .00055 
TTME:HIN|    -.00099         .00095    -1.04  .3006     -.00286    .00088 
        |Diagonal values in Cholesky matrix, L. 
    NsGC|     .01906         .02543      .75  .4534     -.03077    .06890 
  NsTTME|     .04670         .04973      .94  .3476     -.05076    .14416 
        |Below diagonal values in L matrix. V = L*Lt 
 TTME:GC|     .15033**       .06722     2.24  .0253      .01859    .28208 
        |Standard deviations of latent random effects 
SigmaE01|    1.52524        1.42523     1.07  .2845    -1.26815   4.31863 
SigmaE02|    1.66106        1.70779      .97  .3307    -1.68614   5.00826 
        |Standard deviations of parameter distributions 
    sdGC|     .01906         .02543      .75  .4534     -.03077    .06890 
  sdTTME|     .15742**       .06301     2.50  .0125      .03392    .28092 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 

 Random Effects Logit Model 
 Appearance of Latent Random Effects in Utilities 
 Alternative   E01 E02 
+-------------+---+---+ 
|  AIR        | * |   | 
+-------------+---+---+ 
|  TRAIN      |   | * | 
+-------------+---+---+ 
|  BUS        |   | * | 
+-------------+---+---+ 
|  CAR        | * |   | 
+-------------+---+---+ 
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Parameter Matrix for Heterogeneity in Means. 
--------+-------------- 
Delta   |          HINC 
--------+-------------- 
      GC|  -.491237E-03 
    TTME|  -.987818E-03 
 

Correlation Matrix for Random Parameters 
--------+---------------------------- 
Cor.Mat.|            GC          TTME 
--------+---------------------------- 
      GC|       1.00000       .954981 
    TTME|       .954981       1.00000 
--------+---------------------------- 
 

Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.7753    .8887    .9471    .6433 
 
Note two important points about the estimated covariance matrix of the distribution of the random 
parameters: 
 

• If Γ is diagonal, then the diagonal elements are used to scale the random elements in the 
parameters.  However, these scale parameters are only the standard deviations of the random 
terms when these variables are normally distributed.  Otherwise, there is some specific scale 
parameter that must be added to the calculation. 

 

• If Γ is not diagonal, then Γ is not the covariance matrix of the random terms, and the 
diagonal elements of Γ are not the standard deviations even in the normal case.  In this 
instance, Γis the Cholesky decomposition of the covariance matrix, which must be recovered 
from the estimates.  The results given will include this decomposition, as shown below for 
this application. 

 
Partial effects for the RPL model are computed in the same fashion as for other models, with one 
important exception.  As in other cases, the elasticities are computed by individual, and averaged to 
obtain the estimate.  However, in the RPL model, the individual specific estimates of the parameters 
described in the next section, not the population averages, are used to compute the estimates. 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.7753    .8887    .9471    .6433 
 
 Results saved automatically by this estimator are the same as the other estimators in NLOGIT, 
i.e., 
 Matrices: b and varb 
 

 Scalars: logl, kreg, nreg 
   (Note that nreg is the number of individuals, not the number of rows of  
   data in the sample.) 
 

 Last Model: See Chapter N19 for discussion of how to recover previous results. 
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You can also save the probabilities and utilities as follows: 
 
   ; Prob = saves unconditional probabilities, based on individual parameters, 
   ; Utility = saves values of utility functions, based on individual parameters. 
 
This estimator will also save various matrices.  These are discussed in the next section. 
 

N29.8 Individual Specific Estimates 
 
 If you include  
 

   ; Parameters 
 
in your RPLOGIT command, NLOGIT will create an n×K matrix named beta_i that contains in a 
row for each individual an estimate of the random parameters in E[βi|all data for individual i].  The 
model command, 
 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = mgc,ttme,one 
   ; RPL = hinc ; Pts = 15 ; Maxit = 10 ; Pds = 3 ; Parameters 
   ; Fcn = mgc(n) $ 
 
specifies one random parameter.  The sample in use has 210/3 = 70 individuals.  The matrix shown 
below contains the conditional estimates of the mean of the parameter on mgc.  (The additional 
matrix sdbeta_i, is explained below.) 
 

 
Figure N29.3  Estimated Conditional Means and Standard Deviations 

 
The next section will describe how these matrices are computed. 
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N29.8.1 Computing Individual Specific Parameter Estimates 
 
 The random parameters model and the simulation based estimator used to estimate it allow 
the analyst to derive more information from the data than is usually available from models with fixed 
parameters.  In particular, the model specifies that 
 
   βi = β  +  ∆zi + ΓΩivi, 
 
where, for simplicity, if there are any, we include the alternative specific constants in βi, and where, 
if there are nonrandom parameters in the model, these are accommodated simply by having rows and 
columns of zeros in the appropriate places in Γand Ωi.  There may also be rows of zeros in ∆ for 
parameters that have homogeneous means.  We are interested in learning as much as possible about 
βi and functions of βi from the data.  The unconditional mean of βi is 
 
   E[βi | zi]  = β  +  ∆zi. 
 
Absent any other information, this provides the template that one would use to form their best 
estimate of βi.  However, there is other information about individual i in the sample, namely the 
choices they made, yi and other information about their heterogeneity, hri.  Moreover, we may also 
have information about individual specific error components, Eim, specifically in the form of hei, the 
observed heterogeneity in the variation of the error components.  The following details a method of 
forming a conditional estimator, E[βi| all data on individual i]. 
 By using Bayes Theorem, we can form the joint distribution of βi and yi = (yi1,yi2,...,yit) as 
follows:  Denote the unconditional (marginal) distribution of βi|zi,hri as p(βi|zi,hri).  This distribution 
is implied by whatever is assumed about vi in the general model,  
 
   βi = β  +  ∆zi + ΓΩivi 
 
where, if there is heteroscedasticity, ωik = σkexp[ωk′hri]. (Elements of βi might also be functions of 
the exponent of this expression for the lognormal and Weibull distributions.)  We can also form the 
conditional distribution of (yi|βi,xi,hei,Ei) based on the assumptions about vi and Ei = (Ei1,Ei2,...,EiM) 
in the conditional multinomial logit model, 
 

Prob(yit = jit,t=1,...,Ti) =
1

1
11
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(The conditional distribution is defined by the multinomial logit probabilities for the outcomes that 
have been assumed throughout.) We are looking ahead a bit here and treating the panel data case 
here rather than developing it separately later. Note as well that xi denotes the collection of data on 
attributes and characteristics that appear in the utility functions for all the choices and in all periods 
or choice situations.  Denote this implied conditional distribution as p(yi|αi,βi,xi,hei,Ei) where αi is 
the set of ASCs.  With these in hand, we will form p(βi|yi,xi,zi,hri,hei,Ei) as follows:   
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 First, we will have to eliminate Ei from the conditional distribution of yi.  The unconditional 
distribution is 
   ( | , , ) ( | , , , ) ( )

E
y x he y x he E E E

i
i i i i i i i i i i ip p p d= ∫β β . 

 
Note that the marginal distribution is actually known – it is the M-variate standard normal 
distribution.  Nonetheless, it will be more convenient to carry it through in generic form below. We 
now obtain the conditional density of βi using Bayes theorem: 
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Note that it is the joint density, p(βi,yi|xi,zi,hri,hfi) that appears in the fraction, the product of the 
conditional density times the marginal density.  Proceeding, we are interested in forming the 
conditional expectation, E(βi|yi,xi,zi,hri,hfi).  Since the preceding gives the conditional density, the 
conditional expectation is formed in the usual manner, 
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The reordering of terms to obtain the second expression is permissible because Ei and βi are 
independent.  Moreover, since they are independent, their joint distribution equals the product of the 
marginal distributions, so we may rewrite the preceding in a more useful form as 
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This would provide the basis of the conditional estimator.  Note that it is precisely the form of the 
posterior mean if this were a Bayesian application.   
 The integrals in the conditional mean for βi will not exist in closed form, so some other 
method must be used to do the integration.  Note, first, that in the expression above, the term 

( | , , , )y x he Ei i i i ip β is the contribution to the conditional likelihood function (not its log) of 
individual i, L(parameters | yi,xi,zi,hei,hri), and the integral is the unconditional likelihood.  Second, 
integration over the range of (βi,Ei) with weighting function equal to the joint marginal density of βi 
and Ei can be done by simulation.  The implication is that the preceding integrals can be 
approximated using the simulation method used to maximize the simulated likelihood.  
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Combining our results, we have the simulation based conditional estimator 
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The simulation over (βi,Ei) is actually a simulation over the structural random components, vi and Ei.  
The preceding shows how to do the simulation once the maximum likelihood estimates of the 
structural parameters, [β,∆,Γ,Ω,θ,γ], are in hand.  A final representation of the results is useful; 
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and ˆ ˆ ˆ( | , , , , , )y x he Ei ir i i irL β θ γ  is the likelihood function for individual i computed at the maximum 
simulated likelihood estimates of all the parameters, the individual’s own data, and the rth simulated 
draw on (vi,Ei) 
 The preceding shows how NLOGIT simulates ‘estimates’ of βi.  These form the inputs for 
the computation of elasticities and partial effects.  There is a parameter vector computed for each 
individual in the sample.  If you include ; Parameters in the RPLOGIT command, NLOGIT creates 
the matrix named beta_i that contains these estimates.  In the preceding, any nonrandom parameter is 
simply identically reproduced.  As such, beta_i contains only the conditional means for the random 
parameters in the model. 
 Whether this estimator, 
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to interpretation.  The vector βi is a draw from a distribution that has an unconditional mean, 
 
   E[βi|zi,hri]  =   β  +  ∆zi 
 
and a conditional mean 
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What we are computing here are estimates of the means of these distributions.  In principle, these are 
conditioned on the particular data sets associated with individual i, not individual i themselves as 
such.  To underscore the point, note that the computations would produce the same predictions for 
two individuals, say i and i′, if they have the same measured data, even though they would have 
different draws from the underlying population, (vi,Ei) and (vi′,Ei′).  So, the mean computed here is 
an estimate of the center of this distribution, not a formal estimator of βi as such. 
 We can take this a step further and examine the unconditional and conditional distributions.   
The variance of the unconditional distribution is 
 
   Var[βi|zi,hri]  =   ΓΩi

2Γ′ 
 
for a particular element of βi, the variance is 
 
   Var[βik]  =  2 2

1ˆ[exp( )]hr k
k i s sk=′ ×ω Σ Γ . 

 
For the conditional distribution, no such expression exists.  For a particular element of βi, 
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The second term is the square of the mean that was estimated earlier.  The first is the expected 
square, which can, like the mean, be estimated by simulation.  Combining the results already 
obtained, then, we have an estimator of the conditional variance, 
 

   
2

2
, ,1 1

ˆ ˆˆ ˆ ˆ( | , , , , ) ( )y x z he hr R R
i i i i i i ir ir k ir ir kr r

Var w w
= =

 = β − β ∑ ∑β . 

 
The square root of this quantity provides an estimate, for individual i, for each random parameter, an 
estimate of the conditional standard deviation.  These diagonal elements appear in the matrix 
sdbeta_i. 
 We illustrate this with a model that includes most of the features described above: 
 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme ; Rh2 = one 
   ; ECM = (air,car),(train,bus) 
   ; RPL = hinc 
   ; Fcn = gc(n),ttme(n) ; Correlated 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200 $ 
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----------------------------------------------------------------------------- 
Random Parms/Error Comps. Logit Model 
Dependent variable                 MODE 
Log likelihood function      -164.04264 
Replications for simulated probs. = 200 
Halton sequences used for simulations 
RPL model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Hessian is not PD. Using BHHH estimator 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|    -.03160         .02066    -1.53  .1263     -.07210    .00891 
    TTME|    -.13631***      .02899    -4.70  .0000     -.19313   -.07950 
        |Nonrandom parameters in utility functions 
   A_AIR|    10.1329***     1.89857     5.34  .0000      6.4118   13.8541 
 A_TRAIN|    8.19227***     1.76395     4.64  .0000     4.73498  11.64956 
   A_BUS|    7.18526***     1.94752     3.69  .0002     3.36819  11.00232 
        |Heterogeneity in mean, Parameter:Variable 
  GC:HIN|-.41147D-05         .00047     -.01  .9930 -.92263D-03  .91440D-03 
TTME:HIN|    -.00077         .00056    -1.37  .1720     -.00187    .00033 
        |Diagonal values in Cholesky matrix, L. 
    NsGC|     .01120         .01935      .58  .5627     -.02673    .04913 
  NsTTME|     .06701         .07481      .90  .3704     -.07961    .21362 
        |Below diagonal values in L matrix. V = L*Lt 
 TTME:GC|    -.05562         .08696     -.64  .5224     -.22605    .11481 
        |Standard deviations of latent random effects 
SigmaE01|    1.40438        3.86563      .36  .7164    -6.17212   8.98089 
SigmaE02|    1.72038        3.00199      .57  .5666    -4.16342   7.60418 
        |Standard deviations of parameter distributions 
    sdGC|     .01120         .01935      .58  .5627     -.02673    .04913 
  sdTTME|     .08708***      .02846     3.06  .0022      .03130    .14287 
--------+-------------------------------------------------------------------- 
Random Effects Logit Model 
 Appearance of Latent Random Effects in Utilities 
 Alternative   E01 E02 
+-------------+---+---+ 
|  AIR        | * |   | 
+-------------+---+---+ 
|  TRAIN      |   | * | 
+-------------+---+---+ 
|  BUS        |   | * | 
+-------------+---+---+ 
|  CAR        | * |   | 
+-------------+---+---+ 
Parameter Matrix for Heterogeneity in Means. 
Correlation Matrix for Random Parameters 
--------+---------------------------- 
Cor.Mat.|            GC          TTME 
--------+---------------------------- 
      GC|       1.00000      -.638719 
    TTME|      -.638719       1.00000 
--------+---------------------------- 
 

The elements in the matrices are shown in Figure N29.4.  As shown there, there is a considerable 
amount of variation in the estimated conditional means. 
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Figure N29.4  Conditional Means and Standard Deviations 

 
N29.8.2 Examining the Distribution of the Parameters 
 
 As shown in Section N29.3.2 with several examples, the structural parameters often give a 
misleading picture of the parameters in a model.  Consider the following modification of the model 
estimated in the previous section:  We are going to fit the model as above, but change the distribution 
of the random parameters from normal to Weibull.  The Weibull model forces parameters to be 
positive, so we also reverse the signs on the two attributes in the model. 
 
 CREATE ; mgc = -gc ; mttme = -ttme $ 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = mgc,mttme ; Rh2 = one 
   ; ECM = (air,car),(train,bus)  
   ; RPL = hinc 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200   
   ; Fcn = mgc(n),mttme(n) ; Correlated $ 
 MATRIX ; bn = beta_i ; sn = sdbeta_i $ 
 
The estimation and analysis is repeated with the Weibull distribution. Replace the last two lines with: 
 
   ; Fcn = mgc(w),ttme(w) ; Correlated $ 
 MATRIX ; bw = beta_i ; sw = sdbeta_i $ 
 
The unconditional values in the first column of the matrix in Figure N29.4 and the nonstochastic 
estimates for the MNL model should suggest the likely values of the two random parameters.  
However, it would be difficult to deduce this from the estimated structural parameters for the 
Weibull model, which are completely different.  The Weibull distribution, which involves the 
exponent of β + ∆zi + ΓΩivi, looks quite different from the normal. 
These are the basic MNL estimates, with both parameters fixed. 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     MGC|     .01578***      .00438     3.60  .0003      .00719    .02437 
   MTTME|     .09709***      .01044     9.30  .0000      .07664    .11754 
   A_AIR|    5.77636***      .65592     8.81  .0000     4.49078   7.06194 
 A_TRAIN|    3.92300***      .44199     8.88  .0000     3.05671   4.78929 
   A_BUS|    3.21073***      .44965     7.14  .0000     2.32943   4.09204 
--------+-------------------------------------------------------------------- 
 
This is the same model, with two correlated normally distributed random parameters with 
heterogeneous means.  There are also two random error components in the model. 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
     MGC|     .03160         .02066     1.53  .1263     -.00891    .07210 
   MTTME|     .13631***      .02899     4.70  .0000      .07950    .19313 
        |Nonrandom parameters in utility functions 
   A_AIR|    10.1329***     1.89857     5.34  .0000      6.4118   13.8541 
 A_TRAIN|    8.19227***     1.76395     4.64  .0000     4.73498  11.64956 
   A_BUS|    7.18526***     1.94752     3.69  .0002     3.36819  11.00232 
        |Heterogeneity in mean, Parameter:Variable 
 MGC:HIN| .41147D-05         .00047      .01  .9930 -.91440D-03  .92263D-03 
MTTM:HIN|     .00077         .00056     1.37  .1720     -.00033    .00187 
        |Diagonal values in Cholesky matrix, L. 
   NsMGC|     .01120         .01935      .58  .5627     -.02673    .04913 
 NsMTTME|     .06701         .07481      .90  .3704     -.07961    .21362 
        |Below diagonal values in L matrix. V = L*Lt 
MTTM:MGC|     .05562         .08696      .64  .5224     -.11481    .22605 
        |Standard deviations of latent random effects 
SigmaE01|    1.40438        3.86563      .36  .7164    -6.17212   8.98089 
SigmaE02|    1.72038        3.00199      .57  .5666    -4.16342   7.60418 
        |Standard deviations of parameter distributions 
   sdMGC|     .01120         .01935      .58  .5627     -.02673    .04913 
 sdMTTME|     .08708***      .02846     3.06  .0022      .03130    .14287 
--------+-------------------------------------------------------------------- 
 
This is the same model once again, now with Weibull distributed parameters. 
 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
     MGC|     .01855         .04792      .39  .6987     -.07537    .11247 
   MTTME|     .24966***      .09109     2.74  .0061      .07112    .42820 
        |Nonrandom parameters in utility functions 
   A_AIR|    10.0151***     1.72490     5.81  .0000      6.6344   13.3959 
 A_TRAIN|    7.89123***     1.63492     4.83  .0000     4.68684  11.09562 
   A_BUS|    6.88616***     1.80398     3.82  .0001     3.35042  10.42190 
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        |Heterogeneity in mean, Parameter:Variable 
 MGC:HIN|-.34931D-04         .00050     -.07  .9448 -.10240D-02  .95418D-03 
MTTM:HIN|     .00072         .00058     1.24  .2137     -.00042    .00186 
        |Diagonal values in Cholesky matrix, L. 
   WsMGC|     .00741         .02697      .27  .7835     -.04546    .06028 
 WsMTTME|     .06388***      .02259     2.83  .0047      .01960    .10816 
        |Below diagonal values in L matrix. V = L*Lt 
MTTM:MGC|    -.00033         .04326     -.01  .9940     -.08511    .08445 
        |Standard deviations of latent random effects 
SigmaE01|    1.52875        7.43234      .21  .8370   -13.03837  16.09587 
SigmaE02|    1.53098        7.21667      .21  .8320   -12.61344  15.67539 
        |Standard deviations of parameter distributions 
   sdMGC|     .00741         .02697      .27  .7835     -.04546    .06028 
 sdMTTME|     .06388***      .02261     2.83  .0047      .01957    .10818 
--------+-------------------------------------------------------------------- 
 
 The ASCs in the three models resemble one another, but the coefficients on the attributes are 
vastly different, and would seem to suggest very different models.  In fact, that is not the case, as we 
now examine.  In order to compare these sets of estimates, we propose to examine the estimated 
conditional means.  We will use two devices.  A direct approach is to examine the distribution of 
estimates of E[βi|*] across the observations in the sample.  The averages of the conditional means 
will estimate the population mean (averaged across zi as well).  The variances require a bit of 
manipulation, since as noted, the variance of the conditional means underestimates the overall 
variance (by the mean of the conditional variances).  We will also examine the distribution of 
conditional means in the sample with a kernel density estimator. 
 First estimate the models.  The parameter estimates are shown above. 
 
 SAMPLE ; All $ 
 CREATE ; mgc = -gc ; mttme = -ttme $ 
 CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = mgc,mttme ; Rh2 = one $ 
 CALC  ; bgmnl = b(1) ; btmnl = b(2) $ 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = mgc,mttme ; Rh2 = one 
   ; ECM = (air,car),(train,bus) ; RPL = hinc 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200  
   ; Fcn = mgc(n),mttme(n) ; Correlated $ 
 MATRIX ; bn = beta_i ; sn = sdbeta_i $ 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = mgc,mttme ; Rh2 = one 
   ; ECM = (air,car),(train,bus) ; RPL = hinc 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200  
   ; Fcn = mgc(w),mttme(w) ; Correlated $ 
 MATRIX  ; bw = beta_i ; sw = sdbeta_i $ 
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Now, move the matrices to the data area so we can examine them. 
 

 SAMPLE  ; 1-70 $ 
 CREATE  ; bgn = 0 ; btn = 0 ; bgw = 0 ; btw = 0 $ 
 CREATE  ; sgn = 0 ; stn = 0 ; sgw = 0 ; stw = 0 $ 
 NAMELIST    ; betan = bgn,btn ; betaw = bgw,btw $ 
 NAMELIST ; sbetan = sgn,stn ; sbetaw = sgw,stw $ 
 CREATE  ; betan = bn $ 
 CREATE  ; betaw = bw $ 
 CREATE  ; sbetan = sn $ 
 CREATE  ; sbetaw = sw $ 
 

Now compare the different estimates.  The results below show that the normal and Weibull 
coefficients are much more similar than the raw parameter estimates would suggest. We first 
estimate the population means by averaging the conditional means. 
 

 CALC  ; List ; bgmnl ; Xbr(bgn) ; Xbr(bgw) $ 
 CALC  ; List ; btmnl ; Xbr(btn) ; Xbr(btw) $ 
 

These are the three estimates of E[βgc] 
 
[CALC] BGMNL   =       .0157837 

[CALC] *Result*=       .0318215   (Normally distributed) 
[CALC] *Result*=       .0306660   (Weibull distributed) 
 
These are the three estimates of E[βttme] 
 
[CALC] BTMNL   =       .0970905 

[CALC] *Result*=       .1661441 (Normally distributed) 
[CALC] *Result*=       .1575502 (Weibull distributed) 
 

Are the correlations the same?  Note these are the correlations of the conditional means, not the 
correlations of the coefficients. 
 

 CALC  ; List ; Cor(bgn,btn) ; Cor(bgw,btw) $ 
 

[CALC] *Result*=       .9596877 (Two normally distributed parameters) 
[CALC] *Result*=       .1786886 (Two Weibull distributed parameters) 
 

The following estimate the standard deviations of the population marginal distribution of the two 
parameters.  Once again, the similarity is striking given the quite large differences in the estimates of 
the structural parameters. 
 

 CREATE  ; vbgn = sgn^2 ; vbtn = stn^2 ; vbgw = sgw^2 ; vbtw = stw^2 $ 
 CALC  ; List  ; sdbgn = Sqr(xbr(vbgn) + Var(bgn))  
    ; sdbgw = Sqr(xbr(vbgw) + Var(bgw)) 
    ; sdbtn = Sqr(xbr(vbtn) + Var(btn)) 
    ; sdbtw = Sqr(xbr(vbtw) + Var(btw)) $ 
 
[CALC] SDBGN   =       .0113592 
[CALC] SDBGW   =       .0098213 
[CALC] SDBTN   =       .0884111 
[CALC] SDBTW   =       .0858662 
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A final comparison is based on the kernel density estimators for the distributions of the conditional 
means.  Only the two for βgc are shown. 
 
 KERNEL  ; Rhs = bgn,bgw 
   ; Title = Kernel Density for E[b_gc|*,normal,Weibull] 
   ; Endpoints = .01,.05 $ 
 KERNEL  ; Rhs = btn,btw 
   ; Title = Kernel Density for E[b_ttme|*,normal,Weibull] $ 
 
Based on the results obtained thus far, it seems that the impact of the Weibull specification is to 
increase the variance of the empirical distribution. 
 

 
Figure N29.5  Kernel Densities for Parameter Distributions 

 

 
Figure N29.6  Kernel Densities for Conditional Means for βttme 
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N29.8.3 Conditional Confidence Intervals for Parameters 
 
 Finally, we consider an alternative approach to examining the distribution of parameters 
across individuals.  We have for each individual, an estimate of the mean of the conditional 
distribution of parameters from which their specific vector is drawn.  This is the estimate of E[βi|i] 
that is in row i of beta_i.  We also have an estimate of the standard deviation of this conditional 
distribution.  As a general result, an interval in a distribution for a continuous random variable 
defined by the mean plus and minus two standard deviations will encompass 95% or more of the 
mass of the distribution.  This enables us to form a sort of confidence interval for βi itself, 
conditioned on all the information known about the individual.  To roughly this level of confidence, 
the interval  
 
 E[βik|all information on individual i] + 2×SD[βik|all information on individual i] 
 
will contain the actual draw for individual i.  (The probability is somewhat reduced because we are 
using estimates of the structural parameters, not the true values.)  The centipede plot feature of 
PLOT allows us to produce this figure, as follows:  We plot the figure for βgc for the Weibull model: 
 
 CREATE ; lowerbgc = bgw - 2*sgw ; upperbgc = bgw + 2*sgw $ 
 CREATE ; person = Trn(1,1) $ 
 CALC  ; meanbgw = Xbr(bgw) $ 
 CALC  ; highbgw = meanbgw + 2*sdbgw $ 
 CALC  ; lowbgw = meanbgw - 2*sdbgw $ 
 PLOT  ; Lhs = person ; Rhs = lowerbgc,upperbgc  
   ; Centipede 
   ; Title = Confidence Limits for b_gc for Weibull Model 
   ; Bars = meanbgw,highbgw,lowbgw 
   ; Endpoints = 0,75 $ 
 

 
Figure N29.7  Conditional and Unconditional Distributions of Parameters 
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In the figure, each vertical ‘leg’ of the centipede plot shows the conditional confidence interval for 
βgc for that person.  The dot is the midpoint of the interval, which is the point estimate.  The center 
horizontal bar in the figure shows the mean of the conditional means, which estimates the population 
mean.  This was reported earlier as 0.031688.  The upper and lower horizontal bars show the overall 
mean plus and minus twice the estimated population standard deviation – this was reported earlier as 
0.009629.  Thus, the unconditional population range of variation is estimated to be about .01 to .05.  
Note that this is the range of variation in the kernel density estimates given in Figure N29.5.  Figure 
N29.7 demonstrates clearly how the additional information for each individual is used to reduce the 
‘uncertainty’ about the individual specific estimates. 
 
N29.8.4 Willingness to Pay Estimates 
 
 The previous section showed how to estimate a function of the random (or nonrandom) 
parameters using the simulation method.  We estimated the conditional variance using a simulation 
based estimator of E[βi

2|all information on individual i].  Another useful function of the parameters 
in the model is the ‘willingness to pay function.’  This is typically measured using 
 
   WTP = attribute coefficient / income or price coefficient 
 
The random parameters logit model will compute and retain person specific WTP measures.  Use 
 

  ; WTP = name/name  
 
where names are either variable names if ; Rhs is used or parameter names if utility functions are 
specified directly.  In general, the WTP calculation will have an attribute level coefficient in the 
numerator and a cost or income measure in the denominator.  Parameters can be random or 
nonrandom.  This will create two matrices, wtp_i and sdwtp_i.  These are computed the same way 
that beta_i and sdbeta_i are computed, where wtp_i contains estimates of the conditional expectation 
of WTP and sdwtp_i contains estimates of the conditional standard deviation.  These matrices can be 
examined and analyzed in precisely the same way that beta_i was used earlier.  You may compute 
more than one WTP variable by adding additional ratios in the command separated by commas.  For 
example, 
   ; WTP  =  time/income, space/price 
 
 To illustrate, we use the Weibull model once again, with a small modification: 
 

SAMPLE ; All $ 
RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 

   ; Rhs = mgc,mttme,hinca ; Rh2 = one 
   ; ECM = (air,car),(train,bus) 
   ; WTP = mttme/hinca 
   ; Fcn = mgc(w),mttme(w) ; Correlated 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200 $ 
 
The willingness to pay is computed as the ratio of the terminal time in minutes to the income 
variable, hinca – this equals income for the air alternative and zero otherwise.  The basic coefficient 
estimates are 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
     MGC|     .04241**       .01863     2.28  .0228      .00590    .07893 
   MTTME|     .24850         .22299     1.11  .2651     -.18856    .68556 
        |Nonrandom parameters in utility functions 
   HINCA|     .02870         .02293     1.25  .2106     -.01624    .07364 
   A_AIR|    8.53653***     1.74215     4.90  .0000     5.12199  11.95108 
 A_TRAIN|    7.60548***     1.54234     4.93  .0000     4.58255  10.62842 
   A_BUS|    6.66168***     1.70845     3.90  .0001     3.31319  10.01017 
        |Diagonal values in Cholesky matrix, L. 
   WsMGC|     .00889         .00931      .95  .3396     -.00936    .02714 
 WsMTTME|     .00945         .10374      .09  .9274     -.19388    .21278 
        |Below diagonal values in L matrix. V = L*Lt 
MTTM:MGC|    -.06409**       .02727    -2.35  .0188     -.11754   -.01063 
        |Standard deviations of latent random effects 
SigmaE01|     .41678        5.32188      .08  .9376   -10.01390  10.84747 
SigmaE02|    1.57765        1.50521     1.05  .2946    -1.37251   4.52781 
        |Standard deviations of parameter distributions 
   sdMGC|     .00889         .00931      .95  .3396     -.00936    .02714 
 sdMTTME|     .06478*        .03832     1.69  .0910     -.01033    .13989 
--------+-------------------------------------------------------------------- 
 
As before, the structural parameters do not suggest what the implied parameters will look like.  For 
these data, the estimated WTP values for the first 10 individuals (copied from wtp_i) are 
 

 
Figure N29.8  WTP Estimates 

 
The overall average computed by averaging the 70 values in the matrix with  
 

MATRIX  ; List ; 1/70*1’wtp_i $ 
 
is 5.23934.  This is in $/minute. 
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N29.9 Applications 
 
 The preceding sections and Section N29.10 contain numerous examples of the mixed logit 
model.  The applications below show a few of the most basic procedures.  This is a basic formulation 
with two random parameters and heterogeneity in the means as a function of household income.  The 
observations are not grouped in this application – this is the cross section approach.  We use 50 
Halton draws for replicability. 
 

RPLOGIT  ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = gc,ttme ; Rh2 = one 
; RPL = hinc ; Fcn = gc(n),ttme(n)  
; Effects: gc(air) ; Halton ; Pts = 50 $ 
 

----------------------------------------------------------------------------- 
Random Parameters Logit Model 
Dependent variable                 MODE 
Log likelihood function      -182.77116 
Restricted log likelihood    -291.12182 
Chi squared [   9 d.f.]       216.70131 
Significance level               .00000 
McFadden Pseudo R-squared      .3721832 
Estimation based on N =    210, K =   9 
Inf.Cr.AIC  =    383.5 AIC/N =    1.826 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3722 .3631 
Constants only   -283.7588  .3559 .3466 
At start values  -199.9766  .0860 .0728 
Response data are given as ind. choices 
Replications for simulated probs. =  50 
Halton sequences used for simulations 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|    -.01645         .01683     -.98  .3283     -.04943    .01653 
    TTME|    -.17263***      .04157    -4.15  .0000     -.25409   -.09116 
        |Nonrandom parameters in utility functions 
   A_AIR|    10.7938***     2.02127     5.34  .0000      6.8322   14.7555 
 A_TRAIN|    9.01315***     1.90238     4.74  .0000     5.28455  12.74174 
   A_BUS|    8.00157***     1.83915     4.35  .0000     4.39690  11.60624 
        |Heterogeneity in mean, Parameter:Variable 
  GC:HIN|    -.00028         .00035     -.80  .4252     -.00097    .00041 
TTME:HIN|    -.00055         .00063     -.87  .3830     -.00179    .00069 
        |Distns. of RPs. Std.Devs or limits of triangular 
    NsGC|     .00312         .05160      .06  .9518     -.09802    .10425 
  NsTTME|     .11565***      .03706     3.12  .0018      .04303    .18828 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Parameter Matrix for Heterogeneity in Means. 
 

--------+-------------- 
Delta   |          HINC 
--------+-------------- 
      GC|  -.281194E-03 
    TTME|  -.551868E-03 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.7894    .8715   1.0384    .2573 
 
 This is a two level hierarchical model.  There are no random parameters, but the coefficients 
on gc and ttme are modeled as linear functions of a constant and household income. 
 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme ; Rh2 = one 
   ; RPL = hinc ; Fcn = gc(c),ttme(c) $ 
 
----------------------------------------------------------------------------- 
Random Parameters Logit Model 
Dependent variable                 MODE 
Log likelihood function      -198.39597 
Restricted log likelihood    -291.12182 
Chi squared [   7 d.f.]       185.45170 
Significance level               .00000 
McFadden Pseudo R-squared      .3185122 
Estimation based on N =    210, K =   7 
Inf.Cr.AIC  =    410.8 AIC/N =    1.956 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .3185 .3109 
Constants only   -283.7588  .3008 .2930 
At start values  -199.9766  .0079-.0032 
Response data are given as ind. choices 
Replications for simulated probs. = 500 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|    -.01140         .00921    -1.24  .2158     -.02944    .00665 
    TTME|    -.08786***      .01175    -7.48  .0000     -.11088   -.06484 
        |Nonrandom parameters in utility functions 
   A_AIR|    5.84415***      .65860     8.87  .0000     4.55331   7.13499 
 A_TRAIN|    3.96546***      .44225     8.97  .0000     3.09866   4.83225 
   A_BUS|    3.25638***      .45030     7.23  .0000     2.37381   4.13895 
        |Heterogeneity in mean, Parameter:Variable 
  GC:HIN|    -.00010         .00021     -.48  .6302     -.00051    .00031 
TTME:HIN|    -.00028         .00018    -1.57  .1165     -.00063    .00007 
        |Distns. of RPs. Std.Devs or limits of triangular 
    CsGC|        0.0    .....(Fixed Parameter)..... 
  CsTTME|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
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Parameter Matrix for Heterogeneity in Means. 
 
--------+-------------- 
Delta   |          HINC 
--------+-------------- 
      GC|  -.100937E-03 
    TTME|  -.281317E-03 
 
N29.10 Panel Data 
 
 The random parameters model includes a treatment for panel data.  Two forms are 
accommodated.  For a simple clustering of Ti choice situations by the same individual, for  example, 
a stated preference survey in which several different scenarios are offered, then a random effects 
type of treatment might be appropriate.  For example, the sequencing of choices might be unknown.  
In this case, the usual random effects setup would apply 
 
   βit =  β  +  ∆zit  +  Γvi 
 
where ‘t’ indexes the multiple observations for individual ‘i.’  The connection to ‘time’ might not 
hold here, but we use the same index regardless.  Note that the heterogeneity in the mean may 
change from one observation to the next (or not, depending on your situation), but the random term, 
vi is the same for all observations.  As in all panel data situations in NLOGIT, the number of 
observations, Ti on individual i may vary by individual.  An alternative situation might arise when 
choice situations are observed in sequence, and there is a long enough lag between situations that the 
effect of the passage of time might be to allow preferences to evolve – consider, for example, cases 
in which habit persistence influences the choice (mode of travel to work), but new information enters 
the system.  In such a case, an autoregressive arrangement might be appropriate; 
 
   βit =  β  +  ∆zit  +  Γvit 

   vit =  Rvi,t-1  +  uit 
 
where R is a diagonal matrix of autocorrelation coefficients and uit constitutes the primitive 
randomness in the system. 
 The two situations are requested by first specifying the panel as usual with 
 
   ; Pds = Ti 
 
where Ti is either a fixed number of observations or a variable which gives the number of 
observations.  (Note, we used this format in several of the earlier examples.  See the application at 
the end of Section N29.8.1 for example.)  In this setting, the panel consists of groups of Ti sets of Ji 
observations.  In all cases, Ti tells the number of groups of data.  You may have a variable number of 
observations and a variable number of choices within a group or any of the other three possible 
combinations.  In our examples below, J = 4 – a fixed number of choices.  In one case,  Ti = 3, so in 
this case, there are 12 rows of data for each person.  In the other case, there are six observations in a 
group, so 24 rows of data per person.  If the number of observations in a group varies, so Ti is the 
name of a count variable, this count is repeated on every row of data within an observation, and for 
every observation in the group. 
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 The autoregressive model is requested by adding 
 
   ; AR1 
 
to the NLOGIT command.  You may also constrain the autoregressive model with 
 
   ; AR1 = list of values 
 
where the list may contain symbols for free parameters or specific numerical values, including zero 
if you do not wish for specific coefficients to evolve in this fashion. 
 To illustrate the panel data models, we will artificially treat our clogit data as if it were a 
panel.  (It is not.)  For the first model, we collect the observations in groups of three, and treat it as a 
random effects model.  For the second, we collect the observations in groups of six, and fit an AR1 
model to them.  
 
N29.10.1 Random Effects Model 
 
 This example specifies the full parameter vector to be random, in the first form above, 
including the constant terms.  As such, this is a true random effects model in the familiar form, that 
is, with a free term for each constant, in addition to the random variation in the slope parameters.  
The very small number of replication points was used to speed up convergence in this numerical 
example.  Normally, you would use many more than this. 
 

NLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
; Rhs = gc,ttme ; Rh2 = one 
; RPL= hinc 
; Fcn = a_air(n),a_train(n),a_bus(n),gc(n),ttme(n)   
; Correlation   
; Parameters  
; Pds = 3 ; Pts = 10 ; Halton $ 
 

----------------------------------------------------------------------------- 
Random Parameters Logit Model 
Dependent variable                 MODE 
Log likelihood function      -121.64722 
Restricted log likelihood    -291.12182 
Chi squared [  25 d.f.]       338.94919 
Significance level               .00000 
McFadden Pseudo R-squared      .5821432 
Estimation based on N =    210, K =  25 
Inf.Cr.AIC  =    293.3 AIC/N =    1.397 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .5821 .5649 
Constants only   -283.7588  .5713 .5536 
At start values  -199.9766  .3917 .3666 
Response data are given as ind. choices 
Replications for simulated probs. =  10 
Halton sequences used for simulations 
RPL model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Number of obs.=   210, skipped    0 obs 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
   A_AIR|    13.6504**      5.48059     2.49  .0128      2.9086   24.3921 
 A_TRAIN|    24.5939***     6.87658     3.58  .0003     11.1161   38.0718 
   A_BUS|    18.5641***     5.32865     3.48  .0005      8.1202   29.0081 
      GC|    -.22146***      .07033    -3.15  .0016     -.35931   -.08361 
    TTME|    -.30761***      .09578    -3.21  .0013     -.49533   -.11989 
        |Heterogeneity in mean, Parameter:Variable 
A_AI:HIN|     .13402         .12239     1.10  .2735     -.10585    .37390 
A_TR:HIN|    -.25590**       .10410    -2.46  .0140     -.45992   -.05187 
A_BU:HIN|    -.06356         .07498     -.85  .3966     -.21052    .08340 
  GC:HIN|     .00432***      .00132     3.28  .0010      .00174    .00690 
TTME:HIN|    -.00202         .00163    -1.24  .2158     -.00522    .00118 
        |Diagonal values in Cholesky matrix, L. 
 NsA_AIR|    23.8645***     7.70618     3.10  .0020      8.7607   38.9683 
NsA_TRAI|    7.62594***     2.83788     2.69  .0072     2.06380  13.18807 
 NsA_BUS|     .31976         .71775      .45  .6560    -1.08700   1.72652 
    NsGC|     .01452         .02118      .69  .4929     -.02699    .05604 
  NsTTME|     .06874***      .02413     2.85  .0044      .02144    .11603 
        |Below diagonal values in L matrix. V = L*Lt 
A_TR:A_A|    2.38370        2.64644      .90  .3677    -2.80322   7.57062 
A_BU:A_A|   -4.83451*       2.72165    -1.78  .0757   -10.16885    .49983 
A_BU:A_T|   -1.75285        1.29967    -1.35  .1774    -4.30015    .79445 
  GC:A_A|    -.15494***      .04478    -3.46  .0005     -.24270   -.06717 
  GC:A_T|     .10763**       .04663     2.31  .0210      .01624    .19902 
  GC:A_B|     .04408**       .02081     2.12  .0341      .00330    .08486 
TTME:A_A|     .22548***      .07884     2.86  .0042      .07096    .38000 
TTME:A_T|    -.10454***      .03709    -2.82  .0048     -.17724   -.03184 
TTME:A_B|    -.09187***      .03330    -2.76  .0058     -.15715   -.02660 
 TTME:GC|    -.17369***      .05106    -3.40  .0007     -.27377   -.07362 
        |Standard deviations of parameter distributions 
 sdA_AIR|    23.8645***     7.70618     3.10  .0020      8.7607   38.9683 
sdA_TRAI|    7.98980***     2.77044     2.88  .0039     2.55984  13.41977 
 sdA_BUS|    5.15240*       2.73787     1.88  .0598     -.21372  10.51852 
    sdGC|     .19428***      .02957     6.57  .0000      .13632    .25224 
  sdTTME|     .32420***      .03151    10.29  .0000      .26243    .38596 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Parameter Matrix for Heterogeneity in Means. 
--------+-------------- 
Delta   |          HINC 
--------+-------------- 
   A_AIR|       .134023 
 A_TRAIN|      -.255895 
   A_BUS|     -.0635635 
      GC|     .00432172 
    TTME|    -.00201867 
Correlation Matrix for Random Parameters 
--------+---------------------------------------------------------------------- 
Cor.Mat.|         A_AIR       A_TRAIN         A_BUS            GC          TTME 
--------+---------------------------------------------------------------------- 
   A_AIR|       1.00000       .298343      -.938303      -.797499       .695497 
 A_TRAIN|       .298343       1.00000      -.604643       .290848      -.100279 
   A_BUS|      -.938303      -.604643       1.00000       .573904      -.560473 
      GC|      -.797499       .290848       .573904       1.00000      -.837658 
    TTME|       .695497      -.100279      -.560473      -.837658       1.00000
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N29.10.2 Error Components Model 
 
 The error components model presented in Section N29.5 (and Chapter N30) is also a random 
effects model.  Without the nesting arrangement, in its simplest form, the model would be 
 

   Prob(yit = j)  =  
1

exp

expi

j jit j j ij
J

q qit q q iqq

d E

d E
=

′ α + + θ 
′ α + + θ ∑

x

x

β

β
 

 
where dj equals one if the utility function for alternative j contains a random effect, and zero if not.  
To fit the model in this form, without random parameters, we would use the ECLOGIT command 
described in Chapter N30.  The command would appear 
 
 ECLOGIT ; specification of the alternatives 
   ; specification of the utilities 
   ; ECM = (first alt),(second alt), ...  
   ; Pds = specification of the panel $ 
 
with one alternative in each set of parentheses.  An example follows: 
 
 ECLOGIT ; Lhs = mode 

; Choices = air,train,bus,car 
; Rhs = gc,ttme 
; Rh2 = one,hinc 
; ECM = (air),(train),(bus),(car) 

   ; Pds = 3 ; Pts = 50 ; Halton $ 
 
----------------------------------------------------------------------------- 
Random Parms/Error Comps. Logit Model 
Dependent variable                 MODE 
Log likelihood function      -161.29108 
Restricted log likelihood    -291.12182 
Chi squared [  12 d.f.]       259.66147 
Significance level               .00000 
McFadden Pseudo R-squared      .4459670 
Estimation based on N =    210, K =  12 
Inf.Cr.AIC  =    346.6 AIC/N =    1.650 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .4460 .4352 
Constants only   -283.7588  .4316 .4206 
At start values  -188.8499  .1459 .1293 
Response data are given as ind. choices 
Replications for simulated probs. =  50 
Halton sequences used for simulations 
ECM model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Hessian is not PD. Using BHHH estimator 
Number of obs.=   210, skipped    0 obs 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters in utility functions 
      GC|    -.02851***      .00881    -3.24  .0012     -.04578   -.01124 
    TTME|    -.13863***      .03339    -4.15  .0000     -.20408   -.07318 
   A_AIR|    7.40339***     2.58545     2.86  .0042     2.33599  12.47079 
AIR_HIN1|    -.00205         .02703     -.08  .9395     -.05504    .05094 
 A_TRAIN|    8.30852***     2.48448     3.34  .0008     3.43902  13.17802 
TRA_HIN2|    -.09093**       .03647    -2.49  .0126     -.16240   -.01946 
   A_BUS|    6.14475***     2.27164     2.70  .0068     1.69242  10.59708 
BUS_HIN3|    -.03228         .03829     -.84  .3992     -.10734    .04277 
        |Standard deviations of latent random effects 
SigmaE01|   -4.53122***     1.39842    -3.24  .0012    -7.27208  -1.79037 
SigmaE02|    3.32860***     1.14234     2.91  .0036     1.08967   5.56754 
SigmaE03|     .57089        2.16106      .26  .7916    -3.66471   4.80650 
SigmaE04|    1.14709        1.47766      .78  .4376    -1.74907   4.04326 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
 Random Effects Logit Model 
 Appearance of Latent Random Effects in Utilities 
 Alternative   E01 E02 E03 E04 
+-------------+---+---+---+---+ 
|  AIR        | * |   |   |   | 
+-------------+---+---+---+---+ 
|  TRAIN      |   | * |   |   | 
+-------------+---+---+---+---+ 
|  BUS        |   |   | * |   | 
+-------------+---+---+---+---+ 
|  CAR        |   |   |   | * | 
+-------------+---+---+---+---+ 
 
N29.10.3 Autoregression Model 
 
 The second application allows the random effect to evolve with an AR(1) process.  The 
number of periods was increased to six for this application.  Since these data are not consistent with 
this model at all – they are a cross section – even the larger number of  ‘periods’ was not sufficient to 
produce a meaningful set of estimates.  For purposes of constructing a numerical example for the 
display, the iterations were stopped at 10. 
 

NLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
; Rhs = gc,ttme ; Rh2 = one,hinc 
; RPL  
; Fcn = gc(t),ttme(t) 
; Correlated  
; Pts = 20 ; Pds = 6 
; AR1 ; Maxit = 10  
; Halton $ 
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----------------------------------------------------------------------------- 
Random Parameters Logit Model 
Dependent variable                 MODE 
Log likelihood function      -161.96039 
Restricted log likelihood    -291.12182 
Chi squared [  13 d.f.]       258.32286 
Significance level               .00000 
McFadden Pseudo R-squared      .4436680 
Estimation based on N =    210, K =  13 
Inf.Cr.AIC  =    349.9 AIC/N =    1.666 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .4437 .4319 
Constants only   -283.7588  .4292 .4172 
At start values  -189.5252  .1454 .1274 
Response data are given as ind. choices 
Replications for simulated probs. =  20 
Halton sequences used for simulations 
RPL model with panel has      35 groups 
Fixed number of obsrvs./group=        6 
Hessian is not PD. Using BHHH estimator 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|    -.01415*        .00806    -1.76  .0790     -.02994    .00164 
    TTME|    -.11237***      .03656    -3.07  .0021     -.18403   -.04071 
        |Nonrandom parameters in utility functions 
   A_AIR|    5.79452***     1.40263     4.13  .0000     3.04542   8.54362 
AIR_HIN1|     .01081         .02924      .37  .7116     -.04649    .06811 
 A_TRAIN|    6.10465***     1.26930     4.81  .0000     3.61686   8.59243 
TRA_HIN2|    -.04142**       .01913    -2.17  .0303     -.07891   -.00393 
   A_BUS|    4.34065***     1.49668     2.90  .0037     1.40722   7.27408 
BUS_HIN3|    -.00899         .03543     -.25  .7998     -.07844    .06046 
        |Diagonal values in Cholesky matrix, L. 
    TsGC|     .00262         .03652      .07  .9429     -.06896    .07419 
  TsTTME|     .03833         .12860      .30  .7657     -.21372    .29037 
        |Below diagonal values in L matrix. V = L*Lt 
 TTME:GC|    -.11219*        .06208    -1.81  .0707     -.23386    .00948 
        |Autocorrelation parameters for AR(1) model 
  ar[GC]|    -.00161       692.5725      .00 1.0000 -1357.41869  1357.41548 
ar[TTME]|     .10571       12.12075      .01  .9930   -23.65052  23.86194 
        |Standard deviations of parameter distributions 
    sdGC|     .00262         .03652      .07  .9429     -.06896    .07419 
  sdTTME|     .11856***      .04462     2.66  .0079      .03110    .20602 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Correlation Matrix for Random Parameters 
--------+---------------------------- 
Cor.Mat.|            GC          TTME 
--------+---------------------------- 
      GC|       1.00000      -.946304 
    TTME|      -.946304       1.00000 
--------+---------------------------- 
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N29.11 Technical Details 
 
 This section will describe the procedures used in fitting the RPL model.  This, with the 
random parameters models, constitutes what is probably the most intricate part of the estimation 
machinery in the software.  We will present this in several parts, including formulation of the 
likelihood, drawing the replications for the simulations, and computing the gradients and Hessians 
for the optimization procedures. 
 
N29.11.1 The Simulated Log Likelihood 
 
 We will formulate the model in the following general form:  Conditioned on the unobserved 
latent effects, vi, and the other components in the model, denoted ‘*,’ the probability for the observed 
outcome is 
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   βi = β  +  ∆zi  +  Γvi 
 
   vi ~ with mean vector 0 and diagonal covariance matrix with known 

values on the diagonal.  (It is not always I because we allow some 
distributions such as the uniform with variances that differ from one.  
As long as the scale is known, its precise value is immaterial.  The 
scaling can be undone if needed when final results are reported.) 

 
(We use the simplest possible formulation for this development.  The more involved models, such as 
the error components models and the heteroscedastic models, are treated with the same basic 
procedures.)  The log likelihood must be formulated in terms of observables.  The unconditional 
probability is obtained by integrating the random terms out of the probability; 
 
   Prob(yi= j|*)  =  Prob( | *, ) ( )v v v vi i i i

i
y j g d=∫ . 

 
As vi may have many components, this is understood to be a multidimensional integral.  The random 
variables in vi are assumed to be independent, so the joint density, g(vi), is the product of the 
individual densities.  The integral will, in general, have no closed form.  However, the integral is an 
expected value, so it can be approximated by simulation.  Assuming that vir, r = 1,...,R constitutes a 
random sample from the underlying population vi, under certain conditions (see, e.g., Train (2009)), 
including that the function f(vi) be ‘smooth,’ we have the property that 
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This is the fundamental result that underlies the approach to estimation used here.  We will use a 
random number generator (or Halton draws) to produce the random samples.  For each individual in 
the sample, the simulated unconditional probability for their observed choice is 
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   βir = β  +  ∆zi  +  Γvir 
 
   vir ~ a random draw from the population  generating vi. 
 
The simulated log likelihood is then 
 
   log LS  =  

1

N

i=∑ log Prob ( | *)S iy j= . 
 
This function is then to be maximized with respect to the structural parameters, (β, ∆, Γ) and, if a 
panel data model with autoregression is specified, (ρ1,...,ρK).  We will return to the panel data case 
below. 
 
N29.11.2 Random Draws for the Simulations 
 

The elements of vir are drawn as follows:  We begin with a random vector wir which is either 
K independent draws from the standard uniform [0,1] distribution or K Halton draws from the mth 
Halton sequence, where m is the mth prime number in the sequence of K prime numbers beginning 
with 2.  The Halton values are also distributed in the unit interval.  They are described in detail 
below.  This primitive draw is then transformed to the distribution specified in the ; Fcn 
specification, as follows: 
 
 Uniform[-1,1]: vk,ir  = 2wk,ir-  1 

 

 Tent [-1,1] vk,ir  = 1(wk,ir< .5)[ ,2 k irw  - 1]  +  

           1(wk,ir> .5)[1 - ,2(1 )k irw−  ] 
 
 Normal[0,1] vk,ir  = Φ-1(wk,ir) 
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 We note a consideration which is crucial in this sort of estimation.  The random sequence 
used for the model estimation must be the same each time a probability or a function of that 
probability, such as a derivative, is computed in order to obtain replicability.  In addition, during 
estimation of a particular model, the same set of random draws must be used for each person every 
time.  That is, the sequence vi1, vi2, ..., viR used for individual i must be the same every time it is used 
to calculate a probability, derivative, or likelihood function.  If not, the likelihood function will be 
discontinuous in the parameters, and successful estimation becomes unlikely.  One way to achieve 
this which has been suggested in the literature is to store the random numbers in advance, and simply 
draw from this reservoir of values as needed.  Because NLOGIT is able to use very large samples, 
this is not a practical solution, especially if the number of draws is large as well.  We achieve the 
same result by assigning to each individual, i, in the sample, their own random generator seed which 
is a unique function of the global random number seed, S, and their group number, i; 
 

   Seed(S,i)  =  S  +  123.0 ×i, then minus 1.0 if the result is even. 
 
Since the global seed, S, is a positive odd number, this seed value is unique, at least within the 
several million observation range of NLOGIT. 

In the preceding derivation, Ω = ΓΓ′ is the covariance matrix of Γvir only for the standard 
normal case.  For the other two cases, a further scaling is needed.  The variance of the uniform [-1,1] 
is the squared width over 12, or 1/3, so its standard deviation is 1/ 3  = .57735.  The variance of the 
standardized tent distribution is 1/6.  (Since this is a density with discontinuous derivative, this takes 
a bit of derivation to show.)  It can be shown by partitioning the distribution.  The density of u in this 
case is 

  f(u)  =  2(1+u) for u< 0 and 2(1-u) for u> 0. 
 
The probability in each section is 1/2.  The mean is obviously zero (by construction).  The two 
conditional means are -1/3 and +1/3 for the left and right halves.  The conditional variances can be 
found by simple integration to be 1/18 in each half.  The variance equals the variance of the 
conditional mean plus the expected value of the conditional variance, which gives 1/9 for the former 
and 1/18 for the latter, which sum to 1/6.  The standard deviation is therefore .40824.  This implicit 
scaling is undone at the time the results are reported. 
 
N29.11.3 Halton Draws for the Simulations 
 
 Conventional simulation based estimation uses a random number to produce a large number 
of draws from a specified distribution.  The central component of the standard approach is draws 
from the standard continuous uniform distribution, U[0,1].  (NLOGIT’s random number generator is 
described in Appendix R5A.3.)  Draws from other distributions are obtained from these draws by 
using transformations.  In particular, where ui is one draw from U[0,1], 
 
 Normal [0,1]: vi  =  Φ-1(ui) 
 
 Uniform[-1,1]: vi  =  2ui - 1  
 
 Tent:  vi  =  12 −iu  if ui≤ 0.5, vi = 1 - 12 −iu  otherwise. 
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Given that the initial draws satisfy the assumptions necessary, the central issue for purposes of 
specifying the simulation is the number of draws.  Results differ on the number needed in a given 
application, but the general finding is that when simulation is done in this fashion, the number is 
large.  A consequence of this is that for large scale problems, the amount of computation time in 
simulation based estimation can be extremely long. 
 Procedures have been devised in the numerical analysis literature for taking ‘intelligent’ 
draws from the uniform distribution, rather than random ones.  (See Train (1999) and Bhat (2001) 
for extensive discussion and further references.)  These procedures appear vastly to reduce the 
number of draws needed for estimation (by a factor of 90% or more) and reduce the simulation error 
associated with a given number of draws.  In one application of the method to be discussed here, 
Bhat (2001) found that 100 Halton draws produced lower simulation error than 1,000 random 
numbers.  The procedure described here is labeled Halton sequences. (See Train (1999).) The Halton 
sequence is generated as follows:  Let r be a prime number larger than 2.  Expand the sequence of 
integers g = 1,... in terms of the base r as 
 
   i

i
I
i

rbg ∑ =
=

0
 where by construction, 0 ≤bi≤r - 1 and rI≤g<rI+1. 

 
The Halton sequence of values that corresponds to this series is 
 
   1

0
)( −−

=∑= i
i

I
i

rbgH  
 
For example, using base 5, the integer 37 has b0 = 2, b1 = 2, and b3 = 1.  Then  
 

  H(37) = 2×5-1 + 2×5-2 + 1×5-3  =  0.448. 
 
The sequence of Halton values is efficiently spread over the unit interval.  The sequence is not 
random as the sequence of pseudo-random numbers is.  The figures below show two sequences of 
Halton draws and two sequences of pseudorandom draws.  The Halton draws are based on r = 7 and 
r = 9.  The clumping evident in the first figure is the feature (among others) that mandates large 
samples for simulations. 
 We use the prime numbers in order beginning with 3.  If a model requires K random draws, 
we use the first K prime numbers to generate the sequences.  Within each series, the first 10 draws 
are discarded, as these draws tend to be highly correlated.  Using Halton sequences instead of 
random draws can bring large savings in estimation time.  Request this simply by adding ; Halton to 
the RPLOGIT command.  You will be able to reduce somewhat the number of replications when 
you do so. 

 
 SAMPLE ; 1-1000 $ 
 CREATE ; h1 = Hlt(7) ; h2 = Hlt(9) ; x1 = Rnu(0,1) ; x2 = Rnu(0,1) $ 
 PLOT   ; Lhs = h1 ; Rhs = h2 ; Limits = 0,1 ; Endpoints = 0,1 
   ; Title = Plot of 1000 Draws Halton(7) vs. Halton(9) $ 
 PLOT  ; Lhs = x1 ; Rhs = x2 ; Limits = 0,1 ; Endpoints = 0,1 
   ; Title = Plot of 1000 Pairs of Pseudorandom Draws $ 
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Figure N29.9  Bivariate Scatter Plot of Random Uniform Draws 

 

 
Figure N29.10 Bivariate Scatter Plot of Halton (7) and Halton (9) 
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N29.11.4 Functions and Gradients 
 

We will develop the function and gradient for the basic case in which there are no error 
components and the variances are homoscedastic.  These additional features are treated in essentially 
the same fashion, though they do add additional sources of complexity in the computations.  We also 
build the results for a panel data (repeated choice situations) case.  The simulated log likelihood is  
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This is obtained using 
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The latter term simplifies to 
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 To complete the derivation at this point, we require the innermost terms, the derivatives of 
logs of the multinomial logit probabilities with respect to the structural parameters.  To obtain these, 
we use the following results:  For each parameter in the vector βir, which enters 

1 1( ,..., | *)
i iS i iT iTP y j y j= = , which we’ll denote βk,ir we have the result that 

 
   βk,ir  =  βk  +  δk′zi +  Γk′vir 
 
where δk is the kth row of ∆, Γk is the kth row of Γ, and at this point, there is no overlap in the 
structural parameters that underlie different elements of βir.  If the parameters have been assumed to 
be uncorrelated, then Γk′vir has only the diagonal term, and equals σkvk,ir.  If the parameters are 
correlated, then Γ is a lower triangular matrix, so that  
 
   Γ1′vir  =  σ1v1,ir 

   Γ2′vir  =  σ2v2,ir  +  Γ21v1,ir 
 
and so on.  The necessary derivatives can be found as follows: 
 

   ,log
( , , )

it rF∂
∂ β ∆ Γ

  =  , ,

,

log
( , , )

it r k ir

k ir

F∂ ∂β
∂β ∂ β ∆ Γ

. 

 
The left (outer) part of this derivative is a familiar result in this context, 
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The inner derivative is trivial, since βk,ir is linear in the terms of interest.  Combining terms,  
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where we include the subscript k in vk,ir to indicate that the number of elements in this vector is 
different for each k if the parameters are correlated, and it equals, simply, vk,ir when they are 
uncorrelated.  These are then stacked for the full set of structural parameters.  Collecting all terms, 
finally, 
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N29.11.5 Hessians 
 

 Given the complexity of the preceding, the Hessians promise to be formidable.  In fact, the 
results are surprisingly simple.  We first write the first derivatives as 
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It follows that the second derivatives matrix can be written as 
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The first two terms have already been derived.  The last involves the second derivatives matrix of the 
log of the individual simulated probabilities.  The notation at this point becomes excessively 
cumbersome.  The terms in the rightmost second derivative in this expression are parts of Kronecker 
products involving the matrix 
 

   Ak,m,ir = ( )( ), , , , , , , ,1
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(again, a familiar result in the logit model) and a second matrix 
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The first and third terms in the Hessian are negative definite (Hit,r is negative semidefinite) 

and the second is positive definite.  In a finite sample, the sum of the three need not be negative 
definite, which means that in a finite sample, the estimated asymptotic covariance based on the 
second derivatives might not be positive definite.  However, in theory, the second and third terms 
above should sum to zero (at least in large samples).  Therefore, the BHHH estimator in the first line 
is a valid estimator of the asymptotic covariance matrix for the maximum likelihood estimators of 
the parameters in this model.  We use this estimator when the full Hessian turns out not to be 
negative definite.  The results for the model will sometimes contain an indication of this condition. 
This does not indicate that something has gone wrong – this is a finite sample result that can be 
ignored (assuming that estimation was otherwise successful). 
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N29.11.6 Panel Data and Autocorrelation 
 
 The preceding results must be modified slightly for the panel data estimators.  The draws are 
obtained as follows:  The primitive draws are taken as usual, now denoted uitr to indicate the role of 
time explicitly in the equations.  In the standard, random effects case examined in the previous 
section, vitr = uirt for all t and uirt is drawn once for the entire set of Ti periods.  The effect is the same 
in every period.  The various terms in the log likelihood and its derivatives are be obtained by 
summation over periods within the summation over observations, and nothing else need be changed.  
The autoregression model is rather more involved.  The random variable generation process is 
 

  vk,ir1  =  ( )21/ 1 k− ρ uk,ir1 

vk,irt  =   ρk vk,i,t-1,r  +  uk,irt 
 
This is the standard first order autocorrelation treatment, with the Prais-Winsten treatment for the 
first observation – this is done to avoid losing any observations due to differencing.   
 Generation of the probabilities and the log likelihood are straightforward, given the results 
already presented.  The substantial new complication arises in computing the derivatives.  The first 
derivatives with respect to the other parameters in the model as shown in Section N29.11.4 are not 
changed, save for the addition of a time index in the summations, and summation over periods inside 
the summation over individuals.  Then, the derivatives with respect to the parameters described 
earlier are as already stated.  However, the derivatives with respect to the autocorrelation parameters 
remain.  Consider, first, the simpler case in which there is no correlation across parameters.  In the 
gradient, we will require, in addition to the terms already derived, 
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The first order difference equation in the third term begins with the Prais-Winsten transformed first 
random term,  

   , 1k ir
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 =  vk,ir1 / (1 - ρk
2). 

 
The second derivative is complex, but relies on the same kind of iterations.  When parameters are 
correlated, then each parameter involves one or more of the autocorrelation coefficients.  The 
derivative of the log probability in this instance must be accumulated by summing several such 
terms. 
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N30: Error Components Multinomial Logit 
Model 

 
N30.1 Introduction 
 
 The error components model is an extension of the multinomial logit model that resembles 
the random effects model in other settings.  The model is well suited to repeated choice situations, or 
panel data applications, though it can be applied in a single cross section as well. The simplest form 
of the model underlying the observed data would be assumed to be the following random utility 
specification: 
   Uit (choice j) =  Ujit   

     =  β′xjit  +  εjit + θjEji, j = 1,...,Ji, t = 1,...,Ti. 
 
The random, individual specific terms, (ε1it,ε2it,...,εJit) are the same type 1 extreme value terms assumed 
in the basic MNL model.  The ‘error components,’ Eji are alternative specific random individual effects 
that account for choice situation invariant variation that is unobserved and not accounted for by the 
other model components.  (The parameter θj is the standard deviation, made explicit for convenience so 
it is assumed that Var[Eji] = 1.  The means are assumed to equal zero.)  As noted, this resembles a 
random effects model for panel data.  The extensions noted below will take this somewhat beyond this 
specification. The conditional probability for choice j under the IID assumption on εjit is 
 

   Prob(yit = j|E1i,E2i,...)  =  
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where yit is the index of the choice made. As seen below, under general assumptions, this model relaxes 
the IIA assumptions of the multinomial logit model.  Because the unobserved random effects appear in 
the probabilities, the model above is not suitable for estimation.  It is necessary to integrate the random 
effects out of the likelihood function. We use the method of maximum simulated likelihood. 
 
N30.2 Command for the Error Components MNL Model 
 
 The simplest form of the command for the error components multinomial logit model is 
 
 ECLOGIT  ; Lhs = variable which indicates the choice made 
                  ; Choices = a set of J names for the set of choices  
   ; ... utility functions, specified by ; Model: ... or ; Rhs and ; Rh2 
   ; ECM = the specification of the error components $ 
 
The ‘error components’ are individual specific random effects that are distributed across alternatives 
according to a tree structure.  This is somewhat similar to a random constants model, except that in 
that case, the random terms would be alternative specific – here they need not be.  The simple form 
of the model has one component per alternative, which would be specified with 

 
  ; ECM = (alternative 1), (alternative 2), ..., (alternative J) 



N30: Error Components Multinomial Logit Model  N-588 

The number of effects in the model is limited to 10 altogether, though in practice, the true limit will 
be the number of alternatives if that is less than 10.  The model structure allows you to capture 
correlation across alternatives by arranging the error components in a tree structure, with branches 
that may overlap.  It takes the same form as the nested logit model described in Chapter N28. For 
example, in the model below, all three error components appear in more than one utility function. 
 

Ui,air =   αair  + β1gci,air +  β2ttmei,air +  εi,air +  θ1E1,i 

Ui,train =   αtrain + β1gci,train +  β2ttmei,train +  εi,train  + θ2E2,i +  θ3E3,i 

Ui,bus =   αbus + β1gci,bus +  β2ttmei,bus  +  εi,bus   +  θ2E2,i +  θ3E3,i 

Ui,car =  β1gci,car   +  β2ttmei,car  +  εi,car  +  θ1E1,i   +  θ3E3,i 
 
Four of the six correlations in the 4×4 correlation matrix, ρ(train,bus), ρ(air,car) and ρ(train,car) = 
ρ(bus,car), are nonzero.  The specification for this model is 
 
   ; ECM = (air,car),(train,bus),(train,bus,car) 
 
 The error components model may be layered on top of the random parameters (mixed) logit 
model that is described in Chapter N29.  If you are fitting an RPL model, just add the ECM 
specification, with 
 

   ; ECM = the specification of the error components  
 
exactly as above.  This form of the model is described in Section N29.5. 
 The full set of options and features for the multinomial logit model and the random 
parameters model are used in this setting as well.  That includes fitted probabilities, inclusive values, 
all display options described and the simulator described in Chapters N19-N22.  Do note, however, 
that although this model is closely related to the RP model, there is but one parameter vector, and 
hence, ; Par has no effect here.  The specification 
 
   ; SDE = list of symbols or values 
 
can be used in the same fashion as ; Rst = list to constrain the standard deviations of the error 
components to equal each other or fixed values.  For example, with four components, the 
specification 
   ; SDE = 1,1,ss,ss 
 
forces the first two to equal one and the third and fourth to equal each other.  Two other 
specifications are available. 
 
   ; SDE = a single value 
 
forces all error components to be equal to that value.  Finally, in any specification, if the value is 
enclosed in parentheses, then the value is merely used to provide the starting value for the estimator, 
it does not impose any constraints on the final estimates. 
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N30.3 Heteroscedastic Error Components 
 
 In the preceding, the underlying random effects are assumed to be normally distributed with 
mean zero and standard deviation one; σm is the variance parameter for each one.  You can specify a 
heteroscedastic model of the usual form, 
 
   Var[Eim]  =  exp(γmhi) 
 
by specifying the set of variables in 

 
  ; Hfe = list of variables 

 
When the model is fully specified with multiple random effects and numerous variables in the 
heteroscedasticity function, you may wish to specify which variables appear in the variances of the 
components.  This is done with a modification of the ; ECM specification. We will detail it with an 
example.  Suppose the specification is 
 
   ; ECM = (air,car), 
        (train,bus), 
        (train,bus,car) 
   ; Hfe = hinc,psize 
 
Suppose we wish to specify that only hinc appears in the first function, only psize in the second, and 
both in the third.  The ; ECM specification would be modified to 
 
   ; ECM = (air,car ! 10) ,  
       (train,bus ! 01),  
       (train,bus,car ! 11) 
 
An exclamation point inside the parentheses after the last name signals that a specification of the 
heteroscedastic function is to follow.  The succeeding specification is a set of zeros and ones where a 
one indicates that the variable appears in the variance and a zero indicates that it does not.  The 
number of zeros and ones provided is exactly the number of variables that appear in the Hfe list.  
One abbreviation is available.  If you wish for an effect to be homoscedastic, that is, for none of the 
Hfe variables to appear in the variance, then just end the specification with the exclamation point.  
For example, 
   ; ECM = (air,car ! ) ... 
 
specifies that the first of the three effects is homoscedastic.  A caution is in order.  It is possible to 
specify a model in which you specify a set of variables in the Hfe list, but remove one or more of 
these variables from all of the functions.  NLOGIT cannot verify for you that you have done this. 
However, such a model cannot be estimated.  The most likely outcome is an excessive number of 
iterations followed after exit with a warning that the Hessian was singular and could not be inverted. 
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N30.4 General Form of the Error Components Model 
 
 Under the preceding assumptions, the general form of the error components multinomial 
logit model is as follows: 
 
   Ujit   = βi′xjit  +  

1
exp( )hM

jm m m i imm
d E

=
′θ∑ γ . 

 
In this form, the model components are 
 
   xjit = attributes and characteristics that enter the utility function of  
        individual i in choice situation t for alternative j, 
 
   βi = the parameters for individual i, 
 
We write the model in the random parameters form because the error components model may be 
added to the random parameters model.  This development is continued in Chapter N29. 
 
   Eim = the individual specific random error components, m = 1,...,M. 
 
Note that the error components are not necessarily identified with specific alternatives, though they 
may be.  That depends on your specification of the model.  It will be assumed from here onward that 
the error components have standard normal distributions, 
 
   Eim ~ N[0,1]. 
 
The variance of the error component that enters the model is 
 
   θim

2 = θm
2[exp(γm′hi)]2, 

 
where   hi = individual choice invariant characteristics that produce 
     heterogeneity in the variances of the error components, 
 
   γm = parameters that enter the heteroscedasticity in the variances of 
     the error components, 
 
and   djm = 1 if Eim appears in the utility function for alternative j and 0 
     otherwise. 
 
Conditional probabilities are built up in the fashion shown in Section N30.1.  Estimation of the 
model is considered in Section N30.7. 
 
  



N30: Error Components Multinomial Logit Model  N-591 

N30.5 Results for the Error Components MNL Model 
 
 Results for the error components multinomial logit model will consist of the standard model 
results and any additional descriptive output you have requested.  The application below will display 
the full set of available results.  Results kept by this estimator are: 
 
 Matrices:  b and varb =  coefficient vector and asymptotic covariance matrix 
  
 Scalars:  logl  =  log likelihood function 
   nreg  =  N, the number of observational units 
   kreg  =  the number of Rhs variables 
  
 Last Model:  b_variable =  the labels kept for the WALD command 
 
The model results appear generally the same as those for the multinomial logit model.  The 
difference will be the specific results for the error components.  For example, the model specified 
above produces the following results: 
 
----------------------------------------------------------------------------- 
Random Parms/Error Comps. Logit Model 
Dependent variable                 MODE 
Log likelihood function      -172.88527 
Replications for simulated probs. =  50 
Halton sequences used for simulations 
ECM model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Hessian is not PD. Using BHHH estimator 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters in utility functions 
      GC|    -.04152***      .00684    -6.07  .0000     -.05493   -.02810 
    TTME|    -.11186***      .01519    -7.36  .0000     -.14163   -.08209 
   A_AIR|    5.21772***     1.35047     3.86  .0001     2.57085   7.86458 
 A_TRAIN|    5.53789***      .84435     6.56  .0000     3.88300   7.19278 
   A_BUS|    4.41685***      .88537     4.99  .0000     2.68156   6.15214 
        |Standard deviations of latent random effects 
SigmaE01|    1.26980        1.30876     -.97  .3319    -3.83492   1.29531 
SigmaE02|     .64732        1.87332      .35  .7297    -3.02432   4.31896 
SigmaE03|    5.07437***     1.45435     3.49  .0005     2.22390   7.92484 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Random Effects Logit Model 
 Appearance of Latent Random Effects in Utilities 
 Alternative   E01 E02 E03 
+-------------+---+---+---+ 
|  AIR        | * |   |   | 
+-------------+---+---+---+ 
|  TRAIN      |   | * | * | 
+-------------+---+---+---+ 
|  BUS        |   | * | * | 
+-------------+---+---+---+ 
|  CAR        | * |   | * | 
+-------------+---+---+---+ 
 
 The marginal effects in the multinomial logit model are computed as the derivatives of the 
probability of choice j with respect to attribute k in alternative m.  This is 
 

   [ ]( )j
m j k

km

P
j m P P

x
∂

= = β
∂

1  - , 

 
where the function 1(j = m) equals one if j equals m and zero otherwise.  Derivatives and elasticities 
are obtained by averaging the observation specific values, rather than by computing them at the 
sample means.   The listing reports the sample mean (average partial effect) and the sample standard 
deviation. Alternative approaches are discussed in Chapter N21.   The elasticities in the MNL model 
display one of the signature features of the IIA assumptions, that cross elasticities are all equal.  The 
error components logit model does not impose that set of assumptions throughout the model. The 
probabilities are the expected values over the error components, and do not display this 
characteristic. For example, the specification for the model estimated above produces the following 
sets of elasticities.  Note that two of the elasticities with respect to gcair are the same. 
 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.98551***      .02647   -37.23  .0000    -1.03740   -.93362 
   TRAIN|     .35118***      .01489    23.59  .0000      .32200    .38035 
     BUS|     .35118***      .01489    23.59  .0000      .32200    .38035 
     CAR|     .42718***      .01644    25.99  .0000      .39496    .45940 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in TRAIN 
--------+-------------------------------------------------------------------- 
     AIR|     .39644***      .02337    16.97  .0000      .35065    .44224 
   TRAIN|   -3.25055***      .16698   -19.47  .0000    -3.57782  -2.92327 
     BUS|    1.92116***      .07857    24.45  .0000     1.76716   2.07516 
     CAR|    1.16170***      .06328    18.36  .0000     1.03767   1.28574 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in BUS 
--------+-------------------------------------------------------------------- 
     AIR|     .20206***      .01973    10.24  .0000      .16340    .24073 
   TRAIN|     .99208***      .07638    12.99  .0000      .84238   1.14178 
     BUS|   -3.58608***      .12537   -28.60  .0000    -3.83180  -3.34036 
     CAR|     .59892***      .05438    11.01  .0000      .49234    .70549 
--------+-------------------------------------------------------------------- 
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Average elasticity      of prob(alt) wrt GC       in CAR 
--------+-------------------------------------------------------------------- 
     AIR|     .36741***      .01962    18.73  .0000      .32896    .40587 
   TRAIN|    1.00528***      .06214    16.18  .0000      .88348   1.12709 
     BUS|    1.00528***      .06214    16.18  .0000      .88348   1.12709 
     CAR|   -1.95363***      .09288   -21.03  .0000    -2.13566  -1.77159 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt TTME     in AIR 
--------+-------------------------------------------------------------------- 
     AIR|   -1.78359***      .05257   -33.93  .0000    -1.88663  -1.68055 
   TRAIN|     .52235***      .01481    35.28  .0000      .49333    .55137 
     BUS|     .52235***      .01481    35.28  .0000      .49333    .55137 
     CAR|     .64488***      .01528    42.20  .0000      .61493    .67484 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt TTME     in TRAIN 
--------+-------------------------------------------------------------------- 
     AIR|     .30284***      .01404    21.57  .0000      .27532    .33037 
   TRAIN|   -2.51160***      .10572   -23.76  .0000    -2.71881  -2.30440 
     BUS|    1.53504***      .05514    27.84  .0000     1.42696   1.64312 
     CAR|     .88835***      .03761    23.62  .0000      .81463    .96206 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt TTME     in BUS 
--------+-------------------------------------------------------------------- 
     AIR|     .14922***      .01008    14.81  .0000      .12947    .16897 
   TRAIN|     .77910***      .04298    18.13  .0000      .69486    .86334 
     BUS|   -3.94405***      .11847   -33.29  .0000    -4.17625  -3.71185 
     CAR|     .44643***      .02814    15.86  .0000      .39127    .50158 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt TTME     in CAR 
--------+-------------------------------------------------------------------- 
     AIR|        0.0    .....(Fixed Parameter)..... 
   TRAIN|        0.0    .....(Fixed Parameter)..... 
     BUS|        0.0    .....(Fixed Parameter)..... 
     CAR|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.9855    .3512    .3512    .4272 
   TRAIN|   .3964  -3.2505   1.9212   1.1617 
     BUS|   .2021    .9921  -3.5861    .5989 
     CAR|   .3674   1.0053   1.0053  -1.9536 
 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
TTME    |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -1.7836    .5223    .5223    .6449 
   TRAIN|   .3028  -2.5116   1.5350    .8883 
     BUS|   .1492    .7791  -3.9441    .4464 
     CAR|   .0000    .0000    .0000    .0000 
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N30.6 Application 
 
The following shows the complete set of results for an error components model.  This is the 

full model that has been displayed in parts in the preceding sections. 
 
ECLOGIT ; Lhs = mode 
  ; Choices = air,train,bus,car 

   ; Rhs = one,gc,ttme 
   ; ECM = (air,car),(bus,train),(car,bus,train) 
   ; Hfe = psize  ? (This is the traveling party size.) 
   ; Halton  
   ; Pts = 50  
   ; Effects: gc(*) $ 
 
----------------------------------------------------------------------------- 
Random Parms/Error Comps. Logit Model 
Dependent variable                 MODE 
Log likelihood function      -195.72367 
Replications for simulated probs. =  50 
Halton sequences used for simulations 
Hessian is not PD. Using BHHH estimator 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Nonrandom parameters in utility functions 
      GC|    -.02550***      .00569    -4.48  .0000     -.03665   -.01434 
    TTME|    -.11407***      .01429    -7.98  .0000     -.14208   -.08606 
   A_AIR|    5.99505***      .87988     6.81  .0000     4.27051   7.71959 
 A_TRAIN|    4.93783***      .70771     6.98  .0000     3.55075   6.32491 
   A_BUS|    4.08945***      .68594     5.96  .0000     2.74503   5.43388 
        |Standard deviations of latent random effects 
SigmaE01|     .18704        7.81521      .02  .9809   -15.13049  15.50458 
SigmaE02|     .03909        3.92463      .01  .9921    -7.65305   7.73123 
SigmaE03|    7.09290**      3.13987     2.26  .0239      .93886  13.24693 
E01PSIZE|    -.09792       26.08617      .00  .9970   -51.22586  51.03003 
        |Heterogeneity in variance of latent random effects 
E02PSIZE|     .27601       31.04402      .01  .9929   -60.56915  61.12118 
E03PSIZE|    -.69217*        .37582    -1.84  .0655    -1.42876    .04442 
--------+-------------------------------------------------------------------- 
 
Random Effects Logit Model 
 Appearance of Latent Random Effects in Utilities 
 Alternative   E01 E02 E03 
+-------------+---+---+---+ 
|  AIR        | * |   |   | 
+-------------+---+---+---+ 
|  TRAIN      |   | * | * | 
+-------------+---+---+---+ 
|  BUS        |   | * | * | 
+-------------+---+---+---+ 
|  CAR        | * |   | * | 
+-------------+---+---+---+ 
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Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR| -1.1618    .4183    .4183    .4196 
   TRAIN|   .4857  -2.3989    .9206    .9119 
     BUS|   .2187    .4721  -2.4664    .4678 
     CAR|   .4818    .8222    .8222  -1.6014 
 
N30.7 Technical Details on Maximum Likelihood Estimation  
 
  The error components multinomial logit model is estimated by maximum simulated 
likelihood. The log likelihood is built as follows:  The conditional choice probabilities for individual 
i are 

   Prob(yit = j|E1i,E2i,...)  =  
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Conditioned on the error components, the choices are independent, so the contribution of individual i 
to the conditional likelihood function is 
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The components must be integrated out of the conditional likelihood to obtain the unconditional 
likelihood that will be maximized.  Thus, 
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The integrals cannot be expressed in closed form.  However, the form of the likelihood is particularly 
convenient, since the error components are independent standard normal.  We use simulation instead.  
The simulated likelihood function for individual i is 
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in which Eim,r is a set of M independent standard random normal draws.  These may be 
pseudorandom draws or Halton sequences.  The function to be maximized is 
 
   logLS =  ,1

logN
i Si

L
=∑ . 
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Analysis of this model follows precisely along the lines of the random parameters models described 
in Chapter N29.  The function and analytic first derivatives and second derivatives are obtained by 
simulation.  (The derivatives are surprisingly simple in spite of the formidable appearance of the 
function.)  The BFGS method is used for optimization.  Starting values are the MNL values for the 
slopes, and zeros for all variance terms. 
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N31: Nonlinear Random Parameters Logit 
Model  

 
N31.1 Introduction 
 
 The nonlinear random parameters logit model provides several extensions of the mixed logit 
model described in Chapter N29.  The central feature is the specification of the utility functions, 
which take the general form 
 
   Uit (alt=j) = σi [V(βi,xit,j)  +  ECi ]  +  εit,j, 

   V(βi,xit,j)  = any nonlinear function of attributes, characteristics, parameters, 

   βi   = β  + Δzi  +  Γwi  (random parameters), 

   ECi   = 
1

C
ic icc

d E
=∑   (error components), 

   σi   = exp(δ′ri  +  τvi – τ2/2) (scaled MNL). 

 
The iid assumption is maintained for the random component of the utility functions.  The overall 
model is a multinomial logit with this extended form of the utility functions; 
 

   
{ }

{ }
, 1

, 11

exp ( , )
Prob( )

exp ( , )
=

==

 σ + Σ = =
 σ + Σ ∑ it

C
i i it j c ic ic

J C
i i it j c ic icj

V x d E
alt j

V x d E

β

β
. 

 
This specification combines the random parameters specification of Chapter N29, the error 
components logit model of Chapter N30 and the scaled multinomial logit model of Chapter N24, and 
extends the utility functions beyond the linear specification assumed up to this point. 
 
N31.2 Model Command for Nonlinear RP Models 
 
 The command structure for this general model requires four parts, the choice set, the random 
parameters, the nonlinear parts of the utility functions and the utility functions themselves.  The 
general format of the basic command is 
 
 NLRPLOGIT ; Lhs =  choice 
   ; Choices = … as usual 
   ; Fcn = …  definition of random parameters 
   ; Fn1 = …  definition of nonlinear components of utilities 
   ; Model: …  definition of utility functions $ 
 
The choice set definition is the same as for all other model specification in NLOGIT.  The other 
essential parts and various options are described below. 
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N31.2.1 Parameter Definition 
 
 The parameters definition begins with same sort of definition used in the nonlinear 
optimization (MAXIMIZE, NLSQ, etc.) commands.  You must provide the names you will be using 
for the parameters in the model and starting values. 
 
   ; Labels = the set of labels 
   ; Start = starting values for means of random parameters) 
 
The parameters in the model take the form 
 
   βi  =  β  +  Δzi  +  Γwi. 
 
The starting values for any nonzero elements of Δ and Γ will be zero.  You provide the values for β.  
The remainder of the parameter definition uses the same features as described in Chapter N29 for the 
linear utilities, random parameters model.  The setup uses 
    
   ; Fcn = definitions of random parameters, with all other features  
    from Chapter N29 
   ; Correlated 
   ; RPL = list for observed heterogeneity in means 
 
The parameter heteroscedasticity, ; Hfn = list, and the ; AR1 features are not built into this form of 
the random parameters model.  Section N29.3.7 describes a device, ; SDV = list, that can be used to 
impose certain restrictions on the standard deviations of the random parameters. 
 In the ; Fcn definition, use the labels that you defined in your ; Labels definition.  Note that 
it is not necessary for all parameters named in the ; Labels definition to be random.  Use ; Fcn to 
define the distributions only for those parameters that are actually random in the model. 
 The set of features is restricted a bit.  The distributions that may be used in the ; Fcn setup 
are ‘c’ (constant), ‘n’ (normal), ‘u’ (uniform), ‘t’ (triangular), ‘o’ (one sided triangular), ‘z’ 
(truncated normal) and ‘s’ (skew normal).  The ‘l’ (lognormal) distribution is not supported in the 
command, however, if you require a lognormal parameter, γ, you can use exp(β) where β is normally 
distributed.  (See the technical details for an additional note on this usage.)   
 
N31.2.2 Nonlinear Components  
 
 The nonlinear utility functions are constructed from nonlinear functions, which can be 
constructed recursively.  These functions are defined to be built into the utility functions. 
 
   ; Fn1 = alias1 =   a nonlinear function of parameters and data 
   ; Fn2 = alias2 =   a nonlinear function of parameters and data 
   … up to  
   ; Fn50 = alias50 = a nonlinear function of parameters and data 
 
Note, these are not necessarily the utility functions.  Utility functions are constructed from these  
parts.   
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 For example, 
 
   ; Fn1 = frstpart = a0 + exp(a1*x1 + a2*x2) 
   ; Fn2 = scndpart = frstpart + c2*c3*z  
   ; Fn3 = both =  frstpart * scndpart  
 
might be followed with 
 
   ; Model: U(alt1,alt2) = both  / U(alt3) = frstpart $ 
 
The definitions of the nonlinear components follow the construction used in MAXIMIZE, NLSQ, 
etc.  They may involve any number of layers of parentheses, functions such as Log, Exp, Phi, etc., 
and the usual operators, +, -, *, /, ^. 
 
N31.2.3 Utility Functions 
 
 The utility functions are defined to equal one of the nonlinear components.  Any one of the 
nonlinear functions may be the applicable utility function, as shown in the example above. 
 
   ; Model: U(list of alts) = alias … / 
    U(list of alts) = alias … 
 
Each utility function is defined to equal one of the nonlinear functions.  The utility functions do not 
specify any more mathematics.  The utility function only identifies which of the nonlinear 
components should be used for that alternative.  (See the technical details for a note about using 
information about specific nonlinear components in the utility functions to speed up the 
computations.) 
 
N31.2.4 The Error Components Model 
 
 The utility functions may contain error components (random effects), as in the ECLOGIT 
model Section N29.5 and Chapter N30.  Use 
 
   ; ECM = definition of error components. 
 
N31.2.5 Scaling function, σi – The Scaled Nonlinear RP Model 
 
 The overall common scaling parameter is added to the model with 
 
   ; SMNL   
 
Without this specification, σi = 1.  With ; SMNL, σi = exp(δ′ri + τvi – τ2/2) where vi ~ N[0,1].  You 
can specify a starting value or a fixed value for τ with 
 
   ; Tau = value for starting value or [value] to fix. 
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The variance may also depend on observed variables by adding 
 
   ; Hfr = list of r variables in σi 
 
to the specification.  The specification ; SCV that is used in Chapter N33 to allow for correlation 
between the random parts of σi and βki is not available here. 
 
N31.2.6 Panel Data 
 
 Panel data or repeated choice data are identified  using 
 
   ; Pds = definition if this is a panel application 
 
as in the random parameters and latent class models.  The treatment is the same as in the other 
models.  The parameters are time invariant and the likelihood function is computed accordingly 
when the parameters are estimated. 
 
N31.2.7 Ignored Attributes 
 
 Section N18.9 describes a device with which you can account for cases in which some but 
not all individuals in the sample indicate that they have not considered specific attributes in their 
decision.  The modeling response to this case is to replace the relevant coefficient, not the attribute, 
with zero, for this person, and adjust the log likelihood and derivatives accordingly.  In the nonlinear 
utility function of this chapter, there is no exact correspondence between coefficients and variables, 
so this device cannot be used.  That is, when the utility function is U(choice) = β1x1 + β2x2 +…ε, our 
modeling strategy is to set, e.g., β1 to zero when we find x1 equals -888.  But, when the utility 
function is merely of the form U(choice)=V(x,β) + ε, finding that a particular x equals -888 does not 
imply that a particular β should equal zero.  However, you can make the association yourself, 
explicitly as follows.  The syntax, 
 
   ; 888:  (attribute / label), … 
 
states that when variable attribute equals -888, then coefficient label is to be set to zero.  The 
coefficient label is one that appears in the ; Labels = list part of the command. 
 
N31.3 Results 
 
 Standard results, as shown in the applications below, include the usual statistical output – 
diagnostic statistics, coefficient estimates, and so on.  Descriptive results from 
 
   ; List 
   ; Crosstab  
and   ; Show 
 
may all be used as with other multinomial choice models.  See Section N19.3 for details.   
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N31.3.1 Individual Specific Parameters 
 

Individual specific parameters and standard deviations are saved with 
 
   ; Parameters. 
 
Figure N31.1 below shows the results from the first application below. 
 

 
Figure N31.1  Matrices Saved with ; Par 

 
The simulator for analyzing scenarios and changes in market shares that is described in Chapter N22 is 
used in exactly the same way for this nonlinear model.  All aspects of the command are identical here. 
 
N31.3.2 Willingness to Pay 
 
 In principle, willingness to pay is computed as 
 
 WTP  =  marginal utility of attribute / marginal utility of income 
 
When income is not in the data set, researchers often use a cost variable as a surrogate, with the 
negative of the disutility of cost being a surrogate for the marginal utility of income.  Thus, 
 
 WTP = - marginal utility of attribute / marginal disutility of cost. 
 
When the utility functions are linear and have generic coefficients, WTP is typically computed as a 
ratio of coefficients.  These may be fixed, as in the MNLOGIT model, or they may be random, as 
shown in Section N29.8.4. 
 In the nonlinear model of this chapter, this is an ambiguous calculation because the marginal 
utility (derivative of utility) with respect to an attribute is likely to depend on which utility function 
is used (that is, which one is differentiated).  We do not have a right answer to propose in this case.  
You can specify how the computation is to be done by using 
 
   ; WTP = choice [ attribute / cost ] 
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where the choice gives the name of the utility function to be differentiated.  The attribute and cost 
variables define which two variables are to be the denominators of the derivative.  You may have up 
to five of these in the command.  Each provides a column in the matrices wtp_i and sdwtp_i that  are 
created by this procedure. 
 
N31.4 Application 
 
 The following small contrived example illustrates the structure of the model command and 
shows several of the options. 
 

SAMPLE ; 1-840 $ 
CREATE ; zrpl = Rnu(0,1) $ 
NLRPLOGIT ; Lhs = mode  

; Choices = air,train,bus,car  
; Pds = 3 ; Labels = a0,b1,b2,b3  
; Start 8.530310,-.12119,-.03512,.17651  
; Fcn = b1(n),b2(n),b3(n)  
; Halton  
; Draws = 25 ; Correlated  
; RPL = zrpl 

   ; Fn1 = utility1 = a0+b1*gc+b2*ttme+b2*b3*invc+b2*(1+b3)*invt 
   ; Fn2 = utility2 =        b1*gc+b2*ttme+b2*b3*invc+b2*(1+b3)*invt 

; Model: U(train,bus,car) = utility1 / U(air) = utility2 
; Effects: gc(*)  
; Full $ 

 
----------------------------------------------------------------------------- 
Nonlinear Utility Mixed Logit Model 
Dependent variable                 MODE 
Log likelihood function      -195.14005 
Restricted log likelihood    -291.12182 
Chi squared [  13 d.f.]       191.96354 
Significance level               .00000 
McFadden Pseudo R-squared      .3296962 
Estimation based on N =    210, K =  13 
Inf.Cr.AIC  =    416.3 AIC/N =    1.982 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .32971.0000 
Constants only   -283.7588  .31231.0000 
At start values -2281.0900  .91451.0000 
Response data are given as ind. choices 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
NLM model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Hessian is not PD. Using BHHH estimator 
Number of obs.=   210, skipped    0 obs 
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--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      B1|     .26132***      .07479     3.49  .0005      .11473    .40792 
      B2|    -.03404         .02190    -1.55  .1201     -.07696    .00888 
      B3|    1.04016        1.17787      .88  .3772    -1.26843   3.34875 
        |Nonrandom parameters in utility functions 
      A0|    19.9877***     2.60009     7.69  .0000     14.8916   25.0838 
        |Heterogeneity in mean, Parameter:Variable 
  B1:ZRP|    -.16776         .11919    -1.41  .1593     -.40137    .06585 
  B2:ZRP|     .02450         .02718      .90  .3674     -.02877    .07777 
  B3:ZRP|    -.95112         .91132    -1.04  .2966    -2.73728    .83503 
        |Diagonal values in Cholesky matrix, L. 
    NsB1|     .23644***      .05321     4.44  .0000      .13215    .34072 
    NsB2|     .04972*        .02665     1.87  .0621     -.00251    .10194 
    NsB3|     .09373         .12515      .75  .4539     -.15155    .33902 
        |Below diagonal values in L matrix. V = L*Lt 
   B2:B1| .74092D-04         .00520      .01  .9886 -.10117D-01  .10266D-01 
   B3:B1|    -.17472         .43851     -.40  .6903    -1.03419    .68474 
   B3:B2|    -.25865         .28191     -.92  .3589     -.81119    .29388 
        |Standard deviations of parameter distributions 
    sdB1|     .23644***      .05321     4.44  .0000      .13215    .34072 
    sdB2|     .04972*        .02664     1.87  .0620     -.00250    .10194 
    sdB3|     .32591         .27935     1.17  .2433     -.22160    .87342 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
Parameter Matrix for Heterogeneity in Means. 
--------+-------------- 
Delta   |          ZRPL 
--------+-------------- 
      B1|      -.167756 
      B2|      .0244996 
      B3|      -.951124 
Correlation Matrix for Random Parameters 
--------+------------------------------------------ 
Cor.Mat.|            B1            B2            B3 
--------+------------------------------------------ 
      B1|       1.00000     .00149026      -.536113 
      B2|     .00149026       1.00000      -.794438 
      B3|      -.536113      -.794438       1.00000 
--------+------------------------------------------ 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
+---------------------------------------------------+ 
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----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    1.58235***      .12494    12.67  .0000     1.33748   1.82722 
   TRAIN|    -.56845***      .04624   -12.29  .0000     -.65908   -.47782 
     BUS|    -.34267***      .03449    -9.93  .0000     -.41027   -.27507 
     CAR|    -.35495***      .02320   -15.30  .0000     -.40041   -.30949 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in TRAIN 
--------+-------------------------------------------------------------------- 
     AIR|    -.88959***      .11050    -8.05  .0000    -1.10616   -.67302 
   TRAIN|    6.19651***      .29665    20.89  .0000     5.61509   6.77793 
     BUS|   -3.02442***      .16857   -17.94  .0000    -3.35480  -2.69403 
     CAR|   -1.96623***      .09900   -19.86  .0000    -2.16026  -1.77220 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in BUS 
--------+-------------------------------------------------------------------- 
     AIR|    -.21430***      .03789    -5.66  .0000     -.28857   -.14004 
   TRAIN|   -2.27244***      .12462   -18.23  .0000    -2.51670  -2.02819 
     BUS|    6.08597***      .32191    18.91  .0000     5.45503   6.71691 
     CAR|   -1.84942***      .12706   -14.56  .0000    -2.09845  -1.60040 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in CAR 
--------+-------------------------------------------------------------------- 
     AIR|    -.42448***      .04668    -9.09  .0000     -.51598   -.33298 
   TRAIN|   -2.08423***      .10344   -20.15  .0000    -2.28696  -1.88150 
     BUS|   -2.55957***      .14983   -17.08  .0000    -2.85323  -2.26592 
     CAR|    3.67551***      .23676    15.52  .0000     3.21147   4.13955 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
     GC | 
--------+----------------------------------- 
     AIR|  1.5824   -.5685   -.3427   -.3550 
   TRAIN|  -.8896   6.1965  -3.0244  -1.9662 
     BUS|  -.2143  -2.2724   6.0860  -1.8494 
     CAR|  -.4245  -2.0842  -2.5596   3.6755 
 
This example adds the scaled MNL feature to the model above, including heteroscedasticity based on 
household income. 
 

NLRPLOGIT ; Lhs = mode  
; Choices = air,train,bus,car 
; Labels = a0,b1,b2,b3  
; Start 8.530310,-.12119,-.03512,.17651  

   ; Fn1 = utility1 = a0+b1*gc+b2*ttme+b2*b3*invc+b2*(1+b3)*invt 
   ; Fn2 = utility2 =        b1*gc+b2*ttme+b2*b3*invc+b2*(1+b3)*invt 

; Model: U(train,bus,car) = utility1 / U(air) = utility2 
; Fcn = b1(n),b2(n),b3(n) 
; Correlated ; RPL = zrpl ; Halton ; Pds = 3 ; Draws = 25 
; SMNL ; Hfr = hinc $ 
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----------------------------------------------------------------------------- 
Nonlinear Utility Mixed Logit Model 
Dependent variable                 MODE 
Log likelihood function      -205.21019 
Restricted log likelihood    -291.12182 
Chi squared [  15 d.f.]       171.82325 
Significance level               .00000 
McFadden Pseudo R-squared      .2951054 
Estimation based on N =    210, K =  15 
Inf.Cr.AIC  =    440.4 AIC/N =    2.097 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .29511.0000 
Constants only   -283.7588  .27681.0000 
At start values -2057.9615  .90031.0000 
Response data are given as ind. choices 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
NLM model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Hessian is not PD. Using BHHH estimator 
Variable IV parameters are denoted s_... 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      B1|     .00886         .01190      .74  .4569     -.01447    .03219 
      B2|    -.02324         .01623    -1.43  .1522     -.05504    .00857 
      B3|    -.16142         .50856     -.32  .7509    -1.15818    .83534 
        |Nonrandom parameters in utility functions 
      A0|    5.97289***     2.07038     2.88  .0039     1.91502  10.03075 
        |Heterogeneity in mean, Parameter:Variable 
  B1:ZRP|    -.06099         .03800    -1.61  .1084     -.13546    .01348 
  B2:ZRP|     .05019         .03535     1.42  .1556     -.01909    .11947 
  B3:ZRP|   -1.52411*        .90703    -1.68  .0929    -3.30185    .25364 
        |Diagonal values in Cholesky matrix, L. 
    NsB1|     .03945         .02710     1.46  .1455     -.01367    .09257 
    NsB2|     .01591         .01216     1.31  .1907     -.00793    .03975 
    NsB3|     .08381         .21933      .38  .7024     -.34607    .51368 
        |Below diagonal values in L matrix. V = L*Lt 
   B2:B1|     .02152*        .01279     1.68  .0926     -.00356    .04659 
   B3:B1|    -.10448         .13597     -.77  .4422     -.37097    .16201 
   B3:B2|    -.49465         .34683    -1.43  .1538    -1.17443    .18512 
        |Heteroscedasticity in NLRPLRP scale factor 
  sdHINC|     .02729*        .01637     1.67  .0956     -.00480    .05938 
        |Variance parameter tau in GMX scale parameter 
TauScale|    1.50229***      .51522     2.92  .0035      .49248   2.51210 
        |  Sample Mean    Sample Std.Dev. 
Sigma(i)|    2.37693        3.64049      .65  .5138    -4.75830   9.51217 
        |Standard deviations of parameter distributions 
    sdB1|     .03945         .02710     1.46  .1455     -.01367    .09257 
    sdB2|     .02676         .01652     1.62  .1052     -.00562    .05914 
    sdB3|     .51247         .35101     1.46  .1443     -.17549   1.20042 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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Parameter Matrix for Heterogeneity in Means. 
--------+-------------- 
Delta   |          ZRPL 
--------+-------------- 
      B1|     -.0609927 
      B2|      .0501894 
      B3|      -1.52411 
Correlation Matrix for Random Parameters 
--------+------------------------------------------ 
Cor.Mat.|            B1            B2            B3 
--------+------------------------------------------ 
      B1|       1.00000       .803992      -.203880 
      B2|       .803992       1.00000      -.737888 
      B3|      -.203880      -.737888       1.00000 
--------+------------------------------------------ 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.56131***      .05836    -9.62  .0000     -.67569   -.44693 
   TRAIN|     .14415***      .02368     6.09  .0000      .09773    .19056 
     BUS|     .14940***      .02027     7.37  .0000      .10967    .18913 
     CAR|     .10596***      .01476     7.18  .0000      .07702    .13489 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in TRAIN 
--------+-------------------------------------------------------------------- 
     AIR|     .16399***      .01828     8.97  .0000      .12817    .19981 
   TRAIN|   -1.17338***      .16860    -6.96  .0000    -1.50384   -.84292 
     BUS|     .31627***      .04916     6.43  .0000      .21993    .41261 
     CAR|     .27626***      .03927     7.03  .0000      .19929    .35323 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in BUS 
--------+-------------------------------------------------------------------- 
     AIR|     .16347***      .01709     9.57  .0000      .12997    .19696 
   TRAIN|     .30197***      .04769     6.33  .0000      .20850    .39543 
     BUS|   -1.16451***      .15899    -7.32  .0000    -1.47612   -.85289 
     CAR|     .35290***      .05104     6.91  .0000      .25286    .45293 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in CAR 
--------+-------------------------------------------------------------------- 
     AIR|     .19369***      .01961     9.88  .0000      .15526    .23212 
   TRAIN|     .43537***      .06028     7.22  .0000      .31722    .55352 
     BUS|     .54706***      .07713     7.09  .0000      .39588    .69824 
     CAR|    -.64829***      .09277    -6.99  .0000     -.83012   -.46646 
----------------------------------------------------------------------------- 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
     GC | 
--------+----------------------------------- 
     AIR|  -.5613    .1441    .1494    .1060 
   TRAIN|   .1640  -1.1734    .3163    .2763 
     BUS|   .1635    .3020  -1.1645    .3529 
     CAR|   .1937    .4354    .5471   -.6483 
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N31.4.1 Elasticities and Partial Effects 
 
 In principle, elasticities and partial effects are computed the same here as in other models.  
However, one difference is that the marginal utility part of the partial effect is not a constant 
coefficient, it is the derivative of the nonlinear utility function with respect to a variable.  This can 
differ across the choices when a generic coefficient would not.  The result is that there is likely to be 
somewhat more variation in cross elasticities than might otherwise be the case.  The example below 
computes ; Effects: gc(*) for the model in the previous example. 
 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    -.56131***      .05836    -9.62  .0000     -.67569   -.44693 
   TRAIN|     .14415***      .02368     6.09  .0000      .09773    .19056 
     BUS|     .14940***      .02027     7.37  .0000      .10967    .18913 
     CAR|     .10596***      .01476     7.18  .0000      .07702    .13489 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in TRAIN 
--------+-------------------------------------------------------------------- 
     AIR|     .16399***      .01828     8.97  .0000      .12817    .19981 
   TRAIN|   -1.17338***      .16860    -6.96  .0000    -1.50384   -.84292 
     BUS|     .31627***      .04916     6.43  .0000      .21993    .41261 
     CAR|     .27626***      .03927     7.03  .0000      .19929    .35323 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in BUS 
--------+-------------------------------------------------------------------- 
     AIR|     .16347***      .01709     9.57  .0000      .12997    .19696 
   TRAIN|     .30197***      .04769     6.33  .0000      .20850    .39543 
     BUS|   -1.16451***      .15899    -7.32  .0000    -1.47612   -.85289 
     CAR|     .35290***      .05104     6.91  .0000      .25286    .45293 
--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in CAR 
--------+-------------------------------------------------------------------- 
     AIR|     .19369***      .01961     9.88  .0000      .15526    .23212 
   TRAIN|     .43537***      .06028     7.22  .0000      .31722    .55352 
     BUS|     .54706***      .07713     7.09  .0000      .39588    .69824 
     CAR|    -.64829***      .09277    -6.99  .0000     -.83012   -.46646 
----------------------------------------------------------------------------- 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
     GC | 
--------+----------------------------------- 
     AIR|  -.5613    .1441    .1494    .1060 
   TRAIN|   .1640  -1.1734    .3163    .2763 
     BUS|   .1635    .3020  -1.1645    .3529 
     CAR|   .1937    .4354    .5471   -.6483 
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N31.4.2 Variables Saved in the Data Set 
 
 The standard set of retained results can be retained for the nonlinear model as well.  These 
include 
   ; IVB = variable  to retain the log sum variable in the probabilities 
   ; Actualy = variable  replicates in each row of an observation the actual 
     outcome chosen by the individual 
   ; Fittedy = variable replicates in each row of an observation the index  
    of the alternative that has the highest probability 
   ; Utility = variable retains in each row of an observation the utility  
    computed for that alternative for the individual. 
 
It is also possible to retain individual specific partial effects or elasticities with the standard syntax, 
 
   ; Effects: attribute(choice) = variable 
 
for a single attribute and a single alternative. 
 
N31.5 Technical Details 
 
Computation Time 
 
 This model is fit by maximum simulated likelihood. Because it is necessary to approximate 
the derivatives and simulate them as well, this is a very time consuming estimator.  Every possible 
avenue to minimize the amount of computation is taken internally.  There is a point at which you can 
reduce the computation in a way that is not evident to the program internally.  In order to compute 
the full set of probabilities needed to compute the log likelihood, NLOGIT must fill a matrix that 
contains all M nonlinear component functions for every one of the J utility functions.  However, it 
may be that some of the nonlinear components are not needed for some of the utilities.  Consider an 
example 
   ; Fn1 = K1 =   a1 + a2*x2*x2 + a3*x3 
   ; Fn2 = K2 =   b1 + b2*q 
   ; Fn3 = K3 =   c1 + c2*xc  
   ; Fn4 = Ratio =   K2/K3 
   ; Model: U(alt1) = K1 / U(alt2) = K2 / U(alt3) = Ratio 
 
By default, NLOGIT will compute all four functions for each of the 3 alternatives.  But, in fact, 
functions K2, K3 and Ratio are not needed for U(alt1) and K1, K3 and Ratio are not needed for 
U(alt2) and K1 is not needed for U(alt3).  An extension of the model command that can increase the 
speed of the computations considerably is to specify the utility functions and name explicitly the 
other functions needed to compute it.  For this example, we could use 
 
   ; Model: U(alt1) = K1 [.] / 
    U(alt2) = K2 [.] / 
    U(alt3) = Ratio [K2,K3] 
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The [.] indicates that no other functions are needed to compute this one.  This would bring a 
substantial time saving (greater than 50%), as only 5, rather than all 12 functions×utilities are 
computed. 
 
Lognormal Parameters 
 
 It is noted earlier, the available set of distributions for the random parameters does not 
include the lognormal.  You can exponentiate a normally distributed parameter to achieve the same 
result.  However, the long, thick tail of the lognormal distribution can produce extreme values of the 
parameters and implausible results, as well as instability in the estimator itself.  You can dampen this 
effect by using the truncated normal, ‘(z)’ specification instead of the normal ‘(n).’  This distribution 
removes the upper and lower 2.5% of the distribution, which is where the mischief resides.  Defining 
beta(z) in ‘;Fcn, then exp(beta) in your model may produce better results. 
 
Internal Limits 
 
 There are a few technical constraints and internal limits on this estimator. 
 

• T < 20 in panel data sets; 
• J < 100 – choice sets are limited to 100 alternatives; 
• K < 100 parameters – this limit is set in the ; Labels specification; 
• Data must be individual, not shares, ranks or frequencies; 
• Data on attributes and characteristics must be in the multiple line format; 
• Utilities must be specified using ; Model: U(…) = …, not with ; Rhs and ; Rh2; 
• ; Wts may not be used;  
• ; MCS is not supported – it is not possible to simulate the outcome variable; 
• ; Checkdata is not available; 
• ; IAS and ; Choices = …(alts)… for the IIA tests are not available. 

 
Controlling The Simulation 
 
 As in earlier cases (RPLOGIT and SMNLOGIT), you can control the simulations in part 
with 
   ; Halton  to use Halton sequences rather than pseudorandom draws 
   ; Draws =  number of draws or Halton values 
   ; Shuffled  to use shuffled pseudorandom or Halton draws. 
 
(The third of these has relatively limited impact on the results.) 
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N32: Latent Class Random Parameters Model 
 
N32.1 Introduction 
 
 The latent class random parameters (LCRP) model combines the latent class model described 
in Chapter N25 with the random parameters model in Chapter N29.  It accommodates two layers of 
heterogeneity.  The model assumes that there are Q distinct classes of individuals in the population 
distinguished by different distributions of parameters within the classes.  The random parameters 
aspect of the model specifies a continuous distribution of model parameters within each class.  The 
classes are distinguished by the characteristics of these distributions.  Thus, in a two class model, we 
have distributions of random parameters with means βq and covariance matrices Σq, q = 1,…,Q.  Full 
details on the model specification and the estimator appear in Section N32.4. 
 

N32.2 Command 
 
 The command for the latent class random parameters model consists of 
 
 LCRPLOGIT ; Lhs = choice set definition 
   ; Choices = list of choice labels 
   ; Pds = definition if this is a panel, or stated choice experiment 
   ; … definition of the utility functions 
   ; … definition of the random parameters model 
   ; … definition of the latent class model 
   ; … other options $ 
 

The utility functions are specified using either ; Rhs = … list… ; Rh2 = … list … or            
; Model: U(…) = ….  All of the features used for other models such as RPLOGIT, CLOGIT, 
NLOGIT, etc. are used here in the same way. 

The random parameters are formulated using a restricted version of the RPLOGIT model.  
Use 

  ; RPL  
; Fcn = name (type), name(type),… for βqi  =  βq + Γqwiq 

 
or   ; RPL = list of variables  

; Fcn = name (type), name(type),… for βqi  =  βq + ∆qzi +  Γqwiq. 
 
If you are using the first form, then the ; RPL may be omitted (as it is implied by the model name). 
This estimator does not support heterogeneity in variances of the random parameters, so ; Hfn = list 
is not used here.  The types may be ‘N’ (normal), ‘T’ (triangular), ‘O’ (one sided triangular) or ‘C’ 
(constant, which is the same as not including that parameter in the ; Fcn list).  Draws for the 
simulation are controlled with 
 
   ; Halton 
   ; Draws = number of draws 
 
Note that this command looks for ; Draws rather than ; Pts for the number of replicates for the 
simulation – ; Pts is used to specify the number of latent classes. 
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 The latent class model is specified as in Chapter N25, with 
 
   ; LCM 
   ; Pts = number of classes 
 
or   ; LCM = list of variables that appear in the class probabilities 
   ; Pts = the number of classes. 
 
Since it is implied by the model name, you may omit the ;LCM if you are using the first form of the 
model. 
 
N32.2.1 Output Options 
 
 The following general options for display of the model and data are available: 
 
   ; Describe 
   ; Crosstab 
   ; Covariance 
 
N32.2.2 Post Estimation 
 
 The following general options are based on the results of the estimation step.  In general, 
where a parameter vector is called for, the program uses the individual specific estimate of E[βqi|i].  
To begin, the estimated posterior probabilities, 
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are computed.  The contributions to the likelihood within the classes are 
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where ˆ
qβ is the full set of parameters in class q, i.e., [ ˆ ˆˆβ, Γ, ∆ ]   Once the posterior probabilities are 

obtained, the estimate of the applicable class is the one with the largest posterior probability.  The 
parameter vector for that class is estimated using the method described in Section N29.8  This class 
specific, person specific estimator is used in the computations that follow.  Post estimation results 
generally available are as follows: 
 
   ; List requests a list of choice probabilities 
   ; Effects:… requests the partial effects or elasticities 
   ; Actualy = name replicates the actual choice in each row of the observation 
   ; Fittedy = name replicates the index of the choice with the highest probability 
   ; Prob = name stores the predicted probabilities 
   ; Utility = name stores the utility functions based on the estimated parameters 
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The setting ; Parameters saves three matrices, beta_i and sdbeta_i are for the individual specific 
estimates described above; classp_i  contains the estimated posterior probabilities.  Figure N32.1 
shows the results for the first of the applications in Section N32.3. 
 

 
Figure N32.1  Posterior Estimates of Parameters and Class Probabilities 

 
N32.3 Applications 
 
 The following demonstrates the LCRP model with a fairly sparse specification.  The data are 
actually a cross section, but for purpose of the example, we have grouped the observations into a 
panel of 70 sets of three.  Nonetheless, the model appears to be overspecified for this data set.  
Nearly all of the improvement in the log likelihood function over the basic MNL results from the 
latent class specification. 
 We note, as emerges from estimation in this example, the LCRP model is somewhat volatile, 
and identification is a bit fragile. 
 

LCRPLOGIT ; Lhs = mode  
; Choices = air,train,bus,car 
; Rhs = gc,invc,invt,casc  
; Pds = 3 
; Rpl ; Fcn = gc(n),invt(n) ; Draws = 500 ; Halton 
; LCM ; Pts = 2 

    ; Effects: gc(*) / invt(*) ; Full ; Par $ 
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----------------------------------------------------------------------------- 
Start values obtained using MNL model 
Dependent variable               Choice 
Log likelihood function      -275.34264 
Estimation based on N =    210, K =   4 
Inf.Cr.AIC  =    558.7 AIC/N =    2.660 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only   -283.7588  .0297 .0092 
Response data are given as ind. choices 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
      GC|     .02463*        .01347     1.83  .0674     -.00177    .05103 
    INVT|    -.00580***      .00188    -3.08  .0020     -.00949   -.00211 
    INVC|    -.04417***      .01525    -2.90  .0038     -.07406   -.01427 
    CASC|    -.19710         .21268     -.93  .3541     -.61395    .21975 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
Latent Class Mixed (RP) Logit Model 
Dependent variable                 MODE 
Log likelihood function      -237.65976 
Restricted log likelihood    -291.12182 
Chi squared [  13 d.f.]       106.92411 
Significance level               .00000 
McFadden Pseudo R-squared      .1836415 
Estimation based on N =    210, K =  13 
Inf.Cr.AIC  =    501.3 AIC/N =    2.387 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients  -291.1218  .1836 .1664 
Constants only   -283.7588  .1625 .1448 
At start values  -275.3443  .1369 .1187 
Response data are given as ind. choices 
Replications for simulated probs. = 500 
Halton sequences used for simulations 
Number of latent classes =            2 
Average Class Probabilities 
     .611  .389 
LCM model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Estimated latent class probabilities 
 PrbCls1|     .61093***      .07954     7.68  .0000      .45503    .76683 
 PrbCls2|     .38907***      .07954     4.89  .0000      .23317    .54497 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Random Parameters Logit Model for Class  1 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|     .03601         .02775     1.30  .1944     -.01838    .09040 
    INVT|    -.00911**       .00398    -2.29  .0222     -.01691   -.00130 
        |Nonrandom parameters in utility functions 
    INVC|    -.11063***      .03446    -3.21  .0013     -.17818   -.04308 
    CASC|   -1.09509***      .40728    -2.69  .0072    -1.89334   -.29683 
        |Distns. of RPs. Std.Devs or limits of triangular 
    NsGC| .61362D-05         .00559      .00  .9991 -.10958D-01  .10970D-01 
  NsINVT| .65061D-06         .00054      .00  .9990 -.10587D-02  .10600D-02 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Random Parameters Logit Model for Class  2 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|     .02826         .03926      .72  .4717     -.04869    .10520 
    INVT|    -.00755         .00589    -1.28  .1998     -.01910    .00399 
        |Nonrandom parameters in utility functions 
    INVC|    -.02027         .04298     -.47  .6372     -.10450    .06396 
    CASC|     .06251         .64507      .10  .9228    -1.20181   1.32682 
        |Distns. of RPs. Std.Devs or limits of triangular 
    NsGC| .19471D-04         .00694      .00  .9978 -.13590D-01  .13629D-01 
  NsINVT| .54962D-05         .00065      .01  .9932 -.12610D-02  .12720D-02 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Effects on probabilities of all choices in model: | 
+---------------------------------------------------+ 
----------------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt GC       in AIR 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  Choice|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
     AIR|    2.22541***      .09590    23.21  .0000     2.03745   2.41337 
   TRAIN|    -.69945***      .05308   -13.18  .0000     -.80349   -.59541 
     BUS|    -.71462***      .06642   -10.76  .0000     -.84479   -.58445 
     CAR|   -1.01229***      .11398    -8.88  .0000    -1.23569   -.78889 
--------+-------------------------------------------------------------------- 
(Results omitted) 
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--------+-------------------------------------------------------------------- 
Average elasticity      of prob(alt) wrt INVT     in AIR 
--------+-------------------------------------------------------------------- 
     AIR|    -.79152***      .03909   -20.25  .0000     -.86812   -.71491 
   TRAIN|     .22241***      .01120    19.86  .0000      .20045    .24436 
     BUS|     .21523***      .01507    14.28  .0000      .18570    .24477 
     CAR|     .29078***      .02380    12.22  .0000      .24413    .33743 
--------+-------------------------------------------------------------------- 
(Results omitted) 
----------------------------------------------------------------------------- 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  2.2254   -.6994   -.7146  -1.0123 
   TRAIN|  -.6559   2.7363   -.5195   -.6015 
     BUS|  -.8410   -.7176   2.4200  -1.0315 
     CAR|  -.7826   -.6792   -.8638   2.2465 
--------+----------------------------------- 
INVT    |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.7915    .2224    .2152    .2908 
   TRAIN|   .8851  -3.2469    .7302    .8229 
     BUS|  1.2095   1.0357  -3.3599   1.4583 
     CAR|  1.1958   1.0281   1.3029  -3.4886 
 
Clogit 
Elasticity wrt change of X in row choice on Prob[column choice] 
--------+----------------------------------- 
GC      |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  1.7153   -.8132   -.8132   -.8132 
   TRAIN|  -.4983   2.7090   -.4983   -.4983 
     BUS|  -.6247   -.6247   2.2145   -.6247 
     CAR|  -.6214   -.6214   -.6214   1.7290 
--------+----------------------------------- 
INVT    |     AIR    TRAIN      BUS      CAR 
--------+----------------------------------- 
     AIR|  -.5202    .2554    .2554    .2554 
   TRAIN|   .5678  -2.9605    .5678    .5678 
     BUS|   .8017    .8017  -2.8494    .8017 
     CAR|   .8742    .8742    .8742  -2.4506 
 
 This second application is based on a simulated data set in which the responses are a stated 
choice experiment with 8 repetitions based on a four choice setting, 3 unlabeled alternatives and 
‘none.’  There are 400 observations grouped by three latent classes.  Data consist of the choice 
outcome, data on two attributes, A and B, a price variable and its square, and demographics, sex and 
three age groups, young, middle, old.  The model fit is a random effects latent class model; 
 
 Uit,q (type1) = β1,q A(1)it + β2,q B(1)it + β3,q p(1)it + β4,q p(1)it

2 + γq + σqwiq + ε(1)it  
 Uit,q (type2) = β1,q A(2)it + β2,q B(2)it + β3,q p(2)it + β4,q p(2)it

2 + γq + σqwiq + ε(2)it  
 Uit,q (type3) = β1,q A(3)it + β2,q B(3)it + β3,q p(3)it + β4,q p(3)it

2 + γq + σqwiq + ε(3)it  
 Uit,q (none)  =          ε(none)it 
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The utility functions for the three non-null choices include a common random effect, wiq which is 
time and choice invariant – this carries an unmeasured characteristic of the person.  The command 
for the full model is 
 

LCRPLOGIT ; Lhs = choice  
; Choices = type1,type2,type3,none 
; Pds = 8 
; Model: U(type*) = b1*attrA+b2*attrB+b3*price+b4*pricesq+c*type 
; LCM = sex,young,middle ; Pts = 3 
; Rpl ; Fcn = c(n) ; Draws = 25 ; Halton $ 

 
The model is refit with only the latent class specification by eliminating the random parameters 
specification and changing the model request: 
 

LCLOGIT ; Lhs = choice  
; Choices = type1,type2,type3,none 
; Pds = 8 
; Model: U(type*) = b1*attrA+b2*attrB+b3*price+b4*pricesq+c*type 
; LCM = sex,young,middle ; Pts = 3 $ 

 
The third specification is the random parameters (random effect) model obtained by eliminating the 
latent class request: 
 

RPLOGIT ; Lhs = choice  
; Choices = type1,type2,type3,none 
; Pds = 8 
; Model: U(type*) = b1*attrA+b2*attrB+b3*price+b4*pricesq+c*type 
; Rpl ; Fcn = c(n) ; Draws = 25 ; Halton $ 

 
The log likelihood functions for the four models are  
 

-3648.66419 for the latent class random parameters model, 
-3648.66560 for the latent class model, 
-4145.12849 for the random effects model, 

 -4145.19725 for the multinomial logit model, 
 
respectively.  The implication is that almost no additional fit is obtained by adding the random 
parameters component to the latent class model, while nearly all of the additional fit over the 
multinomial logit model is added by the latent class model. 
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----------------------------------------------------------------------------- 
Start values obtained using MNL model 
Dependent variable               Choice 
Log likelihood function     -4145.19725 
Estimation based on N =   3200, K =   5 
Inf.Cr.AIC  = 8300.395 AIC/N =    2.594 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
Constants only  -4391.1804  .0560 .0535 
Response data are given as ind. choices 
Number of obs.=  3200, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
       C|    -.92843***      .19292    -4.81  .0000    -1.30655   -.55030 
      B1|    1.46579***      .06746    21.73  .0000     1.33358   1.59800 
      B2|    1.04267***      .06451    16.16  .0000      .91624   1.16909 
      B3|    4.05938        3.23373     1.26  .2094    -2.27861  10.39737 
      B4|   -61.0613***    12.11106    -5.04  .0000    -84.7985  -37.3240 
--------+-------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Latent Class Mixed (RP) Logit Model 
Dependent variable               CHOICE 
Log likelihood function     -3648.66419 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
Number of latent classes =            3 
Average Class Probabilities 
     .505  .237  .258 
LCM model with panel has     400 groups 
Fixed number of obsrvs./group=        8 
Number of obs.=  3200, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |This is THETA(01) in class probability model. 
Constant|    -.93006**       .37552    -2.48  .0133    -1.66605   -.19406 
  _SEX|1|     .66750*        .36297     1.84  .0659     -.04392   1.37891 
_YOUNG|1|    2.13774***      .32185     6.64  .0000     1.50694   2.76855 
_MIDDL|1|     .69623         .43518     1.60  .1096     -.15670   1.54917 
        |This is THETA(02) in class probability model. 
Constant|     .36431         .34476     1.06  .2906     -.31141   1.04004 
  _SEX|2|   -2.78195***      .69797    -3.99  .0001    -4.14995  -1.41394 
_YOUNG|2|    -.14938         .54763     -.27  .7850    -1.22272    .92397 
_MIDDL|2|    1.96666***      .71585     2.75  .0060      .56361   3.36971 
        |This is THETA(03) in class probability model. 
Constant|        0.0    .....(Fixed Parameter)..... 
  _SEX|3|        0.0    .....(Fixed Parameter)..... 
_YOUNG|3|        0.0    .....(Fixed Parameter)..... 
_MIDDL|3|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Random Parameters Logit Model for Class  1 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
       C|   -1.44332***      .38488    -3.75  .0002    -2.19768   -.68897 
        |Nonrandom parameters in utility functions 
      B1|    3.01430***      .14702    20.50  .0000     2.72614   3.30246 
      B2|    -.07439         .12736     -.58  .5591     -.32402    .17523 
      B3|   -6.94557        6.48173    -1.07  .2839   -19.64952   5.75838 
      B4|   -10.3168       23.80017     -.43  .6647    -56.9643   36.3307 
        |Distns. of RPs. Std.Devs or limits of triangular 
     NsC|     .00015         .05506      .00  .9978     -.10777    .10807 
--------+-------------------------------------------------------------------- 
Random Parameters Logit Model for Class  2 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
       C|     .74693*        .39677     1.88  .0598     -.03072   1.52458 
        |Nonrandom parameters in utility functions 
      B1|    1.22106***      .16382     7.45  .0000      .89997   1.54214 
      B2|    1.10763***      .16489     6.72  .0000      .78445   1.43081 
      B3|   -19.8414***     6.85353    -2.90  .0038    -33.2741   -6.4088 
      B4|    22.6733       25.13052      .90  .3669    -26.5816   71.9282 
        |Distns. of RPs. Std.Devs or limits of triangular 
     NsC|     .00322         .08544      .04  .9700     -.16423    .17067 
--------+-------------------------------------------------------------------- 
----------------------------------------------------------------------------- 
Random Parameters Logit Model for Class  3 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
       C|    -.29439         .41625     -.71  .4794    -1.11023    .52146 
        |Nonrandom parameters in utility functions 
      B1|    -.16334         .16638     -.98  .3263     -.48945    .16277 
      B2|    2.70227***      .18006    15.01  .0000     2.34935   3.05519 
      B3|   -6.86567        7.42419     -.92  .3551   -21.41681   7.68547 
      B4|   -8.26246       27.65433     -.30  .7651   -62.46394  45.93903 
        |Distns. of RPs. Std.Devs or limits of triangular 
     NsC|     .00075         .09731      .01  .9938     -.18996    .19147 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
Latent Class Logit Model 
Dependent variable               CHOICE 
Log likelihood function     -3648.66560 
Number of latent classes =            3 
Average Class Probabilities 
     .505  .237  .258 
LCM model with panel has     400 groups 
Fixed number of obsrvs./group=        8 
Number of obs.=  3200, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Utility parameters in latent class -->> 1 
    B1|1|    3.01443***      .14704    20.50  .0000     2.72624   3.30262 
    B2|1|    -.07457         .12737     -.59  .5582     -.32421    .17507 
    B3|1|   -6.97451        6.48123    -1.08  .2819   -19.67748   5.72847 
    B4|1|   -10.2076       23.79811     -.43  .6680    -56.8510   36.4358 
     C|1|   -1.44175***      .38483    -3.75  .0002    -2.19599   -.68750 
        |Utility parameters in latent class -->> 2 
    B1|2|    1.22082***      .16381     7.45  .0000      .89975   1.54188 
    B2|2|    1.10766***      .16487     6.72  .0000      .78452   1.43080 
    B3|2|   -19.7732***     6.85471    -2.88  .0039    -33.2082   -6.3382 
    B4|2|    22.4120       25.13694      .89  .3726    -26.8555   71.6795 
     C|2|     .74323*        .39686     1.87  .0611     -.03460   1.52106 
        |Utility parameters in latent class -->> 3 
    B1|3|    -.16351         .16641     -.98  .3258     -.48966    .16265 
    B2|3|    2.70297***      .18014    15.00  .0000     2.34990   3.05604 
    B3|3|   -6.95426        7.42439     -.94  .3489   -21.50580   7.59729 
    B4|3|   -7.92518       27.65361     -.29  .7744   -62.12525  46.27489 
     C|3|    -.28994         .41617     -.70  .4860    -1.10561    .52573 
        |This is THETA(01) in class probability model. 
Constant|    -.92984**       .37555    -2.48  .0133    -1.66590   -.19379 
  _SEX|1|     .66719*        .36300     1.84  .0661     -.04429   1.37866 
_YOUNG|1|    2.13778***      .32185     6.64  .0000     1.50697   2.76859 
_MIDDL|1|     .69660         .43521     1.60  .1095     -.15639   1.54960 
        |This is THETA(02) in class probability model. 
Constant|     .36443         .34484     1.06  .2906     -.31144   1.04029 
  _SEX|2|   -2.78223***      .69819    -3.98  .0001    -4.15065  -1.41380 
_YOUNG|2|    -.14880         .54764     -.27  .7858    -1.22215    .92455 
_MIDDL|2|    1.96741***      .71611     2.75  .0060      .56385   3.37096 
        |This is THETA(03) in class probability model. 
Constant|        0.0    .....(Fixed Parameter)..... 
  _SEX|3|        0.0    .....(Fixed Parameter)..... 
_YOUNG|3|        0.0    .....(Fixed Parameter)..... 
_MIDDL|3|        0.0    .....(Fixed Parameter)..... 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
  



N32: Latent Class Random Parameters Model  N-620 

----------------------------------------------------------------------------- 
Random Parameters Logit Model 
Dependent variable               CHOICE 
Log likelihood function     -4145.12489 
Restricted log likelihood   -4436.14196 
Chi squared [   6 d.f.]       582.03414 
Significance level               .00000 
McFadden Pseudo R-squared      .0656014 
Estimation based on N =   3200, K =   6 
Inf.Cr.AIC  = 8302.250 AIC/N =    2.594 
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj 
No coefficients -4436.1420  .0656 .0650 
Constants only  -4391.1804  .0560 .0554 
At start values -4145.1973  .0000-.0006 
Response data are given as ind. choices 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
RPL model with panel has     400 groups 
Fixed number of obsrvs./group=        8 
Number of obs.=  3200, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
       C|    -.92698***      .19316    -4.80  .0000    -1.30556   -.54840 
        |Nonrandom parameters in utility functions 
      B1|    1.46610***      .06747    21.73  .0000     1.33386   1.59835 
      B2|    1.04286***      .06451    16.16  .0000      .91641   1.16930 
      B3|    4.06333        3.23406     1.26  .2090    -2.27530  10.40196 
      B4|   -61.0922***    12.11305    -5.04  .0000    -84.8334  -37.3511 
        |Distns. of RPs. Std.Devs or limits of triangular 
     NsC|     .10674         .19459      .55  .5833     -.27464    .48812 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
 
N32.4 Technical Details 
 

The latent class model assumes that parameter vectors, βi are distributed among individuals 
with a discrete distribution, rather than the continuous distribution that lies behind the mixed logit 
model. It is assumed that the population consists of a finite number, Q, of groups of individuals. The 
groups are heterogeneous, with common parameters, βq, for the members of the group, but the 
groups themselves are different from one another.  The classes are distinguished by the different 
parameter vectors, though the fundamental data generating process, the probability density for the 
interesting variable under study, is the same. 

The full specification of the latent class structure for a generic data generating process is  
 
   Prob(choicei|xi,class = q)  =  g(yi | xi, βq)     

   Prob(class = q) =  πq(θ), q = 1,...,Q.      
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The unconditional probability attached to an observation is obtained by integrating out the 
heterogeneity due to the distribution across classes, 
 
   Prob(choicei|xi) =  Σq πq(θ)g(yi | xi, βq).   
 

The latent class random parameters model allows for heterogeneity both within and across 
the classes.  To accommodate the two layers of heterogeneity, we allow for continuous variation of 
the parameters within classes.  The latent class aspect of the model is 
 
   Prob(choicei|xi,class = q) =  g(yi | xi, βi|q) 

   Prob(class = q) =  πq(θ), q = 1,...,Q. 
 
This is the model developed in Chapter N25.  The within-class heterogeneity is structured as set up in 
Chapter N29 for the random parameters model, 
 
   βi|q  =  βq  +  wi|q        

   wi|q  ~  E[wi|q|X]  =  0,  Var[wi|q | X]  =  Σq 
 
where the X indicates that wi|q is uncorrelated with all exogenous data in the sample.   

We will assume below that the underlying distribution for the within-class heterogeneity has 
mean 0 and covariance matrix Σ.  In a given application, it may be appropriate to further assume that 
certain rows and corresponding columns of Σq equal zero, indicating that the variation of the 
corresponding parameter is entirely across classes. 

The contribution of individual i to the log likelihood for the model is obtained for each 
individual in the sample by integrating out the within-class heterogeneity and then the class 
heterogeneity.  We allow for a panel data setting, hence the observed vector of outcomes is denoted 
yi and the observed data on exogenous variables are collected in Xi = [Xi1,..,XiTi].  An individual is 
assumed to engage in Ti choice situations, where Ti > 1. The generic model is 
 

        Prob(choicei|Xi,β1,...,βQ,θ,Σ1,...,ΣQ)  = 
1 1

( ) [ | ( ), ] ( | )i

i

TQ
q it q i it i q iq tw

f h d
= =

π +∑ ∏∫ y w X w wθ β Σ ) 

 
The class probabilities are parameterizes using a multinomial logit formulation to impose the adding 
up and positivity restrictions on πq(θ).  Thus, 
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A useful refinement of the class probabilities model is to allow the probabilities to be dependent on 
individual data, such as demographics.  The class probability model becomes 
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The resulting model employed in this application is a latent class, random parameters 
multinomial logit (LCRPLOGIT) model.  Individual i chooses among J alternatives with conditional 
probabilities 
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yit,j = 1 for the j corresponding to the alternative chosen and 0 for all others, and xit,j is the vector of 
attributes of alternative j for individual i in choice situation t. 

We use maximum simulated likelihood to evaluate the terms in the log likelihood 
expression.  The contribution of individual i to the simulated log likelihood is 
 

f S(yi|Xi,β1,...,βQ,θ,Σ1,...,ΣQ)   =  ,1 1 1

1( ) [ | ( ), ]iTQ R
iq i it q i r itq r t

f
R= = =

π +∑ ∑ ∏z y w X, θ β  

 
wi,r is the rth of R random draws on the random vector wi.  Collecting all terms, the simulated log 
likelihood is 
 

 ,1 1 1 1
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iq i it q i r iti q r t
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 = π +  
∑ ∑ ∑ ∏z y w X, θ β  . 



N33: Generalized Mixed Logit Model N-623 

N33: Generalized Mixed Logit Model 
 
N33.1 Introduction 
 
 The generalized mixed logit model developed by Fiebig, Keane, Louviere and Wasi (2010) 
encompasses several of the models shown in the earlier chapters.  We have added several additional 
layers to the specification in our implementation.  The essential format in their paper is a random 
parameters logit model, 
 
   Uit(j) =  βi′xit,j  +  εit,j; 

   βi   =  σiβ + [γ  +  σi(1 - γ)]Γwi, wi ~ N[0,I], 0 <γ< 1; 

   σi   =  exp(-τ2/2 + τvi),  vi ~ N[0,1]. 
 
The central form is the multinomial logit model based on the extreme value distribution of εit,j.  The 
general form combines the scaled MNL (Chapter N24) with the random parameters model of 
Chapter N29.  The random scaling factor, σi has mean 1 and variance exp(τ2 – 1).  There are several 
interesting special cases: 
 

• τ = 0 implies the random parameters model, βi  =  β +Γwi 
• γ = 0 implies a scaled random parameters logit model, βi  =  σi[β +  σiΓwi] 
• γ = 1 implies a hybrid model, βi  =  σiβ +Γwi 

 
Note that τ is crucial to the model formulation; if τ equals zero, γ is not identified (i.e., not 
estimable). 
 

• τ = 0, Γ = 0 implies the original multinomial logit model with σi = 0 
• γ = 0, Γ = 0 implies the scaled multinomial logit model, βi  =  σiβ 

 
The model provided in NLOGIT extends this formulation with the following: 
 

• The means of βi may be heterogeneous, σi[β + ∆zi] + [γ  +  σi(1 - γ)]Γwi 
• σi may be heterogeneous based on observed data, σi  =  exp(-τ2/2 +δ′ri +τvi) 

(see Fiebig et al. equation (12)) 
• The full menu of distributions is available for wi 
• The implementation accommodates panel data (e.g., stated choice data). 
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N33.2 Commands 
 
 The minimal form of the command for the generalized mixed logit model is 
 

GMXLOGIT  ; Lhs = choice  
; Choices = list ... 
; Rhs and ; Rh2 to set up the utility functions or 
; Model:  sets up the utility functions 
; Fcn = the usual specification of the random parameters $ 

 
The ; Fcn = specification sets up the random parameters exactly as shown in Chapter N29 for the 
random parameters logit model.  The GMXLOGIT model adds nonzero γ and τ to the random 
parameters model.  Note, again, if τ = 0, the model reverts to the original mixed logit model; γ is not 
estimable (does not exist) if τ = 0.  All forms of the random parameters model are available with 
GMXLOGIT.  However, some specifications will act unpredictably when γ is nonzero.  There are 
numerous options for modifying the GMXLOGIT model.  Two important overall settings are 
 

; Pds = number of choice situations, if more than 1 
 
and   ; Pts = number of points in simulation   

; Halton if desired. 
 
The random parameters formulation to this point is 
 
   βi  =  σiβ + [γ  +  σi(1 - γ)]Γwi. 
 
This is the essential model, though it adds a bit to what is in Fiebig et al.’s paper.  Note, for example, 
they have to apply the treatment to the entire parameter vector, while the preceding applies it to the 
parameters that you specify.  They have a figure on page 31 with the various special cases. The spec 
above is for G-MNL at the top of the page.  Use 
 

; GMX = list of zi variables in the mean 
 
to produce  βi  =  σi[β +  ∆zi] + [γ  +  σi(1 - γ)]Γwi  
 
The random parameters are assumed to be uncorrelated - Γ is a diagonal matrix.  This assumption is 
relaxed by adding 
   ; Correlation 
 
to the command.  With this in place, Γ is now a lower triangular matrix.  Further restrictions on the 
correlations are described in Section N29.3.6.  It is generally assumed that the heterogeneity in βi, 
that is wi, is uncorrelated with vi, the heterogeneity in σi.  This restriction is relaxed by adding 
 
   ; SCV 
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to the model command.   This adds a new set of parameters to the model, λ = Cov(wi,vi).  (We note, 
though the program does allow this, as a specification, it is probably a bad choice. In our experience, 
the estimator becomes rather unstable with this feature enabled.)  Finally, heteroscedasticity can be 
introduced into σi with 
 
   ; Hfr = list of ri variables. 
 
With this specification, the model becomes 
 
   σi  =  exp(-τ2/2 +δ′ri +τvi) 
 
(This extension of the model is proposed in passing in equation (12) in Fiebig et al.) 
 
N33.2.1 Controlling the GMXLOGIT Parameters 
 
 The GMXLOGIT model is created by the two parameters γ and τ.  As noted, the model 
reverts to the random parameters model if τ equals zero.  You can preset the values of these 
parameters as follows: 
 
   ; Gamma = [value] 
 
fixes γ at the value.  Generally interesting values are 0 and 1, but any value from 0 to 1, inclusive 
may be specified.  If you omit the square brackets, then the value is simply used as the starting value 
for the iterations.  Referring to the figure on page 6 in Fiebig et al., the two interesting special cases 
here are 

; Gamma = [1]  produces G-MNL-I 
; Gamma = [0]  produces G-MNL-II  

 
Any other value between 0 and 1 may be specified.  The parameter τ is also controlled the same way.  
Use 
   ; Tau = [value] 
 
to fix τ.  The τ = 0 case, which implies γ = 0, produces Fiebig et al.’s MIXL variant of the model.  
With τ = 0, the resulting value is the mixed (random parameters) logit model.  We note one caution.  
If τ = 0, then γ is not estimable.  But, the command processor will allow you to specify a model in 
which τ equals zero but γ is a free parameter.  The iterations will proceed, and NLOGIT may even 
claim convergence.  However, because γ is not identified when τ = 0, changes in γ will not change 
the log likelihood function.  The end result is that the second derivatives matrix will be singular – the 
estimator will quit with a warning such as 
 
Error  1027: Models - estimated variance matrix of estimates is singular. 
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N33.2.2 The Scaled MNL Model 
 

The scaled MNL model of Chapter N24 results when no parameters are random and γ = 0.  
You should use the SMNLOGIT command to produce this case.  It also results if you use the 
GMXLOGIT command with 

 
  ; SMNL. 
 

In this case, γ = 0 is imposed automatically.  If you have specified any random parameters, they will 
be set as ‘constant’ parameters, that is type (C).  This wastes computing time, however, as forcing 
parameters to be ‘constant’ forces the variance to be zero.  It does not prevent the generation of the 
random draws.  When a parameter is specified as type [C], then 
 
   βi  =  σi[β + 0 vi] 
 
The vi is still drawn.  Using ; SMNL in this fashion produces the preceding type of (non)random 
parameter. 

You cannot use a constrained distribution like (O) with ; SMNL; (O) sets up a parameter in 
which the variance parameter is the same as the mean. It implies that β(i) = β + β*v(i).  But, to set up 
the estimator internally, the second β is treated as a separate σ that equals β.  It then becomes 
impossible to force σ to equal zero without forcing β to equal zero as well. You should not do this. 
The long and short of it is that (O) is incompatible with the scaled MNL model. 

The scaled MNL model is one in which the only random parameter is σi.  In general, you 
should use the major command, SMNLOGIT to fit this model, not GMXLOGIT with restrictions. 
 

N33.2.3 Alternative Specific Constants 
 

Fiebig et al. notes that the ASCs in the model produce special estimation problems.  There 
are three possible strategies: 
 

1. Leave them out of the FCN specification so they are fixed parameters. 
 

2. Include them in the FCN specification and make them a part of the general model. Fiebig et 
al. observes that  this frequently causes the estimator to fail. 

 

3. Include them among the random parameters, but for them, force no special scaling, so the σi 
scaling parameter equals 1 and gamma = 0 for these parameters.  

 
Case (3) requires a complicated special treatment internally.  You can request this treatment by 
including ASCs using ; Rh2 = one, then adding the following specification to the command,  
 

; RPASC. 
 

N33.2.4 Heteroscedasticity 
 

The generalized mixed logit model preserves all of the elaborate models for the RPLOGIT 
case described in Chapter N29 except the heteroscedasticity model described in Section N29.4. In 
the random parameters model, there may be a separate θik = σk × exp(δ′ri)  for each random 
parameter. That model is no longer identified in the presence of σi in this model, so the 
heteroscedasticity that is supported resides completely in σi.  See the definition of ; Hfr = list above. 
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N33.3 Estimation in Willingness to Pay Space 
 
 A common calculation in choice modeling is the willingness to pay measure, 
 
   WTP  =  Marginal utility of attribute / Marginal utility of income 
 
or sometimes  WTP  = -1 ×  Marginal utility of attribute / Marginal disutility of cost. 
 
The empirical estimator is typically a ratio of coefficients, 
 
   WTP  =  battribute   /  bincome or cost. 
 
Scarpa, Thiene and Train (2008) and Daly, Hess and Train (2011) argue (persuasively) that ratios of 
coefficients generally have infinite variances for most distributions of econometric estimators.  
Hence, WTP estimators such as the above do not have finite moments.   In the case of the MNL, the 
implication is that the constant WTP estimate, which is the ratio of two asymptotically normal 
estimators, does not, itself, have a finite variance.  The problem reappears in mixed logit models.  
Researchers often specify RP models so that the denominator in the WTP calculation is a nonrandom 
parameter.  The resulting estimator takes the form 
 
   WTP(i)  = - battribute(i)  /  bcost. 
 
However, this does not actually solve the problem.  The distribution of the ratio is still problematic. 
 A reformulation of the utility function in the choice model suggests a solution.   The model 
in ‘preference space’ is 
 
   U  =  βcost  cost  +  βx1 x1 + βx2 x2  +  ε 
 
where x1 and x2 are two attributes.  The WTP computation is βx1/βcost.  Using the familiar 
econometric estimates produces the problems noted earlier.  The function can be trivially rewritten is 
 
   U  =  βcost [cost  +  (βx1/βcost)X1  +  (βx2/βcost)X2] + ε 
 
   U  =  βcost [cost  +  θ1 x1  +  θ2 x2] + ε. 
 
For an MNL model, this is a trivial reformulation.  It does create a nonlinearity in the model that was 
not there previously.  However, the MLEs of the parameters will be identical because of the 
invariance of the MLE to a one to one transformation.  This invariance does not carry over to a 
random parameters formulation.  If θ1 and θ2 are random parameters, the results are not invariant to 
the transformation.  This model in ‘WTP space,’ 
 
   U  =  βcost [cost  +  θ1,i x1  +  θ2,i x2] + ε. 
 
The θk,i parameters are already willingness to pay estimates. 
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 You can choose one of the parameters in the GMXLOGIT model to have a coefficient of one 
and build this nonlinearity into the GMXLOGIT model by changing its type to (*type) in the             
; Fcn = (*type),… specification. (Note, this device only works in the GMXLOGIT model.  It doesn’t 
work in the RPLOGIT or SMNLOGIT models.)  The model results will appear as in the following 
contrived example: 
 
 GMXLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = gc,invt,invc ; Rh2 = one 
   ; Fcn = gc(*n), invc(n) $ 
 
----------------------------------------------------------------------------- 
Generalized Mixed (RP) Logit Model 
Dependent variable                 MODE 
Log likelihood function      -277.71292 
Response data are given as ind. choices 
Replications for simulated probs. = 150 
Halton sequences used for simulations 
RPL model with panel has      70 groups 
Fixed number of obsrvs./group=        3 
Number of obs.=   210, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
    MODE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
      GC|        1.0    .....(Fixed Parameter)..... 
    INVC|    1.00030***      .00269   372.40  .0000      .99504   1.00557 
        |Nonrandom parameters in utility functions 
    INVT|   -1.72722***      .00116 -1486.90  .0000    -1.72950  -1.72494 
   A_AIR|    -.00770         .43002     -.02  .9857     -.85053    .83512 
 A_TRAIN|    -.53569***      .16878    -3.17  .0015     -.86649   -.20489 
   A_BUS|     .80344***      .21489     3.74  .0002      .38227   1.22462 
        |Distns. of RPs. Std.Devs or limits of triangular 
    CsGC|        0.0    .....(Fixed Parameter)..... 
  NsINVC|     .15888***      .00220    72.18  .0000      .15456    .16319 
        |Variance parameter tau in GMX scale parameter 
TauScale|     .99961***      .00071  1403.83  .0000      .99822   1.00101 
        |Weighting parameter gamma in GMX model 
GammaMXL|        0.0    .....(Fixed Parameter)..... 
        |Coefficient on GC       in preference space form 
Beta0WTP|   -2.30273***      .00522  -441.07  .0000    -2.31296  -2.29250 
S_b0_WTP|    194.638***      .30603   636.02  .0000     194.038   195.237 
        |  Sample Mean    Sample Std.Dev. 
Sigma(i)|     .94743        1.03071      .92  .3580    -1.07272   2.96759 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
 
In the original specification, the coefficient GC is random, with type (*N).  With the WTP 
specification, the coefficient on GC is forced to equal 1.0 and its standard deviation, NsGC equals 
zero.  The new random parameter created to replace GC is Beta0WTP with standard deviation 
parameter S_b0_WTP. 
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N33.4 Results 
 
 Estimation results for the generalized mixed logit model are all the same as for the random 
parameters logit (RPLOGIT) model of Chapter N29.  The two additional parameters, the estimators 
of γ and τ are reported with the other results.  To illustrate, we will use the data used in the second 
application in Section N32.3.  A generic GMXLOGIT model is estimated with 
 

GMXLOGIT ; Lhs = choice ; Choices = type1,type2,type3,none ; Pds = 8 
; Model: U(type*) = attra*attra + attrb*attrb  

     + price*price + picktype*picktype 
       ; Fcn = price(n),attra(n),attrb(n) 

; Draws = 25 ; Halton ; Maxit = 20 $ 
 
There is an additional estimate reported in the results, sigma(i).  This is not an additional parameter 
estimate.  The results report the sample average of the computed values of σi.  This is computed by 
averaging over the random draws for each individual then averaging across the individuals.  The 
sample standard deviation reported is the standard deviation of the averages for the individuals. 
 
----------------------------------------------------------------------------- 
Generalized Mixed (RP) Logit Model 
Dependent variable               CHOICE 
Log likelihood function     -3917.16748 
Response data are given as ind. choices 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
RPL model with panel has     400 groups 
Fixed number of obsrvs./group=        8 
Hessian is not PD. Using BHHH estimator 
Number of obs.=  3200, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
   PRICE|   -12.5275***     1.07357   -11.67  .0000    -14.6316  -10.4233 
   ATTRA|    1.70406***      .12078    14.11  .0000     1.46732   1.94079 
   ATTRB|     .92087***      .13659     6.74  .0000      .65316   1.18857 
        |Nonrandom parameters in utility functions 
PICKTYPE|    -.17822**       .07729    -2.31  .0211     -.32970   -.02675 
        |Distns. of RPs. Std.Devs or limits of triangular 
 NsPRICE|     .24302        1.29768      .19  .8514    -2.30038   2.78642 
 NsATTRA|     .90498***      .08434    10.73  .0000      .73967   1.07029 
 NsATTRB|    1.45085***      .10262    14.14  .0000     1.24973   1.65198 
        |Variance parameter tau in GMX scale parameter 
TauScale|     .46618***      .10750     4.34  .0000      .25548    .67688 
        |Weighting parameter gamma in GMX model 
GammaMXL|     .99999***      .20332     4.92  .0000      .60149   1.39849 
        |  Sample Mean    Sample Std.Dev. 
Sigma(i)|     .99133**       .47261     2.10  .0359      .06503   1.91763 
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 This second example adds heterogeneity in the means to the previous model. 
 

GMXLOGIT ; Lhs = choice ; Choices = type1,type2,type3,none ; Pds = 8 
; Model: U(type*) = attra*attra + attrb*attrb  

              + price*price + picktype*picktype 
; Fcn = price(n),attra(n),attrb(n) 

   ; GMX = sex,young,middle 
; Draws = 25 ; Halton ; Maxit = 20 $ 

 
----------------------------------------------------------------------------- 
Generalized Mixed (RP) Logit Model 
Dependent variable               CHOICE 
Log likelihood function     -3861.36607 
Response data are given as ind. choices 
Replications for simulated probs. =  25 
Halton sequences used for simulations 
RPL model with panel has     400 groups 
Fixed number of obsrvs./group=        8 
Hessian is not PD. Using BHHH estimator 
Number of obs.=  3200, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
   PRICE|   -10.0593***     1.72460    -5.83  .0000    -13.4395   -6.6791 
   ATTRA|     .82432***      .20778     3.97  .0001      .41708   1.23156 
   ATTRB|    1.63496***      .27831     5.87  .0000     1.08949   2.18044 
        |Nonrandom parameters in utility functions 
PICKTYPE|    -.19048**       .07649    -2.49  .0128     -.34040   -.04057 
        |Heterogeneity in mean, Parameter:Variable 
PRIC:SEX|   -1.07261        1.71500     -.63  .5317    -4.43394   2.28872 
PRIC:YOU|   -3.24790        1.99533    -1.63  .1036    -7.15867    .66286 
PRIC:MID|   -1.81243        2.22591     -.81  .4155    -6.17514   2.55027 
ATTR:SEX|     .28880         .21653     1.33  .1823     -.13560    .71320 
ATTR:YOU|    1.26832***      .26417     4.80  .0000      .75055   1.78609 
ATTR:MID|     .55050**       .28011     1.97  .0494      .00149   1.09950 
ATT0:SEX|    -.23672         .26569     -.89  .3729     -.75746    .28401 
ATT0:YOU|   -1.08491***      .31233    -3.47  .0005    -1.69706   -.47276 
ATT0:MID|    -.32916         .34939     -.94  .3461    -1.01395    .35564 
        |Distns. of RPs. Std.Devs or limits of triangular 
 NsPRICE|     .10201        1.33009      .08  .9389    -2.50491   2.70893 
 NsATTRA|     .79072***      .08142     9.71  .0000      .63113    .95030 
 NsATTRB|    1.25714***      .09500    13.23  .0000     1.07095   1.44334 
        |Variance parameter tau in GMX scale parameter 
TauScale|     .40424***      .09133     4.43  .0000      .22523    .58324 
        |Weighting parameter gamma in GMX model 
GammaMXL|     .99416***      .21229     4.68  .0000      .57807   1.41025 
        |  Sample Mean    Sample Std.Dev. 
Sigma(i)|     .99291**       .40709     2.44  .0147      .19503   1.79079 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
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 This final example estimates the preceding model in WTP space rather than preference 
space.  The only change in the command is the addition of the ‘*’ in the function definition of price. 
 

GMXLOGIT ; Lhs = choice ; Choices = type1,type2,type3,none ; Pds = 8 
; Model: U(type*) = attra*attra + attrb*attrb  

      + price*price + picktype*picktype 
       ; Fcn = price(*n),attra(n),attrb(n) 
   ; GMX = sex,young,middle 

; Draws = 25 ; Halton ; Maxit = 20 $ 
 
----------------------------------------------------------------------------- 
Generalized Mixed (RP) Logit Model 
Dependent variable               CHOICE 
Log likelihood function     -3914.92659 
Number of obs.=  3200, skipped    0 obs 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  CHOICE|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
        |Random parameters in utility functions 
   PRICE|        1.0    .....(Fixed Parameter)..... 
   ATTRA|    -.13179         .40820     -.32  .7468     -.93185    .66828 
   ATTRB|   -1.64113        4.81765     -.34  .7334   -11.08356   7.80130 
        |Nonrandom parameters in utility functions 
PICKTYPE|    -.30699***      .07670    -4.00  .0001     -.45731   -.15666 
        |Heterogeneity in mean, Parameter:Variable 
PRIC:SEX|    17.7585       55.63561      .32  .7496    -91.2853  126.8023 
PRIC:YOU|    20.4019       63.79981      .32  .7491   -104.6435  145.4472 
PRIC:MID|    19.0938       60.07365      .32  .7506    -98.6484  136.8360 
ATTR:SEX|   -2.10648        6.54684     -.32  .7476   -14.93805  10.72509 
ATTR:YOU|   -3.36057       10.35383     -.32  .7455   -23.65370  16.93257 
ATTR:MID|   -2.04350        6.39039     -.32  .7491   -14.56843  10.48144 
ATT0:SEX|    -.54985        1.85642     -.30  .7671    -4.18836   3.08866 
ATT0:YOU|    -.05851         .63358     -.09  .9264    -1.30030   1.18327 
ATT0:MID|    -.81671        2.73296     -.30  .7651    -6.17321   4.53980 
        |Distns. of RPs. Std.Devs or limits of triangular 
 CsPRICE|        0.0    .....(Fixed Parameter)..... 
 NsATTRA|    2.23589        6.78855      .33  .7419   -11.06942  15.54120 
 NsATTRB|    3.15281        9.59604      .33  .7425   -15.65508  21.96071 
        |Variance parameter tau in GMX scale parameter 
TauScale|     .33740***      .06723     5.02  .0000      .20563    .46916 
        |Weighting parameter gamma in GMX model 
GammaMXL|        0.0    .....(Fixed Parameter)..... 
        |Coefficient on PRICE    in preference space form 
Beta0WTP|    -.44498        1.35338     -.33  .7423    -3.09757   2.20760 
S_b0_WTP|     .00028         .03696      .01  .9939     -.07217    .07273 
        |  Sample Mean    Sample Std.Dev. 
Sigma(i)|     .99441***      .33780     2.94  .0032      .33233   1.65650 
--------+-------------------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
Fixed parameter ... is constrained to equal the value or 
had a nonpositive st.error because of an earlier problem. 
----------------------------------------------------------------------------- 
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N34: Diagnostics and Error Messages 
 
N34.1 Introduction 
 
 The following is a complete list of diagnostics that will be issued by NLOGIT.  Altogether, 
there are over 1,000 specific conditions that are picked up by the command translation and 
computation programs in LIMDEP and NLOGIT.  Those listed here are specific to NLOGIT.  The 
full set of diagnostics is given in Chapter R28.  Nearly all of the error messages listed below identify 
problems in commands that you have provided for the command translator to parse and then to pass 
on to the computation programs. 
 Most diagnostics are self explanatory and will be obvious.  For example,  
 

82  ;LHS - variable in list is not in the variable names table. 
 
states that your Lhs variable in a model command does not exist.  No doubt this is due to a 
typographical error – the name is misspelled.  Other diagnostics are more complicated, and in many 
cases, it is not quite possible to be precise about the error.  Thus, in many cases, a diagnostic will say 
something like ‘the following string contains an unidentified name’ and a part of your command will 
be listed – the implication is that the error is somewhere in the listed string.  Finally, some 
diagnostics are based on information that is specific to a variable or an observation at the point at 
which it occurs.  In that case, the diagnostic may identify a particular observation or value.  In the 
listing below, we use the conventions: 
 
 <AAAAAAAA> indicates a variable name that will appear in the diagnostic, 
 <nnnnnnnnnnnn> indicates an integer value, often an observation number, that is given, 
 <xxxxxxxxxxxx> indicates a specific value that may be invalid, such as a ‘time’ that is 
    negative. 
 
The listing below contains the diagnostics and, in some cases, additional points that may help you to 
find and/or fix the problem.  The actual diagnostic you will see in your output window is shown in 
the Courier font, such as appears in diagnostic 82 above. 
 We note it should be extremely rare, but occasionally, an error message will occur for 
reasons that are not really related to the computation in progress.  (We cannot give an example – if 
we knew where it was, we would remove the source before it occurred.)  You will always know 
exactly what command produces a diagnostic – an echo of that command will appear directly above 
the error message in the output window.  So, if an absolutely unfathomable error message shows up, 
try simplifying the command that precedes it to its bare essentials, and by building it up, reveal the 
source of the problem. 
 Finally, there are the ‘program crashes.’  Obviously, we hope that these never occur, but they 
do.  The usual ones are division by zero and exponent overflow.  Once again, we cannot give specific 
warnings about these, since if we could, we would fix the problem.  If you do get one of these and 
you cannot get around it, please contact us at support@nlogit.com. 
 
  

mailto:support@nlogit.com�
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N34.2 Discrete Choice (CLOGIT) and NLOGIT 
 
1000 FIML/NLogit is not enabled in this program. 
 
1001 Syntax problem in tree spec or expected ; or $ not found.    
 
1002 Model defines too many alternatives (more than 100).         
 
1003 A choice label appears more than once in the tree specification.      
 
1004 Number of observations not a multiple of # of alternatives.   

This is expected when you have a fixed choice set. 
 
1005 Problem reading labels, or weights for choice based sample.  
 
1006 Number of weights given does not match number of alternatives.  
 
1007 A choice based sampling weight given is not between zero and one. 
 
1008 The choice based sampling weights given do not sum to one. 
 
1009 Expected [ in limb specification was not found.              
 
1010 Expected ( in branch specification was not found.            
 
1011 A branch label appears more than once in the tree.           
 
1012 A choice label in a branch spec. is not in ;CHOICES list.     
 
1013 Branch specifications are not separated by commas.           
 
1014 One or more ;CHOICE labels does not appear in the tree.      
 
1015 One or more ;CHOICE labels appears more than once in tree.   
 
1016 The model must have either 1 or 3 LHS variables. Check spec.  
 
1017 Nested logit model must include ;MODEL:... or ;RHS spec.     

Found neither Model: nor RhS/Rh2.  
Your model specification is incomplete. 

 
1018 There is an unidentified variable name in the equation.      

In the ; Model: U (...) part of the command, one of your specified utility functions 
contains a variable name that is not in your data set. 
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1019 Model specification exceeds an internal limit. See documentation.    
 RANK data can only be used for 1 level (nonnested) models. 

You have specified a nested logit model and requested rank data for the observed 
outcomes.  The nested logit model cannot be estimated with ranks data. 

 
1020 Not used specifically. May show up with a self explanatory 

message. 
 
1021 Using Box-Cox function on a variable that equals 0? 
 
1022 Insufficient valid observations to fit a model. 
 
1023 Mismatch between current and last models.  

This occurs when you are using the ; Simulation = ... part of NLOGIT.  
 
1024 Failure estimating DISCRETE CHOICE model. 

Since this occurs during an attempt to compute the starting values for other models, if it 
fails here, it won’t succeed in the more complicated model. 

 
1025 Failed to fit model. See earlier diagnostic. 

This is a general diagnostic that precedes exit from the estimator.  An error condition has 
occurred, generally during estimation, not setup. 

 
1026 Singular VC may mean model is unidentified. Check tree.   

What looks like convergence of a nested logit model may actually be an unidentified 
model.  In this case, the covariance matrix will show up with at least one column of 
zeros.  Sometimes it is more subtle than this.  In a complicated model, the configuration 
of the tree may lead to nonidentification.  A common source is too many constant terms 
in the model. 

 
1027 Models - estimated variance matrix of estimates is singular.   

Non P.D. 2nd derivatives. Trying BHHH estimator instead. 
This is just a notice.  In almost all cases, the Hessian for a model that is not the simple 
MNL model will fail to be positive definite at the starting values.  This does not indicate 
any kind of problem. 

 
1028 In ;SIMULATION=list of alts, a name is unknown. 
 
1029 Did not find closing ] in labels[list]. 
 
1030 Error in specification of list in ;Choices=...labels[list]. 
 
1031 List in ;Choices=...labels[list] must be 1 or NALT values. 
 
1032 Merging SP and RP data. Not possible with 1 line data setup. 

Merging SP and RP data requires LHS=choice,NALTi,ALTij form. 
Check :MERGERPSP(id=variable, type=variable) for an error. 
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1033  Indiv. <nnnnnn> with ID= <nnnnn> has same ID as another individual. 
 This makes it impossible to merge the data sets. 
 
1034 Specification error. Scenario must begin with a colon. 
 
1035 Expected to find Scenario: specification = value. 
 
1036 Unbalanced parentheses in scenario specified. 
1037 Choice given in scenario: attr(choice...) is not in the model. 
 
1038 Cannot identify attribute specified in scenario. 
 
1039 Value after = in scenario spec is > 20 characters. 
 
1040 Cannot identify RHS value in scenario spec. 
 
1041 Transformation asks for divide by zero. 
 
1042 Can only analyze 5 scenarios at a time. 
 
1043 Did not find any valid observations for simulation. 
 
1044 Expected to find ; LIST : name_x ( choices ). Not found. 
 
1045 Did not find matching ( or [ in <scenario specification is given>. 
 
1046 Cannot recognize the name  <AAAAAAAA> in <scenario specification is 

given>. 
 
1047 Same as 1046. 
 
1048 None of the attributes requested appear in the model. 
 
1049 Model has no free parameters among slopes! 

This occurs during an attempt to fit the MNL model to obtain starting values for a nested 
logit or some other model. 

 
1050 DISC with RANKS. Obs= <nnnnnn>. Alt= <nn>. Bad rank given = <nnnn>. 

DISC w/ RANKS. Incomplete set of ranks given for obs. <nnnnnn>. 
These are data problems with the coding of the Lhs variable. 

 
1051 Singular VC matrix trying to fit MNL model. 

When the MNL breaks down, it will be impossible to fit a more elaborate model such as 
a nested logit model. 

 
1052 You did not provide ;FCN=label(distn),... for RPL model.   
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1053  Scaling option is not available with HEV, RPL, or MNP model. 
  Ranks data may not be used with HEV, RPL, or MNP model. 
  Nested models are not available with HEV, RPL, or MNP model. 
  Cannot keep cond. probs. or IVs with HEV, RPL, or MNP model. 
  Choice based sampling not useable in HEV, RPL, or MNP model. 
 
These diagnostics are produced by problems setting up the scaling option for mixed data sets. 
 
1054  Scaling option is not available with one line data setup. 
  Ranks data may not be used with one line data setup. 
  Choice set may not be variable with one line data setup. 
  One line data setup requires ;RHS and/or ;RH2 spec.      
  Nested models are not available with one line data setup. 
  Cannot keep probabilities or IVs with one line data setup. 
 
1055 Did not find closing paren in ;SCALE(list) spec. 

The list of variables to be scaled has an error. 
Only 40 or fewer variables may be scaled. 
You are attempting to scale the LHS variable. 
The list of values given for SCALE grid is bad. 
Grid must = Lo,Hi,N or Lo,Hi,N,N2. Check spec. 
Grid must have Low > 0 and High > low. Check #s. 
Number of grid points must be 2,3,... up to 20. 

 
1056 Unidentified name in IIA list. Procedure omitted. 
 
1057 More than 5 names in IIA list. Limit is 5. 
 
1058 Size variables only available with (Nested) MNL. 
 
1059 Cannot locate size variable specified. 
 
1060 Model is too large: Number of betas up to 90.  

Model is too large: Number of alphas up to 30.  
Model is too large: Number of gammas up to 15.  
Model is too large: Number of thetas up to 10.  

 
1061 Number of RHS variables is not a multiple of # of choices. 
 This occurs when you are using a one line setup for your data. 
 
1062 Expected ;FIX=name[...]. Did not find [ or ]. 
 
1063 In ;FIX=name[...], name does not exist: <name is given>. 
 
1064 Error in fixed parameter given for <name is given>. 
 
1065 Wrong number of start values given. 

This occurs with nested logit and other models, not the random parameters logit model. 
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1066 Command has both ;RHS and Model: U(alts). Inconsistent. 
 
1067 Syntax problem in ;USET:(names list)= list of values. 
 
1068 ;USET: list of parms contains an unrecognized name. 
 
1069 Warning, ;IUSET: # values not equal to # names. 
 
1070 Warning, ;IUSET: # values not equal to # names. 
1071 Spec for RPL model is label(type) or [type]. Type=N,C,or L. 
 
1072 Expected ,;$ in COR/SDV/HFN/REM/AR1=list not found. 
 
1073 Invalid value given for correl. or std.dev. in list. 
 
1074 ;COR/SDV=list did not give enough values for matrix. 
 
1075 Error. Expected [ in ;EQC=list[value] not found. 

Error:Value in EQC=list[value] is not a correlation. 
Error. Unrecognized alt name in ;EQC=list[value]. 
Error:List needs more than 1 name in EQC=list[value]. 
Error. A name is repeated in ;EQC=list[value]. 

 
1076 Your model forces a free parameter equal to a fixed one. 
 
1077 Covariance heterogeneity model needs nonconstant variables. 
 
1078 Covariance heterogeneity model not available with HEV model. 

Covariance heterogeneity model is only for 2 level models.  
Covariance heterogeneity model needs 2 or more branches. 

 
1079 At least one variance in the HEV model must be fixed.   

In NLOGIT, in the heteroscedastic extreme value, you have specified the model so that 
all the variances are free. But, for identification, one of them must be fixed.  

 
1080 Multiple observation RPL/MNP data must be individual. 
 
1081 Mismatch of # indivs. and number implied by groups. 

WARNING   Halton method is limited to 25 random parameters. 
 
1082 Not used. 
 
1083 MODEL followed by a colon was expected, not found. 
 
1084 Expected equation specs. of form U(...) after MODEL. 
 
1085 Unidentified name found in <string is given>. 
 This occurs during translation of ; Model: U (...) specifications. 
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1086 U(list) must define only choices, branches, or limbs. 
 
1087 An equals sign was not found where expected in utility  

function definition. 
 
1088 Mismatched [ or ( in parameter value specification. 
 
1089 Could not interpret string; expected to find number. 
 
1090 Expected to find ;IVSET:=defn. at this point.  
 
1091 Expected to find a list of names in parens in IVSET. 
 
1092 IVSET:( list ) ... Unidentified name appears in (list). 
 
1093 You have given a spec for an IV parm that is fixed at 1. 
 
1094 You have specified an IV parameter more than once. 
 
1095 Count variable  <nnnnnn> at row <nnnnnn> equals <nnnn>. 

The peculiar value for the count variable has thrown off the counter that keeps track of 
where the estimator is in the data set. 

 
1096 Choice variable  <AAAAAAAA>  at row  <nnnnn>: Choice= <nnnnn>. 
 The most likely cause is a coding error.  Check for bad data. 
 
1097 Obs. <nnnnnn>: Choice set contains <nnnn> <nnnn> times. 

The choice variable for individual data has more than one 1.0 in it.  NLOGIT cannot 
determine which alternative is chosen. 

 
1098 Obs. <nnnnnn> alt. <nnn> is not an integer  nor a proportion. 
 
1099 Obs. <nnnnnn> responses should sum to 1.0. Sum is <xxxxxx>. 
 
1100 Cannot classify obs. <nnnnnn> as IND, PROPs, or  FREQs.  

Your data appear to be a mix of individual and frequency data.  This occurs when an 
individual’s Lhs variable data include zeros.  It then becomes difficult to determine what 
kind of data you have.  You can settle the question by including ; Frequencies in your 
command, if that is appropriate. 

 
1101 # of parms in < list > greater than # choices in U(list). 
 
1102 RANK data can only be used for 1 level (nonnested) models. 
 
1103 Wrong number of variables given in ;CLASSP=list. 

;CLASSP=list contains ONE. Cannot save P(j|i) in ONE. 
 
1104 Negative value in NLRP;Tau=value is ignored 

Negative value in GMXL;Tau=value is ignored 
Value not in [0,1] in GMXL;Gamma=value 
Unknown name in ;RPASC=list. Spec. ignored.' 
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The following diagnostics are returned by the ; CheckData program in NLOGIT:  The reports 
includes the data row of the observation and the individual number in the current sample. 
 

No choice was made by this individual 

Sum of LHS variable for individual should equal 1. Does not 

Sum of proportions does not equal 1 

Sum of LHS variable for all alts is zero 

Missing value found for LHS variable 

Missing value found for weighting variable 

Missing value found for characteristic or attribute in utility 

Missing value found for utility in branch equation 

Missing value found for utility in limb equation 

Missing value found for utility in trunk equation 

Missing value found for LHS variable, one line format 

Restricted choice set. Indiv. chose one of the excluded alts. 

Missing value found for RPL=variable or MNP variance variable 

Trying to take log of nonpositive value in twig utility 

Box-Cox transformation is applied to nonpositive value in twig 

Trying to take log of nonpositive value in branch utility 

Box-Cox transformation applied to nonpositive value in branch 

Trying to take log of nonpositive value in limb utility 

Box-Cox transformation is applied to nonpositive value in limb 

Trying to take log of nonpositive value in trunk utility 

Box-Cox transformation is applied to nonpositive value in trunk 

IIA excluded choices. Individual chose one of excluded alts. 

Missing value for variables in covariance heterogeneity 

One line setup. LHS variable value is not in choices list. 

Individual data, LHS variable is not 0 or 1 

Universal choice set, ID var. (3rd LHS) takes same value twice 

Proportions data for LHS. Value found not a proportion [0 to 1] 

Frequency data for LHS. Value found not a nonnegative integer 

Universal choice set. LHS variable is < 0 or > no. of alts. 

Variable choice set size.2nd LHS var. must be same for all alts 
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The following diagnostics are returned by the command parser for the nonlinear random parameters 
logit (NLRPLOGIT) model: 
 
1121 Too many parameters in list (over 150) 
 
1122 num_symbol, num negative or greater than 150 
 
1123 No. of start values must equal no. of labels. 
 
1124 NLRPLogit requires ;Start=starting values. 
 
1125 Error reading starting values for NLRPLogit 
 
1126 Error in ;FIX=list of labels for NLRPLogit. 
 
1127 Invalid parameter name (;label) <name> is a <type> 
 
1128 Fn. name conflicts with var. or other name. 
 
1129 Unbalanced parentheses in function defn. 
 
1130 Table overflow. Function is too complex. 
 
1131 Error in function. See earlier error msg. 
 
1132 Expected to find ;Model:U(...) = name / ... 
 
1133 Utility spec uses a function not in the table 
 
1134 Expected ;Fnj=function name=function defnn. 
 
1135 Alternative function name may not use a label 
 
1136 Expected ending ] in name[...] was not found 
 
1137 Unknown name appears in list in name[list] 
 
1138 WTP setup for NLRP must be alt[xvar/xvar] 
 
1139 Alt name in WTP spec for NLRP is unknown 
 
1140 X var name in Alt[Xvar/Yvar] is unknown. 
 
1141 Y var name in Alt[Xvar/Yvar] is unknown. 
 
1142 Expected ;888:(xname,blabel) colon not found 
 
1143 Expected (xname,bname) found incorrect specs. 
 
1144 Table full,25 specs for 888:(xname,bname)/... 
 
1151 User fn. in RPMIN/MAX is nonpositive. Using Log(.)? 
 
1152 Numerical underflow Product of F(i,r,t) is too small. 
 
1153 Numerical overflow Product of F(i,r,t) is too large. 
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