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11.4.5 Time_,\lnvariant Variables and Fixed Effects Vector Decomposition

The presence of time, invariant variebles (TIVs) in the common effects regression presents a
vexing problem for the model builder. The significant problem for the fixed effects model (FEM)
is that the estimator cannot accommodate TIVs. Thus, in the wage equation in Example 11.5, we

_ . .have omitted three variables of considerable interest from the fixed effects model, Ed, Fem and ..
" Bk If we write the FEM with a set of tlmep invariant variables in it as =

«t | coefficients on TIVs are not identified in terms of the moments of the data so their ooefﬁclents '
are fixed at zero, so as to wdentify o. IR

>y Pliimper and Troeger (2007) have proposed a three, step procedure that they label Elxed .' i
"Effects V’ector Decomposition (FEVD), that suggests a solutxon to the problem of estlmatmg

= XprmyDath

with Z being the matrix of M TIVs, then the problem becbmes one of multicollineaﬂty Since the
can be written as a linear combination of the columns of D. Let the mth column of Z be the TIV
Z(m) = (Zm1.Zmi s ,z,,,g,z,,,g,...,...l,z,,.,,.z,,,,,, ih); each specific value Zmiy 18 repeated T, times. Then Z(m)
equals Dz,,, where In 1s the ""Tl vector (ZmZmal I..f,z,m,) Collectmg all M columns, we have Z =
DZ, Where Z,is the nxm matrix (Z;,22,444%mn)- Iy

If we attcmpt to compute the LSDV estimator of ( B'.y') of (11-13) using the transformed
variables MD[X,Z], the columns of Z are transformed to deviations from group means, which are
columns of zeros since, Z is already the period means, and the transformed data matrix becomes
(MpX.0) 7 since Z is already in the form of group means, deviations from group means are zero.
The LSDV regression cannot be computed with TIVs. In theoretical terms, the problem is that Y
is not identified. No amount of data can disentangle y from ot. The model would be

¥ = XB+D(Zy)+Da+e=XB +D{Zy +aftg.

In the fixed effects case, the tdentlfymg restriction is y = 0.. That is in a fixed effects model, the

coefficients on TIVs in a fixed effects model and, at the same time, brings noticeable gains in the |
efficiency of estimation of the parameters. The three steps are:
Step 1: Linear regression of y on X and D to estimate o. That is, compute the LSDV estimator
of B in (11- i;;3) and use (11- 15 ) to compute estimates of the individuai constant terms.
Step 2: “Linear regression of the n estimated constant terms, a,, { = 1)44m, on a constant term
and Z, From this regression, we compute the n residuals, B We then expand this
vector to the full sample length using h = Dh,,
Step 3: Lmear regression of y on [X,(LZ), h1, where i is an overall constant term, to estimate
B, o’ s D) iny, = Xﬂ-*-u +Z'y+ hd +¢g,
The suggestion produces some interesting algebraic results that will be instructive for the analysis
of this chapter. The surprising result that has apparently gone unnoticed in dozens of recent
applications of the technique, but not in several recent comments including Breusch, Ward,
Nguyen, and Kompas (2010), Chatelain and Ralf (2(}10)\and Greene (2010),is that Step 3 simply
reproduces the results in Steps 1 and 2, but the covariance matrix computed for the estimator of B
at Step 3 is not identical and is unambiguously too small. It is instructive to work through a
derivation in detail.
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We will prove the following results:

FEVD.1 The estimated coefficients on X at Step 3 are identical to those at S‘tep 1.

FEVD.2 The estimated coefficients on (I,Z) at Step 3 are identical to those at Step 2.

FEVD.3 The estimated coefficient on h at Step 3 equals 1.0.

FEVD.4 The sum of squared residuals in the regression at Step 3 is identical to that at Step 1.

FEVD.5 The s° computed at Step 3 is less than that at Step 1.

FEVD.6 The asymptotic covariance matrix computed for the estimator of p at Step 3 is
smaller than that at Step 1 (even though the estimates are algebraically identical)
because of FEVD.5 and because the_matrix used is smaller.

(Note, there are much more compact proofs of these results. The following approaches are used to
demonstrate the the tools we have developed in this and the preceding chaptcrs )
Proofs of results: Write the results of the three least squares regressions as

(Step 1) y = Xbisov + Daispy + eisov,
(Step 2) arspv = WilLspv + hnwhereW (i Zo),
(Step 3) y = Xbmwp + chgvp + hdsevp + FEVD, where W=, 7).

Thus, W at Step 3 includes the M tlme mvarlant variables and an overall constant. To begin, we
will establish that £Lspv| Jﬁep;g\q;, Recall that Z = DZ, and i = Di, where i, is an nx’l column
vector of ones. The residuals in'(Step 2) are h,, |5 ALsov — W,,cLSDv and h = Dh,, 'I‘herefore, the
result at (Step 3) is equivalent to

Y. = Xbrevp + DWcruvp + D@y spv — Wasispv)drevn + erevo.

Rearranging it slightly, g e

%= Xbv + Darspy + DWatrevo — BWaSrsov(drevn) + grevo. ®

The first two terms are the predictions from the linear regression of y on X and I and the third
and fourth terms simply add more linear combinations of the columns of D Since (X.D) has (we
have assumed) full column rank, least squares regression (*) must proVIde the same fit as (Step
1}. The residuals must be identical; that is, emvp = €Lspv. Now, premultiply (¥) by X'Mp. Since
MuD 9 and Ml_)eLspv ' €LSDV, WE find

X'Mpy = X'MpXbrsvp + X eLsov.
Since X'erspy = 0 ﬁ'om (Step 1), we have bgrvp = (X'MDX)"(X'MDy) = byspy which proves
FEVD.1.

To compute Crevp at (Step 3)N we have at the solution (using brevp = bispv and, ersvp =

£L5DV)
Y — Xbspv = Weggyp + Bdepvp t+ eLspv.

Premu]t[ply this expression by W'. From (Step Z}W'h W.'D'Dh, = 8. This is true because
D'D is a diagonal matrix with_T; on the dlagonals Thus, each element in W'h is 7; W(m)'h, =0,
where W(m) is the mth column of W, From (Step 3), Wemvp = W’eLst = 0 Thus,

Wy — Xbrsov) = W Wemvp

grevp = (WW)Y Wy ~ Xbusoy).

From ($tep 1), y - Xbrsov = Davsov +rsov. Since Wiersyn = Wewsov =0, fron'f:(‘é'tep 3),
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o

LrpvD = (W 'W)-IW'D?LSDV-

But, by premultiplying (Step 2) by D, we find DaLSDv = DW,,cLSDv + Dh,. It follows that the
solution is

,’I IR ";

- _gsov = (WyDDW,)'W, 'D'Damw(wm'nw,.)“‘w .D'Dh,.

The second term is zero as shown earlier. - The -end result is ¢, spv = ervp which is FEVD.2.
Once again using'(Step 3), we now solve for dmvp using what we already have. The
solution is in )
Y —Xbrspv ~ Werspy = hdmvp + €rsov- 7 ||-._:- > :5

But, y — Xbrspv = 2+ e1spv = Dacspy + erspv and Werspy = 2 — h = Daggpy = h. Inserting these,

Da;spy + eLspv — Dacspy + h = hdrevp + €1spv
or
b+ espv = hdmevp + €Lspv,

from which it follows that drevp = 1. This proves FEVD.3. v
FEVD.4 has already been shown since ervp = €Lspy.- The st in the two regressions are

the same as well, as RFEVD =1 — (erevp eFEvD/y'Moy) Rva since the residual vectors are
identical. {See (3-26).] But,

_Sllinvnz = erevp ervp/(Z] - K~M~1-1) < _S[l.si);'? "‘*.exsnvf?l.snv/ &I~ K~ n).

The difference is the degrees of freedom correction, which can be large. In our example to follow,

DFggyp = 4165_—_— 9_ ~3—1-1=4151 while DF spy = 4165 — 9 — 595 = 3561. For the example,

then, sravp” / Stepv’ = 0.85787. This establishes FEVD.S. \ i
To establish EEVD 6, based on (1}=16), we are going to compare S L T

|" Pt [ A "

Est.Asy.Var[bmpvp] = SkEvD (X'MW hx)

to / praath [Th%
Est.Asy.Var[bisov] = SLsnvz(x'qu) !

We have already established that sLsﬁvz |> smp To compare the matrices, we will compare thelr
inverses, and show that the difference matnx

A = XMy,X - X'MpX

is positive definite. This will imply that the inverse matrix i .Asy.Var[bgsvp] is smaller than
that in Est.Asy.Var[bispv]l. To show this, we note that (W,h) = D(W,,,h,,) is M+2 linear
combinations of the columns of D while D, is all # columns of, D. For convenience, let R =
(W,h). The residuals defined by MDX [see (3-15)] are obtained by regressmns of X on all n
columns of D. They will be identical to the residuals obtained by regression of X on any n
linearly mdependent combinations of the columns of D. For these, we will use [&Q] where Q is
orthogonal to R. Therefore X’MDX ' X'MgoX. Expandmg this, we have

A=XX- x'R/(;'Iﬁ);‘R'x X+ X8 Q)K J(R Q)} [R]
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The inverse matrix is simplified by R'Q = 0 so the bracketed matrix and its inverse are block
diagonal. Multiplying it out we ﬁnd -

LARS Y

= er(QfQ) Q rx_fx '(I—MQ)X

Smee I‘MQ is idempotent, A = X'(I-Mq)’(l-MQ)X X*'X* is positive definite. This establishes "

that the computed covariance matnx for bFEVD ‘will always be strictly smailer than that for bLsnv,
which is FEVD.6.

This leaves what should appear to be a loose end in the analysis. How was it possible to
estimate 'ykm (Step 2 or Step 3) given that it is unidentified in the original model! The answer is

z[+, the crucial assumption| noted at several points,in the preceding. From the original speclficatlonLZ _

! is uncorrelated with g, But, for the regression [in (Step 2) to estimate a nonzero Y, if must be

ﬁ;rther assumed that 2; is uncorrelated with w, This restricts the original fixed effects model — it
is a hybrid in which the time varying variables are allowed to be correlated with ; but the time

invariant variables are not. The authors note this on page 6 and in their footnote 7 where theyq' | Plean S

state, “If the time, invariant variables are assumed to be orthogona.l to the unobserved unit effects -
i.e., if the assumptlon underlying our estimator is correct - the estimator is consistent, If this

assumption is violated, the estimated coefficients for the tame-mvanant variables are biased/l. | |
Note that the estimated coefficients of the time-varying variables remain unbiased even in the

presence of correlated unit effects. However, the assumption underlying a FE model must be
satisfied (o correlated time-varying variables may exist).” (Emphasis added it seems that

“varying” shouid be “invariant.”) There are other estimators that would conswtently.,ﬁ and y in

this revised model, including the Hausman and Taylor estimator discussed in Section 11.8.1 and ; —
instrumental variables estimators suggested by Breusch et al. (2010) and by Chatelain and Ralf | [iU]

(2010). .:/,_i |'-i1-.{[ 2l
The problem of primary interest in Pliuimper and Troeger was an intermediate case
somewhat different from what we have examined here. There are two directions of the work. If

only som e elements of Z.but not all of them, are correlated with %, then we obtain the .

e

setting d by Hausman ‘and Taylor that is examined in Section 11.8.1. Pliimper and /74

Troeger’s FEVD estimator will, in that instance, be an inconsistent estimator that may have a
smaller variance than the IV estimator proposed hy Hausman and Taylor. The second case the
authors are interested in is when Z is not strictly time invariant] but is “slowly changing.” When
there is very little within, groups variation, for example, as shown for the World Health
Organization data in Example 11.4, then, once again, the estimator suggested here may have
some advantages over instrumental variabies and other treatments, In that case, when there are
no strictly time, invariant variables in the model, then the analysis is governed by the random
effects model discussed in the next section.
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Exampie 11.5 Fixed Effects Wage Equation

{11-28)

Table 11.5 presents the estimated wage equation with individual effects for the Cornwell
and Rupert data used in Examples 11.1 and 11.3. The model includes three time;
invariant variables, £d, Fem, Blk, that must be dropped from the equation. As a
consequence, the fixed effects estimates computed here are not comparable to the
results for the pooled model already examined. For comparison, the least squares

estimates with panel robust standard errors are also presented. We have also added a-. -

set of time dummy variables to the model. The F statistic for testing the significance of .1_’.'. /

the individual effects based on the BZs for the equat:ons is =

LAANIL!

(. 9072422 0.3154548)/504 _
(1-0.8072422)/(4165:9 595)

il l A
The critical vatue for the F table with 594 and 3561 degrees of freedom is 1.106, so the
evidence is strongly in favor of an individual-specific effect. As often happens, the fit of
the model increases greatly when the individual effects are added. We have also added
time effects to the model. The model with time effects without the individuat effects are in ' |
the second column results. The F statistic for testing the significance of the time effects
(in the absence of the individual effects) is

F[594,3561] = 38 247

i ||'-_~'|
{ P ks

| (0.4636788- 0. 3154548)/6
(1-0. 4636788)/(4165 10 -6)'

Pl g

F[6.4149]= =191.11,

The critical value from the F table is 2.101, so the hypothesis that the time effects are
zero is also rejected. The last column of results shows the model with both time and
individual effects. For this model it is necessary to drop a second time effect because the
experience variable, Exp, is an individual specific time trend. The Exp variable can be
expressed as

EXPLt=E¢o+(t“1),t=1....,7,

which can be expressed as a linear combination of the individual dummy variable and the
six time variables. For the last model, we have dropped the first and last of the time
effects. In this model, the F statistic for testing the sugnxf cance of the time effects is

|||'| 3"-

(0.9080847-0. 9072422)/5
(1 10.9080847}1(41 65 95 5 T 5595)

SHiLLLL l.._

=6.519.

F[5,3556] =

The time effects remain signifi cant——the critical value is 2 217—/ but the test statistic is
considerably reduced. The time effects reveal a stnkmg pattern In the equation without
the individual effects, we find a steady increase in wages of 7-9 percent per year. But,
when the individual effects are added to the model, this progressmn disappears.

It might seem appropriate to compute the robust standard errors for the fixed
effects estimator as well as for the pooled estimator. However, in principle, that should be
unnecessary. If the model is cotrect and completely specified, then the individual effects
should be capturing the omitted heterogeneity, and what remains is a classical,
homoscedastic, nonautocorrelated disturbance. This does suggest a rough indicator of
the appropriateness of the model specification. If the conventional asymptotic covariance
matrix in (11-16) and the robust estimator in (11-3), with X; replaced with the data in
group mean deviations form, give very different estimates, one might guestion the model
specification. [This is the logic that underfies White's (1982a) information matrix test {and
the extensions by Newey (1985a) and Tauchen {1985).] The robust standard errors are
shown in parentheses under those for the fixed effects estimates in the sixth column of
Table 11.5. They are considerably higher than the uncorrected standard errors-—wso
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percent to 100 percent—which might suggest that the fixed effects specification should
be reconsidered. , -
o The FEVD computations are shown in Table 11.5 as well. The third set of -

resuits, marked “Individual Effects,” shows the (Step 1) and "gStep 2) results. Note that
these are computed in fwo least squares regressions. The second step is indicated by
the heavy box. The fit measures are not shown for this intermediate step. The {Step 3)
results are shown in the last two columns of the table. As anticipated, the estimated
coefficients match the first and second step regressions. For b sgy, the standard errors
have fallen by a factor of 2 to 4. For gspv, the estimators of y, they have fallen by a
factor of 7 to 10. In view of the previous analytic resuits, the estimates in the last column
of Table 11.5 would be viewed as overly optimistic.
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column resuits, The F statistic fpf testing the significance of the time effects (in the absence
of the individual effacts) is

/ (0.4636788 — 0.3154548) /6
~ (1~ 0.4636788) /(4765 — 10— 6)

F[6,414

ropriate to compute the robust

igh disappears.
andard errors for the fixed effects .
for the pooled estimator. Howev i

, in principle, that should be unnec-

a——— g
&.5 RANDOM EFFECTS

The fixed effects model allows the unobserved individual effects to be correlated with the
included variables. We then modeled the differences between units strictly as parametric
shifts of the regression function. This model might be viewed as applying only to the
cross-sectional units in the study, not to additional ones outside the sample. For example,
an intercountry comparison may well include the full set of countries for which it is
reasonable to assume that the model is constant. If the individual effects are strictly
uncorrelated with the regressors, then it might be appropriate to model the individual
specific constant terms as randomly distributed across cross-sectional units, This view
would be appropriate if we believed that sampled cross-sectional units were drawn from
/on™  alarge population. It would certainly be the case for the longitudinal data sets listed
\ 1\  in the introduction to this chapter:!} The payoff to this form is that it greatly reduces

“'This distinction is not hard and fast; it is purely heuristic. We shall return to this issue later. Sce Mundlak
A (1978) for methodological discussion of the distinction between fixed ard random effects,
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the number of parameters to be estimated. The cost is the possibility of inconsistent
estimates, should the assumption turn out to be inappropriate.
2 P Consider, then, a reformulatlon of the model

o Ja=EB @t u) + e, (¥-25)

where there are X r‘egressors includmg a constant and now the single constant term is
the mean of the unobserved heterogeneity, £ [zj«). The component u; is the random:
heterogeneity specific to the ith observation and is constant through time; recall from

| ection$.2.1,u; = {z/a — E [z; oz]} For example, in an analysis of families, we can view
u; as the collection of factors, Z, not in the regression that are specific to that family.
We continue to assume strict exogenelty

Elex|X] = E[u; | X] =0
E[e} |X] =o?

E[2|X] =o?, WA
[ 2 ,v-'] U E4.26)
E[eiu; JX] =0 foralli,¢, and j,

Eleye; st X] =0 ift#sori#j,

Eluu;|X] =0 ifi# ]

As before, it is useful to view the formulation of the model in biocks of T observations
for group i, y;, X;, w;i, and ;. For these T observations, let

i = Eir + Wi
and i
= [0, i, ., iz 7 ™
In view of this form of N> we have what is often called an error components. model. For
this model, ]
E[nj; | X] = o + oy, B
Elnums| X =0, t+#s @2

E [n_,-_m!-s I&] = () for all ¢ and_g_ lfl #J.

For the T observations for unit i, let £ = E[x; 7} | X]. Then

o2 + o? ol 2 o2 %]
2 24 2 o2 2 -
o/ oftal o - o o
E= u SOy Oy s |=ollp+0} mr, 9-28)
2 2 2 2,4 42
o, o, Gy - Oy o

= w—1"
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where iy is a T x 1 column vector of 1s. Because observations i and j are independent,
the disturbance covariance matrix for the full n7 observations is

" | R I T SRR S 32
0-x 0 .. 0

Q= B LM ey h(.—zg)
000 %

NS/

,9/.5;1 GENERALIZED LEAST SQUARES

The generalized least squares estimator of the slope paramei€rs is [

(Z":xgz-ly,-) :

f=1

n
B‘ = (XIR—IX)—lxrﬂ—ly — (Z X;z—l
i=1

To compute this estimator as we did in Chaptér #by transforming the data and using
ordinary least squares with the transformed data, we will require Q72 =[I, ® =]~1/2,
We need only find £~'2, which is

1
(:30)

and likewise for the rows of X;.}* Fopthe data set as a whole, then, generalized least
squares is computed by the regressfon of these partial deviations of y;, on the same
transformations of x;;,. Note thesgimilarity of this procedure to the computation in the
LSDV model, which uses 6 =4'in (9-14). (One could interpret 8 as the effect that would
remain if o, were Zero, begduse the only effect would then be ;. In this case, the fi
and random effects mogtls would be indistinguishable, so this result makes senge?

it can be shown j#at the GLS estimator is, like the pooled OLS estimatopsa matrix
weighted average Sf the within- and between-units estimators:

i)
(#-31)

g = Jowithing, within +d- Fwirh:’n)bherween 13

12 Thj transformation is a special case of the more general treatmengifi Nerlove (1971b),

n alternative form of this expression, in which the weighin trices are proportional to the covariance|
atrices of the two estimators, is given by Judge et al. (1985),

Qﬂlsht;ns
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11.5.1 LEAST SQUARES ESTIMATION

A%

The model defined by (11-25),

Vi = 0HXiB ot t e : I X
w1th the strict exogeneity assumptlons in (11- "*6) and the covariance matrix detailed in (11-"8) and‘ '
(1129) is a generalized regression-model_ that ﬁts into the framework we developed in Chapter 9. The
disturbances are autocorrelated in that observations are correlated across time within a group, though not
across groups. All the implications of Section 9.2.1 would apply here. In particular, the parameters of the
random effects model can be estimated consistently, albeit not efficiently, by- ordinary least squares
(OLS). An appropriate robust asymptotic covariance matrix for the OLS estimator would be given by
(11-3).
There are other consistent estimators available as well. By taking deviations from group means, ,
we obtain
y i ( X ) B M 811 i * "
2 il
This implies that (assuming there are no time}invariant regressors in x;), the LSDV estimator of (11-13) is
a consistent estimator of [3 (Note that alone among the four estimators to be suggested here, the LSDV
estimator is robust to whether the correct specification is actually a random or a fixed model.) As is OLS,
LSDV is inefficient since, as we will show below in Section 11.5.2, there is an efficient GLS estimator
that is not equal to byspy. The group means (between groups) regression model
=T N
o

y =a+ x,,B+u +%E,i= Ligatt 729

provides a third method of consistently estimating the coefficients . None of these is the preferred
estimator in this setting, since the GLS estimator will be more efficient than any of them. However, as we
saw in Chapters 9 and 10, many generalized regression models are estimated in two steps, with the first
step being a robust least squares regression that is used to produce a first round estimate of the variance
parameters of the model. That would be the case here as well. To suggest where this logic will lead in
Section 11.5.3, note that for the three cases noted, the mean squared residuals would produce the
following consistent estimators of functions of the variances:

{Pooled) pllm [onoledl‘?pooled/ (ET)] = Gyz + Gezs
(LSDV) plim [evsov’esov/(I)] = o ’[1— /10,
(Means) Plim [€means Emeans/ (7 T)] c_;,,2 + 052.". T.

Any pair of these estimators would provide a two,equation method of moments estimator of (5,%,0,°).
With these in mind, we will now develop an efficient generalized least squares estimator.



| Greene-50558

book

June 21,2007  13:24 _ ’I 1-35 l

202 PART Il + The Generalized Regression Model

where iris a T x 1 cofimn vector of 1s. Because observations i and j are indepghdent,

N 1
,9/.5.\ GENERALIZED LEAST SQUARES

The generalized least squares estimator of the slope parameters is

i -1 /0 ‘
f=Xe IR Ixely = (Z XzX) (Z z.iz;“iyf_) .
i—1 = ¥ - -

i=1

To compute this estimator as we did in Chapter by transforming the data and using
ordinary least squares with the transformed data, we will require /% = [I, ® Z]71/2.
We need only find £/, which is ) '

' 1 ]
2—1/2:_ I— —i *f ,
A A e _T"I.'I:".I
where
Te

8=1-

Vol +Toy

The transformation of y; and X; for GLS is therefore

| 3y, = L 2O REN
v A o-s- 3 !
yit = 8%;.

and likewise for the rows of X_i;lz"For the data set as a whole, then, generalized least
squares is computed by the regression of these partial deviations of y; on the same
transformations of x;;. Note the similarity of this procedure to the computation in the

~ LSDV model, which uses 8 = 1 in (#14). (One could interpret 6 as the effect that would

Temain if o, were Ze10, because the only effect would then be ;. In this case, the fixed
and random effects models would be indistinguishable, so this result makes sense.)

It can be shown that the GLS estimator is, like the pooled OLS estimator, a matrix

weighted average of the within- and between-units estimators: Y

. ﬁ — Jowithingwithin |y :_warhin)“bbﬂmﬂ?_gf g‘rsl)

42This transformation is a special case of the more general treatment in Nerlove (1971b).

“W3An alternative form of this expression, in which the matrices are proportional to the covariance
matrices of the two estimators, is given by Judge et al. (1985).

weig lntlhs
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where now,

Swithin __ [Qwithin between' —1 qwithin e
':(.F_ - [.Sxx +A:.._S-,_xx ] ~1$_xx_ ’

R A, . .;"‘:73 = (1 92
T o2 +To? = Y
To the extent that A differs from one, we see that the inefficiency of ordinary least
squares will follow from an inefficient weighting of the two estimators. Compared with
generalized least squares, ordinary least squares places too much weight on the between;
units variation. It includes it all in the variation in X, rather than apportioning some of
it to random variation across groups attributable to the variation in u; across units. ¥
- Unbalanced panels add a layer of difficulty in the random effects model. The first
b= ‘problem can be seen in ($-29). The matrix  is no longer,l, ® E because the diagonal
blocks in, @ are of different sizes. There is also groupwise heteroscedasticity in (9\-:3{)),_ _

LTS

because the ith diagonal block in 271/ is S\y-5 2
Ug

_IT_.?i.iTi' Bi=1 — e
..-'.___i T;:b__i.-:l'_?‘ i /o-.z + I;U:E

In principle, estimation is still straightforward, because the source of the groupwise
heteroscedasticity is only the unequal group sizes. Thus, for GLS, or FGLS with es-
timated variance components, it is necessary only to use the groulafs:peciﬁc 6; in the
transformation in (#-30). . : =

-

.3 (=55
X.S.ﬁ FEASIBLE GENERALIZED LEAST SQUARES
WHEN z IS UNKNOWN

i

If the variance components are known, generalized least squares can be computed
as shown earlier. Of course, this is unlikely, so as usual, we must first estimate the
disturbance variances and then use an FGLS procedure. A heuristic approach to esti-
mation of the variance components is as follows: [T
Vi =X§,§ +o e+ U (§’32)

and
i =-.§§_§‘+,q-+ B, Tl

Therefore, taking deviations from the group means removes the heterogeneity: Wk
Yu =T, = % =%, ) B + e — ). (%:33)

Because
T
E [Z(s_,-{ T ?.f._)z] = (T—-Do,
t=1

if 8 were observed, then an unbiased estimator of o based on T observations in group
i would be

S
r T N2
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i

: W
Because § must be estlmated-—(,D’ 33} implies that the LSDV estimator is consistent,
indeed, unbiased in general—we make the degrees of freedom correction and use the

. LSDV residuals in

W

L T, 22 _
53 (i) = _Eﬂm.. . (%35)

T-K-1
(Note that based on the LSIT\/SO_S&HE% &; is actually zero. We will carry it through

nonetheless to maintain the analogy to 19-34) where ;. is not zero but is an estimator
of __E[ag',] = (.) We have n such estimators, so we average them to obtain

nl —nK—n

D R =

T-K-1

The degrees of freedom correction in 52 is excessive because it assumes that o and
B are reestimated for each i. The estxmated parameters are the n means ;. and the K
slopes Therefore, we propose the unbiased estimator'#”

Y\e=t
a2 2 E'—l Er 1(err "e:) ‘.
Oy =Sp5pv = nT—n—K -“ %37)

This is the variance estimator in the fixed effects model in Qf -17), appropriately cor-
rected for degrees of freedom. It remains to estimate 2. Return to the original model

V-

specification in (#-32). In spite of the correlation acros'§ observations, this is a classical
regression model in which the ordinary least squares slopes and variance estimators are
both consistent and, in most cases, unbiased. Therefore, using the ordinary least squares
residuals from the model with only a single overall constant, we have

, . e
- Plimsh = plim e =l 4ol #39)

This provides the two estimators needed for the variance components; the second would
be 62 = :sf,mkd ~ s spy- A possible cpmph'cationl is that this second estimator could
be negative: But, recall that for feasible generalized least squares, we do not need
an unbiased estimator of the variance, only a consistent one. As such, we may drop

the degrees of freedom corrections in (#:37) and (#-38). If so, then the two variance
estimators must be nonnegative, since the sum of squares in the LSDV model cannot
be larger than that in the simple regression with only one constant term. Alternative
estimators have been proposed, all based on this principle of usmg two different sums of
squared residuals’’ “Thisis a point on which modern software varies greatly. Generally,
programs begin with (#-37) and (#-38) to estimate the variance components. What they

do next when the estimate of ¢, is nonpositive is far from uniform. Dropping the degrees
of freedom correction is a frequently used strategy, but at least one widely used program
stmply sets o to zero, and others resort to different strategies based on, for example,
the group means estimator. The unfortunate implication for the unwary is that different
programs can systematically produce different results using the same model and the

1A formal proof of this proposition may be found in Maddala (1971) or in Judge et al. (1985, p. 551).

13See, for example, Wallace and Hussain (1969), Maddala (1971), Fuiler and Battese (1974), and Amemiya
(1971}

j.:., ,:3 }."_
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same data. The practitioner is strongly advised to consult the program documentation
for resolution.

There is a remaining complication. If there are any regressors that do not vary within
the groups, the LSDV estimator cannot be computed. For example, in a model of family
income or labor supply, one of the regressors might be a dummy variable for location,
family structure, or living arrangement. Any of these could be perfectly collinear with
the fixed effect for that family, which would prevent computation bf the LSDV estimator.
In this case, it is still possible to estimate the random effects variance componerits. Let
[b. 2] be any consistent estimator of [8, a] in (%32}, such as the or mary quares
estimator. Then, (- 38) prowdes a consistent cstxmator of mye = o2 + o?. The mean

-

squared reswuals using a regressmn based only on the # group means in 9@-32) provides

a consistent estimator of m,, = cr + (0'2/ T}, s0 we can use A1-335 )
2 T '
0’92 = T —1 (Ine;e __m**)
. T 1
()’3: T_...l' T 1m¢¢—wm**+(1_w)mees

where w > 1. As before, this estimator can produce a negative estimate of 013 that, once
again, calls the specification of the model into question. [Note, finally, that the residuals

¢ in @-37) and (#-:38) could be based on the same coefficient vector.]
TR Y ere 1s, perhaps surprisingly, a simpler way out of the dilemma posed by time;

% L

invariant regressors. In (9-33), we find that the group mean deviations estimator stlll'

b=

\

# ";.\

AN

provides a consistent estimator of o2. The time-invariant variables fall out of the model
so it is not possible to estimate the fu]l coefﬁc:lent vector 8, But, recall, estimation of g is
not the objective at this step, estimation of o2 is. Therefore, it follows that the res1duals
from the group mean deviations (LSDV) est:mator can still be used to estimate o?
By the same”logic, the first differences could also be used. (See Section ¥.3.5.) The
residual variance in the first difference regression would estimate 202, These outcomes
are irrespective of whether there are time-invariant regressors in the model.

4

#-5.3 TESTING FOR RANDOM EFFECTS { K -

Breusch and Pagan (1980) have devised a Lagrange :31}1_1 Ller test for the random
effects model based on the OLS residuals?*For

Hy: 0_’5 =0 (or Corr[n_i,, n_i_s_] =0),

H1: oﬁ 75 0,
the test statistic is
it T 2 2 . 2 '
Mo 2T | Zimt [ ] _ | = 2E | ZalEr 1 (o)
Ar-1 | YL Y5E CAT-D (B LA

“¥5We have focused thus far strictly on generalized least squares and moments based consistent estimation

of the variance compouents, The LM test is based on maximum likelihood estimation, instead. See Maddala
{1971) and Balestra and Nerlove (1966, 2003) for this approach to estimation.

W
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Under the null hypothesis, the limiting distribution of LM is chi-squared with one degree
of freedom.

I [ - 6 '
- Example @5~ Testmg for Random Effects

We are interested in comparing the random and fixed effects estimators in the Cornwell

and Rupert wage equation. As we saw. earlier, there are three time-invariant variables in e I X ,-'-J
./ ;7 the equation: Ed, Fem, and Bik. As such, we cannot directly compare the two estimators. J fo ]
- A% “The random effects model can provide separate estimates of the parameters on the time- L
» invariant variables while the fixed effects estimator cannot. For purposes-of the i[lustratlon, | pei 117
then, we will for the present time confine attention to the restricted common effects model, o e r, (157
In Wage,; = p1 Expp + B2 Exp,, + Bs Whks;; + B4 Occit + Bs tnd“ + Be South;t
+ B SMSAit + s MSit + fo UnlOnfr +.5 + s I
_ The fiked and random effects models differ In the treatment of .
o 2 Least squares estimates of the parameters including a constant term appear in Table935. //» é.
bfoud 4 We then computed the group mean residuals for the seven ohservations for each individual.
\ v The sum of squares of the means is 53.824384. The total sum of squared residuals for the A
— regression is 607.1265. With T and n equal to 7 and 595, respectively, (=30} produces & [ J- /1
chi-squared statistic of 3881.34. This far exceeds the 95 percent critical value for the chi-
squared distribution with one degree of freedom, 3.84. At this point, we conclude that the
classical regression model with a single constant term is inappropriate for these data. The
result of the test is to reject the null hypothesis in favor of the random sffects model. But, it
is best to reserve judgment on that, because there is another competing specification that
" might induce these same results, the fixed effects model. We will examine this possibility in
the subsequent examples.
FABLE &5 Estimates'of the Wags Eauation.
Pooled Least Squares Fixed Effects LSDV Random Effects FGLS |
Variable Estimate.  Std.Error™  Estimate Std. Error Estimate Std Error Robvs £
Exp 0.0361 0.004533 0.1132 0.002471 0.08906 0.002280 o-01236
Exp? —0.0006550 0.0001016  -0.0004184 00000546  —0.0007577 0.00005036 0. DooBl
Wks 0.004461  0.001728 0.0008359  0.0005997 0.001066 0.000593% .Gl oo 33
Occ -0.3176 0.02726 —0.02148 0.01378 ~0.1067 0.01269 ©o.o5424
And 0.03213 0.02526 0.01921 0.01545 ~0.01637 001391 ¢ .ps30X
South —0.1137 0.02863 —0.001861 0.03430 —0.06899 002354 o.ps59%4
SMSA 0.1586 0.02602 ~0.04247 0.01943 —0.01530 001649 .0 S92
MS 0.3203 0.03494 —0.02973 0.01898 —0.02398 001711 po.069%1
Union 0.06975 0.02667 0.03278 0.01492 0.03597 0.01367 0.0V6%53
Constant—  5.8802 0.09673 5.3455 0.04361 .19 266
Mundlak: Group Means Mundlak: Time Varying
gxp —0.08574 0.005821 0.1132 0.002474
Exp® -0.0001168  0.0001281  —0.0004184 0.00005467
Wks 0.008020 0.004006 0.0008359 0.0006004
Occ ~0.3321 0.03363 —0.02148 0.01380
Ind 0.02677 0.03203 0.01921 0.01547
South —0.1064 0.04444 —0.001861 0.03434
SMSA 0.2239 0.03421 0.04247 0.01945
MS 0.4134 0.03984 -0.02972 0.01901
Urion 0.05637 0.03549 - 003278 0.01494
Constant 57222 0.1906

“2Robust standard errors
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With the variance estimators in hand, FGLS can be used to estimate the parameters
of the model. All of our earlier results for FGLS estimators apply here. In particular, all
that is needed for efficient estimation of the model parameters are consistent estimators

 of the variance components, and there are several. {See Hsiao {2003), Baltagi (2005),

Nerlove (2002)_;Berzeg-(1979), and Maddaia and Mount (1973).]

Example 8  Estimates of the Random Effects Model
In the previous example, we found the total sum of squares for the least squares. estima-

tor was 607.1265. The fixed effects (LSDV) estimates for this maodel &ppear in Table 82 /.4
’__{%W#S) where the sum of squares given is 8226732, Therefore, the moment estimators of
& !

parameters are .
' 607.1265

2, sz 8071265
P 46F = o = 01461195,

and T LB
' s2. _ B226782 ., ooinon

¢ "4165-~-595 -9

The implied estimator of o2 is 0.12301719. {No problem of negative variance components
has emerged.) The estimate of 9 for FGLS is

0.0231023
\/o 0231023 + 7(0.12301719) 0.8383608. i

-

h=1-

FGLS estrmates are computed by regressing the partnai differences of In Wa%%p/t;e partiai
differences of the constant and thel§iregressors, using this estimate of 4 in (8=30). Estimates
of the parameters using the OLS, fixed effects and random effects estimators appear in
Table & f/, &,

.None of the desirable properties of the estimators in the random effects model rely
on T going to infinity.t?Indeed, T is likely to be quite small. The estimator of o2 is equaI
to an average of n estimators, each based on the T observations for unit i, [See J
Each component in this average is, in principle, consistent. That is, its variance is of
order 1/ T or smaller. Because T is small, this variance may be relatively large. But,
each term provides some information about the parameter. The average over the n
cross-sectional units has a variance of order 1/(nT), which will go to zero if n increases,
even if we regard T as fixed. The conclusion to draw is that nothing in this treatment
relies on T growing large. Although it can be shown that some consistency results will
follow for T increasing, the typical panel data set is based on data sets for which it does
not make sense to assume that T increases without bound or, in some cases, at afl:18-"
As a general proposition, it is necessary to take some care in devising estimators whose
properties hinge on whether 7 is large or not. The widely used conventional ones we
have discussed here do not, but we have not exhausted the possibilities.

The random effects model was developed by Balestra and Nerlove (1966) Their
formulation included a time-specific component, «,, as well as the individual effect:

Yu '=A01 + BXit + & i + Ky

TSee Nickell (1981).

-1¥In this connection, Chamberlain (1984) pmvlded some innovative treatments of panel data that, in fact,
take T as given in the model and that base consistency results solely on # increasing. Some additional resulis
for dynamic models are given by Bhargava and Sargan (1983).

S
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The extended formulation is rather complicated analytically. In Balestra and Nerlove’s
study, it was made even more so by the presence of a lagged dependent variable. A full
set of results for this extended model, including a method for handling the lagged

' ‘dependent variable, has been developed 19'We will tuin to this in Section /48,

i

N p’s A HAUSMAN'S SPECIFICATION TEST FOR THE RANDOM

EFFECTS MODEI.

- At various points, we have made the distinction between fixed and random effects mod-

els. Aninevitable question is, Which should be used? From a purely practical standpoint,
the dummy variable approach is costly in terms of degrees of freedom lost. On the other
hand, the fixed effects approach has one considerable virtue. There is little ]ustlﬁcatlon
for treating the individual effects as uncorrelated with the other regressors, asis assumed
in the random effects model. The random effects treatment, therefore, may suffer from

- theinconsistency due to this correlation between the included variables and the random

effect?®” e

The speclﬁcatlon test devised by Hausman (197 8)2"is used to test for orthogonality
of the common effects and the regressors. The test is based on the idea that under the
hypothesis of no correlation, both OLS in the LSDV model and GLS are consistent, but
OLS is inefficient;?* whereas under the alternative, OLS is consistent, but GLS is not.
Therefore, under the null hypothesis, the two estimates should not differ systematlcally,
and a test can be based on the difference. The other essential ingredient for the test is
the covariance matrix of the difference vector, [b — ﬁ

W
Vatlb — f] = Var[b] + Var[f] - Covih, 81— Cov[B,b]. (\-49)

Hausman’s essential result is that the covariance of an efficient estimator with its differ-
ence from an inefficient estimator is zero, which implies that

Cov[(b — ﬁg ﬂ] Covlh, _ﬁ] Var[{i]
or that 2
. “ COV[_IJ e Var[ﬂ 1
Insertmg th1$ result in (8-40) produces the required covariance matrix for the test,

Var(b — ﬂ] = Var[p]_ - Var[p] =

The chi-squared test is based on the Wald criterion:

W
W= x[K-1]=[b-81¥"[b- 8. )

For 'Il we use the estimated covariance matrices of the slope estimator in the LSDV
model and the estimated covariance matnx in the random effects model, excluding the

~See Balestra and Nerlove (1966), Fomby, Hill, and Johnson (1984), Judge et al. (1985), Hsiao (1986),

Anderson and Hsiao (1982), Nerlove (1971a, 2002), and Baltagi (2005).

~#See Hausman and Taylor (1981) and Chamberlain (1978).

‘# Related results are given by Baltagi (1986).

2 Referring to the GLS matrix weighted average given earlier, we see that the efficient weight uses 8, whereas
OLSsets 6 =1,

N —

|§|
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constant term. Under the null hypothesis, W has a limiting chi-squared distribution with
K -1 degrees of freedom.

= . The Hausman test is a useful device for determining the preferred specification of
j )L the common effects model. As developed here, it has one practical shortcoming, The
construction in (9-48) conforms to the theory of the test. However, it does not guarantee
that the difference of the two covariance matrices will be positive definite in a finite
| 1 sample. The implication is that nothing prevents the statistic from being negative when
) T it is computed according to (#-41). One can, in that event, conclude that the random
effects model is not rejected, since the similarity of the covariance matrices is what is
causing the problem, and under the alternative (fixed effects) hypothesis, they would be
significantly different. There are, however, several alternative methods of computing
the statistic for the Hausman test, some asymptotically equivalent and others actuaily
numerically identical. Baltagi (2005, pp. 65|—73) provides an extensive analysis. One
particularly convenient form of the test finesses the practical problem noted here. An

asymptotically equivalent test statistic is given by

" - . -1, ”
H = S_éf_,sgv ~ BuEans) [ASJ!-@’ {Brspv] + Asy Var[$ .gE_ANS]] (BLspv P means)
| #-42)
v ==
where f3:r.4 0 i€ the group means estimator discussed in Section'q.3.4. As noted, this
is one of several equivalent forms of the test, The advantage of this form is that the
covariance matrix will always be nonnegative definite.

Example 'IQI:?? Hausrman Tast for Fixed versus Random Effects
Using the results of the preceding example, we retrieved the coefficient vector and estimated
asymptotic covariance matrix, b and Veg from the fixed effects results and the first nine
elements of ﬂRE and Ves {excluding the constant term). The test statistic is

= {bre — Bre) [Vez — Voel ™" (bee — Bae)

T lue of the test statistic is 2,636.08. The critical value from the chi-squared table is
[ G gl | q 4.07,.80 the null hypothesis of the random effects model is rejected. We conclude that the
iXed effacts model is the preferred specification for these data. This is an unfortunate turn of
events, as the main object of the study is the impact of education, which is a time-invariant
variable in this sample. Using {8-42) instead, we cbtain a test statistic of 3,177.58. Of course,
this does not change the congm "

.l

BSERVED EFFECTS MODEL:
OACH

9.5.5 EXTENDING THE b}
MUNDLAK'S AP,

Even with the Hausm,
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test available, choosing between th€ fixed and random effects
s a bit of a dilemma. Both specifijedtions have unattractive short-

ould at least partly overcome itgdeficit. The failure of the random eff
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Imbens and Wooldridge (2007) have argued that in spite of the practical considerations about the
Hausman test in (11-41) and (11-42), the test should be based on robust covariance matrices that do not
depend on the assumption of the null hypothesis (the random effects model). (Le., “It makes no sense
to report a fully robust variance matrix for FE and RE but then to compute a Hausman test that
maintains the full set of RE assumptions.”) Their suggested approach amounts to the variable L
- addition test described in the next section, with a robust covariance matrix. el

11.5.% EXTENDING THE UNOBSERVED EEFI_ECTS MODEL: MUNDLAK’S APPROACH

Even with the Hausman test available, choosing between the fixed and random effects specifications
presents a bit of a dilemma. Both specifications have unattractive shortcomings. The fixed effects
approach is robust to correlation between the omitted heterogeneity and the regressors, but it proliferates
parameters and cannot accommodate time-invariant regressors. The random effects model hinges on an
unlikely assumption, that the omitted heterogeneity is uncorrelated with the regressors. Several authors
have suggested modifications of the random effects model that would at least partly overcome its deficit. -
The failure of the random effects approach is that the mean independence assumption, Efc; X;1=0,is
untenable. r'M'pgdia/lg’s (1978) B

| -
ol T ——he
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. oy A R |

5 ,_‘:il!l.',.'i‘l’_-’-ch would suggest the specification

AN . o |1 X =xy®” el

) + i Substituting this in the raﬁdom_ effects model, we obtdin

E’it =|Xftﬁ +_:éi + &y _ .
- X:;ﬁ +in + & + (i — Ef¢; ]X:?.D o | [&’- 13)
=XuB + Xy + i+ u;.

This preserves the specification of the random effects model, but {(one hopes) deals
directly with the problem of correlation of the effects and the regressors. Note that the ¥
additional terms in X; y will only include the time-varying variables - the time invariant '
variables are already group means, This additional set of estimates is shown in the lower

panel of Table &5in Example 8&= /. &,
1.6 unclak’s approach is frequently used as a compromise between the fixed and

random effects models. One side benefit of the specification is that it provides an-
other convenient approach to the Hausman test. As the model is formulated above, the
difference between the “fixed effects” model and the “random effects” model is the
nonzero y. As such, a statistical test of the null hypothesis that y_equals zero should
provide an alternative approach to the two methods suggested earlier.

!t i
Exarnple 8 \Variable Addition/Test for Fixed versus Random Effects

Using the results in Example &-6; W& tecovered the subvector of the estimates in the lower
[ half of Table 95 corresponding tq ¥, and the corresponding submatrix of the full covariance
l.é atrix. 1he test statistic is B
B H' = 7'[Est. Asy. Var($)] '3
21 ?3. 66‘ The value of the test statistic i§°297.17.3The critical value from the chi-squared table for nine

degrees of fréedom isr14.07 /so the null hypothesis of the random effects mode is rejected.
We conclude as beforg/that the fixed effects estimator is the preferred specification for this
model. '

619

we can treat heteroscedasticity in the sarpe way that we did in Chapte;
can computy the ordinary or feasible ggheralized least squares esti
an appropjdate robust covariance matiik estimator, or we can impos¢/Some structure on
the distupbance variances and use ggfieralized least squares. In th¢/panel data settings,

AT T / |
‘#0ther analyses, &g, Chamberlain (1982) and Wooldridge {2002a), interpret the linear function as the pro- N i
jection of ¢; on thc"group means, rather than the conditional mean. The difference is that we need notmake | 71
any particular assumptions about the conditional mean function while there always exisis a linear projection. | ol @9
The conditional mean interpretation does impose an additional assumption on the model; but brings con- | v A
siderable simplification. Several authors have analyzed the extension of the model to projection on the full . g

set of individual observations rather than the means, The additional generality provides the bases of several

other estimators including minimum distance [Chambetlain (1982)], GMM [Arellano and Bover (1995)], and

constrained seemingly unrelated regressions and three-stage least squares [Wooldridge (2002a)).
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L

SUR model for agricultural output,

(1983) treatment of a form of the capital asset pricing model (CAPM), Sickles’s (198;)-—_7
analysis of airline costs, and Wan et al.’s

Beilerlein, Dunn, and
mand for electrigi

where

f =cons

ate (New England plus New York, Ne:
t = year, 1957,...,1977.

Note that this model has both time and state random effects and a lagged dependent variable
in each equation.

2rsey, Pennsylvania)

RECRE g THE RANDOM AND FIXED EFFECTS MOBELS ﬂ({ Aﬂggﬂﬂjvs A_PP @OA'CH

e linear unobserved effects model is g o
-

\
NE yie =i +.%,8 + eur. (16:32)

The random effects modelﬁisumes that El¢; IX,] = o, where the T rows of X; are
X!,. As we saw in Section this model can be estimated consxstently by ordmary

least squares] Regardless of how &; is modeled, there is autocorrelation induced by | |

the common, unobserved c;, so the generalized regression model applies. The random
effects formulation is baséd on the assumption Elwiw] |X;] = oZlz + ofii’, where
wir = (8 + u;). We developed the GLS and FGLS estnnators for this formulat:on as |

well as a strategy for robust estimation of the OLS covariance matrix. Among the impli- ﬂ I
cations of the development of Section ltwmﬁmm 5-

‘covariance matrix is more restrictive than necessary, given the information contained
in the data. The assumption that E{g;s] | Xi] = 6211" assumes that the correlation across

periods is equal for all pairs of observations, and arises solely through the pers1stent Ci.
Tn Section b, we estimated the equivalent model with an unrestricted covariance

matrix, E[e;g] | X,] = X. The implication is that the random effects treatment includes
two restrictive assumptlons, mean independence, E[c; | X;] = o, and homoscedasticity,
Elsie] 1 Xs] = o2J7. [We do note, dropping the second assumpt.lon will cost us the iden-
tification of o2 as an estimable parameter. This makes sense——if the correlation across
periods ¢ and § can arise from either their common w; ot from correlation of (g, s,s)
then there is no way for us separately to estimate a variance for u; apart from the co-
variances of &; and g;.] It is useful to note, however, that the panel data model can
be viewed and formulated as a seemingly unrelated regressions model with common
coefficients in which each period constitutes an equation, Indeed, it is possible, albeit

unnecessary, to impose the restriction Elw,w} | X:] = o2kr + ogif .
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The mean independence assumption is the major shortcomigﬁgf the random effects
model. The central feature of the fixed effects model in Section#4 is the possibility that
_Elci | X,] is a nonconstant g(X ). As such, least squares regression of ¥, on x;, produces [l 5k
an inconsistent estimator of 8. The dummy variable model considered in ScctlonéTrs/
the natural alternative. The fixed effects approach has the advantage of dispensing with | /|, -y n
the unlikely assumption that ¢; and x;, are uncorrelated However, ithasthe shortcoming | L2~ ,
of requiring estimation of the » “parameters,” Vb (ol
Chamberlain (1982, 1984) and Mundlak ( 1978) suggested alternative approaches | |

¢ 7 that lie between these two, Their modifications of the fixed effects model augment it with | Fied ' j, e

~ the projections of ¢; on all the rows of X; (Chamberlain) or the group means (Mundlak). | oy H

(See Sectionp#=22rand #5.5.) Consider the first of these, and assume (as it requires) L+ 5
a balanced panel of T observations per group. For purposes of this development, we | ,f s VA [ANLE
will assume T = 3. The generalmatlon will be obvious at the conclusion. Then, the, ) fapee o

ti ted by Chamberk
pI‘O]BC on suggeste Y amberlain is ? II gk @
G =0 XY H X2 hXays tT 4 (123

- -~|~x1-'-;f A Q
where now, by construction, 7; is orthogonal to X;;. % ¥ Insert ( into (}6-22) to obtam /¢ 4 | Wl lﬂ
A ),

- | v s W
Jir =¢d ,5:1?1+x,2}'2 ™ 13,?3'|'x.xuﬂ+€!f+r1 ’ 45 4 f '\"" 'i.|

Estimation of the 1 + 3K + K parameters of this model presents a number of compli-
cations. [We do note, this approach has the potential to (wildly) proliferate parameters.

For our quite small regional productivity model in Example 1827 the original model ﬁ 1.1 ?
with six main coefficients plus the treatment of the constants becomes a model with
1+ 6+ 17(6) = 109 parameters to be estimated.]

If only the n observations for period 1 are used, then the parameter vector, 1o é;

01 =0o, B+ Yy1),r2,%3 =F1, Y2, ¥ 3 (36=2)
can be estimated consistently, albeit inefficiently, by ordinary least squares. The
“model” is

=248 +win,i=1,....n
Collecting the n observations, we have
S =Ly +w

If, mstead, only the n observations from period 2 or period 3 are used, then OLS
estimates, in turn,

‘ B2 =0, 71, (B +y2),¥3 =@, 1, %2, ¥3,
or e
b3 =y, p2. (B +y3) =« y1. 2,25 L
if -

2‘! < -""There are some fine points here that can only be resolved theoretically. If the projection in (38233 is not AR

the conditional mean, then we have Elr; x.Xi] =0,£=1,..., T but not £fr; | X;] = 0. This does not affect '

the asymptotic properties of the FGLS estimator to be developed here, althiough it does have implications 1

g, for unbiasedness. Consistency will hold regardless. The assumptions behind ( not mclude that 15 @
Var(r; | X;] is homoscedastic. It might not be. This could be investigated empirically. The 1mpllcat|on here e
concerns efficiency, not consistency. The FGLS estimator to be developed here would remain consistent, but J,-'—:' {10 T T
a GMM estimator would be more efficient—see Chapt . Morcover, without homoscedasticity, it is not — o et b
certain that the FGLS estimator suggested here is mordefficient than OLS (with a robust covariance matrix o (A
estimator). Our intent is to begin the investigation here)Further details can be found in Chamberlain (1984) | - A=A el
and, e.g., Im, Ahn, Schmidt, and Wooldridge (1999). | Weam "o T0f

! | |
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270 PART Il 4 The Generalized Regression Model

It remains to reconcile the multiple estimates of the same parameter vectors. In terms
of the preceding layouts above, we have the following:

" OLS Estimates: & .;,_[_)1,-5_12_.1,,.03,1, 2 6.2, 92,832, a3,£1,3,.€2,3, P3;
Estimated Parameters: «, (8 £ y1)yr2, 23, ayy1. By, pz apnya. By o

Structural Parameters: «, 8, y1, Y2, ¥3. _ i:).;? 3 [

Chamberlain suggested a minimum distance estimator (MDE). Fot this problem, the
MDE is essentially a weighted average of the several estimators of each part of the
parameter vector. We will examine the MDE for this application in more detail in
Chapter 1. (For another simpler application of minimum distance estimation that T
e T . . age o .

13 shows the “weighting” procedure at work, see the reconciliation of four competing ) 2.0
estimators of a single parameter at the end of Example 925) There is an alternative
way to formulate the estimator that is a bit more transparent. For the first period,

ol
M1 IxiZmaxizaxs| [ ¢ 11,1
»2a 1 %22 X2,1 X202 X2.3 r21 _ " ‘“@78
Y= . =1/ . . . . Y1 . =Xl +n. (10-26)
. 0 . . . . Iz
Va1 LXn1 Xn1 Xn1 Xn1 73 Tn1

We treat this as the first equation in a_T equation seemingly unrelated regressions
model. The second equation, for period 2, is the same (same coefficients), with the data
from the second period appearing in the blocks, then likewise for period 3 (and periods
4,..., Tin the general case). Stacking the data for the T equations (periods), we have

Ol

= y1 7?1 ; n

e | _[(®=]|P] (=] . y oS
Tl= 1+ =%, €10-27)
yr Xz .-.l'.? Ir

where E[X'r] =0 and (by assumption), EriX]=2% ®I,. With the homoscedasticity
assumption for r;,, this is precisely the application in Section 10.2.% The parameters
can be estimated by FGLS as shown in Section 10.2.3, &

1-/D i &
Example 10 Hospital Costs

Carey (1997} examined hospital costs for a sample of 1,733 hospitals cbserved in five years,
1987”-:_-1 991. The model estimated is
In(TC/P)it = i + Bp DIS;t + Bo OPVir + Ba ALSyt + B4 CMiy
+ 85 DIST; + Bs DIS}; + B OPV; + o OPV;
+ ﬂQALS_]zf + B1oALS}, + P11 DISi x OPV)
+ B12 FAi + Bra Hin + 1o HT; + 15 LT, + s Large,
+ Bz Small; + e NonProfit; 4 pre Profity

+ &it,
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where

T TC = total cost,

P = input price index, )

DIS = dischargeés, .-~

opv = qutpatient visits,

ALS = average length of stay,

CM = case mix index, .

FA = fixed assets,

HI = Hirfindaht index of market concentration at county level,

HT = dummy for high teaching load hospital,

LT = durmmy variable for low teaching load hospital, '

Large = dummy variable for large urban area, .

Small = dummy variable for small urban area,

Nonprofit = dummy variable for nonprofit hospital,

Profit = dummy variable for for profit hospital.

. '
L% We have used subscripts “D” and “O” for the coefficients on DIS and OPV as these will be iso- - ‘f;
< lated in the following discussion. The model employed in the study Is that in (+8-227and X
1) ,.L‘gp (¥6-28). Initial OLS estimates are obtained for the full cost function in each year. SUR esti-
mates are then obtained using a restricted version of the Chamberfain system. This second
step involved a hybrid model that modified { 4 s0 that in each period the coefficient
vector was -

4
B = e, Borly), Bor(p), Bar(y), Baly). Bots - ... Brat)

where Bni() indicates that all five years of the variable (DIS;} are included in the equation
and, likewise for for(¥)(OPW), Ba(¥)(ALS) and B4 (y)(CM). This is equivalent to using

fites a, = e +X%1(DIS, OPV, ALS, CM)_,}I;», +1

. U L
b -—Ei)
in (+5-28).

The unrestricted SUR system estimated at the second step provides multiple estimates
of the various model parameters. For example, each of the five equations provides an esti-
mate of (Bs, ..., B1g). The author added one more layer to the model in allowing the coeffi-
cients on DIS;; and OPV}; to vary over time. Thersfore, the structural parameters of interest
are (Bps, ..., Pos), (yo1... ., vos) {the coefficients on DIS) and {Bor, . .., Bos), (¥or . .., yos) (the

| coefficients on OPV). There are, altogether, 20 parameters of interest. The SUR estimates
I produce, in each year (equation), parameters on DIS for the five years and on OPV for the
/ N five years, so there are a total of 50 estimates. Reconciling all of them means imposing a total
il . ” -7 of 38 restrictions. Table 18- shows the relationships for the time varying parameter on DIS;
|, T in the five-equation model. The numerical values reported by the author are shown following
L the theoretical results. A similar table would apply for the cosfficients on OPV, ALS, and CM.
(In the latter two, the g coefficient was not assumed to be time varying.) It can be seen in the
table, for example, that there are directly four different estimates of yp,g; in the second to fifth
equations, and likewise for each of the other parameters. Combining the entries in Table #6-2 ﬂa?
with the counterpart for the coefficients on OPV, we see 50 SUR/FGLS estimates 1o be used
to estimate 20 underlying parameters. The author used a minimum distance approach to
reconcile the different estimates. We will return to this exarnple in Glapdzy 14 where we will
develop the MDE in more detail. f"""r’a 3.6



