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7 NONLINEAR, SEMIPARAMETRIC AND NONPARAMETRIC {-}b‘ K';
N REGRESSION MODELS" d e | |
=) |ﬂ¢&_
— 7.1 INTRODUCTION | \ : g,Lxhidi
_ Up to this point, the focus has been on a linear regres;ion model | Mo L‘fﬁ[ =
L . =E S I s { oy khx“
- y=x1b1+xp, + ""‘5 B (7-1) - Hi 1'|l g‘}m SU:_
Chapters 2—5 developed the least squares method of estimating the parameters and obtained the r msp -
statistical properties of the estimator that provided the tools we used for point and interval J....J hete. Term

estimation, hypothesis testing,and prediction, The modifications suggested in Chapter 6 provided | ln\ {t hex 1-)
a somewhat more general form of the linear regression model,

:!

[18
k g&?d

¥ = A(X) Br +A(X)B2 + +¢g. (7-2)
I . *

By the definition we want to use in this chapter, this model is still “linear,” because the 7 -."

parameters appear in a linear form. Section 7.2 of this chapter will examine the__nqn_l_!_ineai':-f‘--'

‘l_'_egree_sic__m model (which includes (7-1) and (7-2) as special cases),

¥ = Mxixo) e Pubaiipbe) + & (7-3)

where the conditional mean function involves P variables and X parameters. This form of the
model changes the conditional mean function from E[y{x,ﬁ] x'B to E[yx] = Mx.p) for more
general functlons This allows a much wider range of functional forms than the linear model can
FEN accommodate:? This change.in the model form will requ.lre us to develop an alternative method
7 of estimation, nonlinear least squares We will also examine more closely the interpretation of
parameters in nonlinear models. In particular, since OE[){x]/x is no longer equal to B, we will
want to examine how,  should be interpreted.
7 Linear and nonlinear least squares are used to estimate the parameters of the condltibnal
. mean function, Efy{x]. As we saw in Example 4.5, other relationships between y and X, suchas .
"|{ 1] the conditional median, might be of interest. Section 7.3 revisits this idea with an examination . @

" of the conditional median function and the least absolute deviations estimator. This section will é(“ iy Tias
also relax the restriction that the model coefficients are always the same in the different parts of WAD Peeh
the distribution of y (given X). The LAD estimator estimates the parameters of the conditional !s J.“,« |'eu
median, that is, 50® percentile function. The quantile regression model allows the parameters of ot ? L {
the regression to change as we analyze different parts of the conditional distribution. rat, $peld

BNSt deced The model forms Consider¥hus far are semiparametric in nature, and less parametric as |~ -
we move from Section 7.2 to 7.3. The partially | linear regmsmn examined in Section 74 | .'! _
extends (7-1) such that y = fix) + 2B + ¢. The endpoint of this progression is a model in which "-1 ere
the relationship between y and x is not forced to conform to a particular parameterized function. -

~ Using largely graphical and kernel density methods, we consider in Section 7.5 how to analyze a

[ 1°. nonparametric regression relationship that essentially imposes little more than E[y{x] = k(x).

¥This chapter covers some fairly advanced features of regression modeling and numerical analysis. It may
be bypassed in a first course without loss of continuity.

A complete discussion of this subject can be found in Amiemiya (1985). Other important references are
Jennrich (1969), Malinvaud (1970), and especially Goldfeld and Quandt (1971, 1972). A very lengthy @
authoritative treatment is the text by Davidson and MacKinnon (1993). —
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7.2 NONLINEAR REGRESSION MODELS

The general form of the nonlinear regression model is

yi=h(x, p)y+e. (7-4)

.~ The linear model is obviously a special case. Moreover, some models which appear to " j;:j._'if: L

be nonlinear, such as

y=ePxxlet,

become linear after a transformation, in this case after taking logarifhms. In this chapter, we are
interested in models for which there is no such transformation, such as the one in the following
example.

Example 7.1 CES Production Function
In Example 6.?\, we examined a constant elasticity of substitution production funiction model:

Iny=Iny->In[3K* +(1~8)L* |+e. (7-5)
p

No transformation reduces this equation to one that is linear in the parameters. in Example 6.5, a linear
Taylor series approximation to this function around the point p = 0 is used to produce an intrinsically

linear equation that can be fit by least squares. Nonetheless, the underlying model in (7-8) is nonlinear
in the sense that interests us in this chapter.

This and the next section will extend the assumptions of the linear regression model to
accommodate nonlinear functional forms such as the one in Example 7.1. We will then develop
the nonlinear least squares estimator, establish its statistical properties, then consider how to use
the estimator for hypothesis testing and analysis of the model predictions.

CANM
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Example 11.2
Christensen

ransliog Demand System
rgenson, and Lau {1975), proposed the transl

indirect utility function for

where V is indirect
identity applied
commodity th

where Bu= >, B and yuy = 3, v - No transformation of the budget shafé equation pro-
duces a linear model. This is an intrinsicalty nonlifiear regression model. {IjAs also one among
@ system of equations. an aspect wa-wi-grore-for-the-present:)

gy

j{Z,W‘ #&t=2mF ASSUMPTIONS OF THE NONLINEAR REGRESSION MODEL

We shall require a somewhat more formal definition of a nonlinear regression model,
Sufficient for our purposes will be the following, which include the linear model as the
special case noted earlier. We assume that there is an underlying probability distribution,
or data generating process (DGP) for the observable y; and a true parameter vector, 8,
which is a characteristic of that DGP. The following are the assumptions of the nonlinear
regression model:

1. Functional form: The conditional mean function for y; given x; is

Ely %] =h(x,8), i=1...n

where A(x;, 8) is a continuously differentiable function of 8.
2, TIdentifiability of the model parameters: The parameter vector in the model is iden-
tified (estimable) if there is no nonzero parameter ﬁ #f such that A(x;, ﬁ Y=
h(x;, §) for all x;. In the linear model, this was the full rank assumptxon but the
simple absence of ¢ ‘multicollinearity” among the variables in x is not sufﬁment to
produce this condltlon in the nonlinear regression model. e

Exqm IL?Z

/ //usi"r-o.}ef te
PPO IO.M:”

3. Zero mean of the disturbance; It foliows from Assumptlon 1 that we may write
= h(x;, ) + &

where E[g; | h(x,, ﬁ)] 0. This states that the disturbance at observation i is uncor-
related with the conditional mean function for all observations in the sarnple. This
is not quite the same as assuming that the disturbances and the exogenous variables
are uncorrelated, which is the familiar assumption, however, '

4. Homoscedasticity and nonautocorrelation: As in the linear model, we assume con-
ditional homoscedasticity, ’_} _,6

E [ef | Ax;. B), j=1,...n] = o, afinite constant, (172)
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and nonautocorrelation
E[s,—e,— |h(x,-,ﬁ),h(xj,,8) j =1,... n] =0 forall j#i.

5. Data-generaung process: The data-generating process for x; is assumed to be a
well-behaved population such that first and second moments of the data can be as-
sumed to converge to fixed, finite population counterparts. The crucial assumption
is that the process generating x; is strictly exogenous to that generating €. The data
onx; are assumed to be “well behaved.” )

6. Underlymg probability model: There is a well-defined prob ablhty dlstrlbutlon gen-
eratmg 5. At this point, we assume only that this process produces a sample
of uncorrelated, 1dentlca11y (marginally) distributed random variables &; with mean

se- € @and variance o condmoned on h(x;, ). Thus, at this point, our statement of the
model is semlpammetncWWe will not be assuming any partic-

( See Se * 12 -~ ular distribution Tor &; ;'.ihe conditional moment assumptions in 3 and 4 will be
crlon 3 ) sufficient for the results in this chapter. In Chapter@wmrameteme
the model by assuming that the disturbances are normally distributed. This will
allow us to be more specific about certain test statistics and, in addition, allow some
generalizations of the regression model. The assumption is not necessary here.

with other nonlinear f
the behavior of the ¢

oint. Dynamic models, which
d greatly complicate this an

that for the linear
the asymptotic prop-
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Example 1.2 Identification in a Translog Demand System A% ]
Christensen, Jorgenson, and Lau (1975), proposed the translog indirect utility function
for a consumer allocating a budget among K commodities: |

K X K !
Iny =B, + Zkﬂ By In(p, / M)+ ZH Z,-':l Ty 10(p, [ M)In(p, / M), T,

where V is indirect utility, p, is the price for the kth commodity, and M is income. Utility,
~—_direct or indirect, is unobservable, sé the-utility function is not useable as an empirical
({1 ¥model. Roy's identity applied to this logaritimic function produces a budget share
equation for the kth commodity that is of the form : L8

K

_ omp/olmp, B+l Yyi(p,/M)
B = X

Iy /dln M By +Z,-=1 Yag In(p, /M)

+s,1§=1,...,5_1_§, K

where By = ZByand vy = Zgyie No transformation of the budget share equation produces N @_
a linear model. This is an intrinsically nonlinear regression model. (It is also one among a | | N
system of equations, an aspect we will ignore for the present.) Although the share equation | gﬁﬂ,_ [
is stated in terms of observable variables, it remains unuseable as an emprical model | - :
because of an idéntification problem. If every parameter in the budget share is multipfied

i

§ A 'f‘]‘m
"’.t_'.]c"'n'Jr"]c“Uf:‘ J

by the same constant, then the constant appearing in both numerator and denominator F. b e ;
cancels out, and the same value of the function in the equation remains. The indeterminacy _*--S "o =io
is resolved by imposing the normalization By = 1. Note that this sort of identification : i

problem does not arise in the linear model.  ~ M g st
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7.2.2 THE NONLINEAR LEAST SQUARES ESTIMATOR

The nonlinear least squares estimator is defined as the minimizer of the sum of squares,

SB) = 23 e = Y - ks B 7-7)

The first order conditions for the minimization are

BB < o Oh(x,,B) _ _
g 2 AP S0 e, OB

In the linear model, the vector of partial derivatives will equal the regressors, Xi. In what follows,
we will identify the derivatives of the conditional mean function with respect to the parameters as
the “pseudo;tegressors,” g(fo(ﬁ) =\g&,~?. We find that the nonlinear least squares estimator is found
as the solutions to kL '

3S(B) _
S -2 Huk (7-9)

This is the nonlinear regression counterpart to the least squares normal equations in (3-5).
Computation requires an iterative solution. See Example 7.3 foltowing. The method is presented
in Section 7.2.6,

Assumptions 1 and 3 imply that E[g; | A(x,£)] = 0. In the linear model, it follows, because
of the linearity of the conditional mean, that & and x, itself, are uncorrelated. However
uncorrelatedness of &; with a particular nonlinear function of x; (the regression function) does not
necessarily imply uncorrelatedness with x,, itself, nor, for that matter, with other nonlinear
functions of X; . On the other hand, the results we will obtain for the behavior of the estimator in
this model are couchetl not in terms of x, but in terms of certain functions of xi (the derivatives of
the regression function), so, in point of fact ElgX] = 0 is not even the assumptlon we need.

The foregoing is not a theoretical fine point. Dynamic models, which are very common in
the contemporary literature, would greatly complicate this analysis. If it can be assumed that & is
strictly uncorrelated with any prior information in the model, including previous dlsturbances
then perhaps a treatment analogous to that for the linear model would apply. But the convergence
results needed to obtain the asymptotic properties of the estimator still have to be strengthened.
The dynamic nonlinear regression model is beyond the reach of our treatment here. Strict
mdependence of ¢ and x; would be sufficient for uncorrelatedness of ¢ and every function of X;,
but, again, in a dynamic model, this assumption might be questionable Some commentary on this
aspect of the nonlinear regression model may be found in Davidson and MacKinnon (1993,
2004).

If the disturbances in the nonlinear model are normally distributed, then the log of the
normal density for the ith observation will be .
[ (LA )

Inf i 1%, f, ) = ~(U2){In 22+ In & + [, BxP)F /). (7-10)

For this special case, we have from item D.2 in Theorem 14.2 (on maximum likelihood
estimation), that the derivatives of the log density with respect to the parameters have
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mean Zero. That is, /’}’/ l
o = B 2 ln f(y l._.!_ff,ﬁ,az)] _ [_1_ (__ah(?‘é’ﬁ-)) ] - -
‘ > £ A __.E o2 3B & =0 M

so, in the normal case; the derivatives and the disturbances are uncorrelated, Whether
this can be assumed to hold in other cases is going to be model specific, but under
reasonable conditions, we would assume so. [See Ruud (2000, p. 540) ]

In the context of the linear model, the orthogonahty condition E [xi#i] = Oproduces

least squares as a GMM estimator for the model. (See Chapter d@,l The orthogonality —

condition is that the regressors and the disturbance in the model are uncorrélated.

In this setting, the same condition applies to the first derivatives of the conditional

mean function. The result in (11-4Pproduces 2 moment condition which will define the
(';], - \D nonlinear least squares estimator as a GMM estimator.

Example N.3 First-Order Conditions for a Nonlinear Model
The first-order conditions for estimating the parameters of the nonlinear,‘rnodel

yi %ﬁzeﬂfw + s, b%(.eg
by nonlinear least squares [see (11-10jpare r
35(b) < i

3S(b) k 125

n
agf()f) = _Z [y’ —b—b ebax"]_bzx!eb&xi -0

These equations do not have an explicit solution,

Conceding the potential for ambiguity, we define a nonlinear regression model at
this point as follows,
3.
4

DEFINITION ¥t Nonlinear Regression Model
A nonlinear regression model is one for which the first-order conditions for least
squares estimation of the parameters are nonlinear functions of the parameters.

Thus, nonlinearity is defined in terms of the techniques needed to estimate the param-
eters, not the shape of the regression function. Later we shall broaden our definition to
include other techniques besides least squares.

[ 11.2.3 THE ANEARIZED REGRESSION

The nonlineayregression model is y/~= h(x, ) + &. (To save sopfe notation, we have
dropped theOobservation subscript. )/he sampling theory resultsthat have been obtajued
for nonlinéar regression models Are based on a linear Taylgf series approxima#on t

4

13

ﬁ‘}b" {(rmu'\_

correcy
= {_'J'r &
L% "’1}“‘ .:’Ji“f‘l

i :“-J.r‘t\ll'Js'-’f

T —
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timate 81, Sz, and S;.

3 | Z
7 z 3 % LARGE SAMPLE PROPEHTIES OF THE NONLINEAR
LEAST SQUARES EST’IMATOR

Numerous analytical results have been obtained for the nonlinear least squares esti-
matfor, such as consistency and asymptotic normahty We cannot be sure that nonlinear
least squares is the most efficient estimator, except in the case of normally distributed
disturbances. (This conclusion is the same one we drew for the linear model.) But, in
the semiparametric setting of this chapter, we can ask whether this estimator is optimal
in some sense given the information that we do have; the answer turns out to be yes.
Some examples that follow will illustrate the points.

It is necessary to make some assumptions about the regressors. The precise require-
ments are discussed in some detailin Judge et al. (1985), Amemiya (1985), and Davidson
and MacKinnon (2004). In the linear regression madel, to obtain our asymptotic results,
we assume that the sample moment matrix (1/n)X’'X converges 1o a positive definite
matrix Q. By analogy, we impose the same condition on the derivatives of the regression
function, which are called the pseudoregressors in the linearized model when they are
computed at the true parameter values. Therefore, for the nonlinear regression model,
the analog to (4-21) is 9 v

0 _ dh(x;, By) 3.'1(!‘&@)_ 0 p
phim XX plim n;( 28, )( a8, =Q, xd)

where QU is a positive definite matrix. To establish consistency of b in the linear model,
we required plim(1/n)X'e = 0. We will use the counterpart to this for the pseudo; |
TEgressors: -

. 1&
phim 3 _xfe; = 0.
= =1

This is the orthogonality condition noted earlier in {4-24}. In particular, note that orthog-
onality of the disturbances and the data is not the same condition. Finally, asymptotic
normality can be established under general conditions if

1 & d
W > xle % N[0, 0%Q°].
i _i=1

With these in hand, the asymptotic properties of the nonkinear least squares estimator
have been derived. They are, in fact, essentially those we have already seen for the
linear model, except that in this case we place the derivatives of the linearized function
evaluated at B, X° in the role of the regressors. [See Amemiya (1985).]

313

The nonlinear least squares criterion function is
1 , 1&,
S®) = 5 ;[,v.- —htx Y = > ;e"’ A0
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where we have inserted what will be the solution value, b. The values of the parameters
that minimize {one half of) the sum of squared deviations arc the nonlinear least squares
estimators. The first-order conditions for a minimum are q_ i q

=0, (1)41’)

In the linear model of Chapter 3, this produces a set of linear equations, the normal ll oA JL-'
equations (3-4). But in this more general case, (11-11} is a set of nonlinear equations
that do not have an explicit solution. Note that ¢ is not relevant to the solution [nor
was it in (3-4)]. At the solution,

ah(xl LN i:')

g(b) = Z[J& - h(x ,,b)]

i=1

pl'” 1..'!r

Sosi ,W.{ ;-5#8{

ngm:fﬁ
Ao ber<

0r
8b) = X" =0,
3
which is the same as (3-12) for the linear model.

Given our assumptions, we have the following general results:

X
THEOREM ,1{.1 Consistency of the Nonlinear Least
Squares Estimator
If the following assumptrions hold:"

a. The parameter space containing B is compact (has no gaps or nonconcave
regions),
b. For any vector, ﬁ in that parameter space, plim (1/n) S(ﬁ”) = g ﬁ”), ¢ COn-
tinuous and differentiable function,
e.  g(B°) has a unique minimum at the true parameter vector,
ag:»%‘jl 1-11}is consis-

then, thenonlinear least squares estimator defined by (11-10) ana

tent. We will sketch the proof. then consider why the theorem and the proof differ
as they do from the apparently simpler counterpart for the linear model. The proof,
notwithstanding the underlying subtleties of the assumpnons, is straightforward.
The estimator, say, b°, minimizes (1/ n)S(ﬁO) If(1/m)S( § ') is minimized for every
n, then it is mm:mlzed by b° as n increases without bound. We also assumed that
the minimizer of g( § ) is umquely{_p_ If the minimum value of plim (1/m)S(8%
equals the probability limit of the minimized value of the sum of squares, the
theorem is proved. This equality is produced by the continuity in assumption b.

In the linear model, consistency of the least squares estimator could be established
based on plim(1/mX’X = Q and plim(1/mX’'e = 0. To follow that approach here,
we would use the linearized model! and take essentially the same result. The loose
end in that argument would be that the linearized model is not the true model, and
there remains an approximation For this line of reasoning to be valid, it must also be
series approximation. An argument to this effect appears in M1ttelhammer et al. (2000,

op. 190-191).
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“F-lo

Note that no mention has been made of unbiasedness. The linear least squares
estimator in the linear regression model is essentially alone in the estimators considered
in this book. It is generally not possible to establish unbiasedness for any other estimator.
As we saw carlier, unbiasedness is of fairly limited virtue in any event ;; we found, for .
example, that the property would not differentiate an estimator based ona sample of ten

L observations from one based on ten’thousand. Outside the linear case, consistency is the -~z y U

primary requlrement of an estimator. Once this is established, we consider questions of
efficiency and, in most cases; whether we can rely on asymptotic normality as a basis for
statistical inference.
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B e

THEOREM ¥1.2 Asymptotic ality of the Nonlinear
2, . Least Squar imator
If the pseudoregressors defined in (11-9) are “well behaved,” then

"’{}{RL,berff
aac o r‘u,-.m e
.!?'Q‘«N[g.'%(g‘))‘l], L— S—

where
R
Q° = plim-X¥X?,
The sample estimator of the asymptotic covariance matrix is ?. -l 4

Est. Asy. Var[b] = 6*(XYX%)"!. W?) |

Asymptotic efficiency of the nonlinear least squares estimator is difficult to establish

without a distributional assumption. There is an indirect approach that is one possibility.

The assumption of the orthogonality of the pseudoregressors and the true disturbances

implies that the nonlinear least squares estimator is 8 GMM estimator in this context.

With the assumptions of homoscedasticity and nonautocorrelation, the optimal weight-

ing matrix is the one that we used, which is to say that in the class of GMM estimators

for this model, nonlinear least squares uses the optimal welghtmg matrix, As such, it is
asymptotically efficient in the class of GMM estnmators 4 12

The requirement that the matrix m onverges to a positive definite matrix

/"7 implies that the columns of the regressor matnx X" must be linearly independent. This

——< ldentlﬁcapon condition is analogous to the requirement that the independent variables

in the linear model be linearly independent. Nonlinear regression models usuallyinvolve

several independent variables, and at first blush, it might seem sufficient to examine the

data directly if one is concerned with multicollinearity. However, this situation is not

the case. Example }Kagives an application.
]

2

[11.2.5 COMPUTING THE NONLINEAR
SQUARES ESTIMATOR

)
parameter estimator.
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ade are evaluated at b, and e? is the*Vector of non-
algorithm has some intuitive app

terms on the right-han

where
i east squares residuals.

residuals for the next iteration. choice of starting values for the iterations can be
rucial. There is art as well as sciengé in the computation of nonlinear least squares esti-
mates, [See McCullough and Vingd (1999).] In the absence of information about starting
values, a workable strategy is t@'try the Gauss—Newton iteration first. If it fails, go back to
the initiat starting values an one of the more general algorithms, such as BFGS, treat-
ing minimization of the sufn of squares as an otherwise ordinary optimization problem.

A cons@stenf estimator of o is based on the residuals: _ / é
1 n
62 = =3[y —hxi, WY 110
n = e

A degrees of freedom correction, 1/(n — K), where K is
is not strictly necessary here, because all results are asyiptotic in any event. Davidson
and MacKinnon (2004) argue that on average, will underestimate o2, and one
should use the degrees of freedom correction. Most software in current use for this
model does, but analysts will want to verify which is the case for the program they
are using. With this in hand, the estimator of the asymptofic covariance matrix for the
nonlinear least squares estimator is given in (1112 (F—~/ sD.

Once the nonlinear least squares estimates are in hand, inference and hypothesis
tests can proceed in the same fashion as prescribed in Chapter 5. A minor problem can
arise in evaluating the fit of the regression in that the familiar measure,

R’Z 1 Z?:l eiz q’ - l ?
D FTCES @9

is no longer guaranteed to be in the range of 0 to 1. It does, however, provide a useful
descriptive measure.

e number of elements in 8,
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7.2.4 HYPOTHESIS TESTING AND PARAMETRIC RESTRICTIONS

In most cases, the sorts of hypotheses one would test in this context will involve fairly simple
linear restrictions. The tests can be carried out using the familiar formulas discussed in Chapter 5
and the asymptotic covariance matrix presented earlier. For more involved hypotheses and for
-mnonlinear restrictions, the procedures are a bit less clear-cut. Two principal testing procedures _

© “wwere. discussed in Section 5.4: the Wald test; which relies on the consistency and asymptotic

normality of the estimator,and the F test. which is appropriate in finite (all) samples,that relies on
normally distributed disturbancés. In the- nonlingar case, we rely on large sample Ttesults, so the
Wald statistic will be the primary inference tool. An analog to the F statistic based on the fit of
the regression will also be developed below, Finally, Lagrange multlpller tests for the general
case can be constructed. Since we have not assumed normality of the disturbances (yet) we will
postpone treatment of the likelihood ratio statistic until we revisit this model in Chapter-14.
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31 2 ‘j 4@4 HYPOTHESIS TE

RESTRICTIONS

ING AND PARAMETRIC

" In most cases, the sorts.¢f hypotheses one would test in this contex
simple linear restricgions. The tests can be carried out using the usual formulas discussed
in Chapter 5 and the asymptotic covariance matrix presented eagtier. For more involved

principal
multlp

il The hypothesis to be tested is
\ﬂ yp

hew Ho:x(8) .

h
P“r“Q(a'P where r(8) is a column vector of J continuous funcuons of the elements of g. These -

restrictions may be linear or nonlinear. It is necessary, however, that they be 0ver:den-~ K
. U tifying restrictions. Thus, in formal terms, if the original parameter vector has K free
elements, then the hypothesis r{8) — q must impose at least one functional relationship
on the parameters. If there is more than one restriction, then they must be functionalty
independent. These two conditions imply that the J x K Jacoblan,
. P *
R(8) = 5‘3, : 1119)

must have full row rank and that J, the number of restrictions, must be strictly less than
K. This situation is analogous to the linear model, in which R(8) would be the matrix of
coefficients in the restrictions. (See, as well, Section 5,8, where the methods examined
here are applied to the linear model.) 4 o
o~ Let b be the unrestricted, nonlinear least squares estimator, W be the esti-
{2 mator obtained when the constraints of the hypothesis are impose hich test statistic
one uses depends on how difficult the computations are. Unlike the linear model, the var-
ious testing procedures vary in complexity. For instance, in our example, the Lagrange
multiplier is by far the simpiest to compute. Of the four methods we will consider, only
this test does not require us to compute a nonlinear regression.
The nonlinear analog to the familiar F statistic based on the fit of the regression
(i.e., the sum of squared residuals) would be

[Sbs) — SBY]/J
Sy /(n— '

FlJ,n—K] = (M1-20)

‘3-5 iﬂis computational problem may be extremely difficolt in its own right, especially if the constraints are
nonlinear. We assume that the estimator has been obtained by whatever means are necessary.
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_F{'.*"J 7 ﬁis test is derived in Judge et al. (1985). A lengthy discussion appears

b
[ ]

in (5-29)
This equation has the appearance of our earlier F ratio. In the nonlinear setting, how-
ever, neither the numerator nor the denominator has exactly the necessary chl-squared
distribution, so the F distribution is only approximate: Note that this F statistic requires

" that both the restricted and unrestricted models be estimated.

‘The Wald test is based on the distance between r(b) and g. If the unrestricted esti-
mates fail to satisfy the restrictions, thendoubt is cast on the validity of the restrictions.
The statistic is

= [r(b) — g}’ {Est. Asy. Var{x®) — g1} "' [rd) —a 1 -
-1 @121)
= [r(0) — g {ROYR B}~ [x(d) — g,
where
¥ = Est. Asy. Var[b],

and R(b) is evaluated at b, the estimate of 8.

Under the null hypothes1s this statistic has a lmiting chi-squared distribution with
J degrees of freedom. If the restrictions are correct, the Wald statistic and J times the F
statistic are asymptotically equivalent. The Wald statistic can be based on the estimated
covariance matrix obtained earlier using the unrestricted estimates, which may provide
a large savings in computing effort if the restrictions are nonlinear, Ft should be noted
that the smail-sample behavior of W can be erratic, and the more conservative F statistic
may be preferable if the sample is not large.

The caveat about Wald statistics that applied in the linear case applies here as well.
Because it is a pure significance fest that does not involve the alternative hypothesis, the
Wald statistic is not invariant to how the hypothesis is framed. In cases in which there
are more than one equivalent ways to specify r(8) = g, W can give different answers
depending on which is chosen. ¢.2 '

. \I'L '

%\The Lagrange multiplier test is based o the degr€ase in the sum of squared residuals

that would result if the restrictions in e restficted model were released. The formal-
ities of the test are given in Section };63. For the nonlinear regression model, the
test has a partlcularly appealing fornl_A et e, be the vector of residuals y; — h(x;, _b*)
computed using the restricted estimates. Recall that we defined X% as an n x K matrix
of derivatives computed at a particular parameter vector in{11- 6% X! be this ma-
trix computed at the restricted estimates. Then the Lagrange multiplier statistic for the
nonlinear regression model ig

LM =

o XU[RVXY X, 7
g.e./n dr-22)
Under Hy, thisstatistic has a limiting chi-squared distribution with J degrees of freedom.

What is especially appealing about this approach is that it requires only the restricted
estimates. This method may provide some savings in computing effort if, as in our

Lﬂmmﬁ&ﬂ
}1,[._,1._[""1{\'.“ ¥
'L(_E'[ rﬁllf{f A Ld’
hl M"I Cih:ﬁf’

L Hewe s ;J'

example, the restrictions resultin alinear model. Note, also, that the Lagrange multiplier s+ ok{sie
s T) ": ' me S -é h X

in Mittelhammer et al. (2000). i ¢a ntered E‘Z

Jh .“ﬂt' '“f'Sf‘ess.oh

O‘F mx

Lx.Many

< LQSI‘GY\OJC_ Ww\"-np\\cr‘
atishics are computed 1n\

this fashiony
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7.2.5 APPLICATIONS

This section will present three applications of estimation and inference for nonlinear regression
models. Example 7.4 illustrates a nonlinear consumption function that extends Examples 1.2 and
2.1. The model provides a simple demonstration of estimation and hypothesis testing for a
~.nonlinear model. Example 7.5 analyzes the Box-Cox transformation. ThlS specification is used _

to provide a more general functional form than the linear regressmn L it has the linear and
loglinear models as special cases. - Finally, Example 7.6 is a lengthy examination of an
exponential regression model. In this application, we will explore some of the implications of
nenlinear modeling, specifically “interaction effects.” We examined interaction effects in Section
6.3.3 in a model of the form - ' ;

y =B+ Bax+ Paz+ Paxz + €.
In this case, the interaction effect is 8"E[){x,z)/@xdz = Ps. There is no interaction effect if B, equals

zero. Example 7.6 considers the (perhaps unintended) implication of the nonlinear model that
when E[)ix,z] = h(x,z,B), there is an interaction effect even if the model is

A(x,2,B) = A(B1 + Box + Bs2).
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Example 7.4 Analysis of a Nonlinear Consumption Function -
The linear consumption function analyzed at the beginning of Chapter 2 is a restricted version
of the more general consumption function '

C=a+}3Yx+£,

© - % inwhich y equals 1.With this restriction, the model is linear. If y is free to vary, however, then % -~
this version becomes a nonlinear regression. Quarterly data on consumption, real disposable
income, and se | other variables for the U.S. economy for 1950 to 2000 are listed in
Y Appendix Tablg(F5. 9. We will use these to fit the nonlinear consumption function. {Details of

the computationi of the estimates are given in Section 7.2.8!), The restricted linear and

¢ P unrestricted nonlinear least squares regression results are shown mﬂ\ :
L= n €><dnpl|r. 7.8,

[ 1,1/ TABLE 7.1 Estimated Consumption Functions '

Linear Model Nonlinear Model |
Paramerer Fistimate Ntandard Error Fstimate Standard Error :
o —¥0.3547 14,3039 4587990 22,5014
2] 0.9217 0.003872 (3. 10085 {Lg1091
¥ 1.G0EE) e 124483 0.01205
e'e 1.536,321.881 504.403.1725
o #7.20083 59.0946
R* 0.996448 (.998834
Varfb} — 0.000119037
Varfc} e 0.0G014532

Covlb, c} — ~0.000131491

The procedures outlined earlier are used to obtain the asymptotic standard errors and an
estimate of 0. (To make this comparable to §? in the linear model, the value includes the
degrees of freedom correction.) i i i
b

In the preceding example, there is no question of collinearity in the data matrix X = (i, yI;
the variation in Y is obvious on inspection. But, at the final parameter estimates, the R in the

regression is 0.998834 and the correlation between the two pseudoregressors x5° = Y¥ and

X3’ = BYylnY is 0.999752. The condition number for the normalized matrix of sums of squares
and cross products is 208.306. (The condition number is computed by computing the square
root of the ratio of the largest to smallest characteristic root of D'1;Xof),_(op,'1 where _x;o = 1 and
D is the diagonal matrix containing the square roots of X xi° on the diagonal.) Recall that 20
was the benchmark for a problematic data set. By the standards discussed in Section#8t 4,7,/ an
A.G. 5) tl';le collinearity problem in this “data set” is severe. In fact, it appears not to be a problem at :
all.
For hypothesis testing and confidence intervals, the familiar proceduras can be used,
with the proviso that all results are only asymptotic. As such, for testing a restriction, the chiz
squared statistic rather than the F ratio is likely to be more appropriate. For example, for
testing the hypothesis that y is different from 1, an asymptotic f test, based on the standard
normal distribution, is carried out, using

z= 1.24483 -1 =20.3178.
" 0.01205

This result is larger than the critical values of 1.96 for the 5 percent significance level, and we
thus reject the linear model in favor of the nonlinear regression. The three procedures for
hypotheses produce the same conclusion.
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* The F statistic is

(1,536,321.881-504,403.17)/1
504,403.17 /(204 -3)
The critical value from the tables is 3.84, so the hypothesis is rejected.
* The Wald statistic is based on the distance of ¥ from 1 and is simply the square of the
“asymptotic ¢ ratio we computed earlier:

F[1.204-3] =

=411.29,,

IOLEITL RS
0.01205

The critical value from the chi-squared table is 3.84.
* For the Lagrange multiplier statistic, the elements in X are

xt =01, Y5, p¥in v

To compute this at the restricted estimates, we use the ordinary least squares estimates for
aand Band 1 for y so that

_x_,_*znly,%_\fﬁ@w“\’

The residuals are the least squares residuals computed from the linear regression. Inserting
the values given earlier, we have

- 996,103.9
(1,536,321.881/204)

= 132.267.

As expected, this statistic is also larger than the critical value from the chi-squared table.
We are also interested in the marginal propensity to consume. In this expanded model,
HO :!=1 is a test-that the marginal propensity to consume is constant, not that it is 1. (That
would be a joint test of both Y =1 and 8 =1} In this model, the marginal propensity to
consume is

b P
MPC = dC/IY = By o<1, @}l?’ !

which varies with Y. To test the hypothesis that this value is 1, we require a particular value of

Y. Because it is the most recent value, we choose DPI2000.4 = 6634.9. At this value, the

MPC is estimated as 0.86971. We estimate its standard error using the delta method, with
the square root of

Varfpl  Covib, ¢l] [sMPC/sb

IMPC/3b aMP i =

[IMPC/3b. aMPC/dc] [Cov{b_, q Vard ||oMPCrac

0.0001198037 —0.000131 491] { cye1 }
b

o -1 o1 i
=[g¥*" by (1”**"‘""’)3[—0.000131491 0.00014532 | |bYe-1(1 + cInY)

= (),00007469,

which gives a standard error of 0.0086423. For testing the hypothesis that the MPC is equal
to 1.0 in 2000.4 we would refer z = (0.86971 - 1)/0.0086423 = —15.076 to the standard
normal table. This difference is certainly statisticall significant, so we would reject the
hypothesis. é
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Example 7.5 The Box-Cox Transformation ‘W
‘i The Box—Cox transformatlon [Box and Cox (1964), Zarembka (1974)] is used as a device
~ for generallzmg the linear madel. The fransformation is

X =0~ 1)1A.

L - "~ Special cases of interest are A = 1, which produces a linear transformation, xX™ = x — 1, and A" -
= 0. When A equals zero, the transformation is, by L'Hopital's rule, ‘

llmx xlnx Inx.

lim=
-0 R A0

ol a’(x —l)ldk
1

The regression analysis can be done conditionally on A. For a given value of A, the .model',

- &}
rmorBE P (st
3-23

is a linear regression that can be estimated by least squares. However, if A in (#4=+5) is taken
to be an unknown parameter, then the regression becomes nonlinear in the parameters.
In principle, each regressor could be transformed by a different value of A, but, in most
applications, this level of generality becomes excesswely cumbersome, and A is assumed to
be the same for all the variables in the model® To be defined for all values of A, x must be
strictly positive. In most applications, some of the regressors—for example, a dummy
varaab[e—wnl not be transformed. For such a variable, say v, v’ = v, and the relevant
deriy will be zero. It is also possible to transform y, say, by y(e)

(1' ’2‘0 Transformatlon o} the dependent variable, however, amounts to a specification of the whole
model, not just the functional form of the conditional mean. For example, 6 = 1 implies a
linear equation while 8 = 0 implies a logarithmic equation.

In some applications, the motivation for the transformation is to program around zero
values in a loglinear model. Caves, Christensen, and Trethaway (1980) analyzed the costs
of production for railroads providing freight and passenger service. Continuing a long line of
literature on the costs of production in regulated industries, a translog cost function (see
Section 10.4.2) would be a natural choice for modeling this multiple-output technology.
Several of the firms in the study, however, produced no passenger service, which would
preclude the use of the translog model. (This model would require the log of zero.) An
alternative is the Box-Cox transformation, which is computable for zero output levels. A
question does arise in this context (and other similar ones) as to whether zero outputs should
be treated the same as nonzero outputs or whether an output of zero represents a discrete
corporate degision distinct from other variations in the output levels. In addition, as can be
seen in this solution is only partial. The zero values of the regressors preclude

(% ’2‘1) — computation of appropriate standard errors.

Nonlinear least squares is straightforward. In most instances, we can expect to find the
least squares value of A between -2 and 2. Typically, then, A is estimated by scanning this
range for the value that minimizes the sum of squares. Note what happens of there are zeros
for x in the sample. Then, a constraint must stili be placed on A in their model, as 0¥
defined only if A is strictly positive. A positive value of A is not assured. Once the optlmal
value of A is located, the least squares estimates, the mean squared residual, and this value
of A constitute the nonlinear least squares estimates of the parameters.

“*See, for example, Seaks and Layson (1983).
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After determining the optimal value of A, it is sometimes treated as if it were a known

value in the least squares results. But A is an estimate of an unknown parameter. It is not
hard to show that the Ieast squares standard errors will always underestimate the correct
i | asymptotic standard errors® ¥To get the appropriate values, we need the derivatives of the

" right-hand side of ('54-;-5-) with respect to a, 8, and A. lr-the-nolation-of-Sectiondd.2.-3-these~

iy 3 The psevdorcgressors are
SO

oh() _ o el - (‘7 -2 69

=X, .
B, * : ,
oh o
I S A el
-15 3-16 _ _ _

We can now use ( ) and (#44-38) to estimate the asymptotic covariance matrix of the i

parameter estimates. Note that In x, appears in 8h{ }/2A. If x, = 0, then this matrix cannot be
computed. This was the point noted earlier.

It is important to remember that the coefficients in a nonlinear model are not equal to the
slopes (or the elasticities) with respect to the variables. For the particular Box_-fTCox model in
(r1=19),

1-23 oFny|x]_  oE[ny|x]

dlnzx, o,

n_
=Pyx; =

{ T I i
Standard errors for these estimates can be obtained using the delta method The derivatives | f(-}b. LS

.....

are an/opy = x> = Nk/Bx and énBA=rnln X Coliecting terms, we obtain | == ﬂ \fﬂ’
5 |'

ol =(u8 {80 s Comsysnco ] | 1

The application in Example 7.4 is a Box-Cox model of the sort discussed here. We can
rewrite (45 as . ‘
328 Csee Sectson 7.2¢)
y = (@—1A) + (BAX+ |
a* + B’ + &

nn

This shows that an alternative way to handle the Box-Cox regression modelfis to transform
the model into a nonlinear regression; 'then use the Gauss-Newton regressiof to estimate the
parameters. The original parameters 'of the model can be recovered by A=y, a=a"t1/y and

B=vyp"
*¥See Fomby, Hill, and Johnson (1984, pp. 426-431).

o
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Example 7.6 Interaction Effects in a Loglinear Model for Income

I3

" variables

A recent study in health economics is “Incentive Effects in the Demand for Health Care: A
Bivariate Panel Count Data Estimation” by Riphahn, Wambach, and Million (2003). The
authors were interested in counts of physician visits and hospital visits and in the impact
that the presence of private insurance had on the utilization counts of interest, i;e., whether

Z)
Flg'

the data contain evidence of moral hazard. The sample used is an unba!?gied panel of ?r

7,293 households, the German Socioeconomic Panel (GSOEP) data se
reported in the panel are household income, with numerous other
sociodemographic variables such as age, gender, and education. For this example, we will
model the distribution of income using the_last wave of the data set (1988), a cross section
with 4483 observations. Two of the individuals in this sample reported zero income, which
is mcompatlble with the underlying models suggested in the development below. Deleting
these two observations leaves a sample of 4481 observations. Flgures 7.1 and 7.2 display
a histogram and a kernel density estimator for the household income variable for these

observations.

VW AL Far 5 il oo | = G

e
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i
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Flgure 7 1 Histogram for Income

.;I

Figure 7.2 Kernel Density Estimator for Income

We will fit an exponential regression model to the income variable, with

Income = exp(B1+|32Age+B3Age +B4Educatfon+
- BsFemaIe+BsFemaieﬂEducat:omB?AgexEducatron) + &

Table 7.2 provides descriptive statistics for the variables used in this application.

Table 7.2 Descriptive Statistics for Variables Used in Nonlinear Regression

Variable Mean Std.Dev. Minimum Maximum
INCOME| .348896 .164054 . 0050 2
AGE| 43.4452 11.2879 25.00 64
EDUC| 11.4167 2.36615 7.000 18
FEMALE| .484267 . 499808 .0000 1

i+ /hitp:figed.econ.queensu.caljael

mong the*J]

@t

fag

.\-:

/"' "f he data are published on the Joumal of Applied Econometrics data archive websne at
3-v18.4/riphahn-wambach- mllllonl The variables m the data file
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Loglmear models play a promment tole in statlstlcs Many derive- from a density

function of the form f(ylx) p[y[a +X'B,6], where o® is a constant term and 0 is an additional
parameter, and

Elylx] = g(6)exp(a’txB),

(hence the name “loglinear models”). Examples include the Weibull, gamma, Iognormala
" and exponential models for continuous variables and the Poisson and negative binomial® =

models for counts. We-can wrlte Elyix] as expling(8)+c? +X'B], then absorb Ing(0) in the &1 |

constant term in InEfy|x] = 0c+x[3 The" lfognormal distribution (see Section B.4.4) is often

used to model incomes. For the lognormal random variable,

~1(ny-o’-xB)*/0°]

ao_i_xr ‘e = e)(p[ 2( ,
Plyla+xB.6] e »
Elyjx] = exp(a’+xB + 6%/2) = exp(a+x'B).

>0,

The exponential regression model is also consistent with a gamma distribution. The
density of a gamma distributed random variable is

A% exp(-Ap)y®!
T(®) _
Elylx] = 6/ = Bexp(alx'B) = exp(in + o° + X'B) = exp(ox'P).

PlYlo’#xB.8] = .y >0,6[> 0,1 = exp(-a’ — xB),

The parameter 6 determines the shape of ihe distribution. When 0 > 2, the gamma density
has the shape of a chi-squared variable (which is a special case). Finally, the Weibull
model has a similar form,

plyla’exB.8] = O exp[-(Ap)° Iy, »2 0,0 0.4 =exp(-o’ —xB),
Elyix] = T{1#1/6)exp(o™+x'B) = explInT(1#1/0) i a’ #x’B] = exp(o+x'B).
In all cases, the maximum likelihood estimator is the most efficient estimator of the

parameters. {Maximum likelihocod estimation of the parameters of this model is considered
in Chapter 14.) However, nonlingar least squares estimation of the model

Elyix) = exp(a + XB) + ¢

has a virtue in that the nonlinear least squares estimator will be consistent even if the
distributional assumption is incorrect - it is robust to this type of misspecification since it
does not make explicit use of a distributional assumption.
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Table 7.3 presents the nonlinear least squares regression results. -Superficially, the

{ 3/ pattern of signs and significance might be expected ~ with the exception of the dummy

variable for female. However, two issues complicate the interpretation of the coefficients in
this model. First, the model is nonlinear, so the coefficients do not give the magnitudes of
the interesting effects in the equation. In particuiar, for this model,

OE[ylxVoxy = explal+x'B) x Aa + X'BYox.

Second, as we have constructed our model, the second part of the derivative is not equal to
the coefficient, because the variables appear either in a quadratic term or as a product with
some other variable. Moreover, for the dummy variable, Female, we would want to
compute the partial effect using o gl ) '

':'. il -'-_!

AEly|xVAFemale = Ely|x,Females1] - Ely|x,Female=0]

A third consideration is how to compute the partial effects, as sample averages or at the
means of the variables. For example,

OEly|x)eAge = E[yl:,g]'x'(ﬁz + 2B3Age + B7Educ).

The average value of Age in the sample is 43.4452 and the average Education is 11.4167.
The partial effect of a year of education is estimated to be 0.000948 if it is computed by
computing the partial effect for each individual and averaging the result. It is 0.000925 if it
is computed by computing the conditional mean and the linear term at the averages of the
three variables. The partial effect is difficult to interpret without information about the scale
of the income variable. Since the average income in the data is about 0.35, these partial
effects suggest that an additional year of education is associated with a change in expected
income of about 2.6% (i.e., 0.009/0.35).

4 —

L ey fraand |

Table 7.3 Estimated Regression Equations

-Nonlinear Least Squares Linear Least Squares
Variable Estimate Std.Error t Estimate Std.Error ta
Constant | -2.58070 .17455 14.78 =.13050 .06261 =-2.08
Age .06020 .00615 9.79 .01791 .00214 8.37
Age™| -.ooo84 00006082 | -13.83 -.00027 -00001985 [ -13.51
Education -.00616 .01695 -.56 -.00281 .00418 ~-.67
Female .17497 .05986 2.92 .07955 .02339% 3.40
FemaleXEduc | -.01476 .00493 -2,99 -.00685 .00202 -3.39
AgexEduc .00134 .00024 5.59 .00055 .00009394 5.88
e'e 106.09825 106.24323
S .15387 .15410
R .12005 .11880
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The rough calculation of partial effects with respect to_Age doeé not reveal the
model implications about the relationship between age and expected jfcome. Note, for
example, that the coefficient on Age is positive while the coefficient gd Age® is negative.
This implies (neglecting the interaction term at the end), that the Agefincome relationship
implied by the model is parabolic. The partial effect is positive at some low values and
negative at higher values. To explore this, we have computed the expected /ncome

(%~

- 1s

using the model separately for men and women, both with assumed college education”

-(Educ = 16) and for the range of ages in the sample, 25 to 64. Figure 7.3 shows the
result of this calculatien. The upper curve is for men (Female = 0) and the lower one is
for women. The parabolic shape is as expected; what the figure reveals is the relatively
strong effect,.-'.—l ceteris paribus, incomes are predicted to rise by about 80% between ages
25 and 48. (There is an important aspect of this computation that the model builder
would want to develop in the analysis. It remains to be argued whether this parabolic
relationship describes the trajectory of expected income for an individual as they age, or
the average incomes of different cohorts at a particular moment in time (1988). The latter
would seem to be the more appropriate conclusion at this point, though one might be
tempted to infer the former.)

“Expected nsoms v, P-ﬂgé-'fw.mi:h_ and Wamen with Educ = 18

.
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The figure reveals a second implication of the estimated mode! that would not be obvious
from the regression results. The coefficient on the dummy variable for Female is positive,
highly significant, and, in isolation, by far the largest effect in the model. This might lead the
analyst to conclude that on average, expected incomes in these data are higher for women
than men. But, Figure 7.3 shows precisely the opposite. The difference is accounted for

11" by the interaction term, FemaleXEducation. The negative sign on the latter coefficient is

suggestive. But, the total effect would remain ambiguous without the sort of secondary
analysis suggested by the figure,

»,_ Finally, in addition to the quadratic term in age, the model contains an interaction term,
- AgexEducation. The coefficient is positive and highly significant. But, it is far from obvious

how this should be interpreted. In a linear model,

Income = [31'+fBzAg_e'_+[3sAgez,-l'-.m_Educationf-,I . .
BsFemalepsFemalexEducation+B,AgexEducation +

.rz? f R 1
we would find that By |= #E[Imoméf)'{]laAggaEducation. That is, the “interaction effect” is
the change in the partial effect of Age associated with a change in Education (or vice
versa)., Of course, if By equals zero, that is, if there is no product term in the model, then
there is no interaction effect - the second derivative equals zero. However, this simple
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interpretation usually does not apply in nonlinear models (i.e., in any nonlinear modet).
Consider our exponential regression, and suppose that in fact, p; is indeed zero.  For
convenience, let u(x) equal the conditional mean function. Then, the partial effect with
respect to Age is

au(x)/oAge = u(x) x (Bz + 2BsAge) 7
&u(x)/oAgedEdue = (x) x (B, + 2BsAge)(Bs + PeFemale), (7-25)

= L o m ’ (T
which is nonzero even if there is no “intéraction term” in the model. The interaction effect ‘|
in the model that we estimated, tl;!at includes the pr'pduct term, is

PEly|xVaAgeIEdU = (x)|4] By |+|(B2 + 2BsAge + BEdUC)Pq + BeFemale + rAge)}. (7-26)

At least some of what is being called the interaction effect in this model is attributable
entirely to the fact the model is nonlinear. To isolate the “functional form effect” from the
true “interaction effect” we might subtract (7-25) from (7-26)| then reassemble the

components: {eund

&p(x)/aAgedEduc = P(){(B2 + 2B:Age)(Bs + BsFemale)]
+(X) B7 [ 1 + Age(B; + 2Bs) + Educ(B, + BFemale) + EducxAge(B)l~  (7-27)

it is clear that the coefficient on the product term bears essentially no relationship to the
quantity of interest (assuming it is the change in the partial effects that is of interest). On
the other hand, the second term is nonzero if and only if B; is nonzero. One might,
therefore, identify the second part with the “interaction effect” in the model. Whether a
behavioral interpretation could be attached to this is questionable, however. Moreover, that
would leave unexplained the functional form effect. The point of this exercise is to suggest
that one should proceed with some caution in interpreting interaction effects in nonlinear
models. This sort of analysis has a focal point in the literature in Ai and Norton (2004). A
number of comments and extensions of the result are to be found, including Greene {2010y,
We make one final observation about the nonlinear regression. In a loglinear, single =
index function -model such as the one analyzed here, one might, “for comparison ™
purposes,” compute simple linear least squares results. The coefficients in the right,hand
side of Table 7.3 suggest superficially that nonlinear least squares and least squares are
computing completely different relationships. To uncover the similarity (if there is one), itis
useful to consider the partial effects rather than the coefficients. We found, for example,
the partial effect of education in the nonlinear model, using the means of the variables, is
0.000925. Although the linear least squares coefficients are very different, if the partial
effect for education is computed for the linear equation, we find -0.00281 - 0.00685(.5)! +|
0.00055(43.4452) = 0.01766, where we have used 0.5 for Female. Dividing by 0.35, we
obtain 0.0504, which is at least close to its counterpart in the nonlinear model. As &
general result, at least approximately, the linear least squares coefficients are making this
approximation. e
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7.2.6 COMPUTING THE NONLINEAR LEAST SQUARES ESTIMATOR -

Minimizing the sum of squared residuals for a nonlinear regression is a standard problem in
nonlinear optimization that can be solved by a number of methods. (See Section E.3,) The
method of GaussNewton is often used. This algorithm (and most of the sampling theory results ,
. for the asymptotic properties of the estimator) is based on a linear Taylor series approximation to -. .0

" * the nonlinear regression function. The iterative estimator is computed by transforming the

optimization to a series of Iinear_léast squares regressions. .

The nonlinear regression model is 'y = #(x,B) + &. (To save some notation, we have
dropped the observation subscript). The procedure is based on a linear Taylor series .
approximation to i :
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_h(__x,,_ B)ata particular value for the parameter vector, ﬂ”: 8
- ¥ - z i
(ﬁk—ﬁﬁ). (15}

=) h 0
| h(x B ~ it p°)+z’" (3’;’”
A k ¢

This form of the equation is caﬂed the hneanzed regressmn meodel. By collecting terms,

we obtain
774
dh(x, 8° ah(x, £
g B) ~ [h(x ﬁ“)—Zﬁk( g’;f ))] Zﬁ ( (3’;“). o)
> ‘
TN I' Let x? equal the kth partial derwativ@ah(x 8%/ Bﬁk For a given value of 5 xk isa

{ @ function only of the data, not of the unknown parameters We now have

h(x, B) ~ [.h“ - Z.xsﬁﬂ + Zxﬁﬁk,
k= P

which may be written
h(x, B) ~ b —x"B° +x%8,
which implies that
y~ R — 378+ x"B + .
By placing the known terms on the left-hand side of the equation, we obtain a linear

equation: Z-2F %0
W=y K+ ="+, Ty

Note that £ contains both the true disturbance, ¢, and the error in the first order Taylor
series approximation to the true regression, shown in (+#x). That is, 7-29

K K ’} -
h(x, B) — {h" S+ xEﬁk}] : zw Z
k=1 k=1

Because all the errors are accounted for, ?&-131? is an equality, not an approximation.
With a value of ,80 in hand, we could compute y° and X’  and then estimate the parameters
of (¥+=%) by linear least squares. (Whether this estimator is consistent or not remains to

1.30 € seen.) 7. 7’

Example 13 Linearized Regression
For the model in Example yf 3, the regressors in the linearized equation would be

s°=£+

E} o () _
S
) e
Xg = 3,63 e""
()
8 = = A

\8“A-Y0u should verify that for the linear regression model, these derivatives are the independent variables.



With a set of value of the parameters |3°
Y0 = y— h(x,B:%, B2, Bs®) * Biox: % B Bexs”

Q
geulgbe linearly regressed on the three variables previously defined to estimate

B+, B2 and Bs. _ 7 | .-

~30
The linearized regressmn model shown in ?H?’i") can be estimated by linear least squares. Once a
parameter vector. 1s obtained, it can play the role of a new ﬁ’° and the computatlon can be done
again, The 1teratlgn can continue until the difference between successive _parameter vectors is
small enough to assume convg;ence One of the main virtues of this method is that at the last

will, apart from the scale factor S / n, prov1de the correct

iteration the estimate of (Q
ance matrix for the parameter estimator. 4

estimate of the asymptotic cov
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This iterative solution to the minimization problem is i

o bt = [ZX" w} [Zx h°+x°’bt)}
e [Eit] [

izl

C#-32)

= _b.f + (Xﬂfxo) 1,‘X-0'§0
= ht + A!v

where all terms on the right-hand side are evaluated at by, and e’ is the vector of non+ ¥
linear least squares residuals, This algorithm has some intuitive appeal as well. For each
iteration, we update the previous parameter estimates by regressing the nonlinear least
squares residuals on the derivatives of the regression functions. The process will have
converged (i.e., the update will be ) when X%e® is close enough to . This derlvatlve
has a direct counterpart in the normal equatlons for the linear model X'e =0.
As usual, when using a digital computer, we will not achieve exact convergence with
X% exactly equal to zero. A useful, scale-free counterpart to the convergence criter nn__--—'? -2 A
discussed in Section E3.6is§ = eO’ XO(XO’ X%~ 1X‘]’ eﬂ [See @)22) ] We note, finally,
that iteration of the linearized re gress:on although a very effective algorithm for many
problems, does not always work. As does Newton’s method, this algorithm sometimes
“jumps off” to a wildly errant second iterate, after which it may be impossible to compute
the residuals for the next iteration. The choice of starting values for the iterations can be
crucial. There is art as well as science in the computation of nonlinear least squares esti-
mates. [See McCullough and Vinod (1999).] In the absence of information about starting
values, a workable strategy is to try the Gauss-Newton iteration first. If it fails, go back to
the initial starting values and try one of the more general algorithms, such as BEGS, treat-
ing minimization of the sum of squares as an otherwise ordinary optimization problem. ~
7~ A consistent estimator of o~ is bas THE Tesidals: '

1< 5
- i"h(x.iv b) .
- lZx;[y ]

correction, 1/(n — K), where K i

(11-13)

A degrees of free number of elements in 8,

del does, but analysts will w
are using, With this in hand the“estimator of the asymptotic covari
nonlinear least squares estifator is glven in (11- 12)

arise in evalpafing the fit of the regression in that the familiar measure,

(11-14)

?:-_1 v —»?
is no longer guaranteed to be.in-tife range of 0 to 1. It does, however, provide a useful

escriptive measure,
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.tuning” the hidden digits (i.e., those that the analyst would not be reporting to their reader).,
(“Gradient” is the scale-free convergence measure, §, noted earlier.) Note that the

Example 7.4 considered analysis of a nonlinear consumption function
C=a+pY+s

The linearized regression.model is 7
C (6 +8Y)+ (&1 + BV 4 FBOYOINY) = o b (YY) +1(8¥CInY) + o,

Combining terms, we find that the ndnliﬁe_ér least squares procedure reduces to iterated
regression of =

o

C'=C+yBY" ¥

on s
. 1 .-
40 :[B_h(.) k() Bh(.)J I -
" do. OB By .
B°Y" In¥

Finding the s_tal_'til'id values for a nonlinear procedure can be difficult. Simply trying a
convenient set of values can be unproductive. Unfortunately, there are no good rules for
starting values, except that they should be as close to the final values as possible {not
particularly helpful). When it is possible, an initial consistent estimator of 8 will be a good
starting velue. In many cases, however, the anly consistent estimator available is the one
we are trying to compute by least squares. For better or worse, trial and error is the most @
frequently used procedure. For the present model, a natural set of values can be obtained
because a simple linear model is a special case. Thus, we can start a and B at the linear ™
least squares values that would result in the special case of y = 1 and use 1 for the starting | Lyt K T
value for y . The iterations are begun at the least squares estimates for & and B and 1 for A A
Y

' pi f—efi"&-":'r“ll eh®
The solution is' reached in eight iterations, after which any further iteration is merely “fine | a‘iﬂ"{"ﬁ-‘d-"f‘ Q@
KT e fxri'L;'-‘--

coefficient vector takes a very errant step after the first iterationl_'Tthe sum of squares | IE; ﬁffi 5
becomes hugel,'_—but the iterations settle down after that and converge routinely. ouseE -

e

Begin NLSQ iterations. Linearized regression.

Iteration = 1; Sum of squares = 1536321.88; Gradient = 996103.930

lteration = 2; Sum of squares = 0.184780956E+12; Gradient = 0.184780452E+12 (x10')
Iteration = 3; Sum of squares = 20406917.6; Gradient = 19902415.7

Iteration = 4; Sum of squares = 581703.598; Gradient = 77299.6342

lteration = 5; Sum of squares = 504403.969:; Gradient = 0.752189847

lteration = 6; Sum of squares = 504403.218; Gradient = 0.526642396E-04

lteration = 7; Sum of squares = 504403.216; Gradient = 0.511324981E-07

lteration = 8; Sum of squares = 504403.216; Gradient = 0.606793426E-10
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